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A self-sustaining process conjectured to be generic for wall-bounded shear flows is investigated.
The self-sustaining process consists of streamwise rolls that redistribute the mean shear to create
streaks that wiggle to maintain the rolls. The process is analyzed and shown to be remarkably
insensitive to whether there is no-slip or free-slip at the walls. A low-order model of the process is
derived from the Navier–Stokes equations for a sinusoidal shear flow. The model has two unstable
steady solutions above a critical Reynolds number, in addition to the stable laminar flow. For some
parameter values, there is a second critical Reynolds number at which a homoclinic bifurcation
gives rise to a stable periodic solution. This suggests a direct link between unstable steady solutions
and almost periodic solutions that have been computed in plane Couette flow. It is argued that this
self-sustaining process is responsible for the bifurcation of shear flows at low Reynolds numbers and
perhaps also for controlling the near-wall region of turbulent shear flows at higher Reynolds
numbers. ©1997 American Institute of Physics.@S1070-6631~97!03204-2#
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I. INTRODUCTION

Shear flows are a fundamental class of fluid flows. T
canonical examples are plane Couette, plane Poiseuille
pipe Hagen–Poiseuille flows. In such simple cases,
Navier–Stokes equations have a simple steady s
solution—the laminar state of the flow—in which the velo
ity is parallel to the walls and varies only in the wall–norm
direction. Experimental studies reveal that there is a crit
value of the Reynolds number,Rc , below which the laminar
state is observed and above which the flow may be ‘‘tur
lent.’’ This at once suggests an instability of the lamin
state, but linear stability analyses lead to the conclusion
the laminar state is stable for all Reynolds numbers.1,2

From a general point of view, a shear flow is a nonline
dynamical systemdu/dt5 f (u,R), the Navier–Stokes equa
tions for incompressible flow with appropriate forcing a
boundary conditions, that depends on a single parameteR,
the Reynolds number. That dynamical system has one sim
fixed point—the laminar state—linearly stable for allR and
some mysterious attractor—the turbulent state—whenR is
larger than some finiteRc . Virtually all initial conditions are
attracted to the turbulent state ifR@Rc , while they are at-
tracted to the laminar state ifR!Rc . In fact, it can be shown
that there exists a finite Reynolds numberRe,Rc below
which the flow tends to the laminar state ast→`, for all
initial conditions.3,4 The proof uses the fact that the nonli
earity in the Navier–Stokes equations conserves the tota
ergy. Hence, the laminar state is theglobal attractor if
R,Re and alocal attractor for allR. Observations sugges
that the laminar state remains a global attractor up
R5Rc after which a mysterious, or perhaps only ‘‘strange
attractor emerges. Some of the main objectives are to pre
the critical Reynolds numberRc and theR-dependence o
turbulent statistics—the momentum transport^uv& in par-
ticular, as well as to elucidate the structure of the turbul
attractor and the nature of turbulence.

However, the linear stability of the laminar state and t
complexity of the turbulent attractor lead to much difficul
in the study of shear flows as our principal tools are based
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linear theory. If a linear instability occurs, then a new bran
of solution bifurcates from the laminar state and that n
branch can be studied by weakly nonlinear analysis in
manner of Malkus and Veronis5 or Stuart,6 or by numerical
continuation, but the absence of a linear instability preve
those tools from being powered-up.

The lack of exponentially growing linear eigenmod
has led many researchers to go back to the full initial va
problem and consider a variety of ‘‘transition scenarios
Those scenarios should not be confused with the ‘‘route
chaos’’ such as the Ruelle–Takens, Feigenbaum period d
bling or Pomeau–Manneville routes to chaos.7 Transition
scenarios focus on the temporal sequence of events lea
from particular initial conditions to the turbulent attracto
The scenarios do not describe generic sequences of bifu
tions of attractors in parameter space, nor do they desc
the characteristics of the turbulent attractor. A leading tr
sition scenario has been the evolution from a finite amplitu
least stable linear eigenmode plus small rand
perturbations.8,9 One of its interests is that it led to th
~re-!discovery of the 3D instability of elliptical vortices.10,11

A different scenario called ‘‘bypass transition’’ has been
gued to predominate in less controlled situations. Byp
transition loosely denotes any scenario that does not s
with the least stable linear eigenmode. Several bypass
narios have been studied through numerical simulations
the Navier–Stokes equations~e.g., Ref. 12!.

In a similar vein, several researchers have advanced
the key to understanding transition to turbulence in sh
flows is to be found in the transient growth associated w
the non-normality of the linearized operator~e.g., Refs. 13–
15!. The idea and results are not new16,17 ~see Ref. 18 for
other references! but the formulation is somewhat more ge
eral and elegant than earlier studies. Nonetheless, the no
thogonality of the eigenmodes does not change the fact
the linear analysis is only valid locally and unable to pred
global features such as the size of the basin of attraction
the laminar state or the emergence of new attractors not
nected to the laminar state.19,20 Those important question
must consider the particular nonlinearity of the system
88310.00 © 1997 American Institute of Physics
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interest. Simple nonlinear models,14,21,22illustrating how lin-
ear transient growth and ‘‘nonlinear mixing’’ could lead
transition, have been shown19 to violate basic properties o
the Navier–Stokes nonlinearity~see also Secs. III and V!.

One approach that directly attacks the full nonline
problem is to look for new fixed points of the dynamic
system. In practice, this is extremely difficult as the ba
tool—Newton’s method—requires a very good initial gue
of the fixed point. The primary technique has beencontinu-
ationmethods, where one starts from an ‘‘adjacent’’ proble
for which a nontrivial fixed point is accessible then hopes
follow it through parameter space to the region of intere
Malkus and Zaff23 used that strategy numerically and expe
mentally by starting from pressure-driven Ekman flow. Th
is the flow between two parallel planes rotating around
normal to the planes. By progressively reducing the rotat
rate, they managed to track nontrivial solutions back to P
seuille flow. However, from their experimental observatio
they concluded that a concurrent spot-like process, unc
nected to their new solutions, occurred as plane Poise
flow was approached. Nagata24 started from Taylor–Couette
flow in the narrow gap limit which is plane Couette flo
rotating around the spanwise direction~parallel to the walls
and perpendicular to the flow direction!. By following a se-
ries of bifurcations, Nagata succeeded in tracking fix
points to nonrotating plane Couette flow. But those solutio
survived at Reynolds numbers three times smaller than
Rc observed experimentally and were later found to be
stable by Clever and Busse.25 No clues have been offered a
to the relevance of those solutions and their relation to
periments, until the work reported in Ref. 19. The fixed po
continuation approach is a nice procedure, however it
quires much artistry and is by no means guaranteed to
ceed. The continuation approach also offers limited insi
into the nonlinear mechanics of the new solutions.

A different approach based on a detailed mechani
understanding of the new nonlinear states has been follo
by this author together with Kim and Hamilton.18,19,26,27

Where most previous endeavors focused on transient me
nisms that occur during the transition to turbulence, the
jective of this approach was instead to extract those me
nisms thatmaintain the turbulence. From the synthesis of
large body of experimental observations and theoret
work, it has been possible to identify a fundamental se
sustaining process in shear flows. The identification of t
process was guided by the conceptual pictures of the ‘‘bu
ing process’’ and associatedhorseshoe vorticesobserved in
turbulent boundary layers28 as well as by the ‘‘mean flow-
first harmonic theory’’ proposed by Benney.29

The self-sustaining process consists of three dist
phases. First, weak streamwise rolls@0,V(y,z),W(y,z)# re-
distribute the streamwise momentum to create large sp
wise fluctuations in the streamwise velocityU(y)→U(y,z).
The spanwise inflections then lead to a wake-like instabi
in which a three-dimensional disturbance of the fo
eiaxv(y,z) develops. The primary nonlinear effect resultin
from the development of the instability is to reenergize
original streamwise rollsvv*→V(y,z), leading to a three-
dimensional self-sustaining nonlinear process~Fig. 1!.
884 Phys. Fluids, Vol. 9, No. 4, April 1997
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This process was first isolated in the form of remarka
organized nearly time-periodic solutions of the Navie
Stokes equations~Figs. 5 and 6 in Ref. 26!. Those solutions
were obtained by starting from an equilibrated turbulent fl
and tracking it down for decreasing box size, a proced
inspired in part by the work of Jimenez and Moin.30 This
tracking procedure amounts to a continuation technique
three-dimensional parameter space corresponding to
Reynolds number and the periods in the streamwisex and
spanwisez directions, but it is a turbulent solution that
tracked instead of fixed points. Further such numerical sim
lations have been done together with detailed analyse
each phase of the process through a series of controlled
merical simulations of the Navier–Stokes equations~Figs. 2,
3, and 4 in Ref. 27!. An eigenmode analysis of the instabilit
of the two-dimensionalU(y,z) profile has also been don
together with an explicit verification that the nonlinear inte
action of the growing eigenmode does indeed feed back
the streamwise rolls.18 Finally, a low-order model of the pro
cess has been proposed18,19 that may provide a framework to
connect the steady solutions in plane Couette flow24 and the
nearly time-periodic solutions.26,27

The steady solutions24 have been tracked down to Rey
nolds numbersR'120 in plane Couette flow but the near
periodic solutions26,27 apparently disappear belowR'350.
The latter critical valueR'350 coincides with that found in
experiments31–33 and computations34 for larger horizontal
domains, in which case the solutions are quite disordered
spot-like. This discrepancy between critical Reynolds nu
bers led to questions about the relevance, and validity, of
steady solutions. The solutions have been confirmed25,35 but
shown to be unstable. The low-order model has shed s
light on this situation as it shows a saddle-node bifurcati
aroundR5100 for some values of the parameters, fro
which two new steady solutions arise, in addition to the lam
nar solution, but typically both are unstable. Aroun
R5350 however, a global bifurcation of homoclinic typ
takes place leading to a stable periodic solution.

This paper has two parts. In Sec. II, the self-sustain
cycle ~Fig. 1! is cut open and its three phases are studied
succession. That part closely parallels an earlier study.18 The
principal objectives here are to establish the relevant sym
tries of the process and to demonstrate its insensitivity
whether there is no-slip or free-slip at the walls. This inse
sitivity to the boundary conditions underlines the robustn
of the process. In the present study we concentrate on st

FIG. 1. The self-sustaining process.
Fabian Waleffe
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states for each phase as this is more in the spirit of a
tained process than the earlier study that focused on p
streak amplitude and instability growth rate. The symmetr
and free-slip boundary conditions are used in the second
of this paper~Sec. III! to derive a low-order model of the
self-sustaining process. The low-order model is derived fr
the Navier–Stokes equations through a truncated Gale
projection on Stokes modes followed by a physical
motivated reduction. The reduction amounts to projecting
streamwise-dependent part of the flow on the eigenmod
the streak instability instead of Stokes modes. The mode
derived for a wall-bounded sinusoidal sinby shear flow,
ubyu<p/2, with free-slip boundary conditions instead of th
more conventional plane Couette and Poiseuille flows w
no-slip at the walls. The sinusoidal shear flow with free-s
boundary conditions is better suited to a low-order syst
modeling as the laminar state is a Galerkin mode and
total energy in the low-order model is then exactly conser
by nonlinear interactions. As will be seen, the self-sustain
process that was first isolated in plane Couette flow a
occurs in this sinusoidal shear flow. This is a first expli
verification that the process is generic. The sinusoidal sh
flow may actually be a better vehicle for progress in elu
dating the nonlinear dynamics of shear flows owing to
greater simplicity.

II. THE THREE PHASES OF THE PROCESS

A. Formation of streaky flow

The simplest element of the self-sustaining proc
~SSP!, Fig. 1, is undoubtedly the streamwise ro
@0,V(y,z),W(y,z)# which decouple from the streamwise v
locity @U(y,z),0,0# when the flow is independent ofx. In
that case the rolls have no energy source and suffer a
viscous decay. However, the streamwise velocityU is
strongly redistributed iny-z planes by the streamwise rolls
as governed by the advection–diffusion equation,

]U

]t
1V

]U

]y
1W

]U

]z
5
1

R
¹2U1F~y!, ~1!

whereU,V,W do not depend onx and F(y) is a steady
deterministic forcing that drives the shear flow if the boun
ary conditions are homogeneous. The resulting spanw
fluctuations,U(y,z)2Ū(y), are calledstreaks, in reference
to the streaks that are observed in experiments when hy
gen bubbles are released along a spanwise wire near the
in turbulent shear flows.36 For plane Couette flow, consid
ered in this section,F50 and the flow is driven by the mo
tion of the boundariesU(y561)561 and the laminar state
is U(y)5y. As usualx, y andz represent Cartesian coord
nates in the streamwise, wall–normal and spanwise di
tions, respectively.

At low Reynolds number, a good guess for the rolls
the lowest-order eigenmode of the operator¹4 with bound-
ary conditionsV5]V/]y50 at the walls. This is the opera
tor that appears on the left hand-side of Eq.~6! below. Its
even eigenmodes are

V~y,z!5V v̂~y!cosgz, ~2!
Phys. Fluids, Vol. 9, No. 4, April 1997
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v̂~y!}
cos~py!

cosp
2
cosh~gy!

coshg
,

normalized so that maxv̂(y)51 and p is a root of
ptan p1g tanhg50. The spanwise componentW(y,z) fol-
lows from the continuity equation]V/]y1]W/]z50 and
the flow @0,V(y,z),W(y,z)# is an eigenmode of the Stoke
operator. The decay rate of those roll eigenmodes is t
(p21g2)/R, where p21g2 has a minimum of 9.27 a
g51.2. Such streamwise rolls with the lowestp are shown
in Fig. 2 for g55/3. The amplitude of the rolls,V, can then
be selected from the criterion that the roll advection ra
V/h, be of the order of the streak diffusion ra
(b21g2)n/h2 with b5p/2, or of its own decay rate
(p21g2)n/h2, thus selecting the weakest rolls that live lon
enough to create the strongest~and thus most unstable!
streaks. In nondimensional terms, the amplitude of the r
is V'(b21g2)/R or V'(p21g2)/R. ForR5400,g55/3,
these criteria giveV'0.013 andV'0.024, respectively.
With respect to the time dependence of the streamwise r
there are two natural choices, either let the rolls decay
cously, or maintain them at their initial amplitude. This se
ond choice was adopted for simplicity and because it is m
in the spirit of a sustained process. The mechanism that
tains the streamwise rolls is elucidated in Sec. II C.

From Eq.~1!, the effect of the periodic array of stream
wise rolls ~2! is to induce a spanwise modulation in th
streamwise velocity of the form

U~y,z!5 (
n50

`

Un~y!cosngz, ~3!

such that, withv̂(y) even, U2k(y) has the symmetry of
F(y) andU2k11(y) has the opposite symmetry. ForF(y)
odd and for Couette flow,Un(y)5(21)n11Un(2y). In ad-
dition to z-reflection V(y,z)5V(y,2z), which implies
U(y,z)5U(y,2z) and the cosine expansion in~3!, the main
symmetry of the rolls isV(y,z)52V(2y,z1Lz/2), where
Lz52p/g, from whichU(y,z)52U(2y,z1Lz/2) follows
if F(y)52F(2y).

TheU(y,z) profile achieved after about one quarter
the roll’s turnover timet5ph/(2V), starting from laminar
Couette flow att50, was studied in Ref. 18. That quas
steady profile is adequate to illustrate the streak instab
and the nonlinear feedback on the rolls, but may not be
best choice to model the SSP as it somewhat remember
initial conditions. Here, the steady stateU(y,z) profiles cre-
ated by steady rolls are considered, in the spirit again that
streamwise rolls and streaks are maintained for all times
average. Elucidating the mechanism that maintains them
key objective of this work. Two steady state strea
U(y,z) flow profiles forV50.02 andV50.04 are shown in
Fig. 2 for R5400. It is interesting to note that for roll am
plitudes above the approximate criterionV5(b21g2)/R,
stronger rolls lead to weaker but more localized streaks.
mean profilesŪ(y) corresponding to those streaky flow
have an S-shape~Fig. 3! characteristic of turbulent Couett
flow with shear ratedŪ/dy5 1.90 aty561 and 0.03 at
885Fabian Waleffe
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y50 for V50.02, anddŪ/dy5 2.47 aty561 and20.16
at y50 for V50.04. Hence, the introduction of streamwis
rolls with an amplitude of only 2% of the wall velocity
nearly doubled the shear rate at the wall. For roll amplitu
larger than about 2% at thisR5400, the mean velocity pro-
file acquires a negative slope in the center of the channel,
an unstable inflection. It is of course not surprising th
streamwise rolls and their associated streaks are so effec
at transporting momentum given the results of upper boun
on momentum transport.37

B. Instability of streaky flow

The streaky flowsU(y,z) ~Fig. 2! contain strong span-
wise inflections. By analogy with the instability of wakes2

one then expects two types of inflectional instability of th

FIG. 2. Redistribution of streamwise velocityU by streamwise rolls
@0,V(y,z),W(y,z)# in plane Couette flow atR5400 withg55/3. Contours
of U(y,z) at 0.2 intervals from -1 aty521 to 1 aty51. Negative contours
dashed, zero contour dotted.
886 Phys. Fluids, Vol. 9, No. 4, April 1997
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streaks, afundamental sinusoidalmode and asubharmonic
‘‘sinucose’’ mode18 as sketched in Fig. 4. There is also
fundamental varicose mode expected to be least unsta
For the near-wall region of turbulent flows the fundamen
sinusoidal mode will likely lead to the typical staggered ro
of vortices as extracted from turbulent data by Stretch38

while the subharmonic mode, or the fundamental varico
would lead to the less frequenthorseshoestructures.28,39Al-
though the symmetric horseshoe structures are more like
catch the eye, Stretch’s data analysis showed that asym
ric structures are typical. This dominance is easily und
stood in terms of the wake instability analogy that favors
sinusoidal mode.

An eigenmode analysis of the instability of the spanw
varying shear flowU(y,z) was formulated in Ref. 18. Elimi-
nating the pressure from the Navier–Stokes equations lin
ized around the 2D-1C base flowU(y,z) x̂ by taking they
component of the curl@ j•¹3(•)# and of the curl of the curl
@ j•(¹3(¹3(•)))# of the equations yields

S ]

]t
1U

]

]x
2
1

R
¹2D¹2v1S ]2U

]z2
2

]2U

]y2 D ]v
]x

12
]U

]z

]2v
]x]z

52
]2

]x]y Sw ]U

]z D ,
~4!S ]

]t
1U

]

]x
2
1

R
¹2Dh5S ]U

]z

]

]y
2

]U

]y

]

]zD v
2S v ]

]y
1w

]

]zD ]U

]z
,

wherev andh are the vertical velocity and vorticity, respec
tively. The u andw velocity components are kinematicall
determined by v and h from the definition for h,
]u/]z2]w/]x5h, and the continuity equation
]u/]x1]w/]z52]v/]y.

FIG. 3. Mean velocity profilesŪ(y) for V50.02 ~solid! and V50.04
~dashed!.
Fabian Waleffe
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As mentioned above there are several possible sym
tries for the eigensolutions of system~4!. Fundamental
modes have the samez symmetry as the base flow. Fund
mental sinusoidal modes are such that thew component of
velocity perturbation is even inz for the even streaks~3!; the
fundamental varicose mode has aw component that is odd in
z for such streaks. Finally, the base flow symme
U(y,z)52U(2y,z1Lz/2) implies that if
eiax@u(y,z),v(y,z),w(y,z)# is an eigenmode of Eq.~4! with
eigenvalue l, then e2 iax@u* (2y,z1Lz/2),
2v* (2y,z1Lz/2), w* (2y,z1Lz/2)] is an eigenmode
with eigenvaluel* .

Here as before, the focus is on the fundamental si
soidal mode of instability of the streaky flowU(y,z), and the
velocity perturbations then have the form18

v5elteiax(
n51

`

vn~y!sin ngz1c.c.,

~5!

w5elteiax(
n50

`

wn~y!cosngz1c.c.,

for the y andz components, where c.c. stands for comp
conjugate. Thex-component of velocity follows from conti

FIG. 4. Sketch of the two principal modes of instability of the streaky fl
U(y,z). Contours of streamwise velocityu ~base flow1 perturbation! in the
y50 plane over 1.5 periods of the base flow in thez-direction.
Phys. Fluids, Vol. 9, No. 4, April 1997
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nuity. These forms readily include the periodicity an
z-symmetry of the fundamental sinusoidal modes. The
maining symmetry implies that ifvn(y),wn(y) is an eigen-
mode with temporal eigenvaluel, then (21)n11vn* (2y),
(21)nwn* (2y) is an eigenmode with eigenvaluel* . In par-
ticular, if l5l* there is an eigenmode with the symmetrie
vn(y)5(21)n11vn* (2y) andwn(y)5(21)nwn* (2y), as in
Fig. 7.

Results for the fundamental sinusoidal instability of th
steady stateU(y,z) profile corresponding toV50.02 at
R5400 are presented here for both no-slip and free-s
boundary conditions at the walls (u5v5w50 or
]u/]y5v5]w/]y50, at y561). The spectral computa-
tions were done with 33 to 42 Chebyshev polynomials iny
and 12 to 14 Fourier wavenumbers inz. The growth rates,
R(l), for the two most unstable modes are shown in Fig.
for both types of boundary conditions. That plot of growt
rate versus streamwise wavenumber for the most unsta
mode has the shape characteristic of inflectional instabilit
of smoothly varying profiles2 for which there is a high wave-
number cutoff of the order of the typical wavenumber of th
base flow (g in this case!. The eigenvaluel is real for the
most unstable mode and thus the mode is nonpropagatin

The lowest-order componentsw0(y), w1(y) and v1(y)
@Eq. ~5!# of the most unstable eigenmode fora51.1 are
plotted in Fig. 7 and the no-slip and free-slip eigenfunctio
are remarkably similar, except of course next to the wal
The reason for choosinga51.1 is that it is approximately
the cutoff wavenumber and thus corresponds to a neu
mode for whichR(l)50. A neutral mode together with the
steady rolls and streak constitute an approximate stea
equilibrium if it can be shown that the neutral mode feed
back on the rolls. In any case, the shapes of the eigenfu
tions are similar for alla below the bifurcation point where
the two largest growth rates merge into a complex conjug
pair. Above that point, the overall shapes remain similar b
become increasingly asymmetric. The eigenmodes con

FIG. 5. Two largest growth rates for the fundamental sinusoidal instabil
of the steady state streaky flowU(y,z) corresponding toV50.02, with
no-slip ~solid! and free-slip~dashed! boundary conditions, vs streamwise
wavenumbera, for g55/3,R5400.
887Fabian Waleffe
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primarily of spanwise velocity (w0 is largest!, as expected
for the wake-like instability of the streaks. The structure a
growth rate of the most unstable mode are quite insensi
to whether the boundary conditions correspond to free-
no-slip. This similarity between the two types of bounda
conditions for the streak instability is very different from th
viscous instability described by the Orr–Sommerfeld eq
tion for the plane Poiseuille and Blasius flows which is su
pressed by the switch to free-slip at the walls. For the para
eters a51, R510,000, the least stable Orr–Sommerfe
mode has growth rate 3.743 1023 with no-slip boundary
conditions but23.523 1022 with free-slip.

The growth rate of the two most unstable fundamen
sinusoidal modes of instability of the steady stateU(y,z)
~Fig. 2! corresponding toV50.02, 0.03 and 0.04, are show
in Fig. 6 for no-slip boundary conditions. For streamwi
wavenumbera less than about 1, the eigenvalue for the mo
unstable mode is real and positive and essentially ident
for all three profiles. However, for largera ’s there may be a
second branch of unstable modes that corresponds to a
of complex conjugate eigenvalues and the eigenmodes
thus propagating and asymmetric. This new branch of
stable modes is more pronounced as the amplitude of
steady rolls is larger. These propagating unstable modes
probably related to new propagating solutions that have
cently been discovered by Nagata40 in plane Couette flow. In
this as in earlier work, the focus is on the nonpropagat
modes.

C. Nonlinear feedback on the rolls

The nonlinear feedback of the streak instability on t
streamwise rolls, critical to self-sustenance of the proce
was first demonstrated in Refs. 18 and 27. A fuller and m
precise discussion is provided hereafter. The equation g

erning the streamwise rollsV̄
x
(y,z) reads as

FIG. 6. Two largest growth rates for the fundamental sinusoidal instab
of the steady state spanwise-modulated shear flowU(y,z) for no-slip
boundary conditions, vs streamwise wavenumbera, for g55/3, R5400.
Solid: V50.02; dashed:V50.03; dash-dotted:V50.04.
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S ]

]t
2
1

R
¹2D¹2V̄

x
~y,z!5

]3

]y]z2
~ww

x
2vv

x
!

1S ]2

]y2
2

]2

]z2D ]

]z
~vw

x
!, ~6!

where the overbar(•)
x
denotes an average over th

x-direction. This equation is derived by averaging t
Navier-Stokes equations overx then eliminating the pressur

and the spanwise velocity componentW̄
x
through continuity.

Equation ~6! can be seen as an equation for the aver

streamwise vorticityvx

x
as¹2V̄

x
(y,z)52]vx

x
/]z, how-

ever the boundary conditions,V̄
x
5]V̄

x
/]y50 at y561,

are known forV̄
x
only.

Substituting the expressions~5! for the fundamental
sinusoidal instability of streaky flowU(y,z) onto the right

hand side of Eq.~6! forces aV̄
x
(y,z)5(n51

` Vn(y)cosngz,
whose first term is cosgz. Hence thez-symmetry is that of
the original rolls~2!. Writing D for ]/]y, the equation for
the cosgzmode reads as

S ] t2
1

R
~D22g2!D ~D22g2!V1

52g2DF2w0w1*1 (
n51

`

~wnwn11* 2vnvn11* !G1g~D2

1g2!Fw0v1*1
1

2(n51

`

~wnvn11* 2wn11vn* !G1c.c., ~7!

where the* denotes a complex conjugate. They-symmetry
of the nonlinear forcing is also correct for feedback on t
original rolls. The symmetries for a nonpropagating unsta
streak mode, for which l5l* , are such that
vn(y)5(21)n11vn* (2y) and wn(y)5(21)nwn* (2y), as
discussed in Sec. II B. It follows directly that the nonline
forcing on the right hand side of Eq.~7! is even iny. The
forced response thus has the correcty andz symmetries to
feedback on the original rolls.

However, the correct symmetries do not guarantee fe
back as the forcing could have the wrong sign and actu
destroy the rolls instead of reenergizing them. To ver
feedback explicitly, the right hand side of Eq.~7! is plotted
in Fig. 8 together with (D22g2) v̂(y), which is
(D22g2)V1 for the original rolls~2!. At first sight, the non-
linear forcing~‘‘W’’shape! is quite different from the origi-
nal (D22g2)V1 ~‘‘V’’ shape!, however upon closer inspec
tion it is clear that there is a good correlation between
two functions. A different display of the same information
given in Fig. 13 of Ref. 27. The feedback can be demo
strated in a different way by comparing the forced respo
of Eq. ~7! to the original profile for the rollsv̂(y) Eq. ~2!.
This is done in Fig. 9 and streamwise rolls almost identi
to the original rolls are generated by the nonlinear forc
resulting from the streak eigenmode.

The cycle has been closed. The steady rolls lead
steady streaks that lead to a neutral mode that gene
steady rolls. For a neutral streak mode,R(l)50 and the

y

Fabian Waleffe
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right hand side of Eq.~7! is steady. Here the neutral mode
also a steady mode,R(l)5I(l)50. By focusing on steady
rolls and streaks and a neutral mode, an approximate st
equilibrium has been determined. The amplitude of the n
tral mode is the last remaining unknown and it could
determined such that the amplitude of the steady forced

FIG. 7. Principal componentsw0, w1 andv1 of the unstable eigenmode o
the streak instability with v5eiax(nvn(y)sinngz, and
w5eiax(nwn(y)cosngz @Eq. ~5!#, for a51.1, g55/3, R5400. Solid: no-
slip, dashed: free-slip.
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Downloaded¬20¬Jan¬2008¬to¬130.207.50.192.¬Redistribution¬subject¬
dy
u-

e-

sponse to Eq.~7! equals the original amplitude of the rolls
V50.02.

It is worth noting that the wavenumbera51.1 for the
neutral mode corresponds well to the wavenumbera51.14
that was determined by the turbulent solution tracki
procedure.27 The spanwise wavenumberg55/3 was chosen
to correspond to those numerical solutions. The streak sta
ity results, Fig. 5, and the numerical solutions suggest t
when the minimuma allowed in the domain is less than th
cutoff wavenumber for the streak instability, then th
Navier–Stokes solution is disordered. If the minimum
lowed wavenumber is larger than the cutoff, then the ‘‘tu
bulent’’ solution is not sustained and the flow returns
laminar.

The three phases of the SSP, formation of streaks
streamwise rolls, streak instability and feedback on the ro
are described by the three equations~1!, ~4! and~6!, respec-
tively. However, those equations are not complete to
scribe the interactions between the three phases. Equatio~1!

lacks the Reynolds stress terms]uv
x
/]y1]vw

x
/]z that ex-

tract energy fromU(y,z) to sustain the growth of the strea
instability. Equations~4! lack the interaction between th
rolls V(y,z) and the streak disturbance (u,v,w) that extract
energy from the latter to sustain the rolls. To put it diffe
ently, Eqs.~1! and~4! describe the actions without the rea
tions. A complete model of the SSP is derived in the n
section.

III. LOW-ORDER MODEL OF THE PROCESS

A. Lowest-order Galerkin projection

A complete but low-order model of the self-sustainin
process is derived here for a sinusoidal shear flow driven
the x direction by F(y)5Fsinby, b5p/2, with free-slip
boundary conditions aty561. This sinusoidal shear flow is
best suited to low-order Galerkin projections as the appro
ate expansion functions are Fourier modes in all three co
dinates. Another advantage is that the mean flow is a lo
order mode and the total energy is then exactly conserve
Galerkin truncation at any order. Free-slip boundary con
tions are also routinely considered in Rayleigh–Be´nard con-
vection. Lengths are nondimensionalized by the half-chan
height h and velocities by the laminar root-mean-squa
~rms! velocity. The nondimensional amplitude of the force
thenF5A2b2/R. The reader may worry that the resultin
laminar flow,U(y)5A2 sinby, is inflectional~Fig. 10!, but
that inflection does not lead to instability because of the w
blocking. Indeed, Tollmien considered such a flow to sh
that Rayleigh’s inflection point theorem is necessary but
sufficient for inviscid instability.2 The wall-bounded sinu-
soidal shear flow with free-slip at the walls is then a simp
parallel shear flow for which the laminar state is stable for
Reynolds numbers, as in plane Couette and pipe Poise
flows.

The streamwise rolls can be chosen in the simple fo
V(y,z) } cosby cosgz, withW(y,z) by continuity. The sym-
metries of the spanwise varying mean flowU(y,z) are as
discussed in the previous section, Eq.~3!. The lowest-order
truncation for thex-independent flow then consists of
889Fabian Waleffe
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a

S U~y,z!

V~y,z!

W~y,z!
D 5MC0101UC0011VF011, ~8!

with

C010}S sin by

0

0
D , C001}S cosgz0

0
D ,

F011}S 0

g cosby cosgz

b sin by sin gz
D ,

where the amplitudes of the mean shearM , the streaksU and
the rolls V, are real functions of time. The modesC lmn ,
F lmn are normalized to have a unit mean square, such th

FIG. 8. Feedback on streamwise rolls: solid ‘‘V’’ shape is (D22g2) v̂(y),
‘‘W’’ shapes are the nonlinear forcing on the RHS of Eq.~7! owing to the
fundamental sinusoidal unstable streak mode, fora51.1, g55/3,R5400.
Solid: no-slip eigenmode; dashed: free-slip eigenmode. The dotted W-sha
is the contribution from no-slipw0, w1 andv1 only.

FIG. 9. Comparison of the streamwise rolls created from the nonline
forcing, Eq.~7!, by the neutral fundamental sinusoidal streak eigenmode an
the original rolls, Eq.~2!, for a51.1,g55/3,R5400. Original rolls: solid,
forced response: dashed.
890 Phys. Fluids, Vol. 9, No. 4, April 1997
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the mean square velocity is the sum of the squares of th
amplitudes. TheC lmn modes are streak, or vertical~i.e., y)
vorticity, modes with no vertical velocity and wavenumbers
la,mb andng in thex, y andz directions, respectively. The
F lmn modes are roll, or vertical velocity, modes with no
vertical vorticity. Both sets of modes are divergence-free.

The lowest-order truncation for the streak instability
mode, incorporating the symmetries of the fundamental sinu
soidal mode@Eq. ~5!#, consists of keeping only those modes
associated withw0, w1 andv1 in ~5! ~see also Fig. 8!. This
truncation for thex-dependent part of the flow then consists
of

eiaxv~y,z!1c.c.5AC1001BC1011CC1101DC111

1EF111, ~9!

where

C100}S 0

0

cosax
D , C110}S 0

0

sin ax sin by
D ,

are the modes associated withw0,

C101}S 2g cosax singz

0

a sin ax cosgz
D ,

C111}S g sin ax sin by singz

0

a cosax sin by cosgz
D ,

are the modes associated withw1, and

F111}S ab sin ax sin by singz

~a21g2!cosax cosby singz

2bg cosax sin by cosgz
D ,

corresponds tov1. The amplitudesA,B,C,D,E are real func-
tions of time with the modes normalized as previously.

The lowest-order consistent truncation of the velocity
field that may capture the self-sustaining process consists o
the eight modes defined in~8! and~9! and keeps three wave-
numbers~21, 0 and 1! in all three directions. Although this
is undoubtedly a severe truncation, much of the reduction

pe

r
d

FIG. 10. Sketch of the sinby wall-bounded shear flow considered for the
Galerkin projection with free-slip boundary conditions.
Fabian Waleffe
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comes from the symmetries identified in the previous s
tion. Without those symmetries the same level of truncat
would yield 52 modes@2* (3321)#.

The governing equations are derived by substituting
expansion~8! plus ~9! for u in the Navier–Stokes equation

S ]

]t
2
1

R
¹2Du52u•¹u2¹p1F~y!x̂,

and projecting onto each mode~Galerkin projection!. The
modes of the expansion satisfy the continuity equat
¹•u50 and the boundary condition
]u/]y5v5]w/]y50 at y561 with u5(u,v,w); hence
the pressurep drops out of the final equations. In general

u5 (
l ,m,n

@Almn~ t !F lmn~x!1Blmn~ t !C lmn~x!#,

where the expansion functionsF lmn ,C lmn are orthogonal
eigenmodes of the Stokes operato
¹2$F,C% lmn52k lmn

2 $F,C% lmn with ¹•$F,C% lmn50, the
equation forAlmn is

S ddt1 k lmn
2

R DAlmn52^~u•¹u!•F lmn&1^F~y!x̂•F lmn&,

where the bracketŝ & denote a spatial average, and t
wavenumberk lmn

2 5 l 2a21m2b21n2g2. There is a similar
equation forBlmn with C in place ofF. For the eight modes
defined in~8!, ~9!, the Galerkin projection yields

S ddt1 km
2

R DM5
2bg

kd
BE1

bg

kv
UV1

km
2

R
,

S ddt1 ku
2

R DU5
g2

kb
AB2

g2

kb
CD2

abg

kbkd
CE2

bg

kv
MV,

S ddt1 kv
2

R DV5
2abg

kbkv
~AD1BC!1

a2b22g2kd
2

kbkdkv
AE,

S ddt1 ka
2

R DA52aCM2
a2

kb
BU2

abg

kbkv
DV

2
a2b2

kbkdkv
EV,

~10!S ddt1 kb
2

R DB5aDM1
bg

kd
EM1

a22g2

kb
AU

2
2abg

kbkv
CV,

S ddt1 kc
2

R DC5aAM1
a2

kb
DU2

abg

kbkd
EU,

S ddt1 kd
2

R DD52aBM1
g22a2

kb
CU2

abg

kbkv
AV,

S ddt1 ke
2

R DE5
2abg

kbkd
CU1

g2kd

kbkv
AV,

with the wavenumbers
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,

b5p/2,

km
2 5b2, ku

25g2, kv
25b21g2,

ka
25a2, kb

25a21g2, kc
25a21b2, kd

25a21b21g2,

ke
25kd

2 .

B. Analysis of the truncated system

The eighth-order truncation~10! embodies many of the
characteristics of shear flows. From a global point of vie
the nonlinearity is quadratic and energy conserving. The e
lution of the total energy results only from the forcing an
viscous dissipation. WritingAi , i51, . . . ,8 for theampli-
tudesM , . . . ,E in ~10! the total energy obeys

d

dt (i51

8

Ai
25

k1
2

R
A12

1

R (
i51

8

k i
2Ai

2.

A statistically steady state is possible only
0,A1[M<1, otherwise the total energy decays. No u
bounded growth is possible as the quadratic dissipation
energy always dominates the linear energy input for su
ciently large amplitude. These global properties hold for a
level of truncation.

Locally, the dynamics is such that the mean shearM and
the rollsV are linearly stable, but the streaksU have two
modes of instability. Linearizing the system around a st
where all modes are zero except the meanM , amounts to
settingU5V50 in the equations for thex-dependent modes
A,B,C,D,E and setting the latter modes to zero in the eq
tions for thex-independent flowM ,U,V. It is quickly veri-
fied from the skew-symmetry of theACM andBDM inter-
actions that there are no exponentially growing modes on
meanM . The inviscid linear stability of the mean shear is
general result of Tollmien as recalled at the beginning of
previous section. There are two transient algebraically gro
ing modes arising from theMV term in theU equation and
from theEM term in theB equation, but neither one trigger
nonlinear effects that lead to bifurcation of the flow. Both a
indeed incomplete representations of a passive advec
diffusion process such as described by Eq.~1! with decou-
pling between the streaks and the rolls. TheMV term is the
redistribution of the mean shearM by the rollsV leading to
transient algebraic growth ofU. This is balanced by the
UV term in theM equation and there is no nonlinear fee
back on the streamwise rollsV. Likewise theEM term in the
B equation is balanced by theBE term in theM equation
and there is no nonlinear feedback on the pair of obliq
rolls E, as discussed in Ref. 18. The completeB,D,E,M
interaction corresponding to the transient growth ofB for
instance is governed by
891Fabian Waleffe
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S ddt1 km
2

R DM5
km
2

R
2

bg

kd
BE,

S ddt1 kb
2

R DB5aDM1
bg

kd
EM,

~11!S ddt1 kd
2

R DD52aBM,

S ddt1 ke
2

R DE50,

whose only attractor is the laminar poin
M51, B5D5E50. The interaction betweenM ,U,V is
similar @cf. Eq. ~14! in Ref. 18#, reflecting the exact decou
pling of the rollV that is not sustained@Eq. ~1!#.

Linearizing around some finite streamwise rollV with
all other modes infinitesimal~assuming for instance that th
roll V is forced instead of the meanM ), yields the same
conclusion that there are no exponentially growing modes
the rollV. Here again, there are transient algebraically gro
ing modes that do not trigger nonlinear effects leading
bifurcation. One transient arises from theCV term in theB
equation, balanced by theBV term in theV equation with no
feedback onC. Two other transients arise from the intera
tion of the modesA, D, E through the rollV. The decoupling
that prevents nonlinear feedback is less obvious but
present in this case. It is most easily seen by rewriting
interaction between those 4 modes in terms of interac
between the modesA, V and D̃[D1abE/(gkd) and
Ẽ[E2abD/(gkd), in which case the interaction reads a

S ddt1 kv
2

R DV5
abg

kbkv
AD̃2

g2kd

kbkv
AẼ1

kv
2

R
,

S ddt1 ka
2

R DA52
abg

kbkv
D̃V,

~12!S ddt1 kd
2

R D D̃50,

S ddt1 ke
2

R D Ẽ5
a2b21g2kd

2

kbkdkv
AV.

One transient mode corresponds to the growth ofA from the
D̃V term in theA equation with no feedback onD̃. The other
transient mode results from the growth ofẼ with D̃50
through theAV term in theẼ equation with no feedback o
A. The only attractor for this subsystem isV51,
A5D5E50 and, again, the transients do not lead to bif
cation. This lack of direct nonlinear ‘‘recycling of outpu
into inputs,’’ illustrated by the 5 explicit examples above,
generic41 and has been one of the arguments against
simple picture of transition,14,22 and even turbulence15 as
‘‘linear transient growth with nonlinear mixing.’’

In contrast to the linear stability ofM andV, the linear
analysis of finite amplitude streaksU reveals two modes o
instability. From ~10!, the equations for thex-dependent
modesA,B,C,D,E whenM5V50 withU a finite constant,
892 Phys. Fluids, Vol. 9, No. 4, April 1997
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decouple into two sets corresponding to the interact
through the streaksU of modesA,B, even in y, and of
modesC,D,E, odd iny.

The linearized equations for the even modesA,B are

S ddt1 ka
2

R DA5
2a2

kb
BU,

~13!S ddt1 kb
2

R DB5
a22g2

kb
AU,

which reduce to the second-order equation,

S ddt1 kb
2

R D S ddt1 ka
2

R DA5a2
g22a2

g21a2U
2A ~14!

@cf., Ref. 18 Eq.~20!# and there is exponential instabilit
wheneverg.a providedR is large enough. In the inviscid
limit, R→`, the unstable eigenmode i
B/A52d1 sign(U)/a with growth ratead1uUu/kb where
d1
25g22a2. Likewise, the linearized equations for the od
modesC,D,E reduce to the second-order equation,

S ddt1 kd
2

R D S ddt1 kc
2

R DC5a2
g22a22b2

g21a21b2U
2C, ~15!

and there is instability ifg2.a21b2 andR is large enough.
Equation~15! is equivalent to Eq.~14! with a2→a21b2.
This is a direct consequence of Squires’ theorem.2

In summary, the mean shearM and the rollsV are both
linearly stable while the streaksU have two modes of insta
bility, one even and one odd iny. This implies that the pri-
mary mechanism to exchange energy between
x-independent modesM ,U,V and thex-dependent modes
A,B,C,D,E is through the streak instabilities. In agreeme
with the general description of the self-sustaining proce
one sees that the forcing of the shearM can be transferred to
the streaksU by the rollsV through theMV term in theU
equation. Thex-dependent modes can then develop from
instability of the streaksU. Inspection of theV equation
shows that the feedback on the rollsV arises from the non-
linear interaction between the even (A,B) and odd
(C,D,E) modes of instability of the streaks. This points
an important secondary role of the meanM which is to break
the y-symmetry in order to couple the two modes of ins
bility of the streaks in such a way that feedback on t
streamwise rolls occurs.

C. Reduction of the truncated system

The truncated eighth-order system~10! can be further
reduced by imposing relationships between the even mo
A, B and between the odd modesC, D andE that corre-
spond to the most unstable eigenstructures for the strea
stabilities, Eqs.~14!, ~15!. The streak instability is inviscid in
nature and the eigenstructures are taken in the inviscid li
R→`. This imposes three kinematic constraints relatingB
to A andC andD to E,

B5C baA, C5C ceE, D5C deE, ~16!

where
Fabian Waleffe

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



os
s-

pl
th

t
e
r

h

e
i
s
im
lid
a
f
f

th
re
-
le
od

the
o-

r
o
y

em,

-

he
en

os-

ier
s no
ible

om

e

e
ear
of

s.
ean
d

C ba5
2d1

a
sign~U !, C ce5

kbd2
2bg

sign~U !,

~17!

C de5
kdd1

2

2abg
,

with d1
25g22a2 andd2

25g22a22b2. The eigenstructures
are chosen hereafter to correspond to the instability of p
tive streaksU.0. By symmetry there is an equivalent sy
tem for negative streaks.

To preserve the symmetry of the equations, the am
tudes and the decay rates are rescaled such
A→(11C ba

2 )21/2A, E→(11C ce
2 1C de

2 )21/2E, (ka
2

1C ba
2 kb

2)/(11C ba
2 )→ka

2 , (ke
21C ce

2 kc
21C de

2 kd
2)/(11C ce

2

1C de
2 )→ke

2 . The sign ofV is also changed at this poin
V→2V for the purpose of presentation. The truncat
eighth-order model~10! then reduces to the fifth-orde
model,

S ddt1 km
2

R DM5smaeAE2
bg

kv
UV1

km
2

R
,

S ddt1 ku
2

R DU5
2ad1

kb
A22

ad2
kd

E21
bg

kv
MV,

S ddt1 kv
2

R DV5svaeAE, ~18!

S ddt1 ka
2

R DA5
ad1
kb

AU2saemEM1saevEV,

S ddt1 ke
2

R DE5
ad2
kd

EU1seamAM2seavAV,

where all coefficientss are positive definite, exceptsaev ,
and2saem1seam1smae5saev2seav1svae50, thus pre-
serving conservation of energy by the nonlinear term. T
meanM is linearly stable. To preserve linear stability ofV it
is necessary thatsaev>0.

The meaning of this reduction is clear. Th
x-dependent part of the flow field is now represented
terms of ~an approximation to! the unstable streak mode
instead of the eigenmodes of the Stokes operator. One l
tation of this new expansion is that as written it is only va
for d2

25g22a22b2>0, which seems too restrictive from
physical point of view. It amounts to requiring instability o
both the even and odd~in y) streak modes, but the growth o
the even modeA from the streak instability~i.e., through the
ad1 /kbAU term with d1

25g22a2.0) should suffice to
drive the system with the odd modeE arising from the in-
teraction of the even mode with the mean shear through
seamAM term. That interaction is in fact required to insu
that A andE will be positively correlated in order to feed
back on the rollsV, as discussed hereafter. Another simp
reduction that corresponds to choosing a neutral inviscid
mode is

C ba5
2d1

a
sign~U !, C ce50, C de5

bg

akd
. ~19!
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The reduced system~18! indicates quite clearly that the
feedback on the rolls results from the interaction between
even (A) and odd (E) streak modes. The reduction was ch
sen to correspond to the instability ofU.0 thusV must be
positive to sustainU.0 by redistribution of the mean shea
M.0. It follows thatA andE must have the same sign t
sustainV.0. A further reduction can then be made b
choosing for instanceW/A25A5E andkw

25(ka
21ke

2)/2, in
which case the equations reduce to the fourth-order syst

S ddt1 km
2

R DM5smW
22suUV1

km
2

R
,

S ddt1 ku
2

R DU52swW
21suMV,

~20!S ddt1 kv
2

R DV5svW
2,

S ddt1 kw
2

R DW5swUW2smMW2svVW,

where all coefficientss are positive. One of those coeffi
cients (su for instance!, could be normalized to unity by
changing the time scale but this will not be done in t
following. Analytic expressions for the coefficients are giv
in the Appendix for both reductions. Reduction~17! requires
d1
25g22a2.0, d2

25g22b22a2.0, while reduction~19!
requiresd1

25g22a2.0 andg22b2.0 otherwise instabil-
ity of the streaks and/or feedback on the rolls are not p
sible.

Model ~20! preserves the global properties of the earl
systems. The nonlinear term conserves energy; there i
unbounded growth and a statistically steady state is poss
only for 0,M<1. The meanM is still linearly stable while
negative rollsV,0 are unstable toW and positive rolls
V.0 are stable. The only term that can extract energy fr
the mean is theUV term providedUV.0 but onlyV.0 can
be sustained by thesvW

2 term. In that case energy can b
transferred from the meanM to the streaksU through the
MV term. The streak instability then gives rise toW through
theswUW term and the nonlinear self-interaction ofW sus-
tains the rollsV through thesvW

2 term. Note that the mean
shear M reduces the streak instability through th
2smMW term and that there is an associated nonlin
feedback,smW

2, onM . With regards to the three phases
the SSP, the formation of streaks@Eq. ~1!# is represented by
the M and U equations withW50, the instability of the
streaky flow@Eq. ~4!# is represented by theW equation with
V50 and the feedback on the rolls@Eq. ~6!# is represented by
theV equation.

Model ~20! is identical to the model proposed in Ref
18 and 19, except for the extra interaction between the m
M and the streak modeW. That interaction had been omitte
in the original model.

D. Analysis of the fourth-order model

The characteristics of model~20! are quite similar to
those of the original model18,19 which is identical to~20!
with sm50. In addition to the laminar pointM51,
893Fabian Waleffe
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U5V5W50 there are two other fixed points ifR is larger
than some critical valueRsn . EliminatingM , V andU from
equations~20! with d/dt50, the fixed points are determine
by the roots of the cubic,

su
2sv

4X31kw
2su

2sv
2X21~ku

2kv
2sm

2 1km
2 kv

2sw
21km

2 ku
2sv

2!X

1km
2R~ku

2sm2susvswX!1km
2 ku

2kw
250, ~21!

whereX5(RW/kv)
2. This equation is most easily used

determineR as a function ofX>0, R(X), which is the ratio
of a positive definite cubic inX and a linear term inX. There
is aR.0 for all X such that

susvswX.ku
2sm . ~22!

The functionR(X) has a unique minimum over allX satis-
fying ~22!. That minimum is the critical Reynolds numbe
Rsn at which a saddle-nodebifurcation takes place. Fo
R.Rsn there are two real solutionsX.0 to the cubic~21!.

The main effect of the nonzerosm is to bound the lower
branch of new solutions away from the laminar soluti
M51, U5V5W50 as the asymptotic scaling of the low
branch asR→` is

M→
1

11 ~ku
2/km

2 ! ~sm
2 /sw

2 !
, U→

sm

sw
M ,

V5O~R21!, W5O~R21!, ~23!

instead of

M→1, U5O~R21!, V5O~R22!,
~24!

W5O~R23/2!,

whensm50. The presence ofsm.0 is thus quite significan
for the conjecture that an amplitudee5O(R2a) with
a strictly larger than 1 is sufficient to cause transition.14,22

The scaling of the upper branch is as repor
earlier,19 M5O(R21), U5O(R21/2), V5O(R21/2) and
W5O(R23/4) asR→`.

The stability analysis of the fixed points involves findin
the eigenvalues for the linearization of model~20! around
those fixed points. The eigenvalues are the roots of
fourth-order characteristic polynomial. All coefficients
that polynomial are positive except for the linear term tha
indefinite and the constant term that is equal
2R2W2]C /]X whereC (X) is the cubic defined in~21!. If
that constant term is negative then there is one real pos
root and the fixed point is unstable. The lower branch
solutions which corresponds to the smallest of the two p
tive roots of the cubic~21! is thus a saddle-point a
]C /]X,0 for that root. The upper branch may be unsta
if the coefficient of the linear term of the characteristic po
nomial is sufficiently negative for that larger root. In su
cases there are two positive real eigenvalues and that ro
an unstable node.

The smallest Reynolds number at which the saddle-n
bifurcation takes place isRsn5104.84 ata51.30,g52.28,
for the reduction ~17!, and Rsn5137.17 at a51.49,
g51.82 for the reduction~19! ~Fig. 11!. The two largest rea
parts of the eigenvalues governing the stability of the up
branch of solutions are shown in Fig. 12 for both reductio
894 Phys. Fluids, Vol. 9, No. 4, April 1997
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as functions ofR. ForR just above critical there are two rea
positive eigenvalues that quickly merge into a pair of co
plex eigenvalues with positive real part indicating a swit
from an unstable node to an unstable spiral. The other
eigenvalues~not shown! are complex conjugates with
larger negative real part. In both cases the upper branch i
unstable node near the bifurcation. That unstable node t
into an unstable spiral after only a slight increase ofR, to
104.94 and 137.33, respectively, beyondRsn ~see the
blow-up in Fig. 12!. The positive real part of the eigenvalue
decreases asR increases and the spiral fixed point becom
stable atRHf5138.06 and 180.24, for both reductions, r
spectively. This implies a Hopf bifurcation at those Reyno
number where the spiral fixed point collides with a lim
cycle.

The collision between the spiral fixed point and the lim
cycle may occur in two ways. Either the unstable spiral po
bifurcates into an unstable limit cycle surrounding the sta
spiral, or the unstable spiral is surrounded by a stable li
cycle and collides with it leading to a stable spiral. In t
latter case, the stable limit cycle has to be generated
lower value ofR and it could arise from ahomoclinic bifur-
cation. The first scenario in which an unstable limit cycle
generated is the scenario that takes place for the param
values corresponding to Fig. 12. The second scenario,
volving a homoclinic bifurcation, can also occur in mod
~20! for different values of the parameters.

That second, more dramatic, dynamical behavior is ill
trated in Fig. 13. ForR belowRsn , the laminar state~solid
black dot! is the only fixed point. That fixed point is linearl
stable with nonorthogonal eigenvectors and remains such
all R. At R5Rsn , a saddle-node bifurcation introduces tw
new fixed points, a saddle and an unstable node@open
circles, Fig. 13~a!#, but almost all initial conditions still end
up at the laminar fixed point. ForR slightly greater than
Rsn , the unstable node turns into an unstable spiral@Fig.
13~b!#. As R increases, the spiral tightens and a homocli
bifurcation takes place atR5Rhc @Fig. 13~c!#. This gives rise
to a stable limit cycle which is a significant attractor for th
flow in phase space@Fig. 13~d!#. Many initial conditions now
settle onto the periodic orbit instead of the laminar fix
point. A global bifurcation has taken place.

The coefficients corresponding to reduction~17! and to
the minimum Rsn for a51.30, g52.28, are
@sm ,su ,sv ,sw#5 @0.31,1.29,0.22,0.68#, with the decay
rates @lm ,lu ,lv ,lw#5 @2.47,5.20,7.67,7.13#. The coeffi-
cients chosen in Refs. 18 and 19 are@sm ,su ,sv ,sw#
5@0,1,1,0.5#, with the decay rates @lm ,lu ,lv ,lw#
5@10,10,10,15#. For those values a more complex behav
is observed nearRsn . The upper branch is stable from
Rsn598.63 toR5100.02 where it loses stability in a Hop
bifurcation. The ensuing stable limit cycle disappears in
homoclinic bifurcation atR5101.03 beyond which the only
stable attractor is the laminar fixed point up until a seco
homoclinic bifurcation that takes place nearR'356 and re-
introduces a stable limit cycle. From a practical point of vie
those extra stable attractors betweenRsn598.63 and
R5101.03 are insignificant because of their minute basin
attraction, but in any case it is interesting to note that th
Fabian Waleffe
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are removed forsm larger than about 0.025, all other param
eters being unchanged, see Fig. 14. The occurrence of
homoclinic bifurcation appears to depend strongly on t
value ofsm . The reader is referred to Refs. 18 and 19 f
plots of the homoclinic bifurcation and the stable limit cycl
that appears nearR5356, for those parameter values.

IV. DISCUSSION

In summary, there is a critical Reynolds numberRsn for
the fourth-order model~20! where a saddle-node bifurcation
introduces two new steady solutions~Fig. 11! in addition to
the laminar solution. Those solutions are typicallyboth un-
stable, with the lower branch corresponding to a saddle po
with a single positive real eigenvalue, and the upper bran

FIG. 11. Bifurcation diagram showing the amplitude ofW vsR for the two
nontrivial steady solutions of the fourth-order model~20! for ~a! reduction
~17! and ~b! reduction~19!. Upper branch solid, but not necessarily stabl
lower branch saddle-point dashed.

FIG. 12. Two largest growth rates for the instability of the upper branch
nontrivial steady solutions of the fourth-order model~20! for ~a! reduction
~17! with a51.30,g52.28 and~b! reduction~19! with a51.49,g51.82.
The insert is a blow-up of~b! nearRsn .
Phys. Fluids, Vol. 9, No. 4, April 1997
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corresponding to an unstable node with two real posit
eigenvalues. AsR is increased, the unstable node quick
turns into an unstable spiral~Figs. 12 and 14!. These features
of the model are particularly interesting in light of the di
covery of unstable steady solutions in plane Coue
flow.24,25The spiral node may become stable through a Ho
bifurcation at someR5RHf ~Fig. 12!. For different values of
the parameters, a homoclinic bifurcation may introduce
stable periodic solution~Fig. 13!. This latter scenario is par-
ticularly interesting in light of the discovery of nearly per
odic solutions in plane Couette flow.26,27

These connections between the behaviors observe
the low-order model~20! and the results for the Navier–
Stokes equations in the case of plane Couette flow he
provide some evidence for the validity and applicability
the low-order model. Nonetheless, a main issue is to de
mine whether the low-order model features are artifacts
the severe truncation or indeed valid representations of
Navier–Stokes dynamics for shear flows. A first step is
look for those features in the original eighth-order mod
~10!. An extensive study of the eighth-order model has n
been done but it would appear that there are no other fi
points nor attractors in that model besides the laminar po
Closer inspection shows that the mean flowM enhancesthe
instability of the streaksU in the eighth-order model and
correlates the even (A-B) and odd (C-D-E) modes of insta-
bility incorrectly for feedback on the rollsV to occur. In the
fourth-order model the mean shearM reduces the streak in
stability, in fact, exponential growth ofW is possible only if
swU.smM . A reduction of the streak instability by the
mean shear has also been shown42 for the full streak insta-
bility problem ~4!. The cause of the anomalous enhancem
of the streak instability by the mean shear, and the sub
quent lack of a self-sustaining process, in the eighth-or
model appears to be the incorrect representation, at that o
of truncation, of the shearing effect of the meanMsinbyx̂ on
the x-dependent modesA,B,C,D.

f

FIG. 13. Phase plane illustration of some possible dynamics for model~20!.
The solid black dot is the stable laminar solution. The two open circles
the two steady solutions, Eq.~21!. ~a! R just aboveRsn : saddle and unstable
node; ~b! Rhc.R.Rsn1e: saddle and unstable spiral;~c! R5Rhc : ho-
moclinic bifurcation;~d! R.Rhc : stable limit cycle.
895Fabian Waleffe
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To illustrate that anomalous behavior, consider t
simple case of the advection of a passive scalarf by the
mean shear as governed by

]f

]t
1Msin by

]f

]x
50. ~25!

The exact solution of that equation for initial condition
f(x,0)5cosax is simply f(x,t)5cosa(x2Mt sinby).
Nearby5np, the wavenumber in they direction increases
like abMt and there is a‘‘cascade’’ towards higher wave-
numbers owing to the differential advection by the she
flow. The y-wavenumber remains close to zero ne
by5(2n11)p/2 where there is no shear. For short time
f(x,t);cosax1aMt sinax sinby1O(t2), these two terms
correspond to the modesA andC in Eq. ~9!. Projecting Eq.
~25! onto those two modes with
f(x,t)5Acosax1C sinax sinby yields

Ȧ52aCM/2,
~26!

Ċ5aAM,

which is identical to the corresponding interaction in E
~10! after the renormalizations A→A2A, C→2C,
M→A2M . Although the single triad interactionACM, Eq.
~26!, preserves the global property of Eq.~25! that the aver-
age off2 is conserved, its dynamics, which consists of r
tation at rateaM /A2, is not a correct representation of th
actual dynamics of a cascade in wavenumber space at
shear ratebM . This misrepresentation of differential advec
tion by a single triad has been discussed before~cf., Ref. 43,
Sec. VII! and two triads are needed to adequately repres
the differential advection which corresponds to advection
wavenumber space.

This discussion of the lowest-order truncation of equ
tion ~25! indicates that the interactions between the mean a
the x-dependent modes that arise from advection by

FIG. 14. Two largest growth rates for the instability of the upper branch
nontrivial steady solutions of the fourth-order model~20! for sm50 and
sm50.1 with @su ,sv ,sw#5 @1,1,0.5#, @lm ,lu ,lv ,lw#5 @10,10,10,15# in
both cases. The insert is a blow-up of thesm50 case nearRsn .
896 Phys. Fluids, Vol. 9, No. 4, April 1997
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mean shear—theACM and BDM interactions—in the
eighth-order model~10! are inadequate. However, the fu
Navier–Stokes dynamics for the SSP does not corresp
either to a wavenumber increase in they-direction. The SSP
is a fully nonlinear state—not just a linear passive-sca
advection by the mean as in Eq.~25! — such that this shear
ing does not occur for two reasons. First, the streamw
rolls and streaks, beingx-independent, are not sheared by t
mean. In fact, it is the mean that is passively advected by
rolls, Eq. ~1!, and is largely wiped out by the streamwis
rolls and streaks~Fig. 3!. Second, thex-dependent modes
involved in the SSP form an eigenstructure that arises fr
the instability of the streaky flowU(y,z), which consists of
the mean shear and the streaks~Sec. II B!. By definition, the
eigenstructure is not sheared by the mean, just as ei
modes of the Rayleigh and Orr–Sommerfeld equations
not sheared by the mean.

Except for the advection by the mean, the other inter
tions are adequately represented by the eighth-order tru
tion in ~10!. The redistribution of streamwise momentum b
the streamwise rolls, Eq.~1!, is well represented by the
MUV interaction. That interaction is indeed the rotation
rate} gV of the shear in they direction into shear in thez
direction@cf., Ref. 18, Fig. 2 and Eq.~11!#. The streak insta-
bility and the feedback on the rolls also appear to be
equately represented by low-order truncations@cf., Ref. 18
Eqs.~19! and ~20!#. This is because those phases are ess
tially ‘‘modal’’ as discussed above and in Secs. II B an
II C. TheACM andBDM interactions that inadequately rep
resent the interactions with the mean in the eighth-or
model ~10! cancel completely or substantially in the redu
tions ~17! or ~19!, respectively, that lead to the fourth-ord
model ~20!. This probably explains why the fourth-orde
model may better represent the actual Navier–Stokes dyn
ics than the truncated eighth-order model.

The main consequence of the anomalous behavior in
eighth-order model is that it is not possible to directly redu
the eighth-order model~10! to the fourth-order model~20!. If
the instability of the streaky flowU(y,z), consisting of both
M andU, was well-behaved in the eighth-order model th
it would be possible to link all thex-dependent modes
A–E into a single streaky flow eigenmode as in Secs. I
and II C. Instead, it was necessary to first reduce the eig
order model to a fifth-order model by combiningA,B and
C,D,E as dictated by the even and odd eigenmodes of
streaksU only, that isU(y,z)2Ū(y). The fifth-order model
was then reduced to a fourth-order model by imposing
arbitrary relation between the two streak modes,A5E, in
~18!. In general, this introduces an undetermined param
C ae.0 whereA5C aeE.

This discussion naturally suggests that the number
modes should be increased in they-direction at least, to
avoid this misrepresentation by the Galerkin truncation
the interaction with the mean. The next level of truncati
keeps four modes in they direction and leads to a 17th-orde
system which is too large to handle analytically but nume
cal investigations reveal a saddle-node bifurcation n
R5100 with both solutions unstable, as in the fourth-ord
model and plane Couette flow. The unstable steady solut

f
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persist as the resolution is increased further and have b
continued up to a Galerkin truncation involving 92 modes
far, after reduction arising from symmetries. Those solutio
continued to even higher resolutions, will be reported up
in a forthcoming paper. It is not yet known whether the h
moclinic bifurcation that leads to a stable periodic soluti
persists for those higher-order truncations. A better way
derive the fourth-order model~20!, avoiding the anomalous
behavior of the eighth-order model, would thus be to use
~9! the projection of the eigenstructure obtained from
higher-order truncation onto the five modes defined in~9!.

V. COMPARISON WITH OTHER MODELS

There is a small overlap between this self-sustaining p
cess and linear transient growth14 at the level of the simples
phase of the process: the formation of streaks by stream
rolls ~Sec. II A!. The work on linear transient growth ap
proximates Eq.~1! and emphasizes the transient algebr
growth of the streaks, but the complete physics is the pas
advection–diffusion of streamwise velocity by the ro
which is adequately described by the transients only
eR!1, wheree is a measure of the amplitude of the ro
~Ref. 18, Sec. 3!. The work on transient growth has not a
dressed, nor identified, the other two more complex pha
of the process: the streak instability and the feedback on
streamwise rolls. Discussion of the crucial nonlinear fe
back necessary for transition has been limited toad hoclow-
order models,14,21,22 except for the earlier work of Benne
and Gustavsson.16,26The proposed low-order models call o
some artificial nonlinear couplings not present in t
Navier–Stokes equations and ignore~or crudely model21! the
important feedback on the mean19 ~see also Sec. III B!. At
the level of the low-order model~20!, this amounts to setting
M51, W50, ignoring the M equation and adding a
2VAU21V2 term to theU equation and aUAU21V2 term
to theV equation to ‘‘recycle outputs into inputs.’’14 This
transforms the fourth-order model~20! into

S ddt1 ku
2

R DU5suV2VAU21V2,

~27!S ddt1 kv
2

R DV5UAU21V2.

A complete nonlinear analysis of model~27!, with a more
realistic nonlinearity that hasU in place ofAU21V2, has
been made by Dauchot and Manneville.20

Another class of low-order models of shear flow dyna
ics are those based on theProper Orthogonal Decomposition
~POD!.44–47The POD models are derived from the Navie
Stokes equations by a Galerkin projection, as for the mo
derived in this paper. However, the POD modes impose
tificial kinematic constraints between the two degrees
freedom for the velocity field—the ‘‘roll’’ and ‘‘streak’’
modes of Sec. III A. This is best understood at the level
the first phase of the process: the formation of streaks
streamwise rolls~Sec. II A!. The streaky flow@U(y,z),0,0#
and the streamwise rolls@0,V(y,z),W(y,z)# are kinemati-
Phys. Fluids, Vol. 9, No. 4, April 1997
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cally independent. Dynamically, the streaky flowU(y,z) is
controlled by the rolls, Eq.~1!, but the latter remain indepen
dent of the streaky flow. In the POD models, the streaks
the rolls are linked into a single mode. This results in
artificial direct feedback on the rolls and a spurious line
instability of the laminar flow. The POD models have al
typically ignored the dynamics of the mean, although th
include the Reynolds stress which then leads to a triple n
linearity that stops the artificial exponential growth. In th
fourth-order model ~20!, this amounts to setting
dM/dt5W50 andV5tU. The fourth-order model then re
duces to the single equation,

~11t2!
d

dt
U1

ku
21t2kv

2

R
U5sutUS 12

RsutU
2

km
2 D ,

~28!

with the spurious exponential growth term (sutU term! and
the cubic nonlinearity that prevents unbounded growth. T
artificial kinematic constraints appear in all POD mode
including those that involvex-dependent modes.45,47The ki-
nematic constraints could be removed as explained in R
19, Sec. V.

Recall thatW in model ~20! is the amplitude of the
x-dependent streak instability mode. The other variab
M ,U,V represent the mean shear, the streamwise streaks
the streamwise rolls, respectively. WhenW50, the laminar
state is the global attractor for model~20! because the rolls
are not sustained, as in the full Navier–Stokes dynam
when the flow is independent ofx. Models ~27! and ~28!
sustain the rolls through artificial couplings between t
streaks and the rolls. Model~27! uses a nonlinear dynamica
coupling while model~28! uses a linear kinematic coupling

VI. CONCLUSIONS

A self-sustaining process~SSP! in shear flows where
streamwise rolls redistribute the mean shear to create str
that break down to recreate the rolls, has been studied
shown to be remarkably insensitive to whether there is fr
slip or no-slip at the walls. A complete model of the proce
has been derived by projecting the Navier–Stokes equat
on an appropriate set of orthogonal modes. The deri
model is essentially similar to one previously proposed.18,19

The model provides a template for understanding a
elucidating the Navier–Stokes dynamics of shear flows. U
stable steady solutions24,25 that exist down toR'120 and
nearly time-periodic solutions26,27 that apparently exist down
to R'350 have recently been found in plane Couette flo
Similarly in the low-order model, a saddle-node bifurcati
atR5Rsn introduces two fixed points that are typically bo
unstable. For some values of the parameters, a homoc
bifurcation takes place atR5Rhc.Rsn that introduces a
stable periodic solution~Fig. 13!. The quantitative agreemen
between the critical values of the Reynolds numbers in
fourth-order model and the full Navier–Stokes case m
even be excellent,Rsn'100, andRhc'350 has been ob
served in the fourth-order model.19 However, anomalous be
havior in the eighth-order Galerkin truncation~10! prevents
897Fabian Waleffe
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direct reduction to the fourth-order model~20! and forces the
introduction of an arbitrary parameter~Sec. IV!.

The homoclinic bifurcation scenario provides a plausi
simple link between the unstable steady solutions in pl
Couette flow24,25 and the nearly periodic solutions.26,27 This
work thus suggests a reinvestigation of the solutions co
puted in Refs. 27 and 28 to determine whether truly tim
periodic solutions do exist in plane Couette flow and whet
they arise from a homoclinic bifurcation. The period of t
cycle should diverge likeu ln(R2Rhc)u as the homoclinic bi-
furcation is approached from above.48 The global nature of a
homoclinic bifurcation also adds to the possible relevance
this scenario to the bifurcation of shear flows. Experime
on transition to turbulence in shear flows seem to indic
that a broad range of initial conditions tend to the turbul
state whenR.Rc while all initial conditions seem to return
to the laminar state whenR,Rc . Hence, experiments see
to indicate a global bifurcation, although elucidating th
point has not been the focus of most studies. Recent exp
ments along these lines have been made by Dauchot
Daviaud.49

To isolate the SSP in the numerical simulations, we
stricted the class of solutions to those that are periodic ix
andz over short periods,Lx'6h andLz'4h. This cannot be
done experimentally but other ingenious set-ups may lea
an experimental verification of the SSP. Dauchot, Bottin a
Daviaud49,50 have studied plane Couette flow modified by
spanwise wire in the limit of the wire thickness tending
zero. They observe the formation of streaks by streamw
rolls followed by the oscillation and break-up of the strea
in an intermittent cycle. This is reminiscent of behavior o
served in early numerical simulations51 when thex and z
periods were not quite tuned properly. Further adjustment
the spatial periods led closer to time-periodic solutions.26,27

In those recent experiments,49,50 the streamwise vortice
are generated by the spanwise wire. One important aspe
this and earlier work18,27 is to elucidate the nonlinear mech
nism for the generation of streamwise vortices. The gen
tion of streamwise streaks from streamwise vortices i
simple mechanism that has long been understood, but
origin of the vortices themselves remained a mystery. It
been shown that the streamwise vortices directly result fr
the nonlinear development of an instability of the strea
The latter instability is driven by the inflections of th
streaky flowU(y,z) in thez-direction. The new information
that emerges from the derivation of the low-order mode
that the feedback on the streamwise rolls results from
nonlinear interaction between an even and an odd, iny,
mode of instability of the streaks. An important seconda
role of the mean shear is to break they symmetry and cor-
relate those two modes in such a way that feedback on
rolls is realized. This explains why streamwise rolls do n
spontaneously arise in classical inflectional instabilities o
pure U(z) profile, as in the Kelvin–Helmholtz roll-up o
unbounded shear layers.

On this issue of the mechanism for the generation
streamwise vortices, it is worth emphasizing that it is
898 Phys. Fluids, Vol. 9, No. 4, April 1997
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instability of the streaks, not of the rolls, that drives t
process. This is illustrated by the analysis of the trunca
model ~Sec. III B!. In the Taylor–Couette problem, a linea
instability introduces the streamwise Taylor vortices. A se
ondary instability then leads to wavy vortices. As a resu
one often reads about instability of streamwise vortices in
plane shear flow context. But an instability of the rolls wou
provide another energy drain in addition to viscosity. T
crucial element in shear flows was actually to discover
mechanism thatsustainsthe rolls against viscous decay.

Finally, with respect to the issue of turbulent disorder,
interesting feature of this work and the associated Navi
Stokes calculations27 is that it has been possible to isolate
organized process that is responsible for strongly increa
momentum transport~Fig. 3!. Thus the turbulent disorde
and the increased shear at the wall have been dissoci
The momentum transport is not due to a molecular-like d
ordered process but results instead from an organized
cess. In fact, it is possible that the disorder actually redu
the momentum transport allowed by the Navier–Stokes
namics as realized by the self-sustaining process. This re
tion of the transport is also suggested by the upper bo
results.37 As for the disorder, it may arise through th
Ruelle–Takens–Newhouse scenario.7 If the picture of a ho-
moclinic bifurcation~Fig. 13! leading to a limit cycle indeed
applies to the Navier–Stokes equations, the limit cycle co
bifurcate into quasiperiodic motion~2-torus! and from there
to a strange attractor.

The self-sustaining process is expected to retain so
relevance to the dynamics of shear flows throughout th
further bifurcations as the Reynolds number and/or thex and
z periods are increased. The process was indeed inspire
observations of the near wall region of turbulent flows28 and
wavy streaks and streamwise vortices are ubiquitous feat
in that region.38 From a more fluid dynamical point of view
as opposed to low-order nonlinear dynamics, t
suggestion26 is that the process can only be self-sustaining
a well-defined range of scales. If the scales are too sm
viscous relaxation dominates. If the scales are too large,
process is destroyed by secondary instabilities. Thus the
cess would be observed only in a small region near the w
The critical scales for the self-sustaining process would t
control the size of the turbulent boundary layer and
streak spacing of 100 wall units. The latter should be c
sidered as a critical Reynolds number f
self-sustenance.26,30 This is nothing but Malkus’smarginal
stability ideas52 applied to the nonlinear instability proces
described in this paper.
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APPENDIX: COEFFICIENTS

For the reduction~17! the coefficients in model~20! are

sm5ab2d1 /~kbkdd3!,

su5bg/kv ,

sv5a2b~a2kb1d1d2kd!/~gkbkdkvd3!, ~A1!

sw5~ad1 /kb1ad2 /kd!/2,

kw
25~2g2d3

21b2kd
2!/~2d3

2!,

with d1
25g22a2.0, d2

25g22b22a2.0 and
d3
25g21b22a2, while for the reduction~19! they are

sm5abd1 /~2kbkc!,

su5bg/kv ,

sv5a2~g22b2!/~2gkckv!, ~A2!

sw5ad1 /~2kb!,

kw
25~g21kd

2!/2,

with d1
25g22a2.0 andg22b2.0 otherwise feedback is

not possible.
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