On a self-sustaining process in shear flows
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A self-sustaining process conjectured to be generic for wall-bounded shear flows is investigated.
The self-sustaining process consists of streamwise rolls that redistribute the mean shear to create
streaks that wiggle to maintain the rolls. The process is analyzed and shown to be remarkably
insensitive to whether there is no-slip or free-slip at the walls. A low-order model of the process is
derived from the Navier—Stokes equations for a sinusoidal shear flow. The model has two unstable
steady solutions above a critical Reynolds number, in addition to the stable laminar flow. For some
parameter values, there is a second critical Reynolds number at which a homoclinic bifurcation
gives rise to a stable periodic solution. This suggests a direct link between unstable steady solutions
and almost periodic solutions that have been computed in plane Couette flow. It is argued that this
self-sustaining process is responsible for the bifurcation of shear flows at low Reynolds humbers and
perhaps also for controlling the near-wall region of turbulent shear flows at higher Reynolds
numbers. ©1997 American Institute of Physids$51070-663(97)03204-2

I. INTRODUCTION linear theory. If a linear instability occurs, then a new branch
of solution bifurcates from the laminar state and that new
Shear flows are a fundamental class of fluid flows. Thepranch can be studied by weakly nonlinear analysis in the
canonical examples are plane Couette, plane Poiseuille anflanner of Malkus and Verorii®r Stuart or by numerical
pipe Hagen-Poiseuille flows. In such simple cases, theontinuation, but the absence of a linear instability prevents
Navier—Stokes equations have a simple steady stat¢ose tools from being powered-up.
solution—the laminar state of the flow—in which the veloc- The lack of exponentially growing linear eigenmodes
ity is parallel to the walls and varies only in the wall-normal has led many researchers to go back to the full initial value
direction. Experimental studies reveal that there is a criticaproblem and consider a variety of “transition scenarios.”
value of the Reynolds numbeR., below which the laminar  Those scenarios should not be confused with the “routes to
state is observed and above which the flow may be “turbuchaos” such as the Ruelle—Takens, Feigenbaum period dou-
lent.” This at once suggests an instability of the laminarbling or Pomeau—Manneville routes to chdoransition
state, but linear stability analyses lead to the conclusion thajcenarios focus on the temporal sequence of events leading
the laminar state is stable for all Reynolds numbérs. from particular initial conditions to the turbulent attractor.
From a general point of view, a shear flow is a nonlinearThe scenarios do not describe generic sequences of bifurca-
dynamical systendu/dt=f(u,R), the Navier—Stokes equa- tions of attractors in parameter space, nor do they describe
tions for incompressible flow with appropriate forcing andthe characteristics of the turbulent attractor. A leading tran-
boundary conditions, that depends on a single paranf&ter sition scenario has been the evolution from a finite amplitude
the Reynolds number. That dynamical system has one simpleast stable linear eigenmode plus small random
fixed point—the laminar state—linearly stable for Rlland  perturbation§:® One of its interests is that it led to the
some mysterious attractor—the turbulent state—wReis  (re-)discovery of the 3D instability of elliptical vortice§:**
larger than some finitR. . Virtually all initial conditions are A different scenario called “bypass transition” has been ar-
attracted to the turbulent state >R, while they are at- gued to predominate in less controlled situations. Bypass
tracted to the laminar state<R.. In fact, it can be shown transition loosely denotes any scenario that does not start
that there exists a finite Reynolds numbgg<R. below  with the least stable linear eigenmode. Several bypass sce-
which the flow tends to the laminar state s, for all narios have been studied through numerical simulations of
initial conditions®# The proof uses the fact that the nonlin- the Navier—Stokes equatiofe.g., Ref. 12
earity in the Navier—Stokes equations conserves the total en- In a similar vein, several researchers have advanced that
ergy. Hence, the laminar state is tlgdobal attractor if the key to understanding transition to turbulence in shear
R<R. and alocal attractor for allR. Observations suggest flows is to be found in the transient growth associated with
that the laminar state remains a global attractor up tdhe non-normality of the linearized operaferg., Refs. 13—
R=R, after which a mysterious, or perhaps only “strange,” 15). The idea and results are not Né¥’ (see Ref. 18 for
attractor emerges. Some of the main objectives are to predicther referencesut the formulation is somewhat more gen-
the critical Reynolds numbeR, and theR-dependence of eral and elegant than earlier studies. Nonetheless, the nonor-
turbulent statistics—the momentum transpub) in par-  thogonality of the eigenmodes does not change the fact that
ticular, as well as to elucidate the structure of the turbulenthe linear analysis is only valid locally and unable to predict
attractor and the nature of turbulence. global features such as the size of the basin of attraction of
However, the linear stability of the laminar state and thethe laminar state or the emergence of new attractors not con-
complexity of the turbulent attractor lead to much difficulty nected to the laminar stat&?® Those important questions
in the study of shear flows as our principal tools are based omust consider the particular nonlinearity of the system of
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interest. Simple nonlinear modék?*#illustrating how lin- Streaks

ear transient growth and “nonlinear mixing” could lead to
transition, have been showhto violate basic properties of advection of instability of
the Navier—Stokes nonlinearitgee also Secs. Ill and)y mean shear SSP Ufy.z)

One approach that directly attacks the full nonlinear
problem is to look for new fixed points of the dynamical

system. In practice, this is extremely difficult as the basic Strsg;nﬁ‘géze e’;‘;’é&f‘ *)
tool—Newton’s method—requires a very good initial guess \_/
of the fixed point. The primary technigue has beeamtinu- nonlinear

ation methods, where one starts from an “adjacent” problem
for which a nontrivial fixed point is accessible then hopes to
follow it through parameter space to the region of interest.
Malkus and Zaff® used that strategy numerically and experi-

mentally by starting from pressure-driven Ekman flow. This  Thjg process was first isolated in the form of remarkably
is the flow between two parallel planes rotating around thebrganized nearly time-periodic solutions of the Navier—
normal to the planes. By progress_i\{ely redL_JCing the rotatio_rgtokes equation€Figs. 5 and 6 in Ref. 26 Those solutions
rate, they managed to track nontrivial solutions back to Poiyere optained by starting from an equilibrated turbulent flow
seuille flow. However, from their experimental observationsyng tracking it down for decreasing box size, a procedure
they concluded that a concurrent spot-like process, unconpgpired in part by the work of Jimenez and MhThis
nected to their new solutions, occurred as plane Poiseuillgacking procedure amounts to a continuation technique in a
flow was approached. Nagatastarted from Taylor—Couette three-dimensional parameter space corresponding to the
flow in the narrow gap limit which is plane Couette flow Reynolds number and the periods in the streamwisend
rotating around the spanwise directiguarallel to the walls  spanwisez directions, but it is a turbulent solution that is
and perpendicular to the flow directiorBy following a se-  tracked instead of fixed points. Further such numerical simu-
ries of bifurcations, Nagata succeeded in tracking fixedations have been done together with detailed analyses of
pOintS to nonrotating plane Couette flow. But those SOlUtion%ach phase of the process through a series of controlled nu-
survived at Reynolds numbers three times smaller than thgerical simulations of the Navier—Stokes equatifigs. 2,

R. observed experimentally and were later found to be ung and 4 in Ref. 2V An eigenmode analysis of the instability
stable by Clever and BuséeNo clues have been offered as of the two-dimensionalJ(y,z) profile has also been done
to the relevance of those solutions and their relation to extogether with an explicit verification that the nonlinear inter-
periments, until the work reported in Ref. 19. The fixed pointaction of the growing eigenmode does indeed feed back on
continuation approach is a nice procedure, however it rethe streamwise roll Finally, a low-order model of the pro-
quires much artistry and is by no means guaranteed to sugess has been propos&d that may provide a framework to
ceed. The continuation approach also offers limited insightonnect the steady solutions in plane Couette }fcamd the

into the nonlinear mechanics of the new solutions. nearly time-periodic solution:?’

A different approach based on a detailed mechanistic The steady solutiod$ have been tracked down to Rey-
understanding of the new nonlinear states has been followegblds numberd&k~120 in plane Couette flow but the nearly
by this author together with Kim and Hamiltdh'*?*?"  periodic solution®? apparently disappear beloR~350.
Where most previous endeavors focused on transient mech@he latter critical valueR~ 350 coincides with that found in
nisms that occur during the transition to turbulence, the obexperimentd: % and computatiorié for larger horizontal
jective of this approach was instead to extract those mechatomains, in which case the solutions are quite disordered and
nisms thatmaintainthe turbulence. From the synthesis of a spot-like. This discrepancy between critical Reynolds num-
large body of experimental observations and theoreticabers led to questions about the relevance, and validity, of the
work, it has been possible to identify a fundamental self-steady solutions. The solutions have been confifft@dut
sustaining process in shear flows. The identification of thathown to be unstable. The low-order model has shed some
process was guided by the conceptual pictures of the “burstight on this situation as it shows a saddle-node bifurcation,
ing process” and associatdwbrseshoe vorticesbserved in  around R=100 for some values of the parameters, from
turbulent boundary layetd as well as by the “mean flow- which two new steady solutions arise, in addition to the lami-
first harmonic theory” proposed by Bennéy. nar solution, but typically both are unstable. Around

The self-sustaining process consists of three distincR=350 however, a global bifurcation of homoclinic type
phases. First, weak streamwise rqlV(y,z),W(y,z)] re-  takes place leading to a stable periodic solution.
distribute the streamwise momentum to create large span- This paper has two parts. In Sec. I, the self-sustaining
wise fluctuations in the streamwise velocitf{y) —U(y,2). cycle (Fig. 1) is cut open and its three phases are studied in
The spanwise inflections then lead to a wake-like instabilitysuccession. That part closely parallels an earlier stbde
in which a three-dimensional disturbance of the formprincipal objectives here are to establish the relevant symme-
e'“v(y,z) develops. The primary nonlinear effect resulting tries of the process and to demonstrate its insensitivity to
from the development of the instability is to reenergize thewhether there is no-slip or free-slip at the walls. This insen-
original streamwise rollsv* —V(y,z), leading to a three- sitivity to the boundary conditions underlines the robustness
dimensional self-sustaining nonlinear procéssg. 1). of the process. In the present study we concentrate on steady

self-interaction

FIG. 1. The self-sustaining process.
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states for each phase as this is more in the spirit of a susvhere

tained process than the earlier study that focused on peak

streak amplitude and instability growth rate. The symmetries o(y)= cos(py) _ cosft yy) ,
and free-slip boundary conditions are used in the second part cosp coshy

of this paper(Sec. Il)) to derive a low-order model of the normalized so that méz;(y)zl and p is a root of

self-sustaining process. The low-order model is derived from tanp-+ y tanhy=0. The spanwise componew(y,z) fol-

the Navier—Stokes equations through a truncated Galerkiﬁ)WS from the continuity equatiodV/dv+ W/ dz=0 and
projection on Stokes modes followed by a physically- y €4 y

motivated reduction. The reduction amounts to projecting indhe flow[0,V(y,2),W(y,2)] is an eigenmode of the Stokes

streamwise-dependent part of the flow on the eigenmode c%perator. The decay rate of those roll eigenmodes is then

2 2 2 2 i
the streak instability instead of Stokes modes. The model iip:;;’ )QjéthQ:Zn?wrsg rongswi?h ?;Z";E:vm g:e Z’ﬁgwgt
derived for a wall-bounded sinusoidal sy shear flow, Y= e N

| By|=< /2, with free-slip boundary conditions instead of the in Fig. 2 for y=5/3. The amplitude of the roll%/, can then
. L . be selected from the criterion that the roll advection rate,
more conventional plane Couette and Poiseuille flows Wlﬂ\//h be of the order of the streak diffusion rate

o st e v e sl s fow s eesin . 5,04 W, 521 By r
y y p2+ y?) v/h?, thus selecting the weakest rolls that live long

modeling as the laminar state is a Galerkin mode and th nough to create the stronge@ind thus most unstable
total energy in the low-order model is then exactly conservecgtreags In nondimensional t(grms the amplitude of the rolls
by nonlinear mteracf[lons_. As will _be seen, the self-sustamlnqS V=~ (B2+2)IR or V~(p+ y2)IR. For R=400, y=5/3,
process that was first isolated in plane Couette flow als?hese criteria. diveV~0.013 andV~0.024. respectivel
occurs in this sinusoidal shear flow. This is a first explicit, , . givev="1. PO PECUVEy.
%/F\lllth respect to the time dependence of the streamwise rolls,
flow may actually be a better vehicle for progress in eluci- ere are two_ nat_ural choices, _el'Fh_e_r let the_ rolls de(_:ay vIs-
dating the nonlinear dvnamics of shear flows owind to itScously, or maintain them at their initial amplitude. This sec-
reatger simplicit y 9 ond choice was adopted for simplicity and because it is more
9 plictty. in the spirit of a sustained process. The mechanism that sus-
tains the streamwise rolls is elucidated in Sec. Il C.
II. THE THREE PHASES OF THE PROCESS From Eq.(1), the effect of the periodic array of stream-
wise rolls (2) is to induce a spanwise modulation in the
streamwise velocity of the form
The simplest element of the self-sustaining process -
(SSB, Fig. 1, is .undoubtedly the streamwisg rolls U(y,2)= s U,(y)cosnyz, @)
[0V(Y,2),W(Y,z)] which decouple from the streamwise ve- n=0
locity [U(y,2),0,0] when the flow is independent of. In oA
that case the rolls have no energy source and suffer a slogch that, withv(y) even, Uz (y) has the symmetry of
viscous decay. However, the streamwise velodilyis F(¥) and Uz 1(y) has the opposite ns+ylmmetry. Fei(y)
strongly redistributed iry-z planes by the streamwise rolls, ©dd and for Couette flow),(y)=(—1)"""Un(—y). In ad-
as governed by the advection—diffusion equation, dition to z-reflection V(y,z)=V(y,—2), which implies
U(y,z)=U(y,—2z) and the cosine expansion(8), the main
1 symmetry of the rolls i8/(y,z)=—-V(-y,z+L,/2), where
4V —+W—=_V¥U+ Y y ; Y, Y, zZ14)
o PV TW =RV VAR, @ =27y, from whichU(y,2) = —U(—y,2+L,/2) follows

where U,V,W do not depend onx and F(y) is a steady it F(y)=—F(~y).

deterministic forcing that drives the shear flow if the bound- Thlﬁ Ut(y,z) protfllee?ghli\;egvaftert a?outfone ?“aTter of
ary conditions are homogeneous. The resulting spanwis%1e roll's turnover imet=m (. ),_sar Ing from faminar.
- ouette flow att=0, was studied in Ref. 18. That quasi-

fluctuations,U(y,z) ~U(y), are ca_lledstregks in reference steady profile is adequate to illustrate the streak instability
to the streaks that are observed in experiments when hydrg- ;
apd the nonlinear feedback on the rolls, but may not be the

gen bubbles are released along a spanwise wire near the W%ést choice to model the SSP as it somewhat remembers its
in turbulent shear flow& For plane Couette flow, consid- . .. - .
initial conditions. Here, the steady stat€y,z) profiles cre-

Egido}ntézlic?jﬁggi;? inf ;;]i ]:ILOIV ali ddtr;]Vee:f;r?i/nt:reSg; ated by steady rolls are considered, in the spirit again that the

is U(y)=y. As usualx y an_dz re_resent Cartesian coordi- streamwise rolls and streaks are maintained for all times, on
Y)=y. Y b : . _average. Elucidating the mechanism that maintains them is a

nates in the streamwise, wall-normal and spanwise dlre(‘key objective of this work. Two steady state streaky

tions, respectively. ; .
. U(y,2) flow profiles forV=0.02 andv=0.04 are shown in
At low Reynolds number, a good guess for the rolis ISFig. 2 for R=400. It is interesting to note that for roll am-

the lowest-order eigenmode of the operaidrwith bound- ; ; o 2. 2
ary conditionsV=gdV/dy=0 at the walls. This is the opera- plitudes above the approximate criteri .(’8 7R,
) stronger rolls lead to weaker but more localized streaks. The

tor that appears on the left hand-side of E@). below. Its L .

. mean profilesU(y) corresponding to those streaky flows
even eigenmodes are 4 2

have an S-shapé-ig. 3 characteristic of turbulent Couette
V(y,z)=V v(y)cosyz, (2)  flow with shear ratedU/dy= 1.90 aty==*1 and 0.03 at

A. Formation of streaky flow

ou ou U
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FIG. 3. Mean velocity profilesLT(y) for V=0.02 (solid) and V=0.04
(dashed

streaks, dundamental sinusoidahode and asubharmonic
“sinucose” mode® as sketched in Fig. 4. There is also a
fundamental varicose mode expected to be least unstable.
For the near-wall region of turbulent flows the fundamental
sinusoidal mode will likely lead to the typical staggered row
of vortices as extracted from turbulent data by Stréfch,
while the subharmonic mode, or the fundamental varicose,
would lead to the less frequehbrseshoestructures®3° Al-
though the symmetric horseshoe structures are more likely to
catch the eye, Stretch’s data analysis showed that asymmet-
ric structures are typical. This dominance is easily under-
stood in terms of the wake instability analogy that favors the
sinusoidal mode.

An eigenmode analysis of the instability of the spanwise
FIG. 2. Redistribution of streamwise velocity by streamwise rolls varying shear flowJ (y,z) was formulated in Ref. 18. Elimi-
[0N(y,2),W(y,2)] in plane Couette flow aR=400 with y="5/3. Contours  nating the pressure from the Navier—Stokes equations linear-
of U(y,z) at 0.2 intervals from -1 a¢=—1 to 1 aty=1. Negative contours  jzed around the 2D-1C base flold/(y,z)i by taking they
dashed, zero contour dotted. .

component of the cuflj- VX (-)] and of the curl of the curl
[j- (VX(VX(-)))] of the equations yields

U U\dv dU %
T T 2 e TS
9z ay?| ax  ©dz axaz

y=0 for V=002, anadU/dy= 2.47 aty==1and-0.16 (9 7 1 |,
aty=0 for V=0.04. Hence, the introduction of streamwise | gt X R v
rolls with an amplitude of only 2% of the wall velocity

2
nearly doubled the shear rate at the wall. For roll amplitude -2 ? (wﬂ)
larger than about 2% at thR=400, the mean velocity pro- axay\ " az )’
file acquires a negative slope in the center of the channel, an (4)
. . - . 1 U ¢ U o
an unstable inflection. It is of course not surprising thatl — +U — - =V?|yp=| — ——- — —|v
streamwise rolls and their associated streaks are so effectivet X R dz gy dy Jz

at transporting momentum given the results of upper bounds P g\ U
on momentum transpott. —|v—+w—=|—,
gy  dz) 9z

wherev and 7 are the vertical velocity and vorticity, respec-
tively. Theu andw velocity components are kinematically

The streaky flowdJ(y,z) (Fig. 2) contain strong span- determined byv and » from the definition for 7,
wise inflections. By analogy with the instability of wakes, du/dz—dw/dx=», and the continuity equation
one then expects two types of inflectional instability of the du/dx+ dw/dz= —dvlay.

B. Instability of streaky flow
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Fundamental sinusoidal Instability of U(y,z)
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growth rate
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N T T
% FIG. 5. Two largest growth rates for the fundamental sinusoidal instability
——'/_\———/ . .

2r 4 of the steady state streaky flow(y,z) corresponding tov=0.02, with
e —— no-slip (solid) and free-slip(dashegl boundary conditions, vs streamwise

W wavenumber, for y=>5/3, R=400.

zok nuity. These forms readily include the periodicity and
iupupapapupapepupuiepubulablubulbe et R z-symmetry of the fundamental sinusoidal modes. The re-

_1’ emTTTTTTTTTTTTmeeeIIIsnszzozooool] maining symmetry implies that i#,(y),w,(y) is an eigen-
] mode with temporal eigenvalue, then (—1)"* ¥ (—y),

] (—1)"w*(—y) is an eigenmode with eigenvalué . In par-

i ticular, if \=\* there is an eigenmode with the symmetries
v/’_——\ R
m —( — _ —( — _

— . ; vn(y)=(=1)""tw} (—y) andw,(y) =(—1)"w; (—y), asin
X Fig. 7.

Results for the fundamental sinusoidal instability of the

FIG. 4. Sketch of the two principal modes of instability of the streaky flow steady stateU(y,z) profile corresponding tQ/: 0.02 at )

U(y,z). Contours of streamwise velocity(base flow+ perturbationinthe =~ R=400 are presented here for both no-slip and free-slip

y=0 plane over 1.5 periods of the base flow in thdirection. boundary conditions at the wallsufv=w=0 or
duldy=v=owl/dy=0, aty==*+1). The spectral computa-

tions were done with 33 to 42 Chebyshev polynomialy in

. As ment|on§-d above. there are several possible SYMM&hd 12 to 14 Fourier wavenumbers an The growth rates,
tries for the eigensolutions of systerfd). Fundamental

des h h ¢ the b f Fund R(N), for the two most unstable modes are shown in Fig. 5
modes have he samesymmetry as e base Tlow. Funda- ¢, -, types of boundary conditions. That plot of growth
mental sinusoidal modes are such that theomponent of

velocity perturbation is even infor the even streakéS): the rate versus streamwise wavenumber for the most unstable
yp . ' "~ mode has the shape characteristic of inflectional instabilities
fundamental varicose mode hasvaomponent that is odd in

. of smoothly varying profilésfor which there is a high wave-
z for such streaks. Finally, the base flow symmetrynumber cutoff of the order of the typical wavenumber of the

Uly,2)=—U(=yztL/2) — mplies  —that — if  poqe fiow ¢ in this case The ei i

i X ; ; . genvalua is real for the
€ [u(y.2).v(y,2),w(y,2)] is an e'g,ei”X”“’Ee of Egd) with most unstable mode and thus the mode is nonpropagating.
eigenvalue N, then e 'Mu*(—y,z+L,/2),

- ) The lowest-order componentg(y), wi(y) andv4(y)
—ny* *(__
vi(—y,z+L/2), w(-y,z+L,/2)] is an eigenmode [Eq. (5)] of the most unstable eigenmode far=1.1 are

with eigenvalue\*. - . S :
. . | Fig. 7 h -sl free-sl| f
Here as before, the focus is on the fundamental smup otted in Fig. 7-and the no-slip and free-slip eigenfunctions

. . . are remarkably similar, except of course next to the walls.
soidal mode of instability of the streaky flou(y,z), and the o . o .
. . The r n for choosing=1.1 is that it i roximatel
velocity perturbations then have the fdfin € reason for choosing S that it Is approximately

the cutoff wavenumber and thus corresponds to a neutral

= mode for which93(\) =0. A neutral mode together with the
v=eMe' ™Y v (y)sinnyz+c.c, steady rolls and streak constitute an approximate steady
n=t equilibrium if it can be shown that the neutral mode feeds
oz ®) back on the rolls. In any case, the shapes of the eigenfunc-
w=e“e'“ano wp(y)cosnyz+c.c., tions are similar for alle below the bifurcation point where

the two largest growth rates merge into a complex conjugate
for the y andz components, where c.c. stands for complexpair. Above that point, the overall shapes remain similar but
conjugate. Thex-component of velocity follows from conti- become increasingly asymmetric. The eigenmodes consist
Phys. Fluids, Vol. 9, No. 4, April 1997 Fabian Waleffe 887
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' Instability of I:J(y,z) for V=0-?2. 0.03,0.04 ' : ( i — l \v} 2) \vj ZVX( Y,2)=

s R 2(Ww

ayaz

J —x
E(UW ), (6)

(92 2
+ —
(59? iz

—X

where the overbar(-) denotes an average over the
x-direction. This equation is derived by averaging the
Navier-Stokes equations oveithen eliminating the pressure

growth rate

and the spanwise velocity compone'_blf( through continuity.
Equation (6) can be seen as an equation for the average

. .. —X 2—)( —X
streamwise vorticityw, asV<V (y,z2)=—dw, /dz, how-
ever the boundary conditions_/,xzavxlayzo aty==*1,

are known forvx only.
Substituting the expression®) for the fundamental
sinusoidal instability of streaky flow(y,z) onto the right

FIG. 6. Two largest growth rates for the fundamental sinusoidal instabilityhand side of Eq(6) forces avx =% .V COSNvz
of the steady state spanwise-modulated shear flb{y,z) for no-slip h first t q() H (yt,h) n=1 ”t(y) th 7t/ ,f
boundary conditions, vs streamwise wavenumberfor y=5/3, R=400. W Ose_ .|rs erm Is CO?Z_'. ence thez-symmetry 1S h ato
Solid: V=0.02; dashedv=0.03: dash-dottedv = 0.04. the original rolls(2). Writing D for d/dy, the equation for

the cosyz mode reads as

primarily of spanwise velocity W, is largest, as expected (at— %(DZ— 72))(D2— YV,
for the wake-like instability of the streaks. The structure and

growth rate of the most unstable mode are quite insensitive

to whether the boundary conditions correspond to free- or =—+2D
no-slip. This similarity between the two types of boundary

conditions for the streak instability is very different from the

viscous instability described by the Orr—Sommerfeld equa- + %)
tion for the plane Poiseuille and Blasius flows which is sup-

pressed by the switch to free-slip at the walls. For the paramgnere the* denotes a complex conjugate. Tisymmetry
eters a=1, R=10,000, the Iea_s§ stable Orr—Sommerfeld of the nonlinear forcing is also correct for feedback on the
mode has growth rate 3.74 10 with no-slip boundary  iginal rolls. The symmetries for a nonpropagating unstable

conditions but-3.52x 10~ 2 with free-slip. streak mode. for which A\=\* are such that
The growth rate of the two most unstable fundamentabn(y):(_1)n+1v*(_y) and w,(y)=(—1)"W*(—y), as
n n l

sinusoidal modes of instability of the steady stal€y.z)  giscussed in Sec. Il B. It follows directly that the nonlinear
(Fig. 2) corresponding t&/=0.02, 0.03 and 0.04, are shown forcing on the right hand side of E7) is even iny. The

in Fig. 6 for no-slip boundary conditions. For streamwises ced response thus has the cormgaind z symmetries to
wavenumbew less than about 1, the eigenvalue for the mosteedpack on the original rolls.

unstable mode is real and positive and essentially identical owever. the correct symmetries do not guarantee feed-
for all three profiles. However, for larger's there may be a back as the forcing could have the wrong sign and actually
second branch of unstable modes that corresponds 10 a pgjEsiroy the rolls instead of reenergizing them. To verify

of complex conjugate eigenvalues and the eigenmodes afgeghack explicitly, the right hand side of E) is plotted
thus propagating and asymmetric. This new branch of un- Fig. 8 together with DZ_VZ){)(Y) which s

2:22'(? r:]o(l)lggz IIZr rg?r?rﬁéggoﬂgcid aat'?l then;r:gllgumdg d?afs tzﬁDz— 72)v1 for the original rolls(2). At first sight, the non-
y : ger. propagating u ifear forcing(“W"shape) is quite different from the origi-

probably related to new propagating solutions that have re-

) ; nal (D?— %)V, (“V” shape), however upon closer inspec-
ce_ntly bgen d|§covered by Nag‘é&m. plane Couette flow. In. tion it is clear that there is a good correlation between the
this as in earlier work, the focus is on the nonpropagatin

mod Ywo functions. A different display of the same information is
odes. given in Fig. 13 of Ref. 27. The feedback can be demon-
strated in a different way by comparing the forced response
C. Nonlinear feedback on the rolls of Eq. (7) to the original profile for the roll® (y) Eg. (2).
This is done in Fig. 9 and streamwise rolls almost identical

The nonlinear feedback of the streak instability on they, the original rolls are generated by the nonlinear forcing
streamwise rolls, critical to self-sustenance of the Processesylting from the streak eigenmode.

was first demonstrated in Refs. 18 and 27. A fuller and more The cycle has been closed. The steady rolls lead to

precise discussion is prm@lxed hereafter. The equation go\sieady streaks that lead to a neutral mode that generates
erning the streamwise roll¢ (y,z) reads as steady rolls. For a neutral streak mod&(\)=0 and the

o]

2wowy +nzl (WoW 1= 0nons 1) |+ y(D?

o

WOUT’FEEl (Wnv g1~ Wne1vg) | +C.C., (7)
n=
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08 , : , sponse to Eq(7) equals the original amplitude of the rolls,
: V=0.02.

It is worth noting that the wavenumber=1.1 for the
neutral mode corresponds well to the wavenumdserl.14
that was determined by the turbulent solution tracking
proceduré” The spanwise wavenumber=5/3 was chosen
to correspond to those numerical solutions. The streak stabil-
ity results, Fig. 5, and the numerical solutions suggest that
when the minimumx allowed in the domain is less than the
cutoff wavenumber for the streak instability, then the
Navier—Stokes solution is disordered. If the minimum al-
lowed wavenumber is larger than the cutoff, then the “tur-
bulent” solution is not sustained and the flow returns to
laminar.

The three phases of the SSP, formation of streaks by
streamwise rolls, streak instability and feedback on the rolls,
are described by the three equatidhy (4) and (6), respec-
tively. However, those equations are not complete to de-
scribe the interactions between the three phases. Equdjion

lacks the Reynolds stress teridisv X/8y+ avwxmz that ex-
tract energy fromJ(y,z) to sustain the growth of the streak
instability. Equations(4) lack the interaction between the
rolls V(y,z) and the streak disturbancea,{,w) that extract
energy from the latter to sustain the rolls. To put it differ-
ently, Egs.(1) and(4) describe the actions without the reac-
tions. A complete model of the SSP is derived in the next
section.

lll. LOW-ORDER MODEL OF THE PROCESS

A. Lowest-order Galerkin projection

A complete but low-order model of the self-sustaining
process is derived here for a sinusoidal shear flow driven in
the x direction by F(y)=FsinBy, B=m/2, with free-slip
boundary conditions at= = 1. This sinusoidal shear flow is
best suited to low-order Galerkin projections as the appropri-
ate expansion functions are Fourier modes in all three coor-
dinates. Another advantage is that the mean flow is a low-
order mode and the total energy is then exactly conserved by
Galerkin truncation at any order. Free-slip boundary condi-
tions are also routinely considered in Rayleigha&el con-
vection. Lengths are nondimensionalized by the half-channel
height h and velocities by the laminar root-mean-square
(rm9) velocity. The nondimensional amplitude of the force is

, : , then F=/28%/R. The reader may worry that the resulting
-1 -05 0 05 1 laminar flow,U(y)= 2 singy, is inflectional(Fig. 10, but
that inflection does not lead to instability because of the wall
FIG. 7. Principal components,, w; andv, of the unstable eigenmode of blOCkmg' '_”dee‘?" ToII.mlen ?OnSIdered §UCh a flow to show
the streak instability with v=e®3 v, (y)sinmz and that Rayleigh’s inflection point theorem is necessary but not
w=e' 3 w,(y)cosnyz [Eq. (5)], for a=1.1, y=5/3, R=400. Solid: no-  sufficient for inviscid instability?. The wall-bounded sinu-
slip, dashed: free-slip. soidal shear flow with free-slip at the walls is then a simple
parallel shear flow for which the laminar state is stable for all
Reynolds numbers, as in plane Couette and pipe Poiseuille
right hand side of Eq(7) is steady. Here the neutral mode is flows.
also a steady mod&(\)=7J(\)=0. By focusing on steady The streamwise rolls can be chosen in the simple form
rolls and streaks and a neutral mode, an approximate stead(y,z) « cosBy cosyz, with W(y,z) by continuity. The sym-
equilibrium has been determined. The amplitude of the neumetries of the spanwise varying mean flawy,z) are as
tral mode is the last remaining unknown and it could bediscussed in the previous section, E8). The lowest-order
determined such that the amplitude of the steady forced retruncation for thex-independent flow then consists of
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FIG. 10. Sketch of the sigy wall-bounded shear flow considered for the
Galerkin projection with free-slip boundary conditions.

the mean square velocity is the sum of the squares of the
A amplitudes. Theb,,, modes are streak, or verticale., y)
FIG. 8. Feedback on streamwise rolis: solid “V" shape B*-¥*)v(y).  vorticity, modes with no vertical velocity and wavenumbers

“W” shapes are the nonlinear forcing on the RHS of E@) owing to the |, mB andny in thex, y andz directions, respectively. The
fundamental sinusoidal unstable streak mode,dferl.1, y=5/3, R=400. ! ! . N .
Solid: no-slip eigenmode; dashed: free-slip eigenmode. The dotted W-shafBimn Modes are roll, or vertical velocity, modes with no

is the contribution from no-slipvy, w, andov, only. vertical vorticity. Both sets of modes are divergence-free.
The lowest-order truncation for the streak instability

mode, incorporating the symmetries of the fundamental sinu-

soidal moddg Eg. (5)], consists of keeping only those modes

U(y,2)
_ associated witlwg, w; andv4 in (5) (see also Fig. B This
VY,2) | =MW gy5+ UWgort Voyy, ®  truncation for thex-dependent part of the flow then consists
W(y,z) of
with ei axV(y,Z) +c.c= A\I,]_OOJF BY 101+ C\I,]_lo‘i‘ D\I,lll
sin By cosyz +EPay, ©)
Vo5~ 0 v Yoo 0 ) where
0 0 0 0
0 W00~ 0 v W 0 )
Doppc| ¥ COSBY €COSYZ |, COS arX sin ax sin By
B sin By sin yz are the modes associated with,

where the amplitudes of the mean shihrthe streak$) and
the rolls V, are real functions of time. The modds,,,,
®,,n are normalized to have a unit mean square, such that W,y 0 ,

a Sin aX cos yz

— 7y COS aX Sinyz

v sin ax sin By sinyz
Wy 0 '
a COS ax sin By cosyz

are the modes associated with, and
aB sin ax sin By sinyz
0| (a®+y?)cosax cosBy sinyz
— By cosax sin By cosyz

corresponds to ;. The amplitude#\,B,C,D,E are real func-
- 05 ) 05 1 tions of time with the modes normalized as previously.
y The lowest-order consistent truncation of the velocity
_ _ ~field that may capture the self-sustaining process consists of
FIG. 9. Comparison of the streamwise rolls created from the nonllneaghe eight modes defined i) and(9) and keeps three wave-

forcing, Eq.(7), by the neutral fundamental sinusoidal streak eigenmode an X . . X
the original rolls, Eq(2), for a=1.1, y=5/3, R=400. Original rolls: solid, numbers(—1, 0 and 1 in all three directions. Although this

forced response: dashed. is undoubtedly a severe truncation, much of the reduction
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comes from the symmetries identified in the previous secg=7/2,
tion. Without those symmetries the same level of truncation
would yield 52 mode§2* (3°—1)].
The governing equations are derived by substituting thek%:,gZ, Kﬁ: Y K5232+ Y,
expansion8) plus(9) for u in the Navier—Stokes equations:
J 2

1 -
ﬁ—ﬁvz)u:—u-Vu—VanF(y)x, kKi=a?, Kkh=a’+y?, Kki=a’+p% Ki=a’+ B+ y2

and projecting onto each modé&alerkin projection The
modes of the expansion satisfy the continuity equatiorv<§= Kﬁ-
V-u=0 and the boundary conditions
uldy=v=9w/dy=0 aty==*1 with u=(u,v,w); hence
the pressurg drops out of the final equations. In general if B. Analysis of the truncated system
_ The eighth-order truncatioil0) embodies many of the
u_l,zm;n (A P1mn() + Bimn( ) ¥imn()] characteristics of shear flows. From a global point of view,
the nonlinearity is quadratic and energy conserving. The evo-
lution of the total energy results only from the forcing and
'viscous dissipation. Writingd;, i=1,...,8 for theampli-
tudesM, ... E in (10) the total energy obeys

where the expansion functior®y,,, ¥, are orthogonal
eigenmodes of the Stokes operator
V2{q)iqf}lmn:_Klzmn{(b"‘l"}lmn with V-{®,¥},,,=0, the
equation forA,, is

_Almn:_<(U'VU)'¢Imn>+<F(Y))2'(D|mn>v d 8 K% 1 8

where the bracket$ ) denote a spatial average, and the
wavenumberx?, ,=12a?+m?B2+n2y2. There is a similar
equation forB,, with W in place of®. For the eight modes A statistically steady state is possible only if

defined in(8), (9), the Galerkin projection yields

0<A;=M=<1, otherwise the total energy decays. No un-
bounded growth is possible as the quadratic dissipation of

2 2
E Km M = _'875E+ &UV+ ﬁ1 energy always dominates the linear energy input for suffi-
dt R Kd Ky R ciently large amplitude. These global properties hold for any
4 K2 5 5 3 3 level of truncation.
— 4+ MYy= Y AB— Y—CD— ¢ yCE_ _VM\/, Locally, the dynamics is such that the mean shéaand
dt R Kp Kp KpKd Ky the rollsV are linearly stable, but the streakk have two
d K2 208y VRN modes of instability. Linearizing the system around a state
— 4+ Ylv= (AD+BC)+ —CAE, where all modes are zero except the mé&namounts to
dt R KpKy KpKgky settingU =V=0 in the equations for the-dependent modes
q 2 5 A,B,C,D,E and setting the latter modes to zero in the equa-
g k) A —sem=Eeu-2PY 5y tions for thex-independent floum,U, V. It is quickly veri-
dt R Kp KpK, fied from the skew-symmetry of theCM andBDM inter-
o232 actions that there are no exponentially growing modes on the
- EV, meanM. The inviscid linear stability of the mean shear is a
KoKaky general result of Tollmien as recalled at the beginning of the
d 2 By 2= 52 (10 previous section. There are two transient algebraically grow-
—+ —|B=aDM+ —EM+ AU ing modes arising from th#V term in theU equation and
dt = R Kd Ko from theEM term in theB equation, but neither one triggers
2aBy nonlinear effects that lead to bifurcation of the flow. Both are
- P Cv, indeed incomplete representations of a passive advection-
v diffusion process such as described by EQ.with decou-
d &2 a2 aBy pling between the streaks and the rolls. TW& term is the
FTREY C=aAM+ K—DU Tk EU, redistribution of the mean sheht by the rollsV leading to
b bKd : : o
transient algebraic growth df). This is balanced by the
d «3 V2= a? aBy UV term in theM equation and there is no nonlinear feed-
FTREY D=—-aBM+ p CU- " AV, back on the streamwise rols Likewise theEM term in the
b bKy . . . .
B equation is balanced by tHeE term in theM equation
d &2 2aBy VP4 and there is no nonlinear feedback on the pair of oblique
(a+ﬁ) e CU+ " AV, rolls E, as discussed in Ref. 18. The compl@&eD,E,M
bRd bRv

with the wavenumbers
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d Kfn Kfn By decouple into two sets corresponding to the interaction
a+ﬁ M:F_K_BE’ through the streakt) of modesA,B, even iny, and of
d modesC,D,E, odd iny.
d 2 The linearized equations for the even modeB are
Kp By
—+—=|B=aDM+—EM, 2 5
dt R Ky d Ka A — B
_+_ =
) (11) att R/ Y
d «g D — aBM (13
attRr)°T M d B a®—9
—+ —|B=——AU,
d 2 dt R Kp
K
a+ Ee E=0, which reduce to the second-order equation,
: : _ d «i\[d &2 2— a?
whose only attractor is the laminar  point (_+ ﬁ)(_+ﬁ A= QZ%UZA (14
M=1, B=D=E=0. The interaction betweeM,U,V is dt = R/idt R Y ta

similar [cf. Eq. (14) in Ref. 18, reflecting the exact decou- [cf., Ref. 18 Eq.(20)] and there is exponential instability

pling of the rollV that is not sustainefEq. (1)]. whenevery> « providedR is large enough. In the inviscid
Linearizing around some finite streamwise rgllwith limit, R— oo, the unstable eigenmode is

all other modes infinitesimalssuming for instance that the B/A=—§; sign(U)/a with growth ratea8;|U|/k, where

roll V is forced instead of the meaM), yields the same 5%: y?— a?. Likewise, the linearized equations for the odd

conclusion that there are no exponentially growing modes omodesC,D,E reduce to the second-order equation,

the roll V. Here again, there are transient algebraically grow- 2 2 > 2 o

ing modes that do not trigger nonlinear effects leading to <ﬂ+ ﬂ) (EJF E)C:azuuzc (15)

bifurcation. One transient arises from t8&/ term in theB dt R/ldt R yt+at+ g

equation, balanced by tHgV term in theV equation with N0 54 there is instability ify?> o2+ 82 andR is large enough.

feedback onC. Two other transients arise from the interac- Equation(15) is equivalent to Eq(14) with a?— a2+ B2.

tion of the mode#\, D, E through the rolV. The decoupling  This is a direct consequence of Squires’ theofem.

that prevents nonlinear feedback is less obvious but still |, summary, the mean shelt and the rollsV are both

present in this case. It is most easily seen by rewriting th‘ﬂnearly stable while the streaks have two modes of insta-
interaction between those 4 mgdes in terms of interactiorbi”ty one even and one odd i This implies that the pri-

between the mode#, V and D=D+aBE/(yke) and mary mechanism to exchange energy between the
E=E-apD/(y«y), in which case the interaction reads as x-independent modeM,U,V and thex-dependent modes
A,B,C,D,E is through the streak instabilities. In agreement

2
(i ﬁ) = a'ByAE_ Y Kd AE+ -2 with the general description of the self-sustaining process,
dt R Kpky KpKky R’ one sees that the forcing of the sh&hrcan be transferred to
9 the streakdJ by the rollsV through theMV term in theU
EJF Kal aBy DV equation. The-dependent modes can then develop from the
dt R KpkKy instability of the streakdJ. Inspection of theV equation
) (12 shows that the feedback on the rollsarises from the non-
(EJF ﬂ)azo linear interaction between the evenA,B) and odd
dt R ' (C,D,E) modes of instability of the streaks. This points to
) 55 5 2 an important secondary role of the mddnwhich is to break
(E E)~_ a®Bot y Ky AV the y-symmetry in order to couple the two modes of insta-
dt R/~ kpkqk, ' bility of the streaks in such a way that feedback on the

_ streamwise rolls occurs.
One transient mode corresponds to the growth dfom the

DV term in theA equation with no feedback d. The other
transient mode results from the growth &f with D=0
through theAV term in theE equation with no feedback on
A. The only attractor for this subsystem i¥=1, The truncated eighth-order systeff0) can be further
A=D=E=0 and, again, the transients do not lead to bifur-reduced by imposing relationships between the even modes
cation. This lack of direct nonlinear “recycling of outputs A, B and between the odd mod€s D and E that corre-
into inputs,” illustrated by the 5 explicit examples above, is spond to the most unstable eigenstructures for the streak in-
generié' and has been one of the arguments against thetabilities, Eqs(14), (15). The streak instability is inviscid in
simple picture of transitioh??? and even turbulenég as  nature and the eigenstructures are taken in the inviscid limit,
“linear transient growth with nonlinear mixing.” R—o0. This imposes three kinematic constraints relatihg

In contrast to the linear stability dfl andV, the linear to A andC andD to E,
analysis of finite amplitude streaks reveals two modes of o o
instability. From (10), the equations for thex-dependent B=7bafA, C=7ck, D=7qek, (16)
modesA,B,C,D,E whenM =V=0 with U a finite constant, where

C. Reduction of the truncated system
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=6  Kpby The reduced systelfi8) indicates quite clearly that the
Zoa=—SIgNU),  Zce= %SIQWU), feedback on the rolls results from the interaction between the
17) even (A) and odd E) streak modes. The reduction was cho-
KqS2 sen to correspond to the instability bf>0 thusV must be
1% de:m, positive to sustaitJ >0 by redistribution of the mean shear

M>0. It follows thatA and E must have the same sign to
with 8= y2— a2 and 52= y2— a®— B2. The eigenstructures SustainV>0. A further reduction can then be made by
are chosen hereafter to correspond to the instability of posichoosing for instanc@/2=A=E and«’,= («2+ x2)/2, in
tive streaksU>0. By symmetry there is an equivalent sys- Which case the equations reduce to the fourth-order system,
tem for negative streaks. 2

To preserve the symmetry of the equations, the ampli- + -2
tudes and the decay rates are rescaled such that R

2
K
M=o, W2— o, UV+ Em,

dt
d

A—(1+722) YA, E—-Q+72+72) " YE, (&2 2
+ LKA (L+ 72 ) — k2, (KE+ Thgk’+ 73 k3)I(1+ 72, <&+ E”) U=—ag,W?+a MV,
+ 75— k2. The sign ofV is also changed at this point
V——V for the purpose of presentation. The truncated d KE ) (20
eighth-order model(10) then reduces to the fifth-order s RrIVTWS
model,
2
d «5 By K2 <i+ﬂ)w=o UW- MW=, VW,
Git R IM=0maAE- "~ UV+ 2, dt R " " v
’ where all coefficientss are positive. One of those coeffi-
d &2 ~ad, , ad,_, By cients (@, for instance, could be normalized to unity by
FTRENY U= P A —K—dE +K—|V|V, changing the time scale but this will not be done in the
v following. Analytic expressions for the coefficients are given
d Kf in the Appendix f(;r both reductions. Reductitv) requires
gt R/ V= AR (18 &%= _yz— c;z>(;, 522= ¥?— B?— >0, while reduction(19)
requiresdi=y>— «*>0 andy*— 8%>0 otherwise instabil-
d Kg ad, it_y of the streaks and/or feedback on the rolls are not pos-
it R|A= AU~ TaenEM+0aaEV, sible. _ ,
b Model (20) preserves the global properties of the earlier
d K2 ws systems. The nonlinear term.cgnserves energy; t'here is_ no
(a + Ee) E= K_ZEu+ CearAM— G on AV, unbounded growth and a statistically steady state is possible
d

only for 0O<M=<1. The mearM is still linearly stable while
negative rollsV<0 are unstable tdV and positive rolls
V>0 are stable. The only term that can extract energy from
he mean is th&V term providedJV>0 but onlyV>0 can
e sustained by the, W? term. In that case energy can be
is necessary that,e,=0. transferred from the meaml _to the str_eaksJ_ through the
The MV term. The streak instability then gives riseWbthrough

The meaning of this reduction is clear. th UW t d th i If-int tion\f
x-dependent part of the flow field is now represented in €ow erm and the nonfinéar sei-interaction At sus-

P 2
terms of (an approximation tothe unstable streak modes t:’?}lﬂS th'\e/l roIIs:j/ througirw]theavw kterm. N;;[_e tha:]the rrr:eaﬂ
instead of the eigenmodes of the Stokes operator. One limPear reduces the streak instability through the

. . L . o . —o,MW term and that there is an associated nonlinear
tation of this new expansion is that as written it is only valid . “m .
2 P y feedback,o,,W?, on M. With regards to the three phases of

for 85=y?— a®>— B?=0, which seems too restrictive from a _ :
physical point of view. It amounts to requiring instability of the SSP, the formation of streak&g. (1)] is represented by

both the even and odih y) streak modes, but the growth of the M and U equatipns withW=0, the instability of t_he
the even modé\ from the streak instabilityi.e., through the streaky flow[Eq. (4)] is represented by thé/ equation with

@8, 1k,AU term with 82= 52— a?>0) should suffice to V=0 and the feedback on the ro[Eq. (6)] is represented by

drive the system with the odd mode arising from the in- the V equation.

teraction of the even mode with the mean shear through thfg aMngdlegl (ig)cés ti?cewn:ikfsle;otr;h% tr;r(;iﬁggrggt?;:éjni?hsise.an
TeanfAM term. That interaction is in fact required to insure M and the,strealf modé. That interaction had been omitted
that A and E will be positively correlated in order to feed- '

back on the rollsv, as discussed hereafter. Another simpleIn the original model.
reduction that corresponds to choosing a neutral inviscid odd

where all coefficientsr are positive definite, except,g, ,
and — 0gemt Teamt Omae= Taey — Tea T Tpae= 0, thus pre-
serving conservation of energy by the nonlinear term. Th
meanM s linearly stable. To preserve linear stability\ofit

mode is D. Analysis of the fourth-order model
s P The characteristics of modéR0) are quite similar to
, o1 . . _ Y . 19 . . .
Za= signU), Z.e=0, Zye= _ (19) th_ose of the original _mod%ﬁ which is. |dent|cz_all to(20)
o aKy with o,=0. In addition to the laminar pointM=1,
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U=V=W=0 there are two other fixed pointsK is larger  as functions oR. ForR just above critical there are two real
than some critical valu®g,,. EliminatingM, V andU from  positive eigenvalues that quickly merge into a pair of com-
equationg20) with d/dt=0, the fixed points are determined plex eigenvalues with positive real part indicating a switch

by the roots of the cubic, from an unstable node to an unstable spiral. The other two
2 4u3, 2 .2 2u2 29202 2 9292, 2 9.9 eigenvalues(not shown are complex conjugates with a
+ + + + ; .

T KH KO0, X (KK Oy Kk, T Ky ) X larger negative real part. In both cases the upper branch is an

+ K2R(K2om— 040, 0, X) + K2 K2K2=0, (21)  unstable node near the bifurcation. That unstable node turns

) o ) into an unstable spiral after only a slight increaseRpfto
where>'(=(RW/Kv)2. This equation is most easily used 10 104 94 and 137.33, respectively, beyomi, (see the
determineR as a function oX=0, R(X), which is the ratio  pjy.-up in Fig. 12. The positive real part of the eigenvalues
of a positive definite cubic iX and a linear term iX. There  jocreases aR increases and the spiral fixed point becomes
is aR>0 for all X such that stable atRy,;=138.06 and 180.24, for both reductions, re-

0L, TG X> KO . (22)  spectively. This implies a Hopf bifurcation at those Reynolds

) _ o ) number where the spiral fixed point collides with a limit
The functionR(X) has a unique minimum over afl satis- cycle.

fying (22). That minimum is the critical Reynolds number "~ The collision between the spiral fixed point and the limit
Rsn at which asaddle-nodebifurcation takes place. For cycle may occur in two ways. Either the unstable spiral point
R>Rs, there are two real solutions>0 to the cubid21).  pjfyrcates into an unstable limit cycle surrounding the stable

The main effect of the nonzera, is to bound the lower  gira| or the unstable spiral is surrounded by a stable limit
branch of new solutions away from the laminar solutioncycie and collides with it leading to a stable spiral. In the

M=1,U=V=W=0 as the asymptotic scaling of the lower |5¢er case, the stable limit cycle has to be generated at a
branch aR—c is lower value ofR and it could arise from &omoclinic bifur-

1 Tm cation The first scenario in which an unstable limit cycle is
M— 1+ (k2K2) (o2/a2)’ U— U—M, generated is the scenario that takes place for the parameter
wEma MW " values corresponding to Fig. 12. The second scenario, in-
V=0(R™ 1), W=0O(R™1, (23)  volving a homoclinic bifurcation, can also occur in model

(20) for different values of the parameters.
That second, more dramatic, dynamical behavior is illus-
M—1, U=0(R1), V=0(R?), trated in Fig. 13. FOR below R, the laminar statésolid
_ 3 (24) black do} is the only fixed point. That fixed point is linearly
W=0(R"™), stable with nonorthogonal eigenvectors and remains such for
wheno,,=0. The presence af,,>0 is thus quite significant all R. At R=Rs,, a saddle-node bifurcation introduces two
for the conjecture that an amplitude=O(R™®) with ~ new fixed points, a saddle and an unstable ngojen
a strictly larger than 1 is sufficient to cause transitid?  circles, Fig. 183)], but almost all initial conditions still end
The scaling of the upper branch is as reportedup at the laminar fixed point. FOR slightly greater than
earlier’® M=O(R™Y), U=O(R™ ¥, Vv=0O(R ") and Rsn, the unstable node turns into an unstable spiFad).
W=0(R %% asR— . 13(b)]. As R increases, the spiral tightens and a homoclinic
The stability analysis of the fixed points involves finding bifurcation takes place &= R [Fig. 13c)]. This gives rise
the eigenvalues for the linearization of modeD) around to a stable limit cycle which is a significant attractor for the
those fixed points. The eigenvalues are the roots of thdow in phase spaciFig. 13d)]. Many initial conditions now
fourth-order characteristic polynomial. All coefficients of settle onto the periodic orbit instead of the laminar fixed
that polynomial are positive except for the linear term that ispoint. A global bifurcation has taken place.
indefinite and the constant term that is equal to  The coefficients corresponding to reductidy) and to
2R?W297719X where Z7(X) is the cubic defined ir21). If  the minimum Ry, for «=1.30, y=2.28, are
that constant term is negative then there is one real positiver,, o, ,0, ,04]= [0.31,1.29,0.22,0.63 with the decay
root and the fixed point is unstable. The lower branch ofrates[ N, Ay A, Aw]= [2.47,5.20,7.67,7.13 The coeffi-
solutions which corresponds to the smallest of the two posieients chosen in Refs. 18 and 19 dre,,0,,0,,04]
tive roots of the cubic(2l) is thus a saddle-point as =[0,1,1,0.9, with the decay rates[\n, Ay Ny Ayl
d%13X<0 for that root. The upper branch may be unstable=[10,10,10,15%. For those values a more complex behavior
if the coefficient of the linear term of the characteristic poly-is observed neaRg,. The upper branch is stable from
nomial is sufficiently negative for that larger root. In such Rg,,=98.63 toR=100.02 where it loses stability in a Hopf
cases there are two positive real eigenvalues and that root isfurcation. The ensuing stable limit cycle disappears in a
an unstable node. homoclinic bifurcation aR=101.03 beyond which the only
The smallest Reynolds number at which the saddle-nodstable attractor is the laminar fixed point up until a second
bifurcation takes place iR;,=104.84 ate=1.30, y=2.28, homoclinic bifurcation that takes place nd?+ 356 and re-
for the reduction (17), and Ry,=137.17 at «=1.49, introduces a stable limit cycle. From a practical point of view
v=1.82 for the reductionil9) (Fig. 11). The two largest real those extra stable attractors betweét,=98.63 and
parts of the eigenvalues governing the stability of the uppeR=101.03 are insignificant because of their minute basins of
branch of solutions are shown in Fig. 12 for both reductionsattraction, but in any case it is interesting to note that they

instead of
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FIG. 13. Phase plane illustration of some possible dynamics for nia@el
) ) ) ) ) The solid black dot is the stable laminar solution. The two open circles are
FIG. 11. Bifurcation diagram showing the amplitudeWsfvs R for the two 6 o steady solutions, E(R1). (a) R just aboveR.,: saddle and unstable
nontrivial steady solutions of the fourth-order mod@20) for (a) reduction node; (b) R,.>R>R.,+e: saddle and unstable spirdk) R=R;: ho-
(17) and (b) reduction(19). Upper branch solid, but not necessarily stable; .\ bifucrcation'(sg) R>R,,: stable limit cycle ¢
lower branch saddle-point dashed. ' ¢ '

20.08F
0.061

0.04f

are removed forr,, larger than about 0.025, all other param- corresponding to an unstable node with two real positive
eters being unchanged, see Fig. 14. The occurrence of tlagenvalues. AR is increased, the unstable node quickly
homoclinic bifurcation appears to depend strongly on theurns into an unstable spiréfigs. 12 and 14 These features
value of o,,. The reader is referred to Refs. 18 and 19 forof the model are particularly interesting in light of the dis-
plots of the homoclinic bifurcation and the stable limit cycle covery of unstable steady solutions in plane Couette

that appears ne®= 356, for those parameter values. flow.?*%>The spiral node may become stable through a Hopf
bifurcation at som&k=Ry; (Fig. 12. For different values of
IV. DISCUSSION the parameters, a homoclinic bifurcation may introduce a

stable periodic solutiofFig. 13. This latter scenario is par-

In summary, there is a critical Reynolds numiBgr for — jjcylarly interesting in light of the discovery of nearly peri-
the fourth-order model20) where a saddle-node bifurcation e solutions in plane Couette flff2’

introduces two new steady solutioffsig. 11) in addition to These connections between the behaviors observed in
the laminar solution. Those solutions are typicdligthun-  he Jow-order model20) and the results for the Navier—
stable, with the lower branch corresponding to a saddle poingiokes equations in the case of plane Couette flow hence
with a single positive real eigenvalue, and the upper branch,yide some evidence for the validity and applicability of
the low-order model. Nonetheless, a main issue is to deter-
mine whether the low-order model features are artifacts of

0.03 ' ; ' T the severe truncation or indeed valid representations of the
0.02 Navier—Stokes dynamics for shear flows. A first step is to

look for those features in the original eighth-order model

ooel oo b | (10). An extensive study of the eighth-order model has not

been done but it would appear that there are no other fixed
points nor attractors in that model besides the laminar point.
Closer inspection shows that the mean flslvenhanceghe
instability of the streakdJ in the eighth-order model and
correlates the evenA:B) and odd C-D-E) modes of insta-
bility incorrectly for feedback on the roll¥ to occur. In the
fourth-order model the mean shddr reduces the streak in-
stability, in fact, exponential growth & is possible only if
ou,U>0o,M. A reduction of the streak instability by the

- . : s mean shear has also been sh&for the full streak insta-
100 120 Moo o 1% 180 200 bility problem (4). The cause of the anomalous enhancement
of the streak instability by the mean shear, and the subse-
quent lack of a self-sustaining process, in the eighth-order

FIG. 12 Two largest growth rates for the instability of the upper bre_mch ofmodel appears to be the incorrect representation, at that order
nontrivial steady solutions of the fourth-order mod20) for (a) reduction . . . ~
(17) with =1.30, y=2.28 and(b) reduction(19) with «=1.49,y=1.82.  Of truncation, of the shearing effect of the medsin gyx on

The insert is a blow-up ofb) nearRq,. the x-dependent mode&,B,C,D.

0
1371 137.3 1375

growth rate
°
2
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mean shear—theACM and BDM interactions—in the

002 ' ' ' ' eighth-order model10) are inadequate. However, the full
\ Navier—Stokes dynamics for the SSP does not correspond

either to a wavenumber increase in thelirection. The SSP
. is a fully nonlinear state—not just a linear passive-scalar
001} op 18 1 advection by the mean as in E@5) — such that this shear-
2 - ing does not occur for two reasons. First, the streamwise
§ o -2 rolls and streaks, beingindependent, are not sheared by the
4 -2 mean. In fact, it is the mean that is passively advected by the
ok - rolls, Eq. (1), and is largely wiped out by the streamwise
- rolls and streakgFig. 3). Second, thex-dependent modes

involved in the SSP form an eigenstructure that arises from

the instability of the streaky flowJ(y,z), which consists of

the mean shear and the streé&ec. Il B.. By definition, the

100 200 300 400 500 eigenstructure is not sheared by the mean, just as eigen-

modes of the Rayleigh and Orr—Sommerfeld equations are

not sheared by the mean.

FIG. 14. Two largest growth rates for the instability of the upper branch of Except for the advection by the mean, .the other interac-

nontrivial steady solutions of the fourth-order mod20D) for o,=0 and  tiONS are adequately represented by the eighth-order trunca-

om=0.1with[oy,0, ,04]= [1,1,0.9, [Am Ay .\, Aw]= [10,10,10,15in tion in (10). The redistribution of streamwise momentum by

both cases. The insert is a blow-up of ig=0 case neaRs,. the streamwise rolls, Eq(1), is well represented by the
MUYV interaction. That interaction is indeed the rotation at
ratec yV of the shear in theg direction into shear in the

To illustrate that anomalous behavior, consider thedirection[cf., Ref. 18, Fig. 2 and Eq11)]. The streak insta-
simple case of the advection of a passive scalaoy the  bility and the feedback on the rolls also appear to be ad-

02 04 06 08
0 (R-08.6325) 10/(~4)

-0.01

mean shear as governed by equately represented by low-order truncatigof, Ref. 18
Egs.(19) and(20)]. This is because those phases are essen-
0¢ . a(ﬁ _ 1 II ‘e Il! H H
— +Msin By — =0. (25  tially modal” as discussed above and in Secs. Il B and
at ox

Il C. The ACM andBDM interactions that inadequately rep-

The exact solution of that equation for initial conditions "€sent the interactions with the mean in the eighth-order
H(x,0)=cosax is simply ¢(x,t)=cosa(x—Mt sin By). model (10) cancel completely or substantially in the reduc-
Near By=nr, the wavenumber in thg direction increases tions (17) or (19), respectively, that lead to the fourth-order
like @BMt and there is &cascade” towards higher wave- Model (20). This probably explains why the fourth-order
numbers owing to the differential advection by the sheafmodel may better represent the actual Navier—Stokes dynam-
flow. The y-wavenumber remains close to zero neariCs than the truncated eighth-order model.

By=(2n+1)=/2 where there is no shear. For short times, ~ The main consequence of the anomalous behavior in the
&(x,t) ~cosax+aMt sin ax sin By+O(t?), these two terms e€ighth-order model is that it is not possible to directly reduce
correspond to the modes andC in Eq. (9). Projecting Eq.  the eighth-order mod&L0) to the fourth-order modeR0). If

(25) onto those two modes with the instability of the streaky flowJ(y,z), consisting of both

&(x,t) = Acosax+C sin ax sin By yields M andU, was well-behaved in the eighth-order model then
) it would be possible to link all thex-dependent modes
A=—aCM/2, A—E into a single streaky flow eigenmode as in Secs. I B

: (26) and Il C. Instead, it was necessary to first reduce the eighth-
C=aAM, order model to a fifth-order model by combinigB and
which is identical to the corresponding interaction in Eq.C,D,E as dictated by the even and odd eigenmodes of the

(10) after the renormalizations A—\2A, C—2C, streaksU only, that isU(y,z) —U(y). The fifth-order model
M—/2M. Although the single triad interactioACM, Eq.  was then reduced to a fourth-order model by imposing an
(26), preserves the global property of EG5) that the aver- arbitrary relation between the two streak modas; E, in
age of ¢? is conserved, its dynamics, which consists of ro-(18). In general, this introduces an undetermined parameter
tation at rateaM//2, is not a correct representation of the #,.>0 whereA= 7, E.
actual dynamics of a cascade in wavenumber space at the This discussion naturally suggests that the number of
shear rateBM. This misrepresentation of differential advec- modes should be increased in tlyedirection at least, to
tion by a single triad has been discussed befofg Ref. 43, avoid this misrepresentation by the Galerkin truncation of
Sec. VI and two triads are needed to adequately represerthe interaction with the mean. The next level of truncation
the differential advection which corresponds to advection irkeeps four modes in thedirection and leads to a 17th-order
wavenumber space. system which is too large to handle analytically but numeri-
This discussion of the lowest-order truncation of equa-cal investigations reveal a saddle-node bifurcation near
tion (25) indicates that the interactions between the mean an&= 100 with both solutions unstable, as in the fourth-order
the x-dependent modes that arise from advection by thenodel and plane Couette flow. The unstable steady solutions
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persist as the resolution is increased further and have beeally independent. Dynamically, the streaky flaWy,z) is
continued up to a Galerkin truncation involving 92 modes sacontrolled by the rolls, Eq1), but the latter remain indepen-
far, after reduction arising from symmetries. Those solutionsdent of the streaky flow. In the POD models, the streaks and
continued to even higher resolutions, will be reported uporthe rolls are linked into a single mode. This results in an
in a forthcoming paper. It is not yet known whether the ho-artificial direct feedback on the rolls and a spurious linear
moclinic bifurcation that leads to a stable periodic solutioninstability of the laminar flow. The POD models have also
persists for those higher-order truncations. A better way tdypically ignored the dynamics of the mean, although they
derive the fourth-order mod€R0), avoiding the anomalous include the Reynolds stress which then leads to a triple non-
behavior of the eighth-order model, would thus be to use folinearity that stops the artificial exponential growth. In the
(9) the projection of the eigenstructure obtained from afourth-order model (20), this amounts to setting
higher-order truncation onto the five modes definedin dM/dt=W=0 andV= 7U. The fourth-order model then re-
duces to the single equation,

) lzj—l— 72K§ Ro,7U?
V. COMPARISON WITH OTHER MODELS (1+7 )&U"‘ TU=0'UTU 1- —Z |
m

There is a small overlap between this self-sustaining pro- (28)
cess and linear transient growtfat the level of the simplest with the spurious exponential growth ternx (rU term) and
phase of the process: the formation of streaks by streamwis@e cubic nonlinearity that prevents unbounded growth. The
rolls (Sec. Il A). The work on linear transient growth ap- artificial kinematic constraints appear in all POD models,
proximates Eq(1) and emphasizes the transient algebraicincluding those that involv&-dependent modés:’ The ki-
growth of the streaks, but the complete physics is the passiwgematic constraints could be removed as explained in Ref.
advection—diffusion of streamwise velocity by the rolls 19, Sec. V.
which is adequately described by the transients only for  Recall thatW in model (20) is the amplitude of the
eR<1, wheree is a measure of the amplitude of the rolls x-dependent streak instability mode. The other variables
(Ref. 18, Sec. B The work on transient growth has not ad- M,U,V represent the mean shear, the streamwise streaks and
dressed, nor identified, the other two more complex phasegie streamwise rolls, respectively. Whéh=0, the laminar
of the process: the streak instability and the feedback on thstate is the global attractor for mod@0) because the rolls
streamwise rolls. Discussion of the crucial nonlinear feedare not sustained, as in the full Navier—Stokes dynamics
back necessary for transition has been limitedddoclow- when the flow is independent of. Models (27) and (28)
order models;**? except for the earlier work of Benney sustain the rolls through artificial couplings between the
and Gustavssotf:*® The proposed low-order models call on streaks and the rolls. Modé27) uses a nonlinear dynamical
some artificial nonlinear couplings not present in thecoupling while model28) uses a linear kinematic coupling.
Navier—Stokes equations and igndee crudely modét) the
important feedback on the médr(see also Sec. Il B At
the level of the low-order modé&R0), this amounts to setting

M=1, W=0, ignoring the M equation and adding a VI. CONCLUSIONS

—VyU?+V* term to theU equation and & yU*+V* term A self-sustaining procestSSP in shear flows where

to the V equation to “recycle outputs into inputs This  streamwise rolls redistribute the mean shear to create streaks

transforms the fourth-order mod€20) into that break down to recreate the rolls, has been studied and
d 2 shown to be remarkably insensitive to whether there is free-
i + R U= ouV—V\/UerV?, slip or no-slip at the walls. A complete model of the process

has been derived by projecting the Navier—Stokes equations
(27) on an appropriate set of orthogonal modes. The derived
V=UU?+ V2 model is essentially similar to one previously propo&ety.
The model provides a template for understanding and
A complete nonlinear analysis of mod@7), with a more elucidating the Navier—Stokes dynamics of shear flows. Un-
realistic nonlinearity that hatl in place of JUZ+VZ, has stable steady solutioffs? that exist down toR~120 and
been made by Dauchot and Mannevifle. nearly time-periodic solutioR$?’ that apparently exist down
Another class of low-order models of shear flow dynam-to R~350 have recently been found in plane Couette flow.
ics are those based on tReoper Orthogonal Decomposition Similarly in the low-order model, a saddle-node bifurcation
(POD).**=4"The POD models are derived from the Navier— at R= Ry, introduces two fixed points that are typically both
Stokes equations by a Galerkin projection, as for the modalinstable. For some values of the parameters, a homoclinic
derived in this paper. However, the POD modes impose arbifurcation takes place aR=R,.>R;, that introduces a
tificial kinematic constraints between the two degrees oftable periodic solutiofFig. 13. The quantitative agreement
freedom for the velocity field—the “roll” and “streak” between the critical values of the Reynolds numbers in the
modes of Sec. Il A. This is best understood at the level offourth-order model and the full Navier—Stokes case may
the first phase of the process: the formation of streaks bgven be excellentR;,~100, andR;,.~350 has been ob-
streamwise roll§Sec. 1l A). The streaky flowf U(y,z),0,0] served in the fourth-order mod&l However, anomalous be-
and the streamwise rollg0,V(y,z),W(y,z)] are kinemati- havior in the eighth-order Galerkin truncatioh0) prevents

2
Kl)
at R
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direct reduction to the fourth-order mod@0) and forces the instability of the streaks, not of the rolls, that drives the
introduction of an arbitrary paramet&sec. V). process. This is illustrated by the analysis of the truncated
The homoclinic bifurcation scenario provides a plausiblemodel (Sec. Il B). In the Taylor—Couette problem, a linear
simple link between the unstable steady solutions in planéstability introduces the streamwise Taylor vortices. A sec-
Couette flo*?> and the nearly periodic solutioR&?’ This  ondary instability then leads to wavy vortices. As a result,
work thus suggests a reinvestigation of the solutions comene often reads about instability of streamwise vortices in the
puted in Refs. 27 and 28 to determine whether truly time-plane shear flow context. But an instability of the rolls would
periodic solutions do exist in plane Couette flow and whetheprovide another energy drain in addition to viscosity. The
they arise from a homoclinic bifurcation. The period of the crucial element in shear flows was actually to discover the
cycle should diverge likéin(R—R,)| as the homoclinic bi- mechanism thasustainsthe rolls against viscous decay.
furcation is approached from abotThe global nature of a Finally, with respect to the issue of turbulent disorder, an
homoclinic bifurcation also adds to the possible relevance ofnteresting feature of this work and the associated Navier—
this scenario to the bifurcation of shear flows. ExperimentsStokes calculatiori$ s that it has been possible to isolate an
on transition to turbulence in shear flows seem to indicat®rganized process that is responsible for strongly increased
that a broad range of initial conditions tend to the turbulentmomentum transportFig. 3. Thus the turbulent disorder
state wherR> R while all initial conditions seem to return and the increased shear at the wall have been dissociated.
to the laminar state wheR<R.. Hence, experiments seem The momentum transport is not due to a molecular-like dis-
to indicate a global bifurcation, although elucidating thatordered process but results instead from an organized pro-
point has not been the focus of most studies. Recent exper§ess. In fact, it is possible that the disorder actually reduces
ments along these lines have been made by Dauchot arlié momentum transport allowed by the Navier—Stokes dy-
Daviaud?® namics as realized by the self-sustaining process. This reduc-
To isolate the SSP in the numerical simulations, we refion of the transport is also suggested by the upper bound
stricted the class of solutions to those that are periodic in results?” As for the disorder, it may arise through the
andz over short periodd,,~6h andL ,~4h. This cannot be Ruelle—Takens—Newhouse scendrib the picture of a ho-
done experimentally but other ingenious set-ups may lead tgroclinic bifurcation(Fig. 13 leading to a limit cycle indeed

an experimental verification of the SSP. Dauchot, Bottin andPPlies to the Navier—Stokes equations, the limit cycle could
Daviaud®* have studied plane Couette flow modified by gbifurcate into quasiperiodic motiof2-torug and from there

spanwise wire in the limit of the wire thickness tending to {0 & Strange attractor.

zero. They observe the formation of streaks by streamwise 1he Self-sustaining process is expected to retain some
rolls followed by the oscillation and break-up of the streaks'€/€vance to the dynamics of shear flows throughout those
in an intermittent cycle. This is reminiscent of behavior ob-further bifurcations as the Reynolds number and/ontaad

Z periods are increased. The process was indeed inspired by
quservations of the near wall region of turbulent fléthend

periods were not quite tuned properly. Further adjustments ; X N
the spatial periods led closer to time-periodic soluti&i wavy streaks and streamwise vortices are ubiquitous features
" inthat regior® From a more fluid dynamical point of view,

In those recent experimerft*°the streamwise vortices _ .
5 opposed to low-order nonlinear dynamics, the

are generated by the spanwise wire. One important aspect 8 o R
this and earlier worl¥?is to elucidate the nonlinear mecha- SUJ9ESUOM is that the process can only be self-sustaining in

) . . . a well-defined range of scales. If the scales are too small,
nism for the generation of streamwise vortices. The genera-. . :
. ) : . . viscous relaxation dominates. If the scales are too large, the
tion of streamwise streaks from streamwise vortices is a

. . r i r ndary in ilities. Thus the pro-
simple mechanism that has long been understood, but tr%ocess s destroyed by seco _da y instab t.es us the pro
cess would be observed only in a small region near the wall.

. . . Yhe critical scales for the self-sustaining process would then
been shown that the streamwise vortices directly result fron&ontrol the size of the turbulent boundary layer and the

the nonlmegr dev_glop_ment_ of an |nstab|_||ty Of_ the Streaks'streak spacing of 100 wall units. The latter should be con-
The latter instability is driven by the inflections of the

Ky i i the z-directi h inf , sidered as a critical Reynolds number for
streaky flowU(y,2) in the z-direction. The new information <ot o\\stenanc® % This is nothing but Malkus'snarginal
that emerges from the derivation of the low-order model i

) Sstabili'[y ideas? applied to the nonlinear instability process
that the feedback on the streamwise rolls results from th%escribed in this paper.

nonlinear interaction between an even and an oddy,in

mode of instability of the streaks. An important secondary

role of the mean shear is to break thesymmetry and cor-

relate those two modes in such a way that feedback on the

rolls is realized. This explains why streamwise rolls do notACKNOWLEDGMENTS
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APPENDIX: COEFFICIENTS

For the reduction{17) the coefficients in modgR0) are

om=aB?5;/(Kkpkyds),

oy=BylKy,

0,= a’B(a’ky+ 818,k4)/ (YKpKaK, 83), (A1)
ow=(adi/kpt+ad,ky)l2,

K= (277 83+ BPK§)1(253),

with  87=92—a?>0, &=y*—p?—a?®>0  and

85=y?+ B°— a2, while for the reductior(19) they are
om=aBd1/(2kpke),
oy=BYl Ky,
0, = (Y= B (2yKcny),

Ty=ad;/(2xp),

(A2)

k2= (v*+ K312,

with 62=y?—a?>0 andy?— 8?>0 otherwise feedback is
not possible.
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