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overview

1 what this talk is about
2 turbulence in large domains
3 space is time
4 bye bye, dynamics



do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

NO!
=⇒ other swirls =⇒

do clouds satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



does cat’s visual cortex solve a PDE?

do brains integrate Hodgkin-Huxley equations?

NO!
=⇒ other swirls =⇒

do neurons satisfy FitzHugh-Nagumo equations?

yes!
they satisfy them locally, everywhere and at all times



part 1

1 turbulence in large domains
2 space is time
3 spacetime
4 bye bye, dynamics



goal : enumerate the building blocks of turbulence

Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

describe turbulence
starting from the equations (no statistical assumptions)



challenge : experiments are amazing

T. Mullin lab

B. Hof lab



pipe theory and numerics

amazing experiments!
amazing numerics!
beautiful visualizations !

“Exact Coherent Structures” :
numerical Navier-Stokes

isosurfaces and cross sections
of the streamwise velocity

red (blue) streaks
are faster (slower)
than the base flow

figure from1

1P. Ritter et al., Phys. Rev. Fluids 3, 013901 (2018).

https://doi.org/10.1103/PhysRevFluids.3.013901


geometry of turbulence in wall-bounded shear flows :

a stroll through 61,506 dimensions
online self-study tutorial ChaosBook.org/tutorials
here you you get : personalized YouTube guided tour
through turbulent statespace

the tutorial2

2J. F. Gibson and P. Cvitanović, Movies of plane Couette, tech. rep. (Georgia Inst. of Technology, 2015).

https://chaosbook.org/tutorials/
https://youtu.be/9nE2g5wQQ38


building blocks of turbulence ?

pipe flow close to onset of turbulence 3

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

3M. Avila and B. Hof, Phys. Rev. E 87 (2013)



goal : we can do 3D turbulence, but for today

Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v + (· · · )

velocity field v(x; t) ∈ R3

not helpful for developing intuition
we cannot visualize 3D velocity field at every 3D spatial point

look instead at 1D ‘flame fronts’



(3+1) spacetime dimensional “Navier-Stokes”

Navier-Stokes equations (1822)

∂v
∂t

+ (v · ∇)v =
1
R
∇2v + (· · · )

H
H
H

Kuramoto-Sivashinsky (1+1)-dimensional PDE (1975)

ut + uOu = −O2u−O4u , x ∈ R ,

describes spatially extended systems such as
flame fronts in combustion
reaction-diffusion systems
. . .



an example : Kuramoto-Sivashinsky on a large domain

[horizontal] space x ∈ [0, L] [up] time evolution

turbulent behavior
simpler physical, mathematical and computational setting
than Navier-Stokes



Q: what is the physical dimension of a turbulent flow ?

question
does an attractor of a dissipative flow have a “dimension” ?

Foias et al4

mathematician’s answer
dimension of ‘inertial manifold’ is finite

4C. Foias et al., C. R. Acad. Sci. Paris, Ser. I 301, 285–288 (1985).

http://gallica.bnf.fr/ark:/12148/bpt6k6446253z/f299


Q: what is the physical dimension of a turbulent flow ?

question
does an attractor of a dissipative flow have a “dimension” ?

Ginelli, Chaté, Radons, et al4,5,6,7

physicist’s answer
‘Lyapunov covariant vectors’ split into

(a) finite number of ‘physical,’ entangled directions, in the
tangent space of the attractor

(b) infinitely many hyperbolically decaying directions that are
isolated and do not mix

4A. Politi et al., Physica D 224, 90 (2006).
5F. Ginelli et al., Phys. Rev. Lett. 99, 130601 (2007).
6H. L. Yang et al., Phys. Rev. Lett. 102, 074102 (2009).
7K. A. Takeuchi et al., Phys. Rev. Lett. 103, 154103 (2009).

https://doi.org/10.1016/j.physd.2006.09.032
https://doi.org/10.1103/PhysRevLett.99.130601
https://doi.org/10.1103/PhysRevLett.102.074102
https://doi.org/10.1103/physrevlett.103.154103


the killer plot : physical dimension
grows linearly with the domain size!

Kuramoto-Sivashinsky Lyapunov spectrum
cells L = 22,96,192 : it scales!
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transient

Now double # computational elements, fixed L :
all new ones go to the transient spectrum8,9 !

8H. L. Yang et al., Phys. Rev. Lett. 102, 074102 (2009).
9X. Ding et al., Phys. Rev. Lett. 117, 024101 (2016).

https://doi.org/10.1103/PhysRevLett.102.074102
https://doi.org/10.1103/PhysRevLett.117.024101


a finite physical manifold embedded in∞ dimensions

inertial manifold

the attractor is stuffed into a finite-dimensional body bag



conventional computations : compact space, infinite time cylinder

so far : Navier-Stokes on compact spatial domains, all times



can do also : compact time, infinite space cylinder



but integrations are uncontrollably unstable

neither time nor space integration works
for large domains

rethink the formulation!



part 3

1 turbulence in large domains
2 space is time
3 spacetime
4 bye bye, dynamics



Kuramoto-Sivashinsky on a large spacetime domain

the same small tile recurs often in a turbulent pattern

goal : define, enumerate nearly recurrent tiles

Gudorf 2018



use spatiotemporally compact solutions as spacetime ‘tiles’

shadows a small patch of spacetime



spatiotemporal shadowing

plane Couette doubly periodic shadow: click here

https://chaosbook.org/tutorials/recurr1.html


every calculation is a spatiotemporal lattice calculation

field is discretized as ũk` values
over NM points of a periodic lattice



there is no more time evolution

solution to Kuramoto-Sivashinsky is now given as

condition that
at each lattice point k`
the tangent field at ũk`

satisfies the equations of motion

[
−iω` − (q2

k − q4
k )
]

ũk` + i
qk

2

N−1∑
k ′=0

M−1∑
m′=0

ũk ′m′ ũk−k ′,m−m′ = 0

this is a local tangent field constraint on a global solution



think globally, act locally

for each symbol array M, a periodic lattice state XM



unexpected gift from nature

robust : no exponential instabilities
as there are no finite time / space integrations

no need for ∼ 10−11 accuracies,

so
accuracy to a few % suffices,

you only need to get the shape of a solution right



part 4

1 turbulence in large domains
2 space is time
3 spacetime
4 spacetime computations
5 bye bye, dynamics



how do clouds solve PDEs?

clouds do not NOT integrate Navier-Stokes equations

=⇒ other swirls =⇒

do clouds satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



the equations imposed as local constraints

Kuramoto-Sivashinsky equation

F (u) = ut + uxx + uxxxx + uux = 0

for example, minimize

cost function

G ≡ 1
2
|F (u)|2L×T

we can do this !



KS invariant 2-torus found variationally
(left) (right)

(left) initial spatiatiotemporal guess
(right) converged invariant 2-torus

Gudorf 2018



part 5

1 turbulence in large domains
2 space is time
3 spacetime
4 fundamental tiles
5 bye bye, dynamics



building blocks of turbulence

how do we recognize a cloud?

WATCH
=⇒ other swirls =⇒

by recurrent shapes!

so, construct an alphabet of possible shapes



extracting a fundamental tile

1) invariant 2-torus
2) invariant 2-torus computed from initial guess cut out from 1)
3) “gap" invariant 2-torus, initally cut out from 2)
4) the “gap" prime invariant 2-torus fundamental domain



a trial set of prime (rubber) tiles

an alphabet of Kuramoto-Sivashinsky fundamental tiles

utilize also discrete symmetries :
spatial reflection, spatiotemporal shift-reflect, · · ·



part 5

1 turbulence in large domains
2 space is time
3 spacetime
4 fundamental tiles
5 gluing tiles
6 bye bye, dynamics



a qualitative tiling guess

a tiling and the resulting solution
2-torus



turbulence.zip : each solution has a unique symbolic name

symbolic dynamics is 2-dimensional!

each symbol indicates a corresponding spatiotemporal tile



part 5

1 turbulence in large domains
2 space is time
3 bye bye, dynamics



can computers

do this ?



compute locally, adjust globally

Navier-Stokes and orbit hunting codes
T. M. Schneider : developing a matrix-free variational
Navier-Stokes code, machine learning initial guesses
M. N. Gudorf : Orbithunter - framework for nonlinear
dynamics and chaos
D. Lasagna and A. Sharma : developing variational adjoint
solvers to find periodic orbits with long periods
Q. Wang : parallelizing spatiotemporal computation is
FLOPs intensive, but more robust than integration forward
in time

it’s rocket science10,11,12,13

10J. P. Parker and T. M. Schneider, J. Fluid. Mech. 941, A17 (2022).
11M. N. Gudorf, Orbithunter: Framework for Nonlinear Dynamics and Chaos, tech. rep. (School of Physics,

Georgia Tech, 2021).
12M. V. Lakshmi et al., Physica D 427, 133009 (2021).
13Q. Wang et al., Phys. Fluids 25, 110818 (2013).

https://doi.org/10.1017/jfm.2022.299
https://doi.org/10.1016/j.physd.2021.133009
https://doi.org/10.1063/1.4819390


does a bird flock solve a PDE?

does motor cortex integrate Hodgkin-Huxley equations?

NO!
=⇒ near recurrence =⇒

do dragonflies satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



summary

1 study turbulence in infinite spatiatemporal domains
2 theory : classify all spatiotemporal tilings
3 numerics : future is spatiotemporal

there is no more time

there is only enumeration of spacetime solutions


	what this work is about

