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| have said it thrice:
What | tell you three times is true.

— Lewis Carrol, The Hunting of the
Snark

@ cointoss

@ kicked rotor

O spatiotemporal cat
© bye bye, dynamics



spatiotemporally infinite ‘spatiotemporal cat’



start with

talk to neighbors
spacetime d-dimensional spatiotemporal cat

@ Hamiltonian formulation is awkward, fuggedaboutit!

@ Lagrangian formulation is elegant



consider a 1 spatial dimension lattice, with field ¢
(the angle of a kicked rotor “particle” at instant t, at site n)

@ each site couples to its nearest neighbors ¢+ ¢
@ invariance under spatial translations

@ invariance under spatial reflections

@ invariance under the space-time exchange

Gutkin & Osipov' obtain

Onti1 + Pnt—1 — 28 Pnt + Pnyat + Pn_1,t = —Mpt

Nonlinearity 29, 325-356 (2016).


https://doi.org/10.1088/0951-7715/29/2/325

symmetries : translations o time-reversal o spatial reflections

@ invariance under the space-time exchange

not a traditional
spatially weakly coupled lattice model®

@ spatiotemporal cat is a Euclidean field theory

2 Nonlinearity 1, 491 (1988).


https://doi.org/10.1088/0951-7715/1/4/001

herding cats : a discrete Euclidean space-time field theory

write the spatial-temporal differences as discrete derivatives

Laplacian in d = 2 dimensions
Uont = Ont1 + Ent—1 — 4 bnt + Pngat + dn1,t

subtract 2-dimensional coupled cat map lattice equation

—Mpt = Gnt1 + Ont—1 — 28 Gnt + Pngat + Gn_1,t

cat herd is thus governed by the law of

d-dimensional spatiotemporal cat

(-O+u¥)¢z=m;, pP=d(s-2)

where ¢, € [0,1), m, € Aand z € Z9 = integer lattice



(—D + ,Mz) Oz =My

is linear and known as

@ tight-binding model or Helmholtz equation
if stretching is weak, s < 2
[oscillatory sine, cosine solutions]

@ Euclidean Klein-Gordon or (damped Poisson)
if stretching is strong, s > 2
[hyperbolic sinches, coshes, ‘mass’ ;2 = d(s — 2)]

nonlinearity is hidden in the ‘sources’

m, € A at lattice site z € 79



traditional field theory chaotic field theory

Helmholtz damped Poisson



spatiotemporal cat
(-O+ ,UZ) ¢z =my

can be solved completely (?) and analytically (!)

assign to each site z a letter m, from the alphabet A.

a particular fixed set of letters m, (a symbol block)

M= {mz} — {mm ng---nd}7

is a complete specification of
the corresponding lattice state X

from now on work in d = 2 dimensions, ‘stretching parameter’ s = 5/2



solving the spatiotemporal cat equation
JIX=—-M,
with the [nx n] matrix  J = 21221 (a,- —s1+ aj_1>
can be viewed as a search for zeros of the function
FIX]|=JX+M=0

where the entire global lattice state Xy is

a single fixed point Xy = {¢2}
in the L T-dimensional unit hyper-cube X € [0,1)t7

L is the ‘spatial’, T the ‘temporal’ lattice period



for each symbol array M, a periodic lattice state Xy



each tile : 2-dimensional (sub)lattice, an infinite array of points
A={may+ neax|n €7}

with the defining tile spanned by a pair of basis vectors ay, as

The two blue tiles appear ‘prime’, i.e., not tiled by smaller tiles.
False!  all four big tiles can tilled by smaller ones.

tricky!



2-dimensional /attice is defined by a [2 x 2] fundamental
parallelepiped matrix whose columns are basis vectors

AZ[3132]=[(L) ?—],

L, T: spatial, temporal lattice periods
1ilt’ 0 < S < L imposes the relative-periodic
(‘helical’, ‘toroidal’, ‘twisted’, ‘screw’, - - - ) bcC’s

basis vectors

() ()




exponentially many periodic lattice states in Felinestan

[3x1]o [1x3]o [3x1]4
[2><1]1 [3><2]0 [3><2]1

tile color = value of symbol m;,



latticization of spacetime continuum :
field ¢(x, t) over spacetime coordinates (x, t)
for any field theory

=
set of lattice site values ¢, = ¢(nAL, tAT).
Subscript z = (n, t) € Z9 is a discrete d-dimensional
spacetime coordinate over which the field ¢ lives

distinct spacetime tiles have tilted shapes [L x T]s

spatiotemporal cat field ¢, is confined to [0, 1)

That imparts a Z' lattice structure on fundamental
parallelepiped J basis vectors ; fundamental fact then
counts all periodic lattice states Xy, for

a given spacetime tile [Lx T]s



fundamental fact works for a spacetime lattice (!)

recall Bernoulli fundamental fact example ?
?

unit hyper-cube X € [0, 1)?

7 z = J =

fundamental parallelepiped

spacetime fundamental parallelepiped basis vectors XU
= columns of the orbit Jacobian matrix

J = (XMX@)|...|x(ED)



FIX|=I9X+M=0
6 field values, on 6 lattice sites z = (n, t), [3x 2]y tile :
1
b0t P11 Pa ]
X — , 6M _ & me
[$2lo [ doo P10 P20 B2l — EE.
|

where the region of symbol plane shown is tiled by 6 repeats of
the M(s,o, block, and tile = value of symbol m;,

‘stack up’ vectors and matrices, vectors as 1-dimensional
arrays,

®01 Mo+
$00 Moo
P11 M1
Xzl = b10 | M2, = Mio
$21 Mo

$20 Moo



with the [6 x 6] orbit Jacobian matrix in block-matrix form

—2s 2|1 0|1 o0
2 —2s/ 0 1|0 1
1 0 |[-2s 2 [ 1 0
Je2b=| o 1 | 2 —2s| 0 1
1T 0 [ 1 0 [-2s 2
o 10 1|2 -2s



fundamental parallelepiped basis vectors X() are the columns
of the orbit Jacobian matrix

25| 2 | 1 0 | 1 0
2 | —2s| 0 | 1 0 | 1
1 0 | -2s| 2 | 1 0
Jea = | o | 1 2 |-2s| 0 | 1
1 0 | 1 0 | —2s| 2
0 | 1 0 | 1 2 | —2s

the ‘fundamental fact’ now yields the number of solutions for
any half-integer s as Hill determinant

N[3><2]0 = |Det \7[3><2]0| = 4(5 _ 2)8(23 _ 1)2(28 + 3)2



A NA(S) Ma(s)
[Tx1ly 2(s—2) 2(s—2)
2x1]p 2(s—2)2s 2(s—2)1(2s—1)
[2x1]y  2(s—2)2(s+2) 2(s — 2)5(2s+3)
Bx1]g 2(s—2)(2s—1)2 2(572)5(57 1)s
Bx1];  2(s—2)4(s+1)? 2(s — 2)3(2s+ 1)(2s + 3)
[4x1]y 2(s—2)8(s—1)%s 2(s — 2)3(25 —3)(2s—1)s
[4x1]y  2(s—2)8s%(s+2) 2(572)i(s+2)(237 1)(2s+ 1)
[4x1], 2(s—2)8(s+1)%s 2(s—2)i(2s+3)(2s+ 1)s
[4x1]3 2(s—2)8s%(s+2) 2(572)§(s+2)(2571)(25+1)
5x1]lo 2(s—2) (452—654-1)2 2(s—2)3(s—1)(2s—3)(2s—1)s
[5x 1] 2(s—2)16(32+s—1)2 2(s—2)1(2s — 1)(2s + 3)(4s2 + 45 — 5)
[2x2]g 2(s—2)8s%(s+2) 2(572)3(257 1)(2s% +5s+ 1)
[2x2]; 2(s—2)8s(s+ 1)? 2(s—2)§(2s+ 1)(2s + 3)s
[Bx2]p 2(s—2)2s(2s—1)?(2s+3)°> 2(s— 2)§(23 —1)(4s® +10s% + 35 — 5)s
[3x2]; 2(s—2)32s3(s+ 1)? 2(s— 2)2(25 —1)(2s+1)(8s® + 16s% + 10s +
[3x3lg 2(s—2)16(s+ 1)*(2s — 1)*



@ can construct all spacetime tilings, from small tiles to as
large as you wish

© for each spacetime tile [L x T]s, can evaluate f of
doubly-periodic lattice states for a tile

N
Q ¢ prime orbits for a tile

ML«



each a spacetime lattice tile p of area A, = L Tp
that cover the phase space with ‘natural weight’

1

at this time :
@ d = 1temporal cat zeta function works like charm
o d = 2 spatiotemporal cat works, order by order
@ d > 2 Navier-Stokes zeta is still but a dream



know how to evaluate the number of doubly-periodic lattice
states

Nixs »
for a given [L x T]¢ finite spacetime tile

now substitute these numbers of lattice states into the
topological zeta function

5 ?7°?

Zi+zp—4+z; 42z

1/Ctop(z1722) =1

but that’s just a guess - we currently have no generating
function that presents all solutions in a compact form

funky... not solved :(



CHAPTER 2. SPATIOTEMPORAL CAT

2.15 Integer lattices literature

There are many reasons why one needs to compute an “orbit Jacobian matrix”
Hill determinant [Det 7|, in fields ranging from number theory to engineering,
and many methods to accomplish that:

discretizations of Helmholtz [58] and screened Poisson [59, 80, 96, 97] (also
known as Klein—Gordon or Yukawa) equations

Green’s functions on integer lattices [5, 8, 24, 33, 37, 40, 63, 67, 78, 92, 93,

-117, 135, 140, 143, 149, 150, 159, 180, 196]

Gaussian model [71, 111, 139, 172]

linearized Hartree-Fock equation on finite lattices [121]

quasilattices [29, 69]

circulant tensor systems [33, 37, , , , ]

Ising model [19, 88, 89, 98, , —-105, , , , , , ], transfer
matrices [154, 199]

lattice field theory [108, ., , , , , , ]

modular transformations [34, ]

lattice string theory [77, 157]



random walks, resistor networks [9, 25, 49, 50, 60, 81, 86, 99, 122, 163, 183
188, 198]

spatiotemporal stability in coupled map lattices [4, 75, 203]

Van Vleck determinant, Laplace operator spectrum, semiclassical Gaussian
path integrals [47, 125, 126, 187]

Hill determinant [26, 47, 137]; discrete Hill’s formula and the Hill discrimi-
nant [186]

Lindstedt-Poincaré technique [189-191]

heat kernel [38, 61, 64, 110, 114,143,159, 201]

lattice points enumeration [15, 16, 20, 56]

primitive parallelogram [10, 30, 152, 193]

difference equations [55, 68, 181]

digital signal processing [62, 130, 197]

generating functions, Z-transforms [64, 194]

integer-point transform [20]

graph Laplacians [41, 79, 134, 162]

graph zeta functions [7, 13, 18,27, 42-44,57,61,83,87,94,101, 123,124, 162,
165,169,171, 179, 184, 185, 204]

zeta functions for multi-dimensional shifts [12, 132, 133, 147]

zeta functions on discrete tori [38, 39, 201]

’



Action on the complex upper half-plane by linear fractional
transformations T and S.  (figure: Keith Conrad)

infinitely many ‘Bravais cells’ for the same lattice



chaos?

yes, short tiles are exponentially good ‘shadows’ of the larger
ones, so can attain any desired accuracy



in time-evolving deterministic chaos any chaotic trajectory is
shadowed by shorter periodic orbits

in spatiotemporal chaos, any unstable lattice state is shadowed
by smaller invariant 2-tori (Gutkin et al.34)

next figure : code the M symbol block ¢,; at the lattice site nt
with (color) alphabet

myeA=1{1,0,1,2,---} = {red, , blue, oo}

3 Nonlinearity 29, 325-356 (2016).
4 Nonlinearity 34, 28002836 (2021).


https://doi.org/10.1088/0951-7715/29/2/325
https://doi.org/10.1088/1361-6544/abd7c8

shadowing, symbolic dynamics space

2d symbolic representation M; of two lattice states X;
shadowing each other within the shared block Mz

@ border R (thick black)
@ symbols outside R differ

§=7/2 Adrien Saremi 2017



the logarithm of the average of the absolute value of site-wise
distance

In{¢2,, — 17|
averaged over 250 solution pairs

note the exponential falloff of the distance away from the center
of the shared block R

= within the interior of the shared block,
shadowing is exponentially close



harmonic field theory chaotic field theory

tight-binding model Euclidean Klein-Gordon
(Helmholtz) (damped Poisson)



our song of chaos has been sang. what next ?

@ coin toss
Q kicked rotor

© spatiotemporal cat

@ bye bye, dynamics



	spatiotemporal cat

