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Abstract

We present an analysis of the properties as well as the diverse applications and
extensions of the method of stabilisation transformation. This method was origi-
nally invented to detect unstable periodic orbits in chaotic dynamical systems. Its
working principle is to change the stability characteristics of the periodic orbits by
applying an appropriate global transformation of the dynamical system. The theo-
retical foundations and the associated algorithms for the numerical implementation
of the method are discussed. This includes a geometrical classification of the peri-
odic orbits according to their behaviour when the stabilisation transformations are
applied. Several refinements concerning the implementation of the method in order
to increase the numerical efficiency allow the detection of complete sets of unstable
periodic orbits in a large class of dynamical systems. The selective detection of un-
stable periodic orbits according to certain stability properties and the extension of
the method to time series are discussed. Unstable periodic orbits in continuous—time
dynamical systems are detected via introduction of appropriate Poincaré surfaces
of section. Applications are given for a number of examples including the classical
Hamiltonian systems of the hydrogen and helium atom, respectively, in electromag-
netic fields. The universal potential of the method is demonstrated by extensions to
several other nonlinear problems that can be traced back to the detection of fixed
points. Examples include the integration of nonlinear partial differential equations

and the numerical determination of Markov—partitions of one-parametric maps.
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1 Introduction

1.1 General remarks on nonlinear systems

The manifestations of nonlinearity and their extraction is the thread running through this
reviewing article. Nonlinearity is best understood when opposed to its negation: Linearity.
Mathematically spoken the latter implies the properties of additivity and homogeneity. A
consequence of linearity is linear superposition: With two solutions ¢ and x both fulfilling
the same linear equation a linear superposition of ¢ and x also fulfils it. Therefore an
infinity of solutions can be constructed once a finite set of solutions is known. In nonlinear
systems the superposition principle is lost. Two different solutions of the system are rarely
related to each other and can in particular not be utilised to construct additional solutions:
Generally, each solution has to be determined individually in an elaborate procedure.

Pure linearity is a rare case in the mathematical description of physical systems.
Hardly any authentic model of a real system is purely linear. One may object that the
particularly important example of quantum mechanics is an exception, since quantum me-
chanical wave functions obey the superposition principle. However, this principle comes
along with the infinite dimensionality of the systems description in terms of wave func-
tions, which is a problem of at least the same weight (any nonlinear, finite-dimensional
system can be mapped to a linear, infinite-dimensional system by appropriate transfor-
mations). A linearisation of a nonlinear process can describe the behaviour of a system
correctly at most locally in phase space. In other words, nonlinear systems are generic in
nature, whereas linear dependences appear to be exceptions.

An appealing reason to study nonlinear dynamics is the rich variety of surprising
phenomena and the extremely complex behaviour possessing no counterpart in linear sys-
tems. Examples are strange attractors, bifurcation routes, fractal structures and solitary
solutions. The enormous complexity of the underlying structures is an essential difference
between linear and nonlinear systems: Linear objects are generally easy to be classified.
Contrary to this, the abundance of diverse nonlinear phenomena is not easily describable
in a systematic way. So far, no general method is available to predict the qualitative prop-
erties of a nonlinear system in advance. For example, it is often not possible to judge a

priori whether a dynamical system will display regular or chaotic dynamics. In the nonlin-



ear case a description by dividing the system into parts which are treated independently is
generally not possible. The notorious difficulties in approaching and understanding non-
linear systems is in contrast to their ubiquity in nature. An enormous variety of scientific
disciplines, covering among others mathematics, physics, biology, chemistry, engineering
sciences, medicine and fields such as political economy and business management use
nowadays extensively tools available in the theory of nonlinear systems.

A multitude of textbooks dealing with nonlinear systems in general and chaotic dy-
namics in particular have been published up to now (see, for example, refs. [1-21]). Some
books and journal articles are more mathematically oriented [4,7,9,11,16,22-26], while
others illustrate mainly the physical concepts [1-3,5,6,8,10,12-15,18-21]. In addition, a
considerable number of pioneering articles have been published in the literature (see e.g.
refs. [27-29] and refs. [24,30-33]). In view of the vast literature this compilation can not
be considered complete.

Classical dynamical systems are composed of a phase space (state space) and a dy-
namical law describing the evolution of the phase space coordinates in time as an initial
value problem. The nature of the law may in general be deterministic or random, the
time development may be discrete (maps, providing an iterative law) continuous (flow
given by a differential equation) resulting in discrete and continuous trajectories (orbits)
of the system, respectively. Phase space, too, may be discrete (e.g. state space of a
dice), countably or uncountably infinite (e.g. phase space variables take integer or con-
tinuous numbers, respectively). The initial values of a deterministic autonomous system
and the dynamical law specify the time evolution of the system uniquely. Likewise for
time-dependent (non-autonomous) systems, time can be considered as an additional phase
space coordinate.

Hamiltonian systems are, mathematically spoken, a very restricted class of dynamical
systems: They are specified by a single scalar function (the Hamiltonian) [3, 18, 21, 22]. Its
variables appear as canonically conjugated pairs, which implies an even dimension of phase
space. Due to energy conservation, the dynamical evolution of a time independent system
possessing /N degrees of freedom is restricted to a 2N — 1-dimensional so-called energy
shell. The phase space volume of a Hamiltonian system is preserved during time evolution,

i.e. the corresponding Hamiltonian flow is incompressible (Liouville’s theorem). This is



due to the basic property of Hamiltonian systems to be symplectic, i.e. the differential
symplectic area is independent of time (for N = 1 degree of freedom preservation of phase
space volume and time-independence of the differential symplectic area are equivalent).
The existence of the so-called Poincaré integral invariant and the Poincaré-Cartan theorem
are consequences of the symplectic structure of Hamiltonian phase space.

The notion map appears frequently in this review. It describes the dynamics of a
time-discrete system ;11 = f(z;) [30-32, 34, 35]. Being iterated, it yields a sequence {z;}
(trajectory of the point xy). Maps can be derived from a time-continuous flow either by a
stroboscopic sampling (particularly useful if the system has an intrinsic periodicity with
respect to time) or by a suitably defined Poincaré section (yielding the Poincaré map
for autonomous systems). Due to their construction both types of maps are necessarily
invertible [3,22]. Essentially, every numerical algorithm for the time-propagation of a
differential equation provides a time-discrete map, since the flow is approximated by
finite size steps.

Dissipative chaotic systems typically develop a so-called strange attractor. The at-
tractor is a set of points the dynamics relaxes to if one starts from a surrounding basin of
attraction. Attractors can be as simple as a stable fixed point or a stable periodic orbit
(limit cycle) and as complicated as the strange attractors possessing intrinsic sensitivity
with respect to the initial conditions. The borders of the basin of attraction are generally
given by the unstable manifolds of fixed points of the system and are interesting objects
to study, since they mark the transition between regions showing qualitatively different
dynamics.

Let us now briefly address the issue of chaoticity of a deterministic dynamical system.
For a regular and deterministic system, the horizon of predictability in time scales linearly
with the accuracy of the initial conditions. For chaotic systems, the long time behaviour
is essentially unpredictable. Their horizon increases only with the logarithm of the accu-
racy, which is due to exponential divergence of neighbouring trajectories. In general, the
following two conditions are considered to be essential for a system to exhibit chaos (see
e.g. ref. [22]): The dynamical law f is chaotic on a compact invariant set S (e.g. the at-
tractor of a dissipative system, see below), if f is transitive on S (i.e. there exists a point

with a trajectory dense in S) and if f shows sensitive dependence on the initial conditions.



The well-known Lyapunov exponent measures the exponential divergence of trajectories
that are infinitesimally close neighbours in the beginning. There are as many Lyapunov
exponents as dimensions, but in case of positive exponents (exponential increase of small
perturbations in a chaotic system) the largest exponent dominates the overall dynamics.
They can be determined by the scaling of propagated trajectories either in phase space or
in tangent space [36,37]. Particularly Lyapunov exponents of fixed points and periodic
orbits can be obtained from the eigenvalues of the stability matrix of the fixed point and
the monodromy matrix of the periodic orbit, respectively.

Generically, a Hamiltonian system is neither completely regular nor completely chaotic,
but shows a mixed phase space (see e.g. ref. [3,5,18]). This can best be understood when
starting from a completely integrable (regular) system. In this case the phase space is
composed of invariant tori (parametrised by action- and angle coordinates) which are
the support for periodic or quasi-periodic dynamics. Chaotic dynamics appears when a
perturbation leading to non-integrability is added. The tori break successively into island
chains of unstable hyperbolic and elliptic fixed points, the latter forming successively
smaller tori. Tori with a rational ratio of frequencies are destroyed for infinitely weak
perturbation. In case the ratio is irrational, the hierarchy of their decomposition is gov-
erned by the KAM theorem. This way, a self-similar pattern of elliptic and hyperbolic
fixed points is generated. The dynamically invariant sets of homoclinic intersections of
the hyperbolic fixed points are the seeds for the chaotic dynamics. Depending on the
initial values, one obtains regular or chaotic trajectories. Finally, assuming the pertur-
bations to be strong enough, the chaotic trajectories may dominate the phase space. In
systems with two degrees of freedom, the chaotic trajectories are captured between two
irrational tori, and the resulting chaotic layer is confined to a small area in phase space.
However, in systems with more than two degrees of freedom diffusion of these trajectories
in the continuously connected area in between the invariant tori is possible. This so-called
Arnold-diffusion of chaotic trajectories allows a chaotic overall dynamics even though tori

are still present [13, 38].



1.2 Periodic orbit theory and applications

The role of unstable periodic orbits was first fully appreciated by Poincaré a century ago
[28,39,40]. In the last two decades vast insight was gained into the theory of periodic
orbits of chaotic dynamical systems. In some respect, they reflect the constituting invari-
ant, structure of the chaotic system, whereas the diffusive, ergodic time development of
generic trajectories corresponds to the random features of the dynamics. Therefore, the
set of periodic orbits can be called the deterministic skeleton of the chaotic system. In
particular, it includes essential information about the spatial and temporal correlation of
the dynamics. This is why properties of the corresponding system exceeding its random
character can be obtained from this skeleton [41-44].

Periodic orbits play a major role in the theory of the quantisation of classically chaotic
systems in the semiclassical regime, which is a prominent branch of research in quantum
chaos. This field of science is referred to as “quantised chaos” [45], “quantum chaology”
[46] or “type I quantum chaos” [47]. Objects of research are the signatures of classical
chaos on the quantum level. Besides the above mentioned method of period orbit expan-
sions to be discussed in the following, level dynamics (see e.g. refs. [48-52]) and random
matrix theory (see e.g. refs. [53-55], applications include besides quantised versions of
classically chaotic systems [6] energy level statistics of complicated atoms and nuclei [56],
microwave cavities [57] and vibrating membranes and solids [58,59]) are the main tools
of research. The cardinal object of research in quantised chaos are bounded autonomous
systems with a discrete energy spectrum. The ubiquity of systems with this property can
not be over-estimated, keeping the fact in mind that, except from the field-free hydrogen
atom and similar two-body systems, all atoms and molecules show chaotic dynamics on
the level of their classical description. Although important features of classical chaos
such as sensitive dependence on initial conditions do not appear in the corresponding
quantised system, wave functions and energy spectra are strongly marked by the un-
derlying chaotic dynamics. The results of quantised chaos are universal in two ways:
Firstly, one of the most important results concern the universal behaviour of quantum
systems with a classically chaotic counterpart that can e.g. be read off the fluctuation
statistics of their energy levels. Secondly, results of quantum chaology are also valid for

a vast range of other branches in physics like electrodynamics [57], acoustics [58,59] and
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hydrodynamics [60], not to mention atomic and molecular physics [61,62]. When consid-
ering the quantum-mechanical energy spectrum, it becomes obvious that the approaches
mentioned above apply to different scales of energy: Statistical measures as provided
by random matrix theory describe short- and medium ranged correlations in the energy
spectrum (such as nearest neighbour spacing distribution and spectral rigidity ) related
to universal properties in the regular and classically chaotic regime. In contrast to this,
far-reaching correlations are related to specific non-universal properties of the correspond-
ing system such as periodic orbits, quantitatively described by trace formulas in period
orbit theory. Trace formulas were first derived for physical systems by Gutzwiller [63],
with similar equations being derived earlier in a more mathematical context for dynamical
systems [64,65].

Let us briefly outline the derivation of the trace formula as described e.g. in ref. [43].
Other derivations can be found in e.g. refs. [6,66-68]. The basic approach of the trace
formula can be best understood as a tessellation of the phase space approximating the flow
by its periodic skeleton. Each of the composing segments is centred on a periodic orbit
with specific length, the corresponding size being determined by the stability properties
of the orbit. Expectation values of observables along the flow [23,69-74] are expressed
in terms of the Frobenius-Perron operator [71, 75-77] describing the time evolution of the
system. The sum over its spectral eigenvalues is related to the series expansion using the
periodic orbits. In other words, the spectrum of eigenvalues is dual to the spectrum of
periodic orbits, representing a fundamental duality of local and global properties. How-
ever, the resulting classical trace formula [41,42,78-80] has the disadvantage of being
singular exactly at the eigenvalues of the Frobenius-Perron operator, which results in a
small radius of convergence. This problem is removed by relating the trace formula to
the spectral determinant (an infinite product formula) [81,82], or to the dynamical zeta
function (when considering expanding eigenvalues only). Both possess zeros at values for
which the original trace formula is singular. Quite a number of studies deal with the
mathematical properties of the dynamical zeta function [6,17,35, 54,66,83-111]. For the
convergence of the trace formula the hyperbolicity assumption (all cycle stability eigen-
values are bound away from unity) is crucial: The analyticity of spectral determinants

and dynamical zeta functions [112-117] for hyperbolic systems like the so-called Axiom-
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A systems [24,25] can be shown [115,118,119], which implies a rigorous treatment of
traces and determinants. Gutzwiller derived a similar trace formula, starting from an
appropriately defined level density operator for energy eigenstates [6,120] instead of the
Frobenius-Perron operator. The resulting trace formula contains properties of the periodic
orbits such as their periods, their actions and Lyapunov exponents. Additionally Maslov
indices are needed and obtained by inspection of turning points, focal points and caustics
of the corresponding orbits [6,67]. Basically, the trace formula can be applied “forwards”
and “backwards”. The “backward” application, i.e. the calculation of characteristics of
periodic orbits starting from a given level density, has been successfully applied to e.g.
the hydrogen atom in a magnetic field [121] and to the one-dimensional [60] and three-
dimensional [122,123] Helium atom. The much more important “forward” application of
the trace formula turns out to be significantly more difficult due to: (i) the exponential pro-
liferation of the number of periodic orbits with increasing period, (ii) generic inaccuracies
in the course of the numerical finding of the periodic orbits and (iii) convergence problems
of the trace formulae. Nevertheless, this theory has successfully been applied to a large
number of systems, allowing the semiclassical description of many quantum mechanical
properties such as level densities [62] or, as a particular example, quasi-Landau resonances
in photo-absorption cross sections [124-126] (for a comprehensive overview, see e.g. refs.
[6,17,127] and references therein). Further progress has been made e.g. in understanding
the influence of the non-Coulombic core of the potential in atoms other than hydrogen
[128,129], concerning the role of so-called ghost orbits [130] (complex predecessors of or-
bits created near bifurcations) and discussing chaos in atoms in crossed fields ([131, 132]
and references therein). Retaining only the shortest periodic orbits in the expansion in
many cases turns out to be a good strategy to extract relevant information about the sys-
tem [122,123]. Cvitanovi¢ and collaborators found an appealing way to circumvent the
convergence problems using sophisticated re-summation techniques: the so-called cycle
expansions. They divided the contributions of the periodic orbits to the dynamical zeta
function or to the spectral determinant into those originating from so-called fundamental
orbits, i.e. orbits that can not be approximately composed (shadowed) by shorter ones,
and corresponding curvature contributions [41,42,133]. The curvature expansions con-

verge well if the completeness of the symbolic grammar of the system and its hyperbolicity
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is guaranteed. Cycle expansions allow the evaluation of expectation values on basis of
the shortest cycles and have been successfully applied to a variety of systems [30, 42, 133~
141] including in particular systems in statistical mechanics [72,83,142,143], scattering
processes [144-147], deterministic diffusion [148-159], intermittent systems [160, 161], to
spatio-temporal chaotic systems [162] such as the Kuramoto-Sivashinsky equation [163—
166], to experimental time series [167-171] and to a large number of other dissipative
systems to extract characteristic quantities of chaotic attractors (Lyapunov exponents,
fractal dimensions, entropies etc.) The expansions are generally ordered with respect to
the length of the orbits [41,42,137,172,173]. However, the symbolic dynamics might not
be easy to obtain. Another problem can be the large number of periodic orbits necessary
for the expansion, the required completeness and the slow convergence properties of the
expansion [172,173]. There are indications that an expansion with respect to the stability
of the orbits shows improved convergence properties and works even for systems without
a symbolic dynamics [174-176]. However, so far no rigorous theory of stability ordering
has been developed.

The control of chaos [3,177-186] is another important area of application of periodic
orbit theory which has become very widespread and active in the past decade. In many
situations it is desirable to control and guide a dynamical system which is originally
chaotic onto a desired periodic trajectory applying only tiny perturbations. This way
the system is prevented from following the undesired chaotic behaviour. Regular time
dependence is relevant in many branches of engineering, medicine and science, e.g. for
the design of fast-moving machines, steering gears of air planes and other devices exposed
to turbulent flows as well as for the design of electronic and medical-technical devices
such as cardiac pace makers. Since periodic orbits are dense in phase space, one of them
can certainly be found close to any desired trajectory. The system is then controlled
by following this orbit. Chaos control can be achieved either by feedback control or by
non-feedback control. Non-feedback control changes the controlled orbit of the system
and requires comparatively large perturbations [187-191]. The feedback control is the far
more important approach (see e.g. refs. [3,184,192-205]). It utilises the fact that the
controlled orbit is an unstable periodic orbit of the original system. The feedback applied

to the system to steer it onto the desired periodic orbit vanishes when control is achieved
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(in the absence of noise). Therefore the amplitude of the feedback signal is limited only
by the noise level. The wide-spread OGY method, developed by Ott, Grebogi and Yorke
([3, 184,204, 205], see in particular ref. [183] for a concise overview), uses small changes
in the parameters of the system to make a particular periodic orbit stable. To this aim,
targeting schemes to steer the chaotic trajectory are applied [197,206]. Meanwhile, the
OGY method and modifications of it have been applied to a multitude of mathematical
and physical systems. Examples are as diverse as the stabilisation of a parametrically
excited cantilever ribbon [192], of higher-order periodic orbits in a periodically driven
diode resonator [207,208] and other electronic circuits [209], of periodic orbits in chemical
system [210-212] such as the control of chaos in the Belousov-Zhabotinsky reaction [212],
the stabilisation of complex periodic waveforms of a chaotic multi-mode laser [213-215],
the suppression of chaotic flow in a thermal convection loop [216] and in a microwave-
pumped spin-wave-instability experiment [217], and stabilisation of cardiac arrhythmia
[93,218]. Meanwhile, also Hamiltonian systems with complex conjugated eigenvalues can
be stabilised employing the OGY method [180-182] (for more applications, see ref. [183]
and references therein). The method has been applied to systems with natural frequencies
ranging from 10=2 Hz to 10° Hz. Valuable modifications of it are reviewed e.g. in refs.
[205, 208, 219-221]. The advantage of the OGY method is that it does not — except for the
periodic orbit to be stabilised — require any a priori analytical knowledge of the system,
thus successful applications to many physical experiments are possible. For a restricted
class of systems a modified form even allows the detection of certain unstable periodic
orbits with unknown position of a restricted class of systems [177-179]. However, the
OGY method and related methods are discrete in time (they refer to the Poincaré map
of the system), and are therefore sensitive to noise, leading to occasional bursts when
the system is far from the controlled periodic orbit. This lack of robustness is also the
reason why none of these techniques can be scaled up to significantly higher frequencies.
In addition, the requirement of a computational analysis of the system at each crossing
of the Poincare surface makes it difficult to apply the method to very fast systems.

A considerable amount of these drawbacks are absent in another class of chaos control
methods, the time-delayed feedback control: Its characteristic is the continuous linear

time-delayed feedback applied at each computational iteration in time. The application
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of discrete changes of the parameters as in the OGY method, increasing the sensitivity
to noise, is avoided.

An approach of this type attracting much attention is the one by Pyragas [222-226].
His method can be illustrated if applied to a set of ordinary nonlinear differential equations
[198]:

y=Py,x)+F(t), x=Q(y x)

The scalar variable y(t) represents the system output (such as a time series of experimental
data), whereas the vector x(t) contains the remaining variables of the system which are
either not available from observation or of no interest. The combined vector {y(t),x(t)}
represents the complete state of the unperturbed system. In general, however, the above
governing equations are unknown. The external continuous-time perturbation is denoted
by F(t). F(t) is determined in such a way that it does not change the desired unstable
periodic orbit of the system, but only its stability properties from unstable to stable.
Various analytical forms of this perturbation have been looked at [198,200, 201, 227]. The
most promising ansatz for F'(t) from an experimental point of view is the use of the
feedback-perturbation [198]. It can be applied to stabilise the system onto a periodic
orbit g(t) found before

or by applying time-delay feedback in the form

Fit)=Fy@®),yt—7)=K-[ylt—r71)—y(t)]

with K being an experimentally adjustable constant. Obviously, the perturbation van-
ishes on the unstable periodic orbit when the delay time 7 matches its period 7". This
algorithm can be implemented straightforwardly in most experiments. The method has
been successfully applied to non-autonomous as well as autonomous electronic devices
with chaotic time dependence [201, 202,222, 225] and to optical systems [215, 228].

The prominent advantages as compared to OGY control are that neither a compu-
tational analysis of the system nor the construction of a Poincaré map are necessary.
Therefore application to fast systems is achievable. Furthermore, the knowledge of the

position of the particular unstable periodic orbit is not necessary. A drawback of the
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method is the limited range of the system parameters within which the control can be
achieved [198]. This disadvantage can obviously partly cured by a variation of the method
[229]: The feedback forcing is applied to the accessible parameters of the system instead of
adding a feedback term to the governing equations of motion. This approach can be fur-
ther generalised [203]: It can be shown that it is equivalent to the inclusion of information

from infinitely many previous states of the system

F(t) =K ((1 —R)) R™(y(t—mr) - y(t)))

with the additional parameter 0 < R < 1 being available to the experimentalist. Stabilisa-
tion can be achieved over a wide range of parameter values with partly faster convergence
only for particular values of K. Meanwhile, the sensitivity of this modified algorithm to
noise [227], and its theoretical analysis [223] have been examined.

However, a general problem of the method by Pyragas and its modifications is that
its theoretical basics are still not very well understood [230-232]. The parameters of the
algorithm have to be adjusted very diligently. This applies to the amplitude K of the
feedback-term as well as to the length of the period of the unstable periodic orbit. The val-
ues of these parameters are limited to a very narrow rage in order to achieve stabilisation.
Additionally, only closed orbits with non-vanishing torsion seem to be detectable [233].
However, methods based on the delay-feedback control, adapted to individual systems,

seem to be more successful (see e.g. refs. [234-236]).
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2 Conventional approaches to localise periodic orbits

This section gives a brief overview of various methods occupied with the problem of
locating periodic orbits in chaotic dynamical systems. In doing this, we omit the vast
literature related to closed orbits in time series analysis as well as statistical methods
such as recurrency search and concentrate on constructive methods, instead.

Due to the remarkable diversity and complexity of general dynamical systems, there
are just a few purely mathematical papers dealing with the existence and the properties

of periodic orbits on a general and global level [101].

2.1 Inverse iteration

Inverse iteration is a suitable method to locate unstable periodic orbits of one-dimensional
maps, since these orbits are stable ones of the inverse map (and vice-versa). As the inverse
map is multi-valued, a choice of the particular pre-image has to be taken at each backward
iteration step. The sequence of the branches chosen represents the symbolic code of the
particular orbit. Periodic orbits of higher dimensional systems, however, generally have
both stable and unstable directions. Therefore, they stay unstable also when iterated
backwards. To tackle these systems, essentially the equation f(r) = 0 has to be solved

explicitly, requiring more refined techniques.

2.2 Bisection and more in one dimension

In many cases, the quest for periodic orbits in the phase space of the system can be posed
as a fixed point problem of a generally highly nonlinear vector-valued function. This way,
the problem is recast into the location of roots of an appropriately defined function. A
series of approaches has been developed to tackle this question, in particular for one-
dimensional systems. One of the most basic ones is the bisection method. It utilises the
property of a continuous scalar function to have a root in an interval in which it changes
sign. The function is evaluated at the midpoint of the interval and is used to replace the
boundary point of the interval whichever has the same sign. The algorithm is unbeatably
robust and the rate of convergence is linear (i.e. the uncertainty is scaled with a constant

factor with each iteration step, sometimes also called “geometrical” or “exponential” rate
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of convergence). Although the algorithm is guaranteed to converge as long as the interval
contains at least one root, the determination of several different roots generally raises a
problem.

Another algorithm converging faster than the bisection method, at least for well-
behaved functions, is known as the secant and false position method, respectively [237].
Both methods determine the position of the root of a linear approximation of the function,
given its values at two successive points. Of the three resulting points, the secant method
retains the two most recent ones, whereas the false position method retains always the
two best estimates with opposite sign from the function value, bracketing the root. The
secant method converges faster, but also less safe than the false position method. Ridders’
method [238] is a powerful, refined modification of the false position method. It evaluates
the function at the midpoint of the interval bracketing the root and approximates it by
an exponential function. The advantages are besides a fast rate of convergence of order
V/2 and a general robustness, that the trajectory is guaranteed to stay in the bracketing
interval.

The Van Wijngaarden-Dekker-Brent method [239] combines the robustness of brack-
eting algorithms with the fast convergence of higher-order methods. It uses a quadratic
interpolation to approximate the function, evaluated at three prior points. It accepts the
estimate of the root only in case it is still contained in the interval. Otherwise, a bisec-
tion step is performed. This method is guaranteed to converge and is the recommended
method of choice to determine roots of one-dimensional functions without having access

to its derivative.

2.3 Bisection in multiple dimensions

Modifications of the aforementioned methods for higher-dimensional systems are rare.
One exception is the continuation of the bisection method for locating zeros of a one-
dimensional function to higher-dimensional systems, which was developed by M.N. Vra-
hatis [240-248]. The area in the N-dimensional phase space containing the fixed point to
be located is surrounded by an irregular 2/NV polyhedron in such a way that each edge is
intersected by exactly one N —1 dimensional manifold determined by the condition of the

vanishing of one of the N coordinates. This polyhedron is then bisected in a controlled
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way such that its above-mentioned defining feature is maintained. By performing this
procedure iteratively, a fast convergence of the algorithm in the fixed point is achieved.
What is more, the detection is independent of any stability properties of the fixed point
and is guaranteed to succeed, as long as the initial polyhedron contains a fixed point.
However, in case many fixed points cluster in small regions of phase space, the 2N ver-
tices of the polyhedron have to be placed in the neighbourhood of a particular fixed point
in order to locate it. Therefore, the method is less useful for the detection of complete
sets of periodic orbits of a system, but proves to be valuable for “polishing up” a fixed
point once its location in phase space is approximately known. The algorithm has suc-
cessfully been applied to a number of nonlinear dynamical systems including the standard
map [248], the driven Duffing oscillator [240], the Hénon map [241], molecular systems
[242, 245, 247] and mathematically motivated functions [243]. Its convergence is fast and
independent of the stability properties of the fixed point as well as the initial conditions.
However, the possibilities to locate a complete set of closed orbits of the same length are
limited.

A general remark on finding roots in higher dimensions is appropriate here: Generally,
the various components of a vector-valued function, which have to vanish simultaneously
in case of a root, are uncorrelated. The fluctuations of the signs of their individual compo-
nents in phase space generally have no relation to zeros of the complete function, different
to the one-dimensional case. This is why the detection of roots of higher-dimensional

functions is much more elaborate compared to one-dimensional ones.

2.4 Newton algorithm

The algorithm named after Isaac Newton has become one of the most prevalent methods
to calculate roots of a wide class of functions rapidly and in an approximate way [237,
249-251]. In 1669 Newton developed an algorithm to solve polynomial equations by
solving what can in modern terms be called the linearisation of the equation for small
increments of the independent variable [252]. However, this approach does not use the
notion of derivative explicitly and refers to the special class of polynomial equations only.
Furthermore, Newton did not consider the resulting equation as an iterative process,

approximating the root step by step. The method was further developed by Raphson
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[253], who avoided the substitutions present in Newton’s approach. Later studies were
done by Simpson, Mouraille (who first mentioned the importance and the difficulty of the
choice of the initial point), Cauchy and Kantorovich [254].

The Newton method is a first order method, originating from a Taylor expansion up
to linear order. It approximates the zero f(r) = 0 of the function f(r) as the limit of the

recurrence
Tn+l =T — f('f'n)

starting with an initial point ry. The local convergence property is guaranteed: Newton’s

method will always converge if the initial point is sufficiently close to the root and if the
root is not singular. The difficulty of the choice of the initial point is essentially the main
drawback of the method [251]. A whole branch of mathematics emerged, giving theorems
to optimise initial conditions that provide safe convergence of general numerical root-
finding algorithms. The so-called point estimation theory, for example, which was first
introduced for Newton’s method [255], deals with domains of convergence and convergence
conditions by using only information about the function at the initial point [256-259].

A constructive theorem of Kantorovich [254] yields estimates about the radius of con-
vergence of Newton’s method, if bounds for the derivatives of the functions are given. The
convergence of the algorithm is quadratic, i.e. the number of reliable digits is doubled at
each iteration. However, far from a root, the higher-order terms in the Taylor expansion
become important and the algorithm generally produces meaningless results. This might
in particular be the case if the search interval between the starting value and the root
includes a horizontal asymptote or a local extremum of the function.

As mentioned above, the Newton algorithm is a first order method. Inclusion of second
order terms of the Taylor expansion can generally increase the speed of convergence. A
first attempt in this direction was done by E. Halley in 1694, resulting in the so-called

Halley’s method:
_ 2f(rp) f'(rs)
Tn41 =Tn — ’ 1
2f (7””) - f(Tn)f (Tn)
The Householder iteration [260] is a generalised approach of higher order:

Tni1 =Tn+ (p+1) <m)m

A/ e

with p being an integer. For this method, the rate of convergence is of order (p + 2).

The choice p = 0 restores Newton method with quadratic convergence, whereas p = 1
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yields Halley’s method with cubical convergence. For each of these methods, a favourable

starting point is required. Another possible modification of the original method is to

expand f in terms of powers of the step-size h,, = — ,{'((7;7;)) of the simple Newton algorithm

[237] and to optimise the coefficients in order to minimise
2 3

h
flrne) = flra + hy + a32—7 + a’;B—T +...)

The multi-dimensional generalisation of the original Newton’s method for solving the
nonlinear equation

F(r) =0 (1)

with a higher-dimensional phase space is the following iteration

g1 = Ty — I (1) - F(r,) (2)
with the stability matrix
OF;
Jij(r) = 8—73_(1') (3)

In particular for higher dimensions, the global convergence behaviour of the Newton
algorithm is typically unpredictable. Generically, the basin of convergence is not even
a continuously connected area. It is highly irregular, which is essentially due to the
“bouncing-away to infinity” of the trajectory after a certain number of iteration steps.
Especially when applying Newton’s method to a polynomial of degree two or higher one
obtains a rational map of the complex plane, resulting in a highly fractal Julia set in case
of the existence of more than two roots [237,261-263]. Nevertheless, the Newton method
is unbeatably efficient for polishing up inaccurately determined zeros within a few steps.

The determination of the inverse stability matrix Eqn. (3) required to perform the
Newton method Eqn. (2) can be avoided by numerically approximating this quantity
[264]: The method of regula falsi includes the Euler-discretisation of the derivative matrix
(assuming a linear approximation of the function) into the Newton algorithm. However,
the convergence pattern is similar to that of the original Newton method, and additional
numerical instabilities may arise. These drawbacks also appear when using a quadratic
approximation of the function.

Another modification of the original algorithm are multidimensional secant methods

such as Broyden’s Method [265]. They reduce to the secant method in one dimension
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[266]. Beside these, there are quite a few modifications of the original method, e.g.
giving an individual adaption to particular functions, where the Newton algorithm alone
would converge slowly or difficulties due to turning points are met [267]. Other variations
concern the application to localisation of periodic orbits in chaotic systems [43, 268—-274],
including dissipative as well as Hamiltonian flows. This is mostly achieved by applying
the algorithm to a suitably introduced Poincaré map (see below, section 6 and ref. [43]
for details).

For applications to various Hamiltonian systems, the so-called monodromy method
gained considerable attention [275-280]. In this approach, the particular banded form of
the monodromy matrix of analytically given maps is taken advantage of. Iteration steps
correspond to steps of the original Newton algorithm, but can be evaluated faster. This
method is particularly suited to trace periodic orbits while varying a system parameter.

Another modification of the original method has been developed in order to locate
periodic orbits of maps more easily [43]: As a periodic orbit of length p of a map is
essentially a fixed point of the p times iterated map f)(r), it suffices to solve the equation
f®(r) — r in order to detect the orbit. However, the function f)(r) generally is highly
nonlinear and fluctuates excessively (see e.g. ref. [281]), which complicates the search

for the roots. The periodic orbit is more easily found as the zero of the following vector

function F':
T T — f(rp)
F(r): T2 _ 7"2—f(7“1)
Tp rp — f(rp-1)

An iteration step of Newton’s algorithm now takes the form:

2P ) = ()

22



with %F(r) being the p x p matrix (only non-vanishing entries are displayed)

( 1 —f'(rp) \
=f'r) 1
d o —f'(r2) 1

1
\ = f'(rp-1) 1 )
This matrix can generally be easily inverted. For details of this procedure, we refer to ref.

[43].

As already mentioned, Newton’s algorithm when applied to solve nonlinear equations
generally has the property to have a relatively small radius of convergence. However,
a more global convergence pattern can be obtained with the following variation of the
method [237]. For the original Newton’s method solving the nonlinear equation Eqn. (1)
the iteration Eqn. (2) is performed. Thus, with approaching a root F(r) = 0, the scalar
function f = F - F is minimised. The Newton step rye, = roq + Or with ér = —J(r)F(r)

is a descent direction for f:
Vf-or=2F-J)-(-J ' F)=-2F-F<0

This suggests the following strategy: At each iteration, it is checked whether a full Newton
step reduces f. If this is the case, the convergence behaviour is regular and the step is
performed. This way, a quadratic rate of convergence near the root is guaranteed. How-
ever, if f is not reduced, one back-traces along the Newton direction until an acceptable
step (resulting in a decrease of the value of f) is reached. As the Newton step is a descent

direction of f, it is guaranteed to find such a step [272].

2.5 Variational algorithms

Generally, relaxation methods work by iteratively minimising a suitably defined cost func-

tion [264]. It measures the deviation of the approximate p-periodic orbit ¥ = (74, 7o, ..., )

of the n-dimensional map z;,1 = f(z;) from the exact one, e.g. of the form



Often in variational or relaxating algorithms, the step size of the propagated trajectory
is linearly dependent on the value of the cost function. Non-variational methods like the
Newton algorithm have an additional dependence also on other quantities of the system,
such as its stability matrix. This is also the reason for a different numerical convergence
behaviour: The Newton method converges super-exponentially and therefore faster than
variational algorithms. However, the latter ones are much more stable due to their smaller
step size, which is why they can be used to detect even long periodic with a relatively
small extension of the linear neighbourhood. Another consequence is the large extension
of the basins of attraction of the individual orbits. This property makes these procedures
very attractive for numerical applications, since the speed of convergence of relaxation
algorithms in the extensive areas of attraction is high due to the long distance of the
trajectory to its final solution. The trajectory, once started even far away from the
fixed point (the periodic orbit) quickly reaches its linear neighbourhood. Apart from the
method of stability transformation discussed in this study, several other algorithms can
be traced back to a variational ansatz.

A successful variational method to locate periodic orbits of a particular class of systems
has been developed by O. Biham and W. Wenzel [282] and has been widely applied since
[173,283-296]. It can be applied to time-discrete systems (maps) that can be written
as a one-dimensional recurrence equation r; 1 = f(r4,7; 1,...,7i k), generally involving

(k+ 1) > 2 time steps. The Hénon map
T =1—az] +by; , Yig1 = T
is an example of a system with this property. The corresponding one-dimensional recur-
rence equation f(r) has the following form
Tivp =1 — cw“i2 + bri_y

In order to calculate a closed orbit of length p, a p-dimensional vector field v = (vy, v, ..., v)

vanishing on the periodic orbit is introduced by
dr 4
dr

For fixed r; 11, r;_1, the equation v; = 0 has two solutions for r;, representing two extremal

2 .
:’l)i=7'z'+1—1+a7“i—b7'i_1, Z=1,...,p

points of a local potential function

v; = ‘/;(7') . V;(’r‘) = Ti(ri—kl - b’f’i_l - 1) + T‘?

w| e

ar;
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The vector field v is now propagated in time 7 - with an essential modification of the

signs of its components:

— = 0;V; , O'Z'::izl, izl,...,p
dr

The iteration starts with estimates for the periodic orbit {r;, i« = 1, ..., p} as initial points.
Within each step of the algorithm, all p points of the trajectory are varied, the size of the
corresponding individual variations given by o;v;. With the choice o; = +1 the flow is in
direction of the local maximum of V;(r), for o; = —1 in direction of the local minimum.
The initial directions of the p individual trajectories have to be put in by hand. The
potential functions V; are not bounded, therefore an initial guess too far from the exact
orbit will lead to divergence. However, the basins of attraction of the periodic orbits are
very large. For the Hénon map, their extension is of order 1 and thus exceeds by far the
radius of convergence of Newton’s method. What is more, it turns out that the directions
0;, read as a binary code, are definitely related to the symbolic code of the periodic orbit
that is approached. Therefore the detection of a periodic orbit, its symbolic code given, is
possible with this algorithm. A modified version of the method even allows the detection
of complex zeros of real functions [283]: All 27 complex periodic orbits of length p of the
real Hénon map can be localised [283]. The algorithm of O. Biham and W. Wenzel is
in detail investigated in ref. [172]. However, some problems in the convergence process
of the algorithm have been reported [172,291,297]: The evolution of the vector field v
might not converge in a periodic orbit, but in a limit cycle [172]. However, this problem
is remedied in the complex version of the algorithm [283]. Furthermore, it might happen
that different symbolic sequences {0y, 09, ..., 0,} converge in the same periodic orbit (i.e.
the initial guess has to be improved), or that certain periodic orbits are not detectable
for certain parameter values of the Hénon map [291,297].

Further methods for detection of periodic orbits based on the symbolic code have been
invented [298,299]. In these methods, deviations of the symbolic sequence (describing
history and past of the trajectory) of the approximate periodic orbit with respect to the
exact one act as guidelines for small corrections of the orbit along its stable and unstable
directions. With this approach, detection of periodic cycles in a range of systems such
as the Hénon map, the diamagnetic Kepler problem, the collinear Helium atom, different

types of billiards and dissipative systems has been achieved.
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As a result, methods based on a variational ansatz seem to be applicable to a larger
class of systems and are straightforward to be implemented. This compensates the draw-
back of a slower speed of convergence. They generally make use of an artificial dynamics
with help of a cost function, suitably defined on the phase space. The numerically elabo-
rate calculations of e.g. stability matrices in tangent space is not necessary. In addition,
these procedures are generally very robust. The most important advantage, however,
is the large extension of the basins of attraction and the exquisite global convergence

properties of the variational and relaxation algorithms.
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3 The stability transformation method

3.1 Basic Theory

The method of stabilisation transformation (ST method) has been invented by P. Schmelcher
and F.K. Diakonos [300, 301]. It is an iterative approach for the detection of unstable pe-
riodic orbits (POs) in chaotic dynamical systems. In this section we introduce the ST
method in its original form. The dynamical system is given by the following time-discrete
map

Foorn =)
defined in n dimensions. We are interested in the unstable POs of length p of the chaotic

system f. These orbits are just the fixed points (FPs) of the p times iterated map f(®) :
£ . i = £(P) (r;)

How to detect the FPs of the map f(®? In completely chaotic systems all FPs are unstable,
which means that the stability matrices of the FPs have at least one eigenvalue with
modulus larger than one. Its instability is the reason for the difficulty to localise the FP:
The dynamics of the map is directed in such a way that a point in the neighbourhood of
the unstable FP is at once repelled and mapped further away. The idea underlying the
ST method is the following: We seek a dynamical system s with fized points at exactly the
same positions as in the system f®). However, the stability of the FPs of s is altered in
an advantageous way compared to £P): The transformed FPs of s are dissipatively stable.
At this point it becomes obvious how the transformed dynamical system s helps us to
locate the POs of the original system since it is straightforward to find a dissipatively
stable FP in the phase space: A trajectory sufficiently close to the FP is attracted and
converges to the FP. A feasible approach to find the FPs of the system s is to propagate
a set of given initial points by applying s and to collect all points in phase space obeying
a certain convergence criterion. The latter points are stable FPs of s and by construction
unstable FPs of the p-times iterated original system f(). Having provided the basic ideas
let us now turn to their implementation. An ansatz for the construction of the stabilised

system s reads as follows [300, 301]:
st T =s(r;) =1+ AC[? (x;) — 1] (4)
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The matrix C is constant, regular and real, with its entries still to be determined with
the requirement that an unstable FP of f®) becomes stable in s. The scalar quantity
0 < A < 1is a parameter for the dynamical system s. Its meaning will become transparent
in the following. It is obvious that this ansatz meets the above-stated requirement of a
one-to-one relation between the positions of the FPs of the system f(?) and the system
s. However, we pay for the simple form of the ansatz (4) with the disadvantage that not
all FPs can be stabilised applying a single transformation. For a fixed C and A only a
certain part of the FPs of the system s are stable, whereas the others retain their repelling
character. Fortunately, this can be remedied by constructing not only one system s, but

a whole set s1, 8o, S3, .... of transformed systems:
si: Ty =8i(r;) = 1 + AG[fP (1)) — 1] (5)

For each dynamical system s; the corresponding matrix C; takes on a different appear-
ance. Consequently, for each of the systems s; different sets of FPs are stabilised and
can be detected. It is the aim to locate all FPs of the p-times iterated map f® by a
sophisticated construction of the set {s;}, i.e. by a suitable choice of the set of matrices
{C;}. Schmelcher and Diakonos indicated [300,301] that the following matrices allow
a stabilisation of all FPs in the above described manner: The n x n—matrices C; have
only one non-vanishing entry +1 or —1 in each row and column. There are exactly 2"n!
such matrices, i.e. we have to deal with the same number of stability transformed sys-
tems. The geometrical operations corresponding to these transformations form a group
of spatial reflections and permutations. Our ansatz Eqn. (5) works independently of the
length p of the periodic orbits to be detected. The length p affects only the iterate £®) of
the map, but does not alter the number of necessary transformations or the form of the
matrices C;. For a given system f one can therefore detect POs of in principle arbitrary
length with the same set of matrices C;. In section 3.2 we will discuss the C;—matrices
for two-dimensional systems in more detail.

The meaning of the parameter A can be elucidated by deriving a corresponding equa-
tion for the stability matrices. Let T; and T, be the stability matrices of f and s;,

respectively. From Eqn. (5) we obtain
T, =1+ AC;(T; — 1). (6)
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Multiplication of Ty —1 by the matrix C; has the following effect. A priori, the eigenvalues
of (Ty—1) in Eqn. (6) can acquire any value. The product matrix C;(T;—1) is supposed
to have only eigenvalues possessing negative real part, given a properly chosen matrix C;.
Scaling with a small positive parameter \ allows to make the eigenvalues of the matrix
Ci(T; — 1) in principle arbitrarily small. As a result, the eigenvalues of the matrix
14+ AC;(T;—1) can be scaled to have only eigenvalues with absolute value less than one:
This is exactly the property that defines a FP of a map to be stable. The close relation
of the parameter A to the magnitude of the eigenvalues of T is obvious: The larger the
absolute value of the eigenvalues are, i.e. the more unstable the corresponding FP is, the
smaller the value of A has to be in order to achieve stabilisation. The instability of FPs of
a PO increases with its length p, therefore the value of the parameter A has to be reduced
to localise increasingly longer POs.

At this point, it is necessary to point out that the notion “stabilisation of periodic
orbits” is used in a different way in the context of the OGY control compared to the ST
method. OGY control works by performing tiny changes of the parameters of the system.
Contrary to this, the ST method is based on the construction of a new dynamical system
with the POs having new stability properties. When working with the two methods, the
stabilisation of orbits is therefore achieved in qualitatively different ways.

To detect FPs of a n—dimensional system £, we proceed as follows: We generate the
2"n! different stability transformed systems s;, using the different matrices C;. With each
of these systems and a sufficiently small value of the parameter \ a set of suitably placed
initial points (grid) is propagated. A certain number of trajectories, starting from the
initial points, converge for each s;. These points of convergence are the FPs of the map
£f(®) . Of course it is possible to detect a particular FP more than once. The complete PO
can be obtained by propagation of the individual FPs with the map f.

An important issue for the numerical implementation of the algorithm is the question
concerning the existence of a minimal set of the ST method. As discussed above, 2"n!
different stability transformed systems can be generated from a n-dimensional dynamical
system f. In two dimensions, as shall be shown in section 4, each FP is stable in two
different transformed systems s; and s;. One might conjecture that only half of the number

of transformations is necessary. In fact it has been shown that in two-dimensional systems
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only three stability transformations of the original set of eight are necessary to detect all
FPs [300, 301], assuming that only saddle points, but no sources (repellors) are present.
In case of the existence of sources, the minimal set has to be enlarged by an additional
transformation. The three matrices of the minimal set for generic chaotic systems (no

sources) read
10 -1 0 1 0

01 0 1 0 —1
In ref. [300,301] the minimal set has been determined analytically. In the framework of
section 4, that contains a geometrical interpretation of the ST method, we shall derive a
second minimal set. It is highly probable (and has been indicated by numerical investiga-
tions done so far, see sections 3.3,6.3.3) that also in the general case of higher dimensions
the propagation of a set smaller than the above described one suffices for the localisation
of all FPs of the system.

The excellent convergence properties of the stability transformed systems came into
sight quite early and are already well documented [300,301]. One of the most impor-
tant advantages of the algorithm is the large extension of the basins of attraction of the
indiwvidual periodic orbits. They reach far beyond the linear neighbourhood of the FPs
and are simply connected areas. The second relevant advantage is the fast convergence
of the trajectories for larger distances from the periodic orbits. These properties allow
the detection of POs of a given length p with a number of initial points not significantly

larger than the expected number of periodic points.

3.2 The matrices C; for two-dimensional systems

Several of the dynamical systems discussed in this article are two-dimensional. Further-
more, the geometrical interpretation of the ST method as discussed in section 4 also refers
to two dimensions. This is why we now provide a small survey of the 2 x 2 matrices used
to stabilise two-dimensional systems.

There are eight matrices of the form originally required for the matrices C;. To
label the individual indices, we replace the single running index i by a double one (k, o).
This might look unnecessary at first glance. However, when discussing the geometrical

interpretation of the algorithm in section 4, this notation will have major advantages.
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The symbol ¢ = =+ indicates the sign of the determinant of the matrix Cg,. The index
k = 0...3 labels all matrices Cy, with determinants of the same sign. The eight matrices

are given by

Co, = ], Coo= ], cn= , C=| ,

CQ+ = ) CQ— = ) C3+ = ) C3— =

The entries are denoted by " = 0, "+" = +1, and "—" = —1. The matrices {Cy,|k =
0...3;0 = £} form a group with {Ck, |k = 0,...,3} being a subgroup of order 4. The

multiplication table of this group is given in Table 1. The product of two matrices is

Ciiron = Cpy - Cpor with k" = (k' + 0'k)mod 4, ¢" = o0’ (7)

3.3 Numerical determination of the minimal set

The minimal set of the ST method necessary to detect all POs of a dynamical system can
be determined analytically in two dimensions [300, 301]. Using geometrical considerations,
a second minimal set of transformations shall be constructed in section 4 [302]. However,
for higher dimensional systems an analytical investigation is not feasible, since the zeros
of polynomials of degree higher than two have to be determined in closed form. The
geometrical interpretation to be provided in section 4 is in principle more suitable to deal
with these cases, since it does not rely on analytical derivations. However, in the form
we will derive it for two-dimensional systems, it is not applicable in a straightforward
way to systems of higher dimensions. Therefore numerical simulations are performed to
provide evidence (but not rigorous proofs) for minimal sets of 3 x 3-matrices C;. When
employed in the stabilisation transformations, these matrices are supposed to allow the
stabilisation of all possible kinds of FPs in a three-dimensional dynamical system. The
simulation is performed by firstly generating an ensemble of 107 nonsingular 3 x 3 matrices
S; with entries uniformly distributed in the interval [—1,1]. Then we determine the set

of matrices {Cy}' out of the complete set {C;} for which the product matrix C;S; for a
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certain S; possesses exclusively eigenvalues with negative real parts. Matrices from this
set {Cy}' stabilise the original FP with stability matrix S;. Following this procedure for
the complete set of stability matrices {Sy} we subsequently determine the smallest subset
S such that every matrix S; is stabilised by at least one matrix C; € S. Eqn. (8) shows
the minimal set & of C,—matrices resulting from the simulation for three dimensions.
Again, the entries are denoted by ”-” = 0, "+” = +1, and "—" = —1. The negative of

each of the matrices C;, 71 =1,...,9, i.e. —C,, is also included in the minimal set.

+
+ )
+
+ — + +
+ |- S E -1 + |- (8)
+ + + —
+ - + +
+ ) + ) - ) +

It is an interesting feature that the matrices in the minimal set, except for the signs
of the entries, describe complete permutations of period 3: The action of the matrix on
a vector implies its components to be either mapped onto themselves or to be permuted
cyclically. The cyclic permutations are both forward (r — y — 2z — z) and backward
(z = y = = — z). For each direction of the permutation all possible combinations of
switches of the signs of the coordinates are included. It is an interesting question whether
this observation holds also for dimensions n > 3. If this would be the case it would

simplify the investigation of higher dimensional dynamical systems considerably.

3.4 Time-continuous version of the stability transformation

There is a second and equally interesting way to interpret the ST method. It is based

on the interpretation of the ST approach as a mapping of a vector field associated with
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the original dynamical system onto a transformed vector field with new desired stability
properties. This interpretation allows a transparent separation of the influence of the
two key ingredients of the ST method, the C;,~-matrix and the parameter A, on the sta-
bility properties of a FP of the map. Additionally, it is best suited for the geometrical
interpretation of the ST method (see section 4).

Let us discuss the underlying approach in more detail. For a given map f, the quantity
(f®)(r) — r) defines a continuous flow # = f®)(r) — r in the phase space of f. It vanishes
for the FPs of f®). The FPs of () therefore correspond to stationary points of the flow
(f®)(r) —r). These stationary points are generally unstable: In their neighbourhood, the
flow is deflected away. Fig. 1 shows an example of the phase portrait of a two-dimensional
system around a stationary point (these considerations equally hold in higher dimensions).
Fig. 1 (a) shows the phase portrait around the unstable stationary point. A stabilisation
of this point can now be achieved by a transformation of the vector field. According to
Fig. 1 (b), a reversal of the sign of the z—component of the vector field is sufficient to
stabilise the flow: Following the flow vectors leads to the stationary point. Changing the
sign of the z—component of the vector field corresponds to the multiplication of the vector
field £ (r) — r with the C; matrix ( '?). The resulting vector field is therefore given by

01

the dynamical system
) —-10
Tr = ( 0 1> (f(p)(r)_r)

This is the time-continuous form of the transformed system. In Fig. 2 a second example
of a stationary point with different stability properties is shown. Obviously, application of
the same transformation as in the example of Fig. 1 does not yield a stabilisation of the
stationary point. For this stationary point, a different transformation has to be applied
to achieve stabilisation.

Let us now step back from the above time—continuous form to the time—discrete one
in Eqn. (4) by applying an Euler—discretisation (a linear approximation) of the time
derivative ©, ¥ — (r;;; — r;)/(At). From this point of view the parameter A in Eqn.
(4) corresponds to the time interval A¢ introduced in this discretisation. The relation
of the time interval A = At to the instability of the FPs detected with this particular
value arises naturally. Let r = h(r) be an arbitrary time-continuous system, given by a

system of ordinary differential equations (in the above discussion h(r) = f®(r) —r). Let
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ro be a stationary point of the system h with i = h(ry) = 0. We now apply the stability
transformation, i.e. we consider the systems r = g(ry) = C;h(r), with the matrix C;
chosen in such a way that the stationary point ry becomes stable. Let S, (rg) = (9jh;)(ro)
be the stability matrix of h in ry with eigenvalues u;. Let S,(rp) = (0;9:)(ro) be the
stability matrix of g in ry with eigenvalues v;. Since rj is a stable stationary point of
g, the real parts of all eigenvalues vy are negative, Re(v,) < 0. We now turn to the
change of the stability properties accompanying the discretisation. A stable stationary
point of a time—continuous system does not turn automatically into a stable FP of the
time—discrete system: The stability of the FP is related to the size of the time interval
At of the discretisation. We switch from the time-continuous system g to the time-
discrete system g with help of the Euler—discretisation ¥ — (r;; — r;)/(At) according to
ri.1 = r; + (At)g(r;) = g(r;). The point ry is now a FP of g. Its stability depends on the
size of the time interval At in the following way: The eigenvalues of the stability matrix
of the discretised system g are m, = 1+ Avg. Even if the real part of the eigenvalues v; is
negative, the condition |m;| < 1 for stability of the FP of the discretised system is not met
for arbitrary values of the parameter At. With decreasing value of At we can stabilise in
the discretised system FPs with increasing instabilities, i.e. increasing absolute values of
the eigenvalues . In the case of an infinitesimal At each stable stationary point of the
time—continuous system g corresponds to a stable FP of the map g.

Let us now discuss the relation of the eigenvalues of the original stability matrix S (r¢)
to the critical value A..;;, marking the transition from instability to stability. For a stabili-
sation transformation with an arbitrary matrix C; an exact relation cannot be established,
since the multiplication of the stability matrix S, (ry) with the matrix C; implies a com-
plicated alteration of the eigenvalues. However, numerical evidence shows that generically
the absolute values of the eigenvalues of Sy(rg) = C;Sj,(rg) are, independent of C;, of the
same order of magnitude compared to the eigenvalues of Sy (rg). This suggests a, at least
approximate, relation in the form A..;; & A~ of A\ to the eigenvalue A of Sy (ry) with
the largest absolute value. This dependence will be discussed in section 5.3 for several

examples of dynamical systems.
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3.5 Modified ST approaches

For a number of studies described in this article a combination of the ST method with
the Newton algorithm is advantageous to enhance the speed of convergence in the linear
neighbourhood of the FP. These applications show that it is most promising to apply
both algorithms successively. Nevertheless, attempts have been made to combine both
methods in such a way that each iteration step is a linear superposition of steps of the
individual two algorithms [303-305]. For detecting the zeros of F(r) = f®(r) —r, in
both the Newton method and the ST method an iteration rnew = rg)q + 0r is performed.
In the ST method, dr is given by ér = AC;F(r), whereas the Newton method yields
—J(r)or = F(r), with J(r) = OF /Or being the Jacobian matrix. The approach according
to ref. [303-305] combines these two methods following the ansatz

[1B][F (r)[| = Cid(xr)] or = C;F(r) (9)

with 8 > 0 being an adjustable parameter. This corresponds to the ST method for a larger
distance to the FP and for sufficiently large values of 3, maintaining the global convergence
properties. However, close to an unstable FP the Newton algorithm dominates in Eqn.
(9) and guarantees fast convergence. The application of this approach to several chaotic
maps and the rate of its convergence have been studied [304, 305].

A fruitful modification of the ST method as discussed in this study is its combination
with the so-called “subspace projection method” [306,307]. It allows the detection of POs
of higher dimensional systems with relatively small numerical effort. The n—dimensional
local phase space of the dynamical system is decomposed into two invariant subspaces
such that all directions that cannot be stabilised with the trivial stability transformation
C =1 and an appropriate value of the parameter \ are contained in an invariant subspace
with dimension d. The basis vectors &; span this d-dimensional invariant subspace and
are obtained by subspace iteration [306]. In order to locate the unstable PO, the following

iteration is performed:

d d
Tyl =T+ Z a;& + A £@) (rp) — Tk — Z bi&;
i=1

i=1
with
(CL1, ag, ..., ad)T = )\,C,(bl, bz, ceey bd)T
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and
b = (fP(ry) —14) - &

In the d-dimensional subspace all possible stability transformations are performed, ap-
plying the different possible d x d-matrices C'. The number of transformations to be
applied is significantly smaller compared to the required number for the complete original
dynamical system.

A more theoretical approach to the ST method is the attempt to subdivide the chaotic
dynamics into cyclic elements [308]. This corresponds to a decomposition of the stability
matrix into the individual permutation matrices. These permutation matrices are an
invariant set under application of the matrices C;, which suggests a relation of the two

approaches on a mathematical level.
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4 Geometrical Interpretation of the Stability Trans-

formations

4.1 Classification Scheme

In this chapter our goal is to gain a deeper insight into the geometrical meaning and
the interpretation of the transformations s; (Eqn. (5)) which turn unstable FPs into
stable ones. In order to do this, one has to go beyond the exclusive consideration of the
eigenvalues at the positions of the FPs.

We shall discuss a geometrical approach [302] allowing us to classify the FPs that are
stabilised by different matrices C;. We will hereby focus on systems with two degrees of
freedom. Expectedly there should be no major obstacles with respect to the generalisation
to arbitrary dimensions.

In this section, we will again utilise a double index (ko) for the two-dimensional
matrices C;. Its meaning will be illustrated in the following. Details of the classification
scheme and its implications can be found in ref. [302].

When dealing with the ST method a natural problem arises: Restricting ourselves to
the set of orthogonal Cy,~matrices with exactly one non-vanishing entry +1 in each row
and column and confining ourselves to the linearised dynamics around a FP, what can we
say about the action of the matrices Ci, on this simple dynamical system? The following

equations describe the time—continuous version of the ST method
t=F(r) , F@@)=f"0)-r , Fr)=(F),HF)" (10)

as discussed in section 3.4. It describes a vector field F(r) around the FP ry with F(ry) =

0. Applying the stabilisation transformation we obtain the system
I = Cy, - F(r) (11)

Multiplication with a matrix Cy, can either change the sign of the components Fi(r)

and Fy(r), independently or it can exchange both components, altering the eigenvalues

and eigenvectors of the corresponding stability matrix (Tg);; = gf L in general in a non-
J

perturbative way. We are interested in a classification of the stability matrices, i.e. of

the corresponding FPs, with respect to their stability eigenvalues and in particular with
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respect to the changes they undergo in applying the transformation. To approach this
problem, the following definition of an invariant set of points (see e.g. [240]) is useful:

Cyo acting on the manifolds Z;, Z5 defined as
Zi={r|F((r)=0}, i=12,

they are either mapped onto themselves if Cy, does not interchange the components, or
they are mapped onto each other if Cy, interchanges the components. In this sense, the
manifold Z = Z; U Z, is invariant with respect to the application of the set of matrices
Cio, i.6. Cpy(Z) = Z for all (ko). In the linear approximation of the dynamics in
the neighbourhood of r; these sets clearly define straight lines and intersect in the FP:
ZyN Zy = {rp}.

As mentioned above, we derive in the following a classification scheme for the lin-
earised dynamics around a FP in order to understand the mechanism of the stability
transformation. To this aim, we introduce two ways of classifying the stability matrices
of a two—dimensional system, using certain geometrical properties of the flow around the
FP. These properties reflect on the one hand different invariant sets Z and on the other
hand additional geometrical properties of matrices with a common invariant set Z.

The first classification refers to matrices which have a common invariant manifold
Z = 71U Zy. The sets of matrices are divided into classes labelled C(@min, ®max), Where
Omin and Py are the polar angles of the manifolds Z; and Z; in the linear approximation,
respectively, being sorted with increasing value. If a stability matrix B belongs to the
class C(Pmin, Pmax) then also the products {Cy, - B} belong to this class.

For the later discussion we introduce three sets of FPs (i.e. matrices) each of which is

an unification of classes C(Pmin, Pmax) :

Cl = {U C(¢min, ¢max)| 0< ¢min; ¢max < 7T/2}
C? = {UC(Amin, Pmax)| 0 < Bmin < T/2 < Pmax < T} (12)

C3 = {U C(¢mina ¢m&X)| 7T/2 < Qsmin; ¢max < 7T}

To derive a second classification, we assign a label (I7) to each stability matrix B;, with
7 = %1 providing the sign of det(B;;) and [ = (m +7 — 1) mod 4, with m = 0,...,3
indicating the four possible values (m7)/2 of the polar angle of F(¢min). Now we define
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the class A;; as the set of all matrices {B;} with 0 < ¢min < Pmax < 27 varying within
each class. For fixed ¢min, dmax, multiplication by a matrix Cy, transfers one complete
class A;; into another class Ay,-. The corresponding transitions A;;, — Ap,» , with ' =
(k+ol) mod4 and 7' =07, are given in Table 2. The common algebra of the indices
of the matrices Cy, (see Eqn. (7)) and the classes A;, justifies the introduction of the
double index (ko) for the stabilising matrices.

To gain relevant information on the stability properties of FPs it suffices, as we shall
see in the following, to know to which of the sets C* and A;; the stability matrix of the
FP belongs.

4.1.1 Properties of the angular functions ¢(¢) of the flow and examples

Let us consider an arbitrary but fixed stability matrix B;, € A;,. Each of the matrices

Cio B, k=0,...,3;0 = =1 is an element of a different class Ay,.. We have
By =Cio-By; with I'=(k+o0l)mod4 and 7' =0 -7 (13)

In the following we will call the set {By;|l = 0,...,3;7 = +1} the family of the matrix
B,,. It is the central issue to analyse which elements of the family of a FP are stable.

In order to do this, we study in the following the orientational properties of the flow
around a FP for a family of stability matrices with arbitrary (¢min, @max). For the family
of the matrix B;, we introduce the angular functions vy, (¢), representing the polar angle
of the flow r = By, - r at a point r = (cos ¢,sin¢)” (see Fig. 3). 1, () is a continuous
function of ¢ with ¥, (¢) € [0,27]. Due to symmetry it is sufficient to consider the
range 0 < ¢ < w. Furthermore, ¢;,(¢) is defined mod 27 and ;,(0) — ¥y, (7) = 7. Two
functions v, (¢) and 1y (¢) differ only by a shift 9;,(¢) — ¢w-(¢) = (I — ' mod 4) - 7.
Furthermore we have ¢, () = 2 - ti, ($min) — 1—1(9).

As an illustrative example, Fig. 4a) and Fig. 5a) show the eight elements of the family

1 —4

of the stability matrix M; = (_10 5

) belonging to the class C'. Fig. 6a) and Fig. 7a) are

1 —4

105 ) belonging to the class C2.

obtained in the same way, showing the family of M, = (
Each sub-figure shows the linear neighbourhood of the corresponding FP. In Figs. 4b)
through 7b) the corresponding angular functions 1, (¢) are plotted.

The examples in Figs. 4a) through 7a) except the cases of spiral points By, and Bs

suggest a criterion for the stability and approximate position of the eigenvectors of the
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FPs: Since the flow F(r) in r = r(¢) = (cos,sin@)? is a continuous vector function
of the polar angle ¢, there have to be certain values ¢, for which the flow F(r(¢e)) is

collinear with the position vector, i.e. F(r) = A-r, A € R. This implies

e : A >0, unstable eigenvector

d)lr (¢e) =

¢e+m : A<0, stable eigenvector

The angles ¢, are the polar angles of the eigenvectors of the corresponding stability matrix.
An intersection of ¢y, (¢) with the line x,,(¢) = ¢ +n -7, n = 0,1 indicates an unstable

or stable eigenvector for the corresponding value of ¢, respectively.

4.1.2 Stability properties of the classes

We now discuss the properties of all possible stability matrices according to their v, (¢)—
diagrams, which is done by simple application of continuity arguments to the functions
Y- (¢): In Figs. 4c) through 7c) we show those areas in the ;. (¢)-diagrams where a
intersection of ¥, (¢) and xo(¢) or xi(¢) may occur as grey shaded boxes. However,
the function ¥y, (¢) of stability matrices related to spiral points do not intersect xo(¢) or
X1(¢) (they do not have real eigenvectors), therefore an additional criterion is needed to
analyse their stability. Numerical studies suggest that for spiral FPs the line x,,(¢) which
is closest to ¥, (¢¢) in terms of a suitably defined distance (see ref. [302]) determines the
stability. This can be seen as a generalisation of the criterion of the crossing with x,(¢)
in the case of real eigenvalues.

We begin our discussion with stability matrices B € {A4;_|l = 0...3} with negative
determinants which are stability matrices of saddle points. The stability properties of
these FPs are easy to determine from the corresponding v, (¢)— diagrams in Figs. 5b)
and 7b). Since the vy, (¢)—curves are monotonous and continuous, they intersect the lines
Xo(9), x1(¢) exactly once. The sectors where the corresponding eigenvectors are localised
are shaded grey in the corresponding phase diagrams Figs. 5¢), 7c).

FPs with positive determinant B belonging to the classes {A;;|l = 0...3} are a bit
more difficult to judge. They include sinks and sources as well as spiral points. We first
address the sinks and sources. The corresponding curves 1, (¢) intersect either of the
lines xo(¢) (sink) or xi(¢) (source) twice. It is important to note that there cannot be

more than two crossings, which can also be seen formally [302].
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We now distinguish the properties of the stability matrices with positive determinant
with respect to their assignment to the classes C!, C?, and C3:

As can be read off directly from the Figs. 4b) and ¢), matrices in C'NAy, and C'NAy,
are always sinks and sources, respectively. Matrices of the class C* N A;; and C' N Az,
can be either sinks and sources or spiral points. For real eigenvalues, matrices of C* N A,
are sinks whereas matrices in C! N A3, are sources. In the case of spiral points, we can
at least say that either By, is a stable and B3, is an unstable spiral point or vice versa.
This analysis applies to the class C? in an analogous way. The classes C2 N Ay, may have
the same configuration as the classes C' N A, and C* N A;,, but may additionally be
composed of four spiral points (two stable and two unstable).

We thus have shown that for a given class A;, two complete classes Ay, and Ay »
are related to stable FPs, i.e. the family of an arbitrary stability matrix B;, contains
two stable matrices By,» and By,». The transformations of A;, into By,» and By~ is
achieved by two matrices Cy,r and Cgror (to be read off the transition table 2) which
transfer the original stability matrix By, in a class A;; into the desired stable matrices
in By, € Ay and By € Apn. This corresponds to a transformation of the original
unstable FPs into the desired stable ones in the transformed dynamical systems s+ and

Sk”o’" .

4.2 Minimal sets

Now we turn to the minimal sets & of matrices Cy, necessary for the stabilisation of
all FPs of a two-dimensional chaotic dynamical system. Let us first consider the classes
A;-NCt, i =1,2,3 with elements corresponding to stable FPs. We introduce the notation
(Ir,1'T") abbreviating the two stable classes A;, and Ay, for any C*.

Cland C® : (14,2+4) or (2+,3+)
(14)
C? . (14,24) or (2+,3+) or (3+,0+)
When looking for the minimal set of matrices Cg, necessary for complete stabilisation
one has to take into account that only saddle points and sinks can occur in the system
i = F(r) of Eqn. (10).

Let us discuss the set Ssqqqe 0f matrices C;, which stabilise saddle points first. Since
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the determinant of the stability matrix is negative for a saddle point (and positive for
any stable sink or spiral point), the corresponding stabilising matrix Cy, has the form
Cj_. It is our aim to stabilise all saddle points of the classes C', C2, and C® with matrices
Cro in Sgugqae. Therefore, we have to determine Sguqqie in such a way that any class
A;_ of original matrices is transferred into at least one element in each of the pairs
(14,24) or (24,3+) or (3+,0+) (see Eqn. (14)). According to the transition table 2
there are two possibilities: Sgagae = {Co—, Co—} or {Ci_, C3_}. Ssadare has to be combined
with sets S,;,x that stabilise the sinks to yield a possible minimal set S = Syeqd1e U Ssink-
Since sinks are already stable, the identity transformation Sgnx = {Coy} is sufficient.
Indeed, it is easy to see that no other matrix Cy, is able to achieve the same [302]. We

end up with two minimal sets:
S = {Co+, Co-, Cz—} and S = {C0+, C, C3—}

There are other sets which also do the job, but they contain at least four matrices and

are therefore not minimal.
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5 Implementing the ST method and application to
maps

This section discusses the application of the ST method to the detection of unstable POs
in time discrete dynamical systems (maps). We discuss several improvements of the nu-
merical implementation originally explained in refs. [300,301,309] in order to enhance the
efficiency. We proceed with a twofold goal: Firstly, we are interested in getting complete
sets of unstable POs with increasing length, discussing also the resulting distribution of
their Lyapunov exponents. A second focus will be the discussion of the ability of the ST

method to locate the least unstable POs of a map up to a given period p [309].

5.1 Detection of fixed points

For an efficient algorithmic implementation of the ST method for time-discrete maps, we

focus on two main issues:
1) Detection of complete sets of unstable POs of a given length p.
2) Separation of closely neighboured POs of the same length p.

Since most of the maps studied here are two-dimensional, we describe the application
of the ST method to two-dimensional systems. However, the procedure works equally
well for higher dimensions. The necessary adjustments for adaption to systems of higher

dimensionality concern solely the C;-matrices and their minimal set.

5.1.1 Detection of complete sets of periodic orbits

The basins of attraction for the POs in the stability transformed maps are of fractal and
fibre-like structure and form a densely interwoven network. The transversal extension of
these fibres shrinks along with their longitudinal stretching. The corresponding fractal-
like structure can be observed on length scales covering several orders of magnitude.
These features make a complete detection of all FPs more difficult. However, a clever
choice of the set of initial points, i.e. of the covering of the phase space of the dynamical

system, can significantly reduce the probability of missing individual POs. Additionally
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convergence tests (see below) allow to gain further confidence in the completeness of the
results.

To detect complete sets of POs of length p we proceed as follows: We introduce a set
of grids G, 1 = 1, 2, ... of initial points, which are cumulative in the following way: Initial
points in G; fill gaps larger than a given size in the union G; U Gy U ... U G;_1 of the
proceeding grids in the sequence. The points of G; are taken from a chaotic trajectory
on the attractor of the system. For the two-dimensional Ikeda map (see section 5.2)
a sequence of six grids G1,...,Gg is created, G; containing 4500 points, G;, ¢ = 2,...,6
containing 1500 points each. The points of each grid G; are then propagated with the
transformed maps, employing the minimal sets studied in section 4.2, for example sq,
So—, and so_, i.e. the matrices Cy,, Cy_ and Cy_. The propagation of a transformed
trajectory is stopped in a point r as soon as the step size [f?)(r) —r| < € is reached, € being
the desired accuracy of the position of the FP. The accuracy € is primarily determined by
the necessity to distinguish different closely neighbouring POs. To make this distinction
for the Ikeda map, an accuracy of e < 107!° was sufficient to find all POs of length p = 14
and p = 15. Propagation of the points of the grid G; with sg,, sg— and sy_ results in the
sets Nj o4, Nio— and N;o_, 1 =1,...,6, of points that are, within a finite number of digits,
FPs of the transformed, p-times iterated map f®. The set N; = Niotr UN;o- UN;o
contains the FPs of the map found by propagating the points of the grid GG;. In order to
test the completeness of the set of FPs already found, we consider the number n; 4, of FPs
appearing in a given N;, (and therefore also in NV;), with (ko) = (0+), (0—), (2—), but
not in any other N;, j < ¢. In case no additional FP is found when propagating another
grid, i.e. n;_1 ke = Nike = 0, the set of FPs of the transformed systems s, is considered
to be complete and a propagation of a further grid G; is not necessary. Of course this is

an empirical procedure which does not provide a rigorous proof of completeness.

5.1.2 Separation of periodic orbits

A second detail of the numerical implementation is the procedure to separate closely

neighboured POs. To this aim, we define a distance d,, between two POs of length p,
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X; = (3311,1521), yi = (yu,y%), 1=1,...,p:

Ay = krpoin (xji — Yji(it+k modp))2 (15)
pel 1<i<p
J=1,

We now consider the generic case of a set of FPs belonging to different POs of the same
length p. These FPs are found by propagating the transformed systems sg,, so_ and sy,
as described in the preceding section. All possible combinations of two FPs determined
numerically up to the given accuracy are formed and the individual distances d,, of each
pair are calculated. The distribution of the values of d,, (which can be visualised well in
a log plot, see Fig. 8) forms three subsets, which are separated by distances of several
orders of magnitude. The subset with the largest value of d,, contains pairs generated
from distinct POs. The second and third subset (with decreasing values of d,,) are
composed by pairs of points belonging to the same orbit. Due to the finite accuracy
of any converged numerical trajectory, the two points in the pair do not have the same
position.

It is possible to judge from the distribution of d,, whether the propagation has still
to be continued in order to separate identical and different POs: In case the d,,-diagram
(e.g. Fig. 8) shows not a sufficiently distinct separation between the first and second
subgroup (i.e. if the corresponding values of d,, differ only by one order of magnitude
or even less), the acquired accuracy does not allow a reliable separation of POs and the
propagation of the corresponding transformed systems has to be continued.

The large separation of the two subsets with small values for d, is particularly in-
teresting. A possible explanation for the large gap is the following: A trajectory of the
transformed map approaches the FP on a curve which, close to the FP, agrees to a large
extent with the least stable manifold of the FP. Two trajectories {y;} and {z;} converging
to the same FP ry evolve on a line that contains the FP. However, they can approach the
FP in two ways: The two trajectories can either be on the same side or on opposite sides
of the FP. The same configuration holds for all points of an orbit f")(ry), r = 1,...,p — 1.
In case of an approach from opposite sides to the FP, the contributions to d,, are much
larger compared to the case of an one-sided approach. This implies a relatively large
distance d,, in the second subset compared to the third subset (see Fig. 8).

In addition, the distribution of distances d,, can be employed to get an estimate for
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the absolute accuracy of the numerically obtained coordinates of the POs: The maximal
distance between two coordinates assigned to the same PO within the limits of accuracy is
given by the value of the top edge of the second subset in the distribution of the distances
dyy. Their (mean) distance is therefore a good guess for the distance of each trajectory

to the FP itself.

5.2 Example: Complete sets of periodic orbits and their Lya-
punov exponents
The ST method has been applied with considerable success to a number of time discrete

dynamical systems (maps). To provide a first example, we discuss the detection of com-

plete sets of POs of the Tkeda map r; 1 = f(r;), r; = (3, v:) [310,311],

Tiv1 = o+ fB(x; cosw; — y; sinwy)
(16)
Yivr1 = 6(1‘1 sin w; + Y; COS wi)
with w; = v— m The attractor we are referring to appears for the parameter values

a=1.0,8=0.9,vy=0.4 and § = 6.0. Applying the ST method, complete sets of POs of
length p = 1,2, ...,15 have been detected (see Tab. 3) [300, 301].

An indication of the completeness of the set of POs is the convergence of the topological
entropy h = li‘1>nC>c> h, with h, = Inn(p)/p and n(p) being the number of the FPs of all
orbits of leng:h p. For the Ikeda map, the topological entropy h seem to converge to a
fairly constant value.

A few remarks concerning the application of the ST method to the Ikeda map are in
order: Since each point of a PO of the system f®)(r) — r derived from the Ikeda map
f(r) is stabilised by two Cy,-matrices, possessing a positive or a negative determinant,

respectively (see section 4.1.2), we can group the FPs of a PO of length p into two sets:

Si(p) : Sinks, stabilised either by Coyy, Ci4, Cop, or Csy (17)

S_(p) : Saddles, stabilised either by Cy_, C;_, Cy_, or Cj_ (18)

Surprisingly the sets Sy (p) and S_(p) contain the same number of points [ Sy (p)| = |S—(p)|
for any period p = 1...15. The corresponding numbers are |S.(p)| = 1, 2, 4, 8, 11, 26,
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36, 64, 121, 242, 419, 692, 1262, 2256, 4259 for p = 1 — 15. This remarkable symmetry
suggests a close relation between the POs of the map: Each PO with a stability matrix
having a positive determinant is strongly correlated to exactly one other orbit whose sta-
bility matrix has negative determinant. This observation agrees with another interesting
pairing feature we made when analysing the distribution of Lyapunov exponents of POs
of the Tkeda map [312]: There exist pairs of orbits, one belonging to S, the other one to
S_, with nearly the same Lyapunov exponent. This indicates a fundamental symmetry of
the Tkeda map (not necessarily of geometrical origin). This phenomenon may have an ex-
planation within the index theory [313]. However, the corresponding theorems concerning
the existence, number and properties of FPs are rather exclusive and cannot be applied
directly to the Ikeda map.

We now turn to the discussion of the distribution of Lyapunov exponents A = log(|p|)/p
of the unstable POs. Here, p is the largest eigenvalue of the matrix M = M,,-...- My - M,
with M; being the stability matrix in the i-th point of the PO. The normalised distribu-
tion D(A) of the Lyapunov exponents A of all POs is shown in Fig. 9 both for the Ikeda
map Eqn. (16) for periods p = 12,...,15 and for the Hénon map [27] given by

Tiy1 = L4—1x7+03y

Yit1r = Ty
for periods p = 24,...,27. The Lyapunov distributions of both maps become narrower
with increasing length p. The maximum of the distribution is at Ay, = 0.5 for the
Hénon map and at A, = 0.68 for the Tkeda map. Around the maximum, the distribu-
tion is generally Gaussian [3,314]. However, globally the distributions deviate from this

behaviour.
e Both distributions are not symmetric: The branches A < A, of the distributions

are significantly more spread compared to the branches A > Apax

e The width of the distributions is significant. However, there exist also isolated
peaks. For the Hénon distribution, the most pronounced peaks are at A = 0.551
and A = 0.435. The length of the orbits considered for the Ikeda map, p = 15,

seems however to be too small to provide similar arguments.

For further analysis we refer the reader to ref. [312].
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5.3 “Stability Ordering” of periodic orbits

The ST method is based on the systematic transformation of the stability properties of
a dynamical system. Thus it is not surprising that the parameter A of the algorithm
is of central importance for the stability of the correspondingly stabilised POs. The
following considerations concern two-dimensional maps, but there is numerical evidence
of their validity also for higher-dimensional systems. Let us denote by Aff,)b the Lyapunov
exponent of an unstable PO, the index j labelling the orbit. Let us define a critical value
Akoi of the parameter of a point r; of a periodic orbit stabilised by a matrix Cy, as the
largest value of A, such that all eigenvalues of the transformed stability matrix T, _(r;)
in the point r; possess an absolute value less than one.

The critical value A;; marks the borderline between stability and instability. It is

@)

o Of an unstable PO j: A decrease of the parameter

related to the Lyapunov exponent A
A, starting from the critical value, implies the stabilisation of an increasing number of
unstable POs, including orbits that are more and more unstable. This relation is strictly
monotonous in the case of the ST transformation using the identity matrix Cy, and has
an at least monotonous tendency for the other transformations [309]. For the latter case,

numerical studies suggest that a slightly different definition of a critical value of A results
(7

in a better overall monotonous tendency: We now consider all points r;”’, 7 = 1...p of an

orbit j of given length p, which are in general stabilised by different Cy,—matrices implying

different critical values )\,(jgyi.

We apply all eight Ci,—matrices for the stabilisation. As
Z(j ) of the orbit is stabilised by two matrices, Cg,
()

ko,i-

explained in section 4.1.2, each point r

Each orbit therefore corresponds to a set
(4

ko,i*

and Cys,, with in general different values A
of Ci,—matrices stabilising the p different points of the orbit, resulting in 2p values A
Let us denote the largest critical parameter of this set by 2. Numerical investigations
indicate that the distribution of the Lyapunov exponents Ang)b of the POs are ordered
relatively strictly with respect to the respective 2. Fig. 10 shows the corresponding
distributions for the Ikeda map on a logarithmic scale and for different lengths p =
10, ..., 15 of the POs. The distributions of the stability coefficients A((er)b of the stabilised
orbits of a given length p show a clear tendency of a monotonic ordering: The smaller
,\E,{lx is, the more unstable the POs can be while still being detectable. The areas shaded

grey in each of the sub-figures indicate the regions in which the eigenvalues Aﬁ%(Afﬁ&x)
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of period p = 15 are located. With increasing p the ordering of the POs with respect to
their stability as a function of the parameter A becomes increasingly stricter.

This observation, verified empirically also for other nonlinear dynamical systems, al-
lows to detect a given number of the least unstable periodic orbits of a map in a systematic
way: In order to detect the IV least unstable POs of a given map, essentially a series of ST
transformations as outlined in section 5.1.1 is performed. However, the value of A = Aq is
chosen relatively large and is then reduced step by step in a sequence of successive prop-
agations of the same set of initial points. All Cy,—matrices are applied to obtain ,\SE;LX.
For the numerical implementation of this algorithm a sequence of grids G, Gs, Gs, . ..
of initial points is introduced in such a way that an increasingly denser covering of the
chaotic attractor is achieved according to section 5.1.1. The size of these grids has to be
large enough to yield at least N unstable POs when propagated with all eight systems s,
(Eqn. (5)) and a value of A & \g/2. For our studies of the Hénon map and Ikeda map 10
grids Gy, ..., G1p with 20 initial points each proved to be sufficient. The algorithm can
then be summarised into the following steps (beginning with i = 1, Ay = 0.8 is a good

starting value):

1. Start with initial value A := )¢ and a grid G; of initial points. Propagate G; 8 times,
using each time a differently transformed system according to Eqn. (5) with fixed

value of A\ and employing a different matrix Cy,, k =0, ...,3, 0 = £ each time.

2. In case step 1. did not yield the desired number N of POs, replace A\ — r - A,
(r <1, r = 0.8 seems to be a good choice) and repeat step 1. Otherwise continue

with step 3.
3. Replace G; — G;11, A\g — 7+ Ao and start step 1 anew.

The algorithm is considered to be converged, if the number N of the least unstable POs
found in the cumulative grid H; = G; UGy U ...U G} is the same as in the cumulative grid
Hi 1 =GUGU ... UG-

Fig. 11 shows the Lyapunov exponents of the N = 10 least unstable POs of the Ikeda
map and the Hénon map for the length p =1, ..., 36. The distribution of these Lyapunov
exponents agrees with the corresponding lower part of the distribution of the Lyapunov

exponents in Fig. 9.
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In Fig. 11, two features are remarkable:

e The Lyapunov exponents of the least unstable POs of both maps are of the same
order of magnitude. This property does not depend on the actual value of p. An
increase in p results for both maps in a reduction of the Lyapunov exponents of the
ten least unstable POs. This goes hand in hand with a spreading of the distribution
of the Lyapunov exponents of all unstable POs with increasing p. The mean of the
total distribution, i.e. of all POs of a given length p, is the mean Lyapunov exponent
A of the map, which is approximately independent of p. The inset in Fig. 11 shows
the distribution of the least unstable POs on a log-log scale. Here, the lower edge
of the distribution behaves almost linear. This implies that the width W (p) of the
distribution in Fig. 9 scales approximately like an algebraic function of the period

p, i.e. W(p) x p™, n> 0.

e For particular lengths p, both maps have certain POs with exceptionally small
Lyapunov exponents. Examples are the Hénon map for p = 13,16,18 and p =

26,28, 30 and the Tkeda map for p = 19,21 and p = 24, 27, 30.

5.4 Application to time series

The global convergence pattern of the ST method allows to use it in order to locate periodic
orbits in even remarkably small sets of data, which may additionally be contaminated by
noise. This situation is often met when analysing short time series data of a dynamical
system (Generally, longer time series and noiseless experimental data are technically more
difficult to obtain). For a profound review concerning time series analysis, see ref. [315].

We focus on detecting FPs in a finite, n-dimensional time series {r;,i = 1,...,n} (the
construction of a multidimensional time series from a one-dimensional signal is addressed
elsewhere [316-318]). We proceed in three steps [300]:

First the so-called Voronoi diagram as the union of Voronoi zones is constructed, based
on the set of data. The Voronoi zones cover the phase space in the following way: Each
Voronoi zone contains exactly one point r; of the time series. A point in phase space
belongs to the Voronoi zone of the point of the time series closest to it. This way, the

zones represent a tiling of the phase space. In order to obtain a dynamical system, each
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zone is assigned the transfer vector r;;; — r; of its corresponding data point r;. This
yields a discontinuous, piecewise constant vector field Fy (r) that is in some respect a
coarse grained version of the dynamical law underlying the time series. To detect POs in
this system, we proceed by transforming Fy (r) according to Equ. (5), considering it as an
explicitly given map. The stabilised system is propagated, starting from a point randomly
chosen in the phase space. The iteration according to Eqn. (5) yields a trajectory that
converges in direction to a FP of the corresponding system. However, due to the special
form of the vector field it does not converge in the FP, but lingers in its neighbourhood,
trapped by a few Voronoi zones. For obvious reasons, it is clear that the trajectory can
generally converge only in intersection points of the border lines of at least three different
Voronoi zones. To find out this possible convergence point closest to the FP, a “freezing”
of the dynamics is performed: While still propagating the system, the amplitude |Fy (r)|
of the vector field is scaled to smaller and smaller values each m iterations (m & 100).
This scaling smoothes the fluctuating dynamics while keeping the FPs in their place. The
result is an adiabatic convergence of the trajectory to a common point of at least three
Voronoi zones. Its coordinates are a good approximation for the position of the FP.

In the following example this algorithm is applied to a time series of just 100 points
of the Tkeda map Eqn. (16). Fig. 12 shows the trajectory of the corresponding stability
transformed system. The scaling procedure of the vector field and the resulting conver-
gence of the trajectory is clearly visible in the zoomed section displayed in the panel to the
right. The algorithm returned the coordinates (0.536,0.225) as the approximate position
of the FP of the map, which is quite close to the actual values of ry = (0.53275, 0.24690).
To detect the period-two FP, a vector field is constructed using a time series of 200 points.
The obtained values (0.52184, —0.55542) and (0.57946,0.51272) are to be compared with
the accurate coordinates of (0.50984, —0.60837) and (0.62160, 0.60593), respectively.

Additionally, the influence of noise on the performance of the algorithm is studied. A
noisy data set ¥; = r;+¢€ &; is used with r; being the data set without noise. The parameter
€ is varied from 0.1 to 0.3 ratios of root means square amplitudes of the attractor. For
the variable &; two kinds of noise are chosen: uniform noise in (—1,+1) and Gaussian
distributed noise with zero mean and a variance of 0.2. To improve statistics and to avoid

singular configurations the algorithm was applied to 100 initial points chosen randomly
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on the attractor. For the case of ¢ = 0.1 and 0.3 rms a relative accuracy of the position
of the FP of 4.5% and 16.1% is found for uniform noise and 4.0% and 6.3%, respectively,
for Gaussian noise.

For further aspects of the application of the ST method to time series we refer the

reader to ref. [300].
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6 Periodic orbits in time-continuous systems

The ST method has been developed with the focus to detect unstable POs of time-discrete
chaotic systems, i.e. maps. However, time-continuous systems represent an important
class of dynamical systems and it is therefore desirable to modify the ST-approach such
that it is applicable to this wide class. If the lengths of the unstable POs in time-
continuous systems would be known exactly, one would simply apply a similar approach
as in the case of time-discrete maps in order to detect them. Unfortunately, nothing is
known about the periods of unstable POs in time-continuous chaotic systems in general.

Our strategy is therefore to reduce the time-continuous dynamics to a time-discrete
map, whose FPs correspond to the continuous closed orbits of the system [319].

Let the time-continuous system be given by a system of ODEs,
r = F(r) (19)

We consider the Poincaré map fr(r) of the vector field F(r). To this aim, we introduce a
hyper-plane as a Poincaré surface of section (PSS) in phase space and consider successive
intersections of the continuous trajectory in the same direction as the Poincaré map. POs
of the time-continuous system correspond to FPs of the Poincaré map, i.e. to FPs of the
iterated Poincaré map.

When applying the ST method to the Poincaré-map using the different matrices C;
the convergence of a trajectory is fast for large distances to the FP. The step-size of
the algorithm is proportional to |fp(r) — r| and therefore decreases rapidly in the linear
neighbourhood of the FP. This is not a major problem if generic maps are studied for
which the calculation of the next iteration step is fast. For time-continuous systems,
however, the situation is different. To determine the new intersection point with the PSS,
the trajectories have to be integrated numerically for a time of the order of the expected
period. In case of demanding high precision and/or if a relatively small parameter A has
to be applied for stabilising a highly unstable orbit, up to 10 iteration steps might be
necessary for a successful convergence.

This problem can be solved to a good deal by a combination of the ST method and a
slightly modified Newton algorithm. It significantly enhances the speed of convergence in

the linear neighbourhood of the FP. The Newton method has the advantage of a super-
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exponential convergence close to the FP, but its basins of attractions are rather small
and covers little more than the linear neighbourhood. An suggestive procedure, which
turned out to be very efficient in the systems we investigated so far, is to first propagate
the stability transformed system until the trajectory reaches the linear neighbourhood
of the FP. This point of time can be determined from the convergence pattern of the
trajectory (in particular from the systematic decrease of the step size in a longer sequence
of iterations). The Newton-procedure is then propagated until the desired accuracy is
reached.

We now turn to some peculiarities of the implementation of the Newton algorithm
which are particular for its application to Poincaré-maps (for details see ref. [43]). A

linearisation of the dynamics = fg(r) in a point r yields a neighbouring point r’
fr(r') ~ fp(r) + J(r' — 1) (20)

with the stability matrix J. To locate the FP r, = fg(r,), we consider Eqn. (20) as an

equality and set fp(r’) = r’. We solve the equation
1= —r) = —(r —fr(r)) (21)

for r'. However, r' is generally not in the PSS, although r and fg(r) are. In addition,
an unit eigenvector of the matrix J in the direction of the flow impedes the inversion of
the matrix 1 — J in Eqn. (21). The first problem can be solved by adding a constraint
equation requiring that r’ to be in the PSS. For a hyper-plane as PSS with normal vector
a this equation reads a- (r' —r) = 0. The second problem is dealt with by adding a small
vector F(r)d7 in direction of the flow F(r) to the vector in Eqn. (21), resulting in a shift
of the corresponding eigenvalues away from one. The Newton algorithm Eqn. (21) now
reads

1-J fp(r) r'—r _ —(r — fp(r) (22)

a 0 0T 0

Inverting the matrix on the left hand side of Eqn. (22) yields the new position r’ which
results from the old position r after an iteration step of the algorithm. For additional
comments and details of this method see ref. [43].

We will illustrate the applications of the ST approach to time-continuous dynamical

systems in the following sections for three rather different examples: The dissipative
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Lorenz system, the classical Hydrogen atom in a magnetic field and the classical Helium

atom in a time-dependent electric field.

6.1 The Lorenz-system
6.1.1 Properties of the system

The so-called Lorenz system has its origin in a three-dimensional model of atmospheric
convection. The equations of motion are given by a system of ordinary differential equa-

tions as follows:

T = oy—ox
Yy = —xz+pr—y
z = xy— Pz

The coordinates z, y, and z are related to the velocity of the circulating gas, its tem-
perature gradient and nonlinear deviations from the mean temperature profile [271]. o is
called Prandtl number and it is assumed that p,o > 1. For a physical interpretation of the
parameters, see also ref. [320]. We will consider the parameter values o = 16.0, 8 = 4.0,
o = 45.92. The chaotic attractor is well studied for these values (see e.g. ref. [33] and
references therein), whereas Lorenz in his original article [29] used different values. The
system is dissipative, as one can see when calculating the exponential volume contraction:
V-F = —(14+0+ ) <0 for the parameter values chosen [271]. Although the phase
space of the Lorenz system is three-dimensional, the chaotic attractor is approximately
two-dimensional: The dynamics is almost completely reduced to a rotation in two flat
discs around two FPs. These FPs are the centre of the circular motion and are located

at (i\/ﬁ(g —1),£4/B8(0—1),0 — 1). A third stationary point is at (0, 0,0). These sta-

tionary points of the model system are important for hydrodynamic models, for example
in geophysical studies [271]. However, considerable information about the properties of
the system can be gained when studying the structure of the POs. Many features of the
Lorenz system and especially its POs and their bifurcations are discussed at length in ref.

[33].
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6.1.2 Implementing the ST approach

Several methods have been applied to detect the unstable POs of the Lorenz system (see
ref. [271] and references therein). Going beyond the general theory of the ST method to
time-continuous systems we will in the following demonstrate how it can be extended to
locate unstable POs in the time-continuous Lorenz system.

We define a PSS by {(z,y,2/z = o — 1}. This choice is advantageous, since the

corresponding surface contains both FPs (£4/8(0 — 1), £1/B(0 — 1), 0 — 1). Since every
unstable PO of the system oscillates about one or both of these FPs, there have to be
intersection points on the PSS and as a result FPs of the Poincaré map. These FPs can
be detected with the ST method for maps as described in sections 3 and 5.1.

When propagating a set of initial conditions with the different stability transformed
systems it often happens that trajectories converge in one of the stationary points. This
implies an undesirable slowing down of the numerical investigation. The convergence in
the stationary points can be prevented by stopping the propagation of the corresponding
trajectory close to these stationary points. By doing this, it is possible that POs close to
the stationary points are not found. However, a specific unstable PO has in general several
intersections with the PSS, some of which are at larger distance to the stationary points
and therefore detectable with the ST method. Let us discuss the choice of the distribution
of the initial points. As mentioned above, the chaotic attractor embedding the unstable
POs is nearly two dimensional. This results in an almost one-dimensional intersection of
the attractor with the PSS. It is therefore not advisable to chose an uniform distribution
in the hyper-plane for the set of initial points. Instead, initial points are better sampled
from the set of intersection points of a chaotic trajectory with the PSS. It proved to be
more efficient not to sample successive iterations of the chaotic trajectory, but to allow
for a relatively large transient in time between consecutive initial points. This is due to
the intermittent behaviour of the chaotic trajectories in the vicinity of POs.

The parameter A is closely related to the stability of the unstable POs that can be
detected (see section 5.3). It is therefore necessary to adjust its value each time the
required number of intersections of the POs with the PSS is changed.

The Poincaré maps discussed in this section are in some respect artificial. Contrary

to the generic case of time—discrete maps like the Hénon map and Ikeda map in section
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5.2, a topological entropy, which would give an approximate guess on the number of FPs
of a given period p, can not be easily defined. Moreover, the number of FPs of period p
of the Poincaré map is very sensitive to the position of the PSS in phase space. However,
this can be regarded as an advantage: When discussing the Hydrogen atom in a magnetic
field in section 6.2, we will see that the freedom in constructing the Poincaré map can be
used to selectively detect POs with given symmetry properties.

As discussed above, the numerical efficiency can be significantly improved by combin-
ing the ST method with the Newton method. When doing this, it is important at which
point of the convergence procedure the turnover between the algorithms takes place. The
following strategy turned out to be most efficient: The trajectory is propagated with
the stability transformed system, starting from the initial point, until a given step-size
[f®)(r) — r| < egr is reached. For the Lorenz system, egy ~ 0.1 proved to be a suitable
value. Now a certain number (typically ~ 4) iteration steps of the stability transformed
system are done in order to see whether the step-size continues to decrease. This step is
necessary due to the above—mentioned intermittent dynamics of the transformed system:
Trajectories often remain close to unstable (for the actual value of \) POs, before they
a rejected by their repulsive dynamics. This often happens when the parameter A is still
too large to stabilise this particular PO. In this case, the trajectory is still too far away
from the PO for the Newton algorithm to converge. Therefore, the propagation of the
stability transformed system is continued if the step-size does not decrease successively.
A decreasing step-size, however, can be a signature of a stable PO approached by the
trajectory. At this point the start of the iteration of the Newton algorithm is useful. It
should converge within a relatively small number of iterations (< 10) not too far from
its starting point. However, it might happen that the convergence pattern is different,
e.g. that much more iteration steps are necessary or that the converging trajectory cov-
ers a larger distance in phase space. In this case the FPs the Newton trajectory and
the stability transformed trajectory converge to are different. If it is desired that the
FPs detected have the properties given implicitly by the specific stability transformation
(see section 4), the FP found has to be discarded. In this case, the propagation of the
stability transformed trajectory is continued. In general and provided A is sufficiently

small, generally < 50 iteration steps of the stability transformed system and < 10 steps
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of the Newton algorithm are needed to determine the position of a PO with an accuracy

of [f(r) —r| <1071

6.1.3 Results

In Table 4 the numerical results for the Lorenz system are shown. It is remarkable that all
POs are found with just one stability transformed system: s; with the matrix C4. Also
shown is the number of primitive POs and their mean period as function of the number of
intersections with the PSS. The number of primitive POs agrees with the numbers given
in ref. [271]. The mean length of the orbits increases approximately linearly with the
number of intersections. This peculiarity is a consequence of the rotating dynamics of

the Lorenz system. The trajectories, and with them the POs rotate about the stationary

points (£4/8(0 — 1), £+/B(0 — 1), 0 — 1) with nearly constant frequency. Fig. 13 shows
the approximately linear dependency and small variability of the length of the POs with
respect to the number of intersections. The last two columns of the diagram show the
parametrical properties of the ST approach: The size of A and the number of initial points
necessary to locate the given number of POs. However, one has to keep in mind that not
all initial points converge. Therefore, for the actual application, these numbers have to
be slightly larger than those given in Table 4.

With the ST method, detection of POs with a remarkable large number of intersection
points is possible. Fig. 14 shows an example of a PO with 30 intersection points. The
topology of this orbit is representative for most of the other closed orbits: It is dominated
by a rotation in two planes with a varying number of transition between them. In Fig.
15 the intersection points in the PSS of all POs up to length p = 14 are displayed. Here,
too, the nearly two-dimensional structure of the chaotic attractor is obvious. It is possible
that the small dimensionality of the attractor is related to the fact that only one stability

transformed system is enough to detect the complete set of POs.

6.2 The Hydrogen atom in a homogeneous magnetic field

The set of POs in a chaotic physical system such as the Hydrogen atom in a homogeneous
magnetic field form a skeleton of the underlying dynamics. The POs are an important

tool when applying semiclassical methods to calculate classical and quantum mechanical
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properties of the system [62,321-323]: Examples for this quantities are the spectrum
and the fluctuations of the level density of the corresponding quantum system and even
individual quantum mechanical wave functions (“scarring”). The dynamical system of a
Hydrogen atom in a homogeneous magnetic field is known in literature as the diamagnetic
Kepler problem. Several methods have been developed to locate POs in this system. For
example, POs with certain symmetry properties can be detected by propagation of three
specific lines in phase space [323]. Some of these methods are based on a symbolic code
assigned to the individual PO, and nearly all are especially designed for the diamagnetic
Kepler problem. In contrast to the other algorithms mentioned, the ST method requires
no pre-knowledge of special properties of the system. Implementing the algorithm requires
only a numerical routine to integrate the equations of motion, a clever position of the PSS

and a chaotic trajectory to sample the initial points.

6.2.1 Equations of motion

The Hamiltonian for the hydrogen atom in a homogeneous magnetic field directed along

the z-axis reads under the assumption of an infinite nuclear mass [62]:

2
P 1 1 15, 5 9

H=———+—-~l,+ -

It depends on the coordinates r and p and on the magnetic field . This additional

parametric dependence can be removed by scaling the coordinates (e.g. ref. [62])

2/3 -1/3

r=~""r and p=v """p

Now the dynamics (i.e. the Hamiltonian equations of motion) depends only on the scaled

energy e,

e=~"%3E

and not on E and v separately.
The singularity at ¥ = 0 is a drawback of the corresponding Hamiltonian. It can
be removed e.g. by the introduction of semi—parabolic coordinates and a coordinate

dependent scaling of the time [62]:
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The momenta
_dv _dp
Cdr Pu= dr

are defined with respect to the scaled time 7 given by

by

dt = 2|F|dT = (v* + p?)dr (23)

The equations of motion in the transformed system at a fixed value of the scaled energy

are equivalent to the equations of motion generated by the Hamiltonian

2

h(p, v )—p—3+ : 4B L — (v + 2)+1,,2 2+ p?) =2 (24)
Ky Vs Py Pu 9 9,2 9 212 Jis 3 Ju! u)=

at the fixed pseudo-energy 2. For negative scaled energies ¢ < 0 the Hamiltonian (24)
represents a sextic oscillator: Two harmonic oscillators with frequency w = v/—2¢, coupled
by the term v?u?(v* + p?) due to the diamagnetic interaction. The trajectories generated
by the Hamiltonian H and h are not related by a canonical transformation, although
there is a bijective correspondence between them.

In the following we confine ourselves to vanishing angular momentum [, = 0. The
Hydrogen atom in a magnetic field is an example of a system with mixed phase space,
and the appearance of the PSS depends significantly on the value of the scaled energy e
(see e.g. ref. [62]). For the value e = —0.8 the system is close to integrable. The integrable
volume of phase space decreases as € approaches zero, whereas the ergodic trajectories fill
an increasingly larger fraction. In our investigations of the system we first considered a
value of the scaled energy of ¢ = —0.1. This value of the scaled energy corresponds to
an almost completely ergodic phase space. We emphasise however that the ST method
works also in case a considerable fraction of the phase space is regular, as we will see when
investigating the system with a scaled energy of ¢ = —0.4.

The equations of motion in the semi-parabolic coordinates (u, v, p,, p,) are derived in

a straightforward way from the Hamiltonian (24):
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B = Z—==7D
Opu K
oh
v o= =D,
Opy P
: oh 1 1 25
Py = _8_M = €U — Z,ul/4 — §u3y2 (25)
oh 1 1
P, = 3 = eV — Zl//f — §y3u2

All four coordinates are simultaneously integrated using a Taylor-integration algorithm

[324]. The dynamics on the energy shell is only three-dimensional.

6.2.2 Numerical Implementation

The Taylor integrator [324] is an extremely powerful tool. Although the chaotic trajec-
tories have a quite complicated topology and form interwoven tangles (see Fig. 17), the
integrating routine performs very large time steps. When the Taylor integrator is used for
the calculation of successive intersections of a trajectory with the Poincaré surface, one
has to take care that the step size of the integration routine does not exceed the length
of the expected unstable PO.

When discussing the Lorenz system, we already mentioned that the ST method as
extended for time-continuous systems has three key components: A good positioning of
the PSS, the tuning of the value of the parameter A and the proper grid of initial points.
We now discuss the meaning and proper choice of these three components for the hydrogen
atom:

The PSS is defined as the manifold obeying:

{l/,p,,,,u = 0}

Due to the exchange symmetry p <> v of the Hamiltonian Eqn. (24) and the equations of
motion (25) this choice of the PSS gives the same numerical values of the spatial position
of the unstable POs as the choice {y,p,, v = 0} would yield.

The position of a point in the PSS is therefore given by the pair of coordinates (v, p,). It

is determined using a bisection method with an accuracy of |u| < 107'°. The intersection
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of the three-dimensional energy surface with the PSS defines a two-dimensional area in
this surface in which the dynamics of the system takes place. Eqn. (24) shows that the
area in the PSS allowed to the dynamics is given by (pi >0)

P’ — 2’ < 4

i.e. in coordinates (v/—2¢v, p,) this area is given by a circle of radius 2. The Hamiltonian
Eqn. (24) with [, = 0 and p = 0 defines the initial value p, = 24/2 — ev? — 1p? corre-
sponding to an initial point (v, p,) in the surface of section. It is sufficient to consider just
one sign (+ in this case) for the square root on the right hand side. Choosing the other
sign (—) simply yields POs that are related by reflection at the PSS to orbits that are
found by choosing the positive sign of the square root (inverting the sign of both u and
pu does not alter the equations of motions (25)). The Cartesian time between successive
sections of a trajectory with the PSS is given by Eqn. (23)

T

r) =2 [ (*(7) + () dr

0
It equals the period of the orbit in case the trajectory starts at a FP of the Poincaré map.

The role of the number of intersections of an orbit is slightly modified in comparison
with the cases discussed so far: The unstable POs in this system are less regular than
those of the Lorenz system. There may be long unstable POs with only a few intersections
of the PSS as well as relatively short ones which intersect the Poincaré surface quite often.
For the distribution of the length of the unstable POs see Fig. 16. One example of such
an orbit is displayed in Fig. 17. Similar long orbits can be located with a small value
of )\, a small number of intersection points (i.e. short period p) and a relatively large
number of initial points. The biggest bulk of the orbits found applying these conditions,
however, are shorter and possess a simpler appearance. The appearance of very long as
well as very short POs applying the same parameters within the ST approach suggests
a scaling property of this system: In the neighbourhood of each PO with given number
of intersections, there seem to be an infinite number of POs with the same number of
intersections, but with arbitrary long period. The larger the grid of initial points is and
the smaller the parameter ) is, the more POs are expected to be found in a given area

of phase space. To investigate this particular issue, we used rather large grids of initial
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points to find POs with up to four intersections. As a result we found rather large sets
of POs with extensively varying length, as visible in Fig. 16. There is no doubt, that a
similar procedure, i.e. propagating the ST method with large grids and a relatively small
A, would display such a “scaling” for POs with a larger number of intersections, as well.

From the above, it is evident that using the ST method, one can — at least in an
approximate way — selectively stabilise unstable POs with certain topological features.
Looking for POs starting with a large grid of initial points and a comparatively small
value for the A parameter one can detect long POs which linger for a long time at a
certain distance above and below the PSS (Fig. 18 a)). The numerical effort of this
procedure is bearable, since for each step of the ST algorithm the Poincaré map has to
be iterated just a few times. On the other side, looking for FPs of the higher iterated
Poincaré map, one might get, even for a relatively large A\, POs that have a crown-like
appearance like in Fig. 18 b). The position of the PSS and the demanded number of
intersections can therefore be used as a tool to determine, at least in a rough way, the
topology of the PQOs to be found.

Determining the set of initial points is relatively straightforward for this system. The
dynamics is supposed to be nearly ergodic and conserves phase space volume. Therefore
an uniform distribution of initial points on the surface of section is a good choice. The
Hamiltonian equations (24) are symmetric with respect to the reflections v — —v and
p, — —p,- Therefore, each unstable PO with a given length appears four times in phase
space, and the intersections with the PSS are located at coordinates related by the above
symmetry operations. To avoid the convergence into POs that are trivially related by
symmetry, the initial points were distributed in a quarter segment of a circle with the

coordinates (v/—2ev, p,) and the radius 2.

6.2.3 Ergodic phase space

Table 5 displays the result of the numerical investigations. Differently to the Lorenz
system the minimal number of intersections is 1, corresponding to POs of the type as in
Fig. 18 a). As already discussed above, the number of prime orbits with a given number
of intersections as shown in Table 5 is not unique. Therefore the numbers of POs with a

given number of intersections and their mean length of period do not vary in a regular way
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as for the Lorenz system, Table 4. The rightmost column in Table 5 shows the minimal
number NN; of initial points that had to converge in order to find the listed number of
POs. We used a set of 4000 initial points to detect POs with up to 4 intersections. Since
this number turned out to be larger than the necessary saturation N;, we reduced it to
1000 initial points for POs with more than four intersections. However, again one has
to keep in mind that not all initial points finally converge in a PO. They might diverge
or might not reach the desired accuracy within an appropriate time. Differently to the
case of the Lorenz system, propagation of each of the ST-transformed systems in the
complete minimal set {s1, s3,s4} yielded distinct orbits. The set of initial points has to be
propagated three times, with a different ST—transformed system each time. Fig. 19 shows
the intersection points of the POs given in Table 5 of the system with the Poincaré surface.
To generate this figure the intersection points have been mirror-imaged by the /—2ev—
and p,—axes, according to the above-discussed symmetries. The dynamics is supposed to
be ergodic and conserves phase-space volume, i.e. a chaotic trajectory fills the intersection
of the energy surface and the PSS with uniform density. Nevertheless, the intersections of
the POs are arranged in a way that suggests some reminiscent structure of phase space.
Especially for larger absolute values of /—2ev a shell-like structure emerges. Given a
value of |\/—2ev|, certain values of [p,| seem to be favoured by POs. With |[/—2ev|
approaching its maximal value of 2, these favoured values continuously decrease to zero.
It is supposed that, taking POs with a higher number of intersections into account, the
accessible phase space will be filled up and the Poincaré section will be uniformly covered

with intersections of POs.

6.2.4 Mixed phase space

The almost completely chaotic phase space of the Hydrogen atom for the scaled energy
€ = —0.1 undergoes a transition to an almost completely regular phase space for the scaled
energy € = —0.8. For scaled energies between these two extreme values phase space is
mixed with a ratio of regular structures between 0 and 1. Still unstable POs are located
in the chaotic regions of the phase space. However, with decreasing ¢ more and more
chains of alternating elliptic and hyperbolic FPs emerge. These chains are visible as an

island structure in phase space. For lowering e they form invariant tori (see e.g. ref. [3]).
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These tori cover the whole phase space in the purely regular system. The order of the
appearance of these tori (or their destruction, when starting with a completely regular
system) is described by the KAM-theorem [325-327]. We are interested in the question
whether the ST method is suited to detect POs even in a dynamical system with such a
mixed phase space. To this aim, we propagate a grid of 1000 uniformly distributed initial
points for a value of the scaled energy of ¢ = —0.4 with all eight stability transformed
systems. We chose a value of A = 0.005. As mentioned above, in the fully chaotic, ergodic
system, all detected POs were located by applying s;, s3 and s,. In contrast, now the
propagation of all eight stability transformed systems yielded unstable POs. Fig. 20
shows the PSS with the unstable POs of lengths p = 1...6 found for this value of A\ and
the described set of initial points. The arrangement of the elliptic FPs surrounding the
destroyed invariant tori is clearly visible. Nearly all FPs found are related to these elliptic
FPs, whereas in the purely chaotic regime of the phase space only a few POs have been
detected. However, with a smaller value of ), certainly more closed orbits can be located

in these regions, too.

6.3 Classical collinear Helium with and without laser field

First investigations of the classical Helium atom have been performed in connection with
the old quantum theory [328-331]. Attempts were made to transfer the early method of
quantisation of the hydrogen atom and to pay special attention to the POs of the classical
system. However, the success of quantum mechanics in the following decades made these
studies seem unnecessary. In addition, the non-integrability of the classical dynamics of
the helium atom did not allow for an easy quantisation [332]. Modern semiclassical meth-
ods developed in the last twenty years [63, 333-336] brought the classical (highly excited)
helium atom again into the focus of interest [337-345]. The semiclassical properties of
the helium atom have consequently been studied extensively [322,346]. We apply the ST
method to detect POs of the classical helium atom in the collinear configuration. With
this geometry, the nucleus and the two electrons are arranged on a line. The electrons
cannot penetrate the nucleus. Therefore, two topologically different configurations are
possible: With the Zee-configuration, both electrons are on the same side of the nucleus.

If the nucleus is in between the two electrons, the configuration is called eZe. The clas-
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sical and quantum dynamics of the driven Zee-configuration (the so-called ‘frozen-planet
configuration”) has already been analysed in great detail [347-352]. In the following, we
will investigate the eZe-configuration with and without an oscillating electric field with

respect to periodic structures in phase space.

6.3.1 The equations of motion of the classical helium atom

The non-relativistic Hamiltonian of the helium atom for fixed infinitely heavy nucleus is
given by (in atomic units)

2 2
P1 , P> Z Z 1
H ="ty 224 0
(1'1,1'2,p1,p2, ) 2 9 |I‘1‘ |I‘2‘ \1'1 1'2‘

(r1 +r2)F(2) (26)
The spatial coordinates with respect to the nucleus and the momenta of the two electrons
are ry, ry and pi, P, respectively. The external field with amplitude |F| and frequency
w is given as

F(t) = |F|cos(wt) e,

The phase space of this system is twelve-dimensional.
The Hamiltonian Eqn. (26) possesses a remarkable scaling property [353,354]: The
corresponding equations of motion are invariant under the following scaling operations

with a positive parameter A > 0

r; Ar; (i=1,2)

Pi A"2p; (1=1,2)
A\3/%¢

(27)
A 72F

L

w A732,

H +— \'H
It is therefore advisable to fix the value of A when investigating the dynamics. This can
be done by assigning an initial value of either a time dependent variable (e.g. the energy)
or by fixing the value of a time independent parameter (e.g. the frequency w).
The equations of motion belonging to Eqn. (26) are not suited for a numerical inte-

gration: In a two-body collision, which is very frequent in the linear configuration, one
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of the electrons approaches the nucleus, which results in an increase of its momentum
proportional to |r;| and finally to divergence. This problem can be fixed with help of the
so-called Kustaanheimo-Stiefel transformation [355,356]. This transformation maps the
three-dimensional, canonically conjugated vectors r and p onto the four-dimensional and
equally canonically conjugated vectors P and (), respectively.

( r = (rg, 7y, )7 ) - (Q = (Qa, Qp, Qc, Qd)T)

28
P = (Pa; Py P:)" P = (P, Py, Fe, Py)™ (28)
For details of this quite subtle transformation we refer the reader to refs. [355,356].

Additionally, we introduce a new time 7 and a new Hamiltonian function ‘H according to

dt = RlRQdT
H - RlRQ(H_E)

with H being the Hamiltonian function in the new coordinates Q and P, E being its

value at a specific point of time ¢ and R; = Q?, 7 = 1,2. H vanishes for any time 7 and

therefore describes an autonomous system — contrary to the system given in Eqn. (26).
It is an interesting fact that now F and 7 are additional, canonically conjugated

variables of the system. Their time evolution is given by

@ _ o _om
dr  0E ’ dr ot

Starting from the original Hamiltonian H (26), we end up with the new Hamiltonian

H = %(QlaQQaPIaP2aE7t)
1 1 R Ry
= -R,PI+ <
g7 1 g £(Q:1) — £(Qo)|

+R Ry (f(Q1) +f(Q2)) - F(t) — RiRE

Ri\P5— (R + Ry)Z +

and the new equations of motion
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ﬁ
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+2Q, (-épf + 7 — Ri; — R(f(Q)) +£(Qy)) - F(t) + RlE)

with £(Q) = (f.(Q), /,(Q), .(Q))T, the components given by

Q) = Q2-Qp—Q:+Qg
[(Q) = 2(QuQy — QcQa)
fz(Q) = 2(Qan + Qde)

(29)

and Rijp = |[f(Q1) — f(Q2)|. The equations of motion (29) are regular in |r;| = 0 and

Iry| = 0 (see e.g. ref. [347]). Therefore two-body collisions of an electron and the nucleus

do not cause any problems for the numerical integration. Instabilities arise only for the

collision of both electrons (|r;| = |r3| = 0). Due to conservation of energy, these collisions

can take place only at the nucleus. Three-body collisions of this kind can principally not be

regularised [357]. However, they are of minor importance for the numerical calculations.

In the following, we focus on the POs of the helium atom in collinear (one-dimensional)

eZe-configuration.

68



6.3.2 Coding and generic periodic orbits without external field

The number of POs of a chaotic system generally increases exponentially with the length
of the orbits. This is why a complete detection of all POs up to a given length, necessary
for the semiclassical quantisation of a system, is difficult. A helpful signature for the
completeness of a set of POs is the symbolic code, that provides a one-to-one relation
between the POs and binary strings of finite length. The electrons of the collinear helium
atom collide with the nucleus in a certain sequence. For each individual PO, the sequence
of these collisions is unique. Therefore the symbol sequence like ”...i_q,i_1, g, i1, t2,..."
can be used to label a particular PO. Using the symbol 1 and 2 for collisions of the first
and second electron, respectively, a sequence with periodic pattern like ”...112112112..."
is assigned to a PO. Some POs show a reversal of the roles of the two electrons after half
of the period: The trajectory of the second electron in the second half of the period is
the mirror image of the trajectory of the first electron in the first period and vice versa.
This is a redundancy of the symbolic coding as described above. In these cases, the
qualitatively unique symbol sequence is only half of the period. In a reduced symbolic
coding, the binary collision of a electron is labelled with “+" or "—" when the preceding
collision concerned the same or the other electron, respectively. The symbol sequence
"...122122..." in the "12"-code therefore corresponds to the sequence ”... — + — — +..."” in
the " + —"-code. The length of a symbol sequence in the ” + —"-code equals the length
of the sequence in the “12"-code described previously, as long as no reversal of roles
takes place, in which case the length is halved. The reduction of the code corresponds
to a de-symmetrisation of the motion, which is described in a fundamental region of the
symmetry-reduced configuration space. The lengths of the sequences of POs, which are
not symmetric with respect to an exchange of the two electrons, are not altered. In
Table 6 all POs up to the length p = 7 of the collinear helium atom and their symbolic
sequences in the “12”- and the " + —"-code are listed. They are unique except for cyclic
permutations. The number of primitive POs in systems with a symbolic code of this kind
increases like 2 /N with the length N of the sequence. The orbit with the symbolic code
4" is in some respects exceptional: It describes a trajectory with one electron at infinite
distance to the nucleus while the other one oscillates with a high frequency close to the

nucleus. Strictly speaking, this is not a bound periodic configuration of the system. In
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the fifth column of Table 6 the Lyapunov exponent of the various periodic orbits is given.
The stability of a PO is strongly determined by whether or not the two electrons and
the nucleus come close to a three-body-collision (r; = r = 0) within one period. In this
context the POs with just one letter ”—" in the string of the symbolic code are remarkable.
Fig. (21) shows some examples of these orbits, e.g the orbit with the code " + + + —".
This is a PO which is symmetric with respect to the reversal of the roles of the two
electrons as described above. Obviously, this reversal of roles requires a large momentum
transfer at the symmetry point in time. To this aim, both electrons have to be close
to each other, i.e. they approach a three-body-collision. The more "+"-letter precede a
""_letter in the symbolic code, the closer the trajectory comes to a three-body-collision.
The Lyapunov exponent increases in a corresponding way. Another extreme species of
PO is given by a symbolic code of the type "+ (—)™", N being an integer number. Within
this configuration, both electrons oscillate with nearly the same frequencies. The phase
difference increases until one electron touches the nucleus two times within one period of
the other electron, which results in the appearance of a "+”-letter in the symbolic code.
Another type of PO has a symbolic code of the form ”(+)¥ — —". As can be seen in the
example with N = 24 in Fig. (21), one electron oscillates close to the nucleus, whereas
the second one stays for a long time far away from it. This class of POs belong to the
least unstable and therefore possesses the smallest Lyapunov-exponent compared to orbits

with the same length of the symbolic code.

6.3.3 Detection of periodic orbits

In the following section we describe the approach for localising POs of the collinear helium
atom by applying the ST method. Similar to the time-continuous dynamical systems of
the Lorenz system and the hydrogen atom in the homogeneous magnetic field, we are
now searching for POs as FPs of a suitably defined Poincaré-map. Appropriately placed
initial points are then propagated with the ST-transformed Poincaré-map. As they are of
central importance, we again emphasise the basic four characteristics of the ST-method

that determine the results of the numerical calculations:

e the position of the Poincaré surface of section

e the set of initial points
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e the size of the parameter A

e the matrices used in the ST method

1is introduced. The reason

As PSS a stroboscopic map with equidistant time intervals w™
for this is the periodic time dependence of the equations of motion of the system with an
external field, since the Hamiltonian of the collinear helium atom in an oscillating field is
explicitly time dependent (see section 6.3.1). A PSS defined as a hyper-manifold in the
four-dimensional phase space as it is done for the other systems studied in this context
is not advisable: It is true that every PO intersects the surface defined in this way in a
controlled way. However, to fully specify a PO one has to know not only the position in
phase space, but also the frequency and the phase of the driving electric field. This can
be avoided by introducing the time i.e. the phase wt mod 27 of the field as an additional
dimension, as explained in section 6.3.1. The Hamiltonian is time independent in this
extended phase space. The PSS is defined as a cut in the time as an auxiliary dimension
of the phase space. The scaling properties Eqn. (27) allow to chose the frequency as
w = 1. This determines the value of the scaling parameter A in Eqn. (27). This too
is very useful when analysing data from different numerical calculations: Topologically
identical orbits are now mapped onto each other by a simple shift in time. An additional
scaling with A according to Eqn. (27), which implies a change of the length of the orbit,
is impossible. This definition of the PSS rather demands the PO or a multiple of it to

fit into the time interval (At) = w™! between successive Poincaré sections. A

Poincaré
different choice of w would result in POs topologically equivalent to those for w = 1, but
with spatial and momentum coordinates scaled according to Eqn. (27). This definition
of the Poincaré section implies a four-dimensional Poincaré map.

The distribution of initial points for the propagation of the transformed systems is
uniform in the four-dimensional phase space. The energetically allowed subspace is de-
termined by the energy in the individual initial points (71, 79, p1,p2). It is useful to allow
only initial points with an energy FEj already in the range of the energy of the expected
POs. It proved to be favourable to demand the condition —5 < Fy < 0 (in atomic units).
Trajectories starting from initial points with energies significantly outside this interval

generally diverge quickly. In some numerical investigations the asymmetric-stretch-orbit

was looked for. To this aim a specific distribution of initial points is chosen, which already
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has the desired antisymmetry: (r; = r9;p; = —p2). In this case a distribution of the ini-
tial points in a two dimensional subspace of the four-dimensional phase space is sufficient.
However, it turns out that the trajectories of the ST-transformed systems converge after
a, in general relatively long, transient time in POs far from the initial point. Therefore a
specific location of the initial points in phase space seems generally not necessary.

The value of the parameter A of the transformation Eqn. (5) determines the properties
of the POs that can be found with it. A value of A\ = 1072 allows the detection of a
number of qualitatively different orbits, but for localisation of the particularly unstable
orbits with a symbolic code like ” ++—" and ” + ++ —", a value of A < 10™* is necessary.
The time for convergence, however, scales approximately with the inverse step size of the
algorithm, A. The fraction of POs that can be detected is therefore mostly determined
by the computational resources available.

The POs are FPs of the discrete four-dimensional Poincaré map. Therefore the four-
dimensional C;-matrices have to be used with the numerical implementation. For this
dimension and in contrast to N = 2 and N = 3 dimensions no minimal set has yet been
determined. This is why all 2* 4! = 384 transformed systems have to be propagated.
Generally, in each of the transformed systems several POs are found. With these data,

a set of 14 C;-matrices could be selected empirically that enabled the stabilisation of all
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POs:

+ + + -
+ + + +
+ ’ + ’ - ’ =
+ + + -
+ - + +
+ + —~ +
+ N ’ - ’ =
+ + + -
+ - -
+ - -~
— ’ + ’ — ’
+ e .+ ..+
with 7" = 0, "+" = +1, and "—" = —1. This selection is, however, not generally

applicable and specific to the system considered.

In order to enhance the speed of convergence, the combination of the ST approach with
the Newton methods is favourable. The subtle issue with the combination of these two
algorithms is the point of switching from one to the other. For the system of the collinear
helium atom, the switching takes place when reaching a given step size of the ST algorithm.
Reaching a value of 1072 of the step size seemed to be a good criterion. It is necessary
to control not only the complete convergence of the Newton method, but also whether or
not it converges close to the switching point. Typically, a few hundred iterations of the
ST algorithm, followed by ten to hundred steps of the Newton algorithm are sufficient
to determine the position of a generic PO with an accuracy of 1071 . Combining the
ST method with the Newton method, the numerical effort for the detection of a periodic
orbit can be reduced by approximately a factor of ten.

In order to apply the Newton method, the monodromy matrix close to a FP rg
is determined approximately: A set of points shifted away from the trajectory r by

small vectors €;, © = 1,...,4 in the different directions of phase space coordinates are
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mapped by the Poincaré map f(r) . The individual columns m; of the monodromy ma-
trix M = (m;, my, m3, my) are then given by m; = (f(r +¢;) — f(r))/|€;|. The choice
of a stroboscopic Poincaré map has the advantage that the two eigenvectors with eigen-
value one, generic for time-continuous Hamiltonian systems (see section 6), present no
obstacles in the numerical performance of the Newton algorithm. The explicit definition
of the PSS as a time slice impedes a deviation of the trajectory from the PSS. However,
if it is important not to leave the energy shell when propagating the Newton algorithm,
some adjustments have to be done in order to ensure the conservation of energy in each
iteration of the algorithm as an additional condition (see ref. [43]). But as explained
above, the algorithm of the ST method already allows free diffusion in the phase space
without being restricted to an energy shell. This diffusion is even desirable, since it allows
the access to a large class of periodic orbits for a given set of initial points. This is why we
do not implement an additional condition for the conservation of the energy when using

the Newton algorithm.

6.3.4 Periodic orbits with and without external field

For investigation of the system of the collinear helium without an external electric field
the field amplitude in Eqn. (26) is set |F(¢)] = 0. The value of the frequency w = 1,
however, is kept, since it specifies the stroboscopic PSS. With the energy-specific selection
of initial points as described above and a parameter of A = 10~*, about 50 — —70% of
the initial points converge in each individual ST-transformed system. The 25000 detected
POs reduce to 64 topologically distinct ones, their symbolic code being up to 26 letters
long. The complete set of POs with length up to p = 7 of the symbolic "12"-code, as
listed in Table 6, can be detected. The significant longer orbits generally have a symbolic
code according to the scheme "(+)Y — —". Fig. 21 shows a typical example of an orbit
in this class. Unstable POs of this kind are remarkably stable.

Introducing an electric, harmonically oscillating field |F(¢)| # 0 quite a few properties
of the POs of the collinear classical helium atom change. The Hamiltonian function is
time dependent, therefore the energy is not conserved any more. Moreover the chaotic
dynamics can not be described by a complete symbolic code. It is still possible to assign

a code constituted from the letters of a binary alphabet to each of the POs in the same
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way as it is done for the field free case. However, this code is not unique any more. In
general, several POs can be assigned the same code, whereas for other symbolic strings
no PO exists. The ST method is successfully applied to locate the positions of the POs in
the system with nonzero field, too. The numerical implementation does not differ at all
from the corresponding one for the zero field system. The only adjustments to be done
concern of course the integration routine. However, when analysing the data, a different
strategy has to be followed. The distinction between topologically equivalent and distinct
orbits can not be done with help of the symbolic code any more, since the external driving
breaks the translational invariance in time of the POs. Now the phase of the oscillations of
the electrons with respect to the oscillating field can have several (generally two) distinct
values. This fixes the phase of the PO relative to the PSS. As a consequence, the POs
in an electric field are determined uniquely by their initial conditions, i.e. the values of
spatial coordinates and momenta on the PSS. This feature proves to be very useful when
considering whether two POs, given by their coordinates in the PSS, are topologically
identical or not.

Now the following question is interesting: How do the POs for the zero field evolve
with a slow increase of the field amplitude? Their structure can alter qualitatively at
bifurcation points, e.g. at a merging point of two different orbits or when a new orbit
arises. Besides this, the stability properties of orbits may change with the field strength.
Figs. 22 to 25 show the evolution of several POs with increasing amplitude of the external
field. The slow increase of the field amplitude is realized in 100 to 300 equidistant steps,
ranging from zero to the maximal amplitude. The new position of the POs is determined
after each step of the increase of the field amplitude. To do this, the same Newton
routine as for the zero field case is applied. The correct phase of the field is of essential
importance (although it is irrelevant for the field free case). There seems to be no rule
how to choose the phase difference generally, but it is promising to fix the phase in a
way that the temporal evolution of the PO corresponds to the time dependence of the
electric field. In case of the existence of a symmetry point of time ¢, of the PO with
(ri(ts+7),ma(ts + 7)) = (r1(ts — 7), m2(ts — 7)), the field has an extremal amplitude at ¢,.
At a point of antisymmetry ¢, of the PO with (ry(t,+7),72(ta+7)) = (r2(ta—7), 1 (ta—7)),

the field strength has a zero at t,. With this adaption many POs can be traced starting

75



from the field free case. Only for the most unstable orbits with the symbolic ” + —"-code
"(+)N =" in the field free configuration a more careful procedure is necessary. These orbits
are very close to a three body collision, which results in a large Lyapunov exponent. This
has the consequence that the trajectory of the Newton algorithm quickly leaves the basin
of attraction of the individual POs even for small field strength. In this case the damped-
Newton method [272] proves to be more robust. In this method, each step of the Newton
method is scaled with a factor p < 1. Now more steps are necessary for convergence, but
the convergence process is more reliable. A value of p &~ 0.1 is sufficiently small for the
detection of periodic orbits of this type and for tracing them for a strength of the external
field up to F ~ 102

The Figs. 22 through 25 show four examples for field free POs (including the asymmetric-
stretch orbit) and their continuation for non-vanishing field. In the following, we will
explain the essential phenomena of the externally driven system with help of these orbits.
Both trajectories, corresponding to the two possible values of the phase are displayed in
Figs. 22 to 25. The right hand diagram in each of the figures demonstrates the dependence
of the Lyapunov exponent on the field strength.

The PO in Fig. 22 is the asymmetric-stretch-orbit, having a point of antisymmetry
at time t,. Therefore the phase is fixed in a way that the amplitude has a zero for the
time when the two electrons possess equal distance to the nucleus. For the field in the
asymmetrical mode to have a zero at t,, the phase of the field has to be ¢ = 1/4 or
¢ =3/4.

With a phase of ¢ = 3/4, the Lyapunov exponent decreases for small field amplitudes,
even takes on negative values and has a minimum at approximately F' = 0.9. The PO is
stable for this field strength. The dynamics is dominated by regular islands around the PO.
Let us discuss the dynamical features underlying this stabilisation process: Trajectories of
slightly higher energy than the undisturbed asymmetric-stretch orbit have longer periods,
whereas the periods of the orbits of lower energy are shorter. A disturbance of the original
PO implies a disequilibrium with respect to the energies of the two electrons. Without
external field, the electron with higher energy is delayed. It obtains a positive energy
transfer within the following collisions, causing a further acceleration which results in

subsequent ionisation of the atom. The external field has the effect to slow down the
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faster, longer trajectory (of higher energy) and to accelerate the slower, shorter trajectory
(of lower energy). Thus the destabilising process described above is compensated and a
stabilisation of the system is achieved. Further increase of the field strength, however,
destabilises the PO again. For further details of this process and its quantum mechanical
implications, see ref. [358].

A choice of ¢ = 1/4 results in an impression of the oscillating trajectories of both elec-
trons in their outer extremal positions. The Lyapunov exponent for this mode increases
monotonously. In this case, the external field has a destabilising effect: Its orientation
causes longer trajectories to gain more energy and to become even longer, whereas shorter
trajectories are slowed down and lose energy.

Let us discuss the other examples of POs, shown in Figs. 23 to 25. Although these
orbits are qualitatively different to the asymmetric-stretch orbit since they are symmetric
with respect to time inversion, essentially the same process is met. In case the external
field is directed in a way that the force applied to the electron with the longest trajectory is
directed inwards, the instability is reduced. Therefore the Lyapunov exponent decreases
for a certain range of the field strength, but, different to the antisymmetric mode, it
remains positive and the PO stays unstable.

The minimum of the Lyapunov exponent as a function of the field strength can be
sharp (as in the case of the asymmetric-stretch-orbit) or broad. Obviously the position of
the minimum of the Lyapunov exponent moves to higher field strengths with increasing
length of the symbolic code of the orbit. This feature can be understood qualitatively
considering the fact that a long symbolic code generally implies that one of the electrons
oscillates relatively close to the nucleus and is tightly bound. To modify this constellation
in order to influence the Lyapunov exponent significantly, a relatively strong field has to
interact with the tightly bound electron. The increase of the Lyapunov exponent is nearly
linear with the field strength, as can be seen for the POs with a longer symbolic code in

Figs. 24 and 25.
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7 Markov partitions

7.1 Partitions of phase space

A very interesting question in the context of chaotic dynamical systems is the following:
How does the dynamical system map the points in the different regions of its phase space
and how can the various possible trajectories be characterised? What is the long term
behaviour of these trajectories and of the whole system?

These questions concern both the qualitative and overall behaviour of the system. The
latter are best understood in terms of the symbolic dynamics which is characteristic for
the corresponding system studied. Understanding the symbolic dynamics is in many cases
the key to a theory of the specific chaotic system. But how do we derive the symbolic
dynamics related to a system?

To characterise mapping properties of areas of phase space, we divide it into non-
overlapping regions My, Ms, ..., My covering the complete accessible phase space. Every
subdivision of this kind defines a partition. In particular, if any point in a specific region
M of the partition is the image of a point of only one particular region M,, the partition
is called Markov partition (e.g. see refs. [12,14,22]). In different words, the regions of a
Markov partition are mapped onto other complete regions or onto unions of those. More

formally, an expanding d-dimensional map
f: M—M

is said to generate a finite Markov partition when M can be divided into N regions
{M1, My, ..., My} such that in a step of the iteration the images of all points in M;

either fill another region M; or avoid it completely:
Mj N f(MZ) =0 or Mj C f(MZ) for all 5

A Markov partition is therefore a dynamically invariant partition of the phase space. This
suggests its use for the qualitative description of trajectories: Each of the regions of the
partition is assigned a symbol of a N-letter alphabet. Any trajectory of the system can be
assigned a chain of letters of the alphabet, corresponding to the regions of the partition

the trajectory passes through.

78



In addition, Markov partitions are related to the invariant density, an important quan-
tity of the system [359]. In case it is ergodic, the time average of any dynamical quantity
can be determined once the invariant density of the system is known (see also refs. [360-
362] and refs. [363-366] for the relation of the invariant density to unstable POs). The
invariant density of the system is generally given by the eigenfunction with the largest
eigenvalue of the Frobenius-Perron operator that governs the time evolution of the sys-
tem. In case of the existence of a Markovian partition, the operator reduces to a finite-
dimensional topological transition matrix. Its dimension corresponds to the fineness of
the partition. In this discretised form, the determination of the eigenfunctions is quite
straightforward.

One can even try to approximate the invariant density of a given system that possesses
no Markov partition. A method known as Ulam’s Method provides a general procedure
for this approximation and is based on the fact that the maps with a Markov partition
are dense in function space. The method was first conjectured by Ulam [367] and was
proven later by Li [368]. See ref. [77] for a detailed discussion of this topic.

There is yet another, also very important use of Markov partitions of one-dimensional
maps in connection with systems modelling deterministic diffusion [151-153]. In these

systems, diffusion is modelled by chains of chaotic maps,

Tig1 = [13] + fa(7i)

with [r;] being the largest integer smaller than r; and f,(r; + 1) = f,(r;) being a periodic
nonlinear function with parameter a. Depending on the value of a, a point r; € ([ry], [ri] +
1) is mapped back into the unit interval ([r;], [r;] + 1) or into one of the neighbouring unit
intervals. This hopping between intervals models the evolution of the diffusion process.
The process is described with help of a diffusion coefficient D, which is a central physical
quantity of the system. There are at least three ways to determine D: The first one makes
use of the Einstein formula for the diffusion coefficient [369], D = tli)rcr}o % with 7(t) being
the trajectory of the system. Here, the spatial mean < 72 > can be evaluated with the
invariant density derived from the Markov map as described above. The second way to
calculate D is via determination of the second largest eigenvalue of the Frobenius-Perron

operator (see e.g. refs. [370-372]). A third way is the evaluation of the so-called Green-
Kubo formula for diffusion by iterated functional equations [373]. All three methods rely
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on the finite dimensionality of the topological transition matrix of the Markov maps.

7.2 Markov partitions as a fixed point problem

We now make use of the ST method to calculate Markov partitions of one-dimensional
parametric maps. To demonstrate the essential features of this approach, we concentrate

on one-parametric maps
Tn+1 = f a (Tn)

with two extrema (one maximum, one minimum). The calculation of the partition can be
related to the search for roots in the parameter space a of the map. The two maps we study
are maps of the unit interval (real closed interval of length one) onto itself. Both maps
— without the calculation of the modulo — are used to perform one-dimensional model

simulations of deterministic diffusion of nonlinear systems as described above [156-158].

e The first map
B mod (a (r+3)+1,1)-1; r<o0
Jo= —mod (a (—7)—=11)+1L r>0 (30)
maps the interval [—3, 1] linearly onto itself. It has the symmetry fo(r) = — fo(—7)

and is discontinuous at r = 0. Both extrema are located at » = 0 and they have the

values
. a+1 1 i 1 1
61—T1_1)%1_fa(7')—m0d<( 92 >51)_§ ) 62_7‘1_1)%1_1_.]0(1(7“)_5_ 61+§‘
e The second map is given by the sinusoidal map, which is defined as follows:
Tni1 = fo(rn) = mod (r, + a - sin(27 r,,), 1) (31)

The extrema of this map are at r; = % arccos(%) and ry = 1 — rq, respectively,

with the values of the function in these points being

fa(r1) ! 1) b !
= fa = —ar e — 1n ICCOS | —
€1 1 om arccos oma a S arcc oma

1 1 1\’
= —arccos | — | +ay/l— [ — (32)
2T 2ma 2ma

€2=fa(7"2) = 1- |1_Tl|
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In addition, the two maps possess trivial FPs e with f(e3) = €3. The FPs of the maps
are given by e3 = —0.5 = 0.5 for the linear map and €3 = 0 = 1 for the sinusoidal map.

To determine the Markov partitions of these maps we begin with a few general consid-
erations. The end points of the regions of the Markov partition are given by the images of
the end points of the intervals of monotony of the corresponding map. Obviously, there
are two classes of these intervals: The intervals of the first class are limited by the end
points of the unit interval, whereas the intervals of the other class are limited on one side
by an endpoint of the unit interval and on the other side by an image ¢; of one of the
extrema. The first class of intervals of monotony simply maps the complete phase space
and therefore generates only the trivial Markov partition (which contains the complete
phase space as its only region). The nontrivial partitions, however, are determined by the
second class of intervals.

The end points of the intervals of monotony are given by the images ¢; of the extrema
r; of the map when propagating forward in time. To achieve a finite depth of the partition,
the extrema are to be mapped onto a finite set of points within a number of iterations.
Therefore the images ¢; of the extrema have to be mapped onto a dynamically invariant
set after a finite number of points. For this kind of mapping only three ways are possible:

The image ¢; of an extremum r; is mapped after a finite number of steps
e onto itself
e onto the image ¢; of an other extremum ¢ # j
e onto one of the trivial FPs €3 of the map.

Figs. 26, 27 and 28 illustrate these three transitions with examples from the sinusoidal
map. The symmetries of the two maps considered here prevent the mixing of the above
three cases. The number of iterations necessary to map ¢; to ¢; is the fineness of the
partition. The search for parameter values related to given partitions is essentially a
search for FPs of the function f,(¢;) — ¢; depending on the parameter a, which can be
performed applying the ST method. The transformed time-continuous systems have a

particularly simple structure:

i=C (19 (e) - ¢}

81



The discretised version is
1 =y + A C - [fP (&) — €] (33)

with the step size A\. The coefficient C' can possess the values C' = +1. In contrast to the
applications of the ST method discussed so far, the propagation of the transformed system
takes place in parameter space whereas the step-size of the algorithm is determined in
phase space of the map. Thereby one has to keep in mind that the points ¢; and ¢; also
depend on the parameter a and the above Eqn. (33) is therefore a dynamical system
for the parameter a. The dependence on a is implicit and highly nonlinear. Its complex
behaviour gets more and more pronounced with increasing number p of iterations. The
regions of the resulting Markov partition are given by the images of the extrema ¢; and e,.
A map with two extrema and p iterations therefore yields a partition with 2p + 1 regions.
By symmetry of the underlying maps, the resulting partitions are themselves symmetric in
the corresponding unit interval. This adaption of the ST method demonstrates the ability
of the algorithm to detect FPs and zeros of functions which are not given in a analytically

closed form.

7.3 Implementation of the algorithm

The distribution of the initial points for the propagation of the transformed system is of
prominent importance for the effective performance of the method. An unfortunate choice
of the distribution does not prevent a complete detection of all partitions, but requires
a higher overall density of the initial points. However, the efficiency of the method can
be increased significantly by a more sophisticated distribution of initial points. As the
parameter a of the map approximately equals the derivative d fép ) (r)/dr, the density of
the partitions in the parameter space increases with a. This should correspond to an
increasing density of initial points. The linear map has constant derivative, therefore the
density grows proportional to a?*! (p is the depth of the iteration and the fineness of the
partition). The numerical calculations were performed on a grid with approximately 1000
points, weighted with the density p oc aP?™! of the expected Markov partitions. For the
step size A of the transformed systems A\ = 1072 proved to be a good value.

With the sinusoidal map, the dependence of the density of partitions on a is less

regular. This is related to the appearance of tangential zeros of the function f,(e;) — €.
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Tangential zeros are always accompanied by a relatively large region containing no further
zeros. Nevertheless, the density of partitions increases significantly with the parameter a
for this map, too. This is why we chose the same distribution p oc a?*! in the interval
[0, 10] for the initial points as for the linear map. The determination of the optimal value
of the parameter A turns out to be less straightforward compared to the linear map,
too. This is due to the fact that the function F(a) := f,ﬁ”)(e,-) —¢; in Eqn. (33) shows
transversal zeros with dF(a)/da # 0 as well as tangential zeros with dF'(a)/da = 0.
The transversal zeros are a minor obstacle for detection. The value of F(a), which is
proportional to the step size of the algorithm according to Eqn. (33), varies linearly even
in close neighbourhood of the zero: The step size is finite even close to the solution, which
allows its detection with moderate numerical effort. Approaching a tangential zero of the
sinusoidal map, the step size F'(a) reduces with a higher than linear order of the distance
to the zero. This results in a slowing-down of the algorithm at a wider distance from the
solution. To locate a tangential zero with an accuracy of 107!, up to 107 times more
iterations are necessary compared to a transversal zero. On the other hand, a flat F'(a) in
Eqn. (33) allows a much larger value of the step size A. With A = 10, only 10° steps are
sufficient to locate the zero with an accuracy of 107'*. Therefore the use of a small \ far
from the zero and a larger value close to it is an ideal combination. To achieve this, we
stopped the numerical propagation when reaching a critical value of F'(a) = fép )(ei) — €
and continued the trajectory with the Newton algorithm, which had a better performance

in this case. This corresponds to an introduction of a variable parameter A — \(a):

d —1
A=A = [ (1) - )
with
p—1
dia (fP(e) — ¢;) = H (14 27asin(27e;)) dz- — %

=0
ri=fa(r;_1)

According to Eqn. (32) we have

@——@—sin arccos _—1 = 1—#
do  da o2ra ) ) (2ma)?

The trivial FPs are independent of a, des/da = 0. The number of iterations necessary

for the Newton-algorithm to converge with an accuracy of 107'* are of the order of 103.
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Most initial points converge with only 10? iterations. For the convergence of the Newton
algorithm, it is not relevant whether the zero is transversal or tangential. With both
maps, the completeness of the set of Markov partitions found can be numerically verified
by increasing the number of initial points until saturation of the number of detected

partitions is reached.

7.4 Numerical results
7.4.1 Linear map

In Fig. 29 the distribution of parameter values corresponding to a Markov partition with
fineness p = 1 and p = 2 are shown. The integer values of a are related to the trivial
partitions. For these values, both extrema coincide. The map is continuous for any p, and
each monotonous interval maps the whole interval [0, 1] completely onto itself. Therefore
the interval is itself the only partition for this value of a. The number of parameter values
corresponding to nontrivial partitions increase with a: The function F'(a), whose zeros
are to be determined, grows as a?™!, but is folded back into the unit interval. Therefore

the density of the Markov partitions increases as a?*! in parameter space.

7.4.2 Sinusoidal map

The distributions of the Markov partitions of the sinusoidal map are shown in Figs. 30,
31 and 32. Compared to the corresponding distributions of the linear map, the number of
partitions of this map is significantly larger which is why the distributions are shown in
the form of histograms. The high density of partitions in parameter space has probably
its reason in the unimodal character of the sinusoidal map. It is in some respect a
superposition of two unimodal maps. The existence of both a rising and a falling branch
allows a larger variability of possible mappings of the extrema compared to a map with
just one rising branch like the linear map. The fact that there are more ways to map
the extrema implies a higher density of partitions in the unit interval. Additionally,
the distribution obviously has windows close to integer values of the parameter. These
windows are remarkably dominant for the partitions corresponding to the transition ¢; —
€3 . This feature is due to a bifurcation process located at the extremum of the map and

can therefore also be traced back to the unimodal character of the map. The windows are
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related to the appearance of stable FPs close to the extremum. For a certain parameter
interval, these stable FPs attract the trajectories starting from the extremum and therefore
prevent the mapping of the extremum in regions of the phase space further off. Let us
discuss this mechanism in more detail: The dynamics close to the extrema for ¢ = 1 is
sketched in Fig. 33. As the mapping behaviour of the extremum determines the existence
and properties (fineness) of the partition, the dynamics in the phase space area around
the extremum is of prominent importance. For integer values of the parameter a the FP
ro is located very close to the extremum. The position of 7y is the solution to the equation

(without loss of generality the depth of iteration is set p = 0)

fa(ro) =10
ie.
ro +a-sin(27ry) =ro +n

n is an integer number and can be chosen n = 1 in the following. For ¢ = a; = 1, the map
fa(r) touches the line y(r) = r tangentially in the point 7o = 1/4. This FP is marginally
stable, since df,(r)/dr = 1. As discussed above, the trajectories starting at the extrema
determine the partition. This trajectory is displayed in Fig. 33 b) for the value a; = 1. It
approaches the tangential FP rq without reaching it. A mapping of this extremum onto
itself, onto the corresponding other extremum or one of the trivial FPs is therefore not
possible. The dynamics is qualitatively similar for values of a which are slightly smaller
than a;, as shown in Fig. 33 a). For these values of the parameter, no FP close to the
extremum exists, but the dynamics is still intermittent. The trajectory remains in a small
area of the phase space close to the extremum for a long time before being pushed further
away. A mapping of the extremum in a remote region of phase space is not possible within
a few steps of iteration, therefore no partition exists for this range of parameter value, too.
The window in the distribution of partitions extends therefore even to values less than
an integer value. When increasing a, one finds for a = ay = /1/(47)% + n? ~ 1.012586
the only value in the window that corresponds to a Markov partition. For this value, the
extremum equals the FP ry (see Fig. 33 c)). The partition corresponds therefore to a
transition €; — ¢; (and because of the symmetry of the map also €3 — €3). This FP is
stable and remains so for a slight enhancement of the value of a (see Fig. 33 d) ). A

trajectory started in the extremum now converges in the stable FP, which again impedes
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the existence of a finite partition. Only for values of a that are large enough to render
ro unstable the trajectory can leave the region close to the extremum and possibly create
a Markov partition. (see Fig. 33 f)). This bifurcation appears for a parameter value of
a=a_1=+/1/(m)?+n?=1.049439 (see Fig. 33 e)) with the gradient of the function in
this point being df,(r)/dr = —1. Similar to the situation at the lower boundary of the
window in the distribution, the formation of partitions is suppressed even for values of a
slightly larger than a_;, as the trajectory remains close to r for a long time. However, for
these values only partitions with a high number of regions can be expected. The window
in the distribution containing just one parameter value (corresponding to the transition
€1 — €1) contains the interval [a1, a_1]. The length of this interval decreases for increasing

parameter a, since the curvature of the map at the extrema ¢; and €; grows with a.

7.5 Transients

Markov partitions also occur when extrema are mapped onto a PO (and not a single FP)
not containing the extrema themselves. Therefore additional extrema can be found by
looking for parameter values a that correspond to a closed orbit with period p with one

of the extrema being its nth pre-image:

FoP(e) = fP(e)  and  fUPD(g) # fFD(g)

These parameter values can be found with a similar method as the more simple partitions

with the extrema being part of the PO. The ansatz for the dynamical system for a is
ns1 = A-C - [fP(e) — (&)

When propagating this system we meet the problem that besides the desired orbits with a
transient of length n also orbits are found with a shorter transient or even with no transient
behaviour at all. This is not a fundamental problem, but the number of partitions found
with this ansatz is considerably large which complicates the test of convergence of the

method by means of saturation.
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8 Integration of partial differential equations by ap-

plying the ST method

8.1 Types and properties of partial differential equations

In this chapter we explain how to extend the ST method in order to integrate nonlinear
partial differential equations (PDEs). By nature the results of this chapter are prelimi-
nary and there are lots of possibilities to improve the approach we are going to describe.
Generally, the numerical integration of PDEs is a vast field since they are central to the
description of many physical systems. Examples are hydrodynamics of fluids, astrophysi-
cal models, biological processes or the evolution of electro-magnetic fields. For a numerical
treatment, the fundamental mathematical distinction of PDEs into hyperbolic, parabolic
and elliptic PDEs is of minor importance. Many problems described by PDEs are of
mixed type, either in their generic form or in their numerical implementation. A different
distinction seems to be more relevant: For the numerical stability of the algorithm it is
important, whether the integration is supposed to be performed in both space and time
(initial value problem) or merely with respect to the spatial coordinates (boundary value
problem). In the following, we focus on the former case of time-dependent problems.
With the initial distribution at an initial time t, given by u(z, %), the PDE determines
how u(z,t) evolves in time. The numerical code is expected to describe this evolution
with a certain given accuracy.

Integrating an initial value problem requires a high stability of the numerical algo-
rithm, since only the initial distribution and possibly certain boundary values are given.
There is a variety of methods to integrate PDEs. In most cases the choice of the method
is determined by the nature of the problem. The integration of a smooth spatially pe-
riodic problem for example suggests the application of Fourier methods. However, these
would cause serious problems when used for integration of systems with discontinuities.
The most important methods of the numerical implementation are the method of finite
differences, the method of finite elements, Monte Carlo methods, spectral methods and
variational methods [374-377]. To employ the method of finite differences the differential
equation is discretised on a time-spatial grid. The method of finite elements is mainly used

to solve boundary value problems [374, 375]. It has many applications in the technical and
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engineering field, since the method can easily be adapted to systems with irregular and
complex geometry. As mentioned above, the spectral methods are applicable for both very
irregular geometries and smooth functions. Generally, they converge faster than methods
employing finite differences, but there might arise problems with the discontinuities in

the system [376,377].

8.2 Discretisation

We will apply the ST method to the integration of several types of nonlinear PDEs. To this
aim, we discretise the differential equation on a grid. Let us outline this procedure in some
more detail: The points on the grid have a constant separation Az in the spatial direction
and At in the temporal direction. The continuous distribution u(z,t) corresponds to the
discretised distribution u}, with n being the time index and j the spatial index. In this
way, we get a high-dimensional, nonlinearly coupled system of equations. The solution of
this system of equations yields the “new” distribution u(z,t + At). In most of the cases
discussed in the following, the discretisation is done in the following way [378]:

n+tl _ . n

u u”
ug(x,t) — 2 A7 J (34)
u =y
(7,1 e el 35
Ug(7,1) —> SAL (35)
uy, g — 2ut +ul
wo(,t) — I I 36
Uga (2, 1) B)? (36)

n n n n
Ujo = 2ufyy + 2ufy —uj

2(Azx)3

Ugge(T,t) —>

n o _ n n __ n n
ulo —4uly +6u} —4dul_, +ul_,

(Az)*

ul‘l‘l‘l‘ (:C? t) k >

This scheme of discretisation is called FTCS-scheme (forward time, centred space) [237]. It
indicates, that the approximation is performed including the spatially neighbouring points
only (centred space), but not the points of the grid shifted in time. The distribution at
the “new” point of time u;?“ appears only in the time derivative Eqn. (34) (forward
time). The equation discretised in this way can be solved explicitly for u;-‘H, J given,

i.e. we have an explicit scheme. In case the discretised distribution u} is known for
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all 7 and a particular n, the distribution u can be calculated directly. However, the
FTCS scheme is not stable for hyperbolic dynamical systems. There are problems when
integrating e.g. diffusive equations with the FTCS scheme, due to the fact that the discrete
approximation is only accurate up to first order in time. The demands on an integration
algorithm for systems like these are high: The dynamics is composed of fluctuations on
different length scales, which are to be reproduced as precisely as possible. However, the
temporal steps of the integration are generally large compared to the typical smallest time
scales occurring in the system. The FTCS scheme is better suited to reproduce the small
scale fluctuations, but amplifies them excessively when larger step sizes of the integration
are used. Divergences of the algorithm may be the consequence. The FTCS scheme on
its own is therefore less suited for the integration of nonlinear PDEs. It is desirable to
combine the FTCS scheme with an algorithm that possibly reproduces the small scale
fluctuations less accurate, but converges in the correct equilibrium distribution in the
long time limit At — oo. This property guarantees the stability of the discretisation
scheme. A possible discretisation having this feature is the so-called complete implicit

scheme [237]. The discretised derivatives agree with the derivatives of the FTCS scheme
Eqn. (35) through (38) except that they are evaluated at time n + 1 instead of n. This

nt1
J

method works, so to speak, backwards in time, the sought-after distribution u” " is given
only implicitly by the u}. However, this is a minor problem for the implementation: The
system of equations to solve is given as a tridiagonal banded matrix for a linear system, in
case of a nonlinear system this tridiagonal matrix is obtained after a linearisation about
the known distribution u7. Tridiagonal band matrices can be inverted with a relatively
small amount of numerical effort.

A combination of the two discretisation schemes discussed above is ideal, as it has both
the stability of the complete implicit scheme as well as the accuracy of the FTCS scheme.
The resulting algorithm is second order accurate in space and time. The arithmetic mean

of the FTCS scheme and the complete implicit method is such a combination and is called

Crank-Nicholson scheme [237]. It is applied to all systems discussed in this section.
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8.3 Implementation of the ST method

The discretisation of the PDEs is performed on a grid of N points and results in a N-
dimensional coupled nonlinear system of equations. The distribution u(x,t) at the time
t now is given as a vector u” = (uf, u, uy,...,u’s)" at the discrete point of time n. The

resulting system of equations can be written in the following way:

Fu",u"™) =0, F=(F,F,.. Fy)7’ (39)

We can thus interpret the evolution equation as a fixed point problem. The vector u™*!

is a zero of the function F defined on a high-dimensional phase space. This interpretation

allows the application of the ST method in order to solve Eqn. (39) for the vector u™*.
To this aim, we perform iterations u(”pJ)rl — u?ptrll) as follows:
n+1l __ ..n+l n n+1 n+l _ ..n
Uiy = Uy TACF(up),u™™) , ugy =u

The process of iteration converges in the solution u”*!. It starts with the distribution
u?oj;l = u" at the “old” point of time n. This is reasonable, since u(x,t) is supposed to
change little within a short time step At (the Euler approximation Eqn. (34) is a good ap-
proximation only for small At). All possible C;-matrices with one non vanishing entry+1
in each row and column have been tested for their possible use in the ST-transformed
system with a small grid (N = 5...9). In all systems studied (see below), the unit matrix
is the only one resulting in convergence of the algorithm, which reduces the numerical
effort significantly. The overall sign of the matrix is negative in cases where the time
derivative Eqn. (34) possesses a positive sign in the function F(uf,, u™!) and vice versa.
The reason for the exclusive appearance of the unit matrix might be the structure of the
stability matrix (Sg);; = OF;(u",u™*")/0uf*" of the N-dimensional FP problems in the
FP u™*!: The entries in the diagonal include the term (At¢)~! for all systems considered.
These diagonal elements dominate for small time steps At. The other entries of the sta-
bility matrix contain terms proportional to (Az)*, k = 1,...,4. However, these entries are
generally small compared to the diagonal entries. This is caused by the fact that for a
stable propagation of the distribution, the time step At can be chosen very small without
a possible danger of instabilities and divergencies. In contrast to this, the spatial step

size Az can not be set arbitrarily small. As the geometry of the system (i.e. the size of
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the phase space) is not supposed to change, a reduction of Az corresponds to an increase
of the dimensionality of the system, which generally causes additional instabilities in the
propagation. The stability matrix describes the dynamics close to the FP u™*!. In case
it is diagonally dominated, the matrix has eigenvalues close to the diagonal elements. If
all diagonal elements are real and have the same sign, as in all the systems discussed,
these properties can be expected to be met for the individual eigenvalues, too. The C;
matrices that stabilise a FP with the stability matrix S are required to result in negative
real parts of the eigenvalues of the product C;S. For a diagonally dominating matrix, a
multiplication with the negative unit matrix is therefore sufficient for stabilisation of the
corresponding FP.

It is an interesting fact that an algorithm similar to the ST method has already
been invented to solve elliptic boundary problems [237]: Let £ be an elliptic differential

operator, p a source term and u a solution of the PDE
Lu=p (40)
This equation can be written as a diffusive system:

— = Lu-— 41
g5 = Lu—»p (41)

An initial distribution u, not necessarily the solution of Eqn. (40), relaxes for t — oo to
an equilibrium distribution when propagated according to Eqn. (41). This equilibrium
distribution is the solution of the original elliptical problem Eqn. (40). To perform the
propagation, Eqn. (41) is discretised according to Eqns. (34) through(38), subsequently
following the FTCS-scheme. As this is an explicit scheme, the discretised equations can
be propagated directly. Eqn. (41) is exactly the continuous form of the ST-transformed
system (see section 3.4), with the unit matrix as the C;-matrix. This method of solving
elliptic boundary problems is known as “Jacobi’s method”. It was first described by
Jacobi (1804-51), but is not widely used due to its slow convergence.

In the following we discuss the adaption of the ST method to the integration of nonlin-
ear PDEs. In each of the examples to be discussed, the ST method is used to find solutions
of the systems of equations obtained after discretisation according to the Crank-Nicholson
scheme. Optimal values have been chosen for the size of the spatial grid, the geometry

of the system (size of the phase space) and the size of the time steps At. To validate
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the results of the calculations, each particular system Eqn. (39) is propagated using the

Newton algorithm, too. This is performed by calculating the zero u™*! of the vector val-

ued function F(u”,u™*!) in Eqn. (39) approximately by iteration of u(l) ,u?J)rl ?;)’1, .

lim u?;)rl =u"*! and u"+1 = u" of the following linearised equation:
p—00
" n , _ OF(u", u™*)

The stability matrix Sg is a tridiagonal matrix in case of fixed boundary conditions
in case only three point approximations of the form (35) and (36) are in use. When
five point approximations like in Eqns. (37) and (38) are employed, the corresponding
stability matrices are penta-diagonal. Inversion of these band diagonal matrices is can
be done with a comparatively small numerical effort. The solution of Eqn. (42) is more
complicated when periodic boundary conditions are required. The cyclic coupling of the
dynamics results in components of the stability matrix in the lower left and upper right
corner additional to the band diagonal ones. In this case, the matrix can only be inverted

using significantly slower numerical routines.

8.4 Examples
8.4.1 Burgers equation

The Burger system is an example of a diffusive system including a nonlinear term
Ur = 2UUy + Ugy (43)

The term u; = ug, on its own describes the spreading of the initial distribution, whereas
the term u; = 2uu, leads to an increasing concentration. The interplay of these two
mechanisms results in a stable dynamics which allows the existence and propagation of
solitary solutions in form of shock waves. Eqn. (43) is integrated numerically to propa-
gate a given initial distribution. To this aim, we make use of the ST method to solve the
complicated high-dimensional nonlinear system of equations. Discretisation of eqn. (43)

comes first: With Eqns. (34) through (38) and the Crank-Nicholson scheme we get
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n+l _ ,n n n n+1 n+l no _ ,mn n+l _  n+l
u; uj Ujpy T U H Uiy Ul Uiy — Uy Uy — Uy
At 4 4Ax
n n n n+1 n+1 n+1 (44)
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The solitary solutions of the Burgers equation can be obtained easily with help of the
Hopf-Cole transformation v +— v, v, = uv and the ansatz v(z,t) = v(z — ct) (see e.g. ref.

[379]). The solution wu,(z,t) is

—C

us(x7t) = 1+ exp [C($ — Ty — Ct)]

The solution us(z,t) is a shock wave localised in = = z, (i.e. u, is maximal in z = z,).
The quantity ¢ represents both the amplitude and the velocity of the wave. An example
of a time evolution is shown in Fig. 34. The superposition of shock waves with different
amplitude and velocity is particularly interesting: Fig. 35 shows two wave fronts, moving
into the same direction with different velocities. At collision the faster wave absorbs the
slower one. The propagation continues with the sum of the individual velocities. This
shows that the solitary solutions are not real solitons which would penetrate each other
without any distortion. A collision of two solitary solutions of the Burgers equations,
which move in opposite directions, results in a shock wave moving with the difference of
the individual velocities. Fig. 36 shows the time evolution of two shock waves with exactly
opposite velocities: After the collision, the distribution is merely a stationary wave front.

Eqn. (44) is solved with the ST method on a grid with N = 100 (Fig. 34) and N = 170
(Figs. 35 and 36) points, respectively. The size of the time steps is At = 0.2.

8.4.2 The Fitzhugh-Nagumo equation

The Fitzhugh-Nagumo system has been developed as a simple model featuring the prop-

agation of excitation pulses in nerve cells [380]. It is given by

1
ut:§u$$+(a—u)(u2—1) , —1<a<0 (45)
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Discretisation on a grid with help of Eqns. (34) through (38), using the ST method,

yields:
u;'LH —uj  lujy —2uf tuf o+ U?III - ZU?H * u?jll +
At 2 2(Az)?
2
+ (a i Fup s Uil + U?+11> (U?ﬂ tu U U?+11> -1
4 4

The Fitzhugh-Nagumo system has the following solitary solution [379]:
u = tanh(z — at) (46)

Fig. 37 shows the time evolution of a distribution Eqn. (46) with ¢ = —0.5. We used a
spatial grid with N = 100 points and a time step At = 0.2.

8.4.3 Real Ginzburg-Landau equation

As the next example we chose the real Ginzburg-Landau system. It is a special case
of the complex Ginzburg-Landau system, which describes the evolution of a complex
field in time. This system has a long history in the physics of dynamical systems: It
is a good approximation to the amplitude dynamics of spatio-temporal hydrodynamic
systems close to instabilities, leading to a turbulent dynamics. It also acts as a model
system in the theory of phase transitions and of superconductivity and has many other
applications [381-383]. In contrast to the complex Ginzburg-Landau equation, the real
one (all coefficients are real), given by

3
Ut = Ugg + U — U,

shows a comparatively simple behaviour. To our knowledge no nontrivial solitary solu-
tions exist when also the distribution u(z,t) is real. Discretisation following the Crank-

Nicholson scheme yields

nt+l _ n no __9,n n n+l _ 9, n+l n+1
Ui U Wi — 2uftupl i - 2u Ui
At 2(Ax)?

3
Ui+ Ui+ “;Lill + “?jll _ ug g Uy + U;Lill + U?jll
4 4
In Fig. 38 the time development of a stationary distribution is displayed. It shows a

relaxation to the constant and stationary distribution u(z,¢) = 1. For this propagation,

a spatial grid of N = 100 points and time steps At = 0.1 have been utilised.
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8.4.4 Korteweg-de-Vries equation

The Korteweg-de-Vries equation is one of the most basic equations with solutions in form
of solitons [384]. For the physics and mathematics of solitons in nonlinear PDEs we refer
the reader to ref. [379].

The solitons of the Korteweg-de-Vries equation
Uy = 6UUL — Uggpy (47)

are bell-shaped, localised solutions

s L
2 cosh?[q(x — vt)]

u(z,t) = (48)

with v = ¢?, which move in one direction without changing their shape. It is a remarkable
feature and a generic property of nonlinear systems, that generally the velocity increases
with its amplitude. The solution (48) of the Korteweg-de-Vries equation (47) is negative.
However, by scaling u — —u/6 an alternative version of the Korteweg-de-Vries equation
can be obtained

Up + Uy + Uggy = 0 (49)

which has positive solutions

1
cosh?[q(z — vt)]

u(z,t) = 3¢° (50)

The numerical integration is performed using the discretised form of Eqn. (47), following
Eqns. (34) through (38)

U u” n+1 'r_z+1

(Y i+l _ n n
i i =6u”.uj+1 i Fuily —uly Ui+ 2u

1
At I 4Azx 4(Ax)3

ntl _

Fig. 39 shows the time propagation of the distribution (48) with ¢ = 0.4. For the
discretisation, we used a spatial grid with N = 120 points and time steps At = 0.1.
For this propagation, fixed boundary conditions have been chosen, but periodic boundary

conditions are as well straightforward to implement.

8.4.5 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation [385-387] is one of the most fundamental and best

studied field equations describing spatio-temporal chaotic dynamics. Therefore it is often
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considered as a model system for the investigation of spatio-temporal chaos and turbulent
systems. In many physical systems the Kuramoto-Sivashinsky equation appears as an
amplitude equation. Its qualitative behaviour is relatively simple: A characteristic feature
of the spatio-temporal chaotic dynamics describing turbulent dynamics is the simultaneous
existence of at least two length scales [388]. The small scale time evolution is governed
by the deterministic dynamics. In contrary, the dynamics seems to be stochastic on
larger length scales. The field equations couple these two species of dynamical behaviour.
The quantitative interplay between these two scales is essential for the appearance of
turbulence and spatio-temporal chaos and is subject of many studies and investigations
(see for example ref. [162]).

The Kuramoto-Sivashinsky equation reads
Uy = (u2)x — Ugy — VUgrxx (52)

Its small scale cells have an extension of the order of [, = 2v/27 and are limited by lin-
ear instability. Nonlinear coupling of different cells results in the appearance of global
patterns on a much larger length (and time) scale than ly. The Kuramoto-Sivashinsky
equation describes a large number of physical processes, e.g. the dynamics of a flame front
of a burning flame. The “flame front” u(z,t) has a compact support and a periodic phase
space coordinate z € [0,27]. The parameter v of the system is a fourth order viscosity
parameter. The term vu,,,, has a damping effect on the dynamics by suppressing oscilla-
tions of shorter wavelength and relatively large amplitude. With decreasing viscosity, the
stability of the flame front is reduced and turbulence is more pronounced. To propagate
the Kuramoto-Sivashinsky system in time, the Eqn. (52) is discretised according to the

Crank-Nicholson scheme

n+l1 +1 n+1
A I B T Rk S B Sl AL
At 2Ax J 2Ax
1 —2uf 4 uf +u?111—2 uptt +ult]
2 (A:c) (Ax)?

v (st up o) —A(upy, +up ) +6up
2 (Az)*

L O+t — a0u ) + g
(o)t
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Figs. 40 and 41 show the results of the integration with the ST method. The discretisation
is performed on a spatial grid with N = 170 points and time steps At = 0.1. In Figs.
40 and 41 periodic boundary conditions are implemented, but integration with fixed
boundary conditions (distribution has zero value at the boundaries) is also possible. In
Fig. 40 the viscosity parameter is chosen to be v = 1.5, in Fig. 41 it is v = 6.0. Obviously,

for a larger value of v less fluctuations on a smaller time and length scale appear.
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9 Summary and outlook

9.1 Summary

This review discusses in detail the tool of stability transformations, its applications and
extensions to new problems. The focus is essentially threefold: First to understand the
theoretical foundations of the ST method, second, to provide algorithms and numerical
implementations for discrete and time-continuous systems and third to extend the ST
approach in order to solve problems such as the finding of Markov partitions and the
propagation of nonlinear partial differential equations.

The ST method was originally developed in order to detect unstable periodic orbits in
chaotic dynamical systems. These orbits form the skeleton of the dynamics of nonlinear
dynamical systems and are a key ingredient for the understanding of various features
related to chaotic dynamics.

It is the basic principle of the ST method to change the stability properties of the
unstable periodic orbits — while keeping their positions — by application of an appropriate
transformation of the dynamical system. The orbits stabilised in such a way can be
detected straightforwardly by propagation of the corresponding system.

The major advantage of the ST approach as compared with other methods is the
outstanding global convergence property. The basins of attraction exceed by far the
linear neighbourhood of the periodic orbits and are topologically simply connected areas
in phase space. At a large distance from the periodic orbit, the rate of convergence is high.
Another beneficial feature of the ST method is its ability to selectively stabilise periodic
orbits: A parameter )\ of the approach is almost strictly related to the stability properties
of the orbits. The smaller the value of A is, the larger the instability eigenvalue of the
orbits to be detected can be. This allows to rapidly detect the least unstable periodic
orbits of a chaotic system, which can then be used in particular versions of so-called
stability ordered cycle expansions.

For these advantages, one has to pay a price: A series of stability transformations has
to be applied in order to principally (provided A is small enough) detect a complete set
of orbits of a given length. However, this complete set of 2"n! stability transformations

(applied to a n-dimensional dynamical system) contains a certain redundancy. To lighten
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the computational burden, a minimal set of transformations necessary for the detection
of the complete set of periodic orbits is desirable. For n = 2 and in addition to analytical
studies, a geometrical ansatz was developed which allowed a classification of all possible
types of periodic orbits in a two-dimensional system, making use of geometrical and
topological arguments only. Moreover, this classification is in a certain sense compatible
with the process of the stabilisation transformation: Application of the transformation to
a dynamical system corresponds to a well-defined transition of the individual fixed points
from one class to a second one. This way, two minimal sets of three transformations each
are determined for two-dimensional system.

The algorithm of the stability transformation has originally been developed for detec-
tion of periodic orbits in time—discrete maps. Especially when combined with the Newton
algorithm in order to enhance the speed of convergence close to the fixed point the ST
approach proved to be very efficient to locate even very long periodic orbits. The fast,
super-exponential convergence of the Newton algorithm in the linear neighbourhood of
a close orbit guarantees an accurate localisation of the orbit with moderate numerical
effort.

Periodic orbits form the skeleton of the dynamics also of time-continuous dynamical
systems, given by a set of nonlinear differential equations. The ST approach is applica-
ble also to this broad and outstandingly important class of systems. For this task, the
stability transformations of the discrete, properly defined Poincaré map of the system
are performed. This approach is universal and is easily adapted to a large class of time-
continuous systems, possessing an either fully chaotic or mixed phase space. Systems
studied include the well known Lorenz system, the classical Hydrogen atom in a homo-
geneous magnetic field and the classical model of a Helium atom with and without an
external laser field. The Poincaré surface of section can be a stroboscopic map or defined
in terms of phase space intersections. Compared to maps, the time-continuous systems
are more diverse with respect to the implementation of the algorithm of the ST method
as well as to the properties of the periodic orbits localised. The position of the Poincaré
surface of section can be utilised as an effective tool to specify the approximate geometry
of the periodic orbits to be located. A clever choice of the set of initial points, of the

parameter A and the required number of intersection points are additional ways to steer
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the outcome of the ST method.

The detection of periodic orbits with the ST method is essentially the search for zeros
of a nonlinear equation given implicitly by the corresponding dynamical system. Many
numerical problems can be traced back to the solution of nonlinear, highly fluctuating
systems of equations. Therefore it is suggestive to apply the algorithm to more general
classes of problems beyond dynamical systems. Two examples are discussed: The de-
termination of Markov-partitions of parameter-depending maps and the propagation of
partial nonlinear differential equations.

A Markov partition is a partitioning of the phase space which is dynamically invariant
and is of relevance e.g. for models of deterministic diffusion. The property of a Markov
partition can be traced back to a mapping of the extrema of the corresponding dynamical
system onto a dynamically invariant set of points, e.g. a periodic orbit. This character-
istic feature can be cast into a fixed point problem of an appropriately defined artificial
dynamical system, accessible for the ST approach.

Another class of problems to be handled by the ST method is the integration of a large
class of partial nonlinear differential equations. The evolution equations, when discretised
in space and time, represent real, nonlinear functions in a high-dimensional space. The
zeros of these functions correspond to the system propagated forward one step in time

and can be obtained straightforwardly with the ST method.

9.2 Outlook

The method of stability transformation demonstrates its powerful ability to detect fixed
points and periodic orbits of a large class of dynamical systems. However, although the
algorithm proved its worth in many applications, the understanding of its theoretical
foundations in more than two dimensions is still a challenge, caused by the mathemat-
ical complexity of the underlying problem. An enhanced understanding of the basis of
the method would surely improve its practical applications. Especially when studying
higher-dimensional systems the number of transformed systems to be propagated affects
the numerical efficiency. Therefore it is advisable, in particular with respect to the im-
plementation of the algorithm, to determine a minimal set of transformations for each

dimension sufficient to stabilise any fixed point of the dynamical system. The geometrical
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approach we presented for two dimensions could be a good starting point. It is sugges-
tive to look for an analogy of the dynamically invariant manifolds, which allows for a
similar classification as in two dimensions. Points on the surface of a (/N — 1) sphere in
a N-dimensional space might serve as this analogy. On the one hand, these points are
mapped in a well-defined way by the matrices of the stability transformation, on the other
hand they confine the section of phase space possibly containing the eigenvectors of the
corresponding stability matrix.

A rewarding field for further application of the ST method are studies of further phys-
ical and mathematical dynamical systems. Especially for four- through six-dimensional
systems the propagation of the complete set of stability transformations is numerically still
practicable. In these systems, other well-known methods such as the Newton-Algorithm
are less efficient due to the small extensions of the basins of attraction around the fixed
points to be detected. For studies of systems with more than six dimensions the determi-
nation of the minimal set of stability transformations becomes necessary. The application
of the ST method to quantum mechanical systems in the semiclassical regime is another
rewarding field of future research, since one of the most prominent difficulties in these
systems is the systematic detection of periodic orbits in the phase space.

The detection of spatial and temporal patterns in the time evolution of nonlinear
partial differential equations describing a turbulent system is another possible extension
of the ST method. In order to achieve this, the algorithm would have to be applied to
a Poincaré map, which is suitably defined either as a function of spatial coordinates or
as a stroboscopic map. Our applications of the ST approach to solve nonlinear partial
differential equations have demonstrated that even very high-dimensional (N > 100)

nonlinear equations can be solved.
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Table 1: Multiplication table of the 2 x 2—matrices Cy,

135



CTCTC 7 Ao [ A [ Ao [ Ao [ Ao [ A [ Ao [y ]

*
&
x
g
X
g
F
Q
F
Q
+
e
|
Q
¥
Q
|
Q
|

AQ_ CQ_ C3_ C()_ Cl_ C2_|_ Cg+ C(H_ Cl+
./43_ Cg_ C()_ Cl_ CQ_ Cl_|_ CQ+ Cg_|_ C(H_

* | ¥ | ¥ | *
¥ | K| K| ¥ | *|*

¥ | ¥ | ¥ | *
2
|
Q
|
e
|
g
|
Q
|
e
¥
e
F
Q
i
g
+

Table 2: Transition matrices Cy, necessary for transitions between different classes A;,
of stability matrices of fixed points. The first three columns indicate the combination of
classes occurring in a two dimensional chaotic dynamical system.
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number of
period prmy’mye number of topological
pgri)(?fslc fixed points entropy
rbi

1 1 1 0.0
2 1 3 0.549
3 2 7 0.648
4 3 15 0.677
5 4 21 0.608
6 7 51 0.655
7 10 71 0.609
8 14 127 0.606
9 26 241 0.609
10 45 473 0.616
11 76 837 0.612
12 110 1383 0.603
13 194 2523 0.603
14 317 4512 0.601
15 566 8518 0.603

Table 3: Number of different primitive periodic orbits, the number of fixed points and the
topological entropy for the periodic orbits of the Ikeda map for period p =1...15
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number of number of mean number of
inter- primitive period A converged
sections periodic orbits points
2 1 0.941 0.1 1
3 2 1.394 0.1 3
4 3 1.843 0.1 11
5 6 2.305 0.05 17
6 9 2.756 0.01 144
7 18 3.219 0.01 40
8 30 3.676 0.001 192
9 56 4.136 0.001 687
10 99 4.595 0.001 1094
11 186 5.054 0.001 2523
12 335 5.514 0.0001 3773
13 630 5.974 0.0001 10498
14 1160 6.433 0.0001 11472

Table 4: Lorenz system: Properties of the periodic orbits with 2 through 14 intersection
points with the Poincaré surface of section, the parameter A and the minimal number of
converged initial points /V;, sampled randomly from the attractor.
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number of number of number of
inter- primitive mean A converged
sections periodic orbits period points
1 29 10.814 0.005 482
2 14 15.248 0.005 1348
3 16 6.055 0.005 462
4 13 14.333 0.005 48
5 12 9.955 0.001 173
6 19 12.320 0.001 209
7 19 14.519 0.001 650
8 11 17.083 0.001 432
9 11 18.554 0.0005 126

Table 5: Hydrogen atom in magnetic field: Properties of periodic orbits with 1 to 9
intersections with the Poincaré surface, the parameter A and the required number of
converged initial points N;.

139



No | Period "12"-Code | "12"-Code | " + —"-Code A

1 1 1 + —

2 2 12 — 0.6011
3 3 112 + - — 1.8604
4 4 1112 ++ —— 2.3418
5 4 1122 +— 1.8622
6 5% 11112 +++ - - 2.7207
7 5} 11122 ++ -+ - 5.1551
8 5} 11212 +—-—— - 3.3424
9 6 111112 ++++— 3.0323
10 6 111122 ++ 4+ —+— 6.1393
11 6 111212 ++—-—— 4.3315
12 6 111222 + 4+ — 6.8573
13 6 112122 + -4 - — 5.0002
14 7 1111112 +4+++4+——13.2965
15 7 1111122 ++4++—4+— | 6.8485
16 7 1111212 +4++—-———— | 5.1755
17 7 1111222 ++4+—+4+— | 8.0225
18 7 1112112 + 4+ ——+—— | 4.3409
19 7 1112122 ++—-———+—6.4432
20 7 1112212 +4+—-—+—-———|6.4432
21 7 1121122 + -+ —+— — | 5.9547
22 7 1121212 +-—- 4.6613

Table 6: Collinear periodic orbits of the helium atom up to length 7. Listed are prime
orbits only. A is the Lyapunov exponent of the corresponding orbit.
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11 Figures
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Figure 1: Stabilisation of a stationary point of a flow (a) by changing the sign of the
x—component of the vector field (b). This corresponds to a multiplication of the vector

field with the matrix (_01 (1))
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Figure 2: Stationary point of a flow as in Fig. 1, but with different stability properties.
The transformation of the vector field by multiplication with the matrix (_01 (1)) results
not in a stable stationary point in this case. A different transformation has to be applied

in order to achieve stabilisation.

143



fixed point
Figure 3: Definition of the polar angles ¢ and 1/, (¢) of the displacement r = (cos ¢, sin ¢)”

relative to the fixed point at (0,0) and the flow (cos;,,siny,)7in r. (ko) indicate the
particular stability transformation applied according to Eqn. (11).

144



2+

(1+1+)

T[ — b
/l , -~ 0+
A1 B
W2 = T2
,/ / U Y
7/ 1B &
0 k- 3+ 0 )
0 2 n 0 w2 U
Brin P (p Brin Prax (p

Figure 4: a) Phase portraits of a fixed point with det(B;) > 0, 0 < dmin, Pmaz < 7/2,
(z,y) being the coordinates with respect to the FP. The manifolds 7Z;, Z, are displayed
as long dashed lines. The direction of the flow on the Z;, Z,-lines is indicated by open
arrows. Full arrows show the eigenvectors (%, ¥, for saddle points, @, ¥, for sources and
sinks, respectively). Some trajectories indicate the flow around the FP. Sub-figures b) and
c¢) show the corresponding 1, (¢)-diagrams. Areas shaded grey indicate the intervals of
the locations of the eigenvectors, corresponding to the shaded boxes in ¢) which show these
intervals for the four fixed points discussed. Indices [7 in the boxes correspond to the class
A, of matrices whose real eigenvectors have polar angles in this particular interval of ¢.
Two indices given in brackets indicate the possibility of either two real eigenvalues with
eigenvectors in this range (sink or source) or complex eigenvalues without real eigenvectors
of the corresponding matrix (spiral points). For details of the figures a), b) and c) see
section 4.1.1.
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Figure 5: Phase portraits of a fixed point and corresponding v, (¢)-diagrams as in Fig.
4, but with det(By;) < 0, 0 < Gmin, Omaz < 7/2,
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Figure 6: Phase portraits of a fixed point and corresponding v (¢)-diagrams as in Fig.
4, but with det(By;) > 0, 0 < ¢min < /2 < Gmag,
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Figure 7: Phase portraits of a fixed point and corresponding ;. (¢)-diagrams as in Fig.
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Figure 8: Distribution of the distances d,, of periodic orbits of the Ikeda map of length
p = 15, taken from the converged trajectories in Ny, as defined in Eqn. (15).

149



i p=12 10  p=24 j/\\

ON B~ O

T T T

°

I
L =
w

H

ON MO ®O
T T 1T 7
°

Tl

L N
gl

o
T

p=15 1

p=27 JJ

Il Il Il
0 02 04 06 08 1
A

o N M O ® N A O ODN MM o O DN > O
T T T T T
=]
1
- =
K
=
oON MO ® oON DO OO
T T LI R B —
°
Il
L N
(¢}

Il Il
0O 02 04 06 08 1

Figure 9: Normalised distributions of the Lyapunov exponents of the periodic orbits of
the Tkeda map and Hénon map. Only primitive periodic orbits are shown.
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Figure 11: Lyapunov—exponents of the ten least unstable periodic orbits of the Ikeda map
and Hénon map of length p = 1...36. The inset shows the same distribution for a log-log
scale.

152



—= N - g
N 02 - |
- = /[\ -

N TN “ v
A

-2 :— h : <A N \‘_\; OO [ o 1
X X

AN ~ 7 | — /
A 4

Figure 12: Trajectory of the stability transformed system as applied to a time series of
100 points of the Tkeda system with a zoom into the neighbourhood of the fixed point.
The convergence and the adiabatic scaling of the trajectory is clearly seen.
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Figure 13: Lorenz system: The length T of the periodic orbits as function of the number
of intersection points with the Poincaré surface of section.
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Figure 14: Lorenz system: Long periodic orbit with 30 intersection points with the
Poincaré surface of section.
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Figure 15: Lorenz system: Distribution of the intersections points in the Poincaré surface
of section. Shown are periodic orbits of 2 through 14 intersections.
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Figure 16: Hydrogen atom in magnetic field: Distribution of the length T of the periodic

orbits versus the number of their intersections with the Poincaré surface of section. The
inset shows a higher resolution for small values of T.
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Figure 17: Hydrogen atom in magnetic field: Example of a long periodic orbit with just
four intersections with the Poincaré surface of section. The dynamics below and above
the surface is very complex
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Figure 18: Hydrogen atom in magnetic field: Periodic orbit with a) a small number of
intersections, located mainly above and below the Poincaré surface of section b) a large
number of intersections, located mainly in the Poincaré surface of section
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Figure 19: Hydrogen atom in magnetic field: Chaotic ergodic dynamics for a scaled energy
of e = —0.1. Location of periodic orbits with 1 to 9 intersections in the Poincaré surface

of section.
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Figure 20: Hydrogen atom in magnetic field: Partially regular dynamics with mixed phase
space for a scaled energy of ¢ = —0.4. Shown are the positions of periodic orbits with 1
to 9 intersections in the Poincaré surface of section. The dots represent the intersection
points of trajectories of the system with random initial conditions.
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Figure 21: Time development of some periodic orbits of the collinear helium atom without
external field. The nucleus is located at r; = 0 (atomic units). The period of the orbits
is T = 2m; the time evolution is shown for two periods. The symbolic code is the ” + —"'-
alphabet. The orbit code with "—" is the so-called asymmetric-stretch-orbit of the system.
The periodic orbit with the symbolic code ” +—" shows a near-three-body-collision, which
results in an orbit symmetric in r; and r,.
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Figure 22: Asymmetric-stretch-orbit in the transition from zero to finite external field.
The external field can have two phases, ¢ = 1/4 and ¢ = 3/4, with respect to the periodic
orbit. Displayed are trajectories for both phases and the variation of the corresponding
Lyapunov exponents with the field amplitude.

163



+_ ri 1 P
phase @=0.0 0
2 : /v
+- -1
1 L
L 25 2 “o 0.2 0 0.6
1 YT . 4 F 5
0
2 5.5
_l L
1 5
2 1 2
T \A 0 as |
phase ¢=0.5 1 4
f
-2 . 35
0 1oyT 2 0 o1 E 02

Figure 23: Periodic orbit with symbolic code ” + —" in the transition regime from zero

to finite external field. The external field can have two phases, ¢ = 0 and ¢ = 1/2, with
respect to the periodic orbit. Displayed are trajectories for both phases and the variation
of the corresponding Lyapunov exponents with the field amplitude.
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Figure 24: Periodic orbit with symbolic code ” ++ — —" in the transition regime from zero
to finite external field. The external field can have two phases, ¢ = 1/4 and ¢ = 3/4, with
respect to the periodic orbit. Displayed are trajectories for both phases and the variation
of the corresponding Lyapunov exponents with the field amplitude.
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Figure 25: Periodic orbit with symbolic code ” + + + ——" in the transition regime from
zero to finite external field. The external field can have two phases, ¢ = 0 and ¢ = 1/2,
with respect to the periodic orbit. Displayed are trajectories for both phases and the
variation of the corresponding Lyapunov exponents with the field amplitude.

166



Figure 26: Example of a Markov partition of the sinusoidal map Eqn. (31). It is generated
by trajectories that map the two extrema ¢; and €, either a) onto itself (¢; — ¢;), b) onto
the corresponding other one (€ — €3, €2 — €;1), ¢) onto the trivial fixed points (z = 0,
xz = 1) of the map (¢; — 0, 1). In d) the extrema ¢; and €, coincide with the trivial fixed
points (x = 0, z = 1) of the map, which defines a Markov partition, too.
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Figure 27: Some examples of Markov-Partitions of the sinusoidal map Eqn. (31) with a
depth of iteration of p = 2. Both extrema ¢; and €, are mapped in p = 2 steps a) onto
itself(e; — €;), b) onto the corresponding second extrema (€; — €5, €2 — €71), ¢) onto the
trivial fixed point of the map (x =0,z =1) (¢ — 0, 1).
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Figure 28: Example of a Markov-partition of the sinusoidal map Eqn. (31) with a depth
ofa) p=3,b) p = 4. The extrema ¢; and ¢, are mapped onto each other after p iterations
(EZ' — 61').
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Figure 29: Distribution of the parameter values a corresponding to a Markov-partition
of the linear map Eqn. (30). p is the the depth of the iteration and the fineness of
the resulting partition. A depth of p corresponds to a partition with 2p + 1 regions.
€1 and €y are the two values of the extremum at z = 0, €3 is the trivial fixed point at
x = —1/2 = 1/2. The different possible transitions between the ¢; by the map fép )
determine the different classes of partitions.
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sinusoidal map, period p=1
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Figure 30: Distributions of the parameter values a corresponding to a Markov-partition
of the sinusoidal map Eqn. (31) with a depth p = 1. The trivial fixed points of this map
are £ = 0 = 1. For more details see Fig. 29. Because of the high density of the partitions
in parameter space the distributions are given as histograms (bin width Az = 1/50). The
windows of the distribution at integer values of the parameter are due to a saddle-node
bifurcation of the underlying map (see section 7.4.2).
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sinusoidal map, period p=2
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Figure 31: Distributions of the parameter values a corresponding to a Markov-partition
of the sinusoidal map Eqn. (31) with a depth p = 2. Because of the high density of

the partitions in parameter space the distributions are given as histograms (bin width
Az =1/50).
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sinusoidal map, period p=3

10— ‘ ‘ S |

T T HHHHHHH [HII[WHHIIIIHMIIHIIHHHIIIIHD
0.8 1 1.2 1.4

parameter a

0 0.2 0.4 0.6

sinusoidal map, period p=4

40 I T T T T T T T T T T T ]
0 g —>¢ ]
20 1 1 ]
b mﬂmﬁwﬂﬂﬂmﬂm ]
0 I . I . I . o o ‘mm I o o I ]

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

parameter a

Figure 32: Distributions of the parameter values a corresponding to a Markov-partition
of the sinusoidal map Eqn. 31 with a depth p = 3 and p = 4. Because of the high number
of partitions for larger values of a the distribution is given only for the interval a € [0, 1.8]
and or the transition €; — ¢;. The width of the bins is Az = 1/50. For further details
see Fig. 30
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Figure 33: Sketch of the dynamics close to the saddle-node bifurcation at a = a; = 1. In
the parameter interval [a;,a_1] and close to the extremum the dynamics is dominated by
the stable fixed point of the map, which attracts the trajectories starting at the extremum.
It therefore prevents Markov-partitions except for the ¢; — €;-partition. This results in
windows in the distribution of the partitions. (The dashed line is the function y = x).
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Figure 34: Time evolution of the Burgers system Eqn. (43) with the initial distribution
us(z,t) = —c/(1 +exp[c(x — z, — ct)]) with ¢ = 1.0 and x, = 10.0. The integration is
performed on a spatial grid with N = 100 points and a time step At = 0.2.
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Figure 35: Time evolution of the Burgers system Eqn. (43).  The initial
distribution is a linear superposition us(z,t) = —c1/(1+explc(z —x1 —r1t)]) —
ca/(1+ exp[ca(x — x9 — cot)]) with ¢ = 0.9, ¢; = 0.6 and z; = 34.0, o = 93.5. The
integration is performed on a spatial grid with N = 170 points and a time step At = 0.2.
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Figure 36: Time evolution of the Burgers system FEqn. (43).  The initial
distribution is a linear superposition wus(z,t) = —c1/(1+expc(z —z1 — r1t)]) —
ca/(1+ exp[ca(x — 22 — cot)]) with ¢; = 1.0, ¢ = —1.0 and z; = 34.0, o = 136. The
integration is performed on a spatial grid with N = 170 points and a time step At = 0.2.
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Figure 37: Time evolution of the Fitzhugh Nagumo system Eqn. (45). The initial distri-
bution is given by v = tanh(z — at) Eqn. (46). The integration is performed on a spatial
grid with V = 100 points and a time step At = 0.2.
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Figure 38: Time evolution of the real Ginzburg Landau system Eqn. (8.4.3). The ini-
tial distribution relaxes to the constant and stationary distribution u(z,t) = 1. The
integration is performed on a spatial grid with N = 100 points and a time step At = 0.1.
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Figure 39: Time evolution of the Korteweg-de-Vries Eqn.(47). The initial condition is
. 2

given by U(J),t) = —%m

on a spatial grid with N = 120 points and a time step At = 0.1.

(Eqn. (48)) with ¢ = 0.4. Time evolution takes place
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Figure 40: Time evolution of the Kuramoto Sivashinsky Eqn. (52) with a viscosity
parameter of v = 1.5. The integration is performed on a spatial grid of N = 170 points
and a time step At = 0.1.
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Figure 41: Time evolution of the Kuramoto Sivashinsky Eqn. (52) with a viscosity
parameter of v = 6.0. The integration is performed on a spatial grid of N = 100 points
and a time step At = 0.1.
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