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We describe spatiotemporally chaotic (or turbulent) field theories discretized over d-dimensional lattices
in terms of sums over their multi-periodic orbits. ‘Chaos theory’ is here recast in the language of statistical
mechanics, field theory, and solid state physics, with the traditional periodic orbits theory of low-dimensional,
temporally chaotic dynamics a special, one-dimensional case.
In the field-theoretical formulation, there is no time evolution. Instead, treating the temporal and spa-

tial directions on equal footing, one determines the spatiotemporally periodic orbits that contribute to the
partition sum of the theory, each a solution of the system’s defining deterministic equations, with sums over
time-periodic orbits of dynamical systems theory replaced here by sums of d-periodic orbits over d-dimensional
spacetime geometries, the weight of each orbit given by the Jacobian of its spatiotemporal orbit Jacobian
operator. The weights, evaluated by application of the Bloch theorem to the spectrum of periodic orbit’s
Jacobian operator, are multiplicative for spacetime orbit repeats, leading to a spatiotemporal zeta function
formulation of the theory in terms of prime orbits.

PACS numbers: 02.20.-a, 05.45.-a, 05.45.Jn, 47.27.ed

A temporally chaotic system is exponentially un-
stable with time: double the time, and exponen-
tially more orbits are required to cover its strange
attractor to the same accuracy. For a system of
large spatial extent, the complexity of the spatial
shapes also needs to be taken into account; dou-
ble the spatial extent, and exponentially as many
distinct spatial patterns will be required to de-
scribe the repertoire of spatial shapes to the same
accuracy. We say that a field theory is spatiotem-
porally chaotic if its entropy is positive, and all
of its spacetime solutions have positive stability
exponents.

Our goal here is to make this ‘spatiotemporal chaos’ tan-
gible and precise (see Sec. XIA), in a series of papers
that introduce its theory and its implementations. The
companion paper I1 focuses on the 1d chaotic lattice field
theory, and a novel treatment of time-reversal invariance.
In this paper, paper II, we develop the theory of 2d spa-
tiotemporal chaotic systems; and in the companion pa-
per III2 we apply the theory to several nonlinear field
theories. As our intended audience spans many disjoint
specialties, from fluid dynamics to quantum field theory,
the exposition entails much pedagogical detail, so let us
start by stating succinctly what the key novelty of our
theory is.

There are two ways of studying stabilities of
translationally-invariant systems, illustrated by Fig. 9 (b)
and (c):

(i) In the textbook ‘QM-in-a-box’ approach, one starts
by confining a system to a finite box, then takes the box
size to infinity. In dynamical systems this point of view
leads to the Gutzwiller-Ruelle3–5 periodic orbit formula-
tion of chaotic dynamics. This approach is hampered by

one simple fact that complicates everything: the periodic
orbit weight is not multiplicative for orbit repeats,

det ( 11− Jrp) ̸= [det ( 11− Jp)]r . (1)

Much work follows,5 with some details elaborated in
Sec. IX.
(ii) A crystallographer or field theorist starts with an

infinite lattice or continuum spacetime. The approach
–as we show here in Sec. XB– yields weights that are
multiplicative for repeats of spatiotemporally periodic so-
lutions,

“DetJrp = (DetJp)
r ” (2)

(quotation marks, as the precise statement is in terms of
stability exponents rather than determinants). This fact
simplifies everything, and yields the main result of this
paper, the spatiotemporal zeta function (Sec. XID) for
field theories in two spacetime dimensions, expressed as
a product of Euler functions ϕ(tp), one for each prime
spatiotemporal solution of weight tp,

ζ =
∏
p

ζp , 1/ζp = ϕ(tp) . (3)

Analysis of a temporally chaotic dynamical system typ-
ically starts with establishing that a temporal flow (per-
haps reduced to discrete time maps by Poincaré sections)
is locally stretching, globally folding. Its state space is
partitioned, the partitions labeled by an alphabet, and
the qualitatively distinct solutions classified by their tem-
poral symbol sequences.5

We do not do this here: instead, we find that the natu-
ral language to describe ‘spatiotemporal chaos’ and ‘tur-
bulence’ is the formalism of field theory. Furthermore
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–just as the discretization of time by Poincaré sections
aids analysis of temporal chaos– we find it convenient to
discretize both time and space. Spatiotemporally steady
turbulent flows offer one physical motivation for consid-
ering such models: a rough approximation to such flows
is obtained discretizing them into spatiotemporal cells,
with each cell turbulent, and cells coupled to their neigh-
bors. Lattices also arise naturally in many-body prob-
lems, such as many-body quantum chaos models stud-
ied in Refs. 6–9. For someone versed in fluid dynamics
or atomic physics the most disconcerting aspect of the
field-theoretic perspective is that time is just one of the
coordinates over which a field configuration is defined:
each field-theoretic solution is a static solution over the
infinite spacetime. There is no ‘evolution in time’, no
stable / unstable manifolds, no ‘mixing’, no ‘hyperbolic-
ity’.

We start our formulation of chaotic field theory (Sec. I)
by defining the field theory partition sums in terms of
spatiotemporally periodic states (Sec. I A). In Sec. II we
explain the connection between the work presented here
and Gutzwiller’s semiclassical quantization, and why the
semiclassical field theory, given by the WKB approxima-
tion to quantum field theory, has support on the same
set of solutions as the deterministic field theory (Sec. III).
While the formulation provides a framework for studying
the quantum behavior of deterministically chaotic spa-
tiotemporal systems, we focus in this triptych of papers
only on the structure of the deterministic chaotic field
theories. Their building blocks are spatiotemporally pe-
riodic solutions of system’s defining equations, which we
refer to as periodic states (Sec. III).
In Sec. IV we introduce the field theories studied here,

in particular the simplest of chaotic field theories, the
spatiotemporal cat10,11 that captures the essence of spa-
tiotemporal chaos (Sec. IVA; for its history, see Ap-
pendix A 1). Spatiotemporal cat is a discretization of
the compact boson Klein-Gordon equation,

(−□+ µ2)Φ−M = 0 , (4)

a deterministic field theory with an unstable ‘anti-
harmonic cat’ ϕz of mass µ at each lattice site z, a ‘cat’
which, when pushed, runs away rather than pushes back.

Crucial to ‘chaos’ is the notion of stability: in Sec. V we
describe spatiotemporal stability of above field theories’
periodic states in terms of their orbit Jacobian operators.

Periodic orbit theory for a time-evolving dynamical
system on a one-dimensional temporal lattice is orga-
nized by grouping orbits of the same time period to-
gether.1,3–5,12 For systems characterized by several trans-
lational symmetries, one has to take care of multiple peri-
odicities; in the language of crystallography, organize the
periodic orbit sums by corresponding Bravais lattices, or,
in the language of field theory, by the ‘sum over geome-
tries’. In Sec. VI we enumerate and construct spacetime
geometries, or d = 2 Bravais lattices [L×T]S , of increas-
ing spacetime periodicities. The classification of periodic
states proceeds in two steps. On the coordinate level, pe-

riodicity is imposed by the hierarchy of Bravais lattices of
increasing periodicities. On the field-configuration level,
the key to the spatiotemporal periodic orbit theory is the
enumeration and determination of prime orbits, the basic
building blocks of periodic orbit theory (Sec. VII).

The likelihood of each solution is given by the orbit Ja-
cobian, the determinant of its spatiotemporal orbit Jaco-
bian matrix. Compared to the temporal-evolution chaos
theory, the orbit Jacobian (more precisely, the stability
exponent) is the central innovation of our field-theoretic
formulation of chaotic field theory, so we return to it
throughout the paper. The calculations are carried out
on the reciprocal lattice (Sec. VIII). We discuss primitive
cell computations in Sec. IX, as prequel to introducing
the stability exponent of a periodic state over spatiotem-
porally infinite Bravais lattice, computed on the recipro-
cal lattice (Sec. X). For spatiotemporal cat we evaluate
and cross-check orbit Jacobians by two methods, either
on the reciprocal lattice (Sec. IXB), or by the ‘funda-
mental fact’ evaluation (Appendix C 3).

Having enumerated all Bravais lattices (Sec. VI), deter-
mined periodic states over each (Sec. VIIA), computed
the weight of each periodic state (Sec. X), we can now
write down the deterministic field theory partition sum
as a sum over all spatiotemporal solutions of the theory
(Sec. XI). In Sec. XIC we reexpress the partition sum
in terms of prime orbits, and in Sec. XID we construct
the spatiotemporal zeta function and explain how it can
be used to compute expectation values of observables in
deterministic chaotic field theories. What makes these
resummations possible is the multiplicative property of
orbit Jacobians announced in Eq. (2), provided by their
evaluation over the spatiotemporally infinite Bravais lat-
tice (Sec. X), the key property that is violated by finite-
dimensional matrix approximations that are the basis of
the traditional Gutzwiller-Ruelle temporal periodic or-
bits theory (Sec. IX).

How is this global, high-dimensional orbit stability re-
lated to the stability of the conventional low-dimensional,
forward-in-time evolution? The two notions of stabil-
ity are related by Hill’s formulas, relations that rely on
higher-order derivative equations being rewritten as sets
of first order ODEs, formulas equally applicable to en-
ergy conserving systems, as to viscous, dissipative sys-
tems. We derive them in Refs. 1 and 13. From the field-
theoretic perspective, orbit Jacobians are fundamental,
while the forward-in-time evolution (a transfer matrix
method) is merely one of the methods for computing
them.

Finally, we know that time-evolution cycle-expansions’
convergence is accelerated by shadowing of long orbits by
shorter periodic orbits.14 In Sec. XII we check numeri-
cally that spatiotemporal cat periodic states that share
finite spatiotemporal mosaics shadow each other to ex-
ponential precision. We presume (but do not show) that
this shadowing property ensures that the predictions of
the theory are dominated by the shortest period prime
orbits.



Lattice field theory in 2 dimensions 3
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FIG. 1. (Color online) Discretization of a field over two-
dimensional spacetime. (a) A periodic scalar field configu-
ration ϕ(x) over a primitive cell of spatial period L, tempo-
ral period T, plotted as a function of continuous coordinates
x ∈ R2. (b) The corresponding discretized field configuration
Eq. (7) over primitive cell [10×7]0, with the field value ϕz at
the lattice site z ∈ Z2 indicated by a dot.

This completes our generalization1,2,11,15 of the
temporal-evolution deterministic chaos theory5,12 to spa-
tiotemporal chaos / turbulence, and recasts both in the
formalism of conventional solid state physics, field theory,
and statistical mechanics. Our results are summarized
and open problems discussed in Sec. XIII. Appendices
contain historical remarks and calculations omitted from
the main body of the text. Icon on the margin links
a block of text to a supplementary online video. For
additional material, online talks and related papers, see
ChaosBook.org/overheads/spatiotemporal.

I. LATTICE FIELD THEORY

In a d-dimensional hypercubic discretization of a Eu-
clidean space, the d continuous Euclidean coordinates

x ∈ Rd are replaced by a hypercubic integer lattice16,17

L =


d∑

j=1

zjej | z ∈ Zd

 , ej ∈ {e1, e2, · · · , ed} , (5)

spanned by a set of orthogonal vectors ej , with lattice
spacing aj = |ej | = ∆xj along the direction of vector ej .
We shall use lattice units, almost always setting aj = 1
(for another, modular function parametrization choice,
see Eq. (81)). A field ϕ(x) over d continuous coordinates
xj is represented by a discrete array of field values over
lattice sites

ϕz = ϕ(x) , xj = ajzj = lattice site, z ∈ Zd , (6)

as sketched in Fig. 1. A lattice field configuration is a
d-dimensional infinite array of field values (in what fol-
lows, illustrative examples will be presented in one or two
spatiotemporal dimensions)

Φ =

· · · · · · · · · · · · · · · · · · · · ·
· · · ϕ−2,1 ϕ−1,1 ϕ0,1 ϕ1,1 ϕ2,1 · · ·
· · · ϕ−2,0 ϕ−1,0 ϕ0,0 ϕ1,0 ϕ2,0 · · ·
· · · ϕ−2,−1 ϕ−1,−1 ϕ0,−1 ϕ1,−1 ϕ2,−1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

. (7)

A field configuration Φ is a point in system’s state space

M =
{
Φ | ϕz ∈ R , z ∈ Zd

}
, (8)

given by all possible values of site fields, where ϕz is a
single scalar field, or a multitplet of real or complex fields.

While we refer here to such discretization as a lat-
tice field theory, the lattice might arise naturally from
a many-body setting with the nearest neighbors interac-
tions, such as many-body quantum chaos models studied
in Refs. 6–9, with a multiplet of fields at every site.10

A. Periodic field configurations

No computer can store the infinite field configuration
Eq. (7). The best one can do is compute fields over a
finite number of lattice sites, as in Eq. (13), i.e., coarse
grain the state space. In the process, one has to pick some
boundary conditions, but not any: The Law is the same
everywhere, for all times. Arbitrary boundaries break it.
For no discernable reason, the companion article Ref. 11
breaks the translation symmetry by imposing the Dirich-
let boundary conditions, leading to much wholly unnec-
essary, self-inflicted pain. The right and only way to obey
The Law is by deterministic solutions Φc being periodic,
with no boundary anywhere. We say that a lattice field
configuration is LA-periodic if

ϕz+r = ϕz (9)

for any discrete translation r = n1a1 + n2a2 + · · ·+ ndad
in what crystallographers call the Bravais lattice

LA =
{ d∑

j=1

njaj | nj ∈ Z
}
, (10)

https://ChaosBook.org/overheads/spatiotemporal/
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where the [d×d] basis matrix A = [a1,a2, · · · ,ad] formed
from primitive integer lattice vectors {aj} defines a
d-dimensional primitive cell.18,19 If the lattice spacing
Eq. (6) is set to 1, the lattice volume, or the volume
of primitive cell

NA = |DetA| (11)

equals the number of lattice sites z ∈ A within the prim-
itive cell, see Fig. 3.

Primitive cell A field configuration lattice-site fields
Eq. (7) take values in the NA-dimensional state space

MA = {Φ | ϕz ∈ R , z ∈ A} . (12)

For example, repeats of the NA = 15-dimensional [5×3]
primitive cell field configuration

Φ =

 ϕ−2,1 ϕ−1,1 ϕ0,1 ϕ1,1 ϕ2,1

ϕ−2,0 ϕ−1,0 ϕ0,0 ϕ1,0 ϕ2,0

ϕ−2,−1 ϕ−1,−1 ϕ0,−1 ϕ1,−1 ϕ2,−1

 (13)

tile periodically the doubly-infinite field configuration
Eq. (7).

We focus on the one-dimensional case for now, post-
pone discussion of higher-dimensional Bravais lattices to
Sec. VI.

B. Orbits

Consider a one-dimensional lattice LA, defined by a
single primitive vector a1 = n in Eq. (10). One-lattice-
spacing shift operator rzz′ = δz+1,z′ acts on the primitive
cell A as the shift matrix

r =


0 1

0 1
. . .

. . .
0 1

1 0

 , (14)

a cyclic permutation matrix that translates a field con-
figuration by one lattice site, (rΦ)z = ϕz+1,

Φ = [ϕ0 ϕ1 ϕ2 ϕ3 · · · ϕn−1] ,

rΦ = [ϕ1 ϕ2 ϕ3 · · · ϕn−1 ϕ0] ,

· · · (15)

rn−1Φ = [ϕn−1 ϕ0 ϕ1 ϕ2 · · · ϕn−2] ,

rnΦ = [ϕ0 ϕ1 ϕ2 ϕ3 · · · ϕn−1] = Φ .

While each field configuration rjΦ might be a distinct
point in the primitive cell’s state space Eq. (12), they
are equivalent, in the sense that they all are the same
set of lattice site fields {ϕz}, up to a cyclic relabelling of
lattice sites.

In this way actions of the translation group T on field
configurations over a multi-periodic primitive cell A foli-
ate its state space into a union

MA = {Φ} = ∪Mp (16)

of translational orbits,

Mp = {rjΦp | rj ∈ T} (17)

each a set of equivalent field configurations, labelled
perhaps by Φp, one of the configurations in the set.
Each orbit is a fixed point of T , as for any translation
rjMp = Mp . The number of distinct field configurations
in the orbit is np, the period of the orbit. (For orbits over
two-dimensional lattices, see Sec. VII).

C. Prime orbits over one-dimensional primitive cells

Definition: Prime orbit.

A primitive cell field configuration Eq. (9) is
prime if it is not a repeat of a lattice field
configuration of a shorter period.

The simplest example of a prime field configuration is a
steady state ϕz = ϕ. Its primitive cell A is the unit hyper-
cube Eq. (5) of period-1 along every hypercube direction.
A field configuration obtained by tiling any primitive cell
Eq. (10) by repeats of steady state ϕ is a periodic field
configuration, but not a prime field configuration.

Consider next a period-6 field configuration Eq. (15)
over a primitive cell 2A obtained by a repeat of a primi-
tive cell A period-3 field configuration,

Φ2A = [ϕ0 ϕ1 ϕ2 ϕ0 ϕ1 ϕ2] , ΦA = [ϕ0 ϕ1 ϕ2]
rΦ2A = [ϕ1 ϕ2 ϕ0 ϕ1 ϕ2 ϕ0] , rΦA = [ϕ1 ϕ2 ϕ0]
r2Φ2A = [ϕ2 ϕ0 ϕ1 ϕ2 ϕ0 ϕ1] , r2ΦA = [ϕ2 ϕ0 ϕ1]

(18)

On the infinite Bravais lattice Eq. (7), field configuration
ΦA and its repeat Φ2A are the same field configuration,
with the same period-3 orbit Mp = (ΦA, rΦA, r

2ΦA): ev-
ery Bravais lattice orbit is a ‘prime’ orbit.

The distinction arises in enumeration of field config-
urations over a primitive cell. The primitive cell state
spaces Eq. (12) are here 6-, 3-dimensional, respectively.
Both orbits depend on the same 3 distinct lattice site
field values ϕz. On the primitive cell 2A, however, the
6 lattice sites field configuration Φ2A is not prime, it is
a repeat of the field configuration ΦA. We elaborate this
distinction in Sec. VB.

This is how ‘prime periodic orbits’ and their repeats
work for the one-dimensional, temporal lattice. For a
two-dimensional square lattice the notion of ‘prime’ is a
bit trickier, so we postpone its discussion to Sec. VII.

The totality of field configurations Eq. (8) can now be
constructed by (i) enumerating all Bravais lattices LA,
(ii) determining prime orbits for each primitive cell A,
and (iii) including their repeats into field configurations
over primitive cells AR. Our task is to identify, compute
and weigh the totality of these prime orbits for a given
field theory.
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D. Observables

A goal of a physical theory is to make predictions, for
example, enable us to evaluate the expectation value of
an observable. An observable ‘a’ is a function or a set of
field configuration functions az[Φ], let’s say temperature,
measured on a spatiotemporal lattice site z, let’s say in
Draškovićeva 15, Zagreb, on April 1, 1946. For a given
LA-periodic field configuration Φ, the Birkhoff average of
observable a is given by the Birkhoff sum A,

a[Φ]A =
1

NA
A[Φ]A , A[Φ]A =

∑
z∈A

az . (19)

For example, if the observable is the field itself, az = ϕz,
the Birkhoff average over the lattice field configuration Φ
is the average ‘height’ of the field in Fig. 1 (b).

In order to evaluate the expectation value of an observ-
able,

⟨a⟩A =

∫
dΦA p[Φ]A a[Φ]A , dΦA =

∏
z∈A

dϕz , (20)

averaged over all field configurations, we need to know
the probability amplitude (quantum theory, Sec. II), or
the state space probability density (deterministic theory,
Sec. III) of field configuration Φ.
For pedagogical reasons, we introduce the two theo-

ries by first restricting them to finite-dimensional state
space Eq. (12) of a primitive cell A. These finite vol-
umes are not meant to serve as finite approximations to
the infinite Bravais lattices LA: as is standard in solid
state physics, the actual calculations are always carried
out over the infinite lattice, more precisely (not standard
in solid state physics, but necessary to describe a chaotic
field theory) over the set of all periodic lattice field con-
figurations Eq. (9) over all Bravais lattices LA Eq. (10),
or, in field theory,20,21 as the ‘sum over geometries’.
The reader might prefer to skip the next, largely mo-

tivational section on semiclassical field theory, go di-
rectly to Sec. III, taking the deterministic partition sum
Eq. (42) as the starting point for what follows.

II. SEMICLASSICAL FIELD THEORY

In the path integral formulation of quantum field the-
ory, a field configuration Φ over primitive cell A occurs
with probability amplitude density

pA[Φ] =
1

ZA
e

i
ℏS[Φ] , ZA = ZA[0] , (21)

where S[Φ] is the action of the field configuration Φ. The
NA-dimensional primitive cell partition sum is the sum
over all field configurations over primitive cell A

ZA[J] =

∫
dΦA e

i
ℏ (S[Φ]+Φ·J) , dΦA =

∏
z∈A

dϕz√
2π

. (22)

Here the ‘sources’ J = {jz} are added to the action
to facilitate the evaluation of expectation values of field
moments (n-point Green’s functions) by applications of
d/djz to the partition sum Eq. (22):

⟨ϕi, ϕj , · · · , ϕn⟩A =

∫
dΦA ϕi ϕj · · ·ϕn pA[Φ] , (23)

A semiclassical (or WKB) approximation to the parti-
tion sum is obtained by the method of stationary phase.
We illustrate this by a 0-dimensional lattice field theory.

A. Semiclassical field theory, a single lattice site

Consider a Laplace integral of form

⟨a⟩0 =

∫
dϕ√
2π

a(ϕ) e
i
ℏS(ϕ) , (24)

with a real-valued positive parameter ℏ, a real-valued
function S(ϕ), and an observable a(ϕ). Laplace estimate
of this integral is obtained by determining its extremal
point ϕc, given by the stationary phase condition

d

dϕ
S(ϕc) = 0 , (25)

and approximating the action to second order,

S(ϕ) = S(ϕc) +
1

2
S

′′
(ϕc)(ϕ− ϕc)

2 + · · · .

The contribution of the quadratic term is given by the
Fresnel integral

1√
2π

∫ ∞

−∞
dϕ e−

ϕ2

2i b =
√
ib = |b|1/2 ei

π
4

b
|b| , (26)

with b = ℏ/S′′
(ϕc) and the phase depending on the sign

of S
′′
(ϕc), so for a lattice with a single site the semiclassi-

cal approximation to the partition sum formula Eq. (24)
for the expectation value is

⟨a⟩0 =

∫
dϕ√
2π

a(ϕ) e
i
ℏS(ϕ) ≈ a(ϕc)

e
i
ℏS(ϕc)±iπ

4

|S′′(ϕc)/ℏ|1/2
, (27)

with ± for positive/negative sign of S′′(ϕc).

B. Semiclassical lattice field theory

The semiclassical approximation to the lattice field
theory partition sum Eq. (22) is a NA-dimensional gen-
eralization of the above Laplace-Fresnel integral. The
stationary phase condition Eq. (25)

F [Φc]z =
δS[Φc]

δϕz
= 0 (28)
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is The Law, whose global deterministic solutions Φc sat-
isfy this local extremal condition on every lattice site z;
in system’s state space Eq. (12) Φc is a stationary point
of the action S[Φ].
In the WKB approximation, the action near the point

Φc is expanded to quadratic order,

S[Φ] ≈ S[Φc] +
1

2
(Φ− Φc)

⊤Jc (Φ− Φc) , (29)

where we refer to the matrix of second derivatives

(Jc)z′z =
δ2S[Φ]

δϕz′δϕz

∣∣∣∣
Φ=Φc

(30)

as the orbit Jacobian matrix. The Fresnel integral
Eq. (26) is now a multidimensional integral over NA lat-
tice sites state-space neighborhood Mc of a deterministic
solution Φc approximated by a Gaussian∫

dΦA e
i
2ℏΦ⊤Jc Φ =

1

|Det (Jc/ℏ)|1/2
eimc ,

dΦA =
∏
z∈A

dϕz√
2π

, (31)

where the Maslov index mc is a sum of phases Eq. (26),
with signs determined by the signs of eigenvalues of Jc.
Our semiclassical d-dimensional spatiotemporal quan-

tum field theory is a generalization of Gutzwiller3 semi-
classical approximation to quantummechanics (temporal
quantum evolution of a classically low-dimensional me-
chanical system, no infinite spatial directions). It assigns
a quantum probability amplitude to a deterministic so-
lution Φc,

22–25

pc(Φ) ≈ 1

ZA

e
i
ℏS[Φc]+imc

|Det (Jc/ℏ)|1/2
, ZA = ZA[0] , (32)

with the partition sum Eq. (22) having support on the
set of deterministic periodic solutions Φc over primitive
cell A,

ZA[J] ≈
∑
c

e
i
ℏS[Φc]+imc+iΦc·J

|Det (Jc/ℏ)|1/2
. (33)

We could have equally well derived the Onsager-
Machlup-Freidlin-Wentzell26 weak noise saddle-point ap-
proximation, or Castro et al.21 the semiclassical limit of
the pure Einstein gravity partition function, and arrived
to the same conclusion: in such limits partition sums have
support on the set of deterministic periodic solutions.

III. DETERMINISTIC FIELD THEORY

To summarize: The backbone of semiclassical quan-
tum theory of 1920’s is the set of deterministic solutions
of system’s defining equations Eq. (28), with the lead-
ing exponential contribution given by action evaluated

S[Φg]S[Φa]

S[Φ]

ϕ
00 ϕ

zz ′
M

A

Φa
Φb

Φc

Φd

Φe

Φf

Φg

(a) quantum chaos : ⟨a⟩ ≈
∑
c

a[Φc]
e

i
ℏS[Φc]+imc

|Det (Jc/ℏ)|1/2

p[Φg]p[Φa]

p[Φ]

ϕ
00 ϕ

zz ′
M

A

Φa
Φb

Φc

Φd

Φe

Φf

Φg

(b) deterministic chaos : ⟨a⟩ =
∑
c

a[Φc]
1

|DetJc|

FIG. 2. A bird’s eye view of the quantum action landscape
over the primitive cell state spaceMA Eq. (12). White ellipses
indicate the stationary points Eq. (40), i.e., the set of all deter-
ministic solutions {Φa,Φb,Φc, · · · ,Φg}. They form the skele-
ton on which the partition sums of both quantum chaos and
deterministic chaos / turbulence are evaluated, with the com-
mon deterministic backbone, but different weights. (a) For a
quantum theory, the semiclassical partition sum Eq. (33) is an
approximation, with quantum probability amplitude phases
given by deterministic solutions’ actions, and stability weights
given by square roots of the deterministic ones. (b) For a det-
erministic field theory the probabilities that form the partition
sum Eq. (42) are exact, a Dirac porcupine of delta function
quills, a quill for each solution of The Law.
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on the deterministic solution, while the next-to-leading
prefactor is the determinant of the operator describing
quantum fluctuations about the deterministic solution.

For chaotic (or ‘turbulent’) systems deterministic so-
lutions form a set of saddles, sketched in Fig. 2. In this
paper we focus on this set of deterministic solutions. It
turns out that, despite vastly different appearances, the
‘chaos theory’ of 1970’s is a deterministic Euclidean field
theory (see Appendix A). Who knew?

A. Euclidean field theory

In Euclidean field theory a field configuration Φ over
primitive cell A occurs with state space probability den-
sity

pA[Φ] =
1

ZA
e−S[Φ] , ZA = ZA[0] , (34)

where ZA is a normalization factor ensuring that proba-
bilities add up to 1, given by the primitive cell partition
sum, an integral over the primitive cell A state space
Eq. (12),

ZA[β] =

∫
dΦA e−S[Φ]+β·AA[Φ], dΦA =

∏
z∈A

dϕz . (35)

AA[Φ], the Birkhoff sum Eq. (19) of the observable, or a
set of observables, is multiplied by a parameter, or a set
of parameters β. The conventional field-theoretic setup
β · a[Φ] ⇒ J · Φ, Eq. (22), is an example, with an array
of ‘sources’ J = {jz} added to the action to facilitate
the evaluation of expectation values of field moments (n-
point Green’s functions) ⟨ϕz1ϕz2 · · ·ϕzn⟩A, Eq. (23), by
applications of d/djz to the partition sum Eq. (22). S[Φ]
is the log probability (in statistics), the Gibbs weight (in
statistical physics), or the action (in field theory) of the
system under consideration (for examples, see Sec. IV).

What is this ‘action’? If lattice site fields are not cou-
pled, the spatiotemporal field configuration Φ probabil-
ity density Eq. (34) is a product of lattice site probability
densities, and the partition sum is an exponential in the
primitive cell volume NA. If lattice site fields are weakly
coupled, this exponential depends on the shape of the
primitive cell A, ZA[β] = exp(NAWA[β]). The expec-
tation value Eq. (20) of observable a can be extracted
from the log of the primitive cell partition sum WA[β] by
application of a d/dβ derivative:

⟨a⟩A =
d

dβ
WA[β]

∣∣∣∣
β=0

=

∫
dΦA aA[Φ] pA[Φ] . (36)

In this series of papers we focus on spatiotemporal sys-
tems with bounded variation of WA[β],

eNAWmin[β] < ZA[β] < eNAWmax[β] , (37)

with field configuration independent bounds Wmin[β],
Wmax[β], to be established in Sec. XIA. This require-
ment is the spatiotemporal generalization of the uniform

hyperbolicity of time-evolving dynamical systems, with
Lyapunov exponents strictly bounded away from 0.
Consider a field theory over a large square primitive

cell A = [L×L]. In the infinite volume NA = L2 limit,
exponential bounds of Eq. (37) guarantee convergence to
the function

W [β] = lim
NA→∞

1

NA
lnZA[β] , (38)

whose derivative yields the expectation value

⟨a⟩ =
dW [β]

dβ

∣∣∣∣
β=0

. (39)

In this limit the primitive cell contains the full hyper-
cubic integer lattice L = Zd, and the averaging inte-
gral

∫
dΦ a[Φ] p[Φ] is the integral Eq. (36) evaluated over

the infinite d-dimensional hypercubic lattice state space
Eq. (8), an integral which we do not know how to evalu-
ate.
What we actually need to evaluate is not this integral,

but the derivative W ′. That we accomplish in Sec. XI F.

B. Deterministic lattice field theory

What these field configuration probabilities Eq. (34)
are depends on the theory. Here, motivated by the above
semiclassical quantum (or stochastic) field theory exam-
ples, we are led to a formulation of the deterministic field
theory, where a field configuration Φc contributes only if
it satisfies The Law

F [Φc]z = 0 (40)

on every lattice site z (for our examples of The Law, see
Eqs. Eq. (53)-Eq. (55) below). That is all we require,
regardless of whether the system has a Lagrangian for-
mulation, or not (for example, Navier-Stokes equations).
Deterministic field theory, it turns out, is an elegant, to
a novice perhaps impenetrable, definition of what we al-
ready know as deterministic chaos and/or turbulence (the
precise relation is afforded by Hill’s formulas, derived in
Refs. 1 and 13).

Definition: Periodic state

is a LA-periodic set of field values Φc = {ϕz}
over the d-dimensional lattice z ∈ Zd that
satisfies The Law on every lattice site.

As any field configuration Φ is a point in NA-dimensional
state space Eq. (12), so is a periodic state Φc. Fur-
thermore, just as a temporal evolution period n periodic
point is a fixed point of the nth iterate (translation by
n temporal lattice sites) of the dynamical time-forward
map, every periodic state is a fixed point of a set of sym-
metries of the theory (Sec. VIIA and Eq. (158)).
System’s defining equations Eq. (40) are The Law ev-

eryone must obey: look at your left neighbor, right neigh-
bor, remember who you were, make sure you fit in just

http://www.scholarpedia.org/article/Hyperbolic_dynamics#Uniform_hyperbolicity
http://www.scholarpedia.org/article/Hyperbolic_dynamics#Uniform_hyperbolicity
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right. The set {Φc} of all possible periodic states is sys-
tem’s ‘Book of Life’ - a catalogue of all possible ‘lives’,
spatiotemporal patterns that The Law allows, each life a
point in system’s state space, each life’s likelihood given
by its orbit Jacobian.

A periodic state is a fixed spacetime pattern: the ‘time’
direction is just one of the coordinates. If you insist on
visualizing solutions as evolving in time, a periodic state
is a video, not a snapshot of the system at an instant
in time (that these are merely different visualizations is
proven in Ref. 13).

Definition: Deterministic probability density.

For a deterministic field theory, the state
space probability density is non-vanishing
only at the exact solutions of The Law,

p[Φ] =
1

Z
δ(F [Φ]) , (41)

where the NA-dimensional Dirac delta func-
tion δ(· · · ) enforces The Law on every lattice
site.

In contrast to the quantum action landscape of Fig. 2 (a),
for a chaotic (or ‘turbulent’) deterministic system the
probability density Fig. 2 (b) is a Dirac porcupine, a set
of delta function quills over the primitive cell state space
MA, Eq. (12), one for each solution of The Law. The
primitive cell A deterministic partition sum Eq. (35) is
given by the sum over all periodic states, here labelled
‘c’,

ZA[β] =
∑
c

∫
Mc

dΦA δ(F [Φ]) eβ·AA[Φ]

=
∑
c

1

|DetJA,c|
eβ·Ac , (42)

where Mc is an open infinitesimal neighborhood of state
space point Φc, and

Ac =
∑
z∈A

az[Φc] (43)

is the Birkhoff sum Eq. (19) of observable a over periodic
state Φc, to be discussed in Sec. XI F. We refer to

(Jc)z′z =
δF [Φc]z′

δϕz
(44)

evaluated as the [NA×NA] matrix over the primitive cell
A, as the orbit Jacobian matrix JA,c, to the linear oper-
ator Eq. (44), evaluated over infinite Bravais lattice LA,
as the orbit Jacobian operator Jc, and to the probability
weight Eq. (42), as the orbit Jacobian DetJA,c .22,27–29

The orbit Jacobian is the central innovation of our for-
mulation of spatiotemporal chaos, so we discuss at length
in sections V, IX, X, XI and Appendix C.

C. Mosaics

The backbone of a deterministic chaotic system is thus
the set of all spatiotemporal solutions of system’s defining
equations Eq. (40) that we here refer to as periodic states,
or, on occasion, as (multi-)periodic orbits. Depending
on the context, in literature they appear under many
other names. For example, Gutkin and Osipov10 refer to
a two-dimensional periodic state Φc as a ‘many-particle
periodic orbit’, with each lattice site field ϕnt ‘doubly-
periodic’, or ‘closed’.
Mosaics. For a d-dimensional spatiotemporal field

theory, symbolic description is not a one-dimensional
temporal “symbolic dynamics” itinerary, as, for exam-
ple, a symbol sequence that describes a time-evolving
N -particle system. The key insight –an insight that ap-
plies to coupled-map lattices, and field theories modeled
by them,10,11,30–33 not only systems considered here– is
that a field configuration Φ = {ϕz} over a d-dimensional
spacetime lattice z ∈ Zd is labelled by a finite alphabet
symbol lattice M = {mz} over the same d-dimensional
spacetime lattice.
For field theories studied here, one can partition the

values of a lattice site field ϕz into a set of |A| disjoint
intervals, and label each interval by a letter mz ∈ A
drawn from an alphabet A, let’s say

A = {1, 2, · · · , |A|} . (45)

This associates a d-dimensional ‘mosaic’ Mc to a field
configuration Φc over d-dimensional lattice34–37

Mc = {mz} , mz ∈ A , (46)

elsewhere called ‘symbolic representation’;30 ‘spatiotem-
poral code’;38 ‘symbol tensor’;39 ‘symbol lattice’;11,40

‘symbol table’;41 ‘local symbolic dynamics’;33 ‘symbol
block’.1,11 A mosaic serves both as a proxy (a ‘name’)
for the periodic state Φc, and its visualization as color-
coded symbol array Mc (for examples, see Fig. 7, Fig. 13
and companion paper III2).
If there is only one, distinct mosaicMc for each periodic

state Φc, the alphabet is said to be covering. While each
periodic state thus gets assigned a unique mosaic that
paginates its location in the Book of Life, the converse is
in general not true. If a given mosaic M corresponds to
a periodic state, it is admissible, otherwise M has to be
deleted from the list of mosaics.
In the temporal-evolution setting there is a variety

of methods of finding grammar rules that eliminate in-
admissible mosaics. While such rules for 2- or higher-
dimensional lattice field theories remain, in general, not
known to us, we are greatly helped by the observation
that in the ‘anti-integrable’ limit2,42–45 (also known as
the ‘anti-continuum limit’ in solid state physics,46 ‘large
dissipation limit’ in nonlinear dynamics,47, ‘weak diffu-
sive coupling’ in stochastic field theory45) finite alpha-
bets are known, and offer good starting approximations2

to the corresponding numerically exact periodic states.

https://www.washingtonpost.com/parenting/interactive/2023/lego-bricks-colors-history/
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IV. EXAMPLES OF SPATIOTEMPORAL LATTICE
FIELD THEORIES

We shall construct the field theory’s deterministic part-
ition sum (Sec. XI) by first enumerating all Bravais lat-
tices (geometries) LA (Sec. VI), determining prime orbits
over each, computing the weight of each (Sec. X), and
then (Sec. XI) adding together the contributions of peri-
odic states for each. The potentials may be bounded (ϕ4

theory) or unbounded (ϕ3 theory), or the system may
be energy conserving or dissipative, as long as the set of
its periodic states Φc is bounded in system’s state space
Eq. (7). To get a feel for how all this works, we illustrate
the theory by applying it to four lattice field theories that
we now introduce.

A field theory is defined either by its action, for exam-
ple a lattice sum over the Lagrangian density for a dis-
cretized scalar d-dimensional Euclidean ϕk theory,48–54

S[Φ] =
∑
z

{
1

2

d∑
µ=1

(∂µϕ)
2
z + V (ϕz)

}
, (47)

with a local potential V (ϕ) the same for every lattice
site z, or, if lacking a variational formulation, by The
Law F [Φ]z = 0.

The Law Eq. (40) now takes form of a second-order
difference equations

−□ϕz + V ′(ϕz) = 0 . (48)

In lattice field theory ‘locality’ means that a field at
site z interacts only with its neighbors. To keep the ex-
position as simple as possible, we treat here the spatial
and temporal directions on equal footing, with the graph
Laplace operator55–58

□ϕz =

||z′−z||=1∑
z′

(ϕz′ − ϕz) for all z, z′ ∈ Zd (49)

comparing the field on lattice site z to its 2d nearest
neighbors. For example, the two-dimensional square lat-
tice Laplace operator is given by

□ = r1 + r2 − 4 11 + r−1
2 + r−1

1 , (50)

where r1, r2 shift operators (see Eq. (76) for a group-
theoretical perspective)

(r1)nt,n′t′ = δn+1,n′ δtt′ , (r2)nt,n′t′ = δnn′ δt+1,t′ (51)

translate a field configuration Φ,

(r1ϕ)nt = ϕn+1,t , (r2ϕ)nt = ϕn,t+1 ,

by one lattice spacing Eq. (15) in the spatial, temporal
direction, respectively.

Here, and in papers I and III1,2 we investigate spa-
tiotemporally chaotic lattice field theories using as il-
lustrative examples the d-dimensional hypercubic lat-
tice Eq. (6) discretized Klein-Gordon free-field theory,

spatiotemporal cat, spatiotemporal ϕ3 theory, and spa-
tiotemporal ϕ4 theory, defined respectively by The Law
Eq. (40)

−□ϕz + µ2ϕz = 0 , ϕz ∈ R , (52)

−□ϕz + µ2ϕz −mz = 0 , ϕz ∈ [0, 1) (53)

−□ϕz + µ2 (1/4− ϕ2
z) = 0 , (54)

−□ϕz + µ2(ϕz − ϕ3
z) = 0 . (55)

For free-field theory the sole parameter µ2 is known as
the Klein-Gordon (or Yukawa) mass. The anti-integrable
form42–44 of the spatiotemporal ϕ3 Eq. (54) and spa-
tiotemporal ϕ4 Eq. (55), and a rescaling away of other
‘coupling’ parameters, is explained in the companion pa-
per III.2

Spatiotemporal cat Eq. (53) we derive next, as it will
be used throughout the paper to illustrate our field-
theoretic formulation of spatiotemporal chaos. The spa-
tiotemporal cat is arguably the simplest example of a
chaotic (or ‘turbulent’) deterministic field theory for
which the local degrees of freedom are hyperbolic (anti-
harmonic, ‘inverted pendula’) rather than oscillatory
(‘harmonic oscillators’). For its history, see Appendix A.

A. Spatiotemporal cat

While a free-field theory teaches us much about how
a field theory works, it is not an example of a chaotic
field theory: The Law Eq. (52) is linear, with a single
deterministic solution, the steady state ϕz = 0. For that
reason one goes to a ‘compact boson’ (or ‘compact scalar’,
see, for example Refs. 59 and 60) formulation Eq. (53),
and compactifies the lattice site field values to a circle,(

−□+ µ2
)
ϕz = mz , z ∈ Zd , ϕz ∈ [0, 1) . (56)

with the circle ϕz (mod 1) condition enforced by inte-
gers mz, called ‘winding numbers’,61 or, as they shep-
herd stray points back into the state space unit hyper-
cube, ‘stabilising impulses’.62 As this is a piecewise linear
equation, for a primitive cell A we can write it in a finite
matrix form,

F [ΦM] = JAΦM −M = 0 , ΦM ∈ [0, 1)NA , (57)

where JA = −□ + µ2 11 is the orbit Jacobian matrix
Eq. (44) with primitive cell A periodic boundary con-
ditions (see Eq. (102), for example).
We refer to the one-dimensional temporal lattice,

three-term recurrence case of this equation

−ϕt+1 + s ϕt − ϕt−1 = mt , t ∈ Z , ϕt ∈ [0, 1) , (58)

with the ‘stretching parameter’ s Eq. (66) related to the
Klein-Gordon mass by µ2 = s− 2, as ‘temporal cat’, and
to The Law Eq. (56) in higher spatiotemporal dimensions
as the ‘spatiotemporal cat’. As explained in the compan-
ion paper I,1 temporal cat is the Lagrangian form of the
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classical Thom-Anosov-Arnol’d-Sinai ‘cat map’.63–65 In
two spacetime dimensions, The Law Eq. (56) is a five-
term recurrence relation

−ϕj,t+1 − ϕj,t−1 + 2s ϕjt − ϕj+1,t − ϕj−1,t = mjt , (59)

with µ2 = 2(s−2), where, in the matrix format Eq. (57),
the orbit Jacobian operator can be expressed in terms of
shift operators Eq. (50),

J = −r1 − r2 + 2s 11− r−1
2 − r−1

1 . (60)

We study the one-dimensional temporal cat Eq. (58)
in some depth in companion paper I.1 In this paper we
focus on the d = 2 spatiotemporal cat Eq. (59), with
computational details relegated to Appendix C.

V. SPATIOTEMPORAL STABILITY OF A PERIODIC
STATE

For field theories Eq. (48) considered here, the orbit
Jacobian operators Eq. (44) are of form

Jzz′ = −□zz′ + V ′′(ϕz) δzz′ , (61)

with the free field Eq. (52) and spatiotemporal cat
Eq. (53), ϕ3 Eq. (54), ϕ4 Eq. (55) orbit Jacobian op-
erators

Jzz′ = −□zz′ + µ2δzz′ , (62)

Jzz′ = −□zz′ − 2µ2ϕz δzz′ , (63)

Jzz′ = −□zz′ + µ2(1 − 3ϕ2
z) δzz′ . (64)

Sometimes it is convenient to lump the diagonal terms
of the discrete Laplace operator Eq. (50) together with
the site potential V ′′(ϕz). In that case, the orbit Jacobian
operator takes the 2d+ 1 banded form

J =
d∑

j=1

(−rj +D − r−1
j ) ,

Dzz′ = dzδzz′ , dz = V ′′(ϕz)/d+ 2 , (65)

where rj shift operators Eq. (51) translate the field con-
figuration by one lattice spacing in the jth hypercubic
lattice direction, and we refer to the diagonal entry dz as
the stretching factor at lattice site z. For the free field
and spatiotemporal cat Eq. (62), ϕ3 Eq. (63), ϕ4 Eq. (64)
theories the stretching factor dz is, respectively,

s = µ2/d+ 2 , (66)

dz = −2µ2ϕz/d+ 2 , (67)

dz = µ2(1 − 3ϕ2
z)/d+ 2 . (68)

What can we say about the spectra of orbit Jacobian
operators? In the anti-integrable limit42–44 the diagonal,
‘potential’ term in Eq. (61) dominates, and one treats
the off-diagonal Laplacian (‘kinetic energy’) terms as a
perturbation. For field theories Eq. (62)-Eq. (64) consid-
ered here, in the anti-integrable limit, in any spacetime

dimension, the eigenvalues of the orbit Jacobian operator
are proportional to the Klein-Gordon mass-squared,

Jzz′ → µ2cz δzz′ , µ2 large, (69)

where cz is a theory-dependent constant. For details of
ϕ3 and ϕ4 field theories, see the companion paper III.2

In what follows, it is crucial to distinguish the [NA×
NA] orbit Jacobian matrix, evaluated over a finite vol-
ume primitive cell A, from the orbit Jacobian operator
Eq. (65) that acts on the infinite Bravais lattice LA.

A. Primitive cell stability

The orbit Jacobian matrix Eq. (65) evaluated over a
finite volume primitive cell A is an [NA×NA] matrix, with
NA discrete eigenvalues.

As an example, consider a periodic state c over the
one-dimensional primitive cell of period n, Sec. I B. For a
periodic state Φc of periodicity A = n, the orbit Jacobian
matrix is

Jc =



d0 −1 0 · · · 0 −1
−1 d1 −1 · · · 0 0
0 −1 d2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · dn−2 −1
−1 0 0 · · · −1 dn−1

 , (70)

where the shift operators Eq. (14) in Eq. (65) are the
off-diagonals.

For the free field, the spatiotemporal cat Eq. (62), and
any steady state (constant) solution ϕz = ϕ of a nonlinear
field theory, this orbit Jacobian matrix is a tri-diagonal
Toeplitz matrix (constant along each diagonal) of circu-
lant form,

JA =



s −1 0 . . . 0 −1
−1 s −1 . . . 0 0
0 −1 s . . . 0 0
...

...
...

. . .
...

...
0 0 . . . . . . s −1
−1 0 . . . . . . −1 s

 . (71)

In what follows, we shall refer to this type of stability as
the steady state stability.

The orbit Jacobian Eq. (42) of a finite-dimensional or-
bit Jacobian matrix over a primitive cell A is given by
the product of its eigenvalues,

|DetJc| =
NA∏
j=1

|Λc,j | . (72)

Consider such determinant in the anti-integrable limit
Eq. (69). For steady states, all NA orbit Jacobian matrix
eigenvalues tend to Λc,j ≃ µ2, so

lnDetJc = Tr lnJc ≃ NAλ , λ = lnµ2 , (73)

https://youtube.com/embed/rTh_I0KOasY
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where λ is the stability exponent per unit-lattice-volume,
with the exact steady state expression given below in
Eq. (114).

This suggests that we assign to each periodic state c
its average stability exponent λc per unit-lattice-volume,

1

|DetJc|
= e−NAλc , λc =

1

NA

NA∑
j=1

ln |Λc,j | , (74)

where λc is the Birkhoff average Eq. (19) of the loga-
rithms of orbit Jacobian matrix’s eigenvalues. This is
a generalization of the temporal periodic orbit Floquet
(or ‘Lyapunov’) stability exponent per unit time to any
multi-periodic state, in any spatiotemporal dimension.
(Continued in Sec. XA.)

B. Bravais lattice stability

The linear orbit Jacobian operator acts on the infinite
Bravais lattice LA. For example, the orbit Jacobian oper-
ator a periodic state Φc over the one-dimensional Bravais
lattice of a period n,

Jc =



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . d0 −1 0 0 0 0
. . .

. . . −1 d1 −1 0 0 0
. . .

. . . 0 −1 d2 −1 0 0
. . .

...
...

...
. . .

. . .
. . .

...
...

. . . 0 0 0 −1 dn−2 −1
. . .

. . . 0 0 0 0 −1 dn−1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



, (75)

is an infinite matrix, with the diagonal block
d0d1 · · · dn−1 infinitely repeated along the diagonal.
Next, an elementary but essential observation. Con-

sider a period-3 field configuration Eq. (18) obtained by
a translation of another period-3 field configuration in
its orbit. Or a period-6 field configuration obtained by
a repeat of a period-3 field configuration. The orbit Ja-
cobian operator Eq. (75) for all these field configurations
is the same, of period 3. So, as announced in Eq. (2),
and elaborated in Sec. X, its spectrum is a property of
its orbit, irrespective of whether it is computed over a
prime periodic state primitive cell, or any lager primitive
cell tiled by repeats of a prime periodic state.

But what is the ‘orbit Jacobian’ of an ∞-dimensional
linear Bravais lattice operator? A textbook approach to
calculation of spectra of such linear operators (for exam-
ple, quantum-mechanical Hamiltonians) is to compute
them in a large primitive cell A, and then take the infi-
nite box limit. It is crucial to understand that we do not
do that here. Instead, as in solid state physics and quan-
tum field theory, our calculations are always carried out

over the infinite spatiotemporal Bravais lattice,18,66,67 or
continuous spacetime,20 where one has to make sense of
the orbit Jacobian27 as a functional determinant.28

As we show in Sec. X, for infinite lattices the appropri-
ate notion of stability is the stability exponent Eq. (74)
per unit-lattice-volume, averaged over the first Brillouin
zone, evaluated by means of the Floquet-Bloch theorem.

VI. BRAVAIS LATTICES

Periodic orbit theory of a time-evolving dynamical sys-
tem on a one-dimensional temporal lattice is organized
by grouping orbits of the same period together.1,3–5,12

For systems characterized by several translational sym-
metries, one has to take care of multiple periodicities, or,
in parlance of crystallography, organize the periodic or-
bit sums by corresponding Bravais lattices,18 introduced
here in Sec. IA.
The set of all transformations that overlay a lattice

over itself is called the space group G. For the square
lattice, the unit cell Eq. (5) tiles the hypercubic lattice
under action of translations rj Eq. (51) in d spatiotempo-
ral directions, called ‘shifts’ for infinite Bravais lattices,
‘rotations’ for finite periods primitive cells. They form
the abelian translation group

T = {rm1
1 rm2

2 · · · rmd

d |mj ∈ Z} . (76)

The cosets of a space group G by its translation sub-
group T form the group G/T , isomorphic to a point
group g. For example, the square lattice space group
G = T ⋊ D4 is the semi-direct product of translations
Eq. (76), and the point group g of right angle rotations,
time reversal, spatial reflection, and space-time inter-
changes. In addition, there might also be internal global
symmetries, such as the invariance of spatiotemporal cat
equations Eq. (53) under inversion of the field though the
center of the 0 ≤ ϕz < 1 unit interval:

ϕz → 1− ϕz for all z ∈ Zd . (77)

Already in the case of chaotic lattice field theory over
one-dimensional temporal integer lattice Z there is a suf-
ficient amount of group-theoretical detail to merit the
stand-alone companion paper I,1 which treats in detail
the time reversal invariance for G = D∞ dihedral space
group of translations and reflections. Here we focus
only on the two-dimensional square lattice translations
Eq. (76), as a full symmetry treatment would distract
the reader from the main trust of the paper, the con-
struction of the spatiotemporal zeta function (Sec. XI).

A. Bravais lattices of the square lattice

In crystallography there are 5 Bravais lattices over a
two-dimensional space. The square lattice Eq. (5) is one
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FIG. 3. (Color online) The intersections of the light grey lines
-lattice sites z ∈ Z2- form the integer square lattice Eq. (6).
(a) Translations of the primitive cell A = [3×2]1 spanned
by primitive vectors a1 = (3, 0) and a2 = (1, 2) define the
Bravais lattice LA. (b) The primitive vectors a1 = (2,−2)
and a2 = (−1, 4) form a primitive cell A′ equivalent to (a) by
a unimodular transformation. The intersections (red points)
of either set of dashed lines form the same Bravais lattice
LA = LA′ . The volume Eq. (11) of either primitive cell is
NL = 6, the number of integer lattice sites within the cell,
with the tips of primitive vectors and tiles’ outer boundaries
belonging to the neighboring tiles. Continued in Fig. 4.

of them. For brevity, whenever we refer here to a ‘Bra-
vais lattice’, we mean one of the infinity of ‘full rank
sublattices of the square lattice’68 that we now describe.
Consider a [2×2] integer basis matrix Eq. (10)

A = [a1,a2] =

[
a1,1 a2,1
a1,2 a2,2

]
, aj =

[
aj,1
aj,2

]
, (78)

formed from a pair of two-dimensional integer lattice
primitive vectors a1, a2. A two-dimensional Bravais lat-
tice, Fig. 3,

LA =
{
An |n ∈ Z2

}
(79)

generated by all discrete translations An is a sublattice
of the integer lattice Z2.
As in a discretized field theory the fields are defined

only on the hypercubic integer lattice, not on a contin-
uum, we define the primitive cell Eq. (12) as the set of lat-
tice sites within the parallelepiped Eq. (78) illustrated by
Fig. 3. The tips of primitive vectors and parallelepiped’s
outer boundaries belong, by translation, to the neighbor-
ing tiles; this yields the correct lattice volume Eq. (11),
the number of lattice sites NA within the primitive cell
A.

A primitive cell is not unique:69 the Bravais lattice
LA′ defined by basis A′ is the same as the Bravais lattice
LA defined by basis A = A′ U if the two are related by a
[2×2] unimodular, volume preserving matrix U ∈ SL(2,Z)
transformation,70–72 see Fig. 3 (b). This equivalence un-
derlies many of the properties of elliptic functions and
modular forms73 (see Eq. (81)). Constructing all Bra-
vais lattices, however, is straightforward, as each such
infinite family of equivalent primitive cells contains a
single, unique Hermite normal form primitive cell, with

upper-triangular basis74 primitive vectors a1 = (L, 0),
a2 = (S, T),

A =

[
L S
0 T

]
, NA = LT , (80)

where L, T are the spatial, temporal lattice periods, re-
spectively, and NA is the lattice volume Eq. (11). The
tilt75 0 ≤ S < L imposes ‘relative-periodic shift’ bound-
ary conditions.5 In the literature these are also referred
to as ‘helical’,76 ‘toroidal’,77 ‘screw’,67 S-corkscrew,34

‘twisted’78 or ‘twisting factor’76 boundary conditions.
In the theory of elliptic functions73 the primitive cell

is represented by a complex modular parameter τ , with
spatial period L taken as the lattice spacing constant
Eq. (6), primitive vectors a1 = (1, 0), a2 = (τ1, τ2), so
T → τ2 = T/L, S → τ1 = S/L, and

A =

[
1 τ1
0 τ2

]
, |DetA| = τ2 , (81)

‘Hermite normal form’ corresponds to the modular pa-
rameter τ values in the fundamental domain. If the cor-
responding torus is visualised as a glueing of a unit square
into a tube, τ2 parameterizes how the tube is stretched,
and τ1 parameterizes how it is twisted before its edges
are stitched together.
Here we refer to a particular Bravais lattice by its Her-

mite normal form Eq. (80), as

LA = [L×T]S , (82)

and to the set of lattice sites within the primitive parallel-
ogram A as its primitive cell. Notation [L×T]S refers to
primitive cell being a rectangle of spatial width L, tem-
poral height T, with the primitive cell above it shifted
by S, see for example the [3×2]1 primitive cell shown in
Fig. 4 (b). In terms of lattice site fields, a field configu-
ration ϕz1z2 Eq. (9), z1z2 ∈ Z2, satisfies the S-corkscrew
boundary condition34,

horizontally: ϕz1z2 = ϕz1+L,z2

vertically: ϕz1z2 = ϕz1+S,z2+T , (83)

see Fig. 4.

VII. ORBITS OVER TWO-DIMENSIONAL LATTICES

For field theories studied here (Sec. IV), the transla-
tion group T Eq. (76) is a symmetry, as their defining
equations Eq. (40) retain their form (are ‘equivariant’)
under lattice translations. For square lattice, these are
2-dimensional translations of form g = rm1

1 rm2
2 . (For sym-

metries other than translations, see remarks at the be-
ginning of Sec. VI.)
Typically a translation operation acting on periodic

state Φp generates an equivalent (up to lattice sites rela-
belling) but state-space distinct periodic state gΦp. The
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FIG. 4. Examples of [L×T]S field configurations Eq. (80)
or ‘bricks’, together with their spatiotemporal Bravais lattice
tilings, visualized as brick walls. (a) [2×1]1, primitive vectors
a1 = (2, 0), a2 = (1, 1); (b) [3×2]1 of Fig. 3 (a), primitive vec-
tors a1 = (3, 0), a2 = (1, 2). Rectangles enclose the primitive
cell and its Bravais lattice translations. Continued in Fig. 6.

totality of all actions of the translation group on peri-
odic states foliates the state space into a union Eq. (16)
of translational orbits

Mp = {gΦp | g ∈ T} . (84)

Bravais lattices LA (Sec. I B) are infinite, and their trans-
lational symmetries Eq. (76) are infinite groups, but the
orbit of a Bravais periodic state is finite, generated by
the translations of the infinite lattice curled up into a
NA-sites periodic primitive cell A.

A. Prime orbits over two-dimensional primitive cells

A solution Φp (what we refer to here as a ‘periodic
state’, see Sec. III C) may have all of system’s symme-
tries, a subgroup of them, or have no symmetry at all.
If Φp has no symmetry, its Lp horizontal translations, Tp

vertical translations are all distinct periodic states, so its
orbit consists of NA = LpTp periodic states.
It is easy to check whether a one-dimensional periodic

state Φp over a primitive cell A is prime, by comparing it
to its translations, as in the period-6 example of Sec. I C.
We use this test as an operational definition of a prime
periodic state over a primitive cell A for a hypercubic
lattice in two (or any) dimensions.

Definition: Prime orbit.

A periodic state Φp over primitive cell A is
prime if the number of distinct periodic states
in its orbit equals NA, the number of lattice
sites within its primitive cell A Eq. (11).

This notion of a ‘prime’ suffices to formulate our main
result, the spatiotemporal zeta function (Sec. XID) for
field theories in two spacetime dimensions. However, we
have to emphasize the implementing this for a given the-
ory requires determination of all of its prime orbits, and
that is hard problem, in a sense all of ‘chaos theory’. Here
we use spatiotemporal cat to test the theory, but relegate
details to Appendix C, and in the companion paper III2

we apply the theory to several nonlinear field theories.

(a)

a1

a2

(b)

FIG. 5. (Color online) (a) Bravais lattice A = [6×4]2, blue
dots, is a sublattice of Bravais lattice Ap = [3×2]1, blue and
red dots. Its primitive cell A (green parallelogram spanned
by primitive vectors (6,0) and (2,4)) is tiled by repeats of the
primitive cell Ap (gray parallelogram spanned by primitive
vectors (3,0) and (1,2)). The primitive vectors of the 2 Bra-
vais lattices are related by A = ApR where R = [2×2]0. (b)
Transform the primitive cell Ap to the unit square of a new
square lattice, where each unit square supports a multiplet of
6 fields belonging to a prime LAp -periodic state. In this new
square lattice, the prime periodic state is a steady state whose
primitive cell is a [1×1]0 unit square (gray square), while the
repeat of the prime is a LR-periodic state, whose primitive
cell is R = [2×2]0 (green square).

B. Repeats of a prime orbit over two-dimensional
primitive cells

The simplest example of a prime periodic state is a
steady state ϕz = ϕ, invariant under all of system’s sym-
metries. Its primitive cell [1×1]0 is the unit hypercube
Eq. (5) of period-1 along every hypercube direction.

A periodic state obtained by tiling any larger primitive
cell by repeats of steady state ϕ is not a prime periodic
state. There is one such for each Bravais sublattice con-
structed in Sec. VIA, with r1 copies of lattice site field
ϕ horizontally, r2 copies vertically, and tilt 0 ≤ s < r1
Eq. (80),

R =

[
r1 s
0 r2

]
. (85)

Next, note that every orbit is ‘steady’ in the sense that
each orbit Eq. (84) is a fixed point of T , as any transla-
tion gMp = Mp only permutes the set of periodic states
within the orbit, but leaves the set invariant. In particu-
lar (see Sec. VB), the stability of an orbit is its intrinsic,
translation invariant ‘steady’ property.

A way to visualize this is by multiplying the Bravais
lattice LAp

by A−1
p , sending it into the unit integer lattice,

as in Fig. 5 (b): in other words, every Bravais lattice
is a hypercubic lattice, under an appropriate change of
coordinates. In this new integer lattice, the primitive
cell Ap is the unit square that supports a multiplet of
NA periodic states belonging to the LAp

orbit. Under
lattice translations, this multiplet is an NA-dimensional
steady state.

To find all repeats of a given prime periodic state, one
only needs to find all Bravais lattices LR, which can again
be accomplished using the Hermite normal form repeat
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(a) (b)

FIG. 6. (Color online) (a) Bravais lattice A = [3×2]1 of
Fig. 3, red dots, is a sublattice of Bravais lattice A′ = [3×1]2,
blue and red dots, even though the primitive cell A (green
parallelogram spanned by primitive vectors (3,0) and (1,2))
does not appear to be tiled by a repeat of the primitive cell
A′ (blue parallelogram spanned by primitive vectors (3,0) and
(2,1)). (b) If we shift the top edge of primitive cell A by 3 lat-
tice units, to [3×2]4 = [3×2]1 (green parallelogram spanned
by primitive vectors (3,0) and (4,2)), the tiling is clear.

matrix R Eq. (85). Each R gives a non-prime periodic
state over a larger-periodicity Bravais sublattice LApR.

Example: A repeat of [3× 2]1 prime periodic state.
Tiling of a LA = [6×4]2 periodic state by a repeat of the
LAp = [3×2]1 prime periodic state is shown in Fig. 5 (a).
In Fig. 5 (b) the primitive cell of the prime LAp -periodic
state is transformed into the unit square of the new inte-
ger lattice, where each unit square supports a multiplet
of 6 fields. In this new integer lattice, the primitive cell
of the repeat LA-periodic state is given by LR = [2×2]0,
where A = ApR.
Example: A repeat of [3×1]2 prime periodic state. A

priori is not obvious that [3×1]2 primitive cell tiles the
[3×2]1 primitive cell, Fig. 6 (a). But if you stack [3×1]2
primitive cell in the shifted temporal direction by 2 then
the left edge of the tile is shifted by 4 in the spatial
direction. With the spatial period being 3, shift by 4
in the spatial direction is same as shift by 1. So the
boundary conditions of [3×2]1 primitive cell are satisfied
by the repeat of the [3×1]2 primitive cell.

For further examples of prime orbits, see Appendix B.

In summary: to determine all periodic states, it suf-
fices to enumerate all Bravais lattices, then compute their
prime orbits on their finite-dimensional primitive cells.
Their stabilities, however, will have to be evaluated on
the infinite Bravais lattices, as we shall show in Sec. X.

VIII. RECIPROCAL LATTICE

If an operator, in case at hand the orbit Jacobian oper-
ator Eq. (61), is invariant under spacetime translations,
its eigenvalue spectrum and orbit Jacobian can be effi-
ciently computed using tools of crystallography, by going
to the reciprocal lattice.

For a d-dimensional LA-periodic Bravais lattice, dis-
crete wave vectors k form a reciprocal lattice spanned by

(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) Examples of spatiotemporal mosaic
tilings Eq. (46) of [6×6]0 primitive cell by repeats of smaller
prime periodic states. (a) [3×1]0 temporally steady state.
(b) [1×3]0 spatially steady state. (c) [2×1]1 relative-periodic
prime orbit, spatial period-2, temporal period-2; compare
with Fig. 4 (a). (d) [3×1]1 relative-periodic prime orbit, spa-
tial period-3, temporal period-3. (e) [3×2]0 spatial period-3,
temporal period-2. (f) [3×2]1 of figures 4 (b) and 6. It is
a relative-periodic prime orbit, of spatial period-3, temporal
period-6. See also Fig. 13 and Appendix B.

d reciprocal primitive vectors which satisfy

LÃ =
{
k =

d∑
j=1

mj ãj | mj ∈ Z
}
, ãi · aj = 2πδij . (86)

Assembling the reciprocal primitive vectors {ãj} into
columns of the [d× d] reciprocal primitive cell matrix

Ã = [ã1, ã2, · · · , ãd] , the reciprocity condition Eq. (86)
takes form

Ã⊤A = 2π 11 . (87)

A. Reciprocal primitive cell in one and two dimensions

Translation invariance of a theory suggests its reformu-
lation in a discrete Fourier basis, an approach that goes
all the way back to Hill’s 1886 paper.27 The n consecutive
shifts Eq. (15) return a period-n field configuration to it-
self, so acting on a one-dimensional periodic primitive
cell, shift operator satisfies the characteristic equation

rn − 11 =

n−1∏
m=0

(r − eik 11) = 0 , (88)

with eigenvalues {eik} the n-th roots of unity, indexed
by integers m,

k = ∆km , ∆k =
2π

n
, m = 0, 1, · · · , n−1 , (89)
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FIG. 8. (Color online) (a) The intersection points z of the
light grey lines form the integer square lattice Eq. (6). The
primitive vectors a1 = (3, 0) and a2 = (1, 2) form the prim-
itive cell A = [3×2]1 (see Eq. (82) and Fig. 3 (a)), whose
translations tile the Bravais lattice LA (red points). (b) The
intersection points k of the light grey lines form the reciprocal
square lattice. Translations of reciprocal primitive vectors ã1

and ã2 (see Eq. (86), Eq. (95)) generate the reciprocal lattice

LÃ (red points). (Shaded) The reciprocal primitive cell Ã. A
wave vector outside this region is equivalent to a wave vector
within it by a reciprocal lattice translation. Note that the
number of lattice sites within the reciprocal primitive cell Ã
equals the number of sites within the spatiotemporal primi-
tive cell A.

and n eigenvectors [φ(k)]z = ei kz ,

[rφ(k)]z = [φ(k)]z+1 = ei k(z+1) = eik[φ(k)]z . (90)

Wave numbers k form a one-dimensional reciprocal lat-
tice Eq. (86),

LÃ =
{
k = m ã1 | m ∈ Z

}
, ã1 · a1 = 2π ,

with the reciprocal lattice primitive vector ã1 = 2π/n,
and the reciprocal primitive cell –the interval [0, 2π)–
that contains n discrete wave numbers Eq. (89).

In two spatiotemporal dimensions, the reciprocal lat-
tice Eq. (86) of the Bravais lattice Eq. (80) is given by

LÃ = {k = m1ã1 +m2ã2 | mi ∈ Z} , (91)

where the reciprocal lattice primitive vectors ã1 =
2π
NA

(T,−S) and ã2 = 2π
NA

(0, L) (see Fig. 8 (b)) satisfy

the reciprocity condition Eq. (87). The reciprocal prim-
itive cell matrix is also of Hermite normal (but lower-
triangular) form,

Ã =
2π

NA

[
T 0
−S L

]
, (92)

with the reciprocal basis condition Eq. (87) satisfied.
The components of a reciprocal lattice wave vector k in
Eq. (91) are

k =

[
k1
k2

]
=

2π

LT

[
m1T

−m1S +m2L

]
. (93)

As in the one-dimensional case Eq. (89), the wave num-
bers along each direction of a two-dimensional square
lattice can be restricted to kj ∈ [0, 2π) with m1 =
0, 1, · · · , L − 1, m2 = 0, 1, · · · , T − 1, NA = LT distinct
wave vectors. This set of reciprocal lattice sites, indexed
by integer pairs m = m1m2, forms the reciprocal prim-
itive cell Ã, which contains the same number of lattice
sites k ∈ Ã as the spatiotemporal Bravais lattice primi-
tive cell A (see Fig. 8 (b)).

Example: A spatiotemporal primitive cell, reciprocal
primitive cell. Primitive vectors a1 = (3, 0) and a2 =
(1, 2) define the primitive cell [3×2]1 drawn in Fig. 8 (a),

A =

[
3 1
0 2

]
, NA = 6 . (94)

The corresponding reciprocal primitive cell vectors
(shaded region in Fig. 8 (b)),

Ã =
2π

6

[
2 0
−1 3

]
, (95)

satisfy the reciprocal bases condition Eq. (87), and con-

tain the same number of reciprocal lattice sites k ∈ Ã as
the Bravais lattice primitive cell A of Fig. 8 (a).

The next two sections are the conceptual core of the pa-
per:
Sec. IX Primitive cell stability. As noted in the in-

troduction, the textbook Gutzwiller-Ruelle periodic or-
bit theory3–5 is hampered by a simple fact: its periodic
orbit weight Eq. (1) is not multiplicative for orbit re-
peats. This section recapitulates the conventional the-
ory, in which all periodic orbit calculations are done
in finite time ‘cells’, as in Fig. 9 (b), with the key
non-multiplicativity fact illustrated by computation of
Eq. (109). Our spatiotemporal theory illuminates the
origin of this fact in several easy to grasp ways.
Sec. X Bravais lattice stability. A crystallographer or

a field theorist starts –ab initio– with an infinite lattice or
continuous spacetime, as in Fig. 9 (c). This, we claim in
the introduction, Eq. (2), is the correct approach which
–as we show here, Eq. (117)– yields (multi)periodic state
weights that are multiplicative for repeats of spatiotem-
porally periodic solutions. The stability exponent per
unit spacetime volume is the spacetime generalization
of the temporal periodic orbit Lyapunov exponent, the
mean instability per unit time. No matter what repeat of
a prime periodic state one starts with, its stability expo-
nent is always given by the same integral over the prime
orbit Brillouin zone. From this follows the main result of
our paper, the spatiotemporal zeta function of Sec. XI.

IX. PRIMITIVE CELL STABILITY

As we now explain, it is crucial that we distinguish the
finite primitive cell orbit Jacobian matrix (finite volume
primitive cell stability, discussed in this section) from the
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(a)
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(c)

FIG. 9. (Color online) A one-dimensional temporal lat-
tice period-5 periodic state Φc = [ϕ0 ϕ1 ϕ2 ϕ3 ϕ4] illustrated
by (a) five repeats of the primitive cell periodic state. (b)
An internal perturbation hz has the same periodicity as the
periodic state. Its spectrum, evaluated in Sec. IX, is discrete.
(c) A transverse perturbation hz is an arbitrary, aperiodic
function over the infinite lattice. Its spectrum, evaluated by
the Floquet-Bloch theorem in Sec. X, is a continuous function
of wave number k. Horizontal: lattice sites labelled by z ∈ Z.
Vertical: (a) value of field ϕz, (b-c) perturbation hz, plotted
as a bar centred at lattice site z. Values of the field and per-
turbation are shown in blue within the primitive cell, and in
orange outside the primitive cell.

infinite orbit Jacobian operator (infinite Bravais lattice
stability, discussed in Sec. X) in stability calculations.

To the best of our knowledge, in all current implemen-
tations of the periodic orbit theory,3–5,12,79 the calcula-
tions are always carried out on finite primitive cells, so
a ‘chaos’ expert is free to skim over this section - it is
a recapitulation of Hénon, Lorentz, etc., calculations in
the spatiotemporal, field theoretic language. The radical
departure takes place in Sec. X.

We start by considering the steady state orbit Jaco-
bian matrices, such as Eq. (71), with no lattice site de-
pendence, dz = s, which are fully diagonalized by going
to the reciprocal lattice.

A. Primitive cell steady state stability in one dimension

For a one-dimensional primitive cell A of period n, the
discrete Fourier transform Eq. (90) of Laplacian Eq. (49),

JAφk = (−□+ µ2 11)φk = (p2 + µ2)φk (96)

p = 2 sin
k

2
, k =

2π

n
m , m = 0, 1, · · · , n − 1 ,

(a) -π 0 π-π /2 π /2-2π /3 2π /3
k
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μ2+2

μ2+4

Λ(k)

(b)

-π /2 π /2-π /3 π /3-π /4 π /4
k

-2- μ4 - 12

-2

-2+ μ4 - 12

Λ(k)

FIG. 10. (Color online) One-dimensional lattice orbit
Jacobian operator spectra, as functions of the reciprocal lat-
tice wave number k. For time-reversal invariant systems the
spectra are k → −k symmetric. (a) The steady state Λ(k)
spectrum Eq. (97), as a function of the first Brillouin zone
wave number k ∈ (−π, π], plotted for µ2 = 1 value. Any
period-n primitive cell Eq. (70) orbit Jacobian matrix spec-
trum consists of n discrete points embedded into Λ(k), for
example period-3 (red triangles) and period-4 (magenta dia-
monds) eigenvalues. (b) The nonlinear ϕ3 theory ΛLR,±(k)
spectrum Eq. (121) of the Bravais lattice LLR tiled by the
period-2 periodic state ΦLR = {ϕL, ϕR}, together with the
eigenvalues of 3rd repeat (red triangles) and 4th repeat (ma-
genta diamonds) primitive cells. Plotted for µ2 = 5 value.
See Appendix D1. From companion paper I.1

expresses the Fourier-diagonalized lattice Laplacian as
the square of pm, the ‘lattice momentum’, or the ‘mo-
mentum measured in lattice units’,

(J̃A)mm′ = (p2m + µ2) δmm′ (97)

pm = 2 sin(πm/n) ,

with n eigenvalues Λm = p2m + µ2 indexed by integer
m. The cord function crd(θ) = 2 sin(θ/2) was used al-
ready by Hipparchus cc. 130 BC in the same context, as
a discretization of a circle by approximating n arcs by n
cords.80,81

Example: The spectrum of orbit Jacobian matrix for
a steady state of period-3. The wave numbers Eq. (96)
take values k = 0, 2π/3, 4π/3, with lattice momentum

values p(0) = 0 , p(2π/3) = p(4π/3) =
√
3 . The lattice
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momentum square p2m in Eq. (97) is a discrete field over
the NA = 3 lattice sites of the reciprocal primitive cell
Ã, indexed by integer reciprocal lattice-site labels m =
0, 1, 2,

p2m = p20 p21 p22 = 0 3 3 , (98)

The orbit Jacobian matrix JA eigenvalues are Λm = p2m+
µ2, and the corresponding orbit Jacobian is the product
of the three JA eigenvalues. See Tables I and II for lists
of such computations.

Why are eigenvalues in Eq. (98) placed in a box? That
will be made clearer by example Eq. (103), when we com-
pute p2Ã for a two-dimensional lattice.

B. Primitive cell steady state stability in two dimensions

Discrete Fourier transforms diagonalize the hypercubic
lattice steady state orbit Jacobian matrix over a periodic,
‘rectangular’ primitive cell A in any spatiotemporal di-
mension d,

(J̃A)mm′ = (p2m + µ2) δmm′ (99)

p2m =
d∑

j=1

p2j , pj = 2 sin
kj
2

, kj =
2π

Lj
mj ,

pj is the lattice momentum in jth direction, and Lj is the
period of the primitive cell A in jth direction, with NA
orbit Jacobian matrix eigenvalues Λm = p2m + µ2 taking
values on the reciprocal lattice sites k, indexed by integer
multiplets m = m1m2 · · ·md. The inverse 1/(p2 + µ2) is
known as the free-field propagator.

This is almost everything there is to a primitive cell
stability, except that the ‘rectangle’ periodic boundary
conditions Eq. (99) are only a special case of space-
time periodicity. Consider a steady state orbit Jaco-
bian matrix over a two-dimensional integer lattice. For
the general Eq. (80) case, as illustrated by Fig. 8 (b),
the reciprocal primitive vector ã1 = 2π

L (1,−S/T) has

a 0 ≤ S < L tilt. Substituting wave vector Eq. (93)
into the two-dimensional plane wave (as we did for the
one-dimensional case, see Eq. (90)), we find that the kth
eigenstate phase evaluated on the lattice site z is

[φ(k)]z = ei(k1z1+k2z2) (100)

where

z = z1z2 ∈ Z2 , k = k1k2 ∈ LÃ , m = m1m2

m1 = 0, 1, · · · , L − 1 , m2 = 0, 1, · · · , T − 1

k1 =
2π

L
m1 , k2 =

2π

T
(−S

L
m1 +m2) . (101)

As illustrated by Fig. 8 (b), there are NA = LT wave

vectors in the reciprocal primitive cell Ã. The spatiotem-
poral orbit Jacobian matrix Eq. (99) is diagonal on the
reciprocal lattice, with eigenvalues

Λm1m2
= p2m1m2

+ µ2 . (102)

a1

a2

(a)

a1

a2

(b)

FIG. 11. (Color online) (a) As in Fig. 8 (b): Translations of
reciprocal primitive vectors ã1 and ã2 (see Eq. (86), Eq. (95))
generate the reciprocal lattice LÃ (red points), with (shaded)

the reciprocal primitive cell Ã. (b) By convention, one re-
stricts the range of wave numbers to (shaded) the first Bril-
louin zone B, with k1, k2 ∈ (−π, π].

It is helpful to work out an example to illustrate how
Eq. (102) gives us the orbit Jacobian matrix eigenvalues.
Example: The spectrum of steady state orbit Jacobian

matrix, [3× 2]1 primitive cell. Consider primitive cell
[3×2]1 of example Eq. (94), drawn in Fig. 8 (a). The
screw boundary condition yields S/T = 1/2. The wave
numbers k in Eq. (100) are indexed by integer pairs m1 =
0, 1, 2 and m2 = 0, 1. The p2m1m2

in the reciprocal lattice
orbit Jacobian matrix Eq. (102) is

p2m1m2
= p(k1)

2 + p(k2)
2 ,

where lattice momenta p(k) = 2 sin(k/2) take values

p(0) = 0 , p(π/3) = 1 , p(2π/3) =
√
3 , p(π) = 2 .

A typical reciprocal lattice site m1m2 evaluation: take
m1 = 1, m2 = 1 in Eq. (101),

p211 = p
(2π

3

)2
+ p
(
π − 2π

3

1

2

)2
= 3 + 3 .

The values of p2, indexed by integer pairs m1m2, fill out
the reciprocal lattice unit cell,

p2m1m2
=

p201 p211 p221

p200 p210 p220

=
4 6 4

0 4 6

, (103)

with, for example, the (J̃A)21 eigenvalue Λ21 = 4 + µ2,
and so on. Figure 12 (a) offers a perspective visualiza-
tion of stability eigenvalues over such reciprocal cell, in
that case L[8×8]0 periodic state. The corresponding or-
bit Jacobians are products of the JA eigenvalues, some
of which are tabulated in Tables I and II.
Note that all spatiotemporal cat orbit Jacobians have a

µ2 prefactor. This is due to the fact that for µ2 = 0 one is
looking at a Laplacian, and Laplacian operator Eq. (49),
which compares a site field to its neighbors, always has
a zero mode for the constant eigenvector φ00.
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The values of the lattice momentum square happen to
be integers only for the few smallest primitive cells: in
general their values are expressed in terms of Hipparchus
cord functions crd(2πmj/Lj), or what we here call ‘lat-
tice momenta’ Eq. (97). However, for integer values of
spatiotemporal cat Klein-Gordon mass-square µ2, the or-
bit Jacobians take integer values, so if we are not inter-
ested in details of the spectrum, their direct evaluation
might be preferable. That we do in Appendix C 3.

The orbit Jacobian of any steady state ϕz = ϕ of
any field theory can be evaluated analytically by discrete
Fourier diagonalization. Its orbit Jacobian matrix is con-
stant along the diagonal, with eigenvalues evaluated in
the same way as for the free-field theory and spatiotem-
poral cat Eqs. (100–102),

(J̃A)m1m2
= p2m1m2

+ µ̃2 , (104)

where the steady state Klein-Gordon mass is, as ex-
plained in the companion paper III Ref. 2, µ̃2 = −2µ2ϕ
for the spatiotemporal ϕ3 Eq. (63), and µ̃2 = µ2(1− 3ϕ2)
for the spatiotemporal ϕ4 Eq. (64).

C. Primitive cell periodic state stability

Except for the steady state solutions discussed so far,
the orbit Jacobian operators of field theories such as the
ϕ3 Eq. (63) and ϕ4 Eq. (64) depend on the corresponding
periodic states. The orbit Jacobian matrices evaluated
over the primitive cells, such as Eq. (70), are generally not
invariant under the spacetime unit-lattice spacing shift
operator Eq. (51) translations, so they are only block-
diagonalized by Fourier transforms.

In general, periodic state’s orbit Jacobians are com-
puted numerically, but -and that is basically the only
exception- some period-2 periodic states can be worked
out analytically.

Example: One-dimensional ϕ3 field theory period-2 pe-
riodic state. The one spatiotemporal dimension ϕ3

theory Eq. (54) has one period-2 prime orbit LR =
{ΦLR,ΦRL} (for details, see Appendix D1) with 2 or-
bit Jacobian matrix Eq. (63) eigenvalues

ΛLR,± = −2±
√
µ4 − 12 , (105)

and orbit Jacobian

DetJLR = 16− µ4 . (106)

Consider next a period-6 periodic state over a prim-
itive cell 3A obtained by three repeats of the period-2
LR prime periodic state (see Eq. (18) for another such
example). The orbit Jacobian matrix Eq. (70) is a [6×6]
matrix, with 6 eigenvalues

Λ−1,± = −2±
√

µ4 − 15

Λ0,± = −2±
√
µ4 − 12

Λ1,± = −2±
√
µ4 − 15 , (107)

and orbit Jacobian

DetJ3LR = (16− µ4)(19− µ4)2 . (108)

The eigenvalues of orbit Jacobian matrices for the
prime periodic state ΦLR and its repetitions are plotted
in Fig. 10 (b). The bands, denoted by k in Fig. 10 (b),
and the subscript of the eigenvalues Eq. (107) will be ex-
plained in Sec. XB. Two of the eigenvalues correspond
to ‘internal’ eigenstates (of the same periodicity as the
prime periodic state), so they coincide with the prime
orbit LR eigenvalues Eq. (105), while the remaining four
correspond to ‘transverse’ eigenstates,82,83 of periodicity
of the repeat primitive cell 3A. As a result, the orbit
Jacobian of the third repeat is not the third power of the
prime orbit orbit Jacobian,

DetJ3LR ̸= (DetJLR)
3
. (109)

This confirms the assertion we had made in the introduc-
tion, Eq. (1): orbit Jacobians of primitive cell periodic
states are not multiplicative for their repeats. (Continued
in Sec. XB.)
Example: Two-dimensional ϕ4 field theory [2×1]0 pe-

riodic state. In Appendix D2 we work out as a further
example the primitive cell stability of two-dimensional ϕ4

theory Eq. (55) [2×1]0 periodic state. The eigenvalues of
the primitive cell prime periodic state and its repetition
are plotted in Fig. 12 (b). Next, note that the primitive
cell of Bravais lattice [6×4]0 can be tiled by twelve re-
peats of a prime [2×1]0 periodic state. The eigenvalues
of its orbit Jacobian matrix, plotted in Fig. 12 (b), lie on
the two orbit Jacobian operator Bloch bands, located at
twelve wave vectors in the first Brillouin zone of [6×4]0:
k1 = −π/3, 0, π/3 and k2 = −π/2, 0, π/2, π. (Continued
in Sec. XB.)
Reciprocal lattice computations of orbit Jacobian ma-

trix spectra can be automated, and we have carried them
out for thousands of Bravais lattices. Further explicit,
but not particularly illuminating spatiotemporal cat cal-
culations are relegated to Appendix C.

X. BRAVAIS LATTICE STABILITY

In Sec. VA we have defined the stability exponent of a
periodic state over a finite volume primitive cell, and in
Sec. IX we have explained how to compute them, setting
the stage for the main result of section, the reciprocal
lattice evaluation of the stability exponent for the orbit
Jacobian operator.
An orbit Jacobian operator Eq. (75) acts on an in-

finite Bravais lattice periodic state ΦA Eq. (7), so it
has infinitely many eigenvalues. What that means in
context of dynamical systems theory was first explained
by Pikovsky:82 while a given periodic state ΦA is LA-
periodic on its infinite Bravais lattice, its perturbations
can have periodicity of the periodic state, periodicity of
any Bravais sublattice LAR, or no periodicity at all, as in
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Fig. 9 (c). By the Floquet-Bloch theorem Eq. (116), the
stability exponent λp then depends on continuum wave
numbers k ∈ B within the 1st Brillouin zone,

kj ∈ (−π/Lj , π/Lj ] , j = 1, 2, · · · , d . (110)

Continuing on the discussion of Sec. IXC: kj = 0 eigen-
values correspond to ‘internal’ eigenstates, states of the
same periodicity as the periodic state ΦA, evaluated here
in Sec. IX for the primitive cell A. The kj ̸= 0 contin-
uum corresponds to ‘transverse’ eigenstates, perturba-
tions that exit the A-symmetric subspace, as in primitive
cell example Eq. (108).

In textbook arguments leading to the Bloch theorem,
one notes that larger and larger spatiotemporal primitive
cells correspond to denser and denser reciprocal primitive
cells (see, for example, Fig. 12 (b), and the arguments of
the next section), leading in the infinite primitive cell
limit to a parametrization by continuum values of wave
vectors. Here we always evaluate stability exponents on
infinite Bravais lattices, as integrals over the 1st Brillouin
zone.

A. Steady state stability

Consider the stability exponent Eq. (74) of a steady
state Φp, all lattice site fields equal, ϕz = ϕ, averaged
over a primitive cell A:

λA =
1

NA
lnDetJA =

1

NA
Tr A ln(p2 + µ2) .

The steady state orbit Jacobian matrix Eq. (71) is trans-
lation invariant along each lattice direction, and thus di-
agonalized by discrete Fourier transform Eq. (90).

For one-dimensional case Eq. (97)

λA =
1

n

n−1∑
m=0

ln(p2m + µ2) =
1

2π

∑
km

∆k ln(p2m + µ2) ,

where

pm = 2 sin
km
2

, km = ∆km , ∆k =
2π

n
.

With the period n of the primitive cell A taken to infinity,
the stability exponent is given by the integral over the 1st
Brillouin zone,

λ =
1

2π

∫ π

−π

dk ln(p2 + µ2) , p = 2 sin
k

2
. (111)

By same reasoning, for a d-dimensional hypercubic lat-
tice, the steady state stability exponent is given by a
d-dimensional integral over the 1st Brillouin zone B,

λ =
1

(2π)d

∫
B
dkd ln(p2 + µ2) ,

p2 =
d∑

j=1

p2j , pj = 2 sin
kj
2

, (112)

with continuous wave numbers restricted to 2π intervals,
conventionally to the centered hypercubic 1st Brillouin
zone

B = {k | k1, k2, · · · , kd ∈ (−π, π]} . (113)

The one-dimensional steady state integral Eq. (111)
is frequently encountered in solid state physics, statisti-
cal physics and field theory, and there are many ways of
evaluating it (see, for example, Gradshteyn and Ryzhik84

Eq. 4.226 2):

λ =
1

2π

∫ π

−π

dk ln

[
4 sin2

k

2
+ µ2

]
= lnµ2 + 2 ln

1 +
√

1 + 4/µ2

2
. (114)

In this, one-dimensional temporal lattice example, the
stability exponent λ is the cat map Lyapunov expo-
nent,1,11 presented here in a form that makes the anti-
integrable limit Eq. (73) explicit.

The one-dimensional steady state orbit Jacobian oper-
ator eigenspectrum is plotted in Fig. 10 (a). The discrete
eigenvalues of finite-dimensional primitive cell orbit Ja-
cobian matrices are points on this curve. For any finite
period primitive cell they only approximate the exact sta-
bility exponent Eq. (114).

The two-dimensional steady state stability exponent
Eq. (112) is given by the integral over the square lat-
tice two-dimensional first Brillouin zone (conventionally
a centered square, see shaded domain in Fig. 11 (b)),

λ =
1

4π2

∫ π

−π

∫ π

−π

dk ln
[
p(k)2 + µ2

]
,

dk = dk1dk2 , p2(k) = p(k1)
2 + p(k2)

2 . (115)

Spectra of the two-dimensional steady state orbit Jaco-
bian operators are plotted in Fig. 12 (a). The discrete
eigenvalues of primitive cell A orbit Jacobian matrices
embedded in these spectra yield only finite volume prim-
itive cell approximations to the exact steady state stabil-
ity exponent Eq. (115).

While it is possible to evaluate such steady state in-
tegrals analytically (see, for example, partition functions
with twisted boundary conditions of Ivashkevich et al.,78

and papers85–87 on Green’s function of a discrete Lapla-
cian on a square lattice), there are no analytic formu-
las for general periodic states, so we evaluate all such
integrals numerically. An example is the µ2 = 1 spa-
tiotemporal cat stability exponent λ evaluated below in
Eq. (155).

The steady state calculations are so simple, as their
orbit Jacobians are fully diagonalized by discrete Fourier
transforms. For a steady state the unit hypercube prim-
itive cell state is prime, all other periodic states over
larger primitive cells are non-prime repeats of the unit
hypercube periodic state (see Sec. I C).

https://math.stackexchange.com/questions/288530/help-computing-an-integral-for-greens-function-of-a-discrete-laplacian-on-a-squ
https://math.stackexchange.com/questions/288530/help-computing-an-integral-for-greens-function-of-a-discrete-laplacian-on-a-squ
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B. Periodic state stability

As discussed in Sec. IXC, the nonlinear field theory
orbit Jacobian operators typically depend on the peri-
odic state and cannot be diagonalized by discrete Fourier
transforms. The eigenvalues of the orbit Jacobian matri-
ces in the primitive cells of prime periodic states can only
be computed numerically.

For an arbitrary periodic state, in arbitrary dimen-
sion, the stability exponent λ calculation is carried out
with the help of the Bloch (or Floquet) theorem:18,88,89

A linear operator acting on field configurations with pe-
riodicity of Bravais lattice LA has continuous spectrum,
with the lattice sites z eigenstates of form

[φ(α)(k)]z = eik·z[u(α)(k)]z , k ∈ B , (116)

where u(α)(k) are band-index α = 1, 2, · · · , NA labelled
distinct LA-periodic functions, and the continuous wave
numbers k are restricted to a Brillouin zone B. In solid-
state physics, eigenstates Eq. (116) are known as Bloch
states.66 In mechanics they are called Floquet modes.90

For each primitive cell periodic state there is a cor-
responding prime periodic state over the infinite Bra-
vais lattice, acted upon by periodic state’s infinite-
dimensional orbit Jacobian operator Eq. (75). We solve
for the eigenvalue bands of the orbit Jacobian operators
as functions of the wave vectors k, using Bloch eigenstates
Eq. (116),

λp =
1

(2π)d

∫
B
dk ln |DetJp(k)|

=
1

(2π)d

NA∑
α

∫
B
dk ln |Λp,α(k)| , (117)

where Λp,α(k) is the eigenvalue of the prime orbit p orbit
Jacobian operator on the α-th eigenvalue band, corre-
sponding to the eigenstate φ(α)(k) in Eq. (116). This
prime orbit stability exponent formula is, in the spirit of
Sec. VIIB, the generalization of the steady state stability
exponent Eq. (112) to all periodic states.

It suffices to compute the stability exponent λp for a
prime periodic state, as stability exponent is the same
for a prime periodic state Φp = ΦA and any of its repeats
Eq. (85),

λp = λ[ΦA] = λ[ΦAR] for all R , (118)

as explained in Secs. VB and VIIB.
The Birkhoff average Eq. (19) of an observable a over

periodic state Φp and any of its repeats is also the same,
hence the weight of a non-prime periodic state ΦAR con-
tribution to primitive cell deterministic partition sum
Eq. (42) factorizes

1

|DetJAR|
eNARβ·aAR =

(
e−λp+β·ap

)Npr1r2
, (119)

with stability exponent λp -and this is the central point-
evaluated over the reciprocal lattice first Brillouin zone

(a)

(b)

FIG. 12. (Color online) Square spatiotemporal lattice
orbit Jacobian operator spectra, as functions of the wave vec-
tors (k1, k2). For time and space-reflection and interchange
invariant periodic states the spectra are k1 → −k1, k2 → −k2
and k1 ↔ k2 symmetric. (a) The steady state Λ(k) Bloch
band Eq. (112) as a function of the wave vector k, plotted for
µ2 = 1 value. Black dots are eigenvalues of the orbit Jacobian
matrix of periodic states over primitive cell with periodicity
[8×8]0. (b) The two-dimensional ϕ4 lattice field theory spectra
of the Bravais lattice L[2×1]0 periodic state Eq. (D3), plotted

for µ2 = 5 value. Black dots are eigenvalues of the orbit Ja-
cobian matrix of a [6×4]0 primitive cell tiled by 12 repeats of
a prime [2×1]0 periodic state, with Λ±(k) Bloch bands com-
puted in Appendix D2.

Eq. (117),

1

|DetJp|
≡ e−Npλp .

Primitive cell label A is redundant here, as it is implicit
in the periodic state p label: every periodic state has its
Bravais lattice LA periodicity.
In particular, in contrast to the primitive cell orbit

Jacobian Eq. (109), the Bravais lattice stability exponent
of the third repeat Φ3LR is thrice the prime orbit ΦLR

stability exponent,

|DetJ3LR| =
(
e−λLR+β·aLR

)3NLR

= |DetJLR|3 . (120)

https://en.wikipedia.org/wiki/Bloch%27s_theorem
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This is the precise statement of the multiplicativity claim
Eq. (2) we had made in the introduction: Bravais lattice
orbit Jacobians are multiplicative for their repeats.

Example: One-dimensional ϕ3 field theory period-2 pe-
riodic state. (Continued from Sec. IXC.) Consider the
simplest not-steady solution of ϕ3 theory Eq. (54), its
period-2 periodic state. The orbit Jacobian operator
Eq. (75) of the period-2 prime orbit LR Eq. (D1) is invari-
ant under translations of period L = 2, so its first Bril-
louin zone Eq. (110) is (−π/2, π/2]. This orbit Jacobian
operator has two bands (for details, see Appendix D1):

ΛLR,±(k) = −2±
√
µ4 − 12− p(2k)2 ,

p(2k) = 2 sin(k) , (121)

plotted in the first Brillouin zone in Fig. 10 (b).
Have a look back at the period-6 primitive cell of

Sec. IXC, with the prime periodic state ΦLR repeated
three times. The wave numbers k are constrained to
the period-6 reciprocal lattice of, taking values k =
−π/3, 0, π/3 within the first Brillouin zone. They are
embedded into the two continuous eigenvalue bands
Eq. (121), corresponding to the Eq. (107) eigenvalues
Λ−1,±, Λ0,± and Λ1,± respectively, as illustrated in
Fig. 10 (b).
Example: Two-dimensional ϕ4 field theory [2×1]0 pe-

riodic state. (Continued from Sec. IXC.) Figure 12 (b)
shows the two eigenvalue bands of a two-dimensional ϕ4

[2×1]0 periodic state, plotted over the two-dimensional
first Brillouin zone Eq. (110) k1 ∈ (−π/2, π/2], k2 ∈
(−π, π]. For details, see Appendix D2.

In summary, while a prime periodic state and its repeats
have different orbit Jacobian matrices spectra, they share
the same orbit Jacobian operator stability exponent, de-
termined by integration over continuous Bloch bands. In-
spection of Figs. 10 and 12 makes it clear what these
different spectra are: orbit Jacobian matrix spectra are
discrete approximations to orbit Jacobian operator con-
tinuous Bloch bands, with ‘cords’ approximation errors
decreasing as the primitive cell volume increases. (For
the convergence rate of such approximations, see shad-
owing Sec. XII). The wonderful property of the stability
exponent λp computed over the infinite spacetime (as
opposed to the stability exponent computed over a finite
primitive cell) is that it is additive for prime periodic
states repeated over larger primitive cells.

XI. PERIODIC ORBIT THEORY

Now that we know how to enumerate all Bravais lat-
tices LA (Sec. VI), determine all periodic states over each
(Sec. VII), and compute the weight of each periodic state
(Sec. X), we can combine all of that into one generating
function sum of a very simple form, for any deterministic
field theory, in any spacetime dimension:

Definition: Deterministic partition sum.

For integer lattices, the deterministic partit-
ion sum is the sum over all periodic states Φc,
each of weight tc,

Z[β, z] =
∑
c

tc , tc =
(
eβ·ac−λc z

)Nc

, (122)

where λc is the stability exponent Eq. (117),
ac the observable a averaged over periodic
state Φc, Eq. (43), Nc is the Bravais lattice
Lc volume Eq. (11), and z is a generating
function variable.

Notation ‘tc’ is a vestige of referring to this weight in the
time-evolution periodic orbit theory as the ‘local trace’
(see ChaosBook sect. 18.2).91 Indeed, much of the time-
evolution periodic orbit theory developed in ChaosBook
generalizes to the multi-periodic, spatiotemporal deter-
ministic field theory, with time period Tc replaced by
the spatiotemporal volume Nc. Square brackets [· · · ] in
quantities such as Z[β, z] are a here to remind us that
we are dealing with spatiotemporal field theories,92 not
with a few degrees-of-freedom evolving forward in time
(Sec. III).

A. Chaotic field theory

Ergodic theory of time-evolving dynamical systems is
a rich subject. In this series of papers we stay within
its most robust corner that we refer to as the ‘chaotic
field theory’. We say that a deterministic field theory
is chaotic if (1) all of its periodic states are unstable,
i.e., the stability exponent, Eq. (117), is strictly positive,
λc > 0, for every deterministic solution Φc, and (2) the
number of periodic states |c|A grows exponentially with
the primitive cell volume NA, with (3) the periodic states
set connected by ‘shadowing’, in the sense that every
periodic state can be approximated arbitrarily well by
periodic states sequences (Sec. XII).
To understand where the ‘generating function variable’

z in Eq. (122) comes from, consider ZA[β], the primitive
cell A partition sum Eq. (42) over all periodic states Φc

of periodicity LA. Their number |c|A is the number of
admissible mosaics (Sec. III C), with the mean of the log
of the number of periodic states per lattice site given by
hA = 1

NA
ln |c|A .

If |A|, the number of letters in the alphabet Eq. (46), is
bounded, there are at most |A|NA distinct mosaics over
primitive cell A, so |c|A, the number of spatiotemporal
solutions {Φc} of system’s defining equations Eq. (40) is
bounded from above by exp(NAhmax), where hmax is any
upper bound on hA, for example

|c|A ≤ eNAhmax , hmax = ln |A| . (123)

Now consider a system with a 2-letter alphabet (think
of Ising ‘spins’), with primitive cells A accommodat-
ing very few periodic states Φc, each with almost all

https://ChaosBook.org/chapters/ChaosBook.pdf#section.18.2
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spins ‘up’ or ‘down’ (frozen phases in statistical me-
chanics, Pomeau–Manneville intermittency93 in temporal
evolution systems). For such long correlations systems
hA → 0.

To guarantee chaos, we consider here only field theo-
ries for which the number of solutions also has a strictly
positive lower exponential bound hA ≥ hmin > 0 , with
the hA of large volume Bravais lattice bounded between
hmin and hmax.

eNAhmin ≤ eNAhA ≤ eNAhmax . (124)

The exact value of hA might require a calculation, and
evaluation of the expectation value of system’s entropy h
will require the full machinery of the periodic orbit theory
developed here in Sec. XI F, but all we need to ensure that
the theory is spatiotemporally chaotic is that all hA are
strictly positive.

Next: a typical observable is bounded in magnitude, so
its contribution to the partition sum Eq. (122) weight is
bounded by exp(NAβ ·amax). And, crucially, throughout
this series of papers we focus only on purely ‘chaotic’ sys-
tems, defined as systems for which every periodic state is
unstable in the sense that its stability exponent Eq. (117)
is strictly positive,

0 < λmin ≤ λc , (125)

as illustrated by Figs. 10 and 12 and the anti-integrable
limit calculations Eq. (73) and Eq. (114), so:

The primitive cell partition sum Eq. (42) is bounded
exponentially in lattice volume NA,

ZA[β] ≤ eNA(β·amax−λmin+hmax) . (126)

No Bravais lattice LA is special, all of them contribute,
so we combine them into a generating function∑

A
ZA[β] z

NA , (127)

a sum over all ‘geometries’. Exponential bound Eq. (126)
ensures that the sum is convergent for sufficiently small
generating function variable z. With the stability expo-
nent evaluated over the reciprocal lattice, as in Sec. X,
this is just the deterministic partition sum Eq. (122) ar-
ranged as a series in zN . Our first task will be to deter-
mine the largest z for which the deterministic partition
sum is convergent, Sec. XIE.
In this paper we utilize only the translation group T

symmetries, Eq. (76) (see Sec. VI), and focus on the case
of a two-dimensional square lattice. Translations stratify
the deterministic field theory, Eq. (122), into prime or-
bits,5,94,95 periodic states that are not repeats of a shorter
period state (Secs. I C and VIIA). To assemble the det-
erministic partition sum over all periodic states, we re-
organize it by first determining all prime orbits Φp, and
summing over their repeats (Sec. VIIB). Then the det-
erministic partition sum Eq. (122) takes form

Z[β, z] =
∑
p

Zp , (128)

with (β, z) dependent periodic states weights tc,
Eq. (122). The form of the prime partition sum Zp de-
pends on the spacetime dimensionality. To explain how,
it suffices to consider the simplest case: the partition sum
for a theory with a single prime orbit, a steady state.

B. Steady state partition sum

A steady state ϕz = ϕ is a prime periodic state
whose primitive cell [1×1]0 is the unit hypercube Eq. (5)
(Sec. VIIB). A periodic state is then obtained by tiling
any larger primitive cell by repeats of steady state ϕ, one
such periodic state for every Bravais sublattice.
For a one-dimensional, temporal Bravais lattice, the

deterministic partition sum Eq. (122) is very simple.
There is a non-prime periodic state for every repeat prim-
itive cell A of period r, all of them with orbits of period
1 (Sec. I C), so thanks to repeat weights multiplicativity
Eq. (119), the contribution of rth repeat to the partition

sum Eq. (122) is trp =
(
eβ·ap−λpz

)r
, where r is the vol-

ume of the period r primitive cell. So, in one dimension
the steady state partition sum is a geometric series,

Zp =
∞∑
r=1

trp =
tp

1− tp
, tp = eβ·ap−λpz , (129)

with steady state stability exponent λp Eq. (114), and the
observable evaluated on the steady state ϕ, ap = a(ϕ).

Thanks to repeat weights multiplicativity Eq. (119),
the contribution of a [r1×r2]s steady state repeat to the
partition sum Eq. (122) in two dimensions is

tr1r2p =
(
eβ·ap−λpz

)r1r2
, (130)

So for a two-dimensional, spatiotemporal steady state
(see Sec. VII) there is a non-prime periodic state for ev-
ery two-dimensional repeat primitive cell [r1×r2]s con-
structed in Sec. VIA, with r1 copies of lattice site field ϕ
horizontally, r2 copies vertically, with weights, as stated
in Eq. (118), independent of the tilt 0 ≤ s < r1 Eq. (85),

Zp =
∞∑

r1=1

∞∑
r2=1

r1 t
r1r2
p ,

where tilts s are summed over:

r1−1∑
s=0

1 = r1 .

Summing over heights r2, the deterministic steady state
partition sum Eq. (122) in two dimensions is thus

Zp =
∞∑

n=1

n tnp
1− tnp

. (131)
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Its expansion in powers of variable tp

Zp =
∞∑

n=1

σ(n)tnp = tp + 3t2p + 4t3p + 7t4p + 6t5p

+12t6p + 8t7p + · · · , (132)

was first studied by Euler, with σ(n) known as the Euler
sum-of-divisors function.

C. Prime orbit partition sum

As explained in Sec. VIIB, every prime periodic state
is morally a steady state, except that now the number of
periodic states in the prime orbit is its primitive cell vol-
ume Np. Hence in one dimension the prime orbit p deter-
ministic partition sum, including steady states Eq. (129)
as the Np = 1 cases, is simply

Zp = Np
tp

1− tp
, tp =

(
eβ·ap−λpz

)Np
, (133)

with prime orbit stability exponent λp Eq. (117), and ap
the Birkhoff average, Eq. (19), of an observable a over
prime periodic state Φp.

The formula has form of the ‘deterministic trace for-
mula’ (see ChaosBook Eq. (21.24)),96 with a crucial dif-
ference: here the weight tp is the exact, infinite Bravais
lattice weight, while the Ruelle dynamical zeta function
weight tp is an approximate weight.

The contribution of a two-dimensional spatiotemporal
prime periodic state p and its repeats to the deterministic
partition sum, Eq. (128), is

Zp = Np

∞∑
n=1

n tnp
1− tnp

, (134)

tp =
(
eβ·ap−λpz

)Np
, Np = LpTp .

D. Spatiotemporal zeta functions

We have a deterministic partition sum Eq. (122) of
stunning simplicity. Still, we can do better, by taking
into account symmetries (Sec. VI) of the theory.

Definition: Deterministic zeta function.

For two-dimensional integer lattices, the det-
erministic zeta function is the product over
all prime orbits, of form

1/ζ =
∏
p

1/ζp , 1/ζp =
∞∏

n=1

(1− tnp ) . (135)

Who ordered this ‘zeta’? Euler. Euler replaced the par-
tition sum (in Euler’s case, a weighted sum over natural
numbers) by a zeta function (in Euler’s case, the product

over primes formula for the Riemann zeta function), by
the logarithmic derivative relation between the partition
sum and the zeta function

Z[β, z] = −z
∂

∂z
ln 1/ζ[β, z] (136)

(see, for example, ChaosBook sect. 22.3).97

Why? (1) The deterministic partition sum Eq. (122)
is a redundant sum over all periodic states, redundant
as their weights depend only on prime orbits, which a
zeta function counts only once per orbit. (2) Every pe-
riodic state weight contributes to the deterministic part-
ition sum with a positive weight. Zeta functions are
smarter, they exploit the key property of ergodic tra-
jectories that they are shadowed by shorter trajectories
(Sec. XII), with convergence of periodic states averag-
ing formulas improved by shadowing cancellations. (3)
Zeta functions have better analyticity properties, with
divergence of deterministic partition sum Eq. (127) cor-
responding to the leading zero of deterministic zeta func-
tion.
In one spatiotemporal dimension, the deterministic

zeta function is a product over all prime orbits, of form

1/ζ =
∏
p

(1− tp) , (137)

as is easily checked by substitution into relation
Eq. (136). The pseudo-cycle expansion of 1/ζ then leads
to averaging formulas with better convergence than the
deterministic partition sum Eq. (122) (see ChaosBook
sect. 23.5).98

In two spatiotemporal dimensions, the deterministic
zeta function is again a product over all prime orbits,
Eq. (135). Its correspondence to the deterministic part-
ition sum, Eq. (134), is easily checked by substitution
into the relation Eq. (136).

E. Evaluation of zeta functions

For large lattice volume N primitive cells, the expo-
nential bounds of Eq. (37), (38) and (126) ensure conver-
gence of high order zN terms in deterministic partition
sum, Eq. (127), to (eW [β]z)N , with sum convergent for
sufficiently small z.

Definition: ‘Reject rate’.

The largest value of z(β) for fixed β,

z(β) = e−W [β] , (138)

for which the deterministic partition sum
Eq. (122) converges, or, equivalently, the
value of z(β) which is the first root of
the inverse of deterministic zeta function,
Eq. (135),

Z[β, z(β)] → ∞ ; 1/ζ[β, z(β)] = 0 , (139)

defines system’s ‘reject rate’ W [0].

https://en.wikipedia.org/wiki/Divisor_function
https://ChaosBook.org/chapters/ChaosBook.pdf#equation.21.3.24
https://ChaosBook.org/chapters/ChaosBook.pdf#section.22.3
https://youtube.com/embed/_7ZNfbgJ8D4
https://ChaosBook.org/chapters/ChaosBook.pdf#section.23.5
https://ChaosBook.org/chapters/ChaosBook.pdf#section.23.5
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In dynamical systems theory, the rate at which trajecto-
ries leave an open system per unit time is called escape
rate (see Ref. 99 and ChaosBook Eq. (1.3)). We put
‘reject rate’ into quotations here, as in spatiotemporal
theory there is no escape in time - the exponent is a char-
acterization of the non–wandering set, the state space set
formed by the deterministic solutions. We evaluate it for
the temporal cat in Appendix C 5, and for deterministic
ϕ3 and ϕ4 theories in companion paper III.2

Much is known about the two-spatiotemporal dimen-
sions zeta function, Eq. (135), as for each prime orbit
1/ζp is the Euler function ϕ(tp),

1/ζp = ϕ(tp) =
∞∏

n=1

(1− tnp ) , |tp| < 1 , (140)

whose power series in terms of pentagonal number powers
of z was given by Euler100 in 1741

ϕ(z) =1− z − z2 + z5 + z7 − z12 − z15

+z22 + z26 − z35 − z40 + z51 + z57

−z70 − z77 + z92 + z100 + . . . (141)

In 1996 Lind101 introduced topological zeta function
of this form for two-dimensional, as well as higher-
dimensional shifts. So, while for a one-dimensional lat-
tice, the contribution Eq. (137) of a prime orbit Φp is sim-
ply 1/ζp = 1− tp, in two spatiotemporal dimensions the
prime orbit weight is a yet another ‘Euler function’ with
an infinite power series expansion. Presumably because
of that, in our numerical work the z power series expan-
sions of two-dimensional 1/ζ do not appear to converge
as smoothly as they do in the one-dimensional, temporal
settings.

F. Periodic states averaging formula

While each primitive cell probability density Eq. (34)
is easily correctly normalized, there is no natural ‘over-
all’ probability normalization for the generating function
sum over all periodic states, the deterministic partition
sum Eq. (122). For one-dimensional, temporally evolv-
ing systems, ChaosBook sect. 23.5 solves this problem
by the method of ‘cycle averaging’.98 We now generalize
this method to the higher-dimensional, spatiotemporal
field theories.

The smallest value of the generating function variable
z(β) for which the deterministic zeta function equals zero,
Eq. (139), is an implicit equation for the root z = z(β)
satisfied on the curve 0 = 1/ζ[β, z(β)] in the (β, z) pa-
rameters plane. Take the derivative of this implicit equa-
tion (for brevity, we take 1/ζ = 1/ζ[β, z(β)]):

0 =
d

dβ
1/ζ =

∂

∂β
1/ζ +

dz

dβ

∂

∂z
1/ζ .

Eq. (138) relates dz/dβ to the log of partition function

evaluated on the infinite lattice, Eq. (38),

−1

z

dz

dβ
=

dW

dβ
=

∂
∂β 1/ζ

z ∂
∂z1/ζ

. (142)

The expectation value of observable a, Eq. (39),

⟨a⟩ =
d

dβ
W [β]

∣∣∣∣
β=0

is now given by the periodic states averaging formula

⟨a⟩ =
⟨A⟩ζ
⟨N⟩ζ

. (143)

Here the weighted Birkhoff sum of the observable ⟨A⟩ζ ,
Eq. (19), and the weighted multi-period lattice volume
⟨N⟩ζ , Eq. (11), are defined as

⟨A⟩ζ = − ∂

∂β
1/ζ[β, z(β)]

∣∣∣∣
β=0,z=z(0)

,

⟨N⟩ζ = − z
∂

∂z
1/ζ[β, z(β)]

∣∣∣∣
β=0,z=z(0)

. (144)

where the subscript in ⟨· · ·⟩ζ stands for the deterministic
zeta function evaluation of such weighted sum over prime
orbits.
Expectation values ⟨· · ·⟩ζ are evaluated by noting that

all (β, z) dependence of the deterministic zeta function,
Eq. (135), is contained in the prime orbits weights tp,
whose partial derivatives are simply

z
∂

∂z
tp = Nptp ,

∂

∂β
tp = Aptp . (145)

As an example, we compute the expectation value of sta-
bility exponent of temporal cat in Appendix C 6.
While power series expansions in z of functions such as

the Euler function, Eq. (141), do not converge very well,
the theory of doubly-periodic elliptic functions suggests
other, more powerful methods to evaluate such functions.
The Euler function can be expressed as the Dedekind eta
function η(τ),

ϕ(tp) = t
− 1

24
p η(τp) , Im(τp) > 0 , (146)

where τp is the complex phase of the Euler function ar-
gument, tp = ei2πτp . Our prime zeta function, Eq. (135),
complex phases of prime periodic states follow from
Eq. (134),

τp = i
Np

2π
(−β · ap + λp − S) , z = e−S , (147)

with the periodic state Φp probability weight having a
pure positive imaginary phase

τp =
i

2π
Npλp .

https://ChaosBook.org/chapters/ChaosBook.pdf#equation.1.4.3
https://en.wikipedia.org/wiki/Euler_function
https://ChaosBook.org/chapters/ChaosBook.pdf#section.23.5
https://youtube.com/embed/uZ4O-xDczOA
https://en.wikipedia.org/wiki/Dedekind_eta_function
https://en.wikipedia.org/wiki/Dedekind_eta_function
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The derivatives required for the evaluation of expectation
values, Eq. (144), have their own elliptic functions rep-
resentations. For example, the logarithmic derivative of
Dedekind eta is known as the Weierstrass zeta function,

η′/η = ζW . (148)

The problem in evaluation of the deterministic zeta
function, Eq. (135), is that it is an infinite product of
Dedekind eta functions, and we currently know of no
good method to systematical truncate and evaluate such
products.

The spatiotemporal zeta function Eq. (135) is the main
result of this paper. However, there are still a couple of
questions of general nature that alert reader is likely to
ask.

(i) How is this global, high-dimensional orbit sta-
bility related to the stability of the conventional low-
dimensional, forward-in-time evolution? The two notions
of stability are related by Hill’s formulas (also known
as the Gel’fand-Yaglom theorem,102,103 for continuous
spacetime), relations that are in our formulation equally
applicable to energy conserving systems, as to viscous,
dissipative systems. We derive them in Refs. 1 and 13.
From the field-theoretic perspective, orbit Jacobians are
fundamental, forward-in-time evolution is merely one of
the methods for computing them.

(ii) One might wonder why do we focus so much on
computing periodic states over every small primitive cell,
omitting none? You never see that anywhere in the lit-
erature. But that’s what the theory of (temporal) chaos
and (spatiotemporal) turbulence demands: the support
of a deterministic field theory is on all deterministic so-
lutions, as sketched in Fig. 2.

Next –the beauty of the periodic orbit theory of chaos–
due to the shadowing of longer periods unstable periodic
states by shorter periods ones, the smallest periodicites
periodic states dominate, the longer ones come in only as
corrections. The convergence periodic states-expansions
is accelerated by shadowing of long orbits by shorter pe-
riodic orbits.14 Are d-dimensional tori (primitive cells)
periodic states also shadowed by smaller tori periodic
states? In Sec. XII we check numerically that spatiotem-
poral cat periodic states that share finite spatiotemporal
mosaics indeed shadow each other to exponential preci-
sion.

XII. SHADOWING

In ergodic theory ‘shadowing lemma’: “a true time-
trajectory is said to shadow a numerical solution if it
stays close to it for a time interval104,105” is often invoked
to justify collecting statistics from numerical trajecto-
ries for integration times much longer than system’s Lya-
punov time.106 In periodic orbit theory, the issue is nei-
ther the Lyapunov time, nor numerical accuracy: all pe-
riodic orbits are ‘true’ in the sense that in principle they

can be computed to arbitrary accuracy.107 In present con-
text ‘shadowing’ refers to the shortest distance between
two orbits decreasing exponentially with the length of
the shadowing time interval. Long orbits being shad-
owed by shorter ones leads to controllable truncations of
cycle expansions,14 and computation of expectation val-
ues of observables of dynamical systems to exponential
accuracy.5

Field configurations are points in state space Eq. (7),
with the separation of two periodic states Φ, Φ′ given
by the state space vector Φ− Φ′, so we define ‘distance’
as the average site-wise state space Euclidean distance-
squared between field configurations Φ, Φ′, i.e., by the
Birkhoff average Eq. (19)

|Φ− Φ′|2 =
1

NA

∑
z∈A

(ϕ′
z − ϕz)

2 . (149)

This notion of distance is intrinsically spatiotemporal, it
does not refer to time-evolving unstable trajectories sepa-
rating in time. For spatiotemporal cat we have an explicit
formula for pairwise separations: If two spatiotemporal
cat periodic states Φ, Φ′ share a common sub-mosaic M,
they are site-fields separated by

ϕz − ϕ′
z =

∑
z′ /∈M

gzz′(m −m′)z′ mod1 , (150)

where matrix gzz′ is the spatiotemporal cat Green’s func-
tion Eq. (C1).
It was shown numerically by Gutkin et al.10,11 that

pairs of interior alphabet Eq. (C5) spatiotemporal cat
periodic states of a fixed spatial width L that share sets
of sub-mosaics, shadow each other when evolved forward-
in-time. Here, in Sec. XIIB, we check numerically spa-
tiotemporal cat shadowing for arbitrary periodic states,
without alphabet restrictions, and without any time evo-
lution. Intuitively, if two unstable periodic states Φ,
Φ′ share a common sub-mosaic M of volume NM, they
shadow each other with exponential accuracy of order of
∝ exp(−λNM). In time-evolution formulation, λ is the
leading Lyapunov exponent. What is it for spatiotempo-
ral systems?
We first explain how the exponentially small distances

follow for the one-dimensional case.

A. Shadowing, one-dimensional temporal cat

As the relation between the mosaics M and the corre-
sponding periodic states ΦM is linear, forM an admissible
mosaic, the corresponding periodic state ΦM is given by
the Green’s function

ΦM = gM , g =
1

−r + s 11− r−1
. (151)

For an infinite one-dimensional lattice t ∈ Z, the lattice
field at site t is determined by the sources mt′ at all

https://mathworld.wolfram.com/DedekindEtaFunction.html
https://en.wikipedia.org/wiki/Lyapunov_time
https://en.wikipedia.org/wiki/Lyapunov_time
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sites t′, by the Green’s function gtt′ for one-dimensional
discretized heat equation,62,108

ϕt =
∞∑

t′=−∞
gtt′mt′ , gtt′ =

1

Λ− Λ−1

1

Λ|t−t′| , (152)

with Λ the expanding cat map stability multiplier
Eq. (C22). While the orbit Jacobian operator J is
sparse, it is not diagonal, and its inverse is the full ma-
trix g, whose key feature is the matrix element gtt′ factor
Λ−|t′−t|, which says that the magnitude of a matrix el-
ement falls off exponentially with its distance from the
diagonal. This fact is essential in establishing the ‘shad-
owing’ between periodic states sharing a common sub-
mosaic M. Suppose there is a non-vanishing point source
m0 ̸= 0 only at the present, t′ = 0 temporal lattice site.
Its contribution to ϕt ∼ Λ−|t| decays exponentially with
the distance from the origin. If two periodic states Φ, Φ′

share a common sub-mosaic M of length n, they shadow
each other with accuracy of order of O(1/Λn).

B. Shadowing, two-dimensional spatiotemporal cat

Following Refs. 10 and 11, consider families of spa-
tiotemporal orbits that share a sub-mosaic shadow each
other in the corresponding spatiotemporal region. As the
grammar of admissible mosaics is not known, the peri-
odic states used in numerical examples were restricted to
those whose mosaics used only the interior, always admis-
sible, alphabet Eq. (C5). Here we shall check numerically
spatiotemporal cat shadowing for general periodic states,
with no alphabet restrictions.

The two-dimensional µ2 = 1 spatiotemporal cat
Eq. (57), periodic states are labelled by two-dimensional
mosaics, 8-letter alphabet Eq. (C3), as in Fig. 13.
To test the spatiotemporal cat spatiotemporal shad-

owing properties, we generated 500 periodic states of
µ2 = 1, two-dimensional spatiotemporal cat with peri-
odicity [18×18]0, all sharing the same [12×12] mosaic,
with the symbols outside the common sub-mosaic essen-
tially random, see Fig. 13. As we do not know the two-
dimensional spatiotemporal cat grammar rules, we gen-
erated these 500 periodic states by taking a periodic state
with the [12×12] mosaic, using it as a starting guess for
the next periodic state by randomly changing the lattice
site symbols outside the [12×12] mosaic, finding the new
periodic state by solving the spatiotemporal cat defining
equation Eq. (56), and keeping only those solutions that
still had the same [12×12] mosaic.

The spatiotemporal shadowing suggests that for pe-
riodic states with identical sub-mosaics of symbols, the
distance between the corresponding field values decrease
exponentially with the size of the shared mosaics.

To find the rate of decrease of distances between shad-
owing periodic states, we compute the mean point-wise
distances of field values of the 250 pairs of periodic states
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FIG. 13. (Color online) Mosaics Eq. (46) of two [18×18]0
spatiotemporal cat periodic states which share the sub-mosaic
within the [12× 12] region enclosed by the black square,
and have different, essentially random symbols outside the
squares. Color coded 8-letter alphabet Eq. (C3), µ2 = 1.
Continued in Fig. 14.

over each lattice site in their primitive cells. The expo-
nential shadowing of periodic states is shown in Fig. 14.
The distances between field values of two periodic states
|ϕz −ϕ′

z| decrease exponentially as z approaches the cen-
ter of the common sub-mosaic. Figure 14 (a) is the log
plot of the mean distances. The logarithm of the mean
distances across the center of the primitive cell is plotted
in Fig. 14 (b), where the decrease is approximately linear,
with a slope of −1.079. What determines this slope?

C. Green’s function of two-dimensional spatiotemporal cat

Mosaic M is admissible (see Sec. III C) if field config-
uration ΦM is a periodic state, i.e., all lattice site fields
are confined to Eq. (C2), the compact boson hypercube
state space ϕz ∈ [0, 1).
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FIG. 14. (Color online) µ2 = 1 spatiotemporal cat. (a) The
log of mean of point-wise field value distances |ϕz − ϕ′

z| over
all lattice sites of z ∈ [18×18] primitive cell, averaged over the
250 pairs of periodic states, like the pair of Fig. 13. (b) The
log of mean point-wise distances |ϕ9,t −ϕ′

9,t| evaluated across
the strip z = (9, t), t = 1, 2, . . . , 18, going through the center
of the primitive cell. The decrease from edge to the center is
approximately linear, with slope ≈ −1.079.

The Green’s function measures the correlation between
two lattice sites in the spacetime. In our problem the
distances between the shadowing periodic states can be
interpreted using the Green’s function, which gives vari-
ations of field values ϕt induced by a ‘source’, in this
example by change of a letter mt′ at lattice site z′. The
decrease of the differences between field values of shadow-
ing periodic states is a result of the decay of correlations.
The Green’s function for two-dimensional square lattice
Eq. (C1) has been extensively studied.11,85–87 But to un-
derstand qualitatively the exponential falloff of spacetime
correlations, it suffices to consider the large spacetime
primitive cell (small lattice spacing) continuum limit:

(−□+ µ2)ϕ(x) = m(x) , x ∈ R2

whose Green’s function is the radially symmetric

G(x, x′) =
1

2π
K0 (µ|x− x′|) , (153)

where K0 is the modified Bessel function of the second
kind. For large spacetime separations, |x− x′| → ∞, the
asymptotic form of the Green’s function is

G(x, x′) ∼
√

1

8πµr
e−µr , r = |x− x′| . (154)

In the numerical example of Sec. XIIB, we have set
Klein-Gordon mass µ = 1, so the Green’s function of
the continuum screened Poisson equation is a good ap-
proximation to the discrete spatiotemporal cat Green’s
function, where the rate of decrease of correlations com-
puted from the Fig. 14 (b) is approximately exp(−µ′r),
where µ′ = −1.079 is the slope computed from the log
plot of the mean distances of field values between shad-
owing periodic states.

D. Convergence of evaluations of observables

Computed on primitive cells A of increasing volume
NA, the expectation value of an observable (Sec. ID)
converges towards the exact, infinite Bravais lattice value
(Sec. X). As the simplest case of such sequence of prim-
itive cell approximations, take a rectangular primitive
cell [L×T]0, and evaluate stability exponents ⟨λ⟩[rL×rT]
(Sec. IXB) for the sequence of primitive cell repeats
[rL×rT]0 of increasing r.
That the convergence of such series of primitive cell ap-

proximations is a shadowing calculation can be seen by
inspection of Fig. 12. The exact stability exponent λ is
obtained by integration over the bands (smooth surfaces
in the figures). A shadowing approximation λ[L×T]S is a
finite sum over primitive cells [L×T]S , black dots in the
figures, that shadows the curved surface, with increas-
ing accuracy as the primitive cell volume NA increases.
Here shadowing errors are Hipparchus’ errors Eq. (97) of
replacing arcs by cords, as in approximating 2π by the
perimeter of a regular n-gon. The sense in which such
shadowing or ‘curvature’ errors are exponentially small
for one-dimensional, temporal lattice chaotic systems is
explained in Refs. 14, 109, and 110. We have not ex-
tended such error estimates to the spatiotemporal case,
so here we only present numerical evidence that they are
exponentially small.
As a concrete example, we evaluate numerically the

exact µ2 = 1 spatiotemporal cat stability exponent λ
for the infinite Bravais lattice orbit Jacobian operator
Eq. (115),

λ = 1.507983 · · · , (155)

and investigate the convergence of its finite primitive cell
estimates λ[rL×rT]0 . For the unit cell [1×1]0 sequence,
plotted in Fig. 15, λ − λ[L×L]0 decreases linearly as the
side length L increases, with a linear fit has slope

ln(λ− λ[L×L]0) = −2.04611− 1.05538L . (156)

For various primitive cell sequences of rectangular shapes
[L×T]0, the stability exponents of repeat primitive cells
[rL×rT]0 also converge to λ exponentially, with the same
convergence rate ≈ 1.055 · · · . We have no theoretical
estimate of this rate, but it appears to be close to the
Klein-Gordon mass µ = 1, within the shadowing error
estimates of Sec. XIIB.

https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions
https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions
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L

ln(λ− λA)

FIG. 15. The convergence of primitive cells stability expo-
nents λA to λ, the exact Bravais lattice value Eq. (155), for
square primitive cells [L×L]0 sequence Eq. (156), µ2 = 1. A
linear fit of the logarithm of the distance as a function of the
side length L = 10, 11, · · · , 25, with slope -1.05538.

XIII. SUMMARY AND OPEN QUESTIONS

Boris has just given me a summary of his
views. He is a weather prophet. The weather
will continue bad, he says. There will be more
calamities, more death, more despair. Not
the slightest indication of a change anywhere.
The cancer of time is eating us away. Our
heroes have killed themselves, or are killing
themselves. The hero, then, is not Time, but
Timelessness. We must get in step, a lock
step, toward the prison of death. There is no
escape. The weather will not change.

– Henry Miller, Tropic of Cancer

Gutzwiller’s 1971 semiclassical quantization3,111 yields
deep insights into the quantum behavior of low-
dimensional deterministically chaotic systems (ODEs).
In dynamical systems theory this point of view leads to
the 1976 Ruelle periodic orbit formulation of chaotic dy-
namics.4,5,94 In this series of papers1,2,13,15 we reformu-
late the Ruelle temporal ODEs / iterated maps dynam-
ical zeta functions theory, and generalize it to a field-
theoretic, PDEs spatiotemporal zeta functions formula-
tion of spatiotemporal chaos and turbulence.

Flows described by partial differential equations are in
principle infinite dimensional, and, at first glance, turbu-
lent dynamics that they exhibit might appear hopelessly
complex. However, what is actually observed in experi-
ments and simulations is that turbulence is dominated by
repertoires of identifiable recurrent vortices, rolls, streaks
and the like.112 Dynamics on a low-dimensional chaotic
attractor can be visualized as a succession of near visita-
tions to exact unstable periodic solutions, interspersed
by transient interludes.5 In the same spirit, the long-
term turbulent dynamics of spatially extended systems
can be thought of as a sequence of visitations through

the repertoire of admissible spatiotemporal patterns (‘ex-
act coherent structures’,113,114 ‘recurrent flows’115), each
framed by a finite spatiotemporal window. The question
we address here is: can states of a strongly nonlinear
field theory be described by such repertoires of admissi-
ble patterns explored by turbulence? And if yes, what is
the likelihood to observe any such pattern?

Such questions have been studied extensively for sys-
tems of small spatial extent, whose inertial manifold di-
mension is relatively small.116–120 Recent experimental
and theoretical advances112,121–124 support such forward-
in-time dynamical vision also for spatially extended, tur-
bulent systems (see Ref. 125 for a gentle introduction).
By now thousands of such ‘exact coherent structures’
have been computed, always confined to small spatial
domains, while the flows of interest (pipe, channel, plane
flows) are flows on infinite spatial domains. However,
going from spatially small to spatially infinite systems
requires a radical shift in the point of view. To describe
those, we recast equations such as the Navier-Stokes as
a spacetime theory, with all infinite translational sym-
metry directions treated on equal footing. It is a bold
leap, a theory of turbulence that does away with dynam-
ics. As humans, we are locked in step, always marching
forward in time. It’s hard to shake these temporal shack-
les off, and reader might balk at the leap. But we have
no choice. For spatially extended systems evolution for-
ward in time is insanely unstable.126,127 Not only have
time-evolution numerical codes not worked on large do-
mains, in retrospect it is clear that they never could have
worked.

Conventional numerical computations confine spatial
directions to a finite domain, then integrate forward in
time, treating only time as inherently infinite. In con-
trast, our deterministic field theory formulation is global,
in the sense that its building blocks are orbits, global field
configurations that satisfy system’s defining equations
everywhere, over the infinite spacetime. We treat all
translationally invariant directions democratically, each
an infinite ‘time’. Here there are no sketches of diverging
trajectories, because in the deterministic spatiotemporal
field theory formulation of turbulence, there is no evolu-
tion in time.

The first problem that we face is global : determin-
ing and organizing infinities of unstable multi-periodic
states over ∞-dimensional state spaces, orbits that are
presumed to form the skeleton of turbulence. Missing
not one. We characterize and classify them by their
shapes, captured by corresponding ‘mosaics’. The feel
is of statistical-mechanics, like enumeration of Ising con-
figurations. In this we are helped by working ‘beyond
perturbation theory’, in the anti-integrable, strong cou-
pling regime, in contrast to much of the literature that
focuses on weak coupling expansions around ‘ground
states’. Our calculations utilize standard engineering op-
timization methods,127–136 some of which precede spa-
tiotemporal theory by decades. They are memory costly,
but as there is no evolution, neither in time nor in space,

https://flic.kr/p/FWpao8
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there are no instabilities, and it suffices to determine a
solution to a modest accuracy.

The next problem is: how important is a given space-
time configuration? Intuitively, more unstable solutions
have smaller state space neighborhoods, are less likely.
Here the orbit Jacobian operator Eq. (44) of a peri-
odic state, its primitive cell determinant Eq. (72), and
especially its infinite Bravais lattice stability exponent
Eq. (117) are the most important innovations in our the-
ory of spatiotemporal chaos. The measure concept is
here akin to the statistical mechanics of the Ising model
–what is the likelihood of occurrence of a given spacetime
configuration?– made precise by evaluation of its stability
exponent.

And, finally: now that we have a hierarchy of multi-
periodic states, what is the expectation value of any ob-
servable of the theory? The answer is given by deter-
ministic partition sums and zeta functions of Sec. XI.
All chaoticity is due to the intrinsic instability of deter-
ministic solutions, and our spatiotemporal deterministic
partition sums Eq. (122) and zeta functions Eq. (135) are
exact, not merely saddle points approximations to a the-
ory. The issues in their applications are numerical: how
many periodic states, evaluated to what accuracy have
to be included into a truncated zeta function, to attain
a desired accuracy?

A. Open questions

At the present stage of development, our spatiotem-
poral theory of chaos leaves a number of open problems
that we plan to address in future publications:

1. Can the 2- and higher- spatiotemporal dimen-
sion zeta function Eq. (135) and expectation value
Eq. (143) computations be organized into ‘cycle ex-
pansions’, dominated by the small spacetime vol-
ume periodic states, as is the case for the one-
dimensional, temporal theory?5

2. For pedagogical reasons –in order to start out with
determinants of finite matrices, rather than imme-
diately grapple with functional determinants– we
have presented here the spacetime deterministic
field theory in its discretized, d-dimensional lat-
tice form. We expect the periodic orbit formula-
tion of continuum spacetime theory to be of essen-
tially of the same form, with the spacetime peri-
odicities (Bravais lattice primitive vectors) defined
over the continuum, aj ∈ Rd, the stability exponent
Eq. (117) evaluated as functional integral over its
Brillouin zone, generating function variable z re-
placed by a Laplace transform variable s, z = e−s

(see ChaosBook Eq. (21.20)), and the deterministic
partition sum Eq. (122) of form

Z[β, s] =
∑
c

tc , tc =
(
eβ·ac−λc−s

)Nc

. (157)

We have not encountered such sums over Bravais
lattices in solid state and mathematical physics lit-
erature. In field theory they play a key role,20,21

so one could refer to them as field theorists do, as
‘sums over geometries’.

Show that our zeta-function Eq. (135) formulation
of spatiotemporal chaos applies also to spacetime
continuous systems, such as Kuramoto-Sivashinsky
and Navier-Stokes PDEs.

3. Evaluate the stability exponents of a set of unsta-
ble Kuramoto-Sivashinsky (or another spatially 1-
dimensional PDE) periodic states, test the quality
of zeta function predictions.

4. Evaluate the stability exponents of a set of unstable
Navier-Stokes periodic states.

5. In Sec. VI we have assumed that the only symme-
try of the theory is the translation group T . How-
ever, one needs to quotient all spacetime and inter-
nal symmetries. For a one-dimensional lattice field
theory we have done this in companion paper I,1

and derived the dihedral-space group G = D∞ zeta
function for time-reversal invariant field theories,
drawing inspiration from Lind’s topological (rather
than our weighted, ‘dynamical’) zeta function,101

ζLind(z) = exp
(∑

H

NH

|G/H|
z|G/H|

)
, (158)

a generalization of Artin-Mazur zeta function. In
present context, G is the crystallographic space
group of a field theory over a hypercubic lattice Zd,
H a finite-index |G/H| subgroup of G, and NH is
the number of the periodic states that are invariant
under actions of the subgroup H.

6. Describe the grammar of the spatiotemporal cat
Eq. (56), i.e., its admissible mosaics. The grammar
is known in one spatiotemporal dimension,1 but not
in two.

7. Describe the admissible mosaics of a nonlinear field
theory with pruning, i.e., with couplings weaker
than those topologically equivalent to the anti-
integrable limit (see Sec. III C and companion pa-
per III2).
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Appendix A: Historical context

So, it turns out that the ‘chaos theory’ is a de-
terministic Euclidean field theory. But, as developed
here, this theory looks nothing like the textbook expo-
sitions5,64,137–141 of temporally chaotic, few degrees-of-
freedom dynamical systems. There one is given an initial
state, which then evolves in time, much like in mechanics,
where given an initial phase-space point, the integration
of Hamilton’s equations traces out a phase-space trajec-
tory.

Following familiar example might help understand how
‘chaos theory’ morphs into a Euclidian strong-coupling,
anti-integrable ‘deterministic field theory’, Consider the
1955 Fermi-Pasta-Ulam-Tsingou model46,142

d2ϕn

dt2
− 1

(∆x)2
(ϕn+1−2ϕn+ϕn−1)−ϕn+ϕ3

n = 0 (A1)

of a chain of molecules coupled with harmonic springs of
coupling strength 1/(∆x)2. This is the world of crystals,
solid state physics. In absence of nonlinear terms, the
solutions are oscillatory eigenmodes. With nonlinearities
they can also be breathers, intrinsic localized modes, etc.,
but with perturbations that are oscillatory and bounded
in magnitude.46,143

Next, consider equation Eq. (A1) with a + sign,

d2ϕn

dt2
+

1

(∆x)2
(ϕn+1 − 2ϕn + ϕn−1)− ϕn + ϕ3

n = 0

obtained by interpreting the imaginary spring constant
as a Klein-Gordon mass µ2 = − (∆x)2. Discretize time,

d2ϕn

dt2
⇒ 1

(∆t)2
(ϕn,t+1 − 2ϕnt + ϕn,t−1) ,

rescale ∆t, and combine the 2nd order derivatives into
the 2d Laplacian Eq. (50):

−□ϕz + µ2(ϕz − ϕ3
z) = 0 . (A2)

This is the Euclidean massive scalar Klein-Gordon ϕ4

field theory Eq. (55), a chaotic field theory that we
study here, and in the companion paper III:2 ‘inverted
potential’ theory, with hyperbolic instabilities and ‘tur-
bulence’. Our chaotic field theory instability criterion
(Sec. XIA) is the chaotic counterpart to the Dettmann144

and Pecora and Carroll145 master stability function crite-
rion for stability of a synchronous, i.e., temporally steady
state spatiotemporal state. In contrast to much of the lit-
erature,146–150 our ‘far from equilibrium’ field theory has

no added dissipation, and –in contrast to much that is
referred to as ‘chaos’ and ‘quantum chaos’ in current field
theory literature– is not driven by external noise, and re-
lies on no statistical assumptions. Curiously, no earlier
literature seems to have taken this road, presumably be-
cause before advent of chaos it was unclear how to tame
exponential instabilities: this version of ϕ4 theory is not
even mentioned in 2019 overview of all ϕ4 models.151

The central idea of spatiotemporal theory developed
here, global orbit stability, has its origins in the 1886
work of Hill27 and Poincaré .28 In modern theory of dy-
namical systems the Floquet-Bloch approach to stability
was first utilized in 1981 by Bountis & Helleman47 (and
MacKay and Meiss 152 in 1983) for temporal evolution,
and in 1989 by Pikovsky82 for spatially extended systems.

Our work is a continuation of the 1995 chronotopic
program of Politi, Torcini and Lepri153–156 who, in their
studies of propagation of spatiotemporal disturbances in
extended systems, discovered that the spatial stability
analysis can be combined with the temporal stability
analysis. However, in all of the above work on spatially
extended systems, the time and space instabilities were
treated asymmetrically. While the spatial stability was
parametrized by spatial Bloch wave number k1, the time
(in)stability was either estimated by forward evolution-
in-time numerical Lyapunov-Bloch exponents82 λ(k1)
(the Oseledets multiplicative ergodic theorem), or by
means of compact, finite primitive cell (Sec. IX) periodic
time solutions. Examples of the latter were spacetime
periodic solutions of Kuramoto-Sivashinsky and Navier-
Stokes PDEs studied in Ref. 117, 127, 157–160.

The observation that for spatiotemporally chaotic sys-
tems space and time could be considered on the same
footing was made in 1989 by Pikovsky,82 who noted that
there are settings in which ‘time’ and ‘space’ coordinates
could be interchanged. The essential innovation of our
approach, we believe, is the computation of spatiotem-
poral stability exponents over infinite Bravais lattices,
rather than forward-in-time Floquet/Lyapunov stability
of compact, finite time solutions, see Fig. 9. We work
in infinite spacetime, not a mix of infinite space with ei-
ther ergodic, or compact periodic time solutions. The
orbit Jacobian operator Eq. (75), Eq. (61), the orbit sta-
bility exponent λp = λp(k1, k2) Eq. (117), and the sur-
prisingly simple exact deterministic spatiotemporal zeta
function Eq. (135) are defined democratically over space-
time lattice momenta (Pikovsky’s Bloch quasi-momenta
and Bountis Floquet quasi-energies). In mathematical
physics, what we call orbit Jacobian operator J Eq. (65)
is called a ‘Hessian’, a ‘Jacobi matrix’, or a discrete
Schrödinger operator.47,161,162 The determinant of the
Hessian is often called the discriminant. Toda29 refers
to what we call orbit Jacobian as the ‘Hill discriminant’.
We add prefix ‘orbit’ to emphasize the distinction be-
tween the global stability, and the forward-in-time sta-
bility. Our stability exponent λp is the temporal evolu-
tion sum of expanding Lyapunov exponents generalized
to any spacetime dimension. The ‘thermodynamic limit’

https://en.wikipedia.org/wiki/Master_stability_function
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parameter is neither the time T, nor spatial extent L,
but the spacetime primitive cell volume (N = LT in the
2-dimensional spacetime example).

We refer the reader to Appendix A of companion paper
I1 for further discussion of the historical context of our
formulation of chaotic field theory.

1. Spatiotemporal cat

The temporal cat Eq. (58), one-dimensional case of
spatiotemporal cat studied in companion paper I,1 was
introduced by Percival and Vivaldi62 as a Lagrangian re-
formulation of the Hamiltonian Thom-Anosov-Arnol’d-
Sinai ‘cat map’.63–65 The two spacetime dimensions, five-
term recurrence relation Eq. (59) was introduced by
Gutkin and Osipov.10 For reasons that make sense in
context of N -body quantum systems, they refer to their
relation as a ‘non-perturbed coupled cat map’. We, how-
ever, find the name ‘spatiotemporal cat’11 more descrip-
tive. The d-dimensional spatiotemporal cat Eq. (56) is
a generalization of the temporal cat Eq. (58) obtained
by considering a (d−1)-dimensional spatial lattice where
each site field couples to its nearest spatial neighbors, in
addition to its nearest past and future field values. If the
spatial coupling strength is taken to be the same as the
temporal coupling strength, one obtains the Euclidean,
space ⇔ time-interchange symmetric difference equation
Eq. (56).

In the Hamiltonian, forward-in-time temporal evolu-
tion formulation, the dynamics is generated by iterations
of a piecewise linear cat map. In the spatiotemporal for-
mulation there is no map, only The Law, in form of a
recurrence condition, so we refer to the three-term recur-
rence Eq. (58) as the ‘temporal cat ’, and to the recurrence
condition Eq. (56) in higher spatiotemporal dimensions
as the ‘spatiotemporal cat ’.

Without compactification of fields to a circle, equation
Eq. (56) is known as the discretized screened Poisson
equation,163,164 with parameter µ the reciprocal screen-
ing length in the Debye-Hückel or Thomas-Fermi approx-
imations. In the homogeneous, free-field case Eq. (52),
the screened Poisson equation is also known as the time-
independent Yukawa or Klein–Gordon equation for a free
boson of mass µ. A massive free boson over a square lat-
tice is arguably the simplest field theory one can think of,
studied by many, for example recently in Refs. 165–167.
It is a linear theory, with a Gaussian partition sum, easy
to evaluate. In contrast, spatiotemporal cat is a compact
boson theory, a theory that is nonlinear in the sense that
it is not defined globally by a single linear relation, such
as the free-field theory Eq. (52), but by a set of distinct
piecewise linear conditions, such as the spatiotemporal
cat Eq. (53).

Green’s functions for massive free-boson on integer lat-
tices have been studied by many.62,86,87,108,165–185 Vari-
ants of semi-classical (Sec. II) and deterministic (Sec. III)
partition sums had been computed, by different methods,

in different contexts, by many,20,78,166 always on a given
finite primitive cell (geometry), but never on the total-
ity of infinite Bravais lattices, as we do here. We find
Ivashkevich et al.78 partition sum on torus with twisted
boundary conditions the most informative. Campos et
al.166 give explicit formula for the massless boson par-
tition sum in terms of a Dedekind eta function, and an
analytic formula for the stability exponent.

2. Kittens live here

The screened Poisson equation is of the same form
as the inhomogeneous Helmholtz equation, but for the
sign of µ2, with the oscillatory sin, cos solutions replaced
by the hyperbolic sinh, cosh, and exponentials.rfGraRyz
Spatiotemporal cat is a lattice of hyperbolic ‘anti-’
or ‘inverted’ oscillators186,187 on each site, coupled to
their nearest neighbors. Think of the usual discretized
Helmholz-type field theory as a spring mattress:188 you
push it, and it pushes back, it oscillates. Spatiotemporal
cat, on the other hand, has a ‘cat’ (a ‘rotor’) at every lat-
tice site: you push it, and the cat runs away, but, forced
by the compact boson condition Eq. (56), it eventually
has to come back. Chaos issues. Our task is to herd
these cats over all of the spacetime.
In statistical mechanics, lattice discretized Helmholtz

equation is known as the ‘Gaussian model’.189–192 In his
Statistical Physics,189 Leo Kadanoff draws the Gaussian
model phase diagram, explains the physics within the
oscillatory [−K,K] window, withK a real spring stiffness
parameter as in Eq. (A1), but dares not venture into
imaginary K, real boson mass µ lands, as “dragons live
here”. In this series of papers, we have breached into
this domain hitherto reputed unreachable,193 and report
back that only kittens live here.

Appendix B: Bravais sublattices

When is a two-dimensional Bravais lattice LA a sublat-
tice of a finer Bravais lattice LAp

? Define LAp
by a pair of

primitive vectors in the Hermite normal form [Lp×Tp]Sp
,

ap1 =

(
Lp

0

)
, ap2 =

(
Sp

Tp

)
. (B1)

The sublattices LA of LAp
have primitive vectors that are

linear combinations of a1 and a2:

a1 = r1 a
p
1 + s2 a

p
2

a2 = s1 a
p
1 + r2 a

p
2 , (B2)

where r1, r2, s1 and s2 are integers, so that every lattice
site of the sublattice LA belongs to the Bravais lattice
LAp

. If we also choose LA primitive vectors in the Her-
mite normal form [L×T]S , the relation Eq. (B2) can be
rewritten as:

A = ApR , (B3)

https://chaosbook.org/overheads/spatiotemporal/LC21.pdf#appendix.A
https://en.wikipedia.org/wiki/Screened_Poisson_equation
https://en.wikipedia.org/wiki/Screened_Poisson_equation
https://en.wikipedia.org/wiki/Klein-Gordon_equation
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where

A =

[
L S
0 T

]
, Ap =

[
Lp Sp

0 Tp

]
, R =

[
r1 s1
s2 r2

]
.

Then the matrix R is:

R = A−1
p A =

[
L/Lp S/Lp − SpT/LpTp

0 T/Tp

]
. (B4)

Comparing Eq. (B4) with Eq. (B3), we note that LA is
a sublattice of LAp

if L is a multiple of Lp, T is multiple
of Tp and

a2 × ap2 = STp − TSp (B5)

is a multiple of the prime tile area LpTp.
So, given Bravais lattice LAp

with primitive cell Ap,
one gets all of its sublattices by computing A = ApR,
with the repeats matrix R in the Hermite normal form,

R =

[
r1 s
0 r2

]
, (B6)

where r1, r2 > 0 and 0 ≤ s < r1 are integers.

1. Examples of prime orbits

The square lattice unit primitive cell,

A =

[
1 0
0 1

]
, NA = 1 , (B7)

[1×1]0-periodic field configuration, or the constant lattice
field

Φ =
[
ϕ00

]
is the unit cell of a square Z2 integer lattice.

[2×1]0-periodic field configuration

Φ =
[
ϕ00 ϕ10

]
,

[1×2]0-periodic field configuration

Φ =

[
ϕ01

ϕ00

]
have ‘bricks’ stacked atop each other, see mosaics of
Fig. 7 (a) and (b). [2×1]1-periodic field configuration

Φ =
[
ϕ00 ϕ10

]
has layers of ‘bricks’ stacked atop each other, but with a
relative-periodic boundary condition, with layers shifted
by S = 1, as in Fig. 4 (a).

The boundary conditions for the above three kinds
of primitive cells can illustrated by repeats of the three
‘bricks’, on top, sideways, and on top and shifted:

[2×1]0 :

[
ϕ00 ϕ10

ϕ00 ϕ10

]
, [1×2]0 :

[
ϕ01 ϕ01

ϕ00 ϕ00

]

[2×1]1 :

[
ϕ00 ϕ10

ϕ00 ϕ10

]
.

[3×2]1-periodic field configuration can be presented as a
field over the parallelepiped -shaped tilted primitive cell
of Fig. 3 (a),

[3×2]1 :

[
ϕ11 ϕ21 ϕ01

ϕ00 ϕ10 ϕ20

]
,

or as an [3×2] rectangular array an [3×2] rectangular
array

Φ =

[
ϕ01 ϕ11 ϕ21

ϕ00 ϕ10 ϕ20

]
, (B8)

with the Bravais lattice relative-periodicity imposed by a
shift boundary condition, as in Fig. 4 (b) and the mosaic
of Fig. 7 (f).
As shown above, an [L×T]S primitive cell field config-

uration is not prime if it is invariant under the transla-
tions of lattice [Lp×Tp]Sp

, and [L×T]S is a sublattice of
[Lp×Tp]Sp

.
For example, a field configuration over primitive cell

[2×2]0,

Φ =

[
ϕ10 ϕ00

ϕ00 ϕ10

]
.

is a repeat and shift of the field configuration

Φp =
[
ϕ00 ϕ10

]
over primitive cell [2×1]1. As shown in Fig. 4 (a), Bravais
lattice [2×2]0 is a sublattice of [2×1]1. Over the infinite
spacetime Φ and Φp are the same field configuration, as
is clear by inspection of Fig. 7 (c).

For further examples of orbits and their symmetries,
see companion papers I and III.1,2

Appendix C: Computation of spatiotemporal cat periodic
states

The Law Eq. (57) is piecewise linear, and, given a prim-
itive cell A and a mosaic M Eq. (46) over it, always has
a unique solution ΦM. We solve it by reciprocal lattice
diagonalization (Sec. IXB), by direct determinant evalu-
ation (Appendix C 3), or by matrix inversion:

ϕz =
∑
z′∈Zd

gzz′mz′ , gzz′ =

[
1

−□+ µ2

]
zz′

, (C1)

where gzz′ , the inverse of the orbit Jacobian operator, is
the Klein-Gordon free-field Eq. (56) Green’s function. In
literature, gzz′ is known as the Green’s function for the
d-dimensional discretized screened Poisson equation.
The solution ΦM is a periodic state, and the mosaic

M is said to be admissible, if and only if all lattice-site
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field values ϕz of ΦM lie in the compact boson state space
Eq. (56)

M =
{
Φ | ϕz ∈ [0, 1) , z ∈ Zd

}
. (C2)

So we need to define the range of permissible integers mz

(‘covering’ alphabet), and, if we are able, the grammar
of admissible mosaics M.

1. Spatiotemporal cat mosaics

‘Letter’ mz is the integer part of the LHS of The Law
Eq. (56) that enforces the circle (mod 1) condition for
field ϕz on lattice site z. Its range depends on the Klein-
Gordon mass-squared µ2, and the lattice dimension d. If
all nearest neighbor fields are as large as allowed, ϕz′ =
1− ϵ, in two spatiotemporal dimensions the integer part
of the LHS of Eq. (59) can be as low as −3, for ϕz = 0,
or as high as µ2+3, for ϕz = 1 − ϵ, hence the covering
alphabet A = {mz} is

A = {3, 2, 1 ; 0, · · · , µ2 ; µ2+1, µ2+2, µ2+3} , (C3)

where symbol mz denotes mz with the negative sign, i.e.,
‘3’ stands for symbol ‘−3’. All our numerical calculations
are carried out for µ2 = 1, with alphabet

A = {3, 2, 1 ; 0, 1 ; 2, 3, 4} . (C4)

As eachM corresponds to a unique periodic state ΦM, the
periodic state can be visualized by its color-coded mosaic
M.

Given a two-dimensional spatiotemporal mosaic M,
the corresponding periodic state can be computed using
Eq. (C1),

Φi1j1 =

2∑
i2=0

1∑
j2=0

gi1j1,i2j2Mi2j2 ,

provided that the correct boundary conditions are im-
posed on gi1j1,i2j2 .
If all nearest neighbor fields are as small as allowed,

ϕz′ = 0, the Laplacian does not contribute, and the
integer part of the LHS of Eq. (56) ranges from 0, for
ϕz = 0, to µ2, for ϕz = 1, hence the µ2 + 7 letter alpha-
bet Eq. (C3) can be divided into two subsets, the interior
and the exterior alphabets A0 and A1, respectively.

A0 = {0, . . . , µ2} ,
A1 = {3, 2, 1} ∪ {µ2+1, µ2+2, µ2+3} . (C5)

If all mz of a mosaic M belong to the interior alphabet
A0, the mosaic M is admissible.11

However, the grammar rules that would determine
what spatiotemporal cat mosaic M are admissible in gen-
eral are -except in the d = 1 case1- not known to us.
We solve the equations for all possible mosaics, and then

-for mosaics containing exterior alphabets A1 letters- dis-
card those for which ΦM lies outside the unit hypercube
Eq. (C2).
For example, for µ2 = 1 the mosaic

M =

[
−1 1 0
4 −1 −1

]
over primitive cell [3×2]1 of Fig. 4 (b) is corresponding
to the periodic state:

ΦM =

[
ϕ01 ϕ11 ϕ21

ϕ00 ϕ10 ϕ20

]
=

1

35

[
5 17 6
34 5 3

]
.

One can check that The Law is satisfied everywhere by
substituting this solution into Eq. (59).

2. Spatiotemporal cat primitive cells’ orbit Jacobians

(Continuation of calculations of Sec. IX.) Develop-
ing some feel for the orbit Jacobian formulas for two-
dimensional spatiotemporal cat examples is now in or-
der. The simplest examples of periodic states, illustrated
by spatiotemporal mosaic tilings of Fig. 7, are (i) space-
time steady states over the unit cell [1×1]0, (ii) spatial
steady states over [1×T]0, (iii) temporal steady states
over [L×1]0, and (iv) time-relative steady states over
[L×1]S , S ̸= 0, stationary patterns in a time-reference
frame194 moving with a constant velocity S/T.
For explicit values of orbit Jacobians, we take the low-

est integer value of the Klein-Gordon mass, µ2 = 1,
throughout the paper.
Consider first the family of primitive cells of temporal

period one, T = 1 in Eq. (99),

DetJ[L×1]0 = µ2
L−1∏
m1=1

[
p
(2π
L

m1

)2
+ µ2

]
. (C6)

This is the one-dimensional temporal cat orbit Jacobian,
with calculations carried out as in Eq. (98). The steady
state orbit Jacobian is

DetJ[1×1]0 = µ2 ⇒ 1 , (C7)

the period-2 periodic state orbit Jacobian is

DetJ[2×1]0 = µ2(µ2 + 4) ⇒ 5 , (C8)

and so on. However, for the simplest relative-periodic
state, with slant S/T = 1, the orbit Jacobian Eq. (102) is
already more surprising, it is larger than DetJ[2×1]0 ⇒ 5:

DetJ[2×1]1 = µ2
[
p (π)

2
+ p (−π)

2
+ µ2

]
= µ2(µ2 + 8) ⇒ 9 . (C9)

The spatiotemporal spatiotemporal cat calculations then
proceed as in example Eq. (103),

DetJ[2×2]0 = µ2(µ2 + 4)2(µ2 + 8) ⇒ 225 ,
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and so on.
For example, one can check that the orbit Jacobian

formula Eq. (99) for the [3×2]0 periodic states,

DetJ[3×2]0 =
2∏

m1=0

1∏
m2=0

[
p
(2π

3
m1

)2
+ p
(2π

2
m2

)2
+ µ2

]
⇒ 5120 , (C10)

is in agreement with our alternative method of its eval-
uation, the fundamental fact count Eq. (C17) explained
below.

Consider next the primitive cell [3×2]1 of Fig. 3 (a),
Fig. 4 (b) and Fig. 8 (a). We have computed the eigen-
values of its Laplacian in Eq. (103), so the corresponding
orbit Jacobian Eq. (72) is

DetJ[3×2]1 = µ2(µ2 + 4)3(µ2 + 6)2 = 6125 . (C11)

For a list of such two-dimensional spatiotemporal cat or-
bit Jacobians, see Table I, and the list of the spatiotempo-
ral cat orbit Jacobians evaluated for µ2 = 1, see Table II.

3. Spatiotemporal cat: Fundamental fact

As shown in the companion paper I,1 for one-
dimensional lattice temporal cat orbit Jacobians count
the numbers of period-n periodic states,

Nn = |DetJn | . (C12)

We now show that for a spatiotemporal cat orbit Jaco-
bian counts the number of periodic states in any spa-
tiotemporal dimension d.

Spatiotemporal cat periodic state ΦM over primitive
cell A is a point within the unit hypercube [0, 1)NA , where
NA is the primitive cell volume Eq. (11). Visualize now
what spatiotemporal cat defining equation Eq. (57)

JAΦM −M = 0

means geometrically. The [NA×NA] orbit Jacobian matrix
JA stretches the state space unit hypercube Φ ∈ [0, 1)NA

into an NA-dimensional fundamental parallelepiped (or
parallelogram), and maps the periodic state ΦM into
a point on integer lattice ZNA within it, in the NA-
dimensional configuration state space Eq. (12). This
point is then translated by integer winding numbers M
into the origin. What Baake et al.195 call the ‘fundamen-
tal fact’ follows:

NA = |DetJA| , (C13)

the number of periodic states equals the number of inte-
ger lattice points within the fundamental parallelepiped.

For the history of ‘fundamental fact’ see Appendix A.
Historical context of the companion paper I.1 Reader
might also want to check the figures of a few fundamen-
tal parallelepipeds there, but we know of no good way

of presenting them visually for primitive cells of interest
here, with NA > 3.
It is a peculiarity of the spatiotemporal cat that it in-

volves two distinct integer lattices. (i) The spacetime
coordinates Eq. (6) are discretized by integer lattice Zd.
The primitive cell A Eq. (10) is an example of a funda-
mental parallelepiped, and we use the fundamental fact
when we express the volume Eq. (11) of the primitive cell,
i.e. the determinant of the matrix A, as the number of
lattice sites within the primitive cell. (ii) For a spatiotem-
poral cat the lattice site field ϕz Eq. (56) is compactified
to the unit circle [0, 1), imparting integer lattice struc-
ture to the configuration state space Eq. (12): the orbit
Jacobian matrix JA maps a periodic state ΦM ∈ [0, 1)NA

to a ZNA integer lattice site M. Nothing like that, and
no ‘fundamental fact’ applies to general nonlinear field
theories of Sec. IV.
Example: Fundamental parallelepiped evaluation of a

orbit Jacobian. As a concrete example consider peri-
odic states of two-dimensional spatiotemporal cat with
periodicity [3×2]0, i.e., space period L = 3, time period
T = 2 and tilt S = 0. Periodic states within the primi-
tive cell and their corresponding mosaics can be written
as two-dimensional [3×2] arrays:

Φ[3×2]0 =

[
ϕ01 ϕ11 ϕ21

ϕ00 ϕ10 ϕ20

]
,

M[3×2]0 =

[
m01 m11 m21

m00 m10 m20

]
. (C14)

Reshape the periodic states and mosaics into vectors:

Φ[3×2]0 =



ϕ01

ϕ00

ϕ11

ϕ10

ϕ21

ϕ20


, M[3×2]0 =



m01

m00

m11

m10

m21

m20


. (C15)

The reshaped orbit Jacobian matrix acting on these pe-
riodic states is a block matrix:

J[3×2]0 =



2s −2 −1 0 −1 0

−2 2s 0 −1 0 −1

−1 0 2s −2 −1 0

0 −1 −2 2s 0 −1

−1 0 −1 0 2s −2

0 −1 0 −1 −2 2s


. (C16)

where the stretching factor 2s = 4+µ2. The fundamental
parallelepiped generated by the action of orbit Jacobian
matrix J[3×2]0 on the state space unit hypercube Eq. (56)
is spanned by 6 primitive vectors, the columns of the or-
bit Jacobian matrix Eq. (C16). The ‘fundamental fact’
now expresses the orbit Jacobian, i.e., the number of pe-
riodic states within the fundamental parallelepiped, as

https://youtube.com/embed/Ztt1v8uGCUE
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TABLE I. The numbers of spatiotemporal cat periodic states for primitive cells A = [L×T]S up to [3×3]2. Here NA(µ
2) is the

number of periodic states, and MA(µ
2) is the number of prime orbits. The Klein-Gordon mass µ2 can take only integer values.

A NA(µ
2) MA(µ

2)

[1×1]0 µ2 µ2

[2×1]0 µ2(µ2 + 4) µ2(µ2 + 3)/2

[2×1]1 µ2(µ2 + 8) µ2(µ2 + 7)/2

[3×1]0 µ2(µ2 + 3)2 µ2(µ2 + 2)(µ2 + 4)/3

[3×1]1 µ2(µ2 + 6)2 µ2(µ2 + 5)(µ2 + 7)/3

[4×1]0 µ2(µ2 + 2)2(µ2 + 4) µ2(µ2 + 1)(µ2 + 3)(µ2 + 4)/4

[4×1]1 µ2(µ2 + 4)2(µ2 + 8) µ2(µ2 + 3)(µ2 + 4)(µ2 + 5)/4

[4×1]2 µ2(µ2 + 4)(µ2 + 6)2 µ2(µ2 + 4)(µ2 + 5)(µ2 + 7)/4

[4×1]3 µ2(µ2 + 4)2(µ2 + 8) µ2(µ2 + 3)(µ2 + 5)(µ2 + 8)/4

[5×1]0 µ2(µ4 + 5µ2 + 5)2 µ2(µ2 + 1)(µ2 + 2)(µ2 + 3)(µ2 + 4)/5

[5×1]1 µ2(µ4 + 10µ2 + 23)2 µ2(µ2 + 3)(µ2 + 7)(µ4 + 10µ2 + 19)/5

[2×2]0 µ2(µ2 + 4)2(µ2 + 8) µ2(µ2 + 3)/2× (µ4 + 13µ2 + 38)/2

[2×2]1 µ2(µ2 + 4)(µ2 + 6)2 µ2(µ2 + 7)/2× (µ2 + 4)(µ2 + 5)/2

[3×2]0 µ2(µ2 + 3)2(µ2 + 4)(µ2 + 7)2 µ2(µ2 + 3)(µ2 + 4)(µ6 + 17µ4 + 91µ2 + 146)/6

[3×2]1 µ2(µ2 + 4)3(µ2 + 6)2 µ2(µ2 + 3)(µ2 + 5)(µ6 + 16µ4 + 85µ2 + 151)/6

[3×3]0 µ2(µ2 + 3)4(µ2 + 6)4

[3×3]1 µ2(µ2 + 3)2(µ6 + 15µ4 + 72µ2 + 111)2

[3×3]2 µ2(µ2 + 3)2(8s3 + 3(µ2 + 4)2 − 1)2

TABLE II. The numbers of the µ2 = 1 spatiotemporal cat
[L×T]S periodic states: N[L×T]S is the number of periodic
states, and M[L×T]S is the number of prime orbits.

[L×T]S M N

[1×1]0 1 1

[2×1]0 2 5 = 2 [2×1]0 + 1 [1×1]0

[2×1]1 4 9 = 4 [2×1]1 + 1 [1×1]0

[3×1]0 5 16 = 5 [3×1]0 + 1 [1×1]0

[3×1]1 16 49 = 16 [3×1]1 + 1 [1×1]0

[4×1]0 10 45 = 10 [4×1]0 + 2 [2×1]0 + 1 [1×1]0

[4×1]1 54 225 = 54 [4×1]1 + 4 [2×1]1 + 1 [1×1]0

[4×1]2 60 245 = 60 [4×1]2 + 2 [2×1]0 + 1 [1×1]0

[2×2]0 52 225 = 52 [2×2]0 + 2 [2×1]0 + 2 [1×2]0

+4 [2×1]1 + 1 [1×1]0

[2×2]1 60 245 = 60 [2×2]1 + 2 [1×2]0 + 1 [1×1]0

[3×2]0 850 5 120 = 850 [3×2]0 + 5 [3×1]0

+2 [1×2]0 + 1 [1×1]0

[3×2]1 1 012 6 125 = 1 012 [3×2]1 + 16 [3×1]2

+2 [1×2]0 + 1 [1×1]0

[3×3]0 68 281 614 656 = 68 281 [3×3]0 + 5 [3×1]0

+16 [3×1]1 + 16 [3×1]2 + 5 [1×3]0 + 1 [1×1]0

[3×3]1 70 400 633 616 = 70 400 [3×3]1 + 5 [1×3]0 + 1 [1×1]0

a polynomial of order NA in the Klein-Gordon mass µ2

Eq. (66),

N[3×2]0 = |DetJ[3×2]0 |
= µ2(µ2 + 3)2(µ2 + 4)(µ2 + 7)2 , (C17)

without recourse to any explicit diagonalization, such
as the reciprocal lattice diagonalization Eq. (99). For
µ2 = 1 this agrees with the reciprocal lattice evaluation
Eq. (C10). For a list of the numbers of spatiotempo-
ral cat periodic states for primitive cells [L×T]S up to
[3×3]2, see Table I.

For µ2 = 1 spatiotemporal cat the pruning turns out
to be very severe. Only 52 of the prime [2×2]0 mosaics
are admissible. As for the repeats of smaller mosaics,
there are 2 admissible [1×2]0 mosaics repeating in time
and 2 [2×1]0 mosaics repeating in space. There are 4
admissible 1/2-shift periodic boundary [1×2]0 mosaics.
And there is 1 admissible mosaic which is a repeat of
letter 0. The total number of [2×2]0 of periodic states is
obtained by all cyclic permutations of admissible prime
mosaics,

N[2×2]0 = 52 [2×2]0 + 2 [2×1]0 + 2 [1×2]0

+4 [2×1]1 + 1 [1×1]0 = 225 , (C18)

summarized in Table II. This explicit list of admissible
prime orbits verifies the orbit Jacobian formula Eq. (99).

4. Prime lattice field configurations

Here we show how to enumerate the total numbers of
distinct periodic states in terms of prime orbits.
The enumeration of spatiotemporal cat doubly-

periodic states proceeds in 3 steps:

1. Construct a hierarchy of two-dimensional Bravais
lattices LA, starting with the smallest primitive
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cells, list Bravais lattices by increasing [L×T]S ,
one per each set related by translation symmetries
Eq. (76) (here we are ignoring discrete point group
D4).

2. For each LA = [L×T]S Bravais lattice, compute
NA, the number of doubly-periodic spatiotempo-
ral cat periodic states, using the ‘fundamental fact’
NA = |DetJA|.

3. We have defined the prime orbit in Sec. VII.

The total number of (doubly) periodic mosaics is the
sum of all cyclic permutations of prime mosaics,

NA =
∑
Ap|A

MAp [Lp×Tp]Sp

where the sum goes over every lattice LAp = [Lp×Tp]Sp

which contains [L×T]S .
Given the number of periodic states, the number of

A = [L×T]S-periodic prime orbits is computed recur-
sively:

MA =
1

LT

NA −
LpTp<LT∑

Ap|A

LpTp MAp

 . (C19)

5. Example: ‘Escape rate’ of temporal cat

The topological zeta function of temporal cat
is:1,196

1/ζAM (z) = exp

(
−

∞∑
n=1

Nn

n
zn

)

=
1− (µ2 + 2)z + z2

(1− z)2
, (C20)

where Nn is the number of periodic states
with period n. Due to the uniform stretching
factor µ2 + 2, the deterministic zeta function
of temporal cat has the same form, up to a
rescaling:

1/ζ[0, z] = exp

(
−

∞∑
n=1

Nn

n
tn

)
= 1/ζAM (t) ,

t =
z

Λ
, (C21)

where Λ is the stability multiplier

Λ = eλ =
1

2

(
µ2 + 2 + µ

√
µ2 + 4

)
. (C22)

Solving for the roots of 1/ζ[0, z] = 0, we have:

t = Λ±1 → z = 1 or Λ2 . (C23)

The leading root is 1 so the ‘escape rate’ is 0.
The Fredholm determinant97 of temporal cat
is:

F (0, z) = exp

(
−

∞∑
n=1

Nnz
n

n |DetJn |

)

= exp

(
−

∞∑
n=1

zn

n

)
= 1− z , (C24)

where we have used the ‘fundamental fact’
Eq. (C12). The ‘escape rate’ is again 0, as it
should be - cat map is by construction prob-
ability conserving.

6. Example: Expectation value of stability exponent of
temporal cat.

To compute the expectation value of the stability ex-
ponent, take the logarithm of periodic state’s primitive
cell stability as the Birkhoff sum A, Eq. (19), stability ex-
ponent observable, and compute the corresponding det-
erministic zeta function:

1/ζ[β, z] = exp

(
−

∞∑
n=1

Nn

n

exp(β ln |DetJn|)zn

Λn

)
,

(C25)
where |DetJn| is the primitive cell stability of period-n
periodic states, and Λ is the stability multiplier which is
related to the stability exponent by Eq. (C22). Note that
the number of n-periodic state is given by the primitive
cell stability:1,196

Nn = |DetJn| = Λn + Λ−n − 2 . (C26)

Using Eq. (143) the expectation value of the stability
exponent is:

⟨λ⟩ = ⟨A⟩ζ
⟨N⟩ζ

=
∂ζ[β, z]

∂β

/
x
∂ζ[β, z]

∂z

∣∣∣∣
β=0,z=z(0)

=
∂ ln ζ[β, z]

∂β

/
z
∂ ln ζ[β, z]

∂z

∣∣∣∣
β=0,z=1

. (C27)

The numerator of Eq. (C27) is:

∞∑
n=1

(Λn + Λ−n − 2) ln(Λn + Λ−n − 2)

nΛn
, (C28)

and the denominator is:

∞∑
n=1

Λn + Λ−n − 2

Λn
. (C29)

Both the numerator and the denominator of Eq. (C27)
diverge to infinity. Using the Stolz-Cesàro theorem,197
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the ratio of Eq. (C28) and Eq. (C29) equals:

⟨λ⟩ = lim
n→∞

ln(Λn + Λ−n − 2)

n
= lnΛ = λ , (C30)

which agrees with the fact that every periodic state has
a same stability exponent λ.

Appendix D: Spectra of orbit Jacobian operators for
nonlinear field theories

The simplicity of the spatiotemporal cat orbit Jacobian
operator band spectrum Eq. (112), plotted in Fig. 10 (a)
and Fig. 12 (a), is a bit misleading. As explained in
Sec. VB, the uniform stretching factor describes only the
stability of a steady state solution, for any field theory.
To get a feeling for the general case, in section 10 of paper
I1 we compute the stability of a period-2 periodic state
for two nonlinear field theories. Here we outline such
calculations, to illustrate the essential difference between
the very special spatiotemporal cat case, and the general,
nonlinear case. For a detailed exposition, see companion
paper III,2 where we evaluate stabilities of large sets of
nonlinear field theories’ periodic states.

An analytic eigenvalue formula is feasible only for the
period-2 periodic state; in general, periodic states and
the associated orbit Jacobian operator spectra are evalu-
ated numerically. The simplest non-constant solutions, a
period-2 periodic states, suffice to illustrate the general
case.

1. One-dimensional ϕ3 field theory period-2 periodic state

Consider the ϕ3 theory Eq. (54)

−□ϕz + µ2 (1/4− ϕ2
z) = 0 .

In one spatiotemporal dimension, this field theory is
a temporal lattice reformulation of the forward-in-time
Hénon map, where large numbers of periodic solutions
can be easily computed131. The theory has one period-2
orbit, conventionally labelled LR = {ΦLR,ΦRL}:[

ϕ0

ϕ1

]
=

 ϕ−
√

1
4 − ϕ

2

ϕ+

√
1
4 − ϕ

2

 . (D1)

where ϕ = (ϕ0 + ϕ1)/2 = 2/µ2 is the Birkhoff average
Eq. (19) of the field ϕt. In the anti-integrable limit
Eq. (69) the lattice site field values tend to parabola
1/4− ϕ2

z = 0 steady state values [ϕ0, ϕ1] → [−1/2, 1/2] .
The Bloch theorem Eq. (116) yields two eigenstate

bands,

ΛLR,±(k) = −2±
√
µ4 − 12− p(2k)2 , (D2)

plotted in the k ∈ (−π/2, π/2] Brillouin zone in
Fig. 10 (b) for µ2 = 3.5. For a finite primitive cell of
even period, tiled by rth repeat of the period-2 periodic
state Φp, the eigenvalues of its orbit Jacobian matrix are
ΛLR,±(k) evaluated at k restricted to a discrete set of
wave vectors k, multiples of π/r: an example is worked
out in Sec. IXC, with third and fourth repeats plotted
in Fig. 10 (b).

2. Two-dimensional ϕ4 field theory [2×1]0 periodic state

The spatiotemporal ϕ4 lattice field theory has a cubic
defining equation Eq. (55),

−□ϕz + µ2(ϕz − ϕ3
z) = 0 ,

with at most 3 steady states, to which companion paper
III2 assigns alphabet Eq. (45) A = {−1, 0, 1} .
For Klein-Gordon mass-squared µ2 = 5, two-

dimensional ϕ4 has three period-2 prime orbits of pe-
riodicity [2×1]0, including numerically computed prime
orbit, mosaic

Φ01 = (0.354322 , 1.12892) , M = 0 1 . (D3)

The orbit Jacobian operator has two Bloch bands
Eq. (116) plotted in Fig. 12 (b). For any finite primitive
cell tiled by repeats of the prime orbit Φp, eigenstates
of the orbit Jacobian matrix have a discrete set of wave
vectors k. As an example, eigenvalues of a [6×4]0 peri-
odic state tiled by 12 repeats of Φp have wave vectors k
marked by black dots in Fig. 12 (b).

REFERENCES
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98P. Cvitanović, R. Artuso, L. Rondoni, and E. A. Spiegel, “Cy-
cle expansions,” in Chaos: Classical and Quantum, edited by
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R. Artuso, R. Mainieri, G. Tanner, and G. Vattay (Niels Bohr
Inst., Copenhagen, 2025).

111M. C. Gutzwiller, “Periodic orbits and classical quantization
conditions,” J. Math. Phys. 12, 343–358 (1971).

112B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuw-
stadt, H. Faisst, B. Eckhardt, H. Wedin, R. R. Kerswell, and
F. Waleffe, “Experimental observation of nonlinear traveling
waves in turbulent pipe flow,” Science 305, 1594–1598 (2004).

113F. Waleffe, “Exact coherent structures in channel flow,” J. Fluid
Mech. 435, 93–102 (2001).

114H. Wedin and R. R. Kerswell, “Exact coherent structures in
pipe flow,” J. Fluid Mech. 508, 333–371 (2004).

115G. J. Chandler and R. R. Kerswell, “Invariant recurrent so-
lutions embedded in a turbulent two-dimensional Kolmogorov
flow,” J. Fluid Mech. 722, 554–595 (2013).

116F. Christiansen, P. Cvitanović, and V. Putkaradze, “Spatiotem-
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