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Historical Overview

Adapted from

"A Brief History of Boundary Layer Structure Research,” S.J. Kline 1997

Mean Flow Era 1883-1936
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Structures of Shear Turbulence – p. 2/42



Historical Overview

Adapted from

"A Brief History of Boundary Layer Structure Research,” S.J. Kline 1997

Mean Flow Era 1883-1936
(Reynolds, Prandtl, von Karman,...)

Statistical Era 1936-1956
(hot wire anemometry, 2-point correlations,...)

Structures of Shear Turbulence – p. 2/42



Historical Overview

Adapted from

"A Brief History of Boundary Layer Structure Research,” S.J. Kline 1997

Mean Flow Era 1883-1936
(Reynolds, Prandtl, von Karman,...)

Statistical Era 1936-1956
(hot wire anemometry, 2-point correlations,...)

Structural Era 1956-1986 (visualizations)

Structures of Shear Turbulence – p. 2/42



Historical Overview

Adapted from

"A Brief History of Boundary Layer Structure Research,” S.J. Kline 1997

Mean Flow Era 1883-1936
(Reynolds, Prandtl, von Karman,...)

Statistical Era 1936-1956
(hot wire anemometry, 2-point correlations,...)

Structural Era 1956-1986 (visualizations)

CFD Era 1986-

Structures of Shear Turbulence – p. 2/42



Historical Overview

Adapted from

"A Brief History of Boundary Layer Structure Research,” S.J. Kline 1997

Mean Flow Era 1883-1936
(Reynolds, Prandtl, von Karman,...)

Statistical Era 1936-1956
(hot wire anemometry, 2-point correlations,...)

Structural Era 1956-1986 (visualizations)

CFD Era 1986-

Dynamical Era: Self-Sustaining Process
Exact Coherent Structures
Periodic Solutions,...
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Reynolds’ Pipe Flow Experiments

Osborne Reynolds, Manchester 1883
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Reynolds’ Key Observations

"... at some point in the tube, always at a considerable
distance from the intake, the colour band would all at
once mix up with the surrounding water..."

Linear Stability - Nonlinear instability:
"... the critical velocity was very sensitive to disturbance
in the water before entering the tubes.... This at once
suggested the idea that the condition might be one of
instability for disturbances of a certain magnitude and
stability for smaller disturbances".
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Mean Flow Era Concepts

Reynolds similarity: R = UL
ν

Mean flow + fluctuations (Reynolds 1894)

v(x, y, z, t) = U(y)x̂ + u(x, y, z, t)

Reynolds Stress: τ = ν
dU

dy
− uv

Law of the wall (Prandtl 1925) (wall unit scaling)

log law, velocity defect law (von Karman 1930)
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Mean Flow Era Concepts (2)

‘eddy-viscosity’: −uv ≈ ν̃ dU
dy

‘Mixing length’ ℓ: ν̃ ≈ u∗ℓ, u∗ =
∣

∣uv
∣

∣

1/2

⇒ ν̃ = ℓ2

∣

∣

∣

∣

dU

dy

∣

∣

∣

∣

Turbulence= random interactions of "eddies"

Richardson Cascade (1922)
"Big whorls have little whorls, Which feed on their velocity,

Little whorls have lesser whorls, And so on to viscosity"

momentum transport −→ energy cascade
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Statistical Era

Turbulent motion ‘not as random’ as molecular motion
〈u(x)v(x)〉 → 2-point correlation 〈ui(x + r)uj(x)〉
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Statistical Era

Turbulent motion ‘not as random’ as molecular motion
〈u(x)v(x)〉 → 2-point correlation 〈ui(x + r)uj(x)〉

isotropic turbulence "fundamental"
GI Taylor 1935, grid turbulence; Karman-Howarth 1938

Kolmogorov: energy dissipation rate per unit mass E

〈(u(x + r)− u(x))n〉 ∝ (Er)n/3

if η = (ν3/E)1/4 ≪ r ≪ L (inertial range)

(OK for n = 2, departures for n > 2, intermittency...)
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Statistical Era

Turbulent motion ‘not as random’ as molecular motion
〈u(x)v(x)〉 → 2-point correlation 〈ui(x + r)uj(x)〉

isotropic turbulence "fundamental"
GI Taylor 1935, grid turbulence; Karman-Howarth 1938

Kolmogorov: energy dissipation rate per unit mass E

〈(u(x + r)− u(x))n〉 ∝ (Er)n/3

if η = (ν3/E)1/4 ≪ r ≪ L (inertial range)

(OK for n = 2, departures for n > 2, intermittency...)

No momentum transport, only cascade of energy!
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Structural Era Back to Drag

‘Horseshoe’ structure as self-consistent ‘turbulence molecule’
“optimized” for vortex stretching by mean shear

Theodorsen, 1952
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Structural Era

2-point correlations −→ Structures

Townsend 1956 ‘The Structure of Turbulent Shear Flows’
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Upper Bounds Era (GFD era!)

‘Outline of a theory of turbulent convection’ Malkus 1954
‘Outline of a theory of turbulent shear flows’ Malkus 1956

Marginal Stability, Optimum transport

Upper bound theory
(Howard, Busse, Malkus & Ierley & L.M. Smith,...)

Background field approach (Doering & Constantin,
Kerswell...)
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‘Optimum’ transport structure

Busse, JFM 1970
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Visualization Era: Streaks

Streaks with 100+ spacing

Kline, Reynolds, Schraub & Runstadler, JFM 1967
(diagram from Smith & Walker, 1997)
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Visualization Era: Streaks everywhere!

Streaks in Turbulent Boundary Layer

Cantwell, Coles & Dimotakis, JFM 1978
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Boundary Layer Transition: Streaks!

DNS of ‘Natural’ transition

Rai & Moin, AIAA 1991
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Visualization Era

Typical vortex structure: Theodorsen’s horseshoe!

Head & Bandyopadhyay , JFM 1981
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DNS of Turbulent Channel Flow

Kim, Moin & Moser, JFM 1987

Rτ ≈ 180, Rm ≈ 5600
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DNS near-wall Structures

Asymmetric CS educed from KMM channel data at Rτ = 180

Derek Stretch, 1990
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Visualization/DNS Era

baguettes and croissants! not spaghetti!

3D ‘Inverse’ cascade: buffer layer → outer flow

Steve Robinson, ARFM 1991
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...buffer layer to outer space!

STS 114: Return to Flight, launched July 26, 2005...
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Mechanistic Era

Acarlar & Smith
JFM 1987
(synthetic streak
regeneration)
+ Benney 1984
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Cartoon of Self-Sustaining Process
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Self-Sustaining Process

Streaks

exp ( x)Streamwise
mode

self-interaction
nonlinear

αi

advection of
mean shear U(y,z)

instability of

Rolls
O(1/R) O(1/R)

O(1)

Waleffe, Stud. Applied Math 1995, Phys. Fluids 1995, 1997

SSP as computational method, PRL 1998, JFM 2001, PoF 2003
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SSP as Computational Method

Add artificial roll forcing O(1/R2) to Navier-Stokes
Equations
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SSP as Computational Method

Add artificial roll forcing O(1/R2) to Navier-Stokes
Equations

1D-1C Laminar flow −→ 2D-3C "streaky flow"

v = U(y, z)x̂ +
1

R
[V (y, z)ŷ + W (y, z)ẑ]
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SSP as Computational Method

Add artificial roll forcing O(1/R2) to Navier-Stokes
Equations

1D-1C Laminar flow −→ 2D-3C "streaky flow"

v = U(y, z)x̂ +
1

R
[V (y, z)ŷ + W (y, z)ẑ]

2D-3C streaky flow inflectionally unstable (flapping flag)

Track 3D-3C solution that bifurcates from marginally
stable streaky flow
(Newton’s method, continuation, huge nonlinear eigenvalue problem)
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SSP as Computational Method

Add artificial roll forcing O(1/R2) to Navier-Stokes
Equations

1D-1C Laminar flow −→ 2D-3C "streaky flow"

v = U(y, z)x̂ +
1

R
[V (y, z)ŷ + W (y, z)ẑ]

2D-3C streaky flow inflectionally unstable (flapping flag)

Track 3D-3C solution that bifurcates from marginally
stable streaky flow
(Newton’s method, continuation, huge nonlinear eigenvalue problem)

Continue till no need for artificial roll forcing
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Bifurcation from streaky flow (PCF)
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Traveling Wave Solutions (1/2 PPF)

Waleffe, JFM 2001, PoF 2003
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Traveling Wave Solutions

= ‘Exact Coherent Structures’ (ECS)
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Traveling Wave Solutions

= ‘Exact Coherent Structures’ (ECS)

‘optimum’: R+ = h+ = 44, L+
x = 273, L+

z = 105

just right!
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‘optimum’: R+ = h+ = 44, L+
x = 273, L+

z = 105
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Traveling Wave Solutions

= ‘Exact Coherent Structures’ (ECS)

‘optimum’: R+ = h+ = 44, L+
x = 273, L+

z = 105

just right!

unstable...

... a feature not a bug! (more tomorrow!)
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Traveling Wave Solutions

= ‘Exact Coherent Structures’ (ECS)

‘optimum’: R+ = h+ = 44, L+
x = 273, L+

z = 105

just right!

unstable...

... a feature not a bug! (more tomorrow!)

generic:
Plane Couette flow (wall driven)
Plane Poiseuille flow (pressure driven)
free-slip, no-slip, any-slip
Pipe flow
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Traveling Waves in Pipe Flow

Faisst & Eckhardt, PRL 2003, Wedin & Kerswell JFM 2004

Hof et al. Science, Sept. 2004
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ECS come in pairs

Bifurcation Diagram (saddle-node Fr ≡ 0):
upper and lower branches
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Normalized wall shear rate (drag) in Plane Couette Flow vs R
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ECS pairs

upper branch ECS ≈ backbone of turbulence

capture ‘statistics’ pretty well (mean and rms profiles)

Waleffe PoF 2003, Jimenez et al. PoF 2005

lower branch ECS ≈ backbone of separatrix

(laminar and turbulent separated by stable manifold(s) of lower branch(es))

scaling of lower branch ECS↔ transition threshold
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Outstanding evidence for1/R (Pipe flow)

Hof, Juel & Mullin, PRL, Dec 2003; Physics Today Feb 2004
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Fourier in θ = x− ct (traveling wave)

u(θ, y, z) =u0(y, z) + u1(y, z)eiθ + u2(y, z)ei2θ + · · ·

v(θ, y, z) =v0(y, z) + v1(y, z)eiθ + · · ·

w(θ, y, z) =w0(y, z) + w1(y, z)eiθ + · · ·

In SSP theory:

u0(y, z) = O(1), v0, w0 = O

(

1

R

)

, u1, v1, w1 = O

(

1

R

)
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R-Scaling of harmonics(Rigid Rigid Couette)
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Waleffe & Wang, 2004
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R-Scaling dropping higher harmonics
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Trouble in the 1st harmonic?...
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Structure of Lower branch @ R = 6200 (RRC)

u0 large, Q = ∇2p/2 small

Waleffe & Wang, 2004, 2005
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LBS 1st harmonic @R = 6200 (RRC)
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LBS 1st harmonic @R = 6196, 31599
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LBS Rolls @R = 6200 (RRC)
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Structure of LBS @ R = 6196, 31599

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z

(α,γ)=(1.14,2.505), R=[6196,31599], v
0

y

Structures of Shear Turbulence – p. 38/42



SSP exact asR→∞ (but...)

O(1/R) rolls −→ O(1) streaks −→ streak instability
←−
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SSP exact asR→∞ (but...)

O(1/R) rolls −→ O(1) streaks −→ streak instability
←−

≈ Benney’s ‘Mean Flow-First Harmonic Theory’
(inviscid wavepackets, ǫ −→ viscous traveling wave, 1/R)
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SSP exact asR→∞ (but...)

O(1/R) rolls −→ O(1) streaks −→ streak instability
←−

≈ Benney’s ‘Mean Flow-First Harmonic Theory’
(inviscid wavepackets, ǫ −→ viscous traveling wave, 1/R)

but... 2D Critical Layer u0(y, z)− c = 0

complicates scaling and asymptotics
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SSP asymptotics: coupled 2D modes

(∂t + v ·∇)v + ∇p =
1

R
∇2

v, ∇ · v = 0

as R→∞, there are SF TWS

v(x, y, z, t) ∼ u0(y, z)x̂

+
(

v0(y, z)ŷ + w0(y, z)ẑ
)

+ eiα(x−ct)
v̂1(y, z) + c.c.
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SSP asymptotics: leading order eqns

advection-diffusion of streaky flow u0(y, z):

v0
∂u0

∂y
+ w0

∂u0

∂z
=

1

R
∇2u0
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SSP asymptotics: leading order eqns

advection-diffusion of streaky flow u0(y, z):

v0
∂u0

∂y
+ w0

∂u0

∂z
=

1

R
∇2u0

Streamwise rolls: v0, w0 ∼ 1/R⇒ u0(y, z)
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SSP asymptotics: leading order eqns

advection-diffusion of streaky flow u0(y, z):

v0
∂u0

∂y
+ w0

∂u0

∂z
=

1

R
∇2u0

Streamwise rolls: v0(y, z) = ∂zΨ0, w0(y, z) = −∂yΨ0

1

R
∇4Ψ0 = J(∇2Ψ0,Ψ0)

Rolls decoupled from streaky flow
J(A, B) = ∂yA∂zB − ∂zA∂yB
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SSP asymptotics: leading order eqns

advection-diffusion of streaky flow u0(y, z):

v0
∂u0
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+ w0

∂u0

∂z
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1

R
∇2u0 −

∂ u
1
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x

∂y
−

∂ u
1
w

1

x
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Streamwise rolls: v0(y, z) = ∂zΨ0, w0(y, z) = −∂yΨ0
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R
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∂2
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1

x
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(
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)

v
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1st harmonic feeds on streaks to sustain rolls
v1 ∼ 1/R v0, w0 ∼ 1/R
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SSP asymptotics: leading order eqns

advection-diffusion of streaky flow u0(y, z):

v0
∂u0

∂y
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Streamwise rolls: v0(y, z) = ∂zΨ0, w0(y, z) = −∂yΨ0
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First Harmonic neutrally stable v1 = eiαx
v̂1(y, z) + c.c.

(v0 − cx̂) ·∇v1 + v1 ·∇v0 + ∇p1 =
1

R
∇2

v1, ∇ · v1 = 0
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Conclusions

Theory catching up at last!
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Conclusions

Theory catching up at last!

SSP, Traveling waves, time-Periodic Solutions too!

Transport, low-order ‘statistics’ by coherent structures (?)
(upper branches, small scales)

What about ‘turbulence’?
unstable solutions...

The neglected lower branch states:
‘ large’ scale, 2D self-sustained critical layer
drag only 10-20% higher than laminar!
control?
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