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overview

@ what this talk is about
Q@ turbulence in large domains

©Q space is time

©Q bye bye, dynamics



do clouds integrate Navier-Stokes equations?

?

= other swirls =—

are clouds Navier-Stokes supercomputers in the sky?



part 1

@ turbulence in large domains
Q space is time

©Q spacetime

©Q bye bye, dynamics



goal : enumerate the building blocks of turbulence

Navier-Stokes equations

ov

EJr(v-V)v:lVZv—Verf, V-v=0,

R

velocity field v € R3 ; pressure field p ; driving force f

describe turbulence
starting from the equations (no statistical assumptions)




T. Mullin lab

B. Hof lab



pipe flow close to onset of turbulence ’

but we have hlt a Wa” :

exact coherent structures are too unstable to compute

M. Avila and B. Hof, Phys. Rev. E 87 (2013)



goal : we can do 3D turbulence, but for this presentation

Navier-Stokes equations
ov 1 _»5
E+(V~V)v——RVv+(~~) }
velocity field v(x; t) € R3
not helpful for developing intuition
we cannot visualize 3D velocity field at every 3D spatial point J

look instead at 1D ‘flame fronts’



(1+1) spacetime dimensional “Navier-Stokes”

Navier-Stokes equations (1822)
ov 1
EJr(v-V)v = —RV v+ ()
v
v
v
Kuramoto-Sivashinsky (1+1)-dimensional PDE (1975)
Ui+ uvu = —v2u-vtu, xeR, J

describes spatially extended systems such as
o flame fronts in combustion
@ reaction-diffusion systems
Q...



[horizontal] space x € [0, L] [up] time evolution
@ turbulent behavior

@ simpler physical, mathematical and computational setting
than Navier-Stokes



another example of large spacetime domain simulation

complex Ginzburg-Landau

(will return to this)

[horizontal] space x € [-L/2,L/2] [up] time evolution
codeinthehole.com/static/tutorial/coherent.html



so far : Navier-Stokes on compact spatial domains, all times



compact space, infinite time

Kuramoto-Sivashinsky equation

u = —(+v2+vHu—uvu, xe[-L/2,L/2],

in terms of discrete spatial Fourier modes
N ordinary differential equations (ODEs) in time

Gk(1) = (af — af) Tt Zuk&t)uk w(t).




evolution of Kuramoto-Sivashinsky on small L = 22 cell

400
350|

150 B

300|

horizontal: x € [-11, 11]
vertical: time
color: magnitude of u(x, t)



part 2

@ turbulence in large domains
Q space is time
©Q spacetime

Q bye bye, dynamics



is space time?



rewrite Kuramoto-Sivashinsky
Ut = —Ulx — Uxx — Uxxxx
as 4-fields vector

! 14 "
u' = (uu,u,u)
! 1 "
where u = Uy, U = Uxx, U = Uxxx

equation %u(x) = v(x) now 1st order in spatial derivative

du J du S
dx ’ dx
1 "
dU 1" dU 1" !
= u — = —Ut—Uu —uu




1st order in spatial derivative

d
au(x) = V(x)

@ compact in time, periodic boundary condition
u(x,t)=u(x,t+T)

@ initial data

"

ug = (U(xo, 1), U' (X0, 1), U" (X0, 1), U (X0, 1))

specified for all t € [0, T), at a fixed space point xg




can do : compact time, infinite space cylinder



(left) (right)

evolution of EQy : (left) in time, (right) in space
initial condition for the spatial integration is the time strip

u(xo, t), t =10, T), where time period T = 0, spatial x period is
L=22.

Michelson 1986



(left) (right)

(left) old : time evolution. (right) new : space evolution
x = [0, L] initial condition : time periodic line t = [0, T]

Gudorf 2016



neither ime NOr space integration works

for large domains

rethink the calculation



part 3

@ turbulence in large domains
Q space is time

O spacetime

Q Dbye bye, dynamics



complex Ginzburg-Landau on a large spacetime domain

goal : enumerate nearly recurrent chronotopes

[left-right] space x € [-L/2,L/2] [up]time t € [0, T]



Kuramoto-Sivashinsky on a large spacetime domain

the same small tile recurs often in a turbulent pattern

goal : define, enumerate nearly recurrent tiles



In literary theory and philosophy of language,
the chronotope is how configurations of time
and space are represented in language and
discourse.

— Wikipedia : Chronotope

@ Mikhail Mikhailovich Bakhtin (1937)

2 J. Stat. Phys. 82, 1429-1452 (1996).


https://en.wikipedia.org/wiki/Chronotope
https://doi.org/10.1007/BF02183390

this ‘exact coherent structure’
shadows a small patch of spacetime solution u(x, t)



a state space point is periodic if its orbit returns to it after a
finite time T ;
such orbit tiles the time axis by infinitely many repeats

a state space point is spatiotemporally periodic if it belongs to
an invariant d-torus R ;
such torus tiles the spacetime by infinitely many repeats




(left) (right)

(left) old : time evolution t=[0, 7]
initial condition : space periodic line x = [0, L]

(right) new : space evolution x = [0, L]
initial condition : time periodic line t = [0, T]

Gudorf 2016



discretize unm = u(xn, tm) over NM points of spatiotemporal
periodic lattice x, = nL/N, t, = mT/M, Fourier transform :

N—
- 1 Z o w 2rk 2nl
uk@ = N ’(QKXH+ Ztm) ) qk = L ) w€ = T

Kuramoto-Sivashinsky is no more a PDE,
but an algebraic [N x M]-dimensional problem
of determining global solution u to

N—1 M—1

(—iwz — (g% - Chi)) Uke + ’iz > U Uk—kt,m—mr = 0

=0m'=0




field is discretized as Uy, values
over NM points of a periodic lattice



statement : HA !

You are imposing by hand the space & time periods L, T '

e —_

space /
answer . NO'

nature chooses L & T, they are free parameters.



solution to Kuramoto-Sivashinsky is now given as

at each lattice point k¢
the tangent field at Uy,

satisfies the equations of motion

N—-1 M-1

, ~ .Qk ~ ~
—lwy — (q,% — qﬁ)} Uk + I?Z Zuk’m’uk—k’,m—m’ =0
kK'=0m'=0

this is a local tangent field constraint on a global solution



for each symbol array M, a periodic lattice state Xy



robust : no exponential instabilities
as there are no finite time / space integrations

no need for ~ 10~ '" accuracies,

SO

accuracy to a few % suffices,
you only need to get the shape of a solution right



part 4

@ turbulence in large domains

Q space is time

© spacetime

Q spacetime computations
©Q bye bye, dynamics



the law of motion : x = v(x)
guess loop tangent v(X) # v(X)

v(X), v(x) aligned

F2[5] = j{ds(V— V2. = 0(R(s, 7)), v = v(X(s,7)),
L

penalize®misorientation of the loop tangent ¥(X) relative to the
true dynamical flow tangent field v(Xx)

3 Phys. Rev. E 69, 016217 (2004).


https://doi.org/10.1103/PhysRevE.69.016217

clouds do not N OT integrate Navier-Stokes equations

= other swirls =—

do clouds satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



the equations imposed as local constraints

Kuramoto-Sivashinsky equation

F(U) == U[+Uxx+UXxxx+UUX :0

for example, minimize over the entire 2-torus

cost function

1

G=S|F(u)li.r

N

need your help !



cost function ]
= _-F'F.
G 2

introduce fictitious time (7) flow by differentiation of cost
function.
.G = (JTF)"(8:x)

“adjoint descent” method defined by chosing*

O,x = —(J'F)

4 J. Fluid M. 795, 278-312 (2016).


https://doi.org/10.1017/jfm.2016.203

add strong noise to a known solution,
twice the typical amplitude

(not how we actually generate guesses)

(left) initial guess: a known invariant 2-torus

(Lo, To) = (22.0,20.5057459345) + strong random noise

(right) the resulting adjoint descent converged invariant 2-torus

(Ls, Ty) = (21.95034935834641,20.47026321555662)



the time scale : the shortest ‘turnover’ scale characterized by
the period of the shortest periodic orbit? Or perhaps the
Lyapunov time?

the spatial scale : L = 27v/2, the most unstable spatial
wavelength of the Kuramoto-Sivashinsky

LIy L)
L ll' B ’
80 1

mwvvbﬁd
LA U R
TR

L —as
NI TI AT
5 101520 25 30 35 40

x

initial : spatial L-modulated random guess



KS invariant 2-torus found variationally
(left) (right)

awd K

W)}r |

0 0
0 5 101520253035 40 0 510152025303540
X X

(left) initial : L = 27+/2 spatially modulated “noisy” guess
(right) adjoint descent : converged invariant 2-torus

Gudorf 2018



guesses extracted from close recurrences
observed in long turbulent simulations

@ inefficient, finds only the shortest, least unstable orbits®-®
Q can integrate only not far in time

need spatiotemporal guesses

Phys. Rev. Lett. 58, 23872389 (1987).
J. Fluid Mech. 611, 107-130 (2008).


https://doi.org/10.1103/PhysRevLett.58.2387
https://doi.org/10.1017/S002211200800267X

(left) random initial state on (L, T) = (500, 500)
(right) adjoint descent — typical Kuramoto-Sivashinsky state

finite windows are our starting guesses for invariant 2-tori



“reservoir computing” example’

data:
Kuramoto-Sivashinsky simulation

reservoir computing prediction

two subtracted agree to
~ 5 Lyapunov times

Q : how would you learn this data?

Phys. Rev. Lett. 120, 024102 (2018).


https://doi.org/10.1103/physrevlett.120.024102

what to do?

Matthew N. Gudorf

has 1 000’s of such invariant 2-tori



part 5

@ turbulence in large domains
Q space is time

© spacetime

O fundamental tiles
©Q bye bye, dynamics



how do we recognize a cloud?

WATCH

= other swirls —

by recurrent shapes!

so, construct an alphabet of possible shapes



) invariant 2-torus

) invariant 2-torus computed from initial guess cut out from 1)
) “gap" invariant 2-torus, initally cut out from 2)

)

1
2
3
4) the “gap" prime invariant 2-torus fundamental domain



a trial set of prime (rubber) tiles

an alphabet of Kuramoto-Sivashinsky fundamental tiles

utilize also discrete symmetries :
spatial reflection, spatiotemporal shift-reflect, - - -



T T T T
0 1 2 3 4 5 6 7 & 9
x/(16m)

tiling by relative periodic invariant 2-torus
(L, T)=(13.02,15)




«««««

tiling by relative periodic invariant 2-torus
(L, T)=(33.73,35)




«««««

«/(167)

tiling by shift-reflect invariant 2-torus
(L, T) = (55.83,24)



tiling by relative periodic invariant 2-torus
(L, T)=(32.02,51)



270

(((((

tiling by relative periodic invariant 2-torus
(L, T) = (44.48,50)



any particular tiling looks nothing like turbulent
Kuramoto-Sivashinsky!

+/45)

T T T T T T T T T
0 1 2 3 4 5 6 7 8 9
x/(167)

[horizontal] space x € [-L/2,L/2] [up] time evolution



part 6

@ turbulence in large domains
Q space is time

©Q spacetime

©Q fundamental tiles

Q gluing tiles

Q Dbye bye, dynamics



a qualitative tiling guess

a tiling and the resulting solution

2-torus




turbulence.zip : each solution has a unique symbolic nhame

symbolic dynamics is 2-dimensional!

14D 0 2 0

q q 0 1 0

HoD* Sl T

0 0

HoD| S| S HD| |, %10,
010

@ each symbol indicates a corresponding spatiotemporal tile
o these are “rubber” tiles



part 7

@ turbulence in large domains
Q space is time

O bye bye, dynamics



goodbye

to long time and/or space integrators

they never worked and could never work



the trouble:
forward time-integration codes too unstable

multishooting inspiration: replace a guess that a point is on the
periodic orbit by a guess of the entire orbit.
_>

spatio-temporally periodic solutions of classical field theories
can be found by variational methods



the equations solved as global optimization problems

impose the equations as local constraints

F(u) = Ut + Uxx + Uxxxx + Uty =0

minimize globally

perhaps using cost function

1
G = SIFWE.r




do this ?



scalability



@ T. M. Schneider : developing a matrix-free variational
Navier-Stokes code, machine learning initial guesses

@ D. Lasagna and A. Sharma : developing variational adjoint
solvers to find periodic orbits with long periods

@ Q. Wang : parallelizing spatiotemporal computation is
FLOPs intensive, but more robust than integration forward
in time

it's rocket science8-9-10

Variational adjoint methods coupled with machine learning,
Periodic shadowing sensitivity analysis of chaotic systems,
Phys. Fluids 25, 110818 (2013).



https://doi.org/10.1063/1.4819390

processor speed — limit

number of cores — 10% — - .-

Wang et al (2013)'":

next-generation : spacetime parallel simulations,

on discretized 4D spacetime computational domains,

with each computing core handling a spacetime lattice cell

compared to time-evolution solvers: significantly higher level of
concurrency, reduction the ratio of inter-core communication to
floating point operations

= a path towards exascale DNS of turbulent flows

n Phys. Fluids 25, 110818 (2013).


https://doi.org/10.1063/1.4819390

enumerate hierarchically spatiotemporal patterns

2D symbolic encoding = admissible solutions

Sl o | oo

@ each symbol indicates a minimal spatiotemporal tile
@ glue them in all admissible ways



“reservoir computing” example'?

data:
Kuramoto-Sivashinsky simulation

reservoir computing prediction

two subtracted agree to
~ 5 Lyapunov times

Q : how would you learn this data?

Phys. Rev. Lett. 120, 024102 (2018).


https://doi.org/10.1103/physrevlett.120.024102

do clouds integrate Navier-Stokes equations?

—> other swirls —

at any spacetime point Navier-Stokes equations describe the
local tangent space

they satisfy them locally, everywhere and at all times



@ study turbulence in infinite spatiatemporal domains
Q theory : classify all spatiotemporal tilings
@ numerics : future is spatiotemporal

there is no more time

there is only enumeration of spacetime solutions



spatiotemporally infinite spatiotemporal cat



part 8

@ turbulence in large domains

Q space is time

©Q spacetime

Q fundamental tiles

Q@ oluing tiles

Q bye bye, dynamics

@ theory of turbulence ?



a theory of turbulence ?



@ (semi-)classical field theories
Q state space
© symbolic dynamics



Dreams of Grand Schemes : solve



QFT path integrals : semi-classical quantization

a fractal set of saddles

a local unstable
extremum




if you win : | teach you how

(for details, see ChaosBook.org)


http://ChaosBook.org

tessellate the state space by recurrent flows



0 1 e (BAp—sTp)

2 5=, szdem—_w);

a=0
relates the spectrum of the evolution operator

L(X',x) = §(x' — f(x)) ePAXD

to the unstable periodic orbits p of the flow f!(x).



something like

> e (BAp—sVp)
azjos—s zp: 2 |det T |

weighs the unstable relative prime (all symmetries quotiented)
d-torus p by the inverse of its Hill determinant, the determinant
(state space volume) of its orbit Jacobian matrix 7,

det Jp

and V, is the volume

of the prime spacetime tile p



extras



the idea : construct a discrete counterpart to the considered
system

variational integrator : evolution map that corresponds to the
discrete Euler—Lagrange equations



action S(q) = font L(g,q) + Hamilton’s principle 6S(q) =0

tki1
discretize / " L(q, ) dt ~ AtL(Gr, Gst) -

t

symplectic methods preserve phase-space areas'®

(left) Kelvin’s circulation advected by the flow is constant
(middle) the discrete version, on a Voronoi loop
(right) circulation is constant on any discrete loop.

Acta Numerica 10, 357-514 (2001).


https://doi.org/10.1017/S096249290100006X

so far, no codes for
discretized spatiotemporal action / Lagrangian density

5= [de (o)

symplectic Euler incompressible fluid dynamics time-evolution
codes exist'
claim : can apply to non-conservative system

Navier-Stokes?

14 Physica D 240, 443-458 (2011).


https://doi.org/https://doi.org/10.1016/j.physd.2010.10.012
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(left) L = 27v/2 modulated initial random guess
(
(

right) Resulting invariant 2-torus
Ls, Tf) = (43.066,105.08) = (Lo — 1.363, Ty + 5.08)

Adjoint descent took only 7 laptop CPU seconds



temporally glued Frankenstein



1) two invariant 2-tori side by side

2) initial invariant 2-tori split into smaller tiles

3) a guess invariant 2-torus obtained by gluing / smoothing
4) converges to a larger invariant 2-torus



1) an invariant 2-torus atop another invariant 2-torus

2) initial invariant 2-tori split into smaller tiles

3) a guess invariant 2-torus obtained by gluing / smoothing
4) converges to a larger invariant 2-torus



15
the initial guess

the converged solution u(x, t)

15 Phys. Fluids 25, 110818 (2013).


https://doi.org/10.1063/1.4819390
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