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We present and discuss certain global bifurcations involving the interaction of one- and two-
dimensional invariant manifolds of steady and periodic solutions of the Kuramoto–Sivashinsky
equation. Numerical bifurcation calculations, dimensionality reduction using approximate in-
ertial manifolds/forms, as well as approximation and visualization of invariant manifolds are
combined in order to characterize what we term the “Oseberg transition”.

1. Introduction

The one-dimensional Kuramoto–Sivashinsky equa-
tion (KSE) with periodic boundary conditions can
be written in the following form:

ut + 4uxxxx + α[uxx + uux] = 0 , (1)

u(t, x) = u(t, x+ 2π) . (2)

It arises in several physical contexts as an am-
plitude equation for spatiotemporal growth of insta-
bilities (flame fronts [Sivashinsky, 1980], reaction–
diffusion problems [Kuramoto & Tsuzuki, 1976] as
well as thin film flow down an inclined plane [Chang,
1986]). Pioneering computational work in the early
1980s [Hyman & Nicolaenko, 1986] established it
as a model equation for spatiotemporal pattern for-
mation, and breakthroughs in the theory of inertial
manifolds [Foiaş et al., 1988b], as well the first nu-
merical efforts at their implementation as approx-
imate inertial manifolds [Foiaş et al., 1988a] also

employed it as their par excellence example. The
discovery of persistent heteroclinic cycles for the
KSE [Kevrekidis et al., 1990] made it also a rep-
resentative example for the study of bifurcations
with symmetry [Armbruster et al., 1989; Kent &
Elgin, 1992; Dawson & Mancho, 1997; Brown &
Kevrekidis, 1996].

This combination of physical motivation, rich
spatiotemporal behavior, the importance of sym-
metries and the existence of inertial manifolds have
established the KSE as a workhorse example for
the study of complex dynamics in dissipative par-
tial differential equations (PDEs). A lot is known
about its detailed “low α” bifurcation diagrams
(e.g. [Kevrekidis et al., 1990; Scovel et al., 1988;
Brown et al., 1991; Brown & Kevrekidis, 1996]) and
extensive research is carried out in trying to under-
stand the nature and scalings of the spatiotemporal
chaos it exhibits at large values of α [Dankowicz
et al., 1996; Wittenberg & Holmes, 1999].
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In this paper we will describe a particular global
bifurcation exhibited by the KSE. This transition
involves both one- and two-dimensional invariant
manifolds of steady as well as periodic solutions of
the PDE; bifurcation calculations as well as invari-
ant manifold approximation and visualization are
crucial in the presentation and the understanding
of what occurs. The low-dimensionality of the dy-
namics is vital in this exposition, in order to make
the low-codimension stable manifolds of saddle-type
steady states and limit cycles visible in infinite-
dimensional Hilbert spaces. This is accomplished
using an approximate inertial form and restricting
to the invariant subspace of odd functions to re-
duce the long-term dynamics of the PDE to those
of a system of three ordinary differential equations,
for which the stable manifolds of interest are of
dimension one and two.

A partial exploration of the bifurcation we
study has appeared in a recent paper by Ponce–
Dawson and Mancho [Dawson & Mancho, 1997].
In their study of heteroclinic cycles in the KSE
with periodic boundary conditions, using an ap-
proximate inertial form similar to the one used here,
they noticed and analyzed many of the phenom-
ena constituting the transition picture we will see
here. The ability to approximate and visualize two-
dimensional invariant manifolds allows us, in this
paper, to show elements of the transition which were
correctly deduced from simulations but not actu-
ally seen in [Dawson & Mancho, 1997], along with
additional phase space/parameter space structures
completing the bifurcation picture.

The paper is organized as follows: In Sec. 2 we
give concise numerical evidence (using a sufficiently
converged discretization of the PDE) suggestive of
the phenomenon we will proceed to analyze. An
informal pictorial terminology of the elements in-
volved is also introduced at this stage. There fol-
lows, in Sec. 3, a brief discussion of the reduction
of the PDE to a three-dimensional approximate in-
ertial form, a step which is essential for the vi-
sualization of the relevant global bifurcations; the
development (through bifurcation calculations and
continuation) of the basic “players” in the tran-
sition is presented here. The main results are
in Sec. 4, which contains a sequence of numeri-
cal experiments exploring the bifurcation as well as
what we consider our best attempts at its visual-
ization. We conclude with a brief discussion of the
results.

2. The Oseberg Transition

We first describe the global transition in question in
a relatively high-dimensional phase space, represen-
tative of the full PDE. We restrict our exploration
to the invariant subspace of odd functions, in which
case the solutions may be represented by the Fourier
sine series

u(t, x) =
∞∑

j=−∞
uj(t)e

ijx =
∞∑
j=1

bj(t) sin(jx) , (3)

where the reality and oddness conditions on u give

u−j = uj and uj = − ibj
2
.

An eight-mode Galerkin truncation of the PDE
is sufficiently converged to be qualitatively and
quantitatively accurate in the parameter regime we
study [Kevrekidis et al., 1990].

Figure 1 shows the dramatic qualitative change
the global attractor undergoes as the bifurcation
parameter α passes through a certain critical value
αO ≈ 32.9. Figure 1(a) is taken “before” (α < αO),
and Fig. 1(b) “after” the global bifurcation.

To describe this transition further, it is use-
ful to first examine in Fig. 1(c) a “skeleton” of
the global attractor consisting of five steady states,
certain one-dimensional unstable manifolds and a
limit cycle (which we refer to as γHopf). The axes
in this figure are the first (horizontal, sin 1x), sec-
ond (vertical, sin 2x) and third (into the plane of
the picture, sin 3x) Fourier coefficients of the solu-
tion. These steady states, for reasons that will be
explained below, carry the shorthand characteriza-
tions of the origin (at the origin of the plotting coor-
dinates), the top and bottom bimodals (on the upper
and lower part of the vertical axis respectively) and
the two mixed mode bi-tris, off-axis.

For the parameter value corresponding to this
figure (and the nearby parameter range), the hy-
perbolic steady states maintain a constant stability
type (the origin: saddle, two (real) unstable eigen-
values; top bimodal: stable; the two bi-tris: sad-
dles, one unstable eigenvalue; bottom bimodal: two
(complex) unstable eigenvalues). Using the figure as
a visual guide, we term “upward-” and “downward-
pointing” the two sides of the one-dimensional un-
stable manifolds of the bi-tri states. The upward-
pointing sides of both bi-tri unstable manifolds
asymptotically approach the top bimodal. The
asymptotic fate of the downward-pointing sides of
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Fig. 1. Elements of the global attractor for an eight-mode Galerkin approximation to the KSE. Shown in (a) and (b) are
the two-dimensional unstable manifold of the origin (yellow), that of the bottom bimodal steady state (red) and the one-
dimensional unstable manifolds of the bi-tris (blue), at two different values of the parameter: (a) α = 32.0 and (b) α = 33.0.
(For an explanation of the steady state terminology see text.) In (c), a skeleton of the global attractor is presented.

these two manifolds is, as we will see, sensitive to
changes in the parameter. In this figure one of these
two manifolds is only partially plotted, so as not
to obscure the picture; the other one can be ob-
tained through symmetry. These one-dimensional
manifolds form part of the boundary of the two-
dimensional unstable manifold of the origin, the
majority of which is rendered in yellow in Figs. 1(a)
and 1(b). In Fig. 1(a) the two-dimensional unstable
manifold of the bottom bimodal (in red) is topolog-
ically an open disk, the boundary of which is the
limit cycle γHopf.

There are two attractors in this picture: the
top bimodal, and the stable limit cycle γHopf.
The basin boundary separating their correspond-
ing basins of attraction cannot be visualized in this
eight-dimensional phase space; it is a codimension-
one manifold (a pair of them, really), the stable
manifold(s) of the bi-tri state(s). Notice that in
Fig. 1(b), the red manifold (the two-dimensional
unstable manifold of the bottom bimodal, which
before the critical value αO approached asymptot-
ically the γHopf limit cycle) has “burst through”
this invisible basin boundary and now approaches
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asymptotically both γHopf and the top bimodal.
The pair of codimension-one bi-tri stable mani-
folds, which play a vital role in the transition we
are witnessing, cannot be visualized in this three-
dimensional projection of the eight-dimensional
phase space. Indeed, the computation of a mani-
fold of such high dimension is beyond the current
state of the art. These two two-dimensional un-
stable manifolds (of the origin, in yellow, and of
the bottom bimodal, in red), along with all other
two-dimensional (un)stable manifolds that we will
follow in this work, were computed as in [Johnson
et al., 1997]. Briefly this method evolves a discrete
(and adaptive) collection of points, initially taken to

lie on the unstable eigenspace of the steady state in
question, into a skeleton of the approximation to the
manifold. For alternative, more recent approaches
to computation of two-dimensional (un)stable man-
ifolds, see [Krauskopf & Osinga, 1999].

In what follows we will need to make repeated
references to many of the particular phase space el-
ements described above. The standard terminology
(for example, “two-dimensional stable manifold of
steady state A”, and “upward-pointing side of the
one-dimensional unstable manifold of steady state
B”), make the description, in our opinion, awk-
ward. On a slightly playful note, we decided that
our global attractor bears an uncanny resemblance

Fig. 2. Separated at birth? The two-dimensional unstable manifold of the bottom bimodal (top: side view; bottom: top
view) at α = 33.0 (see Fig. 1) — the Oseberg ship.
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to a sailboat (indeed when we first saw the transi-
tion between Figs. 1(a) and 1(b), we began to refer
to it as the “cup-boat transition”). In Fig. 1(a), the
attractor is much like a dinghy, i.e. a small, deckless
sailboat, and in Fig. 1(b), it has been transformed
into a Viking ship, in particular, one like that recov-
ered in the archaeological dig in Oseberg, Norway
in 1903 [Brogger & Shetelig, 1971; Greenhill, 1976]
(see Fig. 2). We will therefore take advantage of this
similarity, and borrow a bit of nautical terminology.
Henceforth, we will refer to the two-dimensional un-
stable manifold of the bottom bimodal as the hull,
the two-dimensional unstable manifold of the origin
as the sail, the segment of the invariant sin(2x)-
axis between the two bimodals as the mast, and the
one-dimensional unstable manifolds of the bi-tris as
the ropes. In fact these ropes lie in the boundary
of the sail, due to transversality and the λ-lemma
[Palis & de Melo, 1982; Johnson, 1998]. We believe
this imagery makes the narrative more succinct; we
hope our readers will not bristle at the informality,
and adopt our naming this bifurcation “the Oseberg
transition”.

3. Dimensionality Reduction

Reduction of the dimension of the phase space is
essential for visualizing and, hopefully, understand-
ing the geometry of the global bifurcations wit-
nessed above. A first step in the reduction (halv-
ing the dimension) has already been accomplished
through restriction of our observations to the in-
variant subspace of odd functions. We carry the
next, crucial reduction step, by means of an ap-
proximate inertial manifold (AIM). The existence
of exact inertial manifolds (along with estimates of
their dimensions) has been well established for the
KSE [Foiaş et al., 1988b; Temam & Wang, 1994;
Robinson, 1994; Jolly et al., 2000]. In addi-
tion, the effectiveness of three-dimensional AIMs
in capturing the “correct” long-term dynamics over
the parameter range of interest here, is also well-
documented, at least as far as the local bifurca-
tions, leading to the skeleton of the global attractor
described above [Foiaş et al., 1988a; Jolly et al.,
1990] is concerned. The restriction of the flow to
such a three-dimensional manifold is described by a
system of three ordinary differential equations (an
approximate inertial form, or AIF). It is the dy-
namic behavior of this system that we study in
detail in the sections that follow.

To describe the AIM we express the KSE as an
evolutionary equation

du

dt
+Au+R(u) = 0 , u ∈ H (4)

where H is an appropriate Hilbert space (see
[Temam, 1988]). The linear operator A may be
taken to be that given by Au = uxxxx along
with periodic, odd boundary conditions. The
remaining terms are then collected in R. The
infinite-dimensional phase space H is split into
low- and high-wavenumber modes by means of the
projectors

P :H→span{sin(x), sin(2x), sin(3x)} , Q=I−P .

The particular AIM used here can be found as the
second iterate of a contraction mapping indicated
by the sequence of explicit functions

Φj+1(p) = −A−1QR(p+ Φj(p)) , j = 0, 1, . . . (5)

Φ0(p) ≡ 0 , p ∈ PH . (6)

The associated approximate inertial form studied
here is

dp

dt
+Ap+ PR(p+ Φ2(p)) = 0 . (7)

In contrast, the standard Galerkin approximation
can be expressed as

dp

dt
+Ap+ PR(p) = 0 . (8)

An explicit formulation of both the AIF (7) and
the Galerkin approximation can be found in the ap-
pendix in [Jolly et al., 1990].

There is considerable theoretical justification
for using Φ2 as an AIM. The graph of the limit
Φ∞ (an implicit relation) of the sequence in (6) is
a manifold containing all steady states of the PDE.
Early estimates showed that the distance from the
attractor to the manifold given by the second it-
erate graph (Φ2), is of the same order as to that
given by Φ∞, and that in both cases this distance
is smaller than that of the trivial (flat) manifold de-
scribed by Φ0 [Jolly et al., 1990]. Subsequent work
has revealed however, that this advantage for the
AIMs amounts to an algebraic improvement on top
of an error which decays exponentially with the di-
mension of the manifold, due to Gevrey regularity
of the solutions [Liu, 1991]. Thus the fact that, in
computations, the 3-mode AIF (7) seems to capture
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the correct long-term dynamics while the 3-mode
Galerkin approximation does not, can be explained
by the low dimension at which the comparison is
made. We should emphasize that the choice for the
dimension (three) is based on the desire to visu-
alize global interactions in phase space, and that
this choice is to some extent, vindicated by com-
putational evidence. Ponce–Dawson and Mancho
[Dawson & Mancho, 1997] used a slightly modi-
fied version of this AIF, in which the highest order
terms were dropped. While qualitatively similar,
their bifurcations are slightly shifted in parameter
and phase space from ours.

We do not, in fact, know that an exact, three-
dimensional inertial manifold exists for the KSE
over the parameter range of interest here. Roughly
speaking, the existence of an inertial manifold can
be established if a gap in the spectrum of A domi-
nates, in a specific way, the Lipschitz constant of the
nonlinear term. This requires that the equation be
prepared; the nonlinear term is truncated beyond a
ball in phase space. If the ball of truncation is ab-
sorbing, then it contains the attractor of the PDE,
and as far as the dynamical behavior is concerned,
such a preparation is simply a mathematical device.
It is shown in [Jolly et al., 2000] that for all α < 36,
truncating at a rigorous absorbing ball yields an
inertial manifold for the KSE of dimension under
200. It is also shown in [Jolly et al., 2000] however,
that truncating at a smaller ball, yet one which still
contains the attractor as we know it from computa-
tional evidence, provides a five-dimensional inertial
manifold for all α < 36, for this (perhaps) “overly-
prepared” version of the KSE. So the latter esti-
mate, which could not a priori have been expected
to be so sharp, actually comes quite close to justify-
ing the use of a three-dimensional system over the
parameter range of interest here.

Symmetries and invariant subspaces

A brief discussion of certain symmetry elements of
the PDE may be of assistance in the description of
the solutions involved in our transition and their
interactions. Consider the KSE PDE with periodic
boundary conditions (not just odd), with the cor-
responding change of H in (4). Any spatial trans-
lation of a solution Tθ : u(t, x) → u(t, x + θ) is
also a solution, as is the result of the transforma-
tion S : u(t, x) → −u(t, −x). These two actions
generate the group O(2). The fact that Tθ and S
commute with the nonlinear term R for the KSE,

implies that the Galerkin approximation in (8), and
the AIF in (7) also enjoy O(2) symmetry.

Let G be a subgroup of O(2) and let Fix(G)
denote the subspace of H (or PH) consisting of el-
ements left fixed by G. Then Fix(G) is an invariant
subspace [Golubitsky & Schaeffer, 1985; Golubitsky
et al., 1988] for the PDE (or its finite-dimensional
approximations (8), (7)). In particular, the sub-
spaces consisting of 2π/k−periodic functions are
invariant for each integer k, since these are pre-
cisely the functions left unchanged by actions of
T2π/k. Note also that Fix(S) is the subspace of odd
functions.

Though the restriction to the invariant sub-
space of odd functions destroys the O(2)-symmetry,
the intersection of Fix(T2π/k) with the odd sub-
space is still invariant. Since in terms of Fourier
coefficients

T2π/k : uj → eij2π/kuj ,

it is easy to see that the sin(2x)-axis and the
sin(3x)-axis are also invariant for the AIF (7) since
we use only the first three modes u1, u2, u3. Fi-
nally, we remark that the Tπ symmetry for our
three-dimensional reduced system corresponds to
the transformation

g : (b1, b2, b3)→ (−b1, b2, −b3) , (9)

a symmetry which is identical to that found in the
Lorenz equations [Lorenz, 1963].

4. Observed Phenomena

4.1. Setting the stage

We start with a brief description of how the ba-
sic “players” in the global attractor in Fig. 1 arose
through the now well-established sequence of low-
α bifurcations of the KSE. This serves not only to
set the transition we are studying in the context of
other known KSE bifurcations, but also to reiterate
the number of unstable eigenvalues (and therefore
invariant manifold dimensions and codimensions)
for each of the “players”.

Figure 3 shows the bifurcation diagram, with
respect to α, of the approximate inertial form (7).
This is in good qualitative (and reasonable quanti-
tative) agreement with the corresponding diagram
for the PDE (obtained through large converged
truncations [Jolly et al., 1990; Kevrekidis et al.,
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Fig. 3. A view of the AIF bifurcation diagram showing var-
ious steady state branches as well as the onset of a relevant
branch of oscillatory solutions. The norm in the case of the
periodic branch is the time average of the norm of the solu-
tion over the period. The insets illustrate the solution spatial
profiles between zero and 2π. Representative phase portraits
can be seen in Fig. 4.

1990]). The trivial solution is stable (three nega-
tive real eigenvalues) for α < 4 and loses one stable
eigenvalue in each of three successive bifurcations
as α increases. The first bifurcation (a pitchfork in
the subspace we study) to nonuniform steady states
occurs at α = 4. The resulting steady states have
been termed unimodal as they initially possess one
spatial hump; the eigenvector of the critical eigen-
value is (1, 0, 0), and they are therefore born “in
the sin(x)-direction”. Due to symmetry, both uni-
modal branches appear superposed in the diagram.
Two replicas [Scovel et al., 1988] of this bifurcation
also appear in the diagram (one for bimodal solu-
tions at α = 16, and one for trimodal solutions at
α = 36).

One of the two bimodal branches undergoes
(at α = αbt ≈ 22.0) a pitchfork bifurcation to a
pair of bi-tri branches, and subsequently (at α =
αH ≈ 30.2) a Hopf bifurcation to a limit cycle,
γHopf, which possesses a particular spatiotemporal
symmetry. In terms of the PDE this symmetry is
described by

u(t, x)→ u(t+ τ/2, x+ π) ,

and in terms of the three-dimensional states we are

dealing with here

(b1, b2, b3)→ (−b1, b2, −b3) and t→ t+ τ ,

where τ is the period in each case. Specifically, the
limit cycle, as a set, is invariant under the action of
the symmetry g (as defined in (9)).

Throughout the parameter regime of interest,
the bi-tri steady states possess one unstable and two
stable eigenvalues. The upward-pointing sides of
the bi-tri unstable manifolds (ropes in our nautical
terminology) asymptotically approach the top bi-
modal. The downward-pointing ropes, for values of
α sufficiently close to (and larger than) αbt, asymp-
totically approach the bottom bimodal or (later,
after αH) the limit cycle γHopf. For larger values
of α the long-time fate of the downward ropes can
become, as we will see, quite sensitive to the pa-
rameter. We provide in Fig. 4 a sequence of phase
portraits at several values of α.

For values of 16 < α < 36, between the bi-
modal and trimodal bifurcations, the origin has a
two-dimensional unstable manifold (the sail ). The
bi-tri stable manifolds (the tent1) are also two-
dimensional and are observed to intersect the sail
transversely throughout the parameter regime we
study. The term tent is perhaps more justified in
Fig. 5, which shows two distinct views of these two,
two-dimensional stable manifolds: the blowup, close
to the origin, of the two manifold segments shows
a distinct fold similar to the ridge of a pup tent.
This tent corresponds to the pair of codimension-
one stable manifolds whose collision with the hull
at α = αO ≈ 32.6, transforming the dinghy into the
Viking ship, constitutes the Oseberg transition for
the AIF (7).

The transitions we describe are, we believe,
qualitatively correct; the exact parameter values
at which they occur are not so easy to pinpoint
through our numerical procedures. Indeed, invari-
ant manifold approximations may be (in the neigh-
borhood of global bifurcations) particularly sensi-
tive to the parameter values, to the size of initial
local manifold approximations, as well as the time
step size and accuracy of the numerical integrator
used to evolve the manifold approximation. These
errors in the actual critical parameter value are,
however, not qualitatively important (they are sub-
sumed by the approximation made using an AIF as
opposed to a converged discretization of the PDE).
Similar phenomena occur (at nearby parameter

1Interestingly, a number of tents were also found at the archeological dig which uncovered the fully intact Oseberg Viking ship.
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Fig. 4. Representative phase portraits with unstable manifold of the origin in yellow, and one-dimensional unstable manifolds
(of the origin (a), and of the bottom bimodal in (b) and (c)) in white. The blue manifold is the two-dimensional stable manifold
of, successively, the origin (α = 12, in (a)), the bottom bimodal steady state (α = 20, in (b)) and of the pair of bi-tri states
(α = 25, in (c)).

Fig. 5. The tent (in blue) and the sail (in yellow) at α = 27.0.

values) for different AIFs, different manifold ap-
proximations, and different integrators; in that
sense, we believe that the Oseberg transition is
robust.

Before continuing the study of this transition,
we describe the phase space in further detail for α
smaller than αO. The hull of the dinghy is initially
(just after αH) composed of trajectories which are
asymptotically attracted to the limit cycle γHopf;
this limit cycle acts as this hull’s rim [as was al-
ready suggested in Fig. 1(a)]. Near the Hopf bi-
furcation the two stable Floquet multipliers of the
limit cycle are real, and the rim of the hull is much

like that of a bowl. As α increases, the multipliers
collide (α ≈ 31.5) become complex, travel around
zero inside the unit circle, and eventually coalesce
and split on the positive real axis. When the multi-
pliers of γHopf are complex, the hull spirals around
its rim. Since the symmetry g composed with itself
gives the identity (g2 = I), it is not surprising that
the multipliers do not split following their collision
on the negative real axis [Swift & Weisenfeld, 1984].
After the multipliers collide on the positive real axis
and split, they remain real as α changes, and one
of them passes through the unit circle at +1 in a
symmetry-breaking bifurcation at α ≈ 32.7 giving
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Fig. 6. Limit cycle bifurcation diagram for the γHopf branch (see text). The axes are as in Fig. 3. The representative phase
plots illustrate the approach of the branch to the Šilnikov homoclinic and heteroclinic connections involving the bi-tri steady
states (for relatively large values of α). The Hopf branch terminates in a Šilnikov connecting orbit at α ≈ 36.12785 (upper
right); the asymmetric branch also terminates at α ≈ 34.90108 (upper left). The lower left frame shows a large-period, nearly
homoclinic, asymmetric limit cycle at α = 34.901079384; the lower right shows a symmetric limit cycle near to a heteroclinic
cycle at α = 36.127432153, with axes as in Fig. 1.

rise to a pair of linked asymmetric stable periodic
solutions (each is the image of the other under the
symmetry g). As a pair of curves, these asymmet-
ric limit cycles have linking number [Ghrist et al.,
1997] equal to one, as does the combination of either
asymmetric limit cycle with the Hopf orbit.

It is interesting to consider the shape of the hull
as it approaches its rim after the multipliers have
split and become real again (it still spirals) and af-
ter the symmetry-breaking bifurcation giving rise to
the two asymmetric limit cycles (it both spirals and
asymptotically approaches these two new “rims”).
Figure 7 shows the Moebius band that constitutes
both sides of the two-dimensional unstable mani-
fold of γHopf after the symmetry-breaking bifurca-
tion. The interaction of this band with the hull
close to the rim will not be further pursued here;
other, more dramatic phenomena affect the hull.

Numerical continuation of both the symmetric
and the asymmetric limit cycle branches is known
to result in a multitude of homoclinic and hete-
roclinic scenarios [Brown et al., 1991; Dawson &

Mancho, 1997]. Figure 6 shows two views (one
of them a blowup) of these scenarios, along with
representative shapes of the hetero/homoclinic or-
bits which they asymptotically approach. These
scenarios, however, occur at values of α consider-
ably larger than αO (see captions in Figs. 6 and
14). We will provide evidence below indicating
that additional homoclinic and heteroclinic con-
nections are implied by the Oseberg global tran-
sition, and identify some of the (different) fami-
lies of limit cycles associated with these additional
connections.

4.2. Šilnikov orbits

The ropes alone give an indication of a global bi-
furcation. In Fig. 8, the ropes approach the rim
of the hull as t → ∞, for α = 32.62666, while at
α = 32.62667, after an excursion near the rim of
the hull, they pass near the bi-tri en route to the
stable bimodal state. This is suggestive of a Šilnikov
(double) heteroclinic connecting orbit between the
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Fig. 7. The two-dimensional unstable manifold of γHopf after the symmetry breaking bifurcation, one side in red, the other
in blue. The green line is the sin(2x) axis. The symmetric limit cycle lies at the boundary between the two sides (red and
blue) of its unstable manifold; the asymmetric limit cycles constitute the edges of these two sides.

Fig. 8. Two views (top: side view; bottom: top view) of the downward ropes (one-dimensional unstable manifolds of the
bi-tri steady states); they are taken before (left) and after (right) a double heteroclinic connection.
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two bi-tri states. A similar (double) heteroclinic
connection was reported in [Dawson & Mancho,
1997] around what corresponds to α = 32.56. We
recall that the highest order terms were dropped in
the AIF used in [Dawson & Mancho, 1997], which
most probably explains this discrepancy. We expect
that, in phase× parameter space, branches of limit
cycles will asymptotically approach these connec-
tions (as their periods tend to infinity). One may
expect both symmetric limit cycle branches (asymp-
totically approaching double heteroclinic connec-
tions) as well as asymmetric limit cycle branches
(asymptotically approaching homoclinic connec-
tions between each bi-tri and itself). One can fur-
ther classify these closed curves (both the “infinite
period” ones and the limit cycle branches which
asymptote to them in phase× parameter space) by
the number of times they wrap about the sin(2x)-
axis, an invariant line which cannot be crossed. A
period-k orbit would be one which wraps around
this invariant line k times. This classification is of
significance since a period-2n1 · k limit cycle can be
born only from a limit cycle of period 2n2 ·k, for cer-
tain combination of integers n1 and n2; similarly,
an infinite-period connecting orbit must have this
same “signature” as the finite-period limit cycles
that asymptotically approach it.

We found it particularly intriguing that this
Šilnikov (double heteroclinic connecting) orbit oc-
curs close (in parameter space) to our best estimate
of the Oseberg transition critical value, αO. The
remainder of this paper is devoted to describing a
mechanism which links these two seemingly inde-
pendent global bifurcations: the heteroclinic con-
nections between the bi-tris, and the escape of the
hull towards the top bimodal.

A close examination of a cross-section of the
hull reveals the transformations it undergoes as we
approach the Oseberg transition. We compute such
a cross-section by taking a large number of ini-
tial conditions on the linear approximation (near
the bottom bimodal) to the hull and then iterat-
ing the return map defined on the Poincaré section
b1 = 0. In Figs. 9(b)–9(i), the hull becomes in-
creasingly complicated as higher-period structures
emerge within its rim. The result of following the
flow of such a set of initial conditions in the full
phase space at α = 32.58 indicates the presence
of an attracting period-3 limit cycle [see Fig. 9(a)];
this solution coexists with the symmetric limit cycle
γHopf, and, as a matter of fact, the hull asymptoti-
cally approaches both of them.

Where do these new periodic solutions (also
found in [Dawson & Mancho, 1997]) originate? Lin-
earizing at the bi-tri steady states, we find numeri-
cally that the (real) unstable eigenvalue is over three
times the magnitude of the real part of the sta-
ble eigenvalue conjugate pair over the range 32 ≤
α ≤ 33. In a situation such as this, where the
rate of repulsion exceeds that of attraction, the ex-
istence of a Šilnikov orbit implies that at the critical

Fig. 9. The hull lies in multiple basins of attraction at
α = 32.58 (a); A one-parameter family of initial conditions
on it (a circle of ICs close to the bottom bimodal) evolves (see
the cloud of sampled transient points) in part to the symmet-
ric γHopf and in part to a symmetric period-3 solution. The
complexity of the hull increases with the parameter α. We
illustrate this through cross-section slices of the hull at vari-
ous setting of α, as follows: (b) 32.000, (c) 32.200, (d) 32.400,
(e) 32.500, (f) 32.573, (g) 32.584, (h) 32.596, (i) 32.604.
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parameter value, there is a sequence of limit cycles
with longer and longer periods which approaches
the Šilnikov orbit in phase space [Glendinning &
Sparrow, 1984]. Such limit cycles typically lie on a

Fig. 10. Within the Poincaré section b1 = 0, the three com-
ponents of the stable manifold of the period-3 saddle limit
cycle are plotted in blue, bronze, and green. In (a) and (b)
the period-3 saddle is near its inception around α = 32.57,
and labeled with ∆, while γHopf is labeled with ∇. The cross-
section of the hull is shown in red in both (b) and (c). In
(c), for slightly larger α, a period-5 saddle, denoted by ∆, is
present near the tips of the hull. The period-3 saddle and
node in (c) are labeled by a square and a diamond respec-
tively. The black curves are respectively, the unstable man-
ifold of the period-3, in (a) and (b), and a small portion of
that for the period-5 in (c). See text for discussion.

single branch in parameter×phase space which un-
dergoes an infinite number of saddle-node bifurca-
tions as it switches back and forth from left to right
in a bifurcation diagram (see Fig. 6). An even closer
look at the Poincaré cross-section of the hull in
Fig. 10(a) indeed shows the result of such a period-
3 saddle-node bifurcation: a period-3 saddle limit
cycle along with its unstable manifold. One side of
the (in section, one-dimensional, in the full phase
space, two-dimensional) unstable manifold of this
saddle limit cycle approaches our familiar, still sta-
ble, symmetric γHopf. The other side of this unsta-
ble manifold, on the Poincaré map, approaches a
stable period-3 limit cycle, which was born in the
same saddle-node bifurcation as the saddle period-
3, and which, in Fig. 10(a), is visually indistinguish-
able from the saddle at this magnification and value

Fig. 11. A schematic version of a portion of the hull, along
with the stable manifolds of the period-3 saddle limit cycle,
as they might appear trapped between two Poincaré sections.
The colors are meant to be consistent with those in Fig. 10.



Global Bifurcations for the KSE 13

Fig. 12. Bifurcation diagrams, with axes as in Fig. 3. (a) bi-tri steady state (solid with dots), period-3 (bold, solid),
Hopf (- - -) and symmetric period-5 (- · - · -), (b) blow-up showing only symmetric period-5 from (a) along with asymmetric
period-5, (c) same as (b) with a asymmetric period-10 branch, superposed, (d) period-10 branch alone on same scale. In (a)
the period-3 branch ends in an Šilnikov connection at ≈ 33.5903, the other Šilnikov connections are at 34.9028 and 36.1263.

of α. Also shown in Fig. 10(a) are both branches of
the stable manifold of the period-3 saddle limit cy-
cle (again, two-dimensional in the full phase space
but one-dimensional in the Poincaré section).

Figure 10(b) is our most important computa-
tional result. It shows the same elements, but with
the cross-section of the hull superposed. It is clear
that the stable manifold of the period-3 saddle in-
tersects the hull transversely, implying the existence
of structurally stable connecting orbits between the
bottom bimodal and the saddle period-3, even upon
the inception of the saddle period-3 at a saddle-node
bifurcation. We provide in Fig. 11 a schematic ver-
sion of a wedge of the hull together with the stable
manifolds of the period-3 orbits. Figure 10(c) shows
the same objects but at a slightly larger value of
α along with yet another periodic orbit arising in
a saddle-node bifurcation: a period-5 saddle limit
cycle located near the “tips” that the hull section
develops. A small portion of the stable manifold
(looking much like a slash through each triangle) of
the saddle period-5 is also shown in Fig. 10(c) indi-

cating transversality in this case as well. Figure 12
shows the results of numerical continuation of vari-
ous such periodic solutions, which appear and often
disappear in saddle-node bifurcations, using AUTO
[Doedel, 1981]. In Fig. 12(a), the period-3 solutions
as well as the γHopf are shown to eventually asymp-
totically approach Šilnikov orbits. In [Dawson &
Mancho, 1997] the period-3 solutions were found to
undergo a period-doubling sequence of bifurcations
to apparently chaotic dynamics. A closer look at
the period-5 and associated period-10 branches in
Figs. 12(c) and 12(d) does not indicate a Šilnikov
bifurcation, yet this continuation is by no means
exhaustive. While none of these branches of peri-
odic orbits seem to approach the Šilnikov connect-
ing orbit at α ≈ 32.63 (refer back to Fig. 8), we ex-
pect that there exist additional isolated branches of
periodic orbits which do.

In summary: periodic solutions, born at saddle-
node bifurcations, are found (as expected) close to
the value of α at which a (double) heteroclinic con-
nection develops between the two bi-tri states. We
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Fig. 13. Representative phase portraits of the period-3 and period-5 limit cycles in the bifurcation diagrams in Fig. 12 (in
each case, top: side view; bottom: top view).

do find several families of such periodic solutions
close to the value of α at which the double het-
eroclinic connection between the two bi-tri steady
states occurs. The parameter dependence of many
of these periodic solutions is strongly suggestive of

their participation in a Šilnikov type connection
scenario.

The important element is that all these solu-
tions are “born” with their stable manifolds already
tangled with the two-dimensional unstable manifold
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Fig. 14. The Oseberg transition for the AIF (7) viewed from afar. The top two pictures are of phase space at α = 32.0 and
the bottom two are from α = 32.8. The hull is in red, the tent in blue; one rope is yellow, the other blue. See text for detailed
description.

of the bottom bimodal (the hull). It is therefore not
surprising that, as these periodic solutions approach
a (double) heteroclinic orbit — in other words, as
they approach the ropes and the tent — the hull,
which contains orbits asymptoting to them, also ap-
proaches the heteroclinic orbit — and thus the tent.
It then makes sense that even before (in parameter
space) the basic double heteroclinic orbit connect-
ing the two bi-tri states occurs, the two-dimensional
unstable manifold of the bottom bimodal interacts
with the two-dimensional stable manifold of the bi-
tris, in the heteroclinic explosion that creates the
Oseberg ship.

We review the sequence of connections: The
hull is tangled with saddle periodic orbits; peri-
odic orbits asymptote to the ropes; the ropes lie
on the tent at the heteroclinic value. We therefore
expect that the hull approaches the tent (and inter-
acts with it) before (in parameter space) any given

periodic branch asymptotes to the (double) hetero-
clinic connection.

5. Conclusion

We presented a computer-assisted study of a partic-
ular global transition, involving invariant manifolds
of several steady states and limit cycles; these man-
ifolds have dimension (or codimension) one and/or
two in our study. Model reduction allowed the vi-
sualization of the low codimension invariant man-
ifolds. Through this study we were able to link
two distinct global bifurcations: A double hete-
roclinic connection between two symmetric steady
states, and the Oseberg transition, the intersection
of the stable manifold of these states with the two-
dimensional unstable manifold of a third, unstable
steady state. The missing link was provided by
limit cycle families, related with the Šilnikov double
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Fig. 15. Schematic versions of the hull and tent near the bi-tri steady state are shown in (a) the dinghy regime, (b) the
Oseberg ship regime; the small square represents the bi-tri state, and the small triangle, the bottom bimodal. Computational
versions of the same transition follow in (c)–(f). In (c) a portion of the hull (red) and one side of the tent (blue) are constructed
for α = 32.0, while in (e) a closeup of the rim of the hull is shown at the same parameter value. Two views of the Oseberg
ship near a bi-tri state for α = 32.8 are shown in (d) and (f). The intersection of the two two-dimensional manifolds is a stable
heteroclinic connection between the bottom bimodal and the bi-tri steady states.

heteroclinic connection, but who are also (through
their stable and unstable manifolds) tangled with
the two-dimensional unstable manifold in question.
The connection of these two, in principle unrelated,
events justifies the numerical observation of struc-
turally stable heteroclinic cycles in the full (peri-
odic, nonodd) PDE close to the parameter value at
which the double heteroclinic connection of the bi-
tri states occurs [Dawson & Mancho, 1997]. The
picture is certainly far from complete; all this is
just the onset of the complex, gradual interaction of

the unstable manifold of the bottom bimodal with
the bi-tri steady states, the various primary (γHopf,
asymmetric) and secondary (period-3, -5, -10 and
more) limit cycles and their stable manifolds. Hope-
fully the information presented here will motivate
the study of the dynamics in the neighborhood of
the bi-tri steady states close to this transition.

There is no guarantee that the mechanism be-
hind the Oseberg transition described here by the
use of a three-dimensional AIF, is in fact consistent
with the way the transition takes place for the PDE,
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or for that matter, the eight-mode Galerkin approx-
imation used to produce Fig. 1. The reduction to
a three-dimensional system was, however, essential
for the visualization of stable manifolds of low codi-
mension. The AIM used in (7) is only a rough ap-
proximation to the global attractor (and to an exact
inertial manifold, should one of such low dimension
exist). Since the computations for this paper have
been carried out, a new algorithm for computing
inertial manifolds to arbitrary accuracy has been
developed in [Rosa, 1995]. The manifold produced
by the latter algorithm was demonstrated in [Jolly
et al., 1999] to be considerably more accurate than
the AIM in (7), when tested at a small sampling of
points on the global attractor of the KSE. Further
confirmation that the mechanism described here is
as for the PDE, could thus, in principle, be obtained
by repeating the visualization study presented here,
but using a more accurate approximation to an in-
ertial manifold. We believe, however, that the com-
putations presented here, as well as computations
of low-dimension (as opposed to low-codimension)
invariant manifolds, like the hull, in large PDE trun-
cations, provide convincing evidence that the essen-
tial phenomenology we present is still valid in the
PDE.
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