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Homotopy of exact coherent structures in plane shear flows
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Three-dimensional steady states and traveling wave solutions of the Navier—Stokes equations are
computed in plane Couette and Poiseuille flows with both free-slip and no-slip boundary conditions.
They are calculated using Newton’s method by continuation of solutions that bifurcate from a
two-dimensional streaky flow then by smooth transformatimmotopy from Couette to Poiseuille

flow and from free-slip to no-slip boundary conditions. The structural and statistical connections
between these solutions and turbulent flows are illustrated. Parametric studies are performed and the
parameters leading to the lowest onset Reynolds numbers are determined. In all cases, the lowest
onset Reynolds number corresponds to spanwise periods of about 100 wall units. In particular, the
rigid-free plane Poiseuille flow traveling wave arises at,Ré4.2 for L, =273.7 andL,

=105.5, in excellent agreement with observations of the streak spacing. A simple one-dimensional
map is proposed to illustrate the possible nature of the “hard” transition to shear turbulence and
connections with the unstable exact coherent structures20@3 American Institute of Physics.
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I. INTRODUCTION monograph edited by Pantdrnother line of work based on
the proper orthogonal decomposition is reviewed in the book
Afundamental change in our understanding of the naturéyy Holmes, Lumley, and Berkod?.Among all those contri-
of shear turbulence started in the 1950s. Then the view dbutions, the sketches of self-replicating horseshoe vortices in
turbulence as the random interaction of “eddies” began to beacarlar and Smith and the, then unrelated, mean flow-first
replaced by one of organized motions interacting with theharmonic theory of Bennéy were the two key references
mean flow. Theodorsér proposed the qualitative, mecha- that led to the present wofR:**Benney’s “mean flow” con-
nistic picture of a wall-bound horsheshoe vortex as the funsists of weak streamwise rolls and a Spanwise Varying
damental structure in turbulent shear flows. His was a physistreamwise velocity, similar to Townsend'’s attached eddies.
cally complete structure motivated by considerations of |t is now well accepted that the predominant vortex
optimum streamwise enstrophy production. Mafkyso-  structure in the near-wall region consists not of horseshoe
posed a quantitative, nonmechanistic theory based on a prijortices but of staggered, quasi-streamwise vortices as in
ciple of maximum energy dissipation rate, and marginal stastretch’s sketcl? reproduced in Fig. 1. That picture is
bility constraints, that led to the derivation of upper boundsstretch's synthesis of his pattern eduction studies of the Kim,
and to Busse’s picture of the optimum momentum transportyjoin, and Moser dat& A similar study and result can be
ing solenoidal field" That optimum field is more intricate but found in Ref. 17. Horseshoe vortices and packets of such
nonetheless similar to Townsend's qualitative “attachedyortices are also observed in turbulent flo®&Vhether such
eddy” interpretation of two-point velocity correlation structures are the varicose versions of the sinusoidal struc-

6 H H . . . .
measurements? The upper bound fields and attached eddiegyres studied here or result from a dynamic self-organization
are streamwise-invariant and better described as a combings the staggered vortices is a matter for later study.

tion of streamwise rolls and streaks. That combination will  Thjs paper reports on traveling wave solutions of the
be called the “streaky flow” in Sec. IV. Townsend also in- Navier—Stokes equations in plane Couette and Poiseuille
troduced the qualitative concepts of “active” and “inactive” flows with either given velocityno-slip) or velocity deriva-
motions to describe turbulent shear flows. tive (slip) at the wall. Brief reports on this work have ap-
The experiments of Klinet al. first revealed the struc- peared in Refs. 19 and 20. The traveling waves travel at a
ture of near-wall turbulence and pointed to the importance OEonstant velocity and are therefore steady in the proper Gal-
Iow-velocn_y streamwise streaks Whose lift-up, oscnlatl(_)n"ean frame. The propagation velocity is analogous to an ei-
and "bursting” were seen as the main turbulence producingyenyalue and cannot be deduaegriori, except by symme-
mechanism. It was found that the streaks have a characterigr—y in plane Couette flow. These solutions were obtained
tic spacing of about 10@vall units (defined in Sec. VL numerically using spectrally accurate finite approximations
Those experiments sparked numerous experimental ang ihe fields (Sec. 1), based on Fourier expansion and
computational studies, most of which are reviewed in theChebyshev integratiotSec. Il), and Newton’s method, not
time integration. This is because the traveling waves are
dElectronic mail: waleffe@math.wisc.edu typically unstable from onset and therefore not directly ac-
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3-D states have been found in one flow, it is simpler to ex-

tend them to other flows byiomotopy This consists in

smoothly deforming(“morphing”) the base flow into the
desired flow while tracking the self-sustained solutions with

Newton’s method. Two types of homotopies are presented in

Sec. V. One transforms free-slip into no-slip boundary con-

ditions(12), the other transforms Couette flow into Poiseuille

flow (27). These transformations are not only very effective

Sectlon XX = Sl at extending solutions to other boundary conditions and base

______ "'/“"’"“SP““’" states but also demonstrate the close conneétimhomo-
topy or “same shapge between the various states. The ho-
motopy between free-slip and no-slip demonstrates that no-
slip is not required for these exact coherent structures. The

High stress patch homotopies to no-slip plane Couette flow connects this broad
Plan view family of exact coherent structures with the steady state so-
lutions first computed in that flow by Nag&taand studied

FIG. 1. Sketch of the coherent structure educed from DNS (&ttetch— by Clever and Busse:*” .

Ref. 15. The exact coherent structures discussed here thus belong
to a six-parameterd, y, Re, N, A\;, u, defined beloyw
family of three-dimensional vector fields that solve the

cessible to experiments and time-marching simulations. Th&lavier—Stokes equations. The solutions come in pairs, an

traveling waves are remarkably similar to Stretch’s picture ofupper branch and a lower branch, at a given Reynolds num-
the typical coherent structur@-ig. 1). The latter is essen- ber. This is clearly a rich family and the 3-D illustrations in
tially an optimized ensemble average of significant regionghis paper are typically limited to the lowest-Re bifurcation
of turbulent flow fields, localized in space and time, thatpoint where the solutions first appear and where upper
filters out a spectrum of spatio-temporal fluctuations andoranch and lower branch coincide. A complete illustration of
does not satisfy the governing equations. In contrast, théhese solutions would require too many figures. The stream-
traveling waves are solutions of the Navier—Stokes equationwise and spanwise length scales that lead to the lowest onset
that propagate at constant speed without changing shape aReynolds for these exact coherent structures are presented in
are devoid of any other fluctuations. It is therefore appropri-Sec. VI. The optimum spanwise length scales are all in the
ate to refer to the traveling wave solutions as “exact coherenteighborhood of 100 wall units. In particular, the optimum
structures.” Furthermore, these exact coherent structures arspanwise length scale for the no-slip plane Poiseuille solu-
their inherent instabilities are good candidates for precisdéion is 105.5 . This is the solution that is most relevant to
definitions of “active” and “inactive” motions, respectively, the higher Reynolds number observations.

that differ from Townsend’s definitions. Townsend’s active A few mean velocity and rms velocity fluctuation pro-

motions correspond to the momentum transporting streanfiles of the exact coherent structures are presented in Sec. VII

wise rolls and streaks while his inactive motions would cor-together with bifurcation diagrams for various parameters.

respond to the streak instability. In fact, the streamwise onThose results compare favorably with the statistics of turbu-
dulation, seen in Fig. 1 and traceable to the streak instabilityent flows suggesting that the exact coherent structures do
is an essential element of the complete self-sustaining threéadeed capture essential structural and statistical features of
dimensional(3-D) coherent structure. turbulent motions. But the exact coherent structures are
The solutions were calculated using various continuatiorsteady in the appropriate Galilean frame and therefore have
and homotopy procedures. The first step in this approachone of the disorder characteristic of turbulent flows. All

(Sec. IV is based on a weakly nonlinear formulation of athese exact coherent structures also appear at Reynolds num-

fundamental self-sustaining process in shear floW% It bers that are significantly lower, typically a factor of 2 lower,

consists in tracking the 3-D solutions that bifurcate from athan the smallest Reynolds numbers where turbulence is ob-
self-consistent two-dimension&-D) flow made of stream- served, and they are unstable from onset. How then, could
wise rolls and streaks. The streamwise invariance of thathese unstable exact coherent structures be of any relevance
base flow implies that it cannot be self-sustaiftbpwever, to the observations? The traveling waves in plane shear flows
the streaks support an instability of inflectional type thatare not simply attractors for broad classes of initial condi-
feeds back on the rolls and leads to self-sustained, 3-D stateions as in Fisher’s equation, for instance, where the slowest

The full Navier—Stokes continuation in Sec. IV establishes avave is an attractofsee, e.g., Ref. 238The traveling waves

precise and explicit link between the 2-D streamwise invari-are most likely not solitons either as in the Korteweg—de

ant streaky flow(“attached eddies) and a 3-D self-sustained Vries equation where broad classes of initial conditions
structure that consists of wavy streaks and staggered vortevolve into a superposition of solitary traveling waves that
ces, entirely similar to the observations. preserve their shape through nonlinear interactions. The

Bifurcation from 2-D streaky flow can be used to com- shear flow situation is more complex, but there is clear and
pute 3-D self-sustained states in all plane shear flows buhcreasing evidence that turbulent flows spend a lot of time
requires educated guessing of the streamwise rolls. Once tliaear” these exact coherent structures and therefore that

Low speed streak
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y boundary conditiongu/dy=v=dw/dy=0. They=1 plane
y=1 corresponds to the centerline of a full plane Poiseuille flow
while y=—1 corresponds to the bottom wall.
The plane Couette flow Reynolds number implied by
these normalizations is based on the half laminar wall-
Uly) velocity difference and the half channel height. In free-slip
(Neumanm, this is equivalent to a Reynolds number based

on the mean wall shear ratdJ/dy==*=1 aty==*1. In no-

slip (Dirichlet), the laminar and total velocities at the wall
y=-1 are identical and the Reynolds number is therefore based on

the half-wall velocity difference. For plane Poiseuille flow,
FIG. 2. Laminar base flows: Plane Coueti¢y)=y and plane Poiseuile the Reynolds number is based on half the distance between
U(y)=y—y*/2+1/6. the wall and the centerline and half the difference between
the laminar centerline velocity and the wall velocity.(lfis

much of the structure and statistics of turbulence can be urhalf the distance between thg wall and the. center(lrge,
derstood from these traveling waves. Readers who are Welene—qgarter of the chapnel he@hﬂ P/dx.the |m.pos'ec{k|—.
versed in nonlinear dynamics and chaos know the impor?hemalgo p;e;/séjregg/rag'eﬁt’ arf IS the kf|fnemart1|c \IQSCOSIBI
tance of unstable solutions. This paper ends with a one- en Re-| X|€%/v*. Note that, in effect, the Reynolds
dimensional(1-D), discrete dynamical system that may be numgers are based on the- shear rate at the all
helpful as a simple concrete illustration of the nature of the=|dU/dY|wai. except for no-slip plane Couette flow. The

“hard” transition to turbulence in shear flows and the rel- friction velocity u,=(»S)*? and the “wall unit” »/u, is thus
evance of unstable solutions. well-defineda priori and directly related to the outer units

through the Reynolds number. In no-slip plane Poiseuille
flow, for instance, the nondimensional kinematic viscosity is
1/Re, the nondimensional friction velocity is.= (2/Re)?,
The governing equations are the Navier—Stokes equaand wall-units are simply (2 R&f times the non-

Il. MATHEMATICAL FORMULATION

tions for incompressible flow, dimensional units. The friction Reynolds number in this case
Py 1 is Re=2¢u,/v=(8 Re}>. Further details of the transfor-
—+Vv-Vv=—Vp+ —V&+F, V.v=0, 1) mations to wall units are provided in Sec. VI.
at Re The pressure gradient is eliminated by using thell*
wherev is the Eulerian fluid velocityp the “pressure”(di-  streak projections of the momentum equations using the

vided by the mass densjtyRe the Reynolds number. A Car- operators

tesian system of reference is employed witbtreamwisey .

shearwise(i.e., wall-normal and z spanwise. The corre- ,="Y- VX(VX(-)) 2
sponding velocity components angv, w, respectively. The
flow is bounded by two infinite planes locatedyat =1 and
is maintained by a body forceé and/or the boundary condi-
tions aty=+*1, wherex is the unit vector in the direction.

The physical boundary conditions correspond to no-slip afrhese projections lead to an equation Rgv=V?v, the La-
the walls. These are Dirichlet boundary conditions wherep|acian of they velocity (where the continuity equation
velocity is imposed on the boundary. In this paper, all threey.y=0 has been us@daind another equation fd@,v=17,
canonical types of boundary conditions, Dirichlet, Neumannine y vorticity. The u and w velocity components can be
and Fourier—Robiralso called “of the third kind,” see Eq. reconstructed using the definition of the vorticity, 7
(12) below] are employed for the slip-to-no-slip homotopy. = ju/9z—sw/dx and solenoidality V - v=du/dx+ duv/dy
Periodicity is enforced in the streamwise and spanwise direcs. jw/z=0. The two equations far and » must be supple-
tions with periods. =2/« andL,=27/y, respectively.  mented by equations for the and z averaged velocities,

Plane Couette and Poiseuille flows are considered. PIar[q(y t) and V_\/(y t). These are obtained by averaging the
Couette flow is maintained by the boundary conditiony at Navier—Stokes éqﬁations overmndz.

=1 with no body force and has the laminar base solution 1.5 «roll-streak ” or v—7, representation is closely

v=yx=U{?. Plane Poiseuille flow is maintained by an ex- jinked to the “poloidal—toroidal” representation of the sole-
ternal uniform pressure gradierf=—Re X, and the noidal velocity field:

boundary conditions at=*1. The Poiseuille laminar base L

flow is chosen here ag=(y—y?/2+1/6)x=U" (Fig. 2. v=VX(VXpy)+VXy+Ux+Wz, (4)
This Poiseuille flow has zero average and its antisymmetric

part is identical to the plane Couette base flow. This unusualnere ¢=¢(x,y.zt) and y=y(xyzt) are three-
Poiseuille normalization is chosen for the Couette-to-dimensional, time-dependent scalar fields while=U(y,t)
Poiseuille homotopy. Thereforg=+1 is here a plane of andW=W(y,t) are(1-D), time-dependent scalar fieldsee,
reflection symmetry for plane Poiseuille flow with the e.g., Refs. 25 and 26 Indeed,v= —(3)2(+ a§)¢ and 7@

and

P,=y - VX(-). )
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=—(&&+)y. The roll (or poloida) mode ¢,¢) has no  Ill. NUMERICAL FORMULATION
y-vorticity, while the streaKor toroida) mode (, ) has no _
y velocity. The primary variablesi(y), v(x,y,z), andw(x,y,z) are

In summary, the governing equatiom are reduced to eXpanded in Fourier modes in theand z directions and
Chebyshev-based modes in thélirection,

d 1
(E—R—eVZ)VZU-FF’v'(V-VV):O, (5 Lt Mt N o
v=2 X X Ame' e dn(y), (14)
J 1 I==Lt m=0 n=—Np
(ﬁ_R_eVZ n+P,(v-Vv)=0, (6) Ly  Mr Ny o
7= 2 2 2 B €M yn(y), (15)
g 1 ¢\ == ~ ==Ly m=0 n=—Nr
(E_R_ea_yZ U+X'(V'VV)—X'F:O, (7) B My )
= u . 16
where the overbar denotes an average ovemd z. The mE:O m¥m(Y) (16

V_V(y,t) mean flow is identically zero by symmetry. The - ; .
o . X , y-expansion functionsp,(y) and ¢,(y) are inte-
The full velocity field '_S decorpposed into the Ia_lmmar grals of Chebyshev polynomials that satisfy the boundary
base flow plus a perturbation=U x+u. In the following,  conditions. The basic idea is to sBt'¢(y)=Tn(y) and
u=(u,v,w) represents the perturbation from laminar flow D2y (Y) =Tin(Y) where D=d/dy and Ty(y)
unless otherwise noted. This paper is primarily concerned- cosfnarccosy) is the Chebyshev polynomial of degree

with traveling wave solutions of the form(x,y,z,t)=u(x  This approach leads to numerical operators that are well
—Ct,y,z,0). Looking for such solutions is equivalent to conditioned® After four y-integrations,

looking for a three-dimensional vector field{x,y,z) that . ) s
satisfies the above-mentioned equations wjtheplaced by dm(Y)=1"Tm(y) +Cot Cry+Coy“+cay”, 17

—Cd,. This leads to the nonlinear eigenvalue problem where | = dy denotes indefinitey-integration. The con-

9 1 L\ stantsc; are determined from the boundary conditiofg,
(C(9—X+ ReV )V v—P,+(v-Vv)=0, (8  =\D¢,+kD3%¢,,=0 aty==1 (13. This leads to well-
defined¢,(y) for 0sA<1.

g 1 _, B To illustrate the validity and accuracy of this approach,
CR”L R—eV 7= Py (v-VV)=0, ©)  consider the calculation of the least negative eigenvalue of
_ the streamwise rolls problem,
1 du— 2_ 22 2_ .27
R_ed_yz_x'(V'VV):O, (10 (D= vy9)v=0a(D—y)v, (18

. ~ _ ~ _ 2’\ _ . . . .
where the wave velocitg is the eigenvalue. A unique solu- With v(£1)=Duv(=1)=D%(1)=0 (rigid—free). This is
tion is found by fixing the phase of the solution. Here we setN€ linearized-equation(5) for x-independent perturbations

) of the formu(y,z,t)=e'v(y)cosyz It is a test case that is
I pexp(—iax))=0, (1) . : : LA
quite appropriate for this work. Thep, expansionuv
where3J denotes imaginary part afd) a domain average. =31Ta ¢ (y) is compared to a conventional Chebyshev

The boundary conditions for the perturbation from lami- expansion?=22"T+4mem(y), where the extra four polyno-

nar flow,u, are homogeneous. General slip boundary Condl'mials in the latter case are used to impose the boundary
tions of the form

conditions (Chebyshev-tau formulation Equation (18) is

NU— kdUu=0v=NW— kd,Ww=0, (12 projected onto theVi;+1 Chebyshev polynomial,(y),
m=0, ... M¢, with the Chebyshev weight, by Gauss inte-
gration with at leastN,=M;+5 Gauss points/;=cos(3
—1)ml(2Ny), j=1,... Ny. Two Chebyshev-tau formula-
tions are used. One formulation enforces the boundary con-
vz)\t&yv+xt&§v=)\tn+ Kdyn=0, ditions by eIiminatinngTH, cen ’bMT+4 from the eigen-
(13 value problem. The second formulation eliminates

by, ...,b; and has smaller roundoff errors. The boundary
aty=+1 andy=—1, respectively. Homotopy from free- conditions are automatically enforced by ttg, expansion.
slip to no-slip perturbations is performed by tracking solu-For y=1.3, the least negative eigenvalue is found toohe
tions fromA =0 toA=1. For Poiseuille flowA,=0 always, = —5.990343885 706 669using the ¢,, expansion with
asy=1 is the channel centerline. The Rayleigh-aBel no- M=42, somewhat arbitrari)y Figure 3 is a log—log plot of
menclature “free—free,” “rigid—free,” and “rigid—rigid” is  the o4 error as a function of the resolutiod. The ¢,
used to denote the boundary conditions at the bottom and tdprmulation is stable and saturates at round-off level (2D
walls, respectively, with “free” indicating free-slip perturba- while the Chebyshev-tau errors are plagued by roundoff er-
tions (Neumann boundary conditionand “rigid” indicating  rors of O(M2), as expected fof18). The eigenvalue of larg-
no-slip perturbationgDirichlet). est magnitude turns out to be positive for all three formula-

are employed ay=*+1, wheren is the direction normal to
the wall into the fluid, BsA<1 andk=1—\. In terms ofv
and 7 this translates into

U= Npdyv — Kb&§v=kbn—Kb&yn=0
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X(M++5)X(2N;+1) after de-aliasing ix andz. De-aliasing
in y was tested but made no difference on the scale of the
plots shown here. There is no aliasingxi@and z.

The traveling wave nonlinear eigenvalue problem is
solved using Newton iterations and various continuation and
homotopy procedures, as discussed in later sections. The lin-
ear algebraic equations @i, Bjm, andu,, (14)—(16) are
solved with LAPACK routines. The code was thoroughly
tested and all free-slip results obtained with a different triply-
Fourier cod&’ were reproduced with the present code. The
linear instability of 2-D streaky flot#*3was also reproduced
as well as eigenmodes of the Orr—Sommerfeld and Squire
operators. The size of the numerical problem is reduced by
imposing the sinusoidal streak symme(84). Several reso-
lutions have been used to verify numerical convergéné.
Most of the Poiseuille results presented here use
[L+,M+,N]=[11,23,1] corresponding to 7391 degrees of
FIG. 3. Approximation erroto,— o|/|o4| whereo, is the least negative freedom. The optimum parameter results were checked with
eigenvalue of18). The ¢, expansion errofsolid) saturates near 10°. The  resolution [L1,M+,N1]=[13,25,13 for which there are
Chebyshev-tau errors a@(M?) for Mr>10 (dashby, .. . bs eliminated; 1977 degrees of freedom. Many of the Couette results en-
dash-dothy 1. .- bu -+ eliminated. force the additional symmetr{26) and[L+,M+,N1] up to
[15,27,19 (7697 modeshas been used.

tions. That eigenvalue is spurious since it can be shown that
the eigenvalues in (18) are real and negative.

The definition of,(y) is more delicate as thB? op-
erator with slip boundary conditiori3¢,,(*=1)=0 is singu-
lar. To accommodate slip boundary conditions, weA. Self-sustaining process

IV. BIFURCATION FROM STREAKY FLOW

defilne Dzl//m(Y)=T_m(¥)—Tm for m#0, where Ty The physical mechanisms responsible for the coherent
=[Z1 Tm(y)dy/2, yielding structures consist of a three-dimensional, nonlinear self-
— sustaining process. The process has been described and stud-
Unl(Y) = 12T (y) = Try?/2+ Co+ C1y. (19 gp P

ied in several earlier referenc&s?330*The weakly nonlin-

The constantg, andc; are chosen to satisfy the boundary ear description of the process is that streamwise rolls
conditions\ ¢, = kD¢, =0 aty=*1 (13). The constant,  [0\V(y,z),W(y,z)] create a spanwise modulated shear flow
is arbitrary in the free—free cas&=M\p,=0). In that case, [U(y,z),0,0] that is inflectionally unstable to a three-
we defineco=lim, _o co(A;=0\}) so the functions willbe  dimensional perturbation exp&)u(y,z). Here,U(y,z) rep-

well adapted to the free-slip to no-slip homotopy. It turns outresents the totax-averaged streamwise velocity. The Rey-
thatc, is independent ok, when\,=0. The zero mode is nolds stresses associated with that 3D perturbation extract
defined byD?yy=X\,+\,,. Two integrations and the bound- energy from the spanwise fluctuation of the streamwise ve-

ary conditions yield locity U(y,z)—U(y), the streaks but feed energy into the
5 N rolls and the mean shedi(y). This is along the lines of
y tTAp Benney’s mean-flow first-harmonic thedfybut here, vis-
=N+ N+ (N — + -2. 2 o . L I '
Yo(¥)= (At ) 2 (M=Ao)y 20 cous dissipation plays an important equilibrating role.

For x-independent flows, the streamwise rolls
For the full Navier—Stokes case, Eq5)—(7), the non-  [0V(y,z),W(y,z)] decouple from the streamwise velocity,
linear term is calculated by spectral convolution in th@nd  therefore they have no energy source and decay due to vis-
zdirections but by collocation in thedirection using at least cous dissipatioR>?* However, they redistribute the mean
M+:+5 Gauss points. The equations are projected onto thehear and can create substantial streaks. Indeed, rolls of
appropriate Chebyshev modes with the Chebyshev weighd(Re™!) sustainO(1) streaks. Quadratic nonlinear self-
function. These projections are made by Gauss integratiofmteraction of anO(Re ') x-dependent streak instability
using at leasM+5 Gauss points. All Fourier—Chebyshev eigenmode is in turn sufficient to balance the viscous dissi-

modes with pation of theO(Re 1) rolls. These scalings are for the lower
branch of self-sustained statésee the following and Ref.
2 m? n? 23, Sec. Il D.

S+ _+ =1 (21)
(Ly+ D7 (Mr+ D)7 (Ngt1) B. Two-dimensional streaky flow

are truncated. This resolution approximately correspondsto a Our method to construct exact coherent states in shear
direct numerical simulation with resolution 2+ 1) flows is to track solutions from a neutrally stable 2-D streaky
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FIG. 4. Streaky flowJ(y,z) for F,=5, y=1.5. Shaded contours bf(y,z) -0.01r
at multiples of 0.1(maxJ—min U)=0.1703 with contours ob, at multiples
of 0.2 maxw,=0.0208. Positivav, contours solid, negative dashed. —0.02 . . . . . . . .
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flow [U(y,2),V(y,2),W(y,2)], with externally maintained o

rolls of O(Re™*), to a self-sustained fully 3-D floW. This i ri. 5. instability of streaky flowiU(y,2) V(y,2), W(y,2)] with y=1.5 for
most easily done in plane Couette flow with free-slip bound-F,=5, 6, 8, and 12. Dashed line is instability pt/(y,z),0,0] for F,
ary conditions where appropriate streamwise rolls have the 8.

simple form V(y,z)=Re ! F, cosBycosyz, with 8= /2

andW(y,z) from continuity. Such rolls are an exact nonlin-

ear solution and can be maintained by the wex(Re 2) C. Instability of streaky flow

external body force, The streaky flow[ U(y,2),V(y,2),W(y,2)] is unstable
0 to x-dependent perturbations as a result of the strong span-

wise inflections inU(y,z). Three modes of instability with

VC?S'By cgs;xz ' 22 distinct symmetries(fundamental sinusoidal, fundamental

Bsinpysinyz varicose and subharmonic “sinucogegre possiblé??*Pre-

The streamwise velocit (y,z) results from a balance be- Vious work??® indicates that the fundamental sinusoidal

tween viscous damping and redistribution by the rolls of themode is the most unstablsee also Ref. 32 That mode

shear supplied at the walls as governed by the advectiorforresponds to the shift-reflection symmetry

diffusion equation

F— F, ﬁ2+ ')’2
Re

Ly
X+ 7,y,—z . (29

U U 1 _
V—+W—=—V?2U. (23) v(xy,z)=| v
w

-w
Note thatV=0O(Re™*) implies thatU(y,z) is Reynolds The Navier—Stokes equations linearized about the streaky
number independent and the streaks are ind®€t). A fow U(y,z) admit separable solutions of the form
more precise estimate of the necessary rolls is obtained beyrteiaxu(y,z)_ Figure 5 shows the growth rate, mixo),
balancing the advection of the laminar shetw,_/dy=% as a function of the streamwise wave numbefor streaky

W'th2 the viscous damglngz ofO(1) streaks V~=(B"  flows corresponding t6,=5,6,8,12 at Re- 150. At this Rey-
+y7)/Re, yieldingF,~ 3"+ y". We expect that the opti- noigs number, the most unstable streaky flow corresponds to
mum rolls have approximately unit aspect ratio ar]d choosq:rws_ For larger values oF, , the rolls transport momen-
y=1.5. Smallery would produce weaker spanwise shearm faster than it can be supplied at the walls, the streamwise
and therefore less vigorous sustenance of the 3-D strealg|ocity U(y,z) therefore weakens and with it the streak
eigenmode, while largey leads to stronger dissipation of the jnstapility. For lower values of, the rolls are not strong
rolls and the streaks. For=1.5 andg=m/2, F,~4.7. FOr  enough compared to streak dissipation, the streaks are weak
the Reynolds number, it must be low enough that rolls 0 the mean shear is strong, resulting also in a collapse of
cupy the full channel but not so low that viscosity wipes Outihe streak instability. The minimurf, sustaining a streaky

all perturbations from laminar. A trial value of RA50 was o\ instability is approximatelyF, =5 at Re=150. The

selected. The resulting two-dimensional thr_ee—componer&rowth rate of the instability for the pure streaky flgno
(2D-3Q flow U(y,2) =[U(y,2),V(y,2),W(y,2)] is depicted  rqi5) whenF,=8 is shown as a dashed line in Fig. 5. That
in Fig. 4, which shows contours dJ(y,z) overlayed with  ¢,rve indicates that the rolls reduce the growth rate for that
contours of streamwise vorticityo,=JdW/dy—dV/dz for  gpeaky flow whene>>0.375, suggesting that the streak in-
Fr=>5 and Re=150. The weak rolls indeed lead to a major giapility feeds energy back into the rolls for thasts. Re-
redistribution of streamwise velocity. The mean velocity Pro-moving the mean shear leads to a tripling of the maximum
file (not shown has an S shape typical_of turbulent Couettegrowth rate and a doubling of the band of unstable wave
flow with a total mean shear gt=0 of dU/dy=0.093 and a numbers(Fig. 4 in Ref. 31 indicating that the mean shear
wall velocity aty=1 of U=0.434, both down from their has a strong stabilizing effect and that the instability origi-
laminar value of 1. nates in the spanwise inflections 0{y,z). For more mar-
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obtained from a weakly nonlinear analysis of streaky flow as
sketched in Refs. 22 and 23. The needed to maintain the
rolls decreases a&, increases leading to two self-sustained
solutions, a lower branch at Rg=0.7716[Fig. 7(c)] and an
upper branch at R&,=1.1181[Fig. 7(d)]. The solid line in
Fig. 6 is the fully nonlinear steady state, very well-resolved
atLt=9, Mt=21,N;=9. Figure 6 also shows the solutions
for «=0.40, 0.64, 0.72, and 0.76 that bifurcate froW
=0 nearF,=4.76, 6, 7, and 8, respectively. There does not
seem to be any bifurcation below the valkg~4.7 esti-
mated in Sec. IV B. First-order nonlinear feedback on the
rolls therefore is a general characteristic of unstable streaky
flows. However, comparing Figs. 5 and 6 shows that bifur-
cation from the most unstable streaky flow does not lead to
self-sustained steady states. The curves eventually turn back
down and reintercept thé,=0 axis nearF,=13 for «
=0.76, F,=16 for «=0.64 and 18.4 forw=0.49, for ex-
FIG. 6. Bifurcations from streaky flow in free-free plane Couette flow for ample.
L O e oy Figwe 7 shows the | iosurfaces of
arrwd F,:é.Qér 72.6Y8(ReAX7)2. Oppen cirZIes om:0.49§1rve corresporxwd o i 0.80 manX_(x,y,_z), corresponding _tO the mnermos.’t vor-
Fig. 7. ticity contours in Fig. 4, overlayed with the streamwise ve-
locity isosurface corresponding to=minu(x,y=0,z). Four
A, values are shown, R¥¢=0.06, 0.15, 0.7716, and
. 1.1181. The latter two correspond, respectively, to the lower
ginal values of, e.g..F, =5, the rolls have a strong effect 1,ranch and upper branch of self-sustained solutions Rjth
on the structure of the eigenmodes and removing them-g s A, is increased, the weak streamwise rolls are first
changes the character of the instability. affected. Thew, isosurfaces pinch off to form staggered vor-
tices whosex-oriented axes are pointing up and away from
the low-speed strealin this plane Couette flow there is an
Our goal is to calculate nontrivial 3-D self-sustained equally strong high-speed streak centered=atr/y that is
states aF, =0 so we select a weak forcing that still sustainsnot shown. As A, is increased further, the streak develops a
unstable streaks. The streaky flow corresponding,te5 is  Strong undulation in the direction and the top tips of the
neutrally stable atr~0.49 (Fig. 5), hence a 3-D steady so- Vorticity isosurfaces move back toward the streak. The struc-
lution bifurcates from the 2-D streaky flow & ~5, Re ture of these self-sustained free—free plane Couette flow so-
=150, =0.49. That branch of 3-D solutions is tracked by lutions is very similar that of the coherent structures ob-
letting F, evolve as a state variable with a suitable measuréerved in the near-wall region of no-slip turbulent floW®s’
of the 3-D stateA,, as the control parameter. Here The plane Couette 3-D solutions travel at the average flow
velocity and have the additional shift-rotation symméry

D. Continuation from streaky flow

A =R(nexp —iax)) (25
is they average of the real part of the=1, n=0, »-mode ! - Ly L,
(15). This choice is made because of the predominant role of vixyz)=| Tv 5 mx Y, ) (26)
that mode in the streak instabil#9.This A, definition pro- w w

vides the supplementary equation needed to determine the

free variableF, . The A, used here isx/ /2 times that used Th|s symmetry results from the rotation about the span-
in Ref. 19. In summary, we look for a solution of the non- wise axis symmetry of plane Couette flow together with the

; : : -phase choice imposed By 7 exp—iax)=0 and thez-phase
linear system of equation®)—(11) with the extra roll forc- X-pnase X !

ing tern): Re 2 Fr(,22+ +2)2cospBy cosyz on the right-hand choice |mposed by24). The symmetr|§$24) and(26) imply

side of (8) together with the additional equatid@5). That a reflection symmetry about the point (&.84): u(x,y,z)

solution is calculated by continuation in the control param-.:_u(_x’_y’l‘zlz_ 2). The symmetry(26) was imposed

eter A, starting from the neutrally stable streaky flow solu- in a triply Fourier cod® and is also imposed for most of the
tion atA,=0. Couette results show here.

The F,—A, bifurcation curve is shown in Fig. 6 and the
bifurcating solution is illustrated in Fig. 7. The dashed lines
in Fig. 6 are the fit§, = cy+ c,(ReA,)? near the bifurcation The self-sustained solutions can be continued to different
points atA,=0. The Re factor is included becausefnof  values of the parametets y, and Re. The Re continuations
O(Re 1) is expected for self-sustenan¢8ec. IV A). The have been performed typically with a logarithmic arclength
coefficientc, is strictly negative, verifying that the quadratic continuation procedure in Réyx space that uses the
nonlinear self-interaction of the neutral streaky flow eigen-supplementary equations R®&y(1+ecosf) and A,
mode has positive feedback on the rolls. These results can beR( 7 exp(—iax))=~Ay(1+esin §) to determine Re and for

E. Continuation of self-sustained states
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FIG. 7. (Colon Bifurcation from 2-D streaky flow at Rel50, «=0.49, y=1.5, (a) ReA,=0.06, (b) ReA,=0.15, (c) ReA,=0.7716, (d) ReA,
=1.1181. Isosurface af=min u(x,y=0,2) (green, w,=—0.8 maxwy (blue), w,=0.8 maxw, (red.

given Ay, Ry, ande<1. Thea and y continuations have has been made by minimizing Re ower y, andA,. The
been performed at fixed Re &, . WhenF,=0, as will be  optimum parameters for free—free Couette are0.3236,

the case for all results hereafter, the three-dimensional soluy=0.7389, for which the self-sustained solutions first appear
tions arise through a saddle-node bifurcation atat Re=99.9795. The bump in the Réx curve shown in Fig.
Re=Re,(«,7), the nose of the curves in Fig. 8. The solu- 8 for «=0.5, y=1.5, corresponds to a splitting of the vor-
tions cease to exist for Re below Ke A search for the tices. For Reynolds numbers near,Rel141.5951, thew,
lowest Reynolds number where these solutions first appeaforticity maximum of 0.3661 occurs at=0, y=0, yz

Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures 1525

published but required some fiddling to determine the
appropriate streamwise rolls. Two Fourier modes iwere
needed instead of the single mode in free—free Cou2ge

The reason for this is that the appropriate streamwise rolls in
plane Poiseuille flow turn out to be more concentrated away
from the wall than in plane Couette flow. Continuation from
2-D streaky flow in no-slip plane Couette was initiated in
Refs. 22 and 23.

A more robust and elegant approach is to let Navier,
Stokes, and Newton select the appropriate streamwise rolls.
This is done by homotopy from plane Couette to plane Poi-
seuille flow and from free-slip to no-slip. The Couette to
Poiseuille homotopy consists of tracking the 3-D traveling
wave solutions for the laminar flow

%0 100 150 200 250 300 350 400

Re 2

1y
UL(y)=y+u(g—7 (27)

from =0 to u=1. The free-slip to no-slip homotopy con-

Bl sists of tracking the traveling waves from=0 to A=1 in
the general slip boundary conditio%3). There is ax for
3- each boundary), for y=+1 and\, for y=—1. All three
homotopies are easily achieved. Steps of 0. iand/or\

w258 have been chosen arbitrarily. The free—free Couette solutions

have been mapped into free—free Poiseuille traveling waves.
The rigid—free traveling waves have been computed success-
fully by homotopy from both free—free Poiseuille as well as
from free—free Couette. The rigid—rigid Couette solution
1.5r 1 was obtained by homotopy from a rigid—free Poiseuille so-
lution only, because of a technical choice in the definition of
the ¢, (y) functions(19). These homotopies are devices to
obtain the various solutions using Newton’s method but they
also provide explicit demonstrations that all these three-
FIG. 8. Bifurcation diagrams for free—free plane Couette rovy. 'mpEEq. dimensional Navier—Stokes solutions can be smoothly de-
(25)] vs Reynolds number Re. Bottom: Wall shear r&teormalized by its formed into one another.

laminar value for the same wallvelocity -differenceS=2/(U(1) The traveling wave solutions for the four basic flows
—_U(.—l)) in our unitd vs Re. Curveg labeleth) «=0.3236, y=0.7389 free—free and rigid—riaid bl c tt d free—f ,d
yielding the lowest Rg=99.9795(solid: [L+,M+,N]=[15,27,1§, dot: el 9 ] g_ plane Louetle an r_ee ree ar_‘
[13,25,13. Label (b): «=05, y=15 with Re,~141.5951, rigid—free plane Poiseuille, are compared and illustrated in
([Lt,Mr,N;]=[13,25,13 and[11,23,1] overlap. Figs. 9-11, for the parameters=0.5, y=1.5 at their re-
spective critical Reynolds number Rewhere the upper

] branch and lower branch solutions coalesce. The comparison
=mi2 for @=0.5, y=1.5. The maximum stays at that loca- s restricted to those parameters to limit the number of fig-
tion as Re is increased at fixed y, up until the bumpinthe ;65 put it must be emphasized that the structure of the so-
Re-A, curve where it splits into two equal maxima whose |tions varies with the parameters. The various solutions are
locations are symmetric about the poxt0, y=0, yZ  ¢jearly very similar to one another. They all correspond to a
=7_T/_2 and Reynold_s nu_mber deper_ldent. Th|s_|nd|cate_s thﬁ/avy low-speed streak flanked by staggered quasi-
splitting of the vortices into two pairs, one pair associatedsyreamwise vortices. The Couette solutions are fixed points
with the upper wall streaks and one with the lower wall. Fori, his frame of reference and have the additional symmetry
the optimum parametes=0.3236 andy=0.7389, the vor- (26) The free—free Couette Re=141.6 and the rigid—rigid
ticity maximum is split from the onset of the three- oo ette Rg=163.4. The Poiseuille solutions are traveling
dimensional solutions at Rg=99.9795. Bumps in the waves withC—U(—l)=07413 U(l)—U(—1)=08802
Re-A, curves typically correspond to such splitting of the for the free—free solution. at 3,4-3:156 4 andC—U.(—l)’

vortices or a harmonic modulation of the streaks. i = -
=1.0380,U(1)—-U(—1)=1.1392, for the rigid—free solu-

tion at Rg,=251.5. The main difference between free-slip
and no-slip boundary conditions can be characterized as an
The continuation from 2-D streaky flow can be used to“extra” small layer near the wall in the no-slip case. That
compute self-sustained 3-D solutions in no-slip plane Cou-viscous sublayer” is about 5 wall units. The similarities
ette and plane Poiseuille flow. This was performed succesdetween no-slip and free-slip solutions are further illustrated
fully for free—free plane Poiseuille flofWaleffe 1998, un- in a crude way in Figs. 12 and 13 where the mean velocity

150 100 150 200 250 300 350 400
Re

V. HOMOTOPY OF COHERENT STATES
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Free-Free Couette

Rigid-Rigid Couette Rigid—Free Poiseuille

Q 2 4 6 8 10 12

FIG. 9. Contours of streamwise velocityat y=0 for ECS ata=0.5, y=1.5, and Rg=141.6 (free—free Couetde Re,,=156.4 (free—free Poiseuille
Re,,=163.4(rigid—rigid Couette, Re,,=251.5(rigid—free Poiseuillg

profiles are shown together with a no-slip profile that hasy(1)—U(—1)=0.8802. A more refined comparison be-
been stretched to remove the viscous sublayer. The plangeen the two types of boundary conditions would seek the
Couette no-slip mean profile is shown stretched uniformly inno-slip solutions for horizontal dimensions such that the as-
y about the channel centerlineyat0 (Fig. 12. The stretch-  pect ratios of the no-slip inner layers match that of the full
ing y—>1.523_7y is selected to match the free-slip velocities free-slip solutions(e.g., a~0.75, y~2.25 for rigid—rigid

at the wallsU (% 1)=0.4598. The plane Poiseuille no-slip Couettg. As noted in Refs. 19 and 20, the Poiseuille mean
mean profile is shown stretched uniformly about the fullprofiles have two inflection points. The wave veloc@yis
channel centerline at=1. The stretchingg—1+1.0721¢  almost identical to the mean velocity at the inflection point
—1) is selected to match the free-slip velocity differencethat corresponds to a local minimum of mean shear rate.

Free-Free Couette Free-Free Poiselille

FIG. 10. Contours of streamwise vorticity, at ax=23m/2 for the same solutions as in Fig. 9. Equispaced levels at O.[layay,2)], except rigid—rigid
Couette, where spacing is 0.1 niay(x,y=0,z)] (solid: positive, dash: negatiyeThick lines are level curves=min[u(x,y=0,z)] and maku(x,y=0,z)].
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Free-Free Couette
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Free-Free Poiselille

0.51

-0.51
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VI. OPTIMUM PARAMETERS

RSShES

= S

FIG. 11. Same as Fig. 10 but ak=21r.

for instance, wherel, is the friction velocity defined byli
=v|dU/dy]a - The wave numbers andy that lead to the

The exact coherent structure solutions depend on threlewest onset Reynolds number Réor the traveling wave

parameters: the horizontal wave numbersand y and the

solutions have been determined by minimizing the Reynolds

Reynolds number Re, or, equivalently, the three length scalesumber of the solutions over, y, andA,. The optimum

Ly, L,, and 2h, nondimensionalized using wall unitgu__,

wave numbers and corresponding minimum,Rer “free—

1 T T T T T T T T T
1 T T T T T T T T : i 1
- 0.8¢ : : H
0.8r // e 7 /'/
/ 0.61 N ;O
0.6 7 ,‘/ 7 S : /
. 0.4 1 & 7
0.4} s 1 0 4
0.2f 0 ; .
0.2t 78 1 /!
_ Y o} : Vg |
Y ot 7 ] 9 /./
7 -0.2f ; 2 .
—0.2} ) 1 I: e
b —0.4} Ny 1
—0.4F /'/ // J : ./_/'
y -0.6f P ]
_06— ./. // i // 7
; -08f 1
-08f 7 / ] - ; :
1/ S 1o 02 04 06 08 1 12 14 16 18 2
21 0.8 06 0.4 —02 02 04 06 08 1 u-u,

FIG. 12. Mean profiles for plane Couette flow. Laminar fl@ash-dot and
3-D steady states far=0.5, y=1.5. No-slip solution at Rg=163.4, free-
slip at Rg,=141.6. Dash: no-slip solution with— 1.523% to match free-

slip wall velocities+0.4598.

0
u

FIG. 13. Mean profiles for plane Poiseuille flow. Laminar fl¢sash-dot
and 3-D traveling waves foit=0.5, y=1.5. Vertical dotted lines indicate
wave velocityC. No-slip solution at Rg=251.5, C=1.038. Free-slip at
Re,,=156.4, C=0.7413. Dash: no-slip solution witly—1+1.0721f
—1) to match free-slip wall velocities —U,,=0.8802.
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free” plane Couette where Re(u_€/v)? have already been 50
mentioned (Fig. 8. They are «=0.3236 andy=0.7389

yielding a minimum Rg;=99.98. In wall units, these param- 49+
eters correspond to 2=2f¢u./v=2\Re=20, L,
=ReL,/¢=194, andL; =85. i

For rigid—rigid Couette where Re has the usual defini-
tion Re=U/¢/v, wherel{ is the half wall velocity difference | ¢
and¢ is the half-channel height, the optimum parameters are®*’

a=0577, y=1.150, Re~=127.705. (29) w6l

That solution has wall shear ra®=|dU/dy|q=1.809,
henceu,/t/=(1.809/Re}? so a length measured in wall 45
units is (1.809 RéY? times the length in units of and

2¢u, ‘ - ‘ - ‘ ‘
2¢t= : —30, L =166, L;=83. (29) 200 250 300 350 , 400 450 500 850

X

Clever and Bus£é performed a parametric study of three- 50

dimensional steady states in rigid—rigid Couette but they did

not quote the optimum parametds). 49!
For rigid—free Poiseuille, where the Reynolds number is

defined such tham €/v=(2 Re)’? with ¢ the half distance

between the wall and the centerline, the optimum parameters

are

+mﬁ47f

a=0.5074, y=1.3165, Re=244.36, (30) -
or in wall units which are simply (2 R&f times the outer 467
nondimensional units

Ly=273.73, L;=10551, 2*=44.21. (31 45y
The optimization algorithm did not converge properly for the ‘ ‘ ‘ ‘
case of free—free Poiseuille flow. Approximate optimum pa- %o 100 120 L 140 160 180
rameters for free—free Poiseuille traveling waves where z

— 12 — — — +
ul/v= (% Re)'? are «=0.38, y=0.77, Re,=106, orL, ~ FIG. 14. Top: R§=2¢u, /v as a function oL} for y=1.3 andy=2.6a
=241, L, =119, 2"=29. The cause of these numerical for rigid—free plane Poiseuille flow traveling waves. Dash: 2-period solution

problems may be that the length scales and amplitudes of tHer y=1.3. Bottom: R, as a function ofi., for «=0.5 andy=2.6a.
traveling wave solution increase as the Reynolds number d iasgézl'fe”"d solution fop=2.6. Solid: (Lt,M+,Ny)=(13,25,13); dot:
creases, hence the optimal solutions are more nonlinear a d1 o

require finer resolutions in spite of the lower Reynolds num-

bers. _ _ o “two-period solutions occurs at; ~437 for y=1.3 and at
The most interesting results are those for rigid—free Poi{_"~167 for domains with the aspect ratig=2.6L,. Dis-
seuille flow as those solutions may be relevant to the cohetjnct traveling waves therefore arise at the same Reynolds

ent structures observed near(single wall at higher Rey-  numbper for those length scales. The optimum no-slip states
nolds numbers. Indeed the optimum paramet8is closely  gre jllustrated in Figs. 15 and 16.

correspond to the observed scalings of the near-wall struc-

+ + P
tures. The de!oenqlence ofgﬁen Ly ar!dl__Z for the_nglql— VII. STATISTICS OF NO-SLIP ECS
free plane Poiseuille traveling waves is illustrated in Fig. 14.
These results suggest that there are no traveling wave solu- Figure 17 shows the normalized wall shear rate of the
tions belowL ; ~80 or belowL, ~200. There exist travel- Poiseuille traveling wave at two wave number paitsy) as
ing wave solutions for all larget, and L, although the a function of the Reynolds number Revhich is based on
curves shown in Fig. 14 cannot be smoothly continued tadhe bulk mean velocity and the full channel height. The 3-D
arbitrarily large horizontal scales. The Keurve could not traveling waves first arise at Re-860, which is signifi-
be smoothly continued beyont, ~520 (i.e., below a cantly lower than the Rgwhere turbulence is first observed.
=0.295) for y=1.3, for instance. The solution branches The Kim, Moin, and Moséf turbulent flow was computed at
eventually develop a modulation as the length scales are irRe,~5600 while Toh and Itand®>* recently computed an
creased and Rgdrops abruptly. This is undoubtedly linked asymmetric traveling wave at Re-4000. The mean veloc-
to the fact that multiple copies of smaller scale travelingity profile and rms velocities normalized k. are shown in
waves can fit in the domain if the latter is large enoughFig. 18 for the traveling wave withh=0.5 andy=1.3 on the
(dashed lines in Fig. 24 The crossover between one- and upper branch at Re473 (Rg,=1303), the turning point at
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FIG. 15. (Color) Top, side, and back views of rigid—free plane Poiseuille flow traveling wave at its lowest friction Reynolds nuriber4221, L,
=273.73,L; =105.51). Green: Isosurface of streamwise velogitymin[u(x,y=0,2)] (top and back views Left column: Isosurfaces of streamwise vorticity
at =0.6 maxf,) (red positive, blue negatiyeRight column: Red isosurfaces €= 0.40Q,,.x, Where VZpZZQ:W”WirS”S” is twice the second
invariant of the velocity gradient tensgBox shifted byL,/16.)

Re=244.41 (Rg=867) and the lower branch at R&54 in Fig. 19. The complexity of the bifurcation diagram in the
(Re,=1390). The traveling wave rms velocities comparerange 316=Re<400 is intriguing as this is precisely the
well with the rms velocities computed by Kim, Moin, and range where turbulence is known to occur in plane Couette
Moser (their Fig. 6 at the much higher Re=5600 (Re  flow.*"*>=*"For instance, in thésmal) periodic box with
~180, Re=R€/8~4050). The main qualitative difference (a,y)=(0.5,1.5), there exist at least four distinct type of
is thatv s is forced to go to zero at the channel centerline in3-D steady states in 388Re<<400 and six distinct types in
the present traveling waves. This is probably directly con-329<Re<400. These lower bounds are very close to the
nected, through a “splatting effect,” with the increasenip,s ~ Ry,~312 andR.~ 323 identified in much larger experimental
near the centerline. Quantitatively, the levelaigfs are very domains®’
close to their turbulent counterpart but the levels gfs and The mean velocity and rms velocity fluctuations of the
W,ms are lower. Hence, the traveling wave is more efficient atplane Couette flow steady states are shown in Fig. 20. One
redistributing the streamwise velocity, i.e., at transportingsignificant difference with the Poiseuille flow traveling wave
momentum. is that the lower branch mean velocity is closer to the lami-
The normalized wall shear rate for the plane Couettenar profile than the turning point profile. The lower branch
steady states is shown in Fig. 19 as a function of the Reyshows very strong almostindependent streaks at Ré00
nolds number for several wave numbersindy. The upper together with weak spanwise and wall-normal velocity fluc-
branch of the &, y)=(0.5,1.5) solution shows a sharp turn- tuations. This is in agreement with the scalings mentioned in
ing point just before Re400. The solution branch turns Sec. IV A. The mean velocity and rms velocities of the upper
back to lower Reynolds numbers then returns toward highebranch solution at Re400 are very similar, qualitatively
Reynolds numbers. Structural changes in the solution arand quantitatively, with the turbulent Couette flow computed
subtle but one can detect the splitting of the streaks into twdy Kawahara and Kid# The normalized wall shear ra&in
distinct, incomplete, streaks that are shifted by half a periodrig. 19 is equal to the normalized energy input fatsed by
in both horizontal directiongnot shown in this paperThis ~ Kawahara and Kida. Their turbulent flow h&s-1~3 and
suggests that solutions with wave numbers that are 1.5 or this is precisely the level of seen for the upper branch
times as large are favored at those Reynolds number for thateady solutions at Re400 (Fig. 19.
horizontal aspect ratio. Indeed, solutions withy, ) Kawahara and Kida managed to isolate an unstable time-
=(0.75,2.25) and (1,3) exist and have higher wall sheaperiodic solution in plane Couette flow that had been sug-
rates at those Reynolds numbérempare curves c, d, and e gested by the work of Hamiltort all*2! Hamilton et al.
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FIG. 16. (Color) Top, side, and back views of rigid—rigid plane Couette flow steady state at its lowest Reynolds numt@®6772, y=1.1506, Re
=127.7). Green: Isosurface of streamwise veloaitymin[u(x,y=0,z)] (top and back views Yellow: u=maxu(x,y=0,z)] (back view only. Left column:
Isosurfaces of streamwise vorticity at0.4 maxw, (red positive, blue negatiye Right column: Red isosurfaces af@=0.85Q.,., where V2p=2Q

=W;;W;; —S;;S;; is twice the second invariant of the velocity gradient tené®ox shifted byL,/4.)

sought to isolate the self-sustaining procéSsc. IV A) by  study, and the earlier work of Clever and BudS&dicates
“quenching” of a turbulent flow***°That trial-and-error pro- that the 3-D steady states favgfa~2. This can be ap-
cedure lead them to settle on the parametessy) proximately understood in terms of the streak instability part
~(1.14,1.67), used by Kawahara and Kida. The presendf the self-sustaining process which consists essentially of a
larger scale inflectional instabilitye.g., Fig. 5 and Figs. 5
and 6 in Ref. 28 The streak instability also suggests, cor-

2.2 - - - - rectly, that at fixedy and Re, the spatial period-one solutions
) will disappear asy is increased. Further study is needed but
A7 ] this occurs apparently near/a~1.5. We have confirmed
ol | that there are indeed no spatial period-one solutions at Re
=400 for («,y)=(1.14,1.67) (//«=1.46), however there
1.9¢ 1 are solutions with ¢,y)=(0.84,1.67), (1.14,2.28) and
(1.14,3.34) for which the upper bran@=1 values at Re
© 1.8y 7 =400 are again in the neighborhood of 3. Further detailed
il | comparisons with the work of Kawahara and Kida will ap-
' pear elsewhere.
167 |
15l | VIll. MODEL 1-D MAP
i The above-presented results demonstrate the remarkable

'800 1000 1200 1400 1600 1800 qualitative and quantitative similarities between these 3-D

Re traveling waves and structural as well as statistical features
FIG. 17. Bifurcation diagrams for rigid—free Poiseuille. Wall shear r&te, of turbulent shear flows. The major difference, of course, is
normalized by its laminar value vs bulk Reynolds numbepR&H/ v with that the traveling waves are steady in the proper Galilean
v=(U~Uwap and where/=(U=Uyq) is the bulk mean velocity antl ¢ o 110 2 perfectly ordered while turbulent solutions are un-
=4¢ is the full channel height. Rg=4 U/ Re andS=4/(3l{) in our units. . X o
Near optimum ¢, )= (0.507,1.31)(thick curve and (a,7)=(0.5,1.5), sSteady and disordered. An important characteristic of the

[Lt,Mq,N;]=[13,25,13. traveling waves in this respect is that the traveling waves are
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Poiseuille traveling wave ata(,y)=(0.5,1.3). Solid: Upper branch at Re
=473. Dash: Turning point at Re=241.41. Dot: Lower branch at Re

=454, Bottom figure in wall units.
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FIG. 19. Bifurcation diagrams for rigid—rigid Couette. Wall shear r&e,
normalized by its laminar value.(d (a,y)=(0.5772,1.1506),
[L+,M:,N;]=[15,27,13 and[13,25,13 overlap.(b) («,y)=(0.75,1.5),

[13,25,13 and[11,13,1] overlap.(c) (a,y)=(0.5,1.5),[15,27,13 and

[13,25,13 (dot). (d) (@,y)=(0.75,2.25),[13,27,13. (&) (a,7)=(1,3),

[13,27,13.

solutions?* when the connections with observed coherent
structures had not been revealed. However, otfeegs, Refs.

42, 34, 20, 38see this instability of the exact coherent struc-
tures as a feature, not a bug. Indeed, turbulence is often
described as a “cascade of instabilities.” Whatever the exact
nature, and validity, of that cascade of instabilities concept, it
is related certainly not to the stable laminar state but much
more likely to the instabilities of the exact coherent states.

A simple 1-D mapx,,,="f,(x,) illustrates these fea-
tures of the onset of shear turbulence and the possible con-
nections between turbulence and the unstable exact coherent
states. The map is defined byig. 21

X .
,um if 0=x=3
f (0= (32

f(l-x) if 3<x=L.

The parameter € u<1 is directly related to the Reynolds
number, e.gu=Re/(RetRe.) for some critical Reynolds
number Rg, with =0 corresponding to Re0 andu=1
to Re=o.

The map is such that=0 is the laminar fixed point,
stable for all G= <1 and neutrally stable in the limit
=1 (Re—x), becausd’(0)=u.

The map(32) bears some algebraic resemblance to the

generally unstable from onset, except for a small range ofamous logistic maff f(x)=ux(1—x) that shows the pe-
stability of the plane Couette flow steady states reported imiod doubling route to chao$see, e.g., Ref. 44 but the
Ref. 27. A complete stability analysis of all the solutions present map has a cuspat 1/2, wheref(1/2)=w is the
presented here has not been performed, but selected stabilityaximum value off (x). This cusp is necessary to yield a
results, and the lack of direct experimental or numerical obbifurcation to new nontrivial fixed points that are unstable
servation of these solutions, suggests that these solutions drem onset, as is the case for the m@2) where new un-
indeed typically unstable. This instability from onset is un-stable fixed points exist fgre>1/2. The new fixed points are
usual and led to early skepticism about the relevance of sucan upper branch, and a lower brancl,,
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et . . T branch fixed poink, to itself whenu>1/2. That orbit, de-
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-1 -08 -06 -04 -02 0 02 04 06 08 1 picted by a dotted line in Fig. 21, consists xf=1/2 with
y X;=f,(Xo)=n and x,=f,(x;)=1-u=x, and the pre-

FIG. 20. MeanJ(y) and rms velocities for rigid—rigid plane Couette steady iterates ofxo,

states with ¢,y)=(0.5772,1.1506). Solid: Upper branch at =R&00. 1
Dash: Turning point at Rg=127.7. Dot: Lower branch at Re400[v, w Xp_1=——, N=<O0. (37)
are much smaller and omitted, ma)x£0.0075, max{)=0.02]. 1+ w/x,

There are infinitely many other distinct homoclinic orbits.
It is clear (Fig. 21) that for all initial conditions in the
Vs tdu—u interval[ 1— u, u], X, stays within that interval for afh, yet
Xu= 2  Xe=1mp (33 there are no stable fixed points or periodic orbits there.

iodi i ; . Hence, wheru crosses 1/2, i.e., Re becomes larger than the
Unstable periodic orbits of all periods also exist when wheru Crosses 17z, 1 ¢

~1/2. Th i0d-2 soluti llates bet d critical value Re, there is a sudden transition to a truly
- 'he period-2 solulion oscillates betweenandXa — -paotic regime for almost all initial conditions in that inter-
=f,(X1) with x;<1/2<x, and

val. The dynamics for almost all initial conditions in the
Vp+1)2+4—(u+1) open interval 1+ u,u[ when u>1/2 consists of an aperi-
X1= 2 . (34) odic oscillation about the upper brangh with excursions
toward the largest valug= n followed by collapse toward
More significantly, two period-3 solutions exist far>1/2.  the |ower branclx, then a climb back towars,, and so on.

Sarkovskii's theorerft> The period-3 solutions consist of an g good first approximation for the average.

“outer” solution (dash in Fig. 21that oscillates betweex, , The 1-D map(32) thus illustrates how the onset of un-
Xo=Tf,(X1), X3=Tf,(X2) with x; <X,<1/2<X3 and stable periodic solution may be directly related to a transition
\/m_A to “turbulence” and why the upper branch solutions may
xlzz—, A=pul+u+1 (35 offer a good first approximation to the mean properties of the
K turbulence. That simple map has not been directly connected
and an “inner” period-3 solutiorfdash-dot in Fig. 2lloscil-  to the Navier—Stokes dynamics but one should note the re-
lating betweenx;, x;=f,(X1), Xs=f,(x;) with x;<1/2  semblance with the “Lorenz maf® (see, e.g., Ref. 44
<X,<Xz and which was deduced from a continuous differential system.
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Note that in the discrete map, the fixed poirisandx, may  ated instabilities are thus good candidates for precise defini-
correspond to fixed points or traveling waves as in this papetions of Townsend’s notions of active and inactive motions.
or to fundamental periodic solutions of the Navier—Stokes  The initial step to calculate these exact coherent struc-
equations as in Ref. 38. tures is to track three-dimensional solutions that bifurcate
The simple maf32) has the particularity that the maxi- from a 2-D streaky flow. This step demonstrates the validity
mum valuef (1/2)= u is the pre-iterate of the lower branch of a previously studied self-sustaining process and estab-
X as shown in Fig. 21. This is the feature leading to thelishes a direct link between self-sustained 3-D coherent
existence of homoclinic orbits. This map therefore is just onstructures and Townsend'’s attached eddies. The next steps
the border between two types of maps. This map and slightlgonsist of homotopy transformations that demonstrate the
broader maps lead tstrange attractorsbut slightly spikier  close relationships between the various solutions.
maps for which the pre-iterate &f is less thanu will lead The traveling waves come in pairs above their onset
to astrange repellon(see the discussions of the logistic map Reynolds number. Our simplistic view is that the lower
with ©>4 in Ref. 45 or 44, exercise 11.4.6-or the spikier branch and its stable manifold form the separatrix between
maps, almost all initial conditions will eventually end up the basin of attraction of the laminar state and the turbulent
converging to the laminar poimxt=0. A concrete example is domain in phase space. This is similar to the view of Toh and

the two-parameter family of maps defined by Itano*3*who propose that motion along the unstable mani-
X _ ) fold of the lower branch corresponds to bursting. Toh and

m if 0sx=3, Itano do not distinguish between upper branch and lower

f(x)= (38) branch solutions however. This may be because their shoot-
f(l—x) if 3<x=<1, ing approach, similar to our method of bifurcation from 2-D

streaky flow, may be limited to capturing the lower branch
where —1<e and O<u<1. These maps have the same so|ution as suggested in Ref. 20. We propose further that the
overall shape and properties as the nf@p), in particular,  tyrpylent state is essentially an aperiodic oscillation about
f(1/2)=p andf'(0)=p if —1<e. The additional param- the ypper branch solution. Therefore the upper branch pro-
etere controls the spikiness. The maps are spikier 83 yjges a good first approximation to the turbulence statistics.
if 0<e. Whene=—1, (38) becomes the tent mdp™ If |t is unclear then whether “bursting” would correspond to
—1<e<0 andp>1/2, all initial conditions in[x,,1—X¢]  excursions along the unstable manifold of the lower or the
are trapped in that interval yet there are no stable periodigpper pranch. This picture of the nature of shear turbulence
points there. Ife>0 and u>1/2, a strange repellor exists. pas peen illustrated by a simple 1-D map. Jimenez and
Almost all initial conditions, except for a Cantor §3Mill Simen4’ also compute a single traveling wave solution in a
eventually end up at the laminar fixed pow0. Animper-  piane Poiseuille flow where vorticity fluctuations are wiped
ceptible change in the shape of the map, from a small negasyt peyond a pre-set distance from the wall. It is unclear

tive e to a small positives, can lead to drastic differences for \ynhether that solution corresponds to an upper or lower
the long time behavior of the dynamical system. This pro,anch.

vides another concrete illustration that may be useful also for Schmiegel, Eckhardt, and Mersm&Aff have suggested

shear flows where there is some limited evidence for strang@, ¢ the number of unstable steady states in Couette-like flow

repellors, ;rom low-order truncations of the Navier—Stokesy o\ with the Reynolds number and that shear turbulence
equationg? It may be that small periodic domains lead to

) ) may consist of a chaotic repellor that forms around hetero-
strange repellors but slightly larger domains lead to strang@jinic connections between those steady states. Our own re-

attractors. Finally, one can imagine a more c_:omplex sgenariqated studies of “low™-order modelgSahay and Waleffe,
e.g.,e=3/4—u, where the map broadens with increasing >0, unpublishedextending our earlier wofR show simi-
and the transition to a strange attractor occuruat3/4,  |5¢ results, however we believe that most of those steady
well beyond the onset of unstable fixed points and periodiates are spurious solutions that do not converge to solutions
orbits atu=1/2. of the Navier—Stokes equations. The number of those steady
states seems to grow with both the Reynolds number and the
IX. CONCLUDING REMARKS resolution, therefqre this is an intriguing n_umerical issue.
Nonetheless, the idea of the onset of a multitude of unstable
Three-dimensional traveling wave solutions of thestates is likely to be relevant, with most unstable states cor-
Navier—Stokes equations have been calculated for planesponding not to steady states but to periodic orbits, and the
Couette and Poiseuille flows with both free-slip and no-slipstrange repellor idea may also be applicable in some range of
boundary conditions. These well-resolved solutions captur@arameters. There is solid evidence for unstable periodic so-
essential structural and statistical features of turbulent shedutions in plane Couette floffin addition to the steady states
flows and are therefore called exact coherent structureqresented here and in earlier refererf®é$ There is an ob-
These exact coherent structures are typically unstable fromious structural and statistical connection between those so-
their onset at a Reynolds number that is about twice lowelutions but the phase space connections have not been eluci-
than those where turbulence is first observed. It is believedated yet. It appears that periodic solutions may replace the
that the inherent instabilities of the exact coherent structursteady states in domains where the streamwise period is less
are directly related to the disorder characteristic of turbulenthan about 1.6 times the spanwise per{atl low Reynolds
shear flows. The exact coherent structures and their associumbers of courgeClever and Bus$éhad already reported
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