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knowing when to stop

[click here for an example of a fluid in motion]

need the 3D velocity field at every (x , y , z)!

motions of fluids : require∞ bits?
numerical simulations track millions of computational degrees
of freedom; observations, from laboratory to satellite, stream
terabytes of data, but how much information is there in all of
this?

http://chaosbook.org/tutorials/aspectL.html


knowing when to stop

motions of fluids : require∞ bits??

that cannot be right...



knowing when to stop

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned and finite



noise rules the state space

any physical system experiences (background,
observational, intrinsic, measurement, · · · ) noise
any numerical computation is a noisy process due to the
finite precision of computation
any set of dynamical equations models nature up to a
given finite accuracy, since degrees of freedom are always
neglected
any prediction only needs to be computed to a desired
finite accuracy



mathematician’s idealized state space

a manifoldM∈ Rd : d continuous numbers determine the
state of the system x ∈M

noise-limited state space
a ‘grid’M′ : N discrete states of the system a ∈M′, one for
each noise covariance ellipsoid ∆a



noise limited state space partitions

noise limited cell

a resolvable neighborhood is
no smaller than a ball whose
radius is the noise amplitude

noise limited partition grid

state space noise-partitioned
into neighborhoods indicated
by their centers

the centers = prototypes in a vector quantization scheme for a
compressive encoding of state space



entropy

entropy of a cell

cell is described by a
d-dimensional Gaussian,
covariance matrix ∆a

p(a) ∝ volume ∝ |∆a|−1/2,

entropy = 1
2 ln

{
(2πe)d |∆a|

}

global entropy of a partition

H(M′) = −
∑

a∈M′

p(a) ln p(a)



all entropy is local
define

p(x ,a) = p(x |a)p(a)

mutual information

I(M,M′) =

∫
M

dx
∑

a∈M′

p(x ,a) ln
p(x ,a)

p(x)p(a)

=
∑
M′

p(a)

∫
M

dx p(x |a) ln p(x |a)−
∫
M

dx p(x) ln p(x)

= H(M)−
∑

a∈M′

p(a)H(M|a)

measures how much we know aboutM, given the gridM′ and
the Gaussian local entropy

H(M|a) =
1
2

ln
{

(2πe)d |∆a|
}

rest of the talk: we show you how to compute ∆a



dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise ∆

limits the resolution that can be attained in partitioning the state
space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise ∆

limits the resolution that can be attained in partitioning the state
space

is uniform, leading to a uniform grid partitioning of the state
space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the ‘external’ noise ∆

limits the resolution that can be attained in partitioning the state
space

in dynamics, this is wrong!
noise has memory



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition

that is good, because

dynamics + noise determine

the finest attainable partition



take home message

optimal partition hypothesis

the best of all possible state space partitions
optimal for the given dynamical system, the given noise

(1)

1D. Lippolis and P. Cvitanović, arXiv.org:0902.4269; arXiv.org:1206.5506

http://arxiv.org/abs/0902.4269
http://arxiv.org/abs/1206.5506


devil is in the details

in what follows: fluid dynamics as an example
for fluids, have equations: can compute the optimal partition

(this is not a talk about fluid dynamics)



turbulence

since 1822 we have Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

since 1883 Osborne Reynolds experiments
the most fundamental outstanding problem of classical physics

large Reynolds number R: turbulence!

what is it to you? nasty weather...



numerical challenges

computation of turbulent solutions
requires 3-dimensional volume discretization
→ integration of 104-106 coupled ordinary differential equations

challenging, but today possible



numerical challenges

typical simulation
each instant of the flow > Megabytes
a video of the flow > Gigabytes



example : pipe flow

amazing data! amazing numerics!

36

here each instant of the flow ≈ 2.5 MB
videos of the flow ≈ GBs



the challenge

turbulence.zip

or ‘equation assisted’ data compression:
replace the∞ of turbulent videos by the best possible

small finite set

of videos encoding all physically distinct motions of the
turbulent fluid



dynamical system

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time



today’s experiments

example of a representative point
x(t) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe2

2Casimir W.H. van Doorne (PhD thesis, Delft 2004)



dynamics

map f t (x0) = representative point time t later

evolution in time
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dynamics defined

dynamical system
the pair (M, f )

the problem
enumerate, classify all solutions of (M, f )



deterministic partition into regions of similar states

1-step memory partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



topological dynamics

21

one time step
points fromM21
reach {M10,M11,M12}
and no other regions

21

10

11

10

12

2121

11

12

each region = node
allowed transitions
T10,21 = T11,21 = T12,21 6= 0
directed links



topological dynamics

Transition graph Tba

regions reached in one
time step

00 010

100

101

011

110

111

example: state space resolved into 7 neighborhoods

{M00,M011,M010,M110,M111,M101,M100}



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

|

|
|



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

yet

in practice
every physical problem must be coarse partitioned



reminder : deterministic partition

state space coarse partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



deterministic vs. noisy partitions

01

12

22

02

00

20

21

11
10

deterministic partition

can be refined
ad infinitum

01

12

21

22

20

02

00

10

11

noise blurs the boundaries

when overlapping, no further
refinement of partition



periodic points instead of boundaries

mhm, do not know how to compute boundaries...



periodic points instead of boundaries

mhm, do not know how to compute boundaries...
however, each partition contains a short periodic point



periodic orbit partition

deterministic partition

01

12

21

22

20

02

00
10

11 1

some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition

10
1

01

periodic points blurred by noise
into cigar-shaped densities



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise
compute the size of a noisy periodic point neighborhood!



how big is the neighborhood blurred by the accumulated noise?

the (well known) key formula that we now derive:

Qn+1 = MnQnMT
n + ∆n

density covariance matrix at time n: Qn
noise covariance matrix: ∆n
Jacobian matrix of linearized flow: Mn

Kalman filter ‘prediction’



linearized deterministic flow

xn

xn+1

Mn vnvn+1

xn+1 + zn+1 = f (xn) + Mn zn , Mij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow and
(2) mapped by the Jacobian matrix Mn into a stretched and

rotated neighborhood whose size and orientation are given
by the M eigenvalues and eigenvectors



covariance advection

let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qjk =
〈

zjzT
k

〉

a step later the Gaussian is advected to〈
zjzT

k

〉
→

〈
(M z)j (M z)T

k

〉
Q → M Q MT

add noise, get the next slide



roll your own cigar

in one time step

Qn

MnQnMT
n + ∆n

f (xn)

a Gaussian density distribution with covariance matrix Qn is

(1) advected by the flow
(2) smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Qn+1



covariance evolution

Qn+1 = MnQnMT
n + ∆n

(1) advect deterministically
local density covariance matrix Q → MQMT

(2) add noise covariance matrix ∆

covariances add up as sums of squares



cumulative noise along a trajectory

iterate Qn+1 = MnQnMT
n + ∆n along a trajectory

if M is contracting, |Λj | < 1,

the memory of the covariance Q0 of the starting density is lost,
with iteration leading to the limit distribution

Qn = ∆n + Mn−1∆n−1MT
n−1 + M2

n−2∆n−2(M2
n−2)T + · · · .



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

look into the past, for initial peaked distribution that spreads to
the present state



for unstable directions, look back

if M has only expanding eigenvalues,

balance between the two is attained by iteration from the past,
and the evolution of the covariance matrix Q̃ is now given by

Q̃n+1 + ∆n = MnQ̃nMT
n ,

[aside to control theorists: reachability and observability Gramians]



Remembrance of Things Past

noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise



example : noise and a single attractive fixed point

if all eigenvalues of M are strictly contracting, all |Λj | < 1

any initial compact measure converges to the unique invariant
Gaussian measure ρ0(z) whose covariance matrix satisfies

Lyapunov equation: time-invariant measure condition

Q = MQMT + ∆

[A. M. Lyapunov doctoral dissertation 1892]



example : Ornstein-Uhlenbeck process

width of the natural measure concentrated at the attractive
deterministic fixed point z = 0

ρ0(z) =
1√

2πQ
exp

(
− z2

2 Q

)
, Q =

∆

1− |Λ|2
,

is balance between contraction by Λ and noisy smearing
by ∆ at each time step
for strongly contracting Λ, the width is due to the noise only
As |Λ| → 1 the width diverges: the trajectories are no
longer confined, but diffuse by Brownian motion



local problem solved: can compute every cigar
a periodic point of period n is a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars
more algebra: can compute the noisy neighborhoods of all
periodic points



optimal partition challenge

finally in position to address our challenge:

determine the finest possible partition for a given noise



noisy dynamics partitions: strategy

use periodic orbits to partition state space
compute local covariances at periodic points to determine
their neighborhoods
done once neighborhoods overlap



optimal partition hypothesis

10
1

01

optimal partition:

the maximal set of resolvable
periodic point neighborhoods



‘the best possible of all partitions’ hypothesis
formulated as an algorithm

calculate the local noise covariances Qa for every unstable
periodic point xa

assign one-standard deviation neighborhood
[xa −Qa, xa + Qa] to every unstable periodic point xa

cover the state space with neighborhoods of orbit points of
higher and higher period np

stop refining the local resolution whenever the adjacent
neighborhoods of xa and xb overlap:

|xa − xb| < Qa + Qb

now have: the best possible finite partition of the state space

still need: dynamics



dynamics→ Markov graph

evolution in time
maps intervals
M011 → {M110,M111}
M00 → {M00,M011,M010}, etc..

summarized by the transition
graph (links correspond to
elements of transition matrix Tba):
the regions b that can be reached
from the region a in one time step

00 010

100

101

011

110

111



how noise frees us from determinism

noise memory
accumulated noise along a
dynamical trajectory always
coarsens the partition

we now show that
this partition is

intrinsic to dynamics
computable

turbulence.zip



the payback for your patience

claim:

optimal partition hypothesis

the best of all possible state space partitions
optimal for the given noise



the payback for your patience

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs



the payback for your patience

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs
finite matrix calculations⇒ optimal estimates of long-time
observables (Lyapunov exponents, mean temperature in
Chicago and its variance, etc.)



example: representative solutions of fluid dynamics

Professor Zweistein, from the back of Kresge:
(1) she has already done all this in 1969
(2) you must be kidding, it cannot be done for turbulence



example: representative solutions of fluid dynamics

Professor Zweistein, from the back of Kresge:
(1) she has already done all this in 1969
(2) you must be kidding, it cannot be done for turbulence

OK, OK, we have about 50 state space cell centers

[click here for examples of frozen fluid states]

[click here for examples of a fluid in periodic motions]

and we have their Jacobians M (that was hell to get)

http://chaosbook.org/tutorials/eqba.html
http://chaosbook.org/tutorials/POs.html


disclosure

Computation of unstable periodic orbits in
high-dimensional state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria
to identify finite sets of the most important solutions are
very much needed. Where are we to stop calculating these
solutions?



disclosure

disclosure

we have not yet tested the method on fluid dynamics data
sets.



disclosure

disclosure

we have not yet tested the method on fluid dynamics data
sets.
Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence



disclosure

disclosure

we have not yet tested the method on fluid dynamics data
sets.
Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence
the brave candidates: step up after the talk
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