ball, ot the order e“/a, was identified as the electron mass. Interpreting 1/a as
A, we could say that in classical physics the electron mass is proportional to A
and diverges linearly. Thus, one way of stating the Weisskopf phenomenon is that
“bosons behave worse than a classical charge, but fermions behave better.”

As Weisskopf explained in 1939, the difference in the degree of the divergence
can be understood heuristically in terms of quantum statistics. The “bad” behavior
of bosons has to do with their gregariousness. A fermion would push away the
virtual fermions fluctuating in the vacuum, thus creating a cavity in the vacuum
charge distribution surrounding it. Hence its self-energy is less singular than would
be the case were quantum statistics not taken into account. A boson does the
opposite.

The “bad” behavior of bosons will come back to haunt us later.

Exercises

111.3.1. Show thatin (1 + 1)-dimensional spacetime the Dirac field - has mass dimension
1, and hence the Fermi coupling is dimensionless.

II1.3.2. Derive (11) and (13).

IM.3.3. Show that B(p?) in (14) vanishes when we set m = 0. Show that the same behavior
~ holds in quantum electrodynamics.

II1.34. We shéwed that the specific contribution (14) to 3m is logarithmically divergent.
Convince yourself that this is actually true to any finite order in perturbation
theory.

Chapter II1.4

Gauge Invariance: A Photon
Can Find No Rest

When the central identity blows up

I explained in Chapter 1.7 that the path integral for a generic field theory can be
formally evaluated in what deserves to be called the Central Identity of Quantum
Field Theory:

-1
/D(pe Lo Ko-Vytie _ ,~VG/3D 3K (1)

For any field theory we can always gather up all the fields, put them into one giant
column vector, and call the vector ¢. We then single out the term quadratic in ¢
writeitas ¢ - K - ¢, and call therest V (). I am using a compact notation in which
spacetime coordinates and any indices on the field, including Lorentz indices, are
included in the indices of the formal matrix K. We will often use (1) with V =0

f Dpe 30K+ = AT @

But what if K does not have an inverse?
" This is not an esoteric phenomenon that occurs in some pathological field
theory, but in one of the most basic actions of physics, the Maxwell action

S(A) = f d*xl = f d*x [%Au(azg”"—a”'a")Av+A,,,J“]- 3

The formal matrix K in (2) is proportional to the differential operator (32g** —
973V) = Q*. A matrix does not have an inverse if some of its eigenvalues are
zero, that is, if when acting on some vector, the matrix annihilates that vector.
Well, observe that Q*" annihilates vectors of the form 8, A(x) : Q*"3,A(x) =0.
Thus Q" has no inverse.

There is absolutely nothing mysterious about this phenomenon; we have already
encountered it in classical physics. Indeed, when we first learned the concepts
of electricity, we were told that only the “voltage drop” between two points has

* physical meaning. Atamore sophisticated level, we learned that we can alwaysadd
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auy LULdLALL (UL LIUCCU dity LUHCUON 01 UITe) TO me electrostanc potential (which
is of course just “voltage”) since by definition its gradient is the electric field. At
an even more sophisticated level, we see that solving Maxwell’s equation (which
of course comes from just extremizing the action) amounts to finding the inverse
QL. [In the notation I am using here Maxwell’s equation 8, F*¥ = JV is written
as Q,,A" = J”, and the solution is A” = (Q~1)"¥J,.]

Well, 0! does not exist! What do we do? We learned that we must impose an
additional constraint on the gauge potential A, known as “fixing a gauge.”

A mundane nonmystery

To emphasize the rather mundane nature of this gauge fixing problem (which some
older texts tend to make into something rather‘mysterious and almost hopelessly
difficult to understand), consider just an ordinary integral [">° dAe~A"KA, with
A = (a, b) a2-component vector and K = (1) } 8 , a matrix without an inverse.

Of course you realize what the problem is: We have [*°° [*® da db =" and
the integral over b does not exist. To define the integral we insert into it a delta
function 8(b — §). The integral becomes defined and actually does not depend
on the arbitrary number £. More generally, we can insert 8[ f (b)] with f some
function of our choice. In the context of an ordinary integral, this procedure is
of course ludicrous overkill, but we will use the analog of-this procedure in what
follows. : .
The necessity for imposing by hand a (gauge fixing) constraint in gange theories
. can be seen from physical reasoning as well. In Chapter 1.5 we sidestep this whole
issue of fixing the gauge by treating the massive vector meson instead of the photon.
In effect, we change Q*" to (3% + m2)g"’ — 3*3", which does have an inverse
(in fact we even found the inverse explicitly).

Consider a massive vector meson moving along. By a Lorentz boost, we can
always bring it to its rest frame, where we can apply what we learned about the
rotation group, namely that a spin 1 meson has three spin states or, classically,
polarization states. But if the vector meson is massless, we can no longer find

~ a Lorentz boost that would bring us to its rest frame. A photon can find no
rest!

A massless spin 1 field is intrinsically different from a massive spin 1 field—
that’s the crux of the problem. Now we have only rotations around the direction
of motion of the photon, that is, O(2). The photon has only two polarization
degrees of freedom. (You already learned in classical electrodynamics that an
electromagnetic wave has two transverse degrees of freedom.) This is the true
physical origin of gange invariance.

In this sense, gauge invariance is, strictly speaking, not a “real” symmetry but
merely a reflection of the fact that we used a redundant description: a Lorentz
vector field to describe two.physical degrees of freedom.
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I will now discuss the method for dealing with this redundancy invented by Faddeev
and Popov. As you will see presently, it is the analog of the method we used m
our baby problem above. Even in the context of electromagnetism this method is
a bit of overkill, but it will prove to be essential for nonabelian gauge theories (as
we will see in Chapter VIL.1) and for gravity. I will describe the method using a
completely general and somewhat abstract language. In the next section, 1 w111 the.n
apply the discussion here to a specific example. If you have some trouble with this
section, you might find it helpful to go back and forth between the two sections.

Suppose we have to do the integral I = [ DA¢'S4); this can be an ordinary
integral or a path integral. Suppose that under the transformation A — A, the
integrand and the measure do not change, that is, S(A) = S(Ag) and DA = DA,.
The transformations obviously form a group, since if we transform again with
g, the integrand and the measure do not change under the combined efffzct of
g and g’ and A, > (Ap)y = Agy. We would like to write the integral I in the
form I = ( f Dg)J, with J independent of g. In other words, we want to factor
out the redundant integration over g. Note that Dg is the invariant measure over
the group of transformations and J Dg is the volume of the group. Be aware of
the compactness of the notation in the case of a path integral: A and g are both
functions of the spacetime coordinates x. -

I want to emphasize that this hardly represents anything profound or mysterious.
If you have to do the integral I = [ dx dy e!5%:) with $(x, y) some function of
x2 + y2, you know perfectly well to go to polar coordinates I = (f d6)J = (2n)J,
where J = dr re!S® is an integral over the radial coordinate r only. The factor
27 is precisely the volume of the group of rotations in 2 dimensions.

Faddeev and Popov showed how to do this “going over to polar coordinates”
in a unified and elegant way. Following them, we first write the numeral “one”
as 1= A(A) [ Dgd[f(Ap)], an equality that merely defines A(A). Here f %s
some function of our choice and A(A), known as the Faddeev-Popov determi-
nant, of course depends on f. Next, note that [A(Ag/)]‘1 = [ Dgélf (Agp)l=
J Dg"8[f(Agn]l= [A(A)T"!, where the second equality follows upon defining
g’ = g’g and noting that Dg” = Dg. In other words, we showed ﬂ}at A(A.) =
A(A,) : the Faddeev-Popov determinant is gauge invariant. We now insert 1 into
the integral I we have to do:

(= [ pacss
_ / DAFSDA(4) f DgsLf (Ap)]

= f Dg / DAESHDAA)SLf(AD] @
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At the physicist’s level of rigor, we are always allowed to change integration
variables until proven guilty. So let us change A to A ¢-1; then

I= ( / Dg) / DASMA(A)S[£(A)] )

where we have used the fact that DA, S(A), and A(A) are all invariant under A —
Ag1.

That’s it. We’ve done it. The group integration (f Dg) has been factored out.

The volume of a compact group is finite, but in gauge theories there is a separate
group at every point in spacetime, and hence ( [ Dg) is an infinite factor. (This also
explains why there is no gauge fixing problem in theories with global symmetries
introduced in Chapter 1.9.) Fortunately, in the path integral Z for field theory we
do not care about overall factors in Z, as was explained in Chapter 1.3, and thus
the factor (/' Dg) can simply be thrown away.

Fixing the electromagnetic gauge

Let us now apply the Faddeev-Popov method to electromagnetism. The transfor-
mation leaving the action invariant is of course A, —> A, —9,A, so g in the
present context is denoted by A and A ¢ =4, — 3, A. Note also that since the in-
Fegral I we started with is independent of f it is still independent of f in spite of
1ts appearance in (5). Choose f(A) = 3A — o, where o is a function of x. In par-
ticular, 7 is independent of o and so we can integrate I with an arbitrary functional
of &, in particular, the functional ¢~¢/2) J d*xo(x)? :
We now turn the crank. First, we calculate

AW = / Dgé[f(Ap]= / DAS@A — %A — o) ©)
Next we {1.0te that in (5) A(A) appears mulﬁplied by 3[ £ (A)] and so in evaluating
[AA)T™ in (6) we can effectively set f(A) =34 — o to zero. Thus from (6) we
have A(A4) “='” [ f DAS(?A)T~. But this object does not even depend on A, so
we can throw it away. Thus, up to irrelevant overall factors that could be thrown

away [ is just [ DAe*SA§(3A — o).
Integrating over o (x) as we said we were going to do, we finally obtain

2= [ Dot [0 [ ppsonan o)
- / DA SW—6/28) [ ax(aay? D

Nifty trick by Faddeev and Popov, eh?

ARy a4 My mRA (W) AN WaLWS AT WA Awprasewmae Wy

Sors(A) = S(A) — % / x4

= / d*x {-ZI—AM [azg”" - (1 - El) a“a"] A, + AILJ“} @®)

and QK by Q4 = 32g"Y — (1 — 1/£)3*3¥ or in momentum space ’:ffv =

—k%g" + (1 — 1/&)k*k”, which does have an inverse. Indeed, you can check
that

kvkl] 1 5L

2 |e”

to[—enra-phi] L

Thus, the photon propagator can be chosen to be

2 en-a- s>"“"’~] ©

k2 k%

in agreement with the conclusion in Chapter I1.7.

While the Faddeev-Popov argument is a lot slicker, many physicists still prefer
the explicit Feynman argument given in Chapter I1.7. I do. When we deal with the
Yang-Mills theory and the Einstein theory, however, the Faddeev-Popov method
is indispensable, as I have already noted. -

A reflection on gauge symmetry

As we will see later and as you might have heard, much of the woild beyond
electromagnetism is also described by gauge theories. But as we saw here, gauge
theories are also deeply disturbing and unsatisfying in some sense: They are
built on a redundancy of description. The electromagnetic gauge transformation
A, — A, — 9,A is not truly a symmetry stating that two physical states have the
same properties. Rather, it tells us that the two gauge potentials A pandA, -3, A
describe the same physical state. In your orderly study of physics, the first place
where A,, becomes indispensable is the Schridinger equation, as I will explain in
Chapter IV.4. Within classical physics, you got along perfectly well with just E
and B. Some physicists are looking for a formulation of quantum electrodynamics
without using A, but so far have failed to turn up an attractive alternative to what
we have. It is conceivable that a truly deep advance in theoretical physics would
involve writing down quantum electrodynamics without writing A ,.



Chapter I11.5
Field Theory without Relativity

Slower in its maturity

Quantum ﬁe.ld theory at its birth was relativistic. Later in its maturity, it found
applications in condensed matter physics. We will have a lot more to say about the
role of quantum field theory in condensed matter, but for now, we have the more
modest goal of learning how to take the nonrelativistic limit of a quantum field
theory. '

The Lorentz invariant scalar field theory

L=@dNHO00) —m2etep — AT D)2 )

(with .A > 0 as always) describes a bunch of interacﬁng bosons. It should certainly
contain the physics of slowly moving bosons. For clarity consider first the rela-
tivistic Klein-Gordon equation

@®+m)Hd =0 Y )

for a free scalar field. A mode with energy E =m + ¢ would oscillate in time as
® x e E! In the nonrelativistic limit, the kinetic energy ¢ is much smaller than
the rest mass m. It makes sense to write D, 1) =e™"™ (%, 1), with the field )
oscillating much more slowly than €™ in time. Plugging into (2) and using the
identity (B3/01)e™™ (. -y = e=imt(_jm 4 3/38)(: - -) twice, we obtain (—im +
/8% — V29 + m2¢p =0, Dropping the term (32/3¢2)¢ as small compared to
—2im(3/3t)p, we find Schrédinger’s equation, as we had better-

2, ¥
Al &)

By the way, the Klein-Gordon equation was actuaily discovered before
Schrédinger’s equation.

Having absorbed this, you can now easily take the nonrelativistic limit of a
quantum field theory. Simply plug

O, 1) = \/%e""”’cp(f, 9 @
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into (1) . (The factor 1/+/2m is for later convenience.) For example,

apfae  , . 1 ( a) T] ( . a) 21“}
—_— - DT - _ _ _ -
ar az " —>2m{[ mta)? M)l e

t o\
1. +3p d¢
~zi 2 22 5
2’("’3: 8t¢) ©)

After an integration by parts we arrive at
‘ 1 o
L =iplaop ~ —30%p ~ g(p'e)? ©)

where g% = A/4m?.

As we saw in Chapter 1.9 the theory (1) enjoys a conserved Noether current
J, = i(®13,® — 3, ®Td). The density J, reduces to o', precisely as you would
expect, while J; reduces to (i /2m)(978;¢ — 8,¢0"¢). When you first took a course
in quantum mechanics, didn’t you wonder why the density p = ¢'p and the
current J; = (i/2m)(¢'3,¢ ~ 8,07) look so different? As to be expected, various
expressions inevitably become uglier when reduced from a more symmetric to a
less symmetric theory. ’

Number is conjugate to phase angle

Let me point out some differences between the relativistic and nonrelativistic case.

The most striking is that the relativistic theory is quadratic in time derivative,
while the nonrelativistic theory is linear in'time derivative. Thus, in the nonrela-
tivistic theory the momentum density conjugate to the field ¢, namely 54 /5 3y, is
justio?, sothat [p!(Z, 1), o, )] = —8D)(% — ). In condensed matter physics
it is often illuminating to write ¢ = ,/pe’ so that .

i ) 1 a2y 1 2] 2.2
L==8p — pdhf — — | p(3;6 ~—(9; - 7
2% = pdo 2m[p(,)+‘m(,p) gp )
The first term is a total divergence. The second term tells us something of great
importance! in condensed matter physics: in the canonical formalism (Chapter

L.8), the momentum density conjugate to the phase field O(x) is 80/8950 = —p
and thus Heisenberg tells us that ’ S :

oz, 0,0, )] = isDE -3y ®)

1See P, Anderson, Basic Notions of Condensed Matter Physics, p. 235.



Integrating and defining N == f dPxp(%, t) = the total number of bosons, we find
one of the most important relations in condensed matter physics

[N,0]=i ®)

Number is conjugate to phase angle, just as momentum is conjugate to position.
Marvel at the elegance of this! You would learn in a condensed matter course that
this fundamental relation underlies the physics of the Josephson junction.

You may know that a system of bosons with a “hard core” repulsion between
them is a superfluid at zero temperature. In particular, Bogoliubov showed that the
system contains an elementary excitation obeying a linear dispersion relation.2 I
will discuss superfluidity in Chapter V.1.

The sign of fepulsion

In the nonrelativistic theory (7) it is clear that the bosons repel each other: Piling
particles into a high density region would require an energy g2p2. But it is less clear
in the relativistic theory that A(®'®)? with A positive corresponds to repulsion. I
outline one method in Exercise III.5.3, but here let’s just take a flying heuristic
guess. The Hamiltonian (density) involves the negative of the Lagrangian and
hence goes as A(PTD)2 for large ¢ and would thus be unbounded below for A < 0.
We know physically that a free Bose gas tend to condense and clump, and with
an attractive interaction it surely might want to collapse. We naturally guess that
A > 0 corresponds to repulsion. -

I next give you a more foolproof method. Using the central identity of quantum
field theory we can rewrite the path integral for the theory in (1) as

7= / DODoe J FHEIN@D)-m2dt 0420 010+(1/1)0%] (10)

Condensed matter physicists call the transformation from (1) to the Lagrangian
L=@dN)(@P) — m?*®Td 4 20 &T® + (1/X)a2 the Hubbard-Stratonovich trans-
formation. In field theory, a field that does not have kinetic energy, such as o, is
known as an auxiliary field and can be integrated out in the path integral. When
we come to the superfield formalism in Chapter VIII.4, auxiliary fields will play
an important role. ,

Indeed, you might recall from Chapter IT1.2 how a theory with an intermediate
vector boson could generate Fermi’s theory of the weak interaction. The same
physics is involved here: The theory (10) in which the @ field is coupled to an
“intermediate o boson” can generate the theory (1).

If o were a “normal scalar field” of the type we have studied, that is, if the
terms quadratic in o in the Lagrangian had the form 7(80’)2 — lM2 2 then its

2 For example, L.D. Landau and E. M. Lifschitz, Statisical Physics, p. 238.

propagator would be i /(k* — M? + i¢). The scattering amplitude between two ¢
bosons would be proportional to this propagator. We learned in Chapter 1.4 that
the exchange of a scalar field leads to an attractive force.

But ¢ is not a normal field as evidenced by the fact that the Lagrangian contains
only the quadratic term +-(1/A)o2. Thus its propagator is simply i/(1/A) =i},
which (for A > 0) has a sign opposite to the normal propagator evaluated at low-
momentum transfer i /(k? — M? + ig) =~ —i /M?. We conclude that & exchange
leads to a repulsive force.

Incidentally, this argument also shows that the repulsion is infinitely short
ranged, like a delta function interaction. Normally, as we learned in Chapter 1.4
the range is determined by the interplay between the k2 and the M2 terms. Here
the situation is as if the M? term is infinitely large. We can also argue that the
interaction A($T®)? involves creating two bosons and then annihilating them all
at the same spacetime point.

Finite density

One final point of physics that people trained as particle physicists do not always
remember: Condensed matter physicists are not interested in empty space, but want
to have a finite density g of bosons around. We learned in statistical mechanics to
add a chemical potential term u¢'y to the Lagrangian (6). Up to an irrelevant (in
this context!) additive constant, we can rewrite the resulting Lagrangian as

‘ 1 )
L=iptagy — %ai(oTai‘P - g%@'e ~ p)? (11)

Amusingly, mass appears in different places in relativistic and nonrelativistic
field theories. To proceed further, I have to develop the concept of spontaneous
symmetry breaking. Thus, adios for now. We will come back to superfluidity in
due time.

Exercises

IL5.1. Obtain the Klein-Gordon equation for a particle in an electrostatic potential
(such as that of the nucleus) by the gauge principle of replacing (3/37) in (2)
by 3/9t — ieAy. Show that in the nonrelativistic limit this reduces to the
Schridinger’s equation for a particle in an external potential.

I11.5.2. Take the nonrelativistic limit of the Dirac Lagrangian.

II1.5.3. Given a field theory we can compute the scattering amplitude of two particles
in the nonrelativistic limit. We then postulate an interaction potential U (X) be-
tween the two particles and use nonrelativistic quantum mechanics to calculate
the scattering amplitude, for example in Born approximation. Comparing the




two scattering amplitudes we can determine U (X). Derive the Yukawa and the
‘Coulom‘b potentials this way. The application of this method to the A(d'd)2
Interaction is slightly problematic since the delta function interaction is a bit sin-

gular, but it should be all right for determining whether the force is repulsive or
attractive.

Chapter II1.6
The Magnetic Moment of the Electron

Dirac’s triumph ‘
1 said in the preface that the emphasis in this book is not on computation, but how
can I not tell you about the greatest triumph of quantum field theory?

After Dirac wrote down his equation, the next step was to study how the electron
interacts with the electromagnetic field. According to the gauge principle already -
used to write the Schrodinger’s equation in an electromagnetic field, to obtain the
Dirac equation for an electron in an external electromagnetic field we merely have
to replace the ordinary derivative 3, by the covariant derivative D, =3, —ieA, :

(iy*D, —m)y =0 (6))

Recall (11.1.27).

Acting on this equation with (iy*D, + m), we obtain —(y*y"D,D, +
m2)y = 0. We have y*y"D,D, = i({y*, ¥*} + [y*, y'DD,D, = D, D* —
io®D,D, andic*'D,D, = (i/2)o*’[D,, D,]= (¢/2)0*"F,,,. Thus,

| (DuD” - %a’“’FM + m2) v=0 )

Now consider a weak constant magnetic field pointing in the 3rd direction
for definiteness, weak so that we can ignore the (A;)? term in (D;)2. By gauge
invariance, we can choose A9 =0, A; = —%sz, and A, = {Bx! (so that Fj; =
8,4, — 3,A; = B). As we will see, this is one calculation in which we really have
to keep track of factors of 2. Then

(D) = (8;)* —ie(3;A; + A;3) + O(AD)
= (@)%~ 2%13(::132 —x%) + 0(4)
=V2—eB-ixp+04}H e

Note that we used 3;A; + A;9; = (3;A;) + 24,9, =24; ai,,_}vhere in (9; 4;) the par-
tial derivative acts only on A;. You may have recognized L = X x p as the orbital
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178 III. Renormalization and Gauge Invariance

angular momentum operator. Thus, the orbital angular momentum generates an
orbital magnetic moment that interacts with the magnetic field.

This calculation makes good physical sense. If we were studying the interaction
of a charged scalar field ¢ with an external electromagnetic field we would start
with ’

(D,D* +mhHd =0 @)

obtaix}ed by r.eplacing the ordinary derivative in the Klein-Gordon equation by
covariant derivatives. We would then go through the same calculation as in (3).

Comparing (4) with (2) we see that the spin of the electron contributes the addi-
tional term (e/2)c ¥ F,,,.

As in €hapter 1.1 v&./e write ¢ = (?) in the Dirac basis and focus on
¢ since in the nonrelativistic limit it dominates y. Recall that in that basis
ol = giik (GO ;)k). Thus (e/2)o*"F,, acting on ¢ is effectively equal to

(e/2)0%(Fi3 — Fy) = (¢/2)20°B = 2eB - § since § = (3 /2). Make sure you un-

derstand all the factors of 2! Meanwhile, according to what I told you in chapter

IIl we should write ¢ = g“”" W, where W oscillates much more slowly than

e-";' so that (33 + m2)e™ "™ ~ =™ [2im(9/8t)W]. Putting it all together,
. we have

. a - - - -
[—2zm5 —V2_eB - (L+ 23)] V=0 )

There you have it! As if by magic, Dirac’s equation tells us that a unit of spin
angular momentum interacts with a magnetic field twice as much as a unit of orbital
angular momentum, an observational fact that had puzzled physicists deeply at the
time. The calculation leading to (5) is justly celebrated as one of the greatest in the
history of physics.

The story is that Dirac did not do this calculation until a day after he discovered
his equation, so sure was he that the equation had to be right. Another version is
that he dreaded the possibility that the magnetic moment would come out wrong
and that Nature would not take advantage of his beautiful equation.

Another way of seeing that the Dirac equation contains a magnetic moment is
by the Gordon decomposition, the proof of which is given in an exercise:

., _ !+ p)H iocH(p —

a()y u(p) = (p') [(” e a2 ”)"] “p) 6
Looking at the interaction with an electromagnetic field #(p’)y“u(p) A (D' — D),
we see that the first term in (6) only depends on the momentum (p’ + p)* and
would have been there even if we were treating the interaction of a charged scalar
particle with the electromagnetic field to first order. The second term involves
spin a{nd gives the magnetic moment. One way of saying this is that i (p’)y“u(p)
contains a magnetic moment component.

IIL.6. The Magnetic Moment of the Electron 179

The anomalous magnetic moment

With improvements in experimental techniques, it became clear by the late 1940’s
that the magnetic moment of the electron was larger than the value calculated by
Dirac by a factor of 1.00118 == 0.00003. The challenge to any theory of quantum
electrodynamics was to calculate this so-called anomalous magnetic moment. As
you probably know, Schwinger’s spectacular success in meeting this challenge
established the correctness of relativistic quantum field theory, at least in dealing
with electromagnetic phenomena, beyond any doubt.

Before we plunge into the calculation, note that Lorentz invariance and current
conservation tell us (see Exercise I11.6.3) that the matrix element of the electro-
magnetic current must have the form (here |p, s) denotes a state with an electron
of momentum p and polarization s)

ic*q,

(v, 1 I*©) |p, s) =a(p’, s") [V“Fl((f) + = Fz(qz)] u(p,s) M

where g = (p’ — p). The functions Fi(g% and F5(g%), about which Lorentz
invariance can tell us nothing, are known as form factors. To leading order in
momentum transfer ¢, (7) becomes :

’ w : UV
i@, ) {(L;‘T")—Fl(m + LR 0+ F2<0)1} u(p, 5)

by the Gordon decomposition. The coefficient of the first term is the electric charge
observed by experimentalists and is by definition equal to 1. Thus Fi(0) = 1.
The magnetic moment of the electron is shifted from the Dirac value by a factor

1+ F5(0).

Schwinger’s triumph

Let us now calculate F,(0) to order ¢ = €2 /Ax . First draw all the relevant Feynman
diagrams to this order (Fig. I11.6.1). Except for Figure 1b, all the Feynman diagrams
are clearly proportional to #(p’, s")y*u(p, s) and thus contribute to F; (g%, which
we don’t care about. Happy are we! We only have to calculate one Feynman
diagram.

It is convenient to normalize the contribution of Figure 1b by comparing it to the
lowest order contribution of Figure 1a and write the sum of the two contributions
as @(y* + I')u. Applying the Feynman rules, we find

d% —i i i
v_ | = - " liey’ w i
r _f 2 12 (tey n k—my 57 k_mtey,,) ®)

I will now go through the calculation in some detail not only because it is
important, but also because we will be using a variety of neat tricks springing
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Figure I1L6.1

from the brilliant minds of Schwinger and Feynman. You should verify all the
_ steps of course.
Simplifying somewhat we obtain I'* = —ie? [[d*k/(27)*)(N*/D), where

NE=y*(B'+ k+my”(p+ k—m)y, ®
and
L . =12 [daapl
D (P+k2-m2(p+k2-—m2k2 ./ * ﬂﬁ' (10

We have used the identity (D.16). The integral is evaluated over the triangle in the
(a-B) plane bounded by o =0, § =0, and o + B =1, and

D =[k? + 2k(ep’ + Bp)F =1 — (« + BY*m*F + 0(g®) (11)

where we completed a square by defining k ={ — (ap’ + Bp).
Our strategy is to massage N* into a form consisting of a linear combination

of y#, p#, and p"*. Invoking the Gordon decomposition (6) we can write (7) as

i {y”[Fl(qz) + F(gH]1— i(p’ + p)“Fz(qz)} u

Thus, to extract F,(0) we can throw away without ceremony any term proportional
to y# that we encounter while massaging N*. So, let’s proceed.
Eliminating k in favor of / in (9) we obtain

NE=y'[J+ P +mWy ]+ P +mly, 12)

where P'* = (1 — a)p™ — Bp* and P* = (1 — B) p* — ap’*. I will use the iden-
- tities in Appendix D repeatedly, without alerting you every time I use one. It is
' convenient to organize the terms in N* by powers of m. (Here I give up writing in
complete grammatical sentences.)

1. The m? term: a y* term, throw away.
2. The m terms: organize by powers of /. The term linear in / integrates to 0 by
symmetry. Thus, we are left with the term independent of :
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m(y’ P'y*y, +y'y* Py,) =4ml(1 = 2e)p™* + (1 - 28)p*]
— 4m(1 —a - B’ + p)* (13)

In the last step I used a handy trick; since D is symmetric under & «— 8,
we can symmetrize the terms we getin N,

3. Finally, the most complicated m® term. The term quadratic in /: note that
we can effectively replace 1°1° inside [ d*1/(2m)* by 17°*12 by Lorentz
invariance (this step is possible because we have shifted the integration
variable so that D is a Lorentz invariant function of /2.) Thus, the term
quadratic in  gives rise to a y# term. Throw it away. Again we throw away
the term linear in /, leaving [use (D.6) here!]

v  P'y* Py,==-2pPy* P!
- =2[1-B) p—amly*[(1—a) p' — Bm] (14)

where in the last step we remembered that I'* is to be sandwiched between
#(p’) and u(p). Again, it is convenient to organize the terms in (14) by
powers of m. With the various tricks we have already used, we find that the
m? term can be thrown away, the m term gives 2m(p’ + p)*le(1 — @) +
B — B)], and the m? term gives 2m(p’ + p)*[—2(1 — a)}(1 — B)]. Putting
it altogether, we find that N* — 2m(p’ + p)*(a + B)(1 — a — )

We can now do the integral f [d*1/(27)*)(1/D) using (D.11). Finally, we obtain

—i 1

I* = —2ie’ f dad #
e | e D G T e
' 2
e 1 , '
=——— (¢ +p* 15
i, @ +P) (15)
and thus, trumpets please:
F(0) = ..f_z_.. =2 (16)
VT8 T 2

Schwinger’s announcement of this result in 1948 had an electrifying impact on the
theoretical physics community.

I gave you in this chapter not one, but two, of the great triumphs of twentieth
century physics, although admittedly the first is not a result of field theory per se.

Exercises

{ I5.6.1. Evaluate @(p')( 'y + y* p)u(p) in two different ways and thus prove Gordon
decomposition.



