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Homotopy of exact coherent structures in plane shear flows
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Three-dimensional steady states and traveling wave solutions of the Navier–Stokes equations are
computed in plane Couette and Poiseuille flows with both free-slip and no-slip boundary conditions.
They are calculated using Newton’s method by continuation of solutions that bifurcate from a
two-dimensional streaky flow then by smooth transformation~homotopy! from Couette to Poiseuille
flow and from free-slip to no-slip boundary conditions. The structural and statistical connections
between these solutions and turbulent flows are illustrated. Parametric studies are performed and the
parameters leading to the lowest onset Reynolds numbers are determined. In all cases, the lowest
onset Reynolds number corresponds to spanwise periods of about 100 wall units. In particular, the
rigid-free plane Poiseuille flow traveling wave arises at Ret544.2 for Lx

15273.7 andLz
1

5105.5, in excellent agreement with observations of the streak spacing. A simple one-dimensional
map is proposed to illustrate the possible nature of the ‘‘hard’’ transition to shear turbulence and
connections with the unstable exact coherent structures. ©2003 American Institute of Physics.
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I. INTRODUCTION

A fundamental change in our understanding of the nat
of shear turbulence started in the 1950s. Then the view
turbulence as the random interaction of ‘‘eddies’’ began to
replaced by one of organized motions interacting with
mean flow. Theodorsen1,2 proposed the qualitative, mecha
nistic picture of a wall-bound horsheshoe vortex as the f
damental structure in turbulent shear flows. His was a ph
cally complete structure motivated by considerations
optimum streamwise enstrophy production. Malkus3 pro-
posed a quantitative, nonmechanistic theory based on a
ciple of maximum energy dissipation rate, and marginal s
bility constraints, that led to the derivation of upper boun
and to Busse’s picture of the optimum momentum transp
ing solenoidal field.4 That optimum field is more intricate bu
nonetheless similar to Townsend’s qualitative ‘‘attach
eddy’’ interpretation of two-point velocity correlatio
measurements.5,6 The upper bound fields and attached edd
are streamwise-invariant and better described as a comb
tion of streamwise rolls and streaks. That combination w
be called the ‘‘streaky flow’’ in Sec. IV. Townsend also in
troduced the qualitative concepts of ‘‘active’’ and ‘‘inactive
motions to describe turbulent shear flows.6

The experiments of Klineet al.7 first revealed the struc
ture of near-wall turbulence and pointed to the importance
low-velocity streamwise streaks whose lift-up, oscillati
and ‘‘bursting’’ were seen as the main turbulence produc
mechanism. It was found that the streaks have a charact
tic spacing of about 100wall units ~defined in Sec. VI!.7,8

Those experiments sparked numerous experimental
computational studies, most of which are reviewed in

a!Electronic mail: waleffe@math.wisc.edu
1511070-6631/2003/15(6)/1517/18/$20.00
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monograph edited by Panton.9 Another line of work based on
the proper orthogonal decomposition is reviewed in the bo
by Holmes, Lumley, and Berkooz.10 Among all those contri-
butions, the sketches of self-replicating horseshoe vortice
Acarlar and Smith11 and the, then unrelated, mean flow-fir
harmonic theory of Benney12 were the two key reference
that led to the present work.13,14Benney’s ‘‘mean flow’’ con-
sists of weak streamwise rolls and a spanwise vary
streamwise velocity, similar to Townsend’s attached eddi

It is now well accepted that the predominant vort
structure in the near-wall region consists not of horses
vortices but of staggered, quasi-streamwise vortices a
Stretch’s sketch15 reproduced in Fig. 1. That picture i
Stretch’s synthesis of his pattern eduction studies of the K
Moin, and Moser data.16 A similar study and result can b
found in Ref. 17. Horseshoe vortices and packets of s
vortices are also observed in turbulent flows.18 Whether such
structures are the varicose versions of the sinusoidal st
tures studied here or result from a dynamic self-organiza
of the staggered vortices is a matter for later study.

This paper reports on traveling wave solutions of t
Navier–Stokes equations in plane Couette and Poise
flows with either given velocity~no-slip! or velocity deriva-
tive ~slip! at the wall. Brief reports on this work have ap
peared in Refs. 19 and 20. The traveling waves travel a
constant velocity and are therefore steady in the proper G
ilean frame. The propagation velocity is analogous to an
genvalue and cannot be deduceda priori, except by symme-
try in plane Couette flow. These solutions were obtain
numerically using spectrally accurate finite approximatio
of the fields ~Sec. II!, based on Fourier expansion an
Chebyshev integration~Sec. III!, and Newton’s method, no
time integration. This is because the traveling waves
typically unstable from onset and therefore not directly a
7 © 2003 American Institute of Physics
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1518 Phys. Fluids, Vol. 15, No. 6, June 2003 Fabian Waleffe
cessible to experiments and time-marching simulations.
traveling waves are remarkably similar to Stretch’s picture
the typical coherent structure~Fig. 1!. The latter is essen
tially an optimized ensemble average of significant regio
of turbulent flow fields, localized in space and time, th
filters out a spectrum of spatio-temporal fluctuations a
does not satisfy the governing equations. In contrast,
traveling waves are solutions of the Navier–Stokes equat
that propagate at constant speed without changing shape
are devoid of any other fluctuations. It is therefore approp
ate to refer to the traveling wave solutions as ‘‘exact coher
structures.’’ Furthermore, these exact coherent structures
their inherent instabilities are good candidates for prec
definitions of ‘‘active’’ and ‘‘inactive’’ motions, respectively
that differ from Townsend’s definitions. Townsend’s acti
motions correspond to the momentum transporting stre
wise rolls and streaks while his inactive motions would c
respond to the streak instability. In fact, the streamwise
dulation, seen in Fig. 1 and traceable to the streak instab
is an essential element of the complete self-sustaining th
dimensional~3-D! coherent structure.

The solutions were calculated using various continuat
and homotopy procedures. The first step in this appro
~Sec. IV! is based on a weakly nonlinear formulation of
fundamental self-sustaining process in shear flows.21–23 It
consists in tracking the 3-D solutions that bifurcate from
self-consistent two-dimensional~2-D! flow made of stream-
wise rolls and streaks. The streamwise invariance of
base flow implies that it cannot be self-sustained,24 however,
the streaks support an instability of inflectional type th
feeds back on the rolls and leads to self-sustained, 3-D st
The full Navier–Stokes continuation in Sec. IV establishe
precise and explicit link between the 2-D streamwise inva
ant streaky flow~‘‘attached eddies’’! and a 3-D self-sustaine
structure that consists of wavy streaks and staggered v
ces, entirely similar to the observations.

Bifurcation from 2-D streaky flow can be used to com
pute 3-D self-sustained states in all plane shear flows
requires educated guessing of the streamwise rolls. Once

FIG. 1. Sketch of the coherent structure educed from DNS data~Stretch—
Ref. 15!.
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3-D states have been found in one flow, it is simpler to e
tend them to other flows byhomotopy. This consists in
smoothly deforming~‘‘morphing’’ ! the base flow into the
desired flow while tracking the self-sustained solutions w
Newton’s method. Two types of homotopies are presente
Sec. V. One transforms free-slip into no-slip boundary co
ditions~12!, the other transforms Couette flow into Poiseui
flow ~27!. These transformations are not only very effecti
at extending solutions to other boundary conditions and b
states but also demonstrate the close connection~the homo-
topy or ‘‘ same shape’’ ! between the various states. The h
motopy between free-slip and no-slip demonstrates that
slip is not required for these exact coherent structures.
homotopies to no-slip plane Couette flow connects this br
family of exact coherent structures with the steady state
lutions first computed in that flow by Nagata25 and studied
by Clever and Busse.26,27

The exact coherent structures discussed here thus be
to a six-parameter (a, g, Re, lb , l t , m, defined below!
family of three-dimensional vector fields that solve t
Navier–Stokes equations. The solutions come in pairs,
upper branch and a lower branch, at a given Reynolds n
ber. This is clearly a rich family and the 3-D illustrations
this paper are typically limited to the lowest-Re bifurcatio
point where the solutions first appear and where up
branch and lower branch coincide. A complete illustration
these solutions would require too many figures. The stre
wise and spanwise length scales that lead to the lowest o
Reynolds for these exact coherent structures are present
Sec. VI. The optimum spanwise length scales are all in
neighborhood of 100 wall units. In particular, the optimu
spanwise length scale for the no-slip plane Poiseuille so
tion is 105.51. This is the solution that is most relevant
the higher Reynolds number observations.

A few mean velocity and rms velocity fluctuation pro
files of the exact coherent structures are presented in Sec
together with bifurcation diagrams for various paramete
Those results compare favorably with the statistics of tur
lent flows suggesting that the exact coherent structures
indeed capture essential structural and statistical feature
turbulent motions. But the exact coherent structures
steady in the appropriate Galilean frame and therefore h
none of the disorder characteristic of turbulent flows. A
these exact coherent structures also appear at Reynolds
bers that are significantly lower, typically a factor of 2 lowe
than the smallest Reynolds numbers where turbulence is
served, and they are unstable from onset. How then, co
these unstable exact coherent structures be of any relev
to the observations? The traveling waves in plane shear fl
are not simply attractors for broad classes of initial con
tions as in Fisher’s equation, for instance, where the slow
wave is an attractor~see, e.g., Ref. 28!. The traveling waves
are most likely not solitons either as in the Korteweg–
Vries equation where broad classes of initial conditio
evolve into a superposition of solitary traveling waves th
preserve their shape through nonlinear interactions.
shear flow situation is more complex, but there is clear a
increasing evidence that turbulent flows spend a lot of ti
‘‘near’’ these exact coherent structures and therefore
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1519Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures
much of the structure and statistics of turbulence can be
derstood from these traveling waves. Readers who are w
versed in nonlinear dynamics and chaos know the imp
tance of unstable solutions. This paper ends with a o
dimensional~1-D!, discrete dynamical system that may
helpful as a simple concrete illustration of the nature of
‘‘hard’’ transition to turbulence in shear flows and the re
evance of unstable solutions.

II. MATHEMATICAL FORMULATION

The governing equations are the Navier–Stokes eq
tions for incompressible flow,

]v

]t
1v•“v52“p1

1

Re
¹2v1F, “•v50, ~1!

wherev is the Eulerian fluid velocity,p the ‘‘pressure’’~di-
vided by the mass density!, Re the Reynolds number. A Ca
tesian system of reference is employed withx streamwise,y
shearwise~i.e., wall-normal! and z spanwise. The corre
sponding velocity components areu, v, w, respectively. The
flow is bounded by two infinite planes located aty561 and
is maintained by a body forceF and/or the boundary condi
tions aty561, wherex̂ is the unit vector in thex direction.
The physical boundary conditions correspond to no-slip
the walls. These are Dirichlet boundary conditions wh
velocity is imposed on the boundary. In this paper, all th
canonical types of boundary conditions, Dirichlet, Neuma
and Fourier–Robin@also called ‘‘of the third kind,’’ see Eq
~12! below# are employed for the slip-to-no-slip homotop
Periodicity is enforced in the streamwise and spanwise di
tions with periodsLx52p/a andLz52p/g, respectively.

Plane Couette and Poiseuille flows are considered. P
Couette flow is maintained by the boundary conditions ay
561 with no body force and has the laminar base solut
v5y x̂[UL

(C) . Plane Poiseuille flow is maintained by an e
ternal uniform pressure gradientF52Re21x̂, and the
boundary conditions aty561. The Poiseuille laminar bas
flow is chosen here asv5(y2y2/211/6)x̂[UL

(P) ~Fig. 2!.
This Poiseuille flow has zero average and its antisymme
part is identical to the plane Couette base flow. This unus
Poiseuille normalization is chosen for the Couette-
Poiseuille homotopy. Thereforey511 is here a plane o
reflection symmetry for plane Poiseuille flow with th

FIG. 2. Laminar base flows: Plane CouetteU(y)5y and plane Poiseuille
U(y)5y2y2/211/6.
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boundary conditions]u/]y5v5]w/]y50. They51 plane
corresponds to the centerline of a full plane Poiseuille fl
while y521 corresponds to the bottom wall.

The plane Couette flow Reynolds number implied
these normalizations is based on the half laminar w
velocity difference and the half channel height. In free-s
~Neumann!, this is equivalent to a Reynolds number bas
on the mean wall shear ratedŪ/dy561 at y561. In no-
slip ~Dirichlet!, the laminar and total velocities at the wa
are identical and the Reynolds number is therefore base
the half-wall velocity difference. For plane Poiseuille flow
the Reynolds number is based on half the distance betw
the wall and the centerline and half the difference betwe
the laminar centerline velocity and the wall velocity. If, is
half the distance between the wall and the centerline~i.e.,
one-quarter of the channel height!, dP/dx the imposed~ki-
nematic! pressure gradient, andn is the kinematic viscosity
then Re5udP/dxu,3/n2. Note that, in effect, the Reynold
numbers are based on the shear rate at the walS

[udŪ/dyuwall , except for no-slip plane Couette flow. Th
friction velocity ut[(nS)1/2 and the ‘‘wall unit’’ n/ut is thus
well-defineda priori and directly related to the outer unit
through the Reynolds number. In no-slip plane Poiseu
flow, for instance, the nondimensional kinematic viscosity
1/Re, the nondimensional friction velocity isut5(2/Re)1/2,
and wall-units are simply (2 Re)1/2 times the non-
dimensional units. The friction Reynolds number in this ca
is Ret[2,ut /n5(8 Re)1/2. Further details of the transfor
mations to wall units are provided in Sec. VI.

The pressure gradient is eliminated by using the ‘‘roll-
streak’’ projections of the momentum equations using t
operators

Pv[2 ŷ•“Ã„“Ã~• !… ~2!

and

Ph[ ŷ•“Ã~• !. ~3!

These projections lead to an equation forPvv5¹2v, the La-
placian of they velocity ~where the continuity equation
“•v50 has been used! and another equation forPhv5h,
the y vorticity. The u and w velocity components can b
reconstructed using the definition of they vorticity, h
5]u/]z2]w/]x and solenoidality “•v5]u/]x1]v/]y
1]w/]z50. The two equations forv andh must be supple-
mented by equations for thex and z averaged velocities
Ū(y,t) and W̄(y,t). These are obtained by averaging t
Navier–Stokes equations overx andz.

This ‘‘roll-streak,’’ or v –h, representation is closely
linked to the ‘‘poloidal–toroidal’’ representation of the sole
noidal velocity field:

v5“Ã~“Ãf ŷ!1“Ãc ŷ1Ū x̂1W̄ẑ, ~4!

where f5f(x,y,z,t) and c5c(x,y,z,t) are three-
dimensional, time-dependent scalar fields whileŪ5Ū(y,t)
andW̄5W̄(y,t) are~1-D!, time-dependent scalar fields~see,
e.g., Refs. 25 and 26!. Indeed, v52(]x

21]z
2)f and h
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1520 Phys. Fluids, Vol. 15, No. 6, June 2003 Fabian Waleffe
52(]x
21]z

2)c. The roll ~or poloidal! mode (v,f) has no
y-vorticity, while the streak~or toroidal! mode (h,c) has no
y velocity.

In summary, the governing equations~1! are reduced to

S ]

]t
2

1

Re
¹2D¹2v1Pv"~v"“v!50, ~5!

S ]

]t
2

1

Re
¹2Dh1Ph"~v"“v!50, ~6!

S ]

]t
2

1

Re

]2

]y2D Ū1 x̂"~v"“v!̄2 x̂"F̄50, ~7!

where the overbar denotes an average overx and z. The
W̄(y,t) mean flow is identically zero by symmetry.

The full velocity field is decomposed into the lamin
base flow plus a perturbationv5ULx̂1u. In the following,
u5(u,v,w) represents the perturbation from laminar flo
unless otherwise noted. This paper is primarily concer
with traveling wave solutions of the formu(x,y,z,t)5u(x
2Ct,y,z,0). Looking for such solutions is equivalent
looking for a three-dimensional vector fieldu(x,y,z) that
satisfies the above-mentioned equations with] t replaced by
2C]x . This leads to the nonlinear eigenvalue problem

S C
]

]x
1

1

Re
¹2D¹2v2Pv"~v"“v!50, ~8!

S C
]

]x
1

1

Re
¹2Dh2Ph"~v"“v!50, ~9!

1

Re

d2ū

dy2
2 x̂•~v"“v!̄50, ~10!

where the wave velocityC is the eigenvalue. A unique solu
tion is found by fixing the phase of the solution. Here we

I^h exp~2 iax!&50, ~11!

whereI denotes imaginary part and^•& a domain average.
The boundary conditions for the perturbation from lam

nar flow,u, are homogeneous. General slip boundary con
tions of the form

lu2k]nu5v5lw2k]nw50, ~12!

are employed aty561, wheren is the direction normal to
the wall into the fluid, 0<l<1 andk512l. In terms ofv
andh this translates into

v5l t]yv1k t]y
2v5l th1k t]yh50,

~13!
v5lb]yv2kb]y

2v5lbh2kb]yh50

at y511 and y521, respectively. Homotopy from free
slip to no-slip perturbations is performed by tracking so
tions froml50 to l51. For Poiseuille flow,l t50 always,
asy51 is the channel centerline. The Rayleigh–Be´nard no-
menclature ‘‘free–free,’’ ‘‘rigid–free,’’ and ‘‘rigid–rigid’’ is
used to denote the boundary conditions at the bottom and
walls, respectively, with ‘‘free’’ indicating free-slip perturba
tions ~Neumann boundary conditions! and ‘‘rigid’’ indicating
no-slip perturbations~Dirichlet!.
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III. NUMERICAL FORMULATION

The primary variablesū(y), v(x,y,z), andw(x,y,z) are
expanded in Fourier modes in thex and z directions and
Chebyshev-based modes in they direction,

v5 (
l 52LT

LT

(
m50

MT

(
n52NT

NT

Almne
il axeingzfm~y!, ~14!

h5 (
l 52LT

LT

(
m50

MT

(
n52NT

NT

Blmne
il axeingzcm~y!, ~15!

ū5 (
m50

MT

ûmcm~y!. ~16!

The y-expansion functionsfm(y) and cm(y) are inte-
grals of Chebyshev polynomials that satisfy the bound
conditions. The basic idea is to setD4fm(y)5Tm(y) and
D2cm(y)5Tm(y) where D[d/dy and Tm(y)
5cos(marccosy) is the Chebyshev polynomial of degreem.
This approach leads to numerical operators that are w
conditioned.29 After four y-integrations,

fm~y!5I 4Tm~y!1c01c1y1c2y21c3y3, ~17!

where I 5* dy denotes indefinitey-integration. The con-
stantsci are determined from the boundary conditionsfm

5lDfm6kD2fm50 at y561 ~13!. This leads to well-
definedfm(y) for 0<l<1.

To illustrate the validity and accuracy of this approac
consider the calculation of the least negative eigenvalue
the streamwise rolls problem,

~D22g2!2v̂5s~D22g2!v̂, ~18!

with v̂(61)5D v̂(21)5D2v̂(1)50 ~rigid–free!. This is
the linearizedv-equation~5! for x-independent perturbation
of the formv(y,z,t)5estv̂(y)cosgz. It is a test case that is
quite appropriate for this work. Thefm expansion v̂
5(0

MT amfm(y) is compared to a conventional Chebysh

expansionv̂5(0
MT14bmTm(y), where the extra four polyno

mials in the latter case are used to impose the bound
conditions ~Chebyshev-tau formulation!. Equation ~18! is
projected onto theMT11 Chebyshev polynomialsTm(y),
m50, . . . ,MT , with the Chebyshev weight, by Gauss int
gration with at leastNp5MT15 Gauss pointsyj5cos(2j
21)p/(2Np), j 51, . . . ,Np . Two Chebyshev-tau formula
tions are used. One formulation enforces the boundary c
ditions by eliminatingbMT11 , . . . ,bMT14 from the eigen-
value problem. The second formulation eliminat
b0 , . . . ,b3 and has smaller roundoff errors. The bounda
conditions are automatically enforced by thefm expansion.
For g51.3, the least negative eigenvalue is found to bes1

525.990 343 885 706 669~using the fm expansion with
MT542, somewhat arbitrarily!. Figure 3 is a log–log plot of
the s1 error as a function of the resolutionMT . The fm

formulation is stable and saturates at round-off level (10215)
while the Chebyshev-tau errors are plagued by roundoff
rors ofO(MT

8), as expected for~18!. The eigenvalue of larg-
est magnitude turns out to be positive for all three formu
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1521Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures
tions. That eigenvalue is spurious since it can be shown
the eigenvaluess in ~18! are real and negative.

The definition ofcm(y) is more delicate as theD2 op-
erator with slip boundary conditionsDcm(61)50 is singu-
lar. To accommodate slip boundary conditions,
define D2cm(y)5Tm(y)2T̄m for mÞ0, where T̄m

5*21
1 Tm(y)dy/2, yielding

cm~y!5I 2Tm~y!2T̄my2/21c01c1y. ~19!

The constantsc0 andc1 are chosen to satisfy the bounda
conditionslcm6kDcm50 aty561 ~13!. The constantc0

is arbitrary in the free–free case (l t5lb50). In that case,
we definec05 limlb→0 c0(l t50,lb) so the functions will be
well adapted to the free-slip to no-slip homotopy. It turns o
that c0 is independent oflb whenl t50. The zero mode is
defined byD2c05l t1lb . Two integrations and the bound
ary conditions yield

c0~y!5~l t1lb!
y2

2
1~l t2lb!y1

l t1lb

2
22. ~20!

For the full Navier–Stokes case, Eqs.~5!–~7!, the non-
linear term is calculated by spectral convolution in thex and
z directions but by collocation in they direction using at leas
MT15 Gauss points. The equations are projected onto
appropriate Chebyshev modes with the Chebyshev we
function. These projections are made by Gauss integra
using at leastMT15 Gauss points. All Fourier–Chebyshe
modes with

l 2

~LT11!2
1

m2

~MT11!2
1

n2

~NT11!2
>1 ~21!

are truncated. This resolution approximately corresponds
direct numerical simulation with resolution (2LT11)

FIG. 3. Approximation errorus̃12s1u/us1u wheres1 is the least negative
eigenvalue of~18!. Thefm expansion error~solid! saturates near 10215. The
Chebyshev-tau errors areO(MT

8) for MT.10 ~dash:b0 , . . . ,b3 eliminated;
dash-dot:bMT11 , . . . ,bMT14 eliminated!.
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in y was tested but made no difference on the scale of
plots shown here. There is no aliasing inx andz.

The traveling wave nonlinear eigenvalue problem
solved using Newton iterations and various continuation a
homotopy procedures, as discussed in later sections. The
ear algebraic equations forAlmn , Blmn andûm ~14!–~16! are
solved with LAPACK routines. The code was thorough
tested and all free-slip results obtained with a different trip
Fourier code19 were reproduced with the present code. T
linear instability of 2-D streaky flow22,23was also reproduced
as well as eigenmodes of the Orr–Sommerfeld and Sq
operators. The size of the numerical problem is reduced
imposing the sinusoidal streak symmetry~24!. Several reso-
lutions have been used to verify numerical convergence.19,20

Most of the Poiseuille results presented here u
@LT ,MT ,NT#5@11,23,11# corresponding to 7391 degrees
freedom. The optimum parameter results were checked w
resolution @LT ,MT ,NT#5@13,25,13# for which there are
10 977 degrees of freedom. Many of the Couette results
force the additional symmetry~26! and @LT ,MT ,NT# up to
@15,27,15# ~7697 modes! has been used.

IV. BIFURCATION FROM STREAKY FLOW

A. Self-sustaining process

The physical mechanisms responsible for the cohe
structures consist of a three-dimensional, nonlinear s
sustaining process. The process has been described and
ied in several earlier references.21–23,30,31The weakly nonlin-
ear description of the process is that streamwise r
@0,V(y,z),W(y,z)# create a spanwise modulated shear fl
@U(y,z),0,0# that is inflectionally unstable to a three
dimensional perturbation exp(iax)u(y,z). Here,U(y,z) rep-
resents the totalx-averaged streamwise velocity. The Re
nolds stresses associated with that 3D perturbation ex
energy from the spanwise fluctuation of the streamwise
locity U(y,z)2Ū(y), the streaks, but feed energy into the
rolls and the mean shearŪ(y). This is along the lines of
Benney’s mean-flow first-harmonic theory,12 but here, vis-
cous dissipation plays an important equilibrating role.

For x-independent flows, the streamwise ro
@0,V(y,z),W(y,z)# decouple from the streamwise velocit
therefore they have no energy source and decay due to
cous dissipation.22,24 However, they redistribute the mea
shear and can create substantial streaks. Indeed, roll
O(Re21) sustain O(1) streaks. Quadratic nonlinear sel
interaction of anO(Re21) x-dependent streak instabilit
eigenmode is in turn sufficient to balance the viscous di
pation of theO(Re21) rolls. These scalings are for the lowe
branch of self-sustained states~see the following and Ref
23, Sec. III D!.

B. Two-dimensional streaky flow

Our method to construct exact coherent states in sh
flows is to track solutions from a neutrally stable 2-D strea
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1522 Phys. Fluids, Vol. 15, No. 6, June 2003 Fabian Waleffe
flow @U(y,z),V(y,z),W(y,z)#, with externally maintained
rolls of O(Re21), to a self-sustained fully 3-D flow.19 This is
most easily done in plane Couette flow with free-slip boun
ary conditions where appropriate streamwise rolls have
simple form V(y,z)5Re21 Fr cosbycosgz, with b5p/2
andW(y,z) from continuity. Such rolls are an exact nonlin
ear solution and can be maintained by the weakO(Re22)
external body force,

F5
Fr

Re2

b21g2

g S 0

g cosby cosgz

b sinby singz
D . ~22!

The streamwise velocityU(y,z) results from a balance be
tween viscous damping and redistribution by the rolls of
shear supplied at the walls as governed by the advect
diffusion equation

V
]U

]y
1W

]U

]z
5

1

Re
¹2U. ~23!

Note that V5O(Re21) implies that U(y,z) is Reynolds
number independent and the streaks are indeedO(1). A
more precise estimate of the necessary rolls is obtained
balancing the advection of the laminar sheardUL /dy51
with the viscous damping ofO(1) streaks V'(b2

1g2)/Re, yielding Fr'b21g2. We expect that the opti
mum rolls have approximately unit aspect ratio and cho
g51.5. Smallerg would produce weaker spanwise she
and therefore less vigorous sustenance of the 3-D st
eigenmode, while largerg leads to stronger dissipation of th
rolls and the streaks. Forg51.5 andb5p/2, Fr'4.7. For
the Reynolds number, it must be low enough that rolls
cupy the full channel but not so low that viscosity wipes o
all perturbations from laminar. A trial value of Re5150 was
selected. The resulting two-dimensional three-compon
~2D-3C! flow U(y,z)5@U(y,z),V(y,z),W(y,z)# is depicted
in Fig. 4, which shows contours ofU(y,z) overlayed with
contours of streamwise vorticityvx5]W/]y2]V/]z for
Fr55 and Re5150. The weak rolls indeed lead to a maj
redistribution of streamwise velocity. The mean velocity p
file ~not shown! has an S shape typical of turbulent Coue
flow with a total mean shear aty50 of dŪ/dy50.093 and a
wall velocity at y51 of Ū50.434, both down from their
laminar value of 1.

FIG. 4. Streaky flowU(y,z) for Fr55, g51.5. Shaded contours ofU(y,z)
at multiples of 0.1(maxU2min U)50.1703 with contours ofvx at multiples
of 0.2 maxvx50.0208. Positivevx contours solid, negative dashed.
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C. Instability of streaky flow

The streaky flow@U(y,z),V(y,z),W(y,z)# is unstable
to x-dependent perturbations as a result of the strong sp
wise inflections inU(y,z). Three modes of instability with
distinct symmetries~fundamental sinusoidal, fundament
varicose and subharmonic ‘‘sinucose’’! are possible.22,23Pre-
vious work22,23 indicates that the fundamental sinusoid
mode is the most unstable~see also Ref. 32!. That mode
corresponds to the shift-reflection symmetry

S u

v

w
D ~x,y,z!5S u

v

2w
D S x1

Lx

2
,y,2zD . ~24!

The Navier–Stokes equations linearized about the stre
flow U(y,z) admit separable solutions of the form
esteiaxu(y,z). Figure 5 shows the growth rate, maxR(s),
as a function of the streamwise wave numbera for streaky
flows corresponding toFr55,6,8,12 at Re5150. At this Rey-
nolds number, the most unstable streaky flow correspond
Fr'8. For larger values ofFr , the rolls transport momen
tum faster than it can be supplied at the walls, the streamw
velocity U(y,z) therefore weakens and with it the strea
instability. For lower values ofFr the rolls are not strong
enough compared to streak dissipation, the streaks are w
and the mean shear is strong, resulting also in a collaps
the streak instability. The minimumFr sustaining a streaky
flow instability is approximatelyFr55 at Re5150. The
growth rate of the instability for the pure streaky flow~no
rolls! whenFr58 is shown as a dashed line in Fig. 5. Th
curve indicates that the rolls reduce the growth rate for t
streaky flow whena.0.375, suggesting that the streak i
stability feeds energy back into the rolls for thosea ’s. Re-
moving the mean shear leads to a tripling of the maxim
growth rate and a doubling of the band of unstable wa
numbers~Fig. 4 in Ref. 31! indicating that the mean shea
has a strong stabilizing effect and that the instability ori
nates in the spanwise inflections ofU(y,z). For more mar-

FIG. 5. Instability of streaky flow@U(y,z),V(y,z),W(y,z)# with g51.5 for
Fr55, 6, 8, and 12. Dashed line is instability of@U(y,z),0,0# for Fr

58.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1523Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures
ginal values ofFr , e.g.,Fr55, the rolls have a strong effec
on the structure of the eigenmodes and removing th
changes the character of the instability.

D. Continuation from streaky flow

Our goal is to calculate nontrivial 3-D self-sustain
states atFr50 so we select a weak forcing that still sustai
unstable streaks. The streaky flow corresponding toFr55 is
neutrally stable ata'0.49 ~Fig. 5!, hence a 3-D steady so
lution bifurcates from the 2-D streaky flow atFr'5, Re
5150, a50.49. That branch of 3-D solutions is tracked
letting Fr evolve as a state variable with a suitable meas
of the 3-D state,Ax , as the control parameter. Here

Ax5R^h exp~2 iax!& ~25!

is they average of the real part of thel 51, n50, h-mode
~15!. This choice is made because of the predominant rol
that mode in the streak instability.22 This Ax definition pro-
vides the supplementary equation needed to determine
free variableFr . The Ax used here isa/A2 times that used
in Ref. 19. In summary, we look for a solution of the no
linear system of equations~8!–~11! with the extra roll forc-
ing term Re22 Fr(b

21g2)2cosbycosgz on the right-hand
side of ~8! together with the additional equation~25!. That
solution is calculated by continuation in the control para
eter Ax starting from the neutrally stable streaky flow sol
tion at Ax50.

The Fr –Ax bifurcation curve is shown in Fig. 6 and th
bifurcating solution is illustrated in Fig. 7. The dashed lin
in Fig. 6 are the fitsFr5c01c2(ReAx)

2 near the bifurcation
points atAx50. The Re factor is included because anAx of
O(Re21) is expected for self-sustenance~Sec. IV A!. The
coefficientc2 is strictly negative, verifying that the quadrat
nonlinear self-interaction of the neutral streaky flow eige
mode has positive feedback on the rolls. These results ca

FIG. 6. Bifurcations from streaky flow in free-free plane Couette flow
g51.5, Re5150, anda50.4, 0.49, 0.64, 0.72, 0.76 originate atAx50 near
Fr54.76, 5, 6, 7, and 8, respectively. Dashed lines:Fr5526.03(ReAx)

2

andFr55.9822.68(ReAx)
2. Open circles ona50.49 curve correspond to

Fig. 7.
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
m

e

of

he

-

-
be

obtained from a weakly nonlinear analysis of streaky flow
sketched in Refs. 22 and 23. TheFr needed to maintain the
rolls decreases asAx increases leading to two self-sustain
solutions, a lower branch at ReAx50.7716@Fig. 7~c!# and an
upper branch at ReAx51.1181@Fig. 7~d!#. The solid line in
Fig. 6 is the fully nonlinear steady state, very well-resolv
atLT59, MT521, NT59. Figure 6 also shows the solution
for a50.40, 0.64, 0.72, and 0.76 that bifurcate fromAx

50 nearFr54.76, 6, 7, and 8, respectively. There does n
seem to be any bifurcation below the valueFr'4.7 esti-
mated in Sec. IV B. First-order nonlinear feedback on
rolls therefore is a general characteristic of unstable stre
flows. However, comparing Figs. 5 and 6 shows that bif
cation from the most unstable streaky flow does not lead
self-sustained steady states. The curves eventually turn
down and reintercept theAx50 axis nearFr513 for a
50.76, Fr516 for a50.64 and 18.4 fora50.49, for ex-
ample.

Figure 7 shows the isosurfaces of vx

560.80 maxvx(x,y,z), corresponding to the innermost vo
ticity contours in Fig. 4, overlayed with the streamwise v
locity isosurface corresponding tou5minu(x,y50,z). Four
Ax values are shown, ReAx50.06, 0.15, 0.7716, and
1.1181. The latter two correspond, respectively, to the low
branch and upper branch of self-sustained solutions withFr

50. As Ax is increased, the weak streamwise rolls are fi
affected. Thevx isosurfaces pinch off to form staggered vo
tices whosex-oriented axes are pointing up and away fro
the low-speed streak~in this plane Couette flow there is a
equally strong high-speed streak centered atz5p/g that is
not shown!. As Ax is increased further, the streak develops
strong undulation in thex direction and the top tips of the
vorticity isosurfaces move back toward the streak. The str
ture of these self-sustained free–free plane Couette flow
lutions is very similar that of the coherent structures o
served in the near-wall region of no-slip turbulent flows.15,17

The plane Couette 3-D solutions travel at the average fl
velocity and have the additional shift-rotation symmetry22,23

S u

v

w
D ~x,y,z!5S 2u

2v

w
D S Lx

2
2x,2y,

Lz

2
1zD . ~26!

This symmetry results from thep rotation about the span
wise axis symmetry of plane Couette flow together with t
x-phase choice imposed byI^h exp2iax&50 and thez-phase
choice imposed by~24!. The symmetries~24! and~26! imply
a reflection symmetry about the point (0,0,Lz/4): u(x,y,z)
52u(2x,2y,Lz/22z). The symmetry~26! was imposed
in a triply Fourier code19 and is also imposed for most of th
Couette results show here.

E. Continuation of self-sustained states

The self-sustained solutions can be continued to differ
values of the parametersa, g, and Re. The Re continuation
have been performed typically with a logarithmic arcleng
continuation procedure in Re–Ax space that uses th
supplementary equations Re5R0(11e cosu) and Ax

[R^h exp(2iax)&5A0(11e sinu) to determine Re andu for
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. ~Color! Bifurcation from 2-D streaky flow at Re5150, a50.49, g51.5, ~a! ReAx50.06, ~b! ReAx50.15, ~c! ReAx50.7716, ~d! ReAx

51.1181. Isosurface ofu5min u(x,y50,z) ~green!, vx520.8 maxvx ~blue!, vx50.8 maxvx ~red!.
o
a

u-

e

ear

r-
given A0 , R0, and e!1. The a and g continuations have
been performed at fixed Re orAx . WhenFr50, as will be
the case for all results hereafter, the three-dimensional s
tions arise through a saddle-node bifurcation
Re5Resn(a,g), the nose of the curves in Fig. 8. The sol
tions cease to exist for Re below Resn. A search for the
lowest Reynolds number where these solutions first app
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
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has been made by minimizing Re overa, g, andAx . The
optimum parameters for free–free Couette area50.3236,
g50.7389, for which the self-sustained solutions first app
at Re599.9795. The bump in the Re–Ax curve shown in Fig.
8 for a50.5, g51.5, corresponds to a splitting of the vo
tices. For Reynolds numbers near Resn5141.5951, thevx

vorticity maximum of 0.3661 occurs atx50, y50, gz
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1525Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures
5p/2 for a50.5, g51.5. The maximum stays at that loc
tion as Re is increased at fixeda, g, up until the bump in the
Re–Ax curve where it splits into two equal maxima who
locations are symmetric about the pointx50, y50, gz
5p/2 and Reynolds number dependent. This indicates
splitting of the vortices into two pairs, one pair associa
with the upper wall streaks and one with the lower wall. F
the optimum parametersa50.3236 andg50.7389, the vor-
ticity maximum is split from the onset of the three
dimensional solutions at Resn599.9795. Bumps in the
Re–Ax curves typically correspond to such splitting of th
vortices or a harmonic modulation of the streaks.

V. HOMOTOPY OF COHERENT STATES

The continuation from 2-D streaky flow can be used
compute self-sustained 3-D solutions in no-slip plane C
ette and plane Poiseuille flow. This was performed succ
fully for free–free plane Poiseuille flow~Waleffe 1998, un-

FIG. 8. Bifurcation diagrams for free–free plane Couette flow. Top:Ax @Eq.
~25!# vs Reynolds number Re. Bottom: Wall shear rateS normalized by its

laminar value for the same wall-velocity difference@S52/(Ū(1)

2Ū(21)) in our units# vs Re. Curves labeled~a! a50.3236,g50.7389
yielding the lowest Resn599.9795~solid: @LT ,MT ,NT#5@15,27,15#, dot:
@13,25,13#!. Label ~b!: a50.5, g51.5 with Resn5141.5951,
(@LT ,MT ,NT#5@13,25,13# and @11,23,11# overlap!.
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published! but required some fiddling to determine th
appropriate streamwise rolls. Two Fourier modes iny were
needed instead of the single mode in free–free Couette~22!.
The reason for this is that the appropriate streamwise roll
plane Poiseuille flow turn out to be more concentrated aw
from the wall than in plane Couette flow. Continuation fro
2-D streaky flow in no-slip plane Couette was initiated
Refs. 22 and 23.

A more robust and elegant approach is to let Nav
Stokes, and Newton select the appropriate streamwise r
This is done by homotopy from plane Couette to plane P
seuille flow and from free-slip to no-slip. The Couette
Poiseuille homotopy consists of tracking the 3-D traveli
wave solutions for the laminar flow

UL~y!5y1mS 1

6
2

y2

2 D ~27!

from m50 to m51. The free-slip to no-slip homotopy con
sists of tracking the traveling waves froml50 to l51 in
the general slip boundary conditions~13!. There is al for
each boundary,l t for y511 andlb for y521. All three
homotopies are easily achieved. Steps of 0.1 inm and/orl
have been chosen arbitrarily. The free–free Couette solut
have been mapped into free–free Poiseuille traveling wa
The rigid–free traveling waves have been computed succ
fully by homotopy from both free–free Poiseuille as well
from free–free Couette. The rigid–rigid Couette soluti
was obtained by homotopy from a rigid–free Poiseuille s
lution only, because of a technical choice in the definition
the cm(y) functions ~19!. These homotopies are devices
obtain the various solutions using Newton’s method but th
also provide explicit demonstrations that all these thr
dimensional Navier–Stokes solutions can be smoothly
formed into one another.

The traveling wave solutions for the four basic flow
free–free and rigid–rigid plane Couette and free–free a
rigid–free plane Poiseuille, are compared and illustrated
Figs. 9–11, for the parametersa50.5, g51.5 at their re-
spective critical Reynolds number Resn where the upper
branch and lower branch solutions coalesce. The compar
is restricted to those parameters to limit the number of
ures but it must be emphasized that the structure of the
lutions varies with the parameters. The various solutions
clearly very similar to one another. They all correspond to
wavy low-speed streak flanked by staggered qua
streamwise vortices. The Couette solutions are fixed po
in this frame of reference and have the additional symme
~26!. The free–free Couette Resn5141.6 and the rigid–rigid
Couette Resn5163.4. The Poiseuille solutions are travelin
waves withC2Ū(21)50.7413, Ū(1)2Ū(21)50.8802,
for the free–free solution at Resn5156.4 andC2Ū(21)
51.0380, Ū(1)2Ū(21)51.1392, for the rigid–free solu
tion at Resn5251.5. The main difference between free-s
and no-slip boundary conditions can be characterized a
‘‘extra’’ small layer near the wall in the no-slip case. Th
‘‘viscous sublayer’’ is about 5 wall units. The similaritie
between no-slip and free-slip solutions are further illustra
in a crude way in Figs. 12 and 13 where the mean veloc
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 9. Contours of streamwise velocityu at y50 for ECS ata50.5, g51.5, and Resn5141.6 ~free–free Couette!, Resn5156.4 ~free–free Poiseuille!,
Resn5163.4~rigid–rigid Couette!, Resn5251.5~rigid–free Poiseuille!.
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profiles are shown together with a no-slip profile that h
been stretched to remove the viscous sublayer. The p
Couette no-slip mean profile is shown stretched uniformly
y about the channel centerline aty50 ~Fig. 12!. The stretch-
ing y→1.5237y is selected to match the free-slip velociti
at the wallsŪ(61)50.4598. The plane Poiseuille no-sl
mean profile is shown stretched uniformly about the f
channel centerline aty51. The stretchingy→111.0721(y
21) is selected to match the free-slip velocity differen
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
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Ū(1)2Ū(21)50.8802. A more refined comparison b
tween the two types of boundary conditions would seek
no-slip solutions for horizontal dimensions such that the
pect ratios of the no-slip inner layers match that of the f
free-slip solutions~e.g., a'0.75, g'2.25 for rigid–rigid
Couette!. As noted in Refs. 19 and 20, the Poiseuille me
profiles have two inflection points. The wave velocityC is
almost identical to the mean velocity at the inflection po
that corresponds to a local minimum of mean shear rate
FIG. 10. Contours of streamwise vorticityvx at ax53p/2 for the same solutions as in Fig. 9. Equispaced levels at 0.1 max@vx(x,y,z)#, except rigid–rigid
Couette, where spacing is 0.1 max@vx(x,y50,z)# ~solid: positive, dash: negative!. Thick lines are level curvesu5min@u(x,y50,z)# and max@u(x,y50,z)#.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 11. Same as Fig. 10 but atax52p.
r

al
lds
VI. OPTIMUM PARAMETERS

The exact coherent structure solutions depend on th
parameters: the horizontal wave numbersa and g and the
Reynolds number Re, or, equivalently, the three length sc
Lx , Lz , and 2h, nondimensionalized using wall unitsn/ut ,

FIG. 12. Mean profiles for plane Couette flow. Laminar flow~dash-dot! and
3-D steady states fora50.5, g51.5. No-slip solution at Resn5163.4, free-
slip at Resn5141.6. Dash: no-slip solution withy→1.5237y to match free-
slip wall velocities60.4598.
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
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for instance, whereut is the friction velocity defined byut
2

5nudŪ/dyuwall . The wave numbersa andg that lead to the
lowest onset Reynolds number Resn for the traveling wave
solutions have been determined by minimizing the Reyno
number of the solutions overa, g, and Ax . The optimum
wave numbers and corresponding minimum Resn for ‘‘free–

FIG. 13. Mean profiles for plane Poiseuille flow. Laminar flow~dash-dot!
and 3-D traveling waves fora50.5, g51.5. Vertical dotted lines indicate
wave velocityC. No-slip solution at Resn5251.5, C51.038. Free-slip at
Resn5156.4, C50.7413. Dash: no-slip solution withy→111.0721(y
21) to match free-slip wall velocitiesU2Uw50.8802.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1528 Phys. Fluids, Vol. 15, No. 6, June 2003 Fabian Waleffe
free’’ plane Couette where Re[(ut,/n)2 have already been
mentioned ~Fig. 8!. They are a50.3236 andg50.7389
yielding a minimum Resn599.98. In wall units, these param
eters correspond to 2,1[2,ut /n52ARe520, Lx

1

[AReLx /,5194, andLz
1585.

For rigid–rigid Couette where Re has the usual defi
tion Re[U,/n, whereU is the half wall velocity difference
and, is the half-channel height, the optimum parameters

a50.577, g51.150, Resn5127.705. ~28!

That solution has wall shear rateS[udŪ/dyuwall51.809,
hence ut /U5(1.809/Re)1/2 so a length measured in wa
units is (1.809 Re)1/2 times the length in units of, and

2,1[
2,ut

n
530, Lx

1[166, Lz
1583. ~29!

Clever and Busse27 performed a parametric study of thre
dimensional steady states in rigid–rigid Couette but they
not quote the optimum parameters~28!.

For rigid–free Poiseuille, where the Reynolds numbe
defined such thatut,/n5(2 Re)1/2 with , the half distance
between the wall and the centerline, the optimum parame
are

a50.5074, g51.3165, Resn5244.36, ~30!

or in wall units which are simply (2 Re)1/2 times the outer
nondimensional units

Lx
15273.73, Lz

15105.51, 2,1544.21. ~31!

The optimization algorithm did not converge properly for t
case of free–free Poiseuille flow. Approximate optimum p
rameters for free–free Poiseuille traveling waves wh
ut,/n5(2 Re)1/2 are a50.38, g50.77, Resn5106, or Lx

1

5241, Lz
15119, 2,1529. The cause of these numeric

problems may be that the length scales and amplitudes o
traveling wave solution increase as the Reynolds number
creases, hence the optimal solutions are more nonlinear
require finer resolutions in spite of the lower Reynolds nu
bers.

The most interesting results are those for rigid–free P
seuille flow as those solutions may be relevant to the co
ent structures observed near a~single! wall at higher Rey-
nolds numbers. Indeed the optimum parameters~31! closely
correspond to the observed scalings of the near-wall st
tures. The dependence of Resn

1 on Lx
1 andLz

1 for the rigid–
free plane Poiseuille traveling waves is illustrated in Fig.
These results suggest that there are no traveling wave s
tions belowLz

1'80 or belowLx
1'200. There exist travel-

ing wave solutions for all largerLx and Lz although the
curves shown in Fig. 14 cannot be smoothly continued
arbitrarily large horizontal scales. The Resn curve could not
be smoothly continued beyondLx

1'520 ~i.e., below a
50.295) for g51.3, for instance. The solution branch
eventually develop a modulation as the length scales are
creased and Resn drops abruptly. This is undoubtedly linke
to the fact that multiple copies of smaller scale traveli
waves can fit in the domain if the latter is large enou
~dashed lines in Fig. 14!. The crossover between one- an
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
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two-period solutions occurs atLx
1'437 for g51.3 and at

Lz
1'167 for domains with the aspect ratioLx52.6Lz . Dis-

tinct traveling waves therefore arise at the same Reyno
number for those length scales. The optimum no-slip sta
are illustrated in Figs. 15 and 16.

VII. STATISTICS OF NO-SLIP ECS

Figure 17 shows the normalized wall shear rate of
Poiseuille traveling wave at two wave number pairs (a,g) as
a function of the Reynolds number Rem which is based on
the bulk mean velocity and the full channel height. The 3
traveling waves first arise at Rem'860, which is signifi-
cantly lower than the Rem where turbulence is first observed
The Kim, Moin, and Moser16 turbulent flow was computed a
Rem'5600 while Toh and Itano,33,34 recently computed an
asymmetric traveling wave at Rem54000. The mean veloc
ity profile and rms velocities normalized byut are shown in
Fig. 18 for the traveling wave witha50.5 andg51.3 on the
upper branch at Re5473 (Rem51303), the turning point at

FIG. 14. Top: Resn
152,ut /n as a function ofLx

1 for g51.3 andg52.6a
for rigid–free plane Poiseuille flow traveling waves. Dash: 2-period solut
for g51.3. Bottom: Resn

1 as a function ofLz
1 for a50.5 andg52.6a.

Dash: 2-period solution forg52.6a. Solid: (LT ,MT ,NT)5(13,25,13); dot:
~11,23,11!.
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FIG. 15. ~Color! Top, side, and back views of rigid–free plane Poiseuille flow traveling wave at its lowest friction Reynolds number (2,1544.21, Lx
1

5273.73,Lz
15105.51). Green: Isosurface of streamwise velocityu5min@u(x,y50,z)# ~top and back views!. Left column: Isosurfaces of streamwise vorticit

at 60.6 max(vx) ~red positive, blue negative!. Right column: Red isosurfaces ofQ50.40Qmax, where ¹2p52Q5Wi j Wi j 2Si j Si j is twice the second
invariant of the velocity gradient tensor.~Box shifted byLx/16.)
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Re5244.41 (Rem5867) and the lower branch at Re5454
(Rem51390). The traveling wave rms velocities compa
well with the rms velocities computed by Kim, Moin, an
Moser ~their Fig. 6! at the much higher Rem'5600 (Ret
'180, Re5Ret

2/8'4050). The main qualitative differenc
is thatv rms is forced to go to zero at the channel centerline
the present traveling waves. This is probably directly co
nected, through a ‘‘splatting effect,’’ with the increase inwrms

near the centerline. Quantitatively, the levels ofurms are very
close to their turbulent counterpart but the levels ofv rms and
wrms are lower. Hence, the traveling wave is more efficien
redistributing the streamwise velocity, i.e., at transport
momentum.

The normalized wall shear rate for the plane Coue
steady states is shown in Fig. 19 as a function of the R
nolds number for several wave numbersa andg. The upper
branch of the (a,g)5(0.5,1.5) solution shows a sharp tur
ing point just before Re5400. The solution branch turn
back to lower Reynolds numbers then returns toward hig
Reynolds numbers. Structural changes in the solution
subtle but one can detect the splitting of the streaks into
distinct, incomplete, streaks that are shifted by half a per
in both horizontal directions~not shown in this paper!. This
suggests that solutions with wave numbers that are 1.5
times as large are favored at those Reynolds number for
horizontal aspect ratio. Indeed, solutions with (a,g)
5(0.75,2.25) and (1,3) exist and have higher wall sh
rates at those Reynolds numbers~compare curves c, d, and
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in Fig. 19!. The complexity of the bifurcation diagram in th
range 310<Re<400 is intriguing as this is precisely th
range where turbulence is known to occur in plane Cou
flow.21,35–37 For instance, in the~small! periodic box with
(a,g)5(0.5,1.5), there exist at least four distinct type
3-D steady states in 308,Re,400 and six distinct types in
329,Re,400. These lower bounds are very close to t
Ru'312 andRc'323 identified in much larger experiment
domains.37

The mean velocity and rms velocity fluctuations of t
plane Couette flow steady states are shown in Fig. 20.
significant difference with the Poiseuille flow traveling wav
is that the lower branch mean velocity is closer to the lam
nar profile than the turning point profile. The lower bran
shows very strong almostx-independent streaks at Re5400
together with weak spanwise and wall-normal velocity flu
tuations. This is in agreement with the scalings mentioned
Sec. IV A. The mean velocity and rms velocities of the upp
branch solution at Re5400 are very similar, qualitatively
and quantitatively, with the turbulent Couette flow comput
by Kawahara and Kida.38 The normalized wall shear rateS in
Fig. 19 is equal to the normalized energy input rateI used by
Kawahara and Kida. Their turbulent flow hasS5I'3 and
this is precisely the level ofS seen for the upper branc
steady solutions at Re5400 ~Fig. 19!.

Kawahara and Kida managed to isolate an unstable ti
periodic solution in plane Couette flow that had been s
gested by the work of Hamiltonet al.14,21 Hamilton et al.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 16. ~Color! Top, side, and back views of rigid–rigid plane Couette flow steady state at its lowest Reynolds number (a50.5772, g51.1506, Re
5127.7). Green: Isosurface of streamwise velocityu5min@u(x,y50,z)# ~top and back views!. Yellow: u5max@u(x,y50,z)# ~back view only!. Left column:
Isosurfaces of streamwise vorticity at60.4 maxvx ~red positive, blue negative!. Right column: Red isosurfaces areQ50.85Qmax, where ¹2p52Q
5Wi j Wi j 2Si j Si j is twice the second invariant of the velocity gradient tensor.~Box shifted byLx/4.)
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sought to isolate the self-sustaining process~Sec. IV A! by
‘‘quenching’’ of a turbulent flow.39,40That trial-and-error pro-
cedure lead them to settle on the parameters (a,g)
'(1.14,1.67), used by Kawahara and Kida. The pres

FIG. 17. Bifurcation diagrams for rigid–free Poiseuille. Wall shear rateS,
normalized by its laminar value vs bulk Reynolds number Rem5UH/n with
y5^U2Uwall& and whereU5^U2Uwall& is the bulk mean velocity andH
54, is the full channel height. Rem54 U Re andS54/(3U) in our units.
Near optimum (a,g)5(0.507,1.31) ~thick curve! and (a,g)5(0.5,1.5),
@LT ,MT ,NT#5@13,25,13#.
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study, and the earlier work of Clever and Busse,27 indicates
that the 3-D steady states favorg/a'2. This can be ap-
proximately understood in terms of the streak instability p
of the self-sustaining process which consists essentially
larger scale inflectional instability~e.g., Fig. 5 and Figs. 5
and 6 in Ref. 23!. The streak instability also suggests, co
rectly, that at fixedg and Re, the spatial period-one solutio
will disappear asa is increased. Further study is needed b
this occurs apparently nearg/a'1.5. We have confirmed
that there are indeed no spatial period-one solutions at
5400 for (a,g)5(1.14,1.67) (g/a51.46), however there
are solutions with (a,g)5(0.84,1.67), (1.14,2.28) and
(1.14,3.34) for which the upper branchS5I values at Re
5400 are again in the neighborhood of 3. Further detai
comparisons with the work of Kawahara and Kida will a
pear elsewhere.

VIII. MODEL 1-D MAP

The above-presented results demonstrate the remark
qualitative and quantitative similarities between these 3
traveling waves and structural as well as statistical featu
of turbulent shear flows. The major difference, of course
that the traveling waves are steady in the proper Galil
frame and perfectly ordered while turbulent solutions are
steady and disordered. An important characteristic of
traveling waves in this respect is that the traveling waves
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1531Phys. Fluids, Vol. 15, No. 6, June 2003 Homotopy of exact coherent structures
generally unstable from onset, except for a small range
stability of the plane Couette flow steady states reported
Ref. 27. A complete stability analysis of all the solutio
presented here has not been performed, but selected sta
results, and the lack of direct experimental or numerical
servation of these solutions, suggests that these solution
indeed typically unstable. This instability from onset is u
usual and led to early skepticism about the relevance of s

FIG. 18. MeanŪ(y) and rms velocities~normalized byut) for rigid–free
Poiseuille traveling wave at (a,g)5(0.5,1.3). Solid: Upper branch at R
5473. Dash: Turning point at Resn5241.41. Dot: Lower branch at Re
5454. Bottom figure in wall units.
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solutions,41 when the connections with observed cohere
structures had not been revealed. However, others~e.g., Refs.
42, 34, 20, 38! see this instability of the exact coherent stru
tures as a feature, not a bug. Indeed, turbulence is o
described as a ‘‘cascade of instabilities.’’ Whatever the ex
nature, and validity, of that cascade of instabilities concep
is related certainly not to the stable laminar state but m
more likely to the instabilities of the exact coherent state

A simple 1-D mapxn115 f m(xn) illustrates these fea
tures of the onset of shear turbulence and the possible
nections between turbulence and the unstable exact coh
states. The map is defined by~Fig. 21!

f m~x!5H m
x

12x
if 0<x< 1

2

f m~12x! if 1
2,x<1.

~32!

The parameter 0<m<1 is directly related to the Reynold
number, e.g.m5Re/(Re1Rec) for some critical Reynolds
number Rec , with m50 corresponding to Re50 andm51
to Re5`.

The map is such thatx50 is the laminar fixed point,
stable for all 0<m,1 and neutrally stable in the limitm
51 (Re→`), becausef 8(0)5m.

The map~32! bears some algebraic resemblance to
famous logistic map43 f (x)5mx(12x) that shows the pe-
riod doubling route to chaos~see, e.g., Ref. 44!, but the
present map has a cusp atx51/2, wheref (1/2)5m is the
maximum value off (x). This cusp is necessary to yield
bifurcation to new nontrivial fixed points that are unstab
from onset, as is the case for the map~32! where new un-
stable fixed points exist form.1/2. The new fixed points are
an upper branchxu and a lower branchx, ,

FIG. 19. Bifurcation diagrams for rigid–rigid Couette. Wall shear rate,S,
normalized by its laminar value. ~a! (a,g)5(0.5772,1.1506),
@LT ,MT ,NT#5@15,27,15# and @13,25,13# overlap.~b! (a,g)5(0.75,1.5),
@13,25,13# and @11,13,11# overlap. ~c! (a,g)5(0.5,1.5), @15,27,15# and
@13,25,13# ~dot!. ~d! (a,g)5(0.75,2.25), @13,27,13#. ~e! (a,g)5(1,3),
@13,27,13#.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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xu5
Am214m2m

2
, x,512m. ~33!

Unstable periodic orbits of all periods also exist whenm
.1/2. The period-2 solution oscillates betweenx1 and x2

5 f m(x1) with x1,1/2,x2 and

x15
A~m11!2142~m11!

2
. ~34!

More significantly, two period-3 solutions exist form.1/2.
This implies the existence of periodic orbits of all periods
Sarkovskii’s theorem.45 The period-3 solutions consist of a
‘‘outer’’ solution ~dash in Fig. 21! that oscillates betweenx1 ,
x25 f m(x1), x35 f m(x2) with x1,x2,1/2,x3 and

x15
AA214m2A

2m
, A5m21m11 ~35!

and an ‘‘inner’’ period-3 solution~dash-dot in Fig. 21! oscil-
lating betweenx1 , x25 f m(x1), x35 f m(x2) with x1,1/2
,x2,x3 and

FIG. 20. MeanŪ(y) and rms velocities for rigid–rigid plane Couette stea
states with (a,g)5(0.5772,1.1506). Solid: Upper branch at Re5400.
Dash: Turning point at Resn5127.7. Dot: Lower branch at Re5400 @v, w
are much smaller and omitted, max(v)50.0075, max(w)50.02].
Downloaded 09 Jan 2008 to 130.207.50.192. Redistribution subject to AI
x15
AB214m~m11!2B

2~m11!
, B5m212m21. ~36!

Finally, there is a homoclinic orbit connecting the low
branch fixed pointx, to itself whenm.1/2. That orbit, de-
picted by a dotted line in Fig. 21, consists ofx051/2 with
x15 f m(x0)5m and x25 f m(x1)512m5x, and the pre-
iterates ofx0,

xn215
1

11m/xn
, n<0. ~37!

There are infinitely many other distinct homoclinic orbits.
It is clear ~Fig. 21! that for all initial conditions in the

interval @12m,m#, xn stays within that interval for alln, yet
there are no stable fixed points or periodic orbits the
Hence, whenm crosses 1/2, i.e., Re becomes larger than
critical value Rec , there is a sudden transition to a tru
chaotic regime for almost all initial conditions in that inte
val. The dynamics for almost all initial conditions in th
open interval ]12m,m@ when m.1/2 consists of an aperi
odic oscillation about the upper branchxu with excursions
toward the largest valuex5m followed by collapse toward
the lower branchx, then a climb back towardxu , and so on.
Therefore, one may expect that the upper branchxu provides
a good first approximation for the averagexn .

The 1-D map~32! thus illustrates how the onset of un
stable periodic solution may be directly related to a transit
to ‘‘turbulence’’ and why the upper branch solutions m
offer a good first approximation to the mean properties of
turbulence. That simple map has not been directly conne
to the Navier–Stokes dynamics but one should note the
semblance with the ‘‘Lorenz map’’46 ~see, e.g., Ref. 44!
which was deduced from a continuous differential syste

FIG. 21. The map~32! for m50.8 with the unstable fixed pointsx, andxu

~open circles!, period-3 solutions~dash and dash-dot! and the homoclinic
orbit xn215(11m/xn)21,x051/2,m,12m5x, ~dot!.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Note that in the discrete map, the fixed pointsx, andxu may
correspond to fixed points or traveling waves as in this pa
or to fundamental periodic solutions of the Navier–Stok
equations as in Ref. 38.

The simple map~32! has the particularity that the max
mum valuef (1/2)5m is the pre-iterate of the lower branc
x, as shown in Fig. 21. This is the feature leading to
existence of homoclinic orbits. This map therefore is just
the border between two types of maps. This map and slig
broader maps lead tostrange attractors, but slightly spikier
maps for which the pre-iterate ofx, is less thanm will lead
to a strange repellor~see the discussions of the logistic m
with m.4 in Ref. 45 or 44, exercise 11.4.6!. For the spikier
maps, almost all initial conditions will eventually end u
converging to the laminar pointx50. A concrete example is
the two-parameter family of maps defined by

f ~x!5H mx

122ex11e
if 0<x< 1

2,

f ~12x! if 1
2,x<1,

~38!

where 21,e and 0<m,1. These maps have the sam
overall shape and properties as the map~32!, in particular,
f (1/2)5m and f 8(0)5m if 21,e. The additional param-
etere controls the spikiness. The maps are spikier than~32!
if 0 ,e. When e521, ~38! becomes the tent map.44,45 If
21,e<0 andm.1/2, all initial conditions in@x,,12x,#
are trapped in that interval yet there are no stable perio
points there. Ife.0 andm.1/2, a strange repellor exists
Almost all initial conditions, except for a Cantor set,45 will
eventually end up at the laminar fixed pointx50. An imper-
ceptible change in the shape of the map, from a small ne
tive e to a small positivee, can lead to drastic differences fo
the long time behavior of the dynamical system. This p
vides another concrete illustration that may be useful also
shear flows where there is some limited evidence for stra
repellors, from low-order truncations of the Navier–Stok
equations.42 It may be that small periodic domains lead
strange repellors but slightly larger domains lead to stra
attractors. Finally, one can imagine a more complex scena
e.g.,e53/42m, where the map broadens with increasingm,
and the transition to a strange attractor occurs atm53/4,
well beyond the onset of unstable fixed points and perio
orbits atm51/2.

IX. CONCLUDING REMARKS

Three-dimensional traveling wave solutions of t
Navier–Stokes equations have been calculated for p
Couette and Poiseuille flows with both free-slip and no-s
boundary conditions. These well-resolved solutions cap
essential structural and statistical features of turbulent s
flows and are therefore called exact coherent structu
These exact coherent structures are typically unstable f
their onset at a Reynolds number that is about twice lo
than those where turbulence is first observed. It is belie
that the inherent instabilities of the exact coherent struc
are directly related to the disorder characteristic of turbul
shear flows. The exact coherent structures and their as
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ated instabilities are thus good candidates for precise de
tions of Townsend’s notions of active and inactive motion

The initial step to calculate these exact coherent str
tures is to track three-dimensional solutions that bifurc
from a 2-D streaky flow. This step demonstrates the valid
of a previously studied self-sustaining process and es
lishes a direct link between self-sustained 3-D coher
structures and Townsend’s attached eddies. The next s
consist of homotopy transformations that demonstrate
close relationships between the various solutions.

The traveling waves come in pairs above their on
Reynolds number. Our simplistic view is that the low
branch and its stable manifold form the separatrix betw
the basin of attraction of the laminar state and the turbu
domain in phase space. This is similar to the view of Toh a
Itano,33,34 who propose that motion along the unstable ma
fold of the lower branch corresponds to bursting. Toh a
Itano do not distinguish between upper branch and low
branch solutions however. This may be because their sh
ing approach, similar to our method of bifurcation from 2-
streaky flow, may be limited to capturing the lower bran
solution as suggested in Ref. 20. We propose further that
turbulent state is essentially an aperiodic oscillation ab
the upper branch solution. Therefore the upper branch p
vides a good first approximation to the turbulence statist
It is unclear then whether ‘‘bursting’’ would correspond
excursions along the unstable manifold of the lower or
upper branch. This picture of the nature of shear turbule
has been illustrated by a simple 1-D map. Jimenez
Simens47 also compute a single traveling wave solution in
plane Poiseuille flow where vorticity fluctuations are wip
out beyond a pre-set distance from the wall. It is uncle
whether that solution corresponds to an upper or low
branch.

Schmiegel, Eckhardt, and Mersmann42,48have suggested
that the number of unstable steady states in Couette-like
grows with the Reynolds number and that shear turbule
may consist of a chaotic repellor that forms around hete
clinic connections between those steady states. Our own
lated studies of ‘‘low’’-order models~Sahay and Waleffe,
2000, unpublished! extending our earlier work23 show simi-
lar results, however we believe that most of those ste
states are spurious solutions that do not converge to solut
of the Navier–Stokes equations. The number of those ste
states seems to grow with both the Reynolds number and
resolution, therefore this is an intriguing numerical issu
Nonetheless, the idea of the onset of a multitude of unsta
states is likely to be relevant, with most unstable states
responding not to steady states but to periodic orbits, and
strange repellor idea may also be applicable in some rang
parameters. There is solid evidence for unstable periodic
lutions in plane Couette flow38 in addition to the steady state
presented here and in earlier references.25,27 There is an ob-
vious structural and statistical connection between those
lutions but the phase space connections have not been e
dated yet. It appears that periodic solutions may replace
steady states in domains where the streamwise period is
than about 1.6 times the spanwise period~at low Reynolds
numbers of course!. Clever and Busse27 had already reported
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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existence of a time periodic solution in plane Couette flo
but this appears to be a different solution than that found
Kawahara and Kida. Further work needs to be done to
cidate the connections between these various solutions
turbulent flow.

In any case, one may hope that the knowledge of
these solutions will lead to a full understanding of the on
and nature of turbulence, at least in plane Couette fl
There are intriguing connections between critical Reyno
number values found here for steady states in plane Cou
flow and physical experiments in much larger domains.37 In
fact, we believe that most of the characteristics of turbule
can be captured in relatively small periodic domains and
other features such as spots and ‘‘barber pole’’ structure49 are
‘‘secondary’’ spatio-temporal complexities. Finally, it is mo
likely that the steady states and traveling wave solutions
cussed here can be extended to traveling waves in pipe
and to self-similar solutions in mixing layers.

The data presented in this paper are available from
author by request. The data will eventually be posted
http://www.math.wisc.edu/;waleffe/ECS/.
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