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Dreams of grand schemes

Now, go solve the problem of turbulence

https://ChaosBook.org


the answer is :

new !3

spatiotemporal zeta function

ζ[β, s] =
∏

p

ζp

Φp = a prime (non-repeating) multi-periodic state

will explain

3P. Cvitanović and H. Liang, A chaotic lattice field theory in two dimensions, 2025.



a theory of turbulence ? who needs it ?

have : a turbulent pipe flow

Q : how much power?
to move crude at velocity ⟨v⟩?



how much power?

velocity v of a fluid element is an ‘observable’

to evaluate

expectation value
of observable v averaged over all field configurations

⟨v⟩ =

∫
dΦp[Φ] v [Φ] , dΦ =

∏
z

dϕz

need to know the probability of every field configuration Φ



have : a theory of turbulence

a turbulent pipe flow1

we have a detailed theory of small turbulent fluid cells2

can we can we construct the infinite pipe by tiling it by
small turbulent configurations Φ?

Q. what would that theory look like ?

A. it’s here : this talk

1M. Avila and B. Hof, Phys. Rev. E 87, 063012 (2013).
2J. F. Gibson et al., J. Fluid Mech. 611, 107–130 (2008).

https://doi.org/10.1103/PhysRevE.87.063012
https://doi.org/10.1017/S002211200800267X


wisdom of statistical mechanicians

partition function
field configuration Φ occurs with probability

p(Φ) =
1
Z

e−S[Φ] , Z = Z [0]

partition function = sum over all field configurations

Z [J] =
∫

[dϕ]e−S[Φ]+Φ·J , [dϕ] =
∏

z

dϕz√
2π



on importance of a configuration

how likely is a configuration Φ?

p(Φ) =
1
Z

e−S[Φ]

this talk : determine probability of field configuration Φ



wisdom of quantum mechanicians. Or stochasticians

semiclassical field theory

sum over all deterministic configurations !



quantum field theory

path integral
field configuration Φ occurs with probability amplitude

p(Φ) =
1
Z

e
i
ℏS[Φ] , Z = Z [0]

partition sum = integral over all configurations

Z [J] =
∫
[dϕ]e

i
ℏ (S[Φ]+Φ·J) , [dϕ] =

∏
z

dϕz√
2π

evaluate how ?
here : WKB or semiclassical approximation



method of stationary phase

defining equations

δS[Φc]

δϕz
= 0

a global deterministic solution Φc satisfies this local extremal
condition on every spacetime point z

WKB or semiclassical approximation

S[Φ] = S[Φc] +
1
2
(Φ− Φc)

⊤Jc (Φ− Φc) + · · ·

orbit Jacobian operator

(Jc)z′z =
δ2S[Φ]

δϕz′δϕz

∣∣∣∣
Φ=Φc



semiclassical field theory

deterministic solution Φc probability amplitude

p(Φc) =
1
Z

eiS[Φc ]+imc

|DetJc |1/2
, Z = Z [0]

partition sum : support on deterministic solutions

Z [J] =
∑

c

ei(S[Φc ]+mc+Φc ·J)

|DetJc |1/2

example : Gutzwiller trace formula4

∫
[dΦ]A[Φ]eiS[Φ] ≈

∑
c

A[Φc]
eiS[Φc ]+imc

|DetJc |1/2

1D time evolution quantum mechanics, so not field theory

4M. C. Gutzwiller, J. Math. Phys. 8, 1979–2000 (1967).

https://doi.org/10.1063/1.1705112


bird’s eye view

semiclassical field theory
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deterministic field theory
is its WKB backbone
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fluid turbulence is described by

new !

deterministic field theory

deterministic partition function :
sum over the deterministic solutions



first : determine "all"

periodic states



think globally, act locally

definition : periodic state is

a global deterministic solution

Φc = {ϕc,z}
= set of field values

periodic along each translationally invariant direction

that satisfies the

local condition : defining equations

F [Φc]z = 0

on every spacetime point z of multi-periodic primitive cell A



think globally, act locally

a global deterministic solution Φnt

satisfies the local defining equations
everywhere all at once



computing periodic states

search for zeros of defining equations

F [Φc]z = 0

the entire global periodic state Φc over primitive cell A is

a single point (ϕ1, ϕ2, · · · , ϕn)

in the Vc-dimensional state space, Φc ∈



periodic state’s primitive cell

a1

a2

primitive cell A = [3×2]1 that tiles a relative-periodic state



an example : spacetime tiled by a larger tile
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ChaosBook.org

UNLEARN:
3-d VISUALIZATION

instant in turbulent evolution:

a 3-d video frame,
each pixel a 3-d velocity field

THINK:
1-d PHASE SPACE

instant in turbulent evolution:
a unique point

theory of turbulence =
geometry of the state space

[E. Hopf 1948]

https://chaosbook.org/chapters/ChaosBook.pdf#chapter.30


Periodic orbits shadow turbulence

A turbulent trajectory making a close pass to a periodic orbit.
ChaosBook.org/tutorialsclick here to see the online video

https://ChaosBook.org/tutorials
https://chaosbook.org/tutorials/
https://chaosbook.org/tutorials/recurr1.html


can hierarchically compute ‘all’ solutions

orbitHunter
optimization of rough initial guesses converges

no exponential instabilities

stability : compute on reciprocal lattice

gitHub code5

5M. N. Gudorf, Orbithunter: Framework for Nonlinear Dynamics and Chaos, tech. rep. (School of Physics,
Georgia Inst. of Technology, 2021).



In theory there is no difference between theory and practice. 
In practice there is.                                                       (Anonymous)



Center for Nonlinear Science, Georgia Tech

the team1,2,3,4,5 Daniel Borrero

Chris J. Crowley

Roman O. Grigoriev

Logan Kageorge

Michael C. Krygier

Ravi K. Pallantla

Josh L. Pughe-Sanford

Mike F. Schatz

Balachandra Suri

Jeffrey Tithof

Wesley Toler

1B. Suri et al., Phys. Rev. E 98, 023105 (2018).
2B. Suri et al., Phys. Rev. Lett. 125, 064501 (2020).
3M. C. Krygier et al., J. Fluid Mech. 923, A7 (2021).
4C. J. Crowley et al., Observing a dynamical skeleton of turbulence in Taylor-Couette flow experiments, 2022.
5C. J. Crowley et al., Proc. Natl. Acad. Sci. 119, 120665119 (2022).

https://willamette.edu/~dborrero/
https://christophercrowley.com/
https://cns.gatech.edu/~roman/
https://scholar.google.com/citations?hl=en&user=89-VnPIAAAAJ&view_op=list_works&sortby=pubdate
https://schatzlab.gatech.edu/
https://mecheng.iisc.ac.in/people/balachandra-suri/
https://tithoflab.umn.edu/
https://doi.org/10.1103/PhysRevE.98.023105
https://doi.org/10.1103/PhysRevLett.125.064501
https://doi.org/10.1017/jfm.2021.522
https://doi.org/10.1073/pnas.2120665119
https://schatzlab.gatech.edu/


turbulence in 2 dimensionsThe Kolmogorov flow apparatus. 

3rd millennium experiment 1

L. Kageorge PhD Thesis

http://hdl.handle.net/1853/66161


turbulence in 2D : 2-d video & state-space visualizations

(a)

u =




u(1,1)x

u(2,1)x

u(3,1)x
...

u(n,m)x

u(1,1)y

u(2,1)y

u(3,1)y
...

u(n,m)y




(b)

Figure 1.1: (a) An illustrative example of a 2D velocity field. The heat map represents
the vorticity of the velocity field, and helps guide the eye to the structure of the flow.
(b) An example of how such a vector field can be converted into a state space vector by
concatenating vector components.

click here to see the online video

https://youtu.be/bWq2I4wzWZ0?t=1676


Forecasting
Turbulence

1D Unstable Submanifold

B Suri PhD Thesis

http://hdl.handle.net/1853/60177


Forecasting
Turbulence

Experimental Trajectory

1D Unstable Submanifold



Numerical Trajectory 

Experimental Trajectory

1D Unstable Submanifold

Forecasting
Turbulence

click here to see the online video

https://youtu.be/bWq2I4wzWZ0?t=1847


the big deal

the first experimental confirmation
1 of a Navier-Stokes predicted unstable manifold



turbulence in 2D : RPOs embedded in invariant measure

(a) (b)

Figure 3.10: (a) Energy input rate I versus the difference between input and dissipation rates 
(I −D) for turbulent time series in experiment (scatter plot) and UPOs (closed loops).
(b) Probability density function of I(t) for turbulent flow in experiment (solid gray) and DNS 
(dashed gray). Colored symbols show the mean values of I for each of the seven UPOs and the 
dashed black lines represent the range of I for UPO2A-C and UPO3A,B.

L.. Kageorge PhD Thesis

http://hdl.handle.net/1853/66161


next: 3rd millennium mathematics

In the seminal 1948 paper, E. Hopf presciently noted that 
“The geometrical picture of the phase flow is, however, not the most 
important problem of the theory of turbulence. Of greater importance 
is the determination of the probability distributions associated with the 
phase flow”. 

Hopf’s call for understanding probability distributions associated with 
the phase flow has indeed proven to be a key challenge, one in which 
dynamical systems theory has made the greatest progress.

ChaosBook.org/overheads/spatiotemporalsee seminars on

https://https://chaosbook.org/overheads/spatiotemporal/index.html
https://ChaosBook.org/overheads/spatiotemporal/


second : Hill-Poincaré weight of a periodic state

stability exponents



deterministic field theory : bird’s eye view

Dirac porcupine

p[Φg ]p[Φa]

p[Φ]

ϕ
00

ϕzz ′

ΦaΦb

Φc

Φd
Φe

Φf

Φg

⟨v⟩ =
∑

c

v [Φc]
1

|DetJc |



The Importance of Being Φc

Φc is an exact, deterministic solution, so its

probability density
is Vc-dimensional Dirac delta function ( !!! determinism !!! )

pc(Φ) =
1
Z

δ(F [Φ])

and

probability weight of deterministic solution Φc∫
Mc

[dΦ] δ(F [Φ]) =
1

|DetJc |
Mc = small neighborhood of periodic state Φc

our task : evaluate DetJc



the most important thing : understand perturbations

find a deterministic solution

F [Φc]z = 0 fixed point condition

then evaluate DetJc of

orbit Jacobian operator

(Jc)z′z =
δF [Φc]z′

δϕz

what does this global orbit Jacobian operator do?

global stability
of periodic state Φc , perturbed everywhere



perturbations are into full state space

repeats of a period-5 periodic state Φc

an internal perturbation hz , periodicity of Φc , has discrete
spectrum, evaluated over Φc ’s primitive cell

a transverse perturbation hz has continuous spectrum,
evaluated over Φc ’s Brillouin zone6

6A. S. Pikovsky, Phys. Lett. A 137, 121–127 (1989).

https://doi.org/10.1016/0375-9601(89)90096-0


the most critical thing

new ! functional ‘fluctuation’ determinant

DetJc

must be computed on the

infinite Bravais lattice



stability exponent of periodic state Φc

new ! assign to each periodic state c
stability exponent λc per unit-spacetime-volume

exact deterministic weight

1
|DetJc |

= e−Vcλc

in any spacetime dimension

λc : stability exponent

Vc : Φc Bravais lattice volume, the number of lattice sites in the primitive cell

vastly preferable to the
dynamical systems forward-in-time formulation



wisdom of solid state physicists

exact stability exponent
is given by bands over the Brillouin zone

traditional periodic orbit theory7,8,9

alles falsch :(
is not smart :
finite periodic states orbit Jacobians are only approximations

7M. C. Gutzwiller, J. Math. Phys. 8, 1979–2000 (1967).
8D. Ruelle, Bull. Amer. Math. Soc 82, 153–157 (1976).
9P. Cvitanović et al., Chaos: Classical and Quantum, (Niels Bohr Inst., Copenhagen, 2025).

https://doi.org/10.1063/1.1705112
https://doi.org/10.1090/S0002-9904-1976-14003-7


temporal lattice orbit Jacobian operator spectra Λ(k)

smooth curves : Brillouin zone bands10

discrete points : orbit Jacobian matrix spectrum consists of n
eigenvalues embedded into Λ(k)

1D compact boson

-π 0 π-π /2 π /2-2π /3 2π /3
k

μ2

μ2+2

μ2+4

Λ(k)

period 3 (triangles)
period 4 (diamonds)

1D ϕ3 theory

-π /2 π /2-π /3 π /3-π /4 π /4
k

-2- μ4 - 12

-2

-2+ μ4 - 12

Λ(k)

period 2 ΦLR = {ϕL, ϕR}
period 6 (triangles)
period 8 (diamonds)

10H. Liang and P. Cvitanović, J. Phys. A 55, 304002 (2022).

https://doi.org/10.1088/1751-8121/ac76f8


spatiotemporal lattice orbit Jacobian operator spectra (k1, k2)

smooth surfaces : Brillouin zone bands

massive compact boson ϕ4 theory in 2D

black dots : orbit Jacobian matrix eigenvalues,
finite volume primitive cells

[left] primitive cell periodicity [8×8]0
[right] primitive cell tiled by repeats of [2×1]0 periodic state



wisdom of solid state physicists

in 2D spacetime, the stability exponent

λc =
1

Vc
lnDetJc

is given by the band integral over the Brillouin zone

exact stability exponent of a periodic state c

λc =
1

(2π)2

∫ π/Lc

−π/Lc

∫ π/Tc

−π/Tc

dk1dk2 ln
(

p(k1)
2 + p(k2)

2 + µ2
c

)
,

‘lattice momentum’ p = 2 sin k
2

can you do it analytically ?



recap : fluid turbulence is described by

deterministic field theory

deterministic partition function :
sum over the deterministic solutions



definition : deterministic field theory

deterministic partition function has support only on
the solutions Φc to saddle-point condition

F [Φc]z =
δS[Φc]

δϕz
= 0

which we refer to as

defining equations

F [Φc]z = 0

note : works both for dissipative and Hamiltonian systems



deterministic partition sum

Φc is an exact, deterministic solution, so its

probability density
is Vc-dimensional Dirac delta function ( determinism !!! )

pc(Φ) =
1
Z

δ(F [Φ])

and11

deterministic partition sum

Z [J] =
∑

c

∫
Mc

[dΦ] δ(F [Φ])eΦ·J =
∑

c

eΦc ·J

|DetJc |

Mc = small neighborhood of periodic state Φc

sum over probabilities of all periodic states over primitive cell A

11P. Cvitanović and H. Liang, A chaotic lattice field theory in two dimensions, 2025.



deterministic field theory

new !
deterministic partition sum is a-mazing !
literally the sum over all periodic states c

Z [β, s] =
∑

c

tc

tc =
(

eβ·vc−λc−s
)Vc

tc : weight of periodic state c

λc : stability exponent

vc : Birkhoff average of observable v over periodic state Φc

Vc : Bravais lattice volume

s : ‘entropy’ parameter



field theorist’s chaos

definition : chaos is
expanding stability exponents λc
exponential ♯ periodic states NA

the precise sense in which
a field theory is deterministically chaotic

note : there is no ‘time’ in this definition



Figure 3.1: CAD model of the TCF cell. The cell is made of transparent PMMA allowing 
for unobstructed, optical access to the entire flow domain. 

30

3rd millennium experiment 2
turbulence in 3 dimensions : Taylor-Couette duct

C.J. Crowley PhD Thesis

http://hdl.handle.net/1853/67187


Taylor-Couette duct : full 3D flow visualization

Figure 3.9: Camera configuration for 3D-3C measurements. The viewing angle, θ, is the 
angle between the camera and the z-axis of the TCF cell.

55

C.J. Crowley PhD Thesis

http://hdl.handle.net/1853/67187


Taylor-Couette duct : a turbulent snapshot

Figure 5.1: Turbulence is visualized in a laboratory flow between concentric, 
independently-rotating cylinders with radii ri, ro and corresponding angular velocities Ωi, 
Ωo. Fluid is confined between the cylinders and bounded axially by end caps co-rotating 
with the outer cylinder. The red-white-blue colors indicate the fluid’s deviation from the 
mean azimuthal velocity component.

98

C.J. Crowley PhD Thesis



Taylor-Couette duct : experiment /DNS velocity isosurfaces

(a) (b)

v
Figure 4.5: A snapshot of a turbulent flow in experiment (a) and DNS (b). Each image 
shows a single isosurface of the perturbation field, ˜θ, for Rei = 650 and Reo = −1000 
inside a cylindrical subvolume. The color indicates the corresponding azimuthal velocity 
component. Red (blue) indicates flow in the same direction as the inner (outer) cylinder 
rotation. 

C.J. Crowley PhD Thesis



Taylor-Couette duct : three state-space visualizations

A

B

C

Fig. 2. Low-dimensional projections suggest that RPOs, i.e., solutions to the governing equations that recur indefinitely in time, are relevant to turbulence. (A) 
To demonstrate that RPOs are truly two-tori when rotational symmetry is not reduced, RPO2 is plotted over 80 periods using the coordinates shown, where uθ

represents the azimuthal component of the flow velocity and 〈·〉  indicates a spatial average. (B) Cartoon depicting how a portion of a turbulent trajectory (solid 
red curve) shadows, i.e., follows, an RPO (light blue surface) for a period of time. Shown in dark blue is the trajectory belonging to the RPO, which is most 
similar to the turbulent trajectory. The orange arrow relates a point on the turbulent trajectory to the point closest to it on the torus. (C) Using energy E and 
energy dissipation rate D of the flow as projection coordinates, eight RPOs are represented by closed trajectories (shown in color). The chaotic behavior of 
turbulence is indicated by the distribution (shown in gray) of visits to particular regions of the projection (darker regions have higher likelihood of visitation).



Taylor-Couette duct : RPOs embedded in invariant measure
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Taylor-Couette duct : experiment trolls theory

examples of the experimental turbulent flow visiting
(shadowing) relative periodic orbits (RPOs)

Figure 5.9: Experimental evidence that turbulence and RPOs, i.e., solutions to the govern-
ing equations that reccur indefinitely in time, co-evolve when the ‘shadowing’ criteria are 
met. Turbulence closely follows RPO1 (top) and, during a different time interval, tracks 
RPO7 (bottom).

click here to see the online video

experiment trolls theory : 
a movie of the experimental 
turbulent flow visiting 
(shadowing) a relative periodic 
orbit

https://youtu.be/bWq2I4wzWZ0?t=2331


the big deal

the first experimental measurements
1 of a Navier-Stokes predicted unstable manifold
2 of shadowing by a Navier-Stokes predicted relative

periodic orbit

walk!



Conclusions: geometry of Navier Stokes

dual ODE / CFD representations of Navier-Stokes

State space portraits

Computed eigenvalues, eigenfunctions of equilibrium states

Heteroclinic connections between equilibria

Turbulent dynamics

you can do this at home :   channelflow.org 
openpipeflow.org 
orbithunter

https://www.channelflow.ch/
https://orbithunter.readthedocs.io
https://openpipeflow.org/


periodic orbit theory



3 theorists walk into a bar

then this happens

the 3rd theorist says : wait ! if you have a symmetry,

you must use it !
replace the partition sum by the zeta function :

Z [β, s] =
d
ds

ln ζ[β, s]

the two solid state guys get up, go to another bar

what’s up with ζ[β, s] ?



the 3rd theorist

new !

deterministic zeta function



prime periodic state (not obvious)

Φc is either prime,
or a repeat of a prime periodic state Φp

Bravais lattice

Bravais lattice [6×4]2, blue dots, is a sublattice of
[3×2]1, blue and red dots

prime periodic state : primitive cell is a [3×2]1 (gray)
4th-repeat of a prime : primitive cell is [6×4]2 (green)



wisdom of mathematicians
for every translational symmetry, replace the partition sum over
periodic states Φc

‘Selberg’ trace formula

Z [β, s] =
∑

c

tc

by sum over prime periodic states Φp,

deterministic zeta function
a product over all prime orbitsa

1/ζ =
∏

p

1/ζp , 1/ζp =
∞∏

n=1

(1 − tn
p )

2 spatiotemporal dim : Euler function (1741)

aJ. Bell, Euler and the pentagonal number theorem, 2005.



predict observables

what is all this good for ?



a theory of turbulence ? you need it !

have : a turbulent pipe flow

Q : how much power?
to move crude at velocity ⟨v⟩?



zeta function predicts

expectation value of any observable ‘v ’

⟨v⟩ =
∂ζ[β,s]
∂β

∂ζ[β,s]
∂s

∣∣∣∣∣∣
β=0,s=s0

=
[observable]

[lattice volume]

where one needs to12

average observable over each prime orbit

⟨v⟩p =
1

VA

A∑
z

v(Φp)z

· · · details · · · · · ·

12P. Cvitanović et al., Chaos: Classical and Quantum, (Niels Bohr Inst., Copenhagen, 2025).



bye bye, dynamics

1 Q. : describe states of turbulence in infinite
spatiatemporal domains

2 A. : determine, weigh all
prime spatiotemporal periodic states

there is no more time

there is only determination of
admissible spacetime periodic states



for a deep dive

chaotic field theory talks, papers ⇒

ChaosBook.org/overheads/spatiotemporal

https://ChaosBook.org/overheads/spatiotemporal


.

Future looks bright



https://ChaosBook.org


if anyone asks : extra slides



how is deterministic field theory different from other theories?

we always work in the ‘broken-symmetry’ regime, as
almost every ‘turbulent’ (spatiotemporally chaotic) solution
breaks all symmetries
we work ‘beyond perturbation theory’, in the
anti-integrable, strong coupling regime. This are not weak
coupling expansions around a ground state
our ‘far from equilibrium’ field theory is not driven by
external noise. All chaoticity is due to the intrinsic
deterministic instabilities
our formulas are exact, not merely saddle points
approximations to the exact theory



ODEs, PDEs linear operators wisdom

Hill’s 1886 formula13

Gel’fand-Yaglom 1960 theorem14

orbit Jacobian operator J is fundamental
temporal evolution Jacobian matrix J is merely
one of the methods to compute it

all of dynamical systems theory is subsumed in spatiotemporal
field-theoretic formulation

13G. W. Hill, Acta Math. 8, 1–36 (1886).
14I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 48–69 (1960).

https://doi.org/10.1007/bf02417081
https://doi.org/10.1063/1.1703636


orbit stability vs. temporal stability

orbit Jacobian matrix

Jz′z =
δF [Φ]z′
δϕz

stability under global perturbation of the whole
orbit

for n large, a huge [dn×dn] matrix

temporal Jacobian matrix
J propagates initial perturbation n time steps

small [d×d ] matrix

J and J are related by15

Hill’s 1886 remarkable formula

|DetJM| = |det (1 − JM)|

J is huge, even ∞-dimensional matrix
J is tiny, few degrees of freedom matrix

15G. W. Hill, Acta Math. 8, 1–36 (1886).

https://doi.org/10.1007/bf02417081


wisdom of solid state physicists

in 1D temporal lattice, the stability exponent

λc =
1
nc

lnDetJc

is given by the band integral over the Brillouin zone

exact stability exponent of a periodic state c

λc =
1

2π

∫ π/nc

−π/nc

dk ln

[
4 sin2 nck

2
+ µ2

c

]

= lnµ2
c + 2 ln

1 +
√

1 + 4/µ2
c

2



expectation value of an observable

deterministic partition sum
sum over all deterministic solutions c

Z [β, s] =
∑

c

tc

tc =
(

eβ·vc−λc−s
)Vc

λc : stability exponent

vc : Birkhoff average, observable
v over periodic state Φc

Vc : Φc Bravais lattice volume

observables
for a deterministic solution
Φc , the Birkhoff average of
observable v is

v [Φ]c =
1

Vc

∑
z∈A

vz

for example, if observable
vz = ϕz , the Birkhoff average
is the average ‘height’ ϕz
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