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Dreams of grand schemes

Now, go solve the problem of turbulence

https://ChaosBook.org


17th century mathematics







18th century mathematics







19th century mathematics
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Darrigold Worlds of Flow (Oxford 2005) 
(not sure that the German experimentalist mentioned in the talk ever existed :)



Darrigold Worlds of Flow (Oxford 2005)
"Many years elapsed before this equation acquired the fundamental status that 
we now ascribe to it."

https://global.oup.com/academic/product/worlds-of-flow-9780199559114


In 1845 Stokes was the 4th to 
independently discover these equations. 







19th century experiments

1883: Osborne Reynolds demonstration
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3rd millenium experiments:
Unstable Coherent Structures

Stereoscopic Particle Image Velocimetry ! 3-d velocity field over
the entire pipe1

Observed structures resemble numerically computed traveling waves

What lies beyond?

1Casimir W.H. van Doorne (PhD thesis, Delft 2004); Hof et al., Science (Sep 10, 2004)



3rd millenium numerical simmulations : Plane Couette flow

Navier-Stokes:
∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u , ∇ · u = 0

BCs: no-slip at walls y =±1

click here to see the online video

https://chaosbook.org/tutorials/aspectL.html


Turbulence: A walk through
a repertoire of unstable recurrent patterns?

As a turbulent flow evolves, every so often we catch a glimpse of
a familiar pattern:

=) other swirls =)

For any finite spatial resolution, the system follows approximately
for a finite time a pattern belonging to a finite alphabet of
admissible patterns. The long term dynamics = a walk through the
space of such unstable patterns.

big deal!



The ultimate goal, however, must be a rational theory of
statistical hydrodynamics where [· · · ] properties of turbu-
lent flow can be mathematically deduced from the funda-
mental equations of hydromechanics.

—E. Hopf 1948

20th century mathematics
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Q: How do you treat Navier-Stokes as a
dynamical system?



.

The devil is in the details



�� � � � ��

Trouble with infinite-dimensional flows

Navier-Stokes equation

�

requires at least 100,000-dimensional discretization,

@u
+ u ´ ru = `rp + �r2u ; r´u = 0

@t

https://ChaosBook.org
https://chaosbook.org/chapters/ChaosBook.pdf#chapter.30


ODE: Galerkin projection of Navier-Stokes

expand u (deviation of velocity from laminar)

u(x; t) = an(t)Φn(x); n; = 1; : : : ; d

Galerkin projection of NS onto Φm produces ODE in R
d

_am = F(a)m = Lmn an + Nmnp anap; m; n; p = 1; : : : ; d :

where

› Lmn = (�r2Φn`@Φn=@x; `˘
v
n´ex;Φm)˙ and Nmnp = `(Φn´rΦp;Φm)˙

› Indices range from 1 to d ı 105 (2 ˆ 323 to 2 ˆ 483)

› ODE system too big to integrate



.

Turbulent flows cannot be modeled by a
few modes

Attractor is "low dimensional," but has to be tracked in the full
103 to 105 dimensions



ODE vs. CFD reps. of Navier-Stokes

ODE formulation

› Closed-form, unconstrained, real-valued dynamical system

› Orthonormal Φn: jjajj2 = jjujj2˙

› Impossible to integrate: F quadratic in R
d, d ı 105

CFD algorithm

› Efficient time integration of Navier-Stokes

› Constraints: pressure, BCs, complex symmetries

› No 1-order ODE formulation, no clear set of independent vari-
ables



.

THE POINT OF THIS TALK
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!!! THE POINT OF THIS TALK !!!

UNLEARN:
3-d VISUALIZATION

instant in turbulent evolution:

a 3-d video frame,
each pixel a 3-d velocity field

THINK:
1-d PHASE SPACE

instant in turbulent evolution:
a unique point

theory of turbulence =
geometry of the state space

[E. Hopf 1948]

https://chaosbook.org/chapters/ChaosBook.pdf#chapter.30


THINK IN STATE SPACE!

3rd milleniumm theory



ChaosBook.org

A: dual ODE/CDF representations

ODE in R
d CFD algorithm

a(t)
u(x;t)=an(t)Φn(x)
`̀̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ !̀ u(x; t)

_a=F(a)

??y
??yCFD

a(t + T)  ̀`̀`̀ `̀ `̀ `̀ `̀
an=(u;Φn)˙

u(x; t + T)

State space portraits = projections on well-chosen states ûn:

ân(t) = (u(t); ûn)˙ (integral over the box)

https://chaosbook.org/chapters/ChaosBook.pdf#chapter.30


CFD/ODE: State space portraits

Visualize state space by projecting ODE a(t) or CFD u(t) onto a
few well-chosen fu1;u2;u3g representative velocity fields

(e.g., a few equilibria and their unstable eigenvectors).

Construct f û1; û2; û3g by Gram-Schmidt orthogonalization and
inner product

(u1;u2)˙ =
1

V
Z Lx

0

Z 1

`1

Z Lz
0

u1 ´ u2 dx dy dz

State space portraits = projections

ân(t) = (u(t); ûn)˙



3rd millenium numerical simmulations : Plane Couette flow

Navier-Stokes:
∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u , ∇ · u = 0

BCs: no-slip at walls y =±1

click here to see the online video

https://chaosbook.org/tutorials/aspectL.html
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A transiently turbulent trajectory.



A stroll in 61,506 dimensions
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Unstable manifolds of projected from 61,506  dimensions to 3 
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A transiently turbulent trajectory in the uNB unstable manifold,
within the cage formed by uLB, uNB, uUB, their half-cell translations,

and their unstable manifolds. The final decay to laminar of
several other trajectories in the unstable manifolds of uNB and uUB

are also shown.



Animation: T=35.86 periodic orbit

ChaosBook.org/tutorialsclick here to see the online video

https://chaosbook.org/tutorials/
https://chaosbook.org/tutorials/POs.html
https://chaosbook.org/tutorials/index.html


Periodic orbits shadow turbulence

A turbulent trajectory making a close pass to a periodic orbit.
ChaosBook.org/tutorialsclick here to see the online video

https://ChaosBook.org/tutorials
https://chaosbook.org/tutorials/
https://chaosbook.org/tutorials/recurr1.html


In theory there is no difference between theory and practice. 
In practice there is.                                                       (Anonymous)



Center for Nonlinear Science, Georgia Tech

the team1,2,3,4,5 Daniel Borrero

Chris J. Crowley

Roman O. Grigoriev

Logan Kageorge

Michael C. Krygier
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2B. Suri et al., Phys. Rev. Lett. 125, 064501 (2020).
3M. C. Krygier et al., J. Fluid Mech. 923, A7 (2021).
4C. J. Crowley et al., Observing a dynamical skeleton of turbulence in Taylor-Couette flow experiments, 2022.
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turbulence in 2 dimensionsThe Kolmogorov flow apparatus. 

3rd millennium experiment 1

L. Kageorge PhD Thesis

http://hdl.handle.net/1853/66161


18 cm

Top View

Cross Section View Along Y-Axis

0.3 cm

0.3 cm

L. Kageorge PhD Thesis

http://hdl.handle.net/1853/66161


turbulence in 2D : 2-d video & state-space visualizations

(a)

u =




u(1,1)x

u(2,1)x

u(3,1)x
...

u(n,m)x

u(1,1)y

u(2,1)y

u(3,1)y
...

u(n,m)y




(b)

Figure 1.1: (a) An illustrative example of a 2D velocity field. The heat map represents
the vorticity of the velocity field, and helps guide the eye to the structure of the flow.
(b) An example of how such a vector field can be converted into a state space vector by
concatenating vector components.

click here to see the online video

https://youtu.be/bWq2I4wzWZ0?t=1676


turbulence in 2D : RPOs embedded in invariant measure

(a) (b)

Figure 3.10: (a) Energy input rate I versus the difference between input and dissipation rates 
(I −D) for turbulent time series in experiment (scatter plot) and UPOs (closed loops).
(b) Probability density function of I(t) for turbulent flow in experiment (solid gray) and DNS 
(dashed gray). Colored symbols show the mean values of I for each of the seven UPOs and the 
dashed black lines represent the range of I for UPO2A-C and UPO3A,B.

L.. Kageorge PhD Thesis

http://hdl.handle.net/1853/66161


Forecasting
Turbulence

1D Unstable Submanifold

B Suri PhD Thesis

http://hdl.handle.net/1853/60177


Forecasting
Turbulence

Experimental Trajectory

1D Unstable Submanifold



Numerical Trajectory 

Experimental Trajectory

1D Unstable Submanifold

Forecasting
Turbulence

click here to see the online video

https://youtu.be/bWq2I4wzWZ0?t=1847


the big deal

the first experimental confirmation
1 of a Navier-Stokes predicted unstable manifold



Figure 3.1: CAD model of the TCF cell. The cell is made of transparent PMMA allowing 
for unobstructed, optical access to the entire flow domain. 

30

3rd millennium experiment 2
turbulence in 3 dimensions : Taylor-Couette duct

C.J. Crowley PhD Thesis

http://hdl.handle.net/1853/67187


Taylor-Couette duct : full 3D flow visualization

Figure 3.9: Camera configuration for 3D-3C measurements. The viewing angle, θ, is the 
angle between the camera and the z-axis of the TCF cell.

55

C.J. Crowley PhD Thesis

http://hdl.handle.net/1853/67187


Taylor-Couette duct : a turbulent snapshot

Figure 5.1: Turbulence is visualized in a laboratory flow between concentric, 
independently-rotating cylinders with radii ri, ro and corresponding angular velocities Ωi, 
Ωo. Fluid is confined between the cylinders and bounded axially by end caps co-rotating 
with the outer cylinder. The red-white-blue colors indicate the fluid’s deviation from the 
mean azimuthal velocity component.

98

C.J. Crowley PhD Thesis



Taylor-Couette duct : experiment /DNS velocity isosurfaces

(a) (b)

v
Figure 4.5: A snapshot of a turbulent flow in experiment (a) and DNS (b). Each image 
shows a single isosurface of the perturbation field, ˜θ, for Rei = 650 and Reo = −1000 
inside a cylindrical subvolume. The color indicates the corresponding azimuthal velocity 
component. Red (blue) indicates flow in the same direction as the inner (outer) cylinder 
rotation. 

C.J. Crowley PhD Thesis



Taylor-Couette duct : three state-space visualizations

A

B

C

Fig. 2. Low-dimensional projections suggest that RPOs, i.e., solutions to the governing equations that recur indefinitely in time, are relevant to turbulence. (A) 
To demonstrate that RPOs are truly two-tori when rotational symmetry is not reduced, RPO2 is plotted over 80 periods using the coordinates shown, where uθ 
represents the azimuthal component of the flow velocity and 〈·〉  indicates a spatial average. (B) Cartoon depicting how a portion of a turbulent trajectory (solid 
red curve) shadows, i.e., follows, an RPO (light blue surface) for a period of time. Shown in dark blue is the trajectory belonging to the RPO, which is most 
similar to the turbulent trajectory. The orange arrow relates a point on the turbulent trajectory to the point closest to it on the torus. (C) Using energy E and 
energy dissipation rate D of the flow as projection coordinates, eight RPOs are represented by closed trajectories (shown in color). The chaotic behavior of 
turbulence is indicated by the distribution (shown in gray) of visits to particular regions of the projection (darker regions have higher likelihood of visitation).



Taylor-Couette duct : RPOs embedded in invariant measure
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Taylor-Couette duct : experiment trolls theory

examples of the experimental turbulent flow visiting
(shadowing) relative periodic orbits (RPOs)

Figure 5.9: Experimental evidence that turbulence and RPOs, i.e., solutions to the govern-
ing equations that reccur indefinitely in time, co-evolve when the ‘shadowing’ criteria are 
met. Turbulence closely follows RPO1 (top) and, during a different time interval, tracks 
RPO7 (bottom).

click here to see the online video

experiment trolls theory : 
a movie of the experimental 
turbulent flow visiting 
(shadowing) a relative periodic 
orbit

https://youtu.be/bWq2I4wzWZ0?t=2331


the big deal

the first experimental measurements
1 of a Navier-Stokes predicted unstable manifold
2 of shadowing by a Navier-Stokes predicted relative

periodic orbit

walk!



Conclusions: geometry of Navier Stokes

dual ODE / CFD representations of Navier-Stokes

State space portraits

Computed eigenvalues, eigenfunctions of equilibrium states

Heteroclinic connections between equilibria

Turbulent dynamics

you can do this at home :   channelflow.org 
openpipeflow.org     
orbithunter

https://www.channelflow.ch/
https://orbithunter.readthedocs.io
https://openpipeflow.org/


.

Future looks bright



next: 3rd millennium mathematics

In the seminal 1948 paper, E. Hopf presciently noted that 
“The geometrical picture of the phase flow is, however, not the most 
important problem of the theory of turbulence. Of greater importance 
is the determination of the probability distributions associated with the 
phase flow”. 

Hopf’s call for understanding probability distributions associated with 
the phase flow has indeed proven to be a key challenge, one in which 
dynamical systems theory has made the greatest progress.

ChaosBook.org/overheads/spatiotemporalsee seminars on

https://https://chaosbook.org/overheads/spatiotemporal/index.html
https://ChaosBook.org/overheads/spatiotemporal/


https://ChaosBook.org
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