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[click here for an example of a fluid in motion]

need the 3D velocity field at every (x, y, 2)!

numerical simulations track millions of computational degrees
of freedom; observations, from laboratory to satellite, stream
terabytes of data, but how much information is there in all of
this?



http://chaosbook.org/tutorials/aspectL.html

knowing when to stop

motions of fluids : require co bits??

that cannot be right...




Science originates from curiosity and bad eyesight.

— Bernard de Fontenelle,
Entretiens sur la Pluralité des Mondes Habités

every physical problem is coarse partitioned and finite




any physical system experiences (background,
observational, intrinsic, measurement, - - -) noise

any numerical computation is a noisy process due to the
finite precision of computation

any set of dynamical equations models nature up to a
given finite accuracy, since degrees of freedom are always
neglected

any prediction only needs to be computed to a desired
finite accuracy



mathematician’s idealized state space

a manifold M € R? : d continuous numbers determine the
state of the system x ¢ M

noise-limited state space

a ‘grid’ M’ : N discrete states of the system a € M’, one for
each noise covariance ellipsoid A4




noise limited cell | noise limited partition grid J

a resolvable neighborhood is state space noise-partitioned
no smaller than a ball whose into neighborhoods indicated
radius is the noise amplitude by their centers

the centers = prototypes in a vector quantization scheme for a
compressive encoding of state space



cell is described by a
d-dimensional Gaussian,
covariance matrix A,

p(a) oc volume o |Ag|~1/2,

entropy = } In {(27e)?|A4|}




define
p(x,a) = p(x|a)p(a)
mutual information

(M, M) = /dx > p(x,a) ()p())
aeM’

- @ / d p(x() np(x]a) ~ | dxp(x) np(x)
= — " p(a)H(M|a)

aeM’

measures how much we know about M, given the grid M’ and
the Gaussian local entropy

H(M|a) = %In {(2re)?|aa}

rest of the talk: we show you how to compute A,



dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise A

limits the resolution that can be attained in partitioning the state
space




dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise A

limits the resolution that can be attained in partitioning the state
space

is uniform, leading to a uniform grid partitioning of the state
space




dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise A

limits the resolution that can be attained in partitioning the state
space

in dynamics, this is wrong!
noise has memory




dynamics + noise: unique coarse-grained partition

noise memory

accumulated noise along dynamical trajectories
always coarsens the partition




dynamics + noise: unique coarse-grained partition

noise memory

accumulated noise along dynamical trajectories
always coarsens the partition

that is good, because

dynamics + noise determine
the finest attainable partition




optimal partition hypothesis

o the best of all possible state space partitions
@ optimal for the given dynamical system, the given noise

'D. Lippolis and P. Cvitanovié, arXiv.org:0902.4269; arXiv.org:1206.5506


http://arxiv.org/abs/0902.4269
http://arxiv.org/abs/1206.5506

devil is in the details

in what follows: fluid dynamics as an example
for fluids, have equations: can compute the optimal partition J

(this is not a talk about fluid dynamics)



turbulence

since 1822 we have Navier-Stokes equations

—-i-(v-V)v:lRVZv—Vp-i—f, V.-v=0,

velocity field v € R3 ; pressure field p ; driving force f

since 1883 Osborne Reynolds experiments
the most fundamental outstanding problem of classical physics J

large Reynolds number R: turbulence!

what is it to you? nasty weather...



requires 3-dimensional volume discretization
— integration of 10*-10° coupled ordinary differential equations

challenging, but today possible




numerical challenges

typical simulation

each instant of the flow > Megabytes
a video of the flow > Gigabytes




amazing data! amazing numerics!

o here each instant of the flow ~ 2.5 MB
o videos of the flow ~ GBs



turbulence.zip

replace the oo of turbulent videos by the best possible
small finite set

of videos encoding all physically distinct motions of the
turbulent fluid




dynamical system

state space

a manifold M € R? : d numbers determine the state of the
system

representative point

x(t) e M
a state of physical system at instant in time




x(t)e M,d =0
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry — 3-d velocity field
over the entire pipe?

2Casimir W.H. van Doorne (PhD thesis, Delft 2004)



map f!(xp) = representative point time ¢ later

f maps a region M; of the state space into the region f{(M;)

v




dynamics defined

dynamical system
the pair (M, f)

the problem
enumerate, classify all solutions of (M, f)




deterministic

1-step memory partition ] 2-step memory refinement
M= MoUMqUMos M= MijgU M UMio
ternary alphabet labeled by nine ‘words’

A={1,2,3}. {00,01,02,---,21,22}.



topological dynamics

fi)
b

KN @:

one time step each region = node
points from Mo allowed transitions
reach { Mg, M1y, M1z} Ti021 = T1121 = T1221 #0

and no other regions directed links




topological dynamics

Transition graph Ty, A
regions reached in one
time step

example: state space resolved into 7 neighborhoods

{Moo, Mo11, Moo, Mi10, M111, M1o01, Mioo}




deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions J




deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions J

yet

in practice
every physical problem must be coarse partitioned J




deterministic

state space coarse partition | 2-step memory refinement

V

M= MoUMqUMos M= MijgU M UMio
ternary alphabet labeled by nine ‘words’
A={1,2,3} {00,01,02,--- ,21,22}.



|2\
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deterministic partition noise blurs the boundaries

can be refined when overlapping, no further
ad infinitum refinement of partition




@ mhm, do not know how to compute boundaries...



@ mhm, do not know how to compute boundaries...
@ however, each partition contains a short periodic point



deterministic partition . .
noisy partition

some short periodic points:
fixed point 1 = {x}
two—cycle 01 = {X01 , X10}

periodic points blurred by noise
into cigar-shaped densities



@ each partition contains a short periodic point smeared into
a ‘cigar’ by noise



@ each partition contains a short periodic point smeared into
a ‘cigar’ by noise
@ compute the size of a noisy periodic point neighborhood!



the (well known) key formula that we now derive:

Qn+1 = MnQnMrz- + Ap

density covariance matrix at time n: Q,
noise covariance matrix: A,
Jacobian matrix of linearized flow: M,

Kalman filter ‘prediction’



Xn

in one time step a linearized neighborhood of x, is
advected by the flow and

mapped by the Jacobian matrix M, into a stretched and
rotated neighborhood whose size and orientation are given
by the M eigenvalues and eigenvectors



let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qi = <ZjZkT >

a step later the Gaussian is advected to

<zjsz> — <(Mz)j(Mz)Z>
Q - mMam’

add noise, get the next slide



M,QuMT + A,

in one time step
a Gaussian density distribution with covariance matrix Qp, is

advected by the flow
smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Q. 1



Qn+1 = MnQnM,Z- +Ap

advect deterministically
local density covariance matrix Q — MQMT™

add noise covariance matrix A

covariances add up as sums of squares



iterate Qu.1 = MpQuM] + A, along a trajectory
if M is contracting, |A;| < 1,

the memory of the covariance @ of the starting density is lost,
with iteration leading to the limit distribution

Qn = Dn+ My 1 Dp My + M3 o080 o(M3 )T+



but what if M has expanding eigenvalues?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



but what if M has expanding eigenvalues?

look into the past, for initial peaked distribution that spreads to
the present state J




if M has only expanding eigenvalues,

balance between the two is attained by iteration from the past,
and the evolution of the covariance matrix Q is now given by

©n+1 +Ap = MnénM,;r,

[aside to control theorists: reachability and observability Gramians]



noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise




if all eigenvalues of M are strictly contracting, all |A;| < 1

any initial compact measure converges to the unique invariant
Gaussian measure pg(z) whose covariance matrix satisfies

Q=MQMT + A

[A. M. Lyapunov doctoral dissertation 1892]



width of the natural measure concentrated at the attractive
deterministic fixed point z =0

1 z° A
pO(Z): \/m eXp _E ) QZW?

@ is balance between contraction by A and noisy smearing
by A at each time step

o for strongly contracting A, the width is due to the noise only

@ As |A| — 1 the width diverges: the trajectories are no
longer confined, but diffuse by Brownian motion



local problem solved: can compute every cigar

a periodic point of period nis a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars

more algebra: can compute the noisy neighborhoods of all
periodic points




optimal partition challenge

finally in position to address our challenge:

determine the finest possible partition for a given noise




@ use periodic orbits to partition state space

@ compute local covariances at periodic points to determine
their neighborhoods

@ done once neighborhoods overlap
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@ calculate the local noise covariances Q; for every unstable
periodic point x;

@ assign one-standard deviation neighborhood
[xa — Qa, X3 + Q3] to every unstable periodic point x;

@ cover the state space with neighborhoods of orbit points of
higher and higher period np

@ stop refining the local resolution whenever the adjacent
neighborhoods of x; and x, overlap:

|Xa — Xp| < Qa+ Qp

now have: the best possible finite partition of the state space

still need: dynamics



maps intervals
Mo11 = {Mi10, M111}
Moo — {Moo, Mo11, Mo1o}, etc..

summarized by the transition
graph (links correspond to
elements of transition matrix Tp,):
the regions b that can be reached
from the region a in one time step




accumulated noise along a
dynamical trajectory always
coarsens the partition

this partition is
@ intrinsic to dynamics
@ computable

turbulence.zip




optimal partition hypothesis

@ the best of all possible state space partitions
@ optimal for the given noise



optimal partition hypothesis

@ optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs



optimal partition hypothesis

@ optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs
o finite matrix calculations = optimal estimates of long-time

observables (Lyapunov exponents, mean temperature in
Chicago and its variance, etc.)



o Professor Zweistein, from the back of Kresge:

she has already done all this in 1969
you must be kidding, it cannot be done for turbulence



o Professor Zweistein, from the back of Kresge:

she has already done all this in 1969
you must be kidding, it cannot be done for turbulence

@ OK, OK, we have about 50 state space cell centers

[click here for examples of frozen fluid states]

[click here for examples of a fluid in periodic motions]

and we have their Jacobians M (that was hell to get)


http://chaosbook.org/tutorials/eqba.html
http://chaosbook.org/tutorials/POs.html

o Computation of unstable periodic orbits in
high-dimensional state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria
to identify finite sets of the most important solutions are
very much needed. Where are we to stop calculating these
solutions?



o disclosure

we have not yet tested the method on fluid dynamics data
sets.



o disclosure

we have not yet tested the method on fluid dynamics data
sets.

@ Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence



o disclosure

we have not yet tested the method on fluid dynamics data
sets.

@ Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence

o the brave candidates: step up after the talk



@ D. Lippolis and P. Cvitanovi¢, How well can one resolve the
State space of a chaotic map?, Phys. Rev. Lett. 104,
014101 (2010); arXiv.org:0902.4269

@ P. Cvitanovi¢ and D. Lippolis, Knowing when to stop: How
noise frees us from determinism, in M. Robnik and
V.G. Romanovski, eds., Let's Face Chaos through
Nonlinear Dynamics (Am. Inst. of Phys., Melville, New
York, 2012); arXiv.org:1206.5506


http://arxiv.org/abs/0902.4269
http://arxiv.org/abs/1206.5506
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