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Abstract

Statistical properties of chaotic dynamical systems are di�cult to estimate reliably�
Using long trajectories as data sets sometimes produces misleading results� It has been
recognised for some time that statistical properties are often stable under the addition
of a small amount of noise� Rather than analysing the dynamical system directly� we
slightly perturb it to create a Markov model� The analogous statistical properties of the
Markov model often have �closed forms� and are easily computed numerically� The
Markov construction is observed to provide extremely robust estimates and has the
theoretical advantage of allowing one to prove convergence in the noise� � limit and
produce rigorous error bounds for statistical quantities� We review the latest results
and techniques in this area�
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� Introduction and basic constructions

Suppose that we �nd ourselves presented with a discrete time� dynamical system� and we
would like to perform some �mainly ergodic�theoretic� analysis of the dynamics� We are not
concerned with the problem of embedding� nor with the extraction of a system from time
series� We assume that we have been presented with a dynamical system and do not question
its validity�

Any analysis of a dynamical system involving average quantities requires a reference
measure with which to average contributions from di	erent regions of phase space� Often
the measure that one wishes to use is the probability measure that is described by the
distribution of a typical long trajectory of the system
 it is commonly called the natural

measure or physical measure of the system�

��� What do we do�

This chapter discusses a method of modelling the dynamics by a �nite state Markov chain�
Naturally such a model contains much less information than the original dynamical system�
However� this simpli�cation of the dynamics allows the exact computation of many properties
of the Markov chain which correspond to important indicators and properties of the original
dynamics� For example� �nding invariant sets� obtaining invariant measures� calculating
rates of mixing and the spectrum of eigenvalues of transfer operators� computing means and
variances of recurrence times� and estimating Lyapunov exponents
 all of these calculations
are exact� for the Markov chain� We hope that although we are throwing away a lot of
information in our Markov model� we retain the essential properties of the original system�
The questions then are� �i� Are these quantities computed for the Markov model good
estimators of the corresponding quantities for the original system� and �ii� how best to
de�ne these Markov models for various sorts of systems�

��� How do we do this�

We describe the fundamental construction of the modelling process� Consider a dynamical
system �M�T � de�ned by a map T � M �

�

�� where M is a compact subset of Rd� Partition
the phase space into a �nite number of connected sets fA�� � � � � Ang with nonempty interior�
Usually� this partition will take the form of a regular grid covering the phase space M � We
now completely ignore any dynamics that occurs inside each individual partition set� and
focus only on the coarse�grained dynamics displayed by the evolution of whole partition sets�
To form our Markov model� we identify each set Ai with a state i of our n�state Markov
chain� We construct an n� n transition matrix P � where the entry Pij is to be interpreted
as�

Pij � the probability that a typical point in Ai moves into Aj under one iteration of the map T � ���

We now meet the notion of typicality and begin to impinge on ergodic�theoretic ideas� Leav�
ing formality for the moment� we shall assume that the trajectories fx� Tx� T �x� � � �g of
Lebesgue almost all initial points x �M have the same distribution on M � This distribution
may be represented as a probability measure� denoted by �� Now� in light of ���� the most

�Similar constructions for �ows are possible by considering the �time�t� map�
�A further approximation must be introduced for the calculation of Lyapunov exponents�
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natural de�nition of Pij is

�Pij �
��Ai � T��Aj�

��Ai�
���

since �Pij � Prob�fTx � Ajjx � Aig� Unfortunately� the natural measure � is usually
unknown and for want of a better alternative� we compute a �slightly� di	erent transition
matrix using normalised Lebesgue measure m instead of ��

Pij �
m�Ai � T��Aj�

m�Ai�
��

Several numerical techniques have been put forward regarding the computation of P 
 see
x����

��� Why do we do this�

The alternative to Markov modelling of the dynamics via some coarse graining is to simply
simulate very long orbits of the dynamical system� For the purposes of this discussion� we
restrict ourselves to the problem of approximating the probability measure � that describes
the asymptotic distribution of almost all trajectories�

Given a long orbit fx� Tx� � � � � TN��xg� one is implicitly approximating the long�term
distribution � by the �nite�time distribution �N�x� ��

�
N

PN��
k�� �T kx� where �x is the delta�

measure at x � M � This is certainly a simple way to compute an approximate invariant
measure �or long�term distribution�� as it does not involve any complicated matrix construc�
tions
 one just iterates one�s map� There are however� drawbacks to this simple approach�
It is possible that orbits display transient �non�equilibrium� behaviour for lengthy periods
of time before settling into a more regular �statistically speaking� mode� Thus� by following
a simulated orbit for a �nite time� there is the risk that one is only observing this transient
behaviour and not the true asymptotic behaviour of the system� There is also the problem
of computer round�o	
 try to �nd the long�term distribution of the tent map or the circle
doubling map by iterative simulation �all trajectories are attracted to � in �nite time�� These
are extreme cases� but the potential compounding inaccuracy of long computer generated
orbits should not be forgotten� Let�s be generous though� and assume that our approxima�
tion �N�x� actually does �weakly� converge to �� How fast does this happen� What is the
convergence rate with respect to the length of the orbit N� Can one produce rigorous error
bounds for the di	erence between the distributions �N�x� and �� For the most part� the
answer to each of these questions is �We don�t know yet�� In toy cases� one can produce
extremely crude probabilistic lower bounds for the error� of the form C�

p
N � but this is not

really satisfactory�
Our method of Markov modelling attempts to overcome all of these di�culties� Transient

e	ects are completely removed as we model the system as a Markov chain and its asymptotic
behaviour may be computed exactly� Computer roundo	 is not so much of a problem� as
we are now only computing a single iterate of the dynamics rather than a compounding
sequence of iterations� The constructions also permit a rigorous treatment of questions like
rates of convergence� error bounds� and even just whether convergence occurs at all� Finally�
from the practical point of view� the method of Markov coarse graining is often very e�cient
computationally� producing better answers in less time�

This discussion has primarily been aimed at the computation of invariant measures� but
it applies also to the computation of other dynamical indicators such as the rate of decay
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of correlations� Lyapunov exponents� and statistics of recurrence times� The rate of decay
of correlations and the isolated spectrum of transfer operators in particular are notoriously
di�cult to estimate via iterative techniques�

� Objects and behaviour of interest

In this section we give a summary of the de�nitions and properties of the objects we wish
to estimate� Additional applications are outlined in x��

��� Invariant measures

The fundamental object for ergodic�theoretic concepts is an ergodic invariant probability

measure �� One should think of ��B� as representing the proportion of �mass� that is
contained in the subset B � M � The invariance condition of � is � � � � T��� This is a
generalised �conservation of mass� equality
 the mass distribution described by � is preserved
under the action of T � in the same way that area preserving maps preserve Lebesgue measure�
Ergodicity is the measure�theoretic equivalent of topological transitivity� If two sets A and
B both have positive ��measure� then there is an N � � such that ��A � T�NB� � �
 in
other words� any region of positive ��mass may be evolved forward to intersect any other
region of positive ��mass� with the intersection also having positive mass� Ergodic systems
are indecomposable in the sense that ��almost all starting points produce orbits with the
same asymptotic distribution� The Birkho	 theorem ��� ��� tells us that the frequency with
which orbits of ��almost all starting points visit a set B is equal to the ��measure of B

formally�

lim
N��

���N��f� � k � N 	 � � T kx � Bg � ��B� ���

for ��almost all x � M � However� as in the case of dissipative systems� there may be a
thin invariant attracting set � with ���� � �� but m��� � �� Equation ��� gives us no
information about orbits starting o	 this invariant set�

De�nition ���� An ergodic invariant probability measure is called a natural or physical

measure� if

lim
N��

�

N

N��X
k��

f�T kx�

Z
M

fd� ���

for all continuous f � M 
 R and Lebesgue�almost all x � M �

An alternative way of phrasing the de�nition of a physical measure is to state that the
measure �N�x� of x�� converges weakly to � as N 
 � for Lebesgue almost all x � M �
When talking about physical measures� equation ��� may be strengthened to�

Corollary ����

lim
N��

�

N
�f� � k � N 	 � � T kx � Bg � ��B� ���

for any subset B �M with ���B� � �� and for Lebesgue almost all x �M �
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Corollary ��� says that �randomly chosen� initial conditions will with probability one�
produce trajectories that distribute themselves according to the natural measure �� De�
terministic chaotic systems typically have in�nitely many ergodic invariant measures �for
example� a convex combination of � measures on a periodic orbit�� but only one physical
measure�

Example ���� The linear mapping of the torus T � T� �

�

� de�ned by T �x� y� � ��x �
y� x � y� �mod �� has in�nitely many ergodic invariant measures� For example� ������� and
m � Lebesgue measure� Of all the ergodic invariant probability measures� only m satis�es
����

��� Invariant sets

We approach invariant sets in a rather roundabout way� as we will describe them as the
support of the physical measure� supp �� where supp � is the smallest closed set having �
measure of � �equivalently� x � supp� i	 every open neighbourhood of x has positive �
measure�� It is easy to show that T �supp�� � supp � and supp � � T���supp���

The reason for choosing supp � as the distinguished invariant set� rather than some
invariant set de�ned via topological conditions is as follows� Let x be an arbitrary point in
supp �� and B��x� be an open neighbourhood of size 	 about x� By ��� orbits of Lebesgue
almost all initial points visit B��x� in�nitely often and with a positive frequency of visitation�
Meanwhile regions away from supp� are visited with frequency �� As we wish to �nd
the invariant set which appears on computer simulations of trajectories� it makes sense to
consider only the support of � and not some larger topologically invariant set�

��� Decay of correlations

The measure�theoretic analogy of topological mixing is �measure�theoretic� mixing� We say
that a system �T� �� is mixing if ��A � T�NB� 
 ��A���B� as N 
 � for any pair of
measurable subsets A�B � M � This condition says that the probability that a point x lies
in a set B at time t � � and then moves to a set A at time t � N �for large N� is roughly the
product of the measures of the sets A and B� That is� for large N � the two events fx � Bg
and fTNx � Ag become statistically independent� or decorrelated� For dynamical systems
with some degree of smoothness� this loss of dependence is often studied via the formula�

Cf�g�N� ��

����
Z

f � TN � g d�	
Z

f d� �
Z

g d�

���� � ���

where f � L��M�m� and g � M 
 R has some smoothness properties� If one thinks of
the functions f� g � M 
 R as �physical observables� �output functions giving numerical
information on some physical quantities of the system�� then Cf�g�N� quanti�es the corre�
lation between observing g at time t and f at time t � N � If f � g� we obtain what is
commonly known as the autocorrelation function� For many chaotic systems� it is observed
that Cf�g�N� 
 � at a geometric rate� and it is of interest to estimate this rate� The rate
of decay can be interpreted variously as providing information on how quickly the system
settles into statistically regular behaviour� how quickly transient behaviour disappears� and
how quickly physical observables become decorrelated� For all of these interpretations� the
physical measure � is central as it provides the reference measure that describes statistical
equilibrium for the system� Correlation decay has strong connections with transfer operators

�or Perron�Frobenius operators� and the spectrum and corresponding eigenfunctions of these
operators� We postpone further discussion of these objects until x��
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��� Lyapunov exponents

The Lyapunov exponents of a �piecewise di	erentiable� dynamical system describe the av�
erage local rates of expansion and contraction in phase space that are felt along typical
trajectories� We may de�ne them as the various values of 
 that are observed� in the follow�
ing expression� as v is varied over Rd


 �� lim
N��

�

N
log kDxT

N�v�k ���

As our dynamical system satis�es equation ���� it is immediate that Lebesgue almost all
trajectories will produce the same d values of 
� and these values will be called the� Lyapunov
exponents of T �

Later we will be discussing Lyapunov exponents of random matrix products� These can
be de�ned in an analogous way�

��� Mean and variance of return times

The statistics of return times of orbits to subsets of phase space have not received a great
deal of attention in the dynamical systems literature� A recent exception is ����� where
regularity properties of return times are used to prove existence of physical measures and
characterise rates of decay of correlations as exponential or algebraic� Suppose that one
is given a subset B � M with ��B� � �� Every time a typical trajectory enters B� we
note down the number of iterations since the orbit last entered B� In this way� we obtain
a sequence of times t�� t�� � � � such that T tix � B� i � �� We may now ask what is the
mean and variance of this sequence of times� Formally� we de�ne a function R � M 
 Z

	

by R�x� � inffk � � � T kx � Bg� and use this return time function to de�ne an induced
map �Tx � TR�x�x� where �T � B �

�

�� It is straightforward to show that �jB �de�ned by
�jB�C� � ��C����B� for C � B� is �T �invariant� Therefore� we can de�ne the mean return
time

E�jB�R� �

Z
B

R�x� d�jB�x�� ���

and the variance of the return times as

var�jB�R� � E�jB�R
��	E�jB�R�

�� ����

By Kac�s theorem ��� ���� E�jB�R� � ����B� provided � is ergodic� A corresponding simple
formula for the variance is not known�

� Deterministic systems

In the �rst of two parts� we focus on deterministic systems� We show how each of the objects
outlined in x� will be approximated using the Markov model� We begin each subsection by
simply outlining the constructions and the computations one performs in practice� At the
end of each subsection� we state situations where rigorous results are obtained� While the
Markov systems appear to retain many of the salient features of the original system� the
smooth dynamics is completely lost and so it is not at all straightforward to prove strong
approximation results�

�For a d�dimensional system� � may only take on at most d di�erent values�
�Lyapunov exponents depend very much on a reference measure �in this case the physical measure� in

order to be de�ned�
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��� Basic constructions

The region M is covered with a collection of connected sets Pn � fAn��� � � � � An�ng with
nonempty interiors� This covering has the properties that �i�

Sn
i��An�i � M and �ii� IntAn�i�

IntAn�j �  for i �� j� where IntA denotes the interior of A� We think of each Ai as being a
closed set� so that we do not have a partition in the strict sense� as the sets in the covering
share boundaries�

We construct the matrix


Pn�ij �
m�An�i � T��An�j�

m�An�i�

as in ���
Clearly� the quality of our Markov model depends heavily on the choice of partition�

And it stands to reason that �ner partitions produce better models �this will soon be made
more precise�� We will frequently produce a sequence of Markov models� each constructed
from successively �ner partitions� until we are satis�ed with the accuracy of the estimates
produced by the model� Sometimes one can produce better models by clever re�nement
strategies
 these are discussed in x����

��� Invariant measures and invariant sets

Rough Idea� The invariant density of the Markov chain approximates the physical invariant
measure of T �
Required Computation� Calculate the �xed left eigenvector of P �

We �x our partition fAn��� � � � � An�ng and calculate Pn and pn� normalising pn so thatPn
i�� pn�i � �� The value pn�i is the weight given to state i by the stationary distribution

of the Markov chain� Since state i represents the set An�i in our smooth space� we de�ne
an approximate invariant measure �n by assigning �n�An�i� � pn�i� Within the set An�i� we
distribute the mass in any way we like� A common method is simply to spread the weight
pn�i uniformly over An�i� so that formally�

�n�B� ��
nX
i��

�n�An�i�
m�An�i � B�

m�An�i�
����

As we increase the number of partition sets n through re�nement� some of these re�ned
sets will be given zero measure by �n as an indication that trajectories spend no time or
almost no time in these regions� Thus we expect that supp �n� � supp �n for n� � n �this
can be made rigorous if T is a topological attractor ������

Further� since M is compact� the space of Borel probability measures on M �denoted
M�M�� is compact with respect to the weak topology� We may therefore continue this
re�nement procedure �forever� and extract a limiting measure �� as

�� � lim
n��

�n� ����

taking a convergent subsequence if necessary to de�ne the limit� It is always assumed that
max��i�n diamAn�i 
 ��

We have the following results concerning these approximations�

�This construction is often called Ulam�s method as it was �rst proposed in ���� to use the matrix Pn to
approximate invariant densities of interval maps�
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Theorem ���� Suppose that T � M �

�

� is continuous and has a physical measure �� Let �n
denote the approximate invariant measures and �� a weak limit of this sequence� Denote by
S the intersection

T�
n�n�

supp �n� Then

�i� �� is T �invariant�

�ii� supp �� � supp �n for all n � �� and therefore supp�� � S�

�iii� supp � � supp �n for all n � �� and therefore supp � � S�

Proof�

�i� By noticing that the Markov models are small random perturbations ��� ��� of T � it
is relatively simple to prove that �� is T �invariant ���� ����

�ii� This is a straightforward consequence of weak convergence�

�iii� This is proven in ���� ����

�

The �rst result of Theorem �� says that weak limits of the sequence of numerically
computed measures �n are T �invariant� In other words� we are in fact approximating some

T �invariant probability measure� However� there is the question of just which invariant
measure this is� as �� may be distinct from �� the physical measure we wish to approximate�
In this very general formulation� it is �as yet�� not possible to say that �� � ��

Parts �ii� and �iii� of Theorem �� say that at least the supports of the computed measures
�n do contain the supports of both �� and �� so that by stopping our computation at some
�nite n� we are not �losing� regions that are given positive measure by the physical measure
��

Example ��� �The stiletto map	� We introduce the Stiletto map ���� T � R� �

�

��

T �x� y� � ��x� ��� exp�	x � ��	 �� � y� x���� ���

This map seems to possess chaotic dynamics on a fractal attracting set
 see Figure �� By
selecting M � R

� to be a su�ciently small neighbourhood of the observed attracting set�
it numerically appears that Lebesgue almost all x � M exhibit the invariant distribution
described by the density of points in Figure �� It is assumed that this distribution of points
�in the in�nite limit� describes the physical measure �� We construct a Markov model using
���� partition sets� where the sets are rectangles of equal size� The support of the resulting
approximate invariant measure is shown in Figure �� and the approximation itself is shown
in Figure � We have used a relatively low number of partition sets for ease of viewing�
Even for this crude model� there is good agreement between the distributions in Figures �
and �

�A sign which may be taken as promise� or simply a state of ignorance� is that the author does not
know of a continuous dynamical system T with physical measure � for which �� �� � �using reasonably
�regular� partitions and re�nements which keep the partition sets as approximate d�dimensional �cubes� of
approximately the same shape and size��
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Figure �� Trajectory of length ��� generated by the Stiletto map�
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Figure �� The support of an approximate invariant measure 	supp����

 shown as
boxes�

����� Rigorous results

To state that �� � �� we require further restrictions on the map T and the partition Pn

in general� even the question of existence of a physical measure for a given nonlinear system
is still open� In one dimension� there is the classical existence result of Lasota and Yorke
��� that states that physical measures �probability measures with bounded densities� exist
for piecewise C� interval maps T � ��� �� �

�

� with infx jT ��x�j � �� Li ���� �rst proved that
under the additional constraint that infx jT ��x�j � �� these invariant densities could be
approximated using Ulam�s method in the sense that k� 	 �nkL� 
 � as n 
 �� Since
the publication of ����� there have been many variations of this basic result� In the setting
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Figure � Representation of an approximate invariant 	physical
 measure 	����


for the Stiletto map� Darker regions indicate higher density and more mass�

of ����� Keller ��� proved k�	 �nkL� � O�logn�n�� Recent results �often under additional
�ontoness� assumptions� have focussed on explicit error bounds for the di	erence k�	�nkL� 

��� ��� ����

For higher dimensional uniformly expanding systems� very roughly speaking� the paper
of Boyarsky and Gora ���� and Ding ���� mirror those of ��� and ����� There are several
additional technical constraints on the map T and the partitions Pn that we do not discuss�
Again under some ontoness conditions� Murray ���� applies the methods of ���� to provide
error bounds for k�	 �nkL� �

For uniformly hyperbolic systems� the author ���� ��� shows that �n 
 � weakly �resp�
in L�� when the physical measure � is singular �resp� absolutely continuous�� provided that
the partitions Pn are Markov partitions�

A combination of theory and numerics ���� suggests that the convergence rate O�logn�n�
holds in reasonable generality for systems with good mixing properties�

��� Decay of correlations and spectral approximation

Rough Idea� The spectrum of the matrix P approximates the spectrum of the Perron�
Frobenius operator�
Required Computation� Calculate the eigenvalues of P �

We begin by noting that we have an alternative formulation of ��� in terms of the Perron�
Frobenius operator� P � L��M�m� �

�

��

Lemma ���� Let F be a class of real�valued functions preserved by P� Let ��P� denote the
spectrum of P when considered as an operator on F � and set r � supfjzj � z � ��P� n f�gg�
Then there is a constant C �� such that Cf�g�N� � CrN if g � F and f � L��

�See ���� �� for de�nitions and properties of the Perron�Frobenius operator�
�For example� if T is C� � then C����M�R� is preserved by P � and if T � �
� ��

�

�

�

is a Lasota�Yorke map�
then functions of bounded variation are preserved by P �
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This result says that we may bound the rate of decay of correlations by the maximal non�unit
spectral value for the operator P
 see Figure � �upper right� for the typical spectral plot we
have in mind� The Ulam matrix Pn may be thought of as a projection of P onto a �nite
dimensional space� Naively� then� we may think that the spectrum of the matrix Pn will
approximate the spectrum of the Perron�Frobenius operator� This would be very useful� as
it is simple to compute the spectrum of Pn since the matrix is very sparse and there are
numerical routines to compute only eigenvalues which are large in magnitude �these are the
ones that are principally of interest�� Furthermore� the eigenfunctions of P corresponding
to large eigenvalues are also of interest� as they indicate the sorts of mass distributions
that approach the equilibrium distribution �the physical measure� at the slowest possible
rate� Perhaps we can also approximate these slowly mixing distributions �eigenfunctions of
P� as eigenvectors of the matrix P � If we can� there is the question of what these slowly
mixing distributions represent� One generally thinks that the rate of mixing is determined
by expansion properties of the dynamical system
 that is� the more expansive �or more
�chaotic��� the greater the rate of decay� But the existence of distributions which mix at
a rate slower than that dictated by the minimal expansion rate of the system� presents a
seemingly paradoxical situation� Arguments in ��� ��� �� suggest that these distributions
describe �macroscopic structures� embedded within the dynamics� which exchange mass
very slowly and work against the chaoticity�

����� Rigorous results

There are two situations where these ideas can be made rigorous� First� for one�dimensional
maps� there is the recent result of Keller and Liverani ����

Theorem ��
� Let BV denote the space of functions of bounded variation on ��� ��� Sup�
pose T � ��� �� �

�

� is an expanding� piecewise C� interval map� with infx������ jT ��x�j �  � ��
Then isolated eigenvalues of P � BV �

�

� outside the disk fjzj � ��g and the correspond�
ing eigenfunctions are approximated by eigenvalues and the corresponding eigenvectors of
Pn �eigenfunction convergence in the L� sense�� The convergence rate for the eigenvectors
to the eigenfunctions for eigenvalues z � �� �� is O�n�r�� where � � r�z� � �� while the
eigenvector approximating the invariant density �z � �� converges like O�logn�n��

Example ��� �The double wigwam map	� We introduce the map T � ��� �� �

�

� de�ned
by

T �x� �

������
�����

	�x � �	 sin���x���� � � x � ���

�x	 ���� � ��� � sin����x	 ��������� ��� � x � ���

�x	 ����	 sin����x	 ��������� ��� � x � ��

	��x	 ��	 sin�	������ �� � x � �

�

the graph of which is shown in the upper left frame of Figure �� Theorem �� will be used to
show that the spectrum of P � BV �

�

� contains a non�trivial isolated eigenvalue� and therefore
a rate of decay slower than that prescribed by the minimal expansion rate� As T is a Lasota�

Yorkemap� the classical result of ��� tells us that T possesses an invariant density �this is the
density of the physical measure�� The result of Li ���� tells us that this invariant density may
be approximated by eigenvectors of the Ulam matrices� The bottom left frame of Figure �
shows a plot of an approximation of the invariant density using an equipartition of ��� �� into
��� sets� The upper right frame shows the spectrum of the resulting ���� ��� matrix� The
large dotted circle denotes fjzj � �g� and the dash�dot inner circle shows the upper bound
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for the essential spectral radius for this map fjzj � �����g� ����� � �� infx������ jT ��x�j�
The cross shows an eigenvalue of P
�� that is clearly outside this inner region and therefore
corresponds to a true isolated eigenvalue of P� The eigenfunction for this isolated eigenvalue
is plotted in the lower right frame�
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Figure �� 	upper left
� Graph of T � 	upper right
� Spectrum of ����� transition
matrix P
��� the small circle represents the eigenvalue �� the small cross represents
another isolated eigenvalue� 	lower left
� Plot of the invariant density of T 	the
eigenfunction for the eigenvalue �
� 	lower right
� Plot of the eigenfunction for the
second isolated eigenvalue�

What about higher�dimensional systems� For uniformly hyperbolic systems� a standard
technique is to factor out the stable directions and consider only the action of T along
unstable manifolds W u� This induces an expanding map TE � W u �

�

� with corresponding
Perron�Frobenius operator PE� We have the following result�

Theorem ��� ����	� Let T � M �

�

� be C�	�� � � � � �� uniformly hyperbolic� and possess
a nice� Markov partition� Construct Pn by setting Pn to be a re�nement of this Markov
partition� and consider PE to act on the function space C��W u�R�� Isolated eigenvalues
of PE � C��W u�R� �

�

� and the corresponding eigenfunctions are approximated by eigenval�
ues and the corresponding eigenvectors of Pn �eigenfunction convergence in the smooth C�

sense�� The rate of convergence of both the eigenvalues and the eigenvectors to the isolated
eigenvalues and corresponding eigenfunctions of P is O���nr�� where � � r � � depends��

only on maximal and minimal values of the derivative of T in unstable directions� and conver�
gence of the eigenfunctions �including the invariant density� is with respect to the stronger
smooth norm�

	See ���� for a de�nition of nice�
�
Let ��� �resp� ��L� denote the minimal �resp� maximal� stretching rate of T in unstable directions� Then

r � log����� log�L� and convergence is in the k � k��� norm�
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In the hyperbolic case� a bound for the rate of decay for the full map T may be extracted
from the rate of decay for the induced expanding map TE �see ������ The case of uniformly
expanding T is a simple special case of Theorem ���

��� Lyapunov exponents and entropy

Rough Idea ��� Lyapunov exponents may be calculated by averaging local rates of ex�
pansion according to the physical measure �a spatial average��
Rough Idea ��� The Lyapunov exponents of the Markov model approximate the Lya�
punov exponents of T �
Rough Idea ��� The local stretching rates and dynamics may be encoded in the matrix
P to provide Lyapunov exponent and entropy estimates�

We begin by recalling that for one�dimensional systems� the expression ��� may be rewrit�
ten as


 �

Z
M

log jT ��x�j d��x� ����

by a straightforward application of ��� with f�x� � log jT ��x�j� Thus� once we have an
estimate of the physical measure �� it is easy to compute an approximation of 
 via


n ��

Z
M

log jT ��x�j d�n�x� �
nX
i��

log jT ��xn�i�j � pn�i� ����

where xn�i � An�i �for example� xn�i could be the midpoint of the interval An�i�� The error
bounds for k� 	 �nk� �when available� immediately translate into rigorous bounds for the
error j
	 
nj� We now turn to multidimensional systems�

��
�� Approach ��

The direct use of the physical measure for Lyapunov exponent computation may be extended
to higher dimensional systems� by rewriting ��� as


 �

Z
M

log kDxT �wx�k d��x� ����

where fwxgx�M is a family of unit vectors in Rd satisfying the identity DxT �wx� � wTx

di	erent families yield the di	erent Lyapunov exponents �see ��� ��� ��� for details�� For the
remainder of this section� we consider the problem of �nding the largest Lyapunov exponent

�
 the remaining exponents may then be found via standard methods involving exterior
products� We denote the vector �eld corresponding to 
� by fw�

xg� The vector w�
x is the

eigenvector of the limiting matrix �x �� limN����DxT
�N���DxT

�N�����N corresponding
to the smallest eigenvalue �in magnitude� ���� One may approximate the vector w�

x by
computing the smallest eigenvector of the matrix �N�x �� �DxT

�N���DxT
�N� for some

small �nite N � For N � �� the approximate vector �eld fw�
N�xg for the Stiletto map is shown

in Figure �� Thus we may compute an approximation to ���� by


�n�N �
nX
i��

log kDxn�iT �w
�
N�xn�i

�k � pn�i ����

where w�
N�x denotes the eigenvector obtained from �N�x
 see Table ��
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Figure �� Approximate vector �eld of the �Lyapunov directions� fw�
xg correspond�

ing to the largest Lyapunov exponent� In this two�dimensional example� w�
x should

be tangent to the unstable manifold passing through x�

Table �� Lyapunov exponent estimates for the Stiletto map using the method of
���� and the approximate invariant measure of Figure �

N � �  � � � � �

����
�N ������ ������ ������ ����� ����� ������ ������ ������

A recent method put forward by Aston and Dellnitz ��� notes that


� � inf
N	�

�

N

Z
M

log kDxT
Nk d��x�� ����

They therefore propose the approximation


�n�N ��
nX
i��

log kDxn�iT
Nk � pn�i ����

Table �� Lyapunov exponent estimates for the Stiletto map using the method of ���

N � � � �� � �� ��� ���

����
�N ���� ����� ������ ����� ����� ����� ����� ������

In practice� 
�n�N greatly overestimates 
�� and so to speed up convergence� one de�nes


�
�

n�M �� �
n��M 	 
n��M��� M � �
 the values 
�
�

n�M are observed to have better convergence
properties
 see Table ��
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��
�� Approach ��

Through our Markov modelling process� we have approximated the dynamics of T as a large
Markov chain governed by Pn� To each state i in the Markov chain� we may associate the
Jacobian matrix Dxn�iT � where xn�i denotes the centre point �for example� of the partition
set An�i� We now consider the Lyapunov exponents of this Markov chain
 as we move from
state to state along a random orbit of the chain� we multiply together the matrices we
have assigned to these states� This produces a random composition of matrices� and the
theory of Lyapunov exponents for random matrix products is well developed �see x�� ����
for example�� Continuing our theme of �the deterministic dynamics is well approximated by
the Markov model�� we compute the top Lyapunov exponent of the Markov model and use
this as an approximation of 
�� The top Lyapunov exponent for this Markov chain is given
by an equation of the form�


�n ��
nX
i��

�Z
RPd��

log kDxn�iT �v�k d��n�i�v�
�
� pn�i ����

where ��n�i is a probability measure on RPd�� �d 	 ��dimensional real projective space� or
�the space of directions in Rd��
 see ���� ��� for details�

Table � Lyapunov exponent estimates for the Stiletto map using the method of
����

�Resolution of ��� �� �� � �� �� �� ��� ���

����
�N ����� ������ ������ ������ ����� ������ ������ ������

Whereas the vector w�
xn�i

indicates a single direction in which to measure the stretching

caused by Dxn�iT � the measure ��n�i indicates a distribution of directions in which to measure
the stretching� This distribution is essential� as the vectors w�

x often vary within partition
sets �for example� near the �toe� area of the Stiletto attractor where the unstable manifold
bends sharply�� and so it is necessary to �average� these directions within partition sets�
rather than take a single direction as in Approach ��� Roughly speaking� the distribution
��n�i can be thought of as a histogram of the vectors w�

x� x � An�i� For reasons of space� we
refer the reader to ���� ���� in which the details of the calculation of 
�n are spelt out�

��
�� Rigorous results �Approach ��	

The two above approaches are not rigorous� Approach �� is not rigorous because we do
not know that �n 
 � �although numerically this appears to happen�� Approach �� addi�
tionally su	ers from the possible sensitivity of the Lyapunov exponents to perturbations of
the system  for example� the perturbation we used to create the Markov model  however�
this sensitivity is also rarely observed numerically� In the uniformly expanding or uniformly
hyperbolic case� if we use a Markov partition to construct our transition matrix� one can
prove convergence of Lyapunov exponent estimates to the true value� and additionally� obtain
rigorous estimates of the metric entropy and escape rate ! pressure of the system�

Theorem ��� ����	� Construct Qn � m�An�i � T��An�j��m�An�j� using a nice Markov
partition� Let �n denote the largest eigenvalue of Qn� and vn the corresponding right eigen�
vector� Construct the stochastic matrix Pn�ij � Qn�ijvn�j��nvn�i� and compute the �xed left



�� Froyland

eigenvector pn of Pn� De�ne �n as in ���� with �n�An�i� � pn�i� De�ne


n �� 	
nX

i�j��

pn�iPn�ij logQn�ij ����

hn �� log �n � 
n ����

Then as n
�� �n 
 �� 
n 

P

��i��� 

�i� �the sum of the positive Lyapunov exponents��

hn 
 h��T � �the measure�theoretic entropy of T with respect to ��� and �n 
 P �T � �the
topological pressure of T �� Convergence rates are also available�

��� Mean and variance of return times

Rough Idea� The mean and variance of return times calculated for the Markov model
approximate those of T �
Required Computations� Calculate the �xed left eigenvector of P � and solve a linear
equation of the form Ax � b�

We have the following abstract result�

Theorem ���� Let T � X �

�

� preserve an ergodic invariant measure �� Let B � X� with
� � ��B� � �� and set Bc � X nB�

�i�

E�jB�R� � ����B�� ���

�ii�

var�jB�R� �
�	 ��B�

��B�

	
�E �jBc �R�	 ����B�



����

Part �i� is due to Kac ��� and �ii� to Blum and Rosenblatt ��� �though we have used the
version given in ���
 see also ������ Theorem �� reduces the problem of calculating var�jB�R�
to a calculation of E �jBc �R�� the expected �rst absorption time into B for points in Bc� The
calculation of �rst absorption times is simple to do when the dynamical system is a �nite
state Markov chain�

Let B be a subset of the phase space M � This set will be covered by a collection of
partition sets An�i�� � � � � An�iq 
 in practice� one obtains more accurate results if it can be
arranged so that B is exactly a union of some collection of partition sets�

We now apply Theorem �� to our Markov model��� setting B to be the collection of
states fi�� � � � � iqg� Using ��� and ���� it is possible to calculate exact values for the mean
and variance of the return times to the collection of states fi�� � � � � iqg� Appealing then to
our guiding principle that our Markov model approximates our original map T � we take the
mean and variance of the return times to the states fi�� � � � � iqg as the approximate mean
and variance for the return times to the set B �M �

We now outline the necessary computations for our Markov model� For simplicity� we
assume that the states of our Markov chain have been reordered� so that the states fi�� � � � � iqg
now have labels fn	q��� � � � � ng
 for the remainder of this section� the matrix Pn will denote
this reordered matrix� To calculate the mean of the recurrence time �denoted Mn��

��Formally� we set X � � � f��
� ��� � � �� � P�i��i��
	 
� �i � f�� � � � � ng� i � 
g� T � 
 � �

�

�

�

�
the left shift on �� and � � M� the Markov measure de�ned on cylinder sets by M���i� � � � � �i�t�� �
p�i

P�i��i��
� � �P�i�t����i�t

� Then B � ��i� � � � � � � ��iq ��
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�i� Calculate the invariant density pn for the Markov chain governed by Pn�

�ii� Set Mn �� ��
Pn

i�n�q	� pn�i�

To calculate the expected absorption time and the variance of the recurrence time �denoted
An and Vn respectively��

�i� Write Pn in the block form

Pn �

�
Qn Un

Vn Yn

�
����

where the matrix Qn is a �n 	 q� � �n 	 q� matrix giving the transition probabilities
between states in our Markov model not corresponding to the set B �M �

�ii� Calculate the solution �n to the linear equation �In�q is the �n	 q�� �n	 q� identity
matrix�

�In�q 	Qn��n � � � � � � � � �� � ����

�iii� Set An �� �
Pn�q

i�� pn�i�n�i���
Pn�q

i�� pn�i��

�iv� Set Vn �� �Mn 	 ����An 	Mn��

See ���� for further details�
The number �n�i is an approximation of the average time required for a point in An�i to

move into B� and is often of interest in itself�

Example ��� �The bouncing ball	� We study a two�dimensional map of a cylinder T �
S� �R �

�

� that describes the evolution of a ball bouncing on a sinusoidally forced table� We
set

T ��� v� � ��� v� v 	 � cos��� v�� ����

where � � ��� ��� represents the phase of the table at impact� v � R the velocity of the ball
just after impact with the table� and T represents the evolution from one impact to the next

see ���� for details� We set  � ��� and � � �� for the remainder of this example� Figure �
shows a typical orbit of the system� and Figure � shows an approximation of the �physical�
invariant measure �
 again� there is good agreement between the two distributions� We
suppose that we are interested in the time between successive impacts where the velocity of
the ball is very low
 that is� we create a time series by counting the time intervals between
instances when the ball leaves the table with a velocity of magnitude less than ����� Thus
B � S� � �	����� ����� in the earlier notation� Performing the analysis described above�
Table � shows the results for various partition re�nements�

Compare these values with ���� � ����� and ��� � ���� the mean and variance re�
spectively obtained directly from �� orbits of length ��� �plus!minus one standard deviation
of the �� values obtained��

The result of the calculation of �n is shown in Figure �� It is clear that there is a sharp
divide between areas which return to low velocities relatively quickly �the very dark strips
in Figure �� and those areas that take longer to return� A histogram plot of � reveals that
if a point does not return very quickly to B� then it takes a much longer time�
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Figure �� Plot of orbit of length ���� for the bouncing ball map�
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Figure �� Approximate invariant measure for the bouncing ball map using ����
partition sets� Darker regions indicate higher density�

Table �� Estimates of the mean and variance of return times to the set B � S� �
������ ����

Number of partition sets n ���� ���� �����
Mean Mn ��� ���� ����
Root Variance

pVn ���� ���� ��
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Figure �� Approximate absorption times into the set S� � ������ ����� Faster
absorption is indicated by darker shading�

� Random Systems

We now discuss extensions of our Markov modelling process to random dynamical systems�
Instead of having a single deterministic mapping T � M �

�

�� we now have a collection of
mappings fT�� � � � � Trg� where Tk � M �

�

� for k � �� � � � � r� A random orbit fxNg�N�� is de�ned
by setting

xN � xN �kN��� � � � � k�� x�� �� TkN��
� � � � � Tk� � Tk�x�� N � �� ����

where the indices k�� k�� � � � � f�� � � � � rg are generated by a stationary stochastic process� We
will be considering two situations
 namely where the indices are generated by iid processes
and Markov processes�

The former case corresponds to the situation where at each time step� a map is selected
at random �according to some �xed probability distribution on the numbers f�� � � � � rg��
independently of any previously applied maps� We shall say that the probability of selecting
the map Tk at any given time is wk � �
 naturally

Pr
k��wk � �� The probability of

the sequence TkN��
� � � � � Tk� occurring is simply wkN��

� � �wk� � By extending this product

to in�nite sequences of indices� we obtain a probability measure P on f�� � � � � rgZ�
� The

monograph ���� lays down much of the basic theory concerning such dynamical systems�
including generalisations of standard dynamical systems quantities to the random situation�

In the Markov case� the probability with which a map is selected at each time step
depends only on the previously applied map��� We shall say that the probability of selecting
a map Tl given that the map Tk was selected at the last time step� is Wkl � �
 we require thatPr

l��Wkl � �� and so W is a stochastic matrix governing the Markov chain that produces
our random sequence of indices� The probability of the sequence TkN��

� � � � � Tk� occurring
is wk�Wk�k� � � �WkN��kN��


 by extending this to in�nite sequences� we obtain a probability

measure �a Markov measure� on f�� � � � � rgZ�
� which we also denote by P�

��If one desires to treat Markov processes with longer memory� they may be written in terms of a �rst
order Markov chain in the standard way�



�� Froyland

Examples 
���

�i� Consider the bouncing ball map of the last section� Suppose that our ball is non�
uniform� and that one side is more �springy� than the other� Sometimes� the ball will
land on the springy side� and sometimes it will land on the not�so�springy side� Which
side the ball lands on determines the value of � and so at each time step there is a
random choice of � and therefore an application of either T	springy or T	not�so�springy

� We
return to this example later�

�ii� A set of maps fT�� � � � � Trg could arise as perturbations of a single map T via
Tkx �� Tx � 	k� where 	k � Rd is a perturbation� We choose a probability vector
�w�� � � � � wr� where the value wk represents the probability of our map T encountering
the perturbation 	k� A random iid composition of the fTkg models a deterministic
system subjected to small iid perturbations�

�iii� Random dynamical systems can also arise in the context of dynamical systems with
inputs� The e	ect of an input is essentially to produce di	erent dynamics �in other
words� a di	erent map Tk� at the time step in which it occurs� If the model is truly
random� these inputs could occur according to an iid process or Markov process� How�
ever� more structured sets of inputs can also be modelled by Markov processes� for
example� where a randomly selected input triggers a �xed sequence of inputs before
another random input is selected�

We now de�ne what is meant by an invariant measure for our random system�

De�nition 
��� Let " � f�� � � � � rgZ�
� and for � � ���� ��� ��� � � �� � "� de�ne the left shift

� � " �

�

� by ����i � �i	�� The probability measure P on " introduced earlier is ��invariant�
De�ne the skew product � � "�M �

�

� by ���� x� � ���� T
�x�
 our random orbits fxNgN	�
may be written as xN � ProjM��N ��� x���� where ProjM denotes the canonical projection
onto M �

We will say that a probability measure � on M is an invariant measure for our random
system� if there exists a � �invariant probability measure �� on "�M such that

�i� ���E �M� � P�E� for all measurable E � "� and

�ii� ���"� B� � ��B� for all measurable B �M �

De�nition 
��� A probability measure � is called a natural or physical measure for a
random dynamical system if � is de�ned as ��B� � ���" � B� where �� is a � �invariant
probability measure satisfying

lim
N��

�

N

N��X
k��

f��k��� x��

Z
�
M

f��� x� d����� x� ����

for all continuous f � "�M 
 R� and P�m almost all ��� x� � "�M �

Remark 
�
� If we choose the continuous test function f in ���� to be independent of ��
then we have the simple consequence that�

lim
N��

�

N

N��X
j��

f�Tkj � � � � � Tk�x�

Z
M

f d� ���

for Lebesgue almost all x �M and P almost all random sequences of maps�
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By setting f�x� � �A�x�� where A �M is such that ���A� � �� then

�

N
cardf� � j � N 	 � � Tkj � � � �Tk� � Tk�x � Ag 
 ��A��

again for Lebesgue almost all x �M and P almost all random sequences�

In rough terms� this says that if you plot the points in a random orbit de�ned by ����� then
for Lebesgue almost all starting points x� and P almost all random sequences of maps� one
obtains the same distribution of points� From the point of view of analysing the average
behaviour of the random system� this is the correct distribution to approximate� The physical
measure � is usually not invariant under any of the individual transformations Tk� in the
sense that � � T��k �� �� However� � is �invariant on average�� which by heavily abusing
notation may be written as E���T��k � � �� In the iid case� this formula is entirely accurate�
as there the invariance condition is simply

Pr
k��wk� � T��k � ��

��� Basic constructions

We must construct a transition matrix

Pn�k� �
m�An�i � T��k An�j�

m�An�i�
���

for each of the maps Tk�

Remark 
��� An alternative de�nition of the matrix Pn�k� is as follows� Within each set
An�i select a single point an�i� Then set

P �
n�k� �


�� if Tkan�i � An�j�

�� otherwise�
���

Clearly� the computational e	ort involved in the numerical construction of P �
n�k� is less than

that of Pn�k� in ���� especially in higher dimensions �in the Tips and Tricks section� we
discuss other numerical methods of computing Pn�k��� We do not recommend using P �

n�k�
for deterministic systems� as the results are usually very poor� However� for random systems�
one can still obtain quite good results with the cruder approximation of ����

How these matrices are combined depends on whether the stochastic process is iid or
Markov�

iid case In the iid case� we set

Pn �
rX

k��

wkPn�k� ��

Markov case In the Markov case� let W be the transition matrix for the Markov process
that generates the random sequence of indices for the maps fTkg�

Now set

Sn �

�
BBBB�
W�� Pn��� W�� Pn��� � � � W�r Pn���

W�� Pn��� W�� Pn��� � � � W�r Pn���
���

���
� � �

���

Wr� Pn�r� Wr� Pn�r� � � � Wrr Pn�r�

�
CCCCA � ���



�� Froyland

In both the iid and Markov cases� the matrices Pn and Sn may be thought of as �nite�
dimensional projections of an �averaged� Perron�Frobenius operator
 see ���� for details�
With either of these two matrices� one may apply the methods described in x to estimate
invariant objects such as invariant measures� invariant sets� Lyapunov exponents� and recur�
rence times�

��� Invariant measures

iid case We calculate the �xed left eigenvector pn of Pn as constructed in ��� and nor�
malise so that

nX
i��

pn�i � �� ���

Set �n�An�i� � pn�i and de�ne the approximate invariant measure as in �����

Markov case We calculate the �xed left eigenvector of Sn� and denote this as sn �
�s

���
n js���n j � � � js�r�n � where each s

�k�
n � k � �� � � � � r is a vector of length n� and

Pr
k��

Pn
i�� s

�k�
n�i � ��

De�ne the approximate invariant measure as

�n�An�i� �
rX

k��

s
�k�
n�i ���

We now use ���� again to de�ne a measure on all of M �
Results parallel to those of Theorem �� hold for our random systems�

Proposition 
��� Suppose that each Tk � M �

�

� is continuous and the resulting random
dynamical system has a physical measure � �in the weaker sense where only �	
� need hold�
rather than ������ Let f�ng denote a sequence of approximate invariant measures as de�ned
in either �	� or �	�� above� and let �� be a weak limit of this sequence� Denote by S the
intersection

T�
n�n�

supp�n� Then the conclusions of Theorem 	�� hold�

Proof� One �rst requires the facts that the matrices �� and ��� represent a �nite�
dimensional approximation of an appropriately averaged Perron�Frobenius operator
 this
is detailed in ������� With this established� the proofs run along the same lines as the
deterministic case� �

Example 
�� �The �non�uniform	 bouncing ball	� We now suppose that our bounc�
ing ball has gone soft on one side� so that sometimes we register a value of  � ���� rather
than the original value of  � ���� We assume that every time it lands on the soft side� it
will surely land on the good side next time� while if it lands on the good side� it has a ��!��
chance of landing on the soft side next time� The situation we describe is a Markov random
composition of two mappings T	���
 and T	����� The transition matrix for this Markov chain

is W �

�
��� ���

� �

�
� where  � ��� is identi�ed with state �� and  � ��� with state ���

We construct Sn as in ���� and compute the approximate invariant measure as in ���
 see
Figure ��� Again� there is good agreement between the two �gures�

��The form of ���� is slightly di�erent to the matrix given in ��	� as we have performed a similarity
transformation on the latter to yield a more intuitive representation�
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Figure �� Plot of orbit of length ���� for the random bouncing ball map
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Figure ��� Approximate invariant measure for the random bouncing ball map using
���� partition sets


���� Rigorous results

In certain situations� one is able to obtain rigorous upper bounds for the di	erence between
�n and ��

The �rst of these is where the random system contracts phase space on average� Typical
examples of such systems are the iterated function systems �IFS�s� of Barnsley �� and co�
workers� where a �nite number of mappings are selected using an iid law to create fractal
images� Suppose that Tk is selected with probability wk� and de�ne sk � maxx�y�M kTkx 	
Tkyk�kx	 yk as the Lipschitz constant for Tk
 then set s �

Pr
k��wksk� It is straightforward

to show that if s � �� then this random dynamical system has a unique invariant measure�
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the support of which is a fractal set� Furthermore� one has the bound�� ���� �see also �����

dH��� �n� � � � s

�	 s
max
��i�n

diam�An�i�� ���

where dH is the natural metric generating the weak topology on measures� de�ned by
dH���� ��� � sup

���R
M
h d�� 	

R
M
h d��

�� 
 h � M 
 R has Lipschitz constant �
�
� If a uni�

form grid is used� this bound may be improved by a factor of �� Similar results hold for
Markov compositions� Ulam�type methods of approximating invariant measures of IFS�s are
also discussed in the book �����

The second situation is where the dynamical system is expanding on average� This setting
is more complicated as the random system may have in�nitely many invariant measures�
and it is important to show that Ulam�s method approximates the physical measure �in
this expanding case� the physical measure will have a bounded density�� In the case of iid
random dynamical systems on the interval ��� �� where each map Tk is a Lasota�Yorke map�
it is known that a bounded invariant density exists provided that

Pr
k��wk�jT �k�x�j � �


see ����� Under some additional conditions� it is shown in ���� that �i� the random system
�either iid or Markov� possesses a unique bounded invariant density� and �ii� that the Ulam
estimates �n converge to the physical measure � �which has a bounded density�� In addition�
convergence rates of O�logn�n� for the di	erence k� 	 �nkL� are proven� and if each Tk is
a C� map of the circle S�� rather than of the interval ��� ��� explicitly calculable numerical
bounds for the error k�	 �nkL� are given� In the future� we will no doubt see extensions of
these results to higher dimensions�

��� Lyapunov exponents

The random version of ��� is


 �� lim
N��

�

N
log kDxN��

TkN��
� � � � �Dx�Tk� �DxTk��v�k� ���

Often� the same value of 
 is obtained for P almost all random sequences� Lebesgue almost
all x �M � and for every v � Rd� We denote this value by 
��

Things are very simple in the case of one�dimensional systems driven by an iid process�
In this case� the expression ��� may be alternately expressed as


 �
rX

k��

wk

Z
M

log jT �k�x�j d��x� ���

by a straightforward application of ���� with f��� x� � log jT �
��x�j� Thus� once we have an
estimate of the physical measure �� it is easy to compute an approximation of 
 via


n ��
rX

k��

wk

Z
M

log jT �k�x�j d�n�x� �
rX

k��

wk

nX
i��

log jT �k�xn�i�j � pn�i� ����

where xn�i � An�i �for example� the midpoint of the interval An�i��

��This rigorous result holds even when the crude approximation of Remark ��� is used�
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���� Rigorous results

For random systems� we adopt Approach �� of x�� as the other two approaches are not so
helpful in the random situation� Here we only brie#y describe the calculation of Lyapunov
exponents of iid random dynamical systems where the Jacobian matrices are constant� This
situation arises when each of the mappings Tk are a�ne �as with most IFS�s�� Equation
��� now becomes independent of the x�� � � � � xN��� and is a function only of the sequence
k�� � � � � kN��
 we are essentially dealing with an iid random matrix product�

Suppose that M is two�dimensional so that our Jacobian matrices are � � � matrices�
We need to de�ne a probability measure � on the angle space RP� �� ��� �� �� is a relative
of the probability measure alluded to in x����� Each matrix DTk �note independence of
x� de�nes a map from ��� �� to itself via angle�v� � angle�DTk�v��� where angle�v� is the
angle between v and some �xed reference vector in R�� To simply notation� we will identify
a vector v � R� and its angle with respect to some �xed reference vector� The Jacobian
matrix DTk will then be thought of as an action on the space of angles ��� ���

Example 
��� Suppose DTk �

�
� �

� �

�
� and v � � � � �� We identify v with the angle

��� �this is the angle v makes with the reference vector � � � ��� Then DTk�v� � � �  ��
and we identify this vector with the angle tan�� � By a slight abuse of notation� we may
write DTk����� � tan����� and in this way we consider DTk to be an action on the set of
angles ��� ���

The probability measure � on RP� that we seek should satisfy�

��E� �
rX

k��

wkDT
��
k �E� ����

for every measurable subset E � ��� ��� This is because of the following result�

Theorem 
�� ����	� Suppose that each d � d matrix DTk� k � �� � � � � r is non�singular�
and that the only subspace ofRd that is invariant under all of the DTk is the trivial subspace�
Then with probability one�


� � lim
N��

�

N
log kDTkN��

� � � � �DTk��v�k

for every v � Rd� Furthermore�


� � 
��� ��
rX

k��

wk

Z
RPd��

log kDTk�v�k d��v�

where � is any probability measure satisfying �����

We approximate a measure � satisfying ���� in essentially the same way that we have already
used for measures on M � Partition ��� �� into a �nite collection of intervals E�� � � � � Em �
��� ��� and de�ne an m�m stochastic matrix by�

Dm�gh�k� �
m�Eg �DT��k �Eh��

m�Eg�
����
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Alternatively �ala Remark ����� one could choose a collection of points e�� � � � � em such that
eg � Eg and set

Dm�gh�k� �


�� if DTk�eg� � Eh

�� otherwise�
���

or use the other suggestions in x���� One now computes the �xed left eigenvector of the
matrix Dm �

Pr
k��wkDm�k�
 we denote this eigenvector by �m� Selecting points e�� � � � � em

as before� we de�ne an approximation of 
� as


�m ��
rX

k��

wk

mX
g��

log kDm�k��eg�k ����

where� in the expression kDm�k��eg�k� eg is a unit vector in the direction represented by
eg� and we measure the length of the vector Dm�k��eg� �this is the factor by which Dm�k�
stretches vectors in the direction of eg�� The above constructions may be generalised to
higher dimensions
 see ���� for details� We have summarised the simplest situation here
 the
treatment of Markov random matrix products� and iid random nonlinear dynamical systems
may be found in �����

��� Mean and variance of return times

To estimate the mean and variance of return times� we again construct a �nite Markov
model� and calculate the mean and variance of return times to a suitable set of states� In the
iid case we can de�ne a Markov model using ��� and proceed as for deterministic systems�

In the Markov case� we use ���� and produce a left eigenvector sn of Sn such thatPr
k��

Pn
i�� s

�k�
n�i � �� When writing Sn in the block form ����� recall that each partition set

An�i corresponds to r states of the Markov chain governed by Sn� With this in mind� one
may substitute Sn and sn into the algorithm described in x��� It is also possible to consider
situations where the set B depends on the map Tk which is currently applied �����

Example 
��� �The non�uniform bouncing ball �cont���		� We return to the random
dynamical system of Example ��� and compute the return times to low impact velocity
con�gurations described by the set S� � �	����� ������

Table �� Estimates of the mean and variance of return times to the set B � S� �
������ ����

Number of partition sets n ��� ���� �����
Mean Mn ����� ���� �����
Root Variance

pVn ���� ����� �����

Compare these values with ����� � ��� and ����� � ���� the mean and variance re�
spectively� obtained directly from �� simulated random orbits of length ��� �plus!minus one
standard deviation of the �� values obtained�� This example is one situation where we would
bene�t by using one of the alternate partition selection techniques described in x��
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��� Advantages for Markov modelling of random dynamical sys�

tems

To close this section� we discuss two further advantages of Markov modelling over trajectory
simulation that are not present in the deterministic case�

The �rst of these concerns the accuracy of the approximations� For deterministic systems�
the two competing approaches �simulating long orbits and coarse graining� both have their
inaccuracies� The iterative approach of following long orbits �let�s assume that we can do
perfect computations� has the problem of temporal deviation from equilibrium behaviour�
That is� we should really have orbits of in�nite length� but instead we have orbits of �nite
length whose statistical behaviour is not the same� In contrast� with the Markov modelling
approach� we can exactly compute the long term behaviour of our model� but we compute the
long term behaviour of an approximation of the system� rather than that of the true system�
Turning now to random systems� the iterative approach is �ghting errors on two fronts

namely� the deviation from equilibrium in phase space mentioned above� and additionally�
the deviation of the distribution of the �nite length random sequence of indices k�� � � � � kN��
from its equilibrium distribution P� On the other hand� the Markov modelling approach
completely eliminates errors from the random #uctuations by averaging them out through the
expectations performed in its construction� Thus our Markov models for random dynamical
systems do not su	er from the inaccuracies due to random #uctuations� and are therefore
�heuristically at least� more accurate
 this is borne out numerically in Lyapunov exponent
computations �����

The second advantage lies in the #exibility of the Markov modelling approach regarding
the underlying stochastic process� Suppose that we wish to study a family of systems which
use the same maps T�� � � � � Tr� but a di	erent distribution P �in the bouncing ball example�
this would amount to varying the probabilities with which impacts occur on the soft and
hard sides�� Most of the computational e	ort goes into constructing the ��xed� transition
matrices Pn�k�� k � �� � � � � r� while the ancillary calculations involving eigenvectors and so
on� are relatively cheap� Thus� we may perform analyses on a whole family of systems very
quickly� by reusing most of the original constructions� In contrast� if we were to use the direct
method of simulating long orbits� then entirely new orbit calculations would be required for
each new set of probabilities�

� Miscellany

We brie#y outline some other applications and techniques related to our approach of Markov
modelling� Unless otherwise stated� we refer only to deterministic systems�

Global attractors Related partition�based methods may be used to approximate the
global attractor for a given subset of phase space� If B � M � then the global attractor
of B is de�ned by G �

T
k	� T

j�B�� Methods of computing an �in principle�
� rigorous
box covering of the global attractor are detailed in ���� Bounds for the Hausdor	 distance
between the approximate covering and the global attractor are given for uniformly hyperbolic
di	eomorphisms�

Using similar techniques� box coverings for global attractors G��� of individual sample
paths � of random dynamical systems have been studied ����

��when combined with Lipschitz estimates for the map ����
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Work is in progress on covering �averaged� global attractors of random systems
 such
global attractors contain all possible random orbits and so Gav �

S

G����

Noisy systems A popular idea is to �noise up� a system by considering the transformation
x �
 Tx � 	� where the perturbation 	 � R

d is chosen in a uniform distribution from
some small ball centred around �� This may be viewed as de�ning a random dynamical
system where the collection of maps T� � Tx � 	 are applied in an iid fashion with equal
probability� The Perron�Frobenius operator P� � L

��M�m� �

�

� for this random perturbation
has the desirable property that it is a compact operator under very mild conditions on T �
and this greatly simpli�es the ergodic theoretic analysis� For example� it is relatively easy
to show that this noisy system has a unique invariant probability density� in contrast to the
purely deterministic case� The �nite�state Markov modelling may now be applied to the
perturbed system� and various convergence results proven concerning the approximation of
invariant measures and invariant sets
 see ����� This setting forms the basis of the thesis ����
where the merits of alternative partitioning methods are also considered�

Rotation numbers The approximation of rotation numbers of orientation preserving C�

circle di	eomorphisms using Ulam constructions is described in �����

Topological entropy It is possible to obtain rigorous upper bounds for the topological
entropy of T with respect to a �xed �coarse� partition� All orbits of T are possible under the
Markov model� however the converse is not true� In this sense� the Markov model is more
�complex� from the orbit generating viewpoint� However� as the partitions are re�ned and
our Markov model becomes more accurate� these extra orbits are successively eliminated� so
that our upper bounds become increasingly sharp� This is work in progress �����

Spectra of �averaged� transfer operators for random systems One may also at�
tempt to garner dynamical information from the spectrum and eigenvectors of the matrices
�� and ���� in analogy to the deterministic case� This is work in progress�

� Numerical Tips and Tricks

We discuss methods of computing the transition matrix and of partition selection� Most tran�
sition matrix computations in this chapter have used the GAIO software package� available
on request from http���www�math�uni�paderborn�de��agdellnitz�gaio�� Algorithms
�ii� and �iii� of x��� and �i� �iv� of x��� have been coded in this software�

	�� Transition matrix construction

Techniques for the computation of the transition matrix may be split into three main classes

namely �exact� methods� Monte�Carlo!Imaging methods� and an exhaustive method of ap�
proximation�

�i� �Exact� methods� For one�dimensional systems� it is often possible to construct the
transition matrix exactly� If the map is locally one�to�one on each partition set� then
only the inverse images of the endpoints of each set need be calculated�
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If the inverse images are di�cult to obtain� an alternative is to compute the matrix

P �
n�ij �

m�TAi � Aj�

m�TAi�
� ����

which in one�dimension again requires only the computation of forward images of
partition endpoints�

The matrix P �
n is not useful theoretically because �i� forward images of sets may not be

measurable� while inverse images �T continuous� of Borel measurable sets are always
measurable� and �ii� the standard form �� arises as a discretisation of the Perron�
Frobenius operator for T � while ���� does not� If T is linear on each Ai� then Pij � P �

ij

for j � �� � � � � n
 this forward�imaging exact computation was carried out for two�
dimensional piecewise linear reconstructions in ���� Otherwise� the di	erence between
P and P � is governed by the second derivative of T and the diameter of the partition
sets� We do not recommend using forward�imaging for maps with very large second
derivatives�

�ii� Monte�Carlo � Imaging of test points� The most popular method is the so�called
Monte�Carlo approach ���� To compute Pij� one randomly selects a large number of
points fa�� � � � � aNg � Ai� and sets Pij � �fa � fa�� � � � � aNg � T �a� � Ajg�N � A
similar approach is to choose a uniform grid of test points within each partition set�
and perform the same calculation� My personal feeling is that the latter approach
is better as the uniform grid more reliably approximates Lebesgue measure� Any
number of variations on the selection of test points can be used� though Monte�Carlo
and uniform grids are the most common�

�iii� Exhaustion� A recent approach ���� is to rigorously approximate the transition prob�
ability by a means of exhaustion akin to the exhaustion methods of Eudoxus� To
compute the Lebesgue measure of the portion of Ai that is mapped into Aj� one re�
peatedly re�nes the set Ai until it is known �via Lipschitz estimates on the map� that
a re�ned subset of Ai is mapped entirely inside Aj� In this way� the set Ai is re�
peated broken down into small pieces which map entirely inside Aj� with this process
terminating at the desired level of precision�

	�� Partition selection

This section is devoted to suggesting methods of producing better Markov models via smarter
partition selection� That is� how should one choose partitions to best capture the dynamics
of the system�

Of course� if a Markov partition is available� this is clearly the best choice� However�
we are assuming that this is not the case� and we are left with the decision of how to
construct a suitable �grid�� For the most part� we consider partition selection where the
criteria for a good partition is that it produces a good estimate of the physical measure
�at least a better estimate than a uniform grid would produce�� Of course� often we don�t
know what the physical measure is� and so this mostly restricts rigorous numerical testing
to one�dimensional systems� Nevertheless� we outline three main approaches� and suggest
heuristically when they may be useful� In all cases� one selects an initial coarse partition�
computes the invariant measure for the Markov model� and on the basis of information
contained in the invariant measure of the current model� a choice is made on which partition
sets to re�ne and which to not re�ne�
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�i� Standard approach� Re�ne any partition sets which are currently assigned non�zero
measure�

�ii� Equal mass approach� Re�ne any partition sets which are assigned a measure greater
than ��n� where n is the current number of partition sets
 �����

The rationale behind this is that one should focus more �nely on regions where there
is large mass� In this sense� the method is not only targeted at obtaining more ac�
curate estimates of the invariant measure� but also more accurate modelling of the
dynamics of the system
 this has been demonstrated for the estimation of return times
in ����� This method is particularly suited to systems which possess a singular phys�
ical measure� as in dissipative chaotic systems� However� because of the non�uniform
re�nement �the minimal ratio of cell sizes is almost always at least � if re�nement
is done by �halving� a set�� it often performs worse than the standard method in
cases where the physical measure is smooth� For this approach to be useful� the ratio
supx�supp�n �n�x�� infx�supp�n �n�x� should be much larger than � for all n � � ��n is
the density of the approximate measure �n��

�iii� High derivative approach� Let ci denote the �centre point� of a partition set Ai� Re�ne
partition sets where the value of

Ei �� m�Ai� diam�Ai�max

 jpi�m�Ai�	 pj�m�Aj�j
jci 	 cjj � Aj is a neighbour of Ai

�
� ����

is greater than ���n�
Pn

i��Ei
 ����

The expression that is maximised over is meant to be an approximation of the derivative
of the invariant density � on Ai in the �direction of� Aj� In ���� one assumes that the
physical measure is smooth
 therefore� if the current estimate of the invariant measure
has adjacent sets given very di	erent measures� there must be an error in this region�
and so one re�nes these sets to obtain better estimates� The number Ei is intended to
approximate the error incurred on the partition set Ai�

An alternative viewpoint is as follows� In ����� it is noted that the matrix �Pij ��
��Ai � T��Aj����Ai� is an optimal approximation in the sense that the �xed left
eigenvector �p of �P assigns exactly the correct weights to the partition sets
 that is�
�pi � ��Ai� �this approach is also followed in ����� The di	erence between P and �P
is essentially given by how �non�Lebesgue�like� the measure � is within each partition

set
 roughly speaking� how �non constant� the distribution of � is within partition sets�
One may try to reduce�� the error k� 	 �nk� by creating a partition which produces
a transition matrix P similar to that of the special matrix �P � Such an analysis also
leads to the error minimisation criteria �����

The high derivative method is targeted speci�cally towards more accurate estimates of
the physical measure� It often performs better than the equal mass approach for maps
with smooth densities�

�iv� Large di�erence approach ���� One re�nes all partition sets and constructs a temporary
transition matrix Ptemp and invariant measure ptemp for the re�ned partition� This
re�ned invariant measure is compared with the invariant measure pold and only sets in
the old partition for which the measure according to ptemp and pold is very di	erent are

��Such a �distortion reducing� approach is also discussed in ��	� for one�dimensional maps �in particular�
the logistic family Tax � ax��� x��� and a relative of the Equal mass approach is advocated as a means to
make P better approximate �P �
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split up� The transition matrix Ptemp is now discarded� This approach is based on a
standard method of numerical analysis�

Comparisons of the three alternative approaches are detailed in ����
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