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Preface

Since the first meeting in Lyon in 1986, the biannual European Turbulence
Conferences have provided an informative survey of the international efforts
in understanding turbulence in its fundamental and applied aspects. Now
integrated into the conference cycles coordinated by the European Mechanics
Society the meetings provide a regular forum for the exchange of ideas and
the discussion of the latest developments. The more recent conferences in
Barcelona (2000), Southampton (2002), Trondheim (2004), and Porto (2007)
have attracted several hundred participants from 30 and more countries. The
12th meeting in this series, ETC 12, which was held in Marburg September
7-10, 2009, continues this tradition. Researchers from 34 countries submitted
336 abstracts to the conference. The number of submissions is somewhat lower
than for the Porto or Barcelona meetings, but in line with the previous ones
in Northern Europe.

The contributions that were presented in Marburg were selected by the
international advisory board for the European Turbulence Conferences. The
committee was chaired by Professor Arne V. Johannson (Stockholm) and
consisted of Professors Helge I. Andersson (Trondheim), Konrad Bajer (War-
saw), Luca Biferale (Rome), Claude Cambon (Lyon), Hans-Hermann Fern-
holz (Berlin), Peter Davidson (Cambridge, UK), Yuri Kachanov (Novosibirsk),
Detlef Lohse (Twente), Jose L. Palma (Porto), Jean-Francois Pinton (Lyon)
and the local organizer.

for oral presentation, corresponding to a record number of almost 75% of the
submissions. In addition, 70 papers were selected for presentation in a poster
and seminar session. These numbers attest to the healthy state of the field
and the reputation the conferences have achieved.

in the sections given in the table of contents. Naturally, the level of activity
in the subareas varies from conference to conference. For ETC12, the largest
numbers of submissions were recorded for the areas of instability and tran-
sition, and wall bounded flows. These were closely followed by intermittency

Impressed by the high quality of the abstracts the committee selected 250

As in previous years, the papers are grouped by the subfields as reflected
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and scaling, transport and mixing, vortex dynamics and structure formation,
and geophysical and astrophysical turbulence, which received similar numbers
of submissions. Further topics presented at the meeting include turbulence in
multiphase and non-Newtonian flows, Lagrangian aspects, Large Eddy Sim-
ulations and related techniques, Magnetohydrodynamic Turbulence, control
of turbulent flows, reacting and compressible flows as well as acoustics of
turbulent flows.

The program of the meeting had the invited talks and the seminar session
during which the posters were presented as plenary sessions, and the other
contributed talks arranged in four parallel session of up to six talks per group.
These proceedings are the written record of six invited talks, 211 contributed
talks and 35 posters. They are grouped by the main topics and arranged in

The meeting would not have been possible without the unselfish support of
the staff of the various departments of the Philipps-Universität Marburg, the
assistance of Marburg Tourist and Marketing, and the Springer Verlag who
publishes theses proceedings. Several exhibitors and organizations contributed
to the budget of the meeting. Among them, I would like to mention the Euro-
pean Community, who within its program to support Cooperation in Science

opening meeting of this COST Action was held as part of the meeting. They
all are to be thanked for their help in making this meeting possible and for
promoting turbulence research in Europe.

Marburg, Bruno Eckhardt
May 2009 Local Organizer
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the order in which they were presented within the sessions.

and Technology (COST) finances an activity on Particles in Turbulence. The
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ć

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

. . . . . . . . . . . . . . . . . . . . . . . . . . . 593

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

. . . . . . . . . . . . . . . . . . . 601

. . . . . . . . . . . . . . . . . . . . 605

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

613

. . . . . . . . . . . . . . . . 617

. . . . . . . . . . . . . . . . . . . . . . . . . . . 621

. . . . . . . . . 625

. . . . . . . . . . . . . . . . . . . . . . . . . . 629

. . . . . . . . . . . . . . . . . . . . . . . . . 633

. . . . . . . . . . . . . . . . . . . . . 637



154 DNS of three-dimensional separation in turbulent diffuser
flows
J. Ohlsson, P. Schlatter, P.F. Fischer, and D.S. Henningson

Y. Hwang, and C. Cossu

156 Symmetry of coherent vortices in plane Couette flow

157 Universal character of perturbation growth in near-wall
turbulence
N. Nikitin

158 Experimental assessment of turbulent drag reduction by
wall traveling waves
M. Quadrio, F. Auteri, A. Baron, M. Belan, and A. Bertolucci

159 Effects of very-large roughness in turbulent channel flow

160 Roughness effects in a rotating turbulent channel
V.D. Narasimhamurthy and H.I. Andersson

161 Mean flow and turbulence over rough surfaces
M. Amir and I.P. Castro

Part X Intermittency and scaling

162 DNS of vibrating grid turbulence
G. Khujadze and M. Oberlack

163 Step onset from an initial uniform distribution of

D. Tordella and M. Iovieno

164 Fractal-generated turbulent scaling laws from a new
scaling group of the multi-point correlation equation
M. Oberlack and G. Khujadze

165 Casimir Cascades in two-dimensional turbulence
J.C. Bowman

166 The development of truncated inviscid turbulence and
the FPU-problem
G. Ooms, and B.J. Boersma

xx

155 Optimal amplification of large-scale streaks structures

T. Itano, S.C. Generalis, S. Toh, and J.P. Fletcher

in the turbulent Couette flow

turbulent kinetic energy

Contents 

. . . . . . . . . 641

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

. . . . . . . . . . . . . . . . . 649

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

. . . . . . . 657

D.M. Birch, and J.F. Morrison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

. . . . . . . . . . . . . . . . . . . . . . . . 665

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689



167 The renormalized eddy-fragmentation equation and its
exact solutions

168 Determination of the statistics of the velocity gradient
tensor as a function of scale: solution of the tetrad model
A. Naso and A. Pumir

P. Diribarne, J. Salort, C. Baudet, B. Belier, B. Castaing, L.
Chevillard, F. Daviaud, S. David, B. Dubrulle, Y. Gagne, A. Girard,
B. Rousset, P. Tabeling, P. Thibault, H. Willaime, and P.-E. Roche

170 Extraction of the non-equilibrium energy spectrum in
high Reynolds number turbulence
K. Horiuti, Y. Tsuji, and K. Saitou

171 Universality of Kolmogorov law in spectrally condensed
turbulence in thin layers

172 Multi-scale correlations in regular and fractal-generated
turbulence
R. Stresing, J. Peinke, R.E. Seoud, and J.C. Vassilicos

173 On an alternative explanation of anomalous scaling and
how inertial is the inertial range
M. Kholmyansky, and A. Tsinober

174 Phenomenological relation between the Kolmogorov
constant and the skewness in turbulence
L. Chevillard, B. Castaing, E. and A. Arneodo

175 Kolmogorov scaling and intermittency in Rayleigh-Taylor
turbulence
G. Boffetta, S. Musacchio, A. Mazzino, and L. Vozella

waves

177 A new numerical methodology to follow the time-decay
of turbulence

xxi

 ”’169 TSF Experiment for comparision of high Reynold s
 number turbulence in HeI and He II: first results

176 Observation of turbulence of capillaryweak spectra

G. Sardina, P. Gualtieri, and C.M. Casciola

Contents

V.L. Saveliev and M. Gorokhovski

L v queêé
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Summary. Recently many efforts has been devoted to the experimental investiga-
tions of the Lagrangian properties of particles in turbulence. Different experimental
techniques allow to investigate particles with different physical properties, e.g. values
of size and density, within some specific range. No experimental studies have been
able to cover large range of parameters space. We have recently performed a set of
Direct Numerical Simulation (DNS) with the precise goal to cover systematically
particle’s from heavy ones to very light ones. We also performed numerical simula-
tions of particles with the same physical properties at different Reynolds numbers
and with different physical modeling. We discuss briefly the limitations of the point
particle model and suggest a simple but effective way to extend it.

The transport of particulate by means of turbulent flows is an ubiquitous
phenomenon in nature and in industrial applications alike. Turbulent flows are
characterised by strong fluctuations both in space and in time of the energy
dissipation field, a phenomenon know as intermittency [1].

Here we present results from recent Direct Numerical Simulation (DNS)
devoted at investigating the statistical properties of particles in homogeneous
and isotropic turbulence. The incompressible fluid velocity u are evolved ac-
cording to the Navier-Stokes equations:

Du

Dt
≡ ∂u

∂t
+ u ·∇u = −∇p + νΔu + f . (1)

where p is the pressure and f an external forcing injecting energy at a rate
ε = 〈u · f〉. Equation (1) is integrated numerically by means of a pseudo-
spectral code with a second order Adams-Bashforth scheme. The same scheme
was also used for the particles evolving according to the dynamic given by
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equation (2), where we used tri-linear interpolation to obtain the Eulerian
values of the velocity field at the particle’s positions (see [2, 3] for details).
The forcing applied to the system was chosen to maintain constant the spectral
energy content of the first two shells in Fourier space.

The main aim of this set of numerical investigations was to systematically
explore the properties of particles at changing the inertia properties. To this
end we decided to compromise space (Eulerian) resolution in favour of a larger
number of particles classes.

Along with the Eulerian field, the Lagrangian evolution of particles was
integrated by means of one of the simplest, yet nontrivial, model for pas-
sively advected particles as derived in Refs. [4, 15] which is valid for dilute
suspensions of small spherical particles:

dx

dt
= v ,

dv

dt
= β

Du

Dt
+

1
τp

(u − v) , (2)

In the above equations x(t) and v(t) denote the particle position and veloc-
ity, respectively. The parameters in equation (2) are the particle’s response
time τp = a2/3βν (where a is the particle radius and ν is the viscosity) and
β which is related to the density contrast between the density of the parti-
cle, ρp, and the one of the fluid, ρf : β = 3ρf/(ρf + 2ρp). The dimensionless
ratio between the response time of particles and the smallest time scale in
turbulence (dissipative time scale) is the Stokes number St = τp/τη.

The physical parameters St and β characterize the particle’s properties
and it has to be noted that they implicitly carry a dependence from the
particle’s radius. In the case of particles much smaller than the dissipative
scale of turbulence one can treat them as pointwise. The Eulerian flow is
characterized by the Reynolds number Re. The ratio between the particle
diameter D and the dissipative scale of the Eulerian flow may or may not be
small, according to the particular value of the parameter β, St and Re. In
the case that the ratio D/η is order unity or larger, the physical description
in terms of pointwise particles clearly cannot be correct. It is however very
difficult to estimate quantitatively the error committed by using the point
particle (PP) description as a function of the position in the parameter space.
To quantify the importance of the full description of the particle size, we
performed recently some numerical simulations where the finite particle size
was implemented by means of a coarse graining of the Eulerian velocity field.

We performed four numerical simulations, at resolutions 1283 and 5123

(corresponding to Reλ � 75 and Reλ � 180) with point particle model (PP)
[6] and with Faxén corrections (FC, see Section 2). The different classes of par-
ticles in the β, St parameter space that we studied are reported pictorically in
Figure 1. We proceed now to briefly discuss the changes in the phenomenology
when one moves from the heavy pointwise particle model, to inertial particles
with generic densities and then to particles with finite size.

4 F. Toschi et al.
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Fig. 1. Different class of particles studied in the parameter space, (β,St). Black dots
corresponds to the particles classes integrated at a resolution 1283 with Reλ = 75
and Point Particle model (PP). Crosses corresponds to 1283 (Reλ = 75) and 5123

(Reλ = 180) for the Faxén corrected (FC) model, see Section 2.

1 Lagrangian structure functions

Recently temporal correlations of Lagrangian velocities have been studied
by means of Lagrangian Velocity Structure Functions (LVSF) of the particle
velocities, S

(p)(τ):
S

(p)(τ) = 〈|v(t + τ) − v(t)|p〉 (3)

where v denotes one particular component of the particle velocity.
From the structure functions one can readily define what has been dubbed

as local slopes, or local scaling exponents:

ζ(p, τ) =
d log S

(p)(τ)
d logS(2)(τ)

probably the most sensitive tool to study the presence of eventual homoge-
neous scaling in the inertial range and to quantify associated uncertainties.
It was shown that the local slopes of the LVSF do present a strong dip at
scales intermediate between the dissipative scales and the inertial range [8, 9].
The dip is present in all currently available datasets (both experimental and
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Fig. 2. Relative local slopes of ζ(4, τ ) vs. ζ(2, τ ) of LVSF for: tracers at Reλ = 400
(solid line); tracers at Reλ = 200 (red squared); heavy particles with (St = 0.5, β =
0) (green circles) and light particles with (St = 0.5, β = 3) (blue triangles). Notice
the small enhancement on the dip for tracers at increasing Reynolds and the big
enhancement/depletion for light/heavy particles respectively. Both trends confirm
the importance of velocity statistics associated to small scale vortical filamentary
structures in the dip region.

numerical ones) [10]. It has also been shown that the dip can be explained in
terms of a multifractal modeling [10] of Lagrangian velocity increments and
that it is suppressed either by filtering the velocity signal or by observing
heavy particles instead of passive tracers [11]. This last observation leads to
the conclusion that the dip is mainly sensitive to the statistics of small scale
vortex filaments.

Here we show for the first time the behaviour of the local slopes for trac-
ers, heavy and light particles evolving in the same turbulent flow. As it can
be seen from Figure 2 the dip in the case of light particles is even more
strongly pronounced. It is well known that light particles tends to accumu-
late in small scale vortex filaments [12], this is another strong evidence of
the fact that the dip is strongly sensitive to the statistical fluctuations of the
velocity field around small scales vortex filaments. In Figure 2 one may also
notice a small enhancement of intermittency (i.e. on the dip excursion) at
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Fig. 3. The average energy dissipation of the fluid (left) and mean enstrophy (right)
at the position of the particles normalized by the averaged values for fluid tracers,
as a function of different particles properties (β, St).

increasing Reynolds for the tracers statistics, indicating a possible non trivial
dependency of the vortex filament statistics on Reynolds number.

Another statistical quantity useful to quantitatively measure the preferen-
tial concentration for light particles in high vorticity regions is visible in Figure
3, where it is shown the energy dissipation field, ε =

∑
i,j

(∂iuj + ∂jui)2, and
the enstrophy (squared vorticity) magnitude, Ω =

∑
i,j

(∂iuj − ∂jui)2, calcu-
lated at the particle positions for all β and St. As one can see, light particles
have a pretty larger total vorticity when normalized with the corresponding
value measured on the tracers (up to a factor 3).

2 Finite particle size

The point particle model is computationally efficient, theoretically simple and
often an excellent approximation of physical reality. On the other hand, is to
be expected that larger particles can behave in a considerable different way
from material points and that to describe them the PP model cannot be
employed.

In [13] it is described how to model finite size particles by adding to the
equation for the particles motion the Faxén terms which account for the non-
uniformity of the flow at the particle-scale. Faxén forces represent corrections
for particles in turbulence with dimension D > η. We chose to model finite
size particles in this way, in order to maintain a good computational efficiency.
Indeed the finite size correction only implies some extra Fourier Transform
and, once implemented, many particles can be integrated with essentially no
additional computational costs. Adding an extra class of particle (diameter)
do instead imply an additional computational cost. The Faxén theorem for
the drag force on a moving sphere states that:
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fD = 6πνρfa

(
1

4πa2

∫
Sa

u(x) dS − v

)
= 6πνρfa (〈u〉Sa

− v) , (4)

with the integral evaluated over the surface of the sphere and where u(x) is
the non homogeneous velocity of the fluid in the absence of the sphere. As
shown in [15] also Faxén forces via sphere volume average must be included.
The expression for the fluid acceleration and added mass force is:

fA =
4
3
πa3

ρf

(
〈Du

Dt
〉Va

+
1
2

(
〈du
dt

〉Va
− dv

dt

))
(5)

where the above 〈. . .〉Va
denotes the volume average over the spherical par-

ticle. Putting together the two contributions, given by Equations (4) and
(5), to the total force one obtain the equation of motion for a sphere,
(4/3)πa3

ρp dv/dt = fD + fA, and keeping into account the Auton added
mass correction for finite particle Reynolds numbers, i.e., du/dt → Du/Dt

[7], one obtain the phenomenological Faxén-corrected equation of motion:

dv

dt
=

3 ρf

ρf + 2 ρp

(
〈Du

dt
〉Va

+
3ν

a2
(〈u〉Sa

− v)
)

. (6)

The above equation can be considered a generalization of Equation (2) and
reduces to that equation in the limit D/η → 0.

In [13] some first results obtained by numerical integration of Equation (6)
are presented, along with preliminary comparison to experimental data. Here
we show the behaviour of the Kaplan-Yorke dimension for the FC model. The
Kaplan-Yorke dimension for the PP model was already discussed in [5, 16].
We recall that the phase space for the particle dynamics is (x, v) thus we
have 6 Lyapunov exponents. Due to the dissipative and chaotic nature of the
dynamics, the phase-space distribution of particles evolves toward a dynamical
(multi)fractal set. Fractal dimension of particle distribution can be measured
by means of Kaplan-Yorke dimension [17] as dλ = j +

∑
j

i=1
λi/|λj+1| where

j is the largest integer such that
∑j

i=1
λi > 0.

In Figure 4 it is shown the Kaplan-Yorke dimension as a function of β and
St for the PP model (left panel) and the difference of DKY for the FC and
PP model (right panel). The present measurement is an useful quantitative
indicator of where the finiteness of the particle play a larger role in the phase
space dynamics. In [14] other quantitative results regarding the acceleration
variance are presented and discussed.

3 Conclusions

In conclusion, we have shown that light/heavy point particles and light/heavy
finite-size particles show highly non trivial statistics which is strongly affected
by preferential concentration. In particular, we stress the importance for light

8 F. Toschi et al.
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dimension is not highly sensitive to the finiteness of the particle size.

particles to be concentrated inside vortex filaments, with strong consequent
enhancement of the velocity intermittency along particle’ trajectories. Such
phenomenon may be of key importance for a proper stochastic modeling of
light particle dispersion in turbulent fields. Experimental investigations of the
Lagrangian properties of light particles would be of great value.
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The statistical description of particle dispersion in turbulent flow constitutes
nowadays an active research area. Such a field is linked to the Lagrangian
description of fluid turbulence and poses long standing questions on modeling
of hydrodynamical forces on objects in unsteady nonuniform flows [1]. Even
in the simplest conditions of highly diluted suspensions of particles whose
sizes are smaller than the dissipative scale of the carrier flow, the presently
available models are highly idealized. Therefore, theoretical results and pre-
dictions need systematic verifications with experimental measures. Particle
tracking experiments are technically challenging for the high time and space
resolution demanded and for the need to precisely estimate and control the in-
tensity of turbulent flow. Our recent works have been devoted to comparisons
between experiments and numerical simulations of simple dynamical particle
models [2, 3]. We have widely investigated Lagrangian particle models evolv-
ing in a turbulent environment which is described from an Eulerian point of
view. In this abstract we shortly review the methods employed: the models
for particle dynamics together with the numerical methodology, and we detail
on some recent progresses and results.

Lagrangian models for particle dynamics

Lagrangian models for particle dynamics build-up on the equation of motion
for a parcel of fluid (fluid tracer) in a flow. The trajectory of such an ideal par-
ticle can be described by the equation dx/dt = u(x(t), t), where x(t) denotes
tracer’s position at time t and u the velocity of the fluid at that location.
When a spherical massive particle (with diameter d much smaller than the
dissipative scale η) is considered, the so called point-particle (PP) model can
be employed:

dx

dt
= v;

dv

dt
=

3 ρf

ρf + 2 ρp

(
Du

Dt
+

12ν
d2

(u − v)
)
, (1)
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ρf and ρp denote respectively the fluid and the particle density, ν the fluid
kinematic viscosity and v is the particle velocity. While u and Du/Dt are the
fluid velocity and acceleration evaluated at the particle center postion. The
above dynamical model, when coupled to Navier-Stokes equations to describe
the evolution of u, may be characterized by two dimensionless parameters,
the modified density ratio β = 3ρf/(ρf + 2ρp) and the Stokes number St =
τp/τη, where τp = d2/(12βν) is the particle response time and τη is dissipative
time-scale of turbulence. Despite its simplicity - only Stokes drag force and
inertial added-mass effects are accounted for - eq.(1) produces non trivial
effects on particle concentrations, velocity and acceleration statistics [4]. When
the particle size is larger than η - but still the slip velocity of the particle is
much smaller than the mean fluid velocity - we have recently proposed that
Faxén forces become relevant and must be included [3]:

dx

dt
= v;

dv

dt
=

3 ρf

ρf + 2 ρp

(〈
Du

dt

〉
Vp

+
12ν
d2

(〈u〉Sp
− v

))
, (2)

where 〈. . .〉Vp
and 〈. . .〉Sp

denote volume and surface average over the (spher-
ical) particle. These averages constitute the Faxén correction (FC) terms,
which account for the non-uniformity of the flow at the particle-scale. Finally,
we note that this modeling approach assumes the particles’ induced perturba-
tion on the fluid flow negligible, and also inter-particle collisions and gravity
are neglected.

Eulerian-Lagrangian Numerical simulations

The Lagrangian particle models (1),(2) are evolved in a statistically station-
ary, homogeneous and isotropic turbulent flow. Turbulence is simulated on a
periodic cubic domain by integrating Navier-Stokes (NS) equations forced by
a large-scale volume term. In our numerical implementation NS is discretized
on a regular grid, integrated using pseudo-spectral algorithm and second-order
time marching scheme. The idea sustaining this approach is that small-scale
Eulerian as well as Lagrangian statistics is universal, i.e., independent of the
type of forcing applied at large scale, this has been recently tested in [5].
In order to validate and benchmarking our simulations we have performed a
test on acceleration statistics of fluid tracers. We have run two independently
developed codes which implements slightly different algorithms: i) Verlet time-
stepping algorithm vs. second order Adams-Bashfort, ii) tri-cubic vs. tri-linear
interpolation, iii) forcing term at constant energy input vs. constant energy
at large-scales. We obtain an excellent level of universality for comparable
turbulence levels (see fig. 1).

Results

Recent experimental studies on the acceleration of neutrally buoyant particles
(ρp=ρf) have highlighted statistical effects linked to the particle size (d),
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Fig. 1. Single-component acceleration p.d.f. (left) and time correlation function
(right) for lagrangian fluid tracers. Results from two different simulations, with
different large-scale forcing but comparable level of turbulence (Reλ = 50 and 75).

namely a decrease of acceleration variance and increase of correlation times
at increasing d, and independence on d of the probability density function
of the acceleration once normalized by its variance [2, 6]. We showed that
these effects are not captured by PP model (1), [2], while the FC one adds
important and necessary physical corrections (see [3] for a detailed comparison
with experimental data). The differences between PP and FC on the single-
component acceleration r.m.s. value as a function of d/η - also when ρp �=ρf -
are shown in fig. 2. Faxén terms always reduce the acceleration amplitude for
particles larger than about 10η. Alternatively, one can look at the behavior
of acceleration r.m.s. in the β-St parameter space. Fig. 3 shows the different
behavior of 〈ai〉rms values measured in PP and FC simulations for the same
flow conditions. FC significatively reduce the acceleration values for particles
lighter than the fluid, such as air bubbles in water. In fig. 4 we report the
value of acceleration flatness, F (ai) = 〈a4

i
〉/〈a2

i
〉2, showing that light particles

(β > 3), which can have a highly intermittent statistics at small St both in PP
and FC model, in the large St limit become gradually less intermittent only if
Faxén corrections are included. However, the PP vs. FC acceleration scenario
changes much less for heavier particles (β < 1). We wish these predictions to
be tested against experimental measurements in the near future.
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Fig. 2. Particle acceleration r.m.s. normalized by the fluid one, 〈ai〉rms/〈ai,f 〉rms,
vs. d/η for particle types with densities ρp/ρf = 0.1, 1, 10, at Reλ = 75.
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1 Introduction

Turbulent convection is one of the best studied flows in experimental and
numerical fluid dynamics [1]. One reason is the existence of a wide range of
natural phenomena and industrial applications in which turbulent motion is
initiated and sustained by heating a fluid from below and cooling from above.
In this paper, we present direct numerical simulations of three-dimensional
turbulent convection with the focus on the Lagrangian properties of the flow.
Two different systems are studied for this purpose. The first one is a Cartesian
slab with an aspect ratio of four, bounded by free-slip planes at the top and
bottom and periodic side walls [2, 3]. The second configuration is a closed
cylindrical cell with an adiabatic side wall and isothermal top and bottom
plates with an aspect ratio of one [4]. Turbulent Rayleigh-Bénard convection
is discussed in the Boussinesq approximation in both cases. We apply a pseu-
dospectral method for the Cartesian case and a second-order finite difference
method for the cylindrical one. The Prandtl number is Pr = 0.7 for all cases.
The Rayleigh numbers Ra vary between 107 and 109. Figure 1 shows a snap-
shot of the temperature field in the Cartesian cell. Clearly visible skeleton-like
structures of thermal plumes close to the top and bottom planes are present
in the contour plots of temperature.

2 Lagrangian particle dispersion

Convective turbulence is inhomogeneous in general. In the case of Cartesian
slab, the inhomogeneity is with respect to the vertical direction, however, in
the cylindircal cell, it is present in all spatial directions. This affects the dis-
persion properties of the Lagrangian tracers which are manifested by different
strength of lateral and vertical two-particle dispersion. Similar to isotropic
turbulence, we find that the pair dispersion properties depend sensitively on
the initial separation of tracers and yield a short-range Richardson-like scaling
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Fig. 1. Contours of the total temperature field close to the top and bottom plates
in a Cartesian cell with aspect ratio of four.

regime with a smaller Richardson constant [2]. Furthermore, different initial
seeding positions of the tracer pairs in the convection cell cause differences in
the lateral and vertical dispersion at initial and intermediate times. For ex-
ample, pairs which are seeded initially in the thermal boundary layer will pass
the mixing zone where detached thermal plumes move into the bulk region.
Frequently, this detachment process is associated with local maxima of the
vorticity which affect the lateral accelerations and thus relative lateral pair
motion.

Interestingly, we observe that the four-particle motion and statistics in the
Cartesian slab is quantitatively similar to homogeneous isotropic turbulence
in the long-time limit. The clouds of four tracers show a clear trend to form
flat objects, as reported in [5]. In Figure 2, we display the time evolution of
the normalized eigenvalues of the moment-of-inertia tensor, 〈Ii(t)〉L. It holds∑

3

i=1
〈Ii〉L = 1 with 〈·〉L the average over the Lagrangian tracer ensemble. The

long-time limit of 〈I3〉L is 0.01, which reflects the dominance of flat objects
and agrees with the isotropic case. This indicates that the large-scale geometry
of the cluster is almost independent of particular aspects of the turbulence,
such as plumes in convection.

3 Heat transport and acceleration

We also analyse the statistics of the acceleration components. Significant ef-
forts are necessary to resolve the acceleration statistics accurately: in order to
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Fig. 2. Time evolution of the ensemble-averaged and normalized eigenvalues of
the moment-of-inertia tensor of four-particle clusters. The initial separation of the
tracers is indicated in the legend. The four-particcle cluster were seeded across the
whole Cartesian slab at the beginning of the run.

resolve the tails of the distributions we included more than 108 data points in
the statistical analysis [3]. We find that the vertical acceleration component is
less intermittent than the lateral ones which is indicated by the sparser tails
of the probability density function. We also discuss the joint statistics of the
vertical acceleration with respect to the local convective and conductive heat
fluxes. It is found that rising and falling thermal plumes are not connected
with the largest vertical acceleration magnitudes.

In the Lagrangian frame, the Nusselt number can be defined as

NuL = 1 +
H

κΔT
〈uzT 〉L . (1)

Here H is the height of the cell, κ the thermal diffusivity, ΔT the total tem-
perature drop, uz the vertical velocity component and T the temperature
field. Interestingly, it is observed that NuL needs a significant duration of
time to relax to the Eulerian value NuE for which 〈uzT 〉L in Eq. (1) has to
be substituted by the volume-time average 〈uzT 〉V,t. Our result differs from
a recently reported experimental finding with a smart particle [6]. In this ex-
periment, NuL > NuE which can be attributed to the finite size of the smart
particle. Our studies suggest that the tracer ensemble takes a certain time to
“thermalize” in the convective flow. We conclude that this is due to the fact
that velocity and temperature are sampled along the Lagrangian tracks in the
present case. After this period, the majority of particles follows the large-scale
circulation and NuL → NuE .

Figure 3 shows five representative Lagrangian tracer tracks in the cylin-
drical cell. Similar to the findings by Gasteuil et al. [6], the particles follow on
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Fig. 3. Time evolution of five Lagrangian tracers in the cylindrical cell. The tracks
are monitored for one hundred turnover times. The Rayleigh number for this run is
107 and the aspect ratio Γ = 1.

average the large-scale circulation of the flow. It is also observed that the (cen-
tral) bulk is less frequently visitied by the tracers than the regions near the
walls, in particular the side walls. In the closed vessel, the long-time particle
pair dispersion does not cross over into the Taylor diffusion limit, but levels off
to a constant value. An interesting aspect which we want to address in future
work is the dependence of the Lagrangian statistics on the aspect ratio. For
larger values, the effects of the side walls should become sub-dominant.

This work is supported by the Deutsche Forschungsgemeinschaft under
grants SCHU 1410/2-1 and SCHU 1410/5-1 and by the Jülich Supercomputing
Centre (Germany) under grants HMR09 and HIL02.
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Lots of attention has been recently given to the dynamics of inertial par-
ticles in turbulence [1, 2, 3]. This knowledge is relevant for many practical
situations where objects are being advected by an underlying turbulent flow.
One central question concerns the modelling of the forces which act on inertial
particles. For objects smaller than the Kolmogorov dissipation length, a point-
wise model (PP) including added mass and Stokes drag term has proven quite
successful. For larger particle there are noticeable discrepancies compared to
experimental observations [4, 5]. This has motivated to include corrections, in
particular the inclusion of size effects. Taking into account the non-uniformity
of the flow at the particle scale has improved the models [6], but some effects
remain, like those associated with the eventual rotation of the particle. We re-
port here an experimental investigation of the 6-dimensional motion (3 space
and 3 angle coordinates) of an inertial size particle in a fully turbulent flow.

Experimental setup and method

The experiment uses a von Kármán flow in water, driven by the counter-
rotation of impellers with a 10 cm radius R, fitted with straight blades 1 cm
in height. The flow domain in between the impeller has characteristic lengths
H = 2R = 20 cm. At the nominal rotation rate of 3 rpms of the measure-
ments reported here, the flow has a Reynolds number, based on the Taylor
microscale, of Rλ ∼ 250. The ‘particle’ size is D = 1.75 cm. It is very large
compared to the dissipation length (D/η ∼ 280 !), smaller than the flow
integral scale L ∼ 4 cm. The particle is neutrally buoyant: its velocity of
sedimentation in the fluid at rest is of the order of a millimeter per second,
corresponding to a density matching better than 0.1 percent.

The particle is tracked optically using a Phantom 7.3 camera; it is painted
with a texture that allows to find its orientation with a pattern-recognition
algorithm. Calibration and consistency checks show that the precision of the
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Fig. 1. (a) Experimental setup: the ‘washing machine flow’, imaged by the fast
camera; (b) Examples of a trajectories, showing the local particle orientation.

measurement is ±1 mm for its position and ±1 degree for its angular orien-
tation. With typical linear velocities of the order of 0.5 m/s and a frame rate
of 100 Hz, a particle motion is resolved over a fraction of its diameter so that
derivatives can be computed accurately to estimate the particle’s velocity and
acceleration, and similarly for its angular motion. Segments of particle mo-
tions analyzed here have durations between 800 and 4800 ms, corresponding
to time lengths between 1 and 6 Lagrangian integral time scales TL. Analysis
of probability density functions of the particle linear and angular coordinates
show that it samples uniformly the flow; orientations have a very small bias,
probably tracing back to the assembly of the particle from 2 hemispheres.

Linear motion

The particle velocity has a Gaussian distribution, with zero mean and variance
equal to 0.15 m/s. Hence the particle’s Reynolds number is about 2500, but
with its variations in time are of the same order of magnitude. The slip-
velocity is therefore large and one may expect that interactions between flow
and wake influence the particle’s dynamics.
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Fig. 2. Linear acceleration. (left): time traces of the particle’s acceleration – seg-
ments are concatenated; (right): corresponding probability density functions (PDFs)
– the solid red line is the lognormal functional form of Eq.1, with s = 0.70.
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The autocorrelation functions of the velocity components decrease in a
characteristic time of order TL, and the cross-correlations between components
are essentially null. The particle acceleration is strongly non Gaussian. As
shown in Fig.2, the statistics of its components is well modeled by a lognormal
form[7],

P (ai) =
exp(s2)

4m

(
1− erf

(
s2 + ln |ai|

m√
2s

))
, (1)

where m =
√

2/e2s2 for a centered variable with zero mean, and s is a free
fitting parameter. For Lagrangian tracers, a value s = 1 has been reported [7]
in a von Kármán flow, while s = 0.62 has been found for both tracers and
inertial particles in grid turbulence [8]. Note the distribution flatness is related
to the s-parameter by F = (9/5) exp 4s2. Here we find s = 0.70±0.04, i.e. the
statistics of the acceleration of the particle is still as non-Gaussian as that of
the tracers, despite its size being 280 times the Kolmogorov’s length. For the
acceleration variance, if one assumes a functional form 〈a2

i
〉 = a′0ε

4/3D−2/3,
one gets a′0 ∼ 1.4 instead of 18 as proposed originally in [8].

From the particle trajectory, one can compute geometrical features (longi-
tudinal and transverse accelerations, curvature, etc.) as introduced in [9]. The
results for this large inertia particle reproduce the feature for the tracers, as
reported in [10].

Angular dynamics

One surprising results of our measurements, the very strong non-Gaussianity
of the particle’s angular velocity, is shown in figure 3. Using the lognormal
expression in equation 1, one obtainss = 0.71 ± 0.03, very similar to the
value obtained for the linear acceleration. The variance of the angular velocity
components is vary accurately given by (dθi/dt)rms ∼ urms/D = 7.6 rd/s.
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Fig. 3. Angular velocity. (left): time traces; (right): corresponding probability den-
sity functions – solid red line corresponds to s = 0.71 in Eq.1.

There is thus no simple connexion between the particle angular velocity
statistics and that of the vorticity of the flow at a scale equal to the particle
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size (it would be almost Gaussian at D ∼ L/2). The analysis of the statistics
of the angular rotation projected onto the Frenet coordinates has shown weak
correlations, i.e. angular motion and the geometry of the trajectory are not
simply connected – as they would be if strong lift forces were at work.

The angular acceleration of the particle is also quite non Gaussian, with
distributions again well accounted for by equation 1, with s = 0.97 ± 0.04.
The value of the variance of angular acceleration is accurately estimated as
(d2θi/dt2)rms ∼ (urms/D)2 = 58 rd/s

2
. The angular acceleration is more inter-

mittent than the linear part (s ∼ 1 corresponds a flatness factor of nearly100).
Note that rotation is associated to transverse velocity variations, which are
known to be more intermittent than longitudinal ones.
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Fig. 4. Angular acceleration. (left): time traces; (right): corresponding probability
density functions – solid red line corresponds to s = 0.97 in Eq.1.

Many other features, such as energy budgets are under investigations and
will be reported in the near future. One notes, for instance, that the kinetic
energy of the particle associated with rotational motion is almost an order of
magnitude less than the one associated to translational motion. This is what
is expected if one assumes that the particle moves on average with velocity
urms, and rotates with characteristic speed urms/D.
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1 Introduction

Understanding and predicting the collision rate of small inertial particles in
turbulent flows is of importance in many meteorological and industrial pro-
cesses. For instance, predicting the time of rain initiation of warm clouds,
which are known to be turbulent in their core, is still an open problem.
Droplets in such clouds, which can be treated as inertial particles, are be-
lieved to grow to rain drop by coalescence due to collisions.
As shown in [1], the collision rate Nc per unit of volume of equal size particles
of diameter a and mean density n0 can be written :

Nc = πn2
0a

2〈|wr|〉g(a) (1)

where wr is the radial relative velocity between particles and g(a) the radial
distribution function at contact. Numerical simulations have shown that this
collision rate is larger for inertial particles than in the case of simple tracers
[2]. This observation can be explained by two effects. On one side, the con-
centration around particles is locally larger than the mean density (g(a) > 1),
a result of the effect of preferential concentration [3]. On the other hand,
the relative velocity between two colliding particles can be significantly larger
than expected based on the typical rate of strain tensor, as described by the
Saffman-Turner formula [4] for the case of inertialess particles.

For a fixed value of the Reynolds number, two dimensionless parameters
are relevant in this problem : the Stokes number St = τ/τK and the Froude
number Fr = uK/gτ which measure the inertia of the particles and the influ-
ence of the gravity respectively. In this formulation τ is the response (Stokes)
time of the particles, τK and uK the time and velocity at the Kolmogorov
scale and g the acceleration of gravity. As shown in [3] the dimensionless
(simplified) equation of motion of a particle in this context can be written :
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dv/dt = (u− v)/St − ẑ/ε0 (2)

where ε0 = St × Fr, v is the velocity of the particles and u the velocity of
the fluid. Differentiating Eq.(2), one can obtain the equation of evolution of
the gradient velocity tensor in the Lagrangian frame [5]:

dσij/dt = (hij − σij)/St − σikσkj (3)

where σij = ∂jvi and hij = ∂jui. The nonlinear term in (3), leads to the
possibility of a divergence in finite time for σ. This can happen when par-
ticles going through a region of large gradient (|h| � 1/St) are sufficiently
accelerated to acquire a velocity, which differs strongly from the fluid veloc-
ity. Particles experiencing such a sling shot [5] are prone to collide with other
particles having very different histories and velocities. As a result, the sling
effect enhances the relative velocity between particles, hence the term 〈|wr|〉
in eq.(1), and ultimately the collision rate Nc. When a sling effect occurs on a
trajectory, the velocity field of the particles v becomes multi-valued (particles
at the same point have different velocities), corresponding to the formation of
caustics of particle rays [6]. In this situation, colliding particles can come from
very different regions of the fluid so their relative velocities is not assessable
from σ.

The main idea of this work is to distinguish two different type of collisions,
these for which the relative velocity can be evaluated from σ referred to as
the continuous collisions and those for which this assessment is impossible
referred to as the sling collisions.

A method to evaluate separately these two contributions has been pro-
posed in [7]. It is based on a direct integration of the equations of the
Lagrangian evolution of heavy particles, and involves a phenomenological
parametrisation of the sling contribution to the collision term.

In this work, we compare systematically the collision rates measured in
a synthetic turbulent flow (kinematic simulation, [8]) and the prediction of
the simplified Lagrangian parametrisation. Our results suggest several cru-
cial improvements to the parametrisation proposed by [7] and show a strong
dependence of the sling contribution on the gravity.

2 Direct measurements

We considered very small particles in a periodic simulation domain. The sys-
tem is supposed to be diluted enough to neglect particles interactions and
all feedback due to their movements on the surrounding fluid. For a continu-
ous collision, the radial relative velocity at contact between the two particles,
should be given by : wr = a × r̂.σ.r̂ . In order to distinguish the continuous
component from the sling one, we compare for each collision the real radial
relative velocity and the quantity : a × r̂.(σ1 + σ2).r̂ . Where σ1 and σ2 are
the values of σ measured at the positions of the particle 1 and 2. The PDF of
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Fig. 1. PDF of the ratio between the supposed radial relative velocity estimated by
a × r̂.(σ1 + σ2).r̂ and the real one wr at the moment of the collision.

the ratio of these two quantities, measured at the moment of each collision,
is shown on Fig.1. The PDF of the ratio of these two quantities, measured at
the time step preceding each collision, is shown on Fig.1. One can see clearly
on this figure a quite narrow peak at a × r̂.(σ1 + σ2).r̂/wr = 1. This peak
corresponds to the continuous contribution to the collision rate. In this case,
the radial relative velocity can be greatly evaluated from the gradient veloc-
ity tensor. This contribution decreases with St, and the Fig.1 lets appear a
broader peak around a × r̂.(σ1 + σ2).r̂/wr = 0, corresponding to the sling
collisions. In most of cases a sling collision is caracterised by a radial relative
velocity larger than it should be in the continuous case. In order to evaluate
the two contribution to the collision rate, we simply condition the origin of a
collision with the value of the ratio a × r̂.(σ1 + σ2).r̂/wr.

3 Indirect estimation

We use here the method proposed in [7] to estimate the collision rate and
compare it with the results obtained with the direct measurements. The con-
tinuous contribution is directly evaluated from a Lagrangian measurement of
the velocity gradient tensor :

N cont
c =

n0a
3

2
〈 1
T

∫ T

0

n(t)
∫
r̂.σ.r̂<0

r̂.σ.r̂ dΩ dt〉 (4)

The bracket designate an average on the trajectories. This approach is similar
to the Saffman-Turner one (ST), in the case of inertialess particles. The time
T correspond to the time needed for the contraction rate along a trajectory
to grow by a factor (η/a). Indeed, all the contribution of the coarse grained
density until the scale r = a are expected to contribute to continuous part of
the collision rate.

The evaluation of the sling contribution is more phenomenological. A sling
event is caracterised by the fact that two particles can hit frontally. In a
continuous description of the velocity field of the particles v, this means that

25Collision rate between heavy particles in a model turbulent flow



(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

�

�

�

�
�

St

N
c
o
n
t

c
/N

S
T

c

Direct measurements

Indirect evaluation

ε0 = 1.0

ε0 = 5.0

(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

�

�

�

�
�

St

N
s
li

n
g

c
/N

S
T

c

Direct measurements

Indirect evaluation

ε0 = 1.0

ε0 = 5.0

Fig. 2. Comparison between direct measurements and the indirect evaluation of
the different contributions to the collision rate normalized by the ST case for two
different intensity of the gravity. (a) Continuous contribution. (b) Sling contribution.

this latter becomes multi-valued resulting in a divergence for σ. Thus, the sling
contribution will be proportional to the average frequency of the sling events
fbu (blowup frequency) on a Lagrangian trajectory. This quantity is directly
accessible integrating eq.(3) on many trajectories. The main challenge of our
parametrisation is to estimate the mean number of collisions Nsling occurring
in the wake of a sling event. Then, the blowup frequency will be given by :

Nsling
c =

n0

2
×Nsling × fbu (5)

In practice, Nsling is estimated as the mean flux of particles during the
typical duration of a sling event which is supposed to be of order τ .

Both contributions to the collision rate, continuous and sling normalized
by the ST case NST

c , are shown on Fig.(2). This figure reveals that the sling
contribution is essentially zero for St < 0.2 and start to grow fast after this
value as a consequence of the dependence fbu ∼ exp(−A/St) for small St [9].
One can see also that the gravity tends to reduce strongly the sling contri-
bution. On the other hand the continuous component is larger than the ST
case for St � 1 as a consequence of the preferential concentration. This latter
contribution seems to be weakly affected by the gravity in comparison to the
sling one.
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Introduction

The formation of a warm vertical cloud is classically described by the
evolution of microscopic droplets [1]. Droplets start to nucleate around solid
particles in a favourable environment (i.e. for positive supersaturation in the
absence of solute effect). Then, if the available vapour is sufficient, they grow
by condensation. Once their size is large enough, their terminal velocity is no
more negligible and they start to collide with both slower and faster droplets.
The resulting growth by coalescence is explosive and eventually a precipitation
can occur. This simple description is able to capture the basic mechanisms
behind the first development of the cloud.

Nevertheless, the classical description leaves some problems open and also
leads to a serious inconsistency. Indeed, the prediction for the condensational
growth states that smaller droplets grow faster than larger droplets. As a
result, during the condensation stage the droplet population becomes more
and more homogeneous, while the growth slows down. On the one hand, this
slowing process cannot lead to a precipitation in reasonable times; on the
other hand, the explosive process ensured by collisions cannot occur, if all
the droplets share the same size (i.e. the same terminal velocity). Therefore,
the size distribution (known as size spectrum) during the condensation stage
must broaden in some way. Such a contradiction with the classical prediction
is confirmed by experimental observations in clouds, where a broader size
spectrum is detected [2, 3].

To solve this problem, sometimes referred to as the bottleneck of condensa-

tion, many different models have been proposed, either improving the classical
model with the inclusion of neglected effects or rephrasing it with a different
approach. For the time being, no univocal explanation has been provided.
Partial justifications are based on entrainment with dry air [4], on the role
of giant condensation nuclei [5, 6, 7] or on the local effects of turbulence on
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the collection kernel [8, 9] and on the preferential concentration of inertial
particles [10, 11]. However, considering turbulent fluctuations in an ascending
air parcel does not result in an appreciable spectrum broadening [12, 13].

A different approach is adopted in a series of recent works [14, 15, 16, 17],
where a basic ingredient, previously not taken into account, is added, i.e.
turbulence in the whole cloud. Rather than following the evolution of a small
air parcel and the fluctuations inside it, the focus is on a large part of the
cloud. The effects of global turbulent motions are considered. The idea is that
droplets get to know very different environmental conditions in short times, so
that very different sizes are present in droplet population. As a result, a strong
spectrum broadening is observed during the condensation stage. Moreover,
turbulence acts as an effective cloud condensation nucleus (CCN), allowing
droplets to nucleate around smaller CCN than in a classical picture [16].

Here, we generalize these turbulent models by describing both the nucle-
ation and the condensation stages, without neglecting vapour absorption by
growing cloud droplets. This latter effect plays to reduce the broadening of
size spectra and thus to produce results in closer agreement with observations.

Model

Our model is inspired by those presented in [15, 16]: instead of focusing
on the evolution of an ascending air parcel (where droplets cannot experience
large vapour fluctuations and, hence, broaden their size spectrum consider-
ably), our attention is directed on turbulent fluctuations in a large part of
the cloud. From a classical viewpoint we can imagine the cloud as formed
by a high number of air parcels moving inside it, some in updrafts, others
in downdrafts. Each parcel knows a supersaturation s depending on its verti-
cal velocity w, classically assumed as constant. The basic idea is to consider
w as the vertical component of the turbulent velocity field u and to leave
the Lagrangian approach given by parcels evolution, following the Eulerian
behaviour of two turbulent fields in the whole cloud.

Moreover, both droplet nucleation from CCN (not considered in [15]) and
droplet feedback on vapour (neglected in [16]) are taken into account here. If
we consider N passive non-inertial particles, the complete model is given by
the following equations:⎧⎨

⎩
∂tu + u · ∂u = − 1

ρa

∂p+ f + ν∂2
u

∂ts+ u · ∂s = Gsw(1 + s) − Csλ(bs + s) +D∂2s

for the two Eulerian fields u(x, t) and s(x, t) and⎧⎪⎪⎨
⎪⎪⎩

d

dt
Xi(t) = u

(
Xi(t), t

)
+
√

2Dηi(t) i = 1, N

d

dt
R2

i (t) = 2CR

(
1 + s

(
Xi(t), t

) − e
c

Ri(t)
−

hi

R3
i
(t)

)
Ri(t) ≥ Ri(0)
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for the Lagrangian evolution of particle trajectories Xi(t) and radii Ri(t).
Here ρa is the air density, p represents the pressure field, f is a forcing term, ν
is the kinematic viscosity,Gs, Cs, bs, CR and c can be regarded as constants,D
is the vapour diffusivity, ηi are independent white noises, hi is proportional to
the i-th CCN mass. Furthermore, λ is a condensation density field representing
the (Lagrangian) droplet feedback on the (Eulerian) supersaturation field and
its expression is

λ(x, t) =
1
δV

δN(x,t)∑
i=1

Ri(t)

(
1 + s

(
Xi(t), t

) − e
c

Ri(t)
−

hi

R3
i
(t)

)

where δN(x) is the total number of droplets present at time t in a little volume
δV surrounding x. Notice that both curvature and solute effects are included
via the terms proportional to c and hi, respectively.

Results

We performed a series of two-dimensional DNS of resolution 10242 of model
equations, putting 5 106 CCN randomly in space once the Eulerian fields has
reached a stationary state. To mimic different cloud conditions, we simulated
different set-ups by varying the turbulent intensity ε, the CCN mass ms and
droplet density n.

As expected, results indicate that droplet feedback on vapour plays an im-
portant role, slowing down droplet growth and reducing spectrum broadening
compared to the situation observed when feedback is neglected. Nevertheless,
although the environment becomes more and more undersaturated as droplets
subtract vapour to it, a considerable percentage of droplets is still able to nu-
cleate and grow fast by condensation up to radii comparable to those needed
to start up collection (see Fig. 1). Moreover, droplet-size spectra still broaden
in time strongly (see Fig. 2). It is worth noticing that the larger turbulent
fluctuations, the stronger effects are observed.
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Turbulent transport of material inclusions plays an important role in many
natural and industrial situations. Being able to accurately model and pre-
dict the dynamics of dispersed particles transported by a turbulent carrier
flow, remains a challenge. When the particles are neutrally buoyant and small
(typically comparable in size with the dissipation scale of the surrounding
turbulence) they are known to behave as tracers for fluid particles. However,
in many practical situations, the particles are denser than the carrier fluid
and/or larger than the dissipation scale. Their dynamics, which is then af-
fected by so called inertial effects, deviates from that of fluid particles[1, 2, 3].
One critical and difficult point is to develop models which correctly describe
the dynamics of particles over a wide range of sizes and density.

In the present study, we report an exhaustive experimental investigation of
material particles acceleration in a turbulent air flow, over a wide range of sizes
and densities. With respect to previous existing studies, we particulary focus
on the so far unexplored regime of finite size (particles diameterD being larger
than the turbulent dissipation scale η) and highly inertial particles (much
denser than the carrier fluid) [4] (see figure 1a). As particles we use adjustable
soap bubbles which can be considered as rigid spheres. They are characterized
by their diameter D and density ρp. In the following we use the dimensionless
parameters φ = D/η and Γ = ρp/ρf where ρf is the density of the carrier
fluid. We consider a turbulent carrier flow generated downstream a grid in a
wind tunnel experiment with a Reynolds number (based on Taylor microscale)
of Rλ ∼ 160. The dissipation scale η is 240 μm and the energy injection scale
L is 6 cm. Particles velocity is measured along their trajectories by Lagrangian
acoustical tracking [5, 6, 4] from which acceleration is calculated.

For fixed carrier flow conditions, we find that acceleration statistics of fi-
nite size inertial particles are very robust to size and density variations, the
influence of which is mostly carried by acceleration variance only. In particular
the shape of acceleration probability density function (normalized to variance
one) remains unchanged, within statistical errorbars, over the whole range of
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Fig. 1. (a)Particles classes considered in previous studies and in the present work,
described in the (φ, Γ ) phase space. The countour lines indicate an estimation of
the particles Stokes number St = τp/τD, where the respone time τp of the particle
has been corrected for added mass and for finite Reynolds number effects according
to Schiller and Nauman [7, 8] and τD is the flow eddy turnover time at the scale of
the particle diameter D. (b) Normalized component acceleration probability density
function (PDF) of material particles transported in a turbulent air flow (φ is the
ratio of particles diameter D to the carrier flow dissipation scale η and Γ is the
particle to fluid density ratio). Dashed line corresponds to the measurement by
Ayyalasomayajula et al. [3] for water droplets (with size φ ∼ 5×10−2 and Γ ∼ 1000).
To help the comparison with previous and future studies the dot-dashed line shows
a fit associated to a lognormal distribution of the acceleration amplitude.

sizes and densities explored (figure 1b). This is in contrast with predictions
based on point particles models which predict a monotonic decrease of ac-
celeration flatness as particles inertia is increased [9]. Interestingly we also
find our acceleration PDF to be almost identical to that measured at Cornell
University by Ayyalasomayajula et al. [3] for subkolmogorov (φ ∼ 5 × 10−5)
water droplets (Γ ∼ 103) in a similar turbulent wind tunnel experiment. This
indicates that point particle models might apply only to even smaller parti-
cles, as also suggested by recent experiments by the Cornell group [10]. We
also find our acceleration PDF to be much narrower than that measured for
similar particles in von Kármán flows. This suggests a possible influence of
large scale porperties of the carrier flow, as von Kármán flows are closed and
highly anisotropic while wind tunnel experiments are open flows whith higher
isotropy level. This point is being studied in forthcoming work.

While acceleration statistics normalized to variance one do not exhibit any
specific size and density dependence, we find a non-trivial, and so far unpre-
dicted, dependence with size and density (figure 2a) for acceleration variance.
When density is increased at fixed particle size, acceleration variance is found
to decrease and saturate to a size dependent finite limit a∞0 (φ); when size is
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increased at fixed density the trend of acceleration variance depends on par-
ticles density : for close to neutrally buoyant particles, acceleration decreases
with increasing size (as already shown by [11, 6]), but for heavy particles an
increase of a∞0 (φ) with φ is observed for particles size around φ ∼ 18. In
particular, this indicates that for heavy particles, finite size effects can be
trivially extrapolated neither from the heavy point particle limit nor from the
finite size neutrally buoyant case as both of these limits predict a monotonic
decrease of acceleration variance with increasing inertia, contradictory with
the trends measured for finite size heavy particles. Observed finite size and
density effects cannot be accounted by simple filtering arguments only based
on Stokes number effects as in the point particle case. A sampling scenario,
in the spirit of sweep-stick mechanisms [12] seems more adequate to possibly
describe the simultaneous influence of density and size. Heavy particles tend
to explore preferentially the quietest regions of the flow (low vorticity and/or
low acceleration regions) what causes their acceleration variance to decrease.
As particles become larger they have less available space in these quiet regions
so that they start experiencing the more active regions of the turbulent carrier
flow, what may cause an increase of acceleration variance. Such a scenario is
also consistent with measurements of preferential concentration which have
shown a typical size of clusters (which can be considered as an estimate of the
typical size of the quietest sticking regions of the carrier flow) of the order of
10 − 20η, consistent with the typical size (φc = 18) for which the increase of
a∞0 (φ) is observed.

Finally, we study Lagrangian acceleration auto-correlation functionsRaa(τ)
from which we define a characteristic forcing time τint =

∫ τ0

0 Raa(τ)dτ as in
[13], where τ0 is the first zero crossing time (Raa(τ0) = 0). Figure 2b shows
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that for all particles classes the characteristic forcing time τint remains of the
order of the Kolmogorov dissipation time τη of the carrier flow. In partic-
ular this characteristic time has nothing to do with the Stokes time of the
particles which in the present case is expected to change by several order of
magnitudes from the smallest neutrally buoyant particles to the largest and
heaviest particles. This observation suggests that for all particles classes of
finite size particles considered in the present study the dominant small scale
forcing term acting on the particles is the pressure gradient and that Stokes
number effects cannot be considered alone to properly characterize and model
such inertial particles.
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Two-dimensional decaying turbulence is studied in a square domain to inves-
tigate the influence of solid boundaries on the Lagrangian dynamics. It was
shown in [1] for a circular geometry, that the vorticity generation at the walls
and subsequent detachment strongly influence the velocity increment and ac-
celeration statistics. In the present work we assess the influence of the geome-
try by considering a square domain. The recirculation zones in the corners and
the generation of a large-scale swirling flow [2, 3] could influence the statistics.
Therefore we compare the Lagrangian statistics of decaying flows in a square
and in a circular domain. The numerical set-up is described in [1, 4] and the
Lagrangian statistics are averaged over 104 trajectories. The numerical reso-
lution is N = 10242. The initial eddy turn over time is Te = 1/

√
2Z = 0.12

and the initial Reynolds number is Re = L
√
E/ν = 3 · 104, where E is the

initial kinetic energy and L = 2π ∗ 10/11 is the size of the square.

The visualization of the vorticity field at 85Te in Fig. 1 (left) reveals that
vortices are created near the wall. Three typical trajectories are plotted in
Fig. 1 (right). The particles can proceed in almost straight lines, spiraling
motion and are accelerated or slowed down near the wall.

In Fig. 2 (left) the PDFs of the time-averaged Lagrangian velocity incre-
ments, defined by

ΔuL(τ) = 〈uL(t+ τ) − uL(t)〉t, (1)

are shown (〈·〉t denotes the time average) for the square and circular do-
main. For small τ , the PDF of the Lagrangian velocity increments tends to
the Lagrangian acceleration PDF and for large τ it tends to the PDF of the
Lagrangian velocity. The behavior for small τ is clearly different for both ge-
ometries. The PDFs of Lagrangian acceleration present extreme values for
both cases compared to the PDFs obtained in the double periodic case [1].
Furthermore, all the PDFs nearly collapse in the center. However, heavy tails
are observed in the circle. This is confirmed by Fig. 3 (left) which shows the
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Fig. 1. Left: Vorticity field at τ = 85 Te. Right: Three typical trajectories in the
square geometry. Each trajectory is colored with the modulus of Lagrangian accel-
eration normalized by its maximum value: |aL(t)|/max(|aL(t)|), where max|a1| =
10.36, max|a2| = 7.93 and max|a3| = 14.89 for the particles 1, 2 and 3 from left to
right, respectively. The circles indicate the initial position of the particles.

PDFs of Lagrangian acceleration and velocity for the two geometries. The
PDFs of Lagrangian velocities are qualitatively very similar to the ones ob-
tained for the circular case [1]. Indeed a small cusp around zero is observed
which corresponds to a large probability to get almost zero velocity due to
the no-slip condition. Moreover, Fig. 3 (right) presents the flatness of the La-
grangian velocity increments for both geometries. At small τ the flatness tends
to a value of 18 for the square geometry which is stronger than for the circular
geometry where the maximum flatness is 11. This indicates that the flow in
the square from a Lagrangian viewpoint is more intermittent. At large τ , the
flatness for the two cases collapses with a value close to 3 which corresponds
to a Gaussian distribution.

In the following we investigate the role of the corners with the aim to
understand which part of the flow domain is responsible for the increased
flatness for small τ . This influence is investigated by considering four squares
attached to the four corners of the main square, as illustrated in Fig. 1 (right).
First, we choose an arbitrary size rc ≤ S (S is the half side length of the
square) which defines the squares in the fluid domain. Then we separate the
statistics into two parts, inside (denoted by aLr<rc

) and outside (aLr>rc
) the

selected subdomain. The flatness of the conditional Lagrangian acceleration
aLr<rc

is defined as

FaL
(rc) =

〈a4
Lr<rc

〉
〈a2

Lr<rc

〉2 , (2)

where 〈·〉 denotes the ensemble average for the particles confined to subdo-
mains defined by the size rc. Thus, a single trajectory can contribute to both
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regions.

The conditional flatness, in Fig. 4, enables us to see the influence of the
corners in square geometry. For increasing size rc , the surface of the four
squares becomes larger. Note that rc/S = 0.5 corresponds to the full domain.
The highest values of the flatness are found for rc/S < 0.2, which means that
the corners are responsible for a strong increase of intermittency. Indeed, the
generation of vortices with high intensity by the walls combined with the re-
circulation zone in the corners could explain this result.

In conclusion, we compared the influence of walls in a square and a circu-
lar geometry. The presence of no-slip conditions at the wall creates extreme
values in the Lagrangian acceleration, while the Lagrangian velocity exhibits
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a Gaussian distribution with a small cusp around zero. In the square, the
intermittency is stronger due to the presence of the corners which is revealed
by the conditional statistics. This study was performed for decaying flows,
the next step will be to investigate the influence of the walls in statistically
stationary flows.
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Summary. A digital holographic in-line setup was used to track particles in a small
turbulence chamber. Different particle validation methods have been tested to filter
out speckles and to enhance accuracy of the longitudinal particle coordinates. In
first measurements particle trajectories were measured and visualized together with
fitted spline curves. A pronounced decrease of the standard deviation of the particle
coordinates with respect to their spline curves was achieved.

1 Introduction

It is well-known for a long time that most turbulent flows show a highly three
dimensional topology. For their investigation some optical methods were de-
veloped which are able to measure the complete velocity field within a three
dimensional volume of a flow field (3C-3D). Two candidates are Tomographic
PIV/PTV with multi-camera arrangements or Holographic PIV, latter tradi-
tionally recorded on a high-resolution silver-halide film on a glass plate. The
basics of all these techniques are the registration of light reflected from tracer
particles which are added to the flow and which are illuminated by short laser
pulses. Consecutive recordings of the illuminated volume were taken and eval-
uated resulting in a complete vector field of the flow velocity. More recently,
digital holographic recording on CCD-cameras combined with PIV or PTV
analysis techniques has been used.
Digital Holographic PTV techniques can be used to track particles in a tur-
bulent flow. The goal is to measure Lagrangian trajectories to analyze their
velocity and acceleration distributions, what is of actual interest for the under-
standing of fully developed turbulence [1]. Therefore the detection of particle
positions, especially their longitudinal or depth positions, has to be optimized.
We found that a pronounced improvement can be achieved using particle val-
idation routines.
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2 Hologram recording and reconstruction

To determine the characteristics of a turbulent flow we have used in our in-
vestigations a digital holographic in-line arrangement with a single camera
(Fig. 1). This setup has the main advantage, that it is very compact and
simple.

Fig. 1. Digital holographic in-line setup used to record particles in a small cuvette.

The collimated beam of a Nd:YAG laser is used to illuminate the object,
e.g. a small turbulence chamber consisting of a glass cube filled with pure
water and seeded with 10 μm monodisperse polystyrene microspheres. The
bottom of the cube can be heated just to produce particle motion. The laser
light which is scattered by the particles forms the object light, while the un-
obstructed light propagates to the CCD sensor and acts as the reference light,
thus forming a digital hologram. Since the mainly forward-scattered light is
recorded the laser light is used very economically, which is another impor-
tant advantage of the method. In our experiments we used a Kodak Megaplus
ES4.0 camera with 7, 4 μm square pixels. For performance reasons we only
used the inner 1024× 1024 pixels.
Before reconstructing the recorded volume the digital holograms are prepro-
cessed to improve their quality. The disturbing interference pattern of sta-
tionary objects and reflections are filtered out by respectively subtracting the
time average of all holograms.
The reconstruction of the digital holograms is directly performed in the com-
puter. If a hologram h(x, y) is illuminated with the plane reference wave
R(x, y) of the wavelength λ, the diffraction image Γ (ξ, η) in the distance
d is described by the Fresnel-Kirchhoff integral [2]:

Γ (ξ, η) =
i

λ

∫ ∞

−∞

∫ ∞

−∞
h(x, y)R(x, y)

exp(−i2π
λ ρ)

ρ
dxdy (1)

with
ρ =

√
(x− ξ)2 + (y − η)2 + d2 (2)

This reconstruction of the real particle image fields can effectively be re-
alized with different algorithms. We used the Fresnel approximation where ρ
is approximated by a Taylor expansion. The whole volume is composed of re-
constructed planes of 10 μm distance each, allowing the extraction of particle
positions.
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3 Particle detection, validation and tracking

First of all the well known intensity method is used to extract particle posi-
tions. In this method bright spots in the reconstructed planes are determined
to get the transversal positions. Their intensity maxima in depth are defined
as their longitudinal positions. Main problems of this method are the inac-
curacy of the depth position and speckles that are erroneously detected as
particles.
To filter out the speckles, different particle validation methods have been
presented. Due to the availability of the complete complex wave in the re-
construction planes, one can distinguish between speckles and particles by
analyzing the phase signature in the region of the detected particles [3] or
look for other particle signatures in the complex wave field [4, 5]. With these
validation methods, it is also possible to get more accurate values for the
depth position of the particles.
The reconstructed particle fields of subsequently recorded holograms were
then processed using a free particle-tracking algorithm [6]. The resulting traces
show physical reasonably trajectories in the transversal two-dimensional co-
ordinate view, but in the depth coordinates there are sudden and probably
defective jumps in the particle traces due to the limited depth resolution.
Thus, the traces in this dimension are fitted with spline functions. The results
are three-dimensional trajectories of validated particles in a reconstructed vol-
ume of 7, 6×7, 6×20 mm3 (Fig.2). They indicate the onset of a slow convective
flow in which most of the particles move upwards caused by slightly heating
the bottom of the cuvette.
To compare the different particle validation methods the spline curves for
the reconstructed particle fields validated with the different methods are as-
sumed to be the true trajectories. The comparison of the standard deviations
of the particles to their spline curves indicates, that the complex amplitude
method [4] seems to be most suitable to enhance the longitudinal accuracy
of the particle positions. For our experimental realization we reached an en-
hancement of the standard deviation from 102, 4 μm for the intensity method
to 76, 2 μm for the complex amplitude method.

4 Conclusions

Trajectories of particles following a slow convection flow have been tracked
with a digital in-line holography approach. To enhance the depth position of
particles different particle validation routines were compared. The uncertainty
could thus be reduced by about 26%.
Prospectively, cameras with frame rates higher than the Kolmogorov time
scale [7] can be utilized to measure Lagrangian particle trajectories in three
spatial dimensions and to obtain e.g. Lagrangian velocity and acceleration
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distributions in a convenient turbulent flow. The next steps are further im-
provements of particle positions and particle tracking for longer time periods.
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Fig. 2. 3D particle trajectories in a small water-filled glass cube. The particles have
been tracked over 50 reconstructed volumes with a framerate of 7, 5 fps.
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Although relatively often used for liquid flows, Particle Tracking Velocimetry
(PTV) is still considered as a major challenge in gaseous flows. One of the
main objections is the higher tracer density necessary for gaseous measure-
ments [1, 2], resulting from higher characteristic speeds and smaller space-
and time-scales of the important flow structures. Nevertheless, the widely
recognized interest of Lagrange-based measurements (such as PTV) for the
investigation of turbulence and vortical structures in real flows [3] is a suffi-
cient reason to face all these challenges. The solution proposed in this work is
to employ coloured particles and use the associated separation into different
colour classes. Considering separately each resulting colour class, the apparent
particle density is decreased without restrictions in the measurement accuracy.

Colour recognition of tracer particles is realised by means of an Artificial
Neural Network (ANN), treating the raw information out of the Bayer-Pattern
(G-R/B-G) sensors of the cameras. As a consequence, the 3-D correspondence
problem becomes immediately easier to solve concerning two neighbour tracer
particles of different colours. Furthermore, considering a single colour class
for the lagrangian reconstruction of trajectories makes it cheaper in terms of
computations. The technique described in this paper for particle colouring
is easily reproducible by other researchers, and a new training of the ANN
would enable the recognition of different colour shades produced by different
pigments. The applied PTV technique (500 Hz, exposure time : 1 ms) is used
to locate the particles in 3-D in a small Eiffel wind tunnel. The test section
contains 3 winglets, employed to create locally various flow conditions (re-
circulation, streamline curvature, acceleration) as documented in companion
CFD simulations. Using these simulations, the ability of coloured tracer parti-
cles to respond to a steep change in the velocity of a gaseous flow is quantified
through the Stokes number, Eq. 1. This is done by assuming a Stokes flow
around the tracer particles [4], while τf is the characteristic time-scale of the
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gaseous flow, obtained by dividing a characteristic scale by a characteristic
velocity, both issued of companion simulations.

τp =
1
18
ρpd

2

ρfν
, τf =

lchar

Vchar
, Stk =

τp
τf

(1)

Monochrome indexed images are used, with raw information from a G-
R/B-G Bayer Pattern (”input data”, see Fig.1) delivered to the entry layer
of the ANN as a feature vector of 12 elements [5]: The 9 values of the pixels
around the next green one, plus the 2-D coordinates on the image and one
integer function of the location of the next green pixel on the Bayer pattern
(0: there, 1: right, 2: left, 3: below, 4: above).

Fig. 1. ANN principle for colour classification

In order to train the ANN, the wind tunnel is first seeded exclusively
with red or green or blue Expanded Micro Spheres (EMS�) particles of 70
μm diameter, leading to a training file composed of 5000 feature vectors for
each colour. The training algorithm is based on back-propagation, activated
through 5000 steps. The resulting ANN is then tested against a set of 100 fea-
ture vectors of each colour, randomly sampled among non-training data. For
each colour, the percentage of effectively recognized vectors is called ”Recog-
nition rate”. Excellent results are obtained, with a typical recognition rate
exceeding 90% : 97% for red, 91% for green, 85% for blue.

Besides solving the 3-D correspondence problem, calibration of each cam-
era is required to compute 3-D coordinates. Calibration means determining
the extrinsic and intrinsic parameters of the used camera model. Extrinsic
parameters define the location and orientation of the camera reference frame
with respect to a known world frame. The intrinsic parameters characterize
the optical, geometric, and digital properties of the camera. The mathematical
formulation of the camera model is expressed by the collinearity equations,
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which describe the transformation of 3-D world coordinates to 2-D image
coordinates [6]. To compute the unknown camera parameters a set of well-
known 3-D coordinates is needed, which can be mapped to their corresponding
positions in camera images. For this purpose the image of a calibration tar-
get (Fig.2, left) is captured for each camera. For each mark two colinearity
equations are set up (one for each image coordinate). This leads to an over-
determined equation system, solved by the least-squares method. To search
for tracer correspondences in camera image triples the epipolar geometry is
utilized as described by Maas [1]. Indeed, the number of candidates is now
limited to tracer positions near to intersections of epipolar lines (Fig.2, right).
For a further reduction of ambiguities, the colour information can now be
used.

Fig. 2. Calibration target (left) and example of correspondence search using epipolar
geometry and considering colour (right)

Finally, the 3-D coordinates are treated by a Tracking algorithm, as it is
done by different authors [7, 8]. The presently employed PTV method uses the
specific algorithm of Crocker and Grier [9] to link locations of the N particles
present at a given step of time. Colour information is also taken into account.
The principle of this algorithm relies on the squared displacement δ2i between
the point of ID i and its corresponding candidate at the next step of time.
This algorithm actually minimizes the sum of these squared displacements,∑N

i=1
δ2i . More efficient algorithms taking into account a criterion of minimum

acceleration [3] are presently being tested.
The obtained results (Fig. 3) demonstrate that the complete 3-D PTV pro-

cedure is working very well in the considered flow, involving organized struc-
tures, and is able to reveal small-scale recirculating flow (millimeter size) and
simultaneously long, uninterrupted and curved trajectories. This constitutes
an ideal complement to other measuring techniques such as Particle-Image
Velocimetry. Present tests show the possibility of extending this method for
later investigations involving a higher number of colours, higher velocities and
small-scale turbulent structures.
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Fig. 3. 3-D PTV results of velocity magnitude around the three winglets, using
three different tracer particle colours (scale in mm)
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J. Pöppl and H. Handels, Springer Verlag (1993).

3. N.T. Ouelette, H. Xu and E. Bodenschatz, Experiments in Fluids, 40, 301-303
(2006).

4. C.T. Crowe, Multiphase flow handbook, Eds. Taylor & Francis (2006).
5. R. Kuhn, R. Bordás, B. Wunderlich, B. Michaelis and D. Thévenin, 10th Interna-
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1 Introduction

How the distance between two fluid particles advected by a turbulent flow
evolves in time is one of the fundamental questions in turbulence research. The
final goal of this two-particle dispersion problem is to describe the probability
density function (PDF) of the dispersion P (r, t), which gives probability to
have a pair of particles whose relative distance is r at time t. L.F. Richardson
made the first attempt to phenomenologically derive an equation of P (r, t)

∂tP = ∂r[rd−1K(r)∂r (P/rd−1) ] (1)

where d is the spatial dimension and the diffusion coefficient is given by the
inertial range scaling as K(r) ∝ ε1/3r4/3 with the energy dissipation rate ε.

Since then a number of models have been proposed by extending this type
of the diffusion equation of P (r, t) (see e.g. [1]). Here we consider the recently
proposed equation in Ref.[2]:

(Tc(r)/λ)∂2
t P + ∂tP = ∂r[K(r)rd−1∂r(P/rd−1)] + σ∂r(v(r)P ), (2)

which is called self-similar telegraph model. The characteristic time and ve-
locity Tc(r), v(r) are determined by the Kolmogorov scaling, namely Tc(r) ∝
ε−1/3r2/3, v(r) ∝ ε1/3r1/3. The importance of this telegraph model lies in the
parameters λ, σ: λ measures strength of persistency (persistency here means
that the sign of dr/dt stays the same); σ gives strength of drift, which mea-
sures difference in the transition rate between compression dr/dt < 0 and
expansion dr/dt > 0 states. Obviously the parameters λ, σ reflect coherence
of the turbulent flow. Another feature of this model is finiteness of the diffusion
speed.

The aim of our study is to check whether or not the telegraph model
provides a better description of P (r, t) for 2D inverse cascade turbulence. In
Refs.[2] such test is made for 2D Boussinesq convection turbulence where the
nonlinearity generates successively smaller scale structures (direct cascade of
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the temperature variance occurs). Qualitative difference of the advecting tur-
bulences, namely difference between smaller-scale generating and larger-scale
generating (inverse cascade) turbulences, is likely to influence the dispersion.
Such difference can be captured by the telegraph model since it contains cer-
tain information about coherence of the flow, as we shall see.

2 Results and Discussion

In practice the check of the telegraph model may consist of three steps: (i)
estimation of the parameters λ and σ from a direct numerical simulation
(DNS) of two-particle dispersion in the 2D inverse cascade turbulence; (ii)
numerical simulation of the telegraph model with the parameters determined
by the step (i); (iii) comparison of P (r, t) or other mean values obtained from
the telegraph model (result of the step (ii)) and those obtained from DNS.

So far we are in the middle of the step (ii). We here report the result
of the step (i). It is known that the parameters λ, σ can be estimated from
PDF of the exit time [2]. As shown in Fig.2, the PDF has a peak around
the origin and decreases exponentially at large exit times. From the width of
the peak and the exponential decrease, the parameters are estimated as λ =
11, σ = −0.067 for the 2D inverse cascade turbulence. For the 2D Boussinesq
convection turbulence, the values are obtained as λ = 5.2, σ = 0.083 [2]. The
sign of the drift coefficient σ is opposite, which has important consequences.
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Fig. 1. Energy spectrum and energy flux (inset) of the 2D inverse cascade turbu-
lence (resolution 10242 with hyperviscosity and a large-scale friction).
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Fig. 2. PDF of the exit time in lin-log and lin-lin (inset) scales. The exit time is
defined here as the time needed for the separation r to become 1.1r.

A way to appreciate this sign difference may be to compare influence of
turbulent flow structures on particle pairs. Coherent structures in the 2D
Boussinesq convection turbulence are clearly visible in terms of the gradient
of temperature |∇T | as shown in the left of Fig.3. It is known that around
high-|∇T | regions, strain rate is also intense [2]. Most of the rapidly expanding
particle pairs are clustered around these regions. On the contrary, in the 2D
inverse cascade turbulence, no such clustering is observed. Correspondence
between the rapidly expanding particle pairs and the flow structures (vorticity,
strain field, and stream lines) is not seen as clear as the convection though
stagnation points are known to play a major role in Ref.[3]. This kind of
impression of the difference out of the rough observation can be quantified by
means of the coefficient λ, σ in the telegraph model.

In other words, the telegraph model may offer a new way of quantifying
turbulent flows. Until the conference we shall complete our research steps (ii)
and (iii) mentioned above with higher resolution DNS.
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Fig. 3. Snapshot of the rapidly expanding pairs of particle (connected with short
lines) and flow structure. Top left: 2D Boussinesq convection turbulence (|∇T |)
[2]. Top right: 2D inverse cascade turbulence (vorticity). Bottom left: 2D inverse
cascade turbulence (rate of strain). Bottom right: 2D inverse cascade turbulence
(stream lines).
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1 introduction

Several researchers have examined the vertical dispersion of fluid particles in
stratified flows to obtain a better understanding of mixing in geophysical flows.
Pearson et al. [5] used a Langevin model to predict that the mean square of
vertical fluid particle displacements reaches a plateau with 〈δz2〉 ∼ 〈w2〉/N2

at t ∼ N−1 in stationary stratified flows. Here, w is the vertical velocity fluc-
tuation and N is the Brunt-Väisälä frequency. At long times, they predict
that 〈δz2〉 ∼ 〈w2〉t/N , when molecular diffusion alters the particle density.
Venayagamoorthy and Stretch [6] examined the role of the changing particle
density on vertical dispersion in DNS of decaying stratified turbulence and
observed that after one eddy turnover time diabatic dispersion dominated.
Van Aartrijk et al. [1] studied particle dispersion in DNS of stationary strat-
ified turbulence and observed a plateau with 〈δz2〉 ∼ 〈w2〉/N2 at t ∼ N−1.
However, some of the DNS showed that 〈δz2〉 ∼ t at long times caused by
density changes of fluid particles by molecular diffusion.

In a recent paper we have analysed and derived relations for the vertical
dispersion of fluid particles in stratified turbulence [4]. Assuming a statisti-
cally stationary and stratified homogeneous turbulent flow and integrating the
Boussinesq equations along a fluid particle trajectory, we derived

〈δz2〉 =
2

N2

[
εP t

(
1−O(R−1/2)

)
+ 2EP

]
(1)

for t À EP /εP . Here, εP is the dissipation of potential energy, EP is the
potential energy, R = εK/νN2 is the buoyancy Reynolds number, εK is the
turbulent kinetic energy dissipation and ν is the viscosity. Adiabtic displace-
ments of fluid particles leads to the last term in (1) and gives a finite con-
tribution to long time dispersion. The diabatic dispersion contribution due
to the changing particle density is represented by the first term on the right-
hand-side of (1) and leads to 〈δz2〉 ∼ t for t →∞. In laboratory experiments
or numerical simulations R is not always large, therefore, the O(R−1/2)-term
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in (1) can give a significant contribution. Relation (1) is expected to be valid
when t À T where T is an eddy turnover time. Assuming an inertial range at
scales larger than the Ozmidov length scale as found in [3] we also derived

〈δz2〉 =
2

N2
εP t

[
1 + πCPL −O(R−1/2)

]
, (2)

for N−1 ¿ t ¿ EP /εP . We estimated that the constant CPL ≈ 3.
More background on the analysis and relations for vertical dispersion in

decaying stratified turbulence can be found in [4]. The aim of this study is
to test relations (1) and (2) for the vertical dispersion of fluid particles by
numerical simulations.

2 Numerical simulations and results

We have carried out a series of DNS of homogeneous stratified turbulence.
Forcing is applied to obtain statistically stationary turbulence. Numerical and
physical parameters of the DNS are presented in table 1.

Four sets of simulations are carried out where the buoyancy Reynolds num-
ber R is varied between the sets but is approximately equal for all simulations
within each set, while the Froude number Fh = εK/(NEK), where EK is the
mean turbulent kinetic energy, is varied. The four sets are designated A,B, C
and D. The Prandtl number, Pr = ν/κ = 0.7 in all these simulations. More
details on the numerical approach and forcing can be found in [3][2].

Table 1. Numerical and physical parameters of the DNS. Lh/Lv is the aspect ratio
of the horizontal to vertical domain size and Nh, Nv are the number of nodes in the
horizontal and vertical direction, respectively.

run Fh R Lh
Lv

Nh ×Nv

A1 0.03 0.9 2.0 128× 80
A2 0.02 0.9 3.3 256× 96
A3 0.01 0.9 5.0 512× 128
B1 0.1 9.3 2.0 128× 80
B2 0.06 9.3 3.3 256× 96
B3 0.04 9.5 5.0 512× 128
B4 0.03 9.9 6.0 1024× 256
C 0.07 38 1.0 512× 512
D1 2.2 6200 1.0 128× 128
D2 1.6 6200 1.0 256× 256
D3 0.8 5900 1.0 512× 512

If RÀ 1 the relations (1) and (2) can be written as
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〈δz2〉∗ = 1 +
1
2
t∗ , t∗ & 1 , (3)

〈δz2〉∗ =
1
2
t∗ (1 + πCPL) , Fh ¿ t∗ ¿ 1 . (4)

Here, 〈δz2〉∗ = 〈δz2〉N2/4EP and t∗ = t/T are the nondimensional mean
square of the vertical particle displacements and time respectively. The eddy
turnover time is defined by T = EP /εP .

Figure 1 shows the time development of 〈δz2〉∗ in the DNS together with
relations (3) and (4). The initial period shows ballistic dispersion with 〈δz2〉 ∼

Fig. 1. Time development of 〈δz2〉∗ vs. t∗. The dashed and dotted lines show (3) and
(4) respectively, and the solid lines DNS results. The arrow indicates the direction
of decreasing Fh or increasing Re. (a) B-runs (R ' 9) and (b) D-runs (R ' 6000).

t2. Thereafter, the growth of 〈δz2〉 slows down. The evolution of 〈δz2〉∗ should
become independent of Fh when R À 1 and Fh ¿ 1 according to our analysis.
However, the curves in figure 1(a) still show a clear dependence on Fh for
t∗ < 1. The mean square displacement, 〈δz2〉∗, moves closer to the straight
line representing (4) as Fh decreases, but no linear range is visible. We must
conclude that we have to perform simulations with considerably lower Fh to
test relation (4). We also see the onset of a plateau at t∗ ∼ 1 in figure 1(a).
Such a plateau has also been observed [1] and indicates that the adiabatic
mean square displacement has approached its upper bound 〈δz2〉 = 4EP /N2,
i.e. 〈δz2〉∗ = 1. The adiabatic dispersion regime or the onset of a plateau
cannot be seen in DNS results with Fh & 1 displayed in figure 1(b).

After the slow down of vertical dispersion seen in figure 1(a), 〈δz2〉∗ grows
faster again and approaches the asymptotic diabatic dispersion limit (3) with
〈δz2〉∗ ∼ t∗. Noticeable is that the asymptotic diabatic dispersion limit is seen
in DNS with strong as well as weak stratification. Furthermore, the plots show
the collapse of 〈δz2〉∗ for t∗ > 1 in DNS with approximately equal R. The
relation (1) predicts that 〈δz2〉∗ → t∗/2 for long times, as R is increased. We
see that the simulation results are consistent with this prediction. Note that
the linear growth at late times only can be observed in stationary flows. In
decaying stratified turbulence, 〈δz2〉 goes to a constant [4].
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In figure 2(a) most of the runs are collected. All runs initially display
ballistic dispersion with 〈δz2〉 ≈ 〈w2〉t2. Pearson et al. [5] suggested that adi-

Fig. 2. (a) Time development of 〈δz2〉N2/〈w2〉 and (b) 〈δz2〉∗. The solid lines are
the results of all A, B and C runs. The dashed line in (a) indicates 〈δz2〉 ∼ t2.

abatic dispersion should be bounded by 〈δz2〉 ' 〈w2〉/N2 and reach this limit
at t ' N−1. This behaviour was observed by [1] in their DNS. In our DNS,
scaling of 〈δz2〉 and t by 〈w2〉/N2 and N−1 respectively does not lead to a
collapse of the adiabatic dispersion plateau in the many DNS. The reason why
we do not observe this scaling is that our DNS covers the regime R & 1 while
[1] considered the regime R . 1. Figure 2(b) shows the time development of
〈δz2〉∗ for the same runs. In accordance with (3) the onset of the adiabatic
dispersion plateau appears when 〈δz2〉 ' 4EP /N2. However, the range of Fh

is too limited to firmly determine whether the onset appears when t ∼ EP /εP

(t∗ ∼ 1) or when t ∝ N−1. Nevertheless, it seems that the DNS data are in
better agreement with the prediction by [4]. Venayagamoorthy and Stretch
[6] also found that T is the relevant dispersion time scale.

Since the DNS do not reveal a clear inertial stratified turbulence range,
we have carried out additional hyperviscosity simulations. Figure 3 shows
the time development of 〈δz2〉∗ in the hyperviscosity simulations together
with relations (3) and (4). For increasing stratification, 〈δz2〉 moves closer to
expression (4) for the adiabatic dispersion in the inertial range of stratified
turbulence with CPL = 3 for N−1 ¿ t ¿ T , but there is no extended range
where it matches the relation.

3 Conclusions

We have used DNS and numerical simulations with hyperviscosity to examine
vertical fluid particle dispersion in stationary stratified homogeneous turbu-
lent flows [2]. The DNS are in good agreement with relation (1) for the mean
square of the vertical fluid displacements 〈δz2〉 derived by [4]. In all DNS,
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Fig. 3. Time development of 〈δz2〉∗. The straight and bent thin dashed lines show
relations (4) and (3) respectively. In both plots the solid lines show the result of the
hyperviscosity simulations. The arrow indicates the direction of decreasing Fh.

spanning a quite extended range of Froude and Reynolds numbers, 〈δz2〉 ap-
proaches 2εP t/N2 in the long time limit. For increasing stratification the adi-
abatic dispersion contribution moves closer to 2πCPLεP t/N2 with CPL ∼ 3
for N−1 ¿ t ¿ T , according to the simulations with hyperviscosity. However,
the growth of 〈δz2〉 is somewhat slower than linear even in the simulation
with the strongest stratification. We can only speculate that it may require
very extended inertial ranges as in geophysical flows to observe the behaviour
expressed by (4). At about t ≈ T we see the onset of a plateau since the
adiabatic dispersion reaches its upper bound 4EP /N2.
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Spontaneous symmetry breaking and bifurcations can be observed in highly
turbulent flows. Such phenomena are particularly interesting because they
may be considered as laboratory models for changes of states in far-from-
equilibrium complex and/or large natural systems.

The von Kármán flow is a closed swirling shear flow produced by two coun-
terrotating impellers in a cylindrical vessel which allows to easily access high
Reynolds numbers Re up to 106. In this study, we have used water-glycerol
mixtures to scan a wide range of Re from 102 to 106. Using stereoscopic PIV,
we have been able to measure the three components of the velocity field in a
meridian plane of the flow. Our acquisition frequency is moderate, around 10
Hz, but our system is able to record up to 32 000 velocity fields providing a
large statistics and highly converged averages.

With exact counterrotation of the impellers (F1 = F2), the system (cf.
fig. 1(a)) is symmetric with respect to any Rπ-rotation exchanging the two
impellers (like rotating a sandglass). At low Re, the laminar flow consists of
two toric recirculation cells separated by an azimuthal shear layer (cf. fig.

(a) (b) (c) (d)

Fig. 1. (a) Schematic view of the von Kármán experiment. We define the Reynolds
number as Re = π(F1 + F2)R

2

c/ν, where F1 and F≥2 are the impellers frequencies,
ν the viscosity and Rc = 10cm the vessel radius. (b-d) Examples of velocity fields in
the meridian plane of the von Kármán flow: (b) instantaneous flow, (c) symmetric
and (d) bifurcated mean flows.
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1(a) and (c)) and reflects the symmetry of the system. At higher Re, as the
transition to turbulence occurs, the Rπ-symmetry is only conserved by the
time-averaged flow.

When both frequencies differ (θ = (F1−F2)/(F1+F2) �= 0), the shear layer
moves towards the slowest impeller, breaking the Rπ-symmetry, but keeping
the two-cells topology (cf. fig. 1(c)) if θ is small. For θ above typically 0.1 to
0.2 depending of the impellers design, the flow switches to a one-cell topology
i.e. there is only one toric recirculation cell left as illustrated in fig. 1(d).

Furthermore, when the flow is turbulent enough —in the inertial regime—,
i.e. for Re � 104, we observe the same kind of symmetry breaking occurring
spontaneously at exact counterrotation θ = 0. We call such transition between
time-averaged flows with different symmetries “turbulent bifurcations”. Of
course, such a turbulent bifurcation can be associated —or not associated—
with a topological change as in fig. 1(c) and (d). This will be illustrated below
with the curved-blades-impellers flow described in ref. [1], rotated in either
positive (+) or negative (−) sense, i.e. pushing the fluid with the convex or
concave faces of the blades.

1 Effect of the Reynolds number: onset of multistability

We use a global quantity —e.g. the torque number Kp = (Γ1 + Γ2)/2, where
Γ1,2 are the non-dimensional torques— to monitor the flow regimes across the
full Reynolds number range (cf. fig. 2). The two lowest curves corresponds to
the Rπ-symmetric (s) two-cells flows (cf. fig. 1(c)) obtained when both motors
are running at the same frequency for both (+) and (−) rotation sense. We
observe successively a viscous regime at low Re, the transition to turbulence
at intermediate Re and an inertial plateau at high Re [2].

In the (−) sense, this curve is obtained if and only if the two motors are
started together and carefully kept at the same frequency at any time. If,
above Re = Rem ∼ 104, one impeller is started first, it pumps the fluid in
a one-cell flow and then we observe that running the second impeller does
not change the one-cell flow topology. This methods produces two bifurcated
regimes (b1) and (b2) (cf. fig. 1(d)) which are each other symmetric through
Rπ-rotation. These regime give the upper branch (�) in fig. 2, with 3 time
more torque.

Finally, one should notice that the three regimes (s), (b1) and (b2) co-exist
for Re � Rem = 104. This is an example of multistability in turbulence.
Bifurcated flows appear stable, i.e. once they are created, the way to recover
the Rπ-symmetric flow is to stop the motors or at least to decrease Re below
Rem. Ravelet et al. have shown that the symmetric state (s) is metastable or
marginally stable [1]. Therefore, there is a large hysteresis and we consider
this turbulent bifurcation as a subcritical bifurcation in Re.
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Fig. 2. Non-dimensional torque Kp(Re) for sense (+) (�), and sense (−) with
symmetric flow (◦) and bifurcated flow (�).

For the (+) rotation sense, no such strongly subcritical bifurcation is ob-
served and there is only one branch for Kp at θ = 0. However, the question
of Rπ-symmetry breaking occurs in the same Reynolds number range.

Careful PIV measurements shows that, at θ = 0, the shear layer position zs

remains permanently in the equatorial plane z = 0 for low Reynolds numbers
—Re � 104— only. For higher Re, we observe two effects. In a very narrow
range around θ = 0, i.e. for |θ| � 0.005, we observe fluctuations of the mean
position 〈zs〉 within ±0.2Rc with frequent reversals between positive and neg-
ative values [3]. So there is an intermediate time scale on which symmetry
breaking can be detected but, on very long time scales the mean position is
〈zs〉 = 0 for θ = 0. This regime recalls the magnetic reversal regime of the geo-
dynamo of the von Karman Sodium (VKS) experiment [4]. In a wider range
of θ —for typically |θ| � 0.1—, we observe that sensitivity to the asymme-
try of the system ∂〈zs〉/∂θ increases with the Reynolds number and seems
to saturate above Re ∼ 6 × 104. Theses behaviors may be interpreted as a
turbulent bifurcation conserving the flow topology. In this case, the bifurca-
tion appears typically of supercritical nature. However, precise and continuous
measurements of the amplitude of these two effects —(i) time intermittency
between multiple symmetry breaking states and (ii) increase of susceptibility
∂〈zs〉/∂θ— is still an experimental challenge.

2 Controlled Rπ-symmetry breaking

In the previous section, we focused on the turbulent bifurcations observed
at —or near— θ = 0 with Reynolds number for control parameter and the
absolute torque or the mean shear layer position as order parameter. To un-
derstand the global dynamics, it is also necessary to vary the other control
parameter, θ, which continuously controls the symmetry of the system itself.

At a given Reynolds number, we perform cycles in θ between θ = +1 and
θ = −1, i.e. between the two regimes where one impeller is at rest. Such
cycles are displayed in fig. 3. The order parameter we present in this paper is
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Fig. 3. ΔKp(θ) for both (−) and (+) rotation sense.

the reduced torque difference between both impellers ΔKp = Γ1 − Γ2. This
parameter directly traces back the symmetry of the flow in any flow regime
while 〈zs〉 is defined only in the two-cell regimes.

For negative (−) rotation sense (cf. fig. 3(a)), the subcriticality in θ is obvi-
ous with a large hysteresis cycle between the two symmetric one-cell branches
(b1) and (b2) surrounding the tiny metastable two-cells branch (s) in the center
of the plot. However, for positive (+) rotation sense (cf. fig. 3(b)), we observe
a single almost continuous curve. The topological transition between the non-
symmetric two-cells flow and the one-cell flow, near |θ| ∼ 0.1, is a continuous
transition. However, very close to θ = 0, the curve shows a small but sharp
transition from negative to positive torque difference between θ = −0.005 and
θ = +0.005, i.e. in the region of the fluctuations and reversals of the shear
layer position. Such behavior is characteristic of a noisy subcritical transition
where the hysteresis region is replaced by a region where the different regimes
are explored successively along time.

3 Conclusion

We observed two very different examples of turbulent bifurcations occurring
above Re ∼ 104. These bifurcations seems really specific of fully developed
turbulent flows and correspond to new transitions with spontaneous symme-
try breakings —at least on certain intermediate time scales— in the fully
turbulent regime at high Reynolds number.
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Convection is one of the most relevant heat transport mechanism and we can
find it in many situations as for example geophysics or astrophysics. We study
it in a vertical channel which links two chambers, the cold one at the upper
end and the hot one at the lower end. In the channel, the flow is either globally
ascending in the right part, and descending in the left one, or the opposite.
Thus, we can see flow reversals and they can be characterized by a time τ .
It is worth noticing that reversals can be found in other situations such as
for example with earth magnetic field or in the recent magnetic turbulent
dynamo experiment [1]. Here, we study the variation of τ with the difference
of temperature δT between the hot plate and the cold plate.

For the experiments, the cell, filled with water, is constituted of a Rayleigh-
Benard’s cell with two horizontal plates : the upper is cold and the bottom
one is hot. The section of the cell is 40×10 cm2 and its height is 40 cm.
The thickness of the walls, made with PMMA, is 2 cm. Furthermore, two
honeycomb structures allow to prevent convection from appearing in about
50% of the cell and, as we can see on Fig. 1, between these structures, the
channel, which is the zone of interest, has a cross section of 10×10 cm2 and
its height is 20 cm. Besides, the temperature of the upper plate is regulated
by water bath and thanks to resistors, Joule effect heats the bottom plate.

Fig. 1. Picture of the cell.
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To measure the difference of temperature, we use thermistors inserted into
the plates. Moreover, we record images of the channel, obtained by shadow-
graph, thanks to a camera with a frequency of 1 Hz. Each measurement lasts
three weeks and it allows to have several thousands of flow reversals. Looking
at the correlation between two successive images, we can deduce in real time
if the flow in the channel is globally descending in the left part, and ascending
in the right one(ε = 1), or the opposite (ε = −1). We thus define the function
ε(t), whose auto correlation:

C(t) =< ε(t′ + t)ε(t′) > (1)

characterizes the dynamics of these reversals. As a first step, we can try to
extract a characteristic time for the reversals from C(t). With a simple model,
where the probability of a reversal during the time interval dt is dt/τ , with a
constant τ , it can easily be shown that C(t) = e−2t/τ . An exponential fit of
C(t) gives τ , which is shown on Fig. 2, versus the difference of temperature
δT .

10
1

10
2

10
3

δT  (K)

τ 
 (

s)

Fig. 2. Characteristic time versus the difference of temperature.

In [2] and [3], it is shown that the driving power Q scales as (δT )4/3, and
that Q ∝ U3, where U is the velocity of thermal plumes. Then we can expect
U ∝ (δT )4/9, and τ ∝ (δT )−4/9. Within the large uncertainty, our results are
coherent with this scaling. In a second step, we can remark that C(t) do not fit
perfectly with an exponential, but rather better with a stretched exponential
(see figure 3):

C(t) = exp(−(t/τo)β) (2)
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Fig. 3. C(t) versus ln(t). The slope at the inflexion point gives β.

In the article [4], such a behavior is related to a random distribution of the
relaxation times τ . The width of the distribution of ln(τ), w, is well estimated
by:

w2 =< ln(τ)2 > − < ln(τ) >2� 1
β2
− 1 (3)

Such a distribution could reflect the complexity of the flow in the chambers
giving rise to the reversals. The same behavior for other reversals phenomena
(as earth magnetic field reversals) could also reflect the complexity of the
sublying flow.
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Linear Instability of Streamwise Corner Flow
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A streamwise corner is obtained when two flat plates meet at an angle to
form a corner parallel to the free-stream flow direction. The interaction of the
two boundary layers creates a secondary flow that makes the flow suscepti-
ble to separation and early laminar-turbulent transition, which is unwanted.
Despite its simplicity, there are not many studies of this flow and current
understanding of instability, laminar-turbulent transition, and turbulence is
very incomplete. As such, existing computations cannot yet describe prema-
ture transition or separation observed in experiments.

On the long term the present work is intended to fill an obvious gap
in predicting, understanding, and controlling laminar-turbulent transition in
streamwise corners. The laminar base flow for a 90o right-angled corner is
considered. Linear stability computations have been performed using a two-
dimensional local linear stability theory to compute temporal growth rates and
a parabolized stability equations (PSE) approach for spatial growth. These
methods have been developed out of previous work by Alizard & Robinet for
two-dimensional flows [1].

Typical eigenvalue spectra for both approaches are compared in Fig. 1.
The temporal amplification is for Re = 707 (Rex = 2.5 × 105) and α = 0.2
for comparison with Parker & Balachandar [2]. The spatial case is for the
frequency Ω = 0.08 at Re = 450 based on the initial position x0 = 225. All
data are normalized with respect to the length scale δ =

√
2νx/U∞. Different

symmetries of the disturbance profiles are possible with respect to the corner
bisector: “even modes” whose streamwise velocity is symmetric, and “odd
modes” which are antisymmetric with respect to the bisector. On one hand
this information was used to reduce the number of unknowns by a factor of 2
(by computing each class of disturbances separately) and on the other hand
it was used to verify the code by solving the full problem without symmetry
conditions, see Fig. 1. A grid refinement study was performed at the same
time to assure the grid independence of the results.

All eigenvalue spectra exhibit a branch of eigenvalues which can be at-
tributed to Tollmien-Schlichting (TS-) modes and an isolated corner mode.
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Further insight into these is obtained from their corresponding eigenfunctions,
see figures 2-4. The two most unstable eigenvalues are odd and even. They cor-
respond to two-dimensional TS-waves of the flat-plate boundary layer. This
can be seen in the eigenmodes of Fig. 2 where the amplitudes develop the
shape of a TS-wave far away from the corner, both in y and z direction.
Accordingly, the other TS-modes correspond to pairs of oblique waves with
increasingly smaller transverse wave lengths, as illustrated by the local max-
ima in Fig. 3. The even-symmetric modes have a local maximum in the corner.
Compared to the odd symmetries where this maximum is absent (see Fig. 2,
left) they are more unstable than the odd ones, see Fig. 1.
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Fig. 1. Comparison of temporal (left) and spatial spectra (right)

Fig. 2. Streamwise velocity component of the most unstable odd (left) and even
(right) temporal TS modes at Re = 707 (Rex = 2.5 × 105) α = 0.2
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Fig. 3. Streamwise velocity contours of higher (even) TS-modes. Mode 3 (left),
mode 5 (right)

Fig. 4. Spatial structure of the temporal corner mode at Re = 707 (Rex = 2.5×105)
α = 0.2. Streamwise velocity component (left) and pressure (right).

The eigenfunctions are essential to classify the eigenvalues. As such, the
corner mode shown in Fig. 4 is clearly distinguished by a velocity maximum
which rides on the inflection point of the base-flow velocity profile in the corner
bisector. Because of this it is supposed to be related to an inviscid instability.
Away from the corner and along the plates the corner mode decays. Its relation
to the corner is best illustrated in a plot of its pressure eigenfunction in Fig. 4,
right.

Even if the corner mode is very close to the border between stable and
unstable disturbances, it is never unstable in the present local stability anal-
ysis. It seems that the local theory cannot explain why experimentalists ob-
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serve a premature laminar-turbulent transition of the corner flow compared to
the flat-plate boundary layer. Our comparison with Parker & Balachandar [2]
shows close but nor identical agreement. The latter can be attributed to slight
differences in the computed base flow, which is very sensitive, cf. Ridha [3].
This aspect is now further investigated in the work of Alizard et al. [4].

However, extending our computations to a full PSE that follows a given
frequency in downstream direction such that non-parallel growth of the flow
is no longer neglected, we made an unexpected observation, shown in Fig. 5.
Non-parallel effects are irrelevant for the TS modes as in the case of the Blasius
boundary layer, but the corner mode which was stable before now becomes
unstable as well. Different non-parallel criteria will be studied in order to
determine precisely the critical Reynolds number associated with the corner
mode. This discovery could help to explain experimental results.
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Fig. 5. Comparison of parallel theory with PSE analysis for Ω = 0.08
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1 Introduction

Reverse transition of ‘turbulence → laminar’ in wall-bounded shear flows re-
mains poorly understood and few studies have been reported. A plane Couette
flow (CF) is conceptually one of the simplest non-trivial fluid dynamics sys-
tems, where the flow is solely driven by the shear. This flow is linearly stable for
all Reynolds numbers, but experiences direct transition to turbulence through
the development of localized perturbations (cf. [1] for a discussion). Above
some threshold, turbulence is sustained with a complex behavior character-
ized by laminar-turbulent co-existence in the form of ‘turbulent stripe’. The
transition, though well-described experimentally [2], is far from being com-
pletely elucidated. On the other hand, a direct numerical simulation (DNS)
of intermittently turbulent flows is challenging and requires a huge compu-
tational domain so that another strategy has been necessary. For instance,
existing numerical studies are limited within frameworks of a semi-realistic
model [3] or of a tilted geometry with a minimal domain [4]. However, owing
to the recent development of computers, DNS of the subcritical CF is now
possible to be performed.

In this study, a series of DNS on CF for the transitional Reynolds-number
regime are carried out with the use of a large enough domain compared to a
prospective size of the inherent structures. In particular, we focus on how large
the turbulent stipe is and on its Reynolds-number dependency. The present
Reynolds number is decreased in steps from the fully turbulent regime to an
aimed Reynolds number in the transitional regime.

2 Numerical conditions

The flow considered here is bounded by two infinite parallel walls moving at
speeds ±Uw with a distance of 2δ apart. The Reynolds number Re = Uwδ/ν
(ν the kinetic viscosity) ranges from 500 to 350, while the Reynolds number
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Fig. 2. Skin-friction coefficient as a function of Reynolds number: – – –, empirical
correlation of Eq. (2) with G = 0.198; ×, the data for circular Couette flow [8].

Reτ based on the friction velocity is 37–21. A cyclic domain size and number
of grid points are Lx × Ly × Lz = 409.6δ × 2δ × 204.8δ and Nx ×Ny ×Nz =
4096×96×2048 (x, y, and z are respectively the streamwise, wall-normal, and
spanwise coordinates). See [5] for some details of the numerical method. The
initial fields were constructed from a featureless turbulent CF (at Re = 750)
obtained by the earlier work [5]. Note that statistical data and visualized fields
are obtained after a flow field has reached statistical-steady state.

3 Results and discussion

The mean velocity profile is shown in Fig. 1 together with DNS data of Kom-
minaho et al. [6] and experimental data of Tillmark [7]. The profiles in Fig. 1(a)
exhibit typical S-shape distributions with a distinct trend toward the lami-
nar profile as Re decreased. As given in Fig. 1(b), the universal law of the
wall accurately represents, and the logarithmic regions extend right to the
channel center, i.e., y+ = Reτ . However, a significant deviation from the log
law is observed in the cases of Re = 350 and 375, where the turbulent stripe
occurs (as shown later). A well-defined demarcation between the fully tur-
bulent regime and the transitional regime with the turbulent stripe may be
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Fig. 3. Top view of the turbulent stripe for Re = 375. (a) Light-gray iso-surface
represents positive streamwise velocity fluctuation (u′/Uw > 0.2), while darker one
negative region (u′/Uw < −0.2). (b) Iso-surface represents second invariant of de-
formation tensor, II ′+ < −0.014, which is equivalent to the vortical position.

illustrated by Fig. 2, which shows the Reynolds-number dependence of skin
friction coefficient. For CF, the friction coefficient is usually defined as

Cf =
2u2

τ

U2
w

(1)

Robertson [9] suggested that Cf for the turbulent regime could be predicted
from the following expression: √

Cf

2
=

G

log Re
(2)

where G is an empirical constant. The present turbulent-friction results in-
cluding the previous DNS [5] are well fitted by Eq. (2) and in good agreement
with existing experimental data [7]–[10], if we take G = 0.198. It is of interest
that the values for Re = 350 and 375 derivate from the empirical correlation.

Figure 3 depicts a typical flow field, which is accompanied by an unique
pattern emerging spontaneously from featureless turbulence (at Re = 500) as
the Reynolds number is decreased down to 375. Shown in (a) and (b) are the
streamwise velocity fluctuation, u′, and the vortical structure in the whole
domain, respectively. As seen from the figures, quasi-streamwise streaks and
vortices are unevenly distributed. Hence, spatially periodic pattern composed
of distinct regions of turbulent and laminar flows can be clearly observed.

In order to examine the scale of the turbulent stripe and its self-contained
energy, the pre-multiplied energy spectra kiEuu(ki) are given in Fig. 4 as a
function of wavelength, λi = 2π/ki. Note that its peak position corresponds
to a mean spacing of the most energetic structure. For all of the present
Re, the peak in the spanwise component is located at around 4δ (≈ 120 in
wall units), which is approximately the same size with well-known spanwise
periodicity of the streaks. The streamwise streaks with spanwise separation
approximately 4δ are indeed visible at the edge of the turbulent regions. If
emphasis is placed on longer wavelengths, an additional peak is detected at
λx = 137δ and λz = 68δ (see Figs. 4(a) and (b)) for Re ≤ 375, and its peak
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Fig. 4. Pre-mutiplied energy spectra for u′ at the channel center, y = δ, as a function
of (a) streamwise and (b) spanwise wavelengths for various Reynolds number.

value tends to increase with decreasing Re. The angle and total wavelength of
the stripe pattern can be dictated by the streamwise wavelength and spanwise
one as θ = tan−1(λz/λx) = 27◦ and λ = λz cos(θ) = 61δ. They are consistent
with the visualization shown in Fig. 3, and compare well with the experimen-
tally observations [1, 2]. The fraction of the streamwise kinetic energy can be
estimated from the spanwise spectra. For Re = 350, about 20% of the energy
is associated with long wavelengths (λz ≥ 51δ), namely the turbulent stripe.

4 Conclusion

Results from DNS on a plane Couette flow using a large-scale computational
domain show encouraging agreement with experiments [2] and minimal-flow-
unit simulations [4], with respect to the turbulent stripe in the transitional
regime. The tilt angle to the streamwise direction and the total wavelength of
the stipe are 27◦ and 61δ, irrespective of the Reynolds number.

Acknowledgements: The first author has received support of the Grand-in-Aid
for Young Scientist: KAKENHI (#20860070). The present computations were
performed with the use of SX-9 at Cyberscience Center, Tohoku University.
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Geometry of state space in plane Couette flow
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Summary. A large conceptual gap separates the theory of low-dimensional chaotic
dynamics from the infinite-dimensional nonlinear dynamics of turbulence. Recent
advances in experimental imaging, computational methods, and dynamical systems
theory suggest a way to bridge this gap in our understanding of turbulence. Recent
discoveries show that recurrent coherent structures observed in wall-bounded shear
flows (such as pipes and plane Couette flow) result from close passes to weakly
unstable invariant solutions of the Navier-Stokes equations. These 3D, fully nonlinear
solutions (equilibria, traveling waves, and periodic orbits) structure the state space
of turbulent flows and provide a skeleton for analyzing their dynamics. We calculate
a hierarchy of invariant solutions for plane Couette, a canonical wall-bounded shear
flow. These solutions reveal organization in the flow’s turbulent dynamics and can be
used to predict directly from the fundamental equations physical quantities such as
bulk flow rate and mean wall drag. All results and the code that generates them are
disseminated through through our group’s open-source CFD software and solution
database Channelflow.org and the collaborative e-book ChaosBook.org.

In a seminal paper, Hopf [1] envisioned the function space of Navier-Stokes
velocity fields as an infinite-dimensional state space, parameterized by viscos-
ity, boundary conditions, and external forces, in which each 3D fluid velocity
field is represented as a single point. As the viscosity decreases, turbulence
sets in, represented by chaotic state-space trajectories. Hopf’s observation that
viscosity causes state-space volumes to contract under the action of dynamics
led to his key conjecture: that long-term, typically observed solutions of the
Navier-Stokes equations lie on finite-dimensional manifolds embedded in the
infinite-dimensional state space of allowed velocity fields.

Recent experimental and theoretical advances [2] support Hopf’s dynami-
cal vision of turbulence. Space limitations prevent us from doing justice here
to the fundamental ‘pipes and planes’ work on shear flows by Nagata, Busse,
Clever, Waleffe, Holmes, Moin, Moser, Kim, Lumley, Mullin, Jiménez, Kawa-
hara, Eckhardt, Kerswell, Tuckerman, Schmiegel, Barkley, Hof, Viswanath,
and others that we build upon; we refer the reader to Refs. [3, 4, 5, 6] for an
overview. The preponderance of recurrent, coherent states in wall-bounded
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shear flows suggests that their long-time dynamics lie on low-dimensional at-
tractors and might thus be amenable to dynamical systems modeling. The
qualitative success and quantitative shortcomings of low-dimensional ‘Proper
Orthogonal Decomposition’ models [3] motivate our work [6, 7, 8, 9]: We seek
to understand the dynamics of turbulence not through a low-d ODE model, but
through a hierarchy of exact invariant solutions of the fully-resolved Navier-
Stokes equations. These exact solutions turn out to be remarkably similar in
appearance to coherent structures observed in both numerical simulations and
experiments.

The correspondence between coherent structures and invariant solutions
can be understood in terms of dynamical theory. Invariant sets (equilibria,
traveling waves, periodic solutions, relative periodic solutions, their stable and
unstable manifolds) partition state space. A trajectory within an invariant set
stays within it forever, whereas a trajectory that starts outside an invariant set
cannot traverse it. Thus the union of invariant sets can explain a good deal
of the dynamics, and the structure imposed by invariant solutions enables
systematic exploration and characterization of dynamical behaviors.

While the equilibria of a dynamical system (steady states of Navier-Stokes)
do not participate in dynamics directly, their stable / unstable manifolds
do shape the flow in their vicinity. The simplest time-dependent invariant
solutions are periodic orbits (spatiotemporally periodic solutions of Navier-
Stokes). Periodic orbits are densely embedded in the natural measure of a
chaotic system. Most periodic orbits found in [9] individually capture the
mean flow and Reynolds stresses of plane Couette turbulence to within a
few percent. Given a hierarchical set of longer and longer such solutions,
the ‘trace formulas’ of periodic orbit theory [10] should provide a systematic
framework for calculating system’s statistical properties (this claim is as yet
untested in the context of turbulent fluid flows). Empirically, the geometry
and dynamics of attractors are dominated by the least unstable periodic orbits.
A coarse global description of dynamics is then provided by specifying the
sequence of invariant solutions whose neighborhoods are visited by a chaotic
trajectory, while linearization about these solutions provides highly accurate
local descriptions.

In the following series of papers and our web repository, we take several
steps towards realizing these goals for the case of small aspect-ratio plane
Couette flow. Ref. [6] describes numerical methods for determining invari-
ant solutions of Navier-Stokes (equilibria, periodic orbits, and their relatives;
linearized stability, invariant manifolds) and a method for constructing state-
space portraits of the infinite-dimensional Navier-Stokes state space. We find
that projections such as Fig. 1.1 onto low-d subspaces spanned by exact equi-
librium solutions reveal much about the spatiotemporal structure of turbulent
dynamics. The resulting state-space portraits are dynamically invariant, in-
trinsic, and representation independent, and can be applied to experimental
as well as numerical data.
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Fig. 1.1. A turbulent trajectory tracking a periodic orbit. (left panel) A
turbulent trajectory (dotted line) is shown against the backdrop of unstable invari-
ant structures, projected from 105 dimensions to 3. Solid dots and lines indicate
equilibria and their unstable manifolds (uLM is laminar equilibrium). Key portions
of the turbulent trajectory are highlighted with solid lines: close passes to a periodic
orbit (thick black line) and to the unstable manifolds of several equilibria. A shorter
periodic orbit –not labeled here– is also shown. (right panel) Snapshots along the
periodic orbit at intervals Δt = 15, marked by open circles in the left panel, starting
at the point labeled P97. See [6] for nomenclature and details of the state-space
projection. Side-by-side animations of state-space projections and 3D fluid velocity
fields given in ChaosBook.org/tutorials are particularly revealing.

Ref. [7] describes eleven equilibrium and five traveling wave solutions of
plane Couette flow, most of them new, and demonstrates the robustness of
these solutions under variations of Re and aspect ratios. We provide a partial
classification of the isotropy subgroups of plane Couette flow and show which
subgroups admit of which types of solution. Solutions are found by a novel
method of generating initial guesses; namely, we start our searches from the
turbulent simulation data, in contrast to more traditional continuations from
/ bifurcations off the known solutions.

Ref. [8] reports several heteroclinic connections amongst the equilibria
solutions and shows that these connections form the backbone of transitions
from multiple to single-roll states. Ref. [9] presents twenty new periodic orbit
solutions to plane Couette flow and investigates how well they probe the
natural measure. Lastly, our online, user-editable database of solutions at
www.channelflow.org, aims to promote the rapid dissemination of research
results within the community. The website also hosts our public domain high-
level software system for plane Couette and channel flows, designed to lower
the barrier to entry to research in dynamical systems and turbulence.

Together, these steps lead to a new way of thinking about coherent struc-
tures and turbulence: (a) that coherent structures are the physical images
of the flow’s least unstable invariant solutions, (b) that turbulent dynamics
consists of walk among the set of these unstable solutions.

The long-term goals of this research program are to develop this vision into
quantitative, predictive description of moderate-Re turbulence, and to use this

Geometry of state space in plane Couette flow 77



description to control flows and explain their statistics. Open research topics
include (a) Symmetry reduction of plane Couette and pipe-flow state space.
(b) Construction of Poincaré sections, Poincaré maps, symbolic dynamics,
and transition (Markov) graphs. (c) Extension to large and infinite aspect-
ratio systems. (d) Predicting turbulent statistics from expansions over periodic
orbits.
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7. Halcrow, J., Gibson, J.F., Cvitanović, P.: Equilibrium and traveling-wave so-
lutions of plane Couette flow. arXiv:0808.3375, J. Fluid Mech., to appear
(2009)

8. Halcrow, J., Gibson, J.F., Cvitanović, P., Viswanath, D.: Heteroclinic
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1 Introduction

We consider an incompressible viscous fluid with the kinematic viscosity ν
between two infinitely long concentric cylinders with radii a and b (b > a).
The fluid experiences a shear motion produced by pulling the inner cylinder
with the axial speed U while keeping the outer cylinder at rest (see Fig.1).
The axial basis flow at the radius r,

UB(r) = R
ln(r(1− η)/2)

ln(η)
, (1)

can be obtained as an exact solution of the Navier-Stokes equation, where
R = U(b− a)/2ν is the Reynolds number and η = a/b is the radius ratio.

r

θ

z

b

a

U

Fig. 1. The configuration of sliding Couette flow.

This flow is classified as sliding Couette flow by [1]. It is known that when
the radius ratio is greater than 0.14 the linear critical Reynolds number is
infinite [2], so that secondary flows, if they exist, must emerge abruptly from
the laminar state. The absence of linear critical states similarly occurs in
other problems, such as plane Couette flow [3], pipe Poiseuille flow [4] and
flow in a square duct [5]. These flows have been extensively explored with
success in recent years. In contrast, sliding Couette flow has attracted much
less attention with its finite amplitude solutions still unexplored.
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2 Formulation and Numerical Methods

The equations governing the development of disturbances which are superim-
posed on the basis state (1) are derived and solved numerically. We express
disturbances by Fourier series in the axial and the azimuthal directions and
Chebyshev polynomials in the radial direction. For a linear stability analysis
the eigenvalue problem with the disturbance growth rate as the eigenvalue is
solved. For a nonlinear analysis Newton-Raphson iterative scheme is used to
obtain non-trivial disturbance amplitudes.

3 Results and Discussion

3.1 Linear Analysis

Our linear stability analysis confirms the results by [2]. Fig. 2 shows that as
η is decreased from the narrow gap limit (η = 1) the neutral curve appears
from infinity at η ≈ 0.14, drops sharply taking the minimum at η ≈ 1.0 and
ascends sharply toward infinity as η approaches zero. We find that growing
non-axisymmetric disturbances are either absent (0.14 ≤ η ≤ 1.0) or occur
above the neutral curve determined by axisymmetric disturbances.
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Fig. 2. The neutral curve determined by axisymmetric disturbances for the radius
ratio η. (a): the critical Reynolds number; (b): the critical axial wavenumber β.

3.2 Nonlinear analysis

When η = 0.1 the critical Reynolds number Rc takes the value 0.361 × 107

with β = 0.6546. Fig. 3 shows the subcritical bifurcation of an axisymmetric
nonlinear solution from this critical point with a saddle-node at R = 0.401×
105.
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Fig. 3. The bifurcation of the axisymmetric solution for η = 0.1. The measure of
the nonlinearity is represented by the momentum transport M on the inner cylinder.

It is unlikely that the basis state physically keeps its stability up to such a
high critical Reynolds number as obtained by the linear and nonlinear analyses
with respect to axisymmetric disturbances.

We anticipate that the three-dimensional solutions of plane Couette flow
[3] as our narrow gap limit (η → 1) still exist in wide gap cases (η < 1).
In the case of η = 0.5, where the linear critical state is absent, the saddle-
node bifurcations are detected for various wavenumber pairs(see Fig. 4). The
minimum Reynolds number at the saddle-node bifurcation takes place at 253.1
with the azimuthal wavenumber α = 3 and the axial wavenumber β = 0.51.
The solution seems to bifurcate from infinity (see Fig. 5 (a)) and travelling in
the axial direction with the phase velocity cz (see Fig. 5 (b)).
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Fig. 4. The Reynolds number at the saddle-node bifurcation point for the non-
axisymmetric solutions with various wavenumber pairs (α, β).

The flow field of the non-axisymmetric solution for η = 0.5 is shown in Fig.
6. The figure show only a fluctuation part. This solution satisfies u(r, θ, z) =
u(r,−θ, z + π/β), and so it inherits the symmetry of plane Couette solution
[3].
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Fig. 5. The bifurcation diagram for (η, α, β) = (0.5, 3, 0.51). (a): the momentum
transport M on the inner cylinder; (b) the phase velocity cz.

Fig. 6. The flow field of the non-axisymmetric solution for (η, α, β,R) =
(0.5, 3, 0.51, 400) at each quarter axial wavelength position. Arrows represent the
projection of the velocity and the colour code represents the axial component of the
velocity. Upper/lower four figures correspond to the upper/lower branch.
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In linearly stable shear flows including pipe and plane Couette flow finite am-
plitude perturbations are required to trigger turbulence [1]. Studying lifetimes
of perturbations and locating the transition between smooth variations and
sensitive dependence on initial conditions we identify the boundary in between
laminar and turbulent dynamics [2, 3]. States within this edge of chaos evolve
towards a relative attractor, the edge state whose stable set forms the edge.

In numerical studies of small domains, spatially periodic edge states have
been identified. However, transitional turbulence in spatially extended systems
is observed in localized patterns such as slugs and puffs in pipe flow or striped
turbulence in Taylor-Couette and plane Couette flow [5, 6] suggesting the
existence of localized edge states.

Re

Σ

400300200100

0.1

0

(a) (b)

(c)

Fig. 1. Localized edge state in a plane Couette cell of 4π streamwise (x) and 8π

spanwise (z) extension (in units of half the gap width). (a) Bifurcation diagram:
Periodic lower branch equilibrium (thick red solid line), localized edge state traveling
wave (dashed line) and localized equilibrium (thin solid line). (b)/(c): Isosurfaces
of vanishing downstream velocity (ux ≡ 0) for the periodic equilibrium (b) and the
localized edge state (c). The Reynolds number is 400.
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Here we focus on plane Couette geometry where the flow is driven by two
parallel plates moving in opposite direction. Introducing discrete translational
symmetry in the spatially homogeneous downstream and spanwise direction
i.e. considering a small periodic domain, a known lower branch equilibrium
solution has been identified as the edge state [4]. When extending the domain
in spanwise direction, while keeping the downstream length of 4π, the edge
tracking algorithm converges to states that are localized in the spanwise di-
rection, see Fig. 1(c). The localized edge state is a traveling wave with a single
unstable eigenvalue so that its stable manifold is of codimension 1 and sepa-
rates laminar from turbulent dynamics. The localized traveling wave coexists
with a known lower branch fixed point solution (Fig. 1(b)) from which it bifur-
cates in a ‘pattern-forming’ bifurcation. Together with the localized traveling
wave also a localized equilibrium appears (Fig. 1(a) whose stable manifold is
of higher codimension so that it does not act as the relevant edge state. Re-
lating the observed bifurcation scenario to other pattern-forming systems we
discuss possible mechanisms underlying localization in homogeneously driven
extended hydrodynamical systems.

Increasing both the length and the width of the domain an edge state lo-
calized both in stream- and spanwise direction is identified. The fully localized
edge state differs from a turbulent spot in that it does not invade laminar flow
and shows a very simple internal dynamics. The evolution towards turbulence
proceeds by a local transition of the spot followed by its spatial spreading.
Thus, the localized edge state forms the minimal turbulent seed for turbu-
lence transition in spatially extended plane Couette flow. We will relate our
findings to observations in spatio-temporal chaos and percolation models as
well as discuss implications on turbulence studies in finite domains.

References

1. Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J. (2007).
Annu. Rev. Fluid Mech., 39:447.

2. Skufca, J., Yorke, J., and Eckhardt, B. (2006).
Phys. Rev. Lett., 96:174101.

3. Schneider, T. M., Eckhardt, B., and Yorke, J. A. (2007).
Phys. Rev. Lett., 99:034502.

4. Schneider, T.M., Gibson, J.F., Lagha, M., De Lillo F., and Eckhardt, B. (2008),
Phys. Rev. E, 78:037301.

5. Bottin, S., Daviaud, F., Manneville, P., and Dauchot, O. (1998),
Europhys. Lett., 43:171.

6. Barkley, D., and Tuckermann, L.S. (2005),
Phys. Rev. Lett., 94:014502.

T.M. Schneider, D. Marinc, and B. Eckhardt84



Nonlinear optimal perturbations in plane
Couette flow

Luca Brandt, Yohann Duguet and Robin Larsson
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Subcritical transition to turbulence can occur in a variety of wall-bounded
shear flows when the laminar base state is not subject to linear instability. In
this case, perturbations to the base state with a finite but very small amplitude
can be amplified by non-normal effects, up to a level where nonlinear interac-
tions come into play. Since transition is often undesired, leading to a dramatic
increase in wall drag, it is important to know which kind of (weak) perturba-
tions are susceptible to trigger it if we wish to delay it. A vast amount of litter-
ature has described the linear mechanisms responsible for disturbance amplifi-
cation. Optimisation methods have yielded linear optimal disturbances[1, 2],
the disturbances which exhibit the largest linear growth. Yet the focus has
been on linear amplification rather than on actual transition, which requires
full nonlinearity to be taken into account. In this study, we go back to the
original question of which perturbation is most likely to trigger transition
to turbulence. We are hence investigating nonlinear optimal disturbances,
those with smallest initial energy which effectively lead to a highly disordered
flow. In the recent years, progress in the understanding of subcritical transi-
tion was made using the concept of ’edge states’, originating from dynamical
systems theory. ’Edge state’ refers to the flow regime reached asymptotically
by critical trajectories at the exact onset of transition. It is an unstable flow
state and cannot be observed in experiments, but its stable manifold deter-
mines the basin of attraction of the base state. Direct numerical simulation in
minimal domains of plane Couette flow has shown that the flow at the onset
of transition asymptotically approaches an unstable finite-amplitude steady
state solution, characterised by wavy streaks and streamwise rolls [3]. Using
a shooting method, approach to such steady states is the way to characterise
whether a transitional trajectory in phase space is actually an ’edge’ trajec-
tory.

In our investigation, we also focus on plane Couette flow in a computational
box of size 4πh× 2h× 2πh. The Reynolds number (based on the half-gap h)
used for most of the computations presented here is 400. The numerical simula-
tions are performed with a pseudospectral code using 48×33×48 grid points in
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a) b)
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z

Fig. 1. a) Nonlinear optimal initial condition and b) corresponding symmetric edge
state. The color indicates wall-normal velocity in a) and streamwise velocity in b).
Velocity vectors represent in-plane velocities. The edge state has about 90 times
more kinetic energy than the initial perturbation.

the streamwise, wall-normal and spanwise direction respectively. The method
is though generalisable to all parallel shear flows. We use a finite-dimensional
basis of linear optimal disturbances to generate candidates for the nonlinear
optimal disturbances. Those linear optimal modes (and as well all linear com-
binaisons of them), satisfy two necessary conditions for nonlinear optimality:
at time t = 0, the first time derivative of the perturbation energy is zero while
the second derivative is positive [4]. Only the linear optimal modes with lowest
wavenumbers, i.e. those exhibiting the largest transient growth, are considered
in the optimisation. We focus on two different transition scenarios involving
departure from either oblique waves -with wavenumbers (1,±1)- or streamwise
vortices with wavenumber (0, 2)-, see also [5]. (The integers refers to multiples
of the fundamental streamwise and spanwise wavenumbers, respectively)

For the range of parameters tested, the oblique wave scenario seems to be
optimal, consistently with threshold studies in other shear flows [2]. The non-
linear interaction of two initial oblique waves of opposite angle and equal ini-
tial energy forces streamwise vortices. The lift-up effect then generates streaks
and the whole structure approaches transiently the edge state. As a result of
the optimisation, the nonlinear optimal initial condition is a symmetric pair
of oblique waves, (1,±1), slightly perturbed by the mode (1, 2) with a phase
departure of 0.6π. The distortion induced by the mode (1, 2) is small and
corresponds to 9% of the energy of the total perturbation. The corresponding
flow structure is shown in Fig. 1a) : the symmetric checkerboard patterns usu-
ally encountered in oblique transition is here distorted by the oblique mode
(1, 2).

In the general case we find that not one, but three different steady state so-
lutions can be transiently approached, depending on the exact shape and sym-
metries of the initial perturbations. Some of these steady states are new; one
of them (denoted here ’Edge I’) has lower energy than those previously found,
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a) b)

Fig. 2. a) Edge state II and b) edge state III. The color indicates streamwise velocity
while velocity vectors represent in-plane velocities. Table 1 reports the energy of
these steady solutions.

and displays low-speed streaks with a varicose structure, see Fig. 1b). It is the
state transiently approached by optimal initial perturbations close to oblique
waves. The two other edge states are approached transiently when perturb-
ing linearly optimal streamwise vortices. They are displayed in Fig. 2. They
are here refined down to machine accuracy using a Newton-Krylov solver. The
steady solution denoted as edge state II has two wavy streamwise streaks with
one sinuous oscillation within our computational box. It corresponds to the
state observed in [3]. Edge state III, the most energetic among those found in
our configuration, also has two streamwise streaks but with two streamwise
oscillations.

The energy associated to the different edge states observed is reported in
Table 1. The minimal energy required by the simplest possible initial condi-
tions approaching these is also compiled in the table. Edge II is reached by
initial conditions consisting of streamwise rolls and a small amount of per-
turbation in the Fourier component (1, 2), of the order of few percents of the
total energy. Conversely, the solution denoted by III is approached by a per-
turbation where the energy in the oblique mode (1, 1) is about half of that of
the streamwise rolls.

Energy Initial energy Perturbation

Edge I 2.84 × 10−3 3.34 × 10−5 E(1,1) = E(1,−1)

Edge II 1.82 × 10−2 1.98 × 10−4 E(1,2) = 0.0965E(0,2)

Edge III 2.61 × 10−2 1.72 × 10−4 E(1,1) = 0.48E(0,2)

Table 1. Energy of the edge states identified with corresponding energy of the
simplest initial conditions (only two Fourier modes) approaching them.

Finally, we investigate the Reynolds number behavior of the threshold
energy associated to the oblique scenario and of the corresponding symmet-
ric edge states. The energy thresholds are obtained by running the bisection
algorithm using only the modes (1,±1) with equal energy while the steady so-
lutions are computed by continuation starting from the solution at Re = 400
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in Fig. 1b). The perturbation energy associated to the symmetric edge state
decreases asymptotically like Re−0.5, whereas the initial energy required to
approach these states decreases like Re−1.9. The scaling of this optimal per-
turbation is very close to the optimal theoretical bound in O(Re−2) derived
by Chapman [6].

103
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10−3

10−2

E

Re

Fig. 3. Energy of the symmetric edge state I (open symbols) and of the symmetric
initial condition with lowest energy lying on the laminar-turbulent boundary (filled
symbol) versus the Reynolds number Re. The red and green lines represent best fit-
ting power laws, Re−0.5 and Re−1.9 for the energy pertaining to the steady solutions
and to the symmetric initial condition respectively.

The approach presented allows us to reconstruct the whole nonlinear tran-
sition process for critical optimal trajectories, starting from the linear regime.
It also improves our understanding of the topology of the laminar-turbulent
boundary in phase-space as Re increases.
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Over a century, and thousands of articles, after Reynolds’ description of the
transition to turbulence in pipe flow, a predictive theory of transition is still
unavailable. One of the most intriguing phenomena observed near transition is
the coexistence of well-defined and long-lived laminar and turbulent regions,
first observed in counter-rotating Taylor-Couette flow in the 1960s [1]. In
the 2000s, Prigent & Dauchot [2] showed that these coexisting regions were
part of a regular pattern of stripes, whose wavelength and orientation are
Reynolds-number-dependent and reproducible. Analogous phenomena have
been observed experimentally [2] and numerically [3] in plane Couette flow, in
stator-rotor experiments (the flow between a stationary and a rotating disk)
[4], in plane Poiseuille simulations [5], and, most recently, in simulations of
pipe flow [6].

We analyze these flows as wave patterns, measuring their strength by the
instantaneous 1D Fourier component a corresponding to their wavenumber
and phase. Since the flows are stationary only in a statistical sense, we treat a
as a random variable and construct its probability distribution function (pdf).
Timeseries and pdfs for a from simulations of plane Couette flow are shown
below. Three regimes can be distinguished. For Re � 420, the turbulence
is uniform, extending over the entire domain; the corresponding pdf has its
maximum at a = 0. For 400 � Re � 420, the pattern is intermittent, appearing
and disappearing erratically; the corresponding pdf is neither maximal nor
zero at a = 0. For 290 � Re � 400, a statistically steady turbulent-laminar

pattern is present; the corresponding pdf is zero at a = 0.
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Fig. 1. Above: timeseries at Re = 500 (uniform turbulence), 410 (intermittent), 350
(turbulent-laminar pattern). Below: pdfs of Fourier component a.
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Phys. Rev. Lett. 89, 014501 (2002); A. Prigent, G. Grégoire, H. Chaté & O. Dau-
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Fig. 2. Probability distribution function for |a| for Re = 580, 520, 420, 400, 350, 330,
in order of decreasing value at |a| = 0.
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Plane Couette flow is the flow between two counter-sliding plates of veloc-
ity U separated by a gap 2h. It has a simple laminar solution with constant
shear which is stable for all values of the Reynolds number Re = Uh

ν
(ν is the

kinematic viscosity of the fluid). However, transition to turbulence is observed
experimentally above a threshold value of Re between 300 and 400. Whereas
featureless turbulence is seen for Re ≥ 400, lower-Re experiments have shown
a turbulent regime displaying spatio-temporal intermittency effects, notably
the appearance of turbulent stripes, inclined with respect to the direction of
the base flow, interspersed with quiescent, nearly laminar regions [1], see Fig-
ure 1. It is the ’spiral turbulence’ regime, so-called because it has also been
identified in Taylor-Couette experiments. Similar patterns have also been nu-
merically reproduced in a minimal-like computational domain (of size 10h in
length and 40h in width), oriented against the inclination of one stripe [2].
This reduced computational box allows to understand locally the appearance
and teh stability of these localised structures.

The aim of the present numerical experiment is to reproduce such pat-
terns using direct numerical simulation. We use a parallel spectral code [3] in
an unusually large computational domain (800h in length and 356h in width
with periodic boundary conditions) in order to highlight the large-scale self-
organisation of the flow, out-of-reach in former simulations. The numerical res-
olution is 2048×33×1024. The use of both a large domain and good numerical
resolution allows to overcome the limitations in the models used by Manneville
[4](simplification of the wall-normal structure of the flow) or by Tuckerman
& Barkley [2](strong constraints by narrow spatial periodicity). The values of
Re range from 300 to 400, and we choose a noisy non-localised initial velocity
field. For Re ≤ 320, the initial condition rapidly develops streamwise streaks
which undergo viscous decay, except at a few random and isolated locations
where the streaks locally break down. A network of isolated localised struc-
tures (’spots’) form naturally and start to grow, but they all eventually decay.
Sustained turbulence appears somewehere between Re = 320 and Re = 330

93B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_22, 



Fig. 1. Experimental evidence for the turbulent banded patterns in the experiment
by Prigent et al. (2001) at low values of Re = 349 and Re = 331. The domain has a
size 770h× 2h× 340h. The value of Re is here progressively decreased starting from
an uniform turbulent state.

(see Fig. 3), which is in excellent agreement with the experiments by Prigent
[1]. For 330 ≤ Re ≤ 380, similar spots also form and then grow spatially in the
plane in a very disordered way. When neighbouring growing spots are close to
each other, they undergo distortion and merging, and turbulent stripes arise,
interspersed with quiescent, nearly laminar regions. The spatial organisation
of these banded patterns is investigated, depending on the values of Re. The
system evolves asymptotically towards a stable fragmented large-scale pat-
tern (see Fig. 3 and 4), where two opposite inclinations can coexist. As Re
is increased towards 400, the banded pattern progresively invades the whole
domain, and the turbulent fraction of the domain approaches unity. Above
Re = 400, the flow does not show any sign of large-scale structure, and is
only dominated by streaks, where transient laminar regions appear but can-
not sustain due to contamination.

This study highlights the role of spots in the transition process and their
dynamics during expansion. Further numerical simulations using a localised
initial condition were performed at Re = 350 and Re = 500 in the same large
domain, in order to reduce the influence of periodic boundary conditions.
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There is a fundamental difference in the spot expansion mechanisms between
the two cases. For Re = 500, spots expand while keeping their shape, as in
the simulations by Lundbladh and Johansson [5]. For Re = 350 however, the
use of a larger spatial domain reveals that the expansion of the spot is very
anisotropic in the in-plane directions, though initially no angle seems clearly
favoured. Eventually turbulent bands also form through a sequence of splitting
and merging events (see figure 2).

Fig. 2. Growth of a spot in a direct numerical simulation of plane Couette flow, Re =
350. Half-gap slice of the axial velocity field, in a large periodic box of dimension
800h × 2h× 356h.
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Fig. 3. Time evolution of the averaged wall-normal velocity parametrised by Re, in
a large periodic box of dimension 800h×2h×356h. The initial condition corresponds
every time to the same featureless noise.
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Fig. 4. Pattern formation in a direct numerical simulation of plane Couette flow,
Re = 350 (top) and Re = 330 (bottom). Same visualisation as in Figure 1. The
initial condition corresponds here to featureless noise.
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Summary. The geophysical flow simulation experiment ‘GeoFlow’ studies convec-
tion phenomena in rotating spherical shells under influence of a spherical symmetric
buoyancy field. It is a space station experiment, that is backed by three-dimensional
numerical simulation done with a spectral code. Here we present simulated dynamics
in the low rotational regime. Flow patterns are characterized by solutions of axisym-
metric, cubic and pentagonal symmetry with adjustment to rotating axes. For the
example of a cubic pattern in supercritical convection regime, the evolution of heat
transfer and kinetic energy is discussed, if the rotational influence increases. While
these global variables point out that the flow is stationary in the rotating reference
frame, it is the local variable of spherical harmonics in azimuthal direction which
shows a periodic drift, i.e. the pattern is counter rotating to the sphere. Transition
to chaos is in form of a sudden onset.

Studies of convection phenomena in an astro- and geophysical framework has
a long tradition [1]. Besides a rich variety of theoretical and numerical work on
convection in rotating, self-gravitating spherical shells, there are only minor
experiments in these shell models, with concentric spheres that are maintained
at different temperatures and rotatable about their common axes. From ex-
perimental point of view the experiment ‘GeoFlow’ (Geophysical Flow Simu-
lation) generates the necessary buoyancy field by means of a spherical sym-
metric electric field acting in a dielectric insulating fluid. In order to avoid
interference with axial gravity in laboratory the experiment is carried out
in space, here it is the International Space Station ISS with its European
platform COLUMBUS. Special goal of ‘GeoFlow’ is to capture the large-scale
convective motion without rotation as well as the superposition of rotation up
to stabilizing effects due to centrifugally driven convection. For this spherical
Rayleigh-Bénard convection we present the numerically simulated dynamics
of the rotating cases with focus on low rotation regime. This is part of prepa-
ration as well as backing of the experiment which is actually running on orbit.

Non-dimensional Boussinesq equations for thermal convection in rotating
reference frame under influence of a dielectrophoretic acting force field are
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given by
∇ ·U = 0, (1)

Pr−1 ·
[
∂U

∂t
+ (U · ∇)U

]
= −Pr−1∇p+∇2

U +Racentr ·
η2

(1− η)2
· 1
r5
T êr

−
√
Ta êz ×U + R̃a T r sin θêeq,

(2)

∂T

∂t
+ (U · ∇)T = ∇2T. (3)

Equations are scaled with outer spherical radius ro for length, thermal diffusive
time r2o/κ for time, ρ0κ

2/r2o for pressure and temperature difference ΔT =
Ti − To for temperature, where κ is the thermal diffusivity and ρ0 is the
reference density. Boundary conditions are no-slip for velocity U, and for
temperature T values are set to T (μ) = 1 and T (1) = 0. Herewith dynamics
of ‘GeoFlow’ is described with:

radius ratio η = ri

ro
, (4)

Prandtl number Pr = ν
κ , (5)

Rayleigh number Racentr = 2ε0εrγ
ρνκ V 2

rms
ΔT, (6)

Taylor number Ta =
(

2Ωr2
o

ν

)2

. (7)

Geometrical and physical properties, discussed with η and Pr, respectively,
are fixed with η = 0.5 and Pr = 64.64. The Rayleigh numberRacentr measures
the imposed thermal forcing with Racentr ∼ ΔT . Coriolis force is treated by
the Taylor number Ta, with Ta ∼ n as the rotation rate of the sphere. The
additional factor R̃a = αΔT/4 ·Pr ·Ta directs attention to centrifugal effects.
Refer to [2] for detailed listing of experiment parameters including geometric
dimensions and physical properties of the working fluid, which is a silicone oil
(viscosity ν, relative permittivity εr, coefficient of expansion α), resulting in
achievable magnitudes for Racentr ≤ 1.4 · 105 and Ta ≤ 1.3 · 107. Additional
factor of R̃a is in the order of 106.

Numerical simulation calculates solutions for equation (1)-(3) at parameter
sets of Racentr and Ta. Proceeding is to set Racentr and to increase Ta. By
highlighting the low rotation regime the parameter domain is spanned by
Racentr up to 2 · 104 and 2 · 102 ≤ Ta ≤ 2 · 104. Here we used the numerical
code from Hollerbach as it is described in [3]. Truncations of serial expansion
in spherical harmonics for both fields U and T in all directions were (radial,
meridional, azimuthal)=(30,60,20). Time-stepping was set to 1·10−5. Iteration
was observed with logging of spectral coefficients at arbitrarily chosen limbs of
the serial expansion. These coefficients are simply part of the whole solution
decomposed in spherical harmonics and act as local variables in all directions.

Overall time-dependency is identified with the kinetic energy and the Nus-
selt number at the inner and outer spherical shell. Steady states show constant
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kinetic energy with Ekin = const. and furthermore Nui = Nuo. Periodic fluid
flow shows periodic time series for these global variables of Ekin,Nui andNuo,
which are no longer equal then. Irregular fluctuating time-series mark chaotic
solutions. Local variables follow this classification.

By means of regarding evolution of time-series for global and local vari-
ables quasi-stationary and chaotic convection is identified (Fig. 1 and Fig. 2,
resp.). As transition in between those two temporal identified flow states no
pure periodicity is found. Evolution of the global variables is obvious, the
periodogram proves the stationary property of the solution with vanishing
noise in the order of 10−19 for Ekin and 10−24 for Nu. For chaotic solutions
remarkable magnitudes in the order of 104 are achieved for frequencies below
40. Amplitude distribution over the frequencies is sloping to higher frequen-
cies. Regarding the evolution of time-series for spectral coefficients these local
variables follow this procedure in principal, except the one marking the az-
imuthal component of the solution. Here a longterm periodicity is visible and
will be discussed in the following by describing pattern of convection.

The cubic pattern of convection shows no stretching or compressing by
rotation. Rotation of the sphere just leads to lift the convective cells, i.e. the
Nusselt number is constant as well as the kinetic energy. But the azimuthal
component shows that the pattern has a periodic drift, indeed that is why
we name it a quasi-stationary solution. While the sphere is rotating counter-
clockwise, the pattern is rotating clockwise, i.e. the drift is retrograde. For the
chaotic fluid flow pattern no specific symmetry gets visible.

While the Nusselt number gives information on the effective heat transfer
in the system, it is the kinetic energy, with which we track the rotational
influence. For the two presented parameter sets of Racentr and Ta, we ob-
serve a decrease of Nu, if Ta is increasing. Hence the rotational driven flow
suppresses the convection driven flow. Furthermore it is also Ekin, that is de-
creasing. Chaotic convection seems to have a more efficient energy conversion.

This low rotation regime captures properties of the GeoFlow’s non-rotating
case as described in [4] and [5], with a transition from steady state to chaotic
fluid flow in form of a sudden onset. In this paper we presented only the cubic
solution and its drift in the rotating sphere, but as in the non-rotating case,
axisymmetric as well as pentagonal convective pattern were found with a drift,
which still has to be classified.
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Ekin = 1009 spectral coefficient

Nu = 2.12408 temperature field

Fig. 1. Steady convection in low rotating spherical shells at Racentr = 8 · 103,
Ta = 2 · 102: Evolution of time series and pattern of convection. Time series and
periodogram for kinetic energy Ekin (top left), Nusselt number at inner and outer
spherical shells Nui resp. Nuo (bottom left); arbitrarily chosen spectral coefficients
for velocity EC, ES, FC, FS and for temperature TC and TS (top right). Top
view of temperature field plotted on spherical surface in the shell (bottom right)
with dark color marking hot regions with warm up flow and bright color marking
cold regions with discharge flow.
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Ekin ≈ 822 spectral coefficient

Nu ≈ 1.93 temperature field

Fig. 2. Chaotic convection in low rotating spherical shells at Racentr = 8 · 103,
Ta = 1 · 104: Evolution of time series and pattern of convection, following the
display of Fig.1.
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1 Introduction

Flow past rough walls have been deeply studied in the past, initially in labo-
ratory experiments and recently by numerical simulations. In practical appli-
cations as for instance for flow over urban settlements or past wings, the flows
are turbulent and the drag largely depends on the shape of the surfaces. In
general the roughness produces a drag increase. However in particular condi-
tions, for instance riblets, the drag may decrease. The comprehension of the
flow physics near the roughness and their dependence on the shape of the
surfaces can be understood by the numerical simulations also for the exper-
imental evidence that the friction coefficient do not strongly depend on the
Reynolds number.

In laboratory experiments difficulties are encountered to perform mea-
surements near the rough elements (Burattini et al. 2008), that are absent
in numerical simulations. The simulations, starting from that by Leonardi et

al. 2003, in the last years increased the knowledge of the flow physics of fully
turbulent flows. On the other hand, simulations of stability and transition
regimes are lacking. The present work is devoted to analyse the variations of
the critical Reynolds in channels with different kind of rough surfaces on a
wall.

The three-dimensional analysis of the stability in smooth channels can
be reduced to an equivalent two-dimensional problem by the Squires trans-
formation. In order to apply this technique to rough surfaces, the study is
limited to the stability of channels with obstacles spanning in the whole ax-
ial direction. The resulting eigenvalue problem, for smooth walls, often has
been resolved analytically by giving the basic parabolic velocity profile and
by observing that, at a critical Reynolds number (Recr)and at a certain wave
number (α), the eigenvalue has a positive real part. This procedure is more
complicated in presence of complex geometries, then the strategy consists in
solving the Navier-Stokes equation in physical space. The equations are dis-
cretized by a second order accurate staggered finite difference scheme together
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with an efficient immersed boundary technique (Leonardi & Orlandi 2004).
This method is not restricted to linear stability but it can treat any kind of
realistic disturbances as those produced by the rough surfaces.

2 Results
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The Navier-Stokes equations are not given, these, together with a brief
description of the numerical method can be found in Leonardi & Orlandi
(2004). A validation for the fully turbulent regime was presented by Orlandi
et al. (2006). In the present study the numerical method has been validated by
reproducing the formation and propagation of the Tollmienn-Schlichting (T-S
waves) in a smooth channel, and by comparing the Recr with that found in
semi-analytical studies. The chart Recr(α), in very good agreement with that
in Drazin & Reid (1981), is not reported for lack of space. The same small dis-
turbances have been applied to the parabolic velocity profile in presence of the
rough elements; these disturbances are amplified by the roughness and their
amplification depends on the shape of the roughness. Several two-dimensional
geometries (squares, triangles and rods) have been considered to find the rela-
tion (if it exists) between the critical Reynolds (Recr) and the shape and the
distributions of the obstacles. The number of the obstacles is related to the
ratio w/k, where k is the height of the obstacle and w the separation distance.
The simulations with k = 0.2h have shown that even in presence of rough-
ness, and independently on the shape, the T-S waves form and their form
depends on the distance 2h between the walls. On the other hand, it has been
observed a strong effect of the roughness on the Recr, which can be related to
the variations of the normal velocity fluctuations which interact with the main
flow over the obstacles. This interaction leads to a decrease of the Recr. The
simulations have shown a strong dependence of the Recr on w/k rather than
on the shape of the obstacle, in particular at high values of w/k. This can be
explained by the numerical results showing that, in two-dimensions, the recir-
culating region behind a body is weakly affected by the shape of the obstacle
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(Fig.1a). Fig.1a was obtained with only two obstacles separated by a distance
w/k = 20 to let the bubble to be free to increase; different is the growth when
the following obstacle limits the size of the bubble. If the obstacles are close
the bubbles reattach on the successive obstacles producing a greater shape
dependence (Fig.1b). A weak recirculating region leads to a reduction of the
amplitude of the disturbances emanating from the roughness. Fig.1b shows a
strong decrease of the Recr with w/k, which does not largely differ for the
three geometries. It is worth to recall that for the squares w/k = 0 gives a
smooth wall, and the corresponding values Recr agrees with the theoretical
value obtained for α = 6.4/2π. For w/k = 0 the small reduction of Recr for
the circles and for the triangles is due to the small empty area between the
two contiguous elements. The area is slightly bigger for the triangles and this
explain why Recr is the smallest. The reduction for 1 < w/k < 3 for the
circles is greater for the unsteadiness of the separation point. The interesting
feature of Fig. 1b is that the reduction is significant up to w/k = 7 and that
a further increase of w/k leads to an almost constant value of Recr for all the
three geometries.
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Leonardi et al. (2003) found that for the fully turbulent regime the max-
imum resistance was obtained for the square bars at w/k = 7 and Orlandi
et al. (2006) observed that the same occurred for the rod bars. Also for the
fully turbulent regime this was explained by analysing the shape of the mean
separation bubble that was found to reattach at xR/k ≈ 5. From the results
here presented for the transition it seems that the same phenomenon occurs.
A more quantitative comprehension why the strong decrease ends at w/k = 7
can be obtained by the variation of

√
< v2 >, at the plane of the crests, in

function of w/k shown in Fig.2a. This figure shows that the
√
< v2 > for the

squares is smaller than that for the other two geometries and this explain
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why for w/k < 3 the Recr for the squares is greater. For w/k > 3 there is an
effect of the other small separation region ahead of the obstacles that can be
understood by flow visualisations.

Contour plots of normal velocity allow to see whether the disturbances
generated by the roughness have the strength to completely destroy the ex-
ternal field and hence to generate T-S waves different from those in a channel
with smooth walls. The vertical profiles of the v rms indicate that for the three
geometries the peak value decays by increasing the distance from the plane of
the crests, and that in large part of the channel is small, then it is expected
that the T-S waves should not be largely affected. Fig.2, indeed, shows that
for the three geometries at w/k = 7 the shape of the waves is mainly dictated
by the size of the channel; the waves are disturbed near the obstacles but this
disturbance is only localised near the solid element.

3 Conclusions

In the present study two-dimensional simulations were performed to investi-
gate the effect of the roughness on the critical Reynolds number. A large in-
fluence of the distance between the elements on the Recr has been observed.
In agreement with the fully rough turbulent simulations it has been found
that the major effects occur at w/k = 7. The two-dimensional geometries
here considered are ideal and rather different from those in real applications
that are three-dimensional. A large number of three-dimensional simulations
are necessary to create a database which will contribute to understand the
transitional regime of rough flows.
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1 Introduction

The origin and the transition to turbulence in wall-bounded shear flows is one
of the outstanding problems of classical physics. In order to shed light on this
transition, recent investigations have analyzed the decay of localized turbulent
structures. At low Reynolds numbers, an exponential distribution of survival
times has been observed in pipe and plane Couette flows [1, 2, 3, 4]. In phase
space this is related to the decay from a chaotic saddle. However, pipe flow
is an open flow, posing many experimental and numerical challenges for the
study of bifurcation events. In a closed system we have found a flow state that
shows transient turbulent behavior also at low Reynolds numbers. It appears
as turbulent bursting in the Taylor-Couette system without an external forcing
for counter-rotating cylinders above the centrifugal instability. Therefore it
competes with coherent states of the system. Here we present spatiotemporal
properties and lifetime behavior of this flow.

2 Experimental setup

The Taylor-Couette system consists of fluid of kinematic viscosity ν confined
between two concentric rotating cylinders. The inner cylinder is machined
of stainless steel with a radius of ri = (12.50 ± 0.01) mm, the outer one is
made of optically polished glass with a radius of ro = (25.00± 0.01) mm. The
axial length of the system L is determined by the position of two solid end
plates. In this investigations the radius ratio is constant at η = ro/ri = 0.5,
while the aspect ratio Γ = L/(ro − ri) varies from 4 to 8. The system is
non-dimensionalized with the gap width d = ro − ri (length) and diffusion
time τ = d2/ν. The Reynolds numbers of the cylinders are defined as Rei,o =
ri,odΩi,o/ν (where Ωi,o are the angular speeds of inner and outer cylinders). In
this investigation two different experiments are used, one for flow visualization
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monitored with a HDD-camera, another one for high-precision measurements
with Laser-Doppler-Velocimetry.

3 Results

The turbulent bursting is transient and appears without an external forcing
in the system at a certain Reynolds number of the inner cylinder Ret, which
is well above the centrifugal instability. In particular, the bursting emerges as
an instability of a rotating wave, a so-called wavy mode.
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Fig. 1. Sudden increase of Rei from 250, where the wavy mode is stable, to 280
(Reo = −180,Γ = 8)
(a) experimentally observed bursting in a space-time diagram
(b) probability of lifetimes

Fig. 1 (a) shows a space-time diagram of the bursting obtained by flow
visualization. Four different sequences can be distinguished. In the first se-
quence, the wavy mode is a global flow state with a constant frequency and
shows no turbulent behavior at all. Later, the wavy-mode becomes modu-
lated, so that vortices start to oscillate in the axial direction (after about 4
diffusion times τ), until turbulent bursts appear abruptly (τ ≈ 7). Within this
last period the turbulent bursting is localized and randomly distributed over
the whole length of the system and has a complex structure. After some time
the turbulent behavior disappears and we observe a new wavy mode with a
slower oscillation (τ ≈ 9) which remains stable in time. The flow visualization
is recorded at Γ = 8 and a constant outer Reynolds number of Reo = −180.
The Reynolds number of the inner cylinder Rei is increased instantaneously
at τ = 0 from 250 to 280 , which is slightly above Ret.

At the same parameters we have obtained distributions of lifetimes of
the turbulent bursting, measuring the time from the change in Rei until the
turbulent bursts disappear and the slow wavy mode sets in. We observe an
exponential probability distribution, shown in Fig. 1(b). Therefore, the decay
is a memoryless process, i.e. it is independent of the age of the bursting. In
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phase space, an exponential probability distribution of lifetimes is typical for
the decay from a chaotic saddle [5].
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Fig. 2. Radial velocity of the bursting, measured by LDV (Reo = −180,Γ = 8)
(a) Instantaneously increasing of Rei from 250 to 280
(b) Quasi stationary increasing from Rei = 279 to Rei = 280
the gray dotted line indicates the changes in Rei, the signal saturates during the
bursts with the chosen electronic amplification

In Fig. 2 Laser-Doppler-Velocimetry (LDV) measurements of the radial
velocity vr of the wavy modes and the transient bursting are plotted. The gray
dotted line in (a) (at τ ≈ 48) indicates the change in Rei from 250 to 280. On
the left side of this line the regular wavy mode with a frequency of 0.06 can
be seen. By changing the Reynolds number rapidly, the oscillation slows down
and turbulent bursts appear. The bursts show high velocities compared to the
wavy mode, so that the chosen electronic amplification reaches it maximum
and the signal saturates. After a lifetime of about Δτ ≈ 20 (counting from
the jump in Rei) the turbulent bursting disappears and the oscillation of the
slow wavy mode starts.

The bursting of the wavy mode does not require a jump in the Reynolds
number. It also appears for quasi-statical increases of Rei. Therefore we in-
creased Rei from 250 to 280 in steps of ΔRei = 1, measuring the velocity at
each step for Δτ = 24. In Fig. 2 (b) the time series at Rei = 279 (left of the
dotted gray line at Δτ = 24) and Rei = 280 (right of the dotted gray line) are
shown. Comparing these measurements with the one after the jump in Rei in
(a), we observe the same flow behavior consisting of a regular oscillation, the
bursting and a slow oscillation afterwards.

A closer look at the time series during the bursting in Fig. 2 (b) reveals pe-
riods of regular oscillation, interrupted by single bursts. This behavior can also
be seen in the space-time diagram in Fig. 3 from numerical simulations (see
[6] for details on the method). Radial velocity during the turbulent bursting
is shown for 4τ after jumping from Rei = 250 to 300 at Reo = 110, Γ = 4.
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Fig. 3. Space-time diagram of the bursting from numerical simulations. Radial
velocity at mid-gap is plotted over system length (Y axis) and time (X axis). The
parameters are Reo = 110, Γ = 4 and Rei = 300, after increasing from 250.

4 Conclusion and outlook

We have found a flow state in the counter-rotating Taylor-Couette system
which shows transient turbulent bursting at low Reynolds numbers. It appears
above the centrifugal instability without an external forcing and therefore it
competes with coherent states of the system. We observe the same spatio-
temporal characteristics of the turbulent bursting for quasi-statical increases
of the Reynolds number, as well as for sudden jumps in Rei. An analysis of
lifetimes for the second case shows an exponential distribution, which is often
related to the existence of a chaotic saddle.

Since Taylor-Couette flow is a closed system and considered as one of
the best controllable experiments in hydrodynamics, it is ideally suited to
investigate the asymptotic stability of a flow state. On the other hand, sta-
ble and even unstable solutions can be determined via calculations of the
Navier-Stokes equations in quantitative agreement with experiments [7]. The
purpose of our combined experimental and numerical study is to understand
the dynamical reasons underlying this type of turbulence.
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Transition to turbulence can often be understood through analysis of instabil-
ities and bifurcations. Plane Couette-flow and Hagen-Poiseuille flow, however,
are well known to be linearly stable for all Reynolds numbers. Rather recently
finite-amplitude states not bifurcating from the laminar base flow have been
found [1, 2] and are now being discussed as possibly forming decisive struc-
tures in the high-dimensional phase space in which the transition to turbulence
actually takes place [3, 4, 5]. It is noteworthy that most of the recently in-
vestigated finite-amplitude states in plane Couette and Hagen-Poiseuille flow
are periodic and infinitely extended in the spatial directions in which the un-
derlying system is homogeneous. One of the remaining questions seems to be,
however, how the spatial localization of turbulence structures like puffs and
patches can be explained in terms of a dynamical systems perspective. The
existence of localized finite-amplitude states in the style of strongly nonlinear
dissipative solitons is an attractive hypothesis in that context: The complex
spatially localized turbulence could then be affected in one way or another
by the phase-space properties and the phase space neighborhood of such lo-
calized solutions. The existence of these localized, solitary solutions in plane
Couette flow is still being debated [6, 7, 8, 9]. In other pattern forming sys-
tems solitary solutions have, however, been found: in magnetohydrodynamics
so-called ’convectons’ have recently been detected [10, 11]; in Ekman type
flows localized vortex solutions have been reported [12]; and also in granular
materials spatially strongly localized patterns have been observed [13].

The present work forms an extension of earlier studies on localized solitary
vortex solutions in the Couette-Ekman system, see figure 1. In this system,
which consists of a plane Couette configuration in a reference system rotat-
ing with constant angular velocity normal to the plates [14], the existence of
stationary localized solitary vortex solutions had previously been detected nu-
merically [12]. In this previous study the solitary solutions appeared through
saddle-node type bifurcations and could not be linked to secondary states
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Fig. 1. Graphical visualization of the Ekman-Couette system.

of the flow, which all seemed to bifurcate supercritically from the base flow.
Moreover, the solitary roll-like vortex structures turned out to be linearly
unstable in all cases under investigation. In the limit of vanishing system ro-
tation, i.e. in the standard non-rotating plane Couette flow configuration, the
solutions did, however, not exist.

The present work describes new localized solutions related to the previ-
ously determined ones and describes some additional features of the newly
found solutions. These new solutions are characterized by a finite number of
neighboring rolls within the unperturbed base flow. Solutions with different
numbers of rolls seem to emerge from the single-roll structures through saddle-
node bifurcations in which at the turning point an additional pair of vortex
rolls attached to the original roll is generated or destroyed, respectively.

The phenomenon seems to be sort of analogous to what has recently been
called ’snaking’ in the context of binary fluid convection (e.g. [15]), where
several saddle-node bifurcations are linked when there is a subcritical bifur-
cation. It then is of course plausible that there should be finite-amplitude
solutions representing domain-like solutions. In the present case of Ekman-
Couette flow all bifurcations close to the critical points of the neutral surface
had been found to be supercritical, such that domain-type solutions would not
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Fig. 2. Typical streamlines of the localized solutions in the form of single and triple
rolls.
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Fig. 3. Typical bifurcation structures for two different parameter regimes.

have been expected. The system does, however, have a rather twisted neutral
surface that for some parameter combinations folds back, such that the ba-
sic flow remains linearly unstable only in a finite Reynolds number interval
[16]. Taking this into account one could imagine that domain-type solutions
are sort of generated in those parameter regimes and can then - possibly for
higher Reynolds numbers - be followed into other parameter regimes, where
the underlying bifurcation structure has turned supercritical.

Figure 4 shows some results for shear rates when the box size is changed.
First of all it can be seen in the graph that the numerical resolution chosen
turns out to be adequate for the structures under investigation. In addition one
may note that in many cases the shear rates vary linearly with the wavenumber
derived from the box size. This is the behavior that truly localized structures
should show. In other cases, however, there are deviations from that behavior
that do not seem to originate in insufficient numerical resolution; possibly the
states determined are not truly localized, but are rather related to a solution
class linking the solitary and the periodic states, just like the cnoidal waves
in the Korteveg-de-Vries equation. The issue does require further study.

Looking for experimental evidence of localized solutions, roll-like vortices
have been reported experimentally in rotating disc boundary layers (e.g. [17]);
one might conjecture that the observed localized structures (then called ’spots’
and ’rollers’) could be related to the solutions found presently. First linear sta-
bility calculations for the present solutions do suggest, however, that also the
new solutions are linearly unstable. Among the instabilities appearing, there
are both modes that could lead to three-dimensional structures, as as well
as modes of modulational character. Further numerical analysis will there-
fore be required to assess the role of the described solutions in the possibly
more complex high-dimensional, and even time-dependent, dynamics actually
taking place. Another interesting point remains the quest for localized finite-
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Fig. 4. Variation of shear rate vs. box size. The box wavenumber a is here defined
as a = 2π/L with L being the length of the computational box. NT is the numerical
resolution.

amplitude states in non-rotating plane Couette flow [18, 19]: the presently de-
scribed solutions could not be followed into configurations with vanishing rota-
tion. It does, however, seem plausible that there should be three-dimensional
solutions bifurcating from the present two-dimensional ones. If such three-
dimensional solutions, localized at least in one spatial direction, could then
be followed to zero rotation, is still to be answered.
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Summary. Subcritical instabilities in small gap Taylor-Couette (TCF) problem are studied
numerically when both cylinders rotate in opposite directions. The computations are carried
out for a radius ratio η = ri/ro = 0.883. A first exploration is focused on the study of spiral
flows originated from subcritical Hopf bifurcations of the basic circular Couette solution. The
second exploration addresses the transition from laminar flow to the usually termed as spiral
turbulence regime characterized by alternating laminar and turbulent spiral bands which co-
exist even in regions of the parameter space where the circular Couette flow is linearly stable.

1 Formulation

In TCF, an incompressible fluid of kinematic viscosity ν and density � is contained
between two concentric rotating cylinders whose inner and outer radii and angular
velocities are r∗i , r∗o and Ωi, Ωo respectively. The dimensionless parameters are the
radius ratio η = r∗i /r∗o and the inner and outer Reynolds numbers Ri = dr∗i Ωi/ν and
Ro = dr∗oΩo/ν of the cylinders. All variables are rendered dimensionless using the
gap d = r∗o − r∗i and viscous time d2/ν as units for space and time, respectively. The
dynamics of the flow is controlled by the incompressible Navier–Stokes equations

∂tv + (v · ∇)v = −∇p + Δv, ∇ · v = 0 . (1)

In nondimensional cylindrical coordinates (r, θ, z) , the basic circular Couette flow
(CCF) is vB = (uB , vB , wB) = (0, Ar + B/r, 0), with A = (Ro − ηRi)/(1 + η)
and B = η(Ri − ηRo)/(1 − η)(1 − η2). The flow is assumed to be L∗-periodic in
the axial direction so that the dimensionless domain is (r, θ, z) ∈ D = [ri, ro] ×
[0, 2π) × [0, Λ), where Λ = L∗/d is the aspect ratio of the computational box.
Arbitrary perturbations u of the base flow, v = vB +u, are expanded in a solenoidal
spectral Fourier-Galerkin basis

u(r, θ, z, t) =
∑

l,n,m

alnm(t)ei(lk0z+nθ)
vlnm(r), (2)
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for (l, n,m) ∈ [−L,L] × [−N,N ] × [0,M ] and k0 = 2π/Λ. The time integra-
tion is carried out with a 4th order linearly implicit time marching method [3].
Following former experimental works [1], the computations presented here were
obtained for η = 0.883, i.e., ri = 7.547 and ro = 8.547, with (Ro,Ri) ∈
[−3000,−1200] × [0, 1000] and Λ = 2π/k0 ∈ [1.23, 29.9]. The spectral resolu-
tion used for the computation of seceondary laminar regimes lies within the intervals
(Nr, Nθ, Nz) ∈ [28, 48] × [28, 48] × [16, 32] radial×azimuthal×axial grid points,
resulting in spectrally converged solutions. For the laminar-turbulent spiral patterns,
a resolution within (Nr, Nθ, Nz) ∈ 20× [100, 220]× [100, 220] was used, resulting
in a dynamical system with up to O(106) degrees of freedom.

2 Subcritical equilibria from modal instabilities of Couette flow

The first exploration has consisted of a comprehensive numerical exploration of sec-
ondary finite amplitude solutions using Newton-Krylov methods embedded within
arclength continuation schemes. Two different families of rotating waves have been
identified: short axial wavelength subcritical spirals ascribed to centrifugal mecha-
nisms and large axial scale supercritical spirals and ribbons associated with shear
dynamics in the outer linearly stable radial region.
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Fig. 1. (a) Norm of bifurcating spiral solutions of azimuthal wavenumbers n ∈ [1, 6] as a
function of Ri for Ro = −1200 and axial wavenumber k = 5.125. (b) Same as (a) showing a
disconnected ribbon solution branch (α) and a supercritical spiral branch (β) for k = 2.5. (c),
(d) and (e) show azimuthal vorticity distributions on a θ = cnst. section of regimes γ, α and
β shown in (a) and (b), respectively.

As shown in Fig. 1a, all the spiral regimes originate from the circular Couette
flow at Hopf bifurcations, some of them of subcritical nature. Their instability is
clearly related to centrifugal mechanisms and their axial wavelength is consistent

and M. AvilaA. Meseguer , F. Mellibovsky, F. Marques,116



with the characteristic width of the inner centrifugally unstable region. Spiral flows
with higher azimuthal and axial wave numbers tend to be less subcritical whereas
spirals with lower azimuthal and axial wavenumbers, although not dominant at tran-
sition, clearly show more pronounced subcriticality. This motivated further explo-
ration for lower values of k0 in order to find the large-scale axial dynamics typical of
spiral turbulence. However, straightforward continuation of the spirals for lower val-
ues of k0 was unsuccessful, exhibiting turning points before k reaches lower values.
The computation of these new spiral shear modes required two different techniques,
based on artificially cutting off high axial modes in the time evolution and quasistatic
homotopy transformation in η, combined with an axial forcing. By including axial
advection and reducing η it was possible to find new spirals of larger wavelength. A
very careful variation of these two combined effects sometimes succedeed in recov-
ering low axial wavenumber rotating waves for our original problem. However, the
described procedures have only been successful for n0 = 2 and n0 = 3 cases. Two
families of new solutions have been found; one of them are spirals that bifurcate su-
percritically from the Couette flow. The other family consists of ribbons, apparently
disconnected from the basic flow. Figure 1b shows both families for k0 = 2.5. The
inner structures of the aforementioned equilibria are shown in Fig. 1c-f.

3 Intermittent regimes from nonmodal instabilities

The second exploration has consisted in triggering transition within the linearly sta-
ble region of the parameter space. This has been done for values of Ri and Ro for
which experiments reported laminar-turbulent spiral coherence, also termed as spiral
turbulence [2, 5, 4]. Numerical simulation with moderate resolution have managed to
reproduce such a flow (see Fig. 2) within an axially periodic domain, thus confirming
that this pattern is not necessarily induced by top or bottom lid effects. Figures 2a
and 2b show typical snapshots of computed SPT, conspicuously resembling the ex-
perimental results. The exploration reported here is summarized in Fig. 2c, where
two parametric paths for Ro = −3000 and Ro = −1200 (labelled as Γ1 and Γ2,
respectively) were followed. Both paths start within the shadowed region of Fig. 2c,
where experiments [1] reported supercritical SPT regimes when increasing Ri from
below. Starting with a random perturbation at (Ro,Ri) = (−3000, 900) in Γ1 and
(Ro,Ri) = (−1200, 640) in Γ2, the time integrations drove the flow towards SPT
patterns in less than one viscous time unit. From those starting points, Ri was qua-
sistatically decreased and the time evolution of the flow was monitored for more than
6 viscous time units afterwards. Over Γ2, SPT regimes followed exactly the same
supercritical behaviour as the one observed in the experiments [1], where smooth
decreasing of Ri led to intermittency regimes (INT, characterized by localized tur-
bulent spots), interpenetrating spirals (ISP) and relaminarization to the basic CCF
profile. However, over Γ1, the SPT flow was found to be sustained even below the
linear stability boundary of the CCF, labelled as LSB in Fig. 2c. The H1 and H2 bul-
leted curves shown in Fig. 2c correspond to experimental hysteretic SPT boundaries
when decreasing Ri from above in [2] and [1], respectively. In particular, we found
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Fig. 2. Angular momentum L = rv isosurfaces of typical SPT flows (L > 0 and L < 0
in white and blue, respectively). (a) Subcritical SPT at (Ro, Ri) = (−3000, 650) showing
L = ±1900. (b) Supercritical SPT at (Ro, Ri) = (−1200, 600) showing L = ±950. (c)
Explored regions in (Ro, Ri)-parameter space. Black triangles, gray triangles, gray squares
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Fig. 3. Radial vorticity (∇× u)r of SPT flows on the intermediate radial surface rm = 8.21.
(a) (Ro, Ri) = (−3000, 650), with (∇×u)r ∈ [−1.3× 104, 1.4× 104]. and (b) (Ro, Ri) =
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our computations to agree with the H1 boundary found by Coles. This work was sup-
ported by the Spanish Government grants FIS2007-61585 & AP-2004-2235, and the
Catalonian Government grant SGR-00024.
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Plane Couette flow has the peculiar property that transition to turbulence oc-
curs despite the fact that its laminar profile is linearly stable. For high enough
Reynolds numbers small amplitude perturbations are enough to initiate the
growth of turbulent spots. Such spots have been subject to investigation for
a few decades, see e.g. [1, 2]. In addition, it has been observed that around
transitional Reynolds numbers laminar and turbulent regions can co-exist if
this Reynolds number is approached from the turbulent side, e.g., [3, 4]. For
both cases, distinct interfaces divide the regimes between turbulent and non
turbulent flow. It is our main interest to study the evolution of such inter-
faces similar to the work of [5] where the shear free case with inhomogeneous
forcing by an oscillating grid has been investigated in detail.

In this work we present the design and implementation of a plane Couette
facility that has a large aspect ratio of 100× 100× 1 (height, width and half-
gap, respectively) and that is accessible for the three dimensional particle
tracking velocimetry (3D-PTV) technique, see figure 1. Our setup will allow
for the first time to access experimentally the full range of scales in a plane
Couette flow. Ultimately, our aim is to explore the transitional flow regime
of 325 < Re < 415. In particular the field of velocity gradients close to the
turbulent non-turbulent interface is at the center of our attention.

The flow domain is between a moving belt and a glass plate separated by
a distance of 0.031 m. At the entrance of the domain the flow is becalmed
by a honey-comb with tube diameters and lengths of 3 mm and 30 mm,
respectively. In the hone-comb and along the return flow, in the 0.055 m gap
between the glass plate and the glass tank wall, pressure losses occur, which
will have to be compensated with a sucking and blowing device. Currently,
this is still under construction.

The presented results stem from 3D-PTV measurements in a domain of
0.3 × 0.21 × 0.03 m3 at maximum belt speed ub = 0.062 m/s, i.e. Re = 560,
based on half gap and half belt velocity. For each frame, the positions of 7000
tracer particles of diameter 100 μm are determined and linked. The pressure
losses are reflected in a significant counter flow along the glass wall, 0.01
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Fig. 1. Plane Couette facility setup. Inside a 2× 2× 0.25 m3 water tank an endless
belt of 1.6 m width is controlled by two large driving drums that measure 219
mm in diameter. The optically accessible measuring domain with sheared flow is
1.6 × 1.6 × 0.03 m3.

m< zc < 0.03 m, as can be seen for all streamwise velocity profiles shown in
figure 2(a). In the middle of the domain a 2 mm diameter hole in the glass
plate allows for cross-jet perturbations. For the time being, we perturb the
flow - in a rather crude way - for the duration of 1 sec with an initial pressure
head of 0.6 m. The resulting ‘spot’, as seen after 10 sec, is shown in figure 2(b),
where tracer particles are recorded with 1 sec exposure time.

An analysis of the corresponding tracer trajectories, figure 3(a), reveals
that inside the spot region significant wall normal velocities are present. This
is consistent with the velocity profiles becoming ‘flatter’ with time, figure 2(a),
due to the momentum transport by the vertical velocity fluctuations across
the gap. Using a reference profile from the unperturbed flow state, the kinetic
energy due to the perturbation is measured. As can be seen qualitatively
from figure 2(b) and quantitatively from figure 3(b) the perturbation energy
is organized in ‘high-speed’ streaks. For the current setting, we observe visually
that these streaks have a life-time of approximately 30 sec.

The preliminary results show that we have managed to produce a quasi-
laminar shear flow. We demonstrated the feasibility of high quality 3D-PTV
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Fig. 2. a) The ux(z, t) velocity component averaged over the {x, y} plane is shown
for 0 sec < t < 40 sec. The dashed line is the best fit of the corresponding laminar
shear profile with dp/dx = 370 Pa. b) Overlay of 50 frames (1 sec) of particle images
10 seconds after perturbation. The perturbation is applied at position {0.3, 0.11},
the belt is moving in negative x direction with ub = 0.062 m/s.

measurements in this setup. With the pressure loss of 370 Pa we found the
flow to be stable up to Re = 560. In order to reach a symmetric flow and to
explore the transitional Re regimes, a sucking and blowing device needs to
be implemented. From results shown in figure 2(a) we estimate the missing
flux as Qm ∼ 1 l/sec. Once the symmetric flow profile is established, 3D-
PTV measurements at large and at small scales will be performed, within the
turbulent spots, but also at the turbulent non-turbulent interface.
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Fig. 3. a) Particle trajectories within 10 sec < t < 13 sec after the perturbation. b)
The difference of kinetic energy, u2

i to the unperturbed velocity profile is rendered
with slices and with an iso-surface for values of u2

i > 6 · 10−5 m2/s2.
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Coherent structures seem to play an important role in turbulent shear flows.
In the last years, unstable solutions with the form of traveling waves have
been identified in numerical simulations in plane Couette and pipe flow. It is
believed that these solutions form an strange saddle in the phase space, so
that the flow state transiently visits these unstable solutions before eventually
returning to the laminar state and indeed, these structures were observed in
experiments in the form of transients [1]. Furthermore, coherent structures
which live between the laminar and the turbulent state have been numerically
found, suggesting the existence of a separatrix in the phase space between the
laminar and turbulent profile [2]. The main aim of our study is to extend the
previous observations of coherent structures, characterize and quantify the
occurrence of such periodic states and to rationalize their role in turbulent
puffs and slugs.

Fig. 1. Experimental setup. Water enters the pipe through a specially designed
inflow section. Turbulence can be triggered at injection points along the pipe. Vol-
ume resolved velocity measurements are carried out using two high speed (480Hz)
LaVision Stereo PIV systems.
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Turbulent pipe flow is studied in the transitional regime for 1500 < Re <
4000. The working fluid is water and the pipe has a diameter of D = 30 mm.
Two parallel stereo PIV systems have been mounted looking at two planes
perpendicular to the flow (see Fig. 1). The distance between the two planes is
about 4D. With this setup the full 3D velocity profile can be obtained in both
planes. This new setup allows a better characterization of the coherent struc-
tures. For example, the phase velocities of traveling waves can be obtained
from the correlation between the velocities at both planes.
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Forced localized turbulence in pipe flows
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Summary. Low Reynolds number turbulence is manifested in shear flows in the
form of disordered patches of fluid motion embedded in laminar flow. Here, we
investigate the mean properties of these patches in pipe flow and present a new
method to influence their physical mechanisms.

1 Introduction

Transitional shear flows are characterized by the presence of localized turbu-
lent structures which are bounded by laminar regions. This has been observed
in different canonical shear flow geometries: Taylor–Couette, plane Couette
and pipe flows [1, 2, 3]. In the latter, these localized turbulent patches are
known as ‘puffs’ and travel in the downstream direction at approximately the
mean advection speed [3, 4]. Experiments and numerical simulations show
that at low Reynolds number puffs are transient and their lifetime distribu-
tion follows and exponential law. However, it is currently debated whether
there exists a critical Reynolds number above which puff turbulence is sus-
tained [5, 6, 7, 8].

In this paper we present a new method that may be used to influence the
lifetime and dynamical behavior of ‘puff’ turbulence and aid in understanding
the underlying physical mechanisms. In particular, a volume force is applied
to the Navier–Stokes equations to modify the parabolic axial velocity profile.
Global and spatially localized deviations are considered in a long periodic
pipe.

2 Formulation

The Navier–Stokes equations with an additional volume force F

∂tv + (v · ∇)v = −∇p +
1

Re
Δv + F, ∇ · v = 0 , (1)
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are solved with a Petrov–Galerkin spectral method [9]. Chebyshev polynomials
in the radial direction are combined with Fourier expansions in the azimuthal
and axial directions. The Reynolds number is defined as Re = UD/ν, where U
is the mean flow speed, D the pipe diameter and ν the kinematic viscosity of
the fluid. The mass-flux is kept constant, and thus the mean pressure gradient
in the axial direction is time-dependent. The results reported here have been
obtained in a long periodic pipe of 50D in a grid of about 4× 106 points.

3 The turbulent puff: mean flow

Fig. 1. (a) Stream-wise vorticity (averaged in the azimuthal direction) of a turbulent
puff snapshot at Re = 1900. Note that the image has been compressed by a factor of
5 in the axial direction. The flow is from left (z = 0) to right (z = 50) in a periodic
pipe of 50 diameters.

Figure 1 shows an instantaneous snapshot of stream-wise vorticity of a
turbulent puff at Re = 1900 (note that an average over the azimuthal direction
has been performed). At the trailing edge of the puff, vorticity decays sharply
and laminar flow is quickly recovered. The turbulent fluctuations within a puff
are much faster than its down-stream propagation speed, thus it is difficult to
compute instantaneous propagation speeds. We define the puff speed in the
interval [t, t + Δt] as

c =
Δz

Δt
: min

Δz

||v(r, θ, z −Δz, t + Δt)− v(r, θ, z, t)||2 (2)

where Δz is the spatial shift that minimizes the norm of the velocity fields
difference between two snapshots. It is worth noting that correlations between
the turbulent motions may produce a drift in the computed speed. Our re-
sults show that a time of Δt ∼ 20D/U between snapshots is appropriate to
eliminate these effects. Using this method, time averaged quantities can be
computed to characterize the stationary statistical puff by collecting data in
a co-moving frame.

Figure 2 shows the time-averaged stream-wise velocity distribution of a
turbulent puff at Re = 1900. Note that the basic Poiseuille profile has been
subtracted to aid visualization. Fluid is accelerated close to the pipe wall and
decelerated in the center, thus creating a large-scale circulation, with radi-
ally outward flow at the trailing edge, that is apparent in the corresponding
stream-function of Fig.2(b).
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(a)

(b)

Fig. 2. (a) Time average of stream-wise velocity of a turbulent puff at Re = 1900.
(b) Associated azimuthal stream-function.

4 Localized forcing
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Fig. 3. Laminar Poiseuille profile (dashed line) and forced pluck-like profile, with
α = 0.3, i.e with a centerline velocity drop of about 30%.

A volume force F is applied to the Navier–Stokes equations (1) to modify
the basic profile and verify how the mean properties of the puff are influenced.
Figure 3 shows the parabolic Poiseuille profile (dashed line) and the resulting
profile (solid line with crosses) when F is applied. The latter is similar to the
mean profile of a turbulent puff close to the leading edge (see Fig. 2(a)).

The forcing is defined with a single parameter α, which defines the drop
in centerline velocity with respect to the Poiseuille profile (the mass-flux is
kept constant). In the case of a globally modified profile, the incompressibility
condition is automatically satisfied, as v = v(r). However, when the forcing
is localized in the axial direction, v = v1(r)v2(z), and incompressibility en-
forces a secondary weak radial flow (of an order of magnitude less than the
modification in stream-wise velocity). The localization is accomplished with
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a Gaussian function, v2(z) = exp[−(z/L)2], where L controls the axial extent
of the forcing.

Current and future work is focused on the effect of the forcing on the
localisation mechanism and lifetimes of low Re turbulence.
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From localized to expanding turbulence
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In the transitional regime turbulence in pipe, channel and Couette flow ap-
pears in localized patches, sometimes called spots or puffs. These have a fixed
length and a propagation speed which depends on the Reynolds number. It
has been demonstrated in recent studies of pipe flow that such turbulent puffs
have a finite lifetime and that their decay is a memoryless process [1, 2].
Generally this behaviour is consistent with the assumption that the turbulent
state forms a chaotic saddle in phase space.

For somewhat larger Reynolds numbers (Re > 2500 in pipes or Re > 400
in Couette flow) turbulent structures begin to grow in size. In the case of pipe
flow localized spots are commonly refered to as puffs and spatially growing
structures as slugs. Puffs and slugs can be distinguished ([3]) by the charac-
teristic change of the centreline velocity during the passage of the respective
structure (Fig. 1.). While qualitative differences have been pointed out in a

Fig. 1. a) centreline velocity during the passage of a turbulent puff at Re = 2300.
The decay of the velocity at the downstream interface is slow while that at the
upstream interface is sharp. b) During the passage of a turbulent slug (Re = 4000)
a sharp change of the centre line velocity is observed at both interfaces.

number of earlier studies (e.g. [3, 4, 5]) it has not been clarified if growing spots
(or slugs) gradually evolve from localized ones and essentially correspond to
the same state or if they emerge as a distinct state at a well defined bifurcation
point. We here present evidence for the occurence of a bifurcation, marking
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the transition from localized turbulent spots to growing ones. In particular we
present data for pipe, duct and channel flow. The consequences for the global
dynamics of the turbulent state, e.g. a possible transition from a chaotic re-
peller (characterized by a finite lifetime of turbulence) to an attractor are
discussed.
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Abstract

Theoretical studies of the laminar-to-turbulent transition of pipe flow, based
on linear instability considerations, suggest an inherent stability of the flow
to small disturbances. Different to this finding, even in most carefully carried
out experiments, transition of pipe flows occurs at finite Reynolds numbers.
However, the reported critical Reynolds number range differs by nearly two
orders of magnitude (1.9 ∗ 103 ≤ Recr ≤ 1 ∗ 105). No reason for this extended
range is given in the literature. A closer look at the existing data shows, how-
ever, that there is a clear dependence of the critical Reynolds number on the
employed pipe diameter. The authors work aimed at a closer understanding
of the dependence of Recr on the pipe diameter of the employed test rig. It is
shown that the existing data show an increase of the critical Reynolds number
with increasing pipe diameter. With this understanding a new pipe flow test
facility was designed, manufactured and employed for experiments to achieve
an increase of the critical Reynolds number with decreasing pipe diameter.
New test facility yielded much higher critical Reynolds numbers for pipe flows
than those reported in literature up to date for the investigated pipe diam-
eters. The paper also suggests that the developments of turbulent velocity
fluctuations in nozzles, i.e. the decrease of longitudinal velocity fluctuations
and the increase of the cross flow fluctuations, is one of the mechanisms that
cause transition in pipe flows.

1 Introduction and Aim of Work

An extensive literature survey, with particular attention being paid to the
pipe diameter employed in the reported investigations, reveals a clear depen-
dence of the critical Reynolds number on the pipe diameter d , as can be seen
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Fig. 1. The dependence
of critical Reynolds num-
ber on the pipe diameter
deduced from the experi-
ments reported in the lit-
erature [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14].

in Fig. 1. These embrace Recr data varying over nearly two orders of magni-
tude and corresponding pipe diameters that change over nearly one order of
magnitude.

One of the earlier investigations on laminar-to-turbulent transition of pipe
flows was carried out by Rotta [4]. The main parts of the test rig consisted of a
pipe of 30 mm diameter and a total length of 9.66 m about corresponding to
L/d = 322. In order to keep the air flow rate constant regardless of the pressure
variations, Rotta used a specially designed air supply valve. The air was sucked
from his laboratory and then forwarded to a settling chamber where it passed
flow straighteners and then entered the pipe thought a contracting nozzle.
Hence the test rig embraced all the parts that are typical for all test rigs
employed in pipe flow investigations.

There are more test rigs described in the literature that were employed
to study laminar-to-turbulent flow transition in pipes and they were all set
up to avoid disturbances of the flow to enter the inlet of the actual pipe. All
test rigs used nozzles to guide the flow from the plenum chamber to the pipe
inlet. However no fluid mechanics considerations were employed to lay out the
inlet parts of the pipe flow test rigs. Therefore, the question arises whether
improved inlet-sections are feasible to yield higher critical Re-numbers than
those achieved by test rigs used so far for experimental studies of laminar-to-
turbulent flow transition of pipe flows.

In a first step, the performance of existing test rigs is considered that
are usually built to embrace a plenum chamber. This provides a conditioned
flow prior to passing it through a contraction nozzle to the entrance of the
pipe. From there it develops downstream and in its initial part, it develops a
velocity profile containing an inflection point. It is well known that inflection
of the velocity profile acts as an amplifier of disturbances. As the section below
shows, these disturbances are produced by the nozzles usually placed before
the pipe flow test section.
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2 Effects of Nozzle on Pipe Inlet Turbulence

turbulence strained through axisymmetric contractions with high contraction
ratios c = Ainlet/Aoutlet ≥ 9 develops according to derivation with the help
of the Rapid Distortion Theory (RDT). This theory clearly shows that the
mean square of the longitudinal velocity fluctuations uu decreases and that
of the transverse fluctuations vv increases along the nozzle-axis. The rate of
decrease for uu and the increase for vv are functions of the local contraction
ratio c provided by the nozzle. The effect of the nozzles with high-contraction
ratio can be illustrated simply using the Vortex Stretching Theory (VST),

uu)outlet =
1

c2
uu)inlet and vv)outlet = c vv)inlet , (1)

which delivers the similar trends of velocity fluctuations as RDT. Note that
due to the axisymmetry of grid generated turbulence, the two transverse com-
ponents should be equal, i.e. vv = ww.

In a RDT- based analysis, we consider two test-rigs with the same inlet
diameters of nozzles Dinlet but different pipe diameters dA and dB , such that
dB < dA . Assuming that at the same mass flow rate, both test rigs have the
same relative turbulence intensity at their nozzle inlet, the ratios of the mean
square of the velocity fluctuations can be found to be:

uu)
A
outlet / uu)

B
outlet =

(
dA/dB

)4
and vv)

A
outlet / vv)

B
outlet =

(
dB/dA

)2
. (2)

In other words, uu)
B
outlet < uu)

A
outlet and vv)

B
outlet > vv)

A
outlet. According

to linear stability analysis, it is the turbulence intensity which influences the
transitional Reynolds number. Comparison of the relative turbulence energy
of the transverse velocity fluctuations

vv/U
2
)A

outlet
/ vv/U

2
)B

outlet
=
(
dA/dB

)2
(3)

reveals that the relative turbulent energy drops with the reduction in pipe
diameter at the same mass flow rate, . However decreasing the pipe diame-
ter means also an increase in Reynolds number for the same mass flow rate
Re = 4ṁ/(μπd) and the flow becomes more sensitive to disturbances. Hence,
increase in transitional Reynolds number has to be expected with decreasing
the pipe diameter.

3 Design Strategy for New Test Rig and Experiments

To verify that the dependence of critical Reynolds number on d2 can be
overcome by a different a different test section design, utilizing the under-
standing of transition in conventional test rigs, a test rig with a pipe plenum
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chamber was set up. The diameter of the plenum chamber was chosen to be
Re = 4ṁ/(μπd) ≤ 1940. Hence as shown by Nishi et al. [14], all disturbances
would decay. Adding a specially designed nozzle at the inlet of the pipe, that
would not produce inflection points in the inlet velocity profiles, see Fig. 2,
yielded a test rig that provided Recr ∝ 1/d.

Transition in the new test rig was not caused by amplifications of distur-
bances in the inlet of the test rig, but by Helmholtz-resonator effects, intro-
duced by the plenum chamber pipe flow assembly, having a volume of V0 and
a length of L. The turbulent slug moving with the streamwise velocity Uslug

disturbs the flow as it leaves the pipe and cause the formation of the next slug.
This yielded (V0/V̇ ) = (L/Uslug) and hence, transition happened at constant

volume flow rate V̇ resulting in Recr ∝ 1/d.

Fig. 2. Nozzle designed for laminar-to-
turbulent flow studies yielding Recr ∝
1/d. Computed streamlines shows no
separation.
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Interaction of turbulent spots in pipe flow
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The process of transition from laminar to turbulent regime in shear driven
flows is still an unresolved issue. Localized turbulent regions or spots occur in
pipe flow for Reynolds numbers around 2000. Typically in this regime an inter-
mittent change between laminar and turbulent flow is observed (Wygnanski).
Indeed, even if a large section of the laminar flow is uniformly perturbed lo-
calized turbulent spots emerge rather than an extended region of turbulence.
A good understanding of this localization process is crucial for the compre-
hension of the transition to turbulence. We investigate the interaction of such
turbulent spots in pipe flow for Reynolds numbers from 1900 to 2500. Tur-
bulence is created locally by injecting a jet of water through a small hole in
the pipe wall. For small perturbation frequencies the spacing of the turbulent
spots downstream is inversely proportional to the frequency. It is observed
that for distances less than approximately 20 pipe diameters turbulent spots
start to interact and annihilate each other. The interaction distance is mea-
sured as a function of Reynolds number. We are also studying the effect of
amplitude of the perturbations on the mutual interaction of the puffs. This
investigation is closely related to spatially turbulent laminar periodic patterns
which were earlier observed in other shear driven flows like Taylor-Couette or
plane Couette (Prigent et al), (D. Barkley and L. Tuckerman).

Fig. 1. Snapshot of turbulent puff in pipe flow at Reynolds number 2000.
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Summary. Direct numerical simulation of transitional pipe flow is carried out in a
long computational domain in order to characterize the dynamics within the saddle
region of phase space that separates laminar flow from turbulent intermittency. A
shoot & bisection method is used to compute critical trajectories. The chaotic saddle
or edge state approached by these trajectories is studied in detail. For Re ≤ 2000 the
edge state and the corresponding intermittent puff are shown to share similar aver-
aged global properties. For Re ≥ 2200, the puff length grows unboundedly whereas
the edge state varies but mildly with Re. In this regime, transition is shown to
proceed in two steps: first the energy grows to produce a localized turbulent patch,
which then, during the second stage, spreads out to fill the whole pipe.

Transition to turbulence in pipe flow (fluid flow through an infinitely long
pipe of circular cross-section) still remains an open problem of hydrodynamic
stability theory. The basic parabolic solution is believed to be always sta-
ble with respect to infinitesimal perturbations [1] but becomes turbulent in
practice [2, 3, 4], constituting one of the most fundamental examples of sub-

critical transition to turbulence in fluid dynamics (see [5, 6] and references
therein). Instability of pipe flow typically occurs for Reynolds numbers above
Re = DŪ/ν � 1750 [3] (D is the pipe diameter, Ū is the mean streamwise
flow speed and ν is the kinematic viscosity of the fluid). For Reynolds num-
bers within the range Re ∈ [1750, 2700], perturbations can trigger transition
to intermittent turbulent spots usually named puffs, which coexist with the
laminar flow [2, 4]. Around Re � 2200-2700, puff structures destabilize, either
experiencing a splitting process that leads to a higher number of puffs or,
eventually, growing in size and leading to much longer intermittent structures
(slugs), which are the predecessors of global pipe turbulence.

The problem is formulated using the Navier-Stokes equations in a peri-
odic cylindircal domain of length Λ = 100-radii with an imposed mass-flux.
The discretization is accomplished with a solenoidal Petrov-Galerkin spectral
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scheme with Mr×Nθ×Lz = 25×33×193 radial×azimuthal×axial grid points.
The solution is evolved in time using a 4th order linearly implicit method [10].

Starting from a localized pair of rolls filling a few radii length of the pipe,
a refinement in the critical amplitude is carried out via an iterative bisection
method, allowing to transiently land on the stable manifold of the critical edge
state [11]. This is illustrated in Fig. 1a, where the resulting edge trajectory and
some of the corresponding relaminarizing and turbulent bounding orbits are
represented. The results for Re ∈ [1800, 2800] are shown in Fig. 1b, where
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Fig. 1. (a) Energy of turbulent (red) and relaminarizing (blue) trajectories which
bracket the edge state (black). (b) Energies of the critical (solid) and turbulent
(dashed) trajectories for different Re. (c,d,e,f) Statistical properties of the turbulent
states (blue, TS, puffs and slugs) and the edge states (red, ES) as a function of Re.
(c) Energy. (d) Structure length. (e) Mean axial speed in Ū units. (f) Friction factor.

the total perturbation energy associated to trajectories that remain on the
edge for arbitrarily long times has been represented as a function of time in
D/4Ū units (dubbed ES, solid curves). Also represented are the energies of
trajectories that lead to a turbulent ’state’ (labelled TS, dashed curves).

Since the states analyzed are chaotic, we report statistical properties, av-
eraged over long time series, rather than properties at given time instants. In
Fig. 1c we represent time-averaged energies corresponding to edge and turbu-
lent states, asymptotically approached by the critical and turbulent trajecto-
ries shown in Fig. 1b, respectively, for all the Reynolds numbers explored. The
error bars correspond to ±2σ. The edge state energy does not change notice-
ably within the explored Re-range while the energy of the turbulent regime
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experiences a noticeable jump for Re ≥ 2200. To better understand this dis-
continuity, Fig. 1d, shows the axial length lz of the structures, as a function
of Re. These curves clearly show that the turbulent energy surge observed at
2000 ≤ Re ≤ 2200 is associated with the unbounded growth of the turbulent
structures, which end up filling the whole domain. In contrast to turbulence,
which starts to expand at about Re ∼ 2200, there is no such transition in the
edge states branch. The flow structure’s length slightly increases with Re but
remains bounded, the edge being localized regardless of the dominant turbu-
lent state (puff or slug) to which transition is experienced. Fig. 1e shows the
mean streamwise speed c of the localized states. The advection speed of the
edge states does not remarkably change with Re and they always move faster
than the mean flow and than the puffs. Finally, Fig. 1f depicts the friction
factor λ, computed over the structure length lz, corresponding to both edge
and turbulent states. This last plot clearly reveals that the former preserve
strong laminar properties, whereas the latter (especially in the puff regime)
follow a law which is closer to the one describing fully developed turbulent
flow.

The structure of puffs and edge states is compared at Re = 1900 in Fig. 2.
The puff is characterized by an extended leading edge (front) and a sharp
trailing edge (rear). In contrast, the edge state, is slightly shorter and char-
acterized by extended interfaces in both the front and rear regions. The edge
state flow field appears as much less complex and preserves higher spatial
coherence than the turbulent puff.

(a) (b)

Fig. 2. Cross-sectional distributions of uz and uz = ±0.07 isosurfaces of the edge
and the turbulent state at Re = 1900. The axial positions of the visualized cross-
sections are represented with rings below. Red, green and blue regions correspond to
high, quiescent and low streamwise flow speed. (a) Edge state. (b) Turbulent state
(developed puff).

The simple structure and smoothness of the edge state is preserved and
even smoothened as Re is increased and this is clearly evidenced in Fig. 3a,
for a localized edge state at Re = 2800. Clear traces of the travelling wave [9]
underlying the edge in a short 5D pipe [12] can be recurrently found at the
rear of the structure.

The nature of transition to global turbulence is clarified in Fig. 3b, where
the energy (E) and axial perturbation length (lz) have been represented for
a destabilizing edge state at Re = 2800. It becomes apparent that transition
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Fig. 3. (a) uz = ±0.07 isosurfaces of the edge state at Re = 2800. Also shown uz

cross-sectional contours at the indicated axial location (top left), to be compared
with the travelling wave underlying the short pipe edge state at Re = 2875 (top
right). (b) Time evolution of a destabilizing edge state at Re = 2800: total energy
(E, bold line) and structure length (lz, dashed line). t1, t2 and t3 indicate the
beginning of the exponential energy growth, the beginning of the linear growth of
axial extent and the saturation to fully developed turbulence, respectively.

follows two stages. In a first stage (t1 < t < t2), a linear instability nucleates
in a very short axial region of the edge state, and starts growing exponentially
in energy but remains narrowly localized in space producing an axial concen-
tration of total energy . The result is a turbulent spot that, in a second stage
(t2 < t < t3), starts a linear unbounded axial expansion. The two stages of
the transition process suggest that two distinct instability mechanisms are at
work: a first one responsible for the energy increase and a second one causing
the spreading in space. While the first one can be understood through an
instability of a rather simple structure of travelling wave type, the second one
is perhaps related to the mechanisms at work in other examples of structured
turbulence [13].
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Introduction

The transition to turbulence in a square duct is an intriguing problem of
hydrodynamics and has been studied since the work by Nikuradse [5]. The
mean secondary flow of the turbulent state is made up by 8 vortices in the
cross-sectional plane with 2 vortices in each corner, symmetric about the di-
agonals [2, 3, 5, 6, 7, 8]. The underlying mechanism causing this flow has
been related to anisotropic turbulent fluctuations. Recently it has been shown
through numerical simulations that the flow at transitional Reynolds numbers
(Reb = Ûbb̂/ν̂, where Ûb is the bulk speed, ν̂ the kinematic viscosity and b̂ the
half duct height) can feature instantaneous 4-vortex states (Biau & Bottaro
[1] and Uhlmann et al [7]). The lower limit for transition in Reb is between
865 and 1077 [1, 7].

The laminar flow is linearly stable at all flow velocities [4], hence it is con-
jectured that the transition is caused by the emergence of nonlinear exact
coherent structures (ECS) to the Navier-Stokes equations. The ECS are un-
stable fixed points in phase space and are thought to provide a skeleton around
which the flow dynamics is organised. This has recently been observed in nu-
merical and experimental pipe flow [9, 11, 13]. Since the ECS are generally
unstable a flow can never settle onto such states, but it can remain in their
vicinities for a long time. The very first nonlinear ECS were discovered numer-
ically by Nagata [14] in 1990 for plane Couette flow. Later additional coherent
states were discovered [15, 19, 17] and relative periodic orbits [18].

Definitions

A nonlinear study of the isothermal flow through a square duct confined by
four walls is presented. The cartesian coordinates x̂, ŷ, and ẑ define the stream-
wise, vertical and spanwise coordinate. The unit vectors are i, j and k, the
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velocity vector is defined as û = ûi + v̂j + ŵk, the pressure as p̂. Denoting
the base flow by capital letters, a constant pressure gradient P̂x sets the fluid
in motion. The Reynolds number and the bulk Reynolds number are defined
as Re = Ûmaxb̂/ν̂ and Reb = Ûbb̂/ν̂, where Ûmax is the laminar centreline
velocity and Ûb the bulk speed. We impose a perturbation u

′ = (u′, v′, w′) and
p′ on the steady laminar flow U(y, z) and P (x). The laminar flow is governed
by ∇2U = RePx with no-slip conditions at the four walls and U(0, 0) = 1
for a given P x. The non-dimensional governing equations for the perturbation
are thus:

∂u
′

∂t
+ U

∂u
′

∂x
+

(
v′
∂U

∂y
+ w′

∂U

∂z

)
i − 1

Re
∇2

u
′ + u

′ · ∇u
′ +∇p′ = 0 (1)

and ∇ · u
′ = 0, with no-slip conditions u

′(t, x, y = ±1, z) = u
′(t, x, y, z =

±1) = 0 and periodicity in x or u
′(t, x, y, z) = u

′(t, x + Lx, y, z). The dis-
turbance is expressed as a travelling wave, periodic in x and t according to
equation 2.

u
′ =

Nx∑
b=−Nx

ũ
(b)(y, z)eIbα(x−ct) =

Nx∑
b=−Nx

Ny∑
i=0

Nz∑
j=0

ûbijφi(y)φj(z)eIbα(x−ct),

(2)
where I =

√−1.
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Fig. 1. A homotopy approach for Re=3000 and α=1.5. The amplitude of the non-

linear solution is defined as A3D =
√∑NZ

j=0
|û10j |2 + |v̂10j |2 + |ŵ10j |2, the û10j are

the solution coefficients shown in equation 2 and c is the speed of the wave. Two
relevant nonlinear solutions are located at a forcing amplitude ε = 0.

Results

The discovery of the nonlinear solutions is based on the recent study by Wedin
et al [10]. The solutions are found by a homotopy approach [11, 12, 13] by
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adding a forcing function f(y, z) to the governing equations hence causing
in return an artificial flow situation. At a certain amplitude ε of f the forced
system is neutrally stable, which corresponds to a point from where the search
for steady nonlinear solutions can start. Figure 1 shows an example on how
the amplitude of the forcing function can be brought to zero at fixed value of
the Reynolds number and wavelength. Then, the point in Reb(α) where the
travelling wave emerges is found by a search over α. Three types of solutions
of different symmetries are shown in figure 2 where the two top ones resemble
observations in transitional [7] (top left) and turbulent conditions [6] (top
right). The bottom figure shows an additional 8-vortex structure which has
not yet been observed in either transitional or turbulent conditions.
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Fig. 2. A selection of the ECS found. Top left : the mean 4-vortex state, observed also
in transitional conditions [7]. Top right: the mean 8-vortex structure that also has
been observed in turbulence [6]. Bottom figure shows an additional structure whose
pertinence is not still known. The contour levels correspond to the streamwise flow
away from U(y, z) (light positive and dark negative contours) and the arrows denote
cross-stream velocity vectors.

Conclusions

Three types of nonlinear coherent structures are found for a square duct flow.
The discovery is based on the preliminary results of Wedin et al [10]. With
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a homotopy approach the nonlinear solutions are identified. A mean 4-vortex
structure is identified and resembles the instantaneous structures observed in
numerical simulations in [7]. Furthermore a mean 8-vortex structure is found
similar to that observed in turbulent conditions [6]. The third solution has a
different 8-vortex structure, which resembles that found recently by Pringle
et al [19] for the flow in a cylindrical pipe.
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Summary. In pipe flow at low Reynolds number, decay of localized disturbances is
observed. As the Reynolds number is increased, the question emerges whether the life
time of these disturbances diverges at a finite Reynolds number or remains transient.
In the current investigation we determine their life time quantitatively from pressure
measurements, while in previous investigations the distance over which a structure
survives has been determined. The obtained results confirm that the life time of
localized disturbances does not diverge in the range of Reynolds numbers covered
in the current experiment.

Recent simulations and measurements have shown that localized turbu-
lence in pipe flow, in the form of ’puffs’, decay exponentially [1, 2, 3, 4]. The
life time of these disturbances increases with Reynolds number. The princi-
pal question has been whether the life time diverges to infinity at a given
critical Reynolds number Rec. Initial experiments [2] and numerical simu-
lations [3] appeared to indicate that the life time increases proportional to
T ∼ (Re − Rec)−1, although no agreement was found on the value of Rec.
Later numerical simulations and measurements in very long pipes showed
that far above the previously identified Rec turbulent puffs still decay [5]. It
was found that the life time increases exponentially, T ∼ exp(−Re). The life
times were determined by observing puffs that emerged at the end of a very
long pipe (with a length of 7, 500 times its diameter), and considering the
probability as a function of pipe length and Reynolds number, which shows
a characteristic S-shape in the case of an exponential scaling for T . Later the
life time measurements were improved [6], which showed a super-exponential
scaling, i.e. T ∼ exp(− exp(c1Re + c2)) covering more than 8 decades in life
time.

To further substantiate these findings, additional measurements were per-
formed that are reported here. Since all previous measurements were either
based on flow visualization [2] or the observation of a flow disturbance at
the pipe exit[5, 6], additional measurements were performed to provide more
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quantitative results. The measurements were carried out in a 2030D long pipe
with an inner diameter of 10 ± 0.01 mm (this is a setup similar to those de-
scribed by [6]). First of all, LDA measurements were carried out near the pipe

deed puffs. Secondly, pressure difference measurements were carried out over
two pipe sections. Given the high accuracy of the pressure measurements, it
was possible to determine whether or not a given pipe section would contain
a turbulent puff. We thus could determine in each section the average puff
velocity (from the time it passes from one pressure tap to the next one). Since
the disturbance mechanism was placed well before the first section where we
measured the pressure drop, we could validate whether the injection had in-
deed generated a puff. It also was possible to observe the decay of a puff from
the pressure measurements, which enabled us to determine directly the life
time of these puffs; in previous measurements the life time was deduced from
the survival probability and the pipe length divided by the (estimated) mean
puff speed.

The 2030D pipe consists of 16 sections of 120D to 130D long precision
bored glass, which were connected using PMMA push fittings. Each connecter
was equiped with one up to six 0.5 mm diameter ports, either used to intro-
duce the disturbance or to attach the Validyne DP45 differential pressure
transducers. The pressure trandsucers were placed between 125D and 250D
after the point where the disturbance was introduced and one between 250D
and 496D.

The flow is driven by a constant pressure head. Before the fluid enters the
pipe, it passes a large restriction and then enters a settling chamber containing
several meshes with reducing grid size to get rid of remaining fluctuations
present in the entering fluid, followed by a contraction (contraction ratio ten
to one). The additional restriction ensured that the flow rate in the pipe was
independent of the flow state. The base flow was checked by pressure drop
and flow rate measurement, showing that the flow remained laminar beyond
Re = 9 · 103.
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Fig. 1. Pressure increase due to the pressence of a puff, shown are two survived
puffs and one decaying puff.
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Quantitative measurement of the life time of turbulence in pipe flow
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Fig. 2. The probability that a puff survives for a distance x. At least 1000 measure-
ments were preformed for each Reynolds number left for Reynoldsnumbers between
1755 ± 5 to 1855 ± 5 right between 1855 and 1955 in steps of 10

In figure 1 a typical pressure drop measurement for the first pressure trans-
ducer is shown. For clearity only the additional pressure drop is given. In this
figure two puffs are visible (red) that survived for at least 250D after they
have been created. The decaying puff (green) can clearly be distinguished:
the additional pressure drop due to the pressence of the puff relaxes to zero
already around t5.

For each measurement the life time of the disturbance was determined by
the time at which the additional pressure falls below the prescribed thresh-
old, given by the dashed line. All measurements were sorted based on their
Reynolds number, resulting in at least 1000 measurements per Reynolds num-
ber. Using the mean advection velocity of a disturbance, the position at which
the disturbance decayed was obtained. As a result the probability a distur-
bance survived up to a certain distance could be derived. This probability is
presented in figures 2.

The distributions given in figures 2 show clearly that the tails of the de-
cay are of exponential nature and thereby confirming that an appropriate
description of the decay is:

P (t − t0, Re) = exp
(
(t − t0) τ−1 (Re)

)
(1)

By fitting a straight line through the curves given in figures 2 both the
initial formation time t0 and the inverse of the characteristic life time τ−1 can
be determined.

The inverse of the characteristic life time is presented in figure 3 together
with the recent results obtained by Hof et al. [6]. An excellent agreement
is observed, and therefore these results support their claim that the correct
dynamical model of linear stable shear flows is that of a strange repeller.

To show the robustness of the current method, the inverse characteristic
life time is given in figure 3 for different detection thresholds. Only for low
Reynolds numbers and high thershold values a larger variation is observed.
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However, for almost all Reynolds numbers the characteristic life time is found
to be independent of the threshold used.

In the present paper we showed the direct measurements of the life time of
turbulent structures by pressure measurements. To our knowledge this is the
first time the life time of puffs is measured quantitatively, because in previous
investigation the distance over which a turbulent structure survives has been
determined by visual inspection. The results show excellent agreement with
the results of Hof et al. [6] and therefore support that the life time of puffs
does not diverge for a finite Reynolds number, but remains transient.
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Experimental investigation of turbulent patch
evolution in spatially steady boundary layers
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Turbulent patches and their streamwise evolution play a major rôle in the
late stage of any transition scenario. The appearance of turbulent patches
in laminar boundary layers was first noted by Emmons [1], who proposed a
turbulent spot probability appearance model, which recently [2] has proven
to work well for the free stream turbulence (FST) induced transition scenario.
However, there are many fundamental questions still remaining unanswered,
which are important in the striving after new transition prediction models.

In the present experimental study the effects of initial condition, Reynolds
number (Re) and FST on turbulent patch evolution have been studied while
keeping the boundary layer thickness constant. This type of study can only
be performed in the asymptotic suction boundary layer (ASBL), where con-
tinuous suction through the wall gives rise to a boundary layer which does
not develop in space, i.e. a spatially steady boundary layer. The wall-normal
streamwise velocity profile u(y) in the ASBL can readily be derived from the
Navier-Stokes and the continuity equations as,

u(y) = U∞
{

1− eyVw/ν
}

, (1)

where U∞, Vw, and ν are the free stream velocity, the suction velocity (<
0), and the kinematic viscosity, respectively. With the access of an analytic
solution (1) to the Navier–Stokes equation for the ASBL case it is straight
forward to calculate the displacement and the momentum thicknesses as δ1 =
−ν/Vw and δ2 = δ1/2, respectively, giving a constant shape factor, H12 =
δ1/δ2 = 2, independent of the suction velocity. The Reynolds number based
on the displacement thickness, thus, becomes Re = −U∞/Vw allowing for
Re-changes without necessarily changing the boundary layer thickness, δ99 =
δ1 ln(100), here defined as the wall-normal position where the streamwise
velocity reaches 99% of U∞. Finally, the friction velocity uτ and the viscous
length scale �∗ become

√
U∞Vw and δ1Re−1, respectively, in the ASBL.

In the past very few experiments have been performed in ASBLs [3] due
to the inherent difficulties in setting up this type of boundary layer experi-
ment. These experiments were carried out in the MTL wind tunnel at KTH

149B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_37, 



 Vw

y x

z

U

Leading 

edge

Boundary 
layer 
edge x ref

v jet x1
x2

x3

Porous
plate

Impermeable

plate

u(y)

Grid Turbulent patch at

different downstream

positions of x ref

     =  const.
99

Trailing

edge flap

U

Fig. 1. Schematic of the flow field over a flat plate subjected to constant suction.
Note that this sketch is not according to scale.

Mechanics. A porous plate (2250× 1000 mm2) made of a sintered plastic ma-
terial, with an averaged pore size of 16 μm, was used in order to allow for
uniform surface suction. See Fig. 1 for a sketch of the experimental setup. In a
pre-study the material permeability was determined, which through Darcy’s
law relates the pressure difference (Δp) across the plate to the velocity through
the porous material. In this way the suction velocity can be calculated sim-
ply by measuring Δp during the actual experiments. Turbulent patches were
generated at the reference position, xref = 1.85 m from the leading edge, by
means of short pulsed wall–jets through one or two streamwise located holes
in the porous plate. The ceiling was adjusted for zero pressure gradient at
Δp = 18 − 19 Pa, giving a displacement thickness of δ1 = 1.45 ± 0.03 mm
over a streamwise distance of (x − xref)/δ1 = 13 − 454. The wall–jet pulse
was computer generated through a D/A board to an audio amplier driving a
sealed loud speaker, which was connected to the hole(s) through vinyl hosing.
The pulse height of the signal to the loud speaker was quantified by mea-
suring the AC output voltage from the amplier with a voltage meter. The
measurements were performed with hot-wire anemometry triggered by the
pulse with a suitable time delay, and the probe was traversed in the spanwise
direction (91 positions), at y = δ1, in the wall-normal direction (30 posi-
tions), at the mid-plane z = 0, and in the streamwise direction (6 positions),
(x−xref)/δ1 = (102, 135, 169, 202, 235, 269). At each position the turbulent
patch measurement was repeated 80 times giving a total number of generated
patches of over 387 000 pcs. considering all experiments performed. This gives
a good spatial resolution of the spots which in turn allows for detailed data
analyses to be presented.
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Disturbance evolution in a boundary layer with streamwise streaks and ran-
dom two- and three-dimensional noise of various amplitudes is studied via
numerical simulations. The aim of the present work is to determine the im-
pact of the interaction on the arising flow structures and, eventually, on the
location and details of the breakdown to turbulence. It is shown that large-
scale 2D noise can be controlled via streaks, whereas the more general 3D
noise configuration is prone to premature transition due to increased instabil-
ity of the introduced streaks. It is interesting to note that the latter transition
scenario closely resembles the flow structures found in bypass transition.

A recent theoretical and numerical study by Cossu and Brandt [2] has
shown that a substantial stabilisation of a boundary layer subject to essentially
two-dimensional disturbances (i.e. Tollmien-Schlichting (TS) waves) can be
achieved by a spanwise modulation of the mean flow, i.e. via superimposed
streamwise streaks on the laminar Blasius flow. In particular, it has been
shown both experimentally via finite-amplitude roughness [3] and later via
large-eddy simulation (LES, [5]) that transition to turbulence can effectively
by moved to a more downstream position via this essentially passive control
mechanism. However, the disturbances considered in the mentioned studies
have all had their maximum energy in two-dimensional (spanwise invariant)
modes. It is therefore interesting to examine the interaction of streamwise
streaks with disturbences of a more general nature, i.e. 2D and 3D random
noise at various frequencies and (spanwise) wavenumbers.

The present study uses a spectral numerical method [1] together with
LES based on high-order filtering (ADM-RT model [6]), in a similar setup as
presented in Ref. [5]. In particular, the computational domain starts at Rex =
32000 extending up to Rex = 590000. The streaks are introduced at the inlet
as optimal disturbances computed from PSE (parabolised stability equations),
subsequently evolving nonlinearly inside the domain. Conversely, the noise
is forced within the computational domain at Rex = 60000 by a volume
force close to the wall. Two frequency spectra of the noise are shown in Fig.
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Fig. 1. Frequency spectrum of large-scale and small-scale noise. The
maximum spanwise scale based on the local boundary-layer thickness δ99 at the
position of forcing (Rex = 60000) for the 3D noise cases is chosen as λz,max = 2.25δ99
and λz,max = 0.75δ99 for the large and small-scale noise, respectively.

1, specifying the frequencies and spanwise scales denoted “large-scale” and
“small-scale” in the following. Note that for all simulations small-amplitude
three-dimensional noise is included to enable transition to turbulence.

The amplitude of the noise is determined in such a way that transition to
turbulence, i.e. the appearance of a turbulent patch, could be observed in the
computational box (Rex < 590000) for the uncontrolled setup (no streaks).
The same noise was then used to investigate the interaction of the noise with
the streamwise streaks. Depending on the nature of the noise (dimensionality
and scales), different amplitudes had to be chosen: two-dimensional, fine-scale
noise proved to be more efficient for reaching transition, requiring urms,noise ≈
2.6%. On the other hand, 2D large-scale noise lead to transition only with the
significantly larger amplitude of 18.3%. The three-dimensional noise cases lie
in between these values.

Directly connected to the different amplitudes required for the noise dis-
turbances in the uncontrolled cases is the predominant transition scenario
observed in the flow. Sample visualisations are shown in Figs. 2a) and 3a).
It becomes clear that two-dimensional small-scale noise in fact leads to the
appearance of spanwise uniform waves, similar to TS-waves, see Fig. 2a). The
growth associated to the TS-waves is sufficient to lead to non-linear break-
down within the computational box even for the mentioned low amplitudes.
On the other hand, large-scale 2D noise does not excite any growing instabil-
ity in the boundary layer at the considered Reynolds numbers due to the low
frequency F < 80 and the two-dimensionality of the disturbances (i.e. no lift-
up mechanism). Therefore, intermittent turbulent spots are directly triggered
at the forcing position, which then grow downstream (not shown).

For the cases with three-dimensional noise, the dominant instability mech-
anism is non-modal growth based on the lift-up mechanism, generating to
streamwise streaks. Again, a dependence of the arising flow structures on
the scales of the disturbances is observed: Fine scales tend to decay quickly,
whereas larger scales lead to a flow with significant streamwise streaks, which
then might get unstable developing a growing wave packet [4] and finally
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a)

b)

Fig. 2. Top view of the three-dimensional flow structures for cases with 2D, fine-scale
noise. a) no streaks. b) Streaks with amplitude 19%. Light isocontours represent the
λ2 vortex-identification criterion, dark and light grey isocontours are positive and
negative disturbance velocity. Flow from left to right.

a)

b)

Fig. 3. Top view of the three-dimensional flow structures for cases with 3D large-
scale noise, same isocontour levels and colours as in Fig. 2. a) no streaks. b) streaks
with amplitude 19%.

break down into triangle-shaped turbulent spots as seen in Fig. 3a). The flow
structures appearing in these cases are similar to observations in bypass tran-
sition induced by ambient free-stream turbulence. Note that in the presence
of strong streaks – irrespective of whether they are actively introduced in the
flow or naturally arise due to e.g. free-stream turbulence, the turbulent spots
do not feature a clear triangular shape.

The efficiency of the imposed streamwise streaks to damp the amplifica-
tion of disturbances in the boundary layer is naturally strongly dependent
on the nature of these disturbances and the respective transition scenario.
The damping abilities of streaks has been demonstrated for cases with dom-
inant two-dimensional waves, see the references mentioned above [2, 3, 5].
Consequently, for the case which leads to TS-wave dominated transition (2D
small-scale noise), transition delay can be observed, see Fig. 2b). Quantitative
data is given in Fig. 4a) showing the disturbance growth inside the bound-
ary layer. However, as opposed to cases with clean TS-waves (for example
F = 120 as in Ref. [5]) no complete stabilisation of the boundary layer can
be achieved; intermittent turbulent spots are appearing further downstream
as an instability of the strong streaks.

On the other hand, three-dimensional noise produces a change of the dis-
turbance growth mechanism in the boundary layer from modal (TS-waves)
to non-modal (lift-up, streaks). The spanwise periodic base flow created by
forcing large-amplitude streaks does not lead to any transition delay. To the
contrary, turbulent spots can be observed more frequently and further up-
stream, see Fig. 3b). As for the uncontrolled case, the transition scenario is
a secondary instability of the streak, characterised by a growing wave packet
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Fig. 4. a) Maximum streamwise fluctuations urms,max for streaks (19%)
and small-scale 2D noise (amplitude 0.3%), only noise, no streaks,

undisturbed streaks. b) urms,max for streaks ( 19%, 10%) and large-
scale 3D noise, only noise (amplitude 0.9%), no streaks, undisturbed
streaks.

riding on the streak [4]. However, due to the larger amplitude of the streaks,
this breakdown occurs further upstream. In Fig. 4b) the growth of urms in-
side the boundary layer is shown; the breakdown location is clearly moving
upstream for larger amplitudes of the introduced streaks.

It can therefore be concluded that the passive control mechanism based on
a spanwise modulated base flow and the subsequent damping of the growth
of TS-waves [2] is very efficient for transition scenarios based on the modal
growth of essentially two-dimensional disturbances. On the other hand, if tran-
sition is induced by (non-modal) growth related to bypass transition, then
the addition of a strong base-flow modulation might lead to premature transi-
tion. Similar results have been obtained for transition induced by free-stream
turbulence (not shown), for which as expected no transition delay could be
observed.
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In this paper we present few observations concerning the appearance of dif-
ferent time scales during the transient growth of small three-dimensional per-
turbations superposed to a sheared flow, the bluff-body wake. The interesting
point is that these phenomena are developing in the context of the linear dy-
namics. Before to comment these results let us shortly describe the method
of study.
The early transient and long asymptotic behaviour is studied using the initial-
value problem formulation. The base flow is approximated through an ana-
lytical expansion solution [1] of the Navier-Stokes equations. The viscous per-
turbative equations are written in terms of the vorticity and the transversal
velocity [2] and then transformed through a Laplace-Fourier decomposition
[3] in the plane (x, z) which is normal to the base flow plane (x, y),

∂2v̂

∂y2
− (k2 − α2

i + 2iαrαi)v̂ = Γ̂ (1)

∂Γ̂

∂t
= (iαr − αi)(

d2U

dy2
v̂ − UΓ̂ ) +

1
Re

[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi)Γ̂ ] (2)

∂ω̂y

∂t
= −(iαr − αi)Uω̂y − iγ

dU

dy
v̂ +

1
Re

[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi)ω̂y] (3)

The transversal velocity and vorticity components are indicated as v̂ and ω̂y re-
spectively, while Γ̂ is defined through the kinematic relation ˜Γ = ∂xω̃z−∂zω̃x

that in the physical plane links together the perturbation vorticity components
in the x and z directions (ω̃x and ω̃z) and the perturbed velocity field. Equa-
tions (2) and (3) are the Orr-Sommerfeld and Squire equations respectively,
from the classical linear stability analysis for three-dimensional disturbances
in the phase space. We define k as the polar wavenumber, αr = kcos(φ) as
the wavenumber in x direction, γ = ksin(φ) as the wavenumber in z direc-
tion, φ as the angle of obliquity with respect to the physical plane, and αi as
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the spatial damping rate in x direction. We introduce the amplification fac-
tor G(t) as the disturbance kinetic energy density E(t), the temporal growth
rate r(t) = log|E(t)|/2t and the frequency ω(t) as the time derivative of the
perturbation phase.
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Fig. 1. Re = 100, k = 0.6, αi = 0.02, φ = π/4. (a): Asymmetric case. Amplifica-
tion factor G(t) for intermediate (x0 = 10) and far (x0 = 50) wake sections. (b):
Intermediate section x0 = 10. Pulsation ω(t) for asymmetric and symmetric cases.

The results on the onset of multiple time scales – obtained by observing the
amplification factor G(t) and the pulsation ω(t) – are presented in Fig. 1
(a, b). In Fig. (1a) the amplification factor G(t) is shown for two typical
intermediate (x0 = 10) and far (x0 = 50) wake sections. The perturbations
are asymmetric. For x0 = 10 a local maximum, followed by a minimum, is
visible in the energy density, then the perturbation is slowly amplifying and
the transient is extinguished only after hundreds of time scales. For x0 = 50
these features are less marked. It can be noted that the far field configuration
(x0 = 50) has a faster growth than the intermediate field configuration (x0 =
10) up to t = 400. Beyond this instant the growth related to the intermediate
configuration will prevail on that of the far field configuration. For x0 = 10
the amplification factor G(t) shows a modulation which is very evident in the
first part of the transient (see [4]), and which corresponds to a modulation
in amplitude of the pulsation of the instability wave depicted in Fig. (1b).
Here, the frequency ω(t) for symmetric and asymmetric perturbations at x0 =
10 is shown. The modulation is only present for the asymmetric wave (for
the symmetric case the amplitude is constant after few time scales). This
behaviour is in general found for asymmetric longitudinal or oblique waves.
In these instances two time scales are simultaneously observed in the transient
and long term behaviour: the periodicity associated to the average value of the
pulsation in the early transient (ω ≈ 0.3) and the asymptotic pulsation (ω ≈
0.45). Moreover, the oscillation of this pulsation ω(t) in the early transient
introduces another time scale τ , which in terms of pulsation is about 0.17.
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The frequency determination is validated through the comparison of the tem-
poral asymptotic behaviour (t→∞) of the initial-value analysis with a recent
normal mode analysis [5] and experimental data of nearly supercritical oscil-
lations [6] for different Reynolds numbers (Re = 50, 70, 100) (see Fig. 2).
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Fig. 2. (a, c, e) pulsation ω(t) and (b, d, f) temporal growth rate r(t) for present re-
sults (asymmetric case: black triangles, symmetric case: black circles), modal analy-
sis [5] (solid curves) and experimental data [6] (red squares). αi = 0.05, φ = 0,
x0 = 10, Re = 50, 70, 100.
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The comparison is quantitatively good for all the Reynolds numbers con-
sidered, because it shows that a wavenumber close to the wavenumber that
theoretically has the maximum growth rate has a - theoretically deduced -
frequency which is very close to the frequency measured in the laboratory.
The noticeable point of this analysis is the variety of temporal scales revealed
by the transient, which are associated to a given specific value of the instability
wavelength. In particular, if the perturbation is asymmetric and oblique it is
possible to count up to five different time scales for the system: (i) the temporal
scale D/U∼ 1 related to the base flow (where D is the cylinder diameter and
U is the free stream velocity), (ii) the length of the transient (200-300 time
units), (iii and iv) the scales associated to the instability frequency in the early
transient (about 21 time units) and in the asymptotic state (about 14 time
units), and (v) the modulation of the pulsation in the early transient (about
35-40 time units). Another interesting point is that these scales are different
each other and are also different from the asymptotic value predicted either
by the initial-value problem or the modal theory.
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1 Introduction

In 2001, a change in the statistics of temperature fluctuations in Rayleigh-
Bénard convection was reported at very high Rayleigh number (Ra ∼ 1012) [1].
This change was concomitant with an enhancement of the heat transfer which
had been interpreted [2] as the triggering of Kraichnan Convection Regime
[3]. But a systematic study of finite probe size effect showed that the 200 μm
probe used in the 2001 study was about three times too large to be free from
finite size correction [4], calling for a confirmation of these results. We report
new measurements of temperature fluctuations performed with a probe ten
times smaller than the one used in 2001.

In this proceeding, we discuss experimental aspects of this experiment
and complementary measurements made in the “Barrel of Ilmenau”. The first
experiment was conducted with cryogenic helium and the second with air.
Once combined, those two experiments lead to evidence of a signature of a
transition in the local temperature fluctuations, supporting the conclusion of
the 2001 study.

2 Micron-size thermometer

The temperature probe is a 17-μm glass fiber, on which a 1 μm layer of NbN
[5] was deposited and annealed. The fiber and its stainless steel frame was
glued on a wooden tripod. The fiber is placed two millimeters above the
bottom plate of a 43-cm-high 10-cm diameter convection cell (see figure 1). It
is connected to two pairs of copper wires for the 4-wire-measurement. We were
careful not to over-heat the fiber with the measuring current to avoid hot-wire
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Fig. 1. (a) Temperature probe on its tripod above the bottom plate of the 43-cm-
high cryogenic Rayleigh-Bénard cell. Inset: detail on the web-like fiber support. (b)
Drawing and electronic microscope picture of the sensitive element

artefact. As can be seen on figure 2, the fiber starts to self-heat meaningfully
for input current of order of 1 μA. All subsequent measurements were done
with an input current of 0.5 μA.
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Fig. 2. (a) Self-heating of the micro-thermometer for various experimental conditions.
ρ = 1.6 kg/m3, T ≈ 6.5 K ( ); ρ = 6.5 kg/m3, T ≈ 6.0 K ( ); ρ = 19 kg/m3,
T ≈ 6.0 K ( ); ρ = 40 kg/m3, T ≈ 6.0 K ( ). Inset : Resistance of the fiber versus
temperature. (b) Electronic diagram of the acquisition system.

The temperature response of the probe is calibrated versus Ge thermometers
in homogeneous temperature conditions. We find a temperature sensitivity
∂ lnR/∂ lnT � 0.7 at 5 K (see inset in figure 2). The performance is limited by
a resistance noise with spectral density 1.5× 10−6/f , where f is the frequency
in Hertz, corresponding to a rms noise of order 1 mK over the bandwidth
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of interest. This noise prevented operation above Ra = 5× 1013 in order to
maintain Boussinesq conditions.

The fluctuation data was acquired using the electronic setup shown on figure
2 : the input current is provided by the generator of a NF Lock-In Amplifier
LI-5640 (V = 500 mV, f = 7825 Hz). The voltage drop across the fiber is
pre-amplified (JFET, Gain 104, typical noise input voltage 700 pV/

√
substract the mean-value of the temperature signal using a Singer inductor
bridge and an adjustable RC filter to compensate for the phase shift, in order
to use all the dynamics of the Lock-in. The demodulated signal is filtered by a
General Purpose Kemo 1208/20/41LP low-pass filter (8 pole Elliptic filter with
a flat passband, frequency cutoff 200 Hz) to avoid aliasing and then acquired
by a NI Analog-Digital Converter NI6289 (18 bits).

3 Results and interpretation

Following Chavanne et al. [1], we consider the exponent ξ2 of the 2nd order
structure function of the temperature fluctuations T (t) :

ξ2 =
d log
〈
(T (t+ τ)− T (t))2〉

t

d log τ (1)

where the brackets represent time averaging. The dependence of ξ2 versus the
time increment τ holds the same information as a temperature spectrum.
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Fig. 3. Data measured in the 43-cm Rayleigh-Bénard cell.

Fig. 3-a shows ξ2 versus the dimensionless increment τ/τ0 where τ0 =
(h/2Nu)2/κ is a caracteristic time scale of the flow. A change of shape occurs
above Ra ≈ 1013, which is also the threshold Ra for which a heat transfer
transition is measured in this cell, as shown on fig. 3-b. The observed jumps of
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Nu(Ra) are characteristic of the multiple possible configurations of the mean
large scale circulation in elongated cells. They are known to hardly affect the

2
few tens of % offset of the x-axis of fig.3-a through the Nu dependence of τ0.

For Ra ≥ 1012, h/2Nu ≤ 400 μm < 2 mm: the probe is clearly outside the
thermal boundary layer. We also studied the systematic dependance of ξ2(τ)
versus the probe-plate distance below the transition (Ra = 3.2× 1011) in the
“Barrel of Ilmenau” in the range 0.1 < z/(h/2Nu) < 20.3. This study reported
in [4] showed that the variation of this effective plate-probe distance cannot
explain the transition observed on the temperature statistics.

The observed change in shape of ξ2 is consistent with Chavanne et al.’s
qualitative observations, confirming a posteriori that their observation was
not an artefact although it was partly altered by a finite size effect [1].

4 Conclusion

The regime observed (and named “Ultimate Regime”) in [1] is thus charac-
terised by 3 specific signatures : an integral one (heat transfer enhancement)
and localized ones on the thermal boundary layer [6] and inside the flow
as shown in this paper (see also [4]). These signatures are compatible with
Kraichnan’s prediction [3] but more work is certainly needed to understand
the basic mechanism of the flow instability at very high Ra.
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1 Introduction

In stable flows, transient growth of ’non-normal’ modes can lead to turbulence. Usu-
ally, non-normal modes are computed from linearized model equations [1]. However,
for some problems the proper set of equations is unknown, or unhandy for the pur-
pose of finding non-normal modes. Therefore it is proposed to estimate non-normal
modes from data alone, without using the model equations. Crucial for such an esti-
mation is a good guess of the linear system matrix for the flow under consideration.
Such a guess can be obtained following the approach by [2] discussed in the context
of climate analysis.
In the present paper a simple test case will be presented that demonstrates the
suitability of the approach. Subsequently, the method is applied to temperature
data from a differentially heated rotating annulus, a laboratory model that covers
features of the large-scale atmospheric circulation [3]. The method proposed might
help to gain insight into the spatial structures of local instability in annulus flows.

2 Motivation and test case

2.1 Growing modes in stable systems

To motivate ’non-classical’ hydrodynamic instability, [4] used the simple two-
dimensional model:

d

dt

(
u
v

)
=

(−R−1 1
0 −2R−1

)(
u
v

)
= Au. (1)

The matrix A is called the system matrix. For symmetric system matrices it can be
shown that for any given period of time, the largest growth of u2 + v2 is determined
by the most unstable eigenvector (or normal mode) of A. If there is no unstable
eigenvector, the system cannot grow. The situation becomes different when A is

Estimating local instabilities for irregular flows in

the differentially heated rotating annulus
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Figure 1: A) Time development of u2 + v2 for the first singular vector (solid

line) and an arbitrary other initial vector (dashed line). B) As A but computed

by using the estimated propagator P. We used R = 12, t0 = 0, topt = 10.

non-symmetric as in (1). Then for any predefined period 0 < t < topt, where topt

is the so called ’optimization time’, a complete set of growing ’non-normal’ modes
(called singular vectors, or SVs) can be found. In contrast to unstable eigenmodes,
SVs change their shape in time. Most interesting is the SV with the largest growth
rate. For t = 0 it defines the initial field that shows the largest growth in the period
0 < t < topt.
The formal solution of the linear system (1) reads

u(t) = P u(t0), P = e(t−t0)A. (2)

The matrix P is called the propagator of the linear system. The singular vectors are
the eigenvectors of Mv = λv, where M = D−1 P′DP, D is the identity matrix and
P′ is the transpose of P [5].
Figure 1A shows the energy growth of SV1 (solid line) and an arbitrarily chosen
initial vector (dashed line). The growth of the singular vector is larger (and it is in
fact larger than the growth of any other initial vector).

2.2 Estimating the propagator from data

Let us assume that we do not know (1) but instead that we have just data u(i). In
fact, this is the situation that is frequently encountered in practice. We propose that
the data are consistent with the linear process u(i+ 1) = Pu(i). Then, by following
[2], the propagator is estimated as

P = Σ1Σ
−1
0 ≈ P, (3)

where

Σj =
1

N

N∑
i

(u(i+ j) − ū)(u(i) − ū)′. (4)

Here j = 0, 1, ū is the time mean and the prime denotes the transpose. Figure 1B is
equal to A except that the energy growth is computed from P and not from P.
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Figure 2: Snapshot of the temperature field of the two experiments discussed.
A) exp1, Ω = 6cpm,ΔT = 5K,Δr = 50mm. B) exp2, Ω = 30cpm,ΔT =
5.9K,Δr = 75mm. C) SV1 at t = 0 for exp1. D) SV1 at t = 0 for exp2.

The data used come from (1) with a sampling rate of Δt = 1, and 0 < t < 100.
Obviously, P is estimated very well. Nevertheless, its quality depends on the length
of the data time series, the sampling rate and the data noise level (that was zero in
the example considered).

3 Thermally driven rotating annulus

At the BTU Cottbus a rotating annulus experiment is conducted as one of the
reference experiments in the ’SPP 1276 MetStröm’ priority program of the German
Sience Foundation (DFG). The experiment is described in detail in [6] and [7]. Here
we discuss two experiments, one in a stable wave regime (exp1), and the other one
in an irregular regime (exp2) (see Figure 2A,B). Data were collected once per cycle
over several hours. The Figure shows snapshots of the surface temperature for both
experiments. It is obvious that for slow rotation, the flow settles down in a rather
stable wave state (A). In contrast, no simple flow pattern can be found for the faster
rotation (B)[3,6].
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3.1 Estimating growing patterns of the rotating annulus flow

The surface temperature data were used to find P from (3). The data were first
subjected to a truncated EOF expansion [8] to reduce the number of spatial degrees
of freedom. P results then from the vector of the leading EOFs. Byproducts of
this procedure is that noisy components can be filtered out and that Σ0 becomes
diagonal.
SV1 computed from P is shown in Figure 2C. SV1 of exp1 looks like a wave with
zonal wave number 5. Thus qualitatively, SV1 corresponds with the most unstable
baroclinic mode of exp1. Typically, the pattern shows a tilt with respect to the radial
direction. During the energy uptake this tilt is reduced and it approaches zero for
t = topt. SV3 (not shown) corresponds well with the growing neutral waves in shear
currents discussed by [9]. For exp2, the patterns of optimal growth are governed by
patchy small scale features (Figure 2D). Such SVs are hard to interpret and future
work is necessary to test these structures for physical relevance. What can be said
so far is that the patterns become focused near the inner cylinder for t→ topt. This
behavior has also be observed for exp1.

4 Conclusion and future work

We demonstrated that singular vectors can be estimated from data alone. For exp1,
the patterns of optimal growth have a straightforward physical interpretation. For
the quasi-turbulent flow of exp2 it appears that the noise level is too large. For future
analysis the noise has to be filtered out. Moreover, other optimization intervals and
other norms have to be tested for an empirical computation of singular vectors.
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Turbulent convection in a fluid heated from below and cooled from above is
an important process in many geo- and astro-physical processes with typical
Rayleigh numbers Ra ≈ 1020. It has been anticipated that the convective heat
transport changes fundamentally for Ra = Ra

∗, where Ra
∗ is a function of

Prandtl number Pr. Below Ra
∗ heat transport is expected to be determined

by thermal boundary layers and above, in the ”ultimate regime”, by the bulk
fluid [1]. Unfortunately these Ra ranges are not readily accessible in laboratory
experiments. Most measurements are limited to Ra < 1012. A decade ago
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N
u
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N
u 
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Fig. 1. (a): Nusselt number Nu as a function of the Rayleigh number Ra. (b):
Reduced Nusselt number Nu/Ra0.3 as a function of Ra. Open circles: Ref. [2].
Open squares: from Ref. [3]. Solid circles: This work using N2. Solid squares: This
work using SF6.

Chavanne et al. [2] obtained the measurements shown in Fig. 1 of the Nusselt
number Nu (the normalized thermal conductivity) using helium near 5 K for
Ra up to 1015. They observed a transition in Nu(Ra) near Ra = 1011, which
they interpreted to be the transition to the ultimate regime. Soon thereafter
Niemela et al. [3] made similar measurements using low-temperature helium
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up to Ra � 1017 (see Fig. 1) and did not find such a transition. As shown in
Fig. 2 in both experiments at the larger Ra the Pr varied significantly.

Here we report measurements of Nu(Ra) in Rayleigh-Bénard convection
(RBC) conducted at the “High Pressure Convection Facility” in Goettingen
in a cylindrical pressure vessel of diameter 2.5 m and length 5.5 m, with its
axis horizontal, and with a turret above it that extends the height to 4 m over
a diameter of 1.5 m. It can be filled with various gases to pressures ranging
from 1 mbar to 15bar. Here we used Nitrogen N2 or Sulfurhexaflouride SF6

gas, which give 0.73 ≤ Pr ≤ 0.84. In the section containing the turret we
placed a RBC sample-cell of interior height 2.24 m and interior diameter 1.12
m which yielded 1010 ≤ Ra ≤ 1015.

Ra
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P
r

1010 1012 1014 1016

100

1000
R

e s

Ra

(a) (b)

Fig. 2. (a): Prandtl number Pr as a function of the Rayleigh number Ra. (b): Shear
Reynolds number Res as a function of Ra. The symbols are as in Fig. 1.

Our data are shown in Fig. 1 as solid symbols. They reveal no transition
and over their entire range can be described well by a power law with γeff =
0.31.In Fig. 2a we show the Pr(Ra) range covered by all three data sets. The
dotted line is an estimate of Ra

∗(Pr). Figure 2b gives an estimate of the
shear Reynolds numbers Res of the viscous boundary layers near the top and
bottom plates, based on bulk Re measurements of Ref. [2]. Ra

∗ is expected to
be reached when Res = Re

∗

s
� 400 (dotted line). The data of Ref. [2] never

came close to Ra
∗ or Re

∗

s; thus it seems unlikely that their transition is related
to the transition to the ”ultimate” or bulk regime. The data of Ref. [3], as
well as ours, extend about equally far and slightly above Ra

∗ or Re
∗

s.
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The Rayleigh–Taylor (RT) instability [1, 2] is a fluid-mixing mechanism occur-
ing at the interface of two fluids of different densities, subjected to an external
acceleration. The relevance of this mixing mechanism embraces many different
phenomena occuring in completely different contexts (e.g., supernovae explo-
sions [3] and solar flare formation [4]). In many of these situations the two
fluids are immiscible owing to a non negligible surface tension. By means of
Direct Numerical Simulations we investigate the immiscibile two-dimensional
setting in the limit of small Atwood numbers. The surface tension introduces
serious problems in numerical description: the interface is sharp and subject
to morphological changes such as breakup, coalescence and reconnections (see
Fig. 1).
These obstacles can be overcome by using a phase-field description [5, 6]. We
present an accurate numerical study that validates the phase-field method by
testing known results of immiscibile RT instability both at level of linear and
weakly nonlinear analysis.

1 System configuration and phase-field description

The system consists of two immiscible, incompressible fluids (labelled by 1
and 2) having different densities, ρ1 and ρ2 (> ρ1), with denser placed above
the less one.
The idea of the phase-field description is to replace the sharp interface with a
thin, yet finite, transition region where the fluids, nominally immiscible, can
mix. More quantitatively, this amounts to assigning to the system a Ginzburg–
Landau free-energy, F , expressed in term of the order parameter φ(x) as [6]:
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responds to a light (heavy) fluid. Our system consists of two immiscibile, incom-
pressible fluids having different densities in the presence of gravity. At initial time,

interface separating the two fluids, the instability develops.

F [φ] =
∫

Ω

Λ

2
|∇φ(x)|2 + Λ

4ε2
(φ2 − 1)2dx (1)

where Ω is the region of space occupied by the system, ε is the capillary width,
representative of the interface thickness and Λ is the magnitude of the free-
energy. The order parameter φ serves to identify fluid 1 and 2. We assume
φ = 1 in the region occupied by fluid 1 and φ = −1 in those where fluid 2 is
present.
The equilibrium state is the minimiser of the free-energy functional F respect
to variations of the function φ. If one considers an one-dimensional interface,
varying along the gravitational direction z, one easily obtain the equilibrium
profile for the phase field [6]:

φ(z) = ± tanh
(

z√
2ε

)
(2)

Moreover, for a plane interface, we can relate the surface tension σ to the
free-energy parameters as follows [6]:

σ =
2
√
2
3

Λ

ε
(3)

From the previuos relations it is easy to realize that the classical sharp inter-
face limit is obtained for ε, Λ → 0.
Let us suppose to introduce a small disturbance on the interface separating

the two fluids. Such perturbation will displace the phase field from the previous
equilibrium configuration to a new configuration for which in general, the free-
energy minimitation is not longer verified. The system will react so as to try
to reach again an equilibrium configuration. In formulae, the so-called Cahn–
Hilliard equation rules the phase-field evolution [5, 6]:

Fig. 1. Two-color snapshots of density field at different times. White (black) cor-

the system is at rest in unstable configuration. If a disturbance is imposed on the
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∂tφ+ v · ∇φ = γΛΔ

[
−Δφ+

(
φ3 − φ

)
ε2

]
(4)

where γ is the so-called mobility.
The dynamics of the velocity field v is governed by the usual Boussinesq
Navier–Stokes equation plus an additional stress contribution arising at the
interface where the effect of surface tension enters into play [6, 7]:

∂tv + v · ∇v = −∇p

ρo
+ νΔv − Λ

ρo
Δφ∇φ −Agφ (5)

∇ · v = 0 (6)

where ρo = (ρ1 + ρ2)/2, ν the kinematic viscosity, A = (ρ2 − ρ1)/(ρ2 + ρ1)
the Atwood number, and g the gravity selected along the z axis.

2 Numerical investigation

By means of Direct Numerical Simulations we consider the model (4)-(5)-(6)
in two-dimensional setting. We focus both on the linear and weakly nonlin-
ear regimes (for A � 1) in order to properly test the phase-field approach
against known results for both of these regimes. All simulations presented
start from an initial condition corresponding to an equilibrium configuration:
zero velocity and hyperbolic tangent profile for the phase field, expressed as
tanh((z − h(x, t = 0))/

√
2ε) with η(x, t = 0) = η0 sin (x). The initial distur-

bance amplitude is selected in a way to satisfy both limits of small disturbance
and infinitesimal capillary width.
Under the hypothesis of small disturbance the initial evolution can be de-
scribed by a linear theory [8]. In the limit of sharp interface, we can redivered
(details are not reported here) the following expression for the time evolution
of the amplitude disturbance:

η(t) = η0 cosh (αt) with α =
√

Agk − σ

ρ1 + ρ2
k3 (7)

Our aim is to verify the expression for the linear growth rate α. Our results
are summarized in Fig. 2a.
When the amplitude disturbance becomes large enough [9], deviations from
the linear predictions are observed. The disturbance grows nonlinearly and
interface starts deforming in the shape of thermal plumes. There is a gen-
eral consensus on the dynamics in this stage: the exponential growth of the
amplitude disturbance is replaced by a linear-in-time behavior (see [10] and
references therein). Indeed the thermal plumes reach a constant terminal ve-
locity [11]:

U =
√
2
3
Ag

k
− 2
9

σ

ρ1 + ρ2
k (8)

Our results, shown in Fig. 2b reproduce this behavior.
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Fig. 2. (a) Squared linear growth rate α2 for three different values of Ag and the
same value of σ. The dashed lines are the corresponding linear-theory predictions.
(b) Time evolution of amplitude perturbation η(t) (λ = 2π/k). The dashed line is a
slope given in (8). A good agreement is found between numerics and theory in the
range 0.5 < tU/λ < 0.9. At larger times, neighbouring plumes start to interact and
the arguments leading to the velocity expression (8) do not longer apply.

3 Conclusions

From our numerical results, it turns out that the phase-field strategy provides
a valuable numerical instrument for the study of immiscible RT instability.
Numerical results compare well with known analytical results both for the
linear and weakly nonlinear stages. All these results are therefore encouraging
in a view of the next step, that is a quantitative treatment of the turbu-
lent regime, the final regime of the instability, characterized by the interplay
between hydrodynamics and interface degrees of freedom [12].
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Summary. By means of numerical simulations we investigate the transition from
two-dimensional to three-dimensional turbulence which occurs in the turbulent flow
of a thin layer of incompressible fluid as the thickness of the layer is increased.
Coexistence of 2D and 3D turbulence is observed when the thickness is larger than
viscous scale, but smaller than the forcing correlation length.

Two-dimensional Navier-Stokes equation is a prototype model for geophys-
ical flow, in which the combined effects of rotation and stratification suppress
vertical motions and allows to describe mesoscale dynamics in terms of two-
dimensional equations.[1, 2, 3] In these applications the two-dimensional flow
is thought as the limit of vanishing ratio between the thickness of the fluid
layer and the horizontal scales of interest.

The phenomenology of two-dimensional turbulent flows remarkably differs
from the behavior of three-dimensional turbulence. In the classical picture of
the Richardson cascade kinetic energy injected at large scale by an external
forcing is transferred to smaller and smaller eddies until it reaches the viscous
scale where it is dissipated by the viscosity. Conversely, in two dimensions,
the simultaneous conservation of kinetic energy and enstrophy results in an
inverse energy cascade, i.e. the power injected by the forcing feeds large-scale
structures in the flow.[4]

In thin layers of fluid one expects to observe a transition from two-
dimensional to three-dimensional turbulence characterized by an inversion of
the direction of the energy cascade, as the thickness of the layer is increased.
In this paper we investigate this transition by means of numerical simulations.
Three-dimensional Navier-Stokes equations

∂tu + u · ∇u = −∇P/ρ− ν∇2
u + f (1)

with the incompressibility constraint ∇·u = 0, are solved in a periodic box of
sizes Lx = Ly = 2π, Lz = rLx at resolution Nx = Ny = 512, 1024, Nz = rNx

for various aspect ratio r. The flow is sustained by a two-dimensional random
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Fig. 1. Left panel: Growth of kinetic energy for various values of rf = Lz/Lf .
Right panel: Kinetic energy growth rate ε2D normailzed with the power injected as
a function of rf .

force which excites only the horizontal components of the velocity field. The
forcing is active on wavenumbers |k| ∼ kf with kz = 0, and has correlation
length Lf = 2π/kf . The behavior of the resulting turbulent flow is strongly
dependent on the thickness of the layer Lz.

When the thickness of the fluid is smaller than the viscous lengthscale
Lη, vertical motions are suppressed by the viscosity. In this regime the fluid
recovers the two-dimensional behavior, characterized by an inverse energy
cascade with a constant flux of kinetic energy toward large scales � > Lf . In
absence of large-scale dissipations the kinetic energy grows linearly in time,
with a growth rate equal to the power injected by the forcing.

Conversely, when Lz > Lη, small three-dimensional perturbations can
be amplified by the vortex stretching mechanism . The amount of small-scale
vorticity produced is able to dissipate a substantial part of the energy injected.
As a consequence the fraction of the energy that is transferred toward large
scale reduces, and the energy growth rate decreases, as shown in Figure 1. The
ratio between the energy growth rate and the power injected is dependent on
the aspect ratio rf = Lz/Lf between the thickness and the forcing correlation
length (see Fig. 1, right panel).

When the thickness of the fluid is much larger than viscous scale, but
smaller than the forcing correlation length Lf , 2D and 3D turbulence can
coexist. In this regime we observe a splitting of the energy cascade. Part of
the energy is still transferred toward large scale, feeding the inverse cascade.
The remnant energy gives rise to a direct energy cascade with constant flux
toward small scale (see Figure 2).

Coexistence of 2D and 3D turbulence is clearly visible in the energy spectra
(see Figure 3). At small wavenumbers k < kf the energy spectrm of horizontal
velocities has a scaling region E(k) ∼ ε

2/3
2D
k−5/3 which is the signature of

the two dimensional inverse energy cascade. At high wavenumbers k > kz
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Kolmogorov spectra are observed both for horizontal and vertical velocities,
signaling the presence of 3D turbulence at small scales.

References

1. P. Bartello, J. Atmos. Sci. 40, 4410 (1995).
2. L. M. Smith, J. R. Chasnov, F. Waleffe, Phys. Rev. Lett. 77, 2467 (1996).
3. K. Ngan, D. N. Staub, P. Bartello, Phys. Fluids 17, 125102 (2005).
4. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

Split energy cascade in quasi-2D turbulence 175





Stabililty and laminarisation of turbulent

rotating channel flow

S. Wallin, O. Grundestam, and A.V. Johansson
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The influence of moderate rotation rate on turbulent channel flow is that the
turbulence is suppressed on the stable side and augmented on the unstable
side because of the Coriolis force. With increasing rotation rate the turbulent
region becomes restricted to a decreasing zone near the unstable wall. For the
rotation number, Ro > 3 (normalized by bulk velocity and channel height)
inviscid linear theory yields a stable laminar flow [1] and a recent DNS study
[2] indicates that the turbulent flow laminarizes for Ro below 3.

The critical Ro has been identified by a standard text-book linear stability
analysis of rotating laminar channel flow including the viscous effects. The
Reynolds number, Re = 10800 based on the bulk velocity and channel half
height, is the same as in the recent DNS [2]. The most unstable mode consists
of tilted slightly oblique streamwise vortices with a critical rotation number
of Roc = 2.805 and streamwise and spanwise wave numbers of α = 2.7 and
β = 19 respectivelly. Steady streamwise roll-cells are slightly more stable.

In order to verfy Roc, the DNS study [2] was complemented with three
additional rotation numbers. The level of turbulence is illustrated by the bulk
velocity where a completely laminar flow corresponds to the highest bulk
velocity of U+

b
= 60.0. In the DNS study we managed to pinpoint the critial

rotation number to be in between Ro = 2.800 and Ro = 2.810 with the
theoretical Roc in between, see figure 1. Also, the linear modes are clearly
visible in the DNS for a lower Ro = 2.49 which is fully turbulent. For this
rotation number the modes are extremely amplified with an amplification
factor around 0.5.

The Reynolds number dependency was derived for Re ranging from 103 to
106. The deviation from Ro = 3 is plotted in figure (2) in terms of 1/(3−Roc)
and follows remarcable cloase to a power law for all but the lowest Reynolds
number. A linear least-square fit, excluding Re = 103, gives Rocrit = 3 −
8.4Re−0.4. The corresponding critical wave numbers, α and β, increases with
increasing Reynolds number and a linear fit gives αcrit = 0.48Re0.18 and
βcrit = 0.46Re0.4.
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Tollmien-Schlichting (TS) waves are unaffected by rotation and are al-
ways unstable for supercritical Re. The secondary instabilities are, however,
damped by rotation and, thus, the TS waves might grow strongly before inter-
acting with the other modes. In the DNS we have seen a sudden very strong
burst of turbulence in these situations. The streamwise TS wave length is
large and interacts with the typical box length used in DNS which has to be
choosen with care.
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1 Introduction and scope of the work

The subject of our paper is the post-transition flow pattern formed in the
plane channel flow on a rotating system when transition is induced by the
Coriolis force acting when the rotation vector is aligned with the spanwise
direction of the channel. It is known from previous work, see eg. [5] [6], that,
when transition sets in in this flow, it does so at rather low Reynolds numbers
of only around 50 and the flow in the post-transition stage exhibits stationary
longitudinal vortices, an observation standing in sharp contrast to the case of
no rotation. The object of our present work is to try to extract this salient
flow feature in quantitative terms through studying the bifurcation charac-
teristics of this flow on the verge of transition. The focus of our attention is
on the spatial periodicity of the longitudinal vortices, for which the relevant
properties of the bifurcating solution of the nonlinear equations of motion for
disturbances to the basic flow are examined. The velocity profile of the basic
flow here is simply the parabola itself. The parameters influencing transition
in this flow are, in conventional notation, the Reynolds number Re = Uref H

ν

and the rotation number Ro = ΩH
Uref

, where 2H is the channel-height.

2 The equations, the ansatz and the procedure for their

solution

The starting point for our work ist the set of nonlinear equations of motion
for fluid flow in which Coriolis force effects are included and from which pres-
sure is eliminated as an unknown through the same two procedures as in the
derivation of the Orr-Sommerfeld and Squire equations in transition studies
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in fluid flows, see eg. [1]. We refer to these as the extended Orr-Sommerfeld
and Squire equations respectively. With Δ =

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
, the extended

Orr-Sommerfeld equation is as follows:

− ∂

∂t
(Δvy)− (1− y2)

∂

∂x
(Δvy)− 2

∂vy

∂x
+

1
Re

(
Δ2vy

)
− 2Ro

(
∂2vy

∂x∂y
+
∂2vx

∂x2
+
∂2vx

∂z2

)
=

∂

∂y

(
∂

∂x

(
∂

∂x
(v2

x) +
∂

∂y
(vxvy) +

∂

∂z
(vxvz)

)
+

∂

∂z

(
∂

∂x
(vxvz) +

∂

∂y
(vyvz) +

∂

∂z
(v2

z)
))

+
(
∂2

∂x2
+

∂2

∂z2

)(
∂

∂x
(vxvy) +

∂

∂y
(v2

y) +
∂

∂z
(vyvz)

)
. (1)

The extended Squire equation is as follows where ωy = ∂vx

∂z −
∂vz

∂x is the wall-
normal vorticity:

∂ωy

∂t
+ (1− y2)

∂ωy

∂x
− 2y

∂vy

∂z
+

1
Re

(Δωy)− 2Ro
∂vy

∂z
=

− ∂

∂z

(
∂

∂x
(v2

x) +
∂

∂y
(vxvy) +

∂

∂z
(vxvz)

)
+

∂

∂x

(
∂

∂x
(vxvz) +

∂

∂y
(vyvz) +

∂

∂z
(v2

z)
)
. (2)

The above two equations are to be supplementd by the continuity equation
for the flow of a constant density fluid which is as follows:

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0. (3)

For convenience of presentation later in this short paper, we write the equa-
tions (1,2,3) in a matrix-vector notation Dv = N as follows:

D =

⎛
⎝DOSy DOSz DOSx

DSqy DSqz DSqx

DCoy DCoz DCox

⎞
⎠ , v =

⎛
⎝ vy

vz

vx

⎞
⎠ ,N =

⎛
⎝NOS

NSq

NCo

⎞
⎠ , (4)

where the meaning of the various symbols follows from a comparison of (4)
with (1,2,3).

In the perturbation approach followed in our present work, the vector of
the unknown variable v = (vy,vz,vx)T is asymptotically expanded in terms
of an amplitude parameter εA as follows:

v � εAv1 + ε2Av2 + ε3Av3 + o(ε3A), (5)

where the vectorial unknowns v1,v2,v3 are regarded as functions of both the
fast/short and slow/long scale variables. These are, when the flow exhibits the
form of strictly longitudinal rolls, (t, y, z) and (T1, T2, Z1, Z2) respectively.

The equation for the terms in (5) then follow by its substitution in the
governing equations, (1, 2, 3) or (4). In the compact matrix-operator notation
these may be written as follows:
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O(εA) : Dv1 = (RHS)
1

= 0

O(ε2A) : Dv2 = (RHS)
2

O(ε3A) : Dv3 = (RHS)
3

(6)

The solution for v1 is sought in a product form as follows:

v1y = By(T1, T2, Z1, Z2)ṽy(t, y, z)
v1z = Bz(T1, T2, Z1, Z2)ṽz(t, y, z)
v1x = Bx(T1, T2, Z1, Z2)ṽx(t, y, z), (7)

where (ṽy, ṽz, ṽx) are set as an additive superposition of waves of wavelength
λzn = nλz, n = 1, 2, .., and frequency ωn as follows:

(ṽy, ṽz, ṽx)T =
N∑

n=1

(Any, Anz, Anx)T e(i(nλzz−ωnt)) + c.c., (8)

(Any, Anz, Anx) being functions of y.
Substitution of (5) into (1, 2, 3), together with (8) then leads to the classi-

cal eigenvalue problem in hydrodynamic stability which answers the question
of the response of the basic flow in question to infinitesimally small distur-
bances, see eg. [5] [6]. Results of this linear theory, which form the starting
point for the bifurcation studies in the present work, were obtained by casting
the differential eigenvalue problem into a matrix eigenvalue problem by the
spectral collocation method, and using MATLAB subroutines for a solution
of the same. The results are summarised in Fig.1 which shows neutral stabil-
ity curves for this flow for a cross section of Reynolds numbers, Re, over a
range of the rotation number Ro. It is worthy of note that the neutral stabil-
ity curves exhibit forms of closed loops in a certain region, with the presence
of maxima and minima with respect to rotation numbers. The wave-number
domain within the closed loop constitutes the band of amplification of in-
finitesimally small disturbances. Within the framework of the linear theory
the amplification is exponential, rendering the linear theory invalid.

The next step in the investigation of the bifurcation characteristics is the
formulation and computation of the adjoint problem, necessary to handle the
effect of the nonlinearities. For details of the procedure for this step we refer to
[1], restricting ourselves here to sketching its outlines for reasons of availability
of space. It is scalar multiplication of the extended Orr-sommerfeld, Squire and
continuity equations for the problem with the conjuate complex of the adjoint
of the unknown, (A+∗

y , A+∗
z , A+∗

x )T , followed by integration across the domain
−1 ≤ y ≤ 1 and subsequent regrouping.

The further step in obtaining the bifurcation characteristics of the flow
problem is a proper accounting of the nonlinearities that were neglected in
the linear theory. Since a treatment of the effect of nonlinearities in general
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terms is beyond reach at present, we pursue the method of Stewartson and
Stuart [3], which focusses attention on the effect of the nonlinearities in the
neighbourhood of the critical point. For this purpose, the interaction of only
two waves around the critical point is considered, i.e. n = 2 in (8). The disper-
sive nature of the wave motion, i.e. the dependence of the phase velocity ωn

λzn

upon the wavenumber λzn is however accounted for in the following manner:

ω2 = ω1 +
∂ω

∂λz
|1(λz2 − λz1) = ωc +

∂ω

∂λ
|cλc (9)

Formulating the solvability condition for the equations to the orders O(ε2A)
and O(ε3A) in (6), which involes the solution of the adjoint problem paying due
regard to (9), then leads to the amplitude evolution equations for (By, Bz, Bx)
in (7) which is an expression of the bifurcation characteristics of flow problem.

Fig. 1. Neutral Stability Plots according to Linear Theory for Channel Flow subject
to Transition by Coriolis force. The four curves are, starting from the innermost loop
in the order, for Reynolds numbers Re = 80, 100, 120 and 130 respectively.
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Palaiseau Cedex, France
b UME/DFA, ENSTA, chemin de la Hunière, 91761 Palaiseau Cedex, France
cristobal.arratia at ladhyx.polytechnique.fr

1 Introduccion

Mixing layers (sheared flows in homogeneous or stratified fluid) are present
in many geophysical contexts and may lead to turbulence and mixing. In
several cases, mixing layers are known to exhibit the Kelvin-Helmholtz insta-
bility leading to the roll-up of spanwise vortices, the Kelvin-Helmholtz (KH)
billows. This is an essentially two-dimensional (2D) process. In fact, in the
homogeneous cases the Squire’s theorem implies that the most unstable mode
is 2D. However, Squire’s theorem applies only for the exponentially growing
perturbations that control the large time dynamics and is not valid for the
transient dynamics at short time. Indeed, Iams et al.[1] have shown that, in the
non-stratified case, the most amplified optimal perturbations for short times
are three-dimensional (3D) and result from a cooperation between the lift-up
and Orr mechanisms[2]. This provides a finite time mechanism for spanwise
scale selection, scale that may persist at later times if nonlinearities are strong
enough.

In the present contribution, we extend the computation of 3D, finite time
optimal perturbations to the case of an horizontal mixing layer with vertical
linear stratification. As discussed by Deloncle et al.[4], the Squire’s theorem
does not apply to this horizontal shear layer when the fluid is stratified, but
the inviscid stability analysis of [4] shows that the most unstable mode is still
2D. The nonlinear dynamics of such an horizontal shear vertically stratified
has been numerically simulated by Basak & Sarkar[3]. They observed the de-
velopment of a disordered 3D structure made of a pilling up of horizontal
layers where the velocity is mainly horizontal and decorrelated from one layer
to the next. The evolution equations, being homogeneous in z, impose no ver-
tical scale in the flow evolution and the mechanism selecting this scale has yet
to be understood. Extrapolating from the homogeneous case, transient growth
is a possible linear mechanism that might explain the vertical scale selection.
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In the present paper, optimal transient growth are therefore computed for an

2 Formulation and Methods

Using cartesian coordinates x = (x, y, z) with z increasing upwards, and
time coordinate t, we the evolution of the perturbative velocity
u(x, t) and density ρ(x, t) fields according to the linearized incompressible
Navier-Stokes equations in the Boussinesq approximation. Our base state
is UB = U0 tanh(y/L)x̂ with a stable linear density stratification ρB(z) =
ρ0(1−N2z/g), where ρ0 is a reference density, g is the acceleration of gravity
and N =

√
−g/ρ0dρB/dz is the Brunt-Väisälä frequency. The adimension-

alization is such that L = U0 = 1, so that the value of the Brunt-Väisälä
frequency N measures the buoyancy strength as the ratio between the advec-
tive and the buoyancy time scales: the stronger the stratification, the faster it
affects the dynamics. The corresponding adimensional parameter is the hor-
izontal Froude number Fh ≡ U0/LN = N−1, which goes to zero in the high
stratification limit. The other adimensional parameters of the problem, com-
ing from viscocity ν and molecular diffusivity D, correspond to the Reynolds
Re = U0L/ν and the Schmidt Sc = ν/D numbers. Throughout the paper
their values will be Re = 1000 and Sc = 1.

The homogeneity in x and z of the evolution equations allows us to rewrite
the fields as [u, ρ](x, y, z, t) −→ [u, ρ](y, t)ei(kxx+kzz) and consider indepen-
dently the linear evolution of the different streamwise-spanwise wavenumbers.
Because of the latter, for each point in the (kx,kz)-plane we can define the
optimal gain as

G(T ) ≡ max[u,ρ](y,0)

(∫
u

2(T ) +N2ρ2(T )dy∫
u2(0) +N2ρ2(0)dy

)
, (1)

i.e., the maximum attainable increase in energy up to time T . We span the
(kx,kz)-plane for each time T at which we compute the optimal perturbation,
that is, the initial condition [u, ρ](y, 0) that attains the optimal gain G. These
optimal perturbations are computed by the iterative procedure proposed by
Corbett & Bottaro[5], whereby the succesive numerical integration of the di-
rect and the time reversed adjoint equations is performed until convergence
is achieved. For the computations we use a pseudo-spectral method with an
Adams-Bashfort time scheme.

In the following, we characterize our results by the optimal mean growthrate
of the perturbation

σm(kx, kz, T ) ≡ ln(G(kx, kz, T ))
2T

(2)

which allows an easier comparison with the maximum growthrate of the most
unstable KH mode, σKH ≈ 0.18 as a reference.

consider

horizontal shear flow vertically stratified.
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Fig. 1. Amplification of the optimal perturbations for T=7.

On the left column we show the positive isolines of the optimal mean growthrate (the
right column shows the same values corrected to compensate the viscous dissipation
of perturbations, see text) for 4 different Fh numbers as indicated on each row. The
values of the isolines are defined equally in all figures, decreasing in steps of 0.006
from the overall maximum value � 0.2701 (marked by the (�) in e). The arrows
in (f ) represent the decreasing directions of the contours and the (◦) on each plot
represents the maximum gain for 2D perturbations, which has the same value of
� 0.26 in all figures. The horizontal (resp. vertical) axes are equal on each column
(resp. row). Note the change in the vertical axis in the last 2 rows.
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In the figure 1(a-d), we show contours of σm(kx, kz) > 0 for T = 7 and for
different levels of stratification. For moderate stratifications (Fh = 2, figure
1(a)), the most amplified optimal perturbations are 3D. In this case there is
essentially no difference with the homogeneous case of [1], the largest optimal
gain being associated with the combination of the lift-up and Orr mechanisms.
When stratification is increased (figures 1(b,c,d)), the optimal perturbations
with the largest gain becomes 2D (kz = 0).

In order to take into account the viscous diffusion, we plot the corrected
optimal mean growthrate σc(kx, kz) = σm(kx, kz) + Re−1k2

z (right column of
fig. 1e - h), where only the diffusion in z is compensated since for small Fh,
large kz are destabilized. In the Fh = 1 case (fig. 1 (f )), we observe that the
most amplified perturbation is 2D and due to the Orr mechanism alone, as
confirmed by looking at the perturbation field data (not shown).

In the strongly stratified cases (Fh = 0.1, 0.05), we note that the depen-
dence on the vertical wavenumber scales as F−1

h , as it is evident from the
almost perfect invariance with the Froude number of the contours when plot-
ted in the scaled range of vertical wavenumbers. This scaling law corresponds
to the inviscid self similarity proposed by Billant & Chomaz[6], which extends
the analyses of Riley et al. [7] and Lilly [8]. Here we generalize this scaling for
finite viscosity and capture the Fh dependence in the high stratification limit
as

σm(kx, kz, T, Fh, Re) ≈ σc(kx, kzFh, T )−Re−1k2

z . (3)

This shows that the inviscid scaling of the high stratification limit is indeed
valid for the linear transient growth of perturbations, viscosity being easily
accounted for by adding the corresponding damping term.

Despite transient growth does not select a particular vertical length-scale,
the scaling found affects the receptivity by increasing the range of vertical
scales sensitive to noise and decreasing the selectivity for 2D structures. Cur-
rent research is on how this selectivity is affected by nonlinearities.
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Abstract

This paper discusses the active control of turbulence for skin friction reduction
with an emphasis on cost effectiveness. By introducing performance indices
such as the net energy saving rate and the control gain, we assess existing
control algorithms for true energy saving. We review recent attempts to reduce
costs accompanying practical applications, and discuss remaining issues in
developing more practically applicable control algorithms.

1 Introduction

Facing the global issues such as depletion of energy resources and environmen-
tal deterioration, highly advanced technology of turbulence control is ever
more needed. Turbulence control opens up new possibilities to achieve far
greater efficiency and least environmental impact of various thermal-fluid sys-
tems supporting the human society through the manipulation and modifica-
tion of momentum/heat/mass transfer, noise as well as chemical reaction.

In this paper, we focus on the turbulent flow control for skin friction drag
reduction. During the past several decades, an enormous amount of time and
effort of the turbulence research community has been devoted to advance the
understanding of dynamical mechanism of the near-wall coherent structures,
and this has been accomplished by exploiting modern measurement techniques
and computational fluid dynamics. For example, it is now well known that
large skin frictional drag in turbulent flow is attributed to the existence of
near-wall vortical structures and associated ejection/sweep events (Robinson,
1991; Hamilton et al., 1995). Based on this knowledge, various flow control
strategies have been proposed, although most of them are tested and evaluated
simply in terms of the drag reduction rate. However, the time has come for
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us to make assessment of any new control method by taking into account the
total cost of manufacturing, installation, operation and maintenance, and we
should aim at developing such control as to achieve high cost-effectiveness
even in fundamental research work.

Existing control schemes are roughly classified into two categories, i.e.,
active and passive controls. Passive control as typified by a riblet surface has
an advantage that it does not need continuous power supply to sustain the
flow control. However, the control performance achieved is generally worse if
compared to active control. In addition, the effectiveness of passive control is
often limited under flow conditions close to a design point. Development of
robust and effective passive control schemes is still a challenging issue.

Active control is further classified into predetermined and feedback con-
trols. In the former, its control input is specified a priori as in spanwise wall-
oscillation (Jung et al., 1992; Quadrio and Ricco, 2004), streamwise/spanwise
traveling waves (Min et al., 2006; Du et al., 2002), and steady streamwise
forcing (Xu et al., 2007) without knowing a turbulence state at each instant.
Existing predetermined controls commonly suffer from a disadvantage of large
power consumption as will be discussed later. On the contrary, in a feedback
control its input is always determined from sensor signals by a control law, so
that it can be more robust and flexible.

The feedback control generally offers better control performance with
smaller power consumption than the predetermined control. The former, how-
ever, has a disadvantage of requiring numerous sensors to detect an instanta-
neous flow state, of which signals are used to trigger actuators. In addition,
measurable flow quantities are likely to be limited to those at the wall, where
sensors can be implemented without changing the system design drastically.
Most feedback control algorithms so far proposed assume that massively ar-
rayed sensors and actuators are provided on a wall surface. Considering a
fact that physical dimensions and response times of these hardware compo-
nents should be very small, i.e., less than millimeter and millisecond (Kasagi
et al., 2009), fabrication and maintenance of these devices would impose an
unbearable cost even with rapidly developing MEMS technology. Thus, the
predetermined control is superior in a sense that it employs a much simpler
hardware system than the feedback control.

In the following, we will discuss several control schemes that are deemed
to reduce incurring costs associated with predetermined and feedback con-
trols. First, we introduce three kinds of indices to be considered in assessing
the control and some fundamental theories on drag reduction. Then, we will
review recent attempts to reduce various costs accompanying practical appli-
cations with a particular focus on control algorithm. For the recent progress
of hardware components, refer to a review paper by Kasagi et al. (2009) and
references therein.
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2 Fundamental Concepts

2.1 Control Performance Indices

Consider a constant-rate flow driven by a pressure gradient in a straight duct,
where the form drag is zero. Then, the pressure gradient must be balanced
with the total skin friction at the wall. Obviously, the drag reduction rate R
is equivalent to the reduction of pumping power P :

R = (P0 − P )/P0 (1)

where the subscript of 0 represents a quantity in the original uncontrolled
flow. By taking into account the power consumption Pin to manipulate the
flow, the net energy saving rate S is defined as:

S = {P0 − (P + Pin)}/P0. (2)

Another important parameter is the effectiveness of a control algorithm, i.e.,
the gain G defined as:

G = (P0 − P )/Pin, (3)

which is the reduction of pumping power divided by the control power input.
The above three parameters are related as follows.

S = R/(1− G−1). (4)

Presently, we choose S and G as performance indices for evaluating a con-
trol algorithm, although there are also the practical cases where only direct
control effect is of interest from a viewpoint of merits such as utmost speed
of cruising, least level of noise and/or extremely high rates of heat transfer
and combustion. The index of S represents the maximum energy saving rate
achieved when neglecting all possible energy losses in driving hardware com-
ponents. Obviously, in order to obtain a net energy saving, i.e., S > 0, G
need to be larger than 1. In a real system, however, there always exist such
energy losses associated with actuators, sensors, control circuits and so forth.
Hence, in order to achieve a true energy saving in a real system, G should
be sufficiently large regardless of R. For instance, when G is 10, the overall
hardware efficiency should be much higher than 10 % in order to have S � 0.

In Fig. 1, typical data of S and G obtained by active control schemes
are plotted. Here, all results are obtained in fully developed turbulent channel
flow at relatively low friction-based Reynolds numbers from Reτ = 110 to 640.
Since S and G strongly depend on parameters in each control scheme, we select
only favorable results in this figure. These include: feedback controls such as
V-control (Choi et al., 1994) and suboptimal control (Lee et al., 1998) assessed
at different Reynolds numbers by Iwamoto et al. (2002), temporally-periodic
spanwise wall-oscillation control (Quadrio and Ricco, 2004), streamwise trav-
eling wave control (Min et al., 2006), steady streamwise forcing control (Xu et
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steady streamwise forcing
control (Xu et al., 2007), and
spatially-periodic spanwise
oscillation control (Yakeno
et al., 2009).

al., 2007) and spatially-periodic spanwise oscillation control (Yakeno, et al.,
2009). Other predetermined controls such as spanwise traveling wave control
(Du et al., 2002) and large-scale streamwise vortex excitation control (Schoppa
and Hussain, 1998) are not included since their control power inputs are not
known.

It is found that the net energy saving rate S achieved by the predeter-
mined controls can be comparable or even better compared to the feedback
controls. Once G is considered, however, one can see that the values of the
predetermined controls are at most G ∼ 5 and generally much smaller, say, by
one or two orders of magnitude, than those achieved by the feedback controls.
For example, the maximum gain G = 1.7 achieved by the temporally periodic
spanwise wall-oscillation makes S reach its maximum of 7 %. In this case, the
actuator efficiency must be larger than 1/G ∼ 60% in order to obtain net en-
ergy saving. This is not easy generally, and should impose a severe constraint
in practical applications.

2.2 Theoretical Constraint

Drag reduction rate

Fukagata et al. (2002) derived a simple mathematical relationship between the
skin friction coefficient and the Reynolds stress distribution from the stream-
wise momentum equation. In the case of a fully developed channel flow, the
result leads to:

Cf =
12
Reb

+ 12
∫ 1

0

2(1− y)(−u′v′)dy, (5)
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where y = 0 and 1 correspond to the wall and the channel center, respec-
tively, and the overbar denotes the average in homogeneous directions. All

twice the bulk mean velocity, and Reb denotes the bulk Reynolds number.
The above identity indicates that the skin friction coefficient is decomposed
into the laminar contribution, 12/Reb, which is identical to the well-known
laminar solution, and the turbulent contribution, which is proportional to the
weighted spatial average of Reynolds stress. Note that the weight linearly
decreases with the distance from the wall.

The identity suggests that sublaminar friction drag, which is smaller than
that of the laminar flow at the same flow rate, is attained if the second term
on the RHS of Eq. (5) becomes negative. Actually, Fukagata et al. (2005) and
Min et al. (2006) have achieved sublaminar drag by applying a virtual body
force in the wall-normal direction and a traveling wave-like blowing/suction,
respectively. This is only possible with a penalty of S < 0 as described below.

Lower-bound for minimum energy consumption

It is mathematically proved that there exists a lower bound for the mini-
mum energy consumption in any skin friction control (Fukagata et al., 2009;
Bewley, 2009). In a fully developed channel flow, the sum of pumping and
control work should be eventually dissipated by viscosity. Hence, minimizing
the total power is equivalent to minimizing the volume integral of the viscous
dissipation over the whole flow domain. Under a constant mass flow rate and
a no-slip condition at top and bottom walls, it can be proved that the laminar
velocity profile gives the minimum viscous dissipation, and therefore the min-
imum power input. This fact indicates that the ultimate goal of skin friction
drag reduction control for energy saving is to lead the turbulent flow toward
a relaminalized state.

2.3 Toward Control of High Reynolds Number Flows

In real applications, the Reynolds number is far beyond the values that DNS
can reach, whilst various flow control strategies have been tested in relatively
simple canonical flows at low Reynolds numbers. Assessment of V-control
and suboptimal control in fully developed channel flow by Iwamoto et al.
(2002) demonstrated that the degree of drag reduction gradually decreases
with increasing the Reynolds number from Reτ = 110 to 640. A similar trend
is also observed for spanwise wall-oscillation control (Choi et al., 2002; Ricco
and Quadrio, 2008).

Figure 2 shows the weighted Reynolds shear stress, (1 − y)(−u′v′), i.e.,
the integrand of the second term in Eq. (5), in uncontrolled flows at dif-
ferent Reynolds numbers. At higher Reynolds numbers, the relative contri-
bution of the near-wall Reynolds shear stress to the friction dag drastically
decreases, whereas that of the outer layer becomes dominant. Therefore, a

the variables are made dimensionless by using the channel half-width and
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Fig. 2. Weighted Reynolds
shear stress at different
Reynolds numbers calculated
from the eddy viscosity model
with the van Driest damping
function (Kasagi et al., 2009).

question arises whether the conventional near-wall manipulation is effective
even at high Reynolds numbers.

Iwamoto et al. (2005) numerically simulated a fully developed turbulent
channel flow with damping of velocity fluctuations in the near-wall layer and
derived a theoretical relationship among the Reynolds number Reτ of un-
controlled flow, the damping layer thickness yd/δ non-dimensionalized by the
channel half width δ and the drag reduction rate R. As a result, they found
that the dependency of R on Reτ is moderate. For instance, when the fluc-
tuation at y+

d < 10 is damped, R is about 43 % at Reτ = 103, while 35 %
even at Reτ = 105, where the damping layer is extremely thin compared to
the channel half-width, i.e., yd/δ = 10−4.

The reason for the success of near-wall manipulation is explained as fol-
lows. The velocity inside the thin damping layer, which is increased as a result
of turbulence damping by the control, results in the decreased velocity dif-
ference between the outer edge of the damping layer and the channel center.
Therefore, the effective Reynolds number of the bulk flow is much reduced.
This example suggests that the basic strategy of attenuating only near-wall
turbulence can be considered valid even when the Reynolds number is con-
siderably increased.

3 Feedback Control

3.1 Control Algorithms with Wall Sensors

In real systems, the available state information is considered to be practically
limited to the following quantities: (1) the streamwise wall-shear stress, τwx =
(μ∂u/∂y)w; (2) the wall pressure, pw; and (3) the spanwise wall-shear stress,
τwz = (μ∂w/∂y)w. According to DNS studies, the control algorithms using
τwz or pw are very effective (Lee et al., 1997; Lee et al., 1998; Koumoutsakos,
1999). These quantities, however, are in most cases difficult to measure by
using small sensors distributed on the wall (Kasagi et al., 2009).
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Fig. 3. DNS results of turbulent pipe flow with the opposition control applied
to a partial area (Fukagata and Kasagi, 2003): (a) Normalized local skin friction
coefficient as a function of streamwise location, for different control lengths, Lc,
(b) Profiles of Reynolds shear stress weighted by 2r2 (in accordance with the FIK
identity for pipe flows) around the termination point of control.

Development of effective control algorithms based on τwx was initially
judged difficult. For example, Lee et al. (1998) succeeded in τwz - and pw-
based suboptimal schemes, but they failed to reduce the drag by sensing only
τwx. A reason for this failure may be attributed to their cost function based
on the fluctuating wall shear stress (τ ′wx)

2, of which relationship to the mean
shear is not always clear. In fact, Fukagata and Kasagi (2004) redefined the
cost function based on the near-wall Reynolds shear stress, which is directly
related to the friction drag like in Eq. (5). They successfully attained 11%
drag reduction in their DNS of turbulent pipe flow.

Control algorithms using τwx has also been developed by the physical argu-
ment or by adopting evolutionary optimization techniques. Based on the cor-
relation between the near-wall structure and wall variables, Endo et al. (2000)
proposed an algorithm to attenuate the meandering of low-speed streaks. Mo-
rimoto et al. (2002) used a genetic algorithm (GA) to optimize weights in
a prescribed function, which determined actuator’s movement from sensor
signals. About 10% drag reduction was attained in both cases. Yoshino et
al. (2008) also used a GA in their MEMS-based feedback control system in
a wind-tunnel experiment and obtained about 6% drag reduction. Recently,
Frohnapfel et al. (2009) poposed a new feedback control of attenuating the
spanwise velocity fluctuation based on τwx measured upstream, and obtained
almost 20 % drag reducion, which is the highest value achieved by sensing τwx

only.

3.2 Power Saving with Selective Space/Scale Control

Early studies of feedback control always assumed control inputs ideally ap-
plied on the entire wall surface. From both technologically and economical

0.0012
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viewpoints, however, such design of a broad surface covered with an array of
feedback control units is not feasible. Therefore, one may envision a control,
of which effect would last over a long downstream distance, so that the cost
can be reduced with simplified design and implementation.

Fukagata and Kasagi (2003) applied, in their DNS of pipe flow, the oppo-
sition control of Choi et al. (1994) only in the region of 0 < z < Lc, while
uncontrolling the rest of the region, Lc < z < L, where L is the compu-
tational domain length. Their results reveal that the drag reduction rate is
nearly propotional to the ratio of controlled to total areas. This is attributed
to the relatively fast recovery of the skin friction coefficient after the termina-
tion of control, as shown in Fig. 3(a). Similar results are reported by Pamiès et
al. (2007) for a spatially-developing boundary layer under opposition control.
As shown in Fig. 3(b), the quick recovery of local friction is caused by the
quick response of Reynolds shear stress near the wall.

One may be able to save the control cost by limiting the scales of turbulence
or number of modes. Suppose we can design a friction drag reduction technique
to only manipulate large structures, it would be tremendously beneficial in
terms of hardware development, particularly in higher Reynolds number flows;
it would certainly relax various requirements for the size, dynamic range and
frequency response of sensors and actuators.

Fukagata et al. (2008) explored such a possibility by means of DNS at
Reτ = 640. As an idealized feedback control, they selectively damp either the
small-scale wall-normal velocity fluctuations (defined as those with spanwise
wavelengths smaller than 300 wall units) or the large-scale fluctuations (span-
wise wavelengths larger than 300 wall units). They report that the damping
of small-scale fluctuations is more efficient than that of large-scale ones as
shown in Fig. 4, where the contributions of laminar and two different-scale
Reynolds stress components to the skin friction under the selective scale con-
trols are compared. When only the small ones are damped, the friction drag
diminishes simply because of the absence of small-scale fluctuations near the
wall. On the other hand, with the large-scale damping, the small-scale fluc-
tuations are drastically increased and this results in the friction drag larger
than expected from the absence of large-scale contributions.

From the studies above, it is conjectured that saving of control effort in
space or scales is, in principle, difficult as far as the drag reduction relies on
the suppression of fine-scale turbulence in the vicinity of the wall, although
further study is needed for inventing new types of control.

4 Predetermined Control

Most predetermined controls employ a wall velocity, which has a spatial or
temporal periodicity. These control inputs can be generally represented as:

ui(x, 0, z, t) = ûi · Real [exp{i(ωt+ kxx+ kzz}] (6)
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Fig. 4. Integral contributions to
friction drag from different scales
in DNS of channel flow at Reτ =
640 under idealized damping of
wall-normal velocity fluctuations

et al., 2008): Compar-
ison between no-control, damping
of large-scale only, and damping of
small-scale only.
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For example, the temporally-periodic spanwise (wall) oscillation control pro-
posed by Jung et al. (1992) corresponds to (ω �= 0, kx = kz = 0), while the
traveling-wave controls such as Du et al. (2002) and Min et al. (2006) are
defined as (ω �= 0, kz �= 0) and (ω �= 0, kx �= 0), respectively. Recently, sta-
tionary, but longitudinally-periodic controls, i.e., (kx �= 0, ω = kz = 0), have
been proposed by Quadrio et al. (2007) and Yakeno et al. (2009).

When such periodic wall velocity is assumed, the resultant velocity field
would be a superposition of periodic and irregular components. Hence, by de-
composing an instantaneous velocity ui into a spatio-tempral mean component
ui, a phase-fluctuating component ũi and a random incoherent component u”

i ,
the Reynolds stress in the integrand of Eq. (5) can be rewritten as:

−u′v′ = −(ũṽ + u”v”). (7)

According to Eqs. (5) and (7), there are two possibilities to obtain drag re-
duction. The first strategy is to make the first coherent term negative, which
is otherwise very small or almost zero. This strategy was successfully adopted
by a traveling wave-type control by Min et al. (2006). The steady streamwise
forcing by Xu et al. (2007) also applies a body force so as to directly reduce the

(Fukagata
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drag, namely, decelerating the flow in the near-wall layer, while accelerating
further away from the wall.

which is a major factor for skin friction drag in uncontrolled flow. For ex-
ample, Yakeno et al. (2009) investigate the effects of two different spanwise
wall velocities, which are temporally and spatially periodic, on the coherent
structures and the resultant drag reduction. The temporally-periodic control
is essentially the same as that proposed by Jung et al. (1992). In the spatially-
periodic control, stationary, but longitudinally-periodic spanwise control input
is applied at the wall. They show that there exist the optimal conditions for
the period of T+ ∼ 100 and the streamwise wavelength λ+

x ∼ 1000 for drag
reduction. Time traces of the pumping and control power inputs under these
conditions are shown in Fig. 5. The spatially-periodic control achieves larger
drag reduction rate with less control power input, and gives larger net en-
ergy saving. In these cases, a drastic decrease in −u”v” accounts for the drag
reduction.

Since the first term in Eq. (7) is a direct result of the introduced control
input, so that it is easier to modify, the former strategy seems more feasible.
However, the results of Min et al. (2006) and Xu et al. (2007) indicate that
the second term in Eq. (7) is also decreased with their controls. Recently, the
authors have tested control inputs, which force the first term to be negative at
least in the very vicinity of the wall. In most cases, however, the drag increases
against our expectation because of marked enhancement of the second term
further away from the wall. These results suggest that modifying the random
component −u”v” is primarily important for drag reduction.

The mechanism of turbulence suppression in the predetermined control has
not been fully understood despite its simplicity. In contrast to the feedback
control, where a control input is given so as to locally diminish a coherent
streamwise vortex, the predetermined control is likely to prevent vortex gen-
eration by interfering the regeneration cycle near the wall (Hamilton et al.,
1995). For example, the phase-averaged flow field around a streamwise vortex
shown by Choi et al. (2002) clearly shows that the spanwise wall-oscillation
control disrupts phase-locking of the streaks and streamwise vortices near the
wall. Recently, Jovanović (2008) showed that the turbulence suppression due
to spanwise wall-oscillation can be predicted by the receptivity analysis of the
linearlized Navier-Stokes equation. In contrast, Lee et al. (2008) conclude that
a linear stability analysis of a channel flow subject to traveling wave-like blow-
ing/suction from the wall cannot explain turbulence suppression observed in
the corresponding DNS of Min et al. (2006). At this moment, it is not clear
whether such stability analyses provide a unified explanation to turbulence
suppression observed in various predetermined controls.

The second strategy is to suppress the second incoherent term of Eq. (7),
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5 Conclusions and Challenges for the Future

We have briefly reviewed the recent advances in active turbulence control

derstanding of the dynamical mechanism of near-wall coherent structures,
various control strategies have been proposed by exploiting modern control
theory, physical arguments, adaptive methods and so forth. Although most
of them are validated under idealistic conditions, it is of great importance to
assess any control method by taking into account the total cost of manufac-
turing, installation, operation and maintenance. Namely, we should pay much
attention upon cost effectiveness even when developing a fundamental control
law. From this viewpoint, the control gain should be much larger than unity
to compensate possible energy losses in hardware components.

Feedback control generally works better than predetermined control in
terms of the gain, since the former determines best control input by sensing
the flow state at each time instant. In order to avoid a heavy burden associ-
ated with hardware requirements, however, it is desirable to develop a control
algorithm that demands a reduced number of sensors and actuators. So far,
reducing the surface control area has simply led to deteriorated overall con-
trol effectiveness, but selective wavenumber control should be worth further
studying, particularly from a viewpoint of receptivity of the near-wall layer.

Predetermined control methods achieve considerable drag reduction with
an advantage of easier implementation, but they are likely to suffer from large
power consumption. This is a major problem in existing predetermined con-
trols. Thus, it is strongly desired to minimize the control input while keeping
its high control effectiveness. For this, understanding the mechanism of turbu-
lence suppression due to a prescribed forcing mode should be indispensable.

So far, the control performance has been assessed at low Reynolds num-
bers. A few previous studies show that the drag reduction rate in both feed-
back and predetermined controls commonly tends to decrease gradually, al-
though moderate, with increasing the Reynolds number. Applicability of these
control strategies to practically high Reynolds number flows need to be further
studied theoretically, numerically and experimentally.

With all above said, for real application of turbulence control technology,
a breakthrough should be indispensable in design, fabrication and implemen-
tation of hardware components such as durable high-performance sensors,
actuators and controllers (Kasagi et al., 2009).
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Active control of turbulent boundary layer using an
array of piezo-ceramic actuators
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This paper presents preliminary results from an experimental exploration on drag re-
duction in a turbulent boundary layer using an array of piezo-ceramic actuators. The
actuator array consisting of 16 actuators can generate wall-normal oscillations and,
given a phase shift between two adjacent actuators, a spanwise travelling wave. A si-
nusoidal waveform with four different amplitudes was investigated while oscillating
in a wide range of frequencies. The preliminary results showed that about 5% reduc-
tion in drag could be obtained based on the measurement of a hot-film flush-mounted
on the wall. A drag increase up to 20% was also observed when the actuator array
worked in large amplitudes and high oscillation frequencies. Investigations are on-
going to use different control strategies such as different actuation signals, spanwise
travelling wavelengths and speeds, etc. in order to achieve better results in terms of
drag reduction.

1 Introduction

Active control of a fully developed turbulent boundary layer for drag reduction has
recently attracted a great deal of attention. It has been demonstrated numerically and
experimentally that the high wall shear stress is associated with the quasi-streamwise
vortices (QSV), in particular the sweep events in the near-wall region, and inhibit-
ing or annihilating these QSV can mitigate the turbulence production and reduce the
skin friction (e.g. [1, 2]). Based on their DNS data, Du and Karniadakis [3] showed
that a transverse wave induced by a spatial force travelling in the viscous sublayer
could suppress dramatically the coherent structures in the near-wall region, resulting
in a drag reduction exceeding 50%. Their preliminary experiment with Lorentz actu-
ators produced results consistent with the DNS data [4]. Nevertheless, this technique
has yet to be demonstrated experimentally [5]. The present work aims to investigate
experimentally the drag reduction in a turbulent boundary layer using an actuator
array. An array of 16 piezo-ceramic actuators, flush mounted with the wall surface
and aligned in the spanwise, was used to generate the wall-normal oscillation and a
transverse travelling wave given a phase shift between two adjacent actuators. Three
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distinct waveforms with four different amplitudes were tested while oscillating in a
wide range of frequencies.

2 Experimental Details

Experiments were conducted in a closed-circuit wind tunnel which has a 2.4-m-long
test section of 0.6 m × 0.6 m. Tripped at the leading edge, a boundary layer was
produced by a 2.2-m-long Perspex flat plate. The plate was slightly inclined to ensure
a nearly zero-pressure gradient along the test section. The oncoming velocity of the
free stream is Uo = 4.0 m/s. The actuation location is L = 1.5 m downstream of
the leading edge. At this location, the Reynolds number ReL is 4 × 105, based on
L and Uo. Fig. 1 shows schematically the arrangement of actuators, each having a
dimension of 22 mm × 2 mm × 0.33 mm (length × width × thickness). The gap
between the sides of the actuator and the wall edge around it is about 0.05 mm.
The spacing between two adjacent actuators is 1 mm. As such, the entire actuator
array covers 450 and 200 wall units along the spanwise and streamwise directions,
respectively. The origin of the coordinate system is defined at the actuator tip, with
x, y, and z along the streamwise, normal (to the wall) and spanwise (or transverse)
directions, respectively.

Fig. 1. The schematic of the spanwise-arranged actuator array (not in scale, units in mm).

The piezo-ceramic actuator used currently can work in a wide range of oscillation-
frequencies ( f ), with the peak-to-peak amplitude (A) of the free tip about 0.5 mm,
or 5 wall units. Every actuator was driven by an individual voltage amplifier and
guaranteed to have identical A by offsetting their driving voltages at each working
frequency. In preliminary tests, three different phase shift (φi,i+1, i = 1, 2, ..., 15), i.e.
φi,i+1 = 0o, 24o, or 180o and four different A, viz. 80 µm, 160 µm, 240 µm and 320 µm
(or A+ = 0.8, 1.6, 2.4 and 3.2, where the superscript “+” denotes normalization by
wall variables), were examined, while the actuators oscillated at a frequency range
of 50 Hz ∼ 500 Hz.
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A miniature single-wire probe (55P15, Dantec) was used to measure the stream-
wise velocity profile at the actuation location. A hot-film (55R45, Dantec) located
at x = 5 mm or x+ = 50 downstream of the actuator tip was used to determine the
change in wall shear stress. The hot-film was calibrated in situ based on the mean
of wall shear stress from the hotwire measurement. The mean velocity profile, close
to the wall (y+ < 12), was adopted to estimate the mean of wall shear stress at a
free stream velocity ranging from 2 m/s to 6 m/s. The measuring uncertainty of the
hot-film was estimated to be within ±1%.

3 Results and Discussion

In this section we will present and discuss preliminary results. The averaged change
of wall shear stress is defined as ∆D∗ = (D − Do)/Do(%), where D and Do are time-
averaged drags measured with and without control, respectively.

In the current study, given φi,i+1 = 24o, the 16 actuators formed one discrete sinu-
soidal wave travelling in the spanwise direction. These discrete actuators oscillating
in the wall-normal direction may also interact directly with the coherent structures.
Fig. 2a shows the dependence of ∆D∗ (%) on f + for four different A+. It can be seen
that ∆D∗ is appreciable for the whole range of f + when A+ is relatively small, i.e. A+

= 0.8 and 1.6. As A+ increases to 2.4, drag increase is observed at f + > 0.228. For
the largest A+ = 3.2, only can drag reduction be obtained at f + < 0.114; in contrary,
more than 15% drag increase results at f + > 0.2565. The valley for A+ = 2.4 and
3.2, witnessed at f + = 0.228, may result from the resonance (around 400 Hz) of the
actuators. The results seem to be consistent with Du et al.’s [4] suggestion that the
drag reduction strongly depended on energy input (or disturbance strength) through
actuation into the flow. Large drag reduction would be achieved only when energy
input was close to a threshold; otherwise, the near-wall streaks were unaffected or
drag increase was observed.

Fig. 2. The dependence of ∆D∗ on f + for (a) φi,i+1 = 24o and (b) φi,i+1 = 180o.
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As φi,i+1 = 0o, the entire array of actuators oscillated in phase, resembling a
waveform with ‘infinite’ wavelength. In this case, the maximum of drag reduction
(about 4.5%) is observed at f + = 0.0855 for A+ = 1.6. On the other hand, the drag
increase of near 20% was observed at f + > 0.2565 for the largest A+ = 3.2.

As φi,i+1 = 180o, two adjacent actuators in the array oscillated in an anti-phase
fashion, corresponding to no travelling wave. The dependence of ∆D∗ on f + is shown
in Fig. 2b. In this case, no profound drag increase was observed except at f + = 0.228,
at which the actuators worked resonantly. The largest drag reduction (about 5%) was
obtained for A+ = 2.4 at f + = 0.285.

4 Conclusion

Drag reduction in a turbulent boundary layer based on a spanwise array of actuators
was experimentally investigated. Three waveforms with four different amplitudes
were formed by these actuators working in a wide range of the oscillation frequen-
cies. Though preliminary, experimental results show a drag reduction of up to 5%
when the wave was in a caniniform (A+ = 2.4) and worked at f + = 0.285. Inves-
tigations are on-going to use different control strategies such as different actuation
signals, spanwise travelling wavelengths and speeds, etc. in order to achieve better
results in terms of drag reduction.
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Necessity of aerodynamic drag reduction of aircrafts and other moving objects
stimulates researchers for finding out new means of the near-wall turbulence
control. In [1] it has been found that the vertical positioning of the LEBUs
in boundary layer can be much more efficient compared to the conventional
horizontal one, although, according to the same authors, the devices were far
from being optimized. Present work is focused upon the study of possibil-
ity of turbulent skin-friction reduction using flow-aligned vertical LEBUs, the
LEBUs being mounted perpendicular to the flat plate surface in nominally
gradient-free incompressible turbulent boundary layer. The Reynolds number
based on the momentum thickness of the boundary layer at the LEBUs’ posi-
tion was 1099. All measurements were performed using a computer-controlled
automated system of space/time hot wire visualization of mean and fluctuat-
ing components of the velocity field. The system provided accuracy not worse
than approximately ±2 μm along x, y, and z coordinates. Local skin friction
coefficient Cf in the regular (unmodified) shear flow was determined from the
condition of the best correspondence between measured and and classic veloc-
ity profiles in the region of the law of the wall functionality U+ = A log y++B
with known coefficients A and B. In the modified boundary layer Cf was
determined by the mean velocity gradient at the wall (∂U/∂y)y=0. The mea-
surement technique is given in more detail in [2].

A fragment of the flat plate surface with the mounted vertical LEBUs and
the coordinate system are shown in Fig. 1. The typical LEBUs’ sizes in wall
units are as follows: the blade height is h+ = 194 that is equal to about one
half of the local boundary-layer thickness and the chord length c+ = 99; the
spanwise spacing between the blades λ+ = 69.

Analysis of boundary-layer mean velocity profiles, instantaneous values of
streamwise velocity fluctuations, and the Clauser equilibrium parameter, as
well as skin friction in 13 spanwise sections along the model show that the
characteristics of the regular shear flow perfectly correspond to the physical
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Fig. 1.

concepts on the properties of turbulent boundary layer formed on a flat plate
at nominally gradientless flow.

Fig. 2. Fig. 3.

Distinctive features of the modified flow can be clearly seen in mean veloc-
ity distributions U/Ue and streamwise velocity fluctuations

√
u′2/Ue. Such ex-

amples of the mean velocity distributions in spanwise direction U/Ue = f(z/δ)
at x = 0.183δ (x+ = 5) are given in Fig. 2 at characteristic values of wall-
normal coordinate y+. Corresponding values of U/Ue in the regular flow are
shown by the horizontal lines. Location of neighbouring vertical elements is
indicated by the vertical segments on x-axis. Quite naturally that due to the
loss of kinetic energy by the mean flow to overcome the local drag caused by
the element, the flow is retarded directly downstream of it (z/δ = 0.076 and
0.255), hereupon there appears a pronounced velocity defect in this region.
On the contrary, the flow is accelerated between the elements; hence, a flow
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with relatively high velocity is formed in this region. It is significant that the
velocity excess decreases as coordinate y+ grows. This is stipulated by the
decrease of the kinetic energy loss to overcome the local drag as the element
tip is approached. Similar effect is observed further downstream where the
velocity defect is formed even in the flow region between the elements. Mean-
while, velocity distribution in the spanwise direction becomes substantially
smoothed. In whole, the dynamics of the process is such that as the stream-
wise coordinate x grows, spanwise mean velocity distribution in the boundary
layer gradually relaxes to the distribution typical for the equlibrium state.

Reduction of the level of turbulent fluctuations
√
u′2/Ue compared to the

regular flow not only directly downstream of the elements (z/δ = 0.076 and
0.255), but also between them is a characteristic feature of the root-mean-
square velocity distribution (Fig. 3). Note that this effect is observed also
further downstream up to the last measured section. The only exclusion is a
narrow region directly behind the vertical element (mainly at the flow near
its tip), where the disturbance level is increased compared to the regular flow
at the same y-coordinates. It can be supposed that a vortex was shed from
the element tip.

Comparison of disturbance spectra in the modified and regular flows
clearly indicates the decrease of disturbance energy directly behind the el-
ements, the decrease being multifold at low-frequencies. Meanwhile, the fre-
quency band in the modified flow is about two times narrower than in the
regular flow. Hence, the efficiency of the vertical LEBUs to suppress the field
of the turbulent velocity disturbances is substantial.
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The results show that the LEBUs with given geometry are quite effective
means for turbulent boundary-layer modification. They provide a substantial
benefit in the local skin friction as compared to the appropriate values for the
regular flow (Fig. 4).

Beginning from x-coordinate of several tenth of the boundary-layer thick-
ness δ downstream of the LEBUs and further downstream up to (7–8)δ, a
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persistent skin-friction reduction, whose maximum value reaches 27–28% at
x/δ ≈ 6, can be observed.

f modification characterizing percentage
benefit compared to the corresponding values in the regular flow are shown in
Fig. 5 as function ΔCf/Cf0 = f(x/δ). Here ΔCf = (Cfm −Cf0), where sub-
scripts ”m” and ”0” mean modified and regular boundary layers, respectively.
Values Cfm for each section x were obtained by integrating the distribution
of this value in the spanwise direction. The results extracted from [1] are also
shown for comparison. In general, the results of both experiments are in a
good accordance. Maximum benefit in the local drag is about 27–28%. Gen-
erally, this supports the statement in [1] that the vertical elements are more
effective compared to the elements directed parallel to the wall, results for
which were extracted from [3]. In fact, in the literature available to us such a
pronounced effect was never recorded. However, one has to take into account
that the total wetted area of the vertical elements, when their heights are
larger than the spacing between them, is larger than that of an isolated con-
ventional LEBU directed parallel to the surface. Consequently, such devices
can appear not too effective, if to account for their own drag. This, however,
requires additional studies.

Final conclusions about effectiveness of such devices and expected ten-
dency at the flow velocity increase can be drawn using a technique which
accounts also the LEBU-induced drag.
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In the last decade many research efforts in flow control were directed to feed-
back control schemes due to the fact that large energy gain was anticipated.
To achieve practically realizable control, the footprints of near wall turbulence
need to be detected through sensors that are mounted on the wall. In this re-
spect, sensing wall shear stresses is considered most feasible. Especially the
instantaneous spanwise wall shear stress, τz = (∂w/∂y)wall, is known to be
useful for the state estimation of wall turbulence and it has been shown that
control laws based only on the time trace of this component work well [1, 2].

Up to now, most of the research on feedback control have been done in
direct numerical simulation (DNS) with idealized systems in which continuous
sensing and actuation are assumed at the same location. Since this assumption
is unrealistic, we investigate whether the local instantaneous spanwise wall
shear stress can be obtained based on upstream information.

It is well known that quasi streamwise vortices (QSV) as well as high and
low speed streaks are a part of the regeneration cycle of wall turbulence [3].
Endo et al. [4] showed that the QSV located at the downstream side of a me-
andering low speed streak can be captured by measuring the spatial gradients
of both wall shear stresses, τx = (∂u/∂y)wall and τz = (∂w/∂y)wall, about 50
viscous length units upstream. In general, the experimental assessment of τz
and its spatial gradients needs significantly more effort than the measurement
of τx [5]. With the goal of providing an easily accessible input information
that replaces the knowledge of τz at the actuation location, we investigate the
correlation between the spanwise gradient of the streamwise wall shear stress,
∂τx/∂z = ∂

∂z (∂u/∂y)wall, and τz.
In general, the correlation function has a form of R(Δx,Δz,Δt). The

present work is limited to the case where the time lag, Δt, and the spanwise
displacement, Δz, are zero.
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Fig. 1. Spatial correlation between the spanwise gradient of the streamwise wall
shear stress and the negative wall shear stress in a turbulent channel flow (left,
DNS) and a duct flow (right, experiment).

We carry out DNS of a fully developed channel flow with a constant flow
rate. The bulk Reynolds number based on the channel height is changed
as Reb = UbH/ν � 4600, 10100 and 16100, which corresponds to friction
Reynolds numbers for the uncontrolled case, Reτ = uτδ/ν = 150, 300 and
450, respectively.

The obtained spatial correlations, R(∂τx

∂z (x),−τz(x+Δx+)), for the three
Reynolds numbers are depicted in Fig. 1, left. For Reτ = 150 the highest
correlation is slightly above 50% and is located at a streamwise distance of
Δx+ ≈ 65. For Reτ = 300 and 450 the maximum value is reduced to 47% and
shifted to smaller streamwise distances such that the maximum correlation is
located at Δx+ ≈ 43. The good agreement between the two correlations at
the higher Reynolds numbers suggests that the Reynolds number dependence
at Reτ > 300 would be small.

In addition to the numerical simulation, we consider experimental data
obtained in a duct flow at Reb � 15400. The corresponding friction Reynolds
number is given by Reτ = uτδ/ν = 450. A spanwise row of micro-pillar
shear-stress sensors MPS3 [6], shown in Fig. 2, is placed in the duct flow
to simultaneously measure the instantaneous streamwise and spanwise wall
shear stresses. The sensors do not emerge out of the viscous sublayer and
measure the temporal evolution of the wall shear stresses such that a temporal
correlation between ∂τx/∂z and τz can be obtained in the center of the duct
where the flow was shown to be two-dimensional based on PIV data. In the
present investigation the spanwise spacing of the sensors is given byΔz+ = 10.
Employing Taylor’s Hypothesis the temporal correlation is transformed to the
spatial correlation.

The resulting correlation is plotted in Fig. 1, right. It can be seen that the
correlation for the duct flow shows the same qualitative trend as the correla-
tions obtained for channel flows at Reτ = 300 and 450, suggesting that the
convection velocity was chosen appropriately. However, the correlation values
are much higher than in the channel flow simulation. The difference between
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Fig. 2. A row of micro-pillar shear-stress sensors. If the sensors are aligned in
spanwise direction (z) it is possible to obtain a temporal correlation between ∂τx/∂z
and τz. Note that in the present investigation the sensors are placed further apart
than in the picture. Their spacing roughly corresponds to twice the pillar height.

the obtained correlations cannot solely be attributed to the statistical uncer-
tainty in the available data. Since the evaluation of ∂τx/∂z in the experimental
investigation is based on the spanwise distance between the pillars, we have
performed numerical reference computations in which the spanwise distance of
the τx-sensing locations is increased up to two pillar spacings. We found that
this increased ”sensor spacing” does not significantly influence the correlation
value. At this moment we can not explain the observed difference, although
it seems that the temporal correlation is higher than the spatial one.

In order to test the feasibility of the suggested τz-estimation, we investigate
the influence of replacing τz with the upstream information of ∂τx/∂z in a
control loop similar to the one suggested in [2]. We employ a spanwise body
force within a forcing layer y+

f = 10 on the top and bottom walls of the
channel flow and carry out simulations at Reτ = 150 in which the body force
is given by either

bf(x, y, z) =
1
Φ

(yf − y) τz(x, z)︸ ︷︷ ︸
measured quantity

(1)

or

bf(x, y, z) =
1
Φ

(yf − y)
∂τx(x−Δx, z)

∂z︸ ︷︷ ︸
measured quantity

. (2)

Note that Δx corresponds to the streamwise distance between sensor and
actuator locations and that Φ is the forcing time constant which, in combi-
nation with the sensor value, determines the strength of the forcing and thus
the required control power input.

Based on the body force formulation given by equation (1) drag reduction
of DR = 25.3% can be achieved. With the body force formulation given by
equation (2) and Δx+ = 65 (location of the highest correlation) a similar
control power input leads to DR = 17.2%.

Fig. 3 shows the obtained Reynolds stresses in comparison to the uncon-
trolled flow. It can be seen that the two control schemes have a very similar
influence on u2

2
, u2

3
and u1u2. The suppression of these components is stronger

for higher drag reduction as expected. For u2

1
this is not the case, and this
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Fig. 3. Reynolds stress distribution for the control based on equation (1) (trian-
gles, DR=25.3%) and on equation (2) (circles, DR=17.2%) in comparison to the
uncontrolled channel flow (straight line). The normalization is based on the inner
variables of the uncontrolled channel flow.

fact suggests that the suppression of u2

1
is an effect that consumes energy

but is not necessarily required for drag reduction. If the sensor is placed at
Δx+ = 47, DR = 16.3% is achieved.

The present results demonstrate that the upstream spanwise gradient of
the streamwise wall shear stress, ∂τx/∂z, can be used to predict the spanwise
wall shear stress which is known to be a good candidate for state estimation
of near-wall turbulence. It was shown that this correlation does not only exist
in uncontrolled flows but that it can also be successfully used for the design of
flow control loops, at least at low Reynolds numbers. Whether this also holds
at higher Reynolds numbers remains to be clarified in future work.
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Vortex generators (VG) are among the most popular actuators for flow control.

more or less interact with each other depending on many parameters like the
size of the VGs or the spacing between each VG (Betterton et al. (2000);
Godard & Stanislas (2006)). From a general point of view, the 3D steady (or
unsteady) perturbations induced by the VG are used to modify a boundary
layer in order to control some global properties of the flow like heat transfer
or aerodynamic forces (Lin (2002); Duriez et al. (2008)).

Fig. 1. Visualization of a row of counter-rotating streamwise vortices induced by a
row of jet vortex generators.

One of the main difficulty in using VG is the large number of parameters
the experimentalist has to choose: the type of VG (mechanical or fluidic, sta-
tionary or time-dependant), the dimensions, the spacing, the location relative
to the flow to be controlled. In this paper we propose a short review describing
the structures of the flows produced by two different mechanical VG (trape-
zoidal blades and cylinders) and continuous jets in a flat-plate boundary layer.
The drawback and advantages of each of them will be underlined. The way
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the longitudinal structures interact with a flat plate boundary layer will also
be discussed. In the case of small cylinders it will be shown that one can define
new physical properties that can be helpful to choose the proper parameters
in the perspective of control of flow separation.

In a first step, we illustrate with both Particle Image Velocmetry (PIV)
and visualizations the mechanisms of generation of streamwise vorticity in
various examples. After recalling the classic mechanisms of vortex generation
with winglets, we will show how ”Bluff Body Vortex Generators” (BBVG)
can be used to generate pairs of streamwise counter-rotating vortices. A com-
parison will also be made with Jet Vortex Generators (JVG) which allows an
easier control of the perturbation through the jet velocity. In all cases, visu-
alizations in a cross-section downstream the vortex generators exhibits the
typical mushroom-like structures, characteristic of counter-rotating stream-
wise vortices, as shown on Fig. 1 in the case of JVGs.

Fig. 2. Iso-surface of transversal velocity downstream a row of small cylinders.
One can see the creation of pairs of counter-rotating vortices through alternate red
(positive) and blue (negative) iso-surfaces. Isolines of longitudinal velocity show how
the longitudinal velocity field is modulated by the longitudinal vortices.

In a second step, we focus on the downstream evolution of the pertur-
bations induced by the Cylindrical VGs (CVG) in the boundary layer. A
detailed study is carried out for different spacings between the CVGs and
different Reynolds numbers. From 3D reconstruction of two-components hori-
zontal PIV field (Fig. 2), we could extract meaningful informations quantifying
the spatial transient growth of the perturbations. One example is illustrated
on Fig. 3 where one can see the streamwise evolution of the amplitude of the
harmonic mode of the longitudinal and spanwise perturbations induced by
the VGs in the boundary layer.

From the difference between the base flow and the mean 3D longitudinal
velocity field of the perturbed flow, one can also quantify the modification of
the base flow through zero mode u∗

0
:
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u∗
0
(x, y) =< U(x, y, z)− Ubase(x, y, z) >z, (1)

The global modification of the base flow is more easily quantified through
the integral I0 over the vertical direction of the u∗

0
(x, y) profiles :

I0(x) =
∫ ∞

0

u∗
0
(x, y)dy (2)

Thanks to acquisition of the 3D mean longitudinal velocity field, one can
compute I0(x) which is a measure of the global acceleration (I0 > 0) or
deceleration (I0 < 0) of the 3D boundary layer. One can see on Fig. 4 that
it is now possible to define precisely the exact longitudinal position (x =
Linv) where the CVG will accelerate the boundary layer and thus delay the
separation. If the CVGs are placed at a longitudinal position x < Linv from
the natural separation line, then they could trigger the separation instead of
delaying it.

Finally we will show an example illustrating the application of the pre-
viously defined quantities to the control of boundary layer separation over a
smoothly contoured ramp with the VGs.

Fig. 3. Longitudinal evolution of the amplitude of the harmonic mode of the spatial
perturbations induced by the VGs in a flat plate boundary layer for a Reynolds
number based on the height of the VG Reh = 300. One can see that the longitudinal
evolution depends strongly on the spacing between the VG for both the longitudinal
component (upper figure) and the spanwise component (lower figure).
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Fig. 4. Longitudinal evolution of the integral I0(x). It is possible to define a char-
acteristic length Linv where the boundary layer changes from globally decelerated
to globally accelerated. Downstream this position, the separation of the boundary
layer will be delayed.
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1 Introduction

The 3D properties of the Bénard von Kármán global mode of the wake behind
a 2D bluff body are investigated in an experimental study when a smaller,
circular control cylinder is placed in the wake. Previous investigations [1, 2, 3],
have shown the influence of a small control cylinder on the global frequency
of the wake. The main effect is related to the interaction of vorticity produced
by the control cylinder with the vorticity created by the bluff body. However,
for certain positions of control, the envelope of the local velocity signal shows
a modulation of amplitude. The search in the span-wise direction has shown
the effects of the control cylinder’s presence on existence and location of the
modulation.

Fig. 1. The experimental setup.
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2 Experiment

The schematic representation of the experimental setup is shown in Fig. 1. The
bluff body is a ”D” shape cylinder withD = 25mm, and a span of L = 400mm.
It is situated in an Eiffel type wind tunnel, with the open side test section
of 400mm × 400mm. The free stream velocity here is U = 8m/s, and the
Reynolds number of the flow is Re = UD

ν ≈ 12000, based on the diameter
of the primary cylinder. The secondary (control) cylinder has a circular cross
section of diameter d = 3mm, and for the purpose of this investigation, it is
displaced along lines parallel to Oy axis, at constant x = 0.4D and x = 1.8D.
Displacement is performed in 110 steps of 0.5mm. At each position of the
control cylinder, three DANTEC hot-wire probes measure velocity, over 30
seconds, at a distance of xp1,2,3 = 6D downstream from the trailing edge of
the bluff body. As can be seen in Fig. 1., the three probes are all level with
the lower edge of the bluff body (yp1,2,3 = −0.5D), with one of the probes at
the span-wise center (zp1 = 0) and the other two at a distance of 2D on each
side of the first probe (zp2,3 = ±2D). The probes are of a single wire type,
oriented so as to be sensitive to velocity modulus in the xOy plane.

3 Results and discussion

The velocity spectra are displayed for each position of the control cylin-
der along the vertical lines xc = 1.8D in Fig. 2.(a,b,c) and xc = 0.4D in
Fig. 2.(d,e,f). In the case of Fig. 2.(a,b,c), the frequency is a constant close
to the natural frequency of the uncontrolled wake through all of the vertical
positions. This is because the control cylinder is too far downstream of the
recirculation zone to produce significant effects. The spectral properties are
rather similar for the three span-wise locations in the wake. The width of the
peaks is related to 3D effects in the wake such as dislocations [4]. When the
control cylinder crosses vertically the recirculation zone at xc = 0.4D, we can
observe changes in the global mode frequency. At the extremes (yc = ±D)
of the vertical path of the control cylinder, the frequency of the wake is not
well defined (just as for the natural case) and is around the value of the nat-
ural frequency. As the control cylinder travels closer to the outer edge of the
recirculation zone the frequency is reduced due to vorticity cancelation. At
the inner edge the frequency is greatly increased, due to vorticity addition.
Moving the control further into the bubble, the frequency is reduced to the
natural value, and finally, it increases once more, as the control cylinder is at
the center line yc = 0. This increase is believed to be the result of the feed-
back effect of vorticity produced on the control cylinder, on the vorticity in
the primary shear layers. If we analyze the structure of the spectrum peaks,
we can observe in Fig. 2.(d,e,f) a drastic change compared to the natural
wake. When the frequency is at its maximum the peak is better defined (the
width is reduced) and this state is observable along the entire span. When the
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Fig. 2. Spectra of the wake for all the positions of the control cylinder when it is
displaced along the Oy axis at a constant x, at three measurement points span-wise.
For xc = 1.8D, spectra are shown at zp2 = 2D(a), zp1 = 0(b) and zp3 = −2D(c).
For the downstream position of the control cylinder xc = 0.4D, the corresponding
measurements are shown in zp2 = 2D(d), zp1 = 0(e) and zp3 = −2D(f). In each case
the vertical axis shows the position of the control cylinder along Oy, the horizontal
axis marks the frequency of the wake, while the graph intensity is the amplitude of
the spectrum. Displayed above each graph is the spectrum of the middle position of
the control cylinder (yc = 0), marked by a dashed line in the corresponding picture
below.
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control cylinder is inside the bubble, we observe the presence of two distinct,
well defined peaks, indicating a modulated wake. This modulation is not si-
multaneously recorded by the three probes, except for the control cylinder’s
position in the middle at yc = 0.

Fig. 3. Flow visualization for the position of the control cylinder at xc = 0.4D,
yc = 0. (a) Parallel vortex shedding. (b) One-side vortex tube dislocation

We performed flow visualization of this configuration in the xOz plane.
Fig. 3. shows the examples of parallel vortex shedding and the appearance
of a dislocation. The dislocation originates from the presence of two global
modes, each dominant on one side of the primary cylinder. The modulation
takes place in the overlap region of the two global modes. When the control
cylinder is at the middle position, the overlap region envelops the three probes.

4 Conclusion

In conclusion, the control cylinder in a turbulent wake can create a modulated
state with two selected frequencies, or suppress it to a single frequency peak.
Modulation is related to periodic appearance of dislocations in the wake, which
are sensitive to the presence of a 2D stationary perturbation.
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1 Introduction

DNSs of pipe flow with two different swirl strengths (S1 and S2) are carried
out. The flow is driven by an axial pressure gradient sufficient to keep a con-
stant bulk Reynolds number Reb = UbD/ν = 4900. Up = 2Ub is the centerline
velocity of the corresponding laminar flow. A body force in tangential direc-
tion is setting up a swirl in the near-wall region. The resulting mean tangential
velocity profiles are shown in Fig. 1 a).
Swirling flow due to pipe rotation has been reported several times in the past,
e.g. by DNS in [1, 2]. Their rotation number N = 2Vwall/Up defined the swirl
strength and they considered N = 0.5, 1, and 2. In the present approach, the
wall velocity is zero and the swirl is defined as S = 2Vmax/Up. By reading
the maxima from Fig. 1 a) it can be found that S1 ≈ 0.45 and S2 ≈ 0.85.
However, while S1 increases the drag considerably, S2 provides a slight drag
reduction, as can be seen from the shear stress profiles in Fig. 1 b). In order
to investigate the physics behind the differences in S1 and S2, profiles of fluc-
tuating vorticity and helicity, pdf-plots of helicity density, and visualizations
of fluctuating velocities will be provided.
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2 Results

Figures 2 a) - c) show root-mean-square (rms) values of the vorticity fluctua-
tions

ω′
θ =

∂u′r
∂z

− ∂u′z
∂r

, ω′
r =

1
r

∂u′z
∂θ

− ∂u′θ
∂z

, ω′
z =

1
r

∂ru′θ
∂r

− 1
r

∂u′r
∂θ

, (1)

for two swirling cases and the case without swirl for y/R < 0.2. A reduction
of the tangential fluctuating vorticity in the near-wall region, as seen for S2,
indicates a lower rate of cross-sectional mixing. The fluctuating radial vortic-
ity is correlated to high- and low-speed streaks through ∂u′z/∂θ and Fig. 2 b)
indicates therefore a reduction of streaks for S2 compared to S1. The induced
swirl increases the axial vorticity fluctuations in the near-wall region, as seen
in Fig. 2 c). The swirl breaks up the even distribution of velocity-vorticity cor-
relations and creates non-zero helicity. The tangential helicity component is
mainly influenced by the induced u′θ and ∂u′z/∂r. The region from the wall to
the peak of the mean tangential velocity profiles (approximately y/R < 0.1,
Fig. 1 a)) will experience inflow of axial high-speed fluid that also carries
a high tangential velocity. Accordingly, this will result in a stronger radial
gradient of u′z which leads to a larger ω′

θ. The opposite effect will be experi-
enced for excursions away from the wall. Consequently, u′θω

′
θ will be positive

for both sweeps and ejections. In comparison to S1, the tangential velocity
and vorticity fluctuations have become less correlated for S2 as seen in Fig. 2
d). The radial fluctuating helicity component in Fig. 2 e) is about an order
of magnitude smaller than the tangential and axial components as it is only
indirectly influenced by the induced swirl. The axial helicity component is
shown in Fig. 2 f). For y/R < 0.1 a sweep will represent a positive u′z and
an increase of the wall-normal gradient of u′θ which results in a positive ω′

z.
Correspondingly, an ejection results in negative u′z and ω′

z. As seen in Fig. 2
f) the region dominated by sweeps and ejections is moved further away from
the wall and has decreased for S2 compared to S1.
The pdf of the helicity density fluctuations, P (h′), visualizes the alignment
φ between the fluctuating vorticity and the fluctuating velocity vectors. Fig-
ures 3 a) - d) show that without swirl, φ tend to be ≈ π/2 for y/R ≤ 0.2 as
u′z and ω′

θ dominate the near-wall region. The swirls reduce the axial velocity
fluctuations (not shown) together with the fluctuating azimuthal vorticity for
y/R ≤ 0.2. Consequently, a reduction of the misalignment between the fluc-
tuating velocity and fluctuating vorticity vectors is observed for the swirling
cases. For y/R = 0.01, orthogonality is still the most probable orientation
with swirl, but the likelihood has almost halved. Only small deviations can be
observed between the two swirl strengths. Moreover, for y/R = 0.06 seen in
Fig. 3 b), it has become most likely to have either aligned or counter-aligned
vectors. However, P (h′) is not far from being evenly distributed for S2 due
to roughly equal axial and azimuthal helicity of opposite sign at this position
(see Fig. 2 d) and f)). For S1, the axial and tangential helicity show similar
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positive values at y/R = 0.06 and consequently the highest probability be-
comes alignment between the two vectors. At y/R = 0.10 the axial helicity is
dominating (see Fig. 2 d) - f)) and implies alignment of the vectors in Fig. 3 c).
At y/R = 0.18 the axial and azimuthal helicity fluctuations are negative and
roughly equal. Therefore, the fluctuating velocity and the fluctuating vorticity
vector tend to be counteraligned in Fig. 3 d). The differences in helicity and
helicity probability between the friction-increasing S1 and the drag-reducing
S2 are most noticeable around y/R = 0.06. At this point fluctuating helic-
ity shows a more isotropic behaviour for S2 than for S1 and this might be
one of the clues as to why only S2 reduces the drag. Contour plots of the
instantaneous u′z at y/R = 0.06 are presented in Fig. 4 a)-c). The most strik-
ing difference between the case without swirl and the swirling cases is tilting
of the structures. A closer look suggests that the S2-case exhibits reduced
streak-lengths compared to the S1-case.
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Fig. 4. Visualisation of u′
z/Up at y/R = 0.06. Red and blue colours visualize positive

and negative fluctuations (both shown as dark structures in the black and white
version). a) No swirl b) S1; c) S2

To conclude, it seems that S2 interferes more favourably with the sustain-
able turbulence cycle (i.e. reduces sweeps, ejections and streaks) than S1 and
therefore results in reduction of drag.
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1 Introduction

It has been shown [1] that the axisymmetric wake is dominated by three types
of instability mechanism: an axisymmetric “pumping” of the recirculation
bubble at very low frequencies, antisymmetric fluctuations induced by a helical
vortex structure that forms just downstream of the rear stagnation point
and several higher-frequency, axisymmetric instability modes of the separated
shear layer. The environmental requirement for drag reduction has placed a
greater emphasis on base-pressure recovery of bluff bodies. The active control
of separating flow around bluff bodies has tended to focus on 2D bodies [2, 3]
demonstrating that large drag reductions are possible, usually by controlled
blowing, at frequencies close to the von Kármán shedding frequency. However,
in terms of control, 3D bluff bodies have received considerably less attention
even though this configuration appears in many practical problems. Even
then, active control has tended to focus on the delay of separation [4]. In the
present work, we show that the base pressure of a blunt trailing edge may be
increased by a high-frequency jet from a zero-net-mass-flux (ZNMF) device.

X

Y

Fig. 1. Orthographic projection of model with sting. Freestream in x−direction.
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2 Experimental Setup

In the present experiment, figure 1, the near wake of an axisymmetric cylinder
with its axis aligned in the streamwise direction and a blunt trailing edge is
subject to periodic forcing. The boundary layer is tripped just downstream of
the sting. A high-fidelity speaker located inside the cylinder is used to generate
an axisymmetric, pulsed jet of variable frequency and amplitude from a small
circumferential gap located on the underside of the separating boundary layer.
The ZNMF device is driven sinusoidally and does not operate at resonance.
A detailed investigation of the response of the mixing layer, and in particular,
the growth of the disturbances is performed using hot wires, PIV and base-
pressure transducers. Further details are provided in [5].

3 Results
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Fig. 2. Change in base pressure coefficient with forcing frequency, Stθ, for several
different forcing amplitudes, vf .

Figure 2 shows the base-pressure coefficient (averaged in time and over
the radius of the base) for the forced case as a ratio of that for the unforced
case, Cp0, where

Cp =
p− p∞
1

2
ρU2∞

, (1)

and plotted against dimensionless forcing frequency, Stθ = fθ/U∞, where θ is
the boundary-layer momentum thickness at separation. Cp/Cp0 is shown for
jet velocity amplitudes in the range 0.027 ≤ vf/U∞ ≤ 0.27.
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Figure 2 shows that the wake exhibits a specific response at three distinct
forcing frequencies: at each one, contours of the phase-averaged vorticity in
the (x, y)-plane are shown, figures 3 – 5, for vf/U∞ = 0.27. The averaging is
performed at that part of the cycle where the jet switches from blowing to
suction, that is at a phase angle φ = π. Key features are as follows.

1. At very low frequencies (Stθ ≈ 0.003, or StD ≈ 0.32), there is a weak
effect on the pumping mode, StD ≈ 0.18 via a “beat-coupling” effect in
which the forcing frequency is at the boundaries to the lock-in region, even
though it is closer to the frequency of the helical mode at StD ≈ 0.255.
This is possible because the helical structures do not form until down-
stream of the rear stagnation point and is confirmed by the symmetrical
response of the velocity field, figure 3. A phase-sequence through the blow-
ing and suction phases of the forcing shows that the shear layer flaps in a
varicose or “pumping” mode.

2. At Stθ ≈ 0.024, base pressure decreases as the amplitude of the forcing
increases. The maximum amplification occurs at a frequency close to that
predicted by a linear stability analysis for an initially laminar, plane mix-
ing layer, Stθ = 0.016 [6], and is even closer to that for a turbulent mixing
layer, Stθ = 0.022 [7]. The wavelength of the structures as deduced from
PIV data (figure 4) and two-point hot-wire correlations shows that their
convection velocity is 0.5U∞ until they begin to merge for x/D > 0.5,
approximately. Structures are formed as the jet switches from blowing to
suction, that is, φ = π.

3. At Stθ ≈ 0.07, there is a rise in base pressure over a restricted range of fre-
quencies. The effect does not become apparent except for vf > 0.1U∞ and
saturates for vf > 0.2U∞. Figure 5 apparently shows no structure: obvi-
ously in this case, the effects of short-wavelength forcing lead to more-or-
less immediate merging. Velocity spectra indicate that there is a reduction
of energy in the large scales but an enhancement of energy in the small
scales and therefore of dissipation also. This effect does not appear to have
been reported previously.

4 Discussion

A further experiment was conducted in which the jet was made three-
dimensional by blocking the jet orifice with a uniform pitch to produce eight
distinct jets, each with a width of 0.063D. In this case, the rise in base pres-
sure at Stθ ≈ 0.07 was not reproduced, presumably owing to the generation
of streamwise vorticity. Further experiments indicate that forcing at one of
the frequencies identified above can leave other modes unaffected. Forcing at
Stθ ≈ 0.024 modified the bubble-pumping mode slightly, by increasing the
energy and shifting it to a slightly higher frequency. This forcing frequency
also modified the helical mode slightly. On the other hand, forcing at high
frequencies, Stθ ≈ 0.07, leaves the helical mode unaffected, but does increase
the energy associated with the bubble-pumping mode. These effects are dis-
cussed fully in [5].
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Fig. 3. Phase-averaged (x, y)-plane vorticity contours, Stθ = 0.003, vf/U∞ = 0.27.

Fig. 4. Phase-averaged (x, y)-plane vor-
ticity contours, Stθ = 0.024, vf/U∞ =
0.27.

Fig. 5. Phase-averaged (x, y)-plane vor-
ticity contours, Stθ = 0.07, vf/U∞ =
0.27.
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1 Introduction

Investigation of turbulent mixed convection flows past heated obstacles has
physical as well as engineering objectives, since such problems as climate con-
trol in buildings, cars or aircrafts, where the temperature must be regulated
to maintain comfortable and healthy conditions, can be formulated as mixed
convection problems. In this type of convection the flows are determined both
by the buoyancy force like in natural convection and by inertia forces like in
forced convection, while neither of these forces dominates.

Mixed convection is characterised by Archimedes number

Ar = Gr/Re2

of order 1, where
Gr = αgD̂3ΔT̂/ν2

denotes Grashof number and

Re = D̂ûinlet/ν

Reynolds number, α is the thermal expansion coefficient, ν the kinematic vis-
cosity, g the gravitational acceleration, ΔT̂ the difference of the temperatures
at the heated obstacles and in cold inlet flows, D̂ the width of the container
and ûinlet is the mean velocity of the inlet flow.

The objective of our study is to investigate by means of Direct Numerical
Simulations (DNS) the instantaneous and statistical characteristics of turbu-
lent mixed convection flows past heated obstacles, for different Gr and Ar.

2 Governing equations and numerical method

The considered computational domain is a box with 4 parallelepiped ducts
connected to it (Fig. 1). The length, height and width (without ducts) of the
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Fig. 1. Sketch of the computational domain and the boundary conditions. Warm
obstacles and cold inlet flows are shown in red and blue, respectively.

domain are L̂, Ĥ and D̂, respectively. Through 2 thin ducts, located close to
the top, cold inlet flows come inside the box. The length, height and width of
the ducts for the inlet flows are L̂, Ĥ/150 and Ŵ , respectively. 2 ducts with
the sizes L̂ × Ĥ/20 × Ŵ for outlet flows are situated close to the bottom.
There are 4 heated parallelepiped obstacles inside the box, which are raised
at the distance Ĥ/20 from the bottom.

The temperatures of the cold inlet flows and heated obstacles are fixed. At
the outlets and outer rigid adiabatic walls ∂T̂ /∂n = 0, where n is the normal
vector. The velocities at the inlets are fixed, while at the outlets ∂û/∂n = 0
and at all solid walls û = 0. The working fluid is air, and all material properties
are taken at 25◦C.

To dimensionalize the governing equations we use the following refer-
ence constants: x̂ref = D̂ for distance, T̂ref = ΔT̂ for temperature, where
ΔT̂ is the temperature difference between the obstacles and the inlet flows,

ûref =
(
αgD̂ΔT̂

)1/2

for velocity, t̂ref = x̂ref/ûref for time, p̂ref = û2

ref
ρ

for pressure.
Thus we get the following system of the governing dimensionless equations

in Boussinesq approximation

ut + u · ∇u + ∇p = Gr−1/2Δu + Tex,

∇ · u = 0,
Tt + u · ∇T = Gr−1/2Pr−1ΔT.

Here u is the velocity vector-function, T the temperature, ut and Tt their
time derivatives, p the pressure, Pr = ν/κ Prandtl number, κ the thermal
diffusivity, ex the unit vertical vector. All boundary conditions are taken in
accordance with the above discussed. T equals 0.5 at the obstacles and -0.5
at the inlets.
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To simulate turbulent mixed convection, we use fourth-order finite-volume
discretization schemes in space and the explicit Euler-leapfrog discretization
scheme in time within the Chorin ansatz [1], which is similar to that used
in our DNS of turbulent Rayleigh–Bénard convection [3, 4, 5]. The Poisson
solver, which is needed to compute the pressure, uses the capacitance matrix
technique together with the separation of variables method [2]. The devel-
oped numerical method generally allows to conduct DNS of turbulent ther-
mal convection using computational meshes, which are non-equidistant in all
3 directions and are irregular in any 2 directions.

3 Results

We investigate mixed convection in air in the above discussed domain by
means of DNS, while varying the control parameters 108 ≤ Gr ≤ 1010,
1 ≤ Ar ≤ ∞, the length of the computational domain 0.2 ≤ L̂/D̂ ≤ 1.25
and the width of the ducts 0 ≤ Ŵ/D̂ ≤ 0.025.

(a) (b)

−0.5 Temperature 0.5

Fig. 2. Instantaneous temperature distribution with superimposed velocity vectors
in a central vertical cross-section for Gr = 109, Ar = 1, L̂/D̂ = 0.2, Ŵ/D̂ =
0.025 as obtained in (a) two-dimensional and (b) three-dimensional direct numerical
simulations.

It was shown that two-dimensional and three-dimensional direct numerical
simulations produce principally different global flow structures (see Fig. 2 (a)
and (b)). Indeed, in three-dimensional simulations 2 large rolls are observed
in mixed convection for the case Ar = 1 and Ra = 109, while two-dimensional
simulations for the same Ar and Ra produce a single large roll. Thus, the inves-
tigated mixed convection flows in enclosures with heated obstacles are shown
to be turbulent and strongly three-dimensional even for relatively “thin” do-
mains with L̂/D̂ = 0.2.
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(a) (b)

−0.5 Temperature 0.5

Fig. 3. Instantaneous temperature distribution with superimposed velocity vectors
in a central vertical cross-section for Gr = 109, L̂/D̂ = 0.2, Ŵ/D̂ = 0.025 and (a)
Ar = ∞, (b) Ar = 4 as obtained in three-dimensional direct numerical simulations.

Further, it is shown that the mean temperatures and velocities in mixed
convection depend strongly on Ar. Thus, the mean temperature decreases with
decreasing Archimedes number, while the mean absolute velocity increases
with decreasing Ar (compare Fig. 2 (b) with Fig. 3 (a) and (b)).

At the conference further obtained instantaneous and mean mixed convec-
tion flows for different values of the control parameters will be discussed and
compared to the corresponding natural convection flows (Ar = ∞).
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1 Introduction

Recent simulations and experiments suggest that flow over superhydrophobic
surfaces may exhibit significantly reduced drag in both laminar [8, 9] and
turbulent [7, 10] regimes due to the existence of a thin layer of gas on the
surface which allows a slip velocity. The current paper explores this using
estimates of drag based on high-resolution PIV in a low-Reynolds number
turbulent channel flow.

2 Superhydrophobic surfaces

Three superhydrophobic surfaces
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Fig. 1. Fractional reflection of incident
light on a submerged surface. × Grooves,
♦ SB,+ Nanograss, � Mirror, · Un-coated
aluminum plate, - Fresnel equation curve.

were tested, all of which exhibited
static contact angles approaching
180◦. The first surface examined
was a textured surface manufactured
in-house by laser etching 20×20μm
(width× depth) streamwise-oriented
grooves into an aluminum test plate
and subsequently coating the sur-
face with a hydrophobic silane (Gelest,
Inc.). The second surface was a sand-
blasted aluminum plate (RMS rough-
ness ∼ 15 μm), SB, coated with a
spray lacquer (G. J. Nikolas & Co.,
Inc) and dusted with a hydrophobic
powder (Evonik). The final surface
was “Nanograss” [6], consisting of arrays of posts (350 nm ∅, 7 μm high, 1.25
μm spacing) etched in silicon and coated with a hydrophobic CFx film.
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The presence of an air layer on the submerged superhydrophobic surfaces
under turbulent flow conditions was confirmed by focusing a laser spot on the
superhydrophobic surface and measuring the intensity of the reflected light
as a function of the incident angle. The results from the superhydrophobic
surfaces follow the theoretical curve (Fig. 1), according to Fresnel’s equations,
confirming the existence of an air layer under these conditions.

3 Experimental methods and determination of u∗

A 19 by 43 cm test surface was mounted on the lower wall of a turbulent
channel flow facility [3]. PIV measurements, with wall-normal resolution (y)
of 0.05 mm, were taken in the x − y plane at the downstream end of base-
line (hydrophilic) and superhydrophobic surfaces at Reb

∼= 6000; Re� ∼= 200
(Reb ≡ 2δUbulk/ν; Re� ≡ δu�/ν ,where δ is the half-channel height). At
these conditions, the characteristic turbulent scales are: l∗ ≈ 100μm and
u∗ ≈ 10mm/s. The typical PIV measurement uncertainty for the experimental
data was 4 mm/s (≈ 0.4u∗), and valid experiment data was typically available
starting from y+ ∼ 2.

Three methods were used to estimate the friction velocity from the velocity
data. The methods were evaluated using DNS data [1, 2], perturbed using
different levels of random noise. The first method used a cubic polynomial fit
to the near-wall mean velocity profile [4], extended to allow for a non-zero
slip velocity at the surface, Us. This method is very sensitive to errors in the
near-wall velocity, and the error in the estimate of u∗ increased quickly, both
with noise level and with the location of the first measured velocity point. A
noise level of 0.4u∗ resulted in a 24% error with the fit starting at y+ = 1. As
the starting point moved farther from the wall, the error increased to 83% at
y+ = 5. Note that the accuracy of this method is much higher if one enforces
a no-slip condition at the wall [4].

The second method applied a linear fit to the total stress, τ = μdU/dy−ρ <
u′v′ >, extrapolated to y = 0 to calculate u∗. This approach was less sensitive
to error in the velocity data and was not dependent on availability of near-wall
data. The error from the evaluation of this method was 2% at 0.4u∗ noise.
The final method relied on an integration the Reynolds stress to calculate u∗,
based on Fukagata et al. [5], extended to allow for a non-zero wall velocity:

Cf = 2
(
u∗

Ub

)2

= 12
∫ y=1

y=−1

(y · u′v′)dy +
12
Reb

(1− Us) . (1)

This formula yields an average Cf for both channel walls (only one wall is
superhydrophobic in our experiments). It is only weakly affected by uncer-
tainty and availability of near-wall data. The effect of a slip velocity at the
channel wall modified the laminar contribution to Cf . Any effect on the tur-
bulent contribution was due to the Reynolds stress. The error when applied
to the DNS data for 0.4u∗ noise was 11%. The error for this method increased
rapidly when data was unavailable for y+ ≤ 5 (y+ ≤ 10 for the no-slip case).
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Fig. 2. PIV velocity and fluctuation profiles for both baseline (×) and Superhy-
drophobic ◦ surfaces.

4 Results and Discussion

The methods described above were applied to data collected for each of the
three superhydrophobic surfaces as well as the baseline flow (Figs. 2 and 3).
Although there are differences between the tests, and some suggestions that
drag reduction may be present, there is no definitive evidence, either from
the mean and fluctuation profiles (e.g. Fig. 2) or the resultant values of Cf

(Fig. 3), that drag reduction has been achieved using the superhydrophobic
surface treatments.

The lack of drag reduction found
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Fig. 3. Cf results from experimental PIV
data using three methods: × Polynomial
fit, ◦ Total stress fit, � Reynolds stress in-
tegration

here is in contrast to results from
other groups [10], and may be due
to several factors. Firstly, it is pos-
sible that the current experiments
are in error. However, great care
has been taken to reduce this pos-
sibility, and the experiments have
been conducted multiple times over
multiple surfaces. Secondly, it is pos-
sible that there is a moderate and
subtle drag reduction that is not
measurable using PIV-based tech-
niques. This remains a possibility,
given the scatter in the estimates
for Cf found using the three differ-
ent methods. Improving the PIV data (through larger samples and enhanced
PIV processing), and continuing to improve the post-processing estimates for
Cf are still areas where progress can be made to resolve these issues.
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However, the modifications to the mean velocity and fluctuation profiles
due to superhydrophobicity that have been reported in previous work [7, 10]
are quite dramatic and would clearly be visible in this data if they were
present, leading us to believe that, even if there is some drag reduction, that
the effect is subtle, and not comparable to other researchers’ findings. Numer-
ical DNS simulations [7] found drag reduction after the modification of the
wall boundary condition to allow for a Navier slip velocity. However, in the
real turbulent flow, an air layer also provides a wall-normal compliance which
may obviate drag reduction [11]. Min and Kim [7] also showed that spanwise
slip served to increase the drag, and it is possible that this is present in the
current experiments (spanwise velocities were not measured). It is also possi-
ble that the current geometries tested are not optimal for drag reduction. The
current grooves are somewhat large, and this may allow for the air layer to be
compressed into the grooves, resulting in an effectively fully-wetted surface,
although this still needs to be explored more fully.
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Response of Periodically Modulated

Turbulence
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Many turbulent flows are subject to periodic modulation, examples are the
flow in an internal combustion engine, the pulsatile blood flow through arter-
ies, and geophysical flows driven by periodic tides. When the modulation is
slow, the turbulence will adjust adiabatically, but when the modulation period
comes close to an internal time scale of the flow, the turbulence may resonate
with the driving. Such a time scale may be the large-eddy turnover time. The
possibility of resonance is intriguing as one may object that turbulence does
not have a single time scale, but a continuum of strongly fluctuating times.
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Fig. 1. Periodic pattern of active grid. (a) Its time-dependent transparency. (b)
Full line: phase-averaged response at modulation frequency fm = 1Hz, dashed line
at 10 Hz.
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We periodically modulate a strongly turbulent flow in a windtunnel using
an active grid. Our active grid consists of a grid of rods with attached vanes
that can be rotated by servo motors. We control the motion of the grid pre-
cisely by a computer which allows us to correlate the turbulent response with
the instantaneous grid state.

Thus, the grid can be made to cycle periodically through a fixed series
of patterns, or can be made to move completely randomly. The turbulent
velocity field u(y, t) is probed by an array of hot-wire anemometers, which
gives access to the dissipation rate ε = 15ν〈∂u/∂x〉2. One of the ways to
quantify the action of a grid is plotting its time-dependent transparency.

As figure 1 illustrates, the phase-averaged turbulent velocity adapts nearly
adiabatically to the grid state at low driving frequencies fm, while at large
frequencies the turbulence is no longer able to follow the modulation.

Figure 2 shows a strong resonant response of the turbulence at a certain
driving frequency. This frequency is close to the large-eddy turnover frequency.
Thus, these experiments show that there are preferred frequencies with which
to stir turbulence.
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Fig. 2. (a) Large resonance effect in the averaged dissipation rate. (b) For several
turbulence intensities the turbulence response R, defined as the fraction of the tur-
bulent energy at the modulation frequency, show similar behavior as a function of
the normalized driving frequency f∗ = fmT , with T the large-eddy turnover time.

There are several ways to realize the cyclic grid pattern of figure 1 and
its associated transparency, for example by choosing different rotation senses
of the axes. These details matter, however, defining the turbulence response
in the same way as is done in numerical simulations [1, 2] results in similar
behavior for all modes studied.

Periodic modulation of turbulence leaves its downwind trace as peaks in
the spectrum at the modulation frequencies and its harmonics [3]. Also, pe-
riodic stirring may not be the optimal way to obtain large Reynolds numbers.
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Random stirring has been explored by Mydlarski and Warhaft [3], with a
simple protocol in which all axes rotate with the same frequency f , but with
the direction of rotation changed randomly after a time Tr.

Although the turbulence spectrum is now no longer marred by sharp peaks,
the correlation between the grid state and the turbulence remains strong. In
our experiment, this correlation can be measured as we monitor the (random)
grid state simultaneously with a measurement of the turbulence. The peak
in the correlation function is shifted by x/U , where U is the mean velocity,
signifying that the modulation is carried by the mean flow.

Fig. 3. Random modulation of turbulence using a protocol in which the direction
of rotation of the grid axes is changed randomly. (a) Autocorrelation function of
the grid transparency. (b) Turbulent spectrum at x = 4.2m downstream of the grid.
(c) Normalized cross correlation CSU (τ) between the grid solidity and the turbulent
velocity. The arrow indicates the time x/U .

The key question now is how to stir such that the correlation with the
stirrer is weakest.

We will also present the relation of turbulence modulation to the fluctua-
tion-dissipation theorem. A recent paper [4] showed that in order to test the
physical relevance of the Fluctuation-Dissipation Relations response functions
similar to the ones discussed here must be measured. The idea is that the size
of turbulent fluctuations may be related to the response of the flow to small
perturbations.
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Turbulent drag reduction by feedback: a
Wiener-filtering approach
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In an attempt to devise control laws for reducing drag in turbulent wall flows,
modern control theory has recently been employed for the design of linear
controllers [1], state estimators [2], and compensators [3; 4]. These approaches
led to encouraging results, revealing the potential of linear control in targeting
significant dynamics in wall turbulence [5].

All the aforementioned works, however, rely on an approximate state-
space representation of the system dynamics, obtained by linearization of
the governing equations about a base flow profile. The state-space formula-
tion reduces the compensator design problem to the solution of two matrix
Riccati equations, a procedure that becomes computationally cumbersome
for high-dimensional systems. Effects of nonlinearities and modeling errors
are accounted for by introducing state and measurement noises with known
(approximately modeled) statistics.

In contrast to previously proposed approaches, in this work we employ a
linearized model of the wall-forced turbulent channel flow system in the form
of an average impulse response function; such model is directly measured with
DNS using the procedure proposed by Luchini et al. [6]. They introduced small
velocity perturbations at the channel walls in the form of a space-time white
noise, and computed runtime the cross-correlation between the flow state and
the wall forcing. Leveraging a well known result in linear system theory, they
used the computed correlation function to define a linear impulse response
function, representing the average linear dynamics of a turbulent channel flow
when impulsive wall forcing is applied.

A model given in the form of impulse response function would require
first a state-space realization in order for standard Riccati-based control tech-
niques to be applied. Instead of performing such realization – which would
be impractical in the present very high-dimensional setting – we employ a
frequency domain formulation of the optimal compensator design problem,
that allows us to directly use the Fourier transform of the impulse response
function (i.e. the frequency response function) in the compensator design pro-
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cedure; this formulation has been first proposed by Luchini et al. [7; 8]. The
block diagram of the feedback problem at hand is shown in fig. 1, where the
feedback compensator having frequency response function K(ω) feeds the sys-

basis of real-time measurement y, obtained with the sensor C(ω). Note that
both the measurement and the state x are corrupted by disturbances d and
noise n, respectively, that are supposed to be uncorrelated. The spectral den-
sity functions of the disturbances and noise will be denoted by φdd(ω) and
φnn(ω), respectively, and may be functions of the frequency.

d

xy

C +

n

H
u

K+

Fig. 1. Standard feedback control loop.

The goal is designing an optimal feedback compensator such that the usual
LQG expectation functional

J = E{xHQx + uHRu} (1)

is minimized in the feedback controlled system; here, Q is a positive semidefi-
nite hermitian matrix, and R is a positive definite weight of the control effort.
Note that substitution of the closed loop relations in this functional leads to a
form which is not quadratic in K. However, exploiting an Internal Model Con-
trol (IMC) approach, we can define a unique parametrization of all stabilizing
compensators as

K = (I −KCH)−1K, (2)

thus actually rewriting the feedback system in an equivalent open-loop form.
This is a key step in the formulation, as the functional in (1) can now be
written as a quadratic form of K. Minimization of such functional with re-
spect to K then leads to a linear problem; causality of the compensator must
be explicitly enforced so that the following Wiener-Hopf problem for K is
obtained:

(HHQH +R)K+(CφnnCH + φdd) + Λ− = −HHQφnnC
H . (3)

In the above equation, plus and minus subscripts denote frequency response
functions of causal and anticausal systems, respectively, and Λ is the Lagrange
multiplier associated to the causality constraint for K. It is noteworthy that

tem, whose frequency response is H(ω), with a signal u determined on the

F. Martinelli, M. Quadrio, and P. Luchini242



this procedure allows to design the optimal compensator in one single step,
without the need to resort to the separation theorem. Note also that, in the
single-input/single-output case, the coefficients of (3) are scalars, so that the
optimal feedback compensator can be obtained from the solution of a scalar
problem instead of two matrix Riccati equations, no matter how large is the
number of states.

The spectral density functions of noise and disturbances appear in their
functional form in the coefficients of (3); therefore, arbitrarly “colored” per-
turbations can be easily handled. We exploit this property by using, in the
compensator design procedure, the true statistics of the flow as measured by
DNS of an uncontrolled turbulent channel, thus accounting for the full spatio-
temporal structure of the state noise; this is a fundamental difference with
respect to previously proposed approaches, where approximate models for the
noise statistics have been employed.

In the linearized setting, after Fourier transformation in streamwise and
spanwise directions, the full control problem is reduced to a set of single-
input/single-output control problems for each wavenumber pair (α, β). Con-
trol laws are tested performing a DNS of turbulent channel flows, whose
boundary condition on wall-normal velocity is computed runtime from the
convolution integral

v̂wall(α, β, t) =
∫ t

0

K̂(α, β, τ)m̂(α, β, t− τ) dτ, ∀α, β;

here, hats denote Fourier coefficients, K̂(α, β, t) is the impulse response func-
tion of the optimal compensator, and m̂(α, β, t) denotes the history of the
wall measurement. Upon inverse Fourier tranformation to physical space, the
spatial structure of the compensator can be recovered in the form of a con-
volution kernel; fig. 2 shows such kernel at zero time lag, i.e. the function
K(x, z, 0), for a kernel based on streamwise skin friction measurement.

We have designed and tested feedback compensators for turbulent chan-
nel flows at Reτ = 100 and Reτ = 180, using two state weighting matrices
(namely, derived from the energy and dissipation norms), actuating with the
wall-normal velocity at the walls, and measuring either one of the skin fric-
tion components or pressure fluctuations; this required about 300 DNS of
controlled turbulent channel flows, that were performed on a computing sys-
tem, located at the University of Salerno, dedicated to the simulation of wall
turbulence.

A summary of the performance assessment is reported in Table 1. Results
indicate that, employing any of the available measurements and for the two
values of Reτ considered, weighting matrix derived directly from the energy
norm is ineffective in providing drag reducing compensators. This is consistent
with previous findings by Lim [4], who succeded in obtaining drag reduction
only by employing weighting matrices derived from other relations, for in-
stance from the output equation. On the other hand, our results demonstrate
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1 1 2

Fig. 2. Spatial representation of the impulse response function of the control ker-
nel at zero time lag, K(x, z, 0), when measurement of streamwise skin friction is
employed.

Dissipation Energy

Reτ τx τz p τx τz p

100 2% 0% 0% 0% 0% 0%

180 8% 6% 0% 0% 0% 0%

Table 1. Best performance drag reduction results, as a function of Re, state weight-
ing and measurement. Accuracy of the drag reduction is estimated to be ≈ ±1%.
The values 0% indicate that no measurable difference in the average skin friction
was obtained with respect to the uncontrolled case.

that state weighting matrix derived directly from the dissipation rate of tur-
bulent kinetic energy leads to effective compensators. Among these, the best
performing ones require the measurement of wall skin friction components,
and the overall best performance result – obtained using streamwise skin fric-
tion measurement – yields a maximum drag reduction of ≈ 8% at Reτ = 180.
Since actuation with the wall-normal velocity component requires an energetic
expenditure, it is interesting to quantify the net power saved when control is
applied by the following ratio:

P.R. = 100
Pr − Pc
Pr

,

where Pr is the power required to drive the uncontrolled flow against viscous
stresses, while Pc is that required to drive the controlled flow plus the control
action, estimated as suggested in [9]. The power required for the control action
was found to be ≈ 0.2% of Pr, and the corresponding power reduction index
is P.R. ≈ 7.7%.

F. Martinelli, M. Quadrio, and P. Luchini244



It is interesting to note that compensators designed using the dissipation
norm yield better performance at higher values of Re. This “inverse” Re-effect
can be attributed to the fact that the ratio between the turbulent component
(associated to turbulent fluctuations) and the mean component (associated to
the mean flow) of the total dissipation rate increases with Re. As the present
optimal compensators are designed to directly target turbulent fluctuations
only (and, therefore, the turbulent component of the dissipation), their drag
reducing capability increases with Re, probably up to a certain saturation
limit to be determined in future work.

The present formulation allows the design of compensators accounting for
the measured temporal and spatial structure of the noise statistics, as well
as the measured average dynamics of wall-forced turbulent channel flow. As
such, it actually represents an effective tool to devise the best possible linear
time-invariant feedback control strategy for the problem at hand. In light of
the results obtained in the present work, as well as of those reported in the
recent literature, we emphasize the importance of selecting an appropriate
objective function in the control design: it appears to be the most important
degree of freedom for the present problem. Therefore, in future work we aim at
exploiting the computational effectiveness of the present compensator design
strategy to test a wide variety of objective functions, in order to quantitatively
assess limiting performance of linear optimal compensators for drag reduction
in wall turbulence.
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Introduction Pipe flow is one of the most elemental and important problem
in fluid mechanics. As noticed in Reynolds’ experiments (1883), the flow can
be partially turbulent at Reynolds number Rem around 2000− 3000, where
Rem = 2auz/ν is based on the cross-sectional mean velocity uz, the pipe
diameter 2a and the kinematic viscosity ν of fluid. Such localized turbulent
regions are called ”puffs”. Wygnanski et al. (1975) investigated puffs in detail
and observed an equilibrium puff at Rem = 2250 which preserves its length
indefinitely. Since then many works have been performed about an equilibrium
puff as a fundamental object. The dynamical characteristics, in particular the
driving mechanism of the puff, however, remain unsolved. Here we investigate
numerically the spatio-temporal structure of an equilibrium puff. A driving
mechanism of the puff is identified as the Kelvin-Helmholtz (KH) instability,
and a self-sustenance mechanism is proposed.

DNS of Pipe Flow We consider the flow in a circular pipe of radius a driven
by a constant body force. The Navier-Stokes equation for an incompressible
viscous fluid of kinematic viscosity ν is described in the cylindrical coordinate
(r, θ, z) and is solved numerically by the spectral method. The boundary

Fig. 1. Distribution of axial velocity uz−〈uz〉θ,z on a diametrical plane.
Larger values in brighter regions. t = 2000a/U .
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conditions are non-slip on the wall and periodic in the axial direction with
period L = 16πa (� 50a). The Reynolds number is defined by Re = Ua/ν
and set at 3000, the value around the laminar/turbulent transition Reynolds
number. Here, U is the centerline velocity of the above HP flow. Using two
scalar functions, ψ and φ, the velocity field is represented as u = ∇× (ẑψ) +
∇× (∇× (ẑφ)). These functions are expanded as(

ψ

φ

)
=

K∑
k=−K

M∑
m=−M

N∑
n=|m|

n+m=even

(
ψ̂mk

n

φ̂mk
n

)
Φm

n (r)ei(mθ+2πkz/L),

where Φm
n are the Zernike circular polynomials (Bhatia and Born (1954), Mat-

sushima and Marcus (1995)). With the use of these polynomials, the analytic
condition on the cylinder axis (r = 0) is guaranteed naturally and the CFL
conditions there is not stiff. The evolution equations for ψ̂mk

n and φ̂mk
n are

solved numerically with the time step 0.005 and maximum mode number
(N,M,K) = (80, 31, 511) (see Shimizu and kida (2008) for details of the nu-
merical method.) The initial condition is given by the Hagen-Poiseuille flow
(corresponding to the body force) superposed by a disturbance of finite am-
plitude strong enough to cause turbulence.

Equilibrium puff After an initial transient period, t < 200a/U , a localized
turbulent region of about 35a in length emerges. In Fig. 1 we show a snapshot
of the distribution of axial velocity field on a diametrical plane over the whole
computation box. A localized turbulent region is clearly observed. The up-
stream boundary of this region called the trailing edge is sharp, whereas that
in the downstream called the leading edge is obscure. This turbulent region
advects downstream nearly the mean flow velocity (up ≈ 0.96uz). The axial
length of this region varies between 30a and 40a throughout the computation
time (≤ 3000a/U). Thus it may be regardes as an equilibrium puff.

As the usual wall-bounded turbulence, the streamwise vortices and the

Fig. 2. A low-speed streak and accompanied streamwise
vortices, viewed inward from the pipe wall.

associated low-
speed streaks are
repeatedly created
and annihilated
in the puff. In
Fig. 2 are shown
a low-speed streak
and accompanied
streamwise vor-
tices. The regions
of low axial velocity
are plotted with
light gray iso-
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Fig. 3. Successive roll-ups of a vortex layer, viewed in the moving frame
with the puff. t = 2278, 2290 and 2302a/U downward. Alphabets a, b
and c identify the individual roll-ups.

surfaces, whereas streamwise vortices with iso-surfaces of positive (B and D)
and of negative axial vorticity (A and C). Alphabets A, B, C and D identify the
individual streamwise vortices. The flow is directed from left to right. Observe
that the vortices A and C are inclined upward (to the negative azimuthal
direction) toward downstream, whereas the B and D inclined downward. This
is the characteristics commonly observed in wall turbulence.

Low-speed streaks and KH instability These low-speed streaks move up-
stream relative to the puff, across the trailing edge and create strong vortex
layers together with the laminar flow coming from upstream. The vortex layers
are unstable to roll up, through the KH instability, to induce velocity fluctua-
tions which propagate downstream faster than the puff itself and enhance the

Fig. 4. A vortex layer above a low-speed streak (top)
and its round cuts (bottom). t = 2286a/U.

turbulent activity
in it. In Fig. 3
are shown a series
of roll-ups of a
vortex layer above
a low-speed streak.
This is identified as
the KH instability
by comparing the
wavelength with
the linear stability
theory (Betchov
and Szewczyk
1963). Note that
the width
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(comparable to that of the low-speed streak underneath) is several times larger
than the thickness as shown in Fig. 4. These roll-ups continuously produce
disturbances at the trading edge and sustain the puff.

Self-Sustenance Cycle The above observation suggests the following sce-
nario of self-sustenance cycle of puffs.
(i) The turbulence in the puff creates low-speed streaks (accompanied with

streamwise vortices) along the pipe wall in the same way as many kinds
of wall turbulence.

(ii) These low-speed streaks move upstream relative to the puff and penetrate
the trailing edge.

(iii) Near-upstream of the puff strong shear layers are created between two
counter flows, namely, the low-speed streaks and laminar flow coming
down from far-upstream.

(iv) These shear layers are rolled up through the KH instability to create new
fluctuations.

(v) The majority of these fluctuations propagate downstream faster than the
puff, penetrate the trailing edge and enhance turbulent activity in the
puff. Then the process goes back to (i).

Fig. 5. Schematic of an equilibrium puff in pipe flow. The puff sand-
wiched by the leading edge and the trailing edge is advected with
nearly the mean fluid velocity. The turbulent activity and the low-
speed streaks in the puff as well as the vortex layer near-upstream of
the trailing edge constitute a self-sustenance cycle together.
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Since there is not yet any agreement among specialists of turbulence about
what coherent structures are and which method is the best to extract them,
we propose an apophatic approach where, rather than stating what the coher-
ent structures are, we make assumption about what they are not. We suppose
that coherent structures are different from noise, and we thus define them as
what remains after denoising. For the noise we use the mathematical defini-
tion of randomness, stating that a noise is homogeneously distributed in any
functional basis.

To get started we choose the simplest hypothesis for the noise, namely
that it is additive, Gaussian and white, i.e., decorrelated. It has been demon-
strated [2] that the optimal threshold (in a minmax sense) to remove an
additive Gaussian white noise is ε =

√
2σ2 loge N , where σ2 is the variance

of the noise and N the resolution of the field to denoise. This value ensures a
vanishing probability to the wavelet coefficients of the noise whose modulus is
larger than the threshold. Since for turbulent flows the variance of the noise
we want to remove is not known a priori and evolve in time, we have devel-
oped [1] a recursive algorithm to estimate it from the variance of the weakest
wavelet coefficients to obtain the optimal threshold εopt. To extract coherent
structures we have proposed [3] to split the vorticity field into two orthogonal
components. One first computes the orthogonal wavelet wavelet transform
of vorticity, then the wavelet coefficients whose modulus is larger than εopt

are inverse wavelet transformed to reconstruct the coherent vorticity, which
retains all coherent structures while the remaining incoherent component is
structureless. This wavelet eduction method presents several advantages in
comparison to previous ones [4]:

• it does not implicitly assume ensemble averaging and works for each flow
realization independently of the others,

• it does not require to adjust any parameter, such as a threshold value, or
a template,
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• it is quite insensitive to the choice of the wavelet basis, since it is the
multiresolution construction of the basis and not the wavelet shape which
matters, i.e., wavelets are not used as templates but as a way to organize
the data in a scale-dependent fashion,

• it tracks coherent structures even when their shape and amplitude change
due to, e.g., pairing, stretching or tearing,

• it allows to process ’incomplete data’, i.e., when the dimensionality of the
measured data is lower than the dimensionality of the flow itself,

• the computation is fast since it scales in O(N) operations.

We apply the wavelet eduction method to analyze the bursting of a three-
dimensional stretched vortex immersed in a steady laminar channel flow. The
time evolution of a two-dimensional cut of the velocity field is measured by
particle image velocimetry (PIV) during several successive bursts recorded
at 15 double frame per second. At each instant we compute the vorticity
component perpendicular to the observation plane and, using wavelet educ-
tion, we split it into two orthogonal components: the coherent vorticity and
the incoherent vorticity which are then analyzed independently. In Fig. 1 we
show that the coherent vorticity evolution is very similar to the total vorticity
evolution, both being highly non stationary and presenting the same coher-
ent structures. In contrast, the incoherent vorticity remains stationary and
homogeneous all along the bursting process. In Fig. 2 we observe that the
spectral slope of enstrophy strongly varies in time, although the Kolmogorov
scaling (k+1/3 for enstrophy corresponding to k−5/3 for energy) is recovered
after averaging in time. We also find that before the vortex bursts the coher-
ent component retains 98% of the total enstrophy Z. This proportion drops
to about 60%Z when the vortex bursts, and later becomes negligible as the
remnants of the vortex are swept out of the observation window. In contrast,
the incoherent enstrophy remains negligible before vortex bursting and sud-
denly rises to 40%Z at the instant of bursting. We propose a new diagnostic,
the coherency measure (CM), to estimate the instantaneous turbulence level
and track the the turbulence production when the vortex bursts. It is defined
as the signal to noise ratio between the coherent enstrophy and the incoher-
ent enstrophy [5]. In order to better understand the buildup of the turbulent
cascade and to quantify the flow intermittency, we use the local intermittency
measure (LIM) i.e., the spatial variability of the enstrophy at each scale, or
likewise the spatial deviation from the mean enstrophy spectrum. It allows us
to find out when in time, where in space, and at which scale the nonlinear
activity is dominant. We have thus found that the bursting process starts as
an excitation of the small scales inside the vortex core, which then spreads in
space and all over the inertial scales. This result is confirmed by visualizing
the dye concentration recorded at 1000 frames per second using a fast camera.
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Fig. 1. Time evolution of the (a) total, (b) coherent and (c) incoherent vorticities
at instants t = {−0.7, 0, 0.4, 1.0 s}, with t = 0 the beginning of bursting. The num-
ber of coefficients and percentage of enstrophy retained in each component, and the
extrema of vorticity are indicated below the snapshots. (d) 1D cuts along the vor-
ticity at the location of the maxima. The dashed green, solid red, and dotted-dashed
blue lines represent the total, coherent, and incoherent fields respectively.
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Fig. 2. Time evolution of the total (dashed green line), coherent (solid red line)
and incoherent (dotted blue line) flows during one bursting event at instants t =
{−0.7, 0, 0.4, 1.0 s}, with t = 0 the beginning of bursting. Top: (a) Scatter plot of
the vorticity versus stream function characterizing the flow coherency. The total
and coherent distributions are nearly indistinguishable and evolve in time, while
the incoherent remains stationary and localized near the origin. Note that, since
the flow is highly non-stationary, the scale on the plots changes in time. The insets
show a zoom in a fixed region near the origin which corresponds to the limits on the
last figure. Middle: (b) Probability distribution function (PDF) of vorticity. The
total and coherent vorticities exhibit the same non-Gaussian PDF which evolves in
time, while the incoherent vorticity remains Gaussian and stationary. Bottom: (c)

Enstrophy spectrum. The total and coherent spectra have the same scaling at large
scale which strongly varies in time, in contrast to the incoherent spectrum which
remains stationary and close to the k1 scaling of a Gaussian white noise.
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Introduction

In several numerical and experimental studies [1, 2] on freely evolving or
decaying two-dimensional (2D) turbulence on a square bounded domain it is
observed that a flow, initially containing no net angular momentum (L), spon-
taneously acquires angular momentum by flow-wall interaction. From earlier
work, by Li and Montgomery [3], it could be conjectured that on a circular
domain with a no-slip boundary angular momentum production is absent.
Decaying turbulence experiments in stratified fluids conducted a few years
later by Maassen et al. [4] provided additional evidence supporting this con-
jecture. These observations have recently been confirmed by Schneider and
Farge [5] for decaying 2D turbulence with substantially higher initial integral
scale Reynolds numbers.

Set-up of the numerical simulations

We revisit this problem to analyse the late-time evolution in the framework of
the minimum-enstrophy principle with emphasis on different decay scenarios.
For this purpose the quasi-stationary final states of decaying 2D turbulence
on a circular domain, with an initial flow field containing either no or a sub-
stantial amount of angular momentum, have been investigated numerically.
Typical initial integral-scale Reynolds numbers, defined by the root-mean-
square velocity of the flow and the radius of the container, is Re ≈ 5000. This
value is between those from the runs by Li and Montgomery [3] (Re ≈ 1000)
and by Schneider and Farge [5] (Re ≈ 5 × 104). This choice is a compromise
as during the initial stage full 2D turbulence should be generated while still
allowing long-time computations to access the full decay scenario.
These simulations have been carried out with a 2D Fourier pseudospectral
code. The no-slip boundary conditions are enforced by a volume-penalization
method to mimick the solid geometry [6, 7]. The production of angular mo-
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Fig. 1. Snapshots of the vorticity distribution of a Re = 5000 simulation initiated
with L = 0. From left to right: early-time, intermediate and long-time flow evolution.

mentum is almost absent for these flows on a circular domain with a no-slip
wall, see Fig. 1 for a few snapshots of the vorticity field during the flow evo-
lution. In Fig. 2 we have shown the evolution of the (normalized) angular
momentum (left) and the integral length scale of the flow for this particular
run. It is clearly seen that the angular momentum remains approximately zero
(dashed curve). Its presence or absence in the initial state essentially deter-
mines the character of the quasi-stationary final state.

Angular momentum Integral length scale

(a) t → (b) t →

Fig. 2. (a) Angular momentum L normalized with Lsb(t = 0) (dashed line) and
Lsb(t) (solid line) and (b) the integral length scale L. Data correspond with the
vorticity as shown in Fig. 1 with initial Reynolds number Re = 5000 and angular
momentum L = 0.

Decaying 2D turbulence: late-time flow patterns

Based on a minimum-enstrophy principle a diagram can be constructed that
provides insight in the development of the typical late-time flow patterns on a
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circular domain with a no-slip wall. The quasi-stationary final states found in
the present numerical study can be understood based on the predictions from
the minimum-enstrophy principle. An example is provided in Fig. 3 where
the quasi-stationary state observed in the simulations displayed in Fig. 1 can
be understood in terms of a combination of two (local) minimum-enstrophy
solutions.

Fig. 3. Stream function distribution of two minimum-enstrophy solutions (with
L = 0, left and middle panel) and a linear combination of the two (right panel).

Fig. 4. a) Stream function for a decaying turbulence run with an initial field con-
taining angular momentum (normalised angular momentum at t = 0: L = 0.18).
Increments for negative (solid contours) and positive (dashed contours) values are
different. b) Minimum enstrophy state based on the parameters of the snapshot
shown in a). c) The stream function of the residual between minimum-enstrophy
state and the stream function shown in a).

A further example concerns a decaying 2D turbulence run with an initial
field containing angular momentum (normalised angular momentum at t = 0:
L = 0.18). It can be shown that the flow relaxes directly towards the asym-
metric dipole state [8]. There is no sign of dipole-quadrupole transitions like in
the case without initial angular momentum, as shown in Fig. 1. In Fig. 4a we
show the stream function for the quasi-stationary final state. To demonstrate
the possibility to connect the data from the decaying turbulence simulations
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with the minimum enstrophy states we use the data from this particular run.
A comparison of these data with the minimum enstrophy state (for details,
see Ref. [8]) reveals excellent agreement, see Figs. 4b and c. In Fig. 4b the
minimum enstrophy state is shown based on the parameters of the snapshot
shown in Fig. 4a. The right panel shows the stream function of the residual
between minimum-enstrophy state and the stream function shown in Fig. 4a.
The energy contained in the residual flow is less than 10% of the kinetic en-
ergy of the total flow.

Conclusions

Direct numerical simulations of decaying 2D turbulence on a circular domain
with a no-slip boundary have been performed with a Fourier spectral ap-
proach with volume-penalization. The computations have been carried out at
moderate Reynolds number (based on the initial rms velocity and the radius
of the circle) and show similar behaviour as found in the numerical simula-
tions of Li and Montgomery [3] and in the experiments conducted by Maassen
et al. [4, 2] in density-stratified fluids. It was conjectured in these numerical
and experimental studies that significant production of angular momentum is
absent for flows on a circular domain with a no-slip wall. This conjecture is
supported in the present numerical study (see also Ref. [5]). Therefore, the
angular momentum of the initial condition has important consequences for
the late-time evolution of the flow. Different flow initializations have been
considered in the present study and its consequences for the quasi-stationary
final states have been explored. Based on a minimum enstrophy principle a di-
agram is constructed that provides insight in the development of very typical
flow patterns [8].
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1 Introduction

Engineers have been fascinated by vortex rings for over a hundred years, due
to their numerous engineering and biological applications and their presence
as a constituent of fully turbulent flow. Although the laminar ring has re-
ceived much attention, the turbulent vortex ring is less well understood, due
to the difficulty in its visualisation and measurement. Glezer and Coles [1]
used ensemble averaging of experimental data to show that the radial expan-
sion, circulation decay and slowing of the turbulent ring occur in a self-similar
fashion. Circulation decreases in a staircase-like fashion [2] as the ring sheds
hairpin vortices [3] into a wake. The radial growth of the ring is due to a
slight excess in the amount of entrainment over detrainment[1]. The move-
ment of dye within the ring suggests the existence of secondary vortices that
wrap around the core, influencing the local entrainment, detrainment and pro-
duction of turbulence [1]. In previous work [4], we investigated the laminar
evolution of the ring and focused on the development of the Tsai-Widnall-
Moore-Saffman (TWMS) instability [5, 6], and transition to turbulence. Here,
we examine the temporal development of the turbulent vortex ring.

2 Numerical procedure

We perform a direct numerical simulation in which the incompressible Navier-
Stokes equations are discretized on a staggered cartesian grid using second-
order finite differences in space with Adams-Bashforth stepping in time; see
Yao et al.[7] for further details. The method for prescribing the initial velocity
field and the boundary conditions is reported in [4]. Of note, we employ a co-
moving frame of reference and impose inflow and outflow boundary conditions
in the direction of ring propagation, i.e. along the z-axis, rather than the
periodic conditions used in the other directions. This prevents the ring from
passing through its own wake and disturbing its dynamics. Furthermore, the
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speed of the co-moving frame is adjusted to keep the ring in the centre of the
computational box using a tracking system and controller.

The initial conditions are a laminar ring with a Gaussian distribution of
vorticity. The ring is perturbed from being perfectly circular by addition to the
local radius of a set of Fourier modes [1-32], which have random phase and an
amplitude of 0.0002R0. The ring is susceptible to the TWMS instability, which
displaces the core into a stationary wave around the circumferencial axis of
the ring and whose shedding marks the transition to turbulence [4]. Here, we
present preliminary results for a ring of initial radius R0, circulation Γ0 and
slenderness ratio ε0 = δ0/R0 = 0.2 (where δ0 is the initial core radius), which
propagates at Reynolds number Re = Γ0/ν = 7500. The cubic computational
domain is of length 8R0 × 8R0 × 8R0 and uses 5123 grid cells.

3 Results

The transition to turbulence is accompanied by the shedding of vorticity fil-
aments into a wake [4], reducing the circulation of the ring. For the thin-core
ring considered here, the rate of circulation loss is initially small (see figure
1(a), phase I) but then increases and is approximately linear (phase II) with
a staircase-like behaviour, found in the experiments of Weigand and Gharib
[2]. The initial period of lower circulation decay was not observed by Weigand
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Fig. 1. (a) Decay of ring circulation against time (b) Vortical structure at time
tΓ0/R2

0 = 120.7 visualised with isosurfaces of vorticity magnitude |ω|, dark isosurface
corresponds to high vorticity (|ω|R2

0/Γ0 > 10), translucent light isosurface repre-
sents regions of low vorticity (|ω|R2

0/Γ0 > 1). The region of more intense turbulence
is marked with the letter ‘A’.
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and Gharib [2]. This could be due to the more slender ring considered here.
For our thin-core ring, the core initially breaks down to turbulence at the
location of greatest wave growth of the TWMS instability. The onset of tur-
bulence then ‘passes’ around the circumference of the ring and as a result is
more intense in the region indicated in figure 1(b). By the end of phase I the
ring is more equally turbulent around the entire circumference. This contrasts
with our results for thicker-core rings (like those investigated by Weigand and
Gharib), for which the TWMS instability develops more uniformly around the
azimuth of the ring, leading to a more simultaneous onset of turbulence and
an absence of the initially weak decay present in phase I.

In order to gain insight into the ring’s turbulent structure and statists we
interpolate the velocity field onto a cylindrical-polar grid with corresponding
velocity components u = (ur, uθ, uz). A mean value (denoted with 〈〉) for each
of the velocity components is defined by averaging around the circumference
of the ring. The local fluctuations (denoted by a dash) from the mean velocity
can then be obtained by

u′r = ur − 〈ur〉 , u′θ = uθ − 〈uθ〉 , u′z = uz − 〈uz〉 . (1)

The Reynolds stresses
〈
u′iu

′
j

〉
are defined similarly. The vertical normal stress

〈u′zu′z〉 is largest and concentrated mainly in the core region (figure 2(c)).
The 〈u′ru′r〉 and 〈u′θu′θ〉 stresses, on the other hand, are more intense near
to the centreline of the ring, where vortex filaments trail into the wake and
are stretched axially in the z−direction. The presence of the trailing vortical
filaments is shown in contours of 〈uθ〉 (figure 2d).

Turbulence kinetic energy production Pr is defined in cylindrical coordi-
nates as

Pr = − 〈u′ru′r〉
∂ 〈ur〉

∂r
− 〈u′θu′θ〉

(
1
r

∂ 〈uθ〉
∂θ

+
〈ur〉
r

)
− 〈u′zu′z〉

∂ 〈uz〉
∂z

− 〈u′ru′θ〉
(

∂ 〈uθ〉
∂r

+
1
r

∂ 〈ur〉
∂θ

− 〈uθ〉
r

)
− 〈u′ru′z〉

(
∂ 〈ur〉

∂z
+

∂ 〈uz〉
∂r

)
− 〈u′θu′z〉

(
∂ 〈uθ〉

∂z
+

1
r

∂ 〈uz〉
∂θ

)
. (2)

This quantity is mostly contained within the front half of the core (figure
2e), but there are also regions of negative production in the rear of the core.
A weaker region also exists in the rear of the ring. The first three terms in (2)
are of similar magnitude to Pr, with the others much smaller. Plots of the first
and third terms (figures 2f & h) show good agreement with the experiments
of Glezer and Coles [1]. The second term, is positive in the front and negative
in the back half of the ring in agreement with Glezer and Coles’ prediction
(figure 2g). We intend to refine the statistics through ensemble averaging of
multiple simulations using different initial perturbations as part of ongoing
work.

This research was supported by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) through a Platform grant on turbulence
(Grant GR/582947/01). The work was done as part of the UK Turbulence
Consortium, using the facilities of HPCx (Grant EP/D044073/1).
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Fig. 2. Contour plots of various flow statistics for the turbulent ring at time
tΓ0/R2

0 = 128.3. In plots with both positive and negative contours levels, the posi-
tive contours are filled. (a-c) Reynolds stresses 〈u′

ru
′
r〉, 〈u′

θu′
θ〉 and 〈u′

zuz〉 levels [min
: increment : max] = [-0.015 : 0.0015 : 0.015]; (d) Mean azimuthal velocity 〈uθ〉 [-0.03
: 0.003 : 0.03]; (e) Turbulence Production Pr[-0.004 : 0.0004 : 0.004]; (f-h) Produc-

tion terms 〈u′
ru

′
r〉dUr/dr [-0.002 : 0.0002 : 0.002], 〈u′

θu′
θ〉
(

1
r

∂〈uθ〉
∂θ

+ 〈ur〉
r

)
[-0.001 :

0.0001 : 0.001], 〈u′
zu′

z〉dUz/dz [-0.003 : 0.0003 : 0.003];
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Recent experimental and theoretical studies have shown striking similarities
between ordinary turbulence and quantum turbulence[1, 2]. Quantum tur-
bulence is the turbulence of a superfluid, such as liquid helium (both 4He
and 3He) and atomic Bose–Einstein condensates. Particularly interesting is
the case in which the superfluid’s temperature is small enough that ther-
mal excitations can be neglected. In this case, the superfluid almost becomes
the physical realization of the textbooks’ concept of perfect (inviscid) Euler
fluid, from which it differs in only two respects: firstly, superfluid vorticity
is concentrated to thin filaments of fixed circulation κ and fixed core size ξ;
secondly, these vortex filaments can reconnect [4] even if the viscosity is zero.
In superfluid 4He we have κ ≈ 10−3 cm3/s and ξ ≈ 10−8 cm.

Vortex reconnections play an important role in the dynamics of both or-
dinary and quantum turbulence. In this work [5] we study numerically the re-
connection of vortex bundles. We use two models: the nonlinear Schroedinger
equation (NLSE) and the vortex filament model. The NLSE (also called the
Gross–Pitaevskii equation) is

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V |ψ|2ψ − Eψ, (1)

where ψ = AeiS is a complex order parameter of amplitude A and phase
S, m is the mass of one boson (e.g. one helium atom), V is the potential of
interaction between bosons and E is the chemical potential. A vortex filament
solution of the NLSE is such that A = 0 on the vortex axis and S changes from
0 to 2π going around the axis. Approaching the vortex axis, the amplitude A
drops from its bulk value to zero over the characteristic distance ξ = h̄/

√
2mE

(coherence length). We make the equation dimensionless using ξ as the unit
of length, h̄/E as the unit of time and

√
E/V as the unit of ψ; the resulting

dimensionless NLSE is

2i
∂ψ

∂t
= −∇2ψ + |ψ|2ψ − ψ, (2)
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By introducing the density ρ = A2 and the velocity v = ∇S, it can
be shown [3] that the NLSE can be transformed into a classical continuity
equation and an Euler equation; the latter contains an extra term (called
quantum stress) which is negligible away from vortices but, when vortices
become close to each other, is responsible for vortex reconnections. The NLSE
therefore models a reconnecting Euler fluid.

Fig. 1. Reconnection of vortex bundles of seven vortex lines each computed using
Eq. (2). Top left and right: t = 0 and t = 110; Bottom left and right: t = 320 and
t = 800.

The calculation is performed in the box −128 ≤ x, y, z ≤ 128. The typ-
ical reconnection scenario is shown in Fig. (1), which shows isosurfaces of ρ
at the level 0.25 of the unit bulk density. Two rotating vortex bundles (of
seven parallel vortex strands each) are initially (t = 0) set perpendicular to
each other. The bundles interact, and individual vortices of the first bundle
reconnect (one at the time) with individual vortices of the second bundle [4].
During the process, small vortex rings may be generated. The last stage of
the reconnection often involves the formation of a ”bridge” between the two
bundles, similar to what observed in ordinary viscous vortex reconnections [7];
after the bridge breaks up, the bundles become completely free and move away
from each other. The structural stability of the vortex bundles is remarkable.

We obtain the same scenario if instead of the NLSE we use the vortex
filament model [6]. In this model a vortex filament is represented as a three–
dimensional space curve x = x(t, ξ) (where ξ is the arclength) which evolves
in time according to the Biot–Savart law:
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Fig. 2. Reconnection of two vortex bundles of five vortex lines each computed using
Eq. (3). Top left and right: t = 0 s and t = 32.5 s; Bottom left and right: t = 86.9 s
and t = 112.1 s.

dx

dt
= − κ

4π

∮
(x − z)

|x− z|3 × dz, (3)

where the line integral extends over the entire vortex configuration. The tech-
niques to de–singularise the Biot–Savart integral and to algorithmically per-
form a vortex reconnection when two vortex filaments come sufficiently close
to each other are known in the literature [6]. Fig. (2) shows the reconnection of
two vortex bundles which consist of five vortex strands each, computed using
Eq. (3). The calculation is performed in the box −1 cm ≤ x, y, z ≤ 1 cm.

Fig. (3) illustrates two features of the process of vortex bundle reconnec-
tion. The first feature, shown at the left of the figure, is that the total length of
the vortex filaments increases. The second feature is the generation of Kelvin
waves (helical displacements of individual vortex lines), which are also visible
in Fig. (1) and (2). The right hand side of Fig. (3) shows the time evolution of
the PDF of 1/R, where R is the local radius of curvature sampled along the
filaments. Initially, when the vortex filaments are straight, 1/R = 0; as the
vortex bundles interact and reconnect, Kelvin waves are created of shorter and
shorter wavelength, hence the PDF of 1/R moves to the right of the figure.
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Fig. 3. Left: vortex length L (cm) vs time t (s). Right: PDF of 1/R at increasing
time (moving from left to right): t = 19.3 s, t = 32.5 s, t = 45.6 s, t = 86.9 s and
t = 112.1 s. The data refer to the reconnection shown in Fig. (2).

This process, which is important in the context of quantum turbulence [8],
is called the Kelvin wave cascade, because, in analogy with the Kolmogorov
energy cascade, shifts energy to smaller scales. Both cascade are thought to be
present in quantum turbulence, the Kolmogorov cascade at scales larger than
the typical intervortex separation, and the Kelvin cascade at smaller scales.

The large amount of coiling of vortex filaments which we observe during
the reconnection process, represented by these Kelvin waves, confirms results
of Kerr [9] and Holm & Kerr [10] about the generation of helicity in nearly
singular vortex interactions of the classical Euler equation.
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One of the most important characteristics of high-Reynolds-number turbu-
lence is the small-scale university: i.e. statistics at small scales are independent
of larger-scale structures which depend on the boundary conditions and/or
external forcing. It is the energy cascade that is the basis of this small-scale
universality. More precisely, the energy supplied to turbulence at a large scale
(the integral length L) transfers, scale by scale, to smaller scales until it is
dissipated by the molecular viscosity at the smallest scale (the Kolmogorov
length η). Then, the information of the large scales may well be forgotten
through this cascade process, and therefore the small-scale universality is es-
tablished. Although the Fourier analysis (see Ref. [1], e.g.) of turbulence has
been shown to support this energy cascade picture, its physical mechanism is
unknown.

Since the energy cascade is quite important in this research field, many
attempts have been made to understand its physical mechanism. One pos-

Fig. 1. Multi-scale coherent vortices in homogeneous isotropic turbulence (Taylor-
length based Reynolds number Rλ is about 190). Iso-surfaces of enstrophy in coarse-
grained fields are plotted for three different coarse-graining scales: (a) 74η, (b) 36η
and (c) 18η. The bottom grid width is common (20η), whereas the size of the cubes is
different. Coherent structures look statistically self-similar and have tubular shapes
at these scales in the inertial subrange.

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_65, 

269



(a) (b)

Fig. 2. Examples of an anti-parallel pair of vortex tubes at length scales much
larger than the Kolmogorov length, η, (a) 170η and (b) 340η. The size of the shown
boxes are (a) 1100η × 870η × 500η and (b) 1800η × 1300η × 900η. Rλ = 380.

sibility was proposed by the author [2] recently based on the following two
observations of numerically simulated turbulence: (i) Developed turbulence
consists of the multi-scale vortex tubes (Fig. 1), and energy at each scale
is predominantly confined within these coherent structures. (ii) Anti-parallel
pairs of such vortex tubes (Fig. 2) are frequently observed in the turbulent
field. The proposed scenario of the energy cascade is as follows.

1. Energy supplied to the large scale, i.e. the integral length L, is possessed
by vortex tubes with large radii of O(L).

2. When a pair (especially, an anti-parallel pair) of these vortex tubes en-
counter, a strong straining region is created around the pair. In this strain-
ing region, smaller-scale (i.e. thinner) vortices are stretched and created.
In other words, the energy possessed by the fatter, O(L), vortex tubes
transfers to thinner scales (L′, say) by the process of the vortex stretch-
ing.

3. Thus created vortex tubes with radii of the intermediate length scale, L′,
confines the energy inside them; and when a pair of them encounter, a
strong straining region at the scale, L′, is created around the pair, and
further smaller-scale (i.e. further thinner, L′′) vortex tubes are stretched
and created. Thus energy transfers from L′ to L′′.

4. Such processes continue until Kolmogorov-scale vortex tubes are created,
and the energy is finally dissipated by the molecular viscosity in strong
straining regions around those smallest-scale vortices.

Examples supporting the above scenario are easily found (see an example
in Fig. 3) in the numerically simulated homogeneous isotropic turbulence.
That is, it is ubiquitous that anti-parallel pairs of fatter (i.e. larger-scale)
vortex tubes stretch and create thinner (i.e. smaller-scale) vortex tubes, and
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(a) (b) (c)

Fig. 3. An example of the creation of smaller-scale (18η) vortex tubes (black
objects) by the stretching around an anti-parallel pair of larger-scale (74η) vortex
tubes (white objects). Rλ = 190. Time elapsed from (a) to (c). Movies of this and
similar events are available in the online version of Ref. [2].

that the energy transfers from larger to smaller scales. However, quantitative
arguments are lacking, and it is open how important the vortex stretching by
anti-parallel vortex pairs is in the cascade process.

In order to investigate the role of anti-parallel pairs of vortex tubes quan-
titatively, we employ a vortex identification method [3] to define the direction
of each vortex tube at an arbitrary length scale, and to quantify their align-
ments. The vortex identification is based on the feature that the pressure on
the centreline of vortex tube tends to be lower than around it because the
swirling motion (which requires a centripetal force) of fluid particles inside a
vortex tube must be due to the pressure gradient if the viscous force is neg-
ligible. Therefore, the centreline of each vortex tube may be defined by the
connected points where the pressure becomes a local minimum on the plane
defined by the two eigenvectors of the pressure Hessian at the centreline. We
extend this method to identify vortex tubes at length scales in the inertial
subrange, where the pressure field is obtained by solving the Poisson equation
with the source term calculated from the coarse-grained velocity field.

Thus, we can define the distance r and angle θ between segments of two
vortex tubes, unambiguously. Figure 4 shows the probability density function
(PDF) of cos θ for vortex tubes at the length scale 74η. The PDF is conditioned
by the distance r as 80η < r < 160η. Note that the PDF of cos θ becomes
constant if the distribution of the angle θ is isotropic. It is clearly observed in
Fig. 4 that vortex tubes at this large scale (74η), indeed, tend to align in an
anti-parallel manner in this range of distance. This result is consistent with
the qualitative observations (Fig. 2), and supports the scenario of the energy
cascade in terms of the vortex stretching in the straining fields created by anti-
parallel pairs of the multi-scale vortex tubes, although further quantitative
arguments (which should be shown in the conference) are needed.
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Fig. 4. PDF of the cosine of the angle θ between vortex pairs at the scale 74η.
Conditioned by the distance r between the pairs as 80η < r < 160η. Averaged over
snapshots of turbulence (Rλ = 190).

Before closing this article, it may be worth mentioning the mechanism of
the anti-parallel alignment of vortex tubes. A possible mechanism is the one
which makes vortex filaments align in an anti-parallel manner [4]: i.e. when
a part of an anti-parallel pair of vortex filaments approaches to each other,
the mutual-induction bends them, and then self-induction (like a vortex ring)
makes them further approach. However, it is still open whether this mechanism
leads the anti-parallel pairing of vortex tubes such as observed in Fig. 2.

The direct numerical simulations were carried out on NEC SX-7/160M5 and
Hitachi SR16000 with the support of the NIFS Collaborative Program.
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1 Introduction

The wake, which forms behind an aircraft due to its lift, is a pair of hor-
izontal counter-rotating vortices propagating downwards. Depending on the
atmospheric conditions, such dipole can persist over a long time or be rapidely
destroyed. This vortex pair, in homogeneous fluids, is unstable with respect to
three-dimensional perturbations. Crow [1] has discovered a long-wavelength
instability, symmetric with respect to the plane separating the two vortices.
The existence of a short-wavelength elliptic instability has been revealed by
Tsai & Widnall [2], Moore & Saffman [3] and numerous articles ever since
for both symmetric and antisymmetric modes. Recently Donnadieu et al. [4]
observed a novel oscillatory instability, less unstable than Crow and elliptic
modes, for large Reynolds numbers. However, in many atmospheric situa-
tions, as such dipoles propagate downwards, they evolve under the influence
of the stable stratification of the atmosphere. The three-dimensional dynam-
ics of this vortex pair in stratified flow, has received much less attention: still
Robins & Delisi [5] and Garten et al. [6] have discussed persistance of the
Crow instability and Nomura et al. [7] of the short-wavelength instability.

2 2-D Evolution of the base flow in a stratified fluid

The base flow is obtained by integration of the non-linear two-dimensional
Navier-Stokes equations with a pseudo-spectral method in Cartesian coordi-
nates (x, z) and periodic boundary conditions (Delbende et al. [8]). The initial
state is the superposition of two circular Lamb-Oseen vortices of initial circu-
lation Γ0, initial radius a0 and initial separation distance b0 with a0/b0 = 0.2.
The flow evolves in a stable linear vertically stratified flow characterized by
the Brunt-Väisälä frequency N . The Reynolds number based on the initial
circulation of the vortices is ReΓ0 = 2400, and the Froude number Fr = W0

Nb0
,
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the ratio of the characteristic timescale of the stratification 1/N to the charac-
teristic timescale of the flow (W0 is the initial advection velocity of the dipole),
is varied. As the counter-rotating vortices propagate downwards, they evolve
under the influence of the stratification. Fig. 1 represents the axial vorticity of
the vortex pair at two times rescaled by the Brunt-Väisälä frequency Nt� = 1
and Nt� = 2 ( with t� = tW0/b0) and for Fr = 5 and Fr = 1. The opposite-

Fr = 5 Fr = 1
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Fig. 1. Isovalues of the axial vorticity of the vortex pair in the (x, z) plane at (a)-(b)

Nt� = 1 and (c)-(d) Nt� = 2 for (a)-(c) Fr = 5, (b)-(d) Fr = 1 .

sign vorticity which appears around and behind the primary vortices on Fig. 1
is generated by the baroclinic torque and tends to push the vortices towards
one another, hence to reduce the separation distance b between the vortices
over time.

3 Quasy-steady approximation for the stability of the

flow.

In the case of weak stratification (large Froude numbers Fr), as stratifica-
tion acts on a long timescale 1/N compared to the advection time Γ/2πb2

of the dipole, the base state can be considered as quasi-stationnary and the
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linear stability analysis of instantaneous base flow fields describes the leading
order dynamics of the perturbation. Instantaneous growth rate of 3D per-
turbations are then computed solving the linearized Navier-Stokes equations
with a pseudo-spectral code similar to the one used for the base flow cou-
pled with a Krylov Arnoldi solver. Due to the symmetry of the base state,
three dimensional perturbations are decomposed into symmetric and antisym-
metric eigenmodes, calculated separately. Different bands of instabilities are
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Fig. 2. Growthrates σr of symmetric (a) and antisymmetric modes as function of

the axial wavenumber ky scaled by the initial values of the radius a0, the separation

distance b0 and the circulation Γ0 of the vortices for Nt� = 2 for ReΓ0 = 2400 and

three Froude numbers Fr = 10 (◦, •), Fr = 5 (�,�) and Fr = 2 (� ,	).

observed. Long-wave symmetric instability on Fig. 2(a), corresponds both for
the wavelength selection and the mode shape, to the Crow instability found
in homogeneous case. Oscillatory instability (Fig. 2(b)), is found for the an-
tisymmetric mode between kya0 = 0.2 and kya0 = 0.5 and is similar to the
homogeneous case [4]. Short-wave instability leads dynamics for both sym-
metries, and corresponds in scale selection and perturbation form to elliptic
instability adapted to the actual core size. Antisymmetric is the most ampli-
fied. These results agree with the direct numerical simulations of Nomura et

al. [7] who have proposed, based on scale selection, that the short-wavelength
instability mechanism is due to the elliptic instability for weak and moder-
ate stratifications and that the growthrates nondimensionalized by the initial
value of the strain, increase with the intensity of the stratification (Fig. 2).

4 Optimal perturbations

For strong stratification, Fr = 1, the unsteadiness of the flow makes instan-
taneous stability theory not legitimate, whereas optimal perturbation theory,
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which computes the initial perturbation that experiences the largest energy
growth at time τ , is still well posed and accessible via direct-adjoint technique
[9] taking into account the evolution of the base flow. This analysis confirms
that the dynamics is mainly inertial and due to the elliptic instability at in-
termediate times. Indeed the effect of the buoyancy force is to reduce the
separation distance between the vortices of the base state. The optimal initial
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Fig. 3. Isovalues of the axial symmetric vorticity of the optimal initial perturbation
(a) and optimal response (b) at t� = 4 and kya = 1.6 and Fr = 1.

perturbation in the symmetric case, Fig. 3(a) is concentrated on the contract-
ing manifold of the upper stagnation point. The optimal response Fig. 3(b) is
mainly located in the core of the vortices where its shape is characteristic of
the elliptic mode, the wake passively driven. At larger times of optimisation
and for stronger stratifications (data not shown) the dynamics is driven by
density effects and optimal response is concentrated in the wake of the dipole
and not in the vortex cores.

References

1. S.C. Crow, AIAA J. 8 (12), 2172 (1970)
2. C.-Y. Tsai and S.E. Widnall, J. Fluid Mech. 73, 721 (1976)
3. D.W. Moore and P. G. Saffman, Proc. R. Soc. Lond. A. 346, 413 (1975)
4. C. Donnadieu, S. Ortiz, J.M. Chomaz and P. Billant, in revision for Phys. Fluids

(2009)
5. R.E. Robins and D.P. Delisi, AIAA J. 36, 981 (1998)
6. J. F. Garten, J. Werne, D.C. Fritts and S. Arendt, J. Fluid Mech. 426, 1 (2001)
7. K.K. Nomura, H. Tsutsui, D. Mahoney and J.W. Rottman, J. Fluid Mech. 553,

283 (2006)
8. I. Delbende, J.-M. Chomaz and P. Huerre 1998. J. Fluid Mech. 355, 229-254.
9. P. Corbett and A. Bottaro, Phys. Fluids 12, 120 (2000).

C. Donnadieu, J.-M. Chomaz, and S. Ortiz276



I mplementation of Vor tex Str etching into the
T wo-Dimensional N avier -Stokes E quations via
Ar bitr ar y E xter nal Str aining

F. Sabetghadam, S. A. Ghaffari, and M. Dadashi

M e c ha nic a l a nd A e ro spa c e Eng . D e pt., Sc ie nc e a nd Re se a rc h Bra nc h, Isla mic A z a d
U niv e rsity (IA U ), T e hra n, Ira n.
fsabet@srbiau.ac.ir

1 Abstr act

A modified vorticity-velocity formulation for the two-dimensional Navier-
Stokes equations is proposed with the goal of imposing an arbitrary unsteady
vortex stretching into the two–dimensional fluid flows. To this end, the velocity
field is (Helmholtz) decomposed, allowing for presence of an arbitrary dilata-
tion, which results in some modifications in both the continuity equation, and
the vorticity transport equation. To show the applicability of the method, two
entirely different classes of turbulent flows are analyzed; that is, the isotropic
turbulence (solved via pseudospectral method), and the near-wall turbulent
flow (simulated via the finite difference method). The results show ability of
the method in mimicking some essential features of three-dimensional flows.

2 I ntr oduction and mathematical for mulation

Analysis of vortical flows in the presence of external straining has a long
history from Burgers (in his studies on the Burgers vortex), to Bazant and
Moffatt [1], which used sources and sinks to find a general class of similar
and non-similar steady vortical structures. In the present work, a general
vorticity-velocity formulation for the two-dimensional incompressible Navier-
Stokes equations is proposed with the aim of including arbitrary unsteady
vortex stretching.
According to Fig. 1, consider a two-dimensional velocity vector u = (u1, u2),
defined on an arbitrary closed domain Ω̄ = (Ω ∪ ∂Ω) ∈ ℘, where ℘ is a two-
dimensional flat Euclidean plane (℘ ∈ E2), embedded in R3. It is assumed
that the two-dimensional flow (on Ω̄) is affected by external straining, which is
modelled by appropriate injection or ejection of mass from the third direction
(that is ê3), to the plane ℘. Then, capturing of dynamics of the resulting flow
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F ig. 1. M a ss inje c tio n/ e je c tio n to the pla ne ℘ is mo de lle d by a ppro pria te dila ta tio n.

field is aimed. For the sake of brevity, the ‘injection’ word will be used for
both injection and ejection.
Using the Helmholtz–Leray decomposition for the velocity field u = usol+uirr,
where usol and uirr are divergence-free and curl-free parts respectively; one
can find two Poisson’s equations for the flow kinematics

∇ · uirr = ∇2φ = σ, (1)

∇2usol = ê3 × ω, (2)

where σ is dilatation due to mass injection, while (u1, u2)
sol = (∂2ψ,−∂1ψ),

and ωê3 = ∇× usol.
Because usol is divergence–free (and therefore, streamfunctions can be de-
fined for it), appropriate boundary conditions for the Eq. (2) can be found
directly, from the considered usol at the boundaries. On the other hand, for
the additional equation (1), the dilatation σ is just needed to be defined on
Ω, and knowing the u(S), the boundary values of the uirr can be found from

uirr(S) = u(S)− usol(S), (3)

and then, the appropriate boundary conditions are appeared to be the Neu-
mann ones

∇φ · n̂ = uirr(S) · n̂, (4)

where n̂ is the unit normal vector to S.
On the other hand, beginning from conservative form of the vorticity transport
equation, its modified form which governs time evolution (dynamics) of the
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two–dimensional fluid flow, allowing for the mass injection, can be obtained
as

∂tω = ν∇2ω − (u ·∇)ω − σω. (5)

Therefore, given the vorticity field ω and the dilatation distribution σ, dy-
namics of the flow field can be tracked from the Eqns. (1), (2) and (5), in
conjunction with the above boundary conditions.

3 Applications

The method, unexpectedly, has shown a wide range of applicabilities, from
the immersed solid–boundary implementation, to modification of the energy
spectrum of the two-dimensional turbulent flows. As some primary examples,
two entirely different classes of turbulent flows are analyzed in the present
work; that is, the isotropic turbulence and the near–wall turbulence.

3.1 Isotropic decaying turbulence

There are appreciable differences between the two– and three–dimensional
turbulence, mainly because of absence of the vortex stretching mechanism in
the two–dimensional flows. As our first numerical example, an appropriate
random dilatation σ is imposed in the isotropic decaying turbulence, in order
to modelling of the vortex stretching. Distribution of σ is determined (at
each timestep) from solution of a stochastic equation, which is solved (in

F ig. 2. A k− 5
3 de c a y ing is a ppe a re d inste a d o f the usua l k3 a nd k−3 (fo r the tw o –

dime nsio na l turbule nc e ), w hic h c a n be suppo se d a s a n e v ide nc e fo r e sta blishme nt o f
a (dire c t) e ne rg y c a sc a de a nd ine rtia l subra ng e .
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conjunction with the modified vorticity equations (1), (2) and (5)), using
the Fourier pseudospectral method. It should be noted that because of non–
periodicity of the dilatation term, a kind of windowing, more or less similar to
[2], is needed when using the pseudospectral method. The results have shown
direct energy cascade (in contrast to the two–dimensional turbulence); and a
fairly close to −5

3
slope in the energy spectrum, which can be supposed as an

evidence for establishing an inertial subrange (see Fig. 2).

3.2 Near–wall flow

In addition to the dissipation rate, the turbulence production is in the in-
fluence of vortex stretching as well. Formation and evolution of the hairpin
vortices are chosen as an appropriate framework for analysis of the effects of
vortex stretching. The results are shown that formation and dynamics of the
three-dimensional hairpin vortices (at least in a statistical sense), can be sim-
ulated by appropriate definition of the dilatation in a two-dimensional flow
behind an obstacle.

F ig. 3. A tw o – dime nsio na l v e rsio n fo r ne a r– w a ll fl o w o f [3 ] is g e ne ra te d by a se mi-
c irc le , mo unte d in a Bla sius bo unda ry la y e r.
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1 Introduction : Motivation and Model

Quantum fluids (liquid 3He and 4He, atomic Bose-Einstein condensates) con-
sist of two co-penetrating fluids: the superfluid, associated to the quantum
ground state, and the normal fluid, associated to thermal excitations. In this
work the turbulent inertial cascade undergone by a quantum fluid at small
but finite temperature above absolute zero is simulated by DNS of two cou-
pled Navier-Stokes equations[1]. Following the two-fluid model of Landau and
Tisza, one equation accounts for the viscous normal fluid, while the other
equation models superfluid dynamics on scales larger than the inter-vortex
spacing.

The originality of our approach consists in introducing an artificial su-
perfluid viscosity - as a turbulence closure - to model non-viscous processes
taking place on scales smaller than the inter-vortex spacing, such as phonon
emission. For simplicity, the fluids’ coupling -often called “mutual friction”-
is a simplified version of the coupling of the HVBK model[1]. With obvious
notation, the governing equations of the two fluids are :

Dvs

Dt = − 1

ρs
∇ps + νs∇2

vs − ρn

ρ
B
2
|ωs|(vn − vs)

Dvn

Dt = − 1

ρn
∇pn + νn∇2

vn + ρs

ρ
B
2
|ωs|(vn − vs)

where the subscripts “n” and “s” stand for “normal fluid” and “superfluid”,
ωs is the superfluid vorticity, B = 2 and the velocity fields are solenoidal.
This model allows us to take advantage of optimized parallelized codes in
exploring the interaction between the two fluids. This paper is more focused
on numerical aspects, the physical interpretation will be discussed elsewhere.
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2 Numerical aspects

Numerical simulations refer to the integration of the previous dynamical equa-
tions in a cubic domain with periodic boundary conditions in the three direc-
tions. The simulations rely on a parallel (distributed-memory) pseudo-spectral
solver[2]. Three grid sizes are considered, 1283, 2563 and 5123 respectively.
The velocity Fourier modes are advanced in time by a second-order Adams-
Bashforth scheme.

The ratio between the density of the normal fluid and the density of the
superfluid is ρn/ρs = 0.1, 1 or 10 respectively for “low”, “intermediate” and
“high” temperatures. The ratio between the kinematic viscosities is fixed at
νn/νs = 4, which is a compromise chosen to separate the dissipative cut-off
wavenumbers of the two fluids and maximize the extension of the inertial
range of the superfluid.

In order to ensure (statistical) stationarity, a constant-energy flux is sup-
plied to the Fourier modes in the shell of wave-vectors 1.5 < |k| < 2.5. This
external energy flux applies to the normal fluid in the high-temperature and
intermediate-temperature cases, and to the superfluid in the low-temperature
case. This forcing scheme permits a rapid relaxation to a steady state, which
is attained when the total dissipation fluctuates around the imposed energy
input flux.

The transient from the initial state is monitored by the space–averaged
enstrophies < ω2

n >, < ω2

s > and < (ωs −ωn)2 >. The first three subplots of
Fig. 1 show this transient.

3 Results

The fourth subplot of Fig. 1 shows that correlation between ω2

s and ω2

n is
larger than 97% in steady state, indicating a strong locking of the two fluids.
Fig. 2 illustrates this locking in physical space : the vorticity structures -
slightly more intense in the superfluid - are indeed overlapping. A similar
conclusion was reached recently in a numerical simulation performed at high
temperature without coupling from the superfluid to the normal fluid [3].

Fig. 3 shows velocity power density spectra under various conditions; for
both fluids there is clear evidence of an inertial range compatible with a -5/3
Kolmogorov-like scaling. This figure also shows the power spectra of the slip
velocity vs − vn. We find that this quantity peaks at small scales, where νn

efficiently damps the kinematic energy of the normal fluid. The spectra in
the inset are obtained at different temperatures but with fixed νs, νn and
total injected energy. They show that the extend of the inertial range varies
with temperature, showing that the Reynolds number - defined using the
separation of large and small scales - is a temperature dependent parameter
in our two-fluid system.
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Fig. 1. Subplots 1,2 and 3 illustrate for different temperature the convergence to the
steady state by monitoring the total enstrophy of the superfluid < ω2

s > (top curve),
normal fluid < ω2

n > (intermediate curve) and the slip enstrophy < (ωs − ωn)2 >
(lower curve). These simulations were performed with grid resolution 5123. Subplot
4 shows the correlation between the superfluid and normal fluid enstrophy fields
during the transient to the steady state. These simulations were performed with
grid resolution 2563 and 5123.

Fig. 2. Local enstrophy of the superfluid (left) and normal fluid (right) at high
temperature (ρn/ρs = 10). Grid resolution is 2563. This visualisation is generated
with “Vapor” freeware. (www.vapor.ucar.edu)
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Fig. 3. Velocity spectra at high temperature for resolutions 1283, 2563 and 5123.
For each resolution, and from top to bottom : superfluid, normal fluid and slip
velocities vn, vs and vs −vn. Dashed line : -5/3 scaling. Inset : Velocity spectra for
fixed kinematic viscosities and total energy injection, at high (black), intermediate
(jackson) and low (gray) temperatures. Continuous line : -5/3 scaling.

4 Conclusion

The locking between the superfluid and the normal fluid which we observe,
as well as the Kolmogorov scaling, are consistent with the present theoretical
understanding of quantum turbulence[4]. This work extends the numerical ev-
idence over a wide temperature range, using a self-consistent coupling model
between the two fluids. Two new features which we observe are the peaking
of the slip velocity at small scales, and the temperature dependence of the
Reynolds numbers for fixed energy injection and kinematic viscosities.
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Visualization of quantum turbulence in 3He-B
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Experiments at very low temperatures, in both 3He and 4He, have produced
intriguing results which raise challenging questions to fluid mechanicists. The
context of this work is quantum turbulence in superfluid 3He-B at very low
temperatures such that the viscous normal fluid component can be neglected,
and quantum turbulence takes its purest form: a tangle of quantized vortex
filaments (see Fig. 1) which move in a fluid without viscosity.

Fig. 1. Snapshot of a tangle of quantized vortices.

In the case of homogeneous quantum turbulence, the turbulence’s intensity
is characterized by the vortex line density L (vortex length per unit volume)
inferring the typical distance between vortices, � ∼ 1/

√
L. The current under-

standing [1] of quantum turbulence at very low temperatures is that, at length
scales much larger than �, the nonlinear interaction between vortex filaments
results in partial alignment and polarization, such that, for k � 1/�, the su-
perfluid supports an energy cascade from large to small scales, which manifests
itself in the classical Kolmogorov energy spectrum, Ek ∼ k−5/3. This implies
the existence of an energy sink, which is thought to be acoustic: energy de-
creases due to the emission of phonons by Kelvin waves (helical displacements
of vortex filaments). The details of this scenario still need to be properly un-
derstood (in particular, recent experiments [2] suggest the existence of a new
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form of turbulence – a less structured “ultraquantum” turbulence state). This
and other problems require further theoretical and experimental study.

The experimental study of quantum turbulence would be greatly facilitated
if better visualization techniques were available. A drawback of most of the
existing techniques is that they only measure quantities averaged over a large
region, while it is important to have local information about fluctuations. This
problem has been recognized: in 4He, at T > 1 K, a major breakthrough has
been the implementation of the PIV technique. In the more difficult regime
of very low temperature 3He-B, the Andreev reflection technique [3] has been
a major advance in providing a tool for studying turbulence. The technique
is based on the fact that the dispersion curve of quasiparticles (thermal ex-
citations) is tied to the reference frame of the superfluid, so that one side of
a vortex line presents a potential barrier to oncoming quasiparticles, which
can be reflected back almost exactly becoming quasiholes (thermal excitations
whose energy is below the Fermi level); the other side of the vortex lets the
quasiparticles to go through. Quasiholes are reflected or transmitted in the
opposite way. The vortex thus casts a symmetric shadow for quasiparticles
at one side and quasiholes at the other thus enabling the experimentalist to
detect vortices and infer the vortex line density.

In the presence of the flow field, vs(r, t), the energy of the thermal exci-
tation is

E =
√

εp
2 + Δ2

0
+ p · vs(r, t) , (1)

where εp = p2/(2m∗) − εF is the kinetic energy of a quasiparticle (εp > 0)
or a quasihole (εp < 0) of momentum p measured with respect to the Fermi
energy, εF = pF

2/(2m∗) ≈ 2.27 × 10−16 erg, m∗ = 3.01m with m being a
mass of 3He atom, Δ0 ≈ 2.43 × 10−19 erg is the superfluid energy gap. On a
spatial scale larger than the coherence length, ξ0 ≈ 0.85× 10−5 cm a thermal
excitation can be regarded as a compact object, and Eq. (1) as an effective
Hamiltonian yielding the equations of motion of a quaiparticle (quasihole) in
the form

dr

dt
=

∂E

∂p
=

εp√
εp

2 + Δ2
0

p

m∗
+ vs,

dp

dt
= −∂E

∂r
= − ∂

∂r
(p · vs). (2)

We consider the two-dimensional model in which the quantized vortices be-
come vortex points. Each vortex generates the velocity field vs = κ(2πr)−1

êφ,
where κ = πh̄/m ≈ 0.662× 10−3 cm2/s is the quantum of circulation in 3He-
B, and êφ is the azimuthal unit vector. In the vortex structure (e.g. vortex
bundle) modeled by the system of N vortex points the fluid velocity at any
point r can be found as a superposition of velocity fields generated by all
vortices, and each vortex moves as a fluid point in the flow field of all other
vortex points.

In the case of one, stationary vortex Eqs. (2) possess the integrals of mo-
tion E = constant and J = pφρ0 = constant, the latter introducing the
impact parameter, ρ0 whose meaning is clear from the illustration of Andreev
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reflection in Fig. 2. An approximate analytical solution of the equations of

Fig. 2. Schematic trajectory of the quasiparticle Andreev reflected at position B.

motion was found [4] using the fact that εp/Δ0 � 1. This solution enabled us
to investigate ballistic trajectories of quasiparticls, find the locus of Andreev
reflection, and calculate the Andreev reflection angle, Δφ (see Fig. 2) which,
in agreement with previous studies, is very small so that the quasiparticle,
having been Andreev reflected, practically retraces its trajectory as a quasi-
hole. Calculated from our theory, the Andreev shadow of an isolated vortex
is S0 = 3πξ0(Δ0/εp)

2.
When extrapolated to a disordered tangle, such that vortices are well sep-

arated (i.e. ξ0 � �), the obtained solution enables us to calculate the fraction
of heat, ftr transmitted by quasiparticles through the vortex tangle. Provided
ftr is measured experimentally, the vortex line density can be inferred,

� =

{
− Δ0

kBT

3πξ0L
2 ln ftr

}1/2

, (3)

where L is the size of the vortex system, in a good agreement with existing
experimental estimates [3].

The situation becomes more complicated in the case where vortex rings
and coherent vortex structures (e.g. bundles) are present. In this case vs

becomes time dependent so that E �= constant, and the equations of motion
(2) have to be solved numerically [5]. The general result of such a solution is
that in a structure consisting of N vortices the partial screening takes place
so that the total Andreev shadow is not necessarily the sum of shadows of
individual, isolated vortices, i.e. S = S1 + S2 + ... + SN �= NS0.

In all illustrations below the initial momentum of quasiparticles is p0 =
1.0001pF in the x-direction; for this momentum the shadow of an isolated
vortex is S0 ≈ 269ξ0. We found that the total shadows of vortex-vortex and
vortex-antivortex pairs (the latter being a 2D model of a vortex ring) depend
on the distance, D between vortices and the angle θ between the line con-
necting the vortices and the direction of incident flux of quasiparticles. For
θ = 90o, the dependence of the total shadow of the vortex-antivortex pair
on D is shown in Fig. 3 (left) illustrating the partial screening and, hence,
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Fig. 3. Left: total Andreev shadow vs distance between vortices in a vortex-
antivortex pair at θ = 90o; the pair moves: triangles – in the direction of the
quasiparticles’ flux, circles – opposite to it. Right: multiple Andreev reflection in
a system of 10 vortices. The quasiparticle turns into a quasihole many times before
escaping as a quasiparticle.

substantial reduction in the total shadow. Even more dramatic reduction was
found for larger clusters of vortex points. Thus, for some configurations of 5
vortex points the total shadow is smaller than 600ξ0 which is less that a half
of 5S0 = 1345ξ0, and for clusters of 10 vortices the total shadow can be an
order of magnitude smaller than 10S0. This does not mean that the interpre-
tation given to recent experiments is incorrect: it is possible that, for a large,
random vortex system, the screening effects which we have found average out.
If this is the case, screening effects can be taken into account by introducing
a prefactor, hence for the vortex line density can be inferred.

Furthermore, we discovered that, interacting with vortex structures, the
quasiparticle may experience multiple Andreev reflections, illustrated in Fig. 3
(right), resulting in the reflection angle which is no longer small. It should
yet to be understood whether this is a typical situation, in which case an
interpretation of experimental results might be seriously affected, or just a
rare event which can be ignored.
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Introduction

The canonical laboratory setup to study two-dimensional (2D) turbulence is
the electromagnetically driven shallow fluid layer. The argument used here is
that whenever the vertical length scale is much smaller than the horizontal
length scale the flow is presumed to behave in a 2D fashion. However, this
assumption disregards the presence of a strong non-uniform magnetic field
used to electromagnetically force the flow, a vertical component of the Lorentz
force, and, most importantly, it oversimplifies the structure of 3D recirculating
flows [1, 2]. The limitations of the single fluid layer setup have been recognized
and now the two-layer fluid is commonly used for experimental 2D turbulence
research.

In this contribution we will study experimentally and numerically the
3D motion inside a two-layer fluid. We will discuss the behaviour of the flow
when decreasing the upper fluid layer thickness in steps down from 9 mm to
3.5 mm, the latter being the commonly used upper fluid layer thickness for 2D
turbulence experiments. Surprisingly, the flow structures and evolution seen
in the two-layer flow are qualitatively the same as in the single-layer flow.

z
BI

ulH

x

a) b)

Fig. 1. Schematic cross-section (a) and photograph (b) of the experimental setup.
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Fig. 2. Instantaneous velocity fields of a dipolar vortex in a horizontal plane at
mid-depth of the top fluid layer (Hul = 7.0 mm). Vectors represent horizontal ve-
locity components and gray levels indicate the magnitude of the vertical velocity.
Experimental results obtained with SPIV at (a) t = 1.00 s, (b) t = 1.50 s, and (c)
t = 2.10 s. Numerical results obtained with a rigid internal interface at (d) t = 1.00 s,
(e) t = 1.50 s, and (f) t = 2.10 s.

Experimental and numerical results

We present results from Stereoscopic-PIV measurements and full 3D numer-
ical simulations of a dipolar vortex in a two-layer fluid, one of the most ele-
mentary coherent structures found in 2D turbulence. The experimental setup
consists of a 52 × 52 cm2 square tank with a magnet below the bottom and
two electrodes on opposite sides of the tank (see Fig. 1). A salt solution (spe-
cific gravity = 1.0) of thickness Hul serves as the conducting fluid enabling
electromagnetic forcing, which lies on top of a 3 mm nonconducting heavier
layer (specific gravity = 1.5). The forcing protocol constitutes of a 1 s pulse
of constant current. The settings of the numerical simulations are identical to
the experimental ones, except the internal interface is taken non-deformable
in the simulations.

290



In Fig. 2 (upper row) experimentally obtained snapshots are displayed for
the dipole at mid-depth of the top fluid layer (Hul = 7 mm) at several time
instances. In these figures we can identify several vertical structures. For ex-
ample, in Fig. 2(b) upward vertical motion is present inside the two individual
vortex cores surrounded by downward motion, strong upward motion in the
tail, and band-like structures in front of the dipole. At an even later stage
in the evolution [see Fig. 2(c)] an oscillatory motion is seen of the vertical
velocity inside the two cortex cores. In the experimental result, the so-called
“frontal circulation” [1–4] is seen at late stages of the evolution, i.e. a roll-
like structure with upward motion and in front of that a downward motion.
Note that these structures and their evolution show a great resemblance with
the flow structures appearing in the dipolar vortex flow in a single fluid layer
[1, 2].

Comparison of the numerical simulation results shown in Fig. 2 (lower row)
with the corresponding experimental ones [Fig. 2 (upper row)] reveal a striking
resemblance with respect to the structures and their evolution. However, the
frontal circulation is not observed in the numerical simulation. This absence is
illustrated in more detail in the vertical slice presented in Fig. 3. The frontal
circulation, associated with negative ωx, is not present in the upper fluid layer
as it does not penetrate through the internal interface (the dashed white line
in Fig. 3). In the numerical simulation the interface is taken flat, whereas in

10 20 30 40
2
4
6
8

-15 -12 -9 -6 -3 0 3 6 9 12 15

y (mm)

z
(m

m
)

ωx (s-1):

Fig. 3. Vertical slice through the symmetry plane of the dipole (x = 0) at time
t = 2.60 s showing the ωx distribution (gray levels), with vectors representing the
flow in the yz-plane. The white dashed line indicates the internal interface between
the fluid layers.

the experiment the interface will most likely deform as the density difference
between the two fluids is rather low. This interface deformation is considered
to be responsible for the development of the frontal circulation in the upper
layer of the experiments. Furthermore, the magnitude of the vorticity compo-
nent ωx in the vertical slice of Fig. 3 turns out to evolve to significantly larger
values than that of the “primary” vorticity component ωz.

In Fig. 4(a) a snapshot for the case of a upper fluid depthHul = 9.00 mm is
presented, so larger than the value 7.0 mm discussed above. Also, in Fig. 4(b-
c) snapshots are displayed for smaller upper fluid depths Hul = 5.0 mm and
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3.5 mm, respectively. For all cases one observes a clear resemblance in the
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Fig. 4. Experimentally obtained velocity fields of a dipolar vortex in a horizontal
plane at mid-depth of the top fluid layer having a thickness of (a) Hul = 9.0 mm
at t = 2.6 s, (b) Hul = 5.0 mm at t = 1.8 s, and (c) Hul = 3.50 mm at t = 1.5 s.
Meaning of vectors and gray levels: see caption Fig. 2.

vertical motions. Clearly, the observed 3D structures in the Hul = 7.0 mm
case are representative of the other upper fluid depths. The same applies for
the temporal evolution of the flow.

Conclusions

The experimental observations and numerical simulations show the presence
of significant 3D motions in the two-layer configuration similar to those found
in experiments on a single shallow fluid layer. As the dipole is one of the
most elementary vortex structures in 2D turbulence, it is to be expected that
decaying turbulence in shallow two-layer fluids will show similar 3D features.
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1 Introduction

A canonical laboratory setup to study two-dimensional (2D) turbulence is the
electromagnetically driven shallow fluid layer. The argument used here is that
whenever the vertical length scale is much smaller than the horizontal length
scale the flow is presumed to behave in a 2D fashion with a Poiseuille-like
structure in the vertical direction. However, this assumption disregards the
presence of a strong non-uniform magnetic field used to electromagnetically
force the flow, a vertical component of the Lorentz force, and, most impor-
tantly, it oversimplifies the structure of three-dimensional (3D) recirculating
flows [1].

Fig. 1. Streak visualization of the flow at the end of the forcing stage (t = 0, left
panel) and later in the evolution (t = 30 s, right panel).

2 Laboratory experiments

The experimental set-up consists of a shallow layer of electrolyte, in which
the motion is created by electromagnetic forcing. Experiments were carried
out with an array of 10 × 10 magnets with alternating polarity, yielding an
initial flow field consisting of 10 × 10 flow cells, see Fig. 1 (left panel). The

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_71, 

293



fluid motion is visualized by adding small tracer particles to the fluid, their
motion being recorded from above. Flow measurements were carried out at
the free surface and at some horizontal cross sections of the fluid layer. In
the latter experiments, the fluid was seeded with neutrally buoyant particles
which were illuminated by a horizontal laser sheet. In both cases, quantitative
information about the flow was obtained by (stereo-)PIV measurements.

After the forcing is switched off (t = 0 s), the flow shows a rather complex
evolution, at some stage revealing the emergence of meandering flow patterns,
extending over larger length scales, see Fig. 1 (right panel). This behaviour is
in remarkable contrast with evolution of purely 2D flows, in which the inverse
energy cascade is observed in the formation of larger coherent vortex struc-
tures. Figure 2 (upper row) shows the evolution of the vertical vorticity ωz as

Fig. 2. Snapshots of the vertical vorticity ωz (upper row; colours/shades indicate
magnitude in 1/s) and the vertical velocity w (lower row; colours/shades indicate
magnitude in mm/s) for t = 0 s (left), t = 2 s (middle) and t = 5 s (right).

well as the instantaneous streamline pattern of the horizontal flow component
measured in a plane at h =5 mm above the bottom obtained by SPIV mea-
surements. The plots only cover a limited part of the domain. At the end of the
forcing stage (upper row; left panel) one clearly observes a number of dipolar
vortex structures. Owing to their self-propulsion these dipoles translate, which
quickly leads to a sequence of head-on collisions between neighbouring dipoles
all over the domain. During this process the initial symmetry of the flow is
progressively broken and eventually the streamline pattern reveals meander-
ing current structures extending over the whole measurement domain, while
the vorticity is observed to become organized in elongated filaments rather
than vortices (see Fig. 2 (upper row, middle and right panel)). Moreover,
these vorticity filaments tend to be aligned with the streamlines.
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A set of corresponding plots of the vertical velocity w measured at the
same level h = 5 mm is also displayed in Fig. 2 (lower row). Throughout
the evolution significant vertical motion is observed. Regions of pronounced
upward flow are present at the front of each dipole, as well as at its rear; regions
of downward motion are seen in the dipole cores (see Fig. 2 (left panels)). This
is in agreement with the vertical flow structures found in single dipole vortices
in a shallow fluid layer [1, 2]. The maximum value of the vertical velocities
between two approaching dipoles is typically 20 mm/s, while the root-mean-
square value of the horizontal flow components is 28 mm/s, indicating that
locally the flow is fully three-dimensional. Regions of upward and downward
flow remain visible in the next stages and the flow has taken the appearance of
larger meandering structures (Fig. 2 (right panels)). The regions of downward
motion tend to be correlated with the meandering flow structures, while the
weaker upward motion is mainly observed inside vortical structures [3].

3 Numerical comparison between 3D and 2D flows

Full 3D numerical simulations based on the Navier-Stokes equation including
a realistic representation of the electromagnetic forcing and corresponding 2D
numerical simulations show considerable differences in the evolution of the
vorticity (see Fig. 3 (upper row)). The 3D numerical simulations show mean-
dering current structures at the surface and also at lower levels in the fluid
layer. Fig. 3(b) illustrates the numerically calculated ωz distribution in a hor-
izontal cross-sectional plane at h = 5 mm above the tank bottom for t = 21 s.
For comparison, Fig. 3(a) shows the ωz distributions in a corresponding 2D
simulation. Immediately after the forcing the flow patterns in the 3D and 2D
simulations are still quite similar. In both cases one observes the emergence of
elongated vorticity structures. However, as the flow evolves the vorticity dis-
tributions in the 3D and 2D simulations show considerable differences: while
the flow in the 2D simulations is dominated by large-scale coherent structures
(Fig. 3(a)), in the 3D simulations the horizontal flow is characterized by elon-
gated patches of vorticity, indicating the presence of large-scale meandering
currents (Fig. 3(b)).

Another feature studied numerically is the dispersion of passive tracer
particles released at the free surface of the fluid layer, see Fig. 3 (lower row).
For this purpose, a large number particles were initially distributed along
a regular grid covering the full flow domain. In 2D simulations, they were
advected without showing any clear concentration regions (see Fig. 3(c)). In
the fully 3D simulations, however, they showed a very clear tendency to collect
in elongated patches, coinciding with areas of negative horizontal divergence,
i.e. where the vertical velocity w < 0 below the surface, see Fig. 3(d). For a
more elaborate discussion we refer to Ref. [3].
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Fig. 3. Snapshots of the vertical vorticity ωz (upper row; colours/shades indicate
magnitude in 1/s) obtained from 2D (a) and 3D (b) numerical simulations at t =
21 s. The lower row shows the distribution of tracer particles for t = 40 s from
the 2D simulation (c) and the 3D simulation (d), where colours/shades indicate the
magnitude of the vertical velocity.

4 Conclusion

The laboratory experiments and the numerical simulations clearly demon-
strated that these electro-magnetically forced shallow-layer flows are not 2D,
not even quasi-2D: vertical velocities and vertical shear are substantial, and
destroy the intuitive 2D picture that one originally might have had.
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In hhis paper reports results of experimental study of defects arising in a
Karman vortex street in a wake behind a heated cylinder by means of remote
acoustic diagnostics. This technique proved to be efficient for finding defects
in a periodic structure by asymmetric shape of spectral picks of scattered
sound.

A vortex street behind a heated cylinder is a classical object for investi-
gation of heat transfer in flows. Until recently, investigations of a flow around
a heated cylinder and of heated bodies in general were focused on the de-
pendence of averaged characteristics of heat transfer (e.g., Nusselt number)
on Reynolds number and on other flow parameters: degree of turbulence,
roughness, and cylinder elongation. Nowadays the Karman street attracts the
attention of researchers involved in fluid mechanics as a sample flow for testing
new ideas in mixing of impurity, chaotic dynamics and so on. Detailed infor-

needed for these purpose. In this paper we show that heating of a stream-
lined cylinder can substantially change the regime in a wake and evoke the
transition from a laminar state to spatio-temporal chaos of defects.

Under defects in a temperature-homogeneous von Karman vortex street
one understands regions of the street where different modes determining the
transition from a laminar to a turbulent regime are excited against the back-
ground of regular vortices. Such modes arise at 160< Re < 230 (Re=U/dν ,
where U is incident flow velocity, ν is kinematic viscosity, and d is diameter
of the cylinder). If the cylinder is heated, then as was shown in [1], the am-
plitude and phase modulation increasing downstream occurs in the street at
much smaller Reynolds numbers 60< Re< 110 . This leads to formation of
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regions with disturbed order, i.e., with defects. When such defects arise in the

lined cylinder. If there is only one defect, then one of the half-planes contains
one spatial period more than the other. Defects are localized in regions with
the growing number of spatial periods. Characteristics of such defects were
studied by records of time series at separate points, while no information about
the spatial structure of the flow was obtained. Formore detailed investigation
of defects arising in a von Karman vortex street behind a heated cylinder we
staged experiments on visualization and remote acoustic diagnostics of the
flow. Experiments were carried out in an air flow of IAP RAS low-turbulence
(the level of turbulent velocity pulsations in an incident flow was less than
0.4%) wind tunnel with the size of the operating part 30 x 30 x 120 cm, ve-
locity U=2.7m/s, and Re=109. The scheme of the experiment was analogous
to that described in [2, 3, 4]. We studied ultrasound scattering with frequency
f0=121.1 kHz (at the wavelength λ0 =2.7 mm) in a vortex behind a vertical
cylinder with diameter d=0.6 mm placed in the operating part of the wind
tunnel. The temperature of the cylinder was calculated by the known empir-
ical formula relating the Nusselt (dimensionless heat flux) and the Reynolds
numbers. Structures were visualized by means of a thin wire dsm = 0.2 mm
(smoke wire) that was stretched parallel to the base cylinder at distance ≈
9d downstream. The wire was coated by oil, then direct current was passed
through it giving rise to smoke in which structures could be visualized. The
pictures were taken by a high-resolution digital camera. It was found that, in
the absence of heating, vortex shedding occurred with a tilt. Spatio-temporal
characteristics of vortex street depend on density of electric power P. For
P=80 J/m, defects are observed in the wake. A typical picture of a vortex
street with defects is presented in fig. 1.

Fig. 1. Visualization of a wake in the regime with defects: 1 - streamlined cylinder,
2 - smoke wire, 3 - defect, the arrow points the direction of the flow U.

street, its spatial period depends on coordinate along the axis of the stream-
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Such structures are observed up to P ≈200 J/m. With a further increase of
heating, the wake becomes regular and stable parallel vortex shedding occurs,
but now with a larger spatial period. In order to obtain qualitative character-
istics of a vortex street with defects we carried out experiments on ultrasound
scattering. Parameters of ultrasound were measured by the high-frequency

row spectrum, hence the signal from the microphone wamultiplied with the
harmonic heterodyne signal cos(2πfg) and the resulting signal was analysed
in the 0-20 kHz range. The sound scattered at an infinite von Karman vortex
street is known to be a set of harmonics propagating symmetrically to the di-
rection of incident sound [2, 3, 4]. The propagation angle of each harmonic,φm,
is found from the condition

2πf0
c

sin(ψ) =
2πf0
c

sin(φm) +
2πm
l

(1)

where f0 is the frequency of incident sound wave, c is sound velocity, ψ is
the angle of acoustic wave incidence on the street, m stands for the number
of the harmonic, and l is the spatial period of the street. The amplitude of
each harmonic is determined by vortex circulation in the street, Γ , and by
the quantity of heat, Q, transported by the vortices. The frequency of each
harmonic is shifted relative to the incident sound frequency:

fm = f0 +mfSh (2)

multiple to the vortex shedding frequency (Strouhal frequency fSh). If the
medium is temperature homogeneous, then each vortex scatters the sound,
primarily forward, and only the +1-th and -1-th harmonics are usually ob-
served in experiment [2, 3]. In the case of the wake behind a heated cylinder,
the temperature field makes a contribution mainly to even harmonics, and the
velocity field to odd harmonics [4]. The scattered sound spectra and disper-
sion indexes of the fundamental harmonic m=1 were measured in experiment
for different temperatures of cylinder heating. Examples of scattered sound
spectra at angles corresponding to maximal amplitude of the fundamental
harmonic are given in fig. 2.

It is clear from the spectra in fig. 2 that the vortex shedding frequency
drops down with increasing cylinder temperature. This regularity was ob-
served in many works (see, e.g., [1,5] and can be explained by temperature
dependence of kinematic viscosity . Heating of a streamlined cylinder may
be considered using the effective Reynolds number [1,5] The scattered sound
spectra are symmetric for high and low heating temperatures (spectra 1 and
4 in fig. 2) and nonsymmetric for temperatures at which defects appeared in
the Karman street (spectra 2 and 4, in fig. 2). Such a spectral pattern can be
explained as follows: The arising defects lead to a decrease of vortex shedding
frequency in definite regions of the street which make a contribution to the
spectral components with frequencies less than . Analogous spectra of temper-
ature pulsations were found in the work [1] in measurements by means of hot

4135 B&K microphone. The sound scattered at the vortex street had a nar-
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Fig. 2. Spectra of scattered sound at Re=109 for different power of cylinder heating
it P. Peak at f=122.0 Hz corresponds to the incident sound wave.

and cold wire anemometers in the wake behind a heated cylinder, where it was
noted that the pulsation spectrum asymmetry is due to excitation of defects
in the street. Measurement of scattering angles allowed us to determine the
dependence of spatial period on cylinder heating. As heating was increased,
the spatial period of the street increased too. This result is in good agree-
ment with an increase of the spatial period of Karman street as the Reynolds
number is decreased. Thus, by characteristics of scattered sound one can de-
termine the action of heating on vortex wake parameters and arising in the
Karman street of complex regimes with defects. In contrast to measurements
at individual points, acoustic diagnostics enables one to determine charac-
teristics of a vortex wake average over space. Our experiments demonstrated
that temperature pulsation spectra determined by characteristics of scattered
sound and measured at individual points are similar for different regimes of
streamlining. This result is important for analysis of spatio-temporal disorder
in wakes behind poorly streamlined bodies.

The research was done under financial support of the RFBR, grant No.
07-02-92175-CNRS-a and PICS CNRS grant No.3903
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In 1875, Lord Kelvin proposed an energy-based argument for determining
the stability of steady inviscid flows [1]. While the key underpinnings of the
method are well established, its practical use has been the subject of ex-
tensive debate. In this work, we draw on ideas from dynamical systems and
imperfection theory to construct a methodology that represents a rigorous
implementation of Kelvin’s argument. Besides yielding stability properties,
which are found to be in precise agreement with the results of linear analysis,
our approach also implicitly yields new bifurcated solutions branches, as we
shall describe below.

Kelvin’s original argument states that steady inviscid flows are associated
with stationary points of the kinetic energy, for a given linear or angular
impulse [1]. It appears that Kelvin found this statement to be self-evident, as
he provided no proof for it; the first mathematical derivation was published
more than a hundred years later by Benjamin [2] in 1976. Benjamin’s proof
implies that, for example, for a two-dimensional vortical flow with excess
kinetic energy E and angular impulse J , one can construct a functional H :

H = E −ΩJ, (1)

such that the first variation δH with respect to vorticity-preserving pertur-
bations vanishes if, and only if, the flow is in equilibrium when observed in
a frame rotating with angular velocity Ω [3]. One may then proceed to es-
tablish stability of the solution as follows. Since E and J are both conserved
in an inviscid flow, H is also a conserved quantity. If the stationary point is
a maximum or a minimum in the solution space (implying that the second
variation δ2H is positive or negative definite), then a displacement away from
the solution would lead to a change in H , which is impossible; hence the so-
lution must be stable to isovortical perturbations, thus yielding a sufficient
condition for stability. Similarly, a necessary condition for instability to occur
is that the stationary point is a saddle [1].
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Fig. 1: “Velocity-Impulse” diagram for the opposite-signed pair with A1/A2 = 0.3.
Our approach immediately points to a change of stability at a minimum in J (empty
circle), after which the family ends with a limiting vortex shape (filled circle).

Stability can therefore be established by directly evaluating the second
variation of H ; this approach carries over to all conservative systems for which
a similar functional can be defined (see e.g. [4, 5]). However, implementing
this methodology is not usually feasible, especially since steady solutions of
practical interest are typically known only numerically. It is therefore common
to resort to computing eigenvalues through a linear stability analysis, which
is usually a process far more laborious than computing the steady solutions.

Saffman & Szeto [6], having numerically found steady solutions for two
co-rotating vortices, proposed an approach to circumvent this difficulty as
follows. Equation (1) can be interpreted as establishing extrema of E under
the constraint that J = const., with Ω taking the role of a Lagrange multiplier.
A plot of E versus J then shows that, for a given J , there exist two E branches,
joined at a fold point. The top branch was interpreted as a maximum (and
hence stable), while the lower branch as a saddle (possibly unstable). This
prediction was subsequently found to match the results of the linear stability
analyses of Kamm [7] and Dritschel [8].

A fundamental objection to such an implementation of Kelvin’s argument
was however posed by Dritschel [9], who pointed out that there seems to be no
necessary link between the shape of a plot of E versus J and the curvature of
the H surface. That is, one cannot determine whether the “highest” solution
branch in a two-dimensional plot does actually correspond to a maximum in
the solution space. Furthermore, Dritschel [9] pointed out that even if such
correspondence could be established, additional changes of stability could also
occur away from extrema in E and J by means of bifurcations to new families
of solutions. This would render the method unreliable.
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Fig. 2: “Imperfect-Velocity-Impulse” diagram for the opposite-signed pair with
A1/A2 = 0.3. Re-computing the solutions with an imperfection (dashed lines in
the inset) reveals an additional change of stability at a bifurcation associated with
a new family of vortices, which display lesser symmetry (red line).

In a later work, Dritschel [8] provided an example for which the method
fails to correctly predict the onset of instability. He considered the family
consisting of two uniform vortices with equal vorticity magnitude, opposite
sign, and unequal area, and inspected different area ratios A1/A2, for which he
computed both equilibrium states and linear stability properties. For families
with A1/A2 fixed between 1 and 0.9, the extremum in E gave an accurate
prediction for the onset of instability. However, below A1/A2 � 0.9 the change
of stability occurred before the location predicted by a plot of E versus J . This
provided definitive proof that such an implementation of Kelvin’s argument
does not always work.

In the light of such a rich history of developments, we have been stimulated
to employ tools from dynamical systems theory to devise a new approach,
which provides a rigorous link between extrema in a particular bifurcation
diagram and changes in the second variation of a functional such as H . We
show that the relevant plot is not one of impulse and energy, but of velocity
and impulse, and establish a rigorous link between extrema in J and changes
in stability properties.

Nevertheless, the second objection posed by Dritschel [9] would still stand,
since, while an extremum in J is always associated with a change in the cur-
vature of the H surface, changes in stability that occur through bifurcations
would be undetected (without performing a linear stability analysis). We re-
solve this issue by employing the fact that joins in solution branches are not
structurally stable (see e.g. [10]). Hence, by introducing a small imperfection
and re-computing the equilibria, we obtain a new family of steady solutions
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for which the solution branches will be distinct; thus any bifurcations are un-
covered, and all changes of stability are apparent in an “Imperfect-Velocity-
Impulse” (IVI) diagram.

Eager to verify whether this novel approach would work, we employed the
“IVI diagram” methodology to re-examine the opposite-signed family studied
by Dritschel [8]. Figure 1 shows the velocity-impulse diagram J versus Ω for
A1/A2 = 0.3. Introducing a small imperfection and re-computing the equilib-
ria breaks the family of solutions into distinct branches (dashed lines in the
inset of Fig. 2), hinting at the presence of a bifurcation. Our method then
reveals another extremum in J , which is associated with an additional change
of stability. It turns out that the location of this change of stability, found
using our approach based on IVI diagrams, agrees precisely with previous re-
sults from linear analysis. Finally, by bringing the imperfection to zero, our
approach enables us to determine a new bifurcated branch (red line in Fig. 2),
revealing a new family of solutions of lesser symmetry, whose vortex shapes
are exhibited in Fig. 2.

In further work, we have applied the same approach to a wide range of
classical solutions of the Euler equations, including for example the Kirch-
hoff elliptical vortices, the co-rotating vortex pair and its continuation into a
singly connected shape [11], the finite-area Kármán vortex street [12], Stuart
vortices [13], and other equilibrium flows. For all cases considered, we find
precise correspondence with classical results from linear analysis, while addi-
tionally discovering new families of steady solutions. This work is to be found
in Luzzatto-Fegiz & Williamson [14].
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While far axisymmetric wakes in uniform streams have been studied thor-
oughly for many years (e.g. [3]), the effect of free-stream turbulence on them
has come under much less scrutiny. Moreover, since the wake of any three-
dimensional object becomes axisymmetric far enough downstream and is often
enclosed in turbulent surroundings, we believe that our fundamental research
is necessary to understand better many general problems.

Based on the extensive reported data on the effects of free-stream turbu-
lence on the development of boundary layers, it may be anticipated that the
major parameters affecting the wake’s development would include u′

fs
/Ud and

Lx/lh, where u′fs
and Ud are the rms velocity in the background turbulence

(
√
u2) and the wake’s centre-line deficit velocity, respectively, and Lx and lh

are the integral scale in the background turbulence and the r-location of the
wake’s half width (where the velocity deficit is one half of its maximum value)
respectively.

We are undertaking numerical and wind tunnel experiments which include
studies of axisymmetric far wakes in uniform and several turbulent surround-
ings and a comparison between them. The numerical experiments involve Di-
rect Numerical Simulation (DNS) of a far axisymmetric wake developing in
time, using a similar approach to that reported in [2]. The computational
domain’s dimensions are 4π × 16π × 4π and the number of Fourier modes is
512 × 2048 × 512, using 512 processors on the UK’s HPCx supercomputer.
First, the self-similar time-developing wake was initiated using the experi-
mental data reported by [1], with the turbulent statistics added to the mean
velocity using a modified three-dimensional version of the digital filter of [7].
After a so-called correction stage, see [2], the wake was fully developed and
reached its self-similar state, as can be seen for u′

fs
/Ud = 0 in Figure 1(a),

for (t − t0) ≥ 20, where t is the dimensionless time and t0 is wake’s virtual
origin. By examining its development and statistical properties the wake was
found to be qualitatively comparable with previously reported and current ex-
perimental data, e.g. [1, 3, 6], giving confidence in the chosen approach. The
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Fig. 1. DNS Results of the wake in the uniform and turbulent surroundings

wake’s turbulent energy balance for the same case (u′
fs
/Ud = 0) is presented

in Figure 1(b). Later, several isotropic turbulent fields were generated each
having different initial ratios of turbulent intensity to wake deficit velocity
(u′

fs
/Ud = 0.1, 0.18 and 0.37). Finally, the self-similar wake and the turbulent

background were combined with two constraints: the background turbulence
was inserted at all locations outside the mean wake (defined by the region in
which the velocity was below 1% of the centre-line value) and to all places
inside the mean wake where the turbulence kinetic energy (TKE) was smaller
than 5% of the maximum TKE.

ton’s 3x2 wind tunnel on the far axisymmetric wake behind a disk in uniform
and turbulent streams, with a disk Reynolds number based on its diameter,
D, of about ReD = 15000. The wind tunnel’s test section dimensions are
0.6m×0.9m×4.5m and it is equipped with a speed control system, a two-
dimensional automated traverse system and standard constant temperature
hot wire anemometry systems. All those devices are controlled simultaneously
by a single computer using the EnFlo software (from the University of Surrey)
in order to reduce measurement errors – repeatability error in our flow mea-
surements is less than 0.2%. The wind tunnel’s free-stream intensity is below
about 0.2%. Higher turbulence levels are generated using two aluminium bi-
planar grids with the same solidity d/M ∼= 0.27, where d is the square bar’s
diameter (12.7 mm) and M is the mesh spacing. A 90◦ conical disk with base
diameter of D = 10 mm is mounted in the centre of the test section using a set
of Berkley Whiplash Braid Moss Green fishing lines with cross-section diam-
eter of 0.06 mm (the wire’s Reynolds number is about 166 times smaller than
the disk’s) and with its base facing upstream and perpendicular to the flow.
Measurements behind the disk in the uniform stream were found to be compa-
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Fig. 2. Experimental results of the wake in uniform and turbulent surroundings

rable to previously reported data, e.g. [1, 3, 6], both in the wake’s decay rate
and the TKE balance. For the latter, the dissipation rate was extracted from
the energy spectra using its universal form in the inertial subrange, Equation
1, and then factored to ensure that the balancing transport term integrated
to zero across the wake. The resulting TKE balance is presented in Figure
2(b) and the dissipation factor required was some 17%.

E11 =
27
55
ε2/3κ−5/3, (1)

where, E11 is the one-dimensional spectra in the axial direction of the wake,
ε is the local dissipation rate and κ is wave number.

Not surprisingly, it was found from both the DNS and the experiments
that the wake decays quicker with the presence of the free-stream turbulence.
Moreover, our DNS results, presented in Figure 1(a), also show that the wakes
decay increasingly quickly as the free-stream turbulence levels increase. We
anticipate that our next set of experiments will confirm that result.

The DNS data also show that the effects of the turbulent free-stream do
not occur instantaneously but over a period whose duration is a function of
the ratio u′

fs
/Ud, as can also be deduced from Figure 1(a) – the more intense

is the free-stream turbulence, the shorter is this ‘penetration’ process. This
feature will perhaps be less clear in the experiments, since in that case the
free-stream turbulence is present right from the start of the disk’s wake and
will effect the initial conditions of what would be, in the absence of free-stream
turbulence, the self-similar far-wake region. Nevertheless, we do not anticipate
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that this will prevent the general effect of increasingly rapid wake decay with
increasing free-stream turbulence.

It was also noticed that after long times in the DNS or long distances in the
experiments the rms velocities inside the wake are eventually determined by
their values in the free stream; an example from the laboratory experiments is
given in Figure 2(a). Since in the DNS the free-stream turbulence was isotropic
one might think that with time the turbulence inside the wake would become
isotropic also. Careful examination of the turbulent shear stress profiles reveals
that that is not the case. The turbulent shear stress does not decay to zero,
although the rms velocity profiles do tend to become uniform and equal to
the external values. A similar trend was noticed in our experimental results,
e.g. Figure 2(a), where (as usual with grid turbulence) the free-stream was
not exactly isotropic but certainly had zero shear stress. It must thus remain
true that the normal stress contributions to the momentum budget are small,
so that the shear stress roughly follows the mean velocity gradient as usual
([5]) but with, no doubt, a continuously enhanced eddy viscosity.

In conclusion, our study has shown that the presence of free-stream tur-
bulence strongly effects the wake’s decay rate and effectively destroys its self-
similar character. It is also clear that, as expected from the strongly enhanced
decay rates, the turbulence in the free-stream eventually dominates turbu-
lence inside the wake, although shear stress remains strongly linked to mean
flow gradients.

We would like to acknowledge the School of Engineering Sciences at the
University of Southampton for funding E.R. via a research scholarship. We
also thank the UK’s Turbulence Consortium, UKTC, for providing computer
time on the UK EPSRC HPCx IBM supercomputer under EPSRC grant num-
ber EP/D044073/1. The experiments could not have been undertaken without
the dedicated efforts of the School’s technician staff, for whose help we are
very grateful.
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Introduction. The deterministic turbulence method was developed in ex-
periments [1] along with substantiation of the idea of existence of the deter-
ministic wall turbulence. The present paper demonstrate how efficiently this
approach can be used for investigations of various localized impacts on the
turbulent boundary layers by the example of well-known Large Eddy Break-
Up (LEBU) devices, the comprehensive explanation of functioning of which
remained unclear. The present study clarifies the physics of this mechanism.

Definitions. The idea of the deterministic wall turbulence was advanced
recently in [1] and [2] based on experimental data and on the idea on uni-
versality of turbulence production mechanisms in transitional and turbulent
wall shear flows [3]. This idea consists in the following. By the stochastic tur-
bulence, we mean the turbulence, which microscopic structure (the instanta-
neous spatial velocity field of fluid particles) can not be reproduced repeatedly
(although the average structure - can be reproduced). By the deterministic
(causal) turbulence, we mean the flow, which microscopic structure can be
reproduced repeatedly from one realization to another at reproduction of the
same initial conditions for perturbations incoming into the boundary layer.

Assumptions. There are some boundary layers in which laws of flow
evolution are deterministic, while the stochastic properties result entirely from
external perturbations amplified by various instabilities. We also assume that
if all instabilities in these boundary layers are convective then weak stochastic
external perturbations may not have enough time to be amplified. Under these
assumptions the flow may remain deterministic even if it is turbulent.

Deterministic Turbulence. It was shown in [1] and [2] that the deter-
ministic (reproducible) turbulence actually exists in nature and can be gener-
ated experimentally in some boundary-layer flows. Besides important philo-
sophical meaning, this result provides investigators with a very powerful tool
of subsequent turbulence research. An example of one of possible efficient
application of this tool is presented below.
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formed in a self-similar boundary layer with Hartree parameter βH = −0.115.
The setup was also similar to that described in [1]. A special disturbance gen-
erator, called VS-II (see e.g. [4]) excited in a laminar boundary layer some
weak initial 3D instability waves, which induced the laminar-turbulent tran-
sition. The excited disturbances had a pseudo-random component, which was
periodic at very large time scales, which exceeded significantly all character-
istic time-scales of the stream. Starting from certain streamwise coordinate
the resulting flow was fully turbulent from the generally accepted viewpoint.
This conclusion is supported by: (i) comparison of mean-velocity profiles with
turbulent one measured in classical experiments [5] (Fig. 1, left), (ii) dis-
turbance spectra with typical power laws: -3/2 one in Kolmogorov’s range
of inertial scales and -7 one in Heisenberg’s small-scale range (Fig. 1, right),
and (iii) wall-normal disturbance intensity profiles of very typical shape and
amplitude near the wall (Fig. 2, left). However, simultaneously, this turbu-
lent flow is deterministic, i.e. periodically reproducible (see fields of coherence
coefficients C = u/ud in Fig. 3, left; here u is total fluctuation intensity,
while ud is its deterministic, ensemble averaged part. This flow was studied
in detail by a hot-wire in absence and in presence of LEBU-devices. As the
result, we have obtained several four-dimensional (x, y, z, t) data arrays used
for subsequent analysis. Each of them represented a ’snapshot’ of one (among
infinite number) of possible realizations of the turbulent flow.

Fig. 1. Mean velocity profiles and spectra in post transitional boundary layer in
absence of LEBU in comparison with [5] and power laws. Δx is distance from LEBU.

LEBU-Devices. LEBU-devices represented thin plates with chord lengthes
of 4 and 8 mm (LEBU #1 and #2) installed (one by one) at a distance of 4.2
mm from the wall (δ was about 8 mm) at streamwise coordinate x=500 mm
from the leading edge. These devices were shown to produce 5 and 10% vis-
cose drag reduction, respectively (see Fig. 2, right). The underlying physical
mechanisms have been clarified based on analysis of the instantaneous flow
fields, which were almost exactly the same upstream the LEBU location in all
three studied cases (no LEBU, LEBU #1, and LEBU #2).

Present Approach. Similar to [1] and [2] the present experiment was per-
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Fig. 2. Wall-normal disturbance profiles (left) and relative drag reduction (right).

t

Fig. 3. Coherence filed without and with LEBU (left) and positive spikes induced
by ring-like vortices in wall region (right).

LEBU Mechanism. Shown in Fig. 4 are cross-sections by the (t, y)-
plane of instantaneous fields of the streamwise velocity disturbance obtained
in absence (a) and in presence (b) of LEBU #2 device. It is seen that far
downstream LEBU suppresses near-wall structures. However, it is found that
closer to the streamwise LEBU location the initial distortions are observed
only at wall-normal distance of the LEBU-device position (not shown). As
was found in previous experiments (see e.g. [3]), ring-like vortices generated
continuously by Λ- (horseshoe-) vortices and propagated near the boundary-
layer edge, induce in the near-wall region some strong disturbances (’posi-
tive spikes’) (Figs. 3 right and 5), which enhance instantaneous and average
friction and play a role of priming disturbances in launching new coherent
vortical structures. Due to weakening of ring-like vortices by LEBU-devices
(Figs. 5a, b) the wall domain becomes less perturbed (Figs. 5c, d) and the
formation of new wall structures is partly blocked. These factors lead to a
significant reduction of fluctuation intensities and skin friction (Fig. 2).

This work is supported by the Russian Foundation for Basic Research
(grant N 08-01-91951).
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Fig. 4. Suppression of instantaneous vortical structures by LEBU (side view).
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Fig. 5. Distortion of ring-like vortices by LEBU (a, b) resulting in reduction of them
and near-wall ’positive spikes’ observed downstream (c, d) (end view).
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1 Introduction

In free shear flows (jets, mixing layers and wakes) there is an highly con-
torted interface dividing the turbulent from the non-turbulent flow: the
turbulent/non-turbulent (T/NT) interface. Across this interface important
exchanges of mass, momentum and heat take place, in a process known as
turbulent entrainment. Recently, the classical idea of the turbulent entrain-
ment caused by engulfing [1] have been questioned, and it has been shown
that the entrainment is mainly caused by small scale eddy motions (nibbling)
[2, 3]). However, it is still argued that the entrainment rate is still largely gov-
erned by the large scale motions induced by the intense vorticity structures
(IVS). The goal of the present work is to assess characterize the geometry
and analyze the influence of these large scales structures in shaping the tur-
bulent/nonturbulent interface.

2 Direct numerical simulation of a turbulent plane jet

The present work uses a direct numerical simulation (DNS) of a turbulent
plane jet in temporal development at Reλ ≈ 120 [4]. The simulation uses a
classical finite difference Navier-Stokes solver using pseudo-spectral schemes
for spatial discretization and a 3rd order Runge-Kutta time stepping scheme
for temporal advancement [4].

A well known result which can be easily observed in the DNS data bank
(Fig. 1) is that the shape of the convolutions of the T/NT interface is of the
order of the length scale of the large scale vortices.

3 Results and discussion

The intense vorticity structures (IVS) were detected and their axis was iso-
lated using the procedure described in [5]. The statistics of the IVS were
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Fig. 1. Turbulent/non-turbulent interface with underlying large scale vortices iden-
tified through pressure contours.

computed in the whole turbulent region and then compared with results ob-
tained in isotropic turbulence. Fig. 2 shows that the radius of the vortices
near the edge of the plane jet tend to be bigger than in isotropic turbulence.
Moreover, they tend to display stronger levels of vorticity and length. More-
over, in the jet these vortices tend to align with the tangent to the T/NT
interface, particularly closest to the interface.

Fig. 2. Probability density functions (pdfs) of the vortex radius in kolmogorov units.
In the plane jet case the higher values of the radius are due to the contribution of
the vortices near the edge of the jet.

An interesting issue found in reference [4] concerns the existence of strong
regions of intense, (almost) "irrotational" viscous dissipation near the T/NT
interface. Some of these regions are displayed in red in Fig.(3). Either these
regions are caused by small scale nibbling motions or by pure shear induced
by the IVS. By decomposing the viscous dissipation field into local (caused
by the near field vortices) and nonlocal (caused by background turbulence)
as suggested by [6], we show that the irrotational dissipation regions are in-
deed caused by the presence of strong nearby IVS. This result has important
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consequences in issues such as scalar dissipation in the edge of a jet diffusion
flame, with impacts in mixing and combustion.

Fig. 3. Cut from the turbulent plane jet DNS. The figure shows the intense vor-
ticity structures (grey) and the jet edge (T/NT- dark). An instantaneous profile of
enstrophy (blue) an viscous dissipation (red) are also shown (the viscous dissipation
is only shown outside the turbulent region).
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Numerous studies of turbulent jets have contributed to a better understand-
ing of the flow physics with applications in vehicle engineering, power genera-
tion or chemical industry. Different configurations (e.g. single jet in quiescent
environment, jet in cross-flow) have receive much attention whereas only few
studies focused on the case of a jet issuing into a uniform counter-flow (JiCF).
Among important studies, Bernero and Fiedler [1] evidenced some large scale
flapping like motion but restricted their analysis to plane data. Tsunoda and
Saruta [2] highlighted the bimodal shape of the scalar pdf as a consequence
of the large scale fluctuation. The purpose of the present work is to forther
increase the understanding of the JiCF with the focus on identifying the large
scale coherent structures using 3D LES data. In the LES framework, we con-
sider the filtered incompressible continuity and momentum equations [3]. The
subgrid scale (SGS) term is modeled using a classical eddy viscosity type
model based on the Filtered Structure Function Model by Ducros et al. [4].
To solve the filtered governing equations on Cartesian grids a high-order finite
difference code is used.

The spatial discretization is done using a fourth order centered scheme.
However, for the convective terms a small portion of hyper-viscosity is added
to the fourth order scheme, for stability reasons. A second order implicit finite
difference scheme is used for time discretization. Multi-grid iterations are used
to solve the implicit parts of the system. These advantages make the present
approach suitable for LES of turbulent flows, in particular jets, e.g. Maciel et
al. [5].

A commonly followed post-processing procedure consists of computing
mean and RMS fields of the velocity variables. However, information related
to large scale coherent motions is lost. We seek to supplement the mean and
RMS fields by employing Proper Orthogonal Decomposition (POD) and we
focus on the most energetic eddies/modes. Consequently, one seeks to project
the turbulent flow field on a vector base that maximizes the turbulent kinetic
� also at Haldor Topsoe A/S, DK-2800 Lyngby
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energy content for any subset of the base. It allows an accurate description of
the turbulent data using only few modes [6]. The method results in solving a
large eigenvalue problem, which we do using Sirovich’s method of snap-shots
(e.g Smith et al. [7]) to reduce the computational cost.

and Fiedler [1]. The numerical setup models a jet of diameter D issuing into
a counter-flow area of 10D*10D. The velocity ratio (jet bulk velocity / coflow
bulk velocity) is set to 2.2 while the Reynolds number based on the jet bulk

sists of about 2 · 106 cells with 30 cells across the diameter D. The time
step is set so that the Courant number is at most 0.3. The averages and POD
modes are computed using around 1500 snapshots collected over 400T , where
T = D/U0. Since the incoming fluctuation intensity is barely detectable in
the experiments of Bernero and Fiedler [1] we model the jet inflow by a lam-
inar top-hat profile for the streamwise component of the velocity vector. The
counter flow is laminar and uniform. At the outlet, the flow is assumed to
have a mass conservative zero gradient.

Figure 1 shows an instantaneous iso-surface of 0.5U0 (green) and a visual-
isation of the vortex cores using the λ2 technique [8] (gray). One may notice
that contrary to a jet issued into a quiescent surrounding or a co-flow, the jet
in counter-flow exhibits a fast transition. The jet core is in this case only two
nozzle diameters long and although the counter-flow is laminar and the flow
issued from the nozzle has a fairly low Reynolds number the fluctuations be-
come very high. This can be attributed to the countinous feed back upstream
in the shear layer.

In order to focus on the large fluctuation dynamics, we decompose the
flow in orthogonal proper modes. Figure 2 shows the first four POD modes
in the centre plane of the jet. Mode 0 is the mean flow showing a short jet
core and clean axi-symmetry. Mode 2 can be interpreted as an axial pulsation
(azimuthal Fourier wave number m=0) which is strong about 4D downstream
of the nozzle (at the end of the jet penetration). Unlike free jet, it barely
affects the jet shearlayers and has its maximum at the centerline. The mode
pair mode 1 and 3 can from this view be considered as a flapping motion,
which is infact how they were interpreted by Bernero and Fiedler [1]. However,
considering the modes in the plane perpendicular to the main flow direction
one can clearly see that this is a rotation of the jet core. This is visible in
Figure 3 showing the first four modes at 6D down stream of the nozzle.

To find the frequencies of the modes one may Fourier transform the co-
efficients ai (t). In doing so we find that modes 1 and 3 are associated with
Strouhal number StfD/U0 = 0.01 describing a slow rotation around the axis.
Mode 2 corresponds to St = 0.013, again the axisymmetric pulsation is slow
compare to a typical shearlayer instability.

We consider a set-up similar to the experiments conducted by Bernero

velocity (U0) and the nozzle diameter is 2860. The computational grid con-
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Fig. 1. A snapshot of the streamiwse velocity in the plane Y/D=0
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Fig. 2. The first four modes from POD in the centre plane of the jet.

Fig. 3. The first four modes from POD at Z/D=6.
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We study, by means of DNS up to 5123 resolution (corresponding to Reλ 	
180), the dynamics of pointwise particles passively advected by a turbulent
fluid. To describe the particle dynamics we integrated numerically the Maxey-
Riley equations for the so called “point-particle” model:

dv
dt

= β
Du
Dt

+
1
τS

(u− v). (1)

Here v is the particle velocity, while u is the fluid velocity at the particle
position, which is evolved by the (incompressible) Navier–Stokes equation

Du
Dt

≡ ∂tu + (u ·∇)u = −∇P + ν�u + f (2)

where P is the pressure and f an external force injecting energy inside the
system. The two parameters characterizing the type of particle are the den-
sity ratio β = 3ρf/(ρf + 2ρp) (ρf and ρp being respectively the fluid and
particle densities), and the Stokes time τS (or equivalently the Stokes num-
ber St = τS/τη, that is the ratio of the Stokes time over the Kolmogorov
time). We focus on the connection between preferential concentration of par-
ticles with the underlying topological Eulerian structures in general and with
vortex filaments in particular. We characterize the latter by tracking particles
lighter than the fluid, which tend to accumulate around vortex filaments [1, 2],
actually falling into them and remaining trapped [3, 4], and looking at the
temporal evolution of the momentum of inertia of bunches of particles, M(t)
defined as

M(t)
def
=

1
N

N∑
i=1

[r(i)(t)− rCM (t)]2 (3)

where rCM (t)

rCM (t) =
1
N

N∑
i=1

r(i)(t)
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describes the barycentric motion of the bunch. For some bunch of light parti-
cles, the momentum of inertia may remain very small for long times, indicating

The preferential concentration of heavy/light particles inside/outside vortex
filaments can be also quantified by looking at the fluctuating autocorrelation
time (τ1/2) of the instantaneous vorticity magnitude, ω(t) = ||ω(t)||, along
particle trajectories:

τ1/2
def
= min

{
τ

∣∣∣∣ ω(t + τ)
ω(t)

= 1 ± 1
2

}
(4)

In figure (1) the probability density functions of such autocorrelation times
are plotted for different values of the density ratio β ∈ [0; 3] at comparable
values of the Stokes number. From their analysis we found a larger persistency
of vorticity fluctuations along light particle paths than for heavy particles,
supporting the idea that vortex filaments are somehow quasi–coherent objects
moving randomly in the flow. The intense clustering of light particles, due
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Fig. 1. Log–lin plot of the PDFs of “decoherence” times τ1/2 defined as the least
instant of time at which ω(t + τ1/2)/ω(t) = 1 ± 1/2, ω(t) being the magnitude of
the vorticity along the Lagrangian trajectory. It is to be noticed that for different
particles, with approximately the same Stokes number (that is same degree of in-

ertia), increasing β, hence going from heavy to light particles, one observes much
larger tails, until values of around τ1/2 = 40τη.

to such trapping phenomena inside vortex filaments, has a dramatic impact
on their long term pair dispersion. To show that, we study the statistics of
relative distances among particles. In figure (2) we plot the probability density

a strong tendency toward preferential concentration inside vortex filaments [5].
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Fig. 2. Evolution of the PDF of light particles separations. Starting from a homoge-
neous initial condition (all particles displaced within relative distances R ∈ [4η; 6η]),
light particles fill, as time goes on, the small–scale elliptic Eulerian topological struc-
ture and correspondingly the PDF develops a large tail at very low R values. Such

tail shows a power law behaviour, which is consistent with the prediction R
D

2 −1, as
depicted by the solid straight line.

functions (PDF), at various instants of time, of distances of pairs of light
particles (β = 3.0, St = 1.23) with a given initial separation (in particular
we had R ∈ [4η; 6η] at t0, with R and η being respectively the pair distance
and the Kolmogorov length). The most interesting feature, signature of the
clustering inside very small–scale vortex filaments, is the development of a
fat tail at extremely low R values, which persists until times of the order
of the integral time–scale. This is another example of small-scale focusing
by turbulent flows. As it is also highlighted in the figure, such tail goes as a
power law of R. From the exponent we can extract the value of the correlation
dimension D2 of the fractal set on which particles accumulate [6]. We find a
value D2 ≈ 0.6, indicating that for those particles the small–scale attractor
is less then one dimensional. At changing β and St one finds different D2

dimensions [6]; as an example, in figure (3) we show the analogous of figure
(2), that is the time evolution of the pair distances PDF, for a different kind
of particles (β = 2.0, St = 0.3). In this latter case our exstimate for the
correlation dimension is D2 ≈ 2.0, thus confirming that the clustering becomes
less intense when the density ratio β is lowered.

The strong clusterization of light particles inside very singular attractors is
certainly one of the major problems for many applied modelisations of particle
dispersion in turbulent flows.
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Fig. 3. PDFs of particle separations plotted according to the same criteria of figure
(2) but for a case with lesser degree of clusterization (β = 2.0, St = 0.3). Again
the self–similar power law filling of small scales is in agreement with the theoretical
results [6] and from the stationary distribution we determine in this case D2 ≈ 2.0.
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1 Introduction

The appearance of secondary flow of Prandtl’s second kind is a well-known
phenomenon in fully developed turbulent rectangular duct flow. The intensity
of the secondary flow is two orders of magnitude smaller than that of the
mean streamwise velocity; however, it plays an important role in the cross-
streamwise momentum, heat and mass transfer. Our recent study [1] revealed
that the mean secondary flow is a statistical footprint of the turbulent flow
structures, i.e. streamwise vortices and streaks which are observed in the near-
wall region, whose cross-sectional positions are constrained by the presence of
the side walls at marginal Reynolds number (approximately 1100, based on
the bulk velocity and the duct half width, corresponding to a friction Reynolds
number of about 80). In this marginal case, one low-speed streak associated
with a pair of counter-rotating streamwise vortices can exist over each wall and
they are self-sustained [2]. When considering the higher Reynolds numbers,
the increment of duct width in wall unit allows the simultaneous presence of
multiple low velocity streaks and pairs of streamwise vortices upon the wall.

Direct numerical simulations of fully developed turbulent flow in a straight
square duct were performed at moderate values of Reynolds numbers. The
main motivation of our study is to unravel the relationship between coherent
buffer layer structures and the mean secondary motion at Reynolds numbers
larger than the marginal value.

2 Numerical methods

We consider an incompressible viscous fluid flowing through an infinite
straight square duct. The Navier-Stokes equations are solved by means of
a pressure correction method. We use an implicit scheme for the viscous
terms, and a three-step Runge-Kutta method for the non-linear terms [3].
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For the spatial discretization, Fourier expansion is employed in the stream-
wise (x) direction, while Chebyshev-polynomial expansions are used in the
cross-streamwise (y, z) directions. The nonlinear terms are evaluated pseudo-

nalisation technique [4]. In the following we present results from simulations
performed at several Reynolds numbers, Reb ≡ ubh/ν ≤ 3500 where ub is the
bulk mean velocity, h is half the duct width, and ν is the kinematic viscosity

more, for each case the number of Fourier modes was chosen such that the
streamwise grid spacing was below 15 wall units, and the number of Cheby-
shev polynomials was adjusted such that the maximum cross streamwise grid
spacing was less than 6 wall units.

3 Results

Figure 1 shows the mean streamwise vorticity and cross-streamwise velocity
in the cross-section. At a bulk Reynolds number of Reb = 1500 (correspond-
ing to a skin friction Reynolds number of 100), the cross-streamwise length
scale of streamwise vortices, is comparable with that of the mean secondary
flow, implying that the mean secondary motion is a statistical footprint of
the coherent structures whose cross-sectional positions are constrained by the
presence of the side walls [1]. At higher Reynolds numbers, the smallest co-
herent structures which are still constrained by the side walls in the corner
regions affect the mean streamwise vorticity near the corner, but the mean
secondary flow seems to scale with the geometrical size of the duct possi-
bly because of the presence of large scale motions. Figure 2 shows the time
evolution of spanwise position of low speed wall streaks computed by extract-
ing the local minimum points of wall shear profile from streamwise averaged
instantaneous velocity fields. The number of low speed streaks, which are
associated with counter-rotating quasi-streamwise vortices pairs constrained
by the presence of the side walls, increases in an almost discrete fashion in
the considered range of Reynolds numbers. It can be seen that at the lowest
Reynolds number a single low speed streak meanders around the center of the
duct edge in Fig.2 (a). When increasing the Reynolds number more than one
simultaneous streak is detected. At the highest value of Reb, the probability
of finding a low speed streak becomes uniform along the edge (like in a plane
channel flow) except for the corner regions. This behaviour is consistent with
the observed flattering of the local mean wall shear stress and the preferential
location of low speed streaks in the corner region also contributes the local
minimum in Figure 3 (Reb = 2200, 3500). Therefore, a clear dependence of
the mean flow upon the Reynolds number stems from the preferential number
and positioning of buffer layer structures along the edge.

Poisson problems for each Fourier coefficient are solved by the fast diago-
spectrally with full dealiasing in the streamwise direction. The Helmholtz and

of the fluid. In our simulations a constant mass flow rate is imposed. Further-
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Fig. 1. (a) Secondary mean flow averaged over all quadrants represented by vectors.
(left), Reb = 1500; (center), Reb = 2200; (right) Reb = 3500. The cross-streamwise
component is shown by vectors and the streamwise component is represented by
iso-contours. (b) streamwise vorticity field: ——, iso-contours of positive vorticity;
– – – –, negative vorticity.

In summary, coherent buffer layer structures play a crucial role in the
formation of the mean secondary motion and the characteristic profile of
wall shear stress even when increasing the Reynolds number. However, in
the present study the scale of coherent structures are not sufficiently sepa-
rated from the largest duct-width scale. The more investigations at higher
Reynolds numbers are needed to reveal other possible dependence upon the
Reynolds number of the mean flow which is related with the largest allowed
coherent motions.
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Light and heavy particles behave completely different in a turbulent flow
field. In the present communication we discuss how one can discriminate
between light and heavy particle behavior and how the important class of
intermediate particles is identified. This latter class of particles exhibit chal-
lenging dynamics since they are affected both by inertia and Stokes drag, i.e.
dv/dt=St−1(u−v), where u and v are the Eulerian fluid and Lagrangian par-
ticle velocities. This Lagrangian equation is expressed in non-dimensional form
where t and St denote time and particle relaxation time τ = 2/9(ρp/ρf )a2/νf

normalized by an arbitrarily chosen time scale. This expression for τ is ap-
plicable for spherical particles with radius a smaller than the smallest length
scales of the flow and provided that the particle Reynolds number is below
unity. However, for the dimensionless particle relaxation time St, i.e. the so-
called Stokes number, to play a distinguishing role in the particle dynamics,
the choice of time scale becomes essential. With a properly selected time scale,
the particle motion is dominated by Stokes drag if St<<1 and by inertia if
St>>1.

The prevailing choice of time scale for particulate channel and pipe flow is
the viscous time scale ν/u2

∗ (e.g. [1, 2]). This choice is convenient since u∗ is
readily available in LES and DNS studies. The viscous time scale is, however,
consistently smaller than the Kolmogorov time scale tk = (ν/ε)1/2 in turbu-
lent channel flows. The DNS data in Fig. 1 shows that the Kolmogorov time
scale increases monotonically from about 2ν/u∗2 at the wall to more than
10ν/u2

∗ beyond z+ = 100 for some different Reynolds numbers. Here, Re is
based on the friction velocity and the wall separation 2h.

The role of the Stokes number on the particle dynamics is illustrated in Fig. 2
and 3 , which show results from a DNS of particulate channel flow at Reynolds
number Re = 360. Some results from these simulations focusing on the parti-
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Fig. 1. Ratio between Kolmogorov time scale and viscous time scale.
Re=200(Squares), Re=360(Circles), Re=1000(Triangles)

cle spin have been presented by Mortensen et al.[2]. The streamwise particle-
velocity correlation exceeds the fluid-velocity intensity even for the lightest
particles (St = 0.075) but almost collapses with the conditionally-averaged
fluid-velocities in the particle positions. It is well-known that particles tend
to accumulate in regions of locally low streamwise fluid velocity near the
wall. Such so-called preferential concentration has been addressed by Eaton
and Fessler [3] and Marchioli and Soldati [4]. It is evident that the present
light particles preferentially concentrate in low-speed regions and that inertia
has no direct effect. The particle-velocity correlations of the heavier particles
(St = 2.24) are substantially different from the fluid-velocity correlations due
to the influence of Stokes drag.

The present results imply that the light and heavy particles behave funda-
mentally different, i.e. inertial effects are negligible for the lightest particles
(St = 0.075 < 1) but not for the heavier ones (St = 2.24). Here, the Stokes
number is based on the Kolmogorov time scale. If we instead followed the
prevailing practice and scaled with the viscous time scale, the Stokes numbers
for the light and heavy particles become 1 and 30, respectively. The latter
choice of time scale does not suggest that the light particles are in the drag-
dominated regime.

If the covariance < ui(xp)vi(xp) >1/2 ≈ < vi(xp)vi(xp) >1/2, it might be
tempting to assume that < ui(xp)ui(xp) >1/2 ≈ < vi(xp)vi(xp) >1/2, as was
incorrectly done by Vance et al. [5]. The covariance between the fluid and
particle velocities has, however, to obey the Cauchy-Schwartz inequality:

< ui(xp)vi(xp) >2 ≤ < ui(xp)ui(xp) >< vi(xp)vi(xp) > (1)

If the covariance < ui(xp)vi(xp) >1/2 ≈ < vi(xp)vi(xp) >1/2, as for relatively
light particles, it can be only be inferred that
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Fig. 2. Correlations between streamwise velocity fluctuations ux and vx for Re
= 360. Stokes number based on the Kolmogorov time scale. St=0.075(upper),
St=2.24(lower).
(ooo ux,rms; -.-.- < ux(xp)ux(xp) >; — < vx(xp)vx(xp) >; - - - < ux(xp)vx(xp) >)

< ui(xp)vi(xp) >1/2 ≤ < ui(xp)ui(xp) >1/2 (2)

It can therefore not be concluded that the particles passively follow the fluid
and inertia does not play any role.

Particle concentrations C(z+) are shown in Fig. 4 and 5 for two different
Reynolds numbers and four different Stokes numbers. At both Re, the parti-
cle concentration at the wall increases with particle response time and reaches
a maximum when St=3.0 (i.e. of order unity). At both Reynolds numbers, the
largest tendency of the particles to concentrate preferentially in the near-wall
layer is found at St=3.0, while the concentration is lower both for lighter and
heavier particles. The particle concentrations for St=3.0 seem to be indepen-
dent of the Reynolds number, whereas the concentration increases with Re
for the lighter particles. Picciotto et al.[6] found the maximum concentration
at St≈25 for Re=300. They based their Stokes number on the viscous time
scale which is an order of magnitude smaller than the Kolmogorov time scale.

In conclusion, the prevailing use of the viscous time scale is unsuitable to
distinguish between light and heavy particles suspended in a turbulent wall-
flow.
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Fig. 3. Correlations between spanwise velocity fluctuations uy and vy for Re
= 360. Stokes number based on the Kolmogorov time scale. St=0.075(upper),
St=2.24(lower).
(ooo uy,rms; -.-.- < uy(xp)uy(xp) >; — < vy(xp)vy(xp) >; - - - < uy(xp)vy(xp) >)
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Dynamics of inertial particles is addressed in a homogeneous shear flow as the
prototype of statistically steady anisotropic flows. In this simple flow, velocity
fluctuations are strongly anisotropic at the largest scales where production
of turbulent kinetic energy is active i.e. at scale separation r > LS (LS =√

ε/S3 denote the shear scale) while re-isotropization is expected for smaller
separations r < LS [6]. Since anisotropy is strongly depleted through the
inertial range, the advecting field anisotropy may be expected in-influential
for the small scale features of particle dynamics. We find instead that the
small scales of the particle distribution and particles velocity fluctuations are
strongly affected by the geometry of turbulent fluctuations at large scales even
in the range of scales where isotropization of velocity statistics occurs.

Inertial particles differ from perfectly Lagrangian tracers due to inertia
which prevents them from following the flow trajectories. The main effect
consists of “preferential accumulation” that leads to small-scale clustering
for locally homogeneous and isotropic flows [1] and to turbophoresis in wall-
bounded flows i.e. preferential spatial segregation at the boundary [3]. The
statistically steady homogeneous shear flow retains most of the anisotropic
dynamics of wall bounded flows still preserving, spatial homogeneity. This flow
shares with the wall-layer streamwise vortices and turbulent kinetic energy
production mechanisms. Velocity fluctuations are strongly anisotropic at the
large scales driven by production while, for smaller separations, the classical
energy transfer mechanisms become effective in inducing re-isotropization.

The main contribution of the present paper is the quantitative evidence
that particles do not necessarily reduce their anisotropy at small scales both
in terms of clusters geometry and velocity statistics. Rather it may even grow
below the Kolmogorov length where the velocity field, is smooth and almost
isotropic.

A visual impression of the instantaneous spatial distribution of particles is
provided in figure 1, where slices of the domain in selected coordinate planes
are displayed for Stη = 1. Clustering is apparent and the distribution exhibits
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Fig. 1. Snapshots of particle positions for Stokes number based on Kolmogorov
timescale Stη = 1. Left column thin slice in the y−z plane; right column slice in the

x−y plane. The slice thickness is of the order of a few Kolmogorov scales. The mean

flow is in the x direction U = S y with S the mean shear. DNS data with a resolution

of 384×384×192 collocation points in a 4π×2π×2π periodic box. The Kolmogorov
scale is η = 0.02 corresponding to Kmaxη = 3.1. Ls/η 	 35 where Ls =

√
ε/S3

is the shear scale being ε the mean energy dissipation rate. Taylor-Reynolds number

Reλ =
√

5/(νε)〈uαuα〉 	 100 and shear strength S∗ = S〈uαuα〉/ε = (L0/Ls)
2/3 	 7

where L0 is the integral scale. Five populations of Np = 3 · 105 particles each are

evolved with Stη = 0.1, 0.5, 1.0, 5.0, 10.0, see [4].

voids, correlated with enstrophy regions and intertwined thin “stretched”
regions at the border of the voids where a large particle concentration is
achieved. Recently particle clustering have been described in terms of other
mechanisms such as the sweep-stick mechanism described in [7] which takes
into account more complex topological information of the fluid acceleration
field. The homogeneous shear flow manifest specific features associated with
the large scale anisotropy. The shear-induced orientation is apparent from the
bottom-left/top-right alignment of the sheet-like arrangement of particles in
the shear plane x − y, see the right panels of figure 1.

The main statistical tool is the radial distribution function (RDF) of par-
ticle pairs g(r) which is a function of radial distance r, see e.g. [2] for isotropic
flows. The concept is extended to anisotropic cases by considering the num-
ber of pairs dμr = νr(r, r̂)dΩ contained in a spherical cone of radius r, with
axis along the direction r̂ and solid angle dΩ. By this definition the number
of pairs in the ball Br is Nr =

∫
Ω

νrdΩ, hence dNr/dr =
∫

Ω
dνr/dr dΩ. We

define the Angular Distribution Function (ADF) as

g(r, r̂) =
1
r2

dνr

dr

1
n0

, (1)

which retains information on the angular dependence of the distribution [4].
The RDF is the spherical average of the ADF g(r) = 1/(4π)

∫
Ω

g(r, r̂)dΩ

and is shown in figure 2, where a scaling behavior is apparent in the range
r/η ∈ [.1 : 1]. From the figure, particles with Stη ∼ 1 exhibit maximum
accumulation, i.e. the RDF diverges at a faster rate as r is decreased.

The strong anisotropy apparent in figure 1 however, needs a description in
terms of the more complete ADF which allows for a systematic evaluation of
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Fig. 2. Left: radial distribution function vs separation, for different Stokes number

Stη = 10, 5, 1, 0.5, 0.1 Right: ratio between the most energetic anisotropic sector

(2,−2) normalized by isotropic sector as a function of separation for different Stokes

number.

anisotropy. For given separation r, its angular dependence can be resolved in
terms of spherical harmonics, g(r, r̂) =

∑
∞

j=0

∑j

m=−j
gjm(r)Yjm(r̂) . In this

notation, the classical RDF g(r) is the projection of the ADF on the isotropic
sector j = 0, namely g00(r) ≡ g(r) =

∫
Ω

g(r, r̂)Y00(r̂) dΩ. The ADF provides
a quantitative account of the anisotropy induced by the fluid velocity field
on the disperse phase and can be effectively used to parameterize the level of
anisotropy through the scales in terms of the Stokes number.

The plot of figure 2 gives the normalized amplitude of the most energetic
anisotropic mode in absolute value–|g2−2|/g00–for our set of Stokes numbers
ranging from heavy to light particles. Focusing on the heaviest particles, Stη =
10, 5, the relative amplitude of the strongest anisotropic mode first increases
towards the small scales to reach a maximum at r ∼ �c. Below this scale
the anisotropy level decreases, until the very small scales become essentially
isotropic.

Particles with smaller Stokes numbers behave in a different way. The
anisotropy substantially increases to reach a saturation at small scales as
Kolmogorov scale is approached. It keeps an almost constant value below
η. In other words, the clustering process maintains its anisotropic features
even below the dissipative scale for sufficiently small Stokes number particles.
The saturation observed on the ratio g2−2/g00 implies that the dominating
anisotropic contribution inherits the same behavior of g00 ∝ r

−α. Looking at
the data for our lightest population, we cannot exclude that the singularity
exponent of the most significant anisotropic sector may even be larger than
those inferred from the RDF. Conversely, heavy particles appear to preferen-
tially concentrate on finite size patches, where they are more or less evenly
and isotropically distributed.

The behavior of light inertial particles is completely different from that
of velocity fluctuations which manifest two distinct isotropy recovery rates, a
smaller one observed in the production range above the shear scale and a larger
rate in the inertial transfer below, [6]. As a matter of fact, isotropy is always
recovered at dissipative scales, provided the scale separation Ls/η is large
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Fig. 3. Left: isotropic projection of 〈δv2〉 vs separation for particles at different

Stokes numbers (symbols) compared against corresponding projection of fluid velocity
increments 〈δu2〉 (line) evaluated at the particle positions. Right: comparison of the

anisotropy indicator 〈δv2〉(2−2)/〈δv
2〉(00) for particle velocity increments (symbols)

and fluid increments (solid line) at Stη = 1.

enough, i.e. at sufficiently large Reynolds number. In this scenario we consider
particles velocity statistics. In fact, at small scales, clustering is essentially
anisotropic while the carrier phase is in the isotropy recovery range. In fact, we
find that particles velocity statistics measured in terms of the disperse phase
velocity increments 〈δvn(|r|, r̂)〉 differ considerably from those of the carrier
fluid, see figure 3 where the isotropic projection of 〈δv2〉 is compared with 〈δu2〉
which denotes the carrier fluid velocity increments evaluated at the particle
positions. A clear departure of the two statistics is observed at a length-
scale which can be estimated dimensionally as lp =

√
ε τ3

p . Isotropy recovery
of particle velocity fluctuations is addresses by considering the anisotropy
indicator 〈δv2〉(2−2)/〈δv2〉(00) i.e. the most energetic anisotropic projection
normalized with the isotropic sector, see figure 3. As the scale separation
approaches the smallest scales where clusters are formed, particles velocity
statistics are characterized by and enhancement of anisotropy in contrast to
those of the carrier fluid which in the range from Ls to η and below shows
instead a substantial decrease of directionality. Note the substantial increase
of anisotropy in the particles statistics when only colliding pairs are considered
(δv < 0) by comparing triangles and squares in figure 3. This might have a
substantial impact for modeling particles collision kernels in anisotropic flows.
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Introduction Particle acceleration in turbulent flows can be considered a
key issue for many environmental and industrial applications e.g. cloud for-
mation, atmospheric transport, combustion systems etc. It is thus, important
to understand the nature of the acceleration since it affects the collision rate,
the dispersion of droplets or particles in the carrier fluid.

Many experimental and numerical studies on particle acceleration can be
found in literature, but most of them deal with homogeneous and isotropic
turbulence rather than wall-bounded flows which represent the objective of
the present work. Previous studies focus mainly on the effect of inertia on
particle acceleration, the relationship between acceleration and fluid coher-
ent structures and the coupling between sampling and filtering mechanisms
exerted by the particles on the fluid.

Recent experiments in a turbulent boundary layer (Gerashchenko et al.
2008) revealed surprising trends for inertial particle accelerations in the near-
wall region. In particular, acceleration variance was seen to increase with in-
creasing inertia, contrary to what is found in isotropic turbulence (see Ayyala-
somayajula et al. 2008, Bec et al. 2006 among others).

To gain further insight into these findings we perform Direct Numerical
Simulations (DNS) of a horizontal channel flow with suspended inertial parti-
cles tracked in the Lagrangian frame of reference. The DNS parameters have
been chosen to match those of the experiment, based on boundary layer scal-
ing. Three swarms of particles with different Stokes numbers (0.8, 1.6 and
10.7) have been simulated. Results for the mean and rms profiles of particle
acceleration are in good agreement with the experimental findings. A coupling
between shear and gravity is considered the cause of high variance for high

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_83, 

343



Stokes number particles in proximity of the wall, as it will be discussed in the
following paragraphs.

Numerical Methodology A pseudo-spectral Direct Numerical Simulation
code has been used to compute the turbulent flow of air (incompressible and
Newtonian) in a horizontal channel. The reference geometry consists of two
infinite flat parallel walls with periodic boundary conditions in the streamwise
(x) and spanwise (y) directions and no-slip conditions at the walls. Dimensions
of the computational domain are 4πh× 2πh× 2h with h = 0.04 m or 300 wall
units, discretized with 256× 256× 257 grid nodes in x, y and z, respectively.
For a better comparison with the experimental work by Gerashchenko et al.
(2008), we chose the parameters for the simulation accordingly. The shear
velocity has been chosen equal to uτ = 0.112 m/s, thus the shear Reynolds
number becomes Reτ = uτh/ν = 300.

Three sets of 320,000 particles characterized by different diameter have
been tracked in a Lagrangian frame of reference, into the air flow. As for the
fluid we matched particle parameters with those employed by Gerashchenko
and co-authors. The Stokes number, calculated as the ratio of the particle re-
sponse time τp = D2

pρp/18ν to the flow characteristic timescale τf = ν/utau
2

has been set equal to St = τp/τf= 0.80, 1.60 and 10.7. Since the particle
density ρp is much higher than the one of the fluid, the equation for particle
motion reduces to a balance of the Stokes drag and gravity. Initially, particle
number concentration is uniform in the computational domain and particle
position is randomly chosen. The assumptions for particle modeling are: (i)
particles are point-wise (ii) nondeformable, (iii) rigid and spherical. The effect
of particles on the fluid is neglected so one-way coupling is assumed between
the dispersed and the carrier fluid.

Results and Discussion In this section results of the comparison between
the experimental work of Gerashchenko et al. (2008) and the present simula-
tion are presented. Before going into detail on particle acceleration it is useful,
for the following discussion, to compare the two flows in which particles have
been dispersed. In Figure 1 the mean fluid velocity profile in the two cases is
plotted. Good agreement is found close to the wall, whereas a slight deviation
is present at the center of the channel. This was expected, since the flow in the
simulation is bounded by an upper wall while a free stream boundary can be
considered in the experiments. Since the two flows compare well to each other
in terms of velocity we can consider half of a channel a good approximation
of a turbulent boundary layer and expect a good agreement also on particle
behavior.

In Figure 2-(a) the mean acceleration profiles for three Stokes number
particles are shown. In the streamwise direction, good agreement between the
DNS results and the experiments is observed. Slight discrepancies for Z+ < 10
can be the result of either difficulties in the measurements close to the wall
or the presence of boundaries on which the particles are bouncing in the
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Fig. 2. Streamwise component of the mean particle acceleration (a) and of par-
ticle acceleration rms (b) varying with Z+. Lines represent the simulations values,
symbols the experimental ones.

simulation. Comparing high order statistics it is possible to observe that ex-
perimental and simulation values compare well from a qualitative view point
while quantitatively slight differences are present. This can be associated to
the different fluid velocity faced by the particles in the two flows, as previ-
ously described. DNS results, indeed show lower values in correspondence to
the channel core, as visible in Figure 2-(b), where the streamwise component
of the rms of particle acceleration is plotted against the wall-normal direction.
Furthermore we can notice that in correspondence to the wall, the variance is
increasing with increasing Stokes number as described by Gerashchenko and
co-authors. This result confirms the difference of a wall shear flow from ho-
mogeneous and isotropic turbulence where a decrease in acceleration variance
is observed with increasing Stokes number as described in Bec at al.(2006).

In absence of gravity, particles are behaving as tracers, being their mean
acceleration in the streamwise direction equal to fluid particles, as visible
in Figure 3-(a). The slight deceleration close to the wall is found to be the
result of shear stresses in this region. A deviation from fluid particles has
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Fig. 3. Streamwise component of the mean particle acceleration (a) and of particle
acceleration rms (b) varying with Z+ in absence of gravity. Lines represent the
simulations values, symbols the experimental ones.

been observed in the acceleration variance for St = 10.7 particles, as visible
in Figure 3. Inertia plays an important role in decoupling particle velocity
from fluid velocity. Inertial particles filter high-frequency small vortices, giving
rise to a smaller acceleration variance close to the wall. Further analysis on
the effect of gravity and inertia is currently under investigation and will be
presented at the conference.

Conclusions Direct Numerical Simulation and Lagrangian particle tracking
techniques have been used to study particle acceleration in a turbulent hor-
izontal channel air flow. Results have been compared with the experimental
work of (Gerashchenko et al. 2008) to have a better insight on their surprising
trends for inertial particle accelerations in the near-wall region. Three sets
of particles have been released in the turbulent flow to evaluate the effect of
inertia on particle acceleration. Three main conclusions can be drawn: (i) we
confirm the results of Gerashchenko and co-authors on an acceleration vari-
ance increasing close to the wall with increasing Stokes number, (ii) a coupling
mechanism between shear and gravity forces is seen to be the main responsible
for this increase and (iii) in absence of gravity particles are behaving as fluid
tracers, but inertia effects are visible for larger particles.
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INTRODUCTION

Fibre suspensions exhibit complex dynamical flow phenomena and are at the
same time of immense practical importance, notably in the pulp and paper in-
dustries. NTNU and TU Delft have in a collaborative research project adopted
two alternative strategies in the simulation of dilute fibre suspensions, namely
a statistical approach [2] and a Lagrangian particle treatment [4]. The two ap-
proaches have their own advantages and disadvantages. In this paper we aim
for the first time to compare the performance of the two.

In the statistical approach followed by Gillissen et al. [2],[3] the turbulent
flow is handled from first principles, i.e. the turbulent field is obtained in a
direct numerical simulation. The fibres are modeled as cylindrical rods, whose
position and orientation are governed by a distribution function. This PDE is
integrated along with the integration of the Navier-Stokes equations for the
fluid motion by two-way coupling.

In the Lagrangian approach adopted by Mortensen et al. [4], [5] equations
of translational and rotational motion are solved for each and every particle
whereas the fluid motion is again obtained from a DNS. Forces and torques
from the surrounding fluid act on the particles and without consideration of
influence on the fluid, which is called one-way coupling. The fibres are modeled
as prolate ellipsoids and analytical expressions for the force and torque are
found in the literature[6]. Additional equations for the four Euler parameters
are integrated in time to determine the particle orientation. The particle mass
and shape are the essential parameters in this approach.

While the Lagrangian approach is limited to a finite number of particles,
say 105, the statistical approach assumes an infinite number of particles. On
the other hand, the statistical model assumes massless particles whereas the
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Fig. 3. Comparison of fibre orientation

Lagrangian model accounts for the particle mass through the particle response
time. However, it should be possible to compare the two distinctly different
approaches near the limit of zero mass, namely for small response times.

RESULTS

For this purpose we have used the Lagrangian approach and simulated el-
lipsoidal particles with aspect ratio 100 and with three rather different Stokes
numbers, where the Stokes number is the ratio between the particle relax-
ation time and the Kolmogorov time scale. For comparison with the statis-
tical approach, the moment approximation proposed by Gillissen et al. [3] is
chosen. The fibre suspension is driven by a fixed pressure gradient through a
plane channel. In the computation domain, x-axis, y-axis and z-axis are in the
stream-wise, span-wise and wall-normal directions, respectively. The friction
Reynolds number is 360 based on the wall distance.

L.H. Zhao, H.I. Andersson, J.J.J. Gillissen, and B.J. Boersma348



z+

τ i,j

100 101 1020

0.01

0.02

0.03

0.04

0.05

0.06 St=0.1
St=0.01
Moment approximation method

Fig. 4. Comparison of fibre stress τxx.

z+

τ i,j

100 101 1020

0.005

0.01

0.015

0.02 St=0.1
St=0.01
Moment approximation method

Fig. 5. Comparison of fibre stress τyy.

z+

τ i,j

100 101 1020

0.005

0.01

0.015

0.02 St=0.1
St=0.01
Moment approximation method

Fig. 6. Comparison of fibre stress τzz.

It is readily seen from Fig. 1, Fig. 2, Fig. 3 that the fibre orientations ob-
tained with the two different approaches nearly collapse for Stokes numbers
St = 0.01 and 0.1, i.e. for very light particles. For St = 1.0, on the other
hand, the heavier particles orient themselves rather differently from the mass-
less particles in the near-wall region. However, all of the results show similar
tendencies around the central region which means that particle orientations
are almost identical in the middle of channel independently of the response
time or Stokes numbers.

Further results of comparison of fibre mean stress are conducted. Results of
fibre stress τ by the moment approximation method [2] are compared with the
current Lagrangian approach with St=0.01 and St=0.1. Both results of mean
fibre stress are computed based on the equation given by Doi and Edwards [1]:

τ=2αS:<pppp> (1)
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Here α is the fibre concentration parameter which is set to 1.0 in the current
calculation; S is the rate of strain tensor of fluid; <pppp> is the fourth-order
moment.

Results are shown in Fig. 4, Fig. 5, Fig. 6. Both cases of St=0.1 and St=0.01
gave reasonable agreement with the statistical approach. However, the case
of St=0.1 gave better agreement than St=0.01 compared with results of the
moment approximation method around the central region in the channel. This
might be caused by the accumulation of numerical inaccuracies due to smaller
particle time stepping needed for the very light particle as St = 0.01, i.e. the
stiffness of the Lagrangian equation of motion.

Generally, in current work, the fibre orientations and the mean fibre stresses
are studied by means of the Lagrangian approach and compared with results
by statistical method of Gillissen et al.[2]. Three different cases of Stokes
numbers are tested and results with small Stokes number are in reasonably
agreement with results obtained with moment approximation method. Fur-
ther results which tend to justify the linkage between the two rather different
simulation approaches will also be presented.
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Summary. Dynamics of small inertial particles transported by a turbulent flow is
crucial in many engineering applications. For instance internal combustion engines
or rockets involve the interaction between small droplets, chemical kinetics and tur-
bulence. Small, diluted particles, much heavier than the carrier fluid, are essentially
forced only by the viscous drag i.e. the Stokes drag. The difference between particle
velocity V and fluid U produces various anomalous phenomena such as small-scale
clustering or preferential accumulation at the wall even for incompressible flows. To
stress the interaction between wall bounded flows and particle dynamics we have
performed a direct numerical simulation of a fully-developed particle-laden pipe flow.
Seven different populations of particles are injected at a fixed location on the axis of
the pipe and their evolution is analyzed for a streamwise extension of 200R ( with
R the pipe radius) to asses the onset of turbophoresis.

1 Results & discussion

The friction Reynolds number of the simulation is about 200, the numerical code was
tested in turbulent jets see [1] for details on the numerics. The whole domain is shown
in the top panel of figure 1. Particles injected at the axis are dispersed by turbulent
motions until they reach the wall where they accumulate due to turbophoretic effects.
The injection rate is fixed at 900 particles per Δt = R/U , no gravity force is present
in the simulation and no interaction between particles and back-reaction on the
fluid are considered (one-way coupling). Note the trend towards a homogeneous
distribution at large distance from the injection point.
The bottom panel represents the particles not too far from the injection point,
the colours show the “smoke lines” traced by the heavy particles with different
response time τp = 18d2

pρp/(ρfν) (dp, ρp are the particle diameter and density
respectively; ρf and ν are the fluid density and viscosity). Lines are corrugated by
the fluid velocity fluctuations resulting in a different particle dispersion. This effect
is due to the value of the Stokes number St+ that is the ratio between τp and
the characteristic time of the near wall region ν/U∗2. More generally it is possible
to distinguish a developing region and a far field. In figure 2 two cross-flow slices
in these two different zones are plotted. In the near region (25R, left panel) rod-
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Fig. 1. Snapshots of particle positions (St+ = 0.1, 10, 100 green, blue, and red
spheres). Top panel, view of the whole computational domain plotted in arbitrary
aspect ratio; bottom panel, enlargment of the near field region with colour encoded
istantaneous axial fluid velocity isocontours.

like structures and void regions are present. All particles (except the lightest ones)
show a preferential accumulation near the wall. In particular the heaviest (St+ =
100) are distributed around the wall more intermittently compared to the blue ones
(St+ = 10). On the contrary, in the developed region particles fill the whole domain,
although preferential accumulation is present near the wall especially for the heavier
particles St+ = 10 ÷ 100. Turbophoretic effects are negligible for lighter particles.

The mechanisms of particle dispersion and accumulation depends on the Stokes
number, see figure 3 displaying the mean concentration for two Stokes numbers
St+ = 0.1, 10 as a function of the axial distance at four characteristic wall normal
intervals i.e. viscous, buffer, log layer and bulk region. In the left panel (St+ = 0.1)
a uniform distribution for the whole section is reached at z/R ∼= 50, below this
value, the transient state can be observed with the gradual replenishment of all
zones from the axis to wall. A different behavior characterizes particles with St+ =
10 (middle panel) which present the maximum wall accumulation. In this case, at
z/R ∼= 15 the concentration in the buffer layer assumes the minimum value in the
cross-section. Here particles tend to be expelled away from this region originating
wall accumulation. In order to characterize with a single global index the particle
dispersion along the developing region and the preferential accumulation in the
far field, we make use of the Shannon’s entropy associated to the mean particle
concentration, as defined by:

Fig. 2. Instantaneous particle positions in a thin cross flow slice of thickness ∼ R/10
(same color coding as in fig. 1, symbol size increasing with St+). Left, near field
snapshot (distance from the releasing station 25R); right, far field (at 200R).
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Fig. 3. Left (St+ = 0.1) and middle (St+ = 10) plots: mean particle concentration
vs axial distance z/R in the four regions of the wall. Right plot: entropy of the mean
particle concentration vs z/R for each particle population.

S(z) = −
∑

i

Ni(z)

N(z)
ln

Ni(z)

N(z)
, (1)

where Ni is the mean particle number in a shell with volume Δzπ(r2out − r
2
inn)i, and

i denotes the cell centered at ri. All the shells share the same volume. N indicates

the entropy, normalized by the corresponding value of the uniform distribution, is
reported as a function of the axial distance. Where the entropy is maximum par-
ticles tend to assume an even distribution in the section. In the far field values of
entropy can give an indication of the preferential accumulation. From the right panel
of figure 3, all the particles start from the null entropy since they are injected in
a very small region on the axis. Downstream lightest particles (St+ ≤ 1) reach a
uniform and homogeneous spatial distribution at z 	 50R. Intermediate particles
(St+ = 5, St+ = 10) achieve a maximum of entropy with value smaller than one
corresponding to a less homogeneous distribution. This behavior denotes that this
kind of particles begins to accumulate at the wall before a complete dispersion takes
place. Downstream, for z/R ≥ 110/120, the entropy decreases corresponding to a
strongly non-uniform particle concentration across the section. As far as the heaviest
particles (St+ = 50 and St+ = 100) are concerned, the peak is almost one as for
the lightest particles. Actually heaviest particles tend to distribute uniformly among
the cross section before turbophoresis becomes relevant. Downstream the entropy
decreases although more slowly compared to the medium size particles.
These results highlight that particles with different St+ can achieve similar level of
preferential accumulation, although at different distances from the injection point.

To investigate the origins of turbophoresis it is convenient to look at the average
radial particle velocity conditioned to the velocity of the fluid (buffer layer), figure 4.
The left panel refers to the developing region, while the right one concerns the fully
developed state. Since lighter particles (St+ ≤ 1) exhibit conditional average veloc-
ities which almost exactly match the fluid velocity, their statistics are not reported
here. Conditional average velocities are presented for particles which are most af-
fected by turbophoresis, St+ ≥ 5. The immediate impression is that the difference
between developing and far field does not emerge in the conditional statistics denot-
ing a universal behavior of this observable. Very heavy particles, (St+ ≥ 50, circles
and diamonds) present an almost vanishing mean conditional velocity, suggesting
that their motion in the near wall region shows a weak dependence on the local
fluid velocity also for very slow fluid motions. The most interesting results concern
the intermediate range of Stokes numbers, 5 ≤ St+ ≤ 10. In this case the different

the total number of particles in a given axial slice. In the right panel of figure 3

Inertial particles in a turbulent pipe flow: spatial evolution 353



Ur

<V
r|U

r>

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

flow
St+=5.
St+=10.
St+=50.
St+=100.

Ur

<V
r|U

r>

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

flow
St+=5.
St+=10.
St+=50.
St+=100.

Fig. 4. Conditional particle radial velocity 〈Vr|Ur〉 vs fluid velocity for heavier
particles: St+ = 5, 10, 50, 100. Left panel refers to developing region (z/R = 25);
right panel to far field (z/R = 200). The solid line gives the fluid velocity.

behaviors respectively associated with positive and negative fluid velocity are ap-
parent. Specifically, weak and moderate intensity positive fluid velocity events are
followed quite accurately by the particles in the range 0 ≤ Ur ≤ 0.04. Stronger posi-
tive events see the particles trailing the fluid with a smaller velocity. On the contrary,
particle inertia considerably filters the fluid excitation away from the wall, almost
independently from the intensity, as apparent in the discontinuity in the slope of the
plot at Ur = 0. This asymmetry between positive and negative conditional velocity
distribution is the key to explain the fast accumulation rate of this kind of particles
at the wall.
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This Proceeding contribution summarizes our results to be published in ref.
[1]:

The effectiveness of boiling as a heat transfer mechanism has been known
for centuries and the process has formed the object of a very large number
of studies [2]. The emerging vapor bubbles introduce a new parameter to the
classical Rayleigh-Bénard convection [3], namely the Jacob number

Ja =
ρcp(Th − Tsat)

ρV L
(1)

in which L is the latent heat, ρV and ρ the vapor and liquid density, respec-
tively, cp the liquid specific heat and Tsat the saturation temperature of the
liquid. Physically, Ja represents the ratio of the sensible heat to the latent
heat. A very small Jacob number may be thought of as a very large value of
the latent heat, which will tend to limit the volume change of the bubbles
due to evaporation or condensation. For Ja = 0 the latent heat is effectively
infinite and bubbles cannot grow or shrink.

Here we analyze the heat transfer mechanism in a liquid with a mean
temperature close to its boiling point through numerical simulations with
point-like [4, 5] vapor bubbles, which are allowed to grow or shrink through
evaporation and condensation and which act back on the flow both thermally
and mechanically. It is shown that the effect of the bubbles is strongly de-
pendent on the Jacob number Ja. For very small Ja the bubbles stabilize the
flow by absorbing heat in the warmer regions and releasing it in the colder
regions. With an increase in Ja, the added buoyancy due to the bubble growth
destabilizes the flow with respect to single-phase convection and considerably
increases the Nusselt number, see figure 1, left.

Without bubbles, the cylinder is occupied by a single convective roll which
rises along one side and descends along the opposite side. A picture of the flow
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Fig. 1. Left: Nusselt number N̄u vs Jakob number for three different numbers of
bubbles. Right: Vertical and horizontal cross sections (taken at 0.05H, 0.5H, and
0.95H, respectively) of the vertical liquid velocity distribution in the cylinder for
Ja = 0 and 5,000 bubbles. The blue structure near the axis is the descending region
of the toroidal vortex which prevails for small Jacob numbers.
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Fig. 2. Average void fraction in the up-flow and in the down-flow regions for Nb =
5000 bubbles.

for the 5,000 bubbles, Ja = 0 case is shown in Fig. 1, right, where one vertical
and three horizontal cross sections color-coded with the vertical velocity field
are displayed. The blue structure in the proximity of the cylinder axis is the
descending region of a toroidal vortex, while the remaining green areas are
those where the liquid rises, mostly with a smaller velocity, except for a few
faster zones (yellow and red). It can be seen here that the volume occupied
by the rising liquid is much greater than that occupied by the descending
liquid, and this circumstance offers a likely explanation of the much smaller
fraction of bubbles in the latter. If the Jacob number is increased, the toroidal
circulation is reinforced with a marked increase in the maximum rising and
descending velocities.
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By calculating the volume of bubbles located in regions of positive and
negative vertical liquid velocities we can look in detail at the effect of the
increased buoyancy. Figure 2 shows the time- and volume-averaged vapor
volume fractions for 5,000 bubbles as a function of the Jacob number. The
results for the other cases are similar, with smaller void fractions for 1,000
bubbles (for Ja = 0.35, approximately 0.02% and 0.08%), and larger ones
for 10,000 bubbles (for Ja = 0.35, approximately 0.16% and 0.36%). It is
seen that the void fraction in the upflow regions is consistently much larger
than in the downflow regions, thus providing strong evidence for the expected
destabilizing effect of the buoyancy provided by the bubbles.

A comparison with the recent experiments of ref. [6] will be difficult as the
bubble nucleation process is only very approximately modeled in this present
work.
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Summary. The scaling of polymer drag reduction with polymer and flow parame-
ters has been investigated using results from direct numerical simulations (DNS) of
dilute, homogeneous polymer solutions in turbulent channel flow. Simulations were
performed using a mixed Eulerian-Lagrangian scheme with a FENE-P dumbbell
model of the polymer. The full range of drag reduction from onset to maximum
drag reduction (MDR) is reproduced in DNS with realistic polymer parameters,
giving results in good agreement with available experimental data. Onset of drag
reduction is found to be a function of both the polymer concentration and the
Weissenberg number, in agreement with the predictions of de Gennes[1]. The mag-
nitude of drag reduction increases monotonically with decreasing viscosity ratio, β,
for 1.0 > β > 0.98, saturates to a plateau for 0.98 > β > 0.9, and slowly decays
for 0.9 > β when the solution ceases to be dilute. The magnitude of drag reduction
at saturation is a strong function of the Weissenberg number. A Weτ ∼ O(Reτ/3)
is needed to achieve MDR. The presence of the polymer results in attenuation of
the small scales along with enhancement of the large scales in the spectra of the
streamwise turbulent velocity fluctuations, and attenuation of all scales in the spec-
tra of cross-stream turbulent velocity fluctuations. The degree of attenuation and
the range of affected scales increase with the Weissenberg number and with the
polymer concentration up to the saturation concentration. At saturation concentra-
tion, the cross-stream size of the largest attenuated eddies in the streamwise spectra
conform to the predictions of Lumley’s theory[2, 3], while at concentrations below
the saturation, they conform to a modified version of de Gennes’s theory[1]. The
net effect of the polymer can be represented by an effective viscosity with a peak
magnitude of νeff ∼ O(0.1λu2

τ ) at saturation, in agreement with the predictions of
Lumley’s theory[2, 3].

1 Introduction

While the phenomenon of drag reduction by dilute polymer solutions has
been known for nearly sixty years, the scaling of polymer drag reduction with

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_87, 

359



polymer and flow parameters remains poorly understood. The two principal
theories of polymer drag reduction suggested by de Gennes[1] and Lumley[2, 3]

Reduction (MDR), and the
range of turbulent scales attenuated by the polymer. In Lumley’s theory, onset
of drag reduction is assumed to be independent of the polymer concentration
and to occur at Weτ |onset ∼ O(1), where Weτ ≡ λu2

τ
/ν is the Weissenberg

number, λ is the polymer relaxation time, uτ is the wall-shear velocity, and ν is
the kinematic viscosity of the solution. Saturation of drag reduction is assumed
to occur when the effective viscosity introduced by the polymer reaches a
magnitude of νeff |sat ∼ O(λu2

τ ), while MDR is assumed to occur when the
viscous sublayer defined based on the saturation value of the effective viscosity
extends all the way to the outer edge of the boundary layer or when δ ∼
O(λuτ ) or Weτ |MDR ∼ O(Reτ ). The largest turbulent scales damped by
the polymer, r∗, are assumed to be those having a time-scale equal to λ.
In de Gennes’s theory, onset of drag reduction is assumed to be a function
of both the polymer concentration and the Weissenberg number. In wall-
bounded flows, it can be shown[4] that his onset criterion is equivalent to

(npkBT )/(ρu2
τ)|onset ∼ We

−

15n

4
τ , where np is the polymer number density,

kB the Boltzmann constant, T the absolute temperature, ρ the density, and
0 < n � 2 denotes the dimensionality of the polymer stretching. Saturation
is assumed to occur when the unstretched polymer coils begin to overlap, or
when (npR

3
G
) ∼ 1, where RG denotes the radius of gyration of the polymer

in the coiled state. In wall-bounded flows, this translates to[4] a saturation
criterion of (npkBT )/(ρu2

τ
)|sat ≈ βWe−1

τ
, where β denotes the ratio of the

solvent viscosity to the zero shear viscosity of the polymer solution. MDR
is assumed to occur when the largest scales affected by the polymer become
comparable to the boundary layer thickness or when r∗ ∼ δ. For wall-bounded
flows, this reduces to Weτ |MDR ∼ O(Reτ ), in agreement with the predictions
of Lumley’s theory. The largest turbulent scales damped by the polymer are
assumed to have a scale r∗∗ < r∗ such that the turbulence kinetic energy per
unit volume at scale r∗∗ is comparable to the elastic energy per unit volume
stored in the polymer molecules. In wall-bounded flows, it can be shown[4] that
r
∗∗

r∗
=

(
1
A

npkBT

ρu2
τ

z
+

Weτ

) 1
2/3+5n/2

, where z+ denotes the wall-normal coordinate
in wall units, and A is a constant originally set to A = 1 by deGennes[1, 4].
In this study, we aim to evaluate these predictions using results from DNS.

2 Results and Discussion

The DNS studies were performed using a FENE-P dumbbell model of the poly-
mer and a mixed Eulerian/Lagrangian numerical scheme, employing standard
pseudo-spectral methods for the hydrodynamics and a backward-tracking La-
grangian particle method[5] for the polymer dynamics. Computations were

saturation of drag reduction, Maximum Drag
make vastly different predictions for the criteria for onset of drag reduction,
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Fig. 1. (a) Dependence of drag reduction on Weτb
and β observed in DNS, (b)

Onset and saturation of drag reduction observed in DNS compared to theoretical
predictions of deGennes. (a)– – � – –, DNS results at Weτb

≈ 35; – – � – –, DNS
results at Weτb

≈ 100; – – 	 – –, DNS results at Weτb
≈ 150; · · ·, Virk’s MDR

asymptote; (b) •, onset data from DNS; �, saturation data from DNS; —,
npkBT

ρu2
τ

=

AWe
−15n/4
τ (z+)(−1/2+15n/8) with A = 1×10−4 , n = 0.7, and z+ = 10; – · –, npkBT

ρu2
τ

=

(1 − β)We−1
τ with β = 0.98; ---,

npkBT

ρu2
τ

= βWe−1
τ with β = 0.98.

performed at a base Reynolds number of Reτb
= uτb

h/νb ≈ 230 in turbulent
channel flows of size 40h × 10h × 2h or 10h × 5h × 2h with resolutions of
512×256×129 and 128×128×129, respectively. Simulations were performed
for the range of 10 ≤ Weτb

≡ λu2
τb
/νb ≤ 150, polymer number densities

1.12×10−10 � npkBT/(ρu2
τb

) � 1.12×10−2 (corresponding to 0.7 ≤ β ≤ 1.0),
and a polymer extensibility parameter of b = 45, 000.

Fig. 1(a) shows the variation of drag reduction with Weτb
and β. At all

Weissenberg numbers, drag reduction sharply rises for 1 > β > 0.98, saturates
to a plateau for 0.98 > β > 0.9, and slowly decays for 0.9 > β. The magni-
tude of drag reduction at saturation is a strong function of the Weissenberg
number. At Weτb

≈ 35, only ∼ 32% DR is observed at saturation, while at
Weτb

≈ 100 and Weτb
≈ 150, drag reductions of ∼ 54% and ∼ 56% are ob-

tained, respectively. The magnitude of drag reduction observed at saturation
at Weτb

≈ 150 is comparable to the range 57 − 60% DR predicted by Virk’s
MDR asymptote. Fig. 1(b) shows the onset and saturation of drag reduction
observed in DNS compared to the theory of de Gennes. Using the relation
1
β
− 1 = npkBT

μs

λ b

b+3 [6] and for b � 1, the saturation condition β ≈ 0.98
observed in DNS can be expressed as (npkBT )/(ρu2

τ
)|sat ≈ (1 − β)We−1

τ
.

This criterion has the same scaling as npkBT/(ρu2
τ )|sat ≈ βWe−1

τ suggested
by de Gennes[1] but is lower in magnitude by a factor of (1 − β)/β. Onset of
drag reduction shows good agreement with de Gennes’s theory with n ≈ 0.7,
which is comparable to n = 2/3 previously suggested based on analysis of ex-
perimental data[4]. Examination of the effective viscosity at saturation (not
displayed) shows that the peak magnitude of νeff at saturation varies from
νeff ∼ 0.1(λu2

τ
) at Weτb

≈ 10 to νeff ∼ 0.04(λu2
τ
) at Weτb

≈ 150, consistent
with the predictions of Lumely’s theory.
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Fig. 2 shows the size of the largest cross-stream scales damped by the poly-
mer at Weτb

≈ 150 for 1 > β > 0.86 compared to r∗ of Lumley’s theory and
r∗∗ of de Gennes’s theory, where ry = 2π/ky,c and ky,c denotes the wavenum-
ber of the largest damped scale in the spectra of Euu(ky). It is observed that
ry/r

∗∗ with n = 2 provides a good collapse the data to O(1) values, while
ry/r

∗ does not collpase the data and approaches O(1) only at saturation.
Overall, these results indicate that within the limitations of their underlying
assumptions, the theories of Lumley[2, 3] and de Gennes[1] are both successful
in describing the dynamics of turbulence in the presence of polymers. Lumley’s
theory does not attempt to account for the effect of polymer concentration,
but correctly accounts for the effect of Weissenberg number at saturation con-
centrations. The theory of de Gennes is more complete and accounts for the
effect of both the Weissenberg number and polymer concentration.

Further analysis of the data shown in Fig. 2 (not displayed) shows that
at MDR, ry ∼ O(3λuτ ) and ry ∼ h. Combining these two criteria gives the
condition that to reach MDR a Weτ ∼ O(Reτ/3) is required. This result
is consistent with the predictions of both Lumley and de Gennes, who both
predict a Weτ ∼ O(Reτ ) is needed to reach MDR.
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1 Introduction

It is well known that the small amount of polymers or surfactant additives to
flowing liquid give rise to drag reduction (DR) in turbulent flow [1]. However
this mechanism has not been satisfactorily clarified. One of many interesting
aspects is the so-called ‘diameter effect’, which has been observed experimen-
tally [2, 3]. For instance, the discrepancy between results obtained by different
pipe diameters represents the diameter effect (see Fig. 1): this effect is seen
as additional dependence of the skin friction coefficient, Cf , on the pipe di-
ameter (or channel width) as well as Reynolds number, Re. Although several
experimental studies were published about the diameter effect, the relation-
ship between the DR rate and rheological parameters (such as Weissenberg
number, We) is still not clear. Therefore we have performed a series of direct
numerical simulations (DNS) on a viscoelastic-fluid flow in a channel and dis-
cussed the diameter effect with focusing on effects of Re and We on the DR
induced by polymers or surfactant additives.

2 Numerical conditions

In this study, the shear-thinning behaviour is considered to be negligible, and
the elongational viscoelastic effect is attempted using the Giesekus model for
a constitutive equation. We employed the code based on our previous studies,
which have shown that obtained DNS data agree qualitatively well with ex-
perimental data (see [4, 5] for detail). The present Reynolds number ranges
from Reτ (= ρuτδ/η0) = 150 to 395, where ρ is the density, uτ (=

√
τw/ρ:

τw is wall shear stress) the friction velocity, δ the channel half-width and
η0 the solution viscosity at zero shear rate. As for rheological properties,
Weτ (= ρu2

τλ/η0) based on the relaxation time, λ, is set to be either 30 or 11.
The solvent viscosity is assumed to be half of η0. The number of grid points
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Table 1. Computational parameters and achieved drag-reduction rate.

Fluid A B C D E F
Reτ 150 240 395 150 240 395
Weτ 30 30 30 11 11 11
η0/ηeff 1.45 1.44 1.45 1.15 1.16 1.15
DR% 54.6% 53.9% 54.0% 11.8% 11.4% 16.0%
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Fig. 1. Variation of drag and its reduction rate with Reynolds number based on
bulk velocity, 2δ and solvent kinematic viscosity. An arrow from E to C corresponds
to Case-u —increasing in uτ with constant fluid properties and δ.

is 1283 for Reτ = 150 and 240, but 2563 for Reτ = 395. The domain size is
12.8δ × 2δ × 6.4δ in streamwise, wall-normal, and spanwise directions.

3 Results and discussion

The rate of DR, DR% = (CD
f −Cf )/CD

f , obtained in the present study is given

in Table 1. Here, CD
f is the value estimated by the Dean’s empirical correlation

[6] for the Newtonian turbulent flow at the same bulk Reynolds number based
on solvent viscosity. The actual Cf for each relevant non-Newtonian fluid is
shown in Fig. 1(a) with comparing to the experimental data [2] and Virk’s
maximum-DR (MDR) asymptote [7]. Significant DR% of about 54% is accom-
plished in all of the present cases at Weτ = 30, while the other cases exhibit
a poor DR. It is obviously seen that high Weτ is responsible for the effective
DR. In such case, the reduction of the effective viscosity at the wall [8], ηeff ,
is also remarkable (see Table 1). Moreover, the obtained values of DR% for
each Weτ are almost constant regardless of Reτ . This implies that when uτ ,
η0 and λ are constant (i.e., same fluid), the increasing of Reτ is interpreted in
two ways: firstly as an enlargement of channel width, and secondly as an in-
crease in driving force, namely uτ . These two protocols are hereafter referred
to as ‘Case-δ’ and ‘Case-u’, respectively. In Case-δ, no noteworthy variation
in DR% was recognized. For instance, the increase of Reτ from 240 to 395, by
increasing of δ with fixed uτ and constant fluid properties, it is equivalent to
changing fluid B→C or fluid E→F. In Case-u, on the other hand, the DR%
significantly increases with increasing Reτ due to additional change of Weτ ,
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Weτ = 11. All terms are normalized by ηeff/ρu

4
τ .

as can be seen in Fig. 1(b). The shift from fluid E to C is an example of Case-
uτ . More specifically, whereas the increasing rate in Reτ from 240 (fluid E)
to 395 (fluid C) is about 1.65, that of Weτ equals to 1.652 (≈ 30/11). Hence,
this causes inadequate scaling by Re to the prediction of DR in the case of
rheologically identical fluids. The present DNS is in good agreement with the
experimental observations [3]. In addition, it is important to note that the
diameter effect can be demonstrated by simulations.

Figure 2 shows the mean velocity distributions plotted in u+ vs log yη.
Here, yη = ρuτy/ηeff . There exists a considerable difference in the profile
between the high-DR flows (fluids A–C in Fig. 2(a)) and the low DR ones
(fluids D–F in Fig. 2(b)). For the Newtonian fluid [9], the data closely follow
the typical log law for yη > 30. On the other hand, clear log-law regions with
displacement are observed for the present non-Newtonian cases. In addition,
the profiles for each Weτ are scaled well with wall units. For Weτ = 11
there is an upshift ΔB ≈ 2.5 of logarithmic velocity profile of Newtonian
fluid due to the presence of the additives, corresponding to the modest DR.
In the case of high-DR (Weτ = 30), the data follow Virk’s ultimate profile,
u+ = 11.7 ln yη − 17, up to yη ≈ 20. These results suggest that Weτ is the
most dominant parameter for ΔB and DR%.

Figure 3 presents the budget terms of the transport equation for the
Reynolds normal stress u′u′, namely the production, the dissipation, the ve-
locity pressure-gradient correlation (VPG), the turbulent and molecular diffu-
sions, and the viscoelastic contribution terms. The last term does not appear
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in the case of Newtonian fluid. At Weτ = 30, the viscoelastic contribution is
comparable in magnitude with the diffusion terms.

As is to be expected from the discussion on the u+-profile, the budget
of u′u′ reveals to be less dependent on the Reynolds number, especially for
the high-DR case as given in Fig. 3(a). The near-wall dissipation surprisingly
does not depend on the Reynolds number. With increasing Weτ , the peak
of production term drops and shift away from the wall, and other terms also
apparently decreases in the vicinity of the wall. It is worth noting that the
VPG term in Fig. 3(a) is negligible everywhere. (It is well-known that the
pressure strain term contained in the VPG term plays a dominant role on
the energy redistribution to other directional components.) In this case, the
flow becomes anisotropic turbulence due to less redistribution, resulting high
DR. On the other hand, the results obtained for three different Reτ at each
Weτ do not differ much from each other; at least to the extents of the present
parameter ranges. However, when Reτ (or uτ ) is varied with same fluid and
channel (i.e., Case-u), a significant difference appears in the energy budget
due to dependence of Weτ on uτ .

4 Conclusion

The viscoelastic fluid in turbulent channel flow has been analyzed using DNS
in the range of Reτ from 150 to 395 for Weτ = 11 and 30. We obtained
two different results from the increasing Reτ for rheologically identical fluids
(with a fixed relaxation time). An increase of δ with a constant uτ do not
much affect DR%, but that of uτ with a constant δ gives rise to an effective
DR. Moreover, DR% and flow properties, such as the log-law displacement in
the mean velocity profile and the budget terms of u′u′, are depend on Weτ but
not on Reτ . These results imply that Weτ is the most important parameter
for prediction of DR% in increasing Reτ .
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In recent years, evidence is accumulating on the fact that dispersing modest
quantities of particles or bubbles in turbulent environments may lead to sub-
stantial modifications of the large scales of the flow, as well as of its global
parameters. Interaction with the large-scale structures occurs even when the
characteristic dimension of the dispersed phase lies below the smallest turbu-
lent wavelength, and may be understood in terms of the significant inhomo-
geneities of the instantaneous concentration field associated to the preferential
accumulation in the cores of vortical structures (for the case of bubbles). In
turn, such large fluctuations in the bubble concentration dramatically modify
the bulk properties of the underlying flow.

Here we report on a particular manifestation of this phenomenon, as ob-
served in the context of a zero pressure gradient turbulent boundary layer
laden with microbubbles (diameters of the order of the Kolmogorov length-
scale η ∼ 100μm) at very low void fractions (Cv ∼ 10−3). The ultimate effect
is a substantial reduction of the frictional drag, a phenomenon already ob-
served in several wall-bounded configurations (see e.g. [1, 2] and references
therein) but nonetheless still poorly understood. The experimental setup, de-
picted in Fig. 1 consists schematically of a 3.5 m long flat plate, horizontally
positioned in a water channel run at a speed of 0.75 ms

−1. Roughly monodis-

 x

 y

 z

�g
�U0

Fig. 1. The experimental setup: plate ”on top”, bubble-generating device and laser
sheet arrangement for concentration and velocity measurements.
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persed microbubbles are generated near the leading edge on the lower side of
the plate, with gravity tending to push them towards the wall. Owing to their

like rigid spheres. The complex interplay of the different forces acting on the
microbubbles (in particular lift, buoyancy and pressure-gradient forces) re-
sults in a strongly inhomogeneous distribution of the dispersed phase at the
measurement station (x= 2.5 m, Reθ = 3700, uτ,0 = 0.029 m/s) with a sharp
peak in the buffer region of the base turbulent boundary layer, i.e. at y

+ ≈ 30,
see Fig. 2. Remarkably, no bubbles are found at the wall, suggesting that some
statistical balance between vertical forces occurs in this region.
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Fig. 2. Main panel: averaged bubble concentration, 106 × c′, against dimensionless
wall-normal distance y+ = y/l0 and dimensionless bubble diameter D+ = D/l0,
where l0 = ν0/uτ,0 is the viscous length of the Newtonian boundary layer. The
overall mean void fraction is Cv =

∫
∞

0
c′(D+)dD+ ≈ 10−3. Inset: the histogram of

bubble diameters, as measured at y+ = 25, displaying an approximately log-normal
behavior.

Velocity measurements of the liquid phase are obtained in the streamwise-
wall normal plane by means of Feature Tracking techniques [3], which resolve
only the displacements of neutrally buoyant tracers in the light plane gen-
erated by two Nd-Yag laser pulses. At the low concentrations typical of our
measurements, scattering from the bubbles is limited, so that the quality of
the data is preserved.

As mentioned before, the most noticeable effect of the presence of mi-
crobubbles is to be found in the values of the mean streamwise velocity and
in the Reynolds stress profile near the wall. The reduction of the skin-friction
coefficient derives from a substantial decrease of the mean velocity in the in-
ner region, as shown in Fig. 3. As in most drag-reducing flows, this effect is

very small Weber number, bubbles retain their spherical shape and behaves
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accompanied by a parallel depletion of the vertical flux of streamwise momen-
tum, i.e. the Reynolds shear stress. Only marginal effects are seen instead on
the velocity fluctuations profiles, a slight increase for both the streamwise and
the wall-normal turbulent intensities being observed for the bubbly case.
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Fig. 3. The dimensionless streamwise mean velocity plotted against dimensionless
wall-normal distance for both the Newtonian and the bubble-laden cases (filled and
open symbols respectively). Inner scales relative to the Newtonian case are used
for non-dimensionalizing the quantities. Inset: streamwise velocity profiles for the
Newtonian and the bubbly flows, non-dimensionalized with the proper inner scales.

As a key to gaining an understanding of the underlying mechanism, the
modification of the turbulent structure is analyzed in terms of the familiar
two-point correlation tensor:

Rij(y0, rx, y) = 〈ui(x, y0)uj(x + rx, y)〉/(ui,rms(y0)uj,rms(y)) (1)

from which all classical statistical observables, e.g., one-dimensional correla-
tions or structure functions are straightforwardly derived. Additionally, this
quantity directly conveys a complete qualitative picture of the spatial arrange-
ment of the dominant turbulent structures. A comparison between the Newto-
nian and the bubbly behaviors, pertaining to a reference location in the base
buffer region (y+

0 ≈ 25) where the peak of the void fraction occurs, is shown
in Fig. 4 for two different components, Rvu and Ruu respectively. While the
latter quantity, which reflects the well-known organization of near-wall struc-
tures into vortex packets, appears to be only little affected by the presence
of the bubbles, marked differences are found instead for Rvu. In particular,
consistently with the associated Reynolds stress, the intensity of the correla-
tion peak at the origin is strongly reduced, indicating a marked decorrelation
of the turbulent fluctuations. The most noteworthy feature is represented by
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the characteristic scales of the energy production being strongly weakened, as
indicated by the much shorter correlation length. A similar behavior is also ob-
served for the vertical correlation component Rvv, which is usually assumed
to be representative of some characteristic eddy dimension at the reference
wall-normal distance y0.
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Fig. 4. Comparison between correlation maps estimated at y+
0 = 25 in Newtonian

(upper panels) and bubbly flows (lower panels). Left column: Ruu(y0, rx, y), right
column: −Rvu(y0, rx, y). The dotted lines represent the wall-normal distance y0 of
the reference point. Distances are non-dimensionalised with the inner length scale
l0.

Taken together, the above observations suggest that the mechanism re-
sponsible for the drag-reduction due to small bubbles at low void fractions
can be identified with a fragmentation process of the near-wall vortical struc-
tures, arguably induced by the large instantaneous bubble concentrations that
are observed in the buffer region of the base flow.
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Turbulence in dilute polymer solutions has gained more and more interest
over the last decades. Original studies were mainly oriented to drag reduction
observed in wall bounded flows, however, recently studies have moved from
applied problems to a more fundamental approach. In details a renewed inter-
est has been devoted to problems different from bounded flows such as jets or
basically homogeneous flows. On the other hand from a theoretical viewpoint
some relevant development have appeared. In this contribution the analysis of
spectral budgets of homogeneous and isotropic turbulence based on the set of
equations derived in [1] is proposed. The study is performed on low-Reynolds
number numerical results obtained for a dilute polymer solution in the mild
stretch regime.

1 Mathematical formulation and results

Under mild stretching, the dynamics of the ensemble of polymers is described
by the linear and homogeneous equation for the conformation tensor, R, [1]

∂R

∂t
+ u · ∇R = KR + RK† − 2

τ
R , (1)

accounting for advection, stretching, re-orientation and linear elastic restoring
force. As follows from its physical meaning, the conformation tensor must be a
symmetric positive definite second order tensor. It can be factorized in terms
of X, the matrix of the right-eigenvectors, and Λ, the diagonal matrix of the
eigenvalues, as R = XΛX†. As such, its square root, i.e. the tensor Q such
that R = QQ† with Q = X

√
Λ exists and obeys the evolution equation

∂Q

∂t
+ u · ∇Q = KQ − 1

τ
Q . (2)
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Fig. 1. Left: History of the two components of the energy, due to the solvent (red
line) and to the microstructure (blue) respectively. Right: Spectra of the kinetic
energy (red) and of the polymer free energy (blue).

It is straightforward to show that ∇·Q† (in Cartesian components ∂Qji/∂xj)
tends exponentially to zero with a time constant given by τ . On the con-
trary, ∇ · Q (in Cartesian components ∂Qi j/∂xj) is not zero and is not
conserved by the evolution implied by equation (2). In this framework,
the elastic energy can be expressed as a quadratic form in terms of Q,
Ep(x, t) := νp/τ tr

[
Q(x, t)Q†(x, t)

]
while the production term can be written

as Πp(x, t) = 2νp/τ tr
[
K(x, t)Q(x, t)Q†(x, t)

]
. In other words the adoption

of Q as descriptor for the polymers allows the physical energy to be expressed
as the natural L2-norm of the relevant field hence under the assumption of
homogeneity, the averaged energy equation for the polymers takes the form

d〈Ep〉(t)
dt

= 〈Πp〉(t) − 2

τ
〈Ep〉(t) . (3)

For the velocity, the average kinetic energy density, 〈Ek〉(t) = 1/2 〈u · u〉(t),
follows a balance equation which for homogeneous fields reduces to

d〈Ek〉(t)
dt

= 〈W 〉(t) − 〈εN〉(t) − 〈ΠN〉(t) . (4)

Homogeneous and isotropic turbulence has been simulated via a spectral code
on 963 grid points for the dealiasing procedure and the time history of the two
energy components is shown in the left panel of figure 1. The corresponding
Newtonian simulation, i.e. with equivalent viscosity and energy input, was
characterised by a Reλ = 80 and the Deborah number based on the Newtonian
Kolmogorov time scale is equal to 5.
The L2 formulation previously discussed entails the spectral decomposition

of the elastic energy. Actually, for a homogeneous field, the three-dimensional
spectrum of elastic energy may be defined from the correlation tensor of the
field Q, Cp(r, t) := 〈Q(x, t)Q†(x + r, t)〉 , as

E(3D)
p (k, t) =

1

(2π)3
νp
τ

∫
IR3

tr [Cp(r, t)] ejk · r d3r (5)

E. De Angelis, C.M. Casciola, and R. Piva 372



where k denotes the wave-vector which implies the related spectral decompo-
sition of the elastic energy

〈Ep(t)〉 =

∫
IR3

E(3D)
p (k, t) d3k =

∫
∞

0

Ep(k, t) dk . (6)

where the spectrum of elastic energy is defined, as usual, as an integral on
the solid angle Ω of E(3D). The corresponding evolution equation is obtained
by the product of the Fourier transform of equation (2) with the conjugate
transpose of the Fourier transform of Q and reads

d

dt
Ep(k, t) = Hc p(k, t) +Hs p(k, t) − 2

τ
Ep(k, t) , (7)

where Hcp and Hs p come from the convective term, u·∇Q, and the stretching
term, KQ, in equation (2), respectively. Equation (7) determines the elastic
energy at wavenumber k as the result of the balance of feeding from the
stretching term, redistribution due to convection and viscoelastic dissipation.
Regarding equation (7), the contribution,Hc p, whose integral over k vanishes,
has the meaning of a redistribution of spectral energy among different spectral
bands with no net increase or decrease in the overall energy content. On the
contrary, the stretching term Hs p represents a net injection of energy into the
polymeric sub-structure. For a statistically steady state (7) yields the equation∫

∞

0

Hs p(k) dk =
2

τ

∫
∞

0

Ep(k) dk ≥ 0 . (8)

For the macroscopic field the evolution equation for the spectrum

d

dt
Ek(k, t) = Hc k(k, t) +Hs k(k, t) − 2νk2Ek(k, t) + F (k, t) , (9)
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Fig. 2. Left: Three-dimensional plot of the two components of the dissipation,
due to the solvent (red line) and to the microstructure (blue) respectively. Right:
Spectral balance of the polymer free energy (blue curves), filled circles represent the
stretching term Hsp, the emply circles the convective term Hcp and the triangles the
dissipation. Superimposed is the stretching term Ksk of the kinetic energy (red).
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where F is the energy input from the external forcing f . As in standard New-
tonian turbulence, the net contribution over the entire spectrum of the con-
vective term vanishes, leading to the following balance for the steady state

−
∫
∞

0

Hs k(k) dk + 2 ν

∫
∞

0

k2Ek(k, t) dk =

∫
∞

0

F (k) dk ≥ 0 . (10)

The definitions of the two spectra allow for a comparison of the energy content
of the macro and microstructure at the different wavenumbers, see right panel
of figure 2 a crossover identifies the wavenumbers where most of the energy
is in the polymers. According to a standard argument, [4], the range of scales
where the polymers can be stretched by the turbulence, hence where most
of the energy should be, is confined below the scale rL =

√〈εT〉τ3. In the
present simulation rL = 0.41 and this value is consistent with the range of
scales by the comparison of the spectra. In conditions such that kF << kL <<
kη, one should expect a classical inertial range, with no polymer effect in
the range kF << k << kL where the energy flux is constant and given by
the input power 〈W 〉 = 〈εT〉. Below, one should observe a mixed inertial-
elastic range, where the total energy flux is progressively reduced by the local
dissipation of the polymers, see left panel of figure 2 for a three-dimensional
plot. Equations (8) and (10) coincide with equations (3) and (4), respectively,
consistently with the fact that

−
∫
∞

0

Hs k(k) dk =

∫
∞

0

Hs p(k) dk . (11)

It should be stressed that, for each k, −Hs k(k) �= Hs p(k), as shown by the
left panel of figure 2, even if for a steady state, the energy removed from
the kinetic field by the polymers is positive and exactly the same amount of
energy feeds the micro-structure, as shown by equation (11). However, this
process is not occurring scale-by-scale, as already argued in [1].
More sophisticated analysis are hindered by the limited Reynolds number of
the present data. Though further simulations are certainly needed in order
to better exploit the capability of the proposed L2 decomposition, we are
confident that the present results corroborates the idea that the present scale
by scale analysis provides an fundamental tool to study the energy transfer
in dilute polymer solutions.
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Non-Brownian particles migrate randomly across the streamlines of a carrier
flow in sheared suspensions at small Reynolds numbers. A random motion is
very similar to that in turbulent flows but result not from a flow instability
but from the hydrodynamic interactions of particles. It is characterized by
the coefficient of particle self-diffusion Ds. Several mechanisms of diffusivity
in dilute suspensions based on the interactions of two isolated particles were
considered [1],[2]. The model of interactions of rough spheres [1] gives correct
linear dependence of Ds on particle volume fraction φ. However, the experi-
mental value of the diffusivity [3] is an order of magnitude greater than the
theoretical predictions. Another mechanism of the diffusivity was proposed [2]
for a wall-bounded shear flow. Two particles do not pass each other in such a
configuration but exchange their positions in the normal direction. Swapping
trajectories result in a particle cross-stream migration.

A new mechanism of the self-diffusion due to far-field collective hydrody-
namic interactions in a wall-bounded shear flow has been studied very recently
[4]. The motion of identical particles in a 3D rectangular Couette cell is sim-
ulated. The particle radius, a = 0.025W, where W is the separation between
the walls, corresponds to the experimental value [3]. Large-scale particle den-
sity fluctuations induce fluid velocity disturbances with the lengthscale com-
pared to W . Flow disturbances are due to particles freely rotating in a shear
flow which are approximated at large distances by symmetric force dipoles. A
point-particle approach neglecting short-range interactions appears suitable
for large dilute systems. The boundary conditions are the no-slip conditions
on the cell walls, and the periodic boundary conditions in the directions of
the undisturbed velocity x and vorticity z. The solution of the Stokes equa-
tions for the disturbance flow in a confined geometry is obtained in terms of
Fourier series. The particle velocities in a dilute suspension are the sum of the
undisturbed velocity yex and the large-scale disturbances.

Both passing and swapping trajectories are obtained within the dipole
approach depending on the initial cross-stream separation of the pair. Figure
1 shows the swapping trajectories of an isolated pair (dashed lines) relative to a
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midpoint in the (x, y)− plane. The cell sizes are Lx = Lz = 2W. The particles
start at points A and B, approach each other initially, then move across
the streamlines, reverse their directions and separate without passing each
other. The particle separation and distances to the walls remain always large
compared to a, so the effect is due to large-scale velocity disturbances. In the
periodic simulation cell, the swapping trajectories are close. Positions of the
pair exchange back again because of interaction with periodically replicated
opposite particles.

In dilute suspensions even close pairs experience effect of other particles.
We seed randomly all particles except A and B over the cell at t = 0 with
φ = 0.01. Figure 1 illustrates the effect of other particles on the trajectories
of A and B (solid lines). The dimensionless time required for the isolated
pair to interact and move across the streamlines on the swapping trajectory
is long, tswap = O

(
100γ−1

)
, where γ is the shear rate, while the correlation

time for large-scale concentration and velocity fluctuations is much shorter,
tcorr = O

(
γ−1

)
. Multiple particle interactions lead to a loss in memory of a

relative pair position during tcorr. Thus the cross-stream random migrations
are due to large-scale fluctuations rather than to swapping trajectories.

The same conclusion follows from the behavior of the mean-square dis-
placement curves for a homogeneous initial particle distribution. The curve is
quadratic in time initially and shows the linear behavior corresponding to the
diffusive regime after tcorr. The self-diffusivity is evaluated as the time rate
of change of half the mean-square displacements,

Ds =
1
2
d

dt
〈ΔyΔy〉 . (1)

The simulation time is usually trun = 400γ−1. The self-diffusivity is evaluated
from (1) using the linear best-fits of the displacement curves. The diffusivity is
evaluated as a function of initial particle positions yp0 by collecting statistics
over particles in the slices y0−h < yp0 < y0+h, h = 0.05W , and by averaging
over 30 runs. Figure 2 shows Ds(y0) for homogeneous suspension (solid lines).
The diffusivity is maximum at the distances 0.3W from the walls. It is small for
particles close to the walls because of the no-slip conditions for fluid velocity
disturbances. In the middle part, 0.4W < y0 < 0.6W , it is less and close to
the experimental one [3].

The diffusivity is linear in the shear rate γ. It is evaluated for different par-
ticle volume fraction φ. Figure 3 shows the calculated values (symbols) and the
linear best fit (line). Thus Ds is linear in φ, in agreement with the experimen-
tal data [3]. The linear dependence can be explained within the fluctuation
mechanism of the diffusivity following to the speculations for a sedimenting
suspension [5]. The number fluctuations Δn for particles distributed randomly
are O

(
N1/2

)
. As a result one has Ds ∝

〈
u2

〉
∝

〈
Δn2

〉
∝ N ∝ φ.

Large-scale concentration inhomogeneities can be enlarged artificially. 5%
of the total particle number is seeded randomly into the middle part, W/3 <
yp0 < 2W/3, and the remaining particles uniformly over the whole cell. The
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diffusivity (dashed lines in Fig. 2) increases significantly near the walls, i.e., far
from the density inhomogeneity. These results also support the conclusion that
the diffusivity in dilute suspensions is due to large-scale fluctuations rather
than swapping-trajectories mechanism.

The research was supported by Russian Foundation for Basic Research
(Grant No. 09-01-00335).

Fig. 1. Effect of other particles on reversing pair trajectories.

Fig. 2. Particle diffusivity across the cell width.
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Fig. 3. Self-diffusivity as a function of particle volume fraction
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Turbulent flow over rough walls
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Summary. The nature of turbulent boundary layer flow over rough walls is dis-
cussed, with emphasis on the issues of zero-plane displacement, turbulence char-
acteristics and how the latter may depend on roughness height and morphology.

1 Introduction

Despite the substantial literature on rough-wall boundary layers there remain
many questions concerning their character, even in situations of zero pressure
gradient. The classical assumption (usually attributed to Townsend [14]) is
that sufficiently small roughness merely changes the surface stress, without
altering the dynamics of the turbulence in either the inertial (log-law) region
or the outer layer. Small roughness here means small h/δ – the ratio of mean
roughness height to boundary layer depth. There is plenty of evidence that
this is a reasonable assumption. For example, in reviewing a large body of
data Jiménez [8] concluded that sufficiently small roughness means h/δ <≈
3%. However, this view is not held universally and there is evidence that for
certain types of roughness, even for those satisfying this height criterion, the
measurable effects of the roughness on the turbulence structure extend into
the outer flow (e.g. [10]). Of course, once h/δ becomes sufficiently large, the
Townsend assumption must inevitably fail. But what is ‘sufficiently large’?
And does universality fail first in the turbulence structure and only later in
the mean flow behaviour? And when it does, how does the turbulence structure
throughout the flow differ from smooth-wall behaviour and are the differences
dependent on the precise morphology of the roughness?

Anticipating an earlier departure from universality in the turbulence than
in the mean flow is at least plausible and we have already shown that, in fact,
mean flow universality is surprisingly robust to increasing h/δ, certainly to
beyond the point where there are structural changes in the turbulence ([1]).
In that work, it was shown that mean flow correlations calculated on the basis
of the usual two-parameter family (log-law plus law-of-the-wake) appear to be
adequate for any type of fully three-dimensional roughness all the way up to
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Fig. 1. Skin friction as a function of momentum thickness for fully rough, zero pres-
sure gradient boundary layers. The heavy solid line is from classical two-parameter
family analysis. Symbols refer to numerous different types of surface; dashed line is
the classical smooth wall relation and the solid line is the rough wall equivalent (see
text). From [1].

h/θ = 0.5 (equivalently, h/δ < 0.2), where θ is the usual momentum thickness.
As an example, figure 1 shows the skin friction coefficient as a function of θ/yo

which for fully aerodynamically rough surfaces replaces Reθ as the controlling
parameter. Data from a very wide range of three-dimensional roughness types
are shown, compared with the implicit relation θ/yo = [(s − I)/s2]eκ(s−K),
where s =

√
Cf/2 and I = 7.03,K = −0.0542. These numerical values follow

from taking κ = 0.41 and a wake strength Π = 0.7 and the relation itself
follows from the classical analysis (but in terms of θ/y0 rather than Reθ) and
a quartic polynomial wake profile. There is no doubt that at the low end of
the θ/y0 range the turbulence structure is significantly different from that
in a smooth-wall boundary layer – see §3. In this paper, the issues raised
earlier, concerning how roughness affects turbulence structure, are discussed,
by way of a brief consideration of some recent data from both laboratory and
numerical (DNS) experiments.

First, however, we address a crucial fundamental issue that arises in
analysing rough-wall data, obtained either from laboratory (or field) experi-
ments or from numerical simulations.

2 Zero plane displacement and von Kármán’s constant

With y measured upwards from zero at the (flat) surface on which the rough-
ness elements sit, it is not obvious what value of y should be used as the ‘vir-
tual origin’ of the flow. Expressing the usual log-law relation for a fully rough
surface as U/uτ = 1

κ ln
y−d
y0

, the zero-plane displacement, d, clearly cannot in
general be zero. It has been almost universal practice to assume a classical
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Fig. 2. (a), Velocity profile in rough-wall channel, DNS of [5]. Starred parameters
in the boxes are fixed prior to fitting, which yields the other two parameters. (b),
κB′ vs. B′, the log law additive constant (B′ = B + ΔU+, where Δ+ is the usual
roughness function).

value of κ (0.41, say) and deduce d by obtaining best fits to mean velocity
data, ideally using an independently obtained friction velocity, uτ , for other-
wise there are too many unknowns to make the fitting process robust. This
was the approach used for all the data in fig.1 and it always leads to a value
of d a little below the height of the roughness, which is certainly reasonable
physically. Provided the velocity at each height is a spatially averaged value,
it is known that the log-law extends downwards into the roughness sublayer
(where the flow is spatially inhomogeneous).

However, Jackson [7] showed that the usual derivations of the log-law imply
that d is the height at which the total wall stress acts. His arguments assume
that the inertial sub-layer does not depend on the detailed morphology of the
surface except insofar as this determines the line of action of the drag force.
As far as the author is aware, this is the only physically-based definition
of d which has ever been proposed and, because it is physically based and
is implicit in the log-law derivation, it is an appealing definition. It is only
possible to determine this height unambiguously by measuring (or computing)
the distribution of pressure forces acting on the roughness elements and the
frictional forces acting on all surfaces. In cases of aerodynamically fully rough
surfaces, where the latter are necessarily very small compared with the former
(so that viscosity is not important), there have been a few attempts to measure
(or compute) the pressure drag and thus deduce τw and d directly. These
always lead to a value of d rather smaller than obtained by assuming κ = 0.41
and using a profile fitting process (e.g. [2, 9]). Consequently, mean velocity
data can only be well-fitted to the log-law by choosing a lower value of κ.

We illustrate this in figure 2, which shows a spatially-averaged mean ve-
locity profile obtained from well-resolved direct numerical simulations of a
rough-wall channel flow. The rough surface comprised a staggered array of
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cubes, height h = H/16 where H is the channel depth, and the mesh had
grid lengths of h/100 over the cube height and over 35 million nodes in all.
Reynolds numbers based on the roughness height and the bulk velocity or
the friction velocity were about 7000 and 600, respectively. Full details are
described in [11]. Two profile fits are shown in fig.2a, obtained either by fixing
κ = 0.41 and choosing d to give the correct slope or by fixing d (obtained
using the computed pressure and frictional forces) and choosing κ to give the
best fit to a line of the correct slope. Note that in this channel flow case, uτ is
known independently because the total wall stress must balance the applied
axial pressure gradient. There is little to choose between the two alternatives
in terms of the adequacy of the profile fit. Figure 2b follows Nagib & Chauhan
[12], who plotted the two log law coefficients (κ and the additive constant, B
appropriate for the smooth log law) in a form which would yield a straight
line if κ were a unique value. They used smooth-wall data from a wide variety
of high Reynolds number flows including boundary layers with favourable or
adverse pressure gradients. (Recall that the log law derivation requires suffi-
ciently high Re.) Data from [11], LES and wind tunnel experiments for similar
(rectangular block) surfaces are all seen to follow a reasonable extension of
the Nagib & Chauhan fit, at least for the data which do not extend too far
into the adverse pressure gradient region (for which B′ <≈ 0).

One must conclude that either the appealing, physically based definition of
zero-plane displacement is incorrect (for the rough-wall cases), or the Reynolds
numbers for all these data are too low, or κ is not universal across different
flow types and wall conditions. Spalart [13] has argued that to claim the latter
amounts to ‘a frontal attack on the log law, not simply a refinement of it’;
one therefore hesitates to accept it. Nagib & Chauhan, on the other hand, do
not believe that a unique value of κ can be found for high-Re wall-bounded
turbulent flows. As illustrated here, rough-wall data seem to be consistent
with that statement, unless one forces a classical κ and allows d to ‘float’
appropriately. It is worth noting that the value of κ generally accepted by
the meteorological community (atmospheric boundary layers are almost al-
ways fully rough) is significantly lower than 0.41 and there is evidence that
for large roughness, where d certainly matters (e.g. urban situations), κ might
even be as low as 0.35 [6]. No conclusion is offered here, except to say that,
for significantly rough surfaces, if one rejects the notion that d is the effective
height at which the surface drag acts, one would like an alternative physically
sound definition; otherwise there is no hope of ever determining κ from either
experiments or computations. Of course, another interpretation for d is cer-
tainly needed if the details of the flow in the inertial sublayer do depend on
the surface morphology (contrary to Townsend’s and Jackson’s assumptions).

3 The near-wall turbulence

In the case of large enough h/δ, but not so large that the inertial sublayer
ceases to exist, it seems intuitively likely, or at least possible, that features
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Fig. 3. (a) Velocity profiles in the wall region of a boundary layer over a staggered
array of cubes, with h/δ ≈ 0.07; the solid line is the spatial average, other symbols
are specific locations within the array and the dashed and dotted lines mark the
upper boundary of the canopy and roughness sub-layers, respectively. From [2]. (b)
Velocity profiles from DNS for a cube array in a channel (solid line) and LES for a
random height array of blocks in a channel (dashed line), from [15]. Ratio of average
roughness height h to channel half-height is 0.125 (cubes) and 0.1 (random blocks);
the dotted line marks the height of the tallest element in the random array case.
Note the different normalisations in the two figures.

of the flow in the sublayer and perhaps too the inertial layer will depend
on the particular details of the roughness. There have been numerous stud-
ies of turbulence over plant canopies and, more recently, urban-like canopies.
It has become evident that the qualitative features of these flows are much
like those in the near-wall region of smooth-wall boundary layers. The flow
is characterised by the presence of longitudinally-elongated low-speed streaks
and corresponding shorter streamwise vortices, developing as ‘packet’ struc-
tures (e.g. [16] in the context of smooth walls, and [9] and [3] for flows over
cube arrays). Flows over closely-packed plant canopies tend to be a little differ-
ent, showing ‘large roller and rib’ structures similar to those typical of mixing
layers. Finnigan [5] has argued that this is because, like classical mixing layers,
the mean velocity profile has a strong inflection point around the top of the
canopy, creating a rather different instability mechanism than would other-
wise occur. But other types of surface (like arrays of sharp-edged rectangular
blocks) also have a spatially averaged mean velocity profile which contains an
inflection point, as illustrated in Figure 3. Similar results have been obtained
from DNS and LES experiments on flows over both cube arrays and arrays of
random height blocks ([3, 15]), although it is very noticeable that the strong
velocity gradient evident over uniform arrays is very much weaker over the
random-height roughness, as is clear from fig.3b.

Despite the qualitative structural similarities with the smooth wall case,
at least for some kinds of rough surface, it is clear that there are quantitive
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Fig. 5. (a) Velocity deficit profiles for mesh and random roughness, 0.025 < h/δ <
0.3; (b) corresponding normal Reynolds stress profiles. Solid line in both figures is
smooth wall data [4]. Legend figures refer to values of δ/h and Reθ.

differences in Reynolds stresses and, indeed, some of the averaged structural
parameters. And these differences can extend to the outer flow even for rel-
atively small h/δ. Figure 4 shows the ratio of wall-normal to axial Reynolds
stresses, v′2/u′2. Data from numerous different experiments, over various kinds
of (three-dimensional) roughness are shown. Note that in this and subsequent
figures, y and δ have been reduced by d in all cases. The results are plotted vs.
h/δ for two different locations in the boundary layer, denoted by y/Δ = 0.04
(fig.4a) and 0.15 (fig.4b), where Δ is the usual Clauser thickness. At both
locations there is a noticeable rise in v′2/u′2 with increasing roughness height
relative to boundary layer depth. At the near-wall location (fig.4a) this rise
appears to begin even for very small roughness, whereas in the outer flow it is
not really noticeable above the experimental scatter until h/δ exceeds about
0.15. The implication is that turbulence structural changes occur first (not
surprisingly) near the surface, but extend gradually into the outer flow as
relative roughness height increases. For h/δ below a few percent, any changes
in v′2/u′2 in the outer flow are only marginal.
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Fig. 6. (a) Contours of constant Ruu(Δx,Δy) for y/δ = 0.17, from PIV measure-
ments; (b) Ratio of length scales defined by the separation distances (Δx,Δy) from
the reference point to the Ruu = 0.5 contour; legend shows values of h/δ.

However, Figure 5 suggests that even for h/δ = 0.025, the wall-normal
stress is still significantly higher than typical smooth-wall values for y/δ <
0.25. The figure shows deficit mean velocity profiles (fig.5a) and profiles of
v′2/u2

τ (fig.5b) for two kinds of surface – a hexagonal wire mesh and an array of
blocks of square plan section but random heights (and 25% plan area density).
In all cases, even for h/δ = 0.3, there is good universality in the mean flow
but clear differences in the stress profiles. Note that the mesh roughness with
h/δ = 1/43.8 = 0.023 and the urban roughness with h/δ = 1/49.8 = 0.02
both show elevated values of wall-normal stress over almost the entire lower
quarter of the boundary layer (y/Δ < 0.07), and even more in the urban case.

It would seem very unlikely that stress ratios could be affected by wall
roughness without at least some changes to the quantitative details of the
turbulence structure. Figure 6 shows that differences do indeed exist. PIV
data have been obtained in a smooth-wall boundary layer (Reθ ≈ 5, 500) and
two rough wall flows with different h/δ (0.072 and 0.135). A typical spatial
correlation map of the axial velocity component, with the reference ‘probe’ at
y/δ = 0.17, is shown in Fig.6a (for the smooth wall case). Similar data were
obtained for a set of y/δ heights in all three flows and a resulting measure of
the average eddy shape is shown in fig.6b. Lx/Ly (defined in the caption) is
close to the ratio of the major and minor axes of the roughly elliptical (and
inclined) Ruu = 0.5 contour. As h/δ increases it is clear that the average eddy
becomes more elongated and that this difference extends throughout at least
half of the flow.

4 Conclusions

Whilst universality of mean velocity profiles in rough wall boundary layers ap-
pears to be maintained up to surprisingly large roughness to boundary layer
height ratios (h/δ), evidence is accumulating that the turbulence character-
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istics can be noticeably affected by roughness throughout the entire depth
of the flow at much smaller h/δ. There is some evidence that for a specific
h/δ the extent of the roughness influence is dependent on roughness mor-
phology. A physically plausible definition of zero-plane displacement for very
rough surfaces suggests, like recent high-Reθ smooth-wall flow data, that von
Kármán’s coefficient varies with flow type. More work is needed to clarify the
precise nature of the roughness influences. In particular, the dynamics of the
near wall structures would be a fruitful area of study.

This work would not have been possible without significant input from a number of
the author’s colleagues at Southampton and elsewhere, not least Drs. Amir, Cheng,
Reynolds and Leonardi, all of whom are gratefully acknowledged.
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Many people argue that turbulence structure in a turbulent boundary layer is
dominated by motion created by viscous instabilities in the near-wall region
(see [4] and references quoted there). This analysis is based on observations
made for a smooth wall up to heigth of order 50 y+, and generalised to rough
walls. This is what is called the bottom-up theory of turbulent boundary
layers.

On the other hand, other people think that the turbulence characteristics
in the boundary layer are dominated by the way eddies coming from a higher
layer are distorted when impinging onto the ground, in a top-down manner. It
is mainly supported by people coming from the meteorological community and
practitionners, who are influenced by the way wind patterns evolves on the
sea surface or on agricultural fields (so called ”cat-paws”), see [5], and by work
on very high Reynolds number rough boundary layers, with typical viscous
height ν/u∗ ≈ 10−4 m, roughness height from 0.1 to 10 m, and measurement
heigth from 10 to 100 m.

It should be stressed that Taylor’s frozen eddy hypothesis (see [7], and also
[1]) relies on the assumption that turbulent eddies, being carried by the mean
flow, are neither top-down nor bottom up.

The target of this work is to discuss some measurable data supporting the
bottom-up or the top-down theory for very high Reynolds number turbulence.

The present work compares atmospheric rough-wall boundary layers and
smooth-wall boundary layers. It is therefore useful to use notations compatible
with both flows. In the following, x is the streamwise direction and y the
vertical direction, and y∗ is defined by y∗ = ν/u∗ where ν is the kinematic
viscosity and u∗ the friction velocity.

For a smooth wall boundary layer, the velocity profile in the log layer
is U = u∗

κ lnEy+ where y+ = y/y∗ and E = 8 to 10. For a rough wall, it
is U = u∗

κ ln y/y0 where y0 is the roughness height. Thus, the corresponding
heigts are y∗/E and y0. The following notation is therefore used in the present
paper for rough wall boundary layers:
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y+ =
y

Ez0

As an order of magnitude, common atmospheric boundary layers correspond
to z0 = 4 to 10 cm, the log layer height is of order 200 m and and the boundary
layer height is of order 1000 m. Thus, y+ = 100 corresponds to a height y ≈ 40
to 100m.

1 Use of sweeps and ejections

Here, (U, 0, 0) is the mean velocity field and (u, v, w) is the fluctuating velocity
field. It is said that there is an ejection at (x, y, z) and at time t if u(x, y, z, t) <
0 and v(x, y, z, t) > 0. It is said that there is a sweep at (x, y, z) and at time
t if u(x, y, z, t) > 0 and v(x, y, z, t) < 0.

Sweep and ejection always dominate the other events when velocity in-
creases with height, U(y) = S(y − y1) + U(y1) at least locally for y ≈ y1
a given height. Consider a ball of air at height y1 at time t0. The velocity
of this fluid element is (U(y1) + u, v, w). The fluctuations are of zero mean.
At time t + dt, the fluid element is advected to the height y1 + vdt. When
dt is very small, forces did not have time to modify the velocity of the fluid
element, which is still the same, while the mean velocity of fluid at the new
height is now U(y1)+Svdt. Therefore the new value of the fluctuation is now
(u−Sv dt, v, w). Therefore, if v > 0, the probability for a negative horizontal
velocity fluctuation increased, and similarly, if v > 0, the probability for a
positive horizontal velocity fluctuation increased. As a consequence, the prob-
ability for a sweep or an ejection to occur is larger than the probability of
complementary events.

The balance of sweep and ejections was investigated by many groups. In [2],
figure 10 shows that in a rough atmospheric surface layer, for y+ = 22, 70
and 120, sweeps dominate ejections, thus supporting the top-dowm picture of
boundary layer turbulence. In their figure 12, it is shown that sweeps dominate
when counted as number of events, but that the contribution of ejections
dominates the momentum flux.

However, the domination of sweep and/or ejection may not mean that
the eddy motion is top-down or bottom-up, as the following very simplified
toy-model will show. For a two-dimensionnal vortex pair impinging onto a
wall, an exact solution of Euler equation can be computed with the method
of images. Whatever the direction (top-down or bottom-up) of the vortex
pair, the velocity field is symmetrical, and sweeps balance exactly ejections.
Therefore it is not possible to use the balance between sweeps and ejections to
conclude on the top-down or bottem-up nature of the motion! The toy-model
shows that the preferential direction of movement can be seen through the
identification of the double vortex, a pattern that may be qualified as ’eddy’.
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2 Eddy identification with a vorticity threshold

In the turbulent general case, because of incompresibility and homogeneity on
horizontal planes, the vertical volume flux is zero, i.e. < w >= 0. Therefore,
top-down (as the bottom-up) conceptual model cannot simply be a preferen-
tial direction of the flow. It relies on the belief that some part of the flow are
more important than other, and defining this part as ’eddies’.

One option is to define ‘eddies’ as intense events. A good way of quantifying
this is to compute < w3 >. However, in the above toy-model, < w3 >= 0
because of the symmetry of the flow, showing that this approach is not able
to discriminate between top-down and bottom-up motion in this simple case.

Eddies are now defined as zones of intense vorticity ω = curl u (note
that ω is the vorticy of the velocity fluctuation field only). Define the local
enstrophy Ω = |ω|2. The characteristic scale for vorticity is the local mean
shear S = ∂U

∂y . We shall say that vorticity is intense if the ratio of the square
root of local enstrophy to local mean shear is above a threshold α, and we
define a sampling conditionnal to this threshold. This allows to separate the
vertical velocity field into 3 components, which can be averaged as follows:

0 =< w > =
〈
w
∣∣∣(√Ω < α|S|)

〉
+

〈
w
∣∣∣(√Ω ≥ α|S| and w ≤ 0)

〉

+
〈
w
∣∣∣(√Ω ≥ α|S| and w < 0)

〉

For a given α, area plot are defined as follows (see figure 1):

• green colour if
√
Ω ≤ α|S|,

• blue colour if
√
Ω > α|S| and w ≤ 0,

• red colour if
√
Ω > α|S| and w > 0.

This shows that for heigths between 20 and 100 in wall units, most of the
zones of intense vorticity have a positive vertical velocity, thus not supporting
the top down picture of boundary layers in terms of eddy motion. On the other
hand the plot of < w|(

√
Ω ≥ α|S| and w ≤ 0) > + < w|(

√
Ω ≥ α|S| and w <

0) > as function of height which shows negative values for relevant values
of α, showing that zones of high enstrophy and negative w are smaller than
zones of high enstrophy and positive w, but more intense.

The present data are based on direct numerical simulations performed
with a pseudo-spectral code using the Chebychev-τ formulation in the wall-
normal direction y, and Fourier expansion in the streamwise x, and spanwise
z, directions where periodic boundary conditions are applied. A detailed de-
scription of the numerical method is given in [3]. The simulation was carried
out at a Reynolds number Rc, based on the centerline velocity and the channel
half-width h, of 12580 and a friction Reynolds number hu∗/ν = 590 (see [6]).

Further investigation is still necessary to close completely the issue. A
lagrangian tracking of high enstrophy blobs would be necessary as a next
step.
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Fig. 1. For α = 1, area plot are defined as follows defined in the text, with: top left:
y+ = 20; top right: y+ = 40; bottom left: y+ = 50; bottom right: y+ = 250.
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A study of turbulent Poiseuille-Ekman flow at
different rotation rates using DNS

A.Mehdizadeh, and M. Oberlack

Department of Mechanical Engineering, Technische Universität Darmstadt, 64289
Darmstadt, Germany

1 Abstract

Turbulent Poiseuille-Ekman flow at different rotation rates has been investi-
gated. A series of direct numerical simulations has been conducted at various
rotation rates for Reynolds number 180 based on the friction velocity in the
non-rotating case. In this paper the results of both statistical and instanta-
neous eddy structures are presented and discussed briefly.

2 Introduction

Rotating flows are of great importance in many engineering applications. In
these flows the structure of turbulence and the mechanism of momentum
transport are highly affected by additional body forces namely centrifugal
and coriolis forces. The simplest wall dominated flow mode in this category
is a pressure driven turbulent channel flow, with a arbitrary rotating vector,
which can be decomposed into componential rotation vectors in the stream-
wise, the spanwise and the wall-normal directions. Among them, the spanwise
and the streamwise rotating channel flows have been investigated by many
authors [2], [3] and [4] to name only a few. However turbulent channel flow
with wall-normal rotation has been rarely studied. Because of the important
role played by Ekman type boundary layer in this flow, we shall refer to it
as Poiseuille-Ekman flow. Since there is no possible experimental approach
to investigation of these flows, direct numerical simulation (DNS) is the only
available method to examine them. A series of DNS of various rotation num-
bers is carried out to establish the effects of the rotation on the flow. In the
Figure.1 the flow geometry is sketched. No slip boundary condition at both
walls and periodic boundary conditions are employed in the streamwise and
the spanwise direction. Note that all variables are non-dimensionalized by the
friction velocity in the non-rotating case (Uτ0) and the channel half height (h).
For the entire analysis of the flow, only rotation rate, i.e. Ω2 or alternatively
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Ro = 2Ω2h
Uτ0

, is to be varied. The Reynolds number, Reτ0 = Uτ0h

ν
based on the

friction velocity in non rotating case is kept constant.

Ω2
x2

x1

x3

ū1

ū3

Fig. 1. Sketch of the geometry of Poiseuille-Ekman flow

3 DNS of turbulent Poiseuille-Ekman flow

The numerical technique presently employed is a standard spectral method
with Fourier decomposition in the streamwise and the spanwise directions and
Chebyshev decomposition in the wall-normal direction. The numerical code
for channel flow was developed at KTH/Stockholm [7]. Additional features
such as wall-normal rotation have been added during the project. Seven sim-
ulations have been conducted to show the effects of the rotation on the flow.
The numerical results indicate that the flow is very sensitive to the rotation.
Even a very small rotation number can induce a strong secondary motion in
the spanwise direction and at the same time reduce the streamwise mean ve-
locity substantially. Due to a further increase in the rotation rate, the stream-
wise mean velocity monotonically decreases. In contrast the spanwise mean
velocity first increases, reaches a maximum at around Ro = 0.054 and then
monotonically decreases by further increase in the rotation rate, (Figure.2).
Further increase of the rotation rate causes that the turbulent intensity to be
damped and as a result, the flow reaches a quasi laminar state. The Reynolds
number of this state is lower than the critical Reynolds number obtained by
Hoffmann and Busse [5], using stability analysis of the flow. In this parameter
region the flow exhibits different behavior in the spanwise and the streamwise
directions compared to fully turbulent region. In the streamwise direction, the
velocity profile reaches its maximum close to the wall and its minimum in the
middle of the channel. In the spanwise direction the velocity profile develops
a nearly constant region in the core of the flow. Also an inflection point in
the mean velocity profiles in both directions is visible, which can be clearly
observed in the streamwise velocity profiles. However the inflection points in
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the spanwise velocity profiles are not as clear as the ones in the streamwise
direction, (Figure.3). apart from the statistical quantities in this parameter
region very elongated structures (roll vortices) are obsereved, which are gen-
eral features of Ekman type boundary layers. Their existence based upon the
theory proposed by Faller [6], and Brown [1], is due to the inflection point
in the velocity profile. These structures can be seen in Figure.4. By further
increasing the rotation rate (Ro > 0.273), turbulence disappears and the flow
reaches a fully laminar state. These three state against the rotation rate have
been indicated in Figure.5.
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Fig. 2. Mean velocity in the streamwise (left) and in the spanwise (right) directions
for different rotation numbers in the fully turbulent region.
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Fig. 3. Mean velocity in the streamwise (left) and in the spanwise (right) directions
for different rotation numbers in the quasi laminar region.
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Fig. 4. Elongated coherent structures in the quasi laminar region for Ro = 0.145
(left) and Ro = 0.273 (right).
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number for Reτ0 = 180
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Experimental study of forced stratified
turbulence

P. Augier, P. Billant, E. Negretti and J.-M. Chomaz

LadHyX, Ecole polytechnique, 91128 Palaiseau, France
pierre.augier@ladhyx.polytechnique.fr

Recent results have shown that strongly stratified turbulence has a three di-
mensional dynamic instead of a quasi-two dimensional dynamic conjectured
previously. The structures are strongly anisotropic with an aspect ratio scal-
ing like the Froude number lv/lh ∼ Fh [1]. A direct cascade of energy from
large scales to small scales associated with a kh

−5/3 horizontal kinetic energy
spectrum has been predicted and observed in DNS of forced stratified tur-
bulence when the buoyancy Reynolds number Rt is sufficiently large [2]. In
constrast, for small Rt, the flow is dominated by vertical viscous effects even
if the Reynolds number is large [3, 4].

Fig. 1. Sketch of the experimental apparatus.

In order to investigate the turbulent regime experimentally with a suffi-
ciently high buoyancy Reynolds number, we have set-up a new experiment
where the flow is generated by 12 vortex generators (flaps) placed on the side
of a large stratified tank (Fig. 1). Each generator produces periodically and
independently a counter-rotating vertical columnar vortex pair which prop-
agates toward the central part of the tank. The interactions between all the
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randomly produced vortex pairs give rise to a forced turbulent flow with a low
Froude number Fh and a large Reynolds number Re. The buoyancy Reynolds
number based on the characteristics of the vortices generated by the flaps is
Rs ≡ ReFh

2 ∼ 100 while the buoyancy Reynolds number based on the in-
jection rate of energy ε : Rt ≡ ε/(νN2), is order unity. As seen on figure 2,
the mean kinetic energy of the flow is statistically stationary but with high
fluctuations typical of turbulent flows.

Fig. 2. Mean kinetic energy as a function of time.

Fig. 3. Vertical cross-section of the velocity field. The background color represents
the horizontal vorticity |ωy | perpendicular to the cross-section. In heavy shaded
regions, |ωy | ∼ N .
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PIV measurements in vertical cross-sections show that the flow is organised
into horizontal layers (Fig. 3). This layering arises spontaneously via the zigzag
instability of individual vortex pairs [5]. When the buoyancy Reynolds number
is increased, shear instabilities and intermittent overturning become more and
more visible between layers in agreement with [3, 6].

Horizontal velocity spectra exhibit a narrow kh
−5/3 inertial domain at

intermediate scales (0.2 rad/mm � kh � 0.7 rad/mm) even for the lowest Rt

investigated (Fig. 4). This inertial range becomes more and more flat as Rt

increases as observed in DNS of forced stratified turbulence [3].

Fig. 4. Compensated 1D kinetic energy spectrum : E(kh)kh
5/3 as function of the

horizontal wave number kh for different buoyancy Reynolds numbers.

As shown in figure 5, the rotational and divergent parts of the horizontal
velocity are of the same order at all scales even if the forcing is purely vortical.
This is consistent with the scaling law lv/lh ∼ Fh for which the dynamic of
waves and vortices can not be separated [1, 3]

We have set-up a novel experiment on forced strongly stratified turbulence
with buoyancy Reynolds number of order one. For the first time, a kh

−5/3

inertial range has been observed experimentally in agreement with theoretical
predictions, DNS and atmospheric measurements.
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Fig. 5. Compensated 2D kinetic spectrum of the vortical and divergent parts of the
horizontal velocity.

References

1. P. Billant and J.-M. Chomaz, Self-similarity of strongly stratified inviscid flows,
Phys. Fluids, 13 (2001)

2. E. Lindborg. The energy cascade in a strongly stratified fluid, J. Fluid Mech.,
550 (2006)

3. G. Brethouwer, and P. Billant, and E. Lindborg, and J.-M. Chomaz. Scaling
analysis and simulation of strongly stratified turbulent flows, J. Fluid Mech.,
585 (2007)

4. O. Praud and A.M. Fincham and J. Sommeria, Decaying grid turbulence in a
strongly stratified fluid, J. Fluid Mech., 522 (2005)

5. P. Billant and J.-M. Chomaz. Experimental evidence for a new instability of a
vertical columnar vortex pair in a strongly stratified fluid, J. Fluid Mech., 418
(2000)

6. A. Deloncle, P. Billant and J.-M. Chomaz. Nonlinear evolution of the zigzag
instability in stratified fluids : a shortcut on the route to dissipation, J. Fluid
Mech., 599 (2008)

P. Augier, P. Billant, E. Negretti, and J.-M. Chomaz400



DNS of the turbulent cloud-top mixing layer

J. P. Melladoa, H. Schmidtb, B. Stevensc, N. Petersa

a Institut für Technische Verbrennung, RWTH Aachen University, 52056 Aachen,
Germany
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The turbulent cloud-top mixing layer is studied using direct numerical simu-
lation (DNS). This configuration models the top of stratocumulus clouds and
is employed to investigate the role of latent heat effects. A partial description
of the turbulent flow that develops when the cloud and the cloud-free air mix
under buoyancy reversal conditions is presented in this paper.

1 Introduction

Cloud effects remain one of the largest sources of uncertainty in model-
based estimates of climate sensitivity. In particular entrainment rates in
stratocumulus-topped boundary layers need better models [3] in order to im-
prove predictions obtained with large-eddy simulations and Reynolds average
Navier-Stokes equations.

This work continues previous studies (see [2] and references therein) of
small-domain systems specifically designed to investigate the effects of the
latent heat of water, to gain understanding of the local dynamics at the top
of the cloud deck over length-scales below 5 m, which is the typical grid
step used in recent large-eddy simulations of the boundary layer [5]. The
cloud-top mixing layer is an idealized configuration formed by an unbounded
horizontal two-layer system, the upper layer warm and subsaturated and the
lower cool and saturated, the gravity force acting downwards. When they mix,
buoyancy reversal due to evaporative cooling may occur under certain ther-
modynamic conditions, creating mixtures heavier than the environment. The
physical model, as used in the past, is based on a mixture fraction variable
χ, a conserved scalar that represents the amount of mass in a fluid parti-
cle that originates from the upper layer. It only retains the effects of water
phase transition, and no further detail of the micro-physics of the cloud is
represented.

The problem is reduced to the Boussinesq approximation with the buoy-
ancy term in the vertical momentum equation related to the mixture fraction
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by a nonlinear function be(χ), the so-called buoyancy mixing function. The
typical shape of this function is shown in Fig. 1 (left), non-dimensionalized
with the inversion value b1 formed by the density difference between the two
layers. The mapping be(χ) is characterized by the saturation value χs that
indicates the mixture with the minimum buoyancy bs = −Db1; D is the
buoyancy reversal parameter. The interval of mixtures between χ = 0 and the
cross-over value χc = (χs + D)/(1 + D) with negative buoyancy represents
the buoyancy reversal.

The two-layer system in terms of the conserved variables leads to a three-
layer system in terms of the density, with the middle layer heavier than the
cloud below if buoyancy reversal occurs. This structure is unstable and the
associated instability is the buoyancy reversal instability [1]. This instability
leads to a turbulent state of the lower cloudy layer, even for the low values
D < 0.1 characteristic of real stratocumulus.

0.0 0.2 0.4 0.6 0.8 1.0
χ

0.0

0.2

0.4

0.6

0.8

1.0

be  / 
b 1

χs χc

-D

Fig. 1. Nondimensional buoyancy mixing function (left). Negative buoyancy field
(right) at the final time of the simulation τ3 = 5.40.

2 Results

A DNS of the reference case D = 0.031 and χs = 0.09 taken from field mea-
surements in nocturnal marine stratocumulus in the DYCOMS-II study [4] has
been performed on a cubic domain L3

0
using a uniform grid of size 10243. The

Prandtl number is Pr = 1 and the Grashof number Gr = L3

0
b1/ν

2 = 6.4×109,
which corresponds to a domain size L0 � 2 m when atmospheric values for
the viscosity ν and the inversion buoyancy b1 are used. The flow is tempo-
rally evolving and the horizontal planes are statistically homogeneous, so that
statistics depend on the vertical distance z/L0 and on a nondimensional time
τ = t

√
|bs|/L0.

Figure 1 (right) depicts qualitatively the state of the turbulent flow by
means of the negative buoyancy field at the final time, using a gray scale
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ranging from zero buoyancy (white) to bs (black). The forcing is to be found in
the vertical downdrafts of cool fluid that develop between the domes observed
at the inversion, which suffer then shear instabilities and transfer turbulent
energy to the horizontal motion. The inversion remains relatively thin and its
mean position is not significantly displaced in the vertical direction.

Quantitatively, the evolution of the mixture fraction is presented in Fig. 2.
The mean profile 〈χ〉 shows the penetration of the mixing region into the
neutrally-stable lower layer. The mean values of mixture fraction inside the
mixing region are small compared to the inversion value, even smaller than
the cross-over value χc = 0.12, and the evolution is only clearly observed in
the inset of Fig. 2 (left). On the other hand, the inversion remains located at
about the initial position z = 0, with a small thickening towards the upper
layer consistent with the conservation property of the mixture fraction, and
seemingly dominated by diffusion processes.
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Fig. 2. Mean (left) and r.m.s. (right) profiles of mixture fraction at different times:
τ1 = 4.03, solid; τ2 = 4.70, dashed; τ3 = 5.40, dot-dashed. The cross-over mixture
fraction separating negatively from positively buoyant mixtures is χc = 0.12 and the
vertical line indicates the corresponding position of that reference inversion plane.

The fluctuation of the mixture fraction is illustrated by Fig. 2 (right),
where the profile of the root-mean-square (r.m.s.) is plotted. First, there is a
broad zone below z/L0 � −0.1, corresponding to the turbulent region, with
fluctuation values about 1%; compared with χc, the value that seems to cap
the turbulent motion at the inversion, that turbulence intensity is of the order
of 10%. Second, there is a strong peak of χrms at about z/L0 � −0.02, which
does not vary strongly in time and that approximately corresponds to the
point of maximum mean gradient observed in Fig. 2 (left). The location of
this maximum gradient is not at z = 0 because the problem is asymmetric,
and it is more related to the position of the reference inversion plane based
on the initial background profile and the cross-over value χc. That strong
maximum in χrms represents the oscillation of the stable inversion.

In terms of the velocity, the mean is zero due to the statistical homogeneity
along the horizontal planes and the solenoidal character of the velocity field.
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The velocity turbulence intensity
√

2k, k being the turbulent kinetic energy
per unit mass, is plotted in Fig. 3 (left). The turbulent kinetic energy contin-
uously increases due to the positive turbulent buoyancy flux, Fig. 3 (right),
generated by the downdrafts, and this growth is in magnitude as well as in
broadening towards the lower layer. The Taylor-scale Reynolds number is
Reλ = w′λz/ν � 65, where w′ is the vertical velocity r.m.s. and the Taylor
microscale is λz = w′/

√
〈(∂w′/∂z)2〉. The turbulent Richardson number is

large, Rit = b1k
1/2/ε � 300, with ε the average turbulent dissipation rate,

which explains why the turbulent zone is constrained by the inversion on top,
as observed again in Fig. 3, without intense engulfment of the upper laminar
layer into the mixing region.
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Fig. 3. Turbulent kinetic energy (left) and turbulent buoyancy flux (right) at dif-
ferent times. Same legend as in Fig. 2.
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1 Introduction

In the present study we are focused on the mesoscale simulation of turbulent
momentum and heat transfer in the stably stratified boundary layer over
a flat urbanized surface by using the improved three-parameter turbulence
model in which buoyancy effects are accurately taken into account [1]. A
horizontal inhomogeneity of a mechanical nature is accompanied by a thermal
inhomogeneity. In some field studies, urbanized surfaces were observed to be
generally warmer than the adjacent vicinities. This situation is referred to as
an urban heat island [2]. Aerodynamic roughness and the urban heat island
produce significant disturbances in the wind and temperature fields due to
an intense upward flow of warm unstable air. This flow is induced by the
horizontal temperature gradient between the more strongly heated air over
the urbanized surface and the less heated air over its environs [1]. In this case,
vertical turbulent heat transfer has a nonlocal (countergradient) character [3].

2 Anisotropic three-parameter turbulence model

Below we will present completely explicit anisotropic expressions for the tur-
bulent momentum and heat fluxes in which the effects of buoyancy on tur-
bulent transfer are taken into account physically correctly. The details and

∗Authors acknowledge support of the Russian Foundation for Basic Research
(grant No. 09-05-00004a, 07-05-00673)
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approximations of their derivation can be found in [1]. The expressions for
the momentum and heat fluxes may be written as

(〈uw〉 , 〈vw〉) = −KM

(
∂U

∂z
,
∂V

∂z

)
, (1)

〈wθ〉 = −KH
∂Θ

∂z
+ γc, (2)

KM = EτSM , KH = EτSH , (3)

SM =
1
D

{
s0 [1 + s1GH (s2 − s3GH)] + s4s5 (1 + s6GH) (τβg)2

〈
θ2

〉
E

}
, (4)

SH =
1
D

{
2
3

1
c̃1θ

(1 + s6GH)
}
, (5)

γc =
1
D

{
1 +

2
3
α2

2
GM + s6GH

}
α5(τβg)

〈
θ2

〉
, (6)

where γc is the countergradient term, which is absent in the 2.5–order closure
models [4-7].

GH ≡ (τN)2 , GM ≡ (τΣ)2,

N2 = βg ∂Θ
∂z , Σ2 ≡

(
∂U
∂z

)2

+
(

∂V
∂z

)2

, τ = E/ε, E = 1/2 < uiui >.

The coefficients in the equations (4-6) are given as

D = 1 + d1GM + d2GH + d3GMGH + d4G
2

H + [d5G
2

H − d6GmGh]GH

d1 = 2

3
α2

2
, d2 = 10

3

α3
c̃1θ

, d3 = 2

3
α2

α3
c̃1θ

(α2 − α5)

d4 = 11

3
( α3

c̃1θ
)2, d5 = 4

3
( α3

c̃1θ
)3, d6 = 2

3
α2α5( α3

c̃1θ
)2

s0 = 2

3
α2, s1 = 1

α3

α3
c̃1θ
, s2 = α2 − α5, s3 = α5( α3

c̃1θ
)

s4 = α3α5, s5 = α5 + 4

3
α2, s6 = α3

c̃1θ

α1 =
4
3

1− c2
c1

, α2 =
1− c2
c1

, α3 =
1− c3
c1

, α4 = (1− c2θ), α5 =
1− c2θ

c̃1θ
(7)

Numerical values of the contants in expressions of (7) for turbulent momen-
tum and heat fluxes (1) and (2) are c1 = 2, c2 = 0.54, c3 = 0.8, c1θ = 3.28,
c2θ = 0.5. The kinetic energy E, its spectral consumption ε and variance
< θ2 > are obtained from the solution of transport equations (see in [1]).
The slow terms of the pressure-temperature correlation have been modeled as
follows:

Π
θ(1)

i ≡< p ∂θ
∂xi

>∼= − c1θ

τpθ
< uiθ >,
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where < uiθ > is the heat flux. In the many second-order closure models
further assume that τpθ ∼ τ = E/ε. However, this assumption may not neces-
sarily apply to the stratified flows. Indeed, in the original work of Weinstock
[8] it is shown, that the return-to-isotropy time scale τpθ in the presence of
stable stratification assumed to be equal

τpθ =
τ

1 + aτ2N2
, (8)

where a = 0.04 if N2 > 0, and a = 0 if N2 ≤ 0. Here N is the Brunt −
V äisälä frequency . The physical reason behind (8) is that in stably stratified
flows eddies lose kinetic energy for work against a gravity and this energy will
be converted to potential energy. Taking into consideration of (8), it is easy to
write the modified expression of coefficient c1θ so as to exhibit its dependence
on :

c̃1θ = c1θ(1 + aτ2N2). (9)

3 Turbulent Prandtl number in a Stably Stratified

Boundary Layer over Rough Surface

Figure 1 shows the dependence of the inverse turbulent Prandtl number
Pr−1

t = Kh/Km as a function of the gradient Richardson number ( defined as
Ri = N2/S2 , and S is the vertical shear of the horizontal velocity), calculated
at the numerical simulation of the stably stratified boundary layer with use
an anisotropic algebraic model for turbulent momentum and heat fluxes and
the RANS three-parametric turbulence model [1]. The general trend of the
inverse Prandtl number compares with the laboratory measurements and the
atmospheric data [9, 10]. Our simulation result is obtained by the physically
correct damping of turbulent vortices by the stable stratification according to
modifications of (8, 9). Indeed, the dash-dot line on Figure 1 correspond to the
calculation with help the ’standard ’ approximation: τpθ = τ , but this depen-
dence does not answer experimentally observed to decrease of inverse Prandtl
number with growth of thermal stability of a boundary layer (increasing the
gradient Richardson’s number). The result Pr−1

t < 1 is usually associated with
the presence of the internal gravity waves in the SBL. They are presumed to
enhance the momentum transfer through pressure terms in the Navier-Stokes
equations, whereas gravity waves do not affect the heat flux (e.g. [11]). At
the same time it is necessary to note, the result Pr−1

t > 1 was obtained in
recent large-eddy simulation (LES) studies of the SBL (e. g. [12]). Also in [13]
reported Pr−1

t > 1 from their LES simulations. In particular, is noted [13],
that in a boundary layer (up to 150 m), (almost) all results of simulations
give value Ri/Rif ∼ 0.7 (Rif is the flux Richardson number). Nevertheless,
’mainstream’ the given measurements and observations, apparently, specifies
in a diminishing trend of inverse Prandtl number with increasing of thermal
stability (increasing of the gradient Richardson’s number) of the SBL.
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1 Introduction

In research on flow characteristics above and within urban areas, recent studies
have used uniform cube arrays as simple models of an urban canopy [1, 2, 3, 4].
In most of these studies the flow direction was normal to the faces of the
cubes. So as to bridge the gap between this simple model and real urban
environments it is now required to investigate the effects of more parameters,
such as variations in surface morphology or, as in the present paper, the wind
direction.

2 Numerical Approach

A flow was numerically simulated above and within a staggered array of uni-
form cubes of height h as shown in fig. 1. Two domain sizes were used; the first,
4h× 4h× 4h, comprised 4 cubes and the second, 8h× 8h× 4h, 16 cubes. The
domains were discretised on regular grids of hexahedral cells. The dimensions
of the cells were ( h

16 )3 for the coarse grid and ( h
25 )3 for the fine grid (only used

(a) Staggered array of uniform cubes.

x

y

x

y

2

1

1

2

(b) 16 cubes computational domain.

Fig. 1. Surface studied.

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_98, 

409



on the 4–cubes domain). The vertical boundaries were set as periodic and the
top of the domain was a slip boundary.

The flow was forced by a pressure gradient in the x2-direction – see co-
ordinate system on fig. 1(b). Global and roughness Reynolds numbers are:
Re = Urefh/ν ≈ 4000, Reτ = uτh/ν = 434, respectively, with Uref the velocity
at the top of the domain and uτ the friction velocity. Both the spatial and
time discretisation scheme were second order accurate. The flow was simulated
using LES with Smagorinsky subgrid scale (SGS) model and a Lilly damping
function.

3 Results

3.1 Mean Flow

The velocity components were time averaged and spatially averaged in hori-
zontal layers.Mean velocity profiles from the three simulations are compared
in fig. 2(a). The angle between the resulting mean flow and the direction of
the pressure gradient is represented in fig. 2(b). The results show that the
flow is highly skewed, especially within the canopy where the flow is deviated
by more than 40 degrees below z = 0.5 h. It is also interesting to notice that
even at the top of the domain the flow is not aligned with the direction of the
forcing which could indicate that the domain is not high enough. This issue
will be investigated in future simulations.

Within the canopy, the spatial rms of the velocity components, presented
in fig. 3(a) and 3(b), are however of the same order as the velocity components
themselves so that the direction of the mean flow has more statistical than
physical sense. The spatial rms also indicate that the top of the roughness
sublayer is around z = 1.7 h.
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(a) x2 and y2 velocity components.
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(b) Deviation of mean flow.

Fig. 2. Velocity and mean flow deviation from the direction of the forcing (x2).
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Fig. 3. Horizontally averaged mean flow (faint) and spatial rms (bold).
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Fig. 4. Horizontally averaged pressure difference on cubes.

3.2 Drag and lift forces

The pressure on the faces of the cubes has been averaged from the 4 or 16
cubes, depending on the domain, and then averaged horizontally. The vertical
distributions of pressure difference in the streamwise and spanwise directions,
normalised by the integral of their absolute value, are represented in fig. 4(a)
and 4(b). The streamwise pressure difference is compared to DNS results from
Coceal et al [2] obtained for a flow at 0 degree – in the x1-direction.

For the 0-degree case, the top third of the building contributes to half
the pressure drag and the peak is situated around z = 0.9 h. In a study
with random-height obstacles, Xie et al [4] showed that the tallest buildings
presented similar vertical distribution which resulted in their contribution to
the total drag being much higher than their contribution to the total frontal
area (by a factor of about two). For the 45-degree case, however, the vertical
distribution of the drag proves to be much more uniform. It would thus be
interesting to study whether or not the tallest buildings remain predominantly
responsible for the drag of the random array with a 45-degree flow.
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For the 0-degree case, the form drag represented more than 90% of the
total drag and LES results collapsed well with DNS and wind tunnel data,
because the influence of the (probably inadequately captured) viscous forces
was quite small. For the 45-degree case, however, the pressure drag is only of
the order of 80% of the total drag, the 20% remaining being thus the viscous
drag. Given that the downfall of LES is often the poor representation of the
viscous forces, and in the absence, to our knowledge, of DNS or experimental
data for this configuration, this issue will have to be carefully investigated.

4(b) shows that the spanwise pressure difference is positive in the lower
half of the canopy and negative in the top half, which implies that a moment
is exerted on the cubes. Furthermore, by vertical integration of the spanwise
pressure difference we obtain a non-zero pressure ‘lift’ exerted on the cubes.
The ratio of the pressure lift to the pressure drag is of the order of 3%. The
global forces on the whole domain shows that this lift can only be balanced
by an opposing viscous force in the spanwise direction. The pressure force –
hence the viscous force – in the spanwise direction is directly related to the
deviation of the mean flow so that, once more, how well the viscous forces are
represented could reflect on the quality of the flow simulation.

4 Conclusions

The 45-degree simulations have shown new features in the flow above cube
arrays. Given the very good LES results for the 0-degree flow we can be
confident about the qualitative features of the 45-degree flow: highly skewed
mean flow, greater uniformity in the vertical distribution of drag, exertion
of a pressure lift on the cubes. However, the seemingly increased importance
of the viscous forces (at least in the main flow direction) and their possibly
poor representation by LES perhaps raises questions about the quantitative
accuracy of the results. The forthcoming wind tunnel experiments, whose
results will be presented at the conference, are intended to shed some light on
this issue.
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Introduction

A simple model for many geophysical and astrophysical flows, such as oceanic
deep convection and the convective outer layer of the Sun, is found in rotating
Rayleigh–Bénard convection: a horizontal fluid layer heated from below and
cooled from above is rotated about a vertical axis. Three dimensionless param-
eters characterise this flow: the Rayleigh number Ra describes the strength
of the destabilising temperature gradient, the Prandtl number σ relates the
diffusion coefficients for heat andmomentum of the fluid, and the Rossby num-
ber Ro is the ratio of buoyancy and Coriolis forces (Ro = ∞ when rotation is
absent and Ro� 1 for rotation-dominated flow). We investigate the effect of
rotation on the flow anisotropy in turbulent convection in an upright cylinder
of equal height and diameter, with experiments and numerical simulations.

Anisotropy quantified

A method to visualise and quantify flow anisotropy has been introduced by
Lumley [2]. It is based on the Reynolds stress tensor Rij ≡ uiuj, with ui

the ith velocity component (i = 1, 2, 3) and the overbar indicating spatial
averaging. Define the Reynolds stress anisotropy tensor

bij ≡ Rij

Rkk

− 1
3
δij , (1)

where δij is the second-order Kronecker tensor, and summation is implied over
repeated indices. bij is a symmetric tensor with zero trace. The second and
third tensor invariants of bij , denoted with II and III, respectively, are

II ≡ −bijbji/2 , III ≡ det(bij) . (2)

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_99, 

415



−0.04 −0.02 0 0.02 0.04 0.06
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

III

−I
I

3C isotropic

2C axi−
symm.

1C

axisymmetric

axisym−
metric

2C turbulence

(1 small EV)

(1 large EV)

Fig. 1. The Lumley triangle [2] is the map of allowed turbulence states in terms of
the anisotropy tensor invariants II and III .

The so-called Lumley triangle allows for a graphical evaluation of the ani-
sotropy based on the invariants II and III, see Fig. 1. All possible turbu-
lence states are found within this triangle. Isotropic three-component (3C)
turbulence is found in the origin. The limiting case of two-component (2C)
turbulence with axial symmetry is the leftmost point, while the rightmost
point represents turbulence with only one nonzero velocity component (1C).
On the left-hand side, the bounding curve represents the situation where one
eigenvalue (EV) of bij is smaller than the other two (which are equal in mag-
nitude), representing so-called ‘pancake-shaped’ or ‘disk-like’ turbulence [2].
Conversely, on the right-hand side one EV of bij is larger than the other two,
and ‘cigar-shaped’ or ‘rod-like’ turbulence is found [2].

Experimental and numerical methods

The full 3C velocity vector must be known to apply the aforementioned pro-
cedure. In the experiments velocity measurements are carried out in the con-
vection cell using stereoscopic particle image velocimetry (SPIV). This mea-
surement resolves the three components of velocity simultaneously on many
positions in a planar cross-section of the flow domain. The seeded fluid is il-
luminated with a laser light sheet that crosses the cylinder horizontally. Two
different heights are considered, viz. z = 0.5H and 0.8H (H is the cylinder
height). Two cameras are placed above the cell at different viewing angles.
With this stereoscopic view vertical displacements of the seeding particles in
the light sheet can be detected in addition to in-plane displacements.

In the simulations the equations of motion (the Navier–Stokes and heat
equations in Boussinesq form with incompressibility) are written in cylindri-
cal coordinates and discretised using second-order accurate finite-difference
formulations. The procedure is described in detail elsewhere [3].

The experiments and simulations are performed at a constant Rayleigh
number Ra = 109 and the convection fluid is water (σ = 6.4). The rotation
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rate is varied between runs. The Rossby number Ro takes values between Ro =
0.045 and 11.52 in the simulations; in the experiments 0.09 ≤ Ro ≤ ∞.

Results

Some typical results of the anisotropy evaluation from the simulations are
shown in Fig. 2. The invariants describe a certain trajectory in time inside
the Lumley triangle. When rotation is negligibly small (a, b), the invariants
take values covering most of the triangle. Under strong rotation (c, d) different
trends are observed. At mid-height (c) the trajectory is pressed against the
lower right-hand side boundary, indicating a turbulent state where velocity
fluctuations in one direction (the vertical direction) dominate over the other
two directions. Closer to the top plate (d) the trajectory is confined to a small
region near the isotropic limit, indicating nearly isotropic turbulence.

An overview of these effects as a function of Ro is obtained by plotting
the time-averaged values of the invariants in the Lumley triangle at the var-
ious Ro values. These averages are drawn in Fig. 3 for both experiment (a)
and simulation (b). Both methods show the same trends: at z = 0.5H rotation
increases the anisotropy toward ‘cigar-shaped turbulence,’ while at z = 0.8H
a near-isotropic state is approached. Thus a strong vertical inhomogeneity is
found.

H H

Fig. 2. Time series plots of the invariants in the Lumley triangle from simulations
at (a, b) Ro = 11.52 (negligible rotation) and (c, d) Ro = 0.045 (strong rotation).
Figures (a, c) are for z = 0.5H , while (b, d) are for z = 0.8H .
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Fig. 3. Averaged trajectories in the Lumley map as a function of Ro, taken
at z = 0.5H (circles) and at z = 0.8H (triangles). (a) Experiment; Ro increases
with factors 2 from 0.09 to 2.88; Ro = ∞ is also included. (b) Simulation. Ro
increases with factors 2 from 0.045 to 2.88; Ro = 11.52 is also included.

Discussion and conclusion

Rotation has profound effects on the turbulence anisotropy in convection. In
the central region there is a tendency toward ‘cigar-shaped’ turbulence with
one preferential direction. This is remarkably different from non-convective
rotating turbulence [4], where the opposite limit of two-component ‘pancake-
shaped’ turbulence is approached. The current ‘cigar-shaped’ turbulence ani-
sotropy agrees with the vertical convective forcing and the formation of narrow
vortical tube-like plumes that account for the vertical transport of heat and
fluid [5]. When approaching the vertical walls it is found that rotation ac-
tually promotes isotropy. The vertical inhomogeneity is unexpected from the
Taylor–Proudman theorem, which predicts a flow field without vertical gradi-
ents. It is thus important to take into account the vertical dependence when
modelling rotating convection.
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1 Introduction

The Rossby number, Ro = U/L2Ω, is the non-dimensional number character-
izing rotating flows. Here U is the characteristic velocity, L the characteristic
length scale, and 2Ω is the Coriolis parameter. When Ro → 0 the nonlinear-
ity of the equations of motion becomes weak, and the theories of weak wave
interactions apply. The normal modes of the flow can be decomposed into
zero-frequency 2D large scale structures and inertial waves (3D).

Rotating turbulent flow experiments and simulations are known to gen-
erate large-scale two-dimensional (2D) columnar structures from initially
isotropic turbulence. Decaying turbulence simulations show this generation
to be dependent on Rossby number, with three distinct regimes appearing
[1]. These are the weakly rotating Ro regime, for which the turbulent flow is
essentially unaffected by rotation, the intermediate Ro range, characterized
by a strong transfer of energy from the wave to the 2D modes (with a peak
at around Ro 0.2), and the small Ro range for which the 2D modes receive
less and less energy from the wave modes as Ro → 0.

The nonlinear processes involved in the generation of the intermediate Ro
regime include the contribution of resonant and near-resonant inertial waves.
The role of near-resonant was highlighted in forced turbulence at a moderately
small Ro [2]. Discreteness effects on such interactions were quantified and a
range of Ro over which both resonant and near-resonant interactions play
important roles in finite domains was found [3]. These results allow us to
undertake a robust numerical study of regime separation in forced rotating
turbulence.

In this paper, we discuss the study of forced rotating homogeneous tur-
bulence comparing various forcing schemes and numerical domains. We sum-
marize our findings and turn our attention to the nature of the dominant
interactions (found to be nonlocal) and to the generation of a condensate in
the long-time limit.
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2 Method and results

We used direct numerical simulations of homogeneous rotating turbulent flows
in triply periodic domains. The resolutions and forcing schemes were selected
according to the results obtained in [3] in order to ensure that all key inter-
actions are captured by the simulations in finite domains. Forcings in both
small and large scales and at various resolutions (e.g. 1283 and 2003) were
compared. The range of rotation rates spanned Rossby numbers from approx-
imately 10−2 to 2.

We found a robust regime separation in forced rotating turbulent flows.
The three regimes found in decaying flows have their analogue in forced flows
and are robust to the variation of resolutions and forcing configurations. The
rate of energy transfer from the 3D to the 2D modes peaks for Ro around 0.2,
independently of the chosen horizontal forcing scale.

Figure 1 shows 2D and 3D horiztonal spectra for a flow forced at small
3D scales (39 ≤ kh ≤ 42) with a 2003 resolution. We recover a 2D horizon-
tal energy spectrum of ≈ k−3.7

h
for 5 ≤ kh ≤ 20 with a less steep slope of

≈ k−2
h

for 20 ≤ kh ≤ 50. Note that similar spectral slopes were obtained when
changing the resolution, while applying an analogous small scale 3D forcing.
The steep slope is characteristic of the intermediate Ro regime and is consis-
tent with previous forced simulations of rotating turbulence despite the use
of different forcing schemes [4]. This shows the robustness of this steep slope,
but does not explain its origin. Scaling theories are difficult to formulate for
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Fig. 1. Time-averaged horizontal 2D and 3D energy spectra for a simulation forced
at small 3D horizontal scales.

rotating turbulence due to the lack of understanding of the elementary pro-
cesses contributing to the energy transfers, particularly between the 3D and
2D modes. In order to clarify this discussion for the intermediate Ro regime,
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we investigate the nonlocal or local nature of the dominant interactions, with
a particular focus on the interactions between the triads with two 3D modes
and one 2D mode, denoted 33 → 2.
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Fig. 2. Time-averaged horizontal energy transfer spectra for simulations forced in
(left) small and (right) large 3D horizontal scales. Both simulations were performed
at 2003 resolution and the transfers were averaged over time t ∈ [130, 150].

Figure 2 shows the energy transfers due to 33 → 2 interactions, where
we filtered the contribution of 3D modes of different horizontal scales. This
filtering allows us to identify the scales involved in the dominant 3D-2D triads
of the intermediate Ro regime. We split the spectral scales into three regions
(for example in Fig. 2 A,B and C, correspond to kh < 9.75, 9.75 ≤ kh < 19.5
and kh ≥ 19.5, respectively). Both forcings at small (region C) and large
scales (region A) lead to dominant nonlocal transfers of energy. The dominant
triads involve two small scale 3D modes directly injecting energy into a large
horizontal 2D mode. This non-locality of the interactions was found to be
robust to the change of forcing schemes and resolutions.

The nonlocal direct injection of energy into relatively large horizontal 2D
scales shows that the steep ≈ −3 slope observed in the present and previous
forced rotating turbulence flow simulations is not due to an inverse energy
cascade range as would be expected when assuming a local interaction with
such a small scale 3D forcing. In fact, a direct calculation of the 2D energy and
enstrophy transfers showed that the energy injected in 2D modes in region A
is transferred upscale, while the steep slope of the 2D spectrum corresponds
to a spectral region of downscale enstrophy transfer to the dissipation scales
(not shown).

Finally, using long-time simulations and various forcings, we find that the
2D dynamics of the forced intermediate Ro range reach a condensate state
similar to that observed in classical two-dimensional turbulence and in MHD
turbulence, in which energy accumulates in the largest scales of the finite
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Fig. 3. Snapshots of a horizontal slice of the 2D vorticity ω2D of a flow forced at (3D)
wave scales of 26 ≤ kh ≤ 28, kz �= 0. They are shown at times (left) t1 = 167.4 and
(right) t2 = 317.4 (condensate state), where turbulence is dominated by nonlocal
interactions between small-scale 3D and large-scale 2D modes.

domain. A small 3D scale forcing was applied to a rotating flow during a
long simulation run up to 14700 rotation timescales (2Ω)−1. Fig. 3 shows
the snapshots of 2D vorticity fields, corresponding to 3800 and 7000 rotation
periods. The 2D energy spectra associated with these snapshots are steeper
than −3.25 with a clear accumulation of energy in the larger scales of the
domain. The condensate formation explains the steep spectral slope observed.

3 Conclusion

Forced numerical simulations of rotating homogeneous turbulence have shown
a robust regime separation analogous to that found in decaying turbulence in
Ref. [1]. The intermediate Rossby regime in forced turbulence is characterized
by a steep 2D energy spectrum, dominated by nonlocal interactions between
wave and zero-frequency modes. These interactions transfer energy directly
from the small wave scales to the large 2D scales. Forced simulations of rotat-
ing flows eventually lead to the formation of a condensate where the energy
is concentrated in two dominant (2D) vortices of opposite sign. The steep 2D
spectral slope of the forced intermediate Ro regime is not associated with an
inverse energy cascade. This is true regardless of the scale of the 3D forcing.
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Rotation and shear are important features of many geophysical flows and
engineering applications (see for example Miesch [6]). Direct numerical sim-
ulations with constant vertical shear S = ∂U1/∂x2 and system rotation with
constant Coriolis parameter f = 2Ω are considered in this study. The rota-
tion axis is perpendicular to the plane of shear and points in the spanwise
direction x3. It is therefore parallel or anti-parallel to the mean flow vorticity.
The Cartesian coordinates x1, x2, and x3 refer to the streamwise, vertical,
and spanwise directions, respectively.

In previous studies by Bradshaw [2] and Tritton [10] the effect of ro-
tation was found to be destabilizing in the anti-parallel configuration with
0 < f/S < 1 and stabilizing otherwise. A comprehensive investigation of
this flow was performed by Salhi and Cambon [8], Brethouwer [3], as well as
Jacobitz, Liechtenstein, Schneider, and Farge [5].

The direct numerical simulations performed here are based on the conti-
nuity equation for an incompressible fluid and the unsteady three-dimensional
Navier-Stokes equation. In the direct numerical approach, all dynamically im-
portant scales of the velocity field are resolved. The equations are solved in
a frame of reference moving with the mean flow (Rogallo [7]) and periodic
boundary conditions for the fluctuating components of the velocity field are
applied. A spectral collocation method is used for the spatial discretization
and the solution is advanced in time with a fourth-order Runge-Kutta scheme.
The simulations are performed on a parallel computer using a grid with 2563

points.
The results presented here are based on nine simulations of rotating

sheared turbulence. The rotation ratio f/S was varied from −10 to 10. Neg-
ative values of f/S correspond to a parallel orientation of system rotation
and mean flow vorticity axes. Positive values of f/S correspond to an anti-
parallel orientation. All simulations are initialized with isotropic turbulence
fields. The initial Taylor microscale Reynolds number Re

λ
= 45 and the ini-
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tial shear number SK/ε = 2 are matched in all cases. The Reynolds number
reaches values as high as Reλ = 120 and the shear number assumes a value of
about SK/ε = 6 in the simulations. The simulations analyzed in this study
are identical to the ones reported in Jacobitz et al. [5].

Figure 1a shows the evolution of the turbulent kinetic energy K for the
series of simulations in which the rotation ratio f/S is varied. Due to the
isotropic initial conditions, the turbulent kinetic energy first decays. The non-
rotating case with f/S = 0 shows eventual exponential growth of K. For
moderate rotation ratios, the anti-parallel case with f/S = +0.5 leads to
strong growth of the turbulent kinetic energy, while the parallel case with
f/S = −0.5 results in decay of K. For strong rotation ratios, however, both
the anti-parallel case with f/S = +10 and the parallel case with f/S = −10
lead to strong decay of K due to the importance of linear effects. These
observations agree with previous results by Bradshaw [2], Tritton [10], and
Brethouwer [3].

Figure 1b shows the dependence of the components of the Reynolds shear
stress anisotropy tensor bij = uiuj/ukuk − δij/3 on the rotation ratio f/S
at non-dimensional time St = 5. The diagonal components of bij correspond
to the distribution of energy on the velocity components. For most rotation
ratios, an ordering b11 > b33 > b22, or streamwise > spanwise > vertical,
is observed. Only in the anti-parallel cases with 0 < f/S < 1 this ordering
is changed to b22 > b33 > b11, or vertical > spanwise > streamwise. The
magnitude of the off-diagonal component b12 is largest for f/S = +0.5, cor-
responding to the strongest growth of the turbulent kinetic energy K. Note
that the normalized turbulence production rate P/(SK) = −2b12 is directly
related to the anisotropy features of the flow.

Figure 2 shows the directional energy of the flow for two cases with (a)
f/S = +0.5 and (b) f/S = +5 at non-dimensional time St = 5. Orthogonal
wavelets allow to give an alternative description with additional information
of the anisotropy of the flow [1]. Wavelets, similar to structure functions,
are sensitive to velocity differences in the different directions. This allows to
characterize longitudinal and transversal anisotropy. Furthermore, orthogonal
wavelets have the advantage that the energy contained in the different direc-
tion sums up to the total energy, unlike structure functions or one-dimensional
Fourier spectra. For the strongly growing case with f/S = +0.5 the spanwise
differences of vertical velocity contain most of the energy, followed by the
spanwise differences of downstream velocity. For the strongly decaying case
with f/S = +5, however, the vertical differences of spanwise and downstream
velocities contain most of the energy, while vertical velocity is reduced.

In order to investigate the effect of shear and rotation on the turbu-
lence structure volume visualizations of the magnitude of fluctuating vorticity
are considered [4]. Figure 3 shows vortical structures for two cases with (a)
f/S = +0.5 and (b) f/S = +5 at non-dimensional time St = 5. The vortical
structures are inclined in the vertical direction to the downstream direction by
an angle α. This angle is larger for the strongly growing case with f/S = +0.5
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Fig. 1. (a) Evolution of the turbulent kinetic energy k in non-dimensional time St.
(b) Dependence of the components of the Reynolds stress anisotropy tensor bij on
the rotation ratio f/S at non-dimensional time St = 5.

(a)

 0

 5

 10

 15

 20

 25

xyzyzxzxyzyx

%
 o

f E
ne

rg
y

Directions

u
v
w

(b)

 0

 5

 10

 15

 20

 25

xyzyzxzxyzyx

%
 o

f E
ne

rg
y

Directions

u
v
w

Fig. 2. Wavelet-based directional energy for cases with (a) f/S = +0.5 and (b)
f/S = +5 at non-dimensional time St = 5.

compared to the decaying case with f/S = +5. The inclination angle α of vor-
tical structures directly influences the strength or turbulence growth or decay.
In the decaying case with f/S = +5, the vortical structures are patchy and
somewhat resemble structures found in stratified flows. Salhi [9] pointed out
similarities between rotation and stratification effects in homogeneous shear
flow using rapid distortion theory.

Additional geometrical information about the flow can be obtained from
the relative helicity of velocity hu and relative helicity of vorticity hω:

hu =
u · (∇× u)
||u||||∇ × u|| hω =

ω · (∇× ω)
||ω||||∇ × ω||

The relative helicity measures the cosine of the angle between the two vector
quantities. Figure 4 shows the PDFs of relative helicity of (a) velocity and
(b) vorticity. The relative helicity of velocity hu allows to distinguish between
helical structures (swirling motion) for which h has values of ±1, which cor-
respond to alignment or anti-alignment of vorticity and velocity, respectively.
Two-dimensionalization of the flow, i.e., vorticity is perpendicular to velocity,
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(a) (b)

Fig. 3. Volume visualization of vortical structures for cases with (a) f/S = +0.5
and (b) f/S = +5 at non-dimensional time St = 5.
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Fig. 4. Helicity distribution of (a) velocity Hu and (b) vorticity Hω at non-
dimensional time St = 5.

results in h = 0. The PDFs of hu show a maximum for hu = 0 for growing
cases and a maximum for hu ± 1 for decaying cases. The PDFs of hω show a
maximum for hω ± 1 for all cases.

We thank B. Kadoch for the preparation of the volume visualizations.
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A key feature of rotating turbulence is the anisotropic transfer of energy to-
wards horizontal modes, normal to the rotation axis Ω = Ωẑ, eventually driv-
ing turbulence to a quasi-two-dimensional state [1, 2, 3]. While nonrotating
homogeneous and isotropic turbulence shows direct energy cascade towards
small scales, the energy may be transfered in homogeneous rotating turbulence
both in scale and direction.

In isotropic turbulence, the energy transfers are classically described in the
physical space using the 3rd order structure function, S3(r) = 〈δru

3〉, where
δru = [u(x + r) − u(x)] · r/r is the longitudinal velocity increment. Exact
results for this quantity are S3 = − 4

5εr in 3D turbulence, and S3 = + 3
2εr

in 2D turbulence, with ε the rate of energy injected in the system. The sign
of S3(r) is indeed related to the direction of the energy flux: positive (resp.
negative) for transfers towards larger (resp. smaller) scales. To date, no ex-
act anisotropic extension of the 4/5th law has been derived for homogeneous
rotating turbulence. A recent attempt to derive a quasi-isotropic form of the
4/5 law under weak rotation has been carried out by Chakraborty and Bhat-
tacharjee (2007) [4].

Recently, several experiments have reported the possibility of a change of
sign of the 3rd order structure function for separations in the plane normal to
Ω [5, 6, 7]. In the experiment of Baroud et al. [6], where turbulence is forced
by radial jets originating from a circular array of source holes in a rotating
annulus, a change of sign is observed on S3. A change of sign of S3(r) has also
been reported in our experiment of decaying grid-generating turbulence in a
rotating tank [7]. This change of sign is found to occur at a scale r0 which
is decreasing during the decay, although this trend was not characterized in
details in this work.

We present here experimental results of decaying turbulence in a rotating
frame [7, 8, 9], aiming to further investigate the influence of the background
rotation on the 3rd order structure function. The experiment consists in a
water filled tank of square section, of side 35 cm and height 44 cm, rotating
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Ro*

(a) (b)

Fig. 1.1. (a) Skewness of the longitudinal velocity increments, S(r) =
S3(r)/S2(r)

3/2, measured in the plane normal to the rotation axis, at four times
during the decay. The scale r0 where S3 changes sign is a decreasing function of
time. (b) The local Rossby number (1.1) computed at the scale r0, for different
rotation rates.

at constant angular velocity. Turbulence is generated by towing a co-rotating
square grid from the bottom to the top of the tank. Structure functions are
computed from the horizontal components of the velocity in a horizontal plane
at mid height of the tank, using a corotating Particle Image Velocimetry
system.

Figure 1.1(a) shows that the skewness of the velocity increments, S(r) =
S3(r)/S2(r)

3/2, measured in a plane normal to Ω, crosses zero at a scale r0,
with r0 being a decreasing function of time. This change of sign suggests that
scales r � r0 transfer energy towards small scales, whereas larger scales, r �
r0, show a behavior consistent with transfers towards larger scales. Although
a positive S3 can be clearly associated to an inverse energy cascade for forced
turbulence [6], its physical signification is unclear in the case of decaying
turbulence, since no energy is supplied at scale r0.

This scale r0 can be tentatively interpreted as the crossover scale sepa-
rating 3D turbulence at small scales with no influence of the rotation (large
Rossby number), and a flow at larger scales dominated by the rotation (low
Rossby number), in analogy with the Ozmidov scale of stratified turbu-
lence [10, 11]. This interpretation can be indeed tested by computing a local
Rossby number, defined as

Ro(r) = S2(r)
1/2/(2Ωr) (1.1)

where S2(r) = 〈δru
2〉 is the 2nd order structure function. Accordingly, Ro(r)

should take a constant value of order unity at scale r = r0, which we denote
Ro(r0) = Ro∗. Assuming that the 2/3 law remains verified for r = r0, i.e.

S2(r) � (εr)2/3, one has Ro∗ = ε1/3r
−2/3
0 /(2Ω). This quantity, plotted in

Fig. 1(b) as a function of time for various rotation rates, is indeed approxi-
mately constant, Ro∗ � 0.07± 0.03, confirming this simple picture.
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Fig. 1.2. The 2 contributions of the von Kármán-Howarth equation (1.2), Ji =
−S3/r and Jv = 6ν∂S2/∂r, and their sum Ji + Jv, non-dimensionalized by the
instantaneous dissipation rate ε, at 4 different times during a decay experiment
with Ω = 1.13 rad s−1. The horizontal dashed line shows the value 4/5 expected for
isotropic turbulence.

Since no accumulation of energy at large scale is observed in decaying
turbulence (in particular, S2(r) is found to decrease in time for all r), the
interpretation of a positive S3(r) for r > r0 in terms of an inverse cascade
is questionable. In particular, the relationship between the sign of S3 and
the direction of the energy transfers holds only in the isotropic case. For
anisotropic turbulence, there is the possibility that the horizontal velocity
actually cascades towards large scales, while the vertical velocity, behaving as
a passive scalar advected by the horizontal motion, cascades towards small
scales. Since S3(r) is related only to the horizontal velocity here, it may be
indeed related to the direction of the energy cascade for the horizontal mode.

Another possibility is that the viscous effects may start to play a role in
the energy decay at large times, for r � r0. In order to test the effect of the
viscosity in the energy decay, we can measure the different contributions of
the von Kármán-Howarth equation,

−S3

r
+

6ν

r

∂S2

∂r
=

4

5
ε, (1.2)

which reduces to the 4/5th law in the inertial range in the limit of large
Reynolds numbers. Although this equation is not valid for anisotropic turbu-
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lence, we aim to check to what extent it remains verified at small times in
decaying rotating turbulence, for measurements restricted to the horizontal
plane.

The two terms of the left-hand side of Eq. (1.2), noted Ji (inertial) and
Jv (viscous), are plotted in figure 1.2 at 4 times. At small time, the sum of
the two terms remains close to the value expected for isotropic turbulence,
Ji + Jv = 4

5ε, for all r. As time proceeds, when the inertial contribution
Ji crosses zero at r = r0, the viscous contribution Jv becomes gradually
dominant, so that the sum Ji + Jv remains positive at r = r0. This would
suggest that, although the nonlinear terms shows a trend towards inverse
energy transfer, this effect is actually hidden by the viscous effects, resulting
in an overall decay at all scales. A zero crossing of the sum Ji + Jv may
possibly be present at even larger scales, but this effect can not be checked
by the presently available data.

More insight into the behavior of the 3rd order structure function in ro-
tating turbulence could be gained from an isotropic generalization of the von
Kármán-Howarth relation, for separations r normal and perpendicular to the
rotation axis. In particular, it would be of first interest to check whether the
zero crossing of S3(r), observed both in forced [5, 6] and decaying [7] turbu-
lence, is an artifact of the restriction to horizontal velocity measurements, or a
true effect that could be related to an inverse energy cascade of the 2D mode.

This work was supported by the ANR project no. 06-BLAN-0363-01 “HiS-
peedPIV”.
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Introduction

Background rotation may seriously affect the dynamics of fluid flows when
the relative importance of the nonlinear acceleration over the Coriolis force
becomes small enough. It has a relevant effect on turbulent dispersion and
mixing in geophysical and engineering flows, and acts with different mecha-

Fig. 1. Left panel: sketch of the setup on the rotating table. Right panel: a typical
trajectory as recovered through PTV.

nisms: the Coriolis force makes the flow strongly anisotropic and reduces the
energy dissipation [1, 2]. The background rotation reduces the overall dis-
persion and particularly in the direction parallel to the rotation axis. At the
same time, it leads to the formation of Ekman layers close to the horizontal
no-slip boundaries, responsible for an enhancement of the vertical mixing by
pumping effects.
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The Lagrangian viewpoint in turbulent diffusion is not only natural, but also
practical. Yeung [3] points to a major lack of experimental data in the La-
grangian setting. However, in the last few years the development of tracking
techniques allowed to access multi-particle statistics directly in the Lagrangian
frame, e.g. Ref. [4, 5].

Exploratory experiments in rotating turbulence

The aim of this work is to feed the fundamental investigation of turbulence
with experimental data, giving further insight into the anisotropic effects of
rotation. Experiments of electromagnetically forced turbulence are performed
in a confined tank put on a rotating table (see Fig. 1): the forcing acts in the
bottom region, inducing a turbulent flow (Reλ ∼ 150) which decays along the
upward vertical direction. The Rossby number Ro = U

2
/L

2UΩ
(with the typical

length scale L chosen as the magnet spacing, U the rms velocity, and Ω the
rotation rate) is varied between ∞ and 0.013. A 3D-PTV technique, based on
the code developed at ETH (Zurich) [6], is used to extract trajectories in a
volume comparable with the integral scale.
A first set of experiments allowed us to fully characterise the flow in the
Eulerian frame, and also to define the appropriate set of parameters for ad-
ditional experiments suitable for computing long-time velocity correlations,
and single-particle and particle-pairs dispersion. The Eulerian analysis showed
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Fig. 2. Left and central panels: PDFs of kinetic energy, from the reference non-
rotating experiment and a 0.5 rad/s run, respectively. The PDFs correspond to the
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two experiments.

that a considerable part of the kinetic energy is transferred from the fluctu-
ating field to the time-averaged flow when increasing the rotation rate, as
illustrated in the left and central panels of Fig. 2: the mean flow overcomes
the fluctuating flow in terms of energy content, this being a clear indication
of the regularisation effect of the background rotation. The overall energy
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dissipation is reduced, and the Kolmogorov scales increased. Moreover the
distribution of the turbulent kinetic energy production shows a reduction of
its positive skewness with increasing rotation rate; when this quantity is made
non-dimensional using the local magnitude of the mean flow strain rate tensor
and the one of the Reynolds stress tensor (as done in [7]), its probability den-
sity function still shows a reduction of its positive skewness with increasing
rotation rate (see Fig. 2, right panel). This indicates that the TKE produc-
tion is diminished also due to the reduced correlation of the two tensors. Both
these features characterise all rotating runs, clearly distinguishable with a
mild rotation of 0.5 rad/s already, and even more pronounced for faster rota-
tion rates.
The analysis of particle-pairs dispersion out of the first set of experiments

10−1 100 101
101

102

t2

t/τη

<
r2
>
/
η
2

0 rad/s
0.2 rad/s
0.5 rad/s
1.0 rad/s

Fig. 3. Normalised mean-squared separation of particle-pairs, showing the t2-slope
typical of the initial ballistic regime.

shows well-known features at short times: as shown in Fig. 3, the ensemble
average curves reach the t2-slope characteristic of the initial ballistic regime
for all rotating runs. For longer times, data do not permit robust statistics,
nevertheless it is clear that the effect of rotation is anisotropic: the damping
of the slope of the curves is greater for the vertical component (parallel to the
rotation axis) than for the horizontal ones, at all rotation rates.

Ongoing experiments

In order to proceed with the analysis, a new set of experiments is performed:
the measurement volume is increased of a 20% in size along each of the three
directions (now 1003 mm3); the number of tracked particles is roughly doubled
(up to 2500 tracked particles on average between time-steps); the recording
time is extended to 30 eddy turn-over times. The new data (sample velocity
and vorticity fields are shown in Fig. 4) show the same features in the Eulerian
frame as described above, and it will allow us to quantify in a wider range
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Fig. 4. Mid-height horizontal slices of instantaneous velocity fields from the latest
experiments, interpolated on regular grid. Left column: vector map of horizontal
velocity components and grey scale map of vertical velocity component (mm/s);
right column: vector map of horizontal velocity components and grey scale map of
vertical vorticity (mm/s and mm/s2, respectively). First row: reference non-rotating
experiment; second row: fast rotating (5 rad/s) experiment.

of the turbulence spectrum the dispersion of single particles and of particle-
pairs, together with Eulerian and Lagrangian time-correlations of velocity.
The description of the effects of rotation will also include the distribution and
the auto-correlation of particle accelerations.
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Laboratory experiments of rotating turbulence at a Rossby number of order
unity show three robust phenomena: (i) the rapid formation of columnar ed-
dies aligned with the rotation axis; (ii) a dominance of cyclonic eddies over
anti-cyclones; and (iii) a reduction in the rate of energy decay [1], [2]. We
review recent experimental results which confirm that the observed colum-
nar eddies are simply transient Taylor columns formed by linear inertial wave
propagation [2], a phenomenon which was predicted earlier on the basis of
angular momentum conservation [1]. We also offer an explanation for the
dominance of cyclones. Finally, we provide evidence that the kinetic energy
decays as u2 ∼ (Ωt)−1, a result which can be explained in terms of the con-
servation of a Loitsyansky-like integral.

Introduction

We consider rotating turbulence in which the velocity in the rotating frame,
u, is smaller than, or of the order of, |Ω|�, where Ω = Ωêz is the rotation
vector and � an integral scale. It is well known that such turbulence is char-
acterised by the presence of large columnar eddies aligned with the rotation
axis [1], [2], [3], and there has been much discussion as to the mechanism by
which these columnar structures form. The various theories differ in detail
but all agree that inertial waves play an important rôle. Nearly all theories
focus on the case of small Rossby number, Ro = u/Ω� << 1, and suggest that
anisotropy results from a weak non-linear coupling of the waves; so-called res-
onant triads [4]. However, a quite different, and simpler, explanation for the
growth of the columnar eddies was put forward in [1]. It too is posed in the
context of Ro << 1, but does not require non-linearity. Rather, it relies on the
idea that the large energy-containing eddies in the turbulence will elongate
along the rotation axis by radiating energy in the form of linear inertial waves.
This leads to the prediction that the large eddies, and hence the integral scale
parallel to Ω, will elongate at a rate set by the group velocity of inertial waves.
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How columnar eddies form

We start by summarizing the linear theory of [1], which offers a simple expla-
nation for the growth of columnar structures at low Ro. Consider the initial
value problem of a localised blob of vorticity sitting in an otherwise quies-
cent, rapidly-rotating fluid. Let the characteristic scale of the blob be δ and
a typical velocity be u. If Ro << 1, then the subsequent motion consists of a
spectrum of linear inertial waves whose group velocity is dictated by the initial
distribution of wavenumbers, k, in accordance with cg = ±2k × (Ω × k)/k3.
Thus the energy will disperse in all directions with a typical speed cg ∼ Ωδ.
However, this radiation of energy is subject to a powerful constraint, which
systematically favours dispersion of energy along the rotation axis. Let VR be
a cylindrical volume of infinite length that circumscribes the vortex blob at
t = 0. Then it is shown in [1] that the axial component of angular momentum
held within VR is conserved for all time. In short, angular momentum can
disperse along the rotation axis only.

This constraint systematically biases the dispersion of energy. For example,
as the energy radiates to fill a volume whose size grows as (δΩt)3, conserva-
tion of energy requires that the velocity outside VR falls as u ∼ u0(Ωt)

−3/2.
However, inside VR the angular momentum is confined to a cylindrical re-
gion of size Ωtδ3, and so a typical velocity inside VR falls more slowly, as
u ∼ u0(Ωt)

−1. (These predictions can be confirmed by direct calculation us-
ing stationary phase.) Thus the energy density inside VR is always greater
than that outside, and so the dominant effect of inertial wave radiation is to
spread the energy of the vortex along the rotation axis. In short, the eddy
splits to form pairs of Taylor columns whose length grows as �z ∼ δΩt, as
shown in Fig. 1(a).

Now consider an initial condition consisting of many such vortex blobs ran-
domly, but uniformly distributed in space. Each vortex will behave as above,
spontaneously forming columnar eddies, and it is readily confirmed that, for
Ωt >> 1, the two-point velocity correlations are self-similar when rz is scaled
by Ωδt [2]. This admits the simple physical interpretation that all of the ed-
dies grow in the axial direction at the rate �z ∼ δΩt, which is the hallmark of
energy dispersion by linear inertial waves. Crucially, this prediction provides
a simple test to distinguish between columnar vortex formation via linear and
non-linear mechanisms.

The experimental evidence at Ro ∼ 1
We now turn to the experiments [2]. Here Ro drifts down towards unity as
the energy of the flow decays. Four robust phenomena were observed: (i)
when Ro reaches a value close to unity, columnar eddies start to form and
these eventually dominate the large, energy-containing scales; (ii) during the
formation of these columnar eddies, the integral scale parallel to the rotation
axis grows linearly in time, �z ∼ �0Ωt; (iii) more cyclones than anticyclones
are observed; (iv) the energy decay rate is reduced by rotation.

P.A. Davidson and P.J. Staplehurst436



100 101 102
100

101

102

t

u2

Fig. 1. (a) An initial blob of vorticity converts itself into a pair of columnar eddies
(Taylor columns) via linear inertial wave propagation, Ro << 1. (b) Plot of energy
against time from the experiments of [2]. The solid line is u2 ∼ t−1.

The fact that the integral scale grows as �z ∼ �0Ωt is highly suggestive
that the columnar eddies form by linear wave propagation, and not by res-
onant triad interactions. This is perhaps surprising, since Ro ∼ 1. In order
to check this hypothesis, two-point velocity correlations were measured as a
function of rz and t. This was done for four different experiments which had
varying values of Ω and �0, but were otherwise similar. According to linear
theory, the velocity correlations from all four experiments and at all times in
each experiment should collapse onto a single universal curve, provided rz is
normalised by Ω�0t. This is exactly what was found, so there is no doubt that
the columnar vortices seen in [2] were formed by linear wave propagation,
despite the fact that Ro ∼ 1.

Why linear behaviour at Ro ∼ 1?
Let us now consider the curious observation that linear wave propagation
can persist up to a Rossby number of Ro ∼ 1. Numerical simulations were
undertaken in [5] to investigate this very point, in which a single eddy (blob
of vorticity) was allowed to evolve in the presence of background rotation.
A range of initial values of Ro was considered, from 0.1 to 4.0, and both
cyclones and anticyclones were computed. For small Ro the eddies evolved
into columnar structures as shown in fig. 1 (a), and of course there is no
difference between the behaviour of cyclones and anticyclones in the linear
regime. At high Ro, on the other hand, the vortices behave very differently,
bursting radially outward under the influence of the centrifugal force. Perhaps
the most surprising aspect of the computations, though, is that the transition
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from linear to fully non-linear behaviour is abrupt. In the case of cyclones
the transition occurs in the narrow range 1.4 < Ro < 3.0, with columnar
vortex formation below Ro = 1.4 and centrifugal bursting for Ro > 3.0. The
equivalent range for anticyclones is also surprisingly narrow, 0.4 < Ro < 1.6.
These findings illustrate how quasi-linear inertial wave propagation can persist
up to Rossby numbers of Ro ∼ 1, which is consistent with the experiments of
[2].

The results of [5] are also interesting from the point of view of the observed
dominance of cyclones over anticyclones. Notice that the transition range of
Ro is different for cyclones and anticyclones, with the anticyclones requiring
a lower value of Ro to form columnar structures. Now in the experiments of
[2] we start with a high value of Ro, but as Ro drifts down towards Ro ∼ 1,
columnar eddies start to appear. From the asymmetry described above, we
might expect the first columnar structures to be cyclones, with significantly
lower values of Ro needed to generate anti-cyclonic columns.

The Decay of Energy

We conclude by discussing the energy decay rate, which is known to be
suppressed by rotation. It is shown in [6] that, subject to certain caveats,
homogeneous turbulent flows which are statistically axisymmetric possess a
Loitsyansky-like invariant. This includes MHD, stratified and rotating tur-
bulence. If the large scales in such a flow are self-similar, this then requires
u2
⊥

�4
⊥

�z = constant. Moreover, we have already seen that, once the Rossby
number falls below unity, �z grows as �z ∼ �0Ωt. It follows that, in freely-
decaying, rapidly-rotating turbulence, u2

⊥

�4
⊥

�0 ∼ (Ωt)−1. This is interesting
because �

⊥
∼ constant during the linear growth of �z and the decay data of

[2], which is shown in fig.1(b), seems to follow the power law u2
⊥

∼ (Ωt)−1,
consistent with u2

⊥

�4
⊥

�0 ∼ (Ωt)−1.
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As the offshore oil and gas industry moves towards deeper ocean environ-
ments, submarine structures such as oil and gas pipelines become increas-
ingly exposed to less understood hazards, among them gravity and turbidity
currents. Our incomplete understanding of the interaction between gravity
currents and submarine structures has motivated several recent experimental
[1, 2] and numerical [3, 4, 5, 6, 7] investigations. Whereas previous studies fo-
cus on the force exerted on submerged cylinders and on the two-dimensional
dynamics of the interaction, the current investigation places emphasis on the
magnitude of the wall shear stresses near the cylinder calculated from three-
dimensional simulations. This shear stress is related to the process of scour
near submarine structures [8].

We use the flow configuration shown in figure 1, and solve numerically
the Navier-Stokes equations in the Boussinesq approximation with the large-
eddy-simulation method developed by Pierce [9]. The simulation code has
been validated for the simulation of gravity currents [10] and gravity current
flows past submerged cylinders [4]. As governing dimensionless parameters we
identify the Reynolds and Schmidt numbers, respectively, Re =

√
g′hh/ν and

Sc = ν/κ, where g′ is the reduced gravity, h the lock height, ν represents
the kinematic viscosity, and κ the molecular diffusivity. In addition, there are
various geometrical parameters, cf. figure 1, the most important ones being
H/h, D/h, and G/h. The gravity current front speed is denoted with V .
In the following, we discuss results from a representative three-dimensional
simulation with the following parameters: Re = 45, 000, Sc = 1, H/h = 2.5,
D/h = 0.1, and G/h = 0.03.

As the current approaches the cylinder, cf. Figs. 2a and 3a, the wall shear
stress right below the cylinder increases, and reaches a maximum value when
the current impacts the cylinder, cf. Fig. 3b. Notice in Fig. 2a the lobe and
cleft structure at the current front [11], as well as the Kelvin-Helmholtz billows
further upstream. Also notice in Figs. 3a and 3b the effect of the lobe and
cleft structure on the wall shear stress. The larger wall shear stress near the
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lobes may trigger localized scour. After impact, the head of the current plunges
downstream of the cylinder, producing a high level of wall shear stresses there,
cf. Fig. 3c. Later on, the flow around the cylinder reaches a quasisteady stage,
and the gravity current reestablishes itself downstream of the cylinder, cf.
Fig. 2b. For sufficiently large gaps, the wall shear stress downstream of the
cylinder fluctuates due to vortex shedding, cf. Fig. 3d. Hence lee wake erosion
may occur [8]. The magnitude of the wall shear stress at impact is observed
to be 2.6 times higher than that during the quasisteady stage, for a wide
range of parameters [7]. Therefore, aggressive tunneling erosion can occur
at impact, which represents a key difference between the scour dynamics of
gravity current and constant density flows.

Fig. 1. Sketch of the flow configuration. A channel of length L and height H is
filled with ambient fluid of density ρ0. Submerged in it is a lock of length l and
height h, which contains the denser fluid of density ρ1. The difference in density
between the fluids is assumed to be produced by different concentrations of a solute.
When the vertical gate at x = 0 is opened, a current of the denser fluid forms
and propagates towards the right along the floor of the channel. After traveling a
distance lc, it encounters a circular cylinder of diameter D, placed a distance G
above the non-erodible bottom wall.

The above comments are based on wall shear stress data obtained from
simulations for non-erodible beds. Clearly, future research should extend the
scope of the simulations to erodible boundaries, and it should involve com-
parisons with corresponding laboratory experiments.
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(a)

(b)

Fig. 2. Spanwise vorticity isosurfaces (ωz/(V/h) = 1) at t/(h/V ) = 7.3 (a) and 14.6
(c). These isosurfaces highlight the interface between the fluids. The gravity current
moves from left to right in the x-direction. The cylinder is at x/h = 9 − 9.1.
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(a)

(b)

(c)

(d)

Fig. 3. Wall shear stress magnitude contours (|τw|/ρ0V
2) at different times:

t/(h/V ) = 7.7 (a), 8.9 (b), 9.4 (c), and 16.7 (d). The cylinder is at x/h = 9 − 9.1.
Darker shades indicate a higher wall shear stress. The front of the gravity current
is approximately at xf/h ≈ 7.9 (a), 9 (b), 9.3 (c), or xf/h > 12 (d).
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In recent years much attention has been focused on the study of large
scale structures in ideal and viscous fluids. Such nonlinear effect as cyclonic-
anticyclonic asymmetry is observed in geophysical flows and in laboratory or
numerical experiments [1, 2]. In the case of quasi-2D structures smaller then
Rossby- Oboukhov scale the main role belongs to the nonlinear friction at
the underlying surface. In this study an approximate theory is constructed to
describe quasi-two-dimensional flows of rotating viscous incompressible fluid.
The two-dimensional description of large scale vortical flows, which is based
on the concept of linear or weak nonlinear bottom friction, is valid only for
moderate Reynolds or for small Rossby numbers [3, 4]. This study takes into
account a circulation in the vertical plane and related two-dimensional diver-
gence of the vortex flow [5]. The role of nonlinear terms that are due to the
interaction between the vortical and potential components of two-dimensional
velocity or between vortices with vertical and horizontal axes is analyzed.
This interaction leads to nonlinear Ekman pumping of fluid and forms the
boundary (Ekman) layer with effective height. For rotating flows the different
height of Ekman layer determines the different behavior of cyclonic and anti-
cyclonic vortices. For non-rotating flows with strong vorticity the boundary
layer similar to Ekman layer is also formed. The results of the proposed theory
are compared with experimental data, which were obtained from laboratory
study of a spatially periodic flow.

Let us consider a flow in a thin layer of a viscous homogeneous incompress-
ible fluid rotating in the gravity field. We assume that the flow is created by
vertically homogeneous vortical force. In the quasi-static approximation the
equation for horizontal velocity is written as

dU

dt
+ [fez ×U]− ν

∂2
U

∂2z
= F0[ez ×∇G(

x

l
,
y

l
)]− g∇η(x, y)
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where z = h+η(x, y) is the equation of the free surface, f - Coriolis parameter,
ν - kinematic viscosity, h << l, ν << Ul.

The boundary conditions for horizontal and vertical velocity components
are

U = 0(z = 0),
∂U

∂z
= 0(z = h), w = 0(z = 0, z = h)

It is convenient to use Helmholtz decomposition of vector field

U = [ez ×∇Ψ ] +∇Φ,∇ = ex
∂

∂x
+ ey

∂

∂y

and describe the fluid motion in terms of vertical component of vorticity
ω = �Ψ and divergence of horizontal velocity δ = �Φ. The divergent term is
connected with circulation in the vertical plane. Let us assume that

Ψ = Ψ0(x, y) + Ψ1(x, y,
z

σ0

),

Φ = Φ0(x, y) + Φ1(x, y,
z

σ0

),

where Ψ1, Φ1 are non-vanishing only in the boundary layer σ0 � h, hΦ0(x, y) =
−

∫
Φ1(x, y, z

σ0
)dz

The following scaling relations for flow are derived from the basic equations

Ψ0 = ω0ψ0(x, y,
f

ω0

),

Φ0 = ω0

σ0

h
φ0(x, y,

f

ω0

),

Ψ1 = ω0ψ1(x, y,
f

ω0

,
z

σ0

),

Φ1 = ω0φ1(x, y,
f

ω0

,
z

σ0

),

σ0 = (2
ν

ω0

)
1
2σ(

f

ω0

).

Under the balance condition between forcing and dissipation we get

ω0 = (
F 2

0
h2

2ν
)

1
3 .

We assume that without rotation and at small Rossby numbers the sym-
metric distribution of cyclonic and anticyclonic vorticity is generated. For
moderate Rossby numbers the antisymmetric component is also important.
The approximate solution of boundary layer equations allows us to determine
the relationship between two flow components and to derive the approximate
closed equation for surface flow. This equation takes into account nonlinear
bottom friction and it is valid for flows with strong vorticity at arbitrary
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Rossby numbers. As a solution of this equation we obtain the vorticity distri-
bution at the fluid surface.

The experimental flow was realized in a rectangular tank filled with con-
ducting fluid. The tank was placed on the rotating platform. On the sides of
the tank was mounted electrodes with help of which an electric current was
passed through the fluid. The vortex flow in the thin fluid layer was created
by means of the system of permanent magnets. We have received a number of
cyclonic and anticyclonic vortices. The velocity field of this flow was measured
on the surface. Second and third moments of vorticity were calculated.

The experimental data obtained at different values of current strength
I ∼ F0 and rotation period - T are in a good agreement with results of
approximated theory. These results correspond to the scaling relations ω̃ =
qω, T̃ = q−1T, q = (I0/I)2/3, as it is shown on the Fig.1 and 2. The value
of third moment of vorticity shows an asymmetry between anticyclones and
cyclones that is maximal at Rossby number equal to unit. Our investigation
demonstrate that intense quasi-2D vortices generate circulation in the vertical
plane due to friction at the underlying layer and form effective Ekman layer.
Obtained results allow us to interpret the amplification of anticyclonic eddies
and weakening cyclonic eddies observed in the experiment.

The work is supported by RFBR (projects 08-05-00764,07-05-00112).
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Scalar fluxes in decaying stratified turbulence are investigated when vertical
mean gradients of density and passive scalar coexist. While there have been
many studies on stratified turbulence, behavior of passive scalars in that sys-
tem has rarely been studied. In this study, we have compared the DNS results
with RDT(rapid distortion theory)[1], particularly for the time development
of turbulent diffusion coefficients of density (Kρ = −ρw/N2, w: vertical veloc-
ity, N : Brunt-Väisälä frequency) and passive scalar (Kc = cw/(dc/dz), c(z):
mean passive scalar distribution), and investigated the effects of molecular
diffusions and initial conditions which might lead to differential diffusions of
density (active scalar) and passive scalar[2], while Kρ = Kc has been assumed
in many applications. Results of DNS show temporal oscillations of a passive
scalar flux (Fig. 1b) at double-period of the density flux (Fig. 1a), in agree-
ment with RDT (Fig. 2). The results also show that, at low Froude numbers
(Fr = 0.1 ≪ 1), RDT gives quantitatively good prediction even at moderate
Reynolds numbers (Re = 100). The period doubling depends on the molecu-
lar diffusion of the scalars, in agreement with RDT. For a passive scalar with
high Schmidt number (Sc > 2Pr/(1 + Pr), Pr: Prandtl number of density,
Sc: Schmidt number of passive scalar), the slowly oscillating mode becomes
dominant at large times (Nt/2π > 1), and Kc decays slowly (Fig. 3a). On
the other hand, at low Schmidt numbers (Sc< 2Pr/(1 + Pr)), the slowly
oscillating mode suffers strong initial decay, so that fastly oscillating com-
ponents becomes dominant at large times (Fig. 3b). These results illustrate
the importance of molecular diffusivity, initial conditions and unsteadiness in
strongly stratified turbulence, along with the possibility of differential diffu-
sion of scalars.
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In this paper, the energy spectra of forced stably stratified turbulence are
investigated numerically using the Direct Numerical Simulations (DNS) with
10243 grid points (Rλ ∼ 300). The simulation is done by solving the 3D
momentum equation under the Boussinesq approximation pseudo-spectrally
with stochastic forcing applied to the large horizontal velocity scales. Similar
types of numerical simulations have discussed the features of the energy spec-
trum for stratified turbulence1−6. In this paper we will present more detailed
analysis on the anisotropy of the spectrum7.

One of the most striking features of stratified turbulence is dynamical and
statistical anisotropy that develops in flows, and because of this anisotropy,
stratified turbulence exhibits various different aspects from homogeneous
isotropic turbulence. To investigate such anisotropy, it is crucial to employ
proper methods, and as a useful tool for this purpose, the Craya-Herring
decomposition which has a close relation with the toroidal-poloidal decompo-
sition, is widely known.

For the Craya-Herring decomposition, the following orthonormal coordi-
nates are introduced,

e1(k) =
k × ẑ

‖k× ẑ‖ =
1√

k2
x + k2

y

⎛⎝ ky

−kx

0

⎞⎠ , (1)

e2(k) =
k × k × ẑ

‖k× k × ẑ‖ =
1√

k2
x + k2

y + k2
z

√
k2

x + k2
y

⎛⎝ kzkx

kzky

−(k2
x + k

2
y)

⎞⎠ , (2)

e3(k) =
k

‖k‖ =
1√

k2
x + k2

y + k2
z

⎛⎝kx

ky

kz

⎞⎠ , (3)

where ẑ = (0, 0, 1)t is the unit vector in the z-direction. By projecting the
fourier component of an incompressible velocity vector in 3D, ũ(k), onto the
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above coordinates, we obtain the following decomposition

u(k) = φ1e1(k) + φ2e2(k) . (4)

where the coefficients φ1, φ2 in terms of the cartesian coordinates of ũ(k) =
(ũ, ṽ, w̃)t, are given as

φ1 =
1√

k2
x + k2

y

(kyũ − kxṽ) =
i√

k2
x + k2

y

ω̃z , (5)

φ2 = −

√
k2

x + k2
y + k2

z√
k2

x + k2
y

w̃ . (6)

In the above expression, ω̃ is the fourier transform of the z-component of
vorticity.

Using the Craya-Herring decomposition,
the velocity field is divided into the vor-
tex mode (φ1) and the wave mode (φ2).
With the initial kinetic energy being zero,
the φ1 spectra as a function of horizon-
tal wave numbers, k⊥ =

√
k2

x + k2
y , first

develops a k−3
⊥

spectra for the whole k⊥

range, and then k
−5/3
⊥

part appears at
large k⊥ with rather a sharp transition
wave number. Fig. 1 shows φ1 spectra
for N2 = 1, 10, 50, 100 (from the top to
the bottom) where N is the Brunt–Väisälä
frequency. We can observe that the small
k⊥ parts collapse to a single spectrum of
∼ k−3

⊥
, while the large k⊥ parts have the

same slope of k
−5/3
⊥

but with different co-
efficients depending on N .
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-3 -5/3

E
Φ

1
( k
)

k
Fig. 1. φ1spectra as a function of
k⊥ for N2 = 1, 10, 50, 100

For scaling these spectra, we use the following two points as criterions; (1)
the large scales do not depend on N , (2) we expect that the Kolmogorov con-
stant is universal for the isotropic subset of anisotropic data, and we propose
the functional form as;

E
⊥Φ1(k⊥) =

⎧⎨⎩αη
2/3
⊥Φ1

k
−3
⊥

(k
⊥

< kc)

CKε
2/3
⊥Φ1

k
−5/3
⊥

(k
⊥

> kc)
, (7)

where

ε
⊥Φi

= 2ν

∫
∞

0

k
2
⊥

E
⊥Φi

(k
⊥

)dk
⊥

(i = 1, 2), (8)

η
⊥Φi

= 2ν

∫
∞

0

k
4
⊥

E
⊥Φi

(k
⊥

)dk
⊥

(i = 1, 2). (9)

Y. Kimura and J. R. Herring450



By the dimensional analysis, the coefficient of k
−3
⊥

should have the unit of
[T ]−2 where T represents the time scale. Often the buoyancy spectrum as-
sumes N

2 for this coefficient, but we excluded this possibility from the crite-
rion. We tested various quantities and concluded that the above η

⊥Φ1 , the 2D
enstrophy dissipation rate, provides reasonable agreement for the large scale
part.

Meanwhile the Kolmogorov type spectrum fits for the small scale part.
However, instead of the 3D energy dissipation rate, ε, the above 2D horizontal
energy dissipation rate, ε

⊥Φ1 provides closer value to the widely accepted value
for the 3D Kolmogorov constant of ∼ 1.5.

The transition wave number kc can be calculated by equating the two
terms in (1) as

αη
2/3
⊥Φ1

k
−3
c = CKε

2/3
⊥Φ1

k
−5/3
c → kc =

(
α

CK

)3/4 √
η
⊥Φ1

ε
⊥Φ1

. (10)

From the compensated spectra with respect to (1), we can estimate the coef-
ficient α as 0.02 for all N

2 examined. By using the numerical values of ε
⊥Φ1

and η
⊥Φ1 and Ck ∼ 1.5, the transition wavenumbers for N

2 = 1, 10, 50, 100
are calculated as 7.557, 8.536, 10.662 and 11.888, respectively.

Figure 2 shows E⊥Φ2(k⊥) for N2 =
1, 10, 50, 100. There are significant differ-
ences from the Φ1 spectra. First, little ef-
fect of forcing is observed in the large
scale. Second, for most cases of stratifi-
cation, −5/3 spectra are observed, but for
N2 = 100, ∼ k−2

⊥
spectrum is obtained

with a transition to −5/3. For these spec-
tra, we propose the following functional
forms;

E⊥Φ2(k⊥) =

{
β
√

Nε⊥Φ2k−2
⊥

(k⊥ < kc)

CKε
2/3
⊥φ2

k
−5/3
⊥

(k⊥ > kc)
,

(11)
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Fig. 2. φ1spectra as a function of
k⊥ for N2 = 1, 10, 50, 100

With the same procedure, the transition wave number kc for the above
spectra can be calculated by equating the two terms in the right hand side as

β
√

Nε
⊥Φ2k

−2
c = CKε

2/3
⊥Φ2

k
−5/3
c → kc =

(
β

CK

)3
√

N3

ε
⊥Φ2

(12)

Using the estimated values of CK and β, the transition k
⊥

s, for N
2 =

1, 10, 50, 100 are calculated as 3.31 × 10−2, 0.350, 2.634 and 6.021, respec-
tively. The estimated transition wave number is smaller than 1 for N

2 = 1
and 10, and it is consistent with the fact that the transition points are not
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seen on the spectra in Figure 2. The square-root part of the right hand side of
(12) has the form of the Ozmidov scale being different from the original one
by the fact that the dissipation rate is horizontal for the Φ2 energy.
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Introduction

The tide in estuaries drives a turbulent slowly-oscillating flow. To investigate
the effects of wind and density stratification on such flows, we have performed
Large Eddy Simulations in a cubic fluid column of depth h. The velocity
field u is obtained from the Navier-Stokes equation under the Boussinesq
approximation,

Du

Dt
= −∇p+

1
Re
∇2u− Riρ′ez + fp. (1)

Here, p is the kinematic pressure and ρ′ the fluctuating part of the density
with respect to a reference density ρ0. The mimic a tidal flow an oscillating
pressure gradient, fp ∼ cosωt, with frequency ω is applied. At the free surface
a wind stress τwind is present, which can be oriented at arbitrary angles. The
dimensionless Reynolds and Richardson numbers are, Re = Uh

ν and Ri =
g
ρ0

∣∣∣∂ρ
∂z

∣∣∣ h2

U2 , respectively, with ν the kinematic viscosity and g the gravitational

acceleration. Here, the (constant) density gradient ∂ρ
∂z at the free surface is

used. For the typical velocity scale U we take the friction velocity at the free
surface, uτ =

√
τwind/ρ0.

Turbulent oscillating channel flow

When the wind stress is aligned with the pressure gradient a pulsating mean
flow is observed in the same direction. Turbulence is created in the wall shear
layer, but subsequently fills the entire fluid column [1]. Additionally, turbu-
lence is also produced in a thin layer beneath the free surface due to the
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Fig. 1. Hodograph of the mean velocity with the darker-colored lines representing
later phases in the tidal cycle for Re = 800 and Ri = 0. Each point on the line gives
the direction and amplitude of the velocity vector for a certain height.

ϕ = 0◦ ϕ = 120◦ ϕ = 240◦

(a) free surface

(b) bottom wall

Fig. 2. Greyscale plot of the streamwise velocity fluctuations revealing turbulent
streaks in (a) the free surface layer and (b) the bottom wall layer at three different
phases in the tidal cycle. For the present simulations: Re=800 and Ri=0.

wind stress [2]. Now, consider a wind stress at a 45◦ angle to the tidal flow
component. The orientation of the mean velocity will then change over depth
(Fig. 1). At the bottom in the viscous sublayer shear and velocity are aligned.
The shear leads to the strong turbulent streaks in this layer, which are aligned
with the mean velocity (Fig. 2). Going upwards from the logarithmic bound-
ary layer towards the free surface the mean velocity changes orientation. In
the free-surface layer shear and mean velocity are not aligned. Streaks are
present at the free surface, but the pattern is more irregular than in the
bottom boundary layer. Streaks are still aligned with the mean velocity, but
they are disturbed by a pattern oriented parallel to the imposed wind stress.
When shear and mean velocity are almost aligned at ϕ = 0◦ a clear pattern
of streaks is observed. The turbulence is then essentially dominated by one
component. The streamwise fluctuations are stronger than the spanwise and
vertical fluctuations. For the wind stress at a certain angle with the tidal
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Fig. 3. The density ρ′, averaged over the horizontal plane for Re = 400 and Ri =
1000. The black lines are given for ϕ = 90◦, 180◦, 270◦ (drawn) and for ϕ = 0◦, 90◦

in the next period (dashed). The gray lines are the density profiles for intermediate
phases.

flow two-component turbulent fluctuations are observed, with the horizontal
fluctuations being about equal but dominating over the vertical fluctuations.
Two-component turbulence originates from the free-surface layer but can dis-
perse into a larger part of the fluid column.

Stably stratified turbulent oscillating channel flow

Now consider the case where the sun is heating the free surface at a constant
rate and assume an adiabatic estuary bottom. The constant heat flux at the
free surface results in a linear warming of the fluid column. However, there
is a temperature difference, and hence a density stratification of the fluid,
with the top layer being warmer and lighter than the bottom layer (Fig. 3).
For simplicity, the wind stress is now kept aligned with the driving pressure
gradient. Turbulence is most intense in the deceleration phase of the first half
cycle (90◦–180◦), when wind and tide are in the same direction (Fig. 4). During
this phase the density is well mixed in the complete fluid column except for a
thin layer at the free-surface. In the second half cycle (180◦–360◦) intensity of
the turbulence decreases due to a lower wall stress. The density stratification
then extends to deeper fluid layers, until only the bottom layer remains well
mixed in the accelerating phase of the first half cycle (0◦–90◦). When the
decelerating phase is then reached again, mixing increases abruptly in the
entire domain, leading to an abrupt change of the density profile.

Turbulent fluctuations are suppressed by a stable density stratification
and, hence, the mean velocity is altered. Deviations from the unstratified
case firstly appear in the upper layers of the flow. The mean velocity is here
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Fig. 4. The oscillating pressure gradient and the wind stress in the same direction
results in a pulsating mean flow. The mean streamwise velocity profiles are given
for four different phases of the driving pressure gradient. Richardson numbers are
Ri = 0 (gray), 200 (dashed), 500 (dash-dot) and 1000 (drawn).

stronger affected by the wind stress, as the vertical velocity fluctuations are
less intense. When the stratification increases deviations appear in deeper
layers. In the case the density is well mixed (ϕ = 90◦) the velocity differs over
nearly the complete fluid column. The viscous sublayer at the no-slip bottom,
however, remains unaffected.

Conclusion

Overall, the case of turbulent oscillating channel flow subjected to a wind
stress and/or a surface heating results in a flow with a strong change of the
turbulent dynamics and the stratification over one period. Turbulent streaks
reorientate with the changing mean flow direction. In the free-surface layer the
pattern of the turbulent fluctuations is also affected by the wind stress. During
a cycle the density stratification can penetrate deeper into the fluid column,
while for other phases the density is well mixed in the major part of the fluid
column. Future research is necessary, as large effects can be expected for the
dispersion of particles in these kind of flows, which is relevant to sedimentation
and the plankton ecosystem.
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To explore the steady internal wave breaking observed in stably stratified
flows past obstacles [1], we use well-resolved DNS/LES methods [2]. Internal
waves are generated by an obstacle inserted in the flow with a linear upstream
density variation and constant inflow velocity U [3]. A sponge-layer procedure
with forcing terms in governing equations has been incorporated to prevent
reflection from inflow/outflow boundaries. Initially, the domain was extended
from x/h = 0 to 200 with the obstacle located in the middle. The sponge
layers allowed us to reduce the domain by a factor of two (over the range
x/h = 50 to 150) and use run times up to tU/h = 250 without significant
differences with corresponding long-domain computations. The finest applied
grid (5120 × 512 × 512) had a resolution of Δx = Δy = Δz = h/51.2. The
wave breaking is captured at low values of the Froude number Fh (based on
the obstacle height h), with turbulence generation at Re = Uh/ν > 2000 as in
experiments [1]. Following the preliminary results [3] at Sc = 700, we present
DNS data for the 2D case at Re = 4000, Fh = 0.6, Sc = 1.

The recirculation zone arising from wave overturning and breaking gen-
erates turbulence activity, which in turn destroys the recirculation structure,
but maintains a quasi-steady fully mixed zone (Fig. 1,2). The transition mech-
anism includes Rayleigh-Taylor instability (RTI) of mushroom type (Fig. 3),
generating the small toroidal vortices seen from vorticity invariant contours
and noted also in [4]. Exponential growth of RTI at tU/h ∼ 25 leads to tur-
bulence ‘explosion’ in the breaking region, and the vortex structure scale is
increased later up to λ ∼ 2.5h. This is also seen from the y-spectra (Fig. 4)
having the corresponding peak at tU/h > 22.5 and the higher-frequency peak
λ ∼ 0.5h at 22.5 ≤ tU/h < 27.5 related to RTI. To break the 2D flow sym-
metry, small ‘white-noise seeding’ (with an amplitude of 2% from the inflow
density change over the obstacle height) was applied to the scalar field at
tU/h = 7.5. The initial perturbation gradually decays, the flow remains lam-
inar until tU/h ∼ 20, then extracts from the white noise and amplifies un-
steadiness of above-mentioned wavelengths and its harmonics. The spectra
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and statistical moments (Fig. 5) show quasi-steady behavior of the wave-
breaking turbulence at tU/h ≥ 35. Both time and spatial spectra produced in
some points of the mixed zone contain clear parts of the ‘–5/3’ inertial range
and high-frequency dissipative range (Fig. 4,6). (Note that the wavenumber
n = Ly/λ [4] is the number of periods over the domain width Ly = 10h.) The
velocity spectra shows no unrealistic features (such as peaks at the inertial-
range end which would suggest the need for a subgrid-scale model). Thus,
at least at Sc ∼ 1 and the moderate Reynolds number Re = 4000, the use
of the DNS approach is reasonable and sufficient. For the case of Sc ∼ 700,
the subgrid-scale model may be needed to remove the ‘pile-up’ effects of the
density spectra at fh/U ≥ 0.5.

Careful scrutiny of second-moment and t.k.e. balance dynamics (Fig. 5,7)
provides the following mechanism of turbulence generation/maintanence. At
tU/h ∼ 22.5 (Fig. 1), with a significant unstable density gradient over the
small vertical distance between z/h = 1.65 and 2.35, the large vertical tur-
bulent scalar flux 〈w′f ′〉 is generated which in turn enhances vertical velocity
fluctuations and t.k.e via the buoyancy production Gk. The initial Reynolds-
stress anisotropy is strong (〈w′w′〉 
 〈u′u′〉 
 〈v′v′〉), and lateral velocity
fluctuations are smaller due to delaying effect of 2D symmetry. The Gk term
becomes small again at tU/h > 30 because of the suppressing effect of the
buoyancy source in the 〈w′f ′〉 equation, and this initial cycle of Gk variation
generates weak unsteadiness in the second moments and t.k.e. balance terms
with the period TU/h ∼ 8 (which gradually decay later). The viscous dissipa-
tion Dk appears last to compensate the production terms when they become
large, whereas the advection terms Ak provide a significant additional sink.
Turbulent and pressure diffusion terms Dt, Dp are of lower order, and viscous
diffusion is negligibly small. The residual term kt = ∂k/∂t correlates well with
the Gk variations and time history of velocity fluctuations.

In the breaking zone, over the quasi-steady period, roughly 35 ≤ tU/h ≤
55, Figure 5 shows that the global balance (averaged over y, and within the
breaking region) is largely between mean-shear production, dissipation and
advection, and turbulence is almost isotropic with slight preference of 〈w′w′〉.
Locally, however things are quite different. Figure 7 shows that the axial
and spanwise stresses, integrated over the span, have noticeable peaks at the
edges of the breaking region, buoyant production is certainly not negligible but
has antisymmetric peaks almost as strong as those of the (symmetric) shear
production, and dissipation is greatest around the middle of the turbulent
patch. Further analysis of these data is in hand.
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Fig. 1. Fluid particle pathlines (left), density contours (right), y = 5h, t = 22.5h/U .

Fig. 2. Fluid particle pathlines, y = 5h (left), averaged along y (right), t = 40h/U .

Fig. 3. Second invariant of vorticity (left), density contours (right) at x/h = 102.5.
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Fig. 4. Spatial t.k.e. spectra in y-direction averaged at 101.8 < x/h < 102.3,
2.4 < z/h < 2.9: transition (left); turbulence (right).
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Vortex self-similarity and the evolution of
unforced inviscid two-dimensional turbulence

D.G. Dritschel, R.K. Scott, C. Macaskill, G.A. Gottwald, and C.V. Tran

School of Mathematics and Statistics, University of St Andrews, St Andrews KY16
9SS, UK dgd at mcs.st-and.ac.uk

It has been recognized for some time that the k−3 decay of the energy spec-
trum in two-dimensional, freely-decaying turbulence, found independently by
Batchelor (1969) and Kraichnan (1967), is not sufficient to explain the fre-
quently observed steeper spectra (see for example McWilliams, 1984). The
theories on which the k−3 spectrum are based are local in wavenumber space
and do not take into account the nonlocal effect of vortices in transporting
energy and enstrophy. Since then, several scaling theories have been proposed
stressing the importance of vortices for the energy transport in spectral space.
Benzi et al. (1988,1992) linked the statistics of vortex populations to the en-
ergy spectrum. They numerically fitted an algebraically decaying vortex popu-
lation with number density n(A, t) ∼ A−ξ (where n(A, t)dA gives the average
number of vortices with areas between A and A+ dA over a sample area As

in the plane) to deduce that the energy spectrum associated with the vortices
decays more steeply than predicted by the Batchelor scaling.

The temporal scaling of the vortex number density was addressed in
Carnevale (1991) and Weiss & McWilliams (1993), who assumed that, in addi-
tion to energy, the maximal vorticity during vortex interactions is conserved.
Dimensional arguments lead to an algebraic decay in time of the vortex num-
ber density n(A, t). Their analysis however assumes vortices of one particular
size, and does not predict the value of the scaling exponent. In Dritschel et

al. (2008, hereafter D08) we unified the spatial and temporal scaling theo-
ries by postulating the emergence of a unique, self-similar vortex population
in two-dimensional turbulence. This population is characterised by a vortex
number density n(A, t) ∝ t−2/3A−1. This corresponds to an energy spectrum
E(k, t) ∝ t−2/3k−5 over the range of scales containing the vortex population.
Moreover, this implies that the enstrophy in the vortex population decays
like t−1/3 through partially destructive interactions, which produce incoher-
ent filamentary debris carrying nearly all of the enstrophy to small scales at
late times. Meanwhile, and for consistency, the mean radius of the largest
vortices slowly grows like t1/6, sending energy to progressively larger scales at
a diminishing rate proportional to t−5/6. The predictions are consistent with
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previous numerical simulations (Benzi et al. 1992; Bracco et al. 2000; Weiss
& McWilliams, 1993); in D08, an ensemble of ultra-high resolution numerical
simulations verified the predicted scaling laws, in particular showing a t−1/3

enstrophy decay holding for 90% of the simulation duration (Fig. 5 therein).
To this vortex self-similarity we now add a description of the evolution at

scales larger than any vortex. Again, we use an infinite domain to examine the
limit t → ∞ without the effects of domain boundaries or periodicity. As the
flow evolution slows down at late times, the large-scale evolution approaches
equipartition (Kraichnan, 1967; Fox & Orszag 1973), with energy becoming
equally distributed among Fourier modes over an increasing range of scales.
This tendency has been verified using a novel point-vortex experiment start-
ing from small-scale initial conditions that produces a large-scale k1 energy
spectrum over a range of almost three decades (Dritschel et al. 2009).

We combine the vortex self-similarity of D08 and large-scale equipartition
in a simple model of the long-time turbulent decay incorporating three basic
elements:

(1) large-scale equipartition over a range k<∼ m(t),

(2) a self-similar vortex population over a range m(t)<∼ k<∼ f(t), and

(3) a filamentary cascade over a range f(t)<∼ k<∼ d(t).

A simple spectral form with these properties is

E(k, t) =
ck(1 + k2/f2)

(k2 +m2)3
. (1)

This spectrum is not a mathematical model like the equipartition spectrum
proposed by Fox & Orszag (1973), but rather is chosen simply to deduce
the spectral transition wavenumbers m and f . Here m(t) is the wavenumber
associated with the maximum vortex size. The wavenumber f(t) marks the
transition scale from vortices to filaments, and d(t) is the leading edge of the
‘enstrophy front’, assumed to be increasing exponentially. The final coefficient
c(t) is proportional to the vortex density (D08).

At sufficiently late times, vortex self-similarity predicts c(t) ∼ t−2/3 and
m(t) ∼ t−1/6 (D08), but does not predict the ‘filament transition’ wavenumber
f(t). Here we determine f(t) from conservation of energy E and enstrophy Q,
together with the assumption that the smallest scales stretch exponentially
fast (at a constant rate). The model then predicts that the steep k−5 energy
spectrum associated with the vortex population slowly spreads over the range
m(t)<∼ k<∼ f(t), with f(t) ∼ t1/6 and m(t) ∼ t−1/6. Meanwhile, the shallower

k−3 energy spectrum associated with filamentary debris retreats to ever higher
wavenumbers, k>∼ f(t) ∼ t1/6.

This model is supported by a large ensemble of high resolution numerical
simulations. The vorticity field at two times in one simulation is shown in
Figure 1 to illustrate prevalence of filamentary structures at early times and
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Fig. 1. Vorticity at t = 6 (left) and t = 24 (right) in one representative simulation.
A linear greyscale is used from the minimum (black) to maximum (white) values.

the emergence of vortices at later times. In fact the flow is dominated by
vortices at all but the earliest times.

Figure 2 (left) shows the enstrophy spectrum at early, intermediate and
late times. Each spectrum is multiplied by t2/3

mediate ‘vortex wavenumber range’ remains steady. At low wavenumbers, we
observe a k3 spectrum (which eventually saturates when energy reaches the
domain scale), while at small scales we see a slowly retreating k−1 range. A
comparison of the numerical and ideal model enstrophy spectra at an inter-
mediate time of t = 40 is shown (right). The ideal spectrum is more peaked
but captures the spectral transitions around k = m and k = f , and closely
matches the k−1 tail. Importantly, the spectral parameters are not sensitive
to the form of the ideal spectrum we have chosen.
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Fig. 2. Left: Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 10 (bold
solid line), 40 (thin solid line) and 160 (dashed line). Right: t2/3Ω(k, t) at t = 40
(bold solid line) compared with the ideal scaled spectrum using (1). The temporal
scaling is intended to collapse the spectra over the range of scales occupied by
vortices, m<

∼ k<∼ f . Various slopes are indicated.

so that, in theory, the inter-
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In conclusion, we have developed a new model for the late-time evolution
of inviscid, unforced two-dimensional turbulence, whose predictions are well-
supported by high resolution numerical experiments. The model builds upon
vortex self-similarity over a slowly-expanding intermediate range of scales
(D08). Here, we propose that the scales larger than any vortex approach
a state of equipartition, with energy spread uniformly among Fourier modes
(except at ultra-large scales, where the spectrum is bounded by a constant
times t2k3, see Tran & Dritschel, 2006a). Whereas ideal equipartition is a
statistically-steady state, in our model the energy spectrum at large scales
slowly grows like E(k, t) ∝ t1/3k1, and slowly cascades to ever larger scales,
k<∼ m(t) ∝ t−1/6. At small scales, Batchelor’s k−3 spectrum is gradually re-

placed at its upper end around k = f(t) ∝ t1/6 by the steeper spectrum
E(k, t) ∝ t−2/3k−5 associated with a self-similar population of vortices (D08).
The k−3 spectrum, we argue, spreads to high k exponentially fast, implying
that the spectrum decays like t−1 there.
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There is growing interest in observations and explanation of the spectrum
of the density fluctuations in the interstellar medium. These fluctuations are
responsible for radio wave scattering in the interstellar medium and cause in-
terstellar scintillation fluctuations in the amplitude and phase of radio waves.
Kolmogorov-like k−5/3 spectrum of density fluctuations have been observed
in wide range of scales in the local interstellar medium (from an outer scale
of a few parsecs to scales of about 200 km. Motivated be these observations
Zank, Matthaeus et al. [1] developed ”nearly incompressible” theory describ-
ing compressive effects in hydrodynamical and magnetic fluids. This singu-
lar asymptotic theory coupled convective fluid motions with high-frequency
acoustic fluctuations in which leading order fluctuations are incompressible
modes. According this theory, Dastgeer and Zank [2] investigated inertial
range turbulence properties using two-dimensional neutral fluid simulations
and found that density fluctuations behave as passive scalar, reproduce in-
compressible Kolmogorov spectra and obey anisotropic properties. An origin
of the density fluctuations spectrum observed in the local interstellar medium
was explained by direct numerical simulations (DNS) of the three-dimensional
time dependent compressible magnetohydrodynamic (MHD) fluid and nearly
incompressible model is used to interpret results.

For study of three-dimensional compressible MHD turbulence in inter-
stellar medium we use potentials of large eddy simulation (LES) method
[3, 4, 5]. We use Smagorinsky model for compressible MHD case for subgrid-
scale (SGS) parametrization that showed accurate results under various range
of similarity numbers [3].

The initial isotropic turbulent spectrum was chosen for kinetic and mag-
netic energies in Fourier space to be close to k−2 with random amplitudes and
phases in all three directions. The choice of such spectrum as initial condi-
tions is due to velocity perturbations with an initial power spectrum in Fourier
space similar to that of developed turbulence. This is some way equivalent to
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Fig. 1. The kinetic energy spectrum (left). Normalized and smoothed spectrum of
kinetic energy, multiplied by k5/3 (right). Notice that the spectrum is close to ∼ k−3

in a forward cascade regime of decaying turbulence. However, there is well-defined
inertial Kolmogorov-like range of k−5/3.

start with developed turbulence. In addition, the choice of such spectrum is
physically motivated by its rapid convergence as the inertial range spectrum
of the energy yields a k−3 spectrum through a forward cascade mechanism.
Moreover, any single discontinuous shock waves also have such a power spec-
trum as that for simple the Fourier transform of a step function. Taking the
Fourier transform of many shocks do not change this power law. Nevertheless,
most distributions with k−2 spectra do not contain shocks. Initial conditions
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Fig. 2. The density spectrum is the solid line and the density fluctuations spectrum
is the dot line (left). Normalized and smoothed spectrum of density fluctuations,
multiplied by k5/3 (right). Both graphs (in the left figure) have spectral index close
to ∼ k−3. Moreover, there is well-defined inertial Kolmogorov-like range of k−5/3

that confirms observation data.
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Fig. 3. Decay of turbulent small-scale Mach number M̆s with time. A transition
from a supersonic M̆s > 1 to a subsonic M̆s < 1 can be observed.

for the velocity and the magnetic field have been obtained in physical space
using inverse Fourier transform.

In this work compressible MHD turbulence in local interstellar medium is
studied using LES method for turbulence modeling and subsequent numeri-
cal solution of system of resolved magnetohydrodynamic equations. Notwith-
standing the fact that supersonic flows with high value of large-scale Mach
numbers are characterized in interstellar medium, nevertheless, there are sub-
sonic fluctuations of weakly compressible components of interstellar medium.
These weakly compressible subsonic fluctuations are responsible for emergence
of a Kolmogorov-type spectrum in interstellar turbulence which is observed
from experimental data. In this work, it is shown that density fluctuations are
a passive scalar in a velocity field in weakly compressible magnetohydrody-
namic turbulence and demonstrate Kolmogorov-like spectrum in a dissipative
range of the energy cascade (Fig. 1 and Fig. 2). The spectral indexes of den-
sity fluctuations and kinetic energy are almost coincident and close to k−3

spectrum. It is represented that the range with Kolmogorov-like spectrum
of density fluctuations exists the same as kinetic energy spectrum, with the
same wave numbers. The decrease of energy-containing large eddies and iner-
tial range with time, and the increase of dissipative scale are also represented.
It is shown in Fig. 3, that the turbulent sonic Mach number decreases sig-
nificantly from a supersonic turbulent regime (M̆s > 1), where the medium
is strongly compressible, to a subsonic value of Mach number (M̆s < 1), de-
scribing weakly compressible flow. This conclusion about reduction of a role
of compressibility in turbulent fluctuations confirms by time evolution of ve-
locity divergence which decreases and tends zero (but not zero). In interstellar
medium, the transition of MHD turbulent flow from a strongly compressible
to a weakly compressible state not only transforms the characteristic super-
sonic motion into subsonic motion, but also attenuates plasma magnetization,
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Fig. 4. Time evolution of the turbulent plasma beta β̆ in compressible MHD turbu-
lence. The MHD plasma is strongly magnetized initially and then, as the turbulence
evolves, the plasma becomes less magnetized.

which is shown in Fig. 4 because plasma beta β̆ increases with time, thus, role
of magnetic energy decreases in comparison with plasma pressure. Besides,
the anisotropy of turbulent flow is considered and it is demonstrated that
large-scale flow shows anisotropic properties while small-scale structures are
isotropic. We quantitatively distinguish local spectral transfer of the velocity
field in Fourier space by decomposing the spectrum into its x-, y- and z-
components of velocity. Numerical simulation shows various behaviour of the
velocity components in spectral cascade at the lower wave number and almost
lack of distinctions for large Fourier modes. This indicates that larger scales
show a greater anisotropization. In order to estimate the isotropy and the
symmetry we use the Shebalin angles (it is also called the anisotropy angles).
After short initial time interval, anisotropy of velocity and magnetic field does
not change almost and achieves a saturation level.

LES method is shown to be effective in solving interstellar turbulent prob-
lem.
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Rayleigh-Bénard (RB) convection has become a paradigm for the study of
convective thermal turbulence. Understanding convective thermal turbulence
is important for several reasons. First, as an important class of turbulent flows,
convective thermal turbulence differs from other types of turbulence in many
ways. Studying convective turbulence would therefore provide new insight
and perspectives on the general turbulence problem itself. Secondly, it is a
phenomenon occurring widely in geophysical and astrophysical systems, such
as atmospheric and ocean circulations; convection in the Earth mantel and
its outer core; stellar convection like that in the Sun. Thirdly, heat transfer
and mixing are important engineering problems. The state of motion in a
thermally driven convecting fluid is governed by the Boussinesq equations,
plus the incompressibility condition:

∂v

∂t
+ v • ∇v = −1

ρ
∇p+ ν∇2

v + gαδT ẑ (1)

∂T

∂t
+ v • ∇T = κ∇2T (2)

∇ • v = 0 (3)

When the above are recast into dimensionless form, two parameters appear
in the equations of motion for the temperature and velocity fields; these are
the Rayleigh number Ra= αgΔTH3/(νκ) and the Prandtl number Pr= ν/κ,
where ΔT is the applied temperature difference, H is the height of the cell, g
is the acceleration due to gravity, and α, ν, and κ are, respectively, the vol-
ume expansion coefficient, kinematic viscosity, and thermal diffusivity of the
fluid. In any laboratory convection experiment a lateral sidewall is inevitably
present, so the aspect ratio (Γ =diameter/height; therefore, Γ = D/H for a
cylinder of height H and diameter D) enters this problem as another control
parameter. A measure of the heat transfer enhancement by convective flow is
the Nusselt number Nu= J/(χΔT/H), which is the ratio between the actual
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convective heat transfer and the heat that would be transferred if there exists
only conduction, here χ is the thermal conductivity of the working fluid in qui-
escent state. Another response parameter is the well-known Reynolds number
Re. Therefore, the system has three control parameters: Ra, Pr and Γ , and
two response parameters: Nu and Re. Figure 1 shows an illustration of the
Rayleigh-Bénard convection cell with all the important structures or “com-
ponents” of the flow, i.e. the thermal plumes (both sheetlike and mushroom-
like), the large-scale circulation, and the boundary layers (an aspect ratio one
cylinder, the most popular configuration, is used here).

T

H

D

T +
�
ΔT

Large-scale
circulation

Mushroom-like
plumes

Thermal
boundary layers

Sheet-like
plumes

Fig. 1. Sketch of the Rayleigh-Bénard convection system showing all the important
structures: thermal plumes, large-sale circulation (the wind), and the boundary lay-
ers.

Traditionally, there are five major issues or areas in the studies of con-
vective thermal turbulence: 1. Turbulent Heat Transfer; 2 Boundary Layer
Dynamics; 3. Dynamics of the Large-scale Flow; 4. Small-scale Turbulence;
and 5. Thermal Plumes. The state of the affair and the progresses made in the
past decade in the first three areas, i.e. heat transfer, boundary layers, and
coherent structures have been discussed in great detail in the recent review
article by Ahlers, Grossmann and Lohse [1] and those in the fourth area, i.e.
small-scale properties of the velocity and the temperature fields, have been
reviewed recently by Lohse and Xia [2]. Here I will provide only a brief sum-
mary on the status of the major issues and then present and discuss some
experimental results from my own laboratory.

Turbulent Heat Transfer — A central issue in convective turbulence is to
understand how heat is transported by highly turbulent flows. Specifically, we
ask how the Nusselt number Nu depends on the three control parameters of the
system at very high levels of turbulence, i.e. Nu(Ra,Pr,Γ )=? For moderately
large Ra and over a wide range of Pr, the behavior of Nu can be adequately
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described by a theoretical model proposed by Grossmann and Lohse (GL)

boundary layer (BL) and bulk contributions. For very large Ra and small to
moderate Pr, an earlier model proposed by Kraichnan [4], and also the GL
model itself, predicts that Nu should scale with Ra with an exponent of 1/2.
The current status of this so-called ultimate (or Kraichnan) regime of thermal
convection is that no convincing experimental evidence exists that supports
its existence and the recent experimental [5] and numerical [6] measurements
that have reached the values of Ra for which the Kraichnan scaling is supposed
to rule have all found a scaling exponent of 1/3. A conclusive confirmation or
negation of this regime remains a central challenge in the study of turbulent
thermal convection. Instead of focusing on the Nu itself, a fruitful way to
tackle this problem would be to look for transitions in the boundary layers, as
the Kraichnan regime requires the boundary layer becoming turbulent. Figure
2 shows a photo of a large convection facility, the Hong Kong Giant Cell, for
which investigations along this line of research have been planned.

Boundary Layer Dynamics — The existence of strong temperature fluctua-
tions near the horizontal plates makes the measurement of viscous boundary
layer a challenge. Nevertheless, it is necessary to make direct measurements
of the viscous boundary layer in order to critically differentiate various mod-
els. This is because different models have very different assumptions about the
boundary layer, but all have similar predictions for the scaling between Nu and
Ra. For example, the GL theory assumes a laminar Prandtl-Blasius boundary
layer, which is a key ingredient in that theory. Recently, Sun et al. have made
high-resolution measurements of the properties of the velocity boundary layer
and found that, despite the intermittent emission of plumes, the Blasius-type
laminar boundary condition is indeed a good approximation, in time-averaged
sense, both in terms of its scaling and its various dynamic properties [7]. As
already mentioned, future research should focus on any departures from the
laminar boundary layer behavior (at highest Ra achievable), not just in con-
nection to the search for the ultimate regime, but also to see how the eruption
of thermal plumes (or temperature as an active scalar) changes the dynamics
of the boundary layer and its time-averaged properties.

Large-scale Flow Dynamics — A fascinating feature of turbulent RB con-
vection is the emergence of a well-defined and nearly coherent circulating
roll spanning the height of the convection cell (for Γ � 1) in defiant of the
turbulent background. This large-scale circulation (LSC), also known as the
wind of turbulent convection, has many intriguing dynamic features, such as
azimuthal rotations and occasional cessations (momentary vanishing of its
circulation speed) and reversals (of its circulation directions). Most strikingly
is its coherent three-dimensional bulk oscillation. Energetically, the LSC is
driven by the plumes as shown in both thermal and flow visualizations and
quantitative measurements [8, 9]. Recently, however, it has been shown [10]

[3], which decomposes the kinetic energy and thermal dissipation rates into
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Fig. 2. The Hong Kong Giant Cell of 1-meter diameter and height varying from 1
to 4 meters (1 meter hight is shown). Water is the working fluid. Both heat trans-
port and boundary layer measurements have been planned for this large convection
facility.

that the intricate three-dimensional flow dynamics, manifested by the tor-
sional [11] and sloshing modes [13] of the LSC, are not dictated by thermal
plume emissions or boundary layer dynamics, rather the plumes behave pas-
sively as far as oscillatory dynamics is concerned.

Small-scale Turbulence — What is the physical mechanism that drives the cas-
cades of the velocity and temperature fields in buoyancy-driven turbulence,
such as turbulent thermal convection, has been a long-debated issue. Specif-
ically, does the classical Bolgiano-Obukhov scaling (BO59) exist above the
so-called Bolgiano scale �B? To answer this question, one needs to make di-
rect measurements of the spatial velocity and temperature structure functions
instead of inferring them from time-domain data. Such attempts have been
made recently by Sun et al.[12] who made high-resolution multipoint measure-
ments of both the velocity and the temperature fields. Using particle image
velocimetry (PIV) and the multi-thermistor-probe technique, they measured
respectively the two-dimensional velocity field and the temperature difference
along the vertical direction, from which the real-space structure functions of
both velocity and temperature were obtained. Basically, Sun et al. found that
in the central region both velocity and temperature exhibit the same scaling
behavior that one would find for the velocity and for a passive scalar in ho-
mogeneous and isotropic Navier-Stokes turbulence. However, as discussed by
Lohse and Xia [2], due to the opposite behavior of the global (〈�B〉) and local
(�B(x)) Bolgiano scale with respect to Ra, and the lack of wide separation of
scales between η (the Kolmogorov dissipation scale), �B and L (the integral
scale), as well as theoretical inconsistencies of the Bolgiano argument itself,
the existence of the Bolgiano scale (i.e. BO59-type of scaling above �B and
K41-type scaling below �B) remains unsettled.
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Thermal Plumes — The thermal plumes, both as thermal and geometrical
objects, play an important role in heat transport, and there are a number
of studies devoted to this subject. Recognizing that thermal plumes produce
cliff and ramp structures in the measured local temperature time series and
using the criterion Tτη

> TRMS (where Tτη
is the temperature increment

Tτ = T (t+ τ)− T (t) over the dissipative timescale τη and TRMS is the RMS
value of the temperature T ), Zhou and Xia [14] were able to effectively extract
plume signals from the measured temperature time series. Examples of hot
and cold plumes extracted using this method are shown in Fig. 3 and it is seen
that these structures are large temperature excursions from the mean which
can reach close to 10TRMS . In contrast to “ramp-cliff” structures for passive
scalars, these extracted plume signals clearly exhibit “cliff-ramp” structures
(corresponding to the cap of plumes) that exhibit log-normal distribution. In
a recent study of morphological transformation from mushroom-like to sheet-
like plumes using liquid crystal imaging of the temperature field, Zhou et al.
[16] found that several other properties of plumes, such as the area, circum-
ference and heat content (of sheetlike plumes, see Fig. 3(c)), also exhibit log-
normal distributions, suggesting that long-normality may be a generic feature
of plume-related quantities. In addition, plumes in the bulk (see Fig. 3(b)) are
found to be always associated with strong vertical vorticity [16], implying that
mushroomlike plumes are essentially vortical structures. When simultaneous
velocity and temperature data are available, more sophisticated schemes can
be used to extract plume properties. In a numerical study of RB convection,
Jullien et al. [17] identified plumes using several criteria that are combina-
tions of temperature, vertical velocity and vertical vorticity satisfying certain
thresholds. Ching et al. [18] obtained plume velocity by calculating the condi-
tional average of velocity on temperature that were measured simultaneously
in a RB experiment in water [19] and decomposed the velocity signal into a
sum of plume velocity vp(t) ≡ 〈v|T (t)〉 and a background one that is uncorre-
lated with the temperature. With this method, they were able to separate the
measured local heat flux into those carried by the plumes and those by the
background velocity. While in [16] individual sheetlike plumes were extracted
manually, Shishkina and Wagner [20] identified them using the properties of
temperature, thermal dissipation rate and vorticity in a DNS study of RB
convection.

In addition to the kinetic, or viscous, boundary layer that has been dis-
cussed above, the thermal boundary layer plays a crucial role in the deter-
mination of the heat transport. Several length scales can be associated with
the thermal boundary layer. Here we use λth to denote the thermal boundary
layer thickness which is based on the mean temperature profile T (z) (where
z is the distance from one of the horizontal plates of the cell,see Fig. 4) and
is defined through the slope of T (z) near the plate, i.e. λth is located at the
intersection between the extrapolation of the linear slope of T (z) and the hor-
izontal line equaling Tc the mean temperature at cell center. This definition
is the most widely used. Another length scale is based on the profile TRMS(z)
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plumes are arbitrary. It is clear from the figures that the ‘front’ or ’cap’ of plumes
become sharper as Ra increases. Adapted from [15]. Middle panel: Shadowgraph
image (side view) of mushroom-like plumes obtained (Ra = 6.8 · 108 and Pr = 596).
Adapted from [9]. Right panel: Liquid crystal image (top view) of the temperature
field taken at 2 mm from the top plate showing sheetlike plumes (Ra = 2.0 ·109 and
Pr = 5.4). Adapted from [16].
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Fig. 4. (a) Profiles of the mean T (z) and RMS TRMS(z) temperatures as a function
of the distance z measured from the lower plate of a cylindrical convection cell
(Ra= 7.0 × 109). (b) Enlarged portions of profiles in (a) near the plate; also shown
are the definitions of the two length scales λth and δRMS . Adapted from [22].

of the RMS value of the temperature. We denote this length scale as δRMS

and it is defined as the position of the maximum of TRMS(z). Definitions of
the two length scales are illustrated in Fig. 4(b). In many cases, these two
values are very close to each other and so it has been suggested that these
two can be used interchangeably [21]. Here we show that this is in general
not the case. In Fig. 5(a) we show the Ra-dependence of both λth and δRMS

measured in an aspect ratio Γ = 1 cylindrical cell using water as the working
fluid. Figures 5(b) and (c) show the same quantities but measured in cells
with Γ = 0.5 and 4.4. These figures show clearly that the length scale δRMS

has a strong aspect-ratio dependence. This is summarized in Fig. 5(d) and
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can also be quantified by the power-law fittings (the solid lines in the figures,
Γ = 2 results not shown):

For Γ = 0.5,

{
λth/H = (2.48± 0.04)Ra−(0.287±0.003)

δRMS/H = (0.29± 0.05)Ra−(0.21±0.01)
(4)

For Γ = 1.0,

{
λth/H = (2.22± 0.04)Ra−(0.284±0.005)

δRMS/H = (0.32± 0.05)Ra−(0.20±0.01)
(5)

For Γ = 2.0,

{
λth/H = (2.54± 0.08)Ra−(0.285±00.003)

δRMS/H = (0.34± 0.05)Ra−(0.22±0.01)
(6)

For Γ = 4.4,

{
λth/H = (3.9± 0.1)Ra−(0.309±0.004)

δRMS/H = (7.0± 0.9)Ra−(0.34±0.01)
(7)

From the above it is obvious that λth and δRMS are in general two different
quantities in terms of both their Ra-scaling exponents and their magnitudes.
We can also see that the power-law exponent for λth varies somewhat among
different aspect ratios, which may be understood as a result of crossing differ-
ent regimes due to the change of Ra over five decades. Whereas the exponent
for δRMS clearly changes more drastically as aspect ratio is changed. Bear in
mind that δRMS is the position of maximum temperature fluctuations and
that the large-scale flow pattern depends on the aspect ratio. Therefore, the
results here suggest that the position of maximum temperature fluctuations
depends more sensitively on the flow patterns than the thickness of thermal
boundary layer which is intrinsically related to heat transport.
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Various flow amplitudes in 2D
non-Oberbeck-Boussinesq Rayleigh-Bénard

convection in water

Enrico Calzavarini1, Siegfried Grossmann2∗, Detlef Lohse1, and Kazuyasu
Sugiyama1

1 Physics of Fluids group, Department of Applied Physics, J. M. Burgers Centre
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Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands,
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The flow organization in Rayleigh-Bénard turbulence including Non-Oberbeck-
Boussinesq (NOB) effects is numerically analyzed. The working fluid is water,
the aspect ratio is Γ = 1, and we restrict ourselves to two-dimensional flow.
We focus here on a summary of the structure of the velocity field. A more
detailed analysis of the flow structure as well as on the temperature profiles,
the center temperature and the Nusselt number is given in [1].

The thermal flow develops several large scale coherent structures and thus
has to be described by several velocity amplitudes (or Reynolds numbers).
These include the volume and time averaged energy based velocity amplitude

ReE =

〈
1

2
u2

1/2

V,τ

· L/ν, (1)

and local wind amplitudes Re(xj) =
〈

1
2u

2(xj)
〉1/2

τ
·L/ν for certain character-

istic positions xj , e.g. in the cell center, at the profiles’ maxima, in the corner
rolls etc. Correspondingly, one also has to introduce and study several veloc-
ity profiles, area averaged or local ones. These together describe the various
features of the rather complex flow organization.

Our results for the center temperature Tc are presented both as functions of
the Rayleigh number Ra (with Ra up to 108) for fixed temperature difference
Δ between top and bottom plates and as functions of Δ (which measures the
“non-Oberbeck-Boussinesqness”) for fixed Ra with Δ up to 60K (see Figure
1). All results are consistent with the available experimental NOB data for the
center temperature Tc and the Nusselt number ratio NuNOB/NuOB. Here,
the labels OB and NOB mean that the Oberbeck-Boussinesq conditions are
either valid or are not guaranteed any more, respectively, i.e., NuNOB ≡ Nu
is the actually measured Nusselt number.
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For the temperature profiles we find – due to plume emission from the
boundary layers – increasing deviations from the extended Prandtl-Blasius

temperature itself is surprisingly well predicted by that theory.
For given non-Oberbeck-BoussinesqnessΔ both the center temperature Tc

and the Nusselt number ratio NuNOB/NuOB only weakly depend on Ra.
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Fig. 1. Left: Relative deviation (Tc − Tm)/Δ of the horizontally area (and time)
averaged center temperature Tc from the arithmetic mean temperature Tm in terms
of Δ versus the temperature difference Δ for water at fixed Tm = 40oC for various
values of Ra. Right: Nusselt number ratio NuNOB/NuOB vs. Rayleigh number Ra
for water at fixed values for Tm = 40oC and Δ = 40K. It is also indicated where the
state is steady, periodic, or chaotic. Apparently there is a tiny reduction of the heat
flux Nu due to deviations from Oberbeck-Boussinesq conditions, about 1% or so.

Concerning the flow structure we find that beyond Ra ≈ 106 the flow
consists of a large diagonal center convection roll and two smaller rolls in
the upper and lower corners, respectively (“corner flows”), see Figure 2. In
the NOB case the center convection roll is still characterized by only one
velocity scale. In contrast, the top and bottom corner flows are then of different
strengths, the velocity amplitude of the bottom corner roll being a factor 1.3
larger (for Δ = 40K) than the top one. We attribute this to the lower viscosity
in the hotter bottom boundary layer.

Under OB-conditions we find a scaling of the volume averaged energy
based velocity amplitude as ReE

OB
∝ Raγ with an exponent γ = 0.62. As the

NOBness increases, the enhanced lower corner flow as well as the enhanced
center roll lead to an enhancement of the energy based Reynolds number ReE

of about 4% to 5% for Δ = 60K. Trying to understand this we consider the
free fall velocity of fluid elements in thermal concetion v ∝ √

βgLΔ, leading
to ReE

NOB
/ReE

OB
∝ (β(Tc)/β(Tm))0.5. Here β(T ) is the thermal expansion

coefficient, taken either at the center Tc or the arithmetic mean temperature
Tm between top and bottom plate temperatures. The β-ratio as a function of

boundary layer theory presented in [2] with increasing Ra, while the center
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Fig. 2. Lines of constant values for the conditionally time averaged velocity field
ū(x, z) at different Rayleigh numbers Ra = 104, 106, 108 in Rayleigh-Bénard con-
vection. (Conditional time averaging takes the time dependent rotational direction
of the wind into account.) Counterclockwise velocity direction (as indicated by ar-
rows) is drawn with solid lines, while the clockwise ones are indicated by dotted
lines. The OB flow structure, which already develops secondary (counter) rolls en-
joys top-bottom symmetry, which is broken for the shown NOB case. There are
major secondary rolls only in those corners, where the downcoming or the upgoing
wind is directed towards the bottom or top plates, respectively.

the NOBness is included in Figure 3 a. It seems to be consistent with the nu-
merical Reynolds number data, also in their dependence on Ra. - To support
this, we artificially switched off the temperature dependence of β in the nu-
merics. Then the NOB modifications of ReE is less than 1% even at Δ = 60K,
revealing the temperature dependence of the thermal expansion coefficient as
the main origin of the NOB effects on the global Reynolds number in water.

The found ratio-relation might suggest that the NOB Reynolds number
can be related to the OB one by simply allowing for the temperature vari-
ation of β(T ) due to the NOB-shift of Tm → Tc in the Rayleigh number,
keeping the other material parameters at their fixed values νm, κm. One

then has R̃e
E

NOB ∝ (β(Tc)gL
3Δ/νmκm)0.62 = (β(Tc)/β(Tm)0.62 · Ra0.62

m
∝

(β(Tc)/β(Tm))0.62 · ReOB. This leads to an analogous ReE and β ratio rela-
tion as before, but with the numerical exponent 0.62 (Figure 3 (b)). For larger
Ra the ratio (β(Tc)/β(Tm)0.62 is even closer to the numerical ReE

NOB
/ReE

OB

data. - But note that β(T )gL3Δ/νmκm no longer is the physical control pa-
rameter!

Of interest are also the various flow profiles, e.g. the area averaged velocity
amplitudes Ux(z) as a function of height 0 ≤ z/L ≤ 1 as well as the side
wall wind Uz(x) as a function of the wall distance 0 ≤ x/L ≤ 1. These
amplitudes are defined as Ux(z) = 〈ux〉x(z) (z) and Uz(x) = 〈uz〉z(x) (x), where

the overline denotes the time average and 〈...〉 indicates averaging along the
x-direction for fixed z etc. In Figure 4 we summarize one of our profile results.
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A comparison of turbulent thermal convection

between conditions of constant temperature

and constant heat flux boundaries
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High resolution direct numerical simulations of two-dimensional Rayleigh-
Bénard convection are used to study the influence of temperature boundary
conditions on turbulent heat transport. The extreme cases of fixed heat flux
and fixed temperature both display power law scaling Nu ≈ 0.138×Ra.285 with
a scaling exponent indistinguishable from 2/7 = .2857 . . . above Ra = 107

up to the highest Rayleigh number measured, Ra = 1010. This work [1] was
supported in part by NSF Awards PHY-0555324 and SCREMS-0619492.
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Fig. 1. Comparison of heat transport data for fixed-flux and fixed-temperature
simulations in a cell of aspect ratio 2. The solid line is Nu = 0.138 × Ra.285

[1] H. Johnston and C. R. Doering, Phys. Rev. Lett. 102, 064501 (2009).
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Relative dispersion of tracers - i.e. very small, neutrally buoyant particles-, is
particularly efficient in incompressible turbulent flows. Due to the non smooth
behaviour of velocity differences in the inertial range, the separation distance
between two trajectories, R(t) = X1(t) − X2(t), grows as a power of time
superdiffusively, 〈R2(t)〉 ∝ t3, as first observed by L.F. Richardson [1]. This
now well established result has no counterpart in the theory of heavy particle
suspensions, namely finite-size particles with a mass density much larger that
of the carrier fluid. The complete knowledge of particle properties of mixing in
turbulent flows -yet an open problem-, is of great importance in cloud physics,
or in estimating pollutant dispersion for hazardous safety purposes.
Here we present results of three-dimensional direct numerical simulations of
heavy particles transported by an incompressible, homogeneous and isotropic
turbulent fluid flow at Taylor-microscale Reynolds number Reλ ∼ 400. De-
tails can be found in [2]. We consider particles much heavier than the fluid
and much smaller than the Kolmogorov scale η of the flow. Moreover, they
are passively advected by the fluid, and do not interact among themselves.
Within these assumptions, particles feel the flow through a viscous drag only,
so that the trajectory X(t) of any such particle obeys the Newton equation
Ẍ = (1/τs)(u(X, t) − Ẋ). Particle response time τs is non-dimensionalized
by the Kolmogorov time scale τη, to define the Stokes number St = τs/τη
that measures inertia. A complete description in the position-velocity phase
space (X,V ) characterizing particle dynamics is performed. After relaxation
of transients, pairs of initially close particles are identified and recorded along
their Lagrangian motion.
Turbulent pair dispersion for tracers is classically based on the application
of similarity theory for Eulerian velocity statistics: depending on the value
of space and time scales, velocity increment statistics of the underlying flow
differently affect the way tracers separate. This results in different regimes for
relative dispersion. In the case of inertial particles, a similar reasoning holds,
so that to analyze the way inertial pairs separate in time, the stationary statis-
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tics of particles velocity differences has to be investigated first. It is well known
that inertia is responsible of the formation of caustics: at increasing inertia,
heavy particles velocity differences at a given scale do not smoothly go to zero
as the scale decreases to zero. In the limit of very large inertia, two particles
at a very small distance tend to have uncorraleted motion, with a relative
velocity difference that can be very large.
We analyze the stationary distribution of heavy particles velocity increments,
by measuring the velocity difference among two particles located at distance
R, without any conditioning on their initial separation. It is clear that inertia
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Fig. 1. Right figure: log-log plot of average particle velocity increment 〈ΔRVSt〉
versus the scale R/η, for various Stokes numbers. The statistics for fluid tracers
(St = 0) correspond to the solid line. The differentiable scaling behaviour ∝ R in the
dissipative range, and the Kolmogorov K41 behaviour ∝ R1/3 in the inertial range
of scales are also shown. Left figure: zoom-in of the inertial range, same symbols as
right. Inset: behaviour of the amplitude prefactor, V 0

St as a function of the Stokes
number St.

affects the heavy particles stationary velocity statistics, with two main conse-
quences.
The first concerns the small-scale behaviour of the particle velocity statistics.
At small scales R� η and for Stokes numbers large enough, caustics make the
particle velocity increments not differentiable. At changing the inertia of the
particles, the statistical weight of caustics might monotonically vary as follows:
at small St, inertial particles should behave as tracers and their stationary
velocity distribution should approch the differentiable Eulerian statistics of
tracers; at large values St→ ∞, on the contrary particles that do not feel un-
derlying fluid fluctuations at all and their velocity difference statistics should
approach the discontinuous rough limit ΔRVSt ∼ R0.
The second effect of inertia concerns the particle velocity statistics at larger
scales, still in the inertial range. For any fixed Stokes number and for a
Reynolds number large enough, there will be a scale at which inertia ceases
to be dominant in particle dynamics. If we define the scale dependent Stokes
number as St(R) ∼ St [η/R]2/3, such scale corresponds to having St(R∗) 	 1.
We expect that inertia becomes weaker and weaker, by going to larger and

A.S. Lanotte et al.486



larger scales R 
 R∗(St). In such case, particle velocity increments are ex-
pected to approach the underlying fluid velocity increments scaling behaviour.
The mark of inertia is only visible in the damped large-scale amplitude of
the velocity increment, which approaches the value U0/V 0

St
, where U0 is the

large scale amplitude for tracers velocity and V 0

St
is an adimensional constant

varying betweeen 1 and 0, for very small and very large Stokes numbers re-
spectively. This is shown in the inset of the right panel in Fig. 1.
How do the stationary velocity statistics affect relative dispersion?
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Fig. 2. Log-log plot of the time evolution of mean squared separation for pairs oh
heavy particles, with initial separations R0 ∈ [0− 1]η (shifted below for the plotting
purposes) and with R0 ∈ [4 − 6]η, for different values of the Stokes number. The
dashed line gives the Richardson scaling 〈R2(t)〉 ∼ t3. Notice the strong dependency
on the values of R0 and of St.

We expect that depending on the value of the Stokes number St and on that of
their initial distance R0, particles will start separating with an initial velocity
differences that can be much larger than that of tracers at the same R0. Later
on, when their velocities have eventually relax onto their tracer counterpart,
heavy particles will separate recovering the standard Richardson regime for
sufficienly large separations in the inertial range of scales.
In Fig. 2, it is plotted the squared separation vector R(t) among two initially
close particles of equal inertia, for various values of the Stokes number. The
large times behaviour à la Richardson is recovered by pairs of any Stokes num-
bers considered. However, at intermediate times, when the dependence on the
initial state- i.e. initial separation and initial velocity difference-, has not been
yet forgotten, clear deviations from the tracers behaviour take place. These
are due to pairs that have much larger separations compared the tracers case,
which is the statistical signature of the presence of caustics in the initial rel-
ative velocity distribution. In a zero order approximation, such pairs initially
separate almost ballistically, until their initially large velocity difference have
relaxed onto the the underlying fluid velocity fluctuations. This regime lasts
for a time scale of the order of the particle response time τs.
The above analysis made in terms of the stationary velocity statistics of par-
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ticles is very informative, since it explains how it takes place the cross-over
among the initial separation regime dominated by inertia at small separations,
and the Richardson regime, appearing at large scales. It is also interesting to
look at particle relative velocity statistics during the separation process, that
is with a conditioning on the value of the initial separation. For this, we fix a
number of thresholds scales: at the moment, these thresholds are reached for
the first time by the particles pair, we measure their velocity difference at that
scale. This is a sort of exit time statistics, originally proposed in [3], which
turns out to be useful to disentangle different scale dependent behaviours.
Notice, in Fig. 3, that the smallest Stokes numbers already at the first thresh-
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Fig. 3. Log-log plot of average particle velocity increment 〈δRVSt〉 versus the scale
R/η, measured along the separating trajectories with R0 ∈ [4 − 6]η. The statistics
for fluid tracers (St = 0) correspond to the solid line. The differentiable scaling ∝ R,
and the Kolmogorov K41 scaling ∝ R1/3 are also shown with dashed lines.

olds have a velocity difference which is smaller than that of tracers, and reach
tracers velocity difference only at large scale. Pairs with very large Stokes
numbers start with a finite and large velocity difference, and then approach
tracers velocity differences only at the largest separation, never recovering the
scaling behaviour R1/3 in the inertial range.
Relative dispersion of heavy inertial pairs exhibit substantial differences with
respect to the tracers case: inertia plays different roles at different separations.
To understand these results, a mean field argument can be proposed, based
on the role of inertia at the different scales of the flow [2].
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The way particles suspended in a turbulent flow are transported and segre-
gated by turbulent structures is crucial in many atmospheric and industrial
applications such as powder production and formation and growth of PM10
particulate. In recent years, this phenomenon has been studied from different
viewpoints; lately, Osiptsov [1] proposed an alternative approach to quantify
particle segregation, later followed by [2] and [3]. This method, referred to
as ’Full Lagrangian approach (FLA)’, evaluates the size of an infinitesimally
small volume of particles and its changes in the course of time along each
particle trajectory. The rate of deformation of this volume is related to the
compressibility of the particle velocity field (e.g. [4]) which is an indicator
of particle concentration. This method presents high computational efficiency
in comparison with traditional Eulerian methods such as ’box-counting’, for
which a large number of particles is required to obtain accurate statistics. We
decided to exploit FLA in a simple two-dimension synthetic turbulent flow
field Direct Numerical Simulations of homogeneous isotropic turbulence, and
to compare it with the MEPFV, a method proposed by [5] et al. essentially
based on box counting. Preliminary results of the spatially averaged statistics
of the rate of deformation are also presented, showing that the presence of
singularities increases for large St numbers. In this work, we study the disper-
sion of identical, rigid and spherical particles in a carrier flow of mass density
ρ and kinematic viscosity ν. Particles are assumed to be heavy (i.e. ρp/ρ
 1
where ρp is the particle density) with radii ap much smaller than the smallest
length scale of the flow. Upon neglecting gravity and Brownian effects, the
equations of motion are [6]:

dxp

dt
= v,

dv
dt

=
1
St

(
u− v

)
, (1)
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where xp and v are the position and velocity of the particle respectively, and
u = u(xp, t) denotes the velocity of the carrier flow at the position of the
particle. All variables have been made dimensionless by a typical time scale
T p

2

p

Stokes number, which represents the ratio between the inertia driving the
particle and the viscous damping action of the fluid.

For the continuity equation, along the trajectory of a particle which moves
with velocity v, we have [7]:

dn
dt

= −n
(
∇ · v

)
. (2)

where ∇ ·v denotes the compressibility of the particle velocity field. For suffi-
ciently small Stokes numbers, v = u−Stu ·∇u+O(St2) [7], and consequently
in an incompressible flow:

∇ · v � −St∇ · (u · ∇u) = −StQ, (3)

.
To implement the FLA, we consider the fractional volume of particles

surrounding the particle and follow its evolution as the particle moves through
the turbulent carrier flow. Upon defining a unit deformation tensor as Jij ≡
∂xp,i(x0, t)/∂x0,j , we can differentiate Eq. 1 with respect to x0 in order to
obtain [1, 2, 3]:

dJij

dt
= J̇ij ,

d
dt
J̇ij =

1
St

(
Jkj

∂ui

∂xk
− J̇ij

)
. (4)

Along a particle trajectory |J | ≡ |det(Jij)| = n−1, so that using Eq. 2 and
averaging over all particle trajectories gives a relation between J and ∇ · v
[4]:

d
dt
〈ln |J |〉 = 〈∇ · v〉. (5)

Février et al.[5] have proven that the velocity of particles dispersed in
turbulent flows can be seen as the sum of two contributions: a continuous
turbulent velocity field shared by all particles called the Mesoscopic Eulerian
Particle Velocity Field (MEPVF) and denoted by v, and a random velocity
component we refer to as Random Uncorrelated Motion (RUM) [2]. The latter
component is dominant in the case of large inertia, thus leading to a ballistic
particle motion, and negligible in the case of infinitesimally small particles.
The MEF approach provides a way to calculate ∇ · v [5, 8], based upon a
division of the calculation domain into grid cells. Averaging the velocities of
all the particles inside a cell gives v, defined in the center of a cell. By taking
the spatial derivatives using a finite difference method, one can obtain ∇ · v
at each cell center.

We note that Eq. 4 may result in J becoming equal to zero, which is equiv-
alent to a singularity in the particle velocity field (∇·v = −∞). Therefore the

and a typical velocity scale U . The parameter St = 2ρ a /(9ρνT ) is the
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FLM is expected to be able to detect singularities in the spatial distribution
of particles, in contrast to the MEF which is ultimately based on a difference
equation.

We compare the FLM and the MEF in a simple two-dimensional synthetic
flow field. Particles are injected at random positions x0 = xp(0) inside the
periodic domain [0, 2π] × [0, 2π] with the same velocity as the fluid at the
corresponding position, v(0) = u(x0, 0). Using Eq. 1, we trace 106 particles to
determine the value of 〈∇·v〉 with the MEF with 60 grid cells in each direction.
Alternatively we follow 104 particles using Eqs. 1 and 4, and determine 〈∇·v〉
from Eq. 5. We present the results from both methods in Fig. , together with
the estimate for small St, Eq. 3. For a small Stokes number such as St = 0.05
(Fig. a), the three lines collapse. This is expected, since Eq. 3 is exact in the
limit of infinitely small St. If we increase the St number, as shown in Fig. 1b for
St = 2, the graph contains sharp negative peaks in the value of 〈∇ ·v〉. These
intermittent events correspond to a sudden collapse of the volume occupied
by the particles so that J ∼ 0 and 〈∇ ·v〉 → −∞. This phenomenon is due to
RUM, i.e. singularities in the flow field where particle trajectories cross and J
vanishes. The agreement between the MEF and the FLM is nonetheless very
good, although the peaks tend to be a bit steeper in the Lagrangian method.

0 5 10 15 20
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−0.01

0

t

〈∇
·v

〉

d<ln|J|>/d t
MEPVF
− St <Q>

Fig.2 displays the particle-averaged value of the compressibility, as a func-
tion of time, evaluated with the FLA and with the MEF, in a Direct Numerical
Simulation of homogeneous isotropic turbulence. The main simulation param-
eters are the turbulent Reynolds number and the Stokes number (namely the
particle relaxation time normalized by the Kolmogorov time scale). Except for
an initial transient, the correspondence between the two methods is very good.
The small difference is probably due to the influence of random uncorrelated
motion whose effects are included in the quantification of J but not in the
MEF. In other words, in agreement with theory and previous simulations, the
Lagrangian method used accurately predicts the compressibility of the parti-
cle velocity field even when the latter is characterized by singularities, which
take place when the instantaneous particle concentration becomes infinite.
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Fig. 1. (Color online)Compressibility of the particle velocity field in the synthetic
flow (A = π, ω = 1) as a function of time, measured by the FLM (d〈ln |J |〉/dt; red
solid line), and by the MEF (MEPVF; blue dashed line). Maxey’s estimate, Eq. 3,
is plotted as well (green dash-dotted line). a) St = 0.05, b) St = 2.
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Fig. 2. Compressibility of the particle velocity field versus time in a DNS of turbu-
lence, St = 1. The solid line denotes the compressibility measured by the Lagrangian
method (d ln |J |/dt), whereas the dotted line represents the Eulerian method using
the MEPVF.
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We write patterns, such as dots, lines and crosses, in a strongly turbulent air
flow by fusing N2 and O2 molecules to NO, which is then used as a tracer.
This photosynthesis is done in the focus of a strong UV laser (ArF excimer Λ

Physik, LPX 150). A while (tens of μs) later, the written patterns are made
visible through inducing fluorescence with a second (UV) laser. The deformed
and dispersed pattern of NO molecules is photographed in the UV using a
fast intensified camera [1]. This technique allows us to create tracer patterns
at will, and with sizes comparable to the smallest length scale in turbulence.
This would have been very hard using seeded particles, such as in particle
tracking velocimetry.

Fig. 1. Experimental Setup. The pulsed ArF excimer laser (1) creates a line of
NO particles and the flow displaces and wrinkles the lines. The pulsed dye laser
(4) visualizes the NO particles fluorescence, while the ICCD camera (6) collects
fluorescence signals within the readout area (2).
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The initial width of our tracer pattern, a line, is σ0 = 50 μm. We trace
the backbone y0(s) of deformed lines in images by fitting Gaussians I ∼
exp(−(y − y0(s))

2
/σ

2(s)), to their cross sections and thus find the line width
σ(s), with s the coordinate along the line (see figure 2).

The turbulent flow emanates from a jet, and the turbulent velocity u is
varied by varying its plenum pressure. In this manner the Kolmogorov scale
η is varied from η = 50 μm at the smallest turbulent velocity to η = 17 μm at
the largest u. Thus, at the smallest u, our lines embrace one small eddy, and
a few Kolmogorov lengths at the largest u.

Our written patterns wrinkle and blur due to molecular diffusion and tur-
bulent dispersion. The key question is about their combined effect: will mole-
cular diffusion enhance or diminish the effect of turbulent dispersion [2].

From collected statistics on 4×103 images at each time delay t we measure
how the average line width σ increases with the delay time t between writing
and reading. We express this dispersion by the effective diffusion coefficient
D = (σ2(t) − σ

2
0))/4 t.
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Fig. 2. The width of a dispersed line (length 6.4 mm) is measured by fitting Gaus-
sians to its cross section. Our surprising finding is that the effective dispersion jumps
from its molecular value Dm to the turbulent Dt, which is appears to be independent
on the turbulence level. At u = 1.5 ms−1, σ0 ≈ η.

Figure 2 shows that at small turbulence levels the spreading rate relaxes
to a value slightly larger than the molecular diffusion coefficient, Dm = 1.8×
10−5 ms−2, and increases quickly to its turbulent value once the Kolmogorov
scale η drops below the initial line width.

A point of concern is the intrusiveness of our method: the creation of tracer
molecules is a nonlinear optical process which during a brief time interval
raises the temperature and decreases the density of the air. Consequently, the
rate of spreading of our molecular clouds in still air is faster than the diffusion
coefficient of NO molecules Dm. This was verified in a model for the enhanced
convection of molecules out of the focus of the writing laser. As figure 3 shows,
a temperature rise ΔT ≈ 100 K explains the enhanced diffusion.
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Fig. 3. Writing in air comes with a temperature rise at the instant of writing. This
results in a slightly anomalous diffusion. (a) Open circles: measured linewidths σ2(t)
in still air after a time t normalized by the diffusion time tD = σ2

0/Dm. Full lines
result of a model calculation with the initial temperature rise ΔT/Ta as a parameter,
Ta = 293K. Dashed line: ordinary diffusion (ΔT = 0). The excellent fit of the model
to the experiment suggests that the initial temperature increase in the experiment
is ≈ 100 K. (b) Density profile of the air at t = 3 μs after writing.

Figure 3(b) shows that the brief rise in temperature results in a local
dilution of the ambient air, which can be visualized using Raleigh scattering
at wavelengths away from those causing fluorescence of NO.

Molecular diffusion, which blurs written patterns, sets the precision with
which they can be followed in order to do velocimetry. Naively one may say
that tracing its molecules is the best way to perform velocimetry of a gas.
However, because mass diffuses at approximately the same rate as momen-
tum in a gas, and because the size of the smallest scales in turbulence is set
by the diffusion of momentum, the smallest scales in turbulence will remain
fundamentally unresolved in molecular velocimetry. In current experiments
we are therefore employing heavy molecules which can be made visible using
phosphorescence.
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Spray combustion is a complex phenomena finding its application in many
combustion devices like gas turbines, diesel engines, liquid-fueled rocket en-
gines etc. This phenomena is characterised by the break up of the liquid fuel
sheet, followed by atomisation, droplet dispersion and its evaporation, mixing
of the fuel vapour with the oxidiser and eventually its combustion. However,
the present study is focused on the turbulence modification of the carrier
phase (i.e. gas) and the fuel vapour mixing. Flows seeded with droplet volume
fraction less than 10−3 are considered so that the inter-droplet collision effects
are negligible.

Molecular mixing specially in or near the flame fronts plays an important
role in turbulent combustion. Although, micromixing of gaseous fuel and ox-
idiser has been an active area of study, but the micromixing of vapour with
the air lacks proper attention. Pera et al [1] proposed a subgrid scale model
for the mixture fraction variance in large eddy simulation (LES) of evaporat-
ing sprays. In the present study, a probability density functions (PDF) model
for the micromixing of the fuel vapour with the oxidiser is proposed. Such
PDF methods have certain advantages over closure methods. The turbulence
reaction interactions and all convective terms (including scalar dissipation) in
the PDF transport equation appear in closed form and for molecular mixing
the joint velocity-composition PDF, which can be quite arbitrary, can be con-
sidered. In comparison to DNS and LES, PDF methods are computationally
inexpensive.

For this purpose, an Eulerian-Lagrangian-Lagrangian approach as pre-
sented in [2] is employed. For the gas phase, a joint velocity-composition PDF
method [3] is used. For the droplet phase, the mass density function (MDF,
density-weighted PDF) of droplet velocity, droplet diameter, droplet temper-
ature, droplet composition (if the fuel is multicomponent), “seen” gas temper-
ature, “seen” gas velocity and “seen” gas composition is calculated. This pro-
vides a unified formulation to consistently address the various modeling issues
associated with such two-phase systems. Because of the high dimensionality,
particle methods are employed to solve the PDF transport equations.
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Micromixing of the fuel vapour depends highly on the turbulence of both
the gas and the droplet phases. Thus its highly important to correctly predict
the gas and the droplet phases turbulence. One way coupling, i.e. the influence

predict the flow behaviour accurately in some applications. For instance in
reacting flows, modification of the gas turbulence structure due to droplet
turbulence will influence the gas motion and thereby its composition, which
is required for the prediction of the heat release rate. A new stochastic model
based on individual particle separation and a decorrelation length scales is
proposed to capture the influence of turbulence modulation of the gas due to
the droplet presence. The model has been validated with the experiments of
Poelma et al [4] as shown in figure 1. Next, computation experiments were
performed in order to study the influence of gravity and the model on the
decay of carrier phase turbulence. Figure 2 shows the comparison of the results
obtained from various computational experiments.

To model the micromixing of fuel vapour with the oxidiser, a new model
based on droplet decorrelation frequency (which is a function of droplet turbu-
lence length scale) has been proposed. Depending on the individual separation
between the droplet and the surrounding gas particles, the probability of the
vapour (formed due to evaporation) mixing with the surrounding gas is eval-
uated. For gas phase moelcular mixing, interaction by exchange with mean
(IEM) model [5, 6] has been employed.

The proposed model is compared with the LES results of Pera et al [1]
for the micromixing of vapour formed in an evaporating spray evolving in
spatially decaying homogenous turbulence. Meyer and Jenny [7] proposed pa-
rameterised scalar profiles (PSP) mixing model based on constructing distri-
butions of one-dimensional scalar profiles (e.g. temperature or vapour mass
fraction) and showed significant improvements over IEM mixing model. Based
on their study, it is expected that employment of PSP model might further
help in improving the results.
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Fig. 1. Comparison of the decay of the normalized variance of the fluid velocity
(“X-” represents variance of the longitudinal component; “Z-” represents variance
of the transverse component) with and without ceramic particles. X- direction refers
to downstream and Z- direction, transverse to the flow.
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Introduction

The dispersion of light particles, like plankton, algae and sand, plays an impor-
tant role in geophysical environments such as estuaries. In these geophysical
flows often a negative vertical density gradient is present, which suppresses
to a certain extent vertical fluid motions. In this work we study the effect of
different hydrodynamic forces on the behavior of light particles, which have
a density ρp that is of the same order as that of the surrounding fluid (ρf ),
in stratified turbulence by means of direct numerical simulations (DNS). The
code solves the flow field in a Eulerian manner, and particle trajectories are
computed from the Lagrangian point of view [1, 2].

Forces on light inertial particles

Usually, the limit of heavy particles (ρp
 ρf ) is studied. For heavy-particle
dispersion in stratified turbulence, see Ref. [3]. Contrary to these studies, for
light particles the full Maxey-Riley equation needs to be resolved [4]. Particle
trajectories are obtained from dxp

dt = up, with xp the particle position and up

its velocity. The velocities of the inertial particles (light and heavy) are then
obtained by solving:

mp
dup

dt
= 6πaνρf

(
u− up +

1
6
a2∇2

u

)
+mf

Du

Dt

+ (mp −mf )g +
1
2
mf

(
Du

Dt
− dup

dt
+

1
10
a2

d

dt
∇2

u

)

+ 6πa2νρf

∫ t

0

dτ
du/dτ − dup/dτ + 1

6
a2d∇2

u/dτ

[πν(t− τ)]1/2
. (1)

The particle mass is given by mp, a is the radius of the particle and mf is
the mass of a fluid element with a volume equal to that of the particle. The
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fluid velocity is denoted by u, ν is the kinematic viscosity. The Maxey-Riley
equation is derived for a small (a � η, with η the Kolmogorov length scale)
isolated rigid sphere in a non-uniform velocity field, under the assumption of a
low particle Reynolds number. A measure of the particle inertia is the particle
response time, τp = 2a2ρp/(9ρfν), which will be expressed in the following
using the Stokes number St = τp/τK (τK the Kolmogorov time). The forces on
the right-hand side of this equation are viscous drag, a local pressure gradi-
ent in the undisturbed fluid, gravitational forces, added mass and the Basset
history force, successively. Because the particles are small, the smallest scales
of the flow are the most important for the strength of the forces that act on
a particle. It is found that the history term has to be calculated over a time
interval of at least one Kolmogorov time. For the runs presented here a history
of about 2τK is chosen; increasing this time does not significantly change any
of the forces acting on a particle. Since the density of the particles is close to
that of the surrounding fluid, and a background density gradient is present
in the flow, the density ratio ρp/ρf is changing continuously and care needs
to be taken in calculating particle statistics. Luckily, these changes are small
(about 1�) and the initial positions of the particles are chosen such that they
will not cross the top or bottom boundaries of the domain [2]. Particles are
released when the stratified turbulent flow has reached a stationary state and
velocity and position time series of 4000 particles are collected for about 10
eddy turnover times.
The strength of the different forces that are acting on the particles in stratified
turbulence is shown in Fig. 1. For light particles, with ρp/ρf =O(1), almost all

Fig. 1. Left: PDF of the forces Fi normalised by the Stokes drag FSD; F1: added
mass Faxèn correction, F2: Basset force Faxèn correction, F3: Stokes drag Faxèn
correction, F4: added mass, F5: pressure gradient, F6: Basset force. Particle prop-
erties: St=0.55 and ρp/ρf =10. Right: Average value of the normalised force Fi as
function of the density ratio. For both graphs the buoyancy frequency N = 0.3 s−1.

forces have magnitudes comparable to that of the Stokes drag (see Fig. 1b).
With increasing density ratio the relative importance of the different forces
decreases.
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Particle dispersion: the role of the Basset force

The dispersion results of light particles in stratified turbulence are compared
to those obtained for heavy particles. Both in the horizontal and in the verti-
cal direction the mean-squared displacement of both types of particles show
similar behavior when displayed as a function of the Stokes number. The re-
sults obtained for the vertical dispersion are shown in Fig. 2. For small Stokes

Fig. 2. Vertical single-particle dispersion for fluid particles, light particles (particles
with St2=0.55 and St4=1.38) and heavy particles. Lowest curve (long-time limit)
shows the fluid particle result, which is included for reference.

numbers the dispersion behavior is similar to that of fluid particles. Only the
length of the plateau is shorter for the light particles which might be an in-
dication that also at these small Stokes numbers the different forces affect
light particle dispersion. This would be in contradiction with the assumption
that is often used in the literature that the dispersion of inertial particles
with St ≈ 1 can be described using fluid particles. For Stokes numbers larger
than about 0.5 a reduced dispersion can be seen for short times (reduced rms-
velocity) and for longer times the plateau - typical for stratified turbulence [5]
- becomes less pronounced and the dispersion increases with increasing St.
The influence of the forces on the vertical dispersion statistics is shown in
Fig. 3. These results are computed from trajectories of particles with with a
density ratio of 25.0, because their dispersion behavior shows deviations from
that of fluid particles, but at the same time also other forces than the drag
force are relevant. It can be seen that if the Basset force is switched off, the
vertical dispersion increases by about 15− 20%. For the horizontal dispersion
the influence of any other force than the drag force can be neglected. The
influence of the Basset history force on vertical dispersion of light inertial
particles in stably stratified turbulence has two causes. The vertical motion
of the particles in stratified turbulence occurs on much smaller scales (scales
at which the forces act on the particles), and the oscillatory wave-like motion
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Fig. 3. Vertical mean-squared displacement of fluid particles and light particles for
N = 0.3 s−1. For the particles denoted with “all” all the forces are incorporated
except for gravity (particles denoted “St4=1.38” in Fig. 2). For particles P the Basset
forces are switched off, for particles Q all Faxén correction terms are set equal to
zero and for particles R only the Stokes drag, the pressure gradient and the added
mass force are taken into account.

of the particles induces considerable accelerations and decelerations.
Several other kernels are proposed in the literature for the history force, as
adaptations of the original one derived by Basset [6, 7, 8]. It has been tested
whether a kernel with a stronger decay at large times ((t − τ)−2) influences
the results. The conclusion that the history force needs to be included when
studying light particle dispersion in stratified turbulence is found to be inde-
pendent of the choice of the history force kernel.

Conclusions

We conclude that the the Basset force cannot be neglected with regard to
light particle dispersion in stratified turbulence. Moreover, light inertial par-
ticles with St ≈ 1 cannot be described using fluid particles.
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We investigate the long-time asymptotic properties of inertial particles in flow-
ing fluids by means of analytical computations, and we show the comparison
with results derived from simple numerical simulations.

Namely, we focus our attention on the terminal “renormalized” velocity,
more precisely on its deviation from the corresponding “bare” value observed
in still fluids. Specifically, we analyze two distinct cases, which allow us to per-
form: 1) either an ordinary perturbation expansion at small inertia, using the
second-quantization formalism; 2) or a strong-sweep approach “à la Maxey”
[1], in which the deviations from the original rectilinear trajectory due to the
flow disturbances are small. We are thus able to investigate (both separately
and as an interplay) the effects of several physical properties of the particles
and of the flow: inertia, gravity, particle molecular diffusivity, turbulence in-
tensity, space dimension, compressibility degree, density ratio and the flow
spatio-temporal profile. We deduce that, depending on these parameters, and
in particular on the presence of areas of oscillation or recirculation, both an
increase and a reduction in settling/sweeping can occur.

In case 1) we focus on regular incompressible flows u(x, t), steady or pe-
riodic in time and cellular or symmetric in space [2, 3]. Taking into account
both gravity (g) and diffusivity in the particle dynamical evolution equation
[4], we can consider particles of any density (by introducing the covelocity
variable and a simplified added-mass effect, in which the fluid acceleration is
computed following the particle trajectory rather than along the fluid path),
and we can also model the evolution of small micro-organisms with limited
capacity of autonomous movement by means of Brownian motion. We analyti-
cally obtain a set of partial differential equations which provide the expansion
at small Stokes number (St) of the particle probability density function, more
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precisely of its projection from the phase space onto the physical space. This
set is then solved by means of direct numerical simulations for a specific class
of two-dimensional flows [5],{

u1 = sin(kx1) cos[x2 + 2 sin(ωt)]
u2 = −k cos(kx1) sin[x2 + 2 sin(ωt)] , (1)

and the resulting vertical terminal velocity (Δw along x2 ‖ g) is compared
with the outcome of our corresponding Lagrangian simulations performed di-
rectly on the original dynamical equation. This kind of flow (1) is physically
relevant because it is universally used to mimic thermal rolls in Rayleigh–
Bénard convection or Langmuir circulation, i.e. the wind-driven helical cir-
culation on the sea surface. Moreover, it has also been employed for both
numerical and analytical studies in several domains, ranging from front prop-
agation to polymer transport, and from anomalous diffusion to chaotic maps.
Our findings lead to the following conclusion of interest in the realm of ap-
plications: any attempt to model the effect of flows on particle sedimentation
cannot avoid taking into account the full details of the flow field, e.g. its
vertical-oscillation frequency ω or its cell aspect ratio k. Indeed, changing
these two parameters, one can verify or even invert the usual picture about
the dependence of Δw on St , which associates Stokes numbers smaller (larger)
than a critical value with an increase (decrease) of the falling/ascending veloc-
ity — as shown in figure 1 for two different values of the Péclet number. Figure
2 proves the correctness of our aforementioned small-St expansion (quadratic,
in this case), which enables us to find Δw by means of a rigorous field ap-
proach rather than via the so-called continuum approximation [6].
It also turns out that the expression of the renormalized velocity can be ob-
tained by means of a standard multiple-scale expansion, whose following order
gives rise to an eddy-diffusivity tensor [7], which in turn might be investigated
using this same formalism. Our future plan is to study also the possibility of
anomalous transport in the horizontal direction.

In case 2) we analyze random flows with a generic compressibility degree
[8]. Our approach is thus applicable both to sedimentation and, more inter-
estingly, to the study of floaters dragged by wind on the water surface. In
particular, we concentrate ourselves on stochastic flows and we compute the
leading-order correction to the bare drift for Gaussian velocity fields, which as
a first approximation is maximum for perfectly compressible (potential) flows
and occurs at higher orders for incompressible ones. We are able to identify an
important dynamical feature of the carrying flow, i.e. the way through which
it decorrelates in time. Our main result is that, in general, a small (large)
degree of recirculation is associated with a decrease (increase) of streaming
with respect to a quiescent fluid. The presence of this effect is also confirmed
numerically, away from the perturbative limit. However, the previous picture
can be reversed in the presence of incompressibility, even if it does not seem
to depend on the space dimension. Moreover, we extend our approach to in-
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— and the parabola (dashed line) resulting from direct numerical simulations of our
set of partial differential equations for the particle probability density function.
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vestigate the particle effective diffusivity, and thus the relative efficiency of
diffusive and ballistic transport. The crossover time, after which the latter be-
comes predominant over the former, can show a resonance peak. We find the
important result that, for a specific class of flows, the compressibility degree
has no influence on the total diffusivity, but only on its components parallel
and orthogonal to the unperturbed straight trajectory; namely, if the recir-
culation degree is small or inertia is large, we show that parallel (orthogonal)
diffusion dominates for incompressible (potential) flows.
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The turbulent transport of material particles is a very general phenomenon,
occuring in many natural (dust storms, pollutants in the atmosphere, plank-
ton in the ocean, ...) and industrial (fluidized beds, chemical reactors, ...)
systems. The dynamics of particles suspended in a turbulent flow depends
on their size and on their mass density. Very small neutrally buoyant parti-
cles behave as passive tracers, co-moving with the fluid, whereas inertial and
finite-size effects are expected to occur for larger objects which are buoyant
or denser than the fluid. The dynamics of very small heavy particles has been
studied by modeling the hydrodynamic forces acting on them as the sum of a
(possibly corrected) Stokes drag, added mass, and other forces; in this way it
has been possible to simulate the dynamics of millions of particles (see e.g. [1]).

However, the dynamics of finite size (in practice, larger than the Kol-
mogorov scale) particles is not yet understood. Recent experiments have been
carried out in order to characterize the influence of the particles’ size on their
acceleration statistics [1, 2, 3, 4]. However, in order to understand the under-
lying mechanisms one needs to investigate the flow around the objects. Such
an information is not yet available in the experiments. Simulations based as
much as possible on the first principles must therefore be carried out [5, 6, 7].

For this purpose, we use the Physalis algorithm, specifically designed to
integrate the Navier-Stokes equation in the presence of solid spheres [8, 9, 10].
This method exploits the no-slip condition to linearize the flow around a
solid-body rotation/translation in the vicinity of each particle. In this way,
an analytical solution, valid very close to the surface of the object, can be
calculated. In the particle rest frame, this problem is indeed reduced to the
resolution of the Stokes equation with the condition of vanishing velocity on
a sphere. The most general solution of this problem is expressed as a sum
of spherical harmonics multiplied by coefficients depending on the external

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_122, 

509



−12 −10 −8 −6 −4 −2 0 2 4
10−6

10−5

10−4

10−3

10−2

10−1

100

ln(q)

P
D

F

−10 −8 −6 −4 −2 0 2 4
10−6

10−5

10−4

10−3

10−2

10−1

100

ln(ε)

P
D

F

Fig. 1. Probabality density functions of kinetic energy (top) and dissipation (bot-
tom) around the particle, in thin spherical shells of radius R(1+α): α = 0.125, 0.25,
0.375, 0.5, 0.75, 1, 1.5, 2, 4, 6 in the direction of the arrow. The dashed lines are the
results of a simulation without particle.

boundary conditions, in our case the flow in the rest of the computational
domain. This flow is calculated by a finite difference scheme, using a stan-
dard projection method. The existence of the analytical solution, valid in a
very thin shell surrounding the particle, allows us to use a uniform mesh, irre-
spective of the presence of the objects, in the whole domain. We have at our
disposal a dual representation of the flow (analytical/numerical), matching on
a cage of nodes surrounding the object.

In this communication we limit ourselves to the case of a single particle
kept fixed (neither translating nor rotating) in homogeneous turbulence, with
a zero mean flow. The level of turbulence is kept stationary by using a linear
forcing [11]: F = Au, where F is a force per unit mass, u is the fluid velocity
and A is a parameter whose value is kept fixed during the simulation. Our
choice for this forcing was motivated by two criteria: (i) it acts in the phys-
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Fig. 2. Intantaneous kinetic energy (left) and dissipation (right) densities in a
plane diametral to the sphere: z/R = 8. Increasing values from black to white.
At the particle surface, the no-slip condition is satisfied (left), resulting in a local
enhancement of the dissipation (right).

ical space; (ii) it tends towards zero as one approaches the particle surface.
Details on the numerical procedure can be found in [10]. The computational
domain is a cubic box of linear size equal to 16 times the particle radius, R.
The grid resolution was 1283, which results in a number of nodes per radius
equal to 8. The particle is located at the center of the computational domain,
and periodic boundary conditions are imposed in each direction. The particle
Reynolds number, Rep ≡ 2Rurms/ν, is close to 20, and the object diameter
is close to 8η ∼ L/2, where η is the Kolmogorov scale and L the integral
scale. The Courant number based on the instantaneous maximal velocity was
always smaller than 0.5.

In order to investigate the local modification of the flow due to the pres-
ence of the object, we measured the statistics of kinetic energy, q, and of
energy dissipation, ε, at different distances from its surface. The probabil-
ity distribution functions of these quantities in spherical shells of different
radii are plotted in Fig. 1. At the largest distances, the statistics measured
in single-phase flow are recovered, showing that the computational domain is
large enough to avoid any influence of the virtual neighbor particles implied
by the use of periodic boundary conditions. As expected, the presence of the
particle results in a dramatic damping of the kinetic energy close to its surface
(no-slip and no-penetration condition) (Fig. 1, top). The dissipation rate is
drastically enhanced in the vicinity of the object (Fig. 1, bottom), which can
be explained by the fact that, because of the vanishing velocity condition on
the object, the velocity derivatives normal to its surface are relatively large.
Both effects are significant at distances r up to 3R from the particle surface,
which can be shown more accurately by plotting the moments of both quan-
tities as a function of r (not shown here). Thus, the volume of fluid affected
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by the particle is more than one order of magnitude greater than the particle
volume fraction. As a comparison, a rough estimate of the boundary layer
thickness l gives: l ∼ R/

√
Rep ≈ 0.22R.

To illustrate the enhancement of energy dissipation close to the particle
surface, we have plotted in Fig. 2 the densities of kinetic energy and of dis-
sipation in a plane passing through the center of the object. Interestingly, a
region of high energy is approaching the particle surface (right-hand sides of
the figures). Because of the vanishing velocity condition, the major part of
this energy is clearly dissipated (Fig. 2, right).

This study will be completed by the investigation of other quantities, such
as the velocity components and the pressure.

The calculations were performed at the Pôle Scientifique de Modélisation
Numérique at the Ecole Normale Supérieure de Lyon.
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1 Introduction

Flows around spherical-cap objects have been studied for decades ([1], [2], [3]). The
problem we consider here is how suspended particles in a flow interact with the wake
behind rising spherical-cap bubbles. The fundamental question is whether — and if
so, how — particles become trapped in the wake of a rising bubble [4]. An important
industrial application of this mechanism is the cleaning of liquid steel from μm-sized
inclusions (Flotation). We examine the wake trapping mechanism by analyzing the
wake of a solid spherical-cap model in water.

2 Methods

A two-camera PIV-system was used to simultaneously measure the velocity fields
of the fluid phase (EBM FLUOSTAR tracer) and the dispersed phase (hollow glass
spheres, ρ = 0.22g/cm3 , d=50 . . . 60μm) in the wake of a brass 50◦-spherical-cap
model (Fig. 1) of diameter deff = 11mm. This obstacle is placed in a vertical tube
and is aproached with an upward turbulent flow. Turbulence is created by a grid
placed upstream of the obstacle.

To discriminate between the two phases a beam splitter and optical filters
mounted in front of the cameras were used. The alignment between the two camera
images was realized by calculating a linear mapping function of reference images
recorded without the filters in the optical path and subsequent averaging. The aver-
aged mapping function was later used to correct the second cameras double frames
prior to the PIV analysis. Our tests using this alignment method have shown re-
maining errors to be below 0.4 px.

For every node, mean and variance of the velocity were calculated from the
acquired vector fields of both phases. The flux over a boundary was determined by
integrating the bilinear interpolated normal velocity at that boundary. Measuring
the particle concentration was done by analyzing the reflected light intensity of the
dispersed phase by evaluating the raw PIV images directly.
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Fig. 1. Schematic view of the experimental setup (left), stream line plot (right) of
the averaged velocity field, with ellipse fit (solid line) to the zero-crossings (dotted)
of uz, and scaled ellipse (dashed)

3 Results

A detailed description of wakes behind spherical-cap objects was given in [2] and [3].
To allow a comparison with Argon bubbles rising in molten steel, the parameters for
the performed experiment were chosen to match these conditions (Re = 500 . . . 104).
This resulted in Reynolds numbers far beyond the stable, laminar range. Though
one can argue that the lowest used Reynolds number (Re = 840) is still transitional,
the observed wakes were open and turbulent. Nevertheless the averaged velocity
fields, in particular for the higher Re numbers, are in good congruence with a Hill
vortex, only being elongated by about 50% in the direction of the mean flow.
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Fig. 2. Velocities normal to elliptic boundaries, fitted ellipse (left) and scaled ellipse
(right), Re = 2300
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Re V̇ ΔV̇ V̇ /ΔV̇

continuous 840 14.65 70.41 0.21
phase, 2300 -1.38 84.39 -0.016
(a, b) 6600 -2.75 79.98 -0.034

dispersed 840 25.01 65.01 0.38
phase, 2300 -3.85 80.67 -0.048
(a, b) 6600 -2.24 70.09 -0.032

Re V̇ ΔV̇ V̇ /ΔV̇

continuous 840 -179.9 44.13 -4.07
phase, 2300 -10.95 68.70 -0.16

(
√

2a, b) 6600 -21.82 58.79 -0.37

dispersed 840 -157.8 42.89 -3.68
phase, 2300 -8.74 64.91 -0.13

(
√

2a, b) 6600 -2.49 54.62 -0.046

Table 1. Measured fluxes V̇ /ΔV̇ over the wake boundary for the continuous phase
(top) and dispersed phase (bottom)

The concentration measurements were realized by averaging and low-pass filter-
ing of the recorded PIV images. There was no indication for a higher average light
intensity inside the wake area. Therefore the focus of the following analysis will be
on the flow measurements.

To determine the particle transport from the outer flow to the wake, a smooth
boundary was needed. An ellipse was fitted to the zero-crossings of the z-component
of the continuous phase, making use of the similarity ([1]) between the averaged
velocity field of a spherical-cap wake and a Hill vortex. From the Stokes stream
function of a Hill vortex with radius R, the velocity can be derived as

v = 1.5
((

2x2u∞ − (u∞ · x)x
)

/R2 − u∞
)

. (1)

Requiring that the velocity component parallel to u∞ is zero gives 0 = u∞ · v, and
using the simplification u∞ = (0, 0, u∞

z ) in cylindrical coordinates gives

1 =
r2

R2/2
+

z2

R2
, (2)

an equation for an ellipse with the half axes a = R/
√

2 perpendicular and b = R
parallel to u∞. This ellipse together with one whose smaller half-axis was multiplied
by

√
2 (the “fitted” and “scaled ellipse”, see Fig. 1) were used as boundaries to

interpolate the normal velocities from the PIV vector field.
The volume flow is assumed to be axis-symmetric around the z-axis, giving

V̇ = 2π

∫ π

−π

v⊥r(φ)

√(
dr

dφ

)2

+

(
dz

dφ

)2

dφ ≈
∑

i

v⊥
i Ai/2 = 1/2v⊥ · A (3)

for the volume flow over the boundary of a body of revolution. The sum on the right
is the used approximation for this integral, with Ai/2 being the surface area of point
i of the elliptic boundary, taking into account that only half of the ellipse must be
rotated to get an ellipsoid. Similarly,

ΔV̇ ≈ 1/2
√

AT COV(v⊥)A (4)

gives an estimate for the standard deviation of the measured volume flow according
to the propagation of uncertainty, including turbulent fluctuations of the normal
velocity as well as statistical measurement errors.
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In table 1 the fluxes V̇ relative to the strength of the estimated fluctuations ΔV̇
for both phases and different Reynolds numbers are given. In general the averaged
particle transport is about one order of magnitude smaller than the estimated fluc-
tuations. Exceptions are the values for the scaled ellipse at Re = 840: at this low flow
speed the averaged velocity field of the wake close to the obstacle was more strongly
distorted compared to an elongated Hill vortex, resulting in an elliptical fit with a
larger value for the smaller half-axis. In this case the boundary did not intersect
with the spherical cap, neglecting the flow passing between the boundary and the
obstacle. For the measurements done at the low flow speed and a transitional wake,
the criterion used to determine the wake boundary was found to be less applicable.

Figure 2 displays polar plots of the mean normal velocity v⊥ and its estimated
fluctuations Δv⊥ = diag(COV(v⊥)). For the fitted-ellipse boundary the averaged
normal velocity is positive (outflow) close to the obstacle, negative (inflow) further
behind and zero directly at the boundary of the obstacle. For the scaled-ellipse
boundary the normal velocities are smaller on average with a small outflow further
behind and slightly higher values (inflow) directly behind the obstacle. In both
cases there is marginal difference between the continuous and the dispersed phase.
Additionally, the turbulent velocity fluctuations (Δv⊥/v∞) of about 30% are much
higher than the averaged normal velocities.

4 Discussion and Conclusion

The measurement results show that the velocity component normal to the elliptic
boundaries is clearly dominated by the turbulent velocity fluctuations. Furthermore,
the integrated volume flow over these boundaries is negligible compared to its es-
timated standard deviation for both the continuous and the dispersed phase. Con-
sidering that there was no indication of differences in concentration in the intensity
data, it can be concluded that the dispersed phase does not underlie any effect of
preferred concentration. In summary, the experimental results show no indication for
an effect of wake trapping of the examined particles under the examined conditions.

Acknowledgments: This project was funded by STW and Corus RD&T. Spe-
cial thanks to EBM for providing tracers, and to IMCD for the test particles.
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1 Introduction

One of the most comprehensively studied turbulent flow is the Rayleigh-
Bénard convection, in which a complex three-dimension turbulent motion is
initiated by heating the fluid from below and cooling from above. Detailed
measurements of the turbulent heat transfer [1, 2], the statistics of the tem-
perature fluctuations and its gradients [3, 4] and the analysis of coherent
thermal plumes [5, 6] haven been conducted in the past. The variation of
the global heat transfer with respect to two of the three dimensionless con-
trol parameters–the Rayleigh number Ra and the Prandtl number Pr – in
thermal convection was the focus of most of the laboratory experiments and
simulations [7]. The dependence of the third control parameter – the aspect
ratio, Γ = D/H , with D the diameter and H the height of the cell – has
been studied much less extensively. Only a few systematic analyses of high-
Rayleigh number convection in flat cells with Γ > 1 have been conducted
[7], although it is relevant in geophysics and astrophysics. Even more surpris-
ingly, an explicit aspect ratio dependence of the heat transfer in turbulent
convection is absent in the existing scaling theories. Within the framework of
this study, we perform a systematic analysis of the aspect ratio dependence
of convective turbulence in cylindrical cells by three-dimensional direct nu-
merical simulation. Our parameter ranges are: Ra = 107 − 109, Γ = 0.5− 12
for fixed Pr = 0.7. Our analysis is focused on the following questions: Does
the turbulent heat transfer at fixed Ra depend on Γ ? Which changes in the
the global flow structures are associated with an aspect ratio variation and
which fraction of the total kinetic energy and heat transfer is contained in
the large-scale circulation (LSC)? It is found that the global heat transfer,
as measured by the Nusselt number Nu, varies up to 10% for aspect ratio
variation. It is also observed that the primary mode of the LSC is responsible
for carrying almost 50% of the turbulent kinetic energy for Γ > 1.
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2 Dependence of heat transfer on aspect ratio

The global heat transfer in the convection cell as measured by the Nusselt
number, Nu, is given by

Nu =
1
H

∫ H

0

Nu(z)dz = 1 +
H

κΔT
〈uzT 〉V,t , (1)

with κ the thermal diffusivity, T the temperature, ΔT the temperature differ-
ence between the hot and cold plates and uz the vertical velocity. The symbol
〈·〉V,t denotes an average over the cell volume and an ensemble of statistically
independent snapshots.
Figure 1 shows Nu as a function of Γ for three different Ra, namely Ra =
107, 108 and 109. At Ra = 107 (Fig. 1(a)), Nu decreases with increasing Γ ,
attains a minimum value at Γ = 2, then increases up to a maximum value
close to Γ = 8 and finally saturates. Similar trends are observed for higher
Rayleigh numbers in the same figure. The variations in Nu, as defined by
the difference between the maximum and minimum Nu, are 10.6%, 7.5% and
4.9% for Ra = 107, 108 and 109 respectively, within our parameter range.
We have also fitted power law Nu = A × Raβ at a fixed Ra by varying Γ .
It turns out (A, β) = (0.165, 0.287), (0.145, 0.294), (0.127, 0.300), (0.110, 0.309)
for Γ = 0.5, 1, 2, 3 respectively, which reveals that the prefactors and expo-
nents follow systematic trends.

Fig. 1. Nusselt number Nu (as in Eq. (1)) as a function of the aspect ratio Γ with
(a) Ra = 107, (b) Ra = 108, (c) Ra = 109. The crossover from one circulation roll
to two rolls is indicated in (a) and (b) by two parallel dashed lines. The statistics is
gathered over at least 109 statistically independent turbulent samples.

3 Large-scale circulation (LSC)

We investigate the behaviour of the LSC in the convection cell with the help
of the time-averaged velocity field. This procedure removes not only all small-
scale fluctuations of the velocity field, but also oscillations of the LSC. Figure 2
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shows the LSC patterns for two aspect ratios, Γ =2.5 and 6, at Ra = 107.
Between Γ = 2.5 and 2.75, the system bifurcates from a one-roll to a two-roll
pattern [8]. The LSC patterns are more complex at higher aspect ratio, e.g.,
Γ = 6, as the single roll break downs in to smaller ones.

Fig. 2. Flow patterns at different aspect ratios. Streamlines of the time-averaged
velocity field at Γ = 2.5 on the left and Γ = 6 on the right for Ra = 107. All data are
obtained by time averaging of a sequence of 50 statistically independent snapshots.

3.1 Proper Orthogonal Decomposition (POD)

Turbulent heat transfer is the sum of contributions by the LSC and turbu-
lent fluctuations. In order to disentangle both contributions, the so-called
Karhunen-Loève or POD analysis [8, 9] is employed here. We decompose tur-
bulent velocity field as ui(x, t) =

∑
NT

m=1
a
(m)

i
(t)φ(m)

i
(x) and the temperature

fluctuation as θ(x, t) =
∑

NT

m=1
a
(m)

4
(t)φ(m)

4
(x), with i = 1, 2, 3, NT the number

of snapshots. The coefficients a(m)

i
(t) correspond to the projection of flow field

at time t to the POD-mode φ(m)(x). The Nusselt number definition in Eq. (1)
then translates to

Nu = 1 +
H

κΔT

NT∑
m,n=1

〈
a
(m)

3
(t)φ(m)

3
(x) a(n)

4
(t)φ(n)

4
(x)

〉
V,t

(2)

In Figure 3, we plot the contribution of various POD modes to the global heat
transfer as in Eq. (1). Since the analysis is conducted here with 80 snapshots,
the values of Nu deviate slightly from Figure 1. The primary POD mode car-
ries to up 31.8, 48.2, 47.6, 46.2 and 56.6% of Nu for aspect ratios Γ =0.5, 1, 2,
2.5 and 3 respectively. For flow patterns with a single-roll circulation (Γ = 1,
2, and 2.5), the contribution to the heat transfer by the primary POD mode
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Fig. 3. Contributions of various POD modes (as indicated in the legend) to the
global heat transfer Nu (exact in the legend). The analysis is conducted for 5 dif-
ferent aspect ratios at Ra = 107.

is roughly the same, which is about one-half of Nu. It increases by 10% due
to the transition from a single-roll to a double-roll pattern (cross over from
Γ = 2.5 to 3). The slender cell (Γ = 0.5) has a lower Nu fraction, which can
be attributed to the complex flow configuration with different roll-orientation.
The first POD mode reproduces the LSC pattern as depicted in Figure 2 [8].

This work is supported by the Deustche Forschungsgemeinschaft under
the grants SCHU 1410/2-1 and SCHU 1410/5-1. We also acknowledge the
support by the Jülich Supercomputing Center (Germany) under the grant
HMR09.
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1 Introduction and Motivation

In 1997, an enhancement of heat transfer has been reported[1] in Rayleigh
Bénard convection for Rayleigh numbers Ra � 1012. This new regime -named
“Ultimate Regime” in the original paper- was interpreted as the regime pre-
dicted by Kraichnan in 1962 [2] and which is characterized by the turbulence
of the boundary layers of the convection cell. Although this interpretation
has been indirectly supported by specific experimental tests, including the
observation of the Nu ∼ Ra1/2 scaling predicted by Kraichnan for asymptot-
ically high Ra [3], a direct evidence of fluctuations in the boundary layer was
still missing. We report such an observation based on the measurement of the
shot-noise induced by thermal plumes in the heating plate [4].

2 Experimental set-up

Probing fluctuations directly within the boundary layer itself raises instru-
mentation challenges due to its thinness, estimated as a tenth of a millimeter
in cells such as the one used in [1]. To overcome this difficulty, we measured
the low-frequency temperature fluctuations of the heating plate of the con-
vection cell, which was Joule heated at a constant flux. As explained in [4],
operation at cryogenic temperatures (around 6 K) makes this measurement
possible thanks to the thermal characteristic times of the fluid (He) compared
to those of the bottom plate material (OFHC annealed copper).

The cell (insert of Fig.1) is similar to the one used in [1]. The bottom
plate temperature is monitored by 2 Ge thermistors (letter “T” on Fig.1),
distant from each other by a plate’s radius . At the frequency of interest (of
order 10–100 mHz) they give consistent signal. The thermistors’ time response
was measured with the 3ω method. As displayed on Fig 1: their caracteristic
frequency response is significantly larger than the frequencies of interest.
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Fig. 1. Frequency response of the various thermistances of the set-up, measured
in-situ by the 3 ω technique. Insert : the cylindrical cryogenic convection cell. The
letters “T” represents the thermometers used to measure temperature fluctuations.

3 Results : a new signatures of the transition to the
Ultimate Regime

The insert of Fig.2 shows temperature spectra for 5×1010 < Ra < 6×1013 and
for Prandtl numbers of order 1 (1.0 ≤ Pr ≤ 2.8). At low frequency, spectral
density plateaus Eplateau can be fitted on data. The main figure shows the
spectra rescaled by Eplateau and by arbitrary frequencies Fc.

The spectral densities Eplateau can be made dimensionless with the tem-
perature difference across the cell Δ, its height h and the kinematic viscosity
of the fluid ν : P � = Eplateauν/(hΔ)2. Fig.3 (black symbols on the main plot)
shows that P � roughly scales like Ra−2/3 below Ra � 2× 1012 but increases
faster with Ra above. This threshold Ra is the same as the one for which
the heat transfer across the cell improves significantly, compared to the “hard
turbulence” regime present at lower Ra. This is illustrated by the insert of
Fig.3 showing the Nusselt number Nu (compensated by Ra1/3) versus Ra.

As illustrated by the histograms and the skewness of the temperature fluc-
tuations (see Fig.4), the plate’s fluctuations differ significantly from a gaussian
distribution above Ra = 2× 1012.

4 Interpretation and Conclusion : a boundary layer
instability

Interestingly, for Ra < 2× 1012, the low-frequency spectral density P � of the
plate temperature spectra coincides with the corresponding quantity in the
bulk of the flow (measured previously in a similar experiment) but not above
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Fig. 3. Compensated spectral density of the low frequency temperature fluctuations
of the bottom plate (• : Pr=1.0, � : Pr=1.3, � : Pr=2.8.) and of the bulk of the
flow (∗). Insert : Nusselt number Nu, compensated by Ra1/3, versus Ra showing
departure from a typical Ra1/3 scaling above Ra � 1012.

Ra ∼ 2 × 1012 (see Fig.3). A straightforward interpretation, consistent with
the time scales of the system [4], consists in assuming that the temperature
of the plate follows the slow temperature fluctuations of the well-mixed core
region of the flow, with an offset corresponding to the temperature drop across
the thermal boundary layer. On average, this temperature drop is Δ/2. The
present results indicate that the boundary layer becomes significantly “noisy”
-compared to the residual fluctuations in the core of the flow- above a threshold
of order Ra ∼ 1012. This is consistent with the occurence of a instability in
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ζ

Ra

Fig. 4. Skewness of the temperature fluctuations of the plate versus Ra with same
symbols as Fig.3. Insert : Histograms of the (centered) temperature fluctuations
normalized by the standard deviation. Ra from top to bottom : 5.6×1010, 5.5×1011,
1.7× 1012, 4.5× 1012, 1.6× 1013 and 5.7× 1013. The continuous line corresponds to
a gaussian.

the thermal boundary layer, which would cause an increase of the fluctuations
of the temperature drop across it.

In 1962, R. Kraichnan predicted that the thermal boundary layers in
Rayleigh-Bénard convection should become unstable at high enough Rayleigh
number, leading to an improved heat transfer. The increase in heat transfer
Nu(Ra) reported for Ra ∼ 1012 − 1013 in several experiments (since 1997)
has been interpreted following Kraichnan’s prediction. The present result con-
firms the occurrence of a boundary layer instability and is consistent with this
interpretation.

Acknowledgements : We thank F. Chilla, Y. Gagne and B. Castaing for
stimulating discussions.
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Summary. We study the influence of solid boundaries on the scalar transport and
mixing in two-dimensional decaying turbulence. It was shown previously that walls
have a strong influence on Lagrangian statistics. Two distinct geometries are consid-
ered: a square with periodic boundary conditions and a circular domain with no-slip
boundary conditions for velocity and no-flux for the scalar. Direct numerical simu-
lations are performed with a pseudo-spectral code, where a penalization method is
used to take into account the boundary conditions. Our study shows that the mixing
is more pronounced in the confined case due to the stronger production of scalar
gradients.

Key words: Mixing, passive scalar, turbulence

Transport and mixing in confined domains is an important issue for many ap-
plications, such as chemical reactors or ventilation systems. Numerous studies have
been carried out in the context of homogeneous isotropic turbulence [3, 7]. Moreover,
two-dimensional approximation can be used in many applications, e.g. atmospheric
pollutant mixing. In our study we are interested in the influence of boundaries on
the transport and mixing properties of two-dimensional decaying turbulence. The
influence of no-slip boundary conditions on Lagrangian statistics was studied in [2]
for a circular container. It was shown that the generation and separation of vortices
near the walls has a strong influence on the statistics of the Lagrangian acceleration.
The aim of the present contribution is to explore the effect of boundaries on passive
scalar mixing. Numerical simulations are performed using a Fourier pseudo-spectral
method. Different geometrical shapes and boundary conditions are modelled with a
volume penalization technique [4].

In the following the physical model and the numerical method are explained
and parameters and initial conditions are described. Then the results regarding the
passive scalar mixing and the Lagrangian transport are shown. Finally, conclusions
are drawn.

We consider two different cases: the first one is a square 2π-biperiodic domain;
the second is a circular container of radius R = 2.8, which is immersed in a biperiodic
domain. No-slip boundary conditions for the velocity and no-flux conditions for the
passive scalar are imposed at the wall. We shall refer to these two configurations as
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the ‘periodic case’ and the ‘circular case’, respectively. The fluid flow is governed
by the incompressible Navier–Stokes equations, which we recast in the form of the
non-dimensional penalized vorticity equation:

∂ω

∂t
+ u · ∇ω − ν∇2ω = −

1

ηu

∇× (χ · u) (1)

where the velocity u = (u1, u2) is divergent-free, ∇ · u = 0, its curl is the vorticity,
ω = ∇×u, and ν is the kinematic viscosity. The right-hand side of (1) corresponds
to the penalization term, which is used to impose the no-slip boundary condition,
and which equals zero in the periodic case. The mask function χ equals 1 inside the
solid and 0 inside the fluid, where the original (not penalized) vorticity equation is
recovered. The permeability ηu is required to be sufficiently small for a given ν in
order to minimize the modelling error, since the physical idea behind the volume pe-
nalization method is to consider solids as porous media with vanishing permeability,
such that the velocity of the surrounding fluid vanishes at the interface.

To study mixing, we consider the advection–diffusion equation of a passive scalar:

∂θ

∂t
+ ((1 − χ)u) · ∇θ = ∇ · ([κ(1 − χ) + ηθχ]∇θ), (2)

where θ is the passive scalar, which can represent the concentration or the temper-
ature, κ is its diffusivity, and ηθ is the penalization parameter. The right-hand side
of (2) corresponds to the penalized diffusion term, which incorporates the no-flux
boundary condition at the wall [4]. Zero flux through the fluid-solid interface can be
achieved by imposing vanishing diffusivity inside the solid domain. In the periodic
case without boundaries this term simply equals κ∇2θ.

We are using a classical pseudo-spectral discretization in space with the res-
olution N = 5122 and semi-implicit time stepping scheme with Δt = 10−4 [5].
The penalization parameters equal ηu = 10−4 and ηθ = 10−7 in equations (1)
and (2), respectively. The kinematic viscosity ν is 10−4 and the Schmidt number is
Sc = ν/κ = 1.

In both the periodic and the circular cases the initial condition for the vorticity
is a random Gaussian noise with enstrophy Z = 1/2〈ω2〉 = 55.8, where 〈.〉 denotes
space averaging. The eddy turnover time is Te = 1/

√
2Z = 0.096 and the Taylor

microscale is λ =
√
E/Z = 0.095, where E = 1/2〈u2〉 is the initial kinetic energy.

The Reynolds number Re = S
√
E/ν is about 45000 and 40000 for the periodic and

the circular domains, respectively. S is the characteristic size of the fluid domain:
S = 2π in the periodic case and S = 2R in the circular case. The initial condition
for the passive scalar is a Gaussian blob placed in the center of the domain. Its
characteristic size equals 1 in the periodic case, and in the circular case it is such
that the mean concentrations are equal for both cases.

Fig. 1 shows a visualization of the passive scalar field θ at t = 104 Te for the
circular geometry. The scalar is advected by coherent vortices which are present in
the flow. Near the boundary of the circle it slips in the tangential direction, but far
from the boundaries the dynamics are similar both in the circular and the periodic
cases, the passive scalar is stretched, folded and diffuses. In Fig. 2 (left) the time
evolution of the variance of the passive scalar field, σ2(t) = 〈(θ(t)− 〈θ(t)〉)2〉, shows
that the mixing is more pronounced in the circular case. Note that the variance
is decaying faster starting from t ∼ 10 Te, when the blob approaches the wall.
Fig. 2 (right) displays the time evolution of the scalar dissipation rate, defined as
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Λ(t) = 〈|∇θ(t)|2〉. In the beginning it is just slightly lower in the circular case, but
after t = 211 Te the difference increases. Noteworthily, in the chaotic regime at
smaller Reynolds numbers [1] the action of the boundaries is different, since they
inhibit mixing in that case. This difference can be explained by the fact that in
turbulent flows mixing is driven by the vorticity, and walls produce it.
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Fig. 1. Vorticity field (left) and scalar field (right) at t = 104 Te. Solid line indicates
the circular wall.
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Fig. 2. Time evolution of the variance σ2 (left) and the dissipation rate Λ (left) of
the scalar in the periodic and the circular cases.

The Lagrangian viewpoint is helpful for understanding how the walls influence
the scalar transport. We consider passive particles advected by the fluid, such that
uL(t) = dx/dt = u[x(t), t]. They do not diffuse, which corresponds to an infinite
Schmidt number. The Lagrangian quantities are obtained by interpolation of the
Eulerian data and integration in time using a second-order Runge-Kutta scheme.
The Lagrangian acceleration is defined as a sum of the pressure gradient and the
diffusive term. The Lagrangian statistics are obtained by averaging over 10000 par-
ticles, which are initially distributed uniformly over the surface of the blob. The
statistics are made stationary by dividing the Lagrangian quantities L(t) by their
instantaneous standard deviation σ(t) computed from all particles at each time [6].
Time averaging is then performed over the interval [0, 190 Te].
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The PDFs of the Lagrangian velocity, Fig. 3 (left), have Gaussian-like profiles
both in the periodic and the circular cases. A small peak in the circular case reflects
the increased probability of zero velocity near the boundary. Fig. 3 (right) shows the
PDFs of the Lagrangian acceleration. Its behaviour is similar to that first observed
in [2]. Indeed, the circular case displays extreme events, which manifest in heavy
‘tails’ for large acceleration values. This actually corresponds to the transport of
particles by vortices generated at the boundary.
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Fig. 3. Left: PDFs of the Lagrangian velocity uL/σuL
. Right: PDFs of the La-

grangian acceleration aL/σaL
.

To conclude, our study indicates a significant influence of boundaries on turbu-
lent transport and mixing. This is most pronounced in the Lagrangian acceleration.
Second-order statistics of the passive scalar are less sensible to the presence of the
walls, but mixing is still more efficient in the circular container than in the biperiodic
domain.
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For given aspect ratio and given geometry, the nature of Rayleigh Benard
convection (RBC) is determined by the Rayleigh number Ra = βgΔL3/(κν)
and by the Prandtl number Pr = ν/κ. Here, β is the thermal expansion
coefficient, g the gravitational acceleration, Δ = Tb−Tt the difference between
the imposed temperatures Tb and Tt at the bottom and the top of the sample,
respectively, and ν and κ the kinematic viscosity and the thermal diffusivity,
respectively. The rotation rate Ω (given in rad/s) is used in the form of the
Rossby number Ro =

√
βgΔ/L/(2Ω).

We present both experimental measurements (fig. 1) and results from di-
rect numerical simulation (DNS) (fig. 2). They cover different but overlapping
parameter ranges and thus complement each other. The convection apparatus
was used in the experiments is described in detail as the “medium sample”
in Ref. [1]. All measurements were made at constant imposed Δ and Ω, and
fluid properties were evaluated at Tm = (Tt + Tb)/2 [2].

In the DNS we solved the three-dimensional Navier-Stokes equations
within the Boussinesq approximation in a three dimensional cylindrical do-
main [3, 4, 5]. The resolution is sufficient to represent the small scales both
inside the bulk of turbulence and in the boundary layers (BLs) (where the
grid-point density has been enhanced) for the parameters employed here. Nu
is calculated as in ref. [6] and its statistical convergence has been controlled
[2].

The heat-flux enhancement can be as large as 30% and depends strongly
on Pr and Ra (fig. 1 and 2). The increased heat transfer is due to Ekman
pumping; i.e. due to the rotation, rising or falling plumes of hot or cold fluid
are stretched into vertical vortices that suck fluid out of the thermal BLs
adjacent to the bottom and top plates (fig. 3). For Pr = 6.4 thermal structures
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Fig. 1. The ratio of the Nusselt number Nu(Ω) in the presence of rotation to
Nu(Ω = 0) for Pr = 4.38 (Tm = 40.00◦C). (a): Results as a function of the rotation
rate in rad/sec. (b): The same results as a function of the Rossby number Ro on a
logarithmic scale. Red solid circles: Ra = 5.6×108 (Δ = 1.00 K). Black open circles:
Ra = 1.2×109 (Δ = 2.00 K). Purple solid squares: Ra = 2.2×109 (Δ = 4.00 K). Blue
open squares: Ra = 8.9×109 (Δ = 16.00 K). Green solid diamonds: Ra = 1.8×1010

(Δ = 32.00 K). Here and in fig. 2 experimental uncertainties are typically no larger
than the size of the symbols [2].
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Fig. 2. (a): The ratio Nu(Ω)/Nu(Ω = 0) as function of Ro on a logarithmic scale.
Red solid circles: Ra = 2.73 × 108 and Pr = 6.26 (experiment). Black open circles:
Ra = 2.73 × 108 and Pr = 6.26 (DNS). Blue solid squares: Ra = 1 × 109 and
Pr = 6.4 (DNS) [5]. Red open squares: Ra = 1 × 108 and Pr = 6.4 (DNS). Green
open diamonds: Ra = 1 × 108 and Pr = 20 (DNS). Black stars: Ra = 1 × 108 and
Pr = 0.7 (DNS). (b): Numerical result for the ratio Nu(Ω)/Nu(0) as function of
Pr for Ra = 108 and Ro = 1.0 (red open diamonds), Ro = 0.3 (black open circles),
and Ro = 0.1 (blue open squares) [2].
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are basically confined to these vortices, whereas for Pr = 0.7 they are much
shorter and broadened, because the larger thermal diffusion which makes the
Ekman pumping inefficient, which results in a decreasing heat transfer at
lower Pr (fig. 3) [2].

Fig. 3. 3D visualization of the temperature isosurfaces in the cylindrical sample
of Γ = 1 at 0.65Δ (red) and 0.35Δ (blue), for Pr = 6.4, Ra = 108 and Ro = ∞
(left) Ro = 0.30 (right). The snapshots were taken in the respective statistically
stationary regimes [2].

For the weakly rotating case a sharp transition from a turbulent state
with nearly rotation-independent heat transport to another turbulent state
with enhanced heat transfer is observed at a critical inverse Rossby number
1/Roc (fig. 4a). To characterize the flow field, we numerically calculated the
rms velocities averaged over horizontal planes and over the entire volume,
respectively. The maximum rms azimuthal and radial velocities near the top
and bottom wall have been used to define the thickness of the kinetic BL,
which is shown in the inset of Fig. 4a for Ra = 2.73 × 108 and Pr = 6.26.
The critical inverse Rossby number clearly distinguishes between two regimes:
one with a constant BL thickness (in agreement with the presence of the LSC
and the Prandtl-Blasius BL) and another one with decreasing BL thickness
for 1/Ro � 0.38. The scaling with rotation rate is in agreement with Ekman
BL theory λu/L ∼ Ro1/2. For 1/Ro > 1/Roc the normalized (by the value
without rotation) volume-averaged vertical velocity fluctuations wrms strongly
decrease, indicating that the LSC becomes weaker, see Fig. 4b. The decrease
in normalized volume averaged vertical velocity fluctuations coincides with a
significant increase of the horizontal average at the edge of the thermal BLs
indicating enhanced Ekman transport. These averages provide support for the
mechanism of the sudden transition seen in Nu and indicate an abrupt change
from a LSC-dominated flow structure for 1/Ro < 1/Roc to a regime where
Ekman pumping plays a progressively important role as 1/Ro increases [7].

Our interpretation for the two regimes is as follows: Once the vertical vor-
tices organize so that Ekman pumping sucks in the detaching plumes from the
BLs, those plumes are no longer available to feed the LSC which consequently
diminishes in intensity. A transition between the two regimes should occur
once the buoyancy force, causing the LSC, and the Coriolis force, causing
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Ekman pumping, balance. The ratio of the respective velocity scales is the
Rossby number. For Ro
 1 the buoyancy-driven LSC is dominant, whereas
for Ro� 1 the Coriolis force and thus Ekman pumping is stronger. The tran-
sition between the two regimes should occur at Ro = O(1), consistent with
the observed Roc ≈ 2.6 [7].
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Fig. 4. a) Nu(Ω)/Nu(Ω = 0) for Ra = 2.73× 108 and Pr = 6.26. Red solid circles:
experimental data. Open black squares: numerical results. The experimental error
coincides approximately with the symbol size and the numerical error is approxi-
mately 0.5%. Inset: Thickness of the kinetic BL. For dashed vertical lines and inset:
The thickness of the kinematic top and bottom BLs based on the maximum rms
azimuthal (upper symbols: black (red) for top (bottom) BL) and radial (lower sym-
bols: green (blue) for top (bottom) BL) velocities. The vertical dashed lines in both
graphs represent 1/Roc and indicates the transition in boundary-layer character
from Prandtl-Blasius (left) to Ekman (right) behavior. b) The normalized averaged
rms vertical velocities wrms for Ra = 4 × 107 (left) and Ra = 2.73 × 108 (right) as
function of 1/Ro. The black line indicates the normalized volume averaged value of
wrms. The red and the blue line indicate the normalized horizontally averaged wrms

at the edge of the thermal BL based on the slope at respectively the lower and upper
plate. The vertical dashed lines again indicate the position of 1/Roc [7].
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1 Introduction

The term mixed convection (MC) is used to describe the process of heat trans-
fer in fluids where forced convection (FC) and thermal convection (TC) coex-
ist. Mixed convection is an often occurring flow condition e.g. in the oceans,
atmosphere, indoor climatisation or industrial processes and applications [1].
In many flow situations convection is the prevalent transport mechanism of
heat whereas the heat transfer strongly depends on the dynamics of the large-
scale structures. In this study we investigate the formation of large-scale cir-
culation (LSC) in mixed convection and the influence of the dynamics of the
LSC, also known as mean wind, on the heat transfer. Measurements of the
heat transfer Q̇(t) ∼ (

Tout(t) − T in

)
/ΔT (Tin: temperature of the flow at the

inlet, Tout: temperature of the flow at the outlet) in mixed convection revealed
very low frequency oscillations for Q̇ [5], which strongly depend on the mag-
nitude of the Reynolds number Re and Rayleigh number Ra as well as on the
Archimdes number Ar.

For the investigations presented here a simple rectangular container in
which a fluid layer is confined between two isothermal horizonal plates heated
from below, cooled from above and can be exposed to forced convection was
chosen. The problem is defined by five dimensionless parameters, i.e. the
Rayleigh number Ra ≡ ΔTβgH3/κν, the Reynolds number Re ≡ UH/ν,
the Prandtl number Pr ≡ ν/κ and the aspect ratios of the rectangular con-
tainer Γxz ≡ W/H and Γyz ≡ L/H . Here β denotes the isobaric thermal
expansion coefficient, g the acceleration due to gravity, ΔT the applied tem-
perature difference, κ the thermal diffusivity, ν the kinematic viscosity, U the
characteristic velocity, W the width, L the length and H the height of the
cell. An additional parameter used for mixed convection is the Archimedes
number Ar = Ra/(Re2 × Pr) = ΔTβgH3/U2 which is the ratio of buoyancy
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and inertia forces. For Ar � 1 the flow is primarily driven by inertia forces,
whereas for Ar 	 1 the flow is dominated by buoyancy forces.

2 Experimental set up

To cover a large parameter range of 600 < Re < 3 × 106 and 1 × 105 <
Ra < 1×1011 two convection cells have been constructed using air as working
fluid under different pressure conditions with an aspect ratio of Γxy = 1 and
Γxz = 5. The cells are equipped with an air inlet at the top and an air outlet
at the bottom. The in- and outlet channels are located at the same side of the
cell, are rectangluar and span the whole length of the cell. The inlet channel
has a height of Hin = 1

20
×H and a length of Lin = 30×Hin to assure a well

defined fully developed channel flow at the cell inlet, while the outlet channel
has a height of Hout = 3

5
× Hin and a length of Lout = 30 × Hout. All side

walls are thermally insulated by a layer system with an insulating sheath of air
between two transparent windows. Hence we nearly realise adiabatic boundary
conditions while maintaining the optical accessibility of the cell. The bottom is
equipped with a heating plate and the top with a heat exchanger with cooling
fins. One of the cells with the dimensions W ×H×L = 0.1 m×0.1 m×0.5 m
was designed to be operated under high pressure conditions of up to 100 bar.
The second convection cell has been designed to work under ambient pressure
conditions with the same aspect ratio, but its dimensions are scaled by a factor
of 5.

In this article particle image velocimetry (PIV) results of the flow in the
large cell under ambient pressure are presented, analysed and compared to
results of temperature measurements conducted in the small cell at 10 bar.
Two-dimensional two-component (2D2C) PIV has been carried out in different
cross sections. Additionally two-dimensional three-component (2D3C) PIV
has been performed in a longitudinal cross scection. The 2D2C measurement
planes are located at 0.5×L, 0.375×L, 0.25×L and 0.1×L while the 2D3C
cross section is located at 0.5×W . The instantaneous velocity fields have been
acquired with a repetition rate of 2/3 Hz. For the forced convection case 800
and for the mixed convection case 4800 instantaneous velocity fields have been
measured. Addionally results of a Proper Orthogonal Decomposion (POD) of
the instantaneous velocity fields are presented, which have been calculated
using the snapshots method by Sirovich [4].

3 Results

In the cell forced convection is induced by a pressure gradient between the in-
and outlet. As a result a nearly two-dimensional role structure develops, with
a core which is stationary (Fig. 1). The mean wind behaves in the core like
a solid body rotation (Rankine vortex) and the angular frequency is found
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to be ωFC = 0.32 s−1. The other mechanism that drives the heat transport
in mixed convection is the buoyancy force. In the buoyancy driven case hot
plumes are rising from the bottom thermal boundary layer and cold plumes
are descending from the top. As a result of this plume-motion coherent flow
structures develop and form a LSC [3]. In the here used enclosure the plume-
motion induces four LSCs, which are arranged in longitudinal direction. One
of these LSCs is presented in Fig. 1 in terms of the time averaged velocity
fields. Additionally, the contours in Fig. 1 depict the out of plane velocity
component w. At the top (coloured red) the air which enters the cell through
the inlet and at the bottom (coloured blue) the flow in direction of the outlet
dominate.

Fig. 1. Left: Time averaged velocity field of forced convection at Ar = 0 with
Re = 1.0 × 104 at 0.t5 × L. Colour coded normalised velocity magnitude. Right:
Time averaged velocity field of the 2D3C-PIV measurement for mixed convection
at Ar = 3.3 with Ra = 2.4 × 108, Re = 1.0 × 104 at 0.5 × W . All velocities are
normalised with the buoyancy velocity Vb =

√
β H3 ΔT g. Only every fifth velocity

vector is plotted.

Analysing the measured temperature data spatial temperature variations
over the length of the outlet depending on the orientation of the buoyancy
induced LSCs have been found. In regions of rising plumes Tout is elevated
and in regions where plumes are falling a lower Tout can be observed. For cases
Ar > 1, the temperature signal locally fluctuates in time (subplot Fig. 2). The
corresponding powerspectrum of the local temperature fluctuations at 0.5×L
(Fig. 2) reveals two characteristic frequencies. One of these characteristic fre-
quencies is ω = 0.32 s−1, which equals the angular frequency ωFC = 0.32 s−1

of the role structure found in the PIV results of forced convection in the large
cell. Although the temperature measurements were performed at 10 bar (small
cell experiment), the same frequency appears and we assume this frequency
to be associated with the dynamics of the role structure induced by forced
convection. The second characteristic frequency ωlow = 0.008 s−1 (Fig. 2) is
much lower then ωFC and the angular frequency associated with the thermal
convection induced LSCs ωTC ≈ 0.5 s−1.
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Fig. 2. Left: Powerspectrum of Tout at 0.5 × L for Ar = 3.3, Ra = 2.4 × 108 and
Re = 1× 104 at 10 bar. The subplot shows the first 500 of 5000 s of the time series
of the outlet temperature (0.5 × L). Right: Powerspectrum of the low frequency
oscillations of Tout and the powerspectrum of ζMC

1
.

To investigate if the above frequencies are related to the dynamics of any
characteristic flow structures a POD analysis of the 2D3C PIV data obtained
for forced and mixed convection has been performed. For both, forced and
mixed convection, eigenfunctions with eigenvalues λMC

1
= 73 % and λFC

1
= 90

% of the total energy were obtained. Additionally the coefficient of the eigen-
function ζ which corresponds to the heighest eigenvalue has been analysed.
The powerspectrum ζ

1
of the forced convection case reveals no characteristic

frequency contrarily to the powerspectrum of the mixed convection case. The
latter contains the same low characteristic frequency that has been found in
the temperature measurements at 10 bar. Due to the concurrence of these fre-
quencies it is concluded that this low frequency oscillation in the heat transfer
is the result of the dynamics of the buoyancy induced LSCs. Even more, we
assume that the oscillations are a result of torsional oscillations of the buoy-
ancy induced LSCs in agreement with findings in Rayleigh-Bénard convection
by Funfschilling et al. [2].
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1 Introduction

The local atmospheric circulation due to a city located at the bottom of a
valley is reproduced by laboratory experiments analyzing the interaction be-
tween an urban heat island (UHI) and anabatic or katabatic slope flows. Slope
flows are generated by the horizontal temperature difference between air ad-
jacent to a mountain slope and the ambient air at the same altitude over the
neighboring plane (or over the valley center). The thermal disomogeneity is a
consequence of the daily heating due to the solar radiation and to the nightly
cooling related to the infrared radiation emitted by the ground. Assuming
clear sky and weak synoptic wind conditions, the slope flow is upslope (an-
abatic) during the daytime and downslope (katabatic) during the nighttime.
The cool air settles down in the valley, starting the cold pool formation, a still
and steady stratified environment. The slope flows present counter current
compensating flows of lower velocity and larger thickness. The circulation as-
sociated to slope flows was studied in the past via field observations (Manins
and Sawford, 1979; Hunt et al., 2003), analytical (Prandtl, 1952; Horst and
Doran, 1983), numerical (Tripoli and Cotton, 1989) and experimental investi-
gations (Fernando et al., 2000; Cenedese and Monti, 2004). Buoyancy-driven
UHI circulation has been investigated in experimental and analytical study by
Lu et al. (1997). The experiments described here are performed in a tempera-
ture controlled water-tank, the same employed by Cenedese and Monti (2003)
and (2004) to investigate urban heat islands and sea-breeze flows, respectively.

2 Experimental setup

Tests on a physical model that reproduces a symmetrical valley between two
smooth and uniformly 20◦ tilted slopes, with a heat island in the middle
are presented here (Figure 1). Both slopes are made of 14.5x32 cm2 sized
aluminium plates with two series of six Peltier cells inside.
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Fig. 1. Experimental apparatus: A) Reference systems and locations of temperature
arrays, B) Free surface heat exchanger, C) Free surface thermostat, D) Valley model,
E) Bottom surface heat exchanger, F) Camera, G) Bottom surface thermostat.

The Peltier cells allow heating the slopes by electrical continuous current
(anabatic case), or their cooling by reversing the polarity (katabatic case).
The UHI has been realized by a rectangular electrical resistance embedded
in a 5x15 cm2 sized plastic tape pasted on the aluminium plate. The slope
model is inserted in a test section filled with water till a height of 12 cm. The
test section is 170x60x21 cm3 sized and presents aluminium bottom and glass
side walls. Two heat exchangers are placed below the bottom and on the free
surface respectively. They are fed with water from two different thermostats
and fix the bottom and free surface temperature in order to achieve a linear
profiled stable stratification. One progressive scan CCD camera of 764x576
pixel and 25 Hz frequency allowed acquiring the images of well reflecting
passive tracer particles. 26 thermocouples have been employed to detect the
temperature profiles. Since the valley was designed symmetric, the resulting
cross-valley circulation associated to the thermal anomalies is expected to be
two-dimensional and symmetric with respect to the valley center. The veloc-
ity field was then detected by using the 2D Feature Tracking (FT) technique
(Moroni and Cenedese, 2005).

3 Results

Here we present streamlines and velocity profiles for three cases (see Table
below). Streamlines are reconstructed starting from velocity fields interpolated
on a regular grid (25 rows and 76 columns) averaging data for 20 seconds.
Figure 2a and 2b well describe the katabatic case features: the downslope flow
close to the slope and the return current farther from the slope are correctly
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Fig. 2. Streamlines right-hand, time 480 s: a) Exp #1, b) Exp #2, c) Exp #3.

Experiment # Description Gradient stratification Slope heat flux UHI heat flux
(◦C cm−1) (kW m−2) (kW m−2)

1 Katabatic 0.7 1.0

2 Katabatic + UHI 0.7 1.0 0.6

3 Anabatic + UHI 0.7 1.5 0.6

visualised. A close circulation characterizes each slope region. The presence of
the heat island constraints the symmetrical shape of the circulations. This is
not the case for Exp #1 due to a slight different heat flux provided to the two
slopes. Figure 2c well describes the upslope flow associated to the anabatic
case. A close circulation forms here as well but it interests a thicker fluid
layer. A strong interaction between the UHI and anabatic-katabatic winds
occurs and it determines a higher UHI plume in the katabatic case than in the
anabatic one. Figure 3a compares the velocity component along the slope for
profile A and for the three experiments. The reference system axis s is positive
oriented upslope (Figure 1). The largest absolute velocity value is reached in
Exp #3 (anabatic wind), because thermals triggered by the heat flux provided
in this case break the stable stratification and increase the upslope motion.

The maximum absolute velocity is larger for Exp #2 than Exp #1 because
the circulation driven by the urban heat island moves and warms the air in
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Fig. 3. a) velocity components along the slope for profile A; - b) vertical velocity
component along profile C.

the valley inhibiting the stabilization of the nocturnal cold pool. Hence air
will move toward the valley with a weaker resistance. The slope flow thickness
is larger in Exp #3 than in other two cases, which are indeed very similar.
The maximum velocity and plume height are larger for Exp #2 than Exp #3
(Figure 3b). This is due to the resistance opposed by the anabatic wind to
the motion of air toward the city and to the UHI plume flattening induced by
the compensating flow.
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Mixing in fully developed incompressible turbulent flows is known to lead
to highly intermittent scalar fields. The main feature of these fields is the
presence of a cascade of fractal discontinuity fronts of the tracer density; while
most of the fronts are characterized by relatively small values of the density
drop, there are also some segments of the fronts (the so-called mature fronts),
where the density drop is of the order of the amplitude of the global density
variations [1]. One of the consequences of such a geometrical structure is the
anomalous scaling of the structure function scaling exponents.

Another intriguing aspect of the intermittency of the tracer fields is the
small-scale anisotropy of the passive scalar fluctuations [2]: the anisotropy
of the large-scale forcing of the scalar field is reflected in the anisotropy of
the fluctuations of the smallest (dissipation) scale. More specifically, if the
fluid temperature plays the role of the tracer field, and there is a turbulent
fluid motion between a cold wall, and a hot wall, then the temperature profile
obtains a ramp-cliff structure: a slow growth of the temperature is followed by
a rapid fall. A quantitative measure of this anisotropy is provided by the third
order (sign-sensitive) structure function scaling exponent ζ3, which, according
to the experimental data is close to unity.

It appears that several features of the intermittent tracer fields can be
successfully analysed by using the method of linear eddy modelling [3, 4] In
particular, by combining this model with additional approximations, we were
able to derive an analytical expression for the structure function scaling ex-
ponent ζp, which is in a good agreement with the experimental and numerical
data [5]. Here we extend our method to address the phenomenon of the small-
scale anisotropy of the passive scalar fluctuations.

First, we provide a simple qualitative explanation for the ramp-cliff struc-
ture of the tracer density profile. To begin with, let us recall the basic idea
of the linear eddy modelling. Instead of considering the full three-dimensional
problem, described by convective diffusion equation

∂tθ + v∇θ = κ∇2θ + f(r, t), (1)
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Fig. 1. Mapping Ma,c modelling the effect of a single vortex of size a on the tracer
profile θ(x).

we study only the evolution of the scalar density θ(r, t) along a one-dimensional
cut, i.e. θ(x, t). Here, v(r, t) is a turbulent velocity field, f(r, t) is a forcing, and
the seed diffusivity κ > 0 is assumed to be very small. We assume that the ve-
locity field is non-smooth, obeys Gaussian statistics, and can be characterised
by the smoothness exponent ξ (0 ≤ ξ ≤ 2). Fully developed Kolmogorov
turbulence corresponds to ξ = 4/3.

In order to understand the effect of the turbulent mixing, we focus first on
the effect of a single eddy of certain size. It can be argued [5] that the integral
effect of it on the evolution of the tracer profile θ(x, t) is essentially the same
as applying the Kerstein’s triplet map [3, 4]:

θt+1(x) = Mat,ct
[θt(x)], (2)

where at is the centre of the vortex and ct — its diameter, see Fig 1. Index
t denotes the time and corresponds to the situation before the given vortex
has produced a mixing effect; t + 1 corresponds to the later stage, when the
mixing has been already taken place.

Fig. 2. As a result of the mapping M2a,B , the old value of the mean density
difference Δa(B) defines the possible range of new values at trice smaller scale b =
a/3, the smallest value is Δb(F ) = 0, and the largest one Δb(E) = Δb(G) = Δa(B).

In order to analyse this process analytically, we have introduced the prob-
ability density function (PDF) fa(Δa), which characterizes the probability
that the difference between the mean tracer densities between two neighbour-
ing windows of width a is larger than Δa. Based on several approximations,
we have shown that this PDF satisfies a self-convolution equality, connecting
its values at different scales a: denoting b = a

3 ,
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fb(Δ) =
∫ 1

Δ

fa(Δ′)
dΔ′

Δ′
. (3)

This equality assumes that the maximal value of Δ is 1, which is defined
by amplitude of the forcing at the largest scale a = 1. The self-convolution
reflects the fact that the triplet mapping transfers the density drop Δa at
scale a to a density drop Δb with the range of possible values Δb ∈ [0, Δa].
Which value of Δb is realized from this range, depends on the mutual position
of the averaging windows and the triplet map. see Fig. 2. Based on this self-
convolution equality and assuming an approximately constant PDF at the
input scale, f1(Δ) ≡ 1, one can derive, for instance, an expression for the p-th
order structure function scaling exponent, ζp = (2− ξ) log3(p + 1); this result
is in a good agreement with a wide spectrum of experiments.

Fig. 3. For the triplet map, most of the points have a symmetric counterpart, which
yields a mean density drop of equal amlitude and opposite sign (e.g. the point pairs
P and P ′; Q and Q′; R and R′). The only non-symmetric point S is characterized
by the largest possible value of the density drop.

Now, let us suppose that there is an asymmetry at the input scale a = 1,
and consider, how the asymmetry of the difference of the mean values of the
tracer density between the neighbouring regions is transferred towards the
smaller scales by the triplet map, see Fig. 3. Let us assume that at a larger
scale a, there is a left-to-right asymmetry in the statistics of the mean density
differences. Upon applying a triplet map, for almost all the positions of the
point at which we study the density difference, there will be a symmetric
position with a density drop of opposite sign. So, at point P , there is a small
left-to-right drop Δb(P ), and at point P ′, there is a right-to-left drop of equal
amplitude, Δb(P ′) = −Δb(P ). The same applies to the pair of points Q′ and
Q. However, there are only three positions R, R′, and S, which realize the
largest density drop (equal to the largest drop at the initial scale a). Of those
three, two are symmetric to each other: Δb(R) = −Δb(R′) = Δa. However,
there is no symmetric counterpart for the third point S; this is the only site
at which the initial asymmetry survives.

To summarize, along one-dimensional cuts of the turbulent fluid, the vor-
tices can be modelled as the triplet maps. The triplet maps produce almost
always symmetric regions with left-to-right and right-to-left tracer density
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drops — except for the sites, where the modulus of the density drop has the
maximal possible value. Therefore, the asymmetry is transferred from the in-
put scale, down to the dissipation scale, at the sites of highest density drop (by
modulus). This corresponds precisely to the experimentally observed ramp-
cliff structure [2]: the only asymmetric sites are the cliffs, where the density
drops almost by the same amgnitude as at the input scale, and the direction
of the drop is dominantly in the same direction as in the case of the large-scale
density differences at the input scale (due to asymmetric forcing).

These qualitative observations can be also formulated mathematically, sim-
ilarly to the procedure of deriving the structure function scaling exponents [5].
Using certain approximations, it is possible to derive the exponent for the third
order sign-sensitive structure function, ζ̃3 = 1 + 2(2− ξ)3−1/(2−ξ)/(e ln 3); for
the Kolmogorov turbulence (ξ = 4

3 ), this yields ζ̃3 ≈ 1.1, which is in a reason-
able agreement with the experimental data. This result is also supported by
our numerical simulations, based on the linear eddy modelling.
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Molecular mixing as a consequence of stirring by turbulence is an important
process in many practical applications. If the microscopic densities of the flu-
ids participating in the mixing are very different, we refer to such flows as
variable density (VD) flows in contrast to the Boussinesq approximation in
which the densities are close. In such flows, due to the tight coupling between
the density and velocity fields, in addition to the quadratic non-linearities of
the incompressible Navier-Stokes equations, new cubic nonlinearities arise and
the velocity field is no longer solenoidal. Many of these flows are driven by ac-
celeration (e.g. gravity in geophysical and astrophysical flows) which, because
the density is not uniform, leads to large differential fluid accelerations. If the
acceleration is constant and the fluid configuration is unstable (i.e. density
gradient points opposite to the body force), a fluid instability is generated in
which small perturbations of the initial interface between the two fluids grow,
interact nonlinearly, and lead to turbulence. This instability is known as the
Rayleigh-Taylor (RT) instability.

The homogenization of a heterogeneous mixture of two pure fluids with
different densities by molecular diffusion and stirring induced by buoyancy
generated motions is studied using Direct Numerical Simulations in two con-
figurations: a) classical Rayleigh-Taylor instability (RTI) using a 30723 data
set [1, 2] and b) an idealized triply periodic Rayleigh-Taylor flow named here-
after homogeneous Rayleigh-Taylor (HRT), using up to 10243 meshes [3, 4].
The data-sets used represent the largest simulations to date for each configu-
ration. The RTI simulation achieves bulk Reynolds number, Re = 32, 000 at
an Atwood number, A ≡ ρ2−ρ1

ρ2+ρ1
= 0.5, where ρ1, ρ2 are the pure fluid densities,

and a Schmidt number, Sc = 1. The HRT flow starts from rest, with the two
fluids in a non-premixed state corresponding to a double-delta density PDF.
Turbulence is generated as the two fluids move in opposite directions due to
the body force and eventually dies as the fluids become molecularly mixed.
The cases considered cover the range A = 0.05−0.5, in order to examine small
departures from the Boussinesq approximation as well as large A effects.
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The flows in both configurations are governed by the same set of equations,
continuity and momentum transport, with the velocity divergence related to
the density field. In non-dimensional form, with the usual notations, these are:

ρ,t + (ρuj),j = 0 (1)

(ρui),t + (ρuiuj),j = −p,i + τij,j +
1

Fr2
ρgi (2)

uj,j = − 1

Re0Sc
(ln ρ),jj (3)

with τij = 1
Re0

(ui,j + uj,i − 2
3uk,kδij). Equations (1)-(3) have triply periodic

boundary conditions in HRT, while in RT slip wall conditions are applied in
the vertical direction.

In HRT, the the density PDF starts as a double delta, then evolves towards
a quasi-Gaussian as the fluids become molecularly mixed. At low A (Boussi-
nesq approximation) the PDF remains symmetrical at all times (figure 1).
At higher A, the PDF becomes rapidly skewed and, only at long times and
low density fluctuations it relaxes towards a Gaussian shape. At intermediate
times, the two pure fluids mix differently, with the light pure fluid mixing
faster than the heavy pure fluid.
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Fig. 1. Density PDF at different times in HRT for two Atwood numbers

The asymmetry of the density PDF in the VD case can be understood
from the skewness, S ≡ 〈ρ′3〉/(〈ρ′2〉3/2), equation:

d

dt
S = − S

2Re0Sc

〈ρ,jρ,j〉
〈ρ′2〉 − 3

4

〈ρ′(ρ,j )2〉
〈ρ,kρ,k〉〈ρ′2〉1/2

(4)

As the flow begins with S = 0, it is the second term, the production, that
generates the skewness of the PDF. The quantity 〈ρ′ρ,jρ,j〉 is weighted towards
large squared density gradient events occurring in lower than average density
regions so that S > 0 at early times. In other words, the light fluid blobs
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become more fragmented at higher A. As the mixing proceeds, the production
term approaches zero and one obtains a simple skewness decay.

The density PDF skewness generation mechanism, 〈ρ′ρ,jρ,j〉, is deter-
mined, through changes in the magnitude of the density gradient, by the
eigenvalues of the strain rate tensor and the relative alignment between ∇ρ
and the eigenvectors of sij :

d

dt
〈ρ,jρ,j〉 = −2〈ρ,jsijρ,j〉 − 〈ui,i(ρ,jρ,j + 2ρρ,jj)〉 (5)

where the second term, which depends on the velocity divergence, is small
after the initial transients. Let χ1, χ2, and χ3, be the angles between ∇ρ and
the α-, β-, and γ-eigenvectors, which correspond to the eigenvalues labeled
using the usual convention α > β > γ. In isotropic turbulence, it is known
that passive scalar gradients tend to align with the most compressive (γ)
eigenvector of sij . Similar results are obtained in HRT, however there are
important differences between the low and high A cases:

• Low A: The relative alignment and the magnitude of the eigenvectors
are about the same in the light and heavy fluid regions.

• High A: Both the eigenvalues and the alignment of ∇ρ with the principal
axes of sij are different in the light and heavy fluids (figure 2).
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Fig. 2. PDFs of the a) eigenvalues of sij and b) cosines of the angles between ∇ρ
and the eigenvectors of sij in the light fluid, ρ < ρ (continuous lines), and heavy
fluid, ρ > ρ (dashed lines), at A = 0.5.

In the light fluid, the eigenvalues α and γ have larger magnitudes as the
reduced inertia allows higher deformation rates of a fluid particle. Moreover,
the alignment of ∇ρ with the γ-eigenvector weakens in the heavy fluid regions,
as the inertia of the heavy fluid particles tends to make them less responsive
to deformations due to the local strain. The net result is a decrease in the
magnitude of 〈ρ,jsijρ,j〉 (note that this quantity has negative sign) in the
heavy fluid regions compared to the light fluid regions. Consequently, the
inertia of the heavy fluid inhibits the growth of the density gradients and,
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thus, reduces the rate at which heavy fluid regions are broken up by stirring,
ultimately leading to reduced mixing.

The density PDF varies considerably across the RT mixing layer. At the
top of the RT layer the PDF is spiked at the heavy fluid end and includes
some mixed fluid. At the bottom of the layer the PDF is spiked at the light
fluid end (figure 3). At large density differences, the HRT findings suggest
that molecular mixing proceeds differently on the two sides of the RT layer.
Experiments to date have not investigated this possibility. One consequence
of the mixing asymmetry identified in HRT is that the penetration distance of
the pure heavy fluid is larger than that of the pure light fluid. Thus, figure 3
shows that the density PDF is not symmetrical at the centerline: the peak is
at ρ < 2 and the amount of pure heavy fluid is larger than the amount of pure
light fluid. The mixing asymmetry is likely also the cause of the bubble-spike
anomaly (higher growth rate on the spike side compared to the bubble side),
which was observed experimentally [5].

Fig. 3. Density PDF as a function of vertical position in RT
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Summary. We investigate the problem of tracer mixing in presence of boundaries
by means of direct numerical simulation of a Couette flow at small Reynolds number
and in kinematic simulations of a chaotic flow. Scalar profiles close to the boundary
are computed. Their shape and time evolution are found to agree with published
theoretical predictions.

A passive scalar θ advected by an incompressible velocity field u obeys the
equation

∂θ

∂t
+ u · ∇θ = κ∇2θ (1)

where κ is the molecular diffusivity, and appropriate initial and boundary
conditions are set for θ. In general u is subject to its own set of equations,
the typical case being Navier-Stokes equations, together with some external
forcing. However some general predictions on the evolution of θ can be made,
with few rather general assumptions. We follow the theoretical analysis in
[2] To simplify the notation, but without loss of generality, we assume the
flow to be two-dimensional, with (x, y) the coordinates parallel and normal to
the wall (y = 0 corresponding to the wall) and (u, v) the associated velocity
components.

As a consequence of no slip (u(x, y = 0) = 0) and incompressibility (∇·u =
0) conditions, there is a region close to the wall, characterized by the scaling
〈u2(y)〉 ∼ y2 and 〈v2(y)〉 ∼ y4 (where by < · > we indicate the double average
with respect to the coordinates parallel to the wall and velocity realizations).
The velocities in the bulk of the container or duct are therefore much more
intense with respect to the ones in the layers close to the wall, and the passive
scalar evolution becomes faster and faster as one moves away from the wall.
Starting from these considerations, it is possible to describe the evolution of
a passive tracer initially concentrated in a layer of thickness δ close to the
wall in term of a turbulent diffusivity. Averaging (1), the equation for the
y-evolution of the scalar profile is
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∂t〈θ〉 = μ∂y[y4∂y〈θ〉] + κ∂2
y〈θ〉. (2)

The first term in the rhs of (2) describes the role of chaotic advection
in terms of an eddy diffusivity, which close to the wall is defined by D =∫
∞

0
4

of the profile is dominated by advection as long as δ � rbl = (κ/μ)1/4, the
thickness of the diffusive boundary layer. Under this condition, the diffusive
contribution can be neglected and (2) becomes

∂t〈θ〉 = μ∂yy
4∂y〈θ〉 (3)
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Fig. 1. Left panel: Snapshot of passive tracer concentration close to a wall placed
on the top. White correspond to high concentration, black to low concentration.
The initial condition is a step function in the vertical direction. Tracers is advected
according to (1) with a two-dimensional synthetic velocity field. Right panel:Profile
of the scalar density θ at different times in the Couette channel rescaled with respect
to δ(t) and compared with the theoretical prediction (4) (continuous line). The inset
shows the fitted values of δ at different times and the prediction δ � t−1/2.

Taking as initial condition for the scalar a distribution concentrated at the
wall with θ(x, 0; 0) = 1 and limy→∞θ(x, y; t) = 0, the asymptotic solution of
(3) for large times according to [2] is

〈θ(y, t)〉 =
[
erf

(
δ

2y

)
− δ√

πy
exp

(
− δ2

4y2

)]
(4)

i.e. the profile has a universal form, whose evolution in time is given by sim-
ple rescaling by the thickness δ = (μt)−1/2. The concentration (4) gives a
practically constant concentration for y � δ/4, making the boundary con-
ditions for the scalar irrelevant in the advective stage. We remark that al-
though (1) obviously conserves the average scalar 〈θ〉, from (4) one has that∫ 〈θ(y, t)〉dy = δ(t)/

√
π � t−1/2 is time dependent. The reason is that in de-

riving (4) the bulk is considered as an infinite reservoir for the scalar which
has therefore zero average.

〈v(y, 0)v(y, t)〉dt = μy , Dimensional analysis suggests that the evolution
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Neglecting diffusion, the advection equation (1) holds for any moment of
scalar concentration 〈θn〉, which will then obey the same law as (4) for all n.
From this observation, we expect a strong intermittency in the evolution of

panel of Figure 1 in which 〈θn〉 is dominated by the white regions in which
θ = 1.

We simulated scalar transport close to a no-slip wall in plane Couette
flow and in a synthetic chaotic flow [1]. Direct numerical simulations of a
plane Couette flow are performed by means of a standard pseudo-spectral
Fourier-Chebyshev code at resolution 128 × 65 × 128 on a domain of size
Lx × 2Ly ×Lz = 8 × 2 × 8, at a Reynolds number Re = U0Ly/ν � 600 (with
U0 the velocity of each wall and ν the kinematic viscosity).

The trajectories of N = 107 particles, representing the concentration of
tracer, are integrated according to the equation ẋ(t) = u(x, t). The initial
condition for the particles is an uniform distribution in the x and z directions
in a layer close to the wall y ≤ 0.04Ly.

In the right panel of Fig. 1 we plot the mean profile 〈θ(y, t)〉 at different
times compared with the theoretical curve (4). The value of the thickness
δ at different time is obtained from the fit of the profiles with (4) and its
dependence on t is compatible with the prediction δ = (μt)−1/2.

Scalar profiles in the bulk deviate from the theoretical curve at large y, be-
cause of the limited extension of the viscous layer. In order to extend the range
of scaling, we performed simulations of scalar transport in a kinematic velocity
field. We define a two-dimensional velocity field in terms of a synthetic stream
function Ψ(x, y) = Φ(x, y)G(y), where Φ = sin(kxx + ϕx(t)) sin(kyy + ϕy(t))
represents a time-dependent cellular flow while G(y) is tailored to reproduce
the correct scaling at the wall. The phases of the cellular flow are given by a
random process with a finite correlation time. The velocity field generated by
Φ is placed on a grid of size Lx = π and 2Ly = 4π at resolution 512 × 2048
where the evolution of (1) is integrated by means of a pseudo-spectral code,
with periodic boundary conditions. Scaling regions extend approximatively to
Ls = 4. The time unit is chosen so that the correlation time of the velocity
field is T = 1. In these units we have μ � 2.66 and κ = 3.42 × 10−6 and
therefore the width of the diffusive boundary layer is rbl � 0.034Ly. As ini-
tial condition we choose a distribution null in the bulk and concentrated at
the walls in two smoothed-step functions of size Ly/4. The results are based
on ensemble average over 100 realizations of the random noise driving the
kinematic velocity field.

In the left panel of Fig. 2 the profile 〈θ(y, t)〉 is compared, at different
times, with the theoretical curve. In order to accurately resolve the region
close to the wall, the extension of the domain in the bulk is not large enough
for the approximation of an infinite bulk to be valid. Therefore, because of
the conservation of 〈θ〉, after a short transient a relevant amount of scalar
accumulates in the central region of the domain, thus affecting the overall
shape of the profile. In order to compare the numerical results with the the-

Turbulent transport close to a wall

the scalar field. Indeed the trace of such intermittency can be seen in the left
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Fig. 2. Left panel:Average profile of the scalar density θ at different times rescaled
with respect to δ and the bulk average b (see text) and compared with (4) (continuous
line). In the inset, the thickness of the profile is shown together with the prediction
t−1/2 dependence. Right panel: Average profiles of moments of scalar density 〈θn〉 for
n = 1 (+), n = 2 (×), n = 4 (∗) and n = 6 (�) at fixed time in the two-dimensional
kinematic simulation.

oretical prediction based on an infinite basin, we computed the profile of the
auxiliary field θ̃ = (θ − b)/(1 − b), where b(t) is the time-dependent value of
θ in the bulk (averaged over x). Figure 2 shows the remarkable agreement
obtained between theory and numerics, indicating that the profile (4) can be
easily extended to the general case of advection in a finite vessel. From the
fitting procedure we get the values of the parameter δ, which is found to follow
accurately the prediction δ(t) = (μt)−1/2 with μ � 2.13 (see inset of Fig. 2,
left).

The right panel of Fig. 2 shows the profiles of different moments of scalar
concentration 〈θn(y, t)〉 computed at an intermediate time. All the moments
collapse on the prediction (4), confirming the fact that in this stage diffusion is
negligible and mixing of the scalar is dominated by eddy diffusivity according
to (3).

This work was supported by Piedmont Industrial Research Grant INUMI-
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Abstract

The homogeneity of turbulence, generated by static grid structures, was in-
vestigated in a complementary manner with the help of hot-wire measure-
ments in a wind tunnel and direct numerical simulations based on the lattice
Boltzmann method. The measurements were conducted downstream a grid
having 64% porosity by varrying the mesh Reynolds number in the range
4000-8000. The direct numerical simulations were performed at a constant
mesh Reynolds number of 1400, varying the grid porosity from 53% to 82%.
It is shown that the mean streamwise velocity becomes rapidly homogeneous,
whereas the Reynolds stresses do not become homogeneous, at all, down-
stream of uniform grids. The reported investigations revealed no dependence
of the inhomogeneity of Reynolds stresses on mesh Reynolds number and grid
porosity. The analysis of the simulations showed that the early homogeniza-
tion of the mean velocity field hinders the homogenization of the turbulence
field.

1 Introduction

Owing to the translational invariance of homogeneous turbulence, decay pro-
cesses in undistorted flows and the effects of mean velocity distortion on this
kind of turbulent flows have constituted the framework of understanding and
modeling of turbulent flow phenomena [1]. In experimental investigations, tur-
bulence, which is homogeneous in planes perpendicular to the flow direction,
has commonly been produced by static grid structures. After Corrsin [2], it
became a rule of thumb to employ grids having porosities larger than 57%
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spatially homogeneous. However, there are only a few studies in the literature
which directly investigated the homogeneity of the grid-generated turbulence.
Although, in those studies [3, 4, 5], turbulent stresses were reported to be
inhomogeneous even for grids having porosities higher than 57%, homogene-
ity of grid-generated turbulence remained as an ad hoc assumption for highly
porous grids.

For some of the authors’ investigations on homogeneous turbulence, it was
essential to determine the extent of spatial homogeneity of grid-generated
turbulence. For this purpose, detailed hot-wire measurements and direct nu-
merical simulations (DNS) [6, 7] were conducted to yield information about
the Reynolds stresses in the wake of static grid structures which had porosities
ranging from 53% to 82%. The carried out investigations revealed inhomoge-
neous Reynolds stress fields far downstream of the grids (x1/M > 40) over the
whole porosity range. In this work, we summarize the results of our experimen-
tal and numerical investigations and provide explanation for the persistence
of the inhomogeneity of Reynolds stresses far downstream of the grid with the
help of DNS.

2 Results and Discussion

The velocity measurements were conducted in the wake of a grid having 64%
porosity, which was installed in the test section of the wind tunnel of LSTM-
Erlangen. The measurements were performed by using a hot-wire anemometer
[6]. The measurements were conducted at different mesh Reynolds numbers
(ReM = U1M/ν) between 4000 and 8000, where M was the mesh size of the
static grid. The hot-wire measurements in the wind tunnel comprised scans
in planes, which were perpendicular to the grid, located at the center of the
test section and extending 1060 mm in the streamwise direction and 50 mm
in the transverse direction. The transverse and streamwise resolutions of the
scan were 1 mm and 10 mm, respectively. For the DNS, a standard Lattice-
Boltzmann BGK method (LBGK) was employed. The simulations were per-
formed for static grids having porosities ranging between 53% and 82% at
ReM = 1400. There were 2400×160×160 lattice points in the computational
domain [7].

The scanned planes consist of Nx1 points in the flow direction and Nx2

points in the transverse direction, such that the spatial resolutions of the scan
in both directions are Δx1 and Δx2. In order to visualize the homogeneity of
any one of the measured mean quantities, say H, in the scanned plane, the
inhomogeneity parameter IH is defined as:

IH(x1, x2) =
H(iΔx1, jΔx2)∣∣∣ 1

Nx2

∑Nx2
j=1 H(iΔx1, jΔx2)

∣∣∣100, (1)

in order to generate a turbulent flow field, which could be expected to be
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Fig. 1. Inhomogeneity of the mean velocity field (a) in experiments, in simulations
(b) with uniform grid structure and (c) with non-uniform grid structure.

Fig. 2. Iu1u1 field in the wake of the grid (a-c) in the wind tunnel at different mesh
Reynolds numbers and (d-f) in the simulations with different porosities.

which is the percentage deviation of the variable H(x1, x2) from the absolute
value of its average value calculated along a line x1 = constant.

In the experiments and simulations, the inhomogeneity of the mean
streamwise velocity IU1

decreased rapidly with increasing distance down-
stream of the grid structures (Fig. 1 a and b). Simulations performed with
slightly non-uniform grid structure caused inhomogeneous mean velocity dis-
tributions (Fig.1 c). In contrast to the mean streamwise velocity behind uni-
form grid structures, the Reynolds stresses revealed regions having periodic
deviations from the mean in the transverse direction. The inhomogeneous field
consisting of elongated positive and negative stripes and coalescing with each
other. As an example, the measured and simulated inhomogeneity fields of
the streamwise normal Reynolds stress (Iu1u1) are shown in Fig. 2 (a)-(c) and
(d)-(f), respectively. Measurements did not reveal any dependence of the in-
homogeneity level on the grid Reynolds number and the simulations showed
the inhomogeneity of Reynolds stresses over the whole investigated porosity
range, however at higher levels. Moreover, the location of the inhomogeneity
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stripes of Reynolds stresses remained almost at the same locations despite
increased ReM in the experiments. These findings on the inhomogeneity of
grid-generated turbulence are in accordance with those of Grant & Nisbet [3]
and show the dependency of measured mean quantities on the relative position
of the measurement location with respect to the grid structure.

To understand the persistence of inhomogeneity of Reynolds stresses far
downstream of the grid, the terms in the transport equation of the turbulence
kinetic energy k were further analyzed for the 53% porosity grid case along
the lines shown in Fig.2 (d). As a result of the rapidly decreasing mean veloc-
ity gradients (Fig. 3 a), the turbulence production becomes rapidly inactive
(Fig. 3 b), so that the large scale mixing process stops and the remaining vis-
cous diffusion term is insufficient to homogenize turbulence before it decays
completely.

The presented results demonstrate that far downstream of the uniform
static grid structures certain amount of inhomogeneity of Reynolds stresses
persists regardless of the grid porosity. Any kind of study which does not take
this fact into consideration can be misleading.
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Fig. 3. (a) Development of the streamwise mean velocity along the three lines in
Fig. 2 (d) and (b) the development of the terms in the transport equation of the
turbulence kinetic energy k along line 2.
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Introduction

There is a long tradition of studying the decay of turbulent energy gen-
erated by grids. The main reason for this is that it is probably the simplest
turbulent flow that exists. Despite its simplicity there are many aspects of the
flow that are still not fully understood. This is demonstrated e.g. by the fact
that there is still considerable doubt as to how fast the energy decays. It is
generally accepted that (u/Umean)2 decays as [(x−x0)/M ]−n, where u and U
are the rms and mean components of the streamwise velocity, respectively, x
is the streamwise distance and M is the size of the mesh. A number of theo-
ries exist that predict n to vary from 1 to 10/7 and the range of experimental
values is even larger. In a recent study Kurian and Fransson[1] showed that
n depends on the mesh Reynolds number and appears to decrease towards
n ≈ 1.2 at high Re. This agrees well with Krogstad and Davidson[2].

There are a number of reasons which may account for the large scatter in
the experimental data in the literature. The main reason is probably that the
wind tunnels where the flow has been studied have often been quite small.
Therefore the setup has been a compromise between spatial resolution, the
number of meshes needed to assure that the effects of the side walls are small
and the possibility to map the flow to large values of x/M . This has often
resulted in the streamwise distance being limited to less than x/M = 100.
Ignoring the first 30 to 40 meshes where the flow may still be developing, this
leaves a rather limited range to study the flow.

Experimental details

The present investigation was performed in a wind tunnel with a test
section that is 11m long and with a cross section of 2.7 x 1.9m2. We used
a monoplane grid with a mesh size of 40 x 40mm2. The mesh was made by
punching 30 x 30mm2 holes in 2mm thick plates, giving a solidity of σ = 44%.
It has been demonstrated in previous investigations (e.g. [3, 4]) that the flow
isotropy is improved if a contraction is mounted downstream of the grid. In the
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present case the grid was mounted near the exit of the contraction upstream
of the test section, giving a contraction ratio of about 1.4 downstream of the
grid before the flow entered the test section. This gave a grid of about 80 by
60 meshes and the flow could be mapped from x/M ≈ 30 to 275.

The streamwise uniformity of the mean flow was investigated by a number
of traverses along the test section. From x/M ≈ 45 to 250, U was found to be
constant within -0.6% and +0.3%. Similarly the spanwise homogeneity of the
flow was examined at a number of cross sections and was found to be within
± 0.3% at all positions. Also the homogeneity of the higher order moments up
to 4th order was mapped and the highest spanwise scatter was found in the
flatness which was found to be constant within ± 0.8% at all cross sections.

All three velocity components were measured using a combination of two
component LDA, single and X-wire anemometry. The large scale isotropy was
found to be good with 0.94 <

〈
q2

〉
/3

〈
u2

〉
=

(〈
u2

〉
+

〈
v2

〉
+

〈
w2

〉)
/3

〈
u2

〉
<

0.97 throughout the measurement range.

Results

Fig. 1(a) shows the decay of
〈
u2

〉
/U2

mean and
〈
q2

〉
/U2

mean. The decay
exponents were obtained using three different strategies. The first method is
based on the work by Mohamed and LaRue[5]. Since it is not known which
part of the data that satisfies the decay equation

〈
u2

〉
U2

= a
( x

M
− x0

M

)−n

, (1)

it is essential to sort out the data that suffers from initial development and
where the final decay or system noise starts to affect the data. Hence, the
range is sought that gives the least squares fit to a limited range of the data.
This was found to be for 45 < x/M < 200. For x/M < 45 the flow was still
affected by the velocity increase in the contraction and for x/M > 200 noise
appeared to affect the fit.
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Fig. 1. Decay of streamwise normal stress (left) and 3 estimates of the dissipation
rate (right).

P.-A. Krogstad and P.A. Davidson558



Measurements were taken for every Δx/M=2.5. The high spatial resolu-
tion allows the local decay exponent to be determined directly from the data
by differentiation (Fig. 2(a)). Finally we applied the method of Lavoie et al.[4].
The idea here is that instead of trying to find all three fit constants a, x0 and
n simultaneously, considerable improvement can be obtained in the accuracy
if one constant is assumed to be known. By keeping x0 constant the other
constants were sought for various subsets of the data. The x0 that gave the
most extended range of constant n is assumed to produce the optimal fit of
Eq. (1) to the data (Fig. 2(b)). In this way the decay exponent was found to
be n = 1.13 with an uncertainty of ± 0.02 when applying the three methods
to both the

〈
u2

〉
/U2

mean and
〈
q2

〉
/U2

mean data.
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Fig. 2. Decay exponents from local gradients (left) and the method of Lavoie et al,
2007 (right).

The small streamwise distance between measurements also allowed local
gradients of the kinetic energy to be estimated. Using the balance equation
1

2
Udq2/dx = −εq2 the dissipation was found and compared to estimates as-

suming isotropic turbulence (εiso = 15ν < (∂u/∂x)2 >) and from the inertial
subrange (Euu(k) = Cε

2/3

speck−5/3), see Fig. 1(b). As expected εq2 has more
scatter than the other two estimates for large x/M . This is because reliable
estimates for the gradients of the energy distribution are increasingly more
difficult to obtain as q2 becomes small for large x. Finally we have included
the dissipation rate that can be estimated from the fit of the decay equation,
Eq. (1), to the

〈
u2

〉
/U2

mean data, i.e.

Mε

U3
= −3

2
d
(〈
u2

〉
/U2

)
d (x/M)

=
3
2
na

(
x− x0

M

)−n−1

. (2)

(The distribution obtained from the fit to
〈
q2

〉
/U2

mean gave virtually identical
results and has therefore not been included.) The agreement between the
methods is seen to be good.

We also computed the integral length scale of u, i.e. �uu =
∫∞
0

〈u(x)u(x+r)〉
〈u2〉 dr

which is shown in Figure 3(a). This is frequently used in the empirical, but
well established relationship
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du2

dt
= −Au

3

�
, A = constant . (3)

where A is of order 1. The assumption that A is a constant is fundamental to
most decay laws in the literature. This leads e.g. to the Saffman decay expo-
nent of n = 6/5 = 1.2. In Figure Figure 3(b) we show that the measurements
indicate that A is not a constant, but decays steadily with x/M . Krogstad
and Davidson[2] showed that this has serious consequences for the decay ex-
ponent in Eq. (1). If A depends on x as A ∼ x−p then the decay exponent is
modified to n(1− p). We have included a best fit to the data which suggests
that A decays as A ∼ (x− x0)−0.075. This implies a decay exponent of about
n = 1.11 which is within the range of the present measurements.
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Fig. 3. Development of integral length (left) and dissipation coefficient (right).

Conclusions

This study of the flow downstream of a monoplane grid suggests that the
assumption of a fixed constant of proportionality, A, in Eq. (1) may not in
general be true. Iin the present experiment it was found that A decayed as
A ∼ x−0.075. This has implications for the exponent in the expression for
turbulent kinetic energy decay. The decay exponent of n = 1.13 observed in
the experiment is consistent with the exponent predicted for Saffman turbu-
lence (n = 6/5) if the reduction caused by the slow streamwise decay of A is
accounted for.
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1 Introduction

In free shear flows the flow field can be divided into two distinct regions that
find themselves separated by a thin contorted front entitled turbulent/non-
turbulent interface. In the outer region the flow is largely irrotational whereas
in the inner region the flow is turbulent. Turbulent entrainment is the pro-
cess through which fluid parcels from the outer region acquire vorticity, thus
becoming turbulent. Recently, the classical assumption, where large scale
“engulfing” motions are the main responsible for the jet growth [?], has been
questioned e.g. Mathew & Basu [?] and Westerweel et. al. [?]. Instead, these
works provided ample support to the original model of Corrsin & Kistler
[?], where the entrainment is mainly governed by small scale eddy motions
(“nibbling”).

2 DNS of a turbulent plane jet

The present work uses a direct numerical simulation (DNS) of a fully devel-
oped turbulent plane jet at Reλ ≈ 120 [?, ?] (Fig. ??) to analyze the dynam-
ics of the kinetic energy and the role of the intense vorticity structures (IVS)
(Fig. ??) in the turbulent entrainment mechanism, as well as the thickness
of the interfacial layer, whose detection is determined by means of a vorticity
norm threshold |−→Ω | = 0.7U1

H
(Fig. ??), as in Bisset et. al. [?]. Specifically, we

employ conditional statistics from the distance to the turbulent/non-turbulent
(T/NT) interface yI , that separates the turbulent from the irrotational flow
regions (Fig. ??).

3 Results and Discussion

The conditional vorticity components (Fig. ??) show the existence of a sharp
jump at the interface with a width close to the Taylor micro-scale, in agree-
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ment with Westerweel et. al. [?], but in contrast to Holzner et. al. [?]. Adition-
ally, Fig. ?? demonstrates that, locally, the Taylor micro-scale is the character-
istic scale for the vorticity scaling. Moreover, the conditional normal Reynolds
stresses (Fig. ??) show the existence of significant values at the irrotational
region, near the T/NT interface, also in agreement with reference [?]. Such
values result from intense velocity fluctuations produced by a sharp pressure

of all the terms from the total and fluctuating (turbulent) kinetic energy trans-
port equations. Notice that all major transport mechanisms are restricted to a
confined region, in vicinity of the T/NT interface, in strong contrast with clas-
sical mean profiles for these terms. Moreover, the growth of irrotational kinetic
energy is caused by an inviscid mechanism resulting from pressure/velocity
interactions. Analysis of the instantaneous fields showed that the advection
term is the dominant mechanism at the turbulent regions, transferring en-
ergy from the inner regions into the vicinity of the T/NT interface (yI

λ
� 2).

An interesting result is the realization that the turbulent production term
is important only very close to the T/NT interface yI/λ � 3. Furthermore,
turbulent diffusion drains energy from the regions of intense production and
injects it at the interface yI/λ � 1. The results indicate the mechanisms driv-
ing the growth of the kinetic energy during the turbulent entrainment process,
and the small scales associated with these. From this it is possible to infer the
resolution requirements that are necessary to correctly capture the vorticity,
energy and scalars transfers across the T/NT interface, with huge impact in
issues such as mixing and turbulent combustion.
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(a) (b)

Fig. 1. (a) Plane Jet: T/NT interface (red) and intense vorticity stuctures. (b) Indi-
vidualized visualization of large eddies (blue) and small vorticity structures (white).

(a) (b)

Fig. 2. (a) Vorticity norm threshold levels for interface detection. (b) Skecth of the
T/NT interface, where a local frame is used to perform the conditional statistics.
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Fig. 3. (a) Conditional mean profiles of the vorticity norm and components, rela-
tive to the distance from the T/NT interface. Vorticity norm non-dimensionalized
by: b) Centreline velocity (Uc) and jet half-width (δ0.5) and (c) Taylor micro-scale
“velocity” (υ) and length scale (λ).

Turbulent Entrainment in Jets 563



yI/λ
-5 0 50

0.1

0.2

0.3

0.4

0.5
<u’2>I

1/2/UC
<v’2>I

1/2/UC
<w’2>I

1/2/UC

Fig. 4. Conditional mean profiles of the Reynolds stresses.

yI/λ
-4 -2 0 2 4 6 8-0.06

-0.04

-0.02

0

0.02

<Total K Advection> I
<Total K p-V Intercation> I
<Total K Viscous Diffusion> I
<Total K Dissipation> I

(a)

y/λ
-4 -2 0 2 4 6 8

-0.01

0

0.01

0.02
<Advection>I
<Interaction p-V>I
<Turbulent Diffusion>I
<Viscous Diffusion>I
<Dissipation>I
<Production>I

(b)
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(— —).
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Introduction

Gradient trajectories in scalar fields have recently received attention in the
context of dissipation elements [1], [2] which in turn are of interest for the
flamelet concept in nonpremixed combustion [3]. Dissipation elements are
space filling regions in a scalar field defined such that gradient trajectories
starting from any point within the element in ascending and descending di-
rections reach the same minimum and maximum points. Gradient trajecto-
ries advance preferentially through regions of the scalar field that have been
smoothed by the combined action of diffusion and extensive strain. Since the
extensive strain in these regions is of the order of the inverse of the integral
time scale τ , dimensional analysis predicts the mean length lm of dissipation
elements to be of the order of the Taylor length [4].
The space filling property of dissipation can be used to reconstruct statistical
properties of the entire scalar field from mean values within the dissipation
elements [2]. For this purpose the properties of the elements need to be param-
eterized. Since elements are elongated in one direction and thin in the other
two directions, a suitable parameter to characterize them is the linear length
of an element l which is the distance between its minimum and maximum
point.
In [1], considering at first the random cutting and reconnection processes of
elements arranged in one dimension, an equation describing the time evolu-
tion of the probability density of the distance between two Poisson points
along a line has be derived from first principles. These are fast processes that
result in integral terms in the equations, similar to the integral term resulting
from molecular collision processes in the Boltzmann equation. In addition,
the linear length of elements is changed by slow processes, namely diffusion
of extremal points towards each other and straining by the flow field [2].
For elements arranged in one direction, and likewise for the length of gradient
trajectories, the evolution equation takes the form
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∂P (l, t)
∂t

+
∂[vD(l, t)P (l, t)]

∂l
+
∂[a(l, t)lP (l, t)]

∂l
= 2λ

∫ ∞

0

P (l + z, t)dz

− lP (l, t) + 2μ
∫ l

0

y

l
P (l − y, t)P (y, t)dy − 2μP (l, t)− P (l, t)ā(l, t),

(1)

where P (l, t) is the probability density of the length, vD(l, t) is the diffu-
sion drift velocity, a(l, t) is the conditional mean strain rate of elements, λ is
the cutting frequency per time and length and μ is the frequency of recon-
nection. The removal of elements by the last term containing the weighted
mean strain rate ā(l, t) =

∫∞
0

a(l, t)lP (l, t)dl is needed to obtain a stationary
solution. Finally the drift velocity has been approximated by the following
expressions [1] [2]

vD = −4D
l
{1− c[1− exp(−1.5l/lm)]}, (2)

where lm is the mean linear length and D is the viscosity.
A stochastic simulation of the cutting, reconnection and molecular diffusion
process using the random superposition of Gaussian profiles satisfying the
one-dimensional diffusion equation has confirmed the theory [4], but showed
that the imposed frequency of addition these profiles becomes irrelevant for
profiles having a width representing turbulent eddies. The cutting frequency
is then of the order of the inverse of the integral scalar time, calculated from
the scalar variance and scalar dissipation rate.
Once a model for the evolution equation is well established and validated by
comparison with DNS data, unconditional mean properties can be calculated
from conditional means from the elements. For instance, it has been shown
in [2] that the mean viscous dissipation rate 〈ε(t)〉 can be reconstructed from
the conditional mean 〈ε/l〉 when the distribution function P (l, t) is known.
Applying this to the evolution equation for P (l, t) one then may derive an
equation for 〈ε(t)〉 which, in the case of homogenous shear turbulence, agrees
well with the modeling of the ε-equation in the widely used k-ε-model, except
that the modeling constants turn out to be Reynolds number dependent.

Analysis

The purpose of the proposed paper is to determine the cutting and recon-
nection frequencies as well as the conditional mean strain rate in eq. (1) by
sending Lagrangian particles through the scalar field and by analyzing the
length of gradient trajectories that originate from the particles in ascending
and descending directions as a function of time. These trajectories are ex-
pected to display the fast and slow processes to which elements are subjected.
When a minimum or a maximum disappears due to molecular diffusion, or
is created due to turbulent motions, trajectories will proceed to another ex-
tremal point and their lengths will change abruptly. On the other hand, strain
and diffusion will continuously change the length of elements.
In practice, turbulent displacement fluctuations of a particle close to the in-
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terface between dissipation elements may affect the lengths of gradient tra-
jectories from Lagrangian particles as well, because the particle may enter
into another dissipation element that has a different linear length. Trying to
remove this effect, we have adopted a five points diagnosis arranged in a plane
perpendicular to the direction of the local trajectory. The Lagrangian point
in the center is surrounded by the other four auxiliary accompaniers arranged
in a square configuration. In 2D the method is illustrated in Fig. 1. Besides
the Lagrangian point p, other two accompaniers p1 and p2 are chosen at a
fixed separation distance from p. The alignment of the three point is perpen-
dicular to the local trajectory. If at time t the Lagrangian point p lies in the
vicinity of the interface between two elements DE1 and DE2, then after a
short time step �t, if p moves from DE2 to DE1 , the length of its trajectory
will have a fast change, while the lengths of trajectories from p1 and p2 have
only slow changes. If the length of the trajectory from p and either p1 or p2 or
both change simultaneously rapidly, then the dissipation element in which p is
located, has changed its length due to the disappearance or creation of an ex-
tremal point. In this way it is possible to exclude fast jumps due to turbulent
displacement fluctuations or, likewise, surface motion fluctuation, from those
by the abrupt changes of the length of dissipation elements. In the simulations
to be presented below, this effect accounted for approximately 50% of the fast
processes that were identified.

DE2

DE1

t Δt+   t

P1
P P2

DE1

P 2P1 P

DE2

Fig. 1. Schematic structure of triple point array diagnosis to exclude the effect of
Lagrangian particles crossing the interfaces of dissipation elements.

Results

A DNS using 5123 grid points and a mean shear gradient ∂〈u1〉/∂x2 = 0.5
with a diffusion coefficient D = 0.003 has been performed. The resolution �x
was 0.66 times the Kolmogorov scale η = 0.0186 and the Taylor Reynolds
number was Reλ = 100.3. An example of the fast and slow changes of the
length of an element is shown in Fig. 2. One observes slow increases or de-
creases of the length over a larger time period and as well as abrupt changes.
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The former are due to the straining or compression of elements while the lat-
ter correspond to cutting and reconnection. After an appropriate filtering and
by analyzing over 4 · 106 trajectories one may obtain the conditional mean
strain rate a, shown in Fig. 3.

Fig. 2. Arclength of the gradient trajectory originating from a Lagrangian parti-
cle. The normalized time derivative is plotted only for those jump that have been
identified as physically meaningful.

When the effect from crossing the interfaces has been removed, the frequencies
of cutting and reconnection can be calculated as a function of the length. The
results in Fig. 4 show an approximately linear dependence of λl on l, from
which λ can be calculated by differentiation. The reconnection frequency μ
varies between 0.75 and 0.25, approximately.

Fig. 3. Mean velocity difference at the ending points of the trajectory as a function
of trajectory length. The mean strain rate a is determined from the slope.
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Note that by taking the derivative with respect to the arclength of trajectories
in Fig. 3 and 4 rather than with respect to the linear length of dissipation el-
ements, one obtains a different strain rate a and a different cutting frequency
λ than those in Eq. (1). Nevertheless, in order to compare the order of magni-
tude of these coefficient, Eq. (1) is solved numerically by the method outlined
in [1]. Two eigenvalues can thereby be calculated. With the prescribed values
of D = 0.003, a = 0.52 and lm = 1.185 from the analysis of the DNS data, one
obtains from these eigenvalues the coefficients λ = 0.48 and μ = 0.13. The
values of λ from the DNS and the solution of the evolution equation agree
favorably while those for μ differ by more than a factor 2. Nevertheless, the
method of gradient trajectories originating from Lagrangian particles seems
to confirm the hypotheses about fast and slow changes of the linear length of
dissipation elements.

Fig. 4. Mean cutting frequency λ and mean reconnection frequency μ as a function
of the length before the of the trajectories.
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The presence of persistent streaky structures is a well established robust fea-
ture of turbulent shear flows . A large amount of research has been dedicated
to the understanding of the mechanisms by which streaks are generated and
of their relevance on the turbulent dynamics. In the near wall region of the
boundary layer these streaks, with characteristic mean spacing of about one
hundred wall units, are thought to play an essential role in a turbulent self
sustained mechanism. The ‘lift-up’ effect by which low energy streamwise
vortices can induce large energy streaks is an important process embedded
in this self sustained mechanism. Recent studies have also demonstrated that
the well controlled optimal transient growth of artificially forced streaks can
be efficiently used to manipulate at leading order laminar shear flows. Such
a paradigm has been successfully applied to stabilize Tollmien-Schlichting
waves in a laminar boundary layer [1] and to effectively delay transition to
turbulence [4]. In these investigations, roughness elements were used to cre-
ate nearly optimal vortices in the upstream part of the boundary layer that
induced well controlled streamwise streaks downstream. A still not addressed
extension of such a kind of approach would consist in the manipulation of tur-
bulent boundary layers with optimal or nearly optimal vortices and streaks,
the first step in this direction being to compute the optimal perturbations of
the turbulent boundary layer.

We compute the optimal energy growth sustained by a turbulent bound-
ary layer without pressure gradients. The two-scales composite expression
proposed by Monkewitz et al. [9] is assumed for the turbulent mean flow.
Such an expansion has proven to be an excellent fit to experimental data at
large Reynolds number. The motion of small coherent perturbations to the
turbulent mean flow is modelled following the approach used by del Álamo
& Jiménez [3] for the turbulent Poiseuille flow case: the mean flow equations
are linearized near the turbulent mean flow and the effect of small scales is
modelled with an effective viscosity in equilibrium with the turbulent mean
flow. This results in a generalized Orr-Sommerfeld-Squire system including
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the effect of the variable viscosity. Here we do not use the operators used in
Ref.[3], but the ones detailed in Refs.[11, 2] that are consistent with previous
investigations.
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Fig. 1. Left:Dependence of the maximum growth Gmax on the spanwise wavenumber
βΔ obtained for selected streamwise wavenumbers (αΔ = 0, 0.1, 1, . . .) at Reδ∗ =
17300. Right: Maximum growth Gmax of streamwise uniform (α = 0) perturbations
versus the spanwise wavenumber βΔ for the selected Reynolds numbers Reδ∗ .

The considered turbulent mean profiles are found to be linearly stable at
all Reynolds numbers, but they can support transient energy growths. With-
out loss of generality, the perturbations are assumed periodic in the spanwise
and the streamwise directions with wavelengths respectively λz and λx (and
wavenumbers β and α). The maximum energy growth Gmax, defined as the
maximum ratio of the kinetic energy contained in the perturbations to the
kinetic energy of the initial condition, is then computed using standard meth-
ods. It is found that only disturbances with λx > λz are noticeably transiently
amplified (see Fig. 1). The most amplified perturbations are streamwise uni-
form (α = 0) and correspond to streamwise streaks originated by streamwise
vortices. We have computed the maximum transient growth of the (most am-
plified) streamwise uniform (α = 0) perturbations for a set of Reynolds num-
bers Reδ∗ extending from 1000 to 60000 (where Reδ∗ is the Reynolds number
based on the free-stream velocity Ue and the displacement thickness δ∗). The
results are reported in Fig. 1. For sufficiently large Reynolds numbers (roughly
Reδ∗ > 1500 two distinct peaks of locally higher growth Gmax(λz, λx = ∞)
exist. The growth corresponding to the primary peak increases with Reδ∗ . The
corresponding optimal perturbations consist in very large scale structures with
a spanwise wavelength of the order of 8 δ, but perturbations with scales be-
tween ≈ 3 and ≈ 20 δ are also strongly amplified. The optimal vortices are
centred near the edge of the boundary layer. The associated optimal streaks
spread into the whole boundary layer (see Fig. 2(b)), scale in outer variables
in the outer region and in wall units in the inner region of the boundary layer,
there being proportional to the mean flow velocity. These outer streaks there-
fore protrude far into the near wall region, having still 50% of their maximum
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amplitude at y+ = 20. The moderate growth associated to the secondary peak
is essentially independent of Reδ∗ and is shifted to larger β (smaller λz) when
Reδ∗ is increased. The secondary peak exactly scales in inner units and that
it is attained for λ+

z ≈ 100 (λ+

z = 81.6 in this case) exactly like for the tur-
bulent Poiseuille flow case [3, 11]. This inner peak is associated with optimal
structures corresponding to the most probable streaks and vortices observed
in the buffer layer (see Fig. 2(a)). The existence of two different peaks for the
optimal growth with an outer-scaling peak whose amplitude increases with
the Reynolds number and with the distance from the wall is furthermore
compatible with the experimental results of [6] and [10] among others.
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Fig. 2. Cross-stream view of the v-w component of the optimal initial vortices
(arrows) and of the u component of the corresponding maximally amplified streak
(contour-lines) for α = 0. (a) the secondary peak optimal is plotted in internal units
while (b) the primary peak optimal is plotted in external units. Black contours
represent positive u while grey contours represent negative u.

A still open question is the one of the relation existing between the op-
timally amplified streaks and the large-scale coherent streaks measured in
experiments and in direct numerical simulations. The optimal perturbation
approach provides a measure of the maximum amplification of streaks with
given streamwise and spanwise scales but this amplification is only part of
more complicated processes leading to the ‘refuelling’ of the vortices that
induce the streaks. The secondary instability of the streaks is for instance
primordial to generate streamwise non-uniform perturbations leading to the
refuelling of the quasi-streamwise vortices in the models of self-sustained tur-
bulent cycles [5, 12]. These additional processes select particular streamwise
and spanwise scales in the flow. The self-sustained scales that are actually
observed, are therefore selected by all the different mechanisms embedded in
the self-sustained process. For the turbulent Poiseuille [3, 11] and Couette [7]
the optimal spanwise wavelength corresponding to the primary peak corre-
spond well to the sizes of the observed large scale coherent structures, but
in the present turbulent boundary layer case the optimal scale (λz ≈ 8δ) is
larger than the scale (λz ≈ δ) actually observed for the coherent large-scale
streaks [8] denoting an important difference between these situations. Even
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if the actual reason for this different behaviour is not actually clear, it could
well be that in the turbulent Couette and Poiseuille flows, the scale selection
of self-sustained large scale structures from the additional processes is weak
and therefore the lift-up selection is the one dominating in the end, while this
is not the case for the turbulent boundary layer. It could also be however
that very large scale structures have simply not been measured with large
enough acquisition windows in the turbulent boundary layer case. Extensive
investigations are currently under way on all these issues.

Even if open questions remain about scale selection of ‘unforced’ large-
scale streaks, the present results may have some relevance in applications
where large-scale, streamwise uniform streaks would be artificially forced in
the boundary layer. In that case, our results predict that streamwise uniform
structures with spanwise wavelength ranging roughly from ≈ 3 to ≈ 30δ would
be the most amplified. The induced large scale streaks would then be felt in
all the boundary layer.
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1 Motivation

A most reliable prediction of the position of time-mean gross separation of in-
compressible turbulent boundary layer (BL) flow from the smooth impervious
surface of a rigid and more-or-less blunt body not only still defies theoreti-
cians but, needless to say, is also of great interest from an engineering point
of view. The undeniable vital progress in computational techniques made in
the recent past does not master this challenge presently in the form of suffi-
ciently accurate solutions of the full (unsteady) Navier–Stokes equations. This
is largely due to the fact that for practical applications, e.g. in aerodynamics,
the relevant Reynolds numbers are still too high to be dealt with adequately.

It is desirable to gain a profound insight into two fundamental aspects, con-
stituting the core problem: (i) the behaviour of the nominally two-dimensional
and steady flow in the vicinity of separation, and (ii) how the local theory,
describing (i), fits into the global picture of the flow past the obstacle under
consideration. In the following, all flow quantities are non-dimensional, respec-
tively, with the speed Ũ of the unperturbed oncoming uniform flow, a typical
body dimension L̃, the (constant) kinematic fluid viscosity ν̃, and the (con-
stant) fluid density. As the basic assumption, the globally formed Reynolds
number Re := Ũ L̃/ν̃ takes on arbitrarily large values. In the first instance,
analytical methods, such as matched asymptotic expansions, then provide the
appropriate means of choice to establish a rational theory.

The asymptotic splitting of the initially attached turbulent BL in the
limit Re → ∞ that aims at a local description of the separation process has
already been tackled by other researchers; for references and discussion of
the, as we feel, apparent formal shortcomings of these approaches see [1, 2].
As demonstrated in [3, 4], a fully self-consistent flow structure that provides a
match of the BL region with the (asymptotically small) region of pronounced
laminar–turbulent transition near the leading edge of the obstacle essentially
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agrees with the well-known picture of a two-tiered turbulent BL: it consists
of a fully turbulent outer main region that exhibits a small defect of the
streamwise velocity component u with respect to its value ue imposed by the
external potential flow and where the Reynolds shear stress dominates over its
viscous counterparts, and the viscous wall layer, where both are of comparable
magnitude. However, here that classical asymptotic structure is relaxed insofar
as also to account for “underdeveloped” turbulence, i.e. for a BL having a level
of turbulence intensity below that referring to fully developed turbulence.

The asymptotic concept which allows for describing this type of a “tran-
sitional” BL on the basis of the time- or Reynolds-averaged Navier–Stokes
equations, i.e. the Reynolds equations, was originally proposed in [1]. In its
form adopted here, two perturbation parameters are employed: a measure for
the velocity defect, ε, and one, δ, for the BL thickness. By setting γ := 1/ lnRe,
we deal with “underdeveloped” turbulent flow if δ � γ � ε� 1, which even-
tually assumes its fully developed form if both δ and ε are of O(γ). However,
as has been pointed out recently in [3, 4], the process of laminar–turbulent
transition provides a source of hampering the BL from becoming a fully de-
veloped turbulent one. Self-consistency is confirmed by considering the local
asymptotic splitting of the BL close to separation: a rigorous description of
the locally strong viscous/inviscid interaction process requires the v. Kármán
number δ+, namely, the ratio of the inner and the outer layer thicknesses, to
vary merely algebraically with Re rather than exponentially, as in the limiting
classical case. The detailed analysis in [4] of a turbulent BL evolving from the
leading edge towards the location of separation indicates that the first situa-
tion applies by considering a specific distinguished double limit ε→ 0, δ/ε→ 0
as Re → ∞, determining the maximum turbulence intensity level possible.

To be more precise, turbulent separation is found to be associated with a
quite complex interplay of an “outer” and an “inner” mechanism of local vis-
cous/inviscid interaction. Below we present some recent results regarding the
former mechanism, which is of paramount importance for the understanding
of the drastic change of the flow in the wall layer as it undergoes separation,
governed by the “inner” interaction. Here we only note that the latter gives
rise to a novel internal triple-deck structure, detected at the base of the BL.

2 Asymptotic picture of the flow near separation

We analyse the flow in the vicinity of the point O where in the inviscid limit
Re → ∞ the irrotational free-stream flow separates tangentially from the body
surface, cf. Fig. 1 (a): here x, y, ψ, p denote natural coordinates along and
perpendicular to the body surface, respectively, with origin in O, the stream
function, and the pressure. We write [ψ, p] ∼ [ψ0, p0](x, y) +O(εδ), Re → ∞,
so that the subscript 0 indicates the inviscid-flow limit. It is characterised by
the free streamline S that separates the oncoming irrotational flow from a
cavity or an inviscid backflow eddy in the slipstream of the body for x > 0.
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Fig. 1. (a) global situation: arrows on streamlines (solid) indicate flow direction,
(b) local splitting of small-defect tier: regions IBL, IIBL refer to incident BL flow.

Close to O, the potential flow is conveniently described in terms of polar
coordinates r := (x2 + y2)1/2, θ := arctan(y/x), π ≥ θ > 0, cf. [3, 4]:

ψ0/uO ∼ r sin θ+ψ̂(r, θ)+O(r2) , ψ̂ := −(4k/3)r3/2 cos(3θ/2) , r → 0 . (1)

Herein, u
O

denotes the value of the surface speed ue = ∂yψ0|y=0 at O, and the
value of the positive parameter k depends on the a priori unknown position of
O and measures the strength of the well-known Brillouin–Villat (BV) singu-
larity there, expressed by (1). Accordingly, ue/uO ∼ 1 + 2k(−x)1/2 +O(−x),
x→ 0

−
. For x→ 0+, the expansion (1) breaks down passively for y = O(y

S
)

such that x, y
S
∼ (4k/3)x3/2 +O(x5/2) gives the position of S where ψ0 = 0.

For the subsequent considerations we refer to Fig. 1 (b). The analysis car-
ried out in [4] indicates that in the outer tier of the BL ∂yp0 and ∂xp0 become
of the same order of magnitude when x = O(δ) and, consequently, the conven-
tional BL approximation ceases to be valid. In addition, the BL thickness is
found to remain of O(δ) there (region I). We introduce suitable local variables
[X,Y, Ψ ] := [x, y, ψ/u

O
]/δ. Inspection of the Reynolds equations and match-

ing the asymptotic representations of the velocity defect in the oncoming BL
and in region I then shows that in the latter the expansion

Ψ ∼ Y+δ1/2Ψir,1(X,Y )+εΨBL(Y )+δΨir,2(X,Y )+εδ1/2Ψrot(X,Y )+O(εδ) (2)

holds. It describes a predominantly inviscid flow: the Reynolds stresses are of
O(εδ) and thus only affect terms of the same magnitude in (2). Furthermore,
the subscripts “ir” and “rot” in expansion (2) refer to contributions that
account for, respectively, the imposed irrotational flow and induced rotational
flow: the latter results from the interaction of the external potential flow with
the locally “frozen” velocity defect of the oncoming BL, captured by the term
of O(ε) in (2). It comprises the celebrated logarithmic law of the wall,

ΨBL ∼ κ−1Y lnY + cY +O(Y 2 lnY ) , Y → 0 , (3)

where κ denotes the v. Kármán and c a further (flow-dependent) constant.
By substitution of (2) into the Reynolds equations and elimination of the

pressure in standard manner one readily obtains ΔΨir,1 = 0, Δ := ∂XX + ∂YY .
Let Ψ∗(X,Y ) := Ψir,1 − ψ̂(R, θ), R := (X2 + Y 2)1/2, with θ = arctan(Y/X)
according to (1), such that ΔΨ∗ = 0. Hence, matching with the attached

Turbulent bluff-body separation in the high-Reynolds-number limit 579



portion of the near-wall flow demands Ψ∗(X, 0) = 0 for X ≤ 0. Moreover,
Ψ∗ = o(R3/2) as R→ 0, since the BV singularity can only be avoided by tak-
ing into account viscous/inviscid interaction if the representation of the Euler
flow near O is not more singular than in the non-interactive case. Finally, we
consider the irrotational velocity perturbations provoked in the ambient free-
stream flow: consistency of their pressure feedback in the oncoming BL with
the original small-defect structure of the latter requires δ3/2Ψ∗ = o(δ2) for
r = O(1), giving Ψ∗ = o(R−1/2) as R→ ∞. One then infers from the above
properties of Ψ∗, by adopting methods of potential theory, that Ψ∗ ≡ 0, i.e.
Ψir,1 = ψ̂(R, θ). In turn, exploitation of the Reynolds equations and the con-
ditions of matching with the oncoming flow yields the crucial result that the
turbulence-induced inviscid vortex flow is governed by the Poisson equation

ΔΨrot = −Ψ ′′′
BL

(Y ) ψ̂(R, θ) , Y > 0 . (4)

The investigation of (4) reveals a contribution adding to the logarithmic por-
tion of the velocity profile given by (3) upstream of separation, which is su-
perseded by a stronger singular behaviour immediately downstream:

Y → 0 : Ψrot ∼ 2κ−1k

{
[−(−X)1/2Y lnY ] +O(Y ) , X < 0 ,

X3/2 lnY +O(Y lnY ) , X > 0 .
(5)

For X < 0, in the wall layer u varies quite rapidly with ue according to
u/ue ∼ εu+(y+) = O(1), y+ := Y/δ+, with u+ ∼ κ−1 ln y+ +O(1), y+ → ∞;
see [4]. The apparent mismatch with region I requires the introduction of the
sublayer II where Y = O(δ). On the other hand, for X > 0 the separated-flow
region III where Y = O(δ3/2) has to be considered. Note that the asymptotic
structure outlined so far closely resembles that of the turbulent BL flow past
the trailing edge of an inclined flat plate in uniform stream, studied first in [5].

3 Current research and further outlook

The gradual transition between the two limiting forms given in (5) is analysed
by considering the behaviour of Ψrot in the limit R→ 0, θ kept fixed. Once
found, this determines the extent of a further region close to O, which is of
salient importance for the understanding of the conversion of region II into
region III and accounts for the “inner” (nonlinear) interaction process. Most
important, the latter is expected to fix the dependence of ε and δ on Re.
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Isotropic Free-stream Turbulence Promotes
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The study of how external conditions affect turbulent boundary layers is im-
portant since such effects are often present in common engineering applica-
tions. Earlier investigations on surface roughness have shown its effect on the
mean velocity and Reynolds stress profiles. Similarly, the effects of free-stream
turbulence have been well documented [1, 2, 3]. However, the results available
until now are limited to low Reynolds numbers. Hence, the aim of this inves-
tigation is to study the effects of high free-stream turbulence on rough surface
turbulent boundary layers, at relatively high Reynolds numbers. This investi-
gation focused on the penetration mechanisms of free-stream turbulence into
the boundary layer, identifying the length scales that dominate these mech-
anisms and studying the effects on the resulting turbulence anisotropy [4].
These effects will also be studied in turbulent boundary layers subject to
favorable pressure gradients.

A 2D turbulent boundary layer experiment was performed over a smooth
and a rough surface. The boundary layer developed over a 6.7m long flat
plate, and measurements were taken using Laser Doppler Anemometry at two
locations downstream of the leading edge (L1= 3.15m and L2= 4.76m). For
the rough cases, the flat plate was covered with a 24-grit continuous abrasive
sheet. The rough surface is characterized by a roughness parameter, k+ ≈ 53,
and measurements are performed at Reynolds numbers of up to Reθ ≈ 11,300.
The upstream turbulence was generated with an active grid (AG), resulting
in free-stream turbulence levels of up to 6.2% and ratio of free-stream integral
length-scale to boundary layer thickness, L∞

δ99
, of up to 0.97.

Results show that, although significant augmentation of the streamwise
Reynolds stress profiles is observed throughout the entire boundary layer, the
increase due to free-stream turbulence in the Reynolds wall-normal and shear
stress profiles is only seen in the outer part of the boundary layer (fig. 1).
However, unlike the streamwise component, the wall-normal Reynolds stress
feels the presence of the wall through the pressure field. Hence, as a result
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of the nearly isotropic turbulence in the free-stream, there is a portion of the
boundary layer, from y/δ95≈ 0.07 to 0.7, that shows an increase in anisotropy.
In order to quantify which turbulence length-scales contribute mostly to this

amined at various distances from the wall. Figure 2 shows that the anisotropy
created by adding nearly isotropic turbulence in the free-stream resides strictly
in the largest scales of the flow, in a range between r/δ95= 3 and 10, where r

is a spatial separation.
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Fig. 1. Streamwise (left) and wall-normal (right) Reynolds stress profiles as function
of y/δ95
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Fig. 2. Second order structure function versus y/δ95, at fixed values of r (top left:
r/δ95≈ 0.07; top right: r/δ95≈ 3; bottom: r/δ95≈ 10)

trend, second order structure functions for velocity components u and v are ex-
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Moreover, LDA and, more recently, hotwire measurements were performed,
under similar initial conditions, for a turbulent boundary layer subject to a
favorable pressure gradient. The boundary layer developed over a 3.6m long,
inclined plate, and measurements were taken using Laser Doppler Anemome-
try and hotwire anemometry, at two locations downstream of the leading edge
(L1= 1.7m and L2= 2.7m). For the rough cases, the plate was covered with
the 24-grit continuous abrasive sheet and, with an upstream velocity of 10
m/s, the rough data is characterized by roughness parameters (k+≈ 70) in
the transitionally rough regime. To generate the favorable pressure gradient,
the plate was tilted at an angle α= 5o with respect to the horizontal, result-
ing in an acceleration parameter, K ≈ 2x10−7, that corresponds to a strong
favorable pressre gradient. Measurements are carried out at Reθ ≤ 4,300 and
the active grid generated upstream turbulence results in FST levels of up to
7%.

Results for the favorable pressure gradient cases also show discrepancies
between the behavior of the streamwise and wall-normal coponents of the
Reynolds stresses when higher levels of free-stream turbulence are present.
Streamwise Reynolds stress profiles show a significant augmentation due to
free-stream turbulence, throughout the entire boundary layer. In the contrary,
the increase in the Reynolds wall-normal and shear stress profiles is only seen
in the outer part of the boundary layer (fig. 3). Future data analysis will exam-
ine second order structure functions for favorable pressure gradient turbulent
boundary layers to understand the effect of adding nearly isotropic turbulence
in the free-stream on the development of the boundary layer. Moreover, the
energy spectrum, at various distances to the wall, will be analyzed to better
explain the effects of surface roughness, pressure gradient and high levels of
isotropic free-stream turbulence in the turbulent boundary layer.
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Fig. 3. Streamwise (left) and wall-normal (right) Reynolds stress profiles as function
of y/δ95 for favorable pressure gradient, turbulent boundary layers
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1 Introduction

Isothermal, incompressible flow in a straight duct with square cross-section
is known to be linearly stable [1]. Direct numerical simulation, on the other
hand, has revealed that turbulence in this geometry is self-sustained above
a Reynolds number value of approximately 1100, based on the bulk velocity
and the duct half-width [2].

Numerous non-linear equilibrium solutions have already been identified in
plane Couette, plane Poiseuille and pipe flows [3, 4, 5], and their role in the
transition process as well as their relevance to the statistics of turbulent flow
have been investigated [6, 7, 8]. No non-linear travelling-wave solutions for
the flow through a square duct have been published to date.

In the specific case of square duct flow, it can be anticipated that travelling
wave solutions will help to shed further light on the origin of mean secondary
flow, whose appearance has been linked to the near-wall coherent structures
[2]. Here we will present results obtained by applying an iterative solution

In the absence of a “natural” primary bifurcation point, we resort to the
method proposed by Waleffe [9], where streamwise vortices are artificially
added to the base flow and forced against viscous decay, leading to streaks,
which are in turn linearly unstable, feeding back into the original vortices.
The non-linear solution is then continued back to the original problem, i.e.
the unforced flow.

2 Numerical method

Our method is an extension of the classical spectral approach often used e.g.
in plane channel flow [4]. Here we employ a primitive variable formulation.
The dependent variables ϕ = {u, v, w, p} are expanded as follows:
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ϕ(x, t) =
Nx∑

n=−Nx

Ny−k
(ϕ)∑

m=0

Nz−k
(ϕ)∑

l=0

ϕn m l φ
(ϕ)

m (y)φ(ϕ)

l
(z) exp(inα(x− ct)) , (1)

where α is the streamwise wavenumber and c the (real-valued) phase speed
and i =

√−1. The functions φ(ϕ) are modified Chebyshev polynomials
which incorporate odd/even parities and—in the case of ϕ being a velocity
component—the wall boundary conditions. The pressure field has two poly-
nomial degrees less than the velocity field, i.e. k(p) = 2 and k(ui) = 0. A
Galerkin method is employed in the streamwise (Fourier) direction, and the
collocation method is applied in the cross-stream (Chebyshev) directions. In
our case, the collocation points for pressure are chosen as the Gauss points,
i.e. pressure is staggered w.r.t. the usual Gauss-Lobatto grid used for veloc-
ity, thereby avoiding spurious pressure modes. The solution of the resulting
non-linear algebraic system is performed via Newton-Raphson iteration; con-
tinuation is implemented by means of a standard arc-length procedure. The
methodology has been validated by comparison with available data for plane
channel flow [4]; our code also reproduces the linear results of [10] perfectly.

3 Results

Similar to what has been proposed in [9, 11] we construct the initial conditions
for our non-linear procedure as a superposition of various ingredients: (i) the
laminar base flow, (ii) streamwise rolls (taken as one of the least decaying
eigenmodes of the Stokes operator on the square), (iii) the streaks induced by
the rolls, and (iv) neutrally stable linear perturbations (with specific parities
I to IV, according to the nomenclature of [1]) of the roll/streak flow. Contrary
to [12] we have focused upon initial conditions constructed from roll/streak-
instabilites with type-II and type-III parities. After continuing various initial
fields towards a state with zero forcing we have obtained different families of
travelling waves. In the following we will present results corresponding to the
fourth Stokes mode and roll/streak-instabilites of type-II.

Figure 1(a) shows the perturbation energy of this solution family at various
values for the streamwise wavenumber α. Figure 1(b) shows that these three
curves are cutting the solution region near the two extremes in α (1.58 and
0.6) and around the center (1.0), with the lower wavenumbers leading to
considerably higher perturbation energies. The smallest Reynolds numbers,
however, are obtained close to α = 1, for which this family yields Reb,min ≈
600. Concerning the wall friction, it can be seen from the graph in figure 1(c)
that values around and above the extrapolation from the turbulent regime are
obtained for the travelling-waves with smaller streamwise wavenumber, with
the lower branch yielding a flow near the laminar limit; for large wavenumbers,
both upper and lower solution branch are only little removed from the laminar
friction value. Figure 1(d) shows the energy of the secondary motion induced
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Fig. 1. Results for truncation levels Nx = 2, Ny = Nz = 30 (lines) and Nx = 4,
Ny = Nz = 32 (symbols). In (a), (c), (d) the different lines correspond to wavenum-
ber values: – – – –, α = 1.58; — ·—, α = 1.0; ——, α = 0.6. E3D is the total
perturbation energy of the velocity field, excluding the streamwise constant mode;
Evw corresponds to the energy of the streamwise-averaged secondary flow. Whereas
the other plots show continuation lines varying the value of the Reynolds number,
the graph (b) shows a solution curve when varying α with fixed Re = 3321 (based
on maximum base flow velocity). In (c) the thick straight lines indicate the friction
factor for laminar and fully turbulent flow. Note that Re is the Reynolds number
based upon the maximum laminar base flow velocity and duct half width.

by the travelling wave. As a comparison, in fully-turbulent flow at marginal
Reynolds numbers (Reb ≈ 1100) we have measured an intensity of

√
Evw/ub ≈

0.09 [2], roughly twice as much as the largest value in figure 1(d). The shape
of the streamwise averaged secondary flow is shown in figure 2(a), exhibiting
eight streamwise vortices—similar to time-averaged turbulent flow. Figure 2(b)
shows isosurfaces of the total streamwise velocity and of streamwise vorticity.
The structure above an individual wall is very much alike the one obtained
in a periodic cell of plane Poiseuille flow [9], with a single slightly undulating
streak flanked by a pair of staggered streamwise vortices.

It can be concluded that the present family of travelling waves appears to
be highly relevant to turbulent duct flow at low-Reynolds numbers. In fact, our
solutions represent the first non-linear equilibrium state which exhibits eight-
vortex secondary flow, and can therefore be expected to contribute to further
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Fig. 2. Shape of a travelling wave on the upper branch at Reb = 760 and α = 0.6,
having a phase speed of c/ub = 1.44. (a) Streamwise averaged secondary flow vectors
and primary flow contours; (b) isosurfaces of u = 0.45 max(u) (light grey sheet) and
ωx = ±0.3max(ωx) (dark grey tubes) shown above one wall, with the other three
sectors (delimited by the cross-sectional diagonals) cut away for clarity.

the understanding of the generation mechanism of secondary flow. In order to
establish a direct link with turbulence, however, an in-depth investigation of
its dynamical properties needs to be carried out.
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Summary. We report high-resolution local temperature measurements in the upper
and the lower boundary layer of turbulent Rayleigh–Bénard (RB) convection in air
(Pr = 0.71) complemented by local heat flux measurements at the surface of both
horizontal plates. Two series of measurements were undertaken - a first one with
fixed aspect ratio Γ = 1.13 and variable Rayleigh number 5 × 105 < Ra < 1012

and a second one in which we varied the aspect ratio and kept the Rayleigh number
constant. The primary purpose of the work is to preserve a comprehensive data
set of the temperature field against which various phenomenological theories and
numerical simulations can be tested. In our talk we show the mean temperature
profiles ϑh(z) at the heating and ϑc(z) at the cooling plate. We demonstrate, that
the corresponding profiles do not collapse even at low Rayleigh numbers and that
the measured bulk temperature ϑb strongly deviates from the mean between the
heating and the cooling plate ϑb,t.

1 Introduction

Thermal convection is an ubiquitous type of flows in nature. This class of highly
turbulent flows is characterized by very strong velocity and temperature fluctuations
compared with their mean. For a systematic study of these flows the Rayleigh-
Bénard (RB) system – a closed box with a heated bottom plate and a cooled top
plate as well as adiabatic sidewalls – represents a well-defined model, which has
been investigated in great detail in the past (see eg. [1, 2]). For a long time this
system was considered as a symmetric problem as long as the applied temperature
difference between both horizontal plates is small enough to satisfy the Boussinesq
approximation. However, recent experimental, numerical, and theoretical works (see
e.g. [3, 4]) showed that this assumption is not invariably justified. The authors
of those works found that the temperature measured in the bulk of the RB cell
ϑb deviates from the predicted mean between the heating and the cooling plate
ϑb,t = 1/2(ϑhp + ϑcp). Insights into a potential asymmetry of the temperature field
close to both horizontal boundaries are still missing but those differences might be
crucial for the scaling of the global heat transport through the cell.
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Fig. 1. Experimental facility: Sketch of the large scale RB facility (”Barrel of Ilme-
nau“)

We present temperature measurements at a large-scale RB experiment simulta-
neously undertaken at the top and the bottom plate using ultra-small microther-
mistors with a size of 125 μm. The convection apparatus - known as the ”Barrel of
Ilmenau“ - is a cylindrical box with an inner diameter of D = 7.15 m. It is filled with
air (Pr = 0.71). An electrical heating plate at the bottom and a free hanging cooling
plate at the top trigger the convective flow. Top and bottom plate are maintained at
a very homogeneous temperature circulating water inside. The distance H between
both plates can be adjusted between 0.05 m < H < 6.30 m. In order to guarantee
the adiabatic boundary condition at the sidewall the experiment is shielded with
an electrical compensation heating system. In progress to our work in the past [5]
the new measurements profit from several improvements of the experimental facility
and the measurement technique:

• A new heating plate overlay has been installed in 2006 keeping the temperature
deviations over its surface at less than ±0.5 K (±5 K in the past). This is the
same high quality of thermal boundary condition as the cooling plate already
satisfied.

• Heating and cooling plate temperature were adjusted in a way that their mean
has been kept constant at Tb = 30◦C except for the highest Ra number of
Ra = 9.59 × 1011.

• A new designed temperature sensor significantly improves the accuracy of the
measurements particularly very close to the surface of the heating/ cooling plate.

• An independent heat flux sensor mounted at the surface of both plates near the
temperature sensor simultaneously measures the local heat flux at the surface of
the heating plate simultaneously to the temperature measurements.
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This facility permits the investigation of highly turbulent RB convection in air in
a parameter domain ranging from Ra = 105 (Γ = D/H = 143), Δϑ = 4 K to
Ra = 1012 (Γ = 1.13, Δϑ = 60 K). A sketch of the experimental facility is shown
in figure 1. A more detailed description can be found in [5].

2 Experimental Results

In a first series of experiments we fixed the aspect ratio at the lowest possible value of
Γ = 1.13 and we changed the Rayleigh number between 5×105 < Ra < 1012 by the
variation of the temperature difference applied to the heating and the cooling plate
from Δϑ = 2.4 K to Δϑ = 60 K. We measured the profiles of the mean temperature
ϑ̄(z) simultaneously at both plates along the central axis of the convection cell.
The measurements were undertaken using ultra-small microthermistors of a size of
s = 125 μm. Each of them was mounted on a high precision positioning system and
could be moved in steps of Δz = 10 μm. The measurements have been complemented
by local heat flux measurements at the surface of both plates using commercial heat
flux sensors of a size of 20 mm in diameter and about 1 mm in height. They were
glued at the surface of both horizontal plates close to the temperature sensors.
Applying Fourier’s law qd|z=0 = −λ(T )∂T/∂z they give an independent value of
the local gradient of the mean temperature and permit to verify our temperature
measurements particularly very close to the wall. A typical example of the obtained
profiles of the normalized mean temperature Θ(z) = (ϑhp −ϑ(z))/(ϑhp −ϑcp) at the
smallest possible aspect ratio Γ = 1.13 and at a Rayleigh number of Ra = 7.5×1011

is plotted in figure 2.
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Fig. 2. Profiles of the normalized mean temperature Θ(z) near the heating (∗) and
the cooling (•) plate at Ra = 7.5 × 1011 and Γ = 1.13 on the left compared with
our old measurements at the cooling plate on the right [5].

The graph clearly demonstrates the differences between the mean temperature
profiles at the heating and the cooling plate and it also shows that the temperature
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in the bulk deviates from the average between them. This observed asymmetry
is in a good agreement with recently reported non-boussinesq effects found in RB
convection in pressurized ethane [3]. While in that small-scale experiment only global
quantities like Nusselt number or bulk temperature ϑb could be studied, we have also
access to the local temperature field inside the boundary layers at both horizontal
plates. In our talk we will discuss the typical shape of the mean temperature profiles,
its fluctuations and its higher order moments. Furthermore we will analyze typical
length scales and the relation between the global and the local heat transport and
how this all depends on Rayleigh number and aspect ratio.
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This paper presents phenomena involving the turbulent transport of concen-
tration of passive contaminants in various thermally-stratified boundary lay-
ers by means of direct numerical simulation (DNS), because it is essential
to know such detailed phenomena in a spatially-developing and buoyancy-
affected boundary layer. The various thermally-stratified boundary layers have
been simulated by DNS [1, 2]. The DNS of thermally-stratified boundary layers
shows intriguing results, in which the counter-gradient diffusion phenomena
(CDP) in turbulent momentum and heat transfer are observed in the strongly-
stratified stable boundary layer (SSBL), i.e., Reynolds shear stress and the
wall-normal turbulent heat flux indicate a negative sign despite the positive
gradients of mean velocity and temperature. It is well-known that CDP disturb
the transport of turbulent quantities due to reductions of the effective diffusiv-
ities for momentum, heat and passive contaminants. On the other hand, the
transport phenomena of the unstable boundary layer (UBL) is also revealed
in the DNS, in which an enhancement of near-wall turbulence is obviously
shown in the UBL. Meanwhile, passive contaminants such as suspended par-
ticulate matter (SPM) and smog which lead to environmental deterioration
infrequently occur in the natural environment, or environmentally-safe passive
contaminants are utilized for various purposes in industrial machinery. Thus,
passive contaminants must be controlled in various situations, it is impor-
tant to know that the concentration of passive contaminants is transported in
the thermally-stratified boundary layer. Therefore, in the present study, the
turbulent transport phenomena of concentrations of passive contaminants in
various thermally-stratified boundary layers are investigated and explored us-
ing DNS. Two cases of discharge methods for passive contaminants are carried
out in the DNS. In the first case, passive contaminants are provided from the
wall in a short region. In the second case, the contaminants are supplied at the
outer region of the turbulent boundary layer. Thus, the transport phenomena
of concentration of passive contaminants affected by the thermally-stratified
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(a) Case 1 (b) Case 2

Fig. 1. Computational domain and coordinate system

turbulent boundary layer are investigated in detail. Also, the effects of Schmidt
numbers are revealed in the present DNS.

In the present DNS, the transport equations for momentum, heat and pas-
sive contaminants as indicated below are solved using the high accuracy finite
difference method [2], in which the Boussinesq approximation is approved for
the Navier-Stokes equation. Thus, the thermal field affects the velocity field
through the buoyant term, but the passive contaminants field does not in-
fluence the velocity field. The computational domain and coordinate system
are shown in Fig. 1. The basic distributions of turbulent quantities in various
thermally-stratified boundary layers are shown in Fig. 2, in which the char-
acteristic distributions of turbulent quantities are revealed in detail. Thus,
two cases of discharge methods are considered as follows: in the case 1, the
near-wall turbulent transport phenomena of passive contaminants which are
provided from the wall at the region between x/δ2,in = 13 and 26 are explored,
where δ2,in is the momentum thickness at the inlet of the driver part which
generates turbulence of both the velocity and thermal fields. Since CDP oc-
curs remarkably in the region in the case of SSBL, a passive contaminants
is supplied from here so as to also investigate the effects of CDP for a con-
centration of passive contaminants. In the case 2, in order to investigate the
transport phenomena of passive contaminants in the outer region of the turbu-
lent boundary layer, the passive contaminants are discharged at y/δ2,in = 7.7
which is in the outer region of the turbulent boundary layer as indicated in
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Fig. 2. Profiles of turbulent quantities in various thermally-stratified boundary
layers
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Fig. 1 (b). The basic parameters of the present DNS are: Reynolds number
Reδ2 = 1000, Prandtl number Pr = 0.71 and Schmidt number Sc = 1. In order
to reproduce a thermally-stratified boundary layer, bulk Richardson numbers,
Riδ2 , are set at −0.06 for the unstable boundary layer (UBL), 0 for the neutral
boundary layer (NBL), and 0.06 for the stable boundary layer (SBL). Also,
in order to investigate the effect of the properties of passive contaminants,
Schmidt numbers are changed for Sc = 0.1 and 2. The boundary conditions
of the concentration of passive contaminants are: c∗ = (Ce− c)/(Ce−Cr) = 1
at the wall in case 1 and at the discharge point in case 2 and c∗ = 0 at
other points, where Ce is the concentration of the main stream, and Cr is the
concentration of the reference point.

The results of the present DNS are shown in Figs. 4∼6. Since passive con-
taminants are not provided from the wall in the downstream direction, the
mean passive contaminants concentrations are observed to suddenly decrease
in case 1. At x/δ2,in = 33.3, where the passive contaminants are not provided
from the wall, a narrower region of turbulent flux of the concentration is ob-
served in the SBL than in the region of NBL due to the appearance of CDP
in the SBL. In the UBL of case 1, the concentration remarkably decreases
in the downstream region, where the concentration almost vanishes, but the
turbulent flux of the concentration remains in the boundary layer. In the case
2, a diffusing concentration is observed in the downstream region. In the NBL
and SBL regions, the concentration distributes almost evenly to the outer and
inner boundary layers. However, the disproportionate distribution of concen-
tration is clearly observed in the UBL, because the wall-normal turbulent flux
for concentration increases near the inner layer as indicated in Fig. 5(b). The
effects of Schmidt numbers are also shown in Figs. 6(a) and (b). Obviously, in
the case of a lower Schmidt number (Sc = 0.1), the concentration of passive
contaminants distributes upward in the boundary layer.

As mentioned above, the phenomena involving in the turbulent transport
of the concentration of passive contaminants in various thermally-stratified
boundary layers are investigated in detail by means of DNS, in which different
distributions of concentration are revealed by the various Richardson numbers
of the flow fields and Schmidt numbers of the concentration field.

This study was partially supported by a Grant-in-Aid for Scientific Re-
search (S), 17106003, from the Japan Society for the Promotion of Science
(JSPS).
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Fig. 3. Distributions of turbulent quantities of passive contaminants in neutral
boundary layer (Sc = 1, Ri = 0)
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1 Introduction

The dynamics of the inner layer of wall turbulence are now fairly well
understood[1]. The next target are the overlying outer layers, including the
logarithmic layer. There is increasing evidence that those layers, which account
for most of the flow thickness, are relatively independent of the near-wall re-
gion, mainly from rough- and active-wall experiments and simulations[2, 3],
but it is unclear whether a physical wall is required for their canonical be-
haviour. On the other hand, this is an interesting physical question, and sets
a baseline requirement for LES, because the buffer layer often has to be mod-
elled differently from the rest of the flow.

Wall turbulence is a non-uniformly sheared flow characterised by length-
scales that become larger away from the wall[4]. To test whether this is its
fundamental feature, we present direct simulations (DNS) in which the wall at
y = 0 is substituted by a boundary condition on a wall-parallel plane y = yb. It
mimics the scale gradient by rescaling and shifting the instantaneous velocity
field of another interior ‘reference’ plane αyb, where α is the rescaling factor.
The rescaling implements the scale gradient of the real flow, and the shifting
takes care of the different advection velocities of the reference and bound-
ary planes. The procedure also conserves the appropriate Reynolds stress. In
Fourier space,

u(k, αyb) �→ u(αk, yb)eiαkΔX , (1)

where ΔX is a wall-parallel translation calculated by integrating in time the
spatially-averaged velocity difference between the two planes, and k is the
wavenumber. The layer y < yb is not simulated. Although written here in one
dimension, (1) is applied to the two wall-parallel directions of every velocity
component. The shifting transformation without rescaling had been previously
used as a boundary condition for homogeneous shear[5].
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1 Introduction

An eccentric annular duct is a prototype element in a number of engineering
applications. Numerous modeling and experimental efforts have been made
to investigate the details of the flow field and heat transfer characteristics in
such kind of ducts [1, 2, 3]. As for the turbulent flow in eccentric annular duct,
it is interesting from a fundamental point of view since it presents an ideal
model for investigating inhomogeneous turbulent flows, where the conditions
of turbulence production vary significantly within the cross-section.

The present work aims to provide a DNS-based data of turbulent flow and
heat transfer for the fully turbulent case, i.e. when the region of turbulent
fluctuations occupies the entire duct’s cross-section.

2 Research approach and methods

We consider non-isothermal flow of an incompressible viscous fluid through a
straight duct which has an eccentric annular cross-section. The flow is gov-
erned by the Navier-Stokes and energy equations. The no-slip conditions and
periodic boundary conditions are applied at the rigid duct’s walls and in the
streamwise z direction, respectively. The problem is solved using curvilinear
bipolar coordinates (ξ, η) introduced in the cross-sectional plane of the duct.
Direct Numerical Simulations (DNS) is the main investigation approach in
this work. Numerical solution is obtained by using the method of Nikitin [4].

3 Results and discussions

The simulation was carried out at Reynolds number Re = 8000 for the duct
with diameter ratio r1/r2 = 0.5 and eccentricity e = 0.5.
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3.1 Law of the wall

The validity of the universal logarithmic mean-velocity distribution

U+

z = A log d+ +B (1)

in eccentric annulus has been discussed in a number of investigations [3]. In our
present simulation, the logarithmic distribution with constants A = 2.65, B =
4.5 is only visible in the wide gap for the outer profiles (Fig. 1). The logarithmic
region in the inner profiles has a less steep slope. The corresponding constants
are A = 2.35, B = 5.5. The set of nine normal-to-walls lines η = ηj , j =
0, ..., 8 (η is the coordinate in the circumferential direction) chosen for the
data presentation are equally spaced in the circumferential direction within
the upper half of the cross-section.

Fig. 1. Mean-velocity profiles. (a) outer profiles; (b) inner profiles.

3.2 Reynolds stress tensor

The components of the Reynolds stresses tensor are also investigated (Fig. 2).
The shape of normal stress 〈u′zu

′
z〉 with maximum values in the near-wall

region is fairly predictable in the most part of the duct cross-section. The
shape of shear stress 〈u′ξu

′
z〉 may be interpreted by considering wall-normal

velocity fluctuations acting across the longitudinal mean-velocity gradient.
Here, d is the distance measured along the line from the midpoint between
the cylinder walls.

3.3 Secondary motion

Anisotropy of Reynolds stresses in the circumferential direction causes an
appearance of a secondary motion in the cross-sectional plane of the duct. The
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Fig. 2. Radial profiles of Reynolds stresses tensor components. (a) 〈u′zu
′
z〉; (b)

〈u′ξu
′
z〉

streamlines of the secondary flows and its intensity are presented in Fig. 3.
The maximum velocity in the secondary motion is about 1.5% of the bulk
velocity in the flow and is attained in the vicinity of the inner wall. Here, the
flow is statistically symmetric about the plane y = 0, therefore the lower-half
distribution is not shown.

Fig. 3. Streamlines of secondary motion, (a), and its intensity
√
U2

ξ + U2
η × 100,

(b). Solid and dashed streamlines correspond to a counterclockwise and a clockwise
rotation, respectively

3.4 Intensity of the temperature fluctuations

As for each ηj , the temperature fluctuations (Trms, which is 〈T ′T ′〉 1
2 ) in the

wide-gap region are about two times larger near the inner wall than those
near the outer wall (Fig. 4). This may suggest that the main mechanism of
temperature fluctuations in the flow is the action of radial velocity fluctuations

Turbulent flow and heat transfer in eccentric annulus 603



across the mean temperature gradient which is twice more steep in the inner
wall region than that in the outer wall one.

Fig. 4. Profiles of temperature fluctuations Trms.

4 Conclusions and further Work

The present work has revealed some flow details which were not known from
the experiment. A number of flow characteristics such as components of the
Reynolds stress tensor, temperature-velocity correlation and some others were
obtained for the first time for such kind of a flow. According to Nikitin [4],
partly turbulent flow may exist in some geometrical configurations. In such
kind of eccentric pipes, the region of a turbulent flow occupies the wide gap
part and the region of a laminar flow occupies the narrow gap part. The
analysis concerned with partly turbulent flow is going to be undertaken in
future work.
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1 Introduction

Spatial averaging when measuring small scale turbulence is a well known prob-
lem when using hot-wire anemometry. However the literature—despite a few
well known and often cited studies—is rather inconclusive and incomplete,
since spatial resolution effects can also be obscured by Reynolds number ef-
fects. As long as the sensing part of the hot-wire is sufficiently small and can
respond to changes to the highest frequencies encountered in the flow, the
measurements are believed to be free from spatial and temporal resolution
issues.

Within the last decade there has been a renewed interest in high Reynolds
number laboratory studies (see e.g. [1, 2]), due to the need to test asymptotic
theories or scaling laws as well as to ensure that known phenomena at labora-
tory Reynolds numbers are representative for practical engineering situations.
In order to make it possible to resolve the turbulent scales at high Reynolds
numbers with the measurement techniques available today, large size facilities
have to be set up (see discussion in Ref. [3]). The use of existing laboratory
facilities to reach high Reynolds numbers by increasing the free stream ve-
locity (U∞) or the density (ρ) brings along a reduction of the viscous scale
(�∗ = μ/(ρuτ ), where μ and uτ denote the dynamic viscosity and friction ve-
locity, respectively). This increases the relative wire length when compared to
the smallest scales. Since the sensing length can not be reduced ad infinitum
in order to fulfil the requirements for well-resolved turbulence measurements
[4], the effect of spatial resolution needs to be re-evaluated in the light of
concurrent experiments in high Reynolds number wall-bounded flows.

Recently Hutchins et al. [5] studied the effect of spatial resolution on the
streamwise turbulence intensity (u′+) and spectral distribution in turbulent
boundary layer flows and concluded that spatial attenuation is not—as usually
assumed—restricted to the region adjacent to the near-wall peak in u′+, but
rather a complex function of the inner-scaled wall distance (y+) and hot-
wire length (L+), as well as the Reynolds number. An example of this is
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¨

the second peak in the u′+-distribution usually encountered in high Reynolds
number wall-bounded flow experiments [1], which is unmasked as a symptom
of spatial resolution rather than a new high Reynolds number phenomenon.

Reconciling, that a truncated skewed probability density distribution (pdf)

nothing else than the centre of gravity of the described area, it can legitimately
be questioned whether the mean remains unaffected under the influence of
spatial averaging. The answer to this question is of considerable importance,
especially in the light of the current debate regarding the proper scaling of
the streamwise mean and rms velocity distribution in the overlap region.

In the following, newly performed zero-pressure gradient turbulent bound-
ary layer experiments obtained in the MTL wind tunnel at KTH are analysed
in the light of the above stated question. The set-up was similar, to the one
used in [2], and comprised a 7 m long flat plate. The measurements were per-
formed at downstream distances of 1.62 and 3.62 m from the leading edge by
means of hot-wire anemometry and were supplemented by oil-film interferom-
etry measurements in order to provide an independent measure of the skin
friction.

Fig. 1. Mean streamwise velocity in inner-scaled variables (white line) plotted on
top of its pdf for (a) L+ = 15 and Reθ = 2532, (b) L+ = 26 and Reθ = 8105 (c)
L+ = 46 and Reθ = 7561, and (d) L+ = 61 and Reθ = 18661. The three shaded
areas indicate the confidence intervals for 3, 50 and 98.5 %, whereas the dash-dotted
line gives the extreme values of the pdf. The log law with the von Kármán constant
of 0.384 and an additive constant of 4.17 is shown through the dashed line.

¨

2 Motivation and Strategy

alters the area under the pdf and recalling that the first moment, the mean, is
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3 Results and Discussion

As mentioned in the Introduction, Reynolds number and spatial resolution

of U∞ or ρ, since both change L+. It is usually assumed that the mean stream-
wise velocity is immune against spatial resolution effects and independent of
the Reynolds number, as long as it is above a certain threshold value. Figure 1
displays, however, a different scenario. Here, U+ vs. y+ is shown above its pdf
distribution within the inner region for varying Reθ and L+ values, where
Reθ is based on U∞ and the momentum-loss thickness. While a clear devia-
tion from a Gaussian pdf distribution is present in (a) below y+ = 100, the
deviation becomes smaller when successively decreasing the spatial resolution,
i.e. for increasing L+ and Reθ in (b) to (d). While for (a) the mean velocity
profile in the overlap region does not even extend to y+ = 300, due to the low
Reynolds number of Reθ = 2532, a successively longer part in inner-law scal-
ing is covered for (b)–(d) and agrees nicely with the log law. The reason for
the apparent differences can be sought within Reynolds number and/or spa-
tial resolution effects. Note, that the subplots are sorted in order of increasing
L+, and implicate therefore a dependence on spatial resolution effects. Par-
ticularly the plot in (b) is from a slightly higher Reynolds number than the
one shown in (c), but was measured with a wire with a nearly half as large
L+ value. The comparison of these subplots therefore supports the view put
forward by Johansson & Alfredsson [4], viz. that spatial resolution effects can
overwhelm Reynolds number effects. Regardless of which of the two reasons
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Fig. 2. Probability density distribution of the streamwise velocity fluctuations scaled
by uτ : solid (L+ = 26, Reθ = 8105), dashed (L+ = 46, Reθ = 7561), and dash-dotted
(L+ = 46, Reθ = 8792) line for different y+ positions, each y-position is shifted for
visual aid by 0.05.

effects are interconnected whenever the Reynolds number is varied by means
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is the main cause, a subtle difference in the mean quantity compared to the
log law is discernable.

A more quantitative assessment is given when comparing measurements
with (fairly) matched Reynolds numbers, but differing L+, as shown in Fig. 2.
Here the pdf is scaled by uτ , rather than its rms value, since the latter is known
to be reduced and would therefore mask spatial resolution effects. It is evident
that the longer wires are especially insufficient when it comes to detect the
low speed fluctuations and hence smooth out the highly non-Gaussian shape
of the pdf within the buffer region. As apparent from the shift in the peak
position of the pdf, the most effected region corresponds to the overshoot over
the log law shown in Fig. 1.

4 Final Remarks

The present study found discernable differences within the pdf distribution
of the streamwise velocity fluctuations when measured with L+ = 26 and
46. These were in turn related to a weak reduction of U+ within the buffer
region. In this context it may also be of interest to ask the more philosophical
question: since the mean value is in principle formed from the pdf of the
fluctuating signal and if the fluctuating signal is not measured correctly, is
it then possible to get the mean value correctly? The general answer to this
question is no.

The present results show the importance of small L+ and throw doubt on
statements regarding the scaling of higher order moments or even the mean
when based on hot-wire data with an order of magnitude longer wires than
employed here (see e.g. [6]).
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hal at mech.kth.se

1 Introduction

During the last decade there has been a renewed interest in how averaged
quantities of the turbulent boundary layer vary in the direction normal to the
wall, especially with regard to the mean and fluctuation velocity distributions
(see e.g. [1, 2]). Comparing data from different facilities and/or different tech-
niques are, however, often inconclusive since the inaccuracies of the measured
quantities may be larger than the trends one wants to investigate.

For such studies most measurements of the streamwise mean (U) and
fluctuating (u′) velocity distributions are made with hot-wire anemometry
using single wires. The resolution in the normal direction to the wall (y) is
usually not a problem since wires with a diameter of 2.5 μm or smaller are
used routinely and the viscous length scale (


∗
= ν/uτ , where uτ is the friction

velocity) for typical studies is larger than 10 μm (

∗

= 10 μm corresponds to
a free stream velocity, U

∞
, of about 40 m/s). The spatial resolution in the

spanwise direction may however be an issue, since sensing elements with a
spanwise length larger than about 20 


∗
will give an averaging of the signal

that affects the fluctuation level, especially in the near wall region (see e.g. [3]).
Another issue which becomes important close to the wall is heat conduction
to the wall itself, which may be seen as an increase in the velocity and a
decrease in the turbulence intensity. A further complication is that the hot-

region at y+=(y/

∗
=)15 the lowest velocities encountered in the probability

density function are approximately 2 uτ .
A quantity of major importance is the wall shear stress (τ) or rather the

friction velocity (uτ ). Since uτ scales the mean velocity and also determines


∗
, and thereby the coordinate y+, the accuracy with which different mea-

surements can be compared is utterly dependent on the accuracy of uτ itself.
Also u′ is usually scaled with uτ although there is a slight Reynolds number
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Fig. 1. Profiles of the (a) mean and (b) rms streamwise velocity in inner-law scaling.
U+=y+ and U+=κ−1 ln y++B, with κ=0.384 and B=4.17 are given as dashed lines.
©: Reθ = 2540, �: Reθ = 8100, 
: Reθ = 18700.

effect in the near-wall region [2]. For boundary layers, the oil-film technique
can now be used to determine uτ with an accuracy better than 1%, but is
neither standard practice in most laboratories, nor simple enough to do in a
short time for diagnostic purposes.

Finally the determination of the probe position relative to the wall is cru-
cial. This may at first look like a trivial problem but to determine the position
with an accuracy of better than one 


∗
is not easy if it has to be done from

outside the wind-tunnel test section. A possibility is to fit the mean velocity
profile to some pre-described distribution for the near-wall behaviour. How-
ever in that case it is necessary that the measurements of the mean velocity
are accurate in themselves.

In this short paper we introduce a new way to plot boundary layer data
(in the following called the diagnostic plot) that can be used to check whether
the velocity data measured close to the wall conform to expected physical
characteristics or if they are affected by spatial averaging or other near wall
effects. The diagnostic plot allows us to do this without having to determine
either the position of the wall or the friction velocity. It also allows us to
characterize the flow in the outer region.

2 The diagnostic plot

Most turbulent boundary-layer data are obtained with hot-wire anemometry
which gives access both to the distributions of U and u′. Typical plots of U
and u′ are shown in Fig. 1, for three different Reθ, viz. 2540, 8100 and 18700
measured in the MTL wind tunnel at KTH (Reθ is the Reynolds number
based on the momentum-loss thickness and free-stream velocity and the first
is taken at x=1.62 m and the two other at x=3.62 m from the leading edge of
the plate). Both U and u′ are normalized with the friction velocity uτ (based
on oil-film interferometry) and plotted as a function of y+, i.e. the normal
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Fig. 2. The data from Fig. 1(a),(b) shown in the diagnostic plot. Filled symbols
correspond to values for the maximum in urms obtained from the correlation in [2]
and assuming that the maximum is located at y+ = 15. Solid line indicates the
tangent to the near-wall data and has a slope of 0.40. The measured points below
this line for U/U∞ < 0.15 are clearly affected by the wall.

coordinate y normalized with 

∗
. The probe lengths for the three cases are,

15, 26 and 60 

∗
, respectively, which would give fairly good resolution for the

two smallest Reθ but rather large spatial averaging effects in the near-wall
region for the highest Reθ.

If instead u′ is plotted as function of U , where both quantities are nor-
malized by the free stream velocity (U

∞
) (i.e. the diagnostic plot), any un-

certainties in both the wall position and uτ are avoided. For boundary layers
in equilibrium that are plotted in this way, distributions of U and u′ that are
taken at the same Re, should fall on top of each other if accurately measured
(or simulated).

Close to the wall (y+ < 10) we would expect that the distribution should
be nearly self similar and independent of Re. The relative level of the rms of
the wall shear-stress fluctuations, τ ′/τ is related to u′ as

τ ′

τ
= lim

y→0

u′

U
(1)

The value of τ ′/τ is around 0.40 for typical laboratory Reynolds numbers
(see e.g. [4]) however it may increase slightly with Re [2]. Since U varies
linearly with y near the wall Eq. 1 shows that u′ also varies linearly with y
with a constant slope (i.e. u′ = 0.40U). Simulations and experiments show
that this linear variation reaches up to, at least, y+ = 3 (corresponding to
U/U

∞
∼ 0.1 for typical laboratory experiments) and thereafter the slope

decreases. As can be seen in Fig. 2 the points closest to the wall deviate below
the straight line indicating that the measured u′ values are too small and/or
the U values are too high. Hence the diagnostic plot indicates at what position
the measured values show a wall interference effect, which is not evident in
Fig. 1.
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Also in the outer region the distributions at different Reynolds numbers
previously shown in Fig. 1 nicely overlap in the diagnostic plot. This indicates
that in the outer region the u′/U

∞
versus U/U

∞
distribution is nearly self

similar with only a weak Reynolds-number dependence.
The behaviour of the near-wall peak (located around y+ = 15, correspond-

ing to U+ ≈ 11) is also of interest. As can be seen in Fig. 2 the maximum
value in this scaling decreases, although the large difference between the two
highest Re is an effect mainly of the spatial averaging. Marusic & Kunkel
[2] give an expression for how the maximum increases with Reθ that can be
used to find the variation of u′/U and is given by the solid symbols. As can
be seen there is a good correspondence between the present experiments and
their expression. Hence, the location in the diagnostic plot of the maximum
in urms can be used as an indication on the accuracy of the measurements in
the buffer region.

3 Final remarks

It has been shown that the diagnostic plot may distinguish between accu-
rately measured data in the near-wall region and data which may suffer from
various problems. The diagnostic plot also has the interesting property that
both the inner (y+ < 10) and outer regions can be made to collapse in the
same plot. There is unfortunately not yet enough well-resolved data of u′ for
high Reynolds numbers to clarify how u′ scales in the outer region although
in Ref. [1] scaling with U

∞
gives the smallest scatter when plotted against

the wall distance normalized with the boundary-layer thickness. When better
data becomes available it will be interesting to see how the diagnostic plot
varies with Re in the outer region. If the Reynolds number variation is small
the diagnostic plot may be used to estimate the boundary-layer free-stream
velocity from a few measurement points in the outer region of u′ and U , which
may be helpful when studying atmospheric boundary layers.
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Summary. In turbulent boundary layers, a large portion of total turbulence pro-
duction happens in the near wall region, y/δ < 0.2. The aim of the present work is to
measure three-dimensional velocity field in a turbulent boundary layer at a moder-
ately high Reynolds number. Tomographic particle image velocitmery (Tomo-PIV)
was used to extract the 3C-3D velocity field using a rapid and less memory inten-
sive reconstruction algorithm. It is based on a multiplicative line-of-sight (MLOS)
estimation that determines possible particle locations in the volume, followed by
simultaneous iterative correction. Application of MLOS-SART and MART to a tur-
bulent boundary layer at Reθ=2200 using a 4 camera Tomo-PIV system with a vol-
ume of 1000×1000×160 voxels is discussed. In addition, near wall velocity measure-
ment attempt made by digital holographic microscopic particle image velocimetry
(DHMPIV). The technique provides a solution to overcome the poor axial accuracy
and the low spatial resolution which are common problems in digital holography [5].
By reducing the depth of focus by at least one order of magnitude as well as increas-
ing the lateral spatial resolution, DHMPIV provides the opportunity to resolve the
small-scale structures existing in near wall layers.

1 Experimental setup

A 4 camera Tomo-PIV system was set up in a 500×500 mm cross-section horizontal
water tunnel at the Laboratory for Turbulence Research in Aerospace and Com-
bustion (LTRAC) at Monash University, to provide measurements of a turbulent
boundary layer at Reθ = 2200. A detailed characterization of this boundary layer
can be found in [4]. The tunnel was set to a free-stream velocity of U∞=0.422 m/s
with measurements performed 3.7 m downstream of a tripping device. Four PCO
4000 (4008×2672 pixel) CCD arrays were used in combination with 200 mm focal
length lenses and arranged in the same plane at angles shown in Fig.1(a), in order
to measure a wall-normal stream-wise region of the flow. Prisms were used to reduce
the distortion created by the water-air interface and the Scheimpflug condition was
set to maximize focus throughout the measurement volume. A 3 mm laser sheet was
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generated by a two-cavity 200 mJ 532 nm Nd:YAG laser using a system of spherical
and cylindrical lenses. The tunnel was seeded with 60 mm nylon spheres with a par-
ticle density of 1030 kg/m3. Calibration was performed using the Soloff method [6],
with a calibration target aligned parallel to the light sheet then translated through
the light sheet thickness, from z =-2.5 mm to z =+2.5 mm in steps of 500 μm.

The schematic diagram of the experimental setup for digital holographic micro-
scopic PIV is shown in Fig. 1(b). Appropriate spherical converging lenses were used
to expand the laser beam generated by two Nd:YAG pulsed lasers (532 nm and 200
mJ per pulse) and suitable neutral density filters were implemented to reduce the
laser energy. The collimated laser beam illuminates the object volume; diffracted
light beams from the particles form the object waves while un-diffracted ones are
the reference waves. A 10× SemiApochromat microscope objective located in front
the digital camera was used to magnify holograms. The microscope objective has the
working distance of 21 mm, the numerical aperture of 0.25, and optical resolution of
1.298 μm. A PCO Pixelfly camera with the CCD array of 1280×1024 pixels was used
as the recording medium and flow was seeded by 11 μm Potters hallow spherical
particles. More detailed information for hologram recording, numerical particle field
reconstruction, and imaging resolution can be found in [1].

(a) (b)

Fig. 1. a) Schematic of Tomo-PIV camera set up for wall-normal stream-wise turbu-
lent boundary layer measurements, b)Front view of Digital holographic microscopic
PIV setup for near wall velocity measurement.

2 Results

Tomographic reconstruction was performed using the standard 5 iterations of
MART, a MLOS estimation and multiple MLOS-SMART iterations. A standard
initial solution and relaxation parameter of unity was used for MART reconstruc-
tion, with relaxation parameter of both μ=1 and μ=3 applied to MLOS-SMART.
All images were pre-processed to remove the background intensity as required by the
MLOS-SMART algorithm and typically used in MART based Tomo-PIV [3]. This
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smoothing (3×3 pixels). To examine the velocity fields produced by these volumes
cross-correlation was performed using an in-house multi-pass 3D PIV program. In-
terrogation regions of 643 voxels with 50% overlap were used, providing fields of
30×30×4 vectors. Approximately 6% of vectors were rejected, mostly due to ar-
eas of low seeding density. This reconstructed particle field density prevented the
use of smaller interrogation regions. The same pre-processed images and vector dis-
cretization was used for all cases. For more details reader is referred to [2]. Typical
instantaneous velocity fields resulting from MART and MLOS-SMART reconstruc-
tion are shown in Fig. 2 with the convection velocity removed. The greatest deviation
appears in the out-of-plane velocity w, exaggerated in this case by use of discrete
iso-contours. A sample field produced by 10 MART iterations has been included
for comparison. Using only the MLOS estimation a larger variation in w can be
observed, with a much smaller difference between the velocity fields resulting from
40 MLOS-SMART iterations.

(a) (b)

Fig. 2. Instantaneous velocity vectors and iso-contours of out-of-plane velocity for
0.31δ×0.31δ×0.05δ region of a turbulent boundary layer with convection velocity
removed. Iso-contours of w = -1.5, -0.5, 0.25, 0.5 pixels; a) MART 10 iterations, b)
MLOS-SMART 40 iterations μ=1.0.

In order to measure near wall velocity profile, microscopy was applied to digital
in-line holography by recording magnified holograms. The elongated dimension of 11
μm particle in depth direction was calculated as 130 and 70 μm based on the 75% of
the peak intensity with the imaging resolution of 1.16 and 0.508 μm/px respectively.
Reconstruction of a 11 micron particle using digital holographic microscopy is shown
in Fig. 3. More detailed information regarding measuring imaging resolution and
particle detection can be found in the study by [1]. This shows the ability of DHM
to improve the depth of focus problem where in a non-magnified reconstruction this
elongated length is more than two orders of magnitude. As a result, the technique
is applicable to measure near wall velocity profile over the turbulent boundary layer
in the region of y+ < 5 and consequently to measure wall shear stress. However, due
to small number of particles in the vicinity of the wall, reconstruction of flow field
is not possible with the current setup. Appropriate local condense seeding is needed
to have reasonable number of particles for cross-correlation.

involved an averaged background intensity subtraction, thresholding and Gaussian
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Fig. 3. Reconstruction of a 11 micron particle
using digital holographic microscopy, imaging
resolution=0.508 μm. The technique has the
capability of reconstructing a particle field in a
seeded flow with the concentration over 10,000
particles per mm3 which is a very high dense
cloud of particles in comparison with the order
of 10 used in conventional digital in-line holo-
graphic PIV measurements.

3 Conclusion

Application of MART and MLOS-SMART to a turbulent boundary layer at Reθ=2200
using a 4 camera Tomo-PIV setup system with a volume of 1000×1000×160 vox-
els and a seeding density of 0.01 ppp is presented. Results indicate that the vector
difference between velocity fields resulting from 10 MLOS-SMART iterations and 5
MART iterations converge to with in the sub-pixel experimental error of Tomo-PIV.
In addition, digital in-line holographic microscopic PIV was used to examine the near
wall velocity profile. However, due to small number of particles in the vicinity of the
wall, reconstruction of flow field is not possible with current setup.
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Abstract

This study concentrates on turbulent swirling flows, which are constrained in
a stationary and straight circular pipe. Aim was to determine the sole effect
of swirl component and its decay on a developing turbulent pipe flow. For
this purpose, velocity statistics of a pipe flow with a Reynolds number of
ReD = Um D/ν ∼= 30, 000 were measured at several downstream positions
up to z/D = 17.3. The strength of inlet swirl was adjusted to the desired
swirl numbers of N = 0.3 (weak) and N = 1.0 (strong). Emphasis was put on
generating a solid-body rotation type of swirl while maintaining axisymmetric
inlet conditions. Consequently, the determined mean velocity and Reynolds
stress profiles showed almost no deviation from axisymmetry. Furthermore,
non-zero Reynolds shear stresses were determined. Both findings contradict
some results in the literature. Subtle increase in the magnitude of Reynolds
stresses was observed as the swirl component decayed partially.

1 Background

Swirling flows are an important class of flows not only due to their basic fea-
tures, but also due to their technical relevance for engineering and abundance
in nature. However, their challenging complexity poses serious problems in
their modeling and understanding [1]. Due to this fact, swirling flows have
been studied for a long time and an abundant number of publications can be
found in the literature [2, 3, 4]. These studies reveal the fact that, depending
on the boundary conditions, swirling flows can undergo totally different sce-
narios and flow field can exhibit different dynamical features: A great number
of these studies concentrate on the effects of swirl, when the swirling flow is
created and subjected to gradual-sudden expansion in pipes or injected as a
free jet (unconstrained) [5, 6]. In these kind of flows, swirl component decays
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rapidly due to the action of adverse pressure gradient and sometimes vortex
core breakdown phenomenon occurs [5]. Other studies consider the case, when
the swirl component was created by a rotating pipe, where swirl component
was constantly imposed onto the axial flow [6, 7]. In such a flow, a parabolic

pipe [6].
In contrast to these, present study concentrates on the relatively less stud-

ied case [2, 3, 4, 8, 9, 10] when the swirl is generated at the inlet of a straight
circular pipe and constrained in it. In such a flow, the swirl component de-
cays gradually due to the action of viscosity. Regarding to this kind flow, a
number of different effects were reported; like stabilizing-destabilizing effect
of swirl on turbulence [8], effect of swirl decay on breaking of axisymmetry [3],
relaminarization of flow profile [7], annihilation of Reynolds shear stresses [4].
From the literature survey and our previous experiments [10], it can be con-
cluded that axial velocity distribution and the generation of swirl at the inlet
of the pipe determine the downstream distribution of mean and turbulent flow
quantities to a great extend. Therefore, in this study, a solid body rotation
type of swirling inlet condition was carefully created to maintain axisymmetry
at the inlet of the pipe. Aim is to determine the sole effect of swirl and its
decay on the statistics of flow quantities along the pipe. The obtained results
are evaluated taking into account the above-mentioned effects reported in the
literature.

2 Experimental Facility

In this study, the refractive-index-matched pipe flow facility of LSTM-Erlangen
was used (Fig. 1). The working fluid in the pipe was diesel oil. A refractive-
index-matched test section with a length of 1 m, filled with diesel oil, provided
optical access for the simple 1-C laser Doppler anemometer (LDA) system,
which was mounted on a traversing table [10, 3]. The swirl generator used in
previous studies [10, 3] was reconstructed to obtain axisymmetric flow condi-
tions at the inlet. A 300 mm long polycarbonate honeycomb insert was care-
fully machined into a cylindrical form to obtain an axisymmetric distribution
of its cells. This insert was then tightly fitted into a piece of pipe out of steel,
which could be rotated with an AC Motor and as such the strength of the inlet
swirl could exactly be adjusted to the desired swirl numbers (N = Uθmax

/Um)
up to ca. N = 1.3.

3 Results and Conclusions

All results were normalized with avg. axial velocity Um = 2.34 m/s. The
mean velocities depict some typical effects of swirl, which were also observed
in the literature, like rounding of the axial mean flow profiles for strong swirl

ć

tangential velocity profile develops and it does not decay along the axis of the
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Fig. 1. The refractive-index-matched turbulent pipe flow facility of LSTM-Erlangen
with a close up view of the swirl generator and its honeycomb insert. Cylindrical
coordinates are used, where z denote the axial direction

(Fig. 2). Reynolds stresses substantially increase, especially when the strong
swirl component decays along the pipe (Fig. 3 and 4). The observed increase
of Reynolds stresses is most pronounced in the near-wall region and pene-
trates into the center of the pipe at downstream locations. Apart from uruz,
magnitudes of Reynolds stresses increase with increasing swirl number owing
to the increased shearing of flow in θ-direction.

Another important observation is that the measured profiles show almost
no sign of deviation from axisymmetry, at least until the measured down-
stream position z/D = 17 (Fig. 2, 3, 4). This contradicts some results for
similar cases in the literature, in which the swirl was hold responsible for the
appearance of asymmetries in the profiles of flow quantities [8, 3, 2]. It was
therefore concluded that the inlet conditions should first carefully be checked
for axisymmetry, before any claim can be made about the effect of swirl. Fur-
thermore, contrary to another investigation [4], no annihilation of Reynolds
shear stresses was observed and even the Reynolds stresses increased in mag-
nitude (Fig. 4). No evidence of vortex core breakdown phenomenon could
be observed (like tendency to flow reversal in the center) and properties did
not change abruptly along the pipe [3]. The swirl component of flow decayed
gradually along the pipe.
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1 Introduction

Turbulent pipe flow is supposed to be confined by the flow geometry and the
boundary layers evolving on ‘opposite’ sides of the center line are expected to
interact with each other even at high Reynolds numbers. An obvious evidence
of this interaction is the negative two-point correlation of streamwise fluctu-
ations across the centerline Ruzuz

(r). It is, however, not clear how a possible
interaction takes place and how far a ‘sloshing’, i.e., a meandering of the pipe
flow core region, is related to the large-scale (LSM) and very large-scale motion
(VLSM), which were found in the logarithmic and wake region [1, 2, 3, 4].
Therefore, measurements of fully developed turbulent pipe flow were per-
formed using stereoscopic high-speed PIV at Reynolds numbers Reb =
10 000÷44 000. The data allows to reconstruct all velocity components. Since
only a single measurement plane is observed Taylor’s hypothesis is applied
to reconstruct the streamwise extension of the flow field. The high recording
frequency allows to ‘track’ the development of coherent motion from instanta-
neous velocity fields along the streamwise direction. Approximately 150 bulk
scales are continuously recorded such that even the largest expected scales
reaching up to 7 R [3] are captured. The flow field is resolved with approxi-
mately 8÷36 l+ at the Reynolds numbers in the experiments, respectively.
The simultaneous assessment of the entire flow field allows to gain valuable
information on the growth of coherent motion. The azimuthal extent, to which
large-scale low-momentum zones in the logarithmic region meander, can be
investigated, which is an interesting point in the study of the interaction of
‘opposite’ boundary layers in pipe flow.

2 Experimental Setup

The measurements are performed in the flow facility of the Laboratory of
Aero- and Hydrodynamics at TU Delft. The pipe possesses a diameter of

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 

 
DOI 10.1007/978-3-642-03085-7_149, 

621



S. Große et al.

D = 40 mm and a total length of 28 m. The fluid is filtered tap wa-
ter at T = 20 ± 0.1◦C. The Reynolds number based on the bulk velocity
Reb = UbD/ν can be determined to within 0.4%. The flow enters the pipe
section through a settling chamber with a flow straightener of approximately
5 mm core size and several meshes. The contraction possesses a 5 : 1 contrac-
tion ratio (based on the diameter). The entire pipe is thermally isolated. This
design allows to keep the flow in the pipe laminar up to Reb = 30 000. Hence,
it is necessary to trip the flow artificially downstream of the inlet. All mea-
surements are carried out at about 25 m downstream of the tripping device,
i.e., at 600 Le/D, to ensure fully developed flow conditions at the measure-
ment section [5, 6]. A further description of the setup can be found in [7, 8].
Stereo high-speed PIV recordings at 500÷1 000 Hz and at Reynolds numbers
of Reb = 10 000÷44 000 have been performed. The recording time of single
sequences corresponds to approximately 150 integral scales based on the bulk
velocity Ub and the radius of the pipe R. In total, the low and high-speed data
spans over 3 000 bulk scales such that the data can statistically be discussed.

3 Preliminary Discussion of Results

Two-point correlations of the streamwise fluctuations across the centerline
Ruzuz

(r) calculated from the PIV recordings at Reb = 10 000 are shown in
figure 1(a), evidencing the correlation function to reach negative values at dis-
tances from the centerline r/R = 0.0÷ 0.5 for distances of the reference point
from the centerline being less than −0.4 r/R. At positions of the reference
point closer to the wall the correlation across the centerline decays toward
zero. Similar results have been found in square duct flow, where the correla-
tion peaks negatively opposite of the centerline. Data of 2D-channel flow is
not available yet such that it can not further be investigated how far the flow
confinement has an influence on the interaction. Whether or not the negative
trend of the two-point correlations across the centerline can also be observed
in DNS data of turbulent pipe flow will need further investigation.
It is still under research how a possible interaction takes place and how far
a ‘sloshing’, i.e., a meandering of the pipe flow core region might be related
to or induced by the large-scale (LSM) and very large-scale motion (VLSM).
There is evidence from instantaneous streamwise velocity fields in the cross-
section indicating an extra-ordinary growth of near-wall coherent motion into
the near-center wake region causing a strong influence on the entire flow field,
but further investigation is necessary.
Similarly, in figure 1(b) the distribution of Ruzuz

(Θ) indicates a negative cor-
relation at Θ ≈ π close to the centerline. Note, the graph can only be read
along lines of constant radius/wall-distance. At larger r/R, lobe-like regions
of negative correlation indicate the co-existence of low- and high-momentum
zones in the azimuthal plane. The distance between the extrema decreases
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Fig. 1. (left) Spatial correlation of streamwise fluctuations as function of radius
Ruzuz

(r/R) across the centerline at Reb = 10 000. (right) Distribution of the spatial
correlation Ruzuz

(Θ) at Reb = 10 000. Note, the graph can only be read along lines
of constant radius.

with increasing r/R. Figure 1(b) further indicate two distinct lobes very close
to the wall at Reb = 10 000. A region of less negative correlation values at ap-
proximately r/R = 0.7÷0.9 indicates a larger order of different scales present
in the flow, whereas the strong negative correlation in the regions at r/R ≤ 0.7
and r/R ≥ 0.9 indicate a rather uniform scale of structures. The distance be-
tween the negative lobes in the vicinity of the wall reaches approximately
100 l+, i.e., 100 viscous scales, which is in good agreement with the spacing of
the near-wall cycle reported in the literature (e.g. [9, 10, 11, 12]). At the high-
est Reynolds number this near-wall region can not sufficiently be resolved. To
further assess the scaling, the azimuthal dimension of the correlation function
has been estimated similarly to [1, 13, 4]. The distance from the reference
point, at which the correlation value drops below a level of Ruzuz

≤ 0.05,
is defined by lz/2. In figures 2(a) and 2(b) the azimuthal dimension lz is
given as a function of y/R and compared to values in the literature. The
azimuthal dimension in these graphs is scaled with the local value of 2πr
and R, respectively. The results at the highest Reynolds number show excel-
lent agreement with the data of [1, 4]. At lower Reynolds number the curves
indicate a decrease of the azimuthal scaling close to the wall and the distri-
butions drop to values similar to those reported for turbulent boundary layer
flow [13, 14]. This might indicate that the near-wall cycle in the vicinity of
the wall is little influenced by the geometric confinement that the flow experi-
ences at higher regions. It is, however, remarkable that the fields of streamwise
velocity fluctuations indicate similar structures of meandering bands of low-
momentum and high-momentum fluid almost throughout an region ranging
from 0.05 ≤ y/R ≤ 0.50, which would rather indicate a strong interaction of
the flow field at different heights in the boundary layer.
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Fig. 2. Azimuthal length-scale lz in different scalings. lz is the azimuthal dimension
of the two-sided correlation peak using a threshold of Ruzuz

≥ 0.05.

4 Outlook

First results from the measurements evidence the high quality of the recorded
PIV data. The long integral time span, over which individual sequences are
recorded, the high recording frequency, the coverage of the entire azimuthal ve-
locity plane, and the simultaneous assessment of all three velocity components
will allow a valuable and in-depth investigation of further features of turbu-
lent pipe flow including further characteristics of the recently found super-
structures, an ‘inter-scale’ interaction and a possible meandering (‘sloshing’)
of the core region. First full-field statistics of turbulent pipe flow presented
in this work show very good agreement with data obtained by the hot-wire
technique with arrays covering the azimuthal plane at constant radius.
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1 Motivation

Turbulent flow over a backward facing step can be of great assist to demon-
strate the effect of system rotation on separating flows. Depending on the
magnitude and orientation of the imposed background vorticity 2Ω relative
to the mean flow vorticity ω in the rotating frame of reference, a variety
of different flow phenomena may occur. Cyclonic (anti-cyclonic) rotation if
mean vorticity vector is parallel (anti-parallel) to the system rotation vector.
Cambon et al.[1] and Metais et al.[2] indicated the stabilization effect in the
cyclonic rotation regimes in terms of reducing turbulence level and decreas-
ing the momentum interchange (compared to the situation with no rotation).
On the other hand, the destabilization effect associated with increase in mo-
mentum interchange dominates the moderate anti-cyclonic rotation regimes.
Beyond a certain rotation rate the anti-cyclonic regimes begin to restabilize.

The aim of the present study is to explore separated turbulent flows in a
rotating frame of reference. To this end we consider the turbulent flow over
a backward facing step with a distance of 2h between the two walls. The
step is mounted at the anti-cyclonic side of the channel with step height of
1h. According to Barri et al.[3] the turbulent inflow boundary conditions are
induced by velocity profiles taken from a precursor simulation of turbulent
plane Poiseuille flow with periodic boundary conditions in streamwise and
spanwise directions. The imposed system rotation vector is aligned in the
positive spanwise direction and the stepped wall becomes the anti-cyclonic
side. The Reynolds number is Re ≡ Ubulkh/ν = 5600.

The relative importance of the imposed system rotation is given by the
rotation number Ro ≡ 2Ωh/Ubulk. Different rotation numbers have been con-
sidered (0.0, 0.1, 0.2 and 0.4). We therefore performed direct numerical simula-
tions of turbulent BF-step with periodic boundary conditions in the spanwise
direction and exit boundary conditions in the streamwise direction.

The stabilization, at the cyclonic region before the expansion, increases the
possibility of the attached shear layer to separate under deceleration. In the
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(a)

(b)

Fig. 1. u′ iso-surfaces. Positive and negative contours are distinguished by light and
dark shading, respectively. (a) Ro = 0.0, (b) Ro = 0.4.

mean time, the boundary layer at the anti-cyclonic flow region separates from
the edge of the step, being shed downstream as an anti-cyclonic free shear
layer (figure 1). The simulations show significant increase in the spreading
rate of the mixing layer by increasing the system rotation rate due to desta-
bilization effect (figure 2). According to this fact, the size of the anti-cyclonic
recirculation region after the step reduces by increasing the system rotation.
In an opposite manner, the cyclonic recirculation region increases in size by
increasing the system rotation due to the decrease in turbulence level.

(a)

(b)

Fig. 2. −λ′
2ω

′
x iso-surfaces (positive contour level). (a) Ro = 0.0, (b) Ro = 0.4.

2 Results

Results for the highest rotation number Ro = 0.4 compared with the non-
rotating case Ro = 0.0 are shown in figures 3 & 4. To facilitate comparisons
between the two different cases, the contour level increased by a factor of two in
the rotating case compared with the contour levels used in the non-rotating.
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Fig. 3. Contour plots of Reynolds stresses. (a) u′u′, (b) v′v′, (c) w′w′, (d) −u′v′.

For the sake of clarity, the cross-stream length scale has been enlarged in
figures 3 & 4.

The results in figure 3 show that the high levels of turbulent stresses occur
in the mixing layer originating from the corner of the step. The anti-cyclonic
regions downstream of the step (the mixing layer and the recirculation zone
at the lower wall) express a reversal anisotropy v′

rms
> w′

rms
> u′

rms
at high

rotation rates, whereas the cyclonic regions (the recirculation zone at the
upper wall) conserve the conventional anisotropy behavior u′

rms
> w′

rms
>

v′
rms

. In counter-clockwise rotation (Ro = 0.4), the stepped wall becomes the
pressure side of the channel, and the rotational production G22 in Table 1
becomes positive, thereby increasing v′v′ in figure 3b in comparison with the
non-rotating case.

i = 1, j = 1 i = 2, j = 2 i = 3, j = 3 i = 1, j = 2

Pij −2(u′u′ ∂U

∂x
+ u′v′ ∂U

∂y
) −2(u′v′ ∂V

∂x
+ v′v′ ∂V

∂y
) 0 −(u′u′ ∂V

∂x
+ v′v′ ∂U

∂y
)

Gij 4Ωu′v′ −4Ωu′v′ 0 −2Ω(u′u′ − v′v′)

Table 1. Production terms in two dimensional mean flow.
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Fig. 4. Contour levels of the instantaneous enstrophy fluctuations ω′
iω

′
i. (a) Ro =

0.0, (b) Ro = 0.4.

By increasing v′v′ the magnitude of the shear production term P12 is also
increased and the shear stress level −u′v′ is farther increased. On the other
hand, G11 < 0 tends to reduce the streamwise turbulent intensity in figure
3a. The overall effect of anti-cyclonic rotation is therefore to enhance the
turbulence level downstream of the step edge. The increased mixing inevitably
increases the spreading rate of the mixing layer, thereby reducing the anti-
cyclonic recirculation region below the layer.

The vortical topology associated with high turbulent kinetic energy can
be investigated using the enstrophy field shown in figure 4. The reattachment
region in the non-rotating case is due to turbulent kinetic energy reduction
in the mixing layer region farther downstream of the step. In contrast, the
mixing layer is forced to reattach by the effect of system rotation and the
vortex sheet has not been allowed to develop in space. Thereby not only the
mixing layer region has higher turbulence level compared to the non-rotating
case but even the reattachment region as can be seen from figure 4b.

The support for this work from the Research Council of Norway through
a research grant (Contract no 171725/V30) and a grant of computing time
(Programme for Supercomputing) is gratefully acknowledged.
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We did an experimental study on Taylor-Couette flow in between two coaxial
cylinders of length L = 220 mm and radii ri = 110 and ro = 120, respectively,
the fluid-filled ’Taylor-Couette gap’ or TC-gap being h = 10 mm, thus gap
ratio η = ri/ro = 0.917, and gap aspect ratio L/h = 22). Both cylinders are
rotating independently, with angular frequencies ωi,o, The torque T on the
inner cylinder is measured through the axis driving the inner cylinder with a
co-rotating torque meter.

The system is characterised with parameters as given by Dubrulle et al.

[3]: a shear Reynolds number ReS = 2/(1 + η) |ηReo − Rei| and a Rotation
number Ro = (1 − η) (Rei + Reo)/(ηReo −Rei), where Rei,o = (ri,oωi,oh/ν)
are inner and outer Reynolds number. With this choice, ReS is based on
the laminar shear rate S; ReS = h2S/ν. The Rotation number Ro compares
mean rotation to mean shear; its sign determines cyclonic (Ro > 0, stabilising)
or anti-cyclonic (Ro < 0, destabilising) flow. Two other relevant values are
Roi = η − 1 � −0.083 and Roo = (1 − η)/η � 0.091 for the inner and the
outer cylinder rotating alone, respectively.

We have estimated the wall shear stress at the inner wall by τW,i =
T/(2πr2

i L), and from this the friction factor cF , i.e. non-dimensional wall
shear stress, cF = τ/�(Sh)2 is obtained. We have done this for a range of ReS

values far beyond those presented in Andereck’s classical work [1]. Andereck
investigated the occurrence of flow structures in laminar and low turbulent
TC flows up to ReS = 4.103. Our results up to ReS = 5.104 are shown in
Fig. 1. We observe that, for a given Ro, the friction factor cF decreases mono-
tonically with increasing ReS . This torque-scaling is discussed in much detail
in [4], with many references. In [6, 7], we summarise this briefly, and show
that we retrieve in our sysstem up to ReS = 2.105 very similar torque scaling
exponents for Ro = Roi as in [5].

We further observe that for a given constant ReS the friction factor cF

strongly depends on Ro: Friction increases monotonically when Ro decreases
especially at lower Reynolds numbers, which clearly shows the role of rotation
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in the stability of the mean flow. For the highest ReS , cF however gets constant
at some fairly small negative Rotation, (Ro = RoPlat) untill roughly Ro =
η − 1 (inner alone), from which the shear stress further increases.
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Fig. 1. Friction factor (dimensionless wall shear stress) vs Ro for ReS ranging from
4.103 till 50.103 . Axes for ’inner alone’, ’counter rotation’ and ’outer alone’ indicated.

Towards the other end of the curve, increasing Ro, torque gradually dimin-
ishes. A small step attributed to system friction (bearings) is visible at Roo,
where the inner cylinder reverses its sense of rotation. Where flow visualisa-
tions with micro-fibers shows a gradual laminarisation of the flow around Ro
= Roo, the torque does not drop accordingly. This is attributed to a non-
idealness of our system: Besides torque produced in the ’Taylor-Couette gap’,
the system measures as well the torque as exerted on the upper and lower
horizontal ends of the inner cylinder that forms at both ends a ±2 mm high
fluid-filled gap with equally flat ends of the outer cylinder. For laminar flow
with a high-viscosity corn syrup, the deviation was found to be a constant,
as much as some 40% larger than that of the analytical result for the outer
wall alone, which we thus consider as ’end effects’ as common in rheomet-
ric instruments. Under transitional and turbulent conditions, the dynamics of
such torsional shear layers, or ’von Kármán’ layers is complex and still un-
der study, [2], with many references. Unfortunately, measuring with only the
lower vK-gap filled or with a partially-filled TC-gap to estimate the torque by
the vK-gap was not feasible under turbulent flow conditions because of the
entrapment of air; the system can only be run entirely fluid filled. Therefore,
establishing the contribution of the end effect was not reliable. But certainly
at relaminarised flow in the TC-gap, the torque in the vK-gap will dominate;
hence the magnitude of our measured torques is of limited value at high Ro.
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Finally, exact counter rotation Ro = 0 appears to be an inflection point;
though cF and its change with Ro are continuous; the second derivative clearly
changes sign for all ReS investigated. In the following we will briefly discuss
possible mechanisms behind the behaviour of the torque curve.

In [6, 7] we show Stereoscopic-PIV measurements in the radial-axial plane
S investigated

here, i.e. ReS = 14.103. Though the flow is turbulent, there is as well a pattern
of large-scale azimuthal (Taylor-like) vortices or ’rolls’ of alternating sense of
rotation in the flow when time-averaging. At inner alone, i.e. at Ro = Roi

they contribute around the centre of the gap for at least 50% to the torque,
the remainder of the transport still being by turbulent shear stress (correlated
radial-azimuthal velocity fluctuations).

The magnitude of the rolls is measured by matching an idealised stream
function ΨSec to the ’secondary’, i.e. radial-axial flow field: ΨSec = sin[π(r−
ri)/h] × (A1 sin[π(z− z0)/	] + A3 sin[3π(z− z0)/	]), with A1, A3, z0, and 	
as free fit parameters; 	 and z0 describing height and origin of a roll; A1

and A3 describing the fundamental mode and the first possible symmetric
harmonic. The (radial) velocity amplitude is given as urad,Max = |∂ΨSec/∂z| =
π(A1/	 + 3A3/	).

We verified that the fit parameters are stationary; we also measured with
both increasing and decreasing values for Ro such to check for a possible
hysteresis. We plot in Fig. 2 the velocity amplitudes associated with the simple
model (fundamental mode �), and with the complete model (including the
harmonic, •).
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Fig. 2. velocity magnitude normalised by hS of fundamental mode (�), and both
modes (•) vs. Ro at ReS = 1.4.104 , including a curve fit of form A = a (−Ro)1/2

All data fall on a single curve; the changes being smooth and without hystere-
sis. For positive Ro, the fitted modes have negligible amplitudes, (there are
no secondary flow structures visible in the time-average field [6]). As soon as

in the TC-gap. In these measurements, at an intermediate Re
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Ro < 0, i.e., the inner cylinder rotates faster than the outer, secondary flow
occurs, and the fundamental mode starts to grow in amplitude, with A3 � 0;
the secondary mean flow thus being well described by pure sinusoidal struc-
tures. For Ro ≤ −0.04, the vortices start to deform to a more elongated shape,
with wider cores and more narrow regions of large radial velocities in between
the adjacent vortices; the first harmonic is then necessary to adequately de-
scribe the secondary flow. The fundamental mode becomes saturated in its
amplitude in this region of Ro < RoSat. Finally, we give in Fig. 2 a curve fit to
the measured velocity amplitudes of the form: A = a (−Ro)1/2. The velocity
magnitude of the secondary flow behaves like the square root of the distance
to Ro = 0, a situation reminiscent to a classical supercritical bifurcation, with
A as order parameter, and Ro as control parameter.

Now combining the results for flow patterns and torque, it is remarkable
that the similarity is limited: Where Taylor vortices are expected to positively
contribute to the torque, the emergence of the rolls at Ro = 0 rather seems
to suppress the growth of cF , as visble from the inflection point in the torque.
Further, the resemblance of saturations in torque and secondary flow magni-
tude showed to be accidental: Torque saturation, at RoPlat = −0.02, is signifi-
cantly separated from saturation of the fundamental mode at RoSat = −0.035
for the same shear Reynolds number. We thus conclude that the two phe-
nomenons of saturation are at least not as directly related as expected. A
more detailed analysis of the velocity data including the turbulence statistics
is required.
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Turbulence is associated with large fluctuations of velocity gradients which
appear preferentially at the smallest scales of the flow. The amplitudes of the
fluctuations exceed the mean values by orders of magnitude when the Reynolds
number of the flow is sufficiently large. This behaviour is known as small-
scale intermittency. The small-scale structure and statistics of turbulence has
been mostly studied for the case of homogeneous, isotropic and statistically
stationary turbulence. Much less work on the subject is reported for wall-
bounded shear flows. Several reasons for this circumstance can be given. First,
it is more challenging to measure all nine derivatives of the velocity gradient
tensor with a sufficient resolution in an open shear-flow-setup (see e.g. [1] for
a review). Secondly, a wall-bounded shear flow consists of a boundary layer
which is dominated by coherent streamwise structures and a central bulk
region in which they are basically absent. The statistics in the wall-normal
direction is inhomogeneous and requires a height-dependent analysis. Finally,
it is frequently believed that shear flow turbulence is in a state of local isotropy
at the small-scale end for larger Reynolds numbers. Recent experimental and
numerical studies demonstrated however that significant deviations persist, in
particular when higher-order moments are discussed [2]. All this suggests to
our view a systematic study of the height-dependence of the statistics of the
velocity gradient fields in turbulent shear flows.

Here, we want to make a first step in this direction and conduct an analysis
of the small-scale statistics of the velocity gradient in a wall-bounded shear
flow. The analysis is based on three-dimensional direct numerical simulations
of a turbulent channel flow at Reτ = 180 defined as

Reτ =
uτL

ν
. (1)

Here uτ is the wall friction velocity whereas L and ν stand, correspondingly,
for the half-channel height and the kinematic viscosity. Figure 1 illustrates
the geometry. The applied pseudospectral method is based on Fourier series
in the horizontal directions x and y and a Chebyshev polynomial expansion
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in the vertical z–direction [3, 4]. Our study is focused on two fields, the local
enstrophy field and the energy dissipation rate field.

domain is Lx × Ly × Lz = 4π × 2π × 2 in units of the half-width L.

The gradient tensor mij of the velocity fluctuations v
′ can be decomposed

into a symmetric and an antisymmetric part as

mij =
∂v′i
∂xj

= aij + sij . (2)

The local enstrophy field, ω2 = (∇× v
′)2 (see Fig. 2), probes the magnitude

of the antisymmetric part aij = −εijkωk/2 of the velocity fluctuation gradi-
ent tensor. Here εijk is the fully antisymmetric Levi-Civita tensor. The energy
dissipation rate field, ε = 2νsijsji (also shown in Fig. 2), measures the mag-
nitude of the symmetric part sij of mij . The ensemble average of both fields
are connected by 〈ε〉 = ν〈ω2〉 for homogeneous isotropic turbulence. This does
however not imply that the local statistical fluctuations are synchronized. In
addition to homogeneous isotropic turbulence, we have to conduct the statis-
tical analysis for both fields as a function of distance from the wall and to
separate the turbulent fluctuations from the mean flow.

The accurate statistical analysis of velocity gradients requires consider-
ably better spectral resolution than it is commonly used when only low-order
moments are considered. Our channel simulation at the resolution of 5123 col-
location points shows considerable differences for the probability distribution
functions (PDF) of the enstrophy and energy dissipation when compared with
PDFs from a coarser simulation with 1283 collocation points. For this lower
resolution, which is adequate for second-order moments such as the Reynolds
stresses [3], the far tails of the PDFs are considerably shorter.

The effect of the wall distance is examined at four locations, namely in the
viscous buffer layer (z+ = 10), at the begining of the logarithmic layer where
the Reynolds shear stress has its maximum (z+ = 30), in the logarithmic
region (z+ = 72), and in the midplane of the channel (z+ = 180). We find
that the variations of both fields about their mean values are strongest in the

Fig. 1. Sketch of the channel flow geometry and the coordinates. The simulation
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hairpin vortex packet formation [1]. The fluctuations decrease slightly towards
the channel centre and significantly towards the wall.

Fig. 2. Isosurfaces of the energy dissipation rate (upper figure) and the local en-
strophy (lower figure). The isolevels are taken at 1.4〈ε〉 and 1.4〈�2〉, respectively.

The strong height-dependence is also manifest in the joint statistics of
both fields [5]. Fig. 3 shows the joint PDF of ε and ω2 normalized by both
single quantity PDFs, i.e.

Π(ε,ω2) =
p(ε,ω2)
p(ε) p(ω2)

. (3)

High amplitudes ofΠ indicate a strong statistical correlation between both
fields. The PDF of the data in the midplane has the broadest support. Very
high-amplitude events of dissipation and vorticity are strongly correlated as
indicated by the local maximum which is stretched out into the upper right
corner of the plane. This maximum is even more pronounced in the logarithmic
layer as can be seen in the upper right panel of Fig. 3. The local maximum
of Π in the outer right corner becomes narrower with decreasing distance
from the wall. It is in line with an overall decrease of the support for highly
correlated events. The observed trend is consistent with our observations for
the single quantity statistics. If we plot the line ε = νω2 (in white), it can be
seen that the broad range of amplitudes of both fields is basically concentrated
around this line.

logarithmic layer which can be intepreted as a result of the recently observed
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Fig. 3. Joint and normalized PDFs given by Eq. (3). Upper left: z+ = 180. Upper
right: z+ = 72. Lower left: z+ = 30. Lower right: z+ = 10. Results of DNS with
5123 grid points are shown, the joint PDF fields are normalized by the product of
separate PDFs for ε/εavr and ω2/ω2

avr. The white diagonal line in the lower right
figure corresponds with ε = ν�2. The colour coding is the same in all four figures
and given in units of decadic logarithm. It varies from 100 (red) to 10−4 (blue).

To conclude, at all distances from the wall there is a strong statistical
correlation between the local enstrophy and the dissipation. Close to the wall
high-amplitude events of both fields seem to become synchronized. The sup-
port of the statistically correlated events varies significantly across the chan-
nel.
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In [1] the large eddy simulation with stochastic modeling of the sub-grid ac-
celeration (LES-SSAM) for homogeneous turbulence was proposed. The main
motivation of this approach is to account for intermittency of the flow at sub-
grid scales, by emphasizing the role of sub-grid acceleration. In this paper, we
develop further this approach in order to simulate a high Reynolds number
channel flow. We proposed a new sub-grid acceleration model and compared
it with DNS and standard LES.

In LES-SSAM approach of [1], the total acceleration is decomposed on
filtered (resolved) and unresolved part, in a way that the instantaneous model
velocity field ûi is resolved by:

âi =
∂ûi

∂t
+ ûk

∂ûi

∂xk

= −1
ρ

∂p̂

∂xi

+
∂

∂xk

(ν + νt)
(
∂ûi

∂xk

+
∂ûk

∂xi

)
+ â′i ;

∂ûk

∂xk

= 0

(1)
where ν is the viscosity, and νturb is given by the Smagorinsky model.

In the modeling of the non-resolved acceleration â′
i

for turbulent channel
flow, our assumption is to emulate its modulus, |a|, by the product of the
typical velocity increment, u2

∗

/νΔ (u
∗

is the friction velocity and Δ is the
characteristic cell size) and the frequency, f , considered as stochastic variable:

â′
i = |a|(t)ei(t) = fu2

∗

/νΔei (2)

Here ei is a random unit vector of orientation, also simulated in this paper. The
frequency f is supposed to be evolved with non-dimensional parameter τ =

−ln
(
h− y

h

)
, where h represents the channel half-width, and y is the distance

from the wall. The stochastic equation is derived here in the framework of
scaling symmetry [2], and has the following form:

df = [〈lnα〉 + 〈ln2α〉/2]fdτ + √〈ln2α〉/2fdW (τ) (3)
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dW (τ) is a Wiener process. The parameters of eq. 3 are −〈lnα〉 = 〈ln2α〉 =
Re

1/3
+ , where Re+ = u

∗
h/ν. For the starting condition, τ = 0, in this stochas-

tic process, we introduce the characteristic value of frequency prescribed on
the wall f+ = λ/u

∗
, where λ is determined, as Taylor scale, but in the frame-

work of definitions of wall parameters. This is done as follows: the Reynolds
number, based on friction velocity, is Re+ = u

∗
h/ν = h/y0 ≈ Re

3/4
h

where y0
is the thickness of the viscous layer, and Reh is the Reynolds number based on
the center-line velocity. One then yields: λ ≈ hRe

−1/2
h

≈ hRe
−2/3
+ . Similar to

Kolmogorov-Oboukhov 62, the starting condition for the random path, given
by eq. 3, is sampled from the stationary log-normal distribution of f/f+ with
parameters σ2 = ln 2 and μ = − 1

2σ
2, such that 〈f〉 = (〈f2〉 − 〈f〉2)1/2 = f+.

Hence this stochastic process for frequency will relax f from a log-normal
distribution on the wall (τ = 0) to the power distribution with increasing the
distance to the wall (τ → ∞). The distributions of the frequency predicted
by this stochastic process, on different wall-normal distances, are compared in
fig. 1a with the evolution of the frequency computed from DNS, via eq. 2. It
is seen that the model of frequency allows to predict the DNS relatively well.

In addition to the stochastic simulation of the unresolved modulus of accel-
eration, we simulate also the orientation vector ei. This is done by a random
walk evolving on the surface of a sphere of unity radius. First the computation
of ei from DNS was performed. The result are shown in fig. 1b. It is seen that
ei relaxes toward isotropy with increasing distance from the wall. In order to
represent this tendency toward isotropy, we implement the Kubo oscillator
with a real coefficient α for the random motion on the sphere. Each position

increment of the random walk is given by ζ = αdW (τ) =
√

ln Re+
2 W (τ), and

the direction β, at each time step, is chosen randomly from the uniform distri-
bution. As τ increases, the random walk covers all the surface of the sphere.
In fig. 1b the simulated distribution of θ = sin−1(ey) (ey is the normal to the
wall direction) is compared with unresolved acceleration from DNS. The last
one was computed as difference between actual acceleration, given by DNS
and its filtered value on the scale Δ.

The a posteriori tests of this model is performed by comparing the LES-
SSAM with standard LES and DNS, for three Reynolds numbers, Re+ = 590,
Re+ = 1000 and Re+ = 2000. We used our own DNS data, as well as the
DNS data from [3] and [4]. For LES and LES-SSAM simulations the classi-
cal Smagorinsky model with a wall damping function for the turbulent vis-
cosity has been applied. The grid size is 64 × 64 × 64, and its resolution is:
Δx+×(Δy+

min
∼ Δy+

max
)×Δz+ = 87×(0.71 ∼ 29)×29, 147×(1.2 ∼ 49)×49

and 295×(2.4 ∼ 98)×98 for Re+ = 590, 1000 and 2000 respectively. As shown
on fig. 2, the profiles of mean velocity and of standard deviation of the ve-
locity fluctuations, predicted by LES-SSAM approach, are improved notably.
Fig. 3a illustrates the computation of turbulent and viscous stresses. It is
seen that computation of momentum fluxes in the wall-normal direction, is
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Fig. 1. (a): Distribution of f/f+ from SSAM (cross) and comparison with DNS
(line) at Re+ = 590, for several distances from the wall. (b): Distribution of θ =
sin−1(ey) for unresolved acceleration from DNS (line) and from SSAM (cross), for
Re+ = 590, and for several distances from the wall (y+ = 3, y+ = 10 and y+ = 30).
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Fig. 2. (a): Streamwise mean velocity, for Re+ = 590, Re+ = 1000 and Re+ = 2000
from bottom to top, respectively, shifted by 10 wall units upward. Standard deviation
of streamwise (u), spanwise (w) and normal (v) velocity (in wall unites), for (b):
Re+ = 590, (c): Re+ = 1000 and (d): Re+ = 2000. Square: LES; cross: LES-SSAM;
dash: DNS (only for Re+ = 590 and Re+ = 1000); dots: DNS from [3] for Re+ = 590
and from [4] for Re+ = 1000 and Re+ = 2000.
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improved in comparison with LES. Velocity spectra are shown in fig. 3b. The
excessive damping of energy on small scales, which is inherent to LES, is
reduced by LES-SSAM. Fig. 3c represents the evolution of the longitudinal
autocorrelation coefficient for the streamwise velocity component along the
channel. Improvement of the decorrelation length can be seen as well, when
LES-SSAM is used. Fig. 3d displays distribution of acceleration component
in the spanwise direction. In agreement with the DNS, the LES-SSAM dis-
tribution exposes stretched tails, as a manifestation of the close to the wall
intermittency, which is not the case by using LES.
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Fig. 3. Reynolds number of Re+ = 1000. (a): Fractions of turbulent τturb = −ρ〈u′v′〉

and viscous τvisc = −ρν〈
∂u

∂y
〉 stresses compared to the total one τtot = τvisc + τturb.

(b): Normalized longitudinal 1-D spectra of streamwise velocity for y+ = 20. (c):
Longitudinal autocorrelation of streamwise velocity at y+ = 5. (d): Distribution of
spanwise component of acceleration for y+ = 5. Square: LES; cross: LES-SSAM;
dash: DNS; dots: DNS from [4] (uniquely for (b)).
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The spectral-element method (SEM), is a high-order numerical method with
the ability to accurately simulate fluid flows in complex geometries. SEM has
opened the possibility to study – in great detail – fluid phenomena known
to be very sensitive to discretization errors, e.g. flows undergoing pressure-
induced separation [4]. Recently, Cherry et al. [1] performed experiments using
Magnetic Resonance Velocimetry (MRV) of turbulent diffuser flow exhibiting
unsteady three-dimensional separation at Re = 10 000 based on bulk velocity
and height of the inflow duct. Two geometries with different opening angles
were investigated and it was found that the flow was extremely sensitive to
slight changes in the geometrical setup. To understand this sensitivity and
to analyze its causes, we present a direct numerical simulation (DNS) of one
of these cases (denoted by “Diffuser 1” in [1]) by means of the SEM. Here,
we focus on careful analysis of mean flow results in order to assess the qual-
ity of the simulation data. The incompressible Navier-Stokes equations are

(a)

x

y
z� 	


�

(b)

Fig. 1. (a) Grid of one of the diffuser geometries (“Diffuser 1”) showing the de-
velopment region, diffuser expansion, converging section and outlet. (b) Snapshot
showing isocontours of 0.4 · ub.

solved using the Legendre polynomial based SEM code nek5000, developed
by Fischer et al. [2]. The computational domain shown in Fig. 1a, is set up
in close agreement to the diffuser geometry in the experiment. It consists of
the inflow development duct, the diffuser expansion and the converging sec-
tion. The resolution of approximately 172 million grid points is obtained by
a total of 127 750 local tensor product domains (elements) with a polynomial
order of 11 respectively. The simulation was performed on 32 768 cores on the
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Blue Gene/P at Argonne National Laboratory and turbulent statistics over ∼
100 convective time units were collected. A snapshot clearly highlighting the
complex unsteady features of the flow is given in Fig. 1b. In the inflow duct,
turbulence is triggered by means of an unsteady trip forcing, which elimi-
nates artificial temporal frequencies which may arise from inflow recycling
methods. The outflow condition specifies zero pressure at the outflow plane,
which mimics the real experiment. In addition, a sponge region is added at the
end of the contraction in order to smoothly damp out turbulent fluctuations,
thereby eliminating spurious pressure waves to arise when energetic turbu-
lent structures hit the outflow boundary, as well as ensure the stability of the
computation by preventing these structures from recirculating back into the
domain. The turbulent inflow duct was studied in detail to ensure that a fully
developed turbulent flow is reached at the end of the development section.
Mean velocity profiles as a function of y+ and z+ respectively taken from a
middle plane a short distance upstream of the diffuser opening are shown in
Fig. 2a. Good agreement with turbulent channel flow simulation at Reτ =

y+/z+

u+
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Fig. 2. (a) Mean centerplane velocity profile 13 units upstream of the diffuser throat,
(b) evolution of Reτ in a middle plane of the inflow section, solid horizontal lines
showing Reτ for a periodic duct and vertical dashed line location of the selected
velocity profile in (a)). u+(y+), u+(z+), turbulent channel flow
simulation at Reτ = 590 [3] (c) Time-averaged flow field in one of the corners
showing the secondary flow compared to (d) periodic duct simulation. Circles show
approximate location of vortex centers.

590 [3] can be inferred. In particular, the linear profile in the viscous sublayer
and the log law is captured with good accuracy. Monitoring the streamwise
development of the friction Reynolds number, Reτ , see Fig. 2b, helps to de-
tect where a fully turbulent flow is reached. The secondary flow in the corners
of the duct also give a good indication on the development of the flow and
are known to be important for the correct separation behavior [1]. As can
be seen in Fig. 2c the corner vortices are captured well, compared to results
from a periodic duct simulation in Fig. 2d. From the measures listed above,
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we conclude that the flow has converged to a statistically stationary state well
upsteam of the diffuser throat.

Turning to the actual diffuser, a qualitative analysis focusing on identifying
the size and location of the separated region is made by selecting crossflow
planes in Fig. 3. It can be clearly seen that our simulation captures the mean

z

y

0 1 2 3 40

0.5

1

1.5

2

z

y

0 1 2 3 4
0

1

2

0

0.5

1

z

y

0 1 2 3 40

0.5

1

1.5

2

2.5

z

y

0 1 2 3 4
0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

z

y

0 1 2 3 40

0.5

1

1.5

2

2.5

3

3.5

4

z

y

0 1 2 3 4
0

1

2

3

4

0

0.2

0.4

0.6

Fig. 3. Crossflow planes of streamwise velocity 2, 5 and 12 units downstream of the
diffuser throat. Left column: Computation by nek5000. Right column: Experiment
by Cherry et al. [1] Each streamwise position has its own colorbar on the right.
Thick black line corresponds to the zero velocity contour.

separation, which starts in the uppermost right corner and gradually spreads
to the top expanding wall. It should be pointed out that the separated region
experiences a highly unsteady behavior and structures with time scales on
the order of one flow through time were detected in the time history of the
data. Considering this, it is remarkable that the simulation data experiences
less fluctuations (i.e. indicating a more averaged state) than the experimental
data. A more quantitative comparison is made in Fig. 4, where mean velocity
profiles are selected in a spanwise midplane. Generally, excellent agreement
is observed. In particular, the upward movement of the velocity peak is well
captured. The presence of the large separated region on the upper inclined
wall forces the flow upwards, however only slightly, due to the originally high
momentum content in the flow. A movement of the peak is also present in the
spanwise direction, which can be seen in Fig. 3 in both data sets. Interestingly,
here, the motion is reversed, i.e., the peak moves away from the side expanding
wall. The reason for this is the boundary layer thickening created as the side
wall expands. The shear layer on top of this boundary layer acts as a barrier
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Fig. 4. Mean centerplane velocity 3 · 〈u〉 + x in the diffuser. Velocity data:

nek5000, ◦ experiment by Cherry et al. Separated region: nek5000,
experiment by Cherry et al.

for the flow, which then has to turn sligthly to the left. If, however, the angle
for the side wall would have been larger with a resulting separation, the flow
would instead be forced to the right due to the lower pressure in this area, as
is the case on the top expanding wall. This suggests that as soon as separation
appears in the flow, the motion will change completely (e.g. change mean flow
direction as seen here) and will be dictated by the location of the separated
flow region. Moreover, the size and location of the separated region (here
defined as a region with negative velocity) in a spanwise midplane, seen in
Fig. 4, is in good agreement with the experimental data.

Diffuser flows are numerically hard to treat in general, not only due to
their sensitivity to discretization errors, but also — as a cause of the slow,
separated flow — the need for long (and expensive) time integration to obtain
converged turbulent statistics. Three-dimensional diffusers, in particular, are
even more challenging due to the lack of statistically homogeneous directions,
and hence the possibility to average over these. Taking into account these
difficulties and the fact that a Reynolds number of 10 000 can be considered
fairly high in the context of DNS, the mean flow results presented here show
excellent agreement with experimental studies. As the quality of the data is
now assessed, the complex flow physics in the three-dimensional separation
can be investigated. In particular, turbulent statistics not accessible from the
experimental data, i.e. Reynolds stress budgets including e.g. the entire pres-
sure field, will be investigated to get a more detailed picture of the flow. In
addition, as turbulence modeling in separated flows continues to be large area
of research, this data can serve as a reference database, where particular inter-
est might be the transport of turbulent kinetic energy and dissipation subject
to three-dimensional separation.
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Abstract:

The optimal response of the turbulent Couette mean flow to initial condi-
tions, harmonic and stochastic forcing is computed at Re = 750. The equations
for the coherent perturbations are linearised near the turbulent mean flow and
the effect of small scales is modelled with the standard eddy viscosity. The mean
flow is linearly stable but it is shown to amplify coherent streamwise streaks
from streamwise vortices. The largest amplifications are realized by stream-
wise uniform structures associated to spanwise wavelengths of 4.3h for largest
amplifications of the energy of initial conditions, 5.1h for the maximum am-
plification of the variance of stochastic forcing. These spanwise scales compare
well with the ones of the coherent large-scale streaks observed in experimen-
tal realisations and direct numerical simulations of the turbulent Couette flow.
The optimal response to the harmonic forcing can be very large and is obtained
with steady forcing of structures with larger spanwise wavelength (7.4h)..

1. Introduction

The fully developed turbulent plane Couette flow is one of the canonical
cases in which very large coherent and persistent streaky structures have been
observed. Lee & Kim (1991) observed structures elongated in the streamwise
direction with a roughly circular cross-section in their direct numerical simu-
lation of the fully developed turbulent Couette flow. In order to understand
if the spanwise size of these large scale structures was the largest possible,
Komminaho et al. (1996) repeated the simulations at Reh = 750 using a huge
computational box (Lx×Ly ×Lz = 28π× 2× 8π). They found that the most
probable spanwise spacing of these vortical structures is about 4h where h is
the half height of channel and that these structures can be suppressed by ro-
tation around the spanwise axis. Very recently, Kitoh et al. (2005) and Kitoh
& Umeki (2008) experimentally studied these structures at Reh = 3750 and
found typical spanwise wavelengths of the order of 4 ∼ 5h.
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At the same time similar large scale structures were found in direct nu-
merical simulations and experiments in the plane pressure driven channel
flow and in the turbulent boundary layer. Recent investigations (del Álamo &
Jiménez 2006; Cossu et al. 2008; Pujals et al. 2008) have revealed a possible
connection between the observed large scale structures and the optimal pertur-
bations of the turbulent mean flows. In all these studies, analytical expressions
that matched the mean velocity profiles and the turbulent eddy viscosity, were
used to compute the optimal perturbations leading to the maximum transient
growth. In the turbulent Poiseuille flow case it was found that the maximum
transient growth was realized by streamwise uniform structures with a span-
wise wavelength proportional to the outer scale h and in good agreement with
that of dominant streaky structures in the outer layer. No results are, to our
knowledge, currently available for the optimal transient growth sustained by
the turbulent Couette flow nor for the optimal response of turbulent mean
flows to harmonic and stochastic forcing. The scope of this investigation is to
fill these gaps.

2. Results and discussion

Unlike previous investigation of the turbulent Poiseuille and boundary
layer flows, no analytical model is currently available to model the Couette tur-
bulent mean flow and the associated eddy viscosity. We therefore use direct nu-
merical simulations to obtain the turbulent mean flow at Reh ≡ Uh/ν = 750.
We channelflow code (Gibson et al. 2008; which is based on a spectral
method with Fourier-Galerkin representation in the streamwise (x) and span-
wise (z) directions, and Chebyshev-tau representation in the transverse di-
rection (y). For time-integration, semi-implicit method with a third-order
Runge-Kutta scheme for nonlinear term and a second-order Crank-Nicolson
scheme for the diffusion term is used. We follow Komminaho et al. (1996) in
the choice of the large computational box (Lx × Ly × Lz = 28π × 2 × 8π)
and grid point (Nx × Ny × Nz = 340 × 55 × 170) to obtain well con-
verged solutions. Turbulent statistics are obtained with averaging time inter-
val Taverage = 1000 (T ∈ [500, 1500]). Fig. 1 shows the mean velocity profile
obtained by the present DNS, which shows good agreement with DNS results
by Komminaho et al. (1996) and Tsukahara et al. (2006). Using this mean
flow, eddy viscosity is also obtained to use for computing optimal perturba-
tions: i.e. νT = dU/dy−1(u2

τ − νdU/dy) where νT and U are eddy viscosity
and turbulent mean flow, respectively.

The three canonical types of optimal perturbations have been computed:
the temporal energy growth, the response to harmonic excitations and the
variance to white-noise stochastic forcing. The corresponding optimal ampli-
fication curves are reported in Fig. 2. In all the cases the maximum growth
is obtained for streamwise uniform disturbances (αh = 0), and their span-
wise spacings are λz = 4.3h for the temporal growth, λz = 7.4h for the
harmonic response and λz = 5.1h for the stochastic forcing. These values are
in very good agreement with the spanwise spacing of the large-scale streaks
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reported in previous studies (Komminaho et al. 1996; Kitoh et al. 2005; Kitoh
& Umeki 2008) except for the response to harmonic forcing, that is prob-
ably more related to the sensitivity to deterministic forcing induced e.g. by
boundary conditions or control devices. The velocity field of the optimal initial
perturbation maximizing the transient energy growth in time, and the corre-
sponding optimal response, reported in Fig. 3, consist of streamwise vortices
and streamwise streaks respectively. Also the structure of the optimal streaks
is strikingly similar to the one obtained by DNS (Komminaho et al. 1996;
Tsukahara et al. 2006). These results are further confirmations of the strong
relations that seem to exist between large-scale streaky structures and the
optimal coherent perturbations of the turbulent mean flow.
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etry of state space in plane Couette flow. J. Fluid Mech. 611, 107., see also
http://www.channelflow.org/.

9. Tsukahara, T., Kawamura, H. & Shingai, K. 2006 Dns of turbulent Couette
flow with emphasis on the large-scale structure in the core region. J. Turbulence.
42.

10. Tsukahara, T., Iwamoto, K. & Kawamura, H. 2007 POD analysis of large-
scale structures through DNS of turbulence Couette flow. In Advances in Turbu-
lence XI., pp. 245–247. Porto, Portugal, June 25-28.

Y. Hwang and C. Cossu648



Symmetry of Coherent Vortices in Plane

Couette Flow

T. Itano1, S.C. Generalis2, S. Toh3 and J.P. Fletcher2

1Faculty of Engineering Science, Kansai University, 564-8680 Osaka, Japan
itano at kansai-u.ac.jp
2School of Engineering & Applied Sciences, Aston University, B4 7ET
Birmingham, UK.
3Department of Physics and Astronomy, Graduate School of Science, Kyoto
University, Kyoto 606-8502, Japan

A numerical continuation method is carried out in a homotopy space con-
necting two different flows, the Plane Couette Flow (PCF) and the Laterally
Heated Flow in a vertical slot (LHF). This numerical continuation method
enables us to obtain an exact steady solution in PCF[6]. The new solution has
the shape of hairpin vortices (HVS: hairpin vortex solution, see Fig.1), which
is observed ubiquitously in turbulent shear flows.

x

z

y

O

Ly

Lx

Fig. 1. The hairpin vortex solution (HVS) in plane Couette flow (PCF) at Re = 200.
(Yellow) curves are vortex lines across the channel mid-plane, underneath which
there are low-speed structures visualised as (cyan) isosurfaces. Here x, y, z denote
the stream-, span-wise and wall coordinates.
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The HVS satisfies three distinct symmetries, which lead to the apparent
spanwise reflection symmetry across a plane (y = Ly/4 or 3Ly/4) as seen
in Fig.1. By contrast, only two of the three symmetries are satisfied by the
streamwise vortex solution (SVS), which was previously obtained as a coherent
structure typical of wall turbulence in Refs.[1, 2, 3, 4]. Thus, the SVS is
expected to bifurcate from the HVS via breaking of the spanwise reflection
symmetry depicted in Fig.1. In the present study, we show evidence that the
SVS bifurcates from the HVS in the homotopy space between the PCF and
the LHF.

We first consider an incompressible Boussinesq fluid with Pr = 0 filling a
vertical slot of thickness 2h̃. The boundaries of the gap are two rigid parallel
planes of infinite extent heated laterally with temperatures T̃0±ΔT̃ , and which
move relative to each other with speed 2ΔŨ in the x-direction of the Cartesian
coordinate system. In terms of the two non-dimensional parameters, Re =
(Ã+ΔŨ)h̃/ν̃ and ε = Ã/(Ã+ΔŨ), where Ã = γ̃g̃ΔT̃ h̃2/6ν̃, the perturbation
from the static state of our system is governed by the incompressibility and
momentum equations respectively:

∇· u = 0 , u ·∇u = −∇p+
6ε
Re

zex +
1
Re

∇2u .

Here, the parameter ε plays an important role in our analysis; solutions ob-
tained with ε = 0 are exact states of PCF, while those with ε = 1 are exact
solutions of LHF.
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Fig. 2. Transition in LHF(ε = 1): (α, β) = (2.0, 0) for the 2DSV (2D spanwise
vortex), (α, β) = (1.0, 2.0) for the tertiary state (abbreviated as “HVS”) and the
SVS.
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Fig.2 shows the bifurcation diagram obtained in LHF (ε = 1), where the
mean shear rate at the boundary, τ , is adopted as an order parameter to
characterise solutions. The secondary branch in LHF (ε = 1) that bifurcates
from the laminar state in LHF (see the right-bottom inset of Fig.2) consists
of the two-dimensional spanwise vortical (2DSV) structures, which exhibit
cat’s-eye roll patterns occupying the whole channel width (cf. Ref.[5]). The
branch satisfies the following symmetries: “Spanwise translational symmetry”
u(x, y, z) = u(x, y +Δy, z), and “Rotational symmetry with respect to the y
axis” [ux, uz]T (x, y, z) = [−ux,−uz]T (−x, y,−z) .

The tertiary branch that bifurcates from 2DSV, termed as “HVS” in the
diagram, is the new haipin vortex solution reported recently in [6]. The branch
satisfies the following three independent symmetries:

A “Streamwise translational and spanwise reflectional symmetry”,
[ux, uy, uz]T (x, y, z) = [ux,−uy, uz]T (x+ Lx/2,−y, z),

B “Parity symmetry with respect to (x, y, z) = (Lx/4, Ly/4, 0)”,
[ux, uy, uz]T (Lx

4
+ x,

Ly

4
+ y, z) = [−ux,−uy,−uz]T (Lx

4
− x,

Ly

4
− y,−z),

C “Parity symmetry with respect to the origin”,
[ux, uy, uz]T (x, y, z) = [−ux,−uy,−uz]T (−x,−y,−z),

where Lx and Ly are the streamwise and spanwise wave-lengths of the HVS.
The spanwise reflection symmetry of HVS, [ux, uy, uz]T (x, Ly/4 + y, z) =
[ux, uy, uz]T (x, Ly/4 − y, z), can be deduced by the symmetries A, B and
C. By employing the numerical continuation method, this branch connects to
a solution at the PCF limit (ε = 0), which contains a hairpin-shaped bundle
of vortex lines depicted in Fig.1.

Furthermore, a branch (termed as “SVS” in the diagram) bifurcates from
HVS at Re = 180 (see also the right-top inset of Fig.2). This bifurcation takes
place via breaking of the symmetry C of HVS (details of this bifurcation will
be given elsewhere [7]). The continuation method guarantees that this branch
also connects to a solution at PCF limit (ε = 0), which corresponds to the
streamwise vortex solution (SVS) previously obtained. In the homotopy pa-
rameter space spanned by ε and Re, the SVS is the quaternary (or higher)
solution branch, while HVS is the tertiary branch in the bifurcation sequence
for the laminar state. This discovery would provide us with an understanding
of the vortex nature in shear flows, that would reconcile the historical con-
troversy with respect to the distinction between the streamwise (SVS) and
hairpin vortices (HVS) in turbulent shear flows.
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Universal character of perturbation growth in

near-wall turbulence
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1 Introduction

Instability and unpredictability may be considered as essential parts of the
definition of turbulence. The difference between the instantaneous velocity
fields of two turbulent flows will grow no matter how small it might be initially.
Considerable theoretical and experimental effort has been devoted to tackling
the problem of turbulence predictability (see for references [1]). However, there
were no quantitative results up to now except in the paper [2]. In that work,
the Lyapunov spectra corresponding to turbulent channel flow at very low
Reynolds number was calculated.

In present work, spatial growth of small perturbations introduced into an
inlet cross-section of turbulent pipe flow is investigated via DNS. Turbulent
inflow field is extracted from auxiliary streamwise-periodic simulation running
in parallel with the main spatial simulation. Downstream evolution of pertur-
bations is analyzed by comparing two flows, with and without perturbations.

2 Formulation and numerical method

We consider a flow of viscous incompressible fluid through a long circular pipe
driven by a given unsteady inflow velocity. The flow is governed by the Navier–
Stokes and continuity equations with a no-slip boundary condition on the
rigid wall. Initial u|t=0 and inflow u|x=0 velocity fields are extracted from an
auxiliary turbulent flow simulation with streamwise-periodic conditions. The
procedure of generating the streamwise-periodic solution ut(x, t) is standard
for DNS of turbulent pipe flow.

At first, the auxiliary simulation is run alone until a statistically steady
state is achieved. The instantaneous velocity field at this time, which is re-
ferred to as t = 0, is taken as the initial condition for the main simulation.
After that, the auxiliary simulation is run in parallel with the main simulation.
At each time instant t > 0, the velocity distribution in the cross-sectional plane

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 

 
DOI 10.1007/978-3-642-03085-7_157, 

653



x = 0 of the auxiliary simulation is transferred into the inlet cross-section of
the main simulation. In addition, a certain small-amplitude artificial pertur-
bation is introduced into the inlet.

In the present paper, we are focused on the spatio-temporal evolution of the
perturbation field, which is defined as the difference between the actual u(x, t)
and unperturbed velocity fields, the latter being presented by the streamwise-
periodic solution ut(x, t) of the auxiliary simulation [3].

The intensity of perturbation is characterized by a mean-square amplitude
ε(x, t), defined as a cross-sectional average

ε2(x, t) =
1
|S|

∫ ∫
|u(x, y, z, t)− ut(x, y, z, t)|2dS. (1)

Here, S is the cross-sectional area.
The Navier-Stokes equations in a cylindrical coordinate system (x, r, θ) are

solved using a second-order finite-difference discretization scheme in space and
a third-order semi-implicit Runge-Kutta method in time. A detailed descrip-
tion of the numerical method is given in [4].

3 Results

Spatially evolving turbulent flow in a circular pipe at Reynolds number Re =
5300 was investigated in [3]. It was shown that after a certain transitional
stage the flow does not depend on the initial condition. It takes the form
of a streamwise-periodic flow of the auxiliary simulation with superimposed
spatially growing perturbation. The mean perturbation amplitude

ε(x) =

[
1
T

∫ t0+T

t0

ε2(x, t)dt

]1/2

, (2)

behaves exponentially, ε(x) ∼ exp(σx). The growth rate was estimated as
σ ≈ 0.361. More careful examination of the [3] data reveals that a better
approximation for the growth rate is σ = 0.38.

Some additional simulations at Re = 5300 were performed in present work.
It was shown that the growth rates of small perturbations does not depend
from the origin and the character of the flow perturbation. It is unsensitive
to variations of the grid resolution, length of the computational domain and
size of the streamwise period of the auxiliary simulation.

The growth of perturbations means that the actual flow departs from
the oncoming streamwise-periodic flow of the auxiliary simulation in terms
of instantaneous velocity fields. It is important, however, that the two flows
remain basically the same turbulent flow in terms of mean quantities.
1 Here and in what follows the pipe radius R is taken as the length scale.
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Similar simulations were conducted at two other Reynolds numbers, Re =
4000 and Re = 10000. In all cases, the mesh spacing was adequate for accurate
representation of the main statistical characteristics.

It was expected that the rate of perturbation growth would be an increas-
ing function of Reynolds number. The results of the simulations support this
supposition. The resulting graphs ε(x) for different Reynolds numbers are
presented in figure 1(a). In all cases, there is a distinct region of exponential
growth in ε(x) with the growth rate increasing from σ ≈ 0.29 at Re = 4000
to σ ≈ 0.71 at Re = 10000.
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Fig. 1. Growth of mean perturbation amplitude as function of (a), x and (b), x+.

In figure 1(b), the variation of ε with distance from the inlet is shown as
a function of x+ ≡ xReτ , where Reτ = uτR/ν. In this representation, the
graphs ε(x+), remarkably, have the same growth rate σ+ = σ/Reτ in the
range 0.0021 − 0.0022 in all cases. The observation that the growth rate of
small perturbations is constant when normalized by a friction length, suggests
that instability of turbulent flow is a purely near-wall phenomenon with low
dependence on the outer flow.

The near-wall character of instability in turbulent pipe flow suggests that
instability with similar properties may be observed in other near-wall flows.
To check the validity of this hypothesis, evolution of perturbations in plane
channel flow was investigated following the procedure described in the pre-
vious sections for pipe flow. Simulation was performed at Reynolds num-
ber 2hUb/ν = 5600. Spatial evolution of the mean perturbation amplitude is
shown in figure 1. Perturbation growth rate σ+ ≈ 0.002 was obtained in chan-
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nel flow. This is in reasonable agreement with the values σ+ ≈ 0.0021−0.0022
observed in pipe flow.

3.1 Temporal evolution of perturbations

Spatial growth of perturbations can be interpreted as temporal growth in
a moving frame of reference translating downstream with the propagation
velocity Cf . The propagation velocity can be estimated my monitoring the
position xf of the front edge of the exponential part in the ε(x, t) distribution
at the initial stage of flow evolution. Although the front edge can be defined
only within a certain tolerance, the graph x+

f (t
+) demonstrates a constant

propagation velocity C+

f = dx+

f /dt
+ ≈ 10.

Another way to estimate propagation velocity follows from the supposition
that the maximum amplification of perturbation takes place in a critical layer,
where propagation velocity coincides with the velocity of a base flow. Since the
maximum perturbation amplitude is at distance d+ ≈ 13 from the wall where
the mean velocity U+ in the base turbulent flow is equal to 10, it is reasonable
to expect that the propagation velocity of the most growing perturbation is
also close to C+

f = 10.
Given the rate of spatial growth σ and the velocity of spatial propagation

Cf , the rate of temporal growth λ can be found as λ = Cfσ. Thus, for the
values obtained in the present work, we can estimate λ+ ≈ 0.021.

The obtained rate of temporal growth agrees well with the results of Keefe,
Moin & Kim [2]. They estimated dimension of the turbulent attractor underly-
ing plane channel flow at very low Reynolds number Reτ = 80 and calculated
Lyapunov spectra. Lyapunov exponents were calculated using two time steps
Δtuτ/h = 0.003 and Δtuτ/h = 0.0015. The highest Lyapunov exponent,
which characterizes the growth rate of the most growing small perturbation,
was estimated as λ1h/uτ ≈ 1.4 for the larger time step and λ1h/uτ ≈ 1.6
for the smaller one. When normalized by viscous scales, these values give
λ+

1
≈ 0.0175 and λ+

1
≈ 0.02, respectively.
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Waves of spanwise velocity applied at the wall of a turbulent channel flow
and traveling in the streamwise direction have been recently discovered in a
numerical study by Quadrio et al. [1] to alter the natural turbulent friction
significantly. In particular, depending on the parameters that define the waves,
drag can be either increased or decreased, and at low Re full relaminariza-
tion has been achieved. Large drag reductions are obtained at the expense of
very limited expenditure in energy, thus resulting in a largely positive overall
energy budget. This paper presents the first experimental assessment of the
performance of the streamwise-traveling waves in a turbulent pipe flow.

The waves considered in [1] are described by:

ww(x, t) = A sin (κxx− ωt) , (1)

where ww is the spanwise (z) component of the velocity vector at the wall,
x is the streamwise coordinate and t is time, A is the oscillation amplitude,
κx is the wave number in the streamwise direction and ω = 2π/T is the
oscillation frequency. One important parameter of the waves is their phase
speed c = ω/κx. Such waves include and generalize the particular cases of the
oscillating wall [2] and the stationary transverse waves described at the last
ETC conference [4].

The effects exerted by the wall traveling waves on the turbulent plane
channel flow are summarized in figure 1, adapted from [1]. The flow has a
Reynolds number of Re = 3170 based on the bulk velocity Ub and the channel
half-width h. The amplitude A of the waves is kept fixed at A = 0.75Ub.
The effect of waves on the drag varies widely depending on their spatial and
temporal frequency. The largest drag reduction (about 45% for this value of
A) is observed for slowly forward-traveling waves over a wide range of not-
too-large wavelenghts. The maximum drag reduction pertains to backward-
traveling waves when the wavelength λ = 2π/κx of the waves exceeds λ ≈ 6h.
At a relatively well-defined phase speed c (indicated in this plot by straight
lines passing through the origin), the effect of the waves abruptly becomes
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Fig. 1. Map of friction drag reduction (percentage) in the ω − κx plane for A =
0.75Ub and Re = 3170. Contours are spaced by 5% intervals, loci of zero DR are
indicated by thick lines and negative values are represented by dashed lines. The
numbers indicate percentage drag reduction at measured points. On the horizontal
axis, Up = 3/2Ub. The thick dashed line indicates the range explored in the present
experiment, see later fig. 3.

that of drag increase. The straight line with c = 0.7Ub identifies the locus of
maximum drag increase.

Aim of the present work is to give the results contained in [1] an exper-
imental confirmation. The cylindrical geometry lends itself to an easier im-
plementation of the traveling waves, owing to the natural periodic spanwise
(azimuthal) direction offered by a cylindrical pipe. The wall motion implied
by Eq. (1) in the cartesian geometry is implemented by imposing different
rotation rates to different longitudinal sections of the pipe, so realizing a dis-
cretization of the sinusoidal space variation. In addition to the traveling waves,
the setup can be used to obtain both purely temporal (when all the pipe sec-
tions have an in-phase alternating motion) and purely spatial (when all the
pipe sections steadily rotate at different speed) oscillations.

Water is chosen as the working fluid. The bulk velocity of the flow is
Ub = 0.11 m/s and the value of the Reynolds number equals Re = 2450 (based
on pipe inner radius R of 25 mm and Ub), i.e. somewhat lower than the one
employed in the DNS for the planar case. The oscillating frequencies of interest
are of the order of 1 Hertz; the pressure drop across the moving section is small
but still measurable. Most of the difficulties encountered during the present
work are related to the need of measuring very small pressure differences.

The longitudinal sinusoidal variation of the transversal velocity required
by (1) is discretized through up to 6 independent pipe segments for each
wavelength. Each segment has an axial length of 36.55 mm. The total length
of the pipe section with rotating segments is about 2.2 m, that amounts to
no less than 10 wavelengths. The lineup of the different segments is achieved
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by mounting each segment with two rolling-contact bearings co-axial to the
pipe and aligned to a steel rail. The need for controlling the frequency of the
sinusoidal variation of the angular speed, and in particular for implementing
a constant-speed motion, poses a number of constraints on the transmission
system, that is based on timing belts moved by 6 independent D.C. motors,
each driven by a purposely designed closed-loop controller. The pipe section
with rotating segments is part of a large closed-circuit pipe. The whole ap-
paratus is approximately 250 diameters long, thus ensuring a fully developed
turbulent flow. Fig.2 illustrates the experimental setup.

Fig. 2. Left: picture of the experimental setup. The return pipe can be seen on the
far left, the moving segments are on the center, hidden by the transmission shafts
and 3 D.C. motors. Right: close-up of a schematic of the trasmission system: shafts,
belts and segments.

A preliminary set of results is shown in figure 3. Percentage changes in
friction drag are plotted against the oscillation frequency; the oscillation am-
plitude is kept fixed at A = 0.73Ub. Each sinusoid in space is discretized with
6 segments, thus yielding a wavelength of λ = 8.78R. The frequency of the
wave is varied, thus observing how the turbulent friction changes along the
points indicated by the dashed line in fig.1. Drag is evaluated by measuring
the pressure drop between two points located immediately upstream the first
rotating segment and immediately downstream the last one.

The results strongly resemble the data available for the cartesian geom-
etry. Friction drag is reduced over a wide range of frequencies, except for a
small range where drag increases. The maximum of drag is attained for the
wave with phase speed of c = 0.57Ub, whereas the drag minimum takes place
for slowly backward-traveling wave, with c = −0.05Ub. The actual amount of
maximum drag reduction, however, turns out to be underestimated by approx-
imately 50%. More than one reason can explain this discrepancy. First of all,
the main mechanism suggested [3] to drive the modification of turbulent fric-
tion drag in plane channel flow is quantitatively different from what happens
in the cylindrical geometry. Moreover, our experimental setup differs in some
respects from the idealized setting of a DNS. Most important is the presence
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Fig. 3. Friction drag reduction (in percentage of the reference friction) due to waves
with λ = 8.78R and A = 0.73Ub, as a function of the oscillation frequency.

of a spatial transient, where the turbulent friction gradually decreases from
the unperturbed level. Our estimate, based on the DNS in cartesian geometry,
is that this transient region extends over thousands of wall units. However,
the measured pressure drop is an integral measure over the entire length of the
active pipe, and as such it yields an underestimated drag reduction. Moreover,
the friction factor for the pipe with fixed segments is higher than expected.
This may be due to localized roughness effects, either due to the design of the
pipe segments, or – most probably – due to debris that accumulates in the
measuring section. We are still working to sort out this issue.

In conclusion, the experiment described here has succesfully demonstrated
the capability of the wall traveling waves to yield large reductions of drag in
the laboratory. We are still working towards a better quantitative characteri-
zation of their performance. An accompanying effort is that of understanding
the traveling wave working mechanism in the cylindrical geometry.
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Effects of very-large roughness in turbulent channel
flow

D.M. Birch∗ and J.F. Morrison
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Summary. The streamwise velocity statistics in fully-developed rough-wall channel flow
have been investigated over grit- and mesh-type surface topologies. The flow was demon-
strated to be fully-developed and two-dimensional up to the fourth moment of velocity.
Though the flow over both surface types appear to exhibit a limited logarithmic region, the
regions of inner and outer scaling over the mesh surface fail to overlap. The influence of the
spanwise periodicity of the mesh upon the outer scaling is discussed.

1 Introduction

The scaling of flows over rough walls has been of considerable recent interest. The model
originally proposed by (7; 3; 9; 10; 11) suggests that the near-wall inhomogeneities in the
flow arising from the local effect of the individual roughness elements are limited to a thin
‘roughness sublayer’, analogous to the viscous sublayer in smooth-wall flows. Any influence
of the specific roughness topology upon the flow is therefore assumed to be contained within
this layer, so any influence of the roughness upon the flow outside of this layer relative to the
smooth-wall case must be attributable to the global increase in the wall friction velocity uτ
alone. For roughness which is large relative to the viscous length scale ν/uτ (but still small
relative to the integral length scale δ ), the roughness size replaces viscosity in the near-wall
scaling while sufficient scale separation remains that an overlap region may exist. Then, the
usual log-law may be expressed in the form

u
uτ

=
1
κ

ln
(y−d

y0

)
(1)

where y0 is a geometry-dependent roughness length, and d is a zero-plane displacement.
Despite its comparative simplicity, considerable support exists for this model. After a

review of available literature, Jimenez (8) proposed the condition k/δ � 2.5 % (where k is
the roughness height) for these scaling conditions to be met. Flack et al. (6) demonstrated
collapse of the outer-scaled velocity moments up to the third order for k/δ < 2.2 %, while
appropriately-scaled mean velocities have been shown to scale well for values of k/δ as high
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as 20 % in rough-wall boundary layers (4; 5; 2). Internal flows, on the other hand, are con-
strained by the additional boundary condition and are therefore more likely to exhibit evidence
of inner-outer interaction for larger values of k/δ . In the present study, the streamwise velocity
statistics in very rough-wall channel flow (with k/h ranging up to ∼ 8 %, where h is the chan-
nel half-height) have been studied in order to investigate the extent of the similarity. Special
attention is given to the higher-order velocity moments, as these quantities are more sensitive
to any changes in the flow structure.

2 Experimental details

Hot-wire scans of the streamwise velocity component were carried out in a rectangular chan-
nel with half-height h = 50.8 mm, width W = 15h and total streamwise fetch L = 134h. The
critical parameters of the two roughness surfaces tested are included in Table 1. The esti-
mated error bounds on the experimental results are as follows: uτ , 6%; mean velocities, 0.5%;
second-order moments, 1.5%; velocity skewness and kurtosis, 6% and 10%, respectively.

Surface kmax (mm) k (mm) krms (mm) k/h (%) kmax/h (%)
Grit 2.0 0.74 0.41 1.46 3.94
Mesh 4.0 1.27 1.31 2.50 7.87

Table 1. Key roughness parameters

3 Results and discussion

In the present study, the values of the roughness length y0 and zero-plane offset d were deter-
mined by fitting the time-mean velocity profiles to Equation (1), assuming that κ = 0.41 and
requiring that the logarithmic region began at the wall-normal distance where the flow became
spanwise homogeneous. The critical flow parameters for the various cases tested are included
in Table 2.

Line Case Ucl (m s−1) U (m s−1) Reτ Reh×10−4 d mm y0 mm k+ k+s
Grit (G1) 24.5 21.0 4780 7.27 1.35 0.13 186 359
Grit (G2) 26.6 22.8 5190 7.87 1.30 0.13 200 389
Grit (G3) 28.5 24.4 5530 8.43 1.45 0.13 216 415
Mesh (M1) 21.0 17.3 5290 6.23 1.90 0.43 410 1402
Mesh (M2) 23.1 18.8 5890 6.84 2.60 0.43 458 1561
Mesh (M3) 25.0 20.5 6280 7.38 2.00 0.43 493 1664

Table 2. Experimental parameters for grit and mesh roughness. k+ based on kmax

D.M. Birch and J.F. Morrison662



Fig. 1. Mean velocity profiles in (a) inner scaling and (b) outer scaling, and standard deviation
in (c) inner scaling and (d) outer scaling.

Figure 1(a) shows the inner-scaled mean velocity profiles for all cases tested. The excellent
collapse observed was, to some extent, artificially imposed in obtaining y0 and d by fitting the
data to Equation 1. A limited logarithmic region appears over both the grit-type and mesh-type
roughness for 15 � (y− d)/y0 � 30. Figure 1(b) shows the outer-scaled velocity deficit pro-
files, together with selected rough-wall channel results from Bakken et al. (1), at similar Reτ .
The profiles over the grit surface collapse with those of Bakken et al.. The profiles over the
mesh-type surface do not collapse below (y−d)/h ∼ 0.30, corresponding to (y−d)/y0 ∼ 35.
This result indicates that the regions of inner- and outer-scaling over the mesh-type surface
did not overlap, and consequently a logarithmic region could not have existed. The apparent
agreement of the data with Equation 1 observed in Figure 1(a) may therefore have been spu-
rious and artificially imposed. In addition, velocity statistics were affected by the spanwise
variation of the mesh, since results were obtained at a single spanwise location only, at the
centre of the depression.

Figure 1(c) shows the inner-scaled second velocity moment u2 profiles over the grit
and mesh surfaces. The profiles collapse remarkably well, and are indistinguishable above
(y− d)/y0 � 50 and 30, respectively. The outer-scaled profiles are included in Figure 1(d),
together with selected results from Bakken et al. The present data collapse together regardless
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of surface type for (y−d)/h � 0.2, though Reτ -independent collapse with the data of Bakken
et al. is only observed for (y−d)/h � 0.4.

4 Conclusions

Experimental measurements of the streamwise velocity statistics in very-rough-wall channel
flow over mesh- and a grit-like roughness surfaces have been carried out. The inner-scaled
mean velocity near the wall demonstrated good agreement with previous studies, and the flow
over both the mesh and the grit surfaces appeared to exhibit a limited logarithmic region;
however, the lack of simultaneous overlap of the regions of inner and outer scaling over the
mesh indicated that a logarithmic region could not exist. The lack of an overlap region may
have been the result of the spanwise variation in the flow over the mesh, and the scaling of
spanwise spatial averages of the time-mean velocity profiles is presently being examined.
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The distinction between d−type and k−type roughness on wall turbulence is
well established [1] and related to the pitch-to-height ratio λ/k, where λ is the
separation between roughness elements of height k. The results of the present
study show that a k−type roughness with λ/k = 8 is turned into d−type
roughness by the action of the Coriolis force due to imposed system rotation.

We considered a rod-roughened plane channel flow where both walls were
roughened by square rods with height k = 0.1h (h being the channel half-
width) and λ/k = 8. The rods were positioned in a non-staggered arrange-
ment, as depicted in figure 1(a). The mean flow and turbulence statistics will
therefore exhibit a symmetry about the midplane in the absence of rotation
[2], [3]. In order to explore the effect of system rotation direct numerical simu-
lations (DNS) of pressure-driven flow in the rod-roughened channel have been
performed. The driving pressure-gradient −dP/dx was prescribed such that
the Reynolds number based on the channel half-width h and the wall-friction
velocity uτ = (−ρ−1hdP/dx)1/2 was equal to 400. This is essentially the same
Reynolds number as the medium Re case reported by Moser et al. [4] for
smooth channel flows and by Ashrafian et al. [3] for a rod-roughened channel
flow. The computational domain was 8λ (= 6.4h) long and 4λ (= 3.2h) wide
and thus comprised eight rods on each wall. Cyclic (i.e. periodic) boundary
conditions were imposed in the streamwise and spanwise directions. A Cori-
olis force term was implemented in the Navier-Stokes solver to account for
system rotation. The mean velocity field and the turbulence statistics have
been deduced by first averaging in time and in the homogeneous spanwise
direction. Advantage was then taken of the streamwise periodicity over the
pitch length λ to further improve the quality of the sampling. In this paper we
report results of a marginally resolved DNS using 256×128×128 grid points.
A fully resolved simulation is underway. The rotation number Ro = 2Ωh/uτ

was set to 6.3 and data for a non-rotating case are included for comparative
purposes.
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Fig. 1. (a) flow configuration; (b) streamwise mean velocity profiles in anti-clockwise
rotation (note that for clarity profiles have been shifted to the right by 5).
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Fig. 2. Streamlines illustrating the separated flow regions in the vicinity of the
roughness elements. (a) non-rotating channel; (b) rotating channel: cyclonic side;
(c) rotating channel: anti-cyclonic side.

When the channel is rotated with a constant angular velocity Ω about a
spanwise axis, cyclonic and anti-cyclonic behaviours are observed along the
two channel walls, similarly as in the rotating smooth-walled channel studied
by Kristoffersen & Andersson [5]. The mean velocity profiles in figure 1(b)
show that U(Y ) exhibits a substantial region with a linearly increasing veloc-
ity. The slope is close to 2Ω, which implies that the absolute mean vorticity
is driven to zero, just as in the smooth-walled case [5]. The peak of U+ is
shifted towards the cyclonic side of the channel due to the rotation.
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Fig. 3. Instantaneous vortical structures near the lower wall: (a) non-rotating chan-
nel; (b) rotating channel. The flow direction is from left to right.

The mean velocity profiles also show that the near-wall behaviour is rather
different on the two sides. At the lower wall where the flow is anti-cyclonic, the
reverse flow within the cavity between two subsequent rods is modest, whereas
the reverse flow extends over the entire cavity near the top wall where the flow
is cyclonic. This rotational-induced asymmetry is even more distinctly seen
from the streamlines depicted in figure 2. This flow configuration corresponds
to k−type roughness in the absence of rotation since the flow separated from
one rod re-attaches at the bottom of the downstream cavity, as can be seen in
figure 2(a). The streamlines at the cyclonic side in figure 2(b), however, show
that the rotation has turned it into d−type roughness where the recirculating
flow fills the entire cavity and shelters the outer flow from the wall.

The explanation of this remarkable phenomenon may either be that cy-
clonic vortices are more stable than anti-cyclonic vortices, as convincingly
argued by Cambon et al. [6], or that the turbulent fluctuations are enhanced
near the anti-cyclonic side and dampened near the cyclonic side [5] and thus
promotes or reduces the spreading of the mixing-layer emanating from the
downstream corner of a rod.

The perspective views of the instantaneous vorticity field in figure 3 suggest
that the turbulent vorticity has been enhanced along the anti-cyclonic side
as compared to the non-rotating case. The Reynolds shear stress < uv >
and the mean turbulent kinetic energy k are shown in figure 4(a),4(b) and
figure 4(c),4(d), respectively at some representative streamwise locations. The
imposed system rotation has broken the conventional anti-symmetric variation
of the turbulent shear stress since < uv > is enhanced near the anti-cyclonic
side and reduced near the cyclonic side. The turbulence level, i.e. turbulent
kinetic energy, is similarly damped along the cyclonic wall as a result of the
interactions between the instantaneous Coriolis force and the instantaneous
velocity vector which nearly suppress the wall-normal velocity fluctuations.

The complex non-linear influences of the system rotation will be further
exploited by means of data from the refined simulation.
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Fig. 4. Reynolds shear stress < uv >+ and mean turbulent kinetic energy k+

profiles normalized by u2
τ at different X/λ positions.

This work has received support from The Research Council of Norway (Pro-

gramme for Supercomputing) through a grant of computing time and a research

fellowship for VDN.

References
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In real engineering applications involving wall-bounded boundary layer flow,
the roughness of the wall surface is an important design parameter because it
influences characteristics such as the transport of heat, mass and momentum.
Previous experimental studies on the effects of surface roughness have been
well reviewed by a number of researchers, for example, Jiménez [1]. Such re-
views support the wall similarity hypothesis of Townsend [2] which states that
the turbulent flow in the region outside the roughness sublayer is independent
of surface roughness at sufficiently large Reynolds numbers. There is evidence
that this is not always true (e.g. [3]) and, clearly, for sufficiently large surface
protuberances it must fail. Quite apart from the various geometrical parame-
ters defining the particular topology of the roughness, h/δ must have a role in
controlling the extent of the roughness influence. The issue of just how large
h/δ must be for the whole flow to be affected, (h/δ)c say, has not yet been
explicitly addressed but (h/δ)c may well depend on the roughness topology.
If Townsend’s [2] hypothesis is valid for small h/δ, then how large must h/δ
become before it becomes untenable and does the critical value of h/δ depend
on the geometrical characteristics of the roughness? The work presented here
is part of an ongoing effort to answer such questions.

Experiments were conducted in a wind tunnel and the surfaces consisted of
i) a regular diamond-patterned wire mesh with a total mesh height of about
3 mm and ii) an urban-type rough surface with 5 mm square elements of
random heights (mean and maximum heights of 5 and 8.6 mm, respectively)
arranged in a staggered pattern (Fig.1). Measurements of both mean velocity
and turbulence stresses were obtained using a two-component LDA system.

Fig. 2a shows the mean velocity profiles for both the surfaces plotted in
inner variables. The solid line is the smooth wall data from [4]. Both rough
surfaces display the usual linear log region shifted by ΔU+ below the smooth
profile. It is of note that at higher values of h/δ the roughness function is
higher for the urban-type surface at nominally the same unit Reynolds number
since the mean height is about 1.7 times that of the mesh surface. The urban
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Fig. 1. Rough surfaces used. (a) Mesh roughness. (b) Urban-type 5 mm cubes of
random height

Fig. 2. (a) Mean velocity profiles in wall coordinates, with the legend giving values
of (first) h/δ and Reθ. (b) Deficit velocity profiles, with the legend giving values of
θ/yo and Reθ. Solid lines are smooth-wall data from Fernholz [4].

and mesh surface produced roughness functions of ΔU+ = 11.8 and 9.84
at higher values of h/δ, whereas far downstream where h/δ is quite small
both the surfaces have about the same roughness function. The mean velocity
profiles in defect form for both surfaces are presented in Fig. 2b. These are
plotted using standard Rotta [5] scaling (i.e. normalising (y − d) by Δ, the
Clauser thickness). The zero plane displacement d has been subtracted from
the wall normal distance. The velocity defect profiles exhibit good collapse
in the overlap and outer regions of the boundary layer. Fig.2b supports a
universal velocity defect profile for rough and smooth walls and also lends
support to the boundary layer similarity hypothesis of Townsend [3]. It is
important to note that only at small fetches, corresponding to relatively large
values of h/δ, are there perhaps noticeable deviations. Castro [6] found that
the classical universality ideas adequately describe the mean flow profile of
fully-rough boundary layers independently of the nature of the roughness up
to surprisingly large h/δ. This conclusion was based on values of h/δ < 0.2,
but Fig. 2b shows that even at h/δ = 0.3 for the urban-type roughness case
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the universality of the velocity profile is still evident, giving further evidence
for the robustness of mean flow profiles to roughness type or size.

The normalised streamwise, u′2/u2
τ , and wall-normal, v′2/u2

τ , Reynolds
stress profiles for both roughness types are presented in Fig. 3. The differences
in the stresses from smooth-wall values are seen both near the surface and into
the outer region of the boundary layer. Reasonably good collapse of u′2/u2

τ

profiles are seen in the outer regions of the boundary layer at lower values
of h/δ. For both surfaces at the lowest fetches (where values of h/δ are the
largest) the changes in both u′2/u2

τ and v′2/u2
τ are the largest. Even though a

significant increase in u′2/u2
τ is evident at the lowest fetches, Fig. 3a does not

exhibit an obvious trend, whereas Fig. 3b clearly shows that v′2/u2
τ increases

with decreasing fetch, at least in the inner region. In the outer region, however,
noticeable differences from the smooth wall are still evident at higher values
of h/δ, with stresses here falling somewhat below smooth-wall values. Fig. 3b
also shows that at the highest values of h/δ for each roughness type, i.e. 0.30
for urban and 0.19 for mesh, the effects on v′2/u2

τ extend up to nearly the
same distance suggesting that (h/δ)c must be higher for the urban roughness.
The exact values of (h/δ)c are not possible to determine from these results;
further measurements are required at even larger values of h/δ. Note that for
the mesh surface with h/δ = 0.025 the augmentation in v′2/u2

τ is observed
up to a distance of (y-d)/Δ = 0.075 which is equivalent to about 12h. Above
this distance, the wall normal stress profile collapses fairly well on to the
smooth wall. Krogstad et al. [3] also noted a large increase in v′2/u2

τ well into
the outer region of the boundary layer. They attributed this to an increase
in the inclination angle of the large-scale structures, which tended to make
turbulence in the outer region more isotropic. They observed differences up
to y/δ = 0.7 for the mesh surface, whereas in our case the differences are seen
up to y/δ = 0.27 only.

Fig. 3. Streamwise (a) and wall normal (b) Reynolds stresses, with the legend giving
values of h/δ. Solid lines are smooth-wall data from Fernholz [4].
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Fig. 4. Contours of time-averaged spatial correlation, Ruu, of the axial velocity
fluctuations. (a) urban-type roughness, δ = 120mm; (b) smooth wall, δ = 80mm.
Axis scales are in mm, origins are arbitrary, but the reference location – i.e. the
centre of the ’average’ structure – is y = 0.7δ in both cases. The height and extent
of the structure, as determined from the Ruu = 0.6 contour, are shown as fractions
of δ.

Figure 4 shows some structural information for a smooth wall and the ur-
ban surface (h/δ = 0.04), obtained using PIV techniques, in the outer region
of the flow. Apart from the overall scale, which is larger over the rough surface
because of the larger δ, the time-averaged structure looks similar in the two
cases. We are currently assessing the extent to which structure inclinations
depend on scale, but it is clear that at least for this ‘overall-averaged’ struc-
ture there is little significant difference between the two cases, despite the
differences in normal stresses.

We conclude that the velocity defect profiles are independent of roughness
type and collapse fairly satisfactorily up to surprisingly large values of h/δ.
Turbulence data, however, provide evidence that the roughness effects are not
just confined to the near-wall region but the outer region is also affected,
increasingly so as h/δ increases. At the lowest measured values of h/δ, the
differences in wall normal Reynolds stressses extend well outside the roughness
sub-layer, but in the outer regions of the boundary layer the stress profiles
for the smooth and rough surfaces collapse and at least some features of the
eddy structures are very similar.
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DNS of vibrating grid turbulence
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Direct numerical simulation of the turbulence generated at a grid vibrating
normally to itself using spectral code [1] is presented. Due to zero mean shear
there is no production of turbulence apart from the grid. Action of the grid
is mimiced by the function implemented in the middle of the simulation box:

fi(x1, x2) =
n2S

2

{∣∣∣∣δi34 cos
(

2π
M
x1

)
cos

(
2π
M
x2

)∣∣∣∣ sin(nt) +
βi

4

}
,

where M is the mesh size, S/2 – amplitude or stroke of the grid, n – fre-
quency. βi are random numbers with uniform distribution. The simulations
were performed for the following parameters: x1, x2 ∈ [−π;π], x3 ∈ [−2π; 2π];
Re = nS2/ν = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.
The time evolution of the mean depth
of a turbulent/non-turbulent interface
was obtained in the paper [2]: H(t) =
A(t− t0)m +B, where A,m,B are con-
stants. One of the aims of the presented
DNS was to validate this law and find
the values of the constants. Fig. 1
shows H(t) in the logarithmic scaling
with constants: A = 1.7 10−3; B =
0.5 10−2; t0 = 0; m = 0.4. Numerics
shows good agreement with the theo-
retical [2] and experimental [3] results.

H

t

Fig. 1 H(t): theory; DNS.
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Step onset from an initial uniform distribution
of turbulent kinetic energy.

D. Tordella and M. Iovieno

Diasp, Politecnico di Torino, 10129 Torino, Italy. michele.iovieno@polito.it

1 Introduction

We consider the time decay of a field with an initially uniform turbulent energy
distribution where the macroscale has been slightly varied in two adiacent
regions. The flow is studied by means of Direct Numeical Simulation carried
out in a parallepiped, see fig. 1 b. The interesting observation is that the
time evolution of the field shows the onset of a step of turbulent energy. It
is sufficient to introduce a slight dishomogeneity associated to the integral
scale that the nonlinear interaction is able to induce a dishomogeneity also in
the kinetic energy. We present here a set of results from experiments where
we actually follow the temporal decay of two isotropic turbulences (of initial
equal turbulent kinetic energy, but of different integral scales) that macth over
a thin region Δ(t). The two isotropic regions are characterized by a different
shape of the spectrum in the low wavenumber range, as shown in figure 1, see
, a thing which was obtained by means of a high-pass filter (see [5]).

2 Results and discussion

The present simulations are performed on a parallelepiped domain with peri-
odic boundary conditions in all directions, see the scheme in figure 1. The
Navier-Stokes equations are solved by means of a fully dealiased Fourier-
Galerkin pseudospectral method with explicit fourth order time integration
[7]. The initial conditions are obtained by matching two fields, coming from
simulations of homogeneous and isotropic turbulence, over a thin region by
means of a smoothing function [5]. The two fields are characterized by a
different shape of the spectrum in the low wavenumber range, as shown in
figure 1. The fields with a steeper spectrum in the low wave number range,
and thus a smaller integral scale, have been obtained by the application of a
high-pass filter to a same reference field, which produces a kα slope with α
between 2 and 4. As a conseuence, the integral scales of the two interacting
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isotropic turbulences are different and a scale gradient is present across the
initial matching layer. The Taylor microscale Reynolds number Reλ is 150.
The simulations show that the flows with a smaller integral scale decay faster
and have higher decay exponents, that range from 1.1 up to 1.65. The smaller
the macroscale, the higher is the exponent value. These different decay rates
are in agreement with previous literature [1, 2, 3, 4] which suggests that the
shape of the spectrum at low wavenumbers determines the decay rate at least
for low to moderate Reynolds numbers.

k

E(
k)

/E

100 101 10210-7

10-6

10-5

10-4

10-3

10-2

10-1

reference turbulence, n=-1.1
l2 = l1/1.5, n=-1.3
l2 = l1/2.1, n=-1.45
l2 = l1/2.8, n=-1.65

k4

k2
(a)

x

(b)

Periodic b.c.

E1(t)

E2(t)

Region 1

Region 2

E(x, t)

Δ(t)

t

Fig. 1. (a) Initial three-dimensional spectra E(k) normalized with the initial energy
E. Continuous line: homogeneous region (Reλ = 150) with the larger scale �1; other
lines: spectra of the other fields to be mixed, with integral scale �2 < �1; n is the
decay exponent found in the simulation. Reference k2 and k4 slopes are also shown.
(b) Scheme of the flow and of the kinetic energy distribution during the decay.

Another interesting point is that, due to the different decay, an energy
gradient, always concurrent to the integral scale gradient, soon emerges during
the decay. It is maximum after about one eddy-turnover time 
/E1/2, then it
is gradually reduced while the ratio of kinetic energy between the two regions
still increases, see fig. 2 (a, c). The thickness of the induced kinetic energy layer
increases while the two flow interact, see fig. 2 (b). The scale and energy mixing
layer becomes immediately intermittent and the intermittency level is close
to the that found in the shearless mixings with imposed gradients discussed
in ref. [5, 6]. The instantaneous level of velocity skewness and kurtosis is
comparable with the one which can be seen in the shearless mixings with
higher energy ratios but uniform scale, see fig. 3 (a). The departure from the
almost gaussian initial conditions always follows the same path, see figure
3(b), which is shared not only by the present mixings but also by the mixings
with an imposed energy gradient.Another common aspect is the anisotropy
of the velocity moments in the mixing layer: for the second order moments
deviations of about a 10% of the isotropic value of 1/3 are visible, while
for the third order moments about half of the total kinetic energy flow was
contributed by the velocity fluctuations in the direction of the mixing. This
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property seems related to the behaviour of the pressure-velocity correlations
in absense of shear [6].
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Fig. 2. (a) Time evolution of energy ratio E1/E2, where E1 and E2 are the energy
of the homogeneous regions with the largest and smallest macroscale; τ is the initial
eddy turnover time. (b) Mixing layer thickness, conventionally defined as the dis-
tance between the points with normalized energy (E(x, t) − E2(t))/(E1(t) − E2(t))
equal to 0.75 and 0.25 [5, 6]. (c) Time evolution of the energy gradient.
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Fig. 3. (a) Maximum of the velocity skewness (filled symbols) and kurtosis (empty
symbols) in the mixing layer. (b) Comparison of the intermittency level with a
mixing with an initially uniform integral scale, each point corresponds to one time
instant.
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Fractal-generated turbulent scaling laws from a
new scaling group of the multi-point

correlation equation
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Investigating the multi-point correlation (MPC) equations for the velocity
and pressure fluctuations in the limit of homogeneous turbulence a new scal-
ing symmetry has been discovered. Interesting enought this property is not
shared with the Euler or Navier-Stokes equations from which the MPC equa-
tions have orginally emerged. This was first observed for parallel wall-bounded
shear flows in [1]. Presently using this extended set of symmetry groups a much
wider class of invariant solutions or turbulent scaling laws is derived for the
decay of homogeneous-isotropic turbulence which is in stark contrast to the
classical power law decay. In particular, we show that the experimentally ob-
served specific scaling properties of fractal-generated turbulence i.e. a constant
integral and Taylor length scale and the exponential decay of the turbulent
kinetic energy (see [2, 3]) fall into this new class of solutions. The latter new
scaling law may have been the first clear indication towards the existence of
the extended statistical scaling group.

1 Multi-point equation of homogeneous turbulence

We investigate the symmetry structure of the infinite set of multi-point corre-
lation (MPC) equations [4] for the velocity and pressure fluctuations u(x, t)
and p(x, t) respectively in the limit of homogeneous turbulence

∂Ri{n+1}

∂t
+

n∑
l=1

⎛⎝−∂Pi{n}[0]

∂rm(l)

∣∣∣∣∣
[m(l) �→i]

+
∂Pi{n}[l]

∂ri(l)

⎞⎠− ν

n∑
l=1

n∑
m=1

(
∂2Ri{n+1}

∂rk(m)∂rk(l)

+
∂2Ri{n+1}

∂rk(l)∂rk(l)

)
+

n∑
l=1

(
−∂Ri{n+2}[i(n+1) �→k(l)][x(n+1) �→ x]

∂rk(l)

+
∂Ri{n+2}[i(n+1) �→k(l)][x(n+1) �→ r(l)]

∂rk(l)

)
= 0, for n = 1 . . .∞ . (1)
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The system (1) is extended by its corresponding continuity equations (see [4]).
In the latter equations the MPC tensor is defined as

Ri{n+1} = Ri(0)i(1)...i(n) = ui(0)(x(0)) · . . . · ui(n)(x(n)) , (2)

and the four variations of it appearing in (1) are defined accordingly [4].

2 Invariant solutions and turbulent decay scaling laws

In the limit of |r| � ηK , i.e. for length scales beyond the viscosity dominated
Kolmogorov scale [4], we find a new scaling symmetry Gs3 of the system (1).
The system also admits the classical scaling groups Gs1 and Gs2 representing
the independent scaling of space and time

Gs1 : t̃ = t, r̃i(l) = ri(l)e
a1 , R̃ij = Rije

2a1 , R̃ijk = Rijke3a1 , · · · , (3)

Gs2 : t̃ = ea2t, r̃i(l) = ri(l) , R̃ij = Rije
−2a2 , R̃ijk = Rijke−3a2 , · · · , (4)

Gs3 : t̃ = t, r̃i(l) = ri(l) , R̃ij = Rije
a3 , R̃ijk = Rijkea3 , · · · . (5)

It is important to note that Gs3 is clearly distinct from the classical scal-
ing groups in fluid mechanics. This property is not shared with the Euler
or Navier-Stokes equations from which the MPC equations have originally
emerged. Hence it is a purely statistical property of the equations (1).

Beside the above symmetries the system (1) admits the classical symmetry
translation in time

Gt : t̃ = t + a4, r̃i(l) = ri(l) , R̃ij = Rij , R̃ijk = Rijk, · · · . (6)

Classical theories on decaying turbulence such as Birkhoff’s and Loitsyan-
sky’s integrals entirely rely on the groups Gs1 and Gs2. There these two
groups give rise to a one-parameter family of similarity solutions with power
law behavior.

Presently using the above extended set of symmetry groups (3)-(6) a much
wider class of invariant solutions or turbulent scaling laws is derived. For this
we need to employ the concept of invariant solutions, usually called similarity
solution. This includes the three ideas of (i) infinitesimal transformations, (ii)
condition of invariance of a differential equation and (iii) the invariant solution
(for details see i.e. [5] or [4]).

For the present case the infinite set of equations (1) leads to the invariant
surface condition

dt

a2t + a4
=

dr(i)

a1r(i)
=

dR(ij)

[2(a1 − a2) + a3]R(ij)
= · · · (7)

with the group parameters a1-a4 descending from the groups (3)-(6).
It is important to note that any solution for an arbitrary set of group

parameters of the latter system allows for an invariant solution of (1).
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Firstly we consider the case without (5) i.e. a3 = 0. Further assuming
a1 �= a2 and a4 �= 0 we find the following invariants of the system (7)

r̂(1) =
r(1)

(t + t0)n
, Rij(r(1), t) = (t + t0)−mR̂ij

(
r̂(1)

)
, . . . (8)

with n = a1/a2, t0 = a4/a2 and m = 2(1− a1/a2). The variables r̂(1) and R̂ij

are the constants of integration of (7) and are to be taken as new independent
and dependent variables of the system (1) leading to a similarity reduction.
Therein m = 6/5, n = 2/5 and m = 10/7, n = 2/7 respectively correspond to
Birkhoff’s and Loitsiansky’s integrals.

For the present purpose of primarily understanding the scaling behaviour
of fractal generated turbulence we need to consider both the breaking of the
two classical scaling groups due to external symmetry breaking quantities.
Hence, we set a1 = a2 = 0. Further, for the present case a non-zero a3 related
to the new scaling group is needed in order to allow for the construction of
an invariant solution at all. Hence, employing the latter into (7) we observe
two important conclusions.

Following the methodology above this leads to a similarity solution for
the infinite set of MPC tensors (1) where the first term in the row, i.e. the
two-point tensor, has the following form

r̂(1) = r(1) , Rij(r(1), t) = e−t/t0Rij

(
r̂(1)

)
, . . . (9)

where Rij is the similarity variable of the reduced set of MPC equations
independent of time and t0 = −a4/a3.

We introduce the Reynolds stress tensor uiuj and the integral length scale
Li as functionals of Rij

uiuj = Rij(r = 0, t) and Li =
1

2K

∫
Rkk(r) dri . (10)

Employing these definitions and implementing (8) and (9) into the latter
we respectively obtain the rather different turbulent scaling laws

uiuj ∼ (t + t0)−m , Li ∼ (t + t0)n (11)

and
uiuj ∼ e−t/t0 , Li ∼ const. (12)

where the first one is the classical algebraic decay law while the second one
corresponds to a new exponential decay law.

In [2] it was first reported that fractal-generated turbulence in a wind
tunnel experiment may lead to an exponential decay law for the turbulent
kinetic energy and a constant integral length scale according to (12) and it was
more fully consolidated in [3]. A variety of different fractal grids were employed
for the experiment. The key parameter therein is tr the thickness ratio defined
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Fig. 1. ln[(U/u)2] and Lu as functions of x (and x/xpeak) for all five space-filling
fractal square grids. In particular for large tr the turbulence decay curves asymptote
to an exponential in agreement with equation (12). Accordingly the integral scales
approach a constant downstream of the grid. tr defines the scaling factor between
the largest to smallest bar thicknesses. All results are taken from [2].

as the scaling factor between the largest to smallest bar thicknesses. The data
for the turbulent kinetic energy and the integral length scale showing both
the behaviour according to (12) are given in figure 1.

We observe that only the higher thickness ratios allow for the establish-
ment of an exponential decay law i.e. beginning with tr = 8.5 and higher.
Second, the development of the exponential decay downstream of the grid
becomes faster for increasing thickness ratios and is the largest for tr = 17.

The physical interpretation of the latter results and in particular the fact
that for large tr the new scaling laws are established faster are due to the fact
that a broad bandwidth of external scales have been imposed on the flow. As
a result we observe a symmetry breaking of a1 and a2 i.e. a1 = a2 = 0 which
directly leads to the given multi-point scaling law (9) or the related one-point
scaling law (12).
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Casimir Cascades in Two-Dimensional

Turbulence

John C. Bowman
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Summary. The Kraichnan–Leith–Batchelor theory of two-dimensional turbulence
is based on the fact that the nonlinear terms of the two-dimensional Navier–Stokes
equation conserve both energy and enstrophy. In an infinite domain and in the limit
of infinite Reynolds number, the net energy and enstrophy transfers out of a low-
wavenumber forcing region must consequently be independent of wavenumber. The
resulting dual cascade of energy to larger scales and enstrophy to smaller scales is
readily observed in numerical simulations of two-dimensional turbulence in a finite
domain.

While it is well known that the nonlinearity also conserves the global integral
of any arbitrary C1 function of the scalar vorticity field, the direction of transfer
of these quantities in wavenumber space remains unclear. Numerical investigations
of this problem are hampered by the fact that pseudospectral simulations, which
necessarily truncate the wavenumber domain, do not conserve these higher-order
Casimir invariants.

A fundamental question is whether these invariants also play an underlying role
in the turbulent cascade, in addition to the rugged quadratic (energy and enstrophy)
invariants, which do survive spectral truncation. Polyakov’s minimal conformal field
theory model [1] has suggested that the higher-order Casimir invariants cascade to
large scales, while Eyink [2] suggests that they might instead cascade to small scales.

In this work we develop estimates for the degree of nonconservation of the
Casimir invariants and demonstrate, using sufficiently well-resolved simulations, that
the fourth power of the vorticity cascades to small scales.

1 Two-Dimensional Turbulence

We begin with the 2D incompressible Navier–Stokes equation for the vorticity

ω
.
= ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f, (1)

where the constant ν is the kinematic viscosity and f is an external stirring
force. In the inviscid unforced limit ν = f = 0, both the energy E

.
= 1

2

∫
u2 dx

and enstrophy Z
.
= 1

2

∫
ω2 dx are conserved. 
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However, as is well known, inviscid unforced 2D turbulence has uncountably
many other Casimir invariants: any continuously differentiable function g of
the (scalar) vorticity is conserved by the nonlinearity:

d

dt

∫
g(ω) dx =

∫
g′(ω)

∂ω

∂t
dx = −

∫
g′(ω)u·∇ω dx

= −
∫

u·∇g(ω) dx =

∫
g(ω)∇·u dx = 0.

Do these invariants also play a fundamental role in the turbulent dynamics,
in addition to the quadratic (energy and enstrophy) invariants? In particular,
do they exhibit cascades? In the theoretical literature, this remains an open
question: Polyakov [1] has predicted that the higher-order Casimir invariants
cascade to large scales, while Eyink [2] suggests that they might cascade to
small scales. What is certain is that only the quadratic invariants are rugged ,
meaning that their conservation, being a consequence of detailed triadic
balance, survives high-wavenumber truncation. To see this, let us express (1)
in Fourier space:

∂ωk

∂t
+ νk2ωk =

∑
p,q

εkpq

q2
ω∗

p
ω∗

q
+ fk, (2)

where εkpq

.
= (ẑ·p×q) δ(k+p+q) is antisymmetric under interchange of any

two indices. When ν = fk = 0, the enstrophy is readily seen to be conserved:

d

dt

∑
k

|ωk|2 =
∑
k,p,q

εkpq

q2
ω∗

k
ω∗

p
ω∗

q
= 0.

In the absence of high-wavenumber truncation, the invariance of Z3
.
=
∫
ω3 dx

also arises from a product of antisymmetric and symmetric tensors:

0 =
∑
k,r,s

[∑
p,q

εkpq

q2
ω∗

p
ω∗

q
ω∗

r
ω∗

s
+ 2 other similar terms

]
.

However, the absence of an explicit ωk in the first term means that setting
ω� = 0 for � > K breaks the symmetry in the summations. Nevertheless, since
the missing terms involve ωp and ωq for p and q higher than the truncation
wavenumber K, one might expect that a very well-resolved simulation would
lead to almost exact invariance of Z3. Indeed, we will see that this is the case.

In terms of the nonlinearity Sk

.
=
∑

p,q

εkpq

q2 ω∗
p
ω∗

q
, the enstrophy spectrum

Z(k) is seen to satisfy a balance equation of the form

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) +G(k),

where T (k) and G(k) are the angular averages of Re 〈Skω
∗

k
〉 and Re 〈fkω

∗

k
〉,

respectively. It is convenient to define the nonlinear enstrophy transfer func-

tion Π(k), which measures the cumulative nonlinear transfer of enstrophy
into [k,∞):
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Π(k) = 2

∫
∞

k

T (p) dp.

On integrating from k to ∞, we find

d

dt

∫
∞

k

Z(p) dp = Π(k) − ε(k),

where ε(k)
.
= 2ν

∫
∞

k

p2Z(p) dp−
∫
∞

k

G(p) dp is the total enstrophy transfer,

via dissipation and forcing, out of wavenumbers higher than k. A positive
(negative) value for Π(k) represents a flow of enstrophy to wavenumbers
higher (lower) than k. When ν = fk = 0 enstrophy conservation implies
that

0 =
d

dt

∫
∞

0

Z(p) dp = 2

∫
∞

0

T (p) dp,

so that

Π(k) = 2

∫
∞

k

T (p) dp = −2

∫ k

0

T (p) dp. (3)

We note that Π(0) = Π(∞) = 0. Moreover, in a steady state, Π(k) = ε(k);
this provides an excellent numerical diagnostic for validating a steady state.

The cumulative nonlinear enstrophy transferΠ3 for the globally integrated
invariant Z3 =

∫
ω3 dx can be defined similarly and measured numerically.

However, we found no systematic cascade: Z3 appears to slosh back and forth
between the large and small scales. In hindsight, this should be expected
since ω3 is not a sign-definite quantity.

Of much more interest is the determination from a pseudospectral code of
the cascade direction of a sign-definite quantity like the fourth-order Casimir
invariant Z4

.
=
∫
ω4 dx. If we Fourier decompose Z4 = N3

∑
j
ω4(xj) in terms

of N spatial collocation points xj , we find

Z4 =
∑
k,p

ωk ωp ωq ω−k−p−q.

In terms of the nonlinear source term Sk, the evolution of Z4 follows

d

dt
Z4 =

∑
k

[
Sk

∑
p

ωp ωq ω−k−p−q + 3ωk

∑
p

Sp ωq ω−k−p−q

]

= N2
∑

k

⎡⎣Sk

∑
j

ω3(xj)e
2πij·k/N + 3ωk

∑
j

S(xj)ω
2(xj)e

2πij·k/N

⎤⎦
.
=
∑

k

T4(k). (4)

To determine the cascade direction of Z4, we considered a double-periodic
pseudospectral simulation forced at wavenumber 2, with the dissipation
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Fig. 1. Downscale nonlinear transfer Π4 of Z4 averaged over t ∈ [200, 450].

term νk2 replaced by νk2H(k− kH), where H is the Heaviside step function.
A positive cutoff kH mimics a pristine inertial range, à la Kolmogorov. In
Fig. 1, we see that the time-averaged nonlinear transfer Π4 of Z4 exhibits the
clear signature of a downward cascade (positive Π4 in the enstrophy inertial
range) at small scales. As a check that sufficient numerical resolution has
been used to resolve the contribution of the nonlinear terms to the evolution
of Z4, we note that Π(0) = Π(∞) = 0, as desired. An important point
to emphasize in computing Z4 is that (4) requires the computation of a
double convolution, in terms of the Fourier transform of the cubic quantity ω3.
Correctly dealiasing therefore requires a 2/4 zero padding rule (instead of the
usual 2/3 rule for a quadratic convolution). This means that even though
a 2048 × 2048 pseudospectral simulation was used, the maximum physical
wavenumber retained in each direction was 512.

We also point out an important distinction between nonlinear enstrophy
transfer and flux. The mean rate of enstrophy transfer to [k,∞) is given by (3).
In a steady state, Π(k) will thus trivially be constant throughout an inertial
range. In contrast, the enstrophy flux through a wavenumber k, as considered
by Kolmogorov, is the amount of enstrophy transferred to small scales via

triad interactions involving mode k. Independence of the flux on k is highly
nontrivial, based on the conjectured self-similarity of the inertial range.

Even though higher-order Casimir invariants do not survive wavenumber
truncation, it is appears possible, with sufficiently well-resolved simulations,
to check whether they cascade to large or small scales. In this work, we
computed the transfer function of the globally integrated ω4 inviscid invariant
and provided strong numerical evidence supporting Eyink’s conjecture that
in the enstrophy inertial range there is a direct cascade of (positive-definite)
high-order invariants to small scales.
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As is well known Fermi, Pasta and Ulam [1] studied the energy redistribution
between the linear modes of a one-dimensional chain of particles connected via
weakly nonlinear springs. To their surprise no apparent tendency to equipar-
tition of energy was observed in their numerical experiments. Much more
knowledge is now available about this problem (see, for instance, the recent
book by Gallavotti [2] or the review by Cambell et al. [3] in the focus issue
on the FPU-problem in the journal Chaos). According to more recent studies
an exponential localization of the energy distribution in normal mode space
is observed on a very short time scale τ1. It possesses a core with a few modes
that are strongly excited, and a tail of exponentially weakly excited modes.
Below an energy threshold there is a slow pumping of energy from the core
of the distribution into its tail. This process ultimately brings the system to
equipartition, but on a much larger time scale τ2 (τ2 >> τ1).

In this paper we present the results of an investigation of another system of
non-linearly coupled normal modes to find out whether results similar to the
FPU-results are found. This system is truncated, inviscid turbulence. To that
purpose we carried out direct numerical simulations of the turbulent flow of
an inviscid fluid inside a 3-D box. Only a limited number of modes was taken
into account. The purpose of our calculations was to start with energy in
one normal mode and then study the development of the energy spectrum as
function of time with special interest for the influence of the amount of initial
energy on the development, to see whether results were found similar to the
FPU-problem. The equation of motion describing the flow inside the box is
given by

∂v

∂t
+ (v · ∇)v = − 1

ρf

∇p , (1)

in which v is the fluid velocity, p the pressure, ρf the fluid density and t
the time. We assumed periodic boundary conditions at the walls of the box.
Equation (1) was solved by means of direct numerical simulation (DNS). The
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velocity and pressure field is represented as a truncated Fourier series. Spatial
derivatives were calculated in Fourier space. The non-linear term has been
evaluated in physical space. The time integration was performed with a stan-
dard second-order Adams-Basforth method.

We present now the results for the influence of decreasing energy E0 of the
initial mode on the spectrum development while keeping the time scale T0 for
this mode constant. As velocity scale of the initial mode is chosen V0 = E

1/2

0
.

So the length scale for the mode is given by L0 = V0T0 = E
1/2

0
T0, which

means that this length scale decreases with decreasing energy of the initial
mode. We keep the length scale of the total system constant. This was also the
case for the FPU-problem, i.e. the distance between the two walls remained
the same when the amplitude of the excitation was changed. The aim of our
study is to simulate as much as possible for truncated inviscid turbulence the
conditions for the FPU problem and then investigate the possible similarities.

We present in Fig. 1 the spectral development for an initial spectrum with
one (arbitrarily chosen) excited mode. Then we decrease the initial energy E0

by a factor of 4, while decreasing the length scale L0 of the initial mode by
a factor of 2 and calculate again the spectral development. We repeat such
calculation, but this time by decreasing the initial energy by a factor of 25
and the length scale of the initial mode by a factor of 5. The results are
respectively given in Fig. 2 and Fig. 3, in which τΛ is the integral time scale
(chosen equal to T0). It can be seen from the figures, that with decreasing
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Fig. 1. Spectrum E1 as a function of wave number k1 at six values of t/τΛ for
the case of one excited initial mode. k1 is the component of the wave vector in the
x1-direction. E1(k1, t) = 1

2
v1(k1, t)

2 in which v1(k1, t) is the velocity component in
the x1-direction.

energy the equipartition of enery is increasingly delayed. For a decrease in
energy of a factor 4 the equipartition takes about a factor 3 more time than
for the base case shown in Fig. 1 and for a decrease in energy of a factor of
25 equipartition is already delayed by a factor of 10. At first a few modes are
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Fig. 2. Spectrum E1 as a function of wave number k1 at six values of t/τΛ for the
case of one excited initial mode. The initial energy is a factor 4 smaller than for the
case shown in Fig. 1 and the length scale of the initial mode is a factor of 2 smaller.
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Fig. 3. Spectrum E1 as a function of wave number k1 at six values of t/τΛ for the
case of one excited initial mode. The initial energy is a factor 25 smaller than for the
case shown in Fig. 1 and the length scale of the initial mode is a factor of 5 smaller.

generated and the change in energy of these modes continues for a relatively
long time. Then the remaining modes suddenly appear and equipartition of
energy is rather quickly established. This can even better be seen in Fig. 4,
in which the results of Fig. 3 are plotted with a log scale for the energy
axis. For the results shown in Fig. 2 and Fig. 3 we have made an estimate
of the time scale τ1 for the initial localization of the energy distribution with
a few excited modes in normal mode space and for the time scale τ2 for
reaching equipartition. For Fig. 2 the ratio τ2/τ1 is approximately equal to
15, whereas for Fig. 3 the ratio τ2/τ1 is approximately 50. As the time scale
τ1 is nearly the same for the two cases, this means that the time scale τ2
for reaching equipartition is strongly increasing with decreasing initial energy.
This is in qualitative accordance with the results for the FPU problem. FPU
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Fig. 4. Spectrum E1 as a function of wave number k1 as shown in Fig. 3, but now
with a log scale for the energy axis. As can be seen the spectrum possesses a few
modes that are strongly excited and there is a rather flat spectrum of weakly excited
modes. Only rather late in the spectral development they increase in strength and
equipartition is established.

observed recurrences during the development of the spectrum of almost all
the energy into the initially excited mode. Such surprising recurrences were
not observed by us for the turbulence problem. However, recurrence is not
a universal feature of the FPU problem. If the energy in the FPU chain is
reduced beyond the values originally used by FPU, recurrence will become
partial, with less and less energy flowing back and forth.

The conclusion is that although the FPU-problem deals with a different
physical problem (dynamics of a 1-D chain of particles connected via springs)
than our problem (dynamics of an inviscid fluid flow inside a 3-D box), the
influence of a decrease in the energy of the system on the delay in the devel-
opment of the energy spectrum is rather similar for both problems. Details
are given by Ooms and Boersma [4]
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The fragmentation equation describes the evolution in time of particles sys-
tem, when particles break up. The turbulent eddy decay is an example of
such fragmentation. A collection of tangled trajectories of fluid particle, asso-
ciated with a turbulent concentrated structure, resembles a “wool ball” of a
typical scale r. Once a fluid particle is subjected to an intense acceleration,
a new “wool ball” is formed, containing a part of total energy of flow. The
population of newly appeared “wool balls” is assumed to be governed by the
fragmentation equation, requiring conservation of the total kinetic energy in-
jected on large scales. The question raised is how this energy is distributed in
statistical ensemble of such “wool balls”. In this paper, the renormalized form
of the fragmentation equation is obtained for arbitrary functions for the spec-
trum and for frequency of fragmentation. If the frequency of fragmentation is
a power function of size, a simple exact solution to this equation is obtained,
providing for stationary flux of energy, from large scales towards zero scales. A
simple stochastic generation of random field with presumed fractal properties
is illustrated. Also, presuming the spectrum of breakup and its frequency in
the form of power functions, the exact self-similar solution is obtained on the
basis of specifically introduced scaling transformations. Here the specific case
is considered, when the breakup frequency is decreasing with decreasing of
r. This work contributes to the group-theoretical description of statistically
homogeneous turbulence, developed recently by authors in [1, 2, 3].

1. The fragmentation equation has the following form:

∂F (r)
∂t

=
(
q0Î

p
+
− 1

)
ν(r)F (r); Îp

+
F =

∫
1

0

dα

α
Q(α)F

( r
α

)
;
∫

1

0

Q(α)dα = 1

(1)
where F (r) is the number distribution function; Q(α) is the probability den-
sity function of breakup (spectrum of fragmentation), ν(r) is the breakup
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frequency, q0
breakup.

2. The energy distribution function. With evolution in time, the total en-
ergy is conserved and not the total number of statistical particles. This mo-
tivates to introduce the energy distribution function f(r), instead of using
the number distribution function F (r); the norm of the former one will not
change. The relation between both functions, f(r) = rβF (r), leads to the
following expression: q0 = 1

〈αβ〉
Q

, and then to the following fragmentation
equation:

∂f(r)
∂t

=
(
Î+ − 1

)
ν(r)f(r) ; Î+f =

∫
1

0

dα

α
q(α)f

( r
α

)
(2)

q(α) =
αβQ(α)
〈αβ〉

Q

;
∫

1

0

q(α)dα = 1 (3)

Note that in the case of the constant breakup frequency, the invariance of (2)
to the Kolmogorovs scaling transformation (r → γ3/2r; t → γt) requires
β = −2/3.

3. Renormalized form of the fragmentation equation and its exact solution
for an arbitrary fragmentation spectrum q(α). The fragmentation term in (2)
represents the difference between two terms; each of them can be very large,
and even infinite (if to give up the normalization requirement of spectrum
q(α)). In order to overcome this problem, the renormalization of (2) can be
obtained, describing evolution of an infinite system of particles in the form of
continuity equation:

∂f(r)
∂t

=
∂

∂r
J (4)

where energy flux in the r-space is given by the following expression:

J = r [〈− lnα〉 +
〈(− lnα)2〉

2!
σ̂ + ...

+
〈(− lnα)n−1〉

(n− 1)!
σ̂n−2 +

〈(− lnα)n〉
n!

σ̂n−1Î
(n)

+

]
ν(r)f(r) (5)

Here

σ̂ =
∂

∂r
r ; 〈(− lnα)n〉 =

∫
1

0

(lnα)ndq(α)dα ; Î
(n)

+
=

∫
1

0

dαqn(α)e− ln ασ̂

(6)

qn(α) =
n

〈(− lnα)n〉

∫
1

0

q(αβ)(− lnβ)n−1dβ ;
∫

1

0

qn(α)dα = 1 (7)

The number of terms in (5) can be chosen arbitrary (n = 1, 2, 3, ...). If n = 1,
the renormalized fragmentation equation has the following form:

∂f

∂t
=

∂

∂r
r〈− lnα〉Î(1)

+
νf ; q1(α) =

1
〈− lnα〉

∫
1

0

q(αβ)dβ (8)

is the mean number of new statistical particles produced by one
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In the case when ν(r) = crμ, a simple solution to this equation, verifies to be
a power (scaling symmetry) distribution:

f(r, t) =
j0

〈− lnα〉r
−(μ+1) + t j0δ(r) ; 0 ≤ r <∞ (9)

zero size (zero energy), this solution provides for stationary energy flux j0
(sec−1), from infinity towards zero size.

4. Stochastic simulation of random field with presumed fractal properties.
We sample an ensemble of stochastic particles from a power function r−(μ+1);
their sum represents the total energy. Additionally to the scaling symmetry,
we impose the translational symmetry on the random position of each particle
(thereby conserving the total energy): once a sampled particle walks out from
the box of presumed size L (|r| > L), it is reset to the box in the position
with its period L. In fig. 1, an example of results of such a simulation is given
for four identical sampling procedure but with four different values of power
μ = 0., 0.5, 1.5, 2.5. A strong clustering of particles in the phase space is seen
with increasing power μ.

4. Self-similar solutions. It is also possible to construct the exact self-
similar solution to eq. (8). To this end, we define the scaling transformation
with parameter η:

φ(r, t) =
1

|η|1/μ
f

(
r

|η|1/μ
, t

)
= e−

1
μ ln |η|σ̂f(r, t) (10)

and, respectively, its inverse transformation:

f(r, t) = |η|1/μφ
(
|η|1/μ, t

)
= e

1
μ ln |η|σ̂φ(r, t) (11)

where η is chosen to be linear function of time, η(t) = 1 + τ−1t, τ is some
positive or negative constant. When μ > 0, the duration of relaxation process
is infinite, and only positive value of parameter τ is considered. Then η(t) is
positive, and |η|

η = 1. In this case, using (10)-(11) for transformation of (8),
the stationary solution φ(r), is governed by the following equation:

∂

∂r
r

[
− 1
μτ

+ 〈− lnα〉Î(1)

+
ν

]
φ(r) = 0 (12)

When the spectrum of breakup q(α) is a power function, q(α) = (γ+1)αγ , one
gets: Î(1)

+
= Î+, 〈− lnα〉 = (γ+1)−1, and, consequently, the exact solution (12)

can be found. This solution verifies to be as follows:

φ(r) = const rγe−γcrμ

(13)

To this solution, according to (11), corresponds the self-similar solution to
starting equations, equivalently, (2) or (8):

f(r, t) = const (1 + τ−1t)
γ+1

μ rγe−γc(1+τ−1t)rμ

(14)

The principal point here is that with accumulation of statistical particles of
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Fig. 1. Sampling from r−(μ+1) along with periodic conditions; combination of
scaling and translation symmetries; μ = 0., 0.5, 1.5, 2.5; the total number of sampled
particules is the same. A strong clustering of particles in the phase space is seen with
increasing power μ.
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The transfer of energy from large to small scales in turbulent flows rests on
the properties of the velocity gradient tensor. Understanding the properties of
the velocity gradient tensor, mab = ∂aub, as well as the dependence on scale
of m coarse-grained over a scale r : Mab = (1/V )

∫
V mabd

3x, is one of the
most important modelling issues in turbulence, in particular in the context of
LES.

The lagrangian approach provides a natural way to address the problem
of evolution of the (coarse-grained) velocity gradient tensor. To describe the
evolution of M , it is necessary to also follow the evolution of the volume
(parameterized by a tetrad of lagrangian particles) over which m is coarse-
grained. The model, introduced in [1] thus involves, besides the matrix M , a
set of vectors ρi,a describing the geometry of the tetrad, and obeying, provided
the scale r is in the inertial range of scales :

d

dt
ρi,a = ρi,bMba + ui,a (1)

d

dt
M = −(1− α)

(
M2 −Πtr(M2)

)
+ η (2)

The tensor Π is defined by Π ≡ g−1)
tr(g−1) , where g is the moment of inertia

tensor, defined by gab =
∑

i ρi,aρi,b. The terms u (resp. η), on the right-hand
side of Eq. 1 (resp. 2), are postulated to be gaussian, white in time, and
with the following correlation : 〈ui,a(0)uj,b(t)〉 = Cuρ2

√
tr(MMT )δabδijδ(t)

and 〈ηab(0)ηcd(t)〉 =
Cηε
ρ2

[
δacδbd −

1
3δabδcd

]
δ(t). The properties of the velocity

gradient tensor at a scale r in the inertial range can be infered by integrating
the system of equations 1, 2 and by using the fact that the velocity gradient
tensor is (essentially) gaussian at the integral scale. The determination of the
velocity gradient tensor at scale r can be formulated as a stochastic problem,
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amenable in principle to a numerical solution by using Monte Carlo methods
[2].

One of the most significant difficulties in solving such problems comes from
the fact that a straightforward sampling of the possible configurations leads to
contributions that vary over many orders of magnitude, thus leading to vastly
inefficient algorithms. One way to address the problem is to look for the con-
figuration that contributes most to the probability, the so-called semi-classical
method [3]. The approach followed here is rather to use the importance sam-
pling strategy [4], that consists in sampling preferentially configurations that
contribute most to the weight. Various strategies have been developed in order
to keep track only of the trajectories in phase space that contribute most to
the statistical weight. Details of the scheme actually implemented here will
be provided elsewhere [5]. Implementing such methods has allowed us to com-
pute the evolution of the pdf of the velocity gradient tensor down to scales
of r = L/16. Fig. 1 shows the probability distribution function (PDF) in the
plan of the invariants R = − 1

3 tr(M3) and Q = − 1
2 tr(M2). The numerical

solution is in qualitatively very good agreement with the known DNS [3] and
experimental [6] results.

The scaling of the second moments, such as the strain 〈S2〉 (S = (M +
MT )/2) and the vorticity 〈Ω2〉 (Ωa = εabcMbc), and for the third order in-
variants of M , the vortex stretching 〈Ω.S.Ω〉 and the quantity 〈tr(M2MT )〉,
related to the energy transfer [1]. Fig.2 shows a close agreement with the stan-
dard Kolmogorov scalings : M ∝ r−2/3, so the second moments go as r−4/3

and the third moments go as r−2. In addition, the signs of 〈Ω.S.Ω〉 is posi-
tive, thus revealing the presence of vorticity production, and 〈tr(M2MT )〉 is
negative, consistent with an energy flux towards small scales.

Last, the model correctly reproduces the main features of the density of
vorticity, strain, vortex stretching and tr(M2MT ), Fig.3.

Further improvement of the algorithm should allow us to determine the
solution at much smaller scale. The hope is that it will permit us to address
several important questions regarding the physics of turbulence. The aim of
studying the evolution of the PDF in the (R,Q) plane as a function of r is
to provide a qualitative understanding of the structures occuring in turbulent
flows, as a function of scales. Higher moments of the correlation function can
be readily determined from this work. It will be interesting to investigate sys-
tematically the intrinsic invariants of the velocity gradient tensor [7] with our
method. One obvious generalisation of this work consists in incorporating a
large scale gradient, such as a shear [8] or other mean gradients [9]. The possi-
bility to measure directly these quantities in an experiment offers fascinating
perspectives for this work. In particular, our hope is that it will not only allow
us to find optimal parameters for the model, but more importantly, to test
precisely the limitations of the model itself, and suggest improvements.
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Fig. 1. Joint pdf of the invariants (R,Q), scaled by the variance of the rate of
strain tensor, at r/L = 0.5 (top left), r/L = 0.25 (top right), r/L = 0.125 (bottom
left) and r/L = 0.0625 (bottom right). The dashed lines are isoprobability lines,
logarithmically spaced, and separated by a factor 10. The values of the parameters
are α = 0.5. Cu = 0.15 and Cη = 0.5. The increased amount of noise is a consequence
of the difficulty in adequately sampling the phase space as the ratio r/L decreases.
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Fig. 2. The scaling behavior of the second moments (strain and vorticity variance,
left) as a function of scale, and of the third moments (stretching and 〈tr(M2MT )〉,
right). These moments follow the standard Kolmogorov prediction, as indicated by
the dash-dotted lines.
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Fig. 3. The density of strain (top left), vorticity (top right), vorticity stretching
(bottom left) and tr(M2MT ) in the (R, Q) plane. The patterns are generally com-
parable to what has been obtained in other numerical studies [1] or in experiments
[6].
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Summary. Superfluid turbulence (TSF) project uses liquid helium for the funda-
mental study of turbulent phenomena behind a passive grid and is able to work both
in HeI and in HeII. Local and semi-local instrumentation was developed specifically
for the purpose of this experiment(e.g. sub-micrometer anemometer, total head pres-
sure tube and second sound tweezer). The difficulties encountered with this local and
fragile instrumentation are discussed. Global characterization of the flow is presented
including velocity, pressure, temperature stability and turbulence intensity. Finally,
first results obtained with semi local measurements (total head pressure tube and
second sound tweezer) both in the two phases of helium are presented.

1 Experimental facility and sensors

The experiment is a closed loop, containing three main sections : a pump, a
heat exchanger and the experimental section. The helium flow is generated
by the cryogenic pump. The temperature is controled by means of the heat
exchanger immersed in a liquid Helium saturated bath. This experiment takes
profit of the CEA Grenoble refrigerator (nominal capacity of 400 Watt at 1.8
K) to remove the heat due to the energy dissipated in this high Reynolds num-
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ber experiment. Thermodynamical caracteristics of the flow are summarized
in table b of fig.1.

The experimental section (see fig. 1) is made of a 27.2 mm inside diameter
tube fitted with specifically designed sensor inserts. Much care was taken to
avoid wall discontinuities due to the presence of the sensor mountings. The
grid mesh size is M = 3.9 mm with 3.1mm square holes with 0.8 mm wide
boundaries.

a) Sensors geometry

Sensor Distance to Typical
the grid x/M dimension

1. Acoustic
transducers 77 ∅ 20 mm

2. Second sound
tweezer 105 0.25×0.8×0.8 mm

3. Hot wire 123 ∅ 1 μm

4. Total head
pressure tube 143 ∅ 1 mm

***
b)Thermal and hydrodynamical stability

Parameter Range Standard
deviation

Temperature 1.7 - 4 K ± 1 mK
Pressure 1 - 5 bar ± 10 mbar
Velocity 0.5 - 8 m/s ± 5%

Fig. 1. Left : a sketch of the experimental section of TSF. Right : table a summarize
position and spatial resolution of the probes, table b shows the thermodynamical
parameters range and stability.

Four types of probes are available on TSF facility. There location and typ-
ical spatial resolution are summarized in table b of fig. 1.
Ultrasonic vorticity probe is based on scattering of ultrasonic waves by
the flow vorticity at a chosen wave vector [3, 1]. In order to insure the non-
invasiveness of the probe, it was necessary to add a thin wall between the
transducers (transmiter and receiver) and the flow. Unfortunatly, in those
conditions, the resulting signal could not be properly interpreted.
Second sound tweezer was used to measure the quantized vortex density
L0. It is based on the attenuation of a second standing wave between an em-
mitter (heating surface) and a very sensitive superconducting temperature
probe [5].
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Superconducting hot wire is designed following the principle of Cas-

to improve the spatial resolution and the sensitivity of the probe. The active
part of the wire is obtained by locally reducing its cross section. This leads
to a very fragile probe and few data could be acquired. Those measurements
are not discussed in the present paper.
Total head pressure tube is inserted at the end of the experimental section.
As in the experiment of Maurer and Tabeling [4], the pressure fluctuations at
the stagnation point are assumed to be proportionnal to velocity fluctuations.
This probes is thus used as an anemometer working both in He I and He II.

2 First results
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Fig. 2. Main graph : power spectral density (PSD) of the velocity compensated with
f−5/3. Inset : rought PSD in arbitrary units. Above 500 Hz the signal is strongly
altered by a Helmoltz resonnance in the pressure tube

In this section we show two preliminary results obtained with the total
head pressure tube and the second sound tweezer.
In fig. 2 we have plotted the Power Spectral Density of the velocity. We see
from the compensated spectrum that the PSD is compatible with a f−5/3

power law, both in He I and He II. The similarity between the upper inertial
range in He I and II has already been reported by Maurer and Tabeling [4]
in von Kármán flow with a higher turbulence intensity. Here, computed tur-
bulence intensity is about 2%, consistent with expected values in such con-
figurations, and does not depend on the helium phase. The geometry of the
probe will now be improved to reach higher spatial and temporal resolution.

Preliminary results of the second sound tweezer are shown in fig. 3. We see
that the amplitude of the temperature wave decreases with velocity. This is

taing [2]. A bulk NbTi wire is used instead of a coated glass fiber in order
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Fig. 3. Amplitude A of the measured temperature standing wave as a function of
the driving frequency normalized with the expected resonnance frequency f0. From
top to bottom the curves correspond to increasing velocities.

due to increasing vortex lines density L0 in the flow. Since L0 can be viewed
as the superfluid enstrophy, it provides a direct integral information about the
smallest scales of the superfluid flow. Thus, the increase of L0 versus the flow
Reynolds number reflects the increase of the depth of the superfluid cascade.

3 Conclusion

We have succeeded in stabilizing a high Reynols steady superfluid flow. First
results of TSF experiment tend to confirm the present understanding of su-
perfluid turbulence and particularly the similarity with classical turbulence
at large scale in a grid experiment. On-going work include quantitative anal-
ysis of the Reynolds number dependence of the superfluid cascade depth and
velocity fluctuation measurements with improved space and time resolution.
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The structure of the energy spectrum in the inertial subrange is studied using
the DNS data for turbulence in a periodic box at high Reynolds numbers.
The Kolmogorov spectrum, E0(k) = CK〈ε2/3〉k−5/3, can be regarded as an
accurate description of turbulent motion, and forms a base state for the energy
spectrum in the inertial subrange, where k is the wavenumber and ε is the
dissipation rate of turbulent energy. (Because ε is strongly intermittent, ε is
averaged in the whole computational domain and denoted as ε.) However,
the spectrum which exhibits a scaling different from the −5/3 power is often
depicted in turbulent flows, e.g., [1, 2]. In fact, perturbation expansion about
the Kolmogorov spectrum yields a correction with the −7/3 power [3, 4]. 〈ε〉
denotes the long-term average of ε. When the expansion is extended to higher
orders, we obtain the formula as

E(k) = E0(k) + C1ε̇ ε
− 2

3 k−
7
3 + C2(ε̈ ε−1 − 2ε̇

2

ε−2)k−
9
3 + · · · . (1)

in which the non-equilibrium spectrum is induced by the fluctuation of the
dissipation rate. The factors in the −7/3 and −9/3 power components are in-
duced by the derivative of the preceding −5/3 and −7/3 spectra with respect
to time, respectively, thus this expansion possesses a hierarchical structure.
The long term temporal average removes the −7/3 component. When a condi-
tional sampling on the sign of ε̇ is applied, −7/3 component can be extracted.
In the period in which ε̇ ≥ 0 (Phase 1), we get E+(k) = E0(k)+E+

1
(k), and in

the period in which ε̇ < 0 (Phase 2), E−(k) = E0(k)+E−
1

(k) = E0(k)−E+

1
(k).

Figure 1 (a) shows the spectra, E0(k) and E+

1
(k), obtained using the DNS

data for homogeneous isotropic turbulence at Rλ ≈ 240 in which the forcing
with constant amplitude and random phase is applied in the wavenumber
range 1 ≤ k ≤ 2.5. It is seen that E0(k) fits −5/3 power (CK ≈ 1.60) and
E+

1
(k) fits −7/3 power over one decade in the inertial subrange (0.01 � kη �

0.1). We note that as Rλ is increased, the extent of wavenumber range in which
E+

1
(k) fits −7/3 power increases. In figure 1 (a), absolute value of E+

1
(k) is

shown. In the actual value of E+

1
(k), the switchover of the sign in E+

1
(k) occurs
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Fig. 1. Energy spectra normalised by (〈ε〉ν5)1/4 obtained using DNS data at Rλ ≈
240 are plotted versus kη. (a) The distribution of E0(k) is plotted using dashed line,
|E+

1 (k)| using solid line. The dotted lines indicate scaling with k−5/3 and k−7/3.
(b) Isocontours of E+

1 (k) and E−
1 (k) normalised by (εν5)1/4 as functions of the

wavelength kη and t. The small frame shows the temporal variations of K and ε.

at kη ≈ 0.17, at which a bump is discernible in E0(k). Figure 1 (b) shows the
temporal variations of the energy spectra. The contours of the deviation of
the spectra from E0(k) are shown, i.e., E+

1
(k) in Phase 1 and E−

1
(k) in Phase

2 as functions of the wavenumber kη and t. The period of the oscillations
in K and ε is comparable to the eddy turnover time due to forcing, but the
variation of ε lags in phase against that of K. In Phase 1, the deviation is
positive in the low-wave number range, 0.01 � kη � 0.2, and negative in the
high-wave number range during the time period 177.0 � t � 181.0. In other
periods, e.g. , 181.0 � t � 184.0 (Phase 2), the sign is reversed and becomes
negative and positive in the low- and high-wave number ranges, respectively.
As a result, the turbulent energy is maximal in Phase 1 because the large-scale
eddy carries the large energy. The energy cascades to the higher-wavenumber
range in Phase 2, and the energy becomes minimal in Phase 2.

As is indicated in Eq. (1), the magnitude of the −7/3 component be-
comes small in the period in which ε is minimal or maximal (ε̇ ≈ 0). In this
period, the contribution of the −9/3 component becomes large because ε̈ is
large. Figure 2 (a) shows the energy spectrum averaged in the time interval
tminimal ≤ t ≤ tminimal + 10τK , where tminimal is the time when ε is minimal
and τK is Kolmogorov time scale (= (ν/〈ε〉)1/2). The solid line shows the av-
erage spectrum E0(k), and the deviation of the spectra from E0(k), E1(k), is
plotted using the symbols. The small circles show the absolute values of E1(k)
and large circles show only positive values of E1(k). It can be seen that E1(k)
is mostly positive and fits the −9/3 power in the inertial subrange. Similar
results are obtained in the period around the time when ε is maximal. In these
time intervals, the contribution of the −7/3 component becomes small and
the −9/3 component predominates.
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Fig. 2. Energy spectra normalised by (〈ε〉ν5)1/4 are plotted versus kη. (a) DNS data
at Rλ ≈ 240. E0(k) is plotted using solid line, |E1(k)| using solid line. The dotted
lines indicate scaling with k−5/3 and k−9/3. (b) DNS data at Rλ ≈ 1200. E(k) using
dashed-dotted line, |E(k)−E0(k)| using solid line. The dotted lines indicate scalings
with k−7/3 and k−9/3. The inset shows a log-linear plot of E(k) versus kη.

The dissipation terms according to the −7/3 and −9/3 components are
given respectively as

ν

∫ kd

kL

k2ε̇ ε−
2
3 k−

7
3 dk ≈ 3

2
ν

1
2 ε̇, (2)

ν

∫ kd

kL

k2(ε̈ ε−1−2ε̇
2

ε−2)k−
9
3 dk ≈ (ε̈ ε−1−2ε̇

2

ε−2)(−3
4
ν log ν+

1
4
ν log ε), (3)

where kL and kd denote the wavenumbers corresponding to the integral scale
and the Kolmogorov dissipation scale, respectively. In the limit of ν → 0, the
corrections to the dissipation in both (2) and (3) vanish. Both −7/3 and −9/3
components provide no contribution to the dissipation. However, it was shown
in [5] and [6] that the borderline steepness capable of sustaining an energy
cascade in the inertial subrange (if it exists) is k−

8
3 in the limit of ν → 0.

We analyse the energy cascade using the transfer function T (k) as

T (k) =
1
2
Im

[ ∑
k−1/2≤|k′|≤k+1/2

ũ∗i (k
′)Pijk(k′)

∑
p

ũj(p)ũk(k′ − p)
]
, (4)

where ũi(k) is the Fourier transform of the velocity ui(x), ũ∗i (k) is the complex
conjugate of ũi(k), Pijk(k) is the orthogonalising operator, k is the wavenum-
ber vector [7]. The temporal development of the deviatric part of T (k) is
similar to that shown in the contours of the energy spectrum in figure 1 (b)
except that the switchover of the sign occurs at kη ≈ 0.5 (figure not shown).
Gain in the low-wavenumber range (kη � 0.5) is larger than the long-term
average in Phase 1, while gain in the high-wavenumber range (kη � 0.5) is
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larger in Phase 2, i.e., the energy contained in the large scales in Phase 1 is
transferred to the small scales in Phase 2. In these time intervals, the −7/3
power component predominates. In the transition period between Phase 1 and
Phase 2 when the −9/3 component prevails, the magnitude of the deviatric
part of T (k) becomes very small (figure not shown) and the energy cascade
ceases on average. These results are consistent with those obtained in [5, 6].

In [1], it was shown that the slope in the inertial subrange is steeper
than −5/3 by μ ≈ 0.1 at Rλ ≈ 1200. Similar result was obtained in [2]. We
investigate on this deviation using the data from Run 4096-1 (Rλ ≈ 1200)
in [1]. The long-term ensemble average of (1) yields

E(k) = CK〈ε2/3〉k−5/3 + C2〈ε̇
2

ε−2〉k− 9
3 . (5)

When the spectrum is fitted using the function E(k) = CKε
2
3 k−(

5
3+μ)

by the least square method, μ ≈ 0.083 and CK ≈ 2.24. The fitting is done
using the data in the range 0.00369 ≤ kη ≤ 0.0132. μ is close to that in
Kaneda et al. (2003), whereas CK is larger than the generally accepted values
(CK = 1.6 − 1.7). When the spectrum is fitted using the function E(k) =
CKε

2
3 k−

5
3 +C3k

− 9
3 , CK ≈ 1.688 and C3 ≈ 0.557. (Because the value of 〈ε̇2ε−2〉

was not available, the coefficient of k−
9
3 term, C3, is optimised as a whole.)

We note that when the exponent of the second term is determined using the
function E(k) = CKε

2
3 k−

5
3 +C3k

−α, α ≈ 2.92 (CK ≈ 1.675, C3 ≈ 0.5045). α is
indeed close to 3. Figure 2 (b) shows the energy spectra, E(k) = CKε

2
3 k−

5
3 +

C3k
− 9

3 , E(k) = C1k
− 7

3 , E(k) = C3k
− 9

3 , where CK = 1.688, C1 = 0.224
and C3 = 0.557. It is seen that the deviation of the spectrum from E0(k)
approximately fits the function C3k

− 9
3 in the region 0.00369 � kη � 0.0132

(indicated by the bald solid line and the arrows). It is shown that the deviation
from −5/3 power can be approximated using the −9/3 term. These results
indicate that the −9/3 component plays important roles as well as the −7/3
component at high Rλ.
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Universality of Kolmogorov law in spectrally
condensed turbulence in thin layers
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The four-fifth Kolmogorov law relates the third-order structure function and
the energy dissipation rate ε in three-dimensional turbulence (see, e.g. [1].
This law for 2D turbulence reads: SL3 = (3/2)εr, where SL3 =< δv3

L > is the
third moment of the longitudinal velocity increments at the scale r. Angular
brackets denote averaging over the box size and time. This relationship allows
the energy dissipation rate, or the energy flux within the inertial range to be
determined by analyzing the third-order velocity moments in laboratory ex-
periments or in observational data. The Kolmogorov law has been confirmed
in direct numerical simulations of 2D turbulence [2], however previous ex-
perimental attempts to derive ε from the third-order longitudinal structure
functions were not successful [3], probably due the insufficient statistics in
the calculations of < δv3

L >. In this paper we present the results of the S3(r)
measurements in quasi-2D turbulence in laboratory experiments. We are par-
ticularly interested in estimating the energy flux in the energy inertial interval
and in comparison of its value with independently obtained energy dissipation
rate.

Another practically interesting question is how the presence of the self-
generated coherent flows in 2D turbulence affects the Kolmogorov law in the
regime of spectral condensation. We investigate this in the thin stratified
layers of fluid where turbulence is driven electromagnetically as described
in [4, 5]. When the flow is bounded the inverse energy cascade leads to the
accumulation of the spectral energy at the scale close to the boundary size
and generation of mean flow. By controlling the bottom dissipation rate (via
the thickness of the fluid layers) and the size of the boundary, large vortices
of different strengths, or condensates, can be obtained as discussed in [5].

Figure 1 shows time-averaged (over about 100s) velocity fields measured
with the boundary size of L=0.11 m for 3 different damping rates. The large-
scale vortex becomes more symmetric as its turnover time becomes shorter
and approaches the inverse damping rate 1/α.
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(a) (b) (c)

Fig. 1. Time-averaged velocity field of the condensate at L ≈ 0.10 m with different
linear damping rate: (a) α = 0.25 s−1, (b) α = 0.15 s−1 and (c) α = 0.05 s−1.
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Fig. 2. (a) Time evolution of the kinetic energy during turbulence decay for the 3
cases of Fig. 1. (b) 3rd-order structure function computed for the case of Fig. 1(c)
by subtracting mean flow velocity.

The presence of the mean flow greatly affects the velocity moments, as
discussed in [5]. However by subtracting mean (time-averaged) velocity field
from instantaneous fields before computing the 3rd-order structure function
S3 = (S3L + S3T )/2 one recovers physically meaningfully values of ε = S3/r.
This is verified by comparing ε with the energy dissipation rate derived from
the time evolution of the turbulence energy in the initial stage and during the
decay: dE/dt − αE = ε. During the decay ε ≈ αE, while at the early stage
of the turbulence development dE/dt ≈ ε. This result has been confirmed
at different strengths of the condensate flow, even in the regimes when the
presence of the condensate leads to the onset of non-Gaussian statistics in
condensed turbulence (larger flatness).
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Summary. We present a stochastic analysis of turbulence data, which provides
access to the joint probability of finding velocity increments at several scales. The
underlying stochastic process in form of a Fokker-Planck equation can be recon-
structed from given data, including intermittency effects. We analyze turbulence
generated by a space-filling fractal square grid and find that in contrast to other
types of turbulence, like free-jet turbulence, the n-scale statistics of the velocity in-
crements and the coefficients of the Fokker-Planck equation are independent of the
Reynolds number over the entire range of Reλ from 150 to 740.

Introduction

Standard statistical analysis of small-scale turbulence is based on two-point
correlations and their dependence on the scale r. A central quantity is the
(longitudinal) velocity increment u(r),

u(r) = v(x + r, t) − v(x, t), (1)

where v denotes the velocity component in the direction of r. A character-
ization of the scale-dependent disorder of turbulence by means of one-scale
(= two-point) statistics like structure functions can be extended to multi-
scale statistics. It has been shown for several different turbulent flows that
these multi-scale statistics can be treated within the framework of Markov
processes, and that the corresponding stochastic differential equation is the
Fokker-Planck equation [1, 2, 3].

If the stochastic process for the evolution of the velocity increments from
scale to scale has Markov properties, i.e. if

p(u1, r1|u2, r2; ...; un, rn) = p(u1, r1|u2, r2) (2)

(where we assume r1 < r2 < ... < rn), the n-scale joint probability density
function (pdf) of the velocity increments can be expressed by a product of
conditional pdfs:
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p(u1, r1; u2, r2; ...; un, rn) = p(u1, r1|u2, r2) . . . p(un−1, rn−1|un, rn) p(un, rn).
(3)

The stochastic process for the conditional pdfs can be described by a Kramers-
Moyal expansion. If the fourth-order Kramers-Moyal coefficient D

(4) is zero,
the expansion truncates after the second term and becomes a Fokker-Planck
equation, also called Kolmogorov equation:

− ∂

∂r
p(u, r|u0, r0) = − ∂

∂u

[
D

(1)(u, r) p(u, r|u0, r0)
]

+
∂

2

∂u2

[
D

(2)(u, r) p(u, r|u0, r0)
]
, (4)

where drift and diffusion functions D
(1) and D

(2) can be estimated as
Kramers-Moyal coefficients pointwise by:

D
(k)(u, r) = lim

Δr→0

r

k!Δr

+∞∫
−∞

(ũ − u)k
p(ũ, r − Δr|u, r) dũ. (5)

The experimental pdfs and conditional pdfs of the velocity increments can be
reproduced by integration of the Fokker-Planck equation, including intermit-
tency effects.

Results for fractal-generated turbulence

We analyze hot wire measurement data from turbulence generated by a frac-
tal square grid1, measured for two different flow velocities at five different
down-stream positions in the decay region, where the turbulence is small-
scale homogeneous and isotropic [5, 6]. We confirm the result of [6], that the
Taylor microscale λ is almost independent of the flow velocity and the down-
stream position, so that we obtain an unusually wide range of Taylor-based
Reynolds numbers Reλ from 153 to 740.

We find that the stochastic process for the velocity increments has Markov
properties for scale separations Δr greater than the Einstein-Markov coher-

ence length lEM , which is defined as the smallest distance Δr = ri − ri−1, for
which eq. (2) still holds. We estimate lEM with the (Mann-Whitney-)Wilcoxon
test, which is a parameter-free statistical test to decide whether two samples,
in this case, the left and right hand side of eq. (2) for n = 3, have the same
distribution [2]. We find a constant ratio of lEM/λ = 0.73 ± 0.09, which is
comparable to results for other turbulent flows, where lEM/λ ≈ 0.8 [4].

We determine the Kramers-Moyal coefficients with two different methods.
The first, “classical” method directly uses definition (5), determining the limit

1 The grid has a thickness ratio tr = 17, that is, the thickest bars are 17 times
thicker than the thinnest bars of the grid. It is space-filling in the sense that it
has the maximal possible fractal dimension, Df = 2. For more details see [5, 6].
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of Δr → 0 with a linear fit to the conditional moments on the right hand side
of eq. (5) in the range lEM ≤ Δr ≤ 2 lEM , following [2, 3]. The drift and
diffusion functions at each scale r can then be approximated by linear and
second-order functions in u, respectively:

D
(1)(u, r) = −d11(r)u (6)

D
(2)(u, r) = d20(r) − d21(r)u + d22(r)u

2 (7)

The second method uses numerical optimization to find the coefficients dij(r)
of eq. (6) and (7), which minimize the (Kullback-Leibler) distance between the
empirical conditional pdf p(ui−1, ri−1|ui, ri), and the conditional pdf obtained
by numerical integration over the Fokker-Planck equation (4) [7].

By convention, the velocity increments u(r) are given in dimensionless
units of their standard deviation in the limit r → ∞, σ∞ [2]. This normaliza-
tion allows us to compare the Kramers-Moyal coefficients of different flows.

Renner et al. [2, 3] showed for free-jet turbulence and for Reynolds numbers
up to Reλ ≈ 1200, that the coefficients d20, d21, and d22 strongly depend on
the Reynolds number. In contrast to this result, we do not find any significant
dependence of d20 on Reλ for fractal-generated turbulence. For d21 and d22,
we do find a dependence on the Reynolds number for the “classical” estimates,
but no such dependence for the estimates obtained by numerical optimization,
which are the ones that reproduce the empirical conditional pdfs best. In
Fig. 1, we look at d20, which is linear in r and thus can be approximated by:

d20(r) = d
∗

20

r

λ
. (8)

The slope d
∗

20 follows a power law in Re for the free jet, d
∗

20 ∝ Re
−3/8 [3], but

is approximately constant for the fractal grid turbulence.
As a final verification of the indicated findings of the Reynolds number

independence of the statistical properties we investigate the conditional pdfs
p(u, r|u0, r0). Note that these are the fundamental quantities which contain
the information of the stochastic process integrated over a range of scales.
Most important the conditional pdfs do not contain the errors and uncertain-
ties which arise in estimating the Kramers-Moyal coefficients. Fig. 2 shows
the conditional pdfs p(u, r|u0, r0) and pdfs p(u, r) for two different Reynolds
numbers for the free jet (a), and fractal grid (b), for large scale separations
r0 − r. For the fractal grid, these (conditional) pdfs are practically identical,
indicating that the stochastic process is indeed independent of the Reynolds
number.

We conclude that the n-scale statistics of fractal generated turbulence can
be described by a Markov process governed by a Fokker-Planck equation,
with an Einstein-Markov coherence length lEM in the order of magnitude of
the Taylor microscale λ. The coefficients of the stochastic process equations
and the conditional pdfs p(u, r|u0, r0) for fractal-generated turbulence do not
depend significantly on the Reynolds number, which differs substantially from
the findings for free-jet turbulence in [2, 3].
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Fig. 1. (a) d20(r) for the free jet (J) and fractal square grid (S), estimated by the
“classical” method. Reynolds numbers Reλ are given in the legend. (b) slopes d∗

20

from eq. (8) as functions of Reλ for the free jet (◦) and fractal grid (•), estimated
with the “classical” method, and for the fractal grid after numerical optimization
(+). The free-jet data are taken from [3]. The straight line represents a power law
d∗

20 = 2.8Re3/8 from [3], where we use Reλ = Re0.5233.
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There are a variety of models of higher statistics that have meager or nonex-
istent deductive support from the Navier–Stokes equations but can be made to
give good fits to experimental measurements [1]. These include ‘explanations’
of what is called anomalous scaling, observed experimentally for higher-order
structure functions of velocity and temperature increments, such that their
scaling exponents, ζp = p/3 − μp < p/3, are nonlinear concave functions
of the order p. Starting with refined similarity hypotheses by Kolmogorov
and Oboukhov, numerous phenomenological models have been proposed to
describe these deviations. The dominant of these models has been the multi-
fractal formalism, others claimed the Reynolds number dependence as re-
sponsible. The common in all these approaches is the basic, widely accepted
premise that in the inertial range, the viscosity plays in principle no role [2]
so that nonlinear dependence of the algebraic scaling exponents ζp on the mo-
ment order p is a manifestation of the inertial-range intermittency [3] with
the inertial range defined as η � r � L (with η being the Kolmogorov and
L — some integral scale). Thus the issue is directly related to what is called
inertial (sub)range and how inertial it is.

The main point of this communication is that there is a considerable num-
ber of very strong events contributing significantly to the PDF of Δui(r) in
the nominally-defined inertial range, for which viscosity/dissipation is of ut-
most importance at high Reynolds number. This contribution is largest to
the tails of the PDF of Δui(r). In other words, the inertial range is ill-defined
in the sense that not all, but almost all statistics of Δui(r) is independent
of viscosity. As long as one deals with low-order statistics of Δui(r) (as Kol-
mogorov did) this is of little (but still not negligible, see below) importance.
However, it appears that these events contribute significantly to the higher-
order structure functions and thereby a non-negligible contribution to their
values is dominated by viscosity. In other words, the ‘anomalous scaling’ as
exhibited by the behavior of higher-order structure functions is to a large
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Fig. 1. (a) Scaling exponents of structure functions at Reλ ∼ 104 for the longitudinal
velocity component corresponding to the full data and the same data in which the
strong dissipative events (when at least at one point x or x + r the instantaneous
dissipation ε > q〈ε〉) with various thresholds q were removed. (b) Scaling exponents
for the strong events themselves.

extent due to significant contribution of viscosity/dissipation in the inertial
range as commonly defined. The higher the order of the structure function,
the stronger is the contribution due to viscosity (i.e., mainly from the tails of
the PDFs of Δui(r)) and the weaker is the ‘inertial’ contribution (i.e., from
the core of those PDFs) to the structure function. Thus it seems problematic
to speak about inertial-range behavior of higher-order structure functions.

The support for the above view comes from a recent analysis of high-
Reynolds-number data in field experiments [4, 5]. The experimental facilities
and related matters are described in these papers and references therein. A
selection of results is shown in Fig. 1 — Fig. 4.

Fig. 1 (a) shows the scaling exponents of longitudinal structure functions
Sp(r) =< (Δu1)p > up to order 8, corresponding to the full data, and the
same data in which the strong dissipative events with various thresholds were
removed. By an event we mean here a velocity increment, Δu1 ≡ u1(x+ r)−
u1(x). It is qualified as a strong dissipative event if at least at one of its ends
(x, x + r) the instantaneous dissipation ε > q〈ε〉 for q > 1. We have chosen
q = 3, 6, 12 and 20. This corresponds to the instantaneous Kolmogorov-like
scales 0.76, 0.64, 0.54 and 0.47 of the conventional Kolmogorov scale η based
on the mean dissipation 〈ε〉. It is seen that the removal of the strong dissipative
events results in an increase of the exponents ζp. For example, with the removal
of the dissipative events between the threshold 3〈ε〉 (0.76η) and 6〈ε〉 (0.64η)
the dependence of ζp on p becomes pretty close to the Kolmogorov p/3. The
strong events themselves have different scaling properties, Fig. 1 (b).

The next example in Fig. 2 shows that the removal of the strong dis-
sipative events results not only in narrowing of the tails, but also makes a
non-negligible contribution in the core of the Δu1(r) distribution.

The effect of the removal of the strong dissipative events is much stronger
for higher-order structure functions. For example, there are only 5% of dissi-
pative events (Fig. 3 (a)) for q = 6 sitting mostly at tails of the PDF of Δui(r)
for r/η = 400 (i.e. deep in the ‘inertial’ range), which contribute about 36% to
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Fig. 2. Histograms of the increments of the longitudinal velocity component for the
same data as in Fig. 1 for the threshold q = 3. r/η = 40 (a). r/η = 400 (b).

the total dissipation (Fig. 3 (b)). They contribute nearly 60% to the value of
S�

8
(r) at Reλ ∼ 104 (Fig. 4 (a)). The same events change the S�

2
(r) by about

11.5% (Fig. 4 (b)), but contribute about 9% to S�

3
(r) (see Fig. 4 (c)).

It is noteworthy that the data used here ([4, 5]) was somewhat spatially
underresolved, 1÷3η. This means that the conclusions are to some extent qual-
itative. However, with properly resolved data the strong dissipative events,
lost in the underresolved ones, would enhance the tendencies just described
above. This is in agreement with the fact that essentially the same results are
obtained using the same data smoothed over up to eight sequential samples.
Additional support comes from reference [3], indicating that the underresolved
data reproduce faithfully the flow at scales about two times smaller than those
resolved (∼ 0.6η) at least as concerns the instantaneous dissipation rate. Fi-
nally, using enstrophy ω2 and/or the surrogate (∂u1/∂x1)2 as a criterion for
the threshold instead of the true dissipation ε gives the same qualitative (but
not quantitative) results.

Along with the fact that velocity increments (let alone structure functions
and their scaling if such exists) are not the only objects of interest and do not
constitute a representation basis for a flow [1], they are not a good object to
define a perfect inertial range. Such a definition seems to be not possible in
principle due to a variety of nonlocal effects [6, 7].

A special remark is about the contribution of the dissipative events as de-
fined/described above to the low order statistics and in particular to the 4/5
law. These events do contribute to the 4/5 law, and removing them leads to
an increase of the scaling exponent above unity, see Fig. 1 (a) and Fig. 4 (c).
An important point here is that the neglected viscous term in the Karman–
Howarth equation does not contain all the viscous contributions. Those which
are present in the structure function S3 itself remain and keep the 4/5 law
precise. In this sense the 4/5 law is not a pure inertial law. In fact, the contri-
bution of the strongly-dissipative events is non-negligible also in the core of
the PDFs of Δu1 (but not dominating as in their tails) as seen from Fig. 2.
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Fig. 3. Percent of the strong dissipative events as defined in the text (a) and their
contribution to the total dissipation (b) as a function of the threshold q for various
separations r.

Fig. 4. Contributions of the strong dissipative events, as defined in the text, to
the eighth-order structure function (a), the second-order structure function (b) and
the third-order structure function (c) as a function of the threshold q for various
separations r.

Among the main challenges for future work is an experiment similar to
that described in references [4, 5] but with sub-Kolmogorov resolution. This
includes also the issue of passive scalar. So far, we have pretty crude qualitative
results (due to poor resolution and quality of the data) concerning the passive
scalar [8], which show the same trends as described above and which raise
similar questions concerning the anomalous scaling of passive scalars.
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The phenomenology of velocity statistics in turbulent flows, up to now, relates
to different models dealing with either signed or unsigned longitudinal velocity
increments, with either inertial or dissipative fluctuations. Based on experi-
mental longitudinal velocity profiles, we show that velocity statistics can be
completely understood phenomenologically with the help of two sets of param-
eters, a parameter function D(h), well known in the multifractal formalism
as the singularity spectrum (in the inviscid limit) and an additional univer-
sal constant R∗ (i.e. independent on the Reynolds number and the geometry
of the flow). The measurable parameter function D(h) is well known in the
turbulence literature [1]. It encodes several crucial inertial range informations
[1] such as K41 predictions (namely, the ‘-5/3” law of the power spectrum)
and intermittent corrections. Furthermore, it allows a quantitative prediction
of the behavior of the even order structure functions in the intermediate and
far-dissipative ranges (see for instance [2]).

However, an additional universal constant has to be given in order to
reproduce known facts of turbulence, namely the Kolmogorov constant cK and
the skewness (or signed third order structure function) of velocity increments.
This is the purpose of the present contribution [4, 5]. This constant has been
claimed for a long time to have a universal value, namely R∗ ≈ 52 (see [3]
and references therein). It is fully defined through the fluctuating nature of
the dissipative scale, i.e. η(h)/L = (Re/R∗)−1/(h+1), where L is the integral
scale, Re the Reynolds number and h the local Hölder exponent [2]. Including
the constant R∗ in this definition of η(h) has strong implications on averaged

measurable quantities such as the mean dissipation: 〈ε〉 = 15
R
∗

σ
3

L
, where σ2

is the variance of the large scale velocity increment δLu. Then, neglecting
intermittent corrections, it can be shown that the Kolmogorov constant is
linked to R∗ in the following way: cK = (R∗/15)2/3 ≈ 2.3 [4], in relative good
agreement with experimental findings [1].
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3〉 and Skewness S(�) estimated
from various experimental velocity profiles: (�) Turbulent low temperature gaseous
helium jet for Rλ = 208; (◦) Air Jet for Rλ = 380; (�) Wind tunnel for Rλ = 2500
[5]. The solid curves correspond to our theoretical predictions using the multifractal
formalism (see [5])

Using the Karman-Howarth relation (in the inertial range), i.e. 〈(δ
u)3〉 ≈
− 4

5 〈ε〉�, it can be easily shown that neglecting intermittency corrections, the

Skewness of velocity increments S(�) = −〈(δ
u)3〉/〈(δ
u)2〉3/2 should dis-
play a universal plateau (independent on both scales and Reynolds numbers)
S(�) = 12/R∗. Thus the constant R∗ explains both the value of cK and the
Skewness of velocity increments in the inertial range: this is our proposed
phenomenological relation between cK and the skewness [5].

More precise predictions can be obtained using the multifractal formalism,
including intermittent corrections and dissipative corrections to the Karman-
Howarth equation. This theoretical predictions were shown to compare quite
well with experimental data as shown in Fig. 1 ([5]). Note that no vertical
shifts were used in this figure.
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4. L. Chevillard, B. Castaing, E. Lévêque, Eur. Phys. J. B 45, 561567 (2005).
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Kolmogorov scaling and intermittency in
Rayleigh-Taylor turbulence
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Summary. Three-dimensional Rayleigh-Taylor turbulence is studied by means of
high resolution Direct Numerical Simulations of Boussinesq equations. The spatio-
temporal predictions of a recently proposed phenomenological theory are confirmed
and Kolmogorov-Obukhov scaling is observed.

We investigate the breakdown of the dimensional theory at small scale due to
intermittency effects. Acceleration probability density functions and statistics of
kinetic energy dissipation are found to be very close to the same quantities measured
in homogeneous, isotropic turbulence.

At the level of global quantities, we show that the time-dependent Nusselt and
Reynolds numbers scale with Rayleigh number according to the Kraichnan ultimate
state of thermal convection.

We consider the 3D, incompressible (∇ · v = 0), miscible Rayleigh-Taylor
flow in the Boussinesq approximation

∂tv + v · ∇v = −∇p+ ν	v + βgT (1)
∂tT + v · ∇T = κ	T (2)

where T is the temperature field, proportional to density via the thermal
expansion coefficient β, ν the kinematic viscosity, κ the molecular diffusivity
and g = (0, 0, g) is the gravitational acceleration.

At time t = 0 the system is at rest with cooler (heavier) fluid placed above
the hotter (lighter) one. This corresponds to v(x, 0) = 0 and to a step function
for the initial temperature profile: T (x, 0) = −(θ0/2)sgn(z) where θ0 is the
initial temperature jump which fixes the Atwood number A = (1/2)βθ0. The
development of the instability leads to a mixing zone of width h which starts
from the plane z = 0 and is dimensionally expected to grow in time according
to h(t) = αAgt2 [1]. Inside this mixing zone, turbulence develops in space and
time. The phenomenological theory [2] predicts for velocity and temperature
fluctuations the scaling laws
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Fig. 1. (a) Snapshot of the temperature field for a simulation of Rayleigh-Taylor
turbulence. Red (blue) corresponds to light (heavy) fluid turbulent pipe flow show-
ing a transient. (b) Two-dimensional kinetic energy spectrum (◦) and temperature
spectrum (�) at Rλ = 245. Dashed lines represent Kolmogorov scaling k−5/3. Lower
inset: evolution in time of the amplitude of kinetic energy (×) and temperature (+)
spectra at fixed wavenumber k0 = 12. Lines represent the dimensional predictions
t2/3 (continuous) and t−4/3 (dashed) given by (3) and (4). Upper inset: inertial (con-
tinuous) and buoyancy (dashed) contributions to kinetic energy flux Π(k) in Fourier
space.

δrv(t) 
 (Ag)2/3t1/3r1/3 (3)
δrT (t) 
 θ0(Ag)−1/3t−2/3r1/3 (4)

The first relation represents Kolmogorov scaling with a time dependent energy
flux ε 
 (Ag)2t. From the above scaling laws one obtains that the buoyancy
term βgT becomes subleading at small scales in (1), consistently with the
assumption of passive transport of temperature fluctuations.

We integrate equations (1-2) by a standard 2/3-dealiased pseudospectral
method on a periodic domain with uniform grid spacing, square basis Lx = Ly

and aspect ratio Lx/Lz = r with a resolution up to 512 × 512 × 2048 (r =
1/4). Time evolution is obtained by a second-order Runge-Kutta scheme with
explicit linear part. In all runs, Ag = 0.25, Pr = ν/κ = 1, θ0 = 1. Viscosity
is sufficiently large to resolve small scales (kmaxη 
 1.2 at final time). In the
results, scales and times are made dimensionless with the box scale Lz and
the characteristic time τ = (Lz/Ag)1/2.

Figure 1a shows a snapshot of the temperature field for a simulation with
r = 1/2 at advanced time. Large scale structures (plumes) identify the direc-
tion of gravity and break the isotropy. Nonetheless, we find that at small scales
isotropy is almost completely recovered: the ratio of vertical to horizontal rms
velocity is vz/vx 
 1.8 while for the gradients we have ∂zvz/∂xvx 
 1.0. The
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horizontally averaged temperature 〈T (z)〉 follows closely a linear profile within
the mixing layer where, therefore, the system recovers statistical homogeneity.

Figure 1b shows the kinetic energy E(k) and temperature ET (k) spectra
within the similarity regime. From (3) and (4), we expect the following spatial-
temporal scaling of spectra: E(k, t) ∼ t2/3k−5/3 and ET (k, t) ∼ t−4/3k−5/3.
Kolmogorov scaling k−5/3 is evident for both velocity and temperature fluctu-
ations. Moreover, self-similar temporal evolution of spectra is well reproduced,

energy flux in spectral space are shown. Buoyancy contribution, dominant at
large scale, becomes subleading at smaller scales. The above results, together
with previous simulations [1, 3] and theoretical arguments [2], give a coherent
picture of RT turbulence as a Kolmogorov cascade of kinetic energy forced by
large scale temperature instability.

In this contribution we push this analogy one step ahead by showing that
small scale fluctuations in RT turbulence display intermittency corrections
typical of usual Navier–Stokes (NS) turbulence. Intermittency in turbulence is
a consequence of non-uniform transfer of energy in the cascade which breaks
down scale invariance. As a consequence, scaling exponents deviates from
mean field theory and cannot be determined by dimensional arguments [4].
Several studies have been devoted to the intermittent statistics in NS turbu-
lence, where the main issue concerns the possible universality of anomalous
scaling exponent with respect to the forcing mechanisms and the large scale
geometry of the flow. While universality has been demonstrated for the sim-
pler problem of passive scalar transport, it is still an open issue for nonlinear
NS turbulence.
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Fig. 2. (a) Scaling exponents of isotropic longitudinal velocity structure functions
for the late stage of RT turbulence (open circle). Filled circles: scaling exponents from
simulations of homogeneous, isotropic turbulence at Rλ = 381 [5]. Line represents
dimensional prediction ζp = p/3. Inset: third-order isotropic longitudinal structure
function S3(r). The line represents Kolmogorov’s four-fifth law S3(r) = −4/5εr. (b)
The scaling of Nusselt number (open circles) and Reynolds number (solid circles) as
functions of Rayleigh number. Lines represent the ultimate state predictions.

as shown in the lower inset. Also in Fig. 1b the two contributions to kinetic
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Figure 2a shows the first longitudinal scaling exponents computed from
our simulations exploiting the extended self-similarity procedure which allows
for a precise determination of the exponents at moderate Reynolds numbers.
A deviation from dimensional prediction ζp = p/3 is clearly observable for
higher moments. Fig. 2a also shows the scaling exponents obtained from a ho-
mogeneous, isotropic simulation of NS equations at a comparable Rλ [5]. The
two sets agree within the error bars, this gives further quantitative evidence
in favor of the equivalence between RT turbulence and NS turbulence in three
dimensions.

We end by discussing the behavior of turbulent heat flux and rms veloc-
ity fluctuations as a function of the mean temperature gradient. In terms of
dimensionless variables, these quantities are represented respectively by the
Nusselt numberNu = 1+〈vzT 〉L/(κθ0), the Reynolds numbers Re = vrmsL/ν
and Rayleigh number Ra = AgL3/(νκ). Experiments have reported both
simple scaling laws Nu ∼ Raβ with exponent β scattered around β = 0.3
[6, 7] and, more complicated behavior [8, 9] partially in agreement with a
phenomenological theory [10]. However, in the limit of very large Ra, Kraich-
nan [11] predicted an asymptotic scaling Nu ∼ Re ∼ Ra1/2 now called the
ultimate state of thermal convection. This regime is expected to hold when
thermal and kinetic boundary layers become irrelevant, and it is therefore nat-
ural to expect that the ultimate state scaling arises in RT convection where
boundaries are absent. Fig. 2b shows that the ultimate state scaling is indeed
observe in our simulations of RT convection.
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Observation of weak turbulence spectra of
capillary waves

H. Punzmann, M.G. Shats, H. Xia

Research School of Physics and Engineering, The Australian National University,
Canberra ACT 0200, Australia

Turbulence of capillary waves is often studied in laboratory experiments by
parametrically exciting waves in vertically shaken containers (Faraday waves).
Above the threshold of parametric instability the waves become nonlinear and
generate multiple harmonics which form complex chaotic wave fields which re-
semble turbulence. Such states are characterized by discrete frequency spectra
(e.g. [1, 2]), which are often compared with the predictions from weak turbu-
lence theory (WTT) of capillary waves [3, 4]. It should be noted that WTT
assumes that interacting waves are weakly nonlinear and that their phases are
almost random. The latter asumption has never been tested in experiments.

In this paper we present experimental studies of capillary waves which
show that two distinctly different regimes can be achieved in a system of
parametrically excited waves: a discrete spectrum of capillary waves domi-
nated by the coherent-phase interactions and a continuous spectrum in which
the spectral transfer occurs due to random-phase three-wave interactions.

Fig. 1. Experimental setup.

The experiments are performed in a vertically shaken cylindrical container
(100 mm in diameter, 30 mm deep). The surface perturbations by capillary
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waves are detected using the reflection of the laser beam off the water surface,
similarly to the method described in [1]. A laser beam is reflected by the
water surface onto a diffusive screen which is imaged into a photo-multiplier
tube. The reflected light intensity is proportional to the tilt angle ∇η, or the
gradient of the surface elevation η(r, t). A schematic of the experimental setup
is shown in Figure 1.

In the reported experiments a monochromatic excitation is used. A para-
metrically driven f0/2 subharmonic wave is excited above a certain acceler-
ation threshold and generates a large number of harmonics fn = nf0/2. An
example of the discrete spectrum is given in Figure 2(a) for which f0 = 40
Hz and f1 = 20 Hz. More than n = 50 harmonics are observed. The increase
in the drive (vertical acceleration) leads first to a substantial broadening of
the harmonics and eventually to the generation of a continuous broadband
spectrum, Fig. 2(b). This spectrum has a power law fit S(f) ∝ f−m, where
m ≈ 3.
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Fig. 2. (a) Discrete and (b) continous spectra of capillary waves driven by the
parametrically excited wave at f1 = f0/2 = 20 Hz. The r.m.s. acceleration is (a)
A = 2.5g and (b) A = 15g. Dotted line corresponds to a power-law fit of f−3.

Capillary waves can interact via a three-wave interaction process which is
possible due to the decay-type dispersion relation, ωk = (σ/ρ)1/2k3/2, where
σ is the surface tension coefficient and ρ is the fluid density. Such a dispersion
allows three-wave resonant conditions for the frequencies and for the wave
numbers to be satisfied simultaneously: ω = ω1 + ω2 and k = k1 + k2. The
phase coupling in the spectra is characterized by the normalized bispectrum
[5], or the auto-bicoherence. The auto-bispectrum of the refelected laser power
P (t) is defined as

B(f1, f2) =
〈
FfF

∗
f1
F ∗

f2

〉
=

〈
Af1Af2Afe

φf−φf1−φf2
〉
, (1)

where f = f1 + f2, F (f) = Af e
φf is the Fourier transform of P (t), and ∗

denotes a complex conjugate. If phases of waves at f1, f2 and f are statistically
random, the everage value of the bispectrum is zero. The auto-bicoherence is
the squared auto-bispectrum normalized by the auto power spectra of the
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interacting waves:

b2f(f1, f2) =

∣∣∣〈FfF
∗
f1
F ∗

f2

〉∣∣∣2〈
FfF ∗

f

〉〈
Ff1F

∗
f1

〉〈
Ff2F

∗
f2

〉 . (2)

It changes between 0 (no phase coupling) and 1 (coherent waves) and reflects
the strength of the three-wave interactions. We also compute the summed
bicoherence, SB (f) =

∑
f=f1+f2

b2f (f1, f2). This quantity gives a measure of

the total phase coupling to the frequency f from all frequences f1 and f2 in
the spectrum satisfying f = f1 + f2.

f (Hz)

�(Bic) (a.u.)

(c)

1.0

0.8

0.6

0.4

0.0

0.2

f (Hz)
1

f (Hz)
2

f (Hz)
1

f (Hz)
2(a) (b)

f (Hz)

�(Bic) (a.u.)

(d)

Fig. 3. (a,b) The auto-bicoherence of the reflected light intensity and (c,d) the
summed bicoherence computed for the conditions of (a,c) discrete spectrum of
Fig. 2(a), and (b,d) continuous spectrum of Fig. 2(b).

Fig. 3 shows the auto-bicoherence corresponding to the spectra of Fig. 2.
The degree of the phase coupling between all discrete harmonics is very high,

Observation of weak turbulence spectra of capillary waves 727



b2f = (0.5−0.9), Fig. 3(a,c), which is indicative of highly coherent phase inter-
action. In the broadband turbulence, Fig. 3(b,d), the level of the bicoherence
drops below 0.2 at all frequencies, even at the strongest harmonics of the
pumping wave. This suggests that the waves participating in the three-wave
interactions have almost random phases. In our experiments a gradual increase
in the bandwidths of the interacting waves leads to a gradual overlapping of
the adjacent harmonics and eventually leads to the sharp breakdown in the
coherence and to the transition to the random-phase three wave interactions.
The level of the summed bicoherence in the continuum increases, while it
drops in the wave harmonics, as seen in Fig. 3(c,d). Further increase in the
pumping leads to the increase in the level of the spectral continuum until
the spectrum develops a power law of S(f) ∝ f−m. This spectrum gradually
steepens with the increase in the acceleration until reaching its limit of about
m = 3, as in Fig. 2(b).

Summarizing, we observe that transitions from discrete to continuous spec-
tra of parametrically generated capillary waves occur via a sudden change in
the degree of the phase coupling in the three-wave interactions. The coherent
phase interaction is replaced by the interactions of a much larger number of
modes having nearly random phases. Such a transition changes the nature
of the energy transfer between interacting modes from continuous reversible
transfer between coherent harmonics to asymmetric and irreversible transfer
between the random-phase waves [6]. The regime relevant to the weak turbu-
lence theory is realized in the latter case.
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A new numerical methodology to follow the
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Homogeneous isotropic turbulence in time decay has longly been a paradigm
in turbulence. Since the very first investigations it clearly appeared that cer-
tain scaling laws characterize the time decay, i.e. the turbulent kinetic energy
decreases in time as a power law with exponent n (k = Ak(t − t0)−n). From
experiments [2] it immediately appeared that the values of n are strongly sen-
sitive to the specific forcing and to the geometry of the apparatus. Ever since,
there are been a number of attempts to understand this dispersion of data,
under the assumption that the value of n should be universal. The theory
described in [1] states that the decay exponent n is strongly affected by initial
conditions and for large Reynolds number it assumes the value n = 1. Under
this respect DNS simulations in triperiodic box ([5],[6]), are highly influenced
by initial conditions i.e. by the spectrum of the velocity field. In particular
it is strongly affected by the behavior of the spectrum near k = 0. Recent
experiments [3] with space-filling square fractal grids show that the generated
turbulence is characterized by the property that the Taylor scale remains con-
stant during the decay. George [4] theoretically derived under the assumption
of a constant characteristic scale that the turbulence described in [3] decays
with an exponential law instead of the classical power law decay. He also states
that this exponential solution in not restricted to low Reynolds number but
its valid also for finite Reynolds number.

A basic property of self-similar decay is that the squared Taylor scale λ
2 =

10νk/ε = (10ν/n)(t−tv) increases linearly in time independently of the scaling
exponent n, while the proportionality constant is n-dependent. It follows that
the decaying exponent n can be estimated from the local slope dλ

2/dt. This
procedure is exploited for the data presented in Fig. 1, concerning a simulation
with an initial spectrum peaked at k = 10. In the first stages, consistently with
previous predictions, we find that a scaling exponent emerges, n = 1, resulting
in a constant Taylor-Reynolds number Reλ. The process of turbulence decay
essentially amounts to an unbound increase of the spatial scale according to
� = �0t

1/2. However for longer times the scaling properties change since the
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turbulent scales become comparable with the box size and can not increase
further. In these conditions the value of the decay exponent begins to increase
and might assume unphysical values greater than 2.5 that are not allowed by
theoretical considerations.

In this paper we introduce a new numerical methodology to follow the
time decay of homogeneous isotropic turbulence which is free from confine-
ment effects. The idea behind the new technique we present here is to map
the Navier-Stokes equations in a fixed domain in computational space cor-
responding to an expanding box in physical space. To map our equations
in computational space we introduce suitable time-dependent velocity and
length scales U(t)/u0 = (t/t0)−α/2, L(t)/�0 = (t/t0)1/2 where α is up to now
an unspecified real parameter.

The equations in the transformed space, u∗ = u/U(t), x∗ = x/L(t), read

∇
∗
· u
∗

= 0

∂u
∗

∂τ
∗

+ e
1−α

2 τ∗u
∗
· ∇

∗
u
∗

= −∇
∗
p
∗

+
1

Re
∇2

∗

u
∗

+
α

2
u
∗

+
1
2
x
∗
· ∇

∗
u
∗

(1)

where τ
∗

= ln (t/t0) and Re = u0 �0/ν is the nominal Reynolds number.
The solution u(x, t) is α-independent and this invariance is preserved by

any reasonably accurate numerics.
The equations in the Fourier space are the following:

jk
∗
· û
∗

= 0

∂û
∗

∂τ
∗

+ e
1−α

2 τ∗ ̂u
∗
· ∇

∗
u
∗

= −jk
∗
p̂
∗
− 1

Re
k

2

∗

û
∗

+
α − 3

2
û
∗
− 1

2
k
∗
· ∂û

∗

∂k
∗

(2)

As a matter of fact a computational box of fixed edges Λ
0

i
= 2π i =

1, 2, 3 corresponds to an expanding box in physical space of edges Λi(t) =
Λ

0

i
(t/t0)1/2. During decay, the physical box is continuously adjusted thus pro-

viding room for the enlarging energy containing modes. Since Kolmogorov and
integral scale grow in time as η =

(
ν

3/ε
)1/4 ∝ t

(n+1)/4 and L0 = k
3/2/ε ∝

t
(1−n/2), respectively, for n > 1 the dissipative scales grow quicker than the

box size, while the integral scale grows slower. At n = 1 all scales increase at
the same rate. As a consequence, if the system is properly resolved at t = 0
and as far as n ≥ 1 (the only cases of relevance here), at any t > 0 we have
L0(t) < Λi(t) and η(t) > Λi(t)/Ni, with Λi(t)/Ni the grid spacing and Ni

the number of grid points in direction i. Concerning the algorithm, we use
a standard pseudo-spectral method with the so-called three-halves dealiasing
rule for the non-linear terms, coupled with a low storage, four stages, third
order Runge-Kutta scheme for time advancement.

We performed a simulation in the expanding box from the same initial
condition. The initial dimensions of the box are 2π×2π×2π and the resolution
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is 384 × 384 × 384. Looking at Fig. 2 it can be observed that, in this case, a
constant Taylor Reynolds number is preserved for time intervals larger than
those of the fixed box simulation–six times larger–where the value of the
exponent n is one. The departure from n = 1 seen at larger times in fig 2 is
presumably due to numerical accuracy issues since the very small values of
the turbulent kinetic energy in computational space.

Fig. 3 summarizes the previous data to highlight the different behavior for
the fixed and expanding simulations respectively.

The integral scale versus time is shown in fig. 4. In the unconfined simu-
lation this variable increases with time while in the confined case it reaches
a limit comparable with the box length. In the expanding box run, the in-
tegral length scales with the same power law of the Taylor scale and also
of the Kolmogorov scale such that the ratios between the different turbulent
characteristic scales tend to remain constant in time also when the turbulent
intensity decays.

It is intriguing that at very late simulation time the exponent n reaches
the value of 2.5 as predicted theoretically in the final period of decay.

In conclusion, by using the expanding box procedure it is possible to re-
move confinement effects that are the main causes of the different decay ex-
ponent n measured both in experiments and numerical simulations.
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Introduction. Three recent publications1−3 stressed out that some kine-
matic relations of velocity increments Δui = ui(x + r) − ui(x) comprise
a manifestation of nonlocal effects, e.g. large and small scale quantities are
correlated. This feature invalidates the so-called random sweeping hypothe-
sis that large and small scales are statistically independent. It is noteworthy
that, pure kinematic relations that emphasize the non-local effects thereby
become dynamically significant. Some kinematic relations could be used for
the validation of experimental results.

Authors of Ref. [2,3] presented a number of experimental results obtained
using a multi-hot-wire probe in high Reynolds number flows estimated through
the time series in a single point. The main objective of this contribution is to
examine whether similar kinematic relations exist in lower range of Reynolds
numbers, in a homogeneous decaying grid turbulence. Moreover, it is of our
interest to test whether particle image velocimetry (PIV) (an experimental
method that spatially resolves the flow fields but suffers from spatial low-
pass filtering effects), is capable of capturing such kinematic relations. For
this purpose, we measured the decaying turbulent flow past a grid in a water
channel at the initial Reynolds number of 5000 (based on mean velocity and
grid mesh size).
Experimental setup and methods of analysis. Figure 1 shows an
overview of the water tunnel consists of an inlet reservoir, where water are
introduced into the tunnel, followed by a settling chamber consisting of a hon-
eycomb and screens, an 8:1 contraction, the test section, and a 90 degree turn
to return the water to the sump through a control valve. The present set-up
allows a maximum flow rate of 0.036 m3/s, corresponding to a maximum av-
erage of uniform mean velocity profile within 1% and turbulence intensity of
less than 1% in the test section. The length of the test section was chosen to
be 10 times the height of the test section. The width, W , and height, H, of
the test section are 600 mm and 300 mm, respectively.
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Fig. 1. Left: experimental setup of the wind tunnel. Right: Schematic description
of the analysis: velocity field measured using PIV and an example of the single
column of vectors marked. Only the vertical component is used, u1(x) = v(y) and
u2(x+ r) = v(y +Δy), r = Δy.

Measurements were carried out in the grid turbulence generated by a
square mesh grid interwoven of stainless steel rods of 6.35 mm diameter and a
spacing of M = 25.4 mm, placed perpendicular to the flow at the beginning of
the test section. Measurements were made at five locations downstream past
the grid (x = 100, 500, 600, 800 and 900 mm).

The flow was seeded using Silicon Carbide particles with an average di-
ameter of 2 μm and a density of 3200 kg/m3. The PIV system makes use
of a double pulse Nd:YAG laser operating at 15 Hz with an energy of 120
mJ/pulse that produces a light sheet at a wavelength of 532 nm illuminating
the seeded flow field. The scattered light from the particles is collected into a
CCD camera located 90 degrees to the light sheet. The CCD has an array of
1024x1024 pixels with an 8 bit dynamic range operating in double exposure
mode. The images are then subsequently transferred to a computer for the
completion of a two frame cross-correlation analysis. The time interval be-
tween two sequential images was set to be 2.5 msec corresponding to a mean
velocity of 0.20 m/sec. The interrogation area was set to 64 x 64 pixels with
50% overlap resulting in 2048 velocity vectors per instantaneous map. A total
of 2000 velocity maps were acquired per each experiment.

The kinematic relations are derived directly from the measured data. For
every velocity field, the vertical velocity component v (along the homogeneous
direction) is utilized to calculate the u+ and the u− along the vertical coor-
dinate (Fig. 1 right). Homogeneity enables to average all the increments at
a given distance r (limited to half-height of the observation field). The time
steadiness of the decaying turbulence behind a grid enables the ensemble av-
erage at a given streamwise coordinate x.
Results. Two distinct types of the kinematic relations are presented: I) two-
point relations such as Hosokawa’s 〈u3

−〉 = −3〈u2

+
u−〉, II) mixed-type relations

that mix the single- and two-point quantities such as 〈(Δu)2〉 = −2〈u1Δu〉 =
2〈u2Δu〉, which can appear as symmetric or asymmetric. In addition, a dis-
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tinction is made between the kinematic relations and dynamical relations,
such as the Hosokawa’s 〈u2

+
u−〉 = 〈ε〉r/30, associated with the 4/5 law.

Kinematic relations. Two relations are presented in Fig. 2: two-point kine-
matic relation 〈u3

−〉/〈u2

+
u−〉 and an analogous asymmetric relation 〈(Δu)3〉/−

2〈u1(Δu)2〉.
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Fig. 2. (Left) Two-point kinematic relation 〈u3
−〉/〈u2

+u−〉 at different distances
from the grid, x = 100, 500, 600, 800 and 900 [mm]. (Right) An asymmetric relation
〈(Δu)3〉/− 2〈u1(Δu)2〉 analogous to the Hosokawa’s relation on the left.

Dynamical relations associated with the 4/5 law. Hosokawa’s relation
〈u2

+
u−〉 = 〈ε〉r/30 and the direct 4/5 law are shown in the following Figure 3.
We would like to emphasize that for relatively low Reynolds numbers, it

would be of interest to compare the dynamical relations without neglecting the
viscous term in the 4/5 law. Namely, 〈(Δu)3〉/[−(4/5)〈ε〉r+6νd{〈(Δu)2〉/dr}]
and 〈u+

2u−〉/[〈ε〉r/30− νd{〈(u−)2〉/dr}], as well as considering the variation
along the streamwise coordinate x. This will be a part of our future publica-
tion.

Fig. 3. (Left) Hosokawa’s relation 〈u2
+u−〉 = 30ε/r. (Right) Kolmogorov’s 4/5 law

in the form: 〈(Δu)3〉 = −4/5〈ε〉r

Velocity kinematic relations in decaying turbulent flow past a grid 735



Summary and discussion. We demonstrate that the kinematic relations
similar to those introduced by Hosokawa1−3 can be obtained in a moderate
Reynolds number flow of decaying turbulence past a mesh grid. The relations
are shown to be sensitive to the homogeneity of the flow, as it appears in
the results from the non-homogeneous region of the flow (x = 100 mm).
Therefore, the kinematic relations are qualitatively different from the widely
used single point statistics, that exhibit cut-offs at high wavenumbers due to
the intrinsic low-pass filtering effect of the PIV experimental method. The
dynamic relations presented by Hosokawa, 〈u2

+
u−〉 = 〈ε〉r/30 and the 4/5 law

hold for data obtained using PIV in grid turbulence despite the relatively low
Reynolds number. The tests based on the kinematic and the dynamic relations
can be recommended as a procedure to examine the homogeneity of turbulent
flows under investigation.
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Lagrangian intermittency and time-correlations
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The intermittent nature of turbulent flows constitutes a major challenge to
modellers. Whereas the statistics of the complex dynamics of scale-invariant
Lagrangian dynamics could be modelled by a Gaussian process, intermittency
impedes this. Large fluctuations in the velocity increments and fluid particle
accelerations would be largely underestimated by such an approach. Advances
in numerical and experimental methods have recently boosted the research on
and understanding of the intermittent nature of turbulent flows, in particular
from the Lagrangian viewpoint [1]. For example, in two dimensions, it was
recently shown that Lagrangian intermittency can exist even if it is completely
absent in the Eulerian reference frame [2]. Moreover, it was hypothesized that
Lagrangian long-time correlations might be a key to the understanding of
intermittency [3].

In the present work we will investigate the validity of this hypothesis.
We start with a model for two-dimensional turbulence, well known in the
magnetically confined fusion community. This model, due to Hasegawa and
Wakatani [4], bares ressemblances with both 2D Navier-Stokes turbulence and
2D geostrophic turbulence. One parameter, the adiabaticity c, allows to vary
continuously from one limit to the other. This model reads

∂ω

∂t
+ (u · ∇)ω = ν∇2ω + c(ψ − n), (1)

∂n

∂t
+ (u · ∇)n = D∇2n− u

∂n̄

∂x
+ c(ψ − n). (2)

with ω the vorticity, n an advected scalar, ψ the stream-function, ν and D
viscosity and diffusivity, respectively, and ∂n̄/∂x an imposed mean scalar
gradient. For c → 0 one approaches the 2D Navier-Stokes limit, whereas for
c→∞ the geostrophic Charney model is obtained. The coupling term c(ψ−n)
allows the system to access to a saturated turbulent state even in the absence
of external forcing.

Equations (1,2) were solved using a fully dealiased pseudo-spectral method
at a resolution of 10242 gridpoints. 104 particles were injected, equally spaced,
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in the statistically stationary regime, and their velocity and acceleration were
monitored during several large-scale turn-over times. Details on the simula-
tions of equations (1,2) can be found in [5] and on the Lagrangian part of the
study in [6] in which a similar investigation was performed for Navier-Stokes
turbulence. The adiabaticity is varied between c = 0.01 and c = 2, to obtain
different flow regimes. Visualizations of the vorticity-field for two flow regimes
are shown in Figure 1.

−15 −10 −5 0 5 10 15 −10 −8 −6 −4 −2 0 2 4 6 8 10

Fig. 1. Visualisations of the vorticity field for two different values of the adiabaticity.
Left: c = 0.01, right: c = 2.

In Figure 2 (left), the PDFs (probability density functions) of the La-
grangian acceleration are shown for different values of c. It is observed that
the PDF evolves from a close to exponential form for large c to a stretched
exponential for c = 0.01. It was argued by Holzer and Siggia [7] that an ex-
ponential distribution for the pressure gradient PDF (which is supposed to
ressemble the Lagrangian acceleration for large Reynolds number), can be ob-
tained from Gaussian (non-intermittent) velocity fields. More puzzling are the
stretched exponentials, found for small c, similar to the stretched exponentials
observed in Navier-Stokes turbulence. To quantify the stretching of the PDFs,
we plot in Figure 2 (right) the flatness of the velocity increment PDFs as a
function of the timelag τ . For small τ this quantity yields the flatness of the
acceleration PDFs. This flatness is seen to vary between approximately 8 and
60. Note that for a perfect exponential distibution the flatness is equal to 6.
The flatness of the velocity PDFs can be obtained by evaluating the value for
large τ . Except for c = 0.01, all cases yield a flatness close to three, which is
the Gaussian value. For the case c = 0.01, the value of the flatness at large τ
is approximately 5.5. For timelags 0.5 < τ < 5, the flatness can be fitted with
a power-law.
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Fig. 2. Left: PDFs of Lagrangian acceleration for different values of c. Right: flatness
of the velocity increments as a function of τ .
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Fig. 3. Autocorrelations of the acceleration and of its norm for the five cases.

Mordant et al. [3] proposed that the origin of the intermittent behavior of
the Lagrangian acceleration might be related to the long time-correlation of
the norm of the acceleration. To test this assumption, we show in Figure 3
the time-correlations of the components of the acceleration and of their norm.
Note that at large times the correlation of the norm takes small negative val-
ues. This is, as explained in Yeung and Pope [8], due to a slow convergence of
the statistics at long time intervals. This can be reduced by preprocessing the
data, which is not attempted in the present work. The timelag is normalized
by the first zero-crossing of the time-correlation of the components of the ac-
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celeration. These correlations thereby almost collapse. The time-correlation of
the norm of the acceleration varies slightly. The cases c = 0.7 and c = 2 show
shorter time correlations than the other cases (c = 0.01; 0.05; 0.1). However,
in between these last three cases no significant difference is observed, whereas
the flatness of the PDF of the acceleration varies between 20 and 60. We can
therefore not conclude, for the moment, whether or not long time-correlations
are the key to intermittency.
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Part XI Large eddy simulation





Implicit Large-Eddy Simulation: Theory and

Application

N. A. Adams and S. Hickel
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Large-Eddy Simulation has been recognized as one of the major tools for the
numerical simulation of complex turbulent flows, in events when more ac-
cessible alternative approaches, such as statistically averaged Navier-Stokes
equations (Reynolds-averaged Navier-Stokes equations - RANS), fail. This is
in particular the case, when complex flow phenomena (reaction, fluid-structure
interaction, interfaces, shocks) introduce additional non-turbulent temporal or
spatial scales. It is known since quite some time that the nonlinear truncation
error of some classes of discretization schemes for the Navier-Stokes equations
not only interferes with explicitly added subgrid-scale (SGS) models but also
can provide some SGS closure when no model is added at all. More recent
analyses of such schemes have outlined the way to a more systematic proce-
dure for such no-model approaches, leading to what is called now implicit LES
(ILES). With ILES no subgrid-scale model is added to the discretized Navier-
Stokes equations, and SGS modeling is left solely to the numerical truncation
error. In this contribution we will outline a theory of ILES which allows for
physically motivated modeling of the nonlinear truncation error, called adap-
tive local deconvolution method (ALDM), and demonstrate its feasibility for
reliable LES of a wide range of turbulent flow configurations.

1 General Concept of ILES

For simplicity we consider the initial-value problem for a generic scalar non-
linear transport equation for the variable v

∂v

∂t
+
∂F (v)

∂x
= 0 . (1)

On a mesh with equidistant spacing h the grid function vN represents a dis-
crete approximation of v(x) by vj

.
= v(xj). For finite h the representation of

the continuous solution v(x) by the grid function vN results in a subgrid-scale
error or residual
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GSGS =
∂FN (vN )

∂x
− ∂FN (v)

∂x
(2)

which arises from the nonlinearity of F (v). The modified differential equation
(MDE) for vN is

∂vN

∂t
+
∂FN (vN )

∂x
= GSGS . (3)

Since for LES the ratio between characteristic flow scale and grid size h never
can be considered as asymptotically small GSGS cannot be neglected for proper
evolution of vN but requires approximation by modeling closures.

A similar MDE is obtained from a finite-volume discretization of eq. (1)
which corresponds to a convolution with the top-hat filter. The resulting finite-
volume approximation of eq. (1) is given by

∂ūN

∂t
+G ∗ ∂F̃N (u∗N )

∂x
= 0 , (4)

where u∗N
.
= uN results from an approximate inversion u∗N = Q ∗ ūN of the

filtering ūN = G ∗ u. This equation approximates the exact filtered equation

∂v̄

∂t
+G ∗ ∂F (v)

∂x
= 0 , (5)

Similar considerations hold for filter kernels other than the top-hat filter. We
recall that although the inverse-filtering operation is ill-posed, an approxima-
tion u∗N of u on the grid xN can be obtained by regularized deconvolution.

Once deconvolution operation and numerical flux function are determined,
the modified-differential-equation analysis of eq. (4) leads to an evolution
equation of ūN in the form of

∂ūN

∂t
+G ∗ ∂FN (uN )

∂x
= GN , (6)

where

GN = G ∗ ∂FN (uN )

∂x
−G ∗ ∂F̃N (u∗N )

∂x
(7)

is the truncation error of the discretization scheme. If GN approximates ḠSGS

in some sense for finite h we obtain an implicit subgrid-scale model implied
by the discretization scheme. Note that this requirement is similar to that for
GSGS and different from classical asymptotic truncation-error analysis, where
GN approximates ḠSGS for h→ 0.

2 The Modified Differential Equation

Central element of implicit LES modeling is the modified differential equation
analysis (MDEA). Considering the initial-value problem of the generic one
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dimensional conservation law of eq. (1) with the generic semi-discretization eq.
(4) we obtain as solution a grid function uN = {uj}. Assuming that this grid
function decays sufficiently fast with x −→ ±∞ it possesses a discrete Fourier
transform. As explained by Vichnevetsky and Bowles [21] the same Fourier
transform applies to the continuous function u(x) which is the continuous
interpolation of the grid function uN by virtue of the Whittaker cardinal
function. The interpolated function is smooth u(x) ∈ C∞ and can be expanded
as a Taylor series at each xj . Note that u(x) represents jumps in uN , which are
approximations of discontinuities in terms of the grid function, by a smooth
approximation. Also, any filtering applied to uN can be formally inverted by
application of the inverse filter kernel to ûN since as a grid function uN has
compact support in Fourier space, and accordingly does u(x).

Given u(x) as continuous interpolation of uN , and given that this func-
tion is sufficiently smooth, the question is what differential equation is solved
exactly by u(x). Since ū(xj) = ūj , and ūj

.
= v̄(xj) is only an approximation

of the solution of eq. (5) certainly v̄(x) and ū(x) differ in general. There-
fore, also the differential equation whose exact solution is v̄(x) differs from
eq. (5). Given that ūN is the the solution of eq. (4) obtained by a consis-
tent discretization, the differential equation for ū(x) should differ from eq. (5)
for v̄(x) by the truncation error, which for consistent schemes should become
small with small grid- and time-step sizes. As we consider here only spatial
semi-discretizations it is the spatial truncation error, which is relevant. Now
it is clear that eq. (6) can be rewritten in terms of u(x, t) as

∂ū

∂t
+G ∗ ∂F (u)

∂x
= G , (8)

where the continuous spatial truncation error G can be obtained by inserting
the Taylor expansion of u(x), after u(x) has been reconstructed from ū(x) by
inverse filtering or deconvolution.

For more general transport equations and more complex, e.g. nonlinear,
discretization schemes the derivation of the modified differential equation be-
comes very complex. Also, when incompressible flows are considered, the spa-
tial truncation error involves contributions of the divergence constraint. If zero
divergence is satisfied by projection these analytical contributions require the
solution of a Poisson equation by suitable Green functions. Overall, the real
space modified-differential-equation analysis is hardly tractable for more com-
plex discretizations and more general transport equations. One of the essential
requirements for a SGS model is that for isotropic turbulence it has to recover
the proper energy transfer between represented and non-represented scales.
Only then one can expect that the kinetic-energy spectrum develops a Kol-
mogorov inertial range. Most suitable for such analyses is a representation of
the truncation error in spectral space, leading to the MDEA in spectral space
[7].
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3 Review of ILES approaches

3.1 The Volume Balance Procedure of Schumamm

With the Volume-Balance Procedure [16] the incompressible Navier-Stokes
equations are averaged over finite volumes using a staggered arrangement
of the grid for the different components of the momentum equation. The
main focus is posed on physically motivated modeling of the SGS stresses.
For this purpose isotropic and inhomogeneous contributions are considered
separately. A particular truncation-error term arising from the discretization,
or volume-averaging, respectively, is modeled, whereas not the full truncation
error is considered. In this respect the volume-balance procedure rather can be
considered as explicit LES model, but the notion that the discrete equations
should be the starting point of modeling is shared with implicit LES modeling.

3.2 The Kawamura-Kuwahara scheme

A linear implicit LES method has been proposed by Kawamura and Kuwa-
hara [13] for incompressible flow. The method is based on a standard pressure-
correction scheme with non-staggered arrangement of grid points for the dis-
cretization of momentum and pressure-Poisson equations. While for the dis-
crete derivative operators in the Poisson equation and in the friction term
of the momentum equations second-order central differences are used, the
essence of this simple implicit model is in the discretization of the convective
terms in the momentum equations by a particular combination of directional
upwind schemes.

3.3 The Piecewise-Parabolic Method

The Piecewise-Parabolic Method (PPM) was proposed by Woodward and
Colella [22] for the numerical solution of gas-dynamics problems, see also Ref.
[5, chapter 4b], and applied to turbulence flows by Porter et al. [15]. Basis of
PPM is a MUSCL (Monotone UPstream-centered Scheme for Conservation
Laws) [14] reconstruction of the unfiltered solution by quadratic local approx-
imation polynomials. From these differences a so-called fractional error can be
computed which serves as a measure of the local smoothness of the solution.
Based on this reconstruction procedure and the accompanying smoothness
measure a MUSCL-type, formally third-order accurate spatial discretization
can be constructed, where the interpolation procedure for compressible flow
problems is commonly applied to the Riemann variables (i.e. to a local charac-
teristic projection of the transport equations). To maintain nonlinear stability
a slope limiting is introduced. For contact discontinuities a steepening oper-
ation is constructed. With this framework PPM introduces a method for the
reconstruction of subgrid information which is motivated by its function as
approximate Riemann solver for gas dynamics.
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3.4 The Flux-Corrected-Transport Method

For implicit SGS modeling the discretization scheme has to be specifically
designed so that the truncation error has physical significance. In a numer-
ical analysis [3] several approaches to implicit LES are investigated and dif-
ficulties in satisfying this requirement are demonstrated. It was found that
artificial dissipation introduced by common nonlinearly-stable discretizations
indeed stabilizes under-resolved turbulence simulations. For the investigated
schemes, however, small scales suffer from excessive numerical damping such
that the probability-density functions of velocity increments and pressure ex-
hibit the typical behavior of low Reynolds-number flows rather than that of
high Reynolds-number turbulence. Thus it appears that for these schemes the
prediction accuracy of subgrid effects is poor, although some general trends
were reproduced. With a certain Flux-Corrected Transport Method (FCT),
however, good results for a wide range of complex flows have been reported
[4].

3.5 The MPDATA Method

The Multidimensional Positive Definite Advection Transport Algorithm (MP-
DATA) has been introduced by Smolarkiewicz [17, 18] for meteorological ap-
plications. Reviews of MPDATA can be found in Refs. [20, 19]. Essential to
MPDATA is upwinding of the numerical error, which is achieved in a two-
step scheme, where a spatially first-order upwind step is followed by an anti-
diffusive step, involving upwinding of the truncation error. Overall second-
order in space is achieved. Applied to incompressible Navier-Stokes turbulence
the MPDATA method was analyzed by Domaradzki et al. [2]. Simulations for
isotropic incompressible turbulence at formally infinite Reynolds number for
fixed numerical parameters (resolution and time-step size). It was found that
the compensated inertial-range spectra approximate the value for the Kol-
mogorov constant in a quality comparable to classical explicit LES models. A
spectral-space MDEA reveals that the spectral numerical viscosity is in the
range of the theoretically predicted spectral eddy viscosity, does not, however
return the plateau values and does not reproduce the cusp near the cut-off
wavenumber.

3.6 The Optimum Finite-Volume Scheme

Starting point of the Optimum Finite-Volume Scheme of Zandonade et al.
[23] is the finite-volume discretization of the incompressible Navier-Stokes
equations. As with the Volume-Balance Method the problem of modeling the
cell-face fluxes is considered directly which is then subjected to stochastic
estimation. In effect, the above ansatz leaves all finite-volume stencil weights
free for optimization. Numerical requirements, such as consistency or stability,
are not enforced by constraining the optimization and have to be recovered by
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the estimation procedure. Also, as the ansatz is linear, it cannot be expected
that the resulting model can adapt locally to the flow character, whether
turbulent or laminar. An optimum parameter set was identified for isotropic
turbulence.

3.7 Implicit LES by Adaptive Local Deconvolution

The Adaptive Local Deconvolution Method (ALDM) constitutes a general
framework for ILES which is inherently solution adaptive and involves only few
discretization parameters which can be identified by incorporating theoretical
knowledge about turbulence physics. For any discretization parameters ALDM
results in a consistent spatial discretization scheme which is at least second-
order accurate. A one-dimensional development of ALDM for the Burgers
equation has been given by Ref. [1]. This fundamental concept of ALDM has
been extended to the incompressible [7] and the compressible Navier-Stokes
equations [12]. ALDM also has been formulated for scalar transport [9].

The generic discretized conservation law eq. (6) is considered subjected
to a real-space top-hat filter. For the filtered flux term an approximation of
the unfiltered solution at the left and right faces of each cell is required. The
top-hat filtering being equivalent to a finite-volume discretization allows for a
primitive-function reconstruction of u(x) from ūN as proposed by Harten et
al. [6]. For this purpose a set of local interpolation polynomials is introduced,
operating on admissible interpolation stencils. Whereas for ENO or weighted-
ENO (WENO) approaches a single interpolation-polynomial order is chosen,
here a quasi-linear combination of all possible interpolation polynomials up to
a certain order is constructed. Finally, an appropriate numerical flux function
F̃N needs to be devised which approximates the physical flux F . Details are
given in Ref. [1, 7]

ALDM for the incompressible Navier-Stokes equations has been applied to
a wide range of flows. A representative result for homogeneous turbulence is
the transition of the three-dimensional Taylor-Green vortex, whose dissipation
evolution is very well captured by ALDM, see fig. 1. Inhomogeneous turbulent
flows also are well reproduced by ALDM, this holds e.g. for turbulent channel
flow [8], see fig. 2, and for massively separated boundary layer flows [10, 11].
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Fig. 1. Contributions to energy dissipation in ALDM for LES of the TaylorGreen
vortex at Re = (a) 100, (b) 200, (c) 400, (d) 800, (e) 1600, (f) 3000; molecular
dissipation, implicit SGS dissipation, total dissipation, symbols DNS
data. For details see [7].

Fig. 2. Mean velocity profile and resolved Reynolds stresses for LES of turbulent
channel flow at Reτ = 950. Lines: ALDM, symbols: DNS, For details see Ref. [8].
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1 Introduction

This work addresses a challenging and new problem for large-eddy simulations
(LES) that exists in free shear flows. These flows can be divided into two
regions: in the outer region the flow is largely irrotational whereas in the
inner region the flow is turbulent. These two regions are separated by a sharp
interface - the turbulent/nonturbulent (T/NT) interface - where the turbulent
entrainment, by which a given fluid element from the irrotational flows region
becomes turbulent, takes place. It was assumed in the past that the turbulent
entrainment was mainly caused by large-scale engulfing motions [1], but recent
experimental and numerical works [2, 3] give support to the original idea from
[4] where the entrainment is caused by small scale eddy-motions (nibbling).

Moreover, it has been show that important Reynolds stresses exist in the ir-
rotational flow region near the T/NT interface [5]. Since the Reynolds stresses
affect the small scale mixing near the T/NT interface it is important to study
the influence of several subgrid-scale models in this new and challenging con-
text, since a deficient prediction of these stresses near the T/NT interface will
affect important issues such as mixing and combustion, which take place at
that location.

2 Direct numerical Simulation of turbulent plane jets

Direct and large-eddy simulations (DNS/LES) were used. The reference DNS
is from a developed turbulent plane jet at Reλ ≈ 120 [6] (Fig. 1(a)). Specif-
ically, we do a-priori and a-posteriori tests based on this data bank, us-
ing conditional statistics i.e. statistics in relation to the distance from the
turbulent/non-turbulent (T/NT) interface yI , that separates the turbulent
from the irrotational flow regions (Fig. 1(b)).
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To show the interest of these statistics, the conditional vorticity compo-
nents are shown in Fig. 2(a), displaying the existence of a sharp jump at
the T/NT interface with a width close to the Taylor micro-scale, in agree-
ment with Westerweel et. al. [2]. Moreover, the conditional normal Reynolds
stresses near the T/NT interface (Fig. 2(b)) show the existence of significant
values at the irrotational region.

(a) (b)
Fig. 1. (a) Intense vorticity stuctures (white) and the T/NT interface (red); (b)
Skecth of the T/NT interface, where a local reference frame is used to perform the
conditional statistics.
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Fig. 2. (a) Conditional mean profiles of the vorticity components; (b) Conditional
mean profiles of Reynolds stresses (DNS).
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3 Results and discussion

Figure 3(a) illustrates the challenge faced by LES in this context. The figure
displays conditional profiles of twice the total kinetic energy uiui, SGS kinetic
energy τii, and the ratio between these quantities. Deep inside the turbulent
region yI/λ ≈ 4 only a small fraction of the energy (10-15%) is at the subgrid-
scales, however, the value increases near the T/NT interface, where near 80%
of the energy is at the unresolved scales due to the small level of total energy
there.

The model constants from current subgrid-scale models near the T/NT
interface can be determined in a-priori tests using the equilibrium assump-
tion between production Π = −τijSij and dissipation of subgrid-scale kinetic

energy εΔ = ν
[

∂ui

∂xj

∂ui

∂xj

− ∂ui

∂xj

∂ui

∂xj

]
. Figure 3(b) shows the Smagorisnky model

constant CS . As can be seen the model constant CS is much too high near
the irrotational region and should be corrected to avoid excessive dissipa-
tion of the Reynolds stresses at that location. A similar trend is observed for
other classical subgrid-models such as the Structure Function or the Gradient
models.

A-priori and a-posteriori tests showed that the dynamic procedure, al-
though improving the results, does not solve the problem. This is due to the
classical plane averaging procedure of the dynamics constant CD that does
not separate between turbulent and irrotational regions.

Several correcting measures to the SGS models are proposed that can
improve the results for the Reynolds stresses near the T/NT interface, with
consequences for mixing and combustion at the edge of a jet or a mixing layer.

(a) (b)
Fig. 3. Conditional mean profiles of: (a) Fraction of SGS energy at the SGS scales;
(b) Smagorinsky model constant.
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Turbulence that occurs in nature, or in engineering flows, is usually not, even
approximatively, homogeneous. There are frequent variations of the mean ve-
locity with position. By explicating the scale-by-scale energy budget of non-
homogeneous turbulence, it has been argued that the subgrid-scale (SGS)
stress tensor should encompass two types of interactions [1, 2]: (i) between
the mean velocity and the resolved fluctuating velocities (the rapid part of
the SGS stress) and (ii) among the resolved fluctuating velocities themselves
(the slow part of the SGS stress). The rapid part is related to the large-scale
distortion, while the slow part is associated with the Kolmogorov’s energy
cascade [3]. Interestingly, these developments end up with a shear-improved
Smagorinsky model (SISM) [1], for which the SGS viscosity writes

νsgs = (CsΔ)2
(∣∣S∣∣− S) . (1)

Cs � 0.2 is the Smagorinsky constant, Δ is the grid size and
∣∣S∣∣ ≡ (2SijSij)1/2

is the norm of the resolved rate-of-strain. Finally, S ≡ |〈S〉| is the characteristic
shear associated with the mean flow. In practical simulations, S � |〈S〉|.

Interestingly, the SISM does not call for any adjustable parameter nor ad-
hoc damping function. It does not use any kind of dynamic adjustment either.
However, a special care must be taken in estimating the ensemble-averaged
rate-of-strain, 〈S〉. Ensemble average may be replaced by space average over
homogeneous directions (whenever it is possible) or time average. This is
adapted to simple-geometry flows or (statistically) stationary turbulent flows.
This was the case of our first tests (which focused on SGS modeling errors)
concerning a bi-periodic plane-channel flow [1] and a backward-facing step flow
[4]. These results are promising as they indicate that the SISM possesses a
predictive capacity essentially equivalent to the dynamic Smagorinsky model
[5] but with a computational cost and a manageability comparable to the
Smagorinsky model [6].
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It is now our motivation to examine how the SISM behaves in CFD solvers,
which usually rely on a coarser grid and a lower-order discretization scheme,
and apply to complex-geometry unsteady flows [8]. A procedure is introduced
to evaluate the mean flow from the running velocity field. Our proposal is
based on temporal smoothing that highlights longer-term trends or cycles but
erases short-term fluctuations. Our physical assumption is that the mean ve-
locity is given by the “low-frequency component” of the velocity, and that
the turbulent part of the velocity adds itself to this “unsteady mean”. An
exponentially-weighted moving average (or exponential smoothing) is consid-
ered.

At a given grid-point, the idea behind exponential smoothing is to update
(at each time step) the previous estimate of the mean by taking into account
the new instantaneous value. Let u(n) stand for a component of velocity and
[u](n) the estimated mean, at time n. The update writes

[u](n+1) = (1− cexp.)[u](n) + cexp.u
(n+1), (2)

where [u](0) = u(0) and 0 < cexp. < 1 is the smoothing factor. This algorithm
acts as a low-pass filter with cut-off frequency fc (at which the amplitude is
reduced by half) approximated by cexp � 2πfcΔt/

√
3 (first-order filter), where

Δt is the simulation time-step. In our fluid mechanical context, fc should be
identified with a “characteristic frequency of the flow”. The main advantage of
this algorithm is its simplicity, both conceptually and in its implementation.

Fig. 1. Cylinder, ReD = 47000. Left: instantaneous vorticity (non-dimensionnal).
Right: vorticity of the exponentially-smoothed flow (non-dimensionnal).

The flow past a circular cylinder at ReD = 47000 based on diameter D has
been examined to test our modeling. In this regime, the flow develops lam-
inar boundary-layers, moving separations, shear-layer transitions and vortex
shedding. It is therefore a challenging test-case [7]. The LES was performed
by using the Turb’Flow solver [8]. The numerical grid extends over 10D in
the radial direction and 3D in the spanwise direction (with a periodic bound-
ary condition). This grid encompasses 3 × 106 mesh-points with a resolution
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Δr+ � 1, (D/2)Δθ+ � 20 and Δz+ � 25 (in wall units) in the turbulent
separated region, following standard recommendations for LES [9]. In the
smoothing algorithm, fc is fixed at twice the value of the expected vortex-
shedding frequency. This prescription a priori ensures that large eddies that
detach from the cylinder are captured in the mean-flow reconstruction. Indeed,
as shown in Fig.1, while the instantaneous flow presents numerous turbulent
scales, the smoothed flow mostly captures the vortex shedding.

simulation data in literature

St : Strouhal number 0.19 [0.18, 0.20] (ReD = 4.8 104) [10]
of the vortex shedding [0.185, 0.195] (104 ≤ ReD ≤ 105) [11]

θs : mean separation angle 88◦ � 83◦ (4.0 104 ≤ ReD ≤ 4.5 104) [11]

CD : mean drag coefficient 1.34 [1.0, 1.35] (ReD = 4.8 104) [10]
1.35 (ReD = 4.3 104) [12]
[1.0, 1.3] (ReD = 4.8 104) [13]
[1.1, 1.3] (104 ≤ ReD ≤ 105) [11]

C′
D : rms drag coefficient 0.09 [0.08, 0.1] (ReD = 4.8 104) [14]

0.16 (ReD = 4.3 104) [12]
[0.05, 0.1] (104 ≤ ReD ≤ 105) [11]

C′
L : rms lift coefficient 0.77 [0.4, 0.8] (ReD = 4.8 104) [14]

[0.45, 0.55] (ReD = 4.3 104) [12]
[0.6, 0.82] (104 ≤ ReD ≤ 105) [11]

Table 1. Comparison of flow characteristics with experimental data.

The key flow characteristics are summarized in Table 1. The agreement
is good with experimental data, concerning the vortex-shedding frequency
and the mean or fluctuating forces. The mean separation angle appears over-
estimated, but the numerical resolution in the region of the boundary-layer
separation is about 2◦; the discrepancy is thus only two grid-points. In Fig.2,
the angular profile of the mean-pressure coefficient is consistent with experi-
mental data. The angular profile of the root-mean-squared fluctuations of the
pressure coefficient is displayed in Fig.3. The overall behavior is well captured,
with a maximum around the mean separation angle, but over-estimated. How-
ever, the data reported in the figure indicate a dependence on the Reynolds
number which may explain, to some degree, the observed discrepancy.

In conclusion, our numerical results demonstrate the good predictive ca-
pacity of the method. From a computational viewpoint, this method deserves
interests since it is “low-cost” and entirely local in space. It is therefore well
adapted for parallelization. A refinement of the smoothing algorithm, in terms
of a Kalman filter that adapts its smoothing frequency to the recent history
of the signal, is currently investigated.

Acknowledgements: the simulation has been performed by using the local
computing facilities, PSMN at ENS-Lyon.
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Fig. 2. Mean pressure coefficient around the cylinder. —: simulation at ReD =
4.7 104; ◦: exp. data at Re = 4.0 104 [12]; ♦ exp. data at Re = 4.6 104 [15]; �: exp.
data at Re = 105 [13].

Fig. 3. RMS fluctuations of the pressure coefficient around the cylinder. —: sim-
ulation at ReD = 4.7 104; ◦: exp. data at Re = 6.1 104 [17]; : exp. data at
Re = 6.1 104 [19]; �: exp. data at Re = 105 [18]; ♦: exp. data at Re = 105 [16].
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1 Introduction

Self-organization and formation of active regions in fully developed turbulent
flow are observed in many physical quantities, such as vorticity or energy dis-
sipation. The regions are not distributed homogeneously and exhibit spatial
intermittency. Wavelet analysis is a prominent tool to allow a sparse rep-
resentation of intermittent fields [1]. Wavelets, well-localized functions both
in physical and spectral space, decompose a given flow field into scale-space
contributions.

The Coherent Vortex Extraction (CVE) method, a wavelet nonlinear fil-
tering method based on orthogonal wavelet, has been introduced in [2]. The
coherent vorticity ωc is reconstructed from few wavelet coefficients of ω, whose
modulus is larger than a given threshold motivated by denoising theory [3].
The coherent vortices are thus retained, together with most of the energy
and the statistics are similar to the one of the total vorticity. The incoher-
ent vorticity field ωi reconstructed from the remaining wavelet coefficients is
structureless and contains no vortex tubes.

A turbulence model based on CVE, called coherent vortex simulation
(CVS), has been proposed in [2, 4]. The CVS method is a technique for
computing and modeling turbulent flows. It is based on the deterministic
computation of the evolution of coherent flow in an adaptive wavelet basis,
while neglecting the influence of the remaining incoherent background flow
to model turbulent dissipation. The wavelet filter dynamically adapts to the
flow evolution and thus changes with time. A safety zone is hence required
to predict the translation of coherent vortices and the generation of smaller
scales due to their nonlinear interaction [5]. The efficiency of CVS is directly
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related to flow intermittency and thus increases with the Reynolds number as
suggested in [6].

In this paper, we examine the potential of CVS for three-dimensional
decaying homogeneous isotropic turbulence at the initial Taylor-microscale
Reynolds number Rλ = 167 [7]. This canonical flow allows to assess the per-
formance of CVS in the fully developed turbulent regime. Due to its statistical
homogeneity, this turbulent flow is the most challenging flow to test the va-
lidity and performance of CVS.

2 Methodology

The CVE method decomposes ω into ωc and ωi, satisfying ω = ωc +ωi. Ap-
plying the Biot-Savart operator −∇−2∇× to ω, ωc and ωi, we obtain the total
u, coherent uc and incoherent ui velocity fields, respectively. Each velocity
field satisfies the divergence free condition. The wavelet filtered Navier-Stokes
equations, written in vorticity-velocity formulation, are obtained by substitut-
ing the coherent-incoherent decompositions of the total vorticity and velocity
into the equation. Neglecting the influence of ωi and ui, we get the evolution
equation for ωc,

∂tωc + uc · ∇ωc − ωc · ∇uc − ν∇2ωc = 0, (1)

where ν denotes the kinematic viscosity.
Retaining the coherent wavelet coefficients only is not sufficient to catch

the flow evolution and adding a safety zone in the vicinity of the retained
wavelet coefficients is of primordial importance, as shown in [8]. Here, we set
a safety zone in space, direction and scale in the wavelet space by the same
way as that used in [5].

3 Numerical Results

We performed two numerical simulations of freely-decaying homogeneous
isotropic turbulence, one DNS reference computation and one CVS compu-
tation with the safety zone. For the numerical solutions of equation (1) we
use a classical Fourier pseudo-spectral code based on the velocity-pressure
formulation and a fourth-order Runge-Kutta method for time marching. The
resolution is N3 = 2563, the kinematic viscosity ν = 7.0× 10−4 and the time
increment Δt = 1.0 × 10−3. An initial velocity field for each simulation is a
statistically stationary flow of isotropic turbulence at Rλ = 167 obtained by
DNS [9]. These simulations are carried out up to 3T0. Here, T0 is one large
eddy turn over time defined by L/u′. The symbol L is the integral length
scale defined by L = π/(2u′2)

∫∞
0
k−1E(k)dk, E(k) is the energy spectrum

and u′2 = 〈u2〉/3.
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Figure 1 shows time evolutions of the kinetic energy for DNS and CVS.
The two curves almost superimpose. The ratio of the number of degrees of
freedom including the safety zone in CVS to that of DNS is about 30% and
almost independent of time. Energy spectra E(k) for DNS and CVS at t = T0

are plotted in Fig. 2. The spectrum of CVS is in good agreement with that
of DNS all along the inertial range. In the dissipative range, i.e. for kη � 0.3,
the spectrum of CVS differs from that of DNS, although CVS preserves a
significant contribution in the dissipative range.

4 Conclusions and Discussions

We have performed CVS with a safety zone and DNS of three-dimensional
decaying homogeneous isotropic turbulence at the initial Taylor microscale
Reynolds number Rλ = 167 and resolution N3 = 2563. CVS retains only 30%
of the wavelet coefficients compared to that of DNS, while CVS preserves
low-order statistics of the flow.

In large eddy simulation, large scales in the inertial range are resolved and
the effect of the discarded subgrid scales onto grid scales must be modeled
by the retained grid scales with the aid of statistical theory of turbulence.
In contrast, in CVS, the flow evolution can be computed without taking into
account the effect of the discarded incoherent modes on the resolved coherent
modes.

Fully adaptive CVS computations of three-dimensional turbulent flows can
reduce both the memory requirements and the CPU time of the computations.
The first example for three-dimensional weakly compressible mixing layers
using an adaptive multiresolution method is shown in Ref. [10].

We will discuss high order statistics and different choices of the safety zone
in [7], which shows that its appropriate choice reduces the degrees of freedom
of CVS by a factor of six with respect to DNS, and that CVS preserves high-
order statistics of turbulence as well as the above low order statistics.

Acknowledgement. The authors express their thanks to T. Ishihara for providing us
with the DNS data at Rλ = 167.
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For Large-Eddy Simulation (LES) of combustion, the subgrid distribution of
the reacting scalars must be known to calculate the thermochemical state and
the reaction progress. In non-premixed combustion, the scalar concentrations
can often be derived from a single ’passive’ scalar, the mixture fraction f , of
which the subgrid distribution or filtered density function (FDF) is often de-
scribed by an assumed function. This assumed FDF is normally parameterised
with the mixture fraction and its variance. The type of function can vary, but
in the context of Reynolds Averaged Navier Stokes (RANS) simulations, where
the equivalent probability density function (PDF) must be described, the β-
function has proven to be a relatively simple and accurate description. Based
on its success in RANS, the β-function has also been applied to LES.

Fig. 1. Setup and instantaneous snapshots of the temperature field (top) and a
view of the flame. The image-resolution corresponds to the grid-resolution.

However, Floyd et al. [1] have shown that while the β-function is well
justified in RANS, the tophat function may be a more consistent FDF for
LES than the β-function. The tophat-FDF shows the correct convergence be-
haviour for ˜f ′′2 approaching 0, whereas the β-function implies infinite scalar
gradients in physical space. The tophat-FDF is also more consistent with the
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typical LES-variance models and works well for multi-stream mixing. Inter-
estingly, the inconsistencies of a β-FDF remain largely hidden when applied
to an LES, as the type of the assumed FDF function becomes less important
for small variances [8]. A very significant advantage of the tophat function
is the improved computational efficiency and simplicity of the description.
Where the β-integration requires non-trivial special treatments for variances
approaching the maximum value or zero, the tophat-integration only requires
a special treatment for the limit of zero. Most numerical implementations
using assumed FDFs or PDFs rely on pre-integrated tables, which are two-
dimensional when using β-FDFs, whereas the one-dimensional anti-derivative
of the original table is sufficient with a tophat function – leading to reduced
complexity, lower memory consumption, and faster table access-time.

The suitability of the tophat FDF is illustrated for the LES of the Sydney
Bluff-Body burner [2], a much investigated non-premixed bluff-body stabilised
methane-hydrogen flame, that has long been a target flame of the workshop
on turbulent non-premixed flames (TNF) [3]. Aside from various RANS simu-
lations of the flames, Large-Eddy Simulations have been presented by Raman
and Pitsch [4], Navarro-Martinez and Kronenburg [5], and Kempf et al. [6],
using grid-resolutions of typically one to three million cells. The flame as
shown in Fig. 1 is stabilised on a cylindrical bluff-body located in a co-axial
stream of air (uair = 40m/s) that acts as oxidiser. The methane/hydrogen
fuel (50/50 vol.) is injected into the recirculation zone downstream of the
bluff-body, ejected from a central nozzle at Ujet = 118m/s. The air-flow and
the jet-flow create two torroidal vortices downstream of the bluff-body with a
recirculation zone inbetween, which provides hot combustion products to the
unburnt fuel and air mixture, stabilising the flame.

The flow was simulated using the incompressible combustion LES code
’ΨΦ’ (PsiPhi) for general transported fields Φ and derived fields Ψ , which is
based on structured, equidistant grids with collocated cells. It uses a third-
order Runge-Kutta scheme and second-order central discretisation of all but
the convective scalar fluxes: convection of the mixture fraction quantity ρf̃ is
discretised through a CHARM-TVD scheme, as numerical osciallations can-
not be afforded due to the strong functional dependence of the density on
mixture fraction (|∂ρ/∂f | exceeds values of 20kg/m3). Consistency of the
density from transport and the combustion model was ensured using a pro-
jection method. The unresolved turbulent stresses are modelled with the clas-
sical Smagorinsky model providing a turbulent viscosity νt, that is also used
to calculate the scalar subgrid fluxes from an eddy diffusivity model with
the diffusion coefficient Dt = νt/σt involving the turbulent Schmidt num-
ber σt = 0.7 ≈ σlaminar . Pseudo turbulent inflow conditions satisfying both
the Reynolds stress tensor and a realistic length-scale were created using an
extended version [9] of Klein’s inflow-data generator. The chemical state is
computed from a steady flamelet model for a single strain rate a = 100/s,
calculated from a chemical mechanism by Lindstedt et al. [6]. The computa-
tional domain (1502 × 200 mm3) was discretised by approximately 40 million
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cubic cells of 0.53 mm3. The simulations were run on 12 processor cores for 40
million nodes until a real time of 0.1s was reached after two times ten days.

The inflow conditions were taken from extrapolating the available experi-
mental data upstream to ensure a good prediction of the flow-field, in a similar
way as in previous simulations [4, 6]. Interestingly, previous simulations have
shown that the total flame-length is largely determined by the width of the
boundary layer on the outside of the bluff-body. Setting this boundary layer
too thick will lead to a long recirculation zone, setting it thin will keep the
recirculation zone short. However, if the flow-field is predicted properly, the
scalar field can be compared to the experiments.
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Fig. 2. Mean mixture fraction at axial distances of 1.8 and 2.4 nozzle diameters
downstream of the exit plane.

Figure 2 shows the mixture fraction profiles at 1.8 and 2.4 burner diameters
downstream of the bluff-body, illustrating that the flow and mixing fields do
not change significantly when the β FDF is replaced with the top-hat function.
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Fig. 3. Mean temperatures at axial distances of 1.8 and 2.4 nozzle diameters down-
stream of the exit plane.
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Figure 3 shows radial profiles of the mean temperature at two different
axial locations for two simulations using a top-hat FDF and a beta FDF
respectively. Overall, the results agree well with the measurements, and on
this fine grid, the move to the simpler, more consistent top-hat FDF does alter
the results significantly. The results agree well with the experiment, however,
the experimental data for the inflow-boundary condition is not sufficient to
ensure a reproduceable simulation.

The difference between simulations using the β-function and the tophat
function are generally small due to the small subgrid variance in the scalar
field. Implementing a tophat FDF is simple and less prone to error than
implementing a β-function, as it avoids the special treatments required for
variances approaching the maximum value. The tophat FDF also saves at
least two orders of magnitude in storage space, as the dimensionality of the
chemistry table is reduced by one. For this reason, the tophat FDF appears
to be a natural choice for more sophisticated chemistry models, which require
significant amounts of memory to store the chemical state as a function of
many parameters.
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If ‘ideal’ turbulence is in a homogeneous, isotropic Kolmogorov steady state,
then ‘non-ideal’ turbulence can occur due to time-dependence, anisotropy, or
inhomogeneity. Whereas in kinetic theory, significant departure from a weakly
perturbed local Maxwellian is exceptional, the analogous state of non-ideal
turbulence is what is typical; although it would be inaccurate to state that
homogeneous isotropic turbulence is more common in theory than in practice,
the absence of a usable and defensible theory of inhomogeneous turbulence
should not be ignored.

Although Kraichnan formulated the direct interaction approximation for
inhomogeneous anisotropic turbulence [1] as early as 1964, such two-point
closure theories have never been applied because of their apparent compu-
tational intractability. But the difficulties are also conceptual: whereas triad
interactions provide a simple key to the physical meaning of closure in the
homogeneous case, nothing comparable appears to exist for inhomogeneity.
This study hopes to suggest ways to extract information from these seem-
ingly unusable theories by restricting attention to problems in which the flow
region exhibits enough symmetry to allow useful kinematic simplifications.

First consider inhomogeneous turbulence in free space, so that the flow
domain admits arbitrary spatial translations. Given the two-point correla-

tion U(x,x′), define U(x,x′;K) =
∫
dy U(x + y,x′ + y) exp(iy · K) . Then

U(x,x′) =
∫
dK U(x,x′;K), and the ‘representation’ property [2]

U(x + a,x′ + a;K) = U(x,x′;K) exp(−iK · a) imply a decomposition of the
correlation function into components U(x − x′;K) ≡ U(x − x′,0;K). For a
homogeneous flow field, K = 0. Fourier transformation in the difference vari-
able leads to the inhomogeneous field descriptors U(k;K), in terms of which
two-time closure [1] has the form

U̇(k;K) = −2P(k + K)G(p;P)P(p + P)U(q;Q)U(k + K;K)
+P(k + K)P(k + K)U(p;P)U(q;Q)G(k + K;K) (1)

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_185, 

767



where P is the nonlinear coupling with the pressure eliminated and G is
the response tensor [1]. Tensor indices, time arguments and time integra-
tions have been suppressed. Integration over p and P is understood, with
the conditions K = P + Q and k + K = p + q. Finally, we note that in a
Markovianized theory [3], a tensor, but assume for simplicity, a scalar relax-
ation time Θ(k,p,q;K,P,Q) enters in order to replace two-time quantities
by single-time counterparts. Eq. (1) is found by transforming integrals in [1]

a(x,x′) =
∫
dy b(x,y)c(y,x′) into a(k;K) =

∫
dP b(k;P)c(k + P;Q) where

K = P + Q. Eq. (1) exhibits inhomogeneous turbulence as the nonlinear in-
teraction of the quasi-homogeneous quantities U(k;K).

The reduction to closure for homogeneous turbulence when K = P = Q =
0 is immediate, and homogeneous turbulence trivially satisfies the general
inhomogeneous closure equation. Despite the striking resemblance to the ho-
mogeneous equations, there is a crucial modification of the nonlinear coupling
by the translation of the wavevector arguments of P and the appearance of
the modified triad condition k + K = p + q. In homogeneous turbulence, the
properties of P(k) are crucial to Kraichnan’s detailed conservation property
for wavevector triads S(k|p, q) +S(p|q, k) +S(q|k, p) = 0. The absence of any
analogous general relation for the quantities S(k,p,q|K,P,Q) defined by the
right side of Eq. (1) is the most important effect of inhomogeneity, which
couples transfer with respect to both k and K.

Some basic properties of inhomogeneous turbulence can be formulated and
analyzed in these terms.

1. inviscid truncated system: The tendency of the truncated Euler system to
inviscid equipartition implies both the development of small scale excita-
tion and the suppression of inhomogeneity. The first trend suggests the
transfer of energy to modes with large k, whereas the second indicates
the opposite tendency to transfer energy to nearly homogeneous modes
with K ≈ 0. Equivalently, turbulence is expected to become fine-grained
and at the same time to spread out, not contract. These trends should be
consistent with Eq. (1).

2. recovery of homogeneity at small scales: Although the scale of inhomo-
geneity described by K is not restricted, it is natural to consider the
turbulence scales that are smaller than the scales of the inhomogeneity,
so that k � K. Then it is evident that since K/k becomes smaller as
k → ∞, small scales are ‘more homogeneous’ than large scales.

3. return to homogeneity: We expect that during free relaxation of initially
inhomogeneous turbulence with K �= 0, U(k,K)/U(k,0) → 0 (U = trU)
with increasing time. This property should be a consequence of properties
1 and 2.

4. Nonlinear coupling between inhomogeneity and anisotropy is a consequence
of Eq. (1) because the wavevector arguments k + K make the distribution
of energy in k anisotropic as soon as K �= 0. It should be noted that
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this coupling does not occur in simpler spherically averaged models of
inhomogeneous turbulence like that of [4], where anisotropy can only be
generated by linear mechanisms or assumed as an initial condition.

A systematic theory of perturbation about homogeneous, isotropic turbu-

lence generalizing the analysis of time dependence alone in [5] can be de-
veloped that makes contact with Yoshizawa’s two-scale direct interaction
approximation [6]. For this, begin with a spatially homogeneous solution
U(k) = U(k; ε, E)Pij(k), where ε and E are the dissipation rate and tur-
bulent kinetic energy. Next consider the inhomogeneous ‘normal solution’
U

0(k;K) = U0(k; ε(K), E(K))Pij(k) which is inhomogeneous only through
ε(K) and E(K). Substitution in Eq. (1) generates error terms due to in-
homogeneity; following [5], adding a locally isotropic correction U1

i
to the

correlation generates an inhomogeneous integral equation for U1

i
. The com-

patibility conditions to solve it yield closed equations for ε(K) and E(K).
The adjoint solutions needed to form the compatibility conditions are exactly
the same as those for perturbations that are homogeneous and isotropic, but
time-dependent.

As stated in property 4 above, substitution of U
0 in Eq. (1) will also gen-

erate anisotropic terms which cannot be balanced by U1

i
. This issue requires

the representation theory of the rotation group [7]. In terms of this theory,
lowest order anisotropy is described by two second rank trace-free tensors He

and Hz by [8]

U
1

a
(k;K) = −15Π(k)He(k;K) : kk + 5[Π(k)Hz(k;K)Π(k)

+Π(k)Hz(k;K) : kk] (2)

Here, Π is the transverse projection operator; for unambiguous index nota-
tion, refer to [8]. Adding the correction U1

a
to the perturbation expansion,

and separating the error terms generated by inhomogeneity into irreducible
components under the rotation group, the compatibility conditions to cancel
these errors will provide relations for integrals over the k arguments of He and
Hz. These averages will be connected to the structure tensors of Kassinos and
Reynolds [9]. We stress that the result in this case will be ‘algebraic’ mod-
els that express the relevant averages of He and Hz (including the Reynolds
stresses: compare [8]) as explicit functionals of ε(K) and E(K). A different
formalism is required to obtain a stress transport model; this question will be
addressed briefly below.

The usual introduction of sum and difference variables [4, 10] states ex-
actly the same geometric ideas, but representation theory has an advantage
if we consider the less elementary problem of turbulence in the half-space
z ≥ 0; this problem illustrates the treatment of boundaries, which has not
been possible in previous inhomogeneous theories without severe truncation
of the dynamics [10]. The flow domain admits arbitrary translations in the
x = (x, y) plane, but translations in z are replaced by scaling transforma-
tions z → λz with λ > 0. The invariant fields have the self-similar struc-
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ture U(x,x′; z, z′) = U

(
x− x′

z′
;
z

z′

)
used in Lumley’s analysis [11] of energy

transfer in wall-bounded flows; compare also the self-similar properties of the
problem analyzed by Oberlack and Günther [12]. Define

U(x,x′; z, z′ : K;λ) =
∫
dy

∫
dα

α
U(x+y,x′+y;αz, αz′) exp i(y ·K)αiλ (3)

so that the invariant fields have K = 0 and λ = 1. Note that dα/α is the
invariant measure on the scaling group: the construction (3) using invariant
integration and multiplication by group characters is a standard formulation
in group representation theory [2]. We repeat that this is not a decomposition
into ‘modes,’ but into quantities with distinct transformation properties under
the symmetry operations admitted by the flow domain.

We omit the straightforward expression of the closure equations in these
variables that is analogous to Eq. (1). We assume that the self-similar state
K = 0, λ = 1 is known completely, and we ask how it behaves under pertur-
bations that break the scaling invariances responsible for self-similarity [12].
Properties analogous to those of turbulence in free space can be formulated,
including the recovery of self-similarity at small scales and a return to self-
similarity in time under removal of symmetry-breaking perturbations.

The deductive theory of perturbations about a self-similar state has one
important new feature, namely that the reference state must be anisotropic.
In this case, the anisotropic descriptors of Eq. (2) appear in the lowest order
solution. Departure from self-similarity will generate error terms depending
on gradients of He and Hz; the compatibility conditions to cancel these error
terms will be transport equations for suitable moments of He and Hz.
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Statistical Mechanics of Fluid Turbulence
based on the Cross-Independence Closure
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1.1 Introduction

Statistical theory of turbulence based on the cross-independence closure hy-
pothesis has been constructed successfully for homogeneous isotropic turbu-
lence by Tatsumi & Yoshimura (2004, 2007). Now it is extended to inhomoge-
neous turbulence. The basic equations for the one-point velocity distribution
and the velocity-sum and velocity-difference distributions are obtained. As the
first step to inhomogeneous turbulence, turbulent wakes behind a spherical or
cylindrical body are obtained by the superposition of an one-point binormal
velocity distribution and a uniform flow.

1.2 Cross-independence Closure Hypothesis

Complete statistical description of turbulence is given by an infinite set of the
Lundgren-Monin equations (1967) for the multi-point velocity distributions
f (n)(v1, . . . ,vn;x1, . . . ,xn; t), where vm (m = 1, . . . , n) denote the probability
variables corresponding to the turbulent velocities um = u(xm, t). In practice,
we have to deal with its finite subset and then encounter the difficulty of
unclosedness since the equation for the distribution f (n) always includes a
distribution f (n+1) as new unknown. In order to overcome this difficulty, a
closure hypothesis is introduced. The simplest hypothesis is the ”quasi-normal
approximation” relating the one- and two-point velocity distributions as

f (2) (v1,v2;x1,x2; t) = f (v1,x1, t) f (v2,x2, t) . (1.1)

This relation is valid for large distance r = |r| = |x2 − x1| but definitely not
for small r, and actually the latter defect is the common weakness of the
theories based on this sort of approximation.

On the other hand, if we consider the sum u+ = (u1 + u2) /2 and the
difference u− = (u2 − u1) /2 of the velocities u1 and u2, and assume the
similar relation as (1.1) for the one and two-body distributions,
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g(2)
(
v+,v−;x1,x2; t

)
= g+ (v+;x1,x2; t) g− (v−;x1,x2; t) , (1.2)

this relation gives a new hypothesis which may be called the cross-independence
closure hypothesis (Tatsumi (2001)). Unlike the former hypothesis, this hy-
pothesis is shown to be valid for both large and small values of r, and the latter
validity, which has been proved experimentally by Sreenivasan et al.(1998), is
crucial for the present case since the equation for the distribution f (n) includes
the higher distributions f (n+1) only in their degenerate forms of vanishing dis-
tances |xn+1 − xm| → 0 (m = 1, . . . , n).

It may be noted that this hypothesis is similar to Kolmogorov’s (1941)
hypothesis which assumes the independence of small eddies represented by the
velocity-difference ∆u = 2u− from large eddies represented by the velocities
u1 and u2. This is true, but it should be noted that his theory assumes steady
turbulence while the present theory is concerned with decaying homogeneous
turbulence.

1.3 Inhomogeneous Turbulence

First, the turbulent velocity u (x, t) is decomposed into its probability mean
u (x, t) = 〈u (x, t)〉 and the fluctuation around the mean û (x, t) = u (x, t) −
u (x, t) . If we take the fluctuation velocities at two points ûi (t) = û (xi, t)
(i = 1, 2), the joint probability distributions of these velocities are defined as
f (v1,x1, t) and f (2) (v1,v2;x1,x2; t) which is written according to Eq.(1.2)
as

f (2) (v1,v2;x1,x2; t) = 2−3g(2)
(
v+,v−;x1,x2; t

)
=

2−3g+ (v+;x1,x2; t) g− (v−;x1,x2; t) . (1.3)

Thus, the equations for the one-point velocity distribution f, the velocity-
sum distribution g+ and the velocity-difference distribution g− are obtained in
a closed form using the Lundgren-Monin equations for the distributions f and
f (2) and the cross-independence closure hypothesis. Here, only the equation
for the distribution f is cited as follows:[

∂

∂t
+ (u + v) · ∂

∂x
−

(
∂

∂x
· v

)
u · ∂

∂v
− ν

∣∣∣∣ ∂

∂x

∣∣∣∣2 +

α (x, t)
∣∣∣∣ ∂

∂v

∣∣∣∣2 − ∂

∂v
· ∂

∂x
β (v,x, t)

]
f (v,x, t) = 0, (1.4)

α (x, t) = ε (x, t) /3 =
2
3

lim
r→0

∣∣∣∣ ∂

∂r

∣∣∣∣2 ∫
|v−|2 g− (v−;x, r;t) dv−, (1.5)
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β (v,x, t) =
1
4π

∫ ∫
1
|r|

(
(v + 2v−) · ∂

∂r

)2(
1 + v− · ∂

∂v

)
g (v−;x, r; t) drdv−,

(1.6)
where the suffixes are omitted and ε (x, t) = ν

∑3
i,j=1

〈
(∂ûi (x, t) /∂xj)

2
〉

de-
notes the energy-dissipation rate as a function of x and t.

The set of equations for the distributions f, g+ and g− together with that
for the mean velocity u constitute the closed set of dynamic equations for
inhomogeneous turbulence in general. In principle, all kinds of inhomogeneous
turbulence can be dealt with by means of this set of equations under appro-
priate initial and boundary conditions. As a simple example, turbulent wakes
are dealt with below.

1.4 Turbulent Wakes

An elementary velocity distribution in inhomogeneous turbulence is expressed
by the inertial binormal distribution centered at a point x,

f (v,x, t) = f0 (v,x, t) =
(

t

4πα0 (x, t)

)3/2

exp

[
− |v|2 t

4α0 (x, t)

]

α0 (x, t) =
α00

(4πνt)3/2
exp

[
−|x|2

4νt

]
, (1.7)

with the kinetic energy distribution E (x, t) and the total energy E (t) ,

E (x, t) =
1
2

〈
|u (x, t)|2

〉
= 3α0 (x, t) /t =

3α00t
−1

(4πνt)3/2
exp

[
−|x|2

4νt

]

E (t) =
∫

E (x, t) dx =3α00t
−1. (1.8)

Taking the linear combination of this type of elementary distributions we
can construct various types of free turbulence, including the turbulent wakes of
axisymmetric type E (x) and two-dimensional type E (x, y) with x = (x, y, z),
the uniform flow U = (U, 0, 0) and the drag of the solid body D,

E (x) =
D

4πνx/U
exp

[
−y2 + z2

4νx/U

]
E (x, y) =

DU

(4πνx/U)1/2
exp

[
− y2

4νx/U

]
. (1.9)

The energy distributions represented by Eq.(1.9) are in general agreement
with experimental results.
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1 Introduction

This paper describes the Large-Eddy Simulation (LES) of a droplet laden
mixing layer. The method uses an Eulerian description of the carrier flow
with a Lagrangian formulation for the dispersed phase. Special treatment of
inlet conditions for both phases is critical. Sub-grid scale dispersion effects are
investigated, predictions of Sauter Mean Diameter and concentration agree
closely with experimental data. The performance of a hybrid droplet/parcel
approach for improved efficiency has also been investigated.

2 Flow and Boundary Conditions

The experiment reported in [3], has been used previously [2] as a test case
for droplet models. This test case comprises a 2D high Re turbulent plane
mixing layer created when an air stream containing water droplets discharges
into stagnant air. As in all LES predictions, unsteady correlated inlet con-
ditions must be specified. For the gas phase, the re-scaling approach of [4],
has been extended to specify all three components of mean and fluctuating
velocity. Within specially created inlet blocks in the multi-block mesh, the
velocities are re-scaled at every time step using measured and spatially av-
eraged computed mean and rms velocities. For the droplets, the inlet profile
is divided into segments and pdfs of droplet size/number are constructed for
each segment to match measured SMD levels and pdfs. The volume-size dis-
tribution is approximated using square-root normal distribution adjusted to
yield measured data. The number-size distribution is derived and a Cumu-
lative Distribution Function is obtained via integration. This CDF is finally
used to determine inlet droplet conditions using random sampling.
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3 Results and Discussion

3.1 Gas-phase

the inlet boundary layer is shown in Fig. 1. The correct shape of this confirms
the velocity fluctuations are spatially well correlated. The deduced integral
length scale (Fig. 1), suggests the scale lies between 2 and 3mm. With an
alternative, more complex digital filter approach for inlet conditions, a length
scale of 2.5mm was found necessary for correct mixing layer spreading [2]. The
current re-scaling methodology generates its own length scales consistent with
[2]. Fig. 2 shows that the predicted mean and rms profiles of axial velocity in
the mixing layer are in excellent agreement with the experiments.

3.2 Liquid-phase

Fig. 3 shows the effects of SGS dispersion [5] on the predictions of SMD and
droplet concentration. SGS dispersion effects seem to improve concentration
profiles slightly but lead to higher SMD near the outer edge. Experiments
confirm the presence of an outer higher SMD level [3] as correctly predicted
at x=25.4cm. The spreading of the mixing layer for both phases is shown in
Fig. 4. The agreement with experiments is very good and an improvement on
[2]. Note the model successfully predicts the initial non-linear, and subsequent
linear, spreading of concentration. Fig. 5 shows SMD and concentration pro-
files using an all droplets tracked and a hybrid droplet/parcel approach [1].
For the former 10.5M droplets are tracked, with a computational overhead
of ∼680% with reference to the gas-phase only LES time. For the hybrid ap-
proach, the number of droplets for parcel creation was 20 and the number of
parcel bins 5. With these parameters, the total number of droplets/parcels
tracked reduces to 1.7M/1.9M. This leads to a computational overhead of
∼180%, a significant reduction without compromising accuracy.

4 Conclusions

The results presented show that the current method for generating gas and
liquid-phase inlet conditions is simple and efficient, leading to accurate pre-
dictions of flow statistics in close agreement with experiments. The method
relies only on parameters that are likely to be available from experiments.
Incorporation of an SGS dispersion model tends to improve the predictions
of concentration slightly. The results show that a hybrid droplet/parcel ap-
proach offers an effective means of reducing computational overhead without
compromising accuracy.

A typical normal to wall direction spatial correlation of the axial velocity in
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Fig. 1. Typical predicted normal to wall cross-correlation profile of axial velocity
(left) and integral length scale of turbulence (right) in the inlet boundary layer.

Fig. 2. Profiles of mean (left) and rms (right) axial velocities in the mixing layer.
Symbols: data, solid-line: predictions.
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Fig. 3. Dispersion effects on the predicted SMD (left) and concentration (right).
Symbols: data, solid-line: with SGS dispersion, dashed-line: no dispersion.

Fig. 4. Axial spreading of the mixing layer for gas and liquid phases using 0.1-0.9
level thickness.

Fig. 5. Predicted SMD (left) and concentration (right) using all droplets and hybrid
models. Symbols: data, solid-line: all droplets, dashed-line: hybrid.
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1 Introduction

The transport of passive scalar in turbulent flows remains a challenging and
important problem for several reasons. First, the passive scalar spectra ex-
hibit various behaviors depending on the molecular Schmidt number value
(see [3]). The passive scalar spectrum with a high Schmidt number exhibits
thus a k−1 scaling between the Kolmogorov scale and the Batchelor scale [1].
This suggests that it is more demanding in terms of spatial resolution than the
momentum. Moreover, capturing accurately advected scalar quantities is of
crucial important in reacting flows, as concentrations controls reaction rates
[5]. In Large Eddy Simulations, classical subgrid-scale models, which only fo-
cus on dissipation related to the transfer of energy to small scales, are not
sufficient to predict adequately the effect of non-resolved small scales of the
advected concentrations on the large scales involved in the reactions. Another
field where passive scalar requires special care is the case of free surface mul-
tiphase flows when interfaces and surface tensions are captured by a level set
method. The idea of using a different resolution for the scalar ad the momen-
tum is therefore natural. This paper investigates the use of a subgrid particle
methods to predict accurately small scales while keeping the computational
cost at a reasonable level.

2 The numerical method

We consider the incompressible Navier-Stokes equation, written in the vortic-
ity formulation, coupled with and advection equation for a passive scalar:

ωt + (u ·∇)ω − (ω ·∇)u−Re−1Δω = 0 (1)
φt + (u ·∇)φ = 0. (2)

This system is soved by a remeshed particle method [2]. This method can be
summarized as follows: particles are initialized in the support of the initial
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vorticity and scalar fields. At each time-step they are advected by the local
velocity field then remeshed on a regular fixed using high order interpolation

update vorticity values and velocity is deduced by FFT-based fast solvers. To
advect particles in the next step, velocity values are interpolated on particle
locations using the same formula as in the remeshing step. A validation of the
method against spectral method in DNS of homogeneous isotropic turbulence
can be found in [2]. The method exhibits two features which are particularly
important in the context of the advection of passive scalar. Particles remain
in the support of the advected quantities and the method is not constrained
to usual CFL stability conditions. This means that if particles are used at a
higher resolution for the simulation of the scalar than for the vorticity, it is not
necessary to use smaller time-steps to update the scalar field. If in addition the
scalar is concentrated on small parts of the computational domain, subgrid
particle resolution can be used at a marginal additional cost.

3 Results

We first consider a jet at a low Reynolds number carrying a passive scalar.
The Schmidt number is taken infinite. We compare two experiments. In the
first one, both vorticity and scalar are under-resolved. In the second one, the
vorticity is under-resolved but the scalar use a three times finer resolution.
Figure 1 is a volume rendering visualization of the density for both cases.
Although the second experiment takes only 20% more CPU time than the
first one - due to the spatial localization of the scalar - there is a clear gain, at
least from a qualitative point of view, in the visualization of the intermediate
scales.

Fig. 1. Left pictures: volume rendering comparison of a low (left pictures) and high
(right pictures) resolution of scalar in an under-resolved jet. The right pictures are
a close-up view of the top part of the jet.

We next give more quantitative illustrations on a classical turbulence ex-
periment. The flow and scalar are initialized by turbulent fields in a periodic

formulas. On that grid a classical diffusion finite-difference formula is used to
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box, with a spectral peak at a low wave number. The initial Reynolds number
based on the Taylor micro-scale is 48.4 corresponding to a viscosity ν = 0.01.
The Schmidt number is chosen equal to 10. We compare the results obtained
on the one hand by a full DNS using N = 128 grid points in each direction
for both the flow and the scalar, to the results given on the other hand by
a simulation combining a LES of the flow with N = 32 with a DNS of the
scalar using N = 128 points (we will refer to this later simulation as an hybrid
LES-DNS ). In order to be able to compare side by side scalar visualizations,
we have used in the second case the velocity field obtained by filtering the
full DNS field, with a top-hat filter in the Fourier space. We show in figure
2 the spectra for the scalar at two given times (t = 0.6 and t = 1.4). One
may observe on the spectra that the hybrid LES-DNS gives a satisfactory
scalar spectrum all the way to the smallest scale. It can be noticed that the
spectrum shows a plateau that extends a k−1 scaling further than in the full
DNS. This k−1 scaling is not the Batchelors scaling but this spectral behavior
has already been found by Lesieur and Rogallo [4]. They explain this spectral
behavior as a result of the shearing by large-scale velocity gradients. Whether
in the present case this is a desirable behavior will be seen by comparing these
spectra with DNS using N = 256 grid points for the scalar.

Figure 3 gives a visualization of the surfaces for the same scalar value 0.9
together with the contours of the scalar in a plane through the middle of the
computational box. This comparison shows that the hybrid LES-DNS captures
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Fig. 2. Scalar spectra in an homogeneous turbulence experiment by a full 1283 DNS
(green dotted line), and a 1283 scalar DNS in a filtered flow with N = 32 (solid black
line) at times t = 0.6 (left picture) and t = 1.4 (right picture).

all the visible scales obtained in the full DNS. Some additional small scale
details are also obtained in parts of the flow. This observation is confirmed
by looking at the filtered scalar fields corresponding to these two simulations
(bottom pictures of Figure 3). Whether these additional features are desirable
or numerical artifact is the subject of ongoing higher resolution simulations.
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Fig. 3. Isosurface corresponding to φ = 0.9 and contours through the middle of the
computational box for the scalar in a full DNS (top-let picture) and in an hybrid
LES-DNS (top-right picture). Bottom pictures: scalar fields filtered at k = 1/32.

4 Conclusion

We have described a numerical technique based on particle methods for the
turbulent transport of scalar combining LES models for the momentum and
DNS for the scalar. Numerical validations on homogeneous turbulent flows
indicate that this method has the ability to reproduce fine scales for the
scalar with a minimal computational effort and can thus be viewed as an LES
tool for the scalar transport. Ongoing works concern a systematic use of this
approach to explore spectrum decay as a function of the Schmidt number and
its application to interface capturing in multiphase flows.
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3 Institut für Strömungsmechanik, Technische Universität Dresden

Turbulence modeling and the numerical discretization of the Navier–Stokes
equations are strongly coupled in large-eddy simulations (LES). The trunca-
tion error of common approximations for the convective terms can outweigh
the effect of a physically sound subgrid-scale (SGS) model, which generally
operates on a range of scales that is marginally resolved by any discretization
scheme. This mutual interference can have large and generally unpredictable
effects on the accuracy of the solution. On the other hand, one can exploit
this link by developing discretization methods from subgrid-scale models, or
vice versa. Approaches where the SGS model and the numerical discretization
scheme are fully merged are called implicit LES (ILES) methods.

A suitable environment for the design of discretizations with implicit SGS
model is provided by Schumann’s concept of a finite–volume method [1]. The
numerical truncation error of finite–volume methods readily appears as a di-
vergence of a tensor which is advantageous with respect to physically moti-
vated implicit modeling. Finite–volume discretizations involve averaging and
reconstruction steps that are related to filtering and deconvolution well known
in explicit SGS modeling. Explicit deconvolution-type SGS models have so
far been limited to linear deconvolution. By employing methods that are well
established for essentially non-oscillatory finite–volume discretizations, the
concept of approximate deconvolution was extended to the solution-adaptive
nonlinear case. The resulting adaptive local deconvolution method (ALDM)
for implicit LES is based on a nonlinear deconvolution operator and a numer-
ical flux function [2, 4]. Free parameters inherent to the discretization allow
to control the truncation error. They are calibrated in such a way that the
truncation error acts as a physically motivated SGS model, which combines an
implicit tensor–dissipation regularization with a generalized scale–similarity
approach. The method is established for LES of turbulent flows governed
by the incompressible Navier–Stokes equations and for passive-scalar mixing
[6, 7]. The subject of this paper is the extension of ALDM to incompressible
turbulent flows with irregular boundaries and non-Cartesian grid topologies.
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The work presented here is motivated by the desire to perform LES for
complex flows. Such flows are frequently connected to complex geometries
that, in the framework of a finite–volume method, can be addressed by three
distinct approaches:

ements as partitioning of the computational domain. These unstructured
meshes are, in general, poorly suited for wall-bounded shear layers. In partic-

neous filter widths making the method ill-suited for ALDM-based ILES.
(2) Cartesian-grid methods with zonal embedding are considerably more

appropriate for implicit LES, since local refinement can be easily accounted
for. The disadvantage is that computational domain boundaries may not coin-
cide with geometric boundaries of the considered configuration so that bound-
ary conditions have to be applied at the subcell level.

(3) The approach pursued here is based on boundary-fitted block-structured
meshes, which offer considerable computational advantages for predicting
wall-bounded turbulence. The implementation is based on the flow solver
LESOCC2 [8]. It employs non-orthogonal curvilinear grids, a cell centered
variable arrangement, and Cartesian velocity components. The convective
fluxes are discretized by the simplified adaptive local deconvolution (SALD)
method [5]. SALD preserves the good performance of ALDM while computa-
tional costs are reduced significantly. Another advantage of SALD is that it
allows for a straight-forward application to curved grids: the reconstruction
of the unfiltered solution at cell faces by Harten-type deconvolution polyno-
mials can be set up along curved grid lines. Viscous fluxes are based on cen-
tered differences. The pressure–velocity coupling is maintained by employing
a momentum–interpolation technique.

Simulations of the incompressible turbulent flow in a channel with a peri-
odic arrangement of smoothly curved hills are performed for validation. This
complex flow, which exhibits anisotropic, inhomogeneous turbulence statis-
tics, is a standard test case for numerical methods and has been investigated
extensively in the recent past. A strong streamwise adverse pressure gradient
causes highly unsteady flow separation shortly after the crest of the hill. The
flow reattaches at the channel bottom roughly in the middle between two hills.
For the present study, the Reynolds number based on the hill height H and
the bulk velocity above the crest of the hill is Re = 10595. Reference data are
provided by experimental results of Rapp [9] and by a well resolved LES of
Breuer [3]. The computational domain has the extents 9H×4.5H×3.03H and
is discretized by 80× 100× 30 cells in the present work. This grid with about
240 thousand cells is rather coarse compared to Breuer’s LES, which uses
about 13 million cells. Aside of comparing implicit LES results with the refer-
ence data we also performed an explicit LES with a central discretization and
the well established dynamic Smagorinsky model using the same computa-
tional grid. Figures 1 and 2 show mean velocity profiles and Reynolds stresses
for the separated flow at x/H = 2 and for the reattached flow at x/H = 6,

(1) The method may be based on discretizations for general volume el-

ular, the performance of SGS models can degrade due to strongly inhomoge-

 S. Hickel, D. von Terzi, and J. Fröhlich784



respectively. The predictions of both LES are in good agreement with ex-
perimental data and the well-resolved simulation. Discrepancies observed for
〈u′u′〉 at the bottom wall can be attributed to the coarse grid resolution and
vanish on refined grids. The implicit model performs at least as well as the
dynamic Smagorinsky model.

In the presentation, we will discuss in detail the theoretical and numeri-
cal background of the new method. Computational results will be shown for
turbulent flow in a channel, over a circular cylinder, and over periodic hills.
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Fig. 1. LES of the flow over periodic hills using a grid with 2.4×105 hexahedral cells.
Mean velocity profiles and Reynolds stresses at x/H = 2 for −−−−−−− implicit LES
with ALDM, ·········· explicit LES with dynamic Smagorinsky SGS model, −−−−
Experiment [9], ·−·−·− well-resolved LES on a grid with 13 × 106 cells [3].
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Intrigued by the regularity of convective structures observed in simulations
of mesoscale flow past realistic topography, we take a deeper look into com-
putational aspects of a classical problem of the flow over a heated plane. We
find that the numerical solutions are sensitive to viscosity, either incorpo-
rated a priori or effectively realized in computational models. In particular,
anisotropic viscosity can lead to regular convective structures that mimic nat-
urally realizable Rayleigh-Bénard (RB) cells but are unphysical for the prob-
lem at hand. This is becoming important since the advent of “cloud resolving”
numerical weather prediction (NWP) [1, 2] and a rapid progress towards the
petascale computing. Even with a relatively fine (for NWP) horizontal reso-
lution δx ∼ O(103) m numerical filtering is practically unavoidable [2], hence
the simulated convection remains grossly under-resolved. The linear theory
[3, 4] shows that anisotropic viscosity (characteristic of under-resolved NWP)
modifies the range of unstable classical RB modes [5]. In particular, for an ef-
fective viscosity much larger in the horizontal than in the vertical unphysically
broad RB cells may be observed.

A large series of simulations of thermal convection, with various degrees
of idealization, were conducted using the computational model EULAG [6].
Figure 1 shows the structure of idealized RB convection over heated plane; the
resolution, surface thermal forcing and timing of the results are representative
of mesoscale weather simulations. The left panel shows the solution with small
constant viscosity, whereas the right panel shows the result with the same
small viscosity in the vertical but with a much larger value in the horizontal.

To better understand the impact of an effective model viscosity on the
structure of convective fields, we performed an extensive convergence study
and documented differences between the well resolved (viz. realistic) cellular
convection and spurious structures. Comparing various means of enhancing
the effective viscosity in the horizontal — while keeping the anisotropy ratio
r = νh/νv constant — we showed that details of filtering are inessential. The
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Fig. 1. Convective cells over heated plane, vertical velocity field (bright volumes
depict updrafts). The only difference between the two solutions is the value of vis-
cosity in the horizontal entries of the stress tensor νh = 2.5 and 70 m2s−1 in the left
and right panel, respectively; the vertical entry νv = 2.5 m2s−1 in both cases.

common denominator of the scale selection is consistent with the classical
linear theory, extended to small anisotropy ratios at moderately supercritical
Rayleigh numbers realized (effectively) in under-resolved convection simula-
tions. In particular, there is an approximate inverse proportionality of the
band of unstable modes’ wavelengths λ to

√
r, as shown in Figure 2.

Fig. 2. The dependence of dominant modes’ wavelength on square root of the
viscosity anisotropy ratio, where H denotes boundary layer height. The lines marked
with full circles and squares are, respectively, the linear theory estimates of the
fastest growing modes and the marginally stable modes.
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On the practical side, our study shows that some numerical approaches
may be preferable when the resolution is inadequate to capture the realism
of convective fields. While control of effective viscosity is certainly the key
to the quality results, resorting to non-dissipative numerics is not a cure.
We found that implicit large-eddy simulation (ILES) approach [6] based on
non-oscillatory forward-in-time MPDATA advection [7] minimizes numerical
viscosity and its anisotropy, and produces results superior compared to more
standard LES models.
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1 Introduction

Simulations of high Reynolds-number turbulence require a large number of
Fourier modes, with no natural scale separation of which we might take ad-
vantage. The underlying hyperbolic system of equations is too large to be
simulated on any available computer system.

The technique of spectral reduction [1] is a decimation scheme that al-
lows one to simulate large systems on uniformly-coarsened spectral grids. The
multispectral method uses a hierarchy of differently-coarsened grids in Fourier
space, retaining all large-scale modes while approximating the smaller scales.

2 The models in question

Since high-Reynolds number simulations of the Navier–Stokes equations are
not currently tenable, we introduce two shell models of turbulence, the DN [3]
model,

dun

dt
= ikn

(
au

2
n−1 − λaunun+1 + bun−1un − λbu

2
n+1

)
∗ − νk2

nun, (1)

and the GOY [4, 5] model,

dun

dt
= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)
∗

− νk2
nun, (2)

where ∗ denotes complex conjugation. These are heuristic models that mimic
the form and many statistical properties of the spectral Navier–Stokes equa-
tions. Because of these features, they are excellent test beds for theories about
turbulence.

n associated with the geometrically spaced wavenum-
ber kn = k0λ

n represents a characteristic complex amplitude of the modes
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u(k) for |k| ∈ [kn, kn+1]. That is, un represents a typical velocity for a three-
dimensional shell with inner radius kn and outer radius kn+1, as shown in
Fig. 1. The combination of averaging and geometric spacing allows one to
reach high wavenumbers, and hence very high Reynolds numbers, with a small
number of modes, as shown in Fig. 2.

Fig. 1. Spectral domain for mode un.

10−20

10−17

10−14

10−11

10−8

10−5

10−2

E
(k

)

101 103 105 107 109

k

Fig. 2. Energy spectrum of shell-model
turbulence.

3 Spectral Reduction

Spectral reduction allows one to take two modes, say u2n and u2n+1, and
replace them with an average of the two full-resolution modes u2n and u2n+1:

un,1 =
u2n + u2n+1

2
. (3)

This uniform coarsening allows one to simulate a binned energy spectrum
using half as many modes. Spectral reduction can be applied iteratively to
the system until there are too few remaining independent modes to capture
the energy injection, inertial-range transfer, and dissipation.

An equation for d

dt
un,1 follows on taking the derivative of equation (3) and

substituting either equation (1) or (2), depending on whether one is simulating
the DN or GOY models, respectively. The resulting system will conserve the
binned energy E1 = 1

2

∑
2 |un,1|2. An easy calculation shows that spectral

reduction reduces the GOY model to the DN model, which is then a fixed
point of the map, with each reduction modifying the parameters a, b and ν

as per equation (4):
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a → a

2
, b → b

2
ν → ν

1 + λ
2

2
(4)

The energy spectrum of a singly decimated system is shown in Fig. 3.

4 Interpolation

The binned mode un,1 represents two quantities. We can recapture some of
this structure by replacing equation (3) with

un,1 =
u2n + σ

∗

nu2n+1

1 + |σn|2 , σn =
u2n+1

u2n

. (5)

The complex quantity σn accounts for the slope of the amplitude across a
bin. If σn is constant with respect to time, then the energy E1 = 1

2

∑
n
(1 +

|σn|2) |un,1|2 is conserved. This interpolated spectral reduction can also be
applied iteratively, with the caveat that energy is conserved only when σ is
constant during a time step and over each coarse bin. In order to close the
system, we let

σn = 4

√〈
|un,1|2

〉/〈
|un+1,1|2

〉
(6)

where 〈. . .〉 is a windowed time average. The energy spectrum of an interpo-
lated singly decimated system is shown in Fig. 3.

10−4

10−3

10−2

10−1

100

k
5
/
3
E

(k
)

101 102 103 104 105 106 107

k

Full resolution

Uninterpolated

Interpolated

Fig. 3. Rescaled energy spectrum of spectrally reduced shell-model turbulence.
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5 The Multispectral Method

The method of spectral reduction allows one to represent a large system on
a uniformly coarsened spectral grid. However, the low-wavenumber modes
are typically of greater physical importance: one would like to coarsen just
the high-wavenumber, small-scale modes in favour of keeping all of the low-
wavenumber, large-scale modes. Unfortunately, this modifies the system’s Li-
ouville theorem, and the inviscid, unforced energy spectrum is not correctly
reproduced.

The multispectral method was designed to alleviate this problem. Since we
are unable to decimate a single grid non-uniformly, we must use two grids
which have been decimated to different degrees, as shown in Fig. 4.

Fig. 4. Schematic diagram for the DN model with the multispectral method showing
nonlinear interactions.

To evolve this system forward in time, redundant interactions are first
removed. One then evolves the fine grid from time t to t+dt using an explicit
integrator. The result of this integration is projected onto the coarse grid,
which is then also evolved from from time t to t+dt using a (possibly different)
explicit integrator. Finally, the two grids are synchronised by prolonging from
the coarse grid to the fine grid.

The resulting system reproduces the essential behaviour of the full-resolution
system, keeps all the large-scale modes, but is much less costly to simulate.
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Discretization errors and subgrid scale
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The aim of large eddy simulations (LES) is to reproduce with accuracy the
large scale properties of a turbulent flow at a much lower computational cost
than required by direct numerical simulations (DNS). The main challenge of
LES is thus to appropriately model the influence of the subgrid scales on the
resolved scales. Here, the attention is restricted to finite volume methods,
without explicit filtering. In this framework, the subgrid scale modeling is re-
lated to the volume averaging on the coarse mesh and is responsible for the
destruction of small scale information. Because the mesh is coarse, the discrete
operators needed for differentiations and interpolations introduce further er-
rors that might be significant. For differentiation operators, the severity of this
problem increases with the order of the derivative taken, so that the physical
relevance of the numerical results becomes questionable.

The present study analyzes the impact of discretization errors on the per-
formance of the Smagorinsky model. To avoid difficulties related to solid
boundaries, we focus on decaying homogeneous turbulence. The computa-
tions are performed using the CDP code developed at the Center For Turbu-
lence Research (Stanford / NASA-Ames) [1, 2, 3]. This code uses a collocated
discretization of the incompressible Navier–Stokes equations in a node-based
formulation. The spectral results of [4] are used as the benchmark case. Two
implementations of the Smagorinsky model are compared. The first imple-
mentation of the turbulent viscosity, referred to as SM1, is

(νe,1)P = −2CΔ
2

√
2(Sij)P (Sij)P , (1)

where Sij = (∂iuj +∂jui)/2. The focus here being on isotropic turbulence, we
choose C = 0.0225 [5] and Δ = Lbox/Nx, with Lbox and Nx respectively the
computational box size and the number of cells in one direction. Moreover, the
strain is computed explicitly at the control volume’s center P using a central
difference scheme. To introduce the second implementation of the turbulent
viscosity, we make use of the identity:

SijSij = −ui∂jSij + ∂j(uiSij). (2)
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Based on this identity, we define an alternative subgrid scale viscosity, referred
to as SM2,

(νe,2)P = −2CΔ
2

√
2D[SijSij ]P , (3)

where D[SijSij ]P represents the discretization of the right-hand-side of Eq. (2).
The discretization error is evaluated a priori by comparing the average

strain rate computed through the spectral code to S(a) = 〈(Sij)P (Sij)P 〉
and S(b) = 〈D[SijSij ]P 〉. The initial spectral DNS field at the resolu-
tion N = Nx × Ny × Nz = 5123 is filtered down to different resolutions
(323

, 643
, 1283

, 2563). The corresponding average strain rate is denoted SDNSf

and we define δ
S
∗ = S∗/SDNSf . The asterisk stands for the superscript (a)

or (b). The corresponding δ
S
∗ are plotted in figure 1 (left) as a function of

the truncation level K = (N/NDNS)1/3 (defined as the ratio of the filtered
resolution to the initial DNS resolution). We observe an increase of δ

S
∗ as K

increases for both S(a) and S(b). This is of course expected, since discretiza-
tion errors should decrease when the grid is refined. At N = 2563, which is
the finest resolution considered here, δ

S
∗ reaches 94% for S(b) and 74% for

S(a). We also analyze the convergence of (Sij)P (Sij)P and D[SijSij ]P with
respect to the resolution by smoothing the velocity field. To that end, we
apply a spectral cutoff filter to our initial 323 instantaneous velocity field.
This procedure has the advantage of being less demanding in terms of com-
putational resources than a mesh refinement. Figure 1 (right) shows δ

S
∗ as a

function of the cutoff length Δc (the lowest value of Δc corresponds to a cutoff
wave-number of kc = 15 and the highest value to kc = 1). It is again clear
that S(b) predicts significantly better the average strain rate. Furthermore, all
the strain rates (S(a), S(b) and spectral), converge to the same value as the
velocity field is filtered and smoothed.

δ(a)

δ(b)

643
323

1283

2563

δ(∗)

ΔDNS/ΔLES

δ(a)

δ(b)

δ(∗)

Δc/Lbox

1
15

1
21

4

1
3

Fig. 1. Left: fraction δS∗ of the strain rate captured initially for different mesh
refinements. Right: fraction δS∗ for different cutoff lengths at N = 323.

The two models are finally compared, a posteriori, at the resolution N =
323. The measured microscale Reynolds number for the initial field is Reλ =
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84.1, the Reynolds number based on the integral length-scale is Re = 380
and the viscosity is set to ν = 0.006. In the figures, time is normalized by
the initial eddy-turnover time τtu

∗

shows the time evolution of the resolved kinetic energy, defined by

ER =
1

Vtot

∫
V

uiui

2
dV ≈ 1

2Vtot

∑
P

ui,P ui,P VP , (4)

with Vtot =
∑

P
VP and VP is the volume of the control volume centered on

point P . Aside from the LES runs, the unresolved simulation performed with-
out model (UDNS) is also presented to emphasize the role of the LES model-
ing. As is obvious from the figure, UDNS severely underestimates the decay
rate of energy. In addition, the decay obtained with SM2 is better than that
obtained using SM1 since it is closer to the spectral prediction. The time evolu-
tion of the subgrid dissipation rate, computed as εsgs = 2νe

∑
P

VPD[SijSij ]P
(νe being the eddy-viscosity), is illustrated in figure 2 (right). The most im-
portant fact is that the subgrid scale dissipation generated by the SM1 model
is much too low. Although the SM2 model also underestimates the dissipation
at the very beginning of the simulation, its behavior is however significantly
closer to the spectral result. The improvements provided by SM2 are also ob-
served for the viscous dissipation and kinetic energy spectra (not shown here).

Fig. 2. Left: time evolution of the resolved kinetic energy. Right: time evolution of
the subgrid dissipation rate computed from the right-hand-side of Eq. (2).

A question that arises is the possibility that the large differences observed
in the computation of SijSij through S(a) or S(b) might be related to the
present manner of initializing the simulations. Indeed, our initial condition is
obtained by truncating a 5123 spectral DNS field to a 323 resolution. This pro-
duces, on the real space grid, a signal that has sharp gradients and for which
it is expected that second-order derivatives cannot be fairly computed. Over
time, one could speculate that the numerical solution might evolve towards

= 0.238s, and is denoted t . Figure 2 (left)
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a state more easily captured by the finite volume discretization and that the
ratio R = S(b)/S(a) would converge to unity. Figure 3 shows that this is not
the case, as R even increases for the LES runs with the SM1 model. The dif-
ference between S(a) and S(b) is not fortuitous. The uncertainty is due to the
fact that a LES signal has a significant content at scales close to the grid size
and that discrete operators cannot resolve those scales without ambiguity [6].

0 1 2 3 4
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0.5

1
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2

2.5

3

t∗

R
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SM2

Fig. 3. Time evolution of the ratio R = S(b)

S(a) .
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Reversals of the magnetic field generated by a
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When averaged on a few thousands years, the Earth’s magnetic field can be
roughly described as the one of an axial dipole. As shown by paleomagnetic
records, it has frequently reversed its polarity on geological time scales. Field
reversals have also been reported in several numerical simulations of the geo-
dynamo and more recently, in a laboratory experiment involving a von Kar-
man swirling flow of liquid sodium (VKS). We first recall some of the main
experimental results and understand them using phenomenological models
and numerical simulations. In particular, we show that all the regimes of the
magnetic field observed in the experiments reported so far, can be understood
in the framework of low dimensional dynamical system theory: two modes of
the magnetic field, with dipolar (respectively quadrupolar) symmetry, can be
generated by the turbulent flow of liquid sodium, and their interaction can
lead to the observed dynamics (oscillations, random reversals, symmetric or
asymmetric bursts). Turbulent fluctuations alone do not drive these dynamical
regimes that only occur when a symmetry of the flow is broken. Although the
flow in the Earth’s core strongly differs from the one of the VKS experiment,
a similar model but based on a different broken symmetry, can be used. It
explains several features observed in paleomagnetic recordings of the Earth’s
magnetic field reversals.

1 A dynamo generated by a von Karman swirling flow

The generation of magnetic field by the flow of an electrically conducting
fluid, i.e., the dynamo effect, is an instability that has been mostly studied to
understand the magnetic fields of planets and stars [1]. Flows in the interiors
of planets or stars have huge kinetic Reynolds numbers, Re = V L/ν, where
V is the typical velocity, L is its integral length scale and ν is the kinematic
viscosity. For instance, Re ∼ 109 in the Earth’s liquid core or Re ∼ 1015

in the convective zone of the Sun. The main control parameter for dynamo
action is the magnetic Reynolds number, Rm = μ0σV L. It relates transport
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and stretching of the magnetic field by the flow to Ohmic diffusion (σ is
the electrical conductivity and μ0

Pm = Rm/Re = μ0σν is the magnetic Prandtl number of the fluid. For
planetary or stellar interiors, Pm < 10−6. For liquid metals used in laboratory
experiments, its maximum value is obtained with liquid sodium Pm ∼ 10−5.
A necessary condition for dynamo action being Rm large enough in order to
overcome Ohmic dissipation (in the range 10 − 100 for many dynamos), the
dynamo threshold can be reached only when the flow is strongly turbulent (Re
of order 106 or larger). This provides both the difficulty and the interest of the
problem. An instability that develops on a fully turbulent flow involves several
open questions: Do turbulent fluctuations inhibit or enhance the growth rate of
the magnetic field? What is the magnetic energy density that can by generated
by a turbulent flow [2]? At which spatial scales is it maximum [3]? The first
successful experiments on fluid dynamos involved flows with a geometrical
confinement to aim at the suppression of large scale turbulence [4]. In contrast,
the motivation for the von Karman geometry was to study the generation of a
magnetic field by a strongly turbulent flow. The flow of liquid sodium is driven
in a cylinder by two counter-rotating disks fitted with eight blades (see figure
1a). Re ∼ 5 106, thus Rm ∼ 50 can be reached, and turbulent fluctuations are
comparable to the mean flow (time averaged). The motivation for choosing
this flow resulted from its strong differential rotation and the absence of mirror
symmetry (in the counter-rotating case). In addition, this flow was known to
generate tornado-like vorticity filaments [5] involving large velocity increments
as displayed by pressure measurements [6]. All these features were known to
favor dynamo action [7]. The generation of magnetic field by the VKS flow
has been widely reported [8, 9, 10, 11] and we refer to these publications
for a description of the experimental results. Our purpose here is to present
various models and numerical simulations that provide an explanation for
several experimental observations.

Fig. 1. a) Sketch of the von Karman swirling flow geometry. b) Sketch of the mean
magnetic field generated for exact counter-rotation of the propellers, F1 = F2.

is the magnetic permeability of vacuum).
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2 Geometry of the mean magnetic field: equatorial

versus axial dipoles

flow and to understand the underlying mechanisms were presented in [12]. An
equatorial dipole was found (as the one displayed in figure 2 (left) whereas
the magnetic field observed in the experiment involved a strong axial dipolar
component (see figure 1, right). These calculations were based on the mean
flow of the VKS experiment. This one being axisymmetric, the generated
magnetic field should break axisymmetry according to Cowling theorem [7]
and this is achieved by an equatorial dipole. The experimental observation
of an axial dipole thus shows that non axisymmetric velocity fluctuations
play an important role in the VKS dynamo that is not generated by the
mean flow alone. It has been proposed that the vortical flow radially ejected
by the blades of the rotating impellers generate an axial mean field from an
α−ω mechanism [13]. This mechanism has been qualitatively illustrated using
the mean field induction equation [14]. It has been checked using the direct
numerical simulation displayed in figure 2 (right) [15]. It has been also shown
by direct simulations of a flow generated by two propellers in a spherical
domain, that an axial dipole is generated as soon as turbulent fluctuations
are large enough [16].

Fig. 2. Numerical simulations of the magnetic field at dynamo threshold: left: an
equatorial dipole is obtained when only the mean flow is taken into account. Right:
an axial dipole is generated when non axisymmetric components in the form of
vortices generated by the blades are included in the velocity field.

Thus, the VKS dynamo is not generated by the mean flow alone in contrast
to Karlsruhe and Riga experiments, and non-axisymmetric fluctuations play
an essential role in the dynamo process. Note also that it has been observed so
far only when impellers made of soft iron have been used. It has been shown

Several early attempts to predict the magnetic field generated by the VKS
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that magnetic boundary conditions corresponding to the high permeability
limit significantly decrease the dynamo threshold [17]. However, other mech-
anisms due to the iron disks can be also put forward (see for instance [13]).

3 Broken symmetries and dynamics of the large scale

magnetic field

The most striking feature of the VKS experiment is that time dependent
magnetic fields are generated only when the impellers rotate at different fre-
quencies [9]. We will show that this can be related to the additional invari-
ance under Rπ when F1 = F2 (rotation of an angle π along any axis in the
mid-plane). We indeed expect that in that case, the modes involved in the
dynamics are either symmetric or antisymmetric. Such modes are displayed
in figure 3. A dipole is changed to its opposite by Rπ, whereas a quadrupole
is unchanged. More generally, we name “dipole” (respectively “quadrupole”),
modes with dipolar (respectively quadrupolar) symmetry even though they
might involve a more complex spatial structure.

Bθ
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BP

R
π

R
π

F
1 F

2
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P1

F
1 2

F

r
x

Fig. 3. Possible eigenmodes of the VKS experiment. The two disks counter-rotate
with frequency F1 and F2. Left: magnetic dipolar mode. Right: magnetic quadrupo-
lar mode. Poloidal, BP , and toroidal, Bθ , components are sketched.

We assume that the magnetic field is the sum of a dipolar component
with an amplitude D and a quadrupolar one, Q. We define A = D + i Q and
we assume that an expansion in power of A and its complex conjugate Ā is
pertinent close to threshold in order to obtain an evolution equation for both
modes. Taking into account the invariance B→ −B, i.e. A→ −A, we obtain

Ȧ = μA + νĀ + β1A
3 + β2A

2Ā + β3AĀ2 + β4Ā
3 , (1)

where we limit the expansion to the lowest order nonlinearities. In the general
case, the coefficients are complex and depend on the experimental parameters.
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Symmetry of the experiment with respect to Rπ when the disks exactly
counter-rotate, amounts to constraints on the coefficients. Applying this trans-
formation to the magnetic modes, changes D into −D and Q into Q, thus
A → −Ā. We conclude that, in the case of exact counter-rotation, all the
coefficients are real. When the frequency difference f = F1 − F2 is increased
from zero, we obtain that the real parts of the coefficients are even and the
imaginary parts are odd functions of f . When the coefficients are real, the
growth rate of the dipolar component is μr + νr and that of the quadrupolar
component is μr − νr. The dipole being observed for exact counter-rotation
implies that νr > 0 for f = 0. By increasing f , we expect that νr changes
sign and favors the quadrupolar mode according to the experimental results
(see figure 3 in [10]). We will explain in the next section how modifying the
parameters of (1) leads to bifurcation to time dependent solutions.

4 A mechanism for oscillations and reversals

As shown in [18], the planar system (1) explains the dynamical regimes ob-
served so far in the VKS experiment [10]. It is invariant under the transforma-
tion B→ −B. Thus, in the case of counter-rotating impellers, F1 = F2, it has
two stable dipolar solutions ±D and two unstable quadrupolar solutions ±Q.
When the frequency difference f is increased, these solutions become more
and more mixed due to the increase of the strength of the coupling terms
between dipolar and quadrupolar modes. Dipolar (respectively quadrupolar)
solutions get a quadrupolar (respectively dipolar) component and give rise to
the stable solutions ±Bs (respectively unstable solutions ±Bu) displayed in
figure 4. When f is increased further, a saddle-node bifurcation occurs, i.e. the
stable and unstable solutions collide by pairs and disappear. This generates a
limit cycle that connects the collision point with its opposite. This result can
be understood as follows: the solution B = 0 is unstable with respect to the
two different fixed points, and their opposite. It is an unstable point, whereas
one of the two bifurcating solutions is a stable point, a node, and the other is
a saddle. If the saddle and the node collide, say at Bc, what happens to initial
conditions located close to these points? They cannot be attracted by B = 0
which is unstable and they cannot reach other fixed points since they just
disappeared. Therefore the trajectories describe a cycle. The associated orbit
contains B = 0 since, for a planar problem, in any orbit, there is a fixed point.
Suppose that the orbit created from Bc is different from the one created by
−Bc. These orbits being images by the transformation B → −B, they must
intersect at some point. Of course, this is not possible for a planar system
because it would violate the uniqueness of the solutions. Therefore, there is
only one cycle that connects points close to Bc and −Bc.

This provides an elementary mechanism for field reversals in the vicinity of
a saddle-node bifurcation. First, in the absence of fluctuations, the limit cycle
generated at the saddle-node bifurcation connects ±Bc. This corresponds to
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Fig. 4. A generic saddle-node bifurcation in a system with the B→ −B invariance:
below threshold, fluctuations can drive the system against its deterministic dynamics
(phase a). If the effect of fluctuations is large enough, this generates a reversal
(phases b and c). Otherwise, an excursion occurs (phase a’).

periodic reversals. Slightly above the bifurcation threshold, the system spends
most of the time close to the two states of opposite polarity ±Bc. Second, in
the presence of fluctuations, random reversals can be obtained slightly below
the saddle-node bifurcation. Bu being very close to Bs, even a fluctuation of
small intensity can drive the system to Bu from which it can be attracted by
−Bs, thus generating a reversal.

The effect of turbulent fluctuations on the dynamics of the two magnetic
modes governed by (1) can be easily modeled by adding some noisy component
to the coefficients [18]. Random reversals are displayed in figure 5 (left). The
system spends most of the time close to the stable fixed points ±Bs. We
observe in figure 5 (right) that a reversal consists of two phases. In the first
phase, the system evolves from the stable point Bs to the unstable point
Bu (in the phase space sketched in figure 4). The deterministic part of the
dynamics acts against this evolution and the fluctuations are the motor of the
dynamics. That phase is thus slow. In the second phase, the system evolves
from Bu to −Bs, the deterministic part of the dynamics drives the system
and this phase is faster.

The behaviour of the system close to Bs depends on the local flow. Close
to the saddle-node bifurcation, the position of Bs and Bu defines the slow
direction of the dynamics. If a component of Bu is smaller than the corre-
sponding one of Bs, that component displays an overshoot at the end of a
reversal. In the opposite case, that component will increase at the beginning
of a reversal. For instance, in the phase space sketched in figure 4, the compo-
nent D decreases at the end of a reversal and the signal displays an overshoot.
The component Q increases just before a reversal.

For some fluctuations, the second phase does not connect Bu to −Bs but
to Bs. It is an aborted reversal or an excursion in the context of the Earth
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dynamo. Note that during the initial phase, a reversal and an excursion are
identical. In the second phase, the approaches to the stationary phase differ
because the trajectory that links Bu and Bs is different form the trajectory
that links Bu and −Bs. In particular, if the reversals display an overshoot
this will not be the case of the excursion (see figure 5 (right) and the sketch
of the cycle in figure 4).

Other regimes observed in the VKS experiment such as symmetric or asym-
metric bursts [10] have been also described in the vicinity of more complex
bifurcations of equation (1) [18].
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Fig. 5. Reversals of the magnetic field modeled by (1).

5 A simple model for Earth’s magnetic field reversals

The above model of reversals of magnetic field in the vicinity of a saddle-node
bifurcation in a system with the invariance B → −B explains many intrigu-
ing features of the reversals of Earth magnetic field [19]. The most significant
output is that the mechanism predicts specific characteristics of the field ob-
tained from paleomagnetic records [20], in particular their asymmetry: the
Earth’s dipole decays on a slower time scale than it recovers after a reversal.
In addition, it displays an overshoot that immediately follows the reversals.
Other characteristic features such as excursions as well as the existence of
superchrons are understood in the same framework.

Although the symmetries of the flow in the Earth’s core strongly differ
from the ones of the VKS experiment, dipolar and quadrupolar modes can
be defined with respect to equatorial symmetry such that model (1) can be
transposed for Earth’s magnetic field. From an analysis of paleomagnetic data,
it has been proposed that reversals involve an interaction between dipolar and
quadrupolar modes [21]. We thus obtain an interesting prediction about the
liquid core in that case: if reversals involve a coupling of the Earth’s dipole
with a quadrupolar mode, then this requires that the flow in the core has
broken mirror symmetry. In contrast, another scenario has been proposed in
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which the Earth’s dipole is coupled to an octupole, i.e., another mode with
a dipolar symmetry. This does not require additional constraint on the flow
in the core in the framework of our model. In any case, the existence of two
coupled modes allows the system to evolve along a path that avoids B = 0.
In physical space, this means that the total magnetic field does not vanish
during a reversal but that its spatial structure changes.

Finally, we note that reversals are also observed in purely hydrodynamic
systems, in which a large scale flow driven by a turbulent background in
thermal convection or in periodically driven flows, randomly reverses its di-
rection [22]. A similar type of models can be used to understand the large
scale dynamics that result from these bifurcations from turbulent flows.
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Direct measurement of turbulent magnetic

diffusivity in liquid metal flow
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In the mean field MHD-theory, an increase in the effective magnetic diffusivity
(decrease of electric conductivity) of the developed turbulent flow of conduct-
ing fluid is commonly referred to as the β-effect. In spite of the fact that
the effect seems to be quite obvious (in comparison with a far more sophis-
ticated α-effect), up to now there have been no reliable direct measurements
of effective electric conductivity in turbulent flows. We present the results
of experiments, which intend to isolate the contribution of turbulence to the
magnetic diffusivity.

The experimental set up is a rigid frame, which is used as a support for a
rotating circular toroidal channel with dielectric walls (structural fabric-base
laminate) [1]. The torus radius is R = 0.0875m, the radius of the channel
cross-section is r1 = 0.0225m. The channel is filled with a low-temperature
gallium alloy (Ga-87.5%, Sn-10.5%, Zn-2%; melting point 19oC). It is fasten
on the horizontal axis, which is also used for mounting a driving pulley, a
system of sliding contacts and a disk braking system. The channel rotates
with a frequency up to 55 r.p.s. and the flow in the channel is generated
by abrupt braking - the braking time is no more than 0.1 sec. The maximal
section-averaged velocity of the flow relative to the channel walls reaches at
the full stop of the channel about 70% of the linear velocity of the channel axis
before braking. This means that the Reynolds number Re = Ur1/ν (ν is the
kinematic viscosity of the alloy) reaches at a maximum the value Re ≈ 106,
which corresponds to the magnetic Reynolds number Rm ≈ 1.

The idea of the experiment consists in measuring the inductance of the
toroidal coil embracing the channel, which depends on the electrical conduc-
tivity of the metal in the channel. The coil is a part of successively connected
RLC-circuit (Fig. 1), and the measurements are made in the vicinity of the
resonance because conductivity variations are small (of order of a percent).
The variable to be determined is the difference in phase between sinusoidal
voltage and current in the circuit. The measurements were made at two fre-
quencies: 166.12Hz and 963.90Hz, at which the thickness of the skin layer is
correspondingly about 8 and 20mm.
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Fig. 1. Scheme of the experimental set up.

To calibrate the measurement system we performed a test thermal experi-
ment on the channel at rest: the phase sift δΘ(T ) dependence was determined
at the stationary inductive heating of the channel. The aim of the test is to
determine the temperature coefficient of the alloy resistivity, using this depen-
dence and known thermal expansion coefficient of the alloy, materials of the
channel wall, and coil wire. The measurements were performed at both res-
onant frequencies. Fig. 2 shows the measurement results. According to these
results, the resistivity temperature coefficients are (1.02 ± 0.05) 10−3 K −1

and (0.98 ± 0.07) 10−3 K −1, which are close to the reference value of (1.04
± 0.05) 10−3 K −1.
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Fig. 2. Phase shift versus gallium temperature in the channel: ω = 166 Hz (squares),
ω = 964 Hz (circles).

Fig. 3 shows the time dependence of the phase shift for various initial
rotation frequencies. Each line is a result of averaging over 20 measurements.
It is seen that the turbulent flow is developed in the channel with the beginning
of braking; the intensity of this flow is maximal at the time of the complete
stop of the channel. At this time, the phase shift is also maximal. Turbulence
after the channel stop degenerates along with the mean flow and the phase
shift decreases to the noise level.

Lack of velocity measurements and the nonstationarity prevent direct def-
inition of the Reynolds number. However, the studies of similar water flows
showed that in considered regimes the maximum of the Reynolds number,
achieved in the nonstationary flow, at the same braking moment is propor-
tional to the channel rotation speed before braking. In Fig. 4 the maximal
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Fig. 3. Time dependence of the phase shift for the initial torus rotation frequencies
(from top to bottom) 55, 50, 45, 40, and 35 s1. The resonant frequency is 964 Hz.

deviation of electrical conductivity measured at two frequencies ω for differ-
ent rotation speeds are shown. For the maximal rotation speed Ω = 55 r.p.s.,
which corresponds to Rm ≈ 1, this deviation reaches about 1%.
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Fig. 4. Maximal relative variation of conductivity as a function of channel rotation
speed: ω = 166 Hz (squares), ω = 964Hz (circles).

So, the measurement of electric conductivity in the nonstationary fully
developed turbulent (Re ∼ 106) flow of gallium alloy in a closed channel
shows that the effective conductivity decrease with the Reynolds number. In
the range of the magnetic Reynolds number, available in the gallium exper-
iment described above (see also [2]), the dependence looks like a quadratic
β ∼ (Rm)2, which corresponds to general conceptions of the beta-effect. Ap-
parently, the quadratic law will not hold at Rm → Re 
 1 because the
turbulent viscosity in pipe flows at high Re increases as νt ∼ Re1/2 and we
have no reason to suppose that both turbulent transport coefficients develop
in quite different ways. We have also no reasons to extend the obtained de-
pendence to the case of homogeneous turbulence. However, in view of the fact
that the problem of measuring the examined characteristic in the real flows
is very complicated and the experimental data are completely absent, mea-
surements of the effective electric conductivity in the turbulent medium even
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in one particular case is an important step to experimental substantiation of
general MHD-dynamo conceptions.

Fig. 5. Torus 2 (titanium).

Of special interest is the extension of the range of magnetic Reynolds
number, available for measurement of effective conductivity in the turbulent
flow. To achieve this goal we modify the experimental set up. The new set up
includes a titanium channel (Fig. 5) - the torus radius is R = 0.180m, the
radius of the channel cross-section is r1 = 0.080m, which is filled with liquid
sodium. High electro conductivity and low viscosity of liquid sodium allow us
to achieve magnetic Reynolds number Rm ≈ 20 (for channel rotation speed
40 r.p.s.). The essential growth of energy which must be dissipated during the
braking requires modernization of the breaking system and the transition to
sodium requires a thermally-stabilized box around the channel. The set up
modernization is in progress. We expect to made the first measurements in
the summer and present the results in our talk.

The financial support from ISTC under project #3726 is kindly acknowl-
edged.
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Understanding the existence and the dynamics of the magnetic field of the
Earth, of the Sun and, in general, of other celestial bodies (dynamo effect)
remains one of the most challenging problems of classical physics. Analytical
approaches of this problem are extremely complicated while numerical efforts
are limited to a range of parameter space that is often quite distant from
the realistic systems. For instance, in certain astrophysical bodies as well as
in laboratory experiments, the kinematic viscosity ν of the fluid is six orders
of magnitude smaller than its resistivity η. The two dissipation processes
therefore take place at very different time scales. This property makes direct
numerical simulations of dynamo intractable. Due to these reasons, we resort
to simplified models.

Shell models specifically belong to this class of simplified approaches [1].
They have been constructed to describe interactions among various scales
without any reference to the geometric structure of the problem. They were
first introduced for fluid turbulence with the quite successful GOY shell
model [2, 3] and have been extended to MHD turbulence [4, 5, 6, 7].

In shell models, a drastically reduced number of degrees of freedom (usu-
ally only one complex number) is used to describe the entire information
provided by a shell of Fourier modes in wavevector space. A typical model
considers N shells which are separated by a set of spheres concentric at the
origin of the Fourier space. There radii form a geometric progression of ratio
λ > 1. Each shell si is associated to a typical wave number ki = k0λ

i. Any
observable quantity that was represented by its Fourier modes xk in MHD
will be described in the model by N complex components xi∈{1,··· ,N}, each of
which representing the state of the Fourier modes xks lying in the i-th shell.
These N components are gathered in a state vector X. The scalar product of
two fields (useful to define energies and helicities) is defined in the model by
analogy with Parseval’s identity: 〈X|Y〉 = 1

2

∑N
i=1

(xi y
∗
i + yi x

∗
i ).
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The state of the system is contained in the two N-dimensional vectors U
(velocity field) and B (magnetic field). The original MHD partial differential
equations are simplified in this approach to a reduced set of ordinary differen-
tial equations. It provides a simplified tool for studying the energy and helicity
exchanges between different scales at a significantly reduced numerical cost.

Emphasising on the antisymmetry of the non linear terms under u ↔ b
exchange, the incompressible MHD equations are in Fourier space

duk

dt
= nk(u,u)− nk(b,b)− νk2uk + fk , (1)

dbk

dt
= nk(u,b)− nk(b,u)− ηk2bk , (2)

with nk(x,y) = iP(k) ·
∑

p+q=−k(k · x∗
q)y∗

p and Pij(k) = k2δij−ki kj

k2 . It is
remarkable that the first non linear term in the equation of evolution of b,
corresponding to the advection of the magnetic field by the velocity field, is
not modifying the overall energy in the magnetic field:

∑
k nk(u,b) ·b∗

k = 0.
A shell model is therefore asked to be of the form [8]:

dtU = Q(U,U)−Q(B,B)− νD(U) + F , (3)
dtB = Q(U,B)−Q(B,U)− ηD(B) , (4)

where the terms proportional to ν and η account for the viscous and Joule dis-
sipations. The linear operator D is defined by D(X) = (k2

1
x1, k

2

2
x2, ..., k

2

N xN ).
The F term describes the forcing. The operator Q, often asked to be quadratic,
models the operator nk.

In previous works [7], the non linear parts of these equations were asked to
conserve a number of quadratic invariants. Letting W and A be respectively
the vorticity and the potential vector1, the conserved quantities are the total
energy E = 1

2
(〈U|U〉 + 〈B|B〉), the cross helicity Hc = 〈U|B〉 and the

magnetic helicity Hm = 〈A|B〉 as well as, in case of vanishing magnetic field
(B = 0), the kinetic energy Ek = 1

2
〈U|U〉 and helicity Hk = 〈U|W〉.

However, the conservation of the magnetic energy by the advection term
in the induction equation (2) has not been exploited so far. In a recently sub-
mitted article [8], we proposed to take this conservation into account thereby
imposing that 〈Q(U,B)|B〉 = 0 ∀U,B. This allows to recognise the first term
in (4) as responsible for an energy exchange between magnetic variables only
(letting the overall magnetic energy unchanged). The second non linear terms
in (3,4) are then responsible for energy exchanges between the two fields.

The dynamo process involves growth of magnetic energy that is supplied
from the kinetic energy via the non-linear interactions. A clear and unambigu-
ous identification of the various energy fluxes and energy exchanges between
the velocity and the magnetic fields is very important in the study of dynamo
1 These quantities must be defined in function of U and B in the model (see [7]

and [9] for two viable choices)
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effects. This is one of the main motivations for the development of the present
approach.

Introducing the notation Xi = (0, ..., 0, xi, 0, ..., 0) for the projection of the
vector X on its i-th component, the energy ex

i in the i-th shell of the X field
is defined by ex

i = 1

2
〈Xi|Xi〉. These quantities evolve as

dte
u
i = T (U→ ui) + T (B→ ui)− 2 ν k2

i eu
i + 〈F|Ui〉 , (5)

dte
b
i = T (B→ bi) + T (U→ bi)− 2 η k2

i eb
i , (6)

where T (X → yi) is the rate of energy transfer from the field X to the i-th
component of the Y field. These transfers are defined in [8] as T (U → ui) =
〈Q(U,U)|Ui〉, T (B → ui) = 〈Q(B,B)|Ui〉, T (B → bi) = 〈Q(U,B)|Bi〉 and
T (U→ bi) = 〈Q(B,U)|Bi〉. The flux of magnetic energy ΠB(n) from the big
scale k ≤ ksphere of B to the small scales k > ksphere of B through a sphere of
radius ksphere = k0λ

n can be estimated [8] by

ΠB(n) =
N∑

j=n+1

T (B→ bj) =
N∑

j=n+1

〈Q(U,B)|Bj〉 , (7)

One of the main advantages of the present formalism is that this flux is in-
dependent of the unknown circulating transfer appearing in the related past
work by Dar et al. [10, 11].

This procedure has been applied in [8] to a specific class of shell models
based on first neighbour couplings, known as the GOY model. It has been
shown that the general constraints naturally lead to the already derived GOY-
MHD shell model [7]. However, the interpretation of the energy fluxes appears
to be simpler in the present formalism.

This model, together with our fluxes definitions, point out a magnetic-to-
magnetic inverse cascade of energy at high magnetic Reynolds number. The
flux ΠB is shown here in function of the delimiting sphere’s radius ksphere. For
the low magnetic Reynolds number Rm ∝ η−1 (dotted curves) which are in
reach of DNS [12, 13], the flux is positive and energy flows from the big scales
to the small ones (direct energy cascade). However as Rm gets larger, there is
a growing region of ksphere for which the flux is negative indicating a reverse
cascade of magnetic energy (i.e. from the small scales to the large ones). The
value of ksphere for which the flux changes sign seems to correspond to the
typical Joule dissipation wave number kη. This indicates that this reverse
cascade is piloted by Rm and the scale of the magnetic dissipative structures
rather than by the Prandtl number Pm = ν/η. Moreover, if the model is
correct, in actually developed MHD turbulence of Pm < 1, at scales within
the kinetic and magnetic inertial ranges, the magnetic energy undergoes a
reversed energy cascade.

We are currently studying this intriguing aspect with helical [9] and non-
local [14] shell models.

This work has been supported by the contract of association EURATOM
- Belgian state. The content of the publication is the sole responsibility of the
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Fig. 1. Magnetic-to-magnetic energy fluxes for various values of η and of the Prandtl
number Pm = ν/η in function of the logarithm of kn. The forcing is applied in the
region 100.63 < k < 101.25; λ = (1 +

√
5)/2.
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Externally imposed magnetic field is usually a factor that stabilises flows of
electrically conducting fluids. One long-known example, among many, is the
archetypal Taylor-Couette flow between solid cylinders

A surprising counterexample is the magnetorotational instability (MRI)
discovered by Chandrasekhar [6] and elucidated by Balbus and Hawley [3].
Ever since it attracts great interest as a possible mechanism of enhancing
turbulence in accretion disks and may thus be responsible for the efficient
transport of angular momentum inferred from observations [12].

In the weak-field limit the onset and the growth rate of the MRI is inde-
pendent of the field strength, so even a seed field is a trigger of the powerful
exchange-type flow instability. In this paper we describe the destabilising ef-

Fig. 1. Left: The artist’s concept shows a dusty planet-forming disk in orbit around
a whirling young star. The green colour marks the magnetic field lines dragged
by the disk rotating more slowly than the star. NASA’s Spitzer Space Telescope
found evidence that disks like this one can slow stars down [1]; Right: Vorticity field
in a Keplerian disk. Persistent anti-cyclonic vortices that emerge from an initially
turbulent, freely decaying perturbation and survive for a long time [5].
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fect of the magnetic field on recirculating flows with elliptical rather than
circular streamlines [10, 2]. Such non-axisymmetric vortical flows are subject

cyclonic as well as by strong anticyclonic background rotation. We show that
in anticyclonic vortices they may be triggered by a seed magnetic field just like
the exchange instability (MRI) is triggered in otherwise stable axisymmetric
flows.

Disruptions of the zonal flow in an accretion disc are likely to produce
non-axisymmetric vortical structures just like ‘cat’s eyes’ appearing in a per-
turbed two-dimensional shear flow (fig. 1). When the zonal flow has outward-
decreasing angular velocity, the emerging vortices will be anticyclonic. The

(a) (b)

(c) (d)

Fig. 2. Grey-scale plots of the growth rates of elliptical instability as functions
of eccentricity parameter δ (horizontal axis) and inclination of the wave vector θ
(vertical axis): (a) Neither background rotation nor magnetic field is present (Ro

-1 =
h = 0). This case was analysed by Bayly [4]; (b) Background rotation is present but
there is no magnetic field (Ro

-1 = −1.3, h = 0). This case was considered by Miyazaki
and Fukumoto [8, 9]; (c) Weak background rotation and magnetic field are present
(Ro

-1 = −0.2, h = 4). The tips (δ → 0) of the ’tongues’ of instability (location
and shape) agree with the asymptotic calculations (field present, no background
rotation) of Lebovitz and Zweibel [7] (cf. [10]); (d) Strong background rotation
and magnetic field are present (Ro

-1 = −4.5, h = 4). Although either factor in
isolation is stabilising, the combination triggers the so-called ’horizontal instability’
(elongated dark region near the horizontal axis) which is more powerful than any
other unstable mode. Its domination over other modes increases with the rate of
background rotation.

to the well-known elliptical instability (EI) [11, 4]. The EI is suppressed by
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linear stability of an MHD flow of an ideal fluid is considered. The frame of
reference is rotating with constant angular velocity Ω. The basic flow is two-
dimensional, U0⊥Ω, linear in Cartesian coordinates, has elliptical streamlines
and is penetrated by the uniform magnetic field perpendicular to the plane of
the flow, B0‖Ω.

We find that for an anticyclonic basic flow the presence of magnetic field,
however weak, may trigger a fast and powerful instability. The magnetic field
may thus enable elliptical instability of anticyclonic vortices and therefore
may ‘catalyse’, rather than suppress turbulence. Besides the well-known mag-
netorotational instability this may be an important mechanism of generating
turbulence in accretion disks and tidally forced planetary cores.

Analysis

Let us consider the dynamics of a steady flow u(x, t) of an ideal fluid pene-
trated by a magnetic field B(x, t) and conducting electric current j(x, t) with
negligible resistivity. We write the equations of ideal MHD with respect to a
frame of reference steadily rotating with angular velocity Ω = Ωêz,

∂u

∂t
+ (u · ∇)u = −ρ -1∇P − 2Ω× u + ρ -1j×B , (1a)

∂B

∂t
+ (u · ∇)B = (B · ∇)u , (1b)

∇ · u = 0 , ∇ ·B = 0 , j = μ -1∇×B , (1c)

where ρ is fluid density, μ its permeability and P (x, t) is the pressure field
including the potential of the centrifugal force.

We consider linear stability of a vortical flow with elliptical streamlines [4]
and with uniform magnetic field aligned with the axis of rotation,

U0 = γ [−(1+ε)y, (1−ε)x, 0] , B0 = B0êz , (2)

where -1 < ε < 1 is a measure of eccentricity.
The characteristic scales of time, velocity and length in this basic flow

are given by γ -1, uA = B0(ρμ) -1/2, uAγ
-1, where 2γ is the (uniform) relative

vorticity and uA is the Alfvén speed. We denote the (non-dimensional) inverse

of the angular frequency of the vortex δ = ω−1 =
(
1− ε2

)−1/2
. The magnitude

of the background rotation is characterised by the Rossby number, Ro = γ/Ω,
or its inverse, Rv = Ro

-1 = Ω/γ. When Ro and Rv are positive (negative) the
vortex is called cyclonic (anticyclonic).

When we linearise (1) around the basic state (2) we find that they admit
solutions in the form of Kelvin modes,

[u′,B′, P ′] = [v(t),b(t), p(t)]× eik(t)·x, (3)
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where k = k0 (sinϑ cos [ω (t− t0)] , E sinϑ sin [ω (t− t0)] , cosϑ) with k0 and ϑ
arbitrary constants and E = (1+ε)1/2(1−ε)−1/2 yet another measure of eccen-
tricity. Pressure can be eliminated by projection and (1c) are two conditions
on u and b, so there remain altogether only four independent components of
the Kelvin mode amplitudes jointly denoted as s = (vx, vy, bx, by).

This vector satisfies a set of linear ODEs, ṡ = Ŝ (t) s, where Ŝ (t) is a
periodic 4×4 matrix [10]. The solutions are combinations of Floquet modes of
the form s (t) = eσtf (t) (see, e.g., lecture notes by Gerald Teschl [13]).

We have computed the Floquet exponents σ in a large region of the space
of parameters

(
δ, ϑ,Ro

-1, k0

)
. The results are summarised in fig. 2. When the

field is present the parameter h used in fig. 2 is the same as k0. Without
the field the problem has no length scale, so σ dos not depend on k0 (all
modes have the same growth rate). The main conclusion transpires that when
background rotation (or Rv) has large negative value, the otherwise stable
situation is violently destabilised even by weak magnetic field.
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12. G. Rüdiger and R. Hollerbach. The Magnetic Universe: Geophysical and Astro-

physical Dynamo Theory. Wiley, 1 edition, 2004.
13. G. Teschl. Ordinary differential equations and dynamical systems. http://www.

mat.univie.ac.at/~gerald/, 2009.

K. Bajer and K.A. Mizerski820



Spin-up in MHD turbulence
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In fusion plasmas, spontaneous large-scale poloidal rotation is beneficial for
the confinement as it suppresses turbulence and radially extended structures,
which are largely responsible for anomalous transport [1, 2]. This reduction of
turbulent activity plays a key role in the transition to an improved confinement
state (L-H transition) [3]. The absence of this transition would jeopardize the
success of the ITER project. The understanding of large scale poloidal rotation
is therefore primordial. It is generally admitted that the poloidal rotation of
tokamaks is due to the asymmetry of the charge distribution. However, in
recent work [4] the link was made between the L-H transition and the inverse
cascade of two-dimensional turbulence. A neutral fluid can therefore also give
rise to poloidal large-scale rotation.

The phenomenon of spontaneous generation of large-scale rotation-cells in
two-dimensional fluid turbulence was discovered by Clercx et al. [5]. The im-
portance of the non-axisymmetry of the geometry was recently demonstrated
by Keetels et al. [6], and an interpretation in terms of statistical mechan-
ics was obtained by Taylor et al. [7]. All these studies were performed for
non–conducting fluids, using either the Navier–Stokes, or Euler equations. In
MHD turbulence the question was investigated for the first time only very re-
cently [8], where it was shown that spin-up in MHD turbulence is also present
and that it can be enhanced by increasing the magnetic fluctuations. These
observations were however done at low Reynolds numbers in square and cir-
cular geometries. In the present work we will confirm these results at higher
Reynolds numbers in three different geometries, a square, a circle and an el-
lipse. It is shown that the tendency to generate angular momentum is stronger
at higher Reynolds number. The tendency to generate angular fields is still
present at these Reynolds numbers.

We present results of pseudo-spectral simulations of two-dimensional MHD
turbulence in bounded domains. An efficient method to compute these flows
is the penalization method, which was applied for the first time to MHD
turbulence in [9].
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The initial conditions consist of correlated noise, with a prescribed energy
spectrum, peaked at the low wavenumbers. The initial fields contain zero or
little angular momentum and angular field, defined respectively as

Lu =

∫
Ω

ez · (r × u) dA, LB =

∫
Ω

ez · (r × B) dA. (1)

in which Ω is the flow domain and r is the position vector with respect to
the center of the domain. Simulations are performed at a resolution of 5122

grid-points. The magnetic Prandtl number is unity and the initial Reynolds
number, based on the root mean square velocity, and domain-size is of the
order of 104. Ten simulations were carried out in each geometry and we present
the results of the simulations in which the generation of angular momentum
is maximal. The time is normalized by D/

√
2Eu(t = 0), D being the typical

lengthscale of the fluid domain.

Fig. 1. The stream–function ψ (top), and the vector potential a (bottom) for the
square, circular and elliptic geometries. The three columns correspond (from left to
right) to the time instants t� = 3, 2, 2.7 for which Lu (Fig. 2) is maximal. The time
is normalized by the initial turn-over time.

Visualizations of the stream-function and the vector-potential are dis-
played in Figure 1. It is observed that both the velocity-field and the magnetic
field exhibit a tendency to generate large-scale structures. To quantify the ex-
tend to which a large-scale swirling structure dominates the flow, we plot in
Figure 2 the angular momentum in the three geometries. It is observed that
strong spin-up takes place in the square and in the ellipse. The generation
of the angular momentum is spontaneous, after a short time interval t ≈ 3
and one observes that the amplitude is close to 0.4 in the square and 0.3 in
the ellipse. This implies that, in the square container, the fluid reaches an
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angular momentum which corresponds to approximately 40% of the angular
momentum which would possess a fluid in solid-body rotation containing the
same energy at t = 0. There is practically no spin-up in the circular container.

In Figure 2, bottom, the magnetic angular momentum is evaluated in
all geometries. Surprisingly, in the square in which the generation of kinetic
angular momentum was the strongest, LB remains close to zero. However, in
other simulations a small amount of LB was generated in the square geometry.
In the other two geometries, Figure 2 shows that an amount of LB is created,
however, this magnetic spin-up takes place on a time-scale which is larger
than for its kinetic counterpart. Furthermore it can be observed that once LB

is created it remains almost constant over time.
In [8] we derived the equation for Lu in the case of MHD turbulence. It

reads
dLu

dt
= ν

∮
∂Ω

ω(r · n)ds+

∮
∂Ω

p�
r · ds (2)

with ν the kinematic viscosity, ω the vorticity, n the unit-vector perpendicular
to the wall, p� = p+B2/2 is the sum of the hydrodynamic and magnetic pres-
sure. It was discovered by Clercx et al. [5] that spontaneous generation of an-
gular momentum in hydrodynamic turbulence is observed in square domains,
whereas it is absent in a circular domain. Subsequently, it was explained to
be an effect due to the pressure [6], the last term in equation (2). Indeed, this
term vanishes in a circular domain. In MHD, the presence of the magnetic
pressure allows to vary the importance of the pressure term, while keeping
the other parameters constant, by changing the value of the magnetic fluctu-
ations. This is illustrated in Figure 2, right. The ratio EB/Eu is varied, with
EB the mean-square of the magnetic fluctuations and Eu the mean-square of
the velocity fluctuations. It is observed that the tendency to spin-up is signif-
icantly increased in the square geometry. It is thus shown that both geometry
and magnetic pressure can play a role in the generation of zonal flows.

In [8], the tendency to generate angular fields was also investigated by
computing the value of LB. It was observed that angular fields were observed,
even in the circular geometry. In Figure 2 bottom, we show that at higher
Reynolds numbers the generation of this ’magnetic angular momentum’ is
weak but persistent. In the square geometry it is absent. Writing the equation
for LB, we find

dLB

dt
= η

∮
∂Ω

j(r · n)ds − 2ηI . (3)

where I denotes the net current through the domain, defined by I =
∫

Ω
jdA.

The pressure plays thus no direct role and only the net current or resistive
magnetic stress can generate angular fields. We suspect that the observed spin-
up of the magnetic field is related to the presence of a mean current through
the circular domain. However, for the moment the reason is not understood
and thus requires further investigation.
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Fig. 2. Time-dependence of the angular momentum Lu (left) and angular field
LB (center) in the square, circular and elliptic geometry, normalized by Lu(0) and
LB(0), respectively. Right: The influence of the magnetic pressure on the spin-up in
the square container is illustrated by changing the ratio EB/Eu, while keeping Eu

fixed.
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In the ideal 3D magnetohydrodynamical (MHD) turbulence there are three
integrals of motion: the total energy ET = Ev + Eb where Ev =< |v|2/2 >,
Eb =< |b|2/2 >, the cross helicity Hc =< v · b > and the magnetic helicity
Hb =< A·b >, b = ∇×A. Cross helicity characterizes the correlation between
the velocity and magnetic field pulsations, and magnetic helicity characterizes
the correlation between the magnetic field and its vector potential.

The idea to consider the developed turbulence as a random process allows
us to assume that the fully developed isotropic turbulence of a conducting
fluid is usually characterized by low level of cross helicity. It is precisely the
situation which has been commonly the focus of researchers’ attention. Inter-
est in cross-helicity was aroused by discovery of highly correlated pulsations
of the velocity and magnetic field in solar wind [1]. Energy evolution analysis
of freely decaying turbulence shows that helicity decays slower than energy,
therefore correlation of v and b, defined by correlation coefficient C = Hc/E

T

can rise in time [2].
The magnetic helicity can play a particular role in the dynamo processes

as it has been recognized by [3, 4]. The arguments are based implicitly on
local conservation of magnetic helicity: since magnetic helicity is a conserved
quantity, it can change only if there is a flux of magnetic helicity through
the boundaries, or through resistive effects which, however, are very slow,
otherwise magnetic helicity will suppress the α-effect. Loss of the magnetic
field confinement is believed to be the cause of coronal mass ejections, a major
form of solar activity in the corona. It was pointed out that the accumulation
of magnetic helicity in the corona plays a significant role in storing magnetic
energy (for review, see [5]).

In this paper we study the role of helicities in the fully-developed MHD
turbulence using a shell model of turbulence. Shell models describe the spec-
tral transport by a moderate number of variables and are an effective instru-
ment for studying statistical properties of the developed small-scale turbu-
lence. Every variable is a collective characteristic of the amplitudes of the
velocity Un and the magnetic field Bn pulsations in the wave number range
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kn < |k| < kn+1, where kn = λn, and λ, - interval width. The shell equa-
tions for collective variables are constructed in such a way as to keep ”basic”
properties of the motion equations, namely they should have the same motion
integrals and the same nonlinearity. The MHD shell models reproduce quite
well known properties of MHD turbulence and small-scale dynamo [6]. We use
below the generalized Melander’s model [7] in the form:

dtUn = ikn(Λn(U,U)− Λn(B,B))−
k2

nUn

Ru
+ fn, (1)

dtBn = ikn(Λn(U,B)− Λn(B,U))−
k2

nBn

Rm
+ gn, (2)

where the nonlinear terms are written as

Λn(X,Y ) = λ2(Xn+1Yn+1 +X∗
n+1

Y ∗
n+1

)−Xr
n−1

Yn

−XnY
r
n−1

+ ıλ(2X∗
nY

i
n−1

+Xr
n+1

Y i
n+1

−Xi
n+1

Y r
n+1

)
+Xn−1Yn−1 +X∗

n−1
Y ∗

n−1
− λ2(Xr

n+1
Yn +XnY

r
n+1

)

+ıλ(2X∗
nY

i
n+1

+Xr
n−1

Y i
n−1

−Xi
n−1

Y r
n−1

),

where star means complex conjugation, and superscripts r, i are real and imag-
inary parts. Ru and Rm are the kinetic and magnetic Reynolds numbers. fn

and gn are the external forcing which is generally used to support turbulence.
These equations conserve three values which are written in terms of the shell
model variables: ET =

∑
(|Un|2+|Bn|2)/2 - energy,Hc =

∑
(UnB

∗
n+BnU

∗
n)/2

- cross helicity, Hm =
∑

k−1

n ((B∗
n)

2 −B2

n)/2 - magnetic helicity. And the dif-
ference of our shell model from previous one [6] is a definition of magnetic
helicity.

First, we have studied numerically the free decay. Initially kinetic and
magnetic energies are concentrated in one shell at k = 1. Four cases have
been considered in order to determine the role of helicities: a) Hc = Hm =
0; b) Hc = 0,Hm = 1; c) Hc = 1,Hm = 0; d) Hc = 1,Hm = 1. The
corresponding spectra are shown in fig. 1 after 1000 units of time evolution
for Ru = Rm = 105. In the case (a) most of the energy decays and helicities
have alternating sign along the scales. The scenario of evolution changes in
the presence of magnetic helicity (case b). Now magnetic energy can cascade
to the dissipation scale only with a simultaneous inverse cascade of magnetic
helicity to a larger scale. This leads to partial accumulation of the energy at
the largest scale and to a decrease of a dissipation rate. Cross helicity (case c)
completely blocks the energy transfer from the scale of initial energy location.
The presence of both helicities in the initial distribution (case d) provides the
combined effect: magnetic helicity forces the inverse magnetic energy cascade
to larger scale and cross helicity suppresses the efficiency of energy transfers.

Stationary turbulence implies external forcing. We use forces fn and gn,
which operate in two neighbor shells, providing constant injection rates of
kinetic energy ε = 1, cross helicity χ and magnetic helicity ξ.
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Fig. 1. Free decay for 4 initial conditions (a-d). Compensated spectra (by factor
k2/3) for kinetic energy (boxes), magnetic energy (circles), cross-helicity (triangles),
magnetic helicity (diamonds) at the time moment t=1000. Filled symbols correspond
to positive value of helicities at the given scale.

We have shown, that injection of cross helicity changes the spectral slope.
The energy spectrum slope changes from Kolmogorov’s ”-5/3” to ”-2” (2).
Cross helicity injection leads to energy accumulation in the turbulent flow (2
right panel). In the case of χ/ε → 1 the velocity field and the magnetic field
pulsations are correlated, the nonlinear terms in MHD equations are canceled
and the energy cascade transfer is blocked. These numerical results are in
good agrement with phenomenology suggested in [8]

Fig. 3 demonstrates a possible inverse cascade of magnetic helicity (see
corresponding flux on the right). The injected magnetic helicity at the scale
k = 1 can not go to smaller scale and provides acceleration of inverse energy
cascade.

This work was supported by ISTC (project 3726) and RFBR-Ural grant
No. 07-01-96007.
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The onset of turbulence in shear flows cannot be explained by classical hy-
drodynamic stability theory. The linear instability threshold is usually far
above the practically observed one. An example in liquid-metal MHD is plane
channel flow with wall-normal magnetic field B0 (the Hartmann flow). In-
deed, the critical Reynolds number for linear instability is about two orders
of magnitude larger than the experimentally observed values [1]. Numerically,
two problems were studied: the periodic Hartmann channel flow [2] and the
complementary case of plane channel flow under spanwise magnetic field [3].
In the first case the basic Poiseuille flow is modified by the magnetic field
(Hartmann profile) while it remains unaffected for the second one. Both stud-
ies were performed in the framework of a scenario based on transient growth
and subsequent breakdown of optimal perturbations. In case of Hartmann
flow, the optimal modes are purely streamwise rolls, while in the second case
the optimal modes become rolls oriented at an oblique angle to the flow. In
the present work we extend the previous studies to the case of a rectangular
duct with insulating walls. The field B0 is parallel to the sidewalls located at
y = ±a, so that the Hartmann layers are present at z = ±d. On the side walls,
the so-called Shercliff layers develop. In this geometry, transition mechanisms
found in channel flow with either spanwise or wall-normal magnetic field can
then be both relevant. The relative importance of these mechanisms is studied
here by changing the aspect ratio r = a/d of the duct (see Fig. 1): when r � 1
the case of channel flow under spanwise magnetic field is approached, on the
contrary, when r � 1 the geometry would get close to the Hartmann channel
flow case.

The mathematical model comprises the incompressible Navier-Stokes equa-
tions with the Lorentz force obtained with the quasistatic approximation. The
optimal perturbations are Fourier modes of streamwise wavenumber α com-
puted by the fixed-point iteration method based on the direct and adjoint
equations (Ref.[3].) The numerical implementation is based on a projection-
type method and second-order finite differences. The non-dimensionalization
is based on the characteristic length L ≡ min(a/2, d/2) and the center-
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0

the case of channel flow under spanwise field, (middle) r ∼ 1 the general case of an
almost square duct and (right) r � 1 approaching the Hartmann channel geometry.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120  140  160  180  200

E
ne

rg
y 

am
pl

ifi
ca

tio
n

Time

r = 1:1
r = 1:3
r = 1:9

channel case

 0

 50

 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100  120  140  160  180  200

E
ne

rg
y 

am
pl

ifi
ca

tio
n

Time

r = 1:1
r = 3:1
r = 9:1

Hartmann case

Fig. 2. Energy amplification for Re = 5000 and Ha = 10: r < 1(left), r > 1(right).

line velocity U . Two dimensionless numbers appear, the Reynolds number
Re = UL/ν and the Hartmann number Ha = L/δ, where δ = 1

B0

√
ρν

σ
with

σ being electrical conductivity.
We focus on relatively weak magnetic fields, at which the transition can be

expected. Fig. 2 shows the amplification factor G (maximized over wavenum-
bers α) as a function of the time T for Re = 5000 and Ha = 10. The results
of a periodic channel with either wall-normal or spanwise magnetic field are
shown for comparison in dots.

For small r the results for the amplification factor G approach the case
of a channel with spanwise magnetic field. This effect is well seen in Fig. 2
as r is reduced. The maximum amplification increases significantly when r is
reduced to r � 1. In this case, the long side walls parallel to the magnetic
field should ultimately dominate, which is exactly what we observe (Fig. 4).

On the contrary, for large r (long Hartmann walls) the amplification fac-
tor G is significantly higher than for periodic Hartmann channel (Fig. 2). In
fact, r has little effect on the amplification. This observation suggests that the
Shercliff layers, which do not depend on r when r � 1, provide the dominant
contribution to the amplification. This interpretation is confirmed by visual-
ization of the optimal modes shown in Fig. 3. The pattern, visualized by the
streamwise velocity perturbations, corresponds to the global optimal modes
at initial and optimal time. It is clearly seen that the structures are largely

Fig. 1. Geometry of the duct flow under magnetic field B . (left) r  1 approaching
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Fig. 3. Structure of optimal modes at Re = 5000 & Ha = 10 and r = 3. Streamwise
velocity perturbations at initial time T = 0 (left) and at optimal time T = Topt

(right).

Fig. 4. Structure of optimal modes at Re = 5000 & Ha = 10 and r = 1/3.
Streamwise velocity perturbations at initial time T = 0 (left) and at optimal time
T = Topt (right).

confined to the short side walls parallel to the magnetic field. Remarkably,
the optimal wavenumber α is nonzero in this case, which also separates MHD
duct flow from the channel counterpart. Higher values of the Hartmann num-
ber (Ha = 30 and Ha = 50) were also tried for the same values of r. The level
of amplification was reduced upon increasing Ha, but the same observations
regarding the trends with r apply.

Further insight into the role of Shercliff (side) layers at large aspect ratio
r can be obtained from fully non-linear simulations. We have developed a
finite difference method for this purpose. Direct numerical simulations (DNS)
with this code are currently performed in order to study transition in MHD
duct flow systematically. First results for Re = 5000 and Ha = 10 concern
the effect of the aspect ratio r, which has been varied in the limits from 1 to
6. The transition was triggered by random 3D noise imposed at the initially
laminar flow state. Fig. 5 shows the results of DNS for the aspect ratio r = 6,
the snapshots of the mean velocity profile correspond to various phases of
transition. It is clearly seen that the basic conclusion of the linear analysis
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Fig. 5. Mean velocity profile in (y,z)-cross section at different stages of transition
for Re = 5000, Ha = 10, r = 6.

is confirmed: the nuclei of instability are located in the region of side walls.
Similar behavior was also observed at smaller r = 3 and also r = 1.

We remark that the appearance of transition in the side layers does not
contradict the experimental transition results for the annular MHD duct [1].
These experiments can be interpreted as transition in the Hartmann boundary
layers, and the transition range of Reynolds numbers matches fairly well with
numerical results for periodic Hartmann channel flow [2]. However, transition
in [1] could only be identified by qualitative changes in the dependence of
the total friction drag on the Reynolds number. For the experimental values
Ha > 100 the friction drag in the laminar case is mainly produced by the
Hartmann layers. Transition might therefore remain unnoticed when the tur-
bulence remains confined to the Shercliff layers. Numerical evidence for such
behavior is a major objective of our ongoing transition simulations.

We conclude that the investigation of the optimal perturbations as sources
of secondary instability proves very interesting because of the strong influence
of the Shercliff layers.

TB, DK and MR acknowledge financial support from the Deutsche For-
schungsgemeinschaft (Emmy-Noether grant Bo 1668/2-4).
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Introduction  

Flows around obstacles are among the most common problems encountered in the 
fluid mechanics literature, and cylindrical obstacles definitely received the most 
extensive attention. The reason for this is that this relatively simple geometry 
already encompasses most of the important physical effects likely to play a role in 
flow around more complicated obstacles. This means that understanding the 
cylinder problem provides relevant insight on a wide variety of problem ranging 
from aerodynamics, with the flow around a wing or a vehicle, to pollutant 
dispersion around building, flows in turbines ... When the working fluid conducts 
electricity additional effects are involved. In particular, the presence of a magnetic 
field tends to homogenise the flow in the direction of the magnetic field lines 
which leads to strong alterations of the flow patterns known from the classical non-
conducting case. This configuration is also a very generic one as 
Magnetohydrodynamic flows around obstacle also occur in a wide variety of 
applications: for instance, the space vehicle re-entry problem features the flow of a 
conducting plasma around an obstacle: [1] and [2] have shown that it could be 
influenced by a strong magnetic field in order to reduce heat transfer. The cooling 
blanket of the future nuclear fusion reactor ITER soon to be built in France, 
features a complex flow of liquid metal in a very high magnetic field (typically 10 
T), in which the occurrence of obstacles cannot be avoided.  
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Figure 1. Schematic of flow facility showing modular channel and the test-
section with cylinder, installed inside the superconducting magnet.  

 
        (a) 

 
 
Figure 2. Flow around a truncated cylinder in its midplane (Re = 500, diameter and length 
of cylinder are d=h=20 mm). The flow without magnetic field is visualised by the (a) pulsed 
and (b) continuous electrical current. (c) Illustration of expected flow under axial magnetic 
field. 
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Experimental device 

Since liquid metals are opaque, their interior cannot be visualized, which severely 
hampers our understanding of magnetohydrodynamic (MHD) flows. The purpose 
of the present work is to demonstrate that this fundamental limitation of 
experimental MHD can be overcome preliminary thanks to a superconducting 5-
Tesla magnet at Ilmenau University of Technology. This facility permits us to 
perform MHD experiments with transparent electrolytes instead of opaque liquid 
metals. The test-section used is a rectangular channel made of Plexiglas. The 
channel cross-section is 50mm×60mm (see Figure 1). Diameter of the fully and 
truncated cylinder is varied within the range of d = 5-25mm. The cylinder is made 
movable with the aim to control a distance between the cylinder end the top wall. 
The experimental procedure includes velocity visualizations using tracer particles 
and dye as well as velocity measurements using PIV velocimetry for variable 
Reynolds number in the range of 30<Re<900 and with variable Hartmann numbers 
in the range of 0<Ha<30. For the first time the experiments provided a direct 
optical access to MHD-columns above the cylinders which have never before been 
directly observed.  

Results  

The results of preliminary experiments without magnetic field are shown in Figure 
2. The flow is visualised in its midplane parallel by the axis of the cylinder. The 
gas bubbles generated by electrolyse on a regular grid of thin tungsten wires were 
used as the tracers illuminated by a light sheet. In Figure 2(a) the bubbles created 
by a pulse electrical current originate the regular vertical strips in the inlet flow. In 
the region above the cylinder the flow is not influenced by the obstacle. In the 
wake past the cylinder the bubbles strips are destroyed by the vortex street. It is 
visible that the wake of a truncated cylinder decays on the distance of three 
diameters for the given Reynolds number Re = 500. The experiment shown in 
Figure 2(b), the bounded vortex is visualised by continuous bubbles lines. At the 
absence of magnetic field the vorticity slightly diffuses from the cylinder on the 
distance, which does not exceed 3-4 mm. This diffusion of vorticity is defined by 
the balance of inertia and viscosity. An expected scenario of MHD flow around is 
shown in Figure 2(c). A stagnant zone directly above the cylinder should be 
generated because of electromagnetic diffusion of vorticity along the magnetic 
field in the so-called parallel MHD boundary layers δ

║
 (see Figure 1). An MHD 

flow around of a virtual obstacle is well known from the studies of liquid metal 
flows at the presence of magnetic field [3]. Optical visualisation of this effect is 
one of the main task of the presented project.  
 
 
 

In the framework of the experiments, which are performed in the TU Ilmenau 
we study the complex development of the MHD instability behind the fully and 
semi-immersed cylinder in dependence on the parameters Re and Ha and compare 
to the non-magnetic behavior. We transferred the results to MHD flows in practical 
applications with liquids of other physical properties.  
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1 Introduction

Many conducting fluids are subject to the combined Coriolis and Lorentz
forces at the same time. On the one hand, interactions between a turbulent
velocity field of an electrically conducting fluid and a magnetic field occur
in many astrophysical and geophysical (geodynamo) systems. However, the
full nonlinear coupling between Navier-Stokes and Maxwell equations remains
difficult to solve numerically in many cases. On the other hand, the effect
of solid-body rotation on homogeneous turbulence has also been extensively
studied independently.

We consider here both effects, and we present the results of numerical sim-
ulations of incompressible homogeneous magnetohydrodynamic (MHD) tur-
bulence submitted to a uniform magnetic field and to solid-body rotation. The
magnetic field B0 is vertical and is given in Alfvén-speed units. The rotation
rate Ω is in a first approach aligned with B0. The fluid is characterized by
its magnetic diffusivity η and molecular viscosity ν. The magnetic Reynolds
number RM varies from 10−1 to 102 whereas the Reynolds number is 102.
The Elsasser number Λ = B2

0
/2Ωη, characterizing the relative importance of

the Lorentz force to the Coriolis force, varies from 10−1 to 10.

2 Numerical method

In addition to classical pseudo-spectral Direct Numerical Simulations (DNS),
we propose a synthetic model of magnetohydrodynamic turbulence based on
the kinematics of superimposed random modes. Kinematic simulations (KS)
have already been used in many contexts from particle dispersion to aeroa-
coustics [1], as well as for small scale dynamo [2]. A complete description of
the KS model can be found in the paper by Fung et al. [3]. The turbulent ve-
locity field is synthesized as a random superposition of incompressible Fourier
modes

uj(x, t)=�
N∑

n=1

(
û(1)(kn)e(1)j (kn) + û(2)(kn)e(2)j (kn)

)
ei(kn·x+ωnt) (1)
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where the orthonormal frame of reference (e(1)(k),e(2)(k),k/|k|) ensures the
divergence-free property of the fluctuating velocity field u. In the general KS
model, the characteristic frequency ωn is introduced to model the unsteadiness
of the flow (not considered in this first version for MHD). The amplitudes û(1)

and û(2) are derived from a prescribed isotropic kinetic energy spectrum E(k).
We consider an incompressible initially isotropic turbulent velocity field

submitted to a large scale uniform magnetic field B0 and to solid-body rota-
tion. The governing equations are linearized (low magnetic Reynolds number
and low Rossby number limit) leading to the following linear system

∂

∂t

⎛
⎜⎜⎝
û(1)

û(2)

b̂(1)

b̂(2)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

νk2 −σR −iσB 0
σR νk2 0 −iσB

−iσB 0 ηk2 0
0 −iσB 0 ηk2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
û(1)

û(2)

b̂(1)

b̂(2)

⎞
⎟⎟⎠ = 0 (2)

where σR = 2Ωk3/k is the dispersion relation of inertial waves (k3 is the
vertical component of the wave vector, aligned with Ω) and σB = B0 · k is
the dispersion relation of Alfvén waves.

The main originality of the present work is to compute both the velocity
field and the magnetic field using equation (1). The toroidal and poloidal
amplitudes û(1)(kn) (resp. b̂(1)(kn)) and û(2)(kn) (resp. b̂(2)(kn)) in eq. (1) are
derived from analytical linear solutions obtained in Fourier space by solving
the linear system (2) and are thus time-dependent. Starting with given initial
conditions, we are thus able to compute the equilibrium fields u(x, t) and
b(x, t).

(a) (b)

Fig. 1. Isovalues of kinetic energy in KS. Red color corresponds to high values
whereas blue color corresponds to low values of the kinetic energy. (a) Initial isotropic
condition. (b) After several dissipative times. The imposed magnetic field is vertical.

3 Results

In the following, we present different results obtained with the enhanced ver-
sion of KS including linear dynamics, in comparison with DNS.
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Fig. 2. Evolution of kinetic energy K(t) and magnetic energy M(t) versus time.
RM ≈ 10−1. Λ = ∞ corresponds to the non-rotating case. (a) DNS. (b) KS.

In the low RM regime and without rotation, the Alfvén waves are damped
in a particular domain in k space [4] and the turbulence tends to a two-
dimensional state due to the anisotropy of ohmic dissipation (see Fig. 1 for
KS results as well as [8, 7]).

The effect of the rotation on the decay of kinetic K(t) and magnetic M(t)
energies is presented in Fig. 2. The KS model is less dissipative because of the
absence of non-linear energy transfers. However, in both models, the decay of
the magnetic energy is less pronounced in rotating cases.

For a magnetic Prandtl number PM = ν/η ≈ 1 hence at higher RM ,
an equipartition state of energy is observed due to the presence of Alfvén
waves. Fig. 3 presents the evolution of the kinetic and magnetic energies with
time. Rotation mainly damps the magnetic energy and this effect is very
well reproduced by a simple linear model. Without rotation, the poloidal
components of both velocity and magnetic fields are independent of their
toroidal counterparts. But the linear system (2) shows an enhancement of the
coupling existing between the poloidal and the toroidal velocity components
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Fig. 3. Same as Fig. 2. RM ≈ 102. (a) DNS. (b) KS.
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in the rotating case. If rotation is dominant, the energy is trapped in inertial
waves so that the equipartition state due to Alfvén waves is no longer observed.
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Fig. 4. Kinetic and magnetic energy spectra at different times. Λ ≈ 1 and PM ≈ 1.
(a) DNS. (b) KS.

Moreover, looking at Eulerian energy spectra on Fig. 4, one observes that
the competition between Coriolis and Lorentz forces is a scale-dependent prob-
lem. The inertial waves are dispersive whereas the Alfvén waves are not. At
large scale, the inertial waves are dominant, leading to dominant transfer of
energy between poloidal and toroidal components of the velocity. At small
scales, the Alfvén waves lead to an equipartition state. Note that, looking at
Fig. 4(b), the linearity of the KS model is well observed: without any energy
transfer terms, the small scales are rapidly dissipated.

4 Perspectives

In addition to more details about energy spectra, we will focus on the
anisotropy of such flow (Shebalin angles [6], angular energy spectra [5]). The
Lagrangian properties of rotating MHD turbulence will also be investigated
using DNS as well as the KS model presented in this paper.
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Summary. We investigate anisotropic magnetohydrodynamic turbulence, in pres-
ence of a constant magnetic field, using direct numerical simulations. A method
of decomposing the spectral space into ring structures is presented and the energy

field, the total energy transfer appears to be dominant in the direction perpendicular
to the mean magnetic field. The linear transfer due to the constant magnetic field
also appears to be important in redistributing the energy between the velocity and
the magnetic fields.

The study of energy transfers in anisotropic systems is useful for better
understanding the dynamics of anisotropic turbulence, that in turn will help
in developing LES models for MHD turbulence. The energy transfers in both
fluid and MHD turbulence are usually presented in spectral space by com-
puting the energy exchanges between the Fourier modes. Since the majority
of modes have similar properties as their wave-number neighbors and bring
similar contribution to the energy exchange between scales, the analysis of
energy transfers is usually simplified by partitioning the spectral space into
sub-domains and by considering the averaged energy transfers between these
sub-domains [1, 2]. The partitioning of the spectral domain is arbitrary but
several convenient geometrical structures are preferred. The spectral spherical
symmetry observed in the case of isotropic turbulence naturally suggests a de-
composition of the spectral domain into wave-number shells. For this case, the
shell-to-shell energy transfer functions and spherical energy fluxes have been
studied in detail [3, 4, 5, 6]. In the presence of a mean magnetic field, the flow
develops a preferred direction and exhibits anisotropy [7, 8]. The degree of
anisotropy depends on the strength of the mean magnetic field. The angular
dependence with respect to the preferred direction then becomes as relevant
as the wave vector amplitude in the spectral space partition, and a simple shell
decomposition may not be appropriate any more. Coaxial cylindrical domains

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 

841

transfers between such rings are studied. For large values of the constant magnetic

DOI 10.1007/978-3-642-03085-7_202, 



k

(a) (b)

B0=B0 e3

k1 k2

k3

k1 k2

k3

k

Fig. 1. a) Shell decomposition; b)
Ring decomposition.

aligned with the preferred direction and planar domains transverse to each
direction have both been used in the past to partition the spectral space [9].

In this work, we propose another partition, indexed {m,α}, that is based
on a ring decomposition of shells. This decomposition method takes into ac-
count the angular dependency of energy transfers in anisotropic systems, while
it allows to recover easily the known shell-to-shell energy transfers in the limit
of isotropic turbulence. The first index m corresponds to the spherical shell
decomposition. A shell sm contains all the wave-vectors k with the prop-
erty km ≤ |k| < km+1 (Fig. 1.a). The second index α corresponds to the
angular dependency. For simplicity, the mean magnetic field is assumed to
be aligned with e3. The wave-vector k forms an angle θ with respect to the
B0, with θ ∈ [0, π]. The spectral domain is split into angular sections aα so
that each section contains the wave-vectors that have the angle θ bounded by
θα−1 ≤ θ < θα. The intersection between the spherical shells and the angular
sections defines the ring structures rmα = sm ∩ aα (Fig. 1.b).

From the incompressible MHD equations, in presence of a constant mag-
netic field B0, we obtain the evolution equations for the energy contained by
a ring:

∂

∂t
Eu{m,α} = Nu{m,α}

u +N
u{m,α}

b
+ L

{m,α}

ub
−Du{m,α} + If{m,α} , (1)

∂

∂t
Eb{m,α} = N

b{m,α}

b
+N b{m,α}

u − L
{m,α}

ub
−Db{m,α} , (2)

where the terms NX{m,α}

Y
represent the energy transfer to ring {m,α} of field

X from the field Y . The terms NX{m,α}

Y
are obtained from the ring-to-ring

energy transfer functions TX{m,α}

Y {n,β}
(which naturally satisfy the antisymmetry

property TX{m,α}

Y {n,β}
= −T Y {n,β}

X{m,α}
) as:

N
X{m,α}

Y
=

∑
{n,β}

T
X{m,α}

Y {n,β}
. (3)

The linear transfer due to the constant magnetic field B0 is represented by
L
{m,α}

ub
. The dissipation of energy for field X is labeled DX{m,α} and the

energy injection due to the external forcing used to bring the turbulent system
to a stationary state is denoted by If{m,α}.

We have performed DNS of 5123 modes in a 2π length box, with periodic
boundary conditions. The energy transfers are studied using a ring decompo-
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Fig. 2. The total nonlinear en-
ergy transfer to each ring. Left to
right columns indicate: N

u{m,α}

u ,
N

b{m,α}

b , N
u{m,α}

b and N
b{m,α}

u .
Top to bottom represent the
isotropic, weak anisotropic and
strong anisotropic runs. Note:
the rings are projected onto a
plane and the intensity of the
variables are color coded. The
values displayed are normalized
to the forcing energy injection
rate. The plots take into account
the width of each shell for which
the boundaries have been normal-
ized to the largest wave-number
considered by our simulations,
kmax = 256.

sition of the spectral space, using 23 spherical shells with the boundaries for
m > 3 given by the law km = 2(m+8)/4 and 15 angular sections, with an angu-
lar separation of 12◦. The forcing used is isotropic and acts only in the shell s2.
Three runs have been compared. One run corresponds to the isotropic system
(B0 = 0), and the other two cases are nonzero B0 that have been referred
to as the weakly anisotropic and strongly anisotropic runs. The energy and
energy dissipation (not shown) have been observed to depend on the angular
section. The anisotropy becomes more pronounced for when the strength of
the mean magnetic field is increased. We will resume to the presentation of
the linear and nonlinear energy transfers, named after the terms in the MHD
equations that generates them.

We present the total energy transferred to a ring from all the other rings
(NX{m,α}

Y
) in Fig. 2. The angular dependency of the transfer functions is

evident. It is interesting to observe that the cross-field transfer (between the
velocity and the magnetic fields) changes sign depending on the direction to
B0 for the anisotropic cases. With the increase of B0, the rings near the
equator have stronger energy transfer compared to the ones near the poles.
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The linear energy exchange rate L{m,α}

ub
is shown in Fig. 3. Because this term

is proportional to B0, it has to vanish in the direction perpendicular to the
constant magnetic field. Interestingly, the transfer is also suppressed in the
parallel direction for larger degrees of anisotropy and tends to concentrate
towards the equatorial rings with the increase of B0 value.

These features can be largely explained by the global phenomenology of
energy transfers. Indeed, the energy is injected into the system in kinetic
form only and in the forcing range which is very close to the smallest shells.
It is dissipated in the large wave-number shells, both by viscous and Joule
effects. Since the analysis is performed in a statistically stationary regime,
energy has to flow from u to b and from small to large shells. Also, outside
the forcing range, the dissipation in a shell has to be exactly balanced by
the total nonlinear transfer to this shell. Indeed, when summing the energy
transferred to u and b, the linear transfers cancel exactly. In the anisotropic
cases, energy in preferentially transferred towards the equatorial plane. In the
strong anisotropic case, almost no energy is left close to the poles and the
absolute transfers from the pole region are very small.

Clearly, these observations might have consequence in MHD turbulence
modelling. There is a reasonable chance that models used in LES of isotropic
turbulence would be also suitable for anisotropic MHD turbulence. Indeed,
the information lost when removing the smallest scales in a LES does not
affect the linear terms but only the nonlinear terms through mode-to-mode
couplings. Anisotropy effects generated by the linear terms would be perfectly
captured in an LES. The constant magnetic field explicitly affect the linear
transfer terms but not the nonlinear terms. The nonlinear transfers only be-
come anisotropic because they redistribute kinetic and magnetic energies that
have been affected by the presence of B0 in the linear terms. There is thus no
clear reason to design new models for anisotropic MHD turbulence. The same
conclusion was reached in [10], for the low magnetic Reynolds number limit.
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Introduction

The generation of noise by flow over a rectangular cavity is an important
benchmark problem for aeroacoustics and has been investigated both experi-
-mentally and numerically in the last decades [5]. Studies showed how the
flow that generates past cavities depends on multiple factors such as the cavity
geometry, the free stream velocity and the incoming boundary layer properties.
In this paper we investigate the relationships between the incoming boundary
layer, the development of the shear layer instabilities and the aeroacoustic
emission. It has been previously suggested [1, 6, 3], that the character of
the turbulent flow can change drastically depending on the ratio between the
length of the cavity and the boundary layer momentum thickness, L/θ. It has
been found that when this ratio is smaller than a certain value (between 80
and 100, depending on the study), self sustained oscillations of the shear layer
do not occur. We demonstrate here how also the acoustic emissions change
under the different conditions investigating flow and acoustic characteristics
for laminar and turbulent upstream boundary layers.

Fig. 1. Schematic representation of the experimental setup. The microphones are
marked in red with a reference number aside.
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Experimental setup

The study was carried out combining high resolution two dimensional PIV
imaging, wall pressure measurements and far field noise records. The boundary
layer was measured at the leading edge of the cavity with a hot wire
anemometer. We performed experiments at both laminar and a turbulent
boundary layer conditions with free-stream velocities of 10 m/s, 12 m/s and 15
m/s, giving a Reynolds number based on the cavity length L, between 20,000
and 30,000. The boundary layer is naturally laminar, turbulence is induced
by means of a cylindrical tripping wire positioned upstream [4]. Experiments
were conducted in a open jet wind tunnel facility. The cavity took place in
a flat plate positioned in the test section aligned with the flow. The wall
pressure fluctuations were measured with 11 microphones mounted flush with
the cavity walls. The microphones were used here as high-sensitivity and
high-frequency pressure transducers. The far field noise was recorded with
4 microphones positioned approximately one wavelength away.

Results

Boundary layer
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Fig. 2. Left: Boundary layer profiles at 15 m/s. Right: Boundary layer thickness
and momentum thickness for the different testing velocities and incoming boundary
layers

The main objective of this experiment was to investigate the influence of
the boundary layer on the acoustic emission of a cavity. To characterize the
boundary layer approaching the cavity a hot wire was translated normally to
the wall just before the cavity leading edge (Point A in figure 1). In figure
are shown the measured boundary layer profiles at one speed together with
the theoretical curves for boundary layers on a flat plate and the results for
all the tested cases. The measurements show how, with a laminar boundary
layer, the L/θ ratio is always above the threshold for self sustained oscillations
while is not with a turbulent boundary layer.
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Wall pressure, far field noise and PIV data
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Fig. 3. Power spectra. Red: laminar b.l., Black: turbulent b.l., On top, microphone
n.10, on the bottom, far field. For the position of the microphones refer to figure 1

.

(a) Laminar (b) Turbulent

Fig. 4. Streamlines of the mean flow at 15 m/s

In the experiments with the laminar boundary layer both the wall pressure
fluctuations and the far field noise measurements show a strong periodicity.
The tones occur at the same frequency 3. This means that the noise generated
by the cavity is principally due to the pressure fluctuations on the walls.
As shown by Curle [2], dipole noise radiate with the same frequency of the
velocity fluctuation while quadrupole noise with double that frequency. A
dipole sound source is what to expect at these velocities since the ratio
between the intensity of a quadrupole source and the intensity of a dipole one
is proportional to the second power of the Mach number: IQ

ID

∼ Ma
2. With a

turbulent boundary layer, the broadband spectrum is comparable but without
the tonal component. This can be explained looking at the flow in the two
different cases. The PIV measurements show a completely different behavior.
In the laminar boundary layer case the shear layer develops in a periodic
shedding of eddies enhanced by a standing vortex inside the cavity reaching
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−1 −0.5 0 0.5 1

(a) Laminar

−1 −0.5 0 0.5 1

(b) Turbulent

Fig. 5. Vorticity at 15 m/s

the leading edge, figure 4(a). The impingement of the eddies on the aft wall
of the cavity causes a periodic pressure fluctuation on the cavity walls and
consequentially the generation of noise with a strong tonal character (see figure
3). In the turbulent boundary layer case, the thickness of the boundary layer
approaching the cavity is larger and the standing vortex inside the cavity is
smaller, figure 4(b). The consequence is that the vortex inside the cavity does
not destabilize the shear layer and no periodic shedding occurs. As a result,
the periodic pressure fluctuation on the wall do not occur and tonal noise
is not generated. These experiments showed how important is the boundary
layer in the generation of sound from a flow over a cavity. In further work
we will examine contemporary pressure measurements and PIV snapshot to
better understand the mechanisms of sound generation.
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The current work aims to get a further insight into the role of large scale
structures/instability waves in noise generation in subsonic jets by carrying
out direct numerical simulations. It is a continuation of earlier works [1, 2] in
which a non-linear mechanism of subsonic jet noise generation was proposed
and studied using the parabolized stability equations. The mechanism pro-
poses an explanation of the experimental results (e.g. [3]) which show that a
peak in sound radiation occurs at frequencies lower (St ≈ 0.2) than those of
the most energetic hydrodynamic modes (St ≈ 0.45). The key point of this
mechanism is that the ‘difference frequency’ modes arising from a nonlinear
interaction between two primary instability waves make major contributions
to far-field sound radiation from a subsonic jet. These modes are characterized
by relatively low frequency, high amplitude and by a compact shape of the
wave packet, and therefore can be efficient sound radiators in subsonic jets [4].

Simulations were performed for a round jet with M = 0.9 and Re =
3600 using an in-house code that has been extensively validated. A base flow
was prescribed using the experimental data [3] and maintained during the
simulations. By maintaining the base flow field we mean that if no disturbances
are added to the flow, the prescribed flow field remains unchanged. This is
achieved by adding a corresponding source term to the right hand of the
Navier-Stokes equations. Maintaining the base flow allows us to isolate linear,
weakly nonlinear and highly nonlinear (turbulent) mechanisms. The jet was
perturbed at the inflow boundary over a range of frequencies and azimuthal

modes: ũ =
N∑

i=1

M∑
j=1

Re{Aij ûij(r)e(i(njθ−ωit+φij))}, where Aij is an amplitude

of a particular mode, ûij(r) is an eigenfunction, nj is the azimuthal mode
number, ωi is a real frequency and φij is a randomized phase. In all simulations
the flow is perturbed for frequencies of ωk = 0.2k, k = 1, 35 and each mode
has the same amplitude of Aij = A (the jet exit velocity U and diameter D
are used for normalization).
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The power spectral density of pressure fluctuations calculated at r = 30D
and θ = 30o (angle θ is measured from the jet downstream axis) is shown in
Fig. 1(a) for the jet perturbed with different combinations of the azimuthal
modes. It can be seen that in all cases the peak radiation occurs in the vicin-
ity of St ≈ 0.2. However, the shape of the peak and the amount of acoustic
power contained at higher frequencies depends on the combination of az-
imuthal modes by which the jet was perturbed. When the jet is perturbed by
the axisymmetric (n = 0) or first azimuthal modes (n = 1) the peak is nar-
rower and less acoustic power can be found at higher frequencies in comparison
with the cases in which the jet was perturbed by more than one azimuthal
mode. The effect of the amplitude A of the inflow disturbance on the acoustic
spectra is shown in Fig. 1(b) for the jet perturbed by modes n = 0,±1,±2.
One can see that the amplitude of the inflow disturbance has little effect on the
shape of the low frequency part of the spectra. Moreover, the acoustic power
at these frequencies scales approximately with the square of the amplitude of
the inflow disturbance, further indicating that sound at these frequencies is
generated by a nonlinear mechanism. On the other hand, the amplitude of the
inflow disturbance affects the shape of the high frequency part of the spec-
tra. For small amplitude inflow disturbances the high frequency part of the
spectra is characterized by more rapid decay in comparison to that obtained
for the large amplitude (non-linear) inflow disturbances. The instantaneous
sound field is shown by dilatation rate contours in Fig. 2 for a jet perturbed
by the axisymmetric mode (n = 0) with A = 5 × 10−4 (part a), for a jet
perturbed by modes n = 0,±1,±2 with A = 5 × 10−4 (part b) and for a
jet perturbed by modes n = 0,±1,±2 with A = 1 × 10−4 (part c). One can
see that a common feature of the sound fields obtained for the different cases
is a highly directional low frequency sound that is confined to small angles
from the jet downstream axis. The sound fields obtained when the jet was
perturbed with mode n = 0 and A = 5× 10−4 and with modes n = 0,±1,±2
and A = 1× 10−4 resemble each other, although an additional peak at angles
θ = 45o − 50o can be observed in Fig. 2(c). It can be shown that this noise
at higher angles comes from the interaction between instability waves with
azimuthal numbers n = ±1. The sound field obtained for the jet perturbed by
n = 0,±1,±2 and A = 5×10−4 differs from the others as it contains a broader
range of frequencies and more upstream sound. Instantaneous contours of the
vorticity magnitude, corresponding to the sound fields shown in Fig. 2(a) and
(b), are presented in Fig. 3(a) and (b), respectively. Comparing these vorticity
fields, the main difference is that for the case shown in part (a) the jet does
not break down into smaller structures near the end of the potential core,
whereas in the case shown in part (b) breakdown of the jet column into finer
structures and ultimately a transition to turbulence can be clearly observed.
From the results presented in Figs. 1, 2 and 3 we can conclude that the low
frequency sound confined to small angles from the jet downstream axis comes
from non-linear interactions between primary instability waves, further sup-
porting the non-linear mechanism of sound generation proposed in [1, 2]. On
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the other hand, high frequency sound observed at low angles comes from the
breakdown of the jet into finer structures near the end of the potential core. A
significant portion of the sound at high angles also comes from the breakdown
of the potential core. However, the low frequency part of the sound occurring
at higher angles is likely to come from interactions of primary instability waves
with azimuthal numbers n = ±1 (see also [5]). Finally to estimate the effect
of maintaining the base flow we present results in Fig. 4 that were obtained
from DNS without maintaining the base flow. One can see that we can get
reasonably good approximations of the sound field and acoustic spectra by
the simulations in which we maintain the base flow.

Acknowledgment: This work was funded by EPSRC Grant EP/E032028/1.
Computer time was provided by EPSRC via the UK Turbulence Consortium
(Grant EP/D044073/1).
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Fig. 1. Power spectral density of the pressure fluctuations calculated at r = 30D
and θ = 30o (M = 0.9, Re = 3600). (a) effect of perturbing the jet with different
combinations of azimuthal modes; (b) effect of the inflow disturbance amplitude on
the jet perturbed by modes n = 0,±1,±2. The light grey line corresponds to the
case with amplitude A = 1 × 10−4 multiplied by factor of 25.
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Fig. 2. Instantaneous sound field shown by dilatation rate contours (M = 0.9, Re =
3600). (a) jet perturbed only by the n = 0 mode with Aij = 5 × 10−4; (b) jet
perturbed by n = 0,±1,±2 modes with Aij = 5 × 10−4; (c) jet perturbed by
n = 0,±1,±2 modes with Aij = 1 × 10−4.

Fig. 3. Snapshots of the vorticity magnitude (M = 0.9, Re = 3600, Aij = 5×10−4).
(a) jet perturbed only by mode n = 0; (b) jet perturbed by modes n = 0,±1,±2.

Fig. 4. (a) Instantaneous dilatation rate contours obtained from DNS calculations in
which the base flow is not artificially maintained during the simulation; (b) Power
spectral density of pressure fluctuations: effect of maintaining the base flow and
comparison with experimental data (r = 30D and θ = 30o).
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1 Introduction

Previous experiments on vocal tract mechanical models for fricatives con-
sonants production – like /s/, /f/,/ch/ for unvoiced ones – has shown the
importance of the geometrical configuration on the complex aeroacoustical
noise signal produced [3]: the shape of the constriction, the shape and area
function of the vocal tract downstream of the constriction, the presence of
obstacles like teeth and upstream flow conditions are key points of the frica-
tion. From these results, and other observations made on human subjects by
Narayanan et al. [2] by means of Magnetic Resonance Imaging (MRI), Howe
and McGowan [1] established an aeroacoustical model for the pronunciation
of the sibilant /s/ based on the assumption of a jet passing in the gap formed
between lower and upper teeth. Predicted spectrum and SPL agreed reason-
ably well with measurements made previously by different authors, but Howe
and McGowan noted that further experimental work is necessary to validate
their assumption on turbulent jet interaction with teeth.

Indeed, most of observations and models of fricatives were only consider-
ing the acoustical aspect of the aeroacoustical phenomenon that consists in
the interaction of air flow with vocal tract. This is why we propose to study
the relation between acoustics and aerodynamics involved in frication. Mea-
surements on a simplified mechanical replica of the vocal tract, with varying
geometry and flow parameters, are presented. First results, concerning acous-
tical and dynamic pressure measurements are then confronted with regard to
the evolution of these parameters.

2 From “in-vivo” observations to “in-vitro” experiments

The vocal tract replica, represented in the lower part of Fig. 1, is mainly com-
posed of an aluminium alloy rectangular duct 18 cm long which corresponds
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Fig. 1. Experimental setup mounted on a moving support and detailed mechanical
replica of the vocal tract (in the dotted line box)

to an adult vocal tract length. The cross area of the duct is At = 3.36 cm2

which is an average of area functions found in literature [2].
A tongue model is set in the duct, which consists in a progressive section

reduction over 30 mm ended by a rectangular constriction of height hc =
3mm. The cross area of the constriction is Ac = 0.63 cm2, which is large in
comparison with real fricatives constrictions. The height ratio relatively to the
duct is Rc = ht

hc

= 5.3. As in the case of frication, the turbulent jet formed
at the constriction interacts with a rectangular “tooth” obstacle with length
lob = 3mm - see Fig. 1. Five different obstacle apertures hob, i.e. 0.6, 2.6, 5.5,
6.8 and 16 mm, are assessed including the no-obstacle case, corresponding to
ratios relatively to the duct height Rob = ht

hob

of 26.70, 6.15, 2.91, 2.35 and 1;
or an inverse ratio of approximately 4, 16, 34, 42 and 100%. The tongue can
be switched between two positions, giving a constriction-obstacle distance Lco

of 10 and 24 mm, respectively referred to as “front” and “back” cases. The
duct axis contains three pressure taps: 1) at x = 20mm for entrance pressure
measurement pe, 2) at x = 160mm to have pressure recordings pl in the
constriction or jet zone regarding to tongue placement and 3) at x = 172.5mm
for measurements of pob in the reduced section formed by the obstacle.

Airflow is supplied by an Atlas Copco GA5 compressor and downstream
of the main valve, a pressure regulator (Norgren 11-818-987) allows to modify
the entrance flow rate Q0, measured by a TSI-4043 mass flowmeter, from 50
to 130 l/min with an interval of 20 l/min. A pressure tank is set before the
entrance of the vocal tract replica in order to make the airflow homogeneous.
Moreover, the tank is designed to significantly reduce the noise induced by
airflow entrance. Flow rate measurements were made at the exit of the pressure
tank in order to have an estimation of the replica entrance flow rate Q1.

O. Estienne, A. van Hirtum, H. Bailliet, and X. Pelorson856



3 Results

Spectral analysis was applied to acoustical data (B&K 4192) sampled at 44kHz
in the far field. Resulting sound spectra for different tongue positions are
shown in Fig. 2(a) for the no-obstacle case. A peak near 2.5 kHz is observed
for all flowrates for the back position. The peak shifts to 3.5 kHz - with more
energy - when the tongue is moved to the front position. The same is observed
for all obstacles, except for hob = 0.6mm. For hob = 0.6mm the spectra do
not exhibit a peak shift and are independent on tongue position.

Sound spectra for different hob and front tongue position are presented
in Fig. 3. Again, it is observed that the evolution of the noise measured for
hob = 0.6mm differs from the other cases for wich hob > 0.6mm. Indeed, all
other cases - as the no-obstacle one - present a spectral peak at 720 Hz and
other peaks between 2 and 4 kHz for front tongue, that are shifted in a 1-2
kHz band for back tongue position. For all these cases, most of the energy
is contained within the 0-6 kHz bandwidth; moreover the level of radiated
noise increases with the flow rate as seen by comparing Fig. 3(a) and 3(b).
Conversely, energy is distributed in a broad frequency band for hob = 0.6mm
and it remains at a steady level with frequency when the flow rate is increased.
Therefore, the spectrum for hob = 0.6mm in Fig. 3(b) fall at a lower level
than for the case hob = 2.6mm, that is, less noise is produced for a larger
obstacle.
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Fig. 2. (a) Sound spectra for the no-obstacle case and two different Lco values at
flowrates Q0 70 l/min and 130 l/min. (b) averaged pressures pob at “obstacle” spot.
Front tongue curves are in full line and back tongue ones in dotted lines.

The entrance pressure pe, increases 1) as the cross section at the obstacle
level reduces and 2) as the Reynolds number Re1 = Q1

Ltν
increases. Again

the hob = 0.6mm differs from the general trend observed for hob > 0.6mm
since the pressure, about 300Pa, does not increases much as Re1 increases.
Comparison for different tongue positions reveals a pressure drop depending
on the obstacle for the back case, except for hob = 0.6mm for which the drop
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Fig. 3. Sound spectra for different values of hob, for the front tongue position: (a)
flowrate Q0 of 70 l/min. (b)flowrate Q0 of 130 l/min.

is lower than 1%. The same loss is observed for pob, illustrated in Fig. 2(b).
Contrary to hob > 0.6mm, a pressure loss was observed for hob = 0.6mm,
meaning that the air flow which passes in the constriction at the obstacle has
a very different behavior when the cross section became very low. This may
be coupled with a largest obstacle surface interaction for the turbulent jet
exiting from the tongue constriction.

4 Conclusion and perspectives

Sound and pressure measurements on an ‘in-vitro’ vocal tract mechanical
replica representing frication configurations reflected the influence of tongue-
obstacle distance and obstacle aperture. A different tendency is observed hob

equal or superior to 0.6 mm. More investigation in pressure dynamics, spectra
and velocity field characterisation will quantify more precisely the observed
difference in behavior.
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Introduction

Pressure fluctuations of high-Reynolds-number turbulent boundary layers are
of fundamental scientific interest with a large relevance for many applications.
In an incompressable flow pressure couples non-locally different regions of a
boundary layer and pressure fluctuations play an important role for the mech-
anisms underlying turbulence. In applications compressibility often cannot be
neglected as pressure fluctuations can give rise to sound productions in a tur-
bulent boundary-layer, generated e.g. at a wall of a moving vehicle. On the
other hand compressibility can even be of crucial importance, such as in un-
derwater applications. Properties of pressure fluctuations beneath a turbulent
boundary layer are reviewed e.g. in [1, 2, 3, 4].

Sound is by far the least attenuated type of wave in the sea and therefore
preferably used for signal transmission (e.g. for SONAR) in underwater ap-
plications. Measurements of turbulent boundary layers in a Reynolds number
regime relevant to underwater applications have to be performed at sea (or
partly in water or cavitation tunnels). The sea is a noisy environment and the

tions, or vice versa, depending predominantely on the Reynolds number and
the ambiant noise level at sea.

Wavenumber-frequency decomposition

A typical example for the first situation can be seen in Fig. 1 (a). The power
spectra result from a measurement of pressure fluctuations performed with
an underwater towed system at relatively low towing speed corresponding to
a Reynolds number of the momentum thickness of about ReΘ ≈ 2000. It can
be seen from this measurement that the mean sound level at a hydrophone
is much higher than the level of pressure fluctuations of the boundary layer.
It is therefore crucial to discriminate both processes in order to separate the
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mean sound level can exceed by far the level of turbulent pressure fluctua-
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Fig. 1. (a) Comparison of mean sound level with estimated level of pressure fluc-
tuations beneath a turbulent boundary layer of an underwater towed system at
relatively low towing speed correponding to ReΘ ≈ 2000), (b) Corresponding wave
number-frequency spectrum (acoustic regime is filtered out).

turbulent pressure fluctuations from sound. Pressure was measured in this
experiments with an equally-spaced array of hydrophones and the turbulent
pressure fluctuations are estimated with the use of a wavenumber-frequency
filter. This filter enables a separation of sound from turbulent pressure fluctua-
tions in certain regions of the kf-space. The wave number-frequency spectrum
corresponding to the power spectra shown in Fig.1 (a) is depicted in (b).
Due to the dispersion relation of sound waves projected onto a linear array
only the (dark blue colored triangluar) acoustic region in the kf-spectrum
can physically be attributed to sound. Spectral components of other noise
sources, such as e.g. flow noise, do not necessarely underlie such restrictions
and can therefore contribute to the low wave speed non-acoustic region in the
kf-spectrum.

It can be seen from Fig. 1 (b) that in the low-frequency regime the non-
acoustic region appears structured. Those structures result from mechanical
(mainly bending) waves which are excited by turbulent pressure fluctuations.
Above a certain frequency those structures are well separated from the acous-
tic region in the kf-spektrum (here above f ≈ 1500 Hz). Flow noise can be
considered as wave number white above such high frequencies and therefore
the level can be estimated. The result of an estimation procedure applied to
the kf-spectrum is shown in Fig. 1 (a).

Flow noise

Wavenumber - frequency filtering allows (partly) to separate flow noise from
underwater sound and therefore enables an investigation of flow noise proper-
ties independent of environmental conditions (at least in a certain frequency
regime).
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Fig. 2. (a) Scaling behavior of flow noise at f = 1500Hz, (b) probability distribution
function of pressure fluctuations normalized by σ at ReΘ ≈ 3000 (Gaussian PDF is
included for comparison).

A characteristic property of flow noise is the spectral scaling behavior.
Typically, a scaling law of about P ≈ 1/f4 to 1/f5 has been suggested from
previous measurements and theory in the high frequency regime (see e.g. [3]
and ref. therein). Our experiments confirm those results, within the investi-
gated frequency regime the flow noise spectrum decays with 1/f4 which is
within the range of previous results. Most relevant for underwater applica-
tions is the strong increase of flow noise level with speed. Our results confirm
the theoretically known P ∝ v6 law reasonably well (see e.g.[4] for a recent
overview and ref. therein), as may be seen from Fig. 2 (a). Here, the depen-
dence of flow noise level with towing speed is depicted for f = 1500 Hz.

Recent experiments on statistics of pressure fluctuations in a high Reynolds
number turbulent boundary layer have revealed a non-gaussian probability
distribution function which displays a relatively independence on ReΘ in the
investigated high Reynolds number regime [5]. Non-gaussian statistics have
been studied in high Reynolds number turbulence also for Lagrangian accel-
eration of fluid particles [6], velocity differences [7], and pressure gradient [8],
and have been addressed theoretically by a ’superstatistic’ approach [9].

Wavenumber-frequency filtering does not only allow an investigation of
spectral but also statistical properties of flow noise even though the total
spectral level at a single hydrophone is dominated by structure borne sound
sources and underwater sound in the low and high frequency regime, respec-
tively. Those sound sources have been found to have a Gaussian probability
distribution function but they can be filtered out in the wavenumber-frequency
regime in order to investigate the statistical behavior of flow noise. At lowest
towing speed corresponding to ReΘ ≈ 2000 flow noise is also found to be close
to a Gaussian behavior. Increasing the Reynolds number leads to a more pro-
nounced non-Gaussian pdf. This may be seen, e.g., from Fig. 2 (b) where the
pdf of flow noise (normalized with σ) for ReΘ ≈ 3000 is depicted.
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Summary

Results on pressure fluctuations of turbulent boundary layers are presented
which are obtained from underwater towing experiments. With the help of
wavenumber - frequency filtering properties of flow noise have been investi-
gated independently from the environmental conditions. In our experiments
we have revealed a transition between Gaussian and non-Gaussian behav-
ior. It is found that the transition occurs within a Reynolds number regime
ReΘ ≈ 2000 − 3500. In this regime the boundary layer is turbulent and, as
shown in Fig.2 (a), the level of turbulent pressure fluctuations significantly
increases by a scaling law. Our results experimentally confirm scaling behav-
ior of flow noise but also provide evidence for the relevance of non-Gaussian
behaviour in underwater applications.
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The sound radiated by a turbulent jet is not only interesting as a research
topic by itself, but also highly relevant for many applications in nature and
engineering. In this contribution, we outline a procedure to find a dynamical
system from acoustical data. This approach should be considered in the con-
text of reduced order modeling. Basically, we use a differential embedding to
find a system of ODEs which recover the basic phase space dynamics of the
measured system. Our investigations focus on the radiated sound and thus
the spectral properties of the reduced order model are the quantity to be
optimized.

Our experiment concerns a wind-driven musical instrument, where the
basic functioning is understood; details of the sound production, however, are
still not adequately modeled. We measured the sound signal x(t) emitted by

spectral method [1], and use the resulting vector x, ẋ, ẍ, . . . for embedding. The
dynamical system in embedding space is found by nonparametric regression
[1, 2, 3]. First, the dimension of the embedding space has to be determined.
To find it we use the oscillatory character of the organ pipe and systematically
take into account more and more harmonics (and consequently frequencies)
in Fourier space. This way we tune the complexity of the embedded signal.
For the reconstruction of the musical properties a two dimensional model is
reasonable. Of course, if a more complete representation is wanted higher
embedding dimension have to be taken into account.

The sound of an organ pipe is produced as follows: a jet (the ,,air sheet”)
is emitted at the outlet of the pipe foot and hits the so called labium, a
sharp edge at some distance where a weakly turbulent vortex street is formed.
Without the pipe resonator, only the typical ,,whistling” of a turbulent vor-
tex street is produced. Each time a vortex detaches, a pressure fluctuation
enters the resonator inside which viscous damping and the geometry lead to
the selection of characteristic waves to be radiated at the pipe mouth by an
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an organ pipe with a conventional microphone, differentiate the signal using a
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oscillating air-sheet. This leads to a harmonic spectrum with strong coupling
of the modes due to nonlinearity.

The experiment. We determined the emitted sound experimentally [4]. The
organ pipe was wooden and closed at the upper end, tuned at ν0 = 168.3Hz.
It was driven by an especially fabricated miniature organ with a blower con-
nected to the wind-chest where the pipe was mounted. The wind supply pres-
sure determines the stability of the signal; high pressures can render the signal
unstable, and even chaotic. Measurements took place inside an anechoic box.
The emitted signal was registered at a distance of 16mm. Noise in the signal
comes from imperfections in the driving mechanism and from the background
wind in the jet. The correct treating of noise is crucial for a correct differential
embedding, as explained in detail below.

Numerical differentiation. Mathematically, the derivative of a function is
obtained by infinitesimal calculus. Real data are afflicted with measurement
noise and with machine accuracy. An estimate has to cope with these two
restrictions and should be optimized with respect to some chosen criteria. For
our problem, we want to have smooth but high accuracy estimates in order to
find good functional representation of our system. We use a global approxima-
tion by Fourier-transforming the whole measured data and multiplying with
powers of iω. At the start and end of the record, we throw away a well-chosen
number of data for the reconstruction. This technique limits the loss of accu-
racy by addition [5] and we can use low-pass filtering to suppress experimental
noise systematically [1]. To do so, we used an 8th order Butterworth-filter with
a variable cutoff. A low cutoff results in little noise, but at the same time one
must be aware that one possibly looses informations about signal; this way
higher harmonics could be filtered away.

Let us consider a cutoff of some value slightly higher than the 1st harmonic.
Of course, if we have to find the phase space of a harmonic oscillator this
sufficient. If then the cutoff frequency is increased higher harmonics enter
the game and mode coupling and nonlinearities play a bigger role. The phase
space will become more and more complicated until the full dynamics is found
in a low-order model. Now, the art is to determine the right cutoff such that
the dynamics is complex enough to reveal the features we want to model, but
not as complex as to impede a reconstruction. This is illustrated in Fig. 1 by
plotting the signal x(t) vs. the first derivative ẋ(t). In this example, we set
the pipe to an unstable regime with intermittent chaos with a wind supply
pressure of 337mBar.

Reconstruction of the dynamical system. The equations of motion in this
reconstructed phase space read

ẋ = g1(x, ẋ, ẍ, . . .) , ẍ = g2(x, ẋ, ẍ, . . .) , . . . (1)

The task of finding the unknown functions g1, g2 from data is not trivial [6, 3].
Here, we focus on an autonomous oscillator model:

ẋ = y , ẏ = −ω2
0x− f(x, y) . (2)
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(a) 200 Hz (b) 500 Hz

(c) 1000 Hz (d) 2000 Hz

Fig. 1. Embedding of the time series of the organ pipe with different cut-offs k0. The
wind pressure is 337 mBar such that the pipe showed signature of chaotic behavior.
The axes, x and ẋ are omitted. With increasing cut-off nonlinearities play a bigger
role. Of course for the first harmonic alone, a harmonic oscillation is found, cf. the
top figure. So, one has to be careful to get rid of noise, but not to kill at the same
time the nonlinear information hidden in the signal. Of course, a two-dimensional
model cannot represent the trajectories for cut-off larger than 1000 Hz.

with only one function f to be determined. To get an estimate, basically we

minimize the functional χ2 =
∑

n

[
˙y(tn) + ω2

0x(tn) + f (x(tn), y(tn))
]2

. In-

deed, the minimization is a bit more complicated, involving side conditions,
but these are rather technical points, reported elsewhere. We applied the min-
imization to a periodic signal (wind–supply at 140mBar) with a cutoff of
1000Hz, see Figure 2. To find f , one can choose from many models. Most ap-
pealing because of their nice properties are additive models, f = f1(x)+f2(ẋ)
to be fitted nonparametrically. The reconstruction is shown in Figure 2(a);
both parts, f1 and f2 are nonlinear, accounting for the existence of a limit
cycle. The functions are represented in terms of polynomials and the model is
investigated for its dynamical properties, especially the stability and the fre-
quency of the limit cycle are used. The stability of the limit cycle is evaluated
by integrating the equations (2) with the numerically given function f . We
find a repeller at zero and a limit cycle to be attracting as is necessary for a
stable autonomous oscillation.

How good is this model in terms of musical quality? Of course the true
organ sound is not yet recovered. However, if one compares not only the phase
space reconstruction (Fig. 2(b)) but as well the spectra of the system, a very
good coincidence is found (Fig. 2(c)). Remarkably, not only the position of
the harmonics is found quite nicely, but also the ratio of the amplitude of the
harmonics coincide very well. This is an indication that the coupling between
the modes is recovered, since it depends on the type of nonlinearity.

The reconstruction of a three-dimensional (or higher) phase space is much
more involved in the technical realization. These results are still currently
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Fig. 2. (a): The function f is modeled additively by two functions f1(x) and f2(ẋ).
Both functions are nonlinear and allow for the existence of a limit cycle. The stability
properties of the equations are confirmed numerically. (b): Two-dimensional phase
space of the embedded signal. The red curve corresponds to the measured signal with
y = ẋ from numerical differentiation, the blue line results from the integration of an
additive model for the nonlinearity f . (c): Power spectrum S(f) to the time signal.
The harmonics are precisely hit by our nonlinear model, and, even more important,
the ratio of the amplitudes is very well recovered. The ref line the spectra of the
original signal whereas the blue line is the reconstructed spectra.

checked and methods are developed further. It is clear that the use of the
presented method lies mainly in low dimensional representations. However,
as well a high dimensional system might be reproduced in terms of its domi-
nant contribution, less important terms might be modeled stochastically. We
are confident that these methods can assist modeling in the reduced order
modeling of turbulent flows at least at moderate Reynolds numbers.
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The nonlinear aerodynamic sound generation by turbulence has been long
analyzed since the foundation of the theory of aerodynamic sound in pioneer-
ing paper by Lighthill [1]. Also, it was Lighthill [2] who noted that velocity
shear can increase the acoustic wave emission in the aerodynamic situation
due to the existence of linear terms in the inhomogeneous part of the analogy
equations (second derivative of the Reynolds stress). In [3] it was disclosed
and described a linear aerodynamic sound generation mechanism. Specifically,
it was shown that the flow non-normality induced linear phenomenon of the
conversion of vortex mode into the acoustic wave mode is the only contributor
to the acoustic wave production of the unbounded shear flows in the linear
regime. From the physical point of view the potential vorticity was identified
as the linear source of acoustic waves in shear flows.

We perform comparative analysis of linear and nonlinear aerodynamic
sound generation by turbulent perturbations in constant shear flows and study
numerically the generation of acoustic waves by stochastic/turbulent pertur-

uniform background density and pressure ( U0(Ay, 0); A, ρ0, P0 = const). The
governing hydrodynamic equations of the considered 2D compressible flow are:

∂ρ

∂t
+
∂ (ρUx)
∂x

+
∂ (ρUy)
∂y

= 0, (1)

∂Ux

∂t
+Ux

∂Ux

∂x
+Uy

∂Ux

∂y
= −1

ρ

∂P

∂x
,

∂Uy

∂t
+Ux

∂Uy

∂x
+Uy

∂Uy

∂y
= −1

ρ

∂P

∂y
, (2)

(
∂

∂t
+ Ux

∂

∂x
+ Uy

∂

∂y

)
P = −γP

ρ

(
∂

∂t
+ Ux

∂

∂x
+ Uy

∂

∂y

)
ρ , (3)

where γ – adiabatic index, c2s ≡ γP0/ρ0 – sound speed. The potential vorticity
is defined as: W = [curlU]z/ρ.
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Only stochastic streamwise and crossstream perturbation velocities are
embedded in the flow at t = 0:

ux(x, y, 0) �= 0; uy(x, y, 0) �= 0; ρ′(x, y, 0) = 0; P ′(x, y, 0) = 0. (4)

The embedded perturbation is localized in the crossstream direction and it
is homogeneous in the streamwise direction. ux(x, y, 0) and uy(x, y, 0) are
defined by the following stream function:

ψ(x, y, 0) = B exp
(
− y

2

L2

l

) +∞∫
−∞

dkxdky

(
kxky

k2

0

)4

exp

(
−
k4

x + k4

y

k4

0

)
×

exp(ikxx+ ikyy)ζ(kx, ky) ,

(5)

ux(x, y, 0) =
∂

∂y
ψ(x, y, 0) , uy(x, y, 0) = − ∂

∂x
ψ(x, y, 0) ,

where ζ(kx, ky) is random number in the range [0, 1] different for different
kx and ky; Ll – the localization scale in the crossstream direction; k0 – the
peak center in the steamwise wavenumber Kx axis. The half-width of the
spectrum of the inserted perturbation meets the condition Δk0 � k0, that
allows to discriminate linearly and nonlinearly generated acoustic waves and,
thus, to carry out comparative analysis of linear and nonlinear aerodynamic
sound generation by turbulent perturbation. The perturbations are inserted
in the flow in the physical plane at the parameters B = 0.5 × 104; Ll =
3; k0 = 10; cs = 1; A = 4 at t = 0. Simulations were performed using the
hydrodynamics module of the PLUTO code [4]. The domain and the grid were
−10 ≤ x, y ≤ 10 and 1024 × 1024 respectively. Finer grid (2048 × 2048) was
used to test the results of the simulations. Dissipative effects are only those
related to the use of a mesh of finite width Euleir equations are solved using
the PLUTO code.

A fault of acoustic analogy treatment in the identification of the

true linear sources of aerodynamic sound

The specificity of the acoustic analogy approach is that results strongly depend
on the form of the analogy equation as well as on the aero-acoustic variable
chosen to analyze the process. This is more essential when the convective
terms are important and the model should take into account the background
flow. Hence, the acoustic analogy equation have been the subject to various
approximations in order to take into account the effect of the background
inhomogeneous flow correctly. However, identification of the true sources of
aerodynamic sound remains relevant [5]. Discussing the true linear sources of
aerodynamic sound, we compare the linear acoustic wave production in the
unbounded shear flows induced by the non-normality of the flow (described in
the paper [3]) with the linear part of the acoustic analogy source. The linear
part of the acoustic analogy source may be defined as:
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Fig. 1. The linear source of the acous-
tic analogy equation at t = 0 in the
wavenumber plane (S(l)(kx, ky, 0)).

S(l) = 2
∂2

∂x2
(ρ0Ayux) + 2

∂2

∂x∂y
(ρ0Ayuy) . (6)

The spectrum of the source (S(l)(kx, ky)) in our case at t = 0 is presented
in Fig. 1. It shows that the acoustic analogy linear source is distributed in all
quadrants of the wavenumber plane. I.e. the linear source generates acoustic
field with kxky < 0 too. However, according to [3] density perturbation is
generated at ky ≤ kx and the linear generation of acoustic wave Spatial Fourier
Harmonics (SFH) by the related vortex mode SFH takes place just at the
moment of the crossing of the Kx axis by the last one. Consequently, the
acoustic analogy linear source located in the quadrants II and IV (and having
kxky < 0) is the fault of acoustic analogy treatment. In our opinion, this is a
very important conclusion of our research.

Comparative analysis of linear and nonlinear aerodynamic sound

generation by turbulent perturbations

The energy of the linearly generated acoustic waves is defined by the mean
flow shear parameter and the potential vorticity of the turbulent perturbations
and the spectrum, by the kx spectrum of the potential vorticity at ky = 0.
The nonlinear source we define by the nonlinear part of the acoustic analogy
source:

S(nl) =
∂2

∂x2
(ρu2

x) + 2
∂2

∂x∂y
(ρuxuy) +

∂2

∂y2
(ρu2

y) . (7)

The spectrum of these sources at t = 0 are presented in Figs. 2 and 3.
Fig. 2 shows that the potential vorticity of the perturbations along Kx axis is
located in a streamwise wavenumber range [k0−Δk0, k0+Δk0]. Consequently,
the linear aerodynamic sound should be located in the same range of kx. At
the same time Fig. 3 shows that S(nl)(kx, ky, 0) is located in a range [2k0 −
2Δk0, 2k0 + 2Δk0], i.e. about twice farther than the potential vorticity from
the center of the plane.

The density field in the wavenumber plane for parameters B = 0.5 ×
104; Ll = 3; k0 = 10; cs = 1; A = 4 at t = 0.1 is presented in Fig. 4.
The density field in the physical plane for the same parameters at t = 2
(in basic unites [m] and [sec]) is presented on Fig. 5. Fig. 4 shows that the
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Fig. 2. The potential vorticity field at
t = 0 in the wavenumber plane.

Fig. 3. The acoustic analogy nonlinear
source at t = 0 in the wavenumber plane
(S(nl)(kx, ky, 0)).

Fig. 4. The density field in the
wavenumber plane at t = 0.1.

Fig. 5. The density field in the physical
plane at t = 2.

density field of the perturbations along Kx axis is mainly located around k0

with an extension to 2k0. The density field around k0 relates to the linear
mechanism of the wave generation. The density field close to 2k0 relates to
the nonlinear mechanism. The figure shows that in the considered case the
linear aerodynamic sound is stronger than the nonlinear one. According to
Fig. 2, for the considered parameters, the mean flow vorticity is larger than
the perturbation potential vorticity – the case when Rapid Distortion Theory
(RDT) of turbulence is at work. According to our study the linear aerody-
namic sound dominates over nonlinear one at moderate and high shear rates:
R ≡ A/k0cs ≥ 0.3. The dominance of the linear aerodynamic sound occurs
up to quite large amplitudes of the turbulent perturbations for which RDT is
at work.
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On implicit turbulence modeling for LES of

compressible flows
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The subgrid-scale (SGS) model in a large-eddy simulation (LES) generally
operates on a range of scales that is marginally resolved by discretization
schemes. Consequently, the discretization scheme’s truncation error and the
subgrid-scale model are linked, which raises the question of how accurate the
computational results are. On the other hand, the link between the SGS model
and truncation error can be beneficially exploited by developing discretization
methods for subgrid-scale modeling, or vice versa. Approaches where the SGS
model and the numerical discretization scheme are fully merged are called
implicit LES (ILES) methods.

Implicit SGS modeling requires procedures for design, analysis, and opti-
mization of nonlinear discretization schemes. In order to improve on the afore-
mentioned modeling uncertainties, we have proposed a systematic framework
for implicit LES. The resulting adaptive local deconvolution method (ALDM)
for implicit LES is based on a nonlinear deconvolution operator and a numer-
ical flux function [1, 4]. Free parameters inherent to the discretization allow
to control the truncation error. They are calibrated in such a way that the
truncation error acts as a physically motivated SGS model. ALDM has shown
the potential for providing a reliable, accurate, and efficient method for LES.

lence, transitional and turbulent plane channel flow, and turbulent boundary-
layer separation, demonstrate the good performance of the implicit model.
Computational results show that a carefully designed implicit SGS model can
perform at least as well as established explicit models, for most considered
applications the performance is actually even better. This is possible because
physical reasoning is incorporated into the design of the discretization scheme
and discretization effects are fully taken into account within the SGS model
formulation. The method is established for LES of turbulent flows governed
by the incompressible Navier-Stokes equations and for passive-scalar mixing
[3, 5]. The subject of this paper is the extension of the methodology to ILES
of compressible turbulence.
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Discretizations the compressible Navier-Stokes equations can be designed
and analyzed along the lines of Refs. [4, 5]. A key element in finding suitable
discretization parameters is a modified-differential equation (MDE) analysis
in spectral space. The MDE of the discretization method is analyzed by mea-
suring the effective spectral mass diffusivity, thermal diffusivity, and eddy
viscosity in real numerical simulations. This a posteriori analysis followed
from the hypothesis that the primary purpose of an SGS model is to provide
the correct spectral distribution of the diffusion and dissipation of resolved
scales by interactions with modeled SGS stresses.

For model calibration we essentially focus on the asymptotic regime of
freely decaying three-dimensional homogeneous isotropic turbulence, which is
a critical test case for predicting the proper SGS dissipation and SGS diffu-
sion. A robust automatic optimization procedure based on an evolutionary
approach was then used for minimizing a functional that measures the differ-
ence between the spectral numerical viscosity and diffusivity of ALDM and
semi-analytical expressions for the eddy-viscosity and eddy-diffusivity spectra.

Simulations of forced and decaying isotropic turbulence at turbulent Mach
numbers Mt = 0.3 and Mt = 0.6 are performed for a posteriori validation.
The model predicts the correct time development of the r.m.s. temperature,
density and pressure fluctuations (Fig. 1), as well as the proper inertial-range
scaling of the energy and variance spectra (Fig. 2).

For final validation, compressibility effects on the Reynolds stresses and
the turbulent transport in supersonic flow in a channel with cooled isothermal
walls are presently being studied. It is planned to perform LES according to
available DNS data of Foysi et al. [2] for reference at Mach number M =
0.3, 1.5, 3.0, 3.5, where the mean mass flow rate is increased between the
cases, corresponding to friction Reynolds number Reτ = 181, 221, 556, 1030,
respectively.

In the presentation, we will discuss in detail the theoretical and numeri-
cal background of the new method. Computational results will be shown for
isotropic turbulence and turbulent channel flow.
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Fig. 1. Evolution of velocity, density, pressure, and temperature fluctuations for
decaying homogeneous isotropic turbulence at Mt = 0.3; lines denote LES, ◦ DNS.
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Fig. 2. Instantaneous spectra of turbulent kinetic energy at t = 1, 2, . . . , 10 eddy
turnover times; − − − LES, −−−−−− DNS.
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1 Introduction

The transverse injection of fuel into supersonic turbulent flow is a key feature
of scramjet technology. In most combustion chamber designs, gaseous fuel is
injected into the air stream at angles smaller than 90◦ to the wall, from ports
in the duct wall or from pylons extending into the duct. The resulting flow
and especially the mixing and reaction processes are very complex and not
completely understood. While measurement of compressible turbulent and re-
acting flows is very difficult, numerical simulation promises to provide details
of flow mechanisms which are presently not amenable to measurement. Pre-
vious work on incompressible inert and reacting jets in crossflow is extensive.
Margason [7] provides an overview of numerical and experimental investiga-
tions from 1932–1993. More recent DNS and LES studies are due to Muppidi
and Mahesh [9], Jones and Wille [4], Wegner et al. [11] and Denev et al. [2].
Work on supersonic inert jets in crossflow has been presented by Chenault et
al. [1] and Sriram [10] using statistical turbulence models. Kawai and Lele [5]

into a supersonic turbulent crossflow in order to obtain detailed insight into
the complex 3D flow physics and mixing phenomena.

2 Numerical details

The present study is a first step towards scramjet combustion. Its aim is to
investigate a simplified geometrical and physical configuration using large–
eddy simulation. A mixture of H2 and N2, with mass fractions of 0.0169 and
0.9831, respectively, is injected transversely at sonic speed from a spanwise
slot into a supersonic turbulent air flow in a channel (with mass fractions of
0.23 and 0.77 for O2 and N2), where infinitely fast reaction and heat release
take place. The ratio of slot width to channel height is 1/32. Sixth–order com-
pact numerical schemes are used on Cartesian grids with proper refinement
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towards walls and in the neighbourhood of the plane jet and its mixing layers.
The spatially discretized low–pass filtered compressible Navier–Stokes and
mixture fraction equations are integrated in time with a 4th–order Runge–
Kutta scheme. In the LES approach used, closure of subgrid terms due to
square non–linearities is obtained via approximate deconvolution [8], while
the filtered heat release term is closed in analogy to RANS concepts, using
a model for the conditionally filtered scalar dissipation rate. The approxi-
mate deconvolution approach alone allows to capture shocks, but leads to
spurious oscillations. They are damped without affecting the turbulence fluc-
tuations using localized grid-dependent artificial viscosities and diffusivities
(cf. Kawai and Lele [5]). Specific heats and molecular transport coefficients
depend on temperature and species concentration. Fully–developed turbulent
channel flow is used as inflow condition — an LES of fully developed channel
flow at a global Mach number of M = 3.1 and a global Reynolds number
based on channel half width of Re ≈ 5000 runs parallel (on a 168 × 96 × 192
grid) with the LES of the injection case (768× 96× 192 grid). Walls are kept
at constant temperature of Tw = 700 K. Coupling between inflow generator
and injection simulation is achieved via MPI. Suitable initial conditions for
the injection case are obtained from a separate statistical simulation which
provides a steady state solution. Our LES approach has been validated by
comparison with DNS data for temporal mixing layers [6].

3 Results

The reacting jet in crossflow causes strong modifications of the incoming su-
personic turbulent channel flow. It leads to flow separation on the lower wall
and to a separation shock. The shock reflects at the upper wall, generating an
upper separation zone and in turn a separation shock. A snapshot of velocity
vectors projected onto the yz−plane perpendicular to the main flow (contain-
ing the midplane of the slot) clearly shows, how the shock front is distorted
by the incoming turbulence, figure 1. It also shows the laminar jet leaving the
injection channel and rapidly mixing and reacting with the airstream of the
channel. Occasionally and locally the injection process creates a Mach disk, to
be seen in figure 2, where several quantities are demonstrated simultaneously,
e.g. the sonic line (heavy line), contours of the reaction product (water va-
por), contour lines of the density gradient and velocity vectors. Flow passing
through the Mach disk (quasi-horizontal contour lines of the density gradient)
changes direction abruptly. The contour lines of density gradients which are
inclined at about 45 degrees separate hot reaction product from cold injected
fluid. They are, in contrast to the shocked area, intersected by continuous
velocity vectors.

More globally speaking, the mean flow in the channel not only passes
through zones of deceleration and acceleration, but also through regions of
compression and expansion with dramatic effects on turbulence production
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and energy redistribution. Vertical profiles of the mean density (not shown)
clearly indicate these zones. While the incoming flow has low mean density in
the core region and high density at the wall due to the ’low’ wall temperature,
the separation shock increases the density downstream. A further increase is
observed in the midplane of the jet, as a result of low temperature.

Profiles of the pressure-strain correlation PS11 = p′∂u′1/∂x1, appearing in
the transport equation of the axial Reynolds stress, reveal some correlation
with the mean density. Compared to the incoming flow, PS11 has locally
remarkable negative amplitudes, because the mean density there is increased
compared to its values at the inflow plane. This is a strong indication of
the fact that mean density variations control the redistribution of fluctuating
kinetic energy among the three Reynolds stress components, as demonstrated
by Foysi et al. [3] for fully-developed compressible turbulent channel flow and
by Mahle et al. [6] for compressible reacting turbulent mixing layers.

Fig. 1. A snapshot of the projection of velocity vectors onto a yz−plane through
the slot midplane.
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Fig. 2. Snapshots of contours of YH2O, isolines of density gradient magnitude and
sonic line in an xz−plane are shown. On right, an enlarged view of the Mach disk
region, as marked-up on left, is depicted, including velocity vectors.
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1 Introduction

Large Eddy Simulation in turbulent combustion is a promising approach for
simulation of high Reynolds number flows, typical of industrial combustion ap-
pliances. Self-similarity of reactive turbulent fronts emerges from their fractal
properties, which can be suitably exploited to model the unresolved sub-grid
contribution of combustion, see [1] and ref. therein. Following those authors,
with appropriate hypotheses, the filtered progress variable equation reads

∂ρc̃

∂t
+ ∇ · (ρũc̃) + ∇ · (ρũc− ρũc̃) = ∇ · (ρD∇c) + ω̇ = ρuSLΞ|∇c| , (1)

where Ξ = |∇c|/|∇c| is the wrinkling factor, strictly related to the flame
surface density concept Σ = |∇c|. The model can be closed using the fractal
behavior of flames, i.e. Ξ(Δ) = (Δ/εi)D−2, where D is the fractal dimension
of the flame front and εi
(Δ is the mesh spacing). A crucial issue of this model is the determination of
the fractal dimension D and of the inner cut-off εi and their dependence on
turbulence/chemistry conditions.
Purpose of this work is twofold, first the evaluation of both D and εi by
OH-LIF –Laser Induced Fluorescence– (see [2] for details) and DNS of pre-
mixed methane/air jet flames in round and annular configurations. Sec-
ond, on the ground of the fractal characteristics found, LES computations
have been performed reproducing the experiments of Chen and Mansour at
Re = U0D/ν = 16000 (M3), Re = 24000 (M2) [3].

2 Methodology: experiments and numerics

Methane/air premixed flames have been realized in two different jet-burners.
A cylindrical bunsen burner and an annular inlet bluff-body stabilized burner,
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both fed with a mixture of CH4 and air at different equivalence ratios.
Reynolds numbers and equivalence ratios (Φ) ranges between 4000 and 10000
and from stoichiometric mixtures down to Φ = 0.6. Velocity data have been ac-
quired by both LDA and PIV systems by seeding the flow with 5 μm alumina
particles, and OH-LIF allowed to extract flame front position. A thorough
discussion of the two set-up can be found in [4, 5].

The numerical code discretizes the cylindrical formulation of the Low-
Mach number asymptotic Navier-Stokes equations with or without sub-grid
models in order to perform DNS or LES, respectively. Second order finite
differences on staggered grid and a third order low storage Runge-Kutta nu-
merical schemes are employed. Details and tests for incompressible jets can be
found in [6]. All the adopted parameters simulate approximatively the experi-
mental reactive annular jet with the same Reynolds number and with the ratio
between laminar unstretched flame speed and the flow bulk velocity: SL/U0 �
0.05. An Arrhenius one-step irreversible reaction ω = ω∞(ρYR)e−Ta/T , repro-
duces the combustion of a lean premixed methane/air mixture.
Dealing with LES, the major differences in the code are given by the sub-grid
extra terms and the use of the concept of the progress variable that follows
equation 1. The closure of the velocity sub-grid stresses are given Smagorinsky
model with the shear-improved formulation [7] rearranged to take into account
the variations of density. The sub-grid extra diffusivity of scalars is assumed
proportional to the Smagorinsky eddy-viscosity: DT = 0.7νT . The simulations
concern premixed round jets and reproduce the experimental configurations
of Chen and Mansour [3].

3 Results and analysis

The instantaneous configuration of the flame front has a complex geometry,
and recent evidence suggests its possible prefractal structure. The consequent
multiscale nature of the surface implies the application of geometrical concepts
from fractal theory to describe the amount of wrinkling. In fractal theory, a
power law relationship exists between the number of boxes needed to cover a
fractal object and the box size L, i.e.:

N(L) ∝ L−D2 , (2)

where D2 is the fractal dimension of an object embedded in a two dimensional
space. In our case the object is given by a two dimensional cut of the flame
fractal surface. Hence the dimension of the whole flame front is: D = D2 + 1.
The flamelet surface is represented by the fractal of dimension D in a range of
scales confined between an inner (εi) and an outer (εo) cut-off. A number of
experiments and DNS have been carried out by varying the nondimensional
turbulence intensity u′/SL. As anticipated, fractal characteristics have been
evaluated by the box-counting technique, which consists in enumerating the
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Fig. 1. Left: Fractal dimension vs normalized turbulent fluctuations U ′/SL. Error
bars report the fitting error. In this panel it has been represented the value D2 +1 to
be congruent with the fractal dimension of iso-surfaces. Thick line,fractal dimension
for non-reacting scalar turbulent iso-surfaces, i.e. D = 2.37. Open symbols, DNS;
closed symbols, experiments. Right: Inner cut-off normalized with thermal thick-
ness (εi/dL) vs Karlovitz number. Karlovitz number defined as (dL/η)

2. Dotted line
represents the scaling εi/dL ∝ Ka−0.5.

squared boxes of size L necessary to entirely cover the whole object that,
in this case, is the contour of the flame front. If this number scales with
equation 2, then the measured object is a fractal with dimension D2. Data
at different u′/SL have been fitted with a power law whose exponents are
reported in figure 1. Increasing u′/SL, the fractal dimension D reaches the
value of D = 2.23 ± 0.03 lower than D = 2.37, corresponding to perfectly
passive scalar iso-surface fractal dimension.
The typical length scales at which the fractal scaling is lost denote outer
and inner cut-offs. Supposing the latter to scale with Kolmogorov dissipative
length η, we have:

εi/dL ∝ Ka−1/2 . (3)

A prediction well confirmed by data of figure 1.
In the following we show the results concerning LES with fractal closure for

the progress variable. In particular the wrinkling factor Ξ(Δ) = α(Δ/εi)D−2

(α = 1.0 is assumed) is determined using the fractal characteristics extracted
from experiments and DNS and presented in the previous paragraph:D � 2.23
and εi � η = (ν3/ε)1/4 with ε the turbulent kinetic energy dissipation. The
Kolmogorov scale η is obtained assuming K41 theory. If the LES filter length
Δ falls inside the inertial range, the dissipation can be estimated as ε � ũ3

Δ/Δ,
where the characteristic velocity at scale Δ is ũΔ = S̃Δ with S̃ the filtered
strain rate. Two premixed turbulent jet flames are used as test cases. These
data are taken from the experiments M2 and M3 of Chen and Mansour [3]
at Reynolds numbers of Re = 24000 and Re = 16000, respectively. The ratio
between the laminar unstretched flame speed and the bulk jet velocity is:
SL/U0 = 0.01267 and SL/U0 = 0.019 for the two flames respectively.
In figure 2 the mean temperature field normalized by the adiabatic flame
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Fig. 2. Mean temperature field normalized with the adiabatic flame temperature.
Left: experiments of Chen and Mansour [3]. Right: present LES computations. Upper
panel, Re = 16000, SL/U0 = 0.019; lower panel, Re = 24000, SL/U0 = 0.01267.

temperature Tf is presented for both cases. Concerning the flame length, the
correspondence is remarkable considering that model constants and mesh size
are kept fixed in the two cases. In particular the mesh is about 60 and about
150 times smaller than needed in DNS for Re = 16000 and Re = 24000
respectively. The major differences between experiments and LES lie in the
lower part of the shear layer and at the flame tip where the temperature found
in experiments is smaller compared to that of LES. These phenomena can be
due to local quenching effects that are frequent in regions with high shear
rate, an issue that is currently under investigation.
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Lean premixed combustion is employed to reduce emission, but can exhibit
undesired effects such as lean blow-off and thermo-acoustic resonance. To cope
with these, burners with strong swirl are utilized for flame stabilization. In
the resulting complex flow system, flow instabilities are observed in both ex-
periments and simulations. To date, large eddy simulation (LES) is becoming
a widely used approach for understanding the properties of turbulent flow
phenomena. However, LES of lean premixed combustion still constitutes an
open challenge. Many turbulent combustion modeling methods have been de-
veloped for LES of such flows [1, 2]. Two types of them are the thickened flame
(TF) model [3] and the flame surface density (FSD) model [4]. However, none
of these models is ideal and suitable for all kinds of flame configurations. A
detailed comparison was made between the TF and FSD by Lin et al. [5] for

lent fields, and qualitative agreement between them was found. In the present
work, the performances of the two cited turbulent combustion models, TF and
FSD, in simulating the lean premixed swirl flames in an industrial gas trubine
model combustor is compared against the well-documented experiment data
obtained by Meier et al. [6].

The simulated burner is sketched in Fig. 1a. It is constituted of a plenum, a
swirl-injector and a combustion chamber. Methane is injected into the swirler
and mixes rapidly with the incoming air, so that premixed gas enters into
the combustion chamber with a square section of 85 × 85mm and a height
of 114mm. There, a V-shaped flame develops. This flame configuration has
already been simulated with different methods using unstructured grids [7, 8,
9], and the results are generally in good agreement with the experimental data.
In these simulations as well as the present ones, perfect premixing is assumed.
The whole domain is divided into 257 blocks and consists of 4.7 million cells.
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The Reynolds number based on the nozzle exit diameter D = 27.85mm, bulk
velocity at the exit Ub = 17.4m/s and the cold flow is about 30,000. The flame
simulated has power 27kW and equivalence ratio 0.75, and it is estimated to
be located in the thin reaction zones in the Borghi diagram [10]. A uniform
velocity profile was imposed at the inlet and a convective outflow condition
was used at the exit. The Werner-Wengle wall function was employed at all
solid walls.

In this work, numerical simulations are performed with the in-house code
LESOCC2C, in which both TF model and FSD model are implemented. It
solves the Low-Mach-number version of the compressible Navier-Stokes equa-
tions on body-fitted curvilinear block-structured grids using second-order cen-
tral schemes in space and a second order R-K method in time. Substantial
experience has been gained with this code for similar flame configurations
[11, 12].

In the TF model, pre-exponential constants and transport coefficients are
both modified by a thickening-factor F to yield a thicker reaction zone which
can then be resolved with LES mesh. The subgrid-scale (SGS) wrinkling is
accounted for by an efficiency function E related to the subgrid-turbulent
velocity and the filter width. The equation for the resolved mass fraction of
the k−th species then reads

∂ρY th
k

∂t
+
∂ρujY

th
k

∂xj
=

∂

∂xj
(ρDkEF

∂Y th
k

∂xj
) +

E

F
ω̇k(Y th

j , T th) . (1)

where D, ω̇, Y and T are the diffusion coefficient, production rate, species
concentration and temperature, respectively. The superscript th represents
thickened quantities. The equation for the Favre filtered progress variable has
the form

ρc̃

∂t
+
ρũj c̃

∂xj
+

∂

∂xj
ρ (ũjc− ũj c̃) =

∂

∂xj

(
ρD

∂c

∂xj

)
+ ¯̇ω (2)

The two RHS terms are then modeled with the algebraic model of [4],

∂

∂xj

(
ρD

∂c

∂xj

)
+ ¯̇ω = 〈ρw〉s Σ̄ ≈ ρusL4β

c̄(1− c̄)

Δ
(3)

where β, Δ, ρu and sL are the model constant, filter size, density of fresh
mixture and laminar flame speed, respectively. Σ is the so-called flame surface
density. In the present work, ρu and sL are obtained from a separate one-
dimensional simulation.

A dominant precessing vortex core (PVC) is found in the corresponding
iso-thermal swirling flow as in [7]. A PVC also exists in both reactive simula-
tions. A big spiral-type vortex attached to the center body is found entirely
located in the unburnt region. Its movement is similar to the PVC in the iso-
thermal case but is different from those in [8], where the Q criterion was used
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(a) (b) (c)

Fig. 1. (a) Schematic of the combustion chamber. (b) Temperature field for mean
(left) and for instantaneous (right), obtained with the DTF model. (c) As (b) but
obtained with the FSD model. Note: the temperature is normalized with 298.15K.

for visualization. Fig. 1b and 1c show the temperature field obtained with
the two models, providing the mean field and a snapshot of the instantaneous
field. The FSD model is seen to yield a larger reaction zone partly reaching
the walls which is unrealistic, while the reaction is more vigorous with the
DTF model. The different location of the flame has an impact on the velocity
field shown in Fig. 2.

Profiles of velocity statistics in the x − y centre plane are shown in Fig.
2. The origin of the coordinate system is located at the center of the jet exit,
x− direction is to the downstream, y− and z− are normal to the surfaces
of chamber. Overall, the agreement between the experimental data and the
LES results is good. Profiles obtained with the TF model are closer to the
experimental data than those obtained with the FSD model. The discrepancy
at the position (x = 1.5mm) is not negligible, where sharp peaks of the rms
fluctuations at the edge of jet nozzle are under-predicted. It demonstrates
that the outer shear layer should be better resolved. Further calculations with
finer grid resolution at the shear layer are under way.

Acknowledgements: The support of the German Research Foundation
(DFG) through CRC606 project is gratefully acknowledged. The computa-
tions were performed on both the HP-XC clusters of SSCK Karlsruhe and
the SGI Altix 4700 cluster of ZIH Dresden. The authors thank Dr. W. Meier
(DLR, Stuttgart) for providing the experimental data in electronic form.
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KS inertial range and validity of Richardson’s

law

F. C. G. A. Nicolleau

University of Sheffield, Sheffield Fluid Mechanics Group, Department of
Mechanical Engineering, S1 3JD Sheffield, UK
F.Nicolleau@Sheffield.ac.uk

1 Kinematic Simulation

Kinematic Simulation (KS) is a Lagrangian model where a synthetic Eulerian
velocity field u(x, t) is assumed. It is then possible to track one, two or many
particles and study their trajectories by integrating this velocity field. We
use the KS code developed in [6] based on [3] for incompressible isotropic
turbulence. The three-dimensional KS turbulent velocity field used in this
paper is kinematically presented by a truncated Fourier series, sum of Nk

random Fourier modes:

u(x, t) =
Nk∑
n=0

ancos(kn.x+ ωnt) + bnsin(kn.x+ ωnt) (1)

where Nk is the total number of modes included, an and bn are decomposition
coefficients corresponding to the wave vector kn, and ωn is the unsteadiness
frequency.

2 Kinematic Simulation and t3 law

According to [8] and [1] two-particle separation variance 〈Δ2(t)〉 should obey
the famous t3 law for diffusion in isotropic turbulence

〈Δ2(t)〉 = GΔεt
3 (2)

where GΔ is the Richardson universal dimensionless constant, ε the turbulent
energy dissipation rate and t time.

There have been some contradictory conclusions as to the ability of KS to
predict a t3 law. According to [4, 5, 2, 7] KS predict (2), according to [10] they
do not. It has been argued in [10] that owing to the lack of sweeping of small
scales by large scales in kinematic simulation, the validity of the Richardson’s
power law might be affected.
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3 Present study

In the present work, we revisit the t3 law (2) starting from Richardson’s
locality-in-scale hypothesis [9] based on the diffusivity rather than the parti-
cles’ separation. We generalise the argument in [10] to any power law spectra
and conclude that

• the discrepancy between KS and Richardson’s locality-in-scale hypothesis
only appears for inertial range L/η larger than 104, where L is the inte-
gral length scale and η the Kolmogorov length scale, which corresponds to
significant Reynolds numbers. In other words, we argue that the discrepan-
cies between the different authors on the ability of kinematic simulation to
predict Richardson power law may be linked to the inertial subrange they
have used. For small inertial subrange, KS is efficient and the significance
of the sweeping can be ignored, as a result we limit the KS agreement with
the Richardson scaling law t3 for inertial subranges L/η ≤ 10000.

• In any case, we show that the discrepancy observed for larger inertial range
cannot be attributed to a lack of sweeping of small scales by large scales.

• We propose other explanations for the discrepancy, in particular we discuss
the role of the Fourier modes distribution.
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Lagrangian Vortex Methods in Turbulent

Channel Flows

R. Yokota, K. Fukagata, and S. Obi
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In our present study, we compare the turbulent statistics obtained from a
vortex method calculation with a finite difference calculation for the turbulent
channel flow.

The present vortex method is a standard vortex particle method, which
uses the core spreading method with spatial adaptation [1] as the diffusion
scheme. The Reynolds number was Reb = 5600 and the calculation domain

The mean velocity profile after one wash-out time is shown in Fig. 1(a),
while the mean velocity gradient and Reynolds stress after one wash-out time
are shown in Fig. 1(b). The results of the vortex method show an excessive
production of Reynolds stress in the viscous layer.
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Unstable and turbulent flows simulated by

means of the Boltzmann kinetic equation

V.V.Aristov, A.A.Frolova, O.I.Rovenskaya, and S.A.Zabelok

Dorodnicyn Computing Centre of Russian Academy of Sciences, Ul. Vavilova - 40,
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For description of unstable and turbulent compressible gas flows with nonequi-
librium regions we apply direct methods of solving the Boltzmann kinetic
equation [1, 2]. Solutions by the Boltzmann equation tend to the solutions of
the Navier-Stokes equations according to the Chapman-Enskog expansion for
stable flows. For unstable cases, especially for strong turbulent compressible
flows the issue of the validity should be investigated. Free supersonic underex-
panded jet flows has been simulated and the system of Taylor-Goertler stream-
wise vortices as the factor of instability has been observed. The comparisons
of the frequencies and the magnitude of the amplitude of the turbulent oscilla-
tions in the shear layer with the experimental data have been satisfactory (and
for turbulence there exist zones with non-Navier-Stokes transport according
to the kinetic description). Numerical solutions are obtained with the Unified
Flow Solver (UFS) [2] having the following features: adaptive mesh refinement,
hybrid methods with automatic definition of continuum and kinetic domains,
direct solver of kinetic equations, kinetic schemes approximating continuum
equations. Attention is paid to the transition to the turbulence in the wake,
e.g. turbulent instability in the wake behind a prism for the supersonic flow is

is applied). The detailed energy processes of the turbulent flows are also con-
sidered. The spectral density of the kinetic energy for the unstable 2D flow
in the square is obtained by the Boltzmann equation in [3]. Our results are
compared with the known solutions by the BGK equation [4].
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We present numerical and theoretical results on the natural transition in a
plane Poiseuille flow. The natural transition is often studied in boundary lay-
ers, but the analysis in a parallel flow allows the use of the Reynolds number
as a control parameter. The results indicated that the classical scenarios de-
scribed in the literature play a role in natural transition and can lead to turbu-
lent spots. In natural transition the wave systems are modulated in streamwise
and spanwise directions and cause premature nonlinearity [1]. Spikes and tur-
bulent spots are often present in natural transition, but the classical routes,
namely, K-type and H-type instabilities and the oblique transition, have not
been linked to these phenomena. Therefore, many questions remain regarding
the relevance of these studies to natural transition. For instance, it is unknown
whether such classical routes actually occur in natural transition, whether
they occur simultaneously or interact, whether there is a dominant mechanism
under some circumstances, etc. Such questions motivated the present work.

equations in a vorticity- velocity formulation was performed using high accu-
rate numerical schemes. Owing to the complexity of the natural transition,
the streamwise modulation was initially not considered. Therefore, only the
three- dimensionality was studied yielding spanwise modulated wavetrains.
Two cases were judiciously selected at Re = 8000. One case was located near
the first branch of the two-dimensional stability diagram where the linear pro-
cess is dominated by three-dimensional Tollmien-Schlichting (TS) waves. The
other case was located far from the first branch where the linear process is
dominated by a two-dimensional TS waves. Preliminary results can be found
in [2]. Similar studies, but for boundary layers, can be found in [3].

The results shed light on some the questions posed in the introduction.
In fact, all the nonlinear activity observed could be attributed to one of the
classical nonlinear regimes. Each regime was active in a different parameter
set. Indeed, when three-dimensional waves were the linearly most unstable,
the observed scenario was linked to oblique transition, but, otherwise, K-type
transition set in. These does not mean, however, that transition predictions
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can be made directly from simulations that involve only a limited number of
waves. In any case, the localized and explosive character of the interaction
resembled a turbulent spot. The results also suggest that, for high subsonic
flows, oblique transition should be the most likely scenario. Studies are cur-
rently under way to verify this conjecture. Also simulations of spanwise and
streamwise modulated wavepackets are currently being performed. It is ex-
pected that these results will be available for presentation at the conference.

The authors acknowledge the financial support from the AFOSR, CNPq
and FAPESP.
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Flow around the aircrafts and marine vehicles is turbulized that increases the
skin-friction drag and fuel consumption. Here stability of the fully developed
turbulent flow of an incompressible fluid in the viscoelastic tube is consid-
ered. The eddy viscosity concept is considered to be adequate and the flow
velocity, wall displacement and pressures in the fluid and solid wall are time-
averaged quantities. Continuity conditions for the components of the velocity
and stress tensor at the fluid-wall interface and no displacement condition at
the outer wall of the tube are considered. Solution of the coupled system has
been found in the form of the normal mode and the obtained system has been
studied using the numerical technique described in [1,2]. The temporal and
spatial eigenvalues and the dependencies of the temporal and spatial amplifi-
cation rates on the rheological parameters of the wall have been computed. It
was shown stability of the modes can be increased by a proper choice of the

viscosity have been found for a large variety of materials. It was shown a sub-
stantial reduction in the viscous wall shear stress accompanied by a decrease
in the turbulence production or Reynolds stress can be reached via using the
viscoelastic coating on the rigid surface. The obtained results are in a good
agreement with recent direct numerical computations [3].
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Simulation of induced transition in hypersonic

regime: Validation of foot print of the vortical

structures
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The main goal of this research is to propose a numerical methodology able
to predict the flow before the onset of transition occurring in a hypersonic
flow. Presently CFD computations are carried out and compared with a huge
database of wall experimental results obtained at VKI [4]. The numerical re-
sults are expected to provide a 3D definition of the structures letting their
footprint at the wall and to support understanding of future hypersonic ex-
periments at VKI. The study focuses on an isolated roughness immersed in
the wall boundary layer with a flow at Mach 6 and a Reynolds number based
on the ramp height of 20806. The used solver is a VKI in-house code named
COOLFluiD [2]. This object oriented framework for fluid dynamic is suited

niques. Presently, the use of perfect gas thermodynamics is adopted. Two dif-
ferent numerical techniques both in a steady and laminar configuration will be
compared (Finite Volume Method versus Residual Distribution Method). A
critical comparison/validation of the two type of calculations is done in front
of the qualitative wall measurements (time averaged Heat flux and oil visual-
izations) . The tridimensional topology of the flow will be then revealed using
vortical surfaces extracted thanks to the Q-criterion but also wall streamlines
and streamlines extracted from the symmetry plane. The computations car-
ried on so far with a 2nd order FVM does not allow to match completely
the flow features, even if behind the ramp the Q criterion shows the appear-
ance of a couple of streamwise vortices. The solution with other numerical
techniques and possibly with a finer mesh will bring more insight in the flow
physics. A further step will be achieved by using transition modeling as PSE
[1] and bi-global stability analysis [3]. The steady laminar flow, obtained by
CFD computations, will be used as mean flow to compute the flow stability
downstream of the roughness.
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Fig. 1. (normalized)total enthalpy in planes perpendicular to the flow direction

Fig. 2. Q criterion: isosurface for the value 2·108
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The traditional method of generating turbulence in a wind tunnel is by the
insertion of mechanical grids into the air flow. The major drawback are the
rather small achiveable Reynolds numbers caused by low turbulence intensities
of typically less than 5%. Another rather new aproach to generate turbulence
is to use a so called active grid, first developed and realized by Makita in
1991 1. In contrast to conventional grids it consists of several horizontal and

be moved by electrical drives. Based on his pioneering work and subsequent
developments we developed a similar active grid for our wind tunnel. In our
work we focus on the influence of different driving signals on the generated
turbulence.

The wind tunnel is a closed loop section tunnel with a cross section of 1.10
by 0.80 m2, that can be operated with a closed or an open (Goettingen style)
test section. At open section, the test section length is 1.80 m and 2.70 m at
closed section. The maximum wind speed of the free flow is 50 m/s.

By the choice of an adequate static or stochastic dynamic excitation of the
axes of the grid, the turbulence intensity and thus the Reynolds number of
the turbulent flow can be influenced. In particular we have investigated the
features of generated turbulence by the static grid (zero driving signals), by
periodically excited grid and by an excitation of the active grid by numerical
signals which have the intermittent structure of measured turbulent signals.
It seems that if we use a turbulent-like signal as a driving force for the grid,
even a turbulent flow with larger inertial range can be generated. With further
methods of data analysis, structure functions and multiscale statistics grasped
by reconstructed Fokker-Planck equation we investigate if an other class of
turbulence, like the one of the fractal grid, can be generated by special driving
signals.

1 H. Makita: Realization of a large-scale turbulence field in a small wind tunnel,
Fluid Dyn. Res. 8, 53-64 (1991)
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Objectives: Howe and McGowan (Proc. R. Soc. A, 461, 2005) pointed
out the lack of low velocity flow measurements issuing from upper air-
way configurations. Therefore, influence of moderate bulk Reynolds number
(1130 < Re = Ubd/ν < 11320) for low length-to-tube diameter ratios, i.e.

L/d = {4.4 7.2 20 53.2}, relevant for the human airways are investigated.

Methodology: The transversal velocity field is sampled by single sensor
anemometry at a distance x/d < 0.04 from the outlet. Evolution of the mea-
sured mean velocity exit profile compared with Poiseuille and power law profile
for L/d = 7.2, corresponding to a typical length-to-tube diameter ratio of hu-
man adult upper airways, is shown in Fig. 1(a). As expected, low L/d leads
to intermediate exit profiles for Re < 4530. For higher Re, a power law gives
a good approximation. Fig 1(b) shows that rescaling with the inner variable
leads to a good approximation of the mean-velocity exit profile by a linear
and logarithmic profile law: U+ = y+ and U+ = A ln y+ +B.

dimensionalized with the wall variable, can still be approximated by linear
and logarithmic distribution laws. Moreover, a Re dependency on the centre
exit turbulence intensity is observed.
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Fig. 1. For L/d = 7.2: (a) mean-velocity exit profile, (b) scaled with inner variable
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Conclusion: Despite the low L/D ratios, the mean-velocity exit profiles non-
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The role of nonlocality in unsteady turbulence
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One point closures such as the k− ε or Reynolds stress model are widely used
to predict unsteady flows, even though their time response has been given
relatively little attention. An elementary model problem consists of isotropic
incompressible turbulence, kept steady by a time-periodic large-scale forcing.
This case has been studied theoretically in a recent work [1], and frequency
response functions for the turbulent kinetic energy and dissipation were ob-
tained.

Fig. 1. Cartoon of the energy cascade, including both local and nonlocal interac-
tions.

In the present communication, we discuss the influence of nonlocal in-

turbulence models. A new multi-scale turbulence model is proposed, which
includes the effect of these nonlocal interactions. Details can be found in [2].

References

1. W.J.T. Bos, T.T. Clarke, and R. Rubinstein. Small scale response and modeling
of periodically forced turbulence. Phys. Fluids, 19, 055107, 2007.

2. R. Rubinstein and W.J.T. Bos On the unsteady behavior of turbulence models
Phys. Fluids, in press, 2009

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 

907 
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Coherent enstrophy production and dissipation

in 2D turbulence with and without walls
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We study numerically the behaviour of coherent enstrophy for decaying flows
in periodic and circular domains, when the initial Reynolds number Re tends
to infinity.The computation is done using a Fourier pseudo-spectral scheme
with volume penalization [2]. Wavelet filtering [1] is applied to split enstrophy
into coherent and incoherent contributions. In both cases, we find that coher-
ent enstrophy dissipation does not vanish when Re→ ∞. In the circular case,
coherent enstrophy diverges when Re → ∞ due to the boundary layer, but
after a certain time its derivative seems to remain bounded independently of
Re, indicating that a balance has established between production at the wall
and dissipation in the bulk.

Fig. 1. Vorticity at Re = 104, t � 60 turnover times. Left: periodic. Right : circular.
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Space-scale analysis of enstrophy transfers in
two-dimensional turbulence

P. Fischer, and Ch.H. Bruneau

IMB Université Bordeaux 1, INRIA Team MC2, CNRS UMR 5251
351, cours de la Libération, 33405 Talence, France
Patrick.Fischer@math.u-bordeaux1.fr

We propose here a new mathematical tool for the analysis of the enstrophy flux
in two-dimensional turbulence. We call this mathematical object the interac-
tion function since it describes the interactions responsible for the enstrophy
transfers in the flow. It is based on two-dimensional orthogonal wavelet decom-
positions of the two parts in the transport term of the Navier-Stokes equations.
The interaction function for the enstrophy transfer is obtained through a very
simple process in which the interactions are computed in the wavelet space
and then reconstructed in the physical space.
The interaction function can accurately detect the area where the enstrophy

where contour lines of the vorticity field are superimposed onto the interaction
function representation. In this snapshot, a region with strong values around
the point of coordinates (90, 285) can be detected. This zone corresponds to
the interactions between two vortices of opposite signs and where most of the
enstrophy cascade occur. We can verify that the enstrophy flux corresponding
to this area is the main contribution to the total enstrophy flux of the global
vorticity field (Figure (b)).
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transfers take place in a turbulent flow. This can be observed in Figure (a)
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Hydrodynamic stability of particle-laden flows was studied earlier within the
two-fluid approach mostly under the assumptions that [1]: in the main flow,
the concentration of the inclusions is uniform, the phase velocity slip is zero,
and the particle volume fraction is negligibly small. In the case of suspension
flows, where the particle-to-fluid substance density ratio is of order unity, the
formulation described above has to be modified to take into account the finite
volume fraction of the inclusions as well as non-uniform distribution of the
particles in the main flow.

We consider the stability of a suspension plane-channel flow in the presence
of viscosity gradients in the main flow induced by a particle concentration
nonuniformity. The dispersed flow is described by a modified two-fluid model,
which extends the standard dusty-gas model [1, 2] to the case of finite particle
volume fraction [3]. The nonuniform profile of the main-flow particle volume
fraction, specified analytically, reproduces the effect of particle migration from
rigid walls.

The system of linearized governing equations coupled with the no-slip
boundary conditions on the walls is reduced to the eigenvalue problem for
a 4-th order ordinary differential equation, which is solved by the orthogonal-
ization method.

A parametric study of unstable modes is performed. It is found that the
stratified suspension flow is unstable even at very low Reynolds numbers for
a wide range of governing non-dimensional parameters in contrast to the case

triggered only by Tollmien-Schlichting (T-S) waves and the critical Reynolds
number is of order 104 and higher. For stratified suspension flows, the instabil-
ity due to viscosity gradients, typical of core-annular flows, was found earlier
only within the framework of a simplified single-fluid approach.

The work is supported by RFBR (grant No. 08-01-00195).
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Localization of compact invariant sets of the

Lorenz’ 1984 model

K.E. Starkov
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In 1984 E. Lorenz published a paper [1] in which he proposed ”the simplest
possible general circulation model”: ẋ = −y2 − z2 − ax+ aF, ẏ = xy − bxz −
y + G, ż = bxy + xz − z, which is referred to as the Lorenz’1984 model.
The existence of chaos was shown in [1, 2] for different values of parameters.
Dynamical studies of this system were realized in papers [1, 2]; [3], [4]. This
paper is devoted to study of a localization problem of compact invariant sets

Krishchenko and Starkov, see e.g. [5]. This problem is an important topic in
studies of dynamics of a chaotic system because of the interest to a long-time
behavior of a system. In this work we establish that all compact invariant sets
of the Lorenz’ 1984 model are contained in the set {x ≤ F ;x2+y2+z2 ≤ η2 =
2(a+2)F 2

+3G2
+2G

√
aF 2+G2

4
}. Further, we improve this localization with help of

refining bound η; using additional localizations sets. By applying cylindrical
coordinates to the Lorenz’ 1984 model we derive yet another localization set
of the form {y2 + z2 ≤ G2(1 + b−2) exp(4πb−1)}. Finally, we discuss how to
improve the final localization set and consider one example.

Acknowledgment. This paper is partially supported by CONACYT (MEX-
ICO), project N. 000000000078890.
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Large-scale energy dissipation and equatorial

superrotation in shallow water turbulence
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Equilibration of two-dimensional shallow water turbulence is examined in the
presence of small-scale, isotropic forcing, and two forms of large-scale energy
dissipation representative of different geophysical situations: (i) linear fric-
tion, as a model of flow over a solid ground; and (ii) thermal damping, as a
model of energy loss through long-wave cooling. The simplest case of constant
background planetary rotation allows an immediate comparison of the two
dissipation mechanisms in purely isotropic, homogeneous turbulence. In each
case a population of coherent vortices, containing most of the total kinetic
energy of the flow, forms at scales larger than the forcing scale. A simple
vortex identification criterion reveals that the number density of vortices as
a function of vortex size is independent of dissipation mechanism, but that
the intensity of vortices grows with scale more strongly in the case of ther-
mal dissipation than in the case of frictional dissipation. The scaling of the
vortex population in physical space is shown to be consistent with the dis-
tribution of energy in spectral space, and can be understood in terms of the
scale-selectivity of the two dissipation mechanisms.

Differences between frictional and thermal damping become striking in
simulations of forced shallow water turbulence on the sphere. While shallow-
water models have been successful in reproducing the formation of robust,
and fully turbulent, latitudinal jets similar to those observed on the giant
planets, they have consistently failed to reproduce prograde (superrotating)
equatorial winds. Here, however, it is shown that shallow water models not
only can give rise to superrotating winds, but do so very robustly, when the
large-scale energy dissipation is the physically relevant thermal damping. With
appropriate choice of thermal damping rate, equatorial superrotation can be
achieved at apparently any deformation radius. The direction of the equatorial
flow is influenced by the effect of dissipation on equatorial Rossby-gravity
waves and by a cyclone-anticyclone asymmetry in the damping of coherent
vortices.
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The effects of rain on wind-driven turbulent
flow

N. Takagaki, K. Iwano, and S. Komori
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It is of great interest to investigate the effects of rain on mass transfer across
the wavey-sheared air-water interface in precisely estimating the mass transfer
rate across the air-sea interface. The mass transfer rate across the air-water
interface changes depending on the conditions of the free surface and water
flow near the free surface. The purpose of this study is, therefore, to investigate
the effects of rain on wind-driven turbulence through laboratory experiments
in a wind-wave tank with a rain simulator. The values of the wave height and
the velocity in the liquid side were measured for both no rain case and rain
case (R=133mm/h), and we compared the values in no rain case with that
in the rain case. Figure 1 shows the significant wave height (Hs) against the
free stream wind speed (U∞). It is found that Hs decreases due to rain at low
wind speeds, because of the damping effect noted by Tsimplis and Thorpe[1].
However there is no rain effect on Hs at high wind speeds. Figure 2 shows the
vertical distributions of the streamwize and vertical mean velocities (Uw, Vw),
the streamwize and vertical turbulence intensities (u′

w, v′w) and the Reynolds
stress (uwvw) in the liquid side. These values are increased by rain near the
free surface. This suggests that the turbulence near the free surface in the
liquid side is promoted by the impingement of raindrops.
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Fig. 1. HS versus
U∞.

Fig. 2. Vertical distributions of (a) Uw and Vw, (b) u′
w and v′

w

and (c) uwvw .
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New results on grid-generated turbulence
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To experimentally study the receptivity of laminar boundary layers to free
stream turbulence, the use of grids is the simplest and most effective way to
generate turbulence. To investigate the receptivity it is essential to be able to
vary the parameters of the free stream turbulence such as turbulence level and
length scales. By altering the distance of different grids from the receptivity
region, these parameters can be adjusted independently.

In the current experimental setup seven grids with mesh widths (M) in
the range of 0.95 − 50 mm were studied with two X-probes. The grids were
characterized in terms of kinetic energy decay, integral turbulent length scale
(both streamwise and transverse), Kolmogorov and Taylor scales, power spec-
tra, dissipation and level of anisotropy.

The downstream evolution of turbulent length scales and kinetic energy
will be presented and compared with relations based on the assumption of
isotropic turbulence. A new method for evaluating the coefficients in the
power-law decay will be introduced. It will be shown that the levels of
anisotropy (fig 1) and the power-law coefficients asymptotically approach the
theoretical values based on the assumption of isotropy for large ReM [1].
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Gas-liquid interaction under vibration field
effect
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Many fields of chemical technology require the uniform distribution of gas
bubbles as well as increase of their residence time accompanied by decrease of
their size and coalescence in liquid bulk. The common conclusion of studies

employment on the reduction of the bubble size and decrease of the bubble
rise velocity. The main benefits of the phenomenon are increase of the bubble
residence time and the interfacial area which result in gas-liquid mass transfer
enhancement.

In the present study we performed three sets of experiments. In the first
set of experiments we used the plate vibrating in the rectangular vessel. In
the second and the third sets we used the plate vibrating in the cylindrical
bubble column. The first set of experiments dealt mainly with the effect of
vibration parameters upon the gas bubbles mean diameter and residence time
in the liquid. We tried also to determine the effect of the distance between the
vibrating plate and the outlet gas orifice on the above mentioned bubble pa-
rameters. In the second and the third sets of experiments we tested the effect
of the vibrating plate design and its location upon the bubble residence time
in the liquid and the gas holdup. In the second set of experiments the gas was
injected into the column (similar to the technique which was used in the first
set) while in the third set the gas was entrained into the liquid bulk from its
surface. It should be noticed that the experimental apparatus for all sets was
almost the same.The best results (the longest residence time) were obtained
for the smaller values of the pulsation amplitude. It seems that for bigger
amplitude values (more than 0.5 mm) occurring liquid downward streams en-
force the bubble movement out of the region of effective vibration field action
thus weakening its effect. As a result of this phenomenon the bubble residence
time in the liquid bulk decreases with the vibration amplitude increase. For
the investigated amplitude range the vibration frequency increase results in
the bubble residence time increase up to its maximum value for the frequency
of about 30 Hz. The further increase of the vibration frequency results in the
bubble residence time decrease.

that have been performed in the field is a plausible effect of vibration field
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An Invariant Nonlinear Eddy Viscosity Model

based on a 4D Modelling Approach
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are geometrically reformulated on a true 4D non-Riemannian space-time man-
ifold. Its clear superiority over the usual (3+1)D Euclidean approach can be
fully summarized as follows:

i) The variables of space and time are fully independent. This implies that
in any closure strategy not only space but also time derivatives have to be
considered, hence not only allowing for a universal and consistent treatment
of curvature effects but also for a universal and consistent treatment of non-
stationary effects.

ii) Physical quantities as velocities or stresses always transform as tensors,
irrespective of whether they are objective (frame-independent) or not. This is
important when to model unclosed terms with non-objective quantities.

iii) Frame accelerations or inertial forces of any kind can be interpreted
as a pure geometrical effect. This implies that inertial and non-inertial tur-
bulence need not to be modelled separately anymore. A 4D turbulence model
will describe non-inertial turbulence as rotation, swirling or curved surfaces
equally well or equally bad as the corresponding inertial case.

iv) The special space-time structure of the 4D manifold allows for addi-
tional modelling constraints, which are absent in the usual (3+1)D geometrical
formulation. For example, within the 4D manifold averaged and fluctuating
velocities evolve differently, in the sense that the averaged 4-velocities evolve
as pure time-like vectors, while the fluctuating 4-velocities as pure space-like
vectors.

All these aspects will be demonstrated by proposing a 4D invariant non-
linear eddy viscosity model for high turbulent Reynolds numbers.
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Projection of the turbulence closure problem

on the invariant triangle as the basis for

improved predictions of complex flows
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A novel, anisotropy-invariant Reynolds stress model (AIRSM) of turbulence
based on the application of the two-point correlation technique and invariant
theory has been developed and tested [1, 2]. The model can be summarized
as follows:
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Here F , C, A, J and ψ are functions that depend on the invariants IIa = aijaji

and IIIa = aijajkaki of the anisotropy tensor aij = uiuj/q
2 − 1/3δij and

the turbulent Reynolds number. The above model of turbulence takes full
account on the influence of the anisotropy of turbulence and provides all of the
coefficients analytically without appeal to experiment or numerical databases.

The AIRSM has been implemented into the numerical code COMET. Val-
idation test cases are presented in which computations are carried out with
k − ε, SSG and AIRSM models.
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The hydrodynamic interaction of a fluid with a rough wall results in a net
force on the roughness elements. This can cause erosion of the roughness ele-
ments – an important aspect for sediment transport in rivers or the transport
of solid media by fluids in mechanical applications. In order to deepen the
understanding of the processes that lead to erosion, a direct numerical sim-
ulation of a turbulent open channel flow over a fixed rough bed was carried
out. In the simulation spherical roughness elements were discretized by means
of the immersed boundary method developed by [1].

The flow field statistics of the simulation compare well to data of previous
studies with respect to the mean flow field as well as the turbulence statistics
[2]. Furthermore, the instantaneous flow field exhibits the expected formations
of streaks and of large structures that extent over the entire water depth as
well as the formation of smaller coherent structures.

As a first step to deepen the understanding of the erosion mechanism,
the particle forces are analyzed systematically by means of a statistical ap-
proach. The obtained results are compared with the experimental data of [3].
Agreement of the force statistics is obtained when the results of each case are
normalized with the bulk velocity and the particle diameter. Nevertheless, the
experimental and numerical setups differ with respect to Reynolds number,
particle size, water depth to particle size ratio, particle shape and particle
arrangement. The agreement between the obtained particle force statistics
therefore indicates that the average force generating mechanism is persistent
over a wide range of flow parameters.
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This contribution presents the development of computational capabilities to
investigate the flow structure, design and performance of a new target fluidic
flowmeter. The reference data for a wide range of Reynolds numbers were
obtained experimentally. These data are used in this study for simulation val-
idation purposes. When fluid passes the bluff body complicated phenomena
like separation, reattachment and unsteady vortex shedding occur. The per-
formance characteristics depend on jet properties and therefore are Reynolds
number dependent.

The recently developed Detached Eddy Simulation (DES) hybrid tech-
nique for unsteady flows has been used in numerical simulations of the prob-
lem. The method combines Reynolds-averaged Navier-Stokes (RANS) method
with Large-Eddy Simulation (LES) method. The entire boundary layer is
treated by RANS and the separated region by LES (direct resolution of the
dominant unsteady structures). The transition between RANS and LES is
seamless with no explicit declaration of RANS versus LES zones.

The appropriate signal analysis of the obtained results have been con-
ducted for a range of Reynolds numbers up to 4000. The DES approach has
been reliable for both low and higher Reynolds numbers. The results show
that a number of factors such as meter geometry and aspect ratio influence
the performance of the flowmeter. This is observed in the quality of the signal
manifested by the velocity oscillations. The Strouhal number should be high
enough to eliminate any counting errors which may occur during transient
flows. A minimum Reynolds number constraint for the measurements to be
accurate has been evaluated for various design parameters. The significance of
using knife edges which influence boundary layer separation has been estab-
lished. The flow visualisation has revealed the recirculating flow downstream
and its direct dependence on knife edges location.
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Measurements are presented of a fully-developed zero-pressure-gradient turbulent
boundary layer interacting with a single 2D roughness element. Mean velocity profiles
were measured using 2D PIV over a smooth surface and a single roughness element.
The roughness element was a square bar with cross-sectional dimensions of 10 mm
x 10 mm and a length of 0.9 m. The experiments were conducted in the turbulence
research water tunnel at Cambridge University, and at Reynolds numbers (based on
the momentum thickness) ranging from 3016 to 4670. Velocity defect profiles were
analyzed using three different outer velocity scales: friction velocity (uτ ), freestream
velocity (U∞)1(Fig. 1) and, mixed outer scale (U∞δ∗

δ )2. A discussion is presented of
the wall-normal extent of the wake and of how it evolves with streamwise distance
and different Reynolds numbers.
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The wall-shear stress distribution in turbulent duct flow at a bulk Reynolds
number of Reb = 15 400 has been assessed with the micro-pillar shear-stress
sensor MPS3. The flow facility and the sensor are further described in [1, 2]. 12
sensors are used to detect the one-dimensional wall-shear stress distribution.
The sensor is mounted at the center plane of the duct. The spatial resolution
of the sensor line is 10.8 l+ (viscous units) and the total field of view of 120 l+

along the spanwise direction allows to capture characteristic dimensions of

Taylor’s hypothesis along the streamwise direction, it is possible to determine
the spatial wall-shear stress distribution.
Figure 1(a) shows a representative wall-shear stress distribution over 2 000 ×
120 l+. The vectors indicate the instantaneous wall-shear stress fluctuations
τ ′/τx, the contours represent the streamwise wall-shear stress τx

′/τx. It is
evident that regions of lower and higher wall-shear stress coexist. The low-

in the order of 1000 l+ or more being locally interrupted by high-shear re-
gions. It is natural to identify these shear-stress distributions as ‘footprints’
of very near-wall turbulent coherent structures, i.e., low-speed and high-speed
streaks aligned in the viscous sublayer of wall-bounded shear flows.
Two traces of the spanwise wall-shear stress fluctuations are given in fig-
ure 1(b). The position of the time traces have been chosen such that they
are aligned symmetrically at spanwise positions of approximately ±25 z+ off
these ‘centered’ events. Comparing the positions of the strong anti-correlating
peaks with the distribution in figure 1(a) evidences these high spanwise wall-
shear stress events to be related to the occurrence of high streamwise shear
regions, which we relate to sweep events pushing higher-speed fluid towards
the wall. Similar to the procedure applied by [3] a rough estimate of the
wall-normal velocity (figure 1(c)) has been calculated from continuity consid-
erations assuming the wall-normal velocity to possess a monotonic behavior
within the viscous sublayer. This allows to derive the wall-normal velocity
uy(L), where y(L) is the wall-distance of the recorded pillar-tips. Further-
more, −∂uy/∂y = ∂ux/∂x+∂uz/∂z, the latter two terms are derived from the
pillar-tip deflection assuming a linear velocity distribution within the sublayer

shear regions represent elongated meandering zones of streamwise extensions
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Fig. 1. (a) Wall-shear stress distribution, (b) spanwise wall-shear stress fluctua-
tions at ±27 z+, (c) wall-normal velocity fluctuations uy

′ calculated from continuity
considerations.

region. Note, a further assumption is that of a constant convection velocity.
A comparison of figure 1(c) with 1(a) indicates regions of high streamwise
shear to possess negative values of the wall-normal velocity (encircled region),
which confirms the idea of sweep fluid approaching the wall. A conditional
average of the streamwise fluctuation field associated with the existence of
large spanwise fluctuations (|τ ′

z/τx| ≥0.20) shows the spanwise fluctuations to
coincide with strong streamwise fluctuations.
The above discussion indicates the large spanwise wall-shear stress fluctu-
ations to be related to sweep motions of high-speed fluid originating from
higher shear layer regions. The additional flux towards the near-wall region is
compensated by a spanwise fluid distribution causing the high lateral fluctu-
ation levels. The elongated low-shear regions are laterally shifted due to the
occurrence of the high-speed fluid resulting in a strong meandering tendency
of the streaks.
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A POD-based reconstruction method for the

flow in the near-wall region

B. Podvin, Y. Fraigneau, J. Jouanguy, J.P. Laval
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We present a reconstruction method to estimate the instantaneous flow close
to the wall of a turbulent channel. The motivation for the procedure is to
come up with suitable wall models for large-eddy simulations. The idea is to
apply the Proper Orthogonal Decomposition to the velocity field u over a zone
extending over the lower wall region to be modelled Ω1 : 0 ≤ y+ ≤ y1 and
the LES numerical domain , Ω2 : y1 ≤ y+ ≤ y2. The reconstruction method
is a straightforward extension of the procedure described in Podvin et al.
[Podvin et al., Journal of Fluids Engineering 2006]. The POD modes an(t)
are estimated by solving a linear system where the right-hand side contains
information about the flow in the upper region, and the operator is the inner
product of the empirical eigenfunctions restricted to the lower region.

The procedure is first applied to a DNS at Rτ = 180. We have y1 = 50
and y2 = 70. We use both the snapshot method (no symmetries enforced)
and the direct method (with symmetries). The energy of the POD modes
was found to be well predicted with the method. The correlation coefficient
between the true and estimated modes was found to be superior to 0.9 for all
modes. We found that the energy content is also satisfactory when the direct
method is used to compute the spatial eigenfunctions. Due to the enforcing of
symmetries, the decomposition is then carried out in spectral space (Holmes
et al. [Turbulence, Coherent structures, Dynamical systems and Symmetry,
Cambridge University Press] ). The temporal correlation between the true and
the estimated modes was found to decrease with the spanwise wavenumber
and to increase with the streamwise wavenumber.

We then considered a LES of a channel flow with transverse sliding walls at
Rτ = 550. The direct method was used to compute the POD eigenfunctions.
We chose y1 = 100 and y2 = 200. The correlation coefficient exhibited similar
features to that of the case Rτ = 180. Further analysis is in progress.

This work has been performed under the WALLTURB project, funded by
the EC under the 6th framework program (CONTRACT N:AST4-CT-2005-
516008)
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Near-wall velocity and wall shear stress

correlations in a separating boundary layer

P. Nathan and P. E. Hancock
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Measurements have been made of time-synchronised instantaneous velocity, u,
v, and instantaneous wall shear stress, τ , in the near wall layer of a turbulent
boundary layer approaching and passing through (mean) separation, using a
two-component LDA and a pulsed-wire shear stress probe.

Figure 1 shows u(t, y)τ(t)/u′τ ′. The velocity scale, u′τ on the abscissa is
based on the r.m.s of the wall shear stress fluctuation [1]. Mean separation was
at x = 140mm. Particularly noticeable here is a) the curves fall very close to
each other (except first two stations), b) the correlation decreases dramatically
inside yu′τ/ν of 6. One of the full lines corresponds to an oscillating viscous
layer showing a qualitatively similar behaviour. The other shows the first two
terms in the oscillating layer expansion. Figure 2 shows u(t, y)τ(t−Δt)/u′τ ′,
at the mean separation position. A striking feature here is the nearly vertical
contour lines. A similar pattern is seen at the other stations.
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Fig. 1. Correlation coefficient. Fig. 2. Time-lag coefficient.

This work has been performed under the WALLTURB project. WALLTURB (A
European synergy for the assessment of wall turbulence) is funded by the EC under
the 6th framework program (CONTRACT N: AST4-CT-2005-516008)

[1] Hancock, P. E. 2007 Euro. J. Mech. B/Fluids, 26 (2007).
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Lifetimes of flow topology in a turbulent
boundary layer
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This study involves an experimental investigation of the local flow topology
dynamics in the logarithmic and outer region of a turbulent boundary layer.
In particular, we wish to establish characteristic life-times for the energy con-
taining eddies and possibly relate those to the coherent structures commonly
observed in boundary layers. So far the instantaneous spatial organization of
these eddies has received important attention, leaving, however, open ques-
tions regarding the dynamics and time-scales of these eddies.

The topology dynamics are investigated here using the experimental
dataset of Schröder et al. (2008), who applied time resolved Tomographic
PIV to obtain all three velocity components as well as their spatial and tem-
poral derivatives. From this measurement the the second and third invariants
Q and R of the velocity gradient tensor are determined uniquely defining the
generalized local topology in each point at each time instant (Chong et al.
1990). Then the average rate of change of the invariants are calculated using
a binning and conditional averaging approach (Ooi et al. 1999) given by:

〈
D(Q, R)

Dt

〉
(Q0, R0) =

〈
D(Q, R)

Dt

∣∣∣∣− 1
2
≤ Q−Q0

ΔQ
<

1
2
;−1

2
≤ R−R0

ΔR
<

1
2

〉
(1)

This results in a dynamical system where the average rates of change have
become functions of the invariants themselves. Subsequent integration yields
trajectories in the QR-plane describing the average evolution of the local flow
topology following a fluid particle. These trajectories are found to orbit, very
nearly periodically, and spiral inwards to the origin. We define a characteristic
lifetime of the energy-containing eddies as the period of the orbit, which is
found to be 14.3 δ/U

∞
corresponding well with estimates of the advected

lengths of very-large-scale motions or superstructures recently described in
literature. Additionally, a second time scale may be defined representative of
the invariants average decay rate over the cycles. It is associated to viscous
diffusion and is at least and order magnitude larger than the orbit’s period.
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RDT or low wavenumber modes’ dynamics?
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Rapid Distortion Theory proved to be the exellent tool for studying the flows
with α � 0, where α is the ratio of distortion and ”turn-over” time scales.
Moreover it has long been recognized that this theory is also applicable to
some kinds of slowly changing turbulence. The success of RDT remains the
challenge and induce some basic questions, in particular - to what extent the
linear effects are responsible for a fundamental aspects of turbulence?

This paper is the attempt to work out the alternative view of the mentioned
challenge based on the consideration of the most general properties of the
spectral tensors. Within such approach the supression of nonlinear interactions
is the result of analytical properties of the tensors in the low wavenumber limit
rather than ”rapidity” of distortion.

The procedure is based on the presentation Fij(x,k) = fij(x,θ)ϕ(krc) and
similar ones for higher - order correlations. Following the ”tensorial volume”
concept it’s supposed that in the low-wavenumber limit kl → 0 the com-
ponents of Fij possess non-zero limits. Following Bogolubov’s strategy one
can treat ”orientational amplitudes” fij(x,θ) and l(x,θ) as a set of ”govern-
ing parameters” of turbulence. The one-point parameters of practical interest
are easily derived with the help of the these functions after integration over
spherical shell of unit radius in k - space.

The linear subset of equations for fij is derived from the exact spectral
equations. Together with equation for l(x,θ) and turbulence energy balance
they form the closed set. Some types of simple flows were considered for pre-
liminary checking of the validity of this approach. The results coincides with
RDT predictions when α → 0. The alternative limit α → ∞ leads to the
well-known decay laws for grid turbulence. For general homogeneous distor-
tion simple analytical solution is also available. In particular for axisymmetric
contraction flow fij has the asymptotic form which don’t depend on the ini-
tial form of the spectra. At that only 0.1 of the energy of most large eddies is
concentated in stremwise direction. The evolution of one-point characteristics
strongly depend on the value of α. In particular, for moderate values of this
parameter turbulent energy evolves through minimum.
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in a periodic box: a wavelet viewpoint

K. Yoshimatsu1, N. Okamoto2, K. Schneider3, Y. Kaneda1, and M. Farge4

1 Department of Computational Science and Engineering, Nagoya University,
Nagoya, 464-8603, Japan yosimatu@fluid.cse.nagoya-u.ac.jp

2 Center for Computational Science, Graduate School of Engineering, Nagoya
University, Nagoya, 464-8603, Japan
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Fully developed turbulence exhibits an inhomogeneous distribution of the
small scale activity in space and time, which is generally called flow inter-
mittency. To characterize the intermittency, we compared data of a homoge-
neous isotropic turbulent flow, obtained by direct numerical simulation with
20483 grid points and a Taylor microscale Reynolds number 732[1], with two
divergence-free random fields having the same energy spectrum and either the
same helicity spectrum as that of the turbulent data, or vanishing helicity, us-
ing wavelet based scale-dependent statistics.

Scale-dependent helicity, which quantifies the geometrical statistics of the
flow, shows strongly varies with scale only for the turbulent field, while this
is not the case for the two random fields. To get insight into the dynamics of
Navier-Stokes turbulence, we analyze Eulerian and Lagrangian accelerations.
The scale-dependent flatness of the Lagrangian acceleration is one order of
magnitude larger than the flatness of the Eulerian acceleration. The flatness of
the Lagrangian and Eulerian accelerations increase with scale for the turbulent
flow. In contrast, for both of the random fields the scale-dependent flatness
remains almost constant. These results confirm that scale-dependent statistics
are necessary to characterize the intermittency of fully developed turbulent
flows. For further details we refer to [2].
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Detached Eddy Simulation of Turbulence
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Turbulence flows are very interesting topics in both academia and industry
community. Although the physics of turbulent flows is still not well under-
stood, one property we can be sure of is the multi-scale nature of turbulent
flows. This inspired us to investigate turbulence flows in a pipe with multi-
scale fractal-shape orifices. It is a challenging problem as it contains scales
distributed in a fractal manner and more importantly we can control the frac-
tal interaction and monitor the numerical performance as a function of the
problem complexity. Although there are some works [1, 2, 3, 4] on this kind of
problem, the numerical simulations on this topic are rare. Most of the numer-
ical results of fractal generated turbulence flow employ the direct numerical
simulation [5]. However, the results could only be compared qualitatively with
the experiment results [5]. Thus, in this work, we would like to assess the fea-
sibility of studying the turbulence flows after a fractal shape orifice by the
detached eddy simulation.

The simulation is based on an existing parallelized density-based finite
volume solver (DG-DES) which has been developed by Prof. Qin’s group [6, 7].
It has been ported to HECToR and HPCx system recently.

To validate the performance of the present solver for fractal generated
turbulence flow, the case with the snow flake fractal shape with two iterations
(Fig. 1) is used as a test example. The mean velocity profiles at hole 2 and 8
are plotted in Fig. 2 and Fig. 3. It is clear that the results agree well with the
experiment results done by A. C. H. Chong and F. C. G. A. Nicolleau [4].
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Recovery of subgrid-scale turbulence kinetic
energy in LES of channel flow
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A methodology is presented for recovery of the subgrid-scale (SGS) turbu-
lence kinetic energy in large-eddy simulations (LES) of turbulent channel
flow. The formulation is based on extending the one-dimensional energy spec-
tra computed in LES at each wall-normal location using a filtered form of
one-dimensional energy spectra derived from the theoretical formulations of
Pao [1] or Kraichnan [2]. The extended spectra are integrated to recover the
SGS turbulence kinetic energy as a function of the wall-normal direction, from
which the individual components of turbulence intensities are recovered using
the formulation of Winckelmans et al. [3]. To account for the anisotropy of
turbulence in the near-wall region, a transformation is introduced to map the
ellipsoidal iso-surfaces of turbulence kinetic energy density in the spectral-
space to a spherical surface, where the filtering operations can be applied to
the theoretical spectra. The transformation parameters are determined from
the dissipative scale in each direction, while the constants in the theoretical
spectra are determined by minimizing the errors between the theoretical and
LES spectra. The turbulence kinetic energy recovery procedure is applied at
a post-processing stage and is independent of the SGS model employed. Val-
idation studies performed using a DNS database of a turbulent channel flow
at Reτ ≈ 570 show that the method can recover the total turbulence kinetic
energy with errors of less than 1% and the SGS turbulence kinetic energy
with errors of less than 10%. In application to LES data, the components of
full turbulence intensities are recovered with an accuracy comparable to the
accuracy with which the filtered statistics were predicted in LES.
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On Cal and Castillo, similarity analysis was performed for boundary layer
flows approaching quasilaminarization. It was found amongst other results,
that there is a redistribution of the Reynolds stress in all components for
the boundary layer. It was also found that the redistribution of the stresses
prevents the flows from fully achieving a laminar state as observed in Fig.
1 (left) using experimental data from Warnack and Fernholz. This is further
explored by carrying direct numerical simulations of a strong sink flow using
a dynamic approach. A rescaling-recycling plane is employed dynamically by
involving an additional plane, a test plane, which is located between the inlet
and recycle stations. This improvement and the use of multiple velocity scales
permits the simulations of turbulent boundary layers subject to an arbitrary
pressure gradient as shown in Fig. 1 (right). This yields the energy budget
which provides information about the mechanism causing quasilaminarization.

Fig. 1. Experimental (left) and computational (right) Reynolds shear stress normal-
ized with the free-stream velocity.

B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_243, 

951





Anisotropic Organised Eddy Simulation for

statistical and hybrid modelling of turbulent
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To improve near-wall and near-wake behaviour of statistical and hybrid tur-
bulence modelling approaches in non-equilibrium flows, the Organised Eddy
Simulation (OES) methodology can be considered [1, 2]. OES distinguishes
the structures to be resolved from those to be modelled on the basis of their or-
ganised (resolved part) or chaotic character (modelled part). The modelling of
the chaotic processes can be achieved by reconsidering the Unsteady Reynolds
Average Navier-Stokes (URANS) approach in respect of the modified shape of
the energy spectrum, due to non-linear interaction of the coherent and random
turbulence processes in the inertial range. The present communication focuses
on the recent development of a tensorial eddy-viscosity concept within OES
framework. On the basis of experimental measurements in the near wake of a
circular cylinder at Reynolds number 1.4×105 [3], the structural properties of
non-equilibrium turbulence have been investigated and especially the relation-
ship between the phase-averaged strain rate and turbulent stress anisotropy
tensors. As illustrated in Fig. 1, the first principal directions of these two ten-

Fig. 1. First principal directions of turbulent stress anisotropy (dashed lines) and
mean strain rate tensor (plain lines). Iso-contours of Q criterion.
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sors can exhibit strong misalignments, especially in coherent structures [4].
This emphasises in particular that Boussinesq’s hypothesis is not valid in these
regions. To capture these non-linearities, an alternative to Non-Linear Eddy-
Viscosity Models or Explicit Algebraic Reynolds Stress Models is developped.
The anisotropy tensor is modelled by its projection onto the strain principal
matrices. This allows an individual weighting of each principal matrix con-
tribution. A generalisation of the linear eddy-viscosity model that involves
a tensorial eddy-viscosity can be deduced [5]. This tensorial eddy-viscosity
is estimated owing to new transport equations derived from the Differential
Reynolds Stress Modelling by [6]. This Anisotropic OES turbulence mod-
elling has been implemented in Navier-Stokes Multi-Block software and leads
to promising results concerning the prediction of the flow past a NACA0012
airfoil at 20o of incidence, Re = 105 and Ma = 0.18. Moreover, this approach
is considered to improved the statistical part of the hybrid Detached Eddy
Simulation. An efficient prediction of the three-dimensional flow past a circu-
lar cylinder at Re = 1.4 × 105 is achieved by the DES-OES approach based,
at first, on a scalar eddy-viscosity (Fig. 2).

Fig. 2. DES-OES simulation: instantaneous (a) iso-surfaces of the transverse vortic-
ity and (b) iso-contours of Q criterion, identification of KelvinHelmholtz instability.
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Experimental vortex generation and
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The flow structures around the magnetic obstacle (localized magnetic field)
[1] in dependence on interaction parameter N were studied experimentally.
We used horizontal open rectangular cell (130×10×2 cm) filled up by liquid
metal alloy GaInSn and a permanent magnet (3×4×2 cm) moving under cell
bottom. At visualization we fixed tracers of gas bubbles generated by weak
acid solution, which moved on fluid free surface along stream-lines. At small N
and large Re the flow is nonedding as in Fig. 1a. Vortex circulations in area of
magnetic field action appears as in Fig. 1b when N reaches critical value Nc1

[1]. At N = Nc2 (Nc2 > Nc1) a six-vortex structure (”magnetic”, attached,
and connecting vortices) shown in Fig. 1c is generated.

(a)       N = 2.1     Re = 1500 

(b)       N = 5.3     Re = 500

(c)       N = 20.3   Re = 125

Fig. 1. The sequence of vortex structures at flow around a magnetic obstacle. White
dash line is a magnet projection on free surface
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Based on Kolmogorov’s equation of filtered quantities [1,2], a new dynamic
subgrid model for magnetohydrodynamic (MHD) turbulence is obtained. Sim-
ilar to Politano’s derivation [3], when the two-point distance ξ is much larger
than the filter size, and is located in the inertial subrange, the simplified
formulation of Kolmogorov’s equation for filtered quantities reads:

−4εT
f ξ/5 = AT , −4εC

f ξ/5 = AC , (1)

in which εT
f and εC

f are the total dissipation and cross dissipation, respectively.

The terms on the right hand sides are AT = 〈δu<3

l (ξ)〉 − 6〈b<2

l (x)u<
l (x +

ξ)〉, AC = −〈δb<3

l (ξ)〉+ 6〈u<2

l (x)b<l (x+ ξ)〉.
Following Agullo et al. [4] and introducing eddy-viscosity assumptions lead

to
εT

f = 2νt〈S<
ijS

<
ij 〉+ 2ηt〈J<

ijJ
<
ij 〉, εC

f = 2(νt + ηt)〈S<
ijJ

<
ij 〉. (2)

Considering EC ≈ 0, i.e. assuming that the magnetic field does not directly
affect the subgrid velocity stress, and ignoring the cross-helicty in (2) allow
the simplified formulation

νt =
−5

8ξ

〈δu<3

l (ξ)〉
〈S<

ijS
<
ij 〉

, ηt =
15

4ξ

〈b<2

l (x)u<
l (x+ ξ)〉

〈J<
ijJ

<
ij 〉

. (3)

This new subgrid model is an extension of the CZZS model [1] for MHD
turbulence. It has been tested in A Posteriori tests.
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Low-Prandtl number MHD cooling in a

vertical cylindrical container
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Results of direct numerical simulations are presented for the strongly transient
and turbulent natural convection cooling of an initially isothermal quiescent
liquid metal placed in a cylinder under the effect of an external vertical uni-
form and constant magnetic field. The electrically conductive low Prandtl
number fluid is put to motion when the vertical sidewall is suddenly cooled
to a uniform lower temperature. See Sarris et al. [1] for further details.

Several simulations of the natural convection cooling of the liquid metal
were performed in the range 1×107 ≤ Ra ≤ 2×109 of Rayleigh numbers and
Hartmann numbers between 0 and 300. Numerical results show that imposing
the magnetic field, no observable effect is encountered at the initial stage of
the vertical boundary layer development, while in the next stages, decelerates
significantly the fluid motion. Imposing the magnetic field, conduction heat
transfer is favored and the duration of the stratification and cooling stages
are longer as shown in Fig. 1.

(a) (b)

Fig. 1. Isotherms for Ra = 109, Ha = 0 (upper), and 300 (lower) for times (a)
1 ≤ t ≤ 5 and (b) 10 ≤ t ≤ 30.
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Anomalous scaling of passively advected
magnetic field in the kinematic MHD

Kazantsev-Kraichnan model

E. Jurčǐsinová, M. Jurčǐsin, and R. Remecky
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04001 Košice, Slovakia
remecky at saske.sk

The problem of anomalous scaling of the equal-time correlation functions of
the fluctuating part of a weak magnetic field B deep inside the inertial interval
is studied in the framework of the MHD Kazantsev-Kraichnan model in the
presence of a strong large-scale magnetic field B0. The model is described by
the stochastic equation

∂tB = κ0�B− (v · ∂)B + (B · ∂)v + (B0 · ∂)v, (1)

where v = v(x) is the incompressible velocity field and κ0 is magnetic diffu-
sivity. The term with B0 is a source of the anisotropy and plays the role of
an external force.

The statistics of the velocity field v is supposed in the following Gaussian
form

〈vi(x1, t1)vj(x2, t2)〉 = δ(t1 − t2)

∫
ddk

(2π)d
D0k

−d−εPij(k) exp[ik · (x1 − x2)],

(2)
where D0 is an amplitude and Pij = δij − kikj/k

2 is the transverse projector.
The influence of large-scale anisotropy on the anomalous scaling behavior

is demonstrated. It is shown that the anomalous behavior is driven by the
operators from the isotropic shell. The final asymptotic form of the correlation
functions BN−m,m has the form BN−m,m(r) ∼ rγ

∗

N
−γ

∗

N−m
−γ

∗

m , where γ∗y , y =
N,N −m,m are anomalous dimensions of the corresponding set of composite
operators F [y, p] = Bi1 · · ·Bip

(B · B)(y−p)/2. The corresponding anomalous
dimensions are calculated to the second order in the perturbation expansion
in ε, i.e., in the two-loop approximation. The results are compared to the
results obtained within the one-loop approximation and also to the two-loop
results for the anomalous scaling of the Kraichnan rapid-change model of a
passively advected scalar field. The corresponding discussion is done.
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A new compressible turbulence model for free
and wall-bounded shear layers

J.Y. Kim, and S.O. Park
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Recent DNS (Direct Numerical Simulation) results indicate that the main
compressibility effect in turbulence comes from the reduced pressure-strain
term due to reduced pressure fluctuations. In our previous work, using the
concept of moving equilibrium in compressible homogeneous shear flow, we
developed a compressible pressure-strain model by modifying an incompress-
ible linear pressure-strain model. The model is characterized by a decrease in
the primary redistribution term but an increase in the secondary redistribu-
tion term. However, this model is not suitable for wall-bounded compressible
flows since the compressible parameter is expressed as a function of turbulent
Mach number only. It is well known that compressible effects vanish or be-
come weak in compressible boundary layers, but the turbulent Mach number
alone is not sufficient to mimick this nature. It is also widely known that the
existing compressibility correction models deteriorate the prediction perfor-
mance of the incompressible turbulence models in the calculation of supersonic
wall-bounded flows.

It has widely been recognized that gradient Mach number is also an im-
portant parameter in addition to turbulent Mach number for compressible
turbulence. Gradient Mach number is more adequately defined by using two-
point correlation as indicated in DNS studies. Thus it is difficult to employ
gradient Mach number in single-point closure models. Ristorcelli’s model for
dilatational terms includes gradient Mach number effect but important model
coefficients are left undetermined. Yoshizawa et al. modified a linear eddy-
viscosity model using the result of Two-Scale Direct-Interaction Approxima-
tion. Compressible effect was considered as a combination of non-equilibrium
parameter and the turbulent Mach number.

In this work, we adopt the relationship between the normalized pressure
variance and the compressible parameter in the model of Yoshizawa et al. to
propose a modified compressible function of our earlier work which takes into
account gradient Mach number effect. The proposed model is then applied to
supersonic free shear and boundary layers for validation.
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Modelling of turbulent flow in a gas burner.

K. Kwiatkowski and K. Bajer
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When multi-species, non-premixed flows combine with chemical reactions,
common situation in industrial devices, the mixing or diffusive phenomena
become the key factors to understand the whole process. Turbulence is con-
ducive to mixing of species and consequently may increase the reaction effi-
ciency [1]. That motivates us to study in details the mixing of fuel with air,
in a complex geometry industrial gas burner, without ignition and chemical
reactions.

We create a 3D model of a real industrial syngas burner with additional
air-inlet structures, which enhance the swirl and promote the generation of
vortices.

The aim of simulations is to improve the performance of the burner by
creating additional, controlled, vortex-driven mixing zones, where the partly
burnt exhaust gases can again react with fuel. To design those vortex genera-
tors two fundamental theoretical problems seem to be immediately important
and interesting [2]:

- mixing and reacting of two species in the velocity field outside a concen-
trated vortex. On that spatial scale the species concentrations, far away from
the vortex axis, are constant.

- mixing and reacting of two species with constant concentrations inside
a large vortex, assuming that the reaction is much faster than diffusion and
therefore takes place only in a relatively thin layer.
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