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A nonlinear evolution equation is considered which is often encountered in modelling the behaviour of perturbations in 

various active dissipative media, e.g. in problems of fluid film flow hydrodynamics. Periodic steady-state travelling solutions 

have been found numerically for it. Stability of these solutions has been investigated and bifurcation analysis has been carried 

out. The analysis has demonstrated that decrease of the wave number causes more and more new families of steady-state 

travelling solutions. A countable set of such solutions is formed in the limit when the wave number tends to zero. It is also 

shown that time-oscillating solutions can be generated from steady-state ones due to bifurcation of the Landau-Hopf type. 

1. Intrcbfluction 

Since recently along with the well-known 
Kuramoto-Sivashinsky equation 

Yf + 2Y,z + YX, + YX,,, = 0 (1.1) 

investigators take great interest in the equation 

H, + 4HH, + H,, + H,,,, = 0. (1.2) 

This interest arises from the fact that being one 
of the simplest equations it appears in modelling 
nonlinear behaviour of disturbances for a suffi- 
ciently large class of active dissipative media. Thus 
this equation was obtained in [l, 21 while describ- 
ing waves on the surface of a liquid film freely 
falling down an inclined plane, it is given in [3] for 
the countercurrent flow of film and gas, and in [4] 
for disturbances at the interface between two vis- 
cous liquids in a channel. 

It should be mentioned that the authors of 
papers dealing with eq. (1.2) or the Kuramoto- 
Sivashinsky equation often do not discriminate 
between them. For example, the Kuramoto- 
Sivashinsky equation is said to be valid for de- 
scribing disturbances on the surface of vertically 
falling liquid films [4, 51, and eq. (1.2) is said to 
hold for the case of chemical diffusion [6]. Though, 
actually, eq. (1.2) holds true for falling films, and 
the Kuramoto-Sivashinsky equation is satisfacto- 
rily suitable for modelling the propagation of flame 
front. Despite outward likeness and the coinci- 
dence of linear parts in eqs. (1.1) and (1.2) their 
solutions differ considerably, though there exists a 
rather simple relation between them: 

y,=H. (1.3) 

Linear analysis of stability shows that the trivial 
solution of eqs. (1.1) and (1.2), 

H=O, 

0167-2789/89/$03.50 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



0. Yu. Tsvelodub and Yu. Ya. Trifonov/Steady-state travelling solutions of an evolution equation 331 

is unstable with respect to perturbations of the 
form 

exp [ia(x - ct)] 

with wave numbers OL < 1. (Disturbances with a! > 
1 dissipate.) Increase of such disturbances with 
time can be limited due to nonlinear effects. As a 
result, steady-state nonlinear regimes may form. 

The present paper is devoted to bifurcation 
analysis of periodic steady-state travelling solu- 
tions of eq. (1.2). It is shown how a countable set 
of such solutions appears. Owing to relation (1.3) 
the obtained results yield rather much information 
on the behaviour of the solution of the Kuramoto- 
Sivashinsky equation and here we shall not dwell 
on it in detail. 

2. Theory and method of solution 

For a steady-state travelling wave 

H(t), 5=x-ct, 

eq. (1.2) becomes 

- cH( + 4HHt + HII + HEcIE. = 0. (2.1) 

We will consider the periodic solutions of (2.1) 
with the wavelength X = 2n/a. 

Since (2.1) is invariant under the transforma- 
tions 

H-, -H, .$+ -5, c+ -c, 

and (2.2) 

H + H + const, c + c + 4const, 

only such solutions will be considered further for 
which 

c 2 0, 
/ 

‘Hdt = 0. (2.3) 
0 

Strictly speaking, in the case c = 0 the solution 
of eq. (1.2) represents not only a travelling wave 
but a stationary one as well. However there is no 
sense in separating these cases as for many situa- 
tions eq. (1.2) is written in a moving reference 
system. Thus, for example, while describing the 
perturbation evolution on the surface of a liquid 
film falling down an inclined plane, it is given in a 
system whose velocity is twice the velocity of a 
free surface in the absence of disturbances. There- 
fore, solutions with c = 0 are also the travelling 
ones in a stationary reference system. Thus we 
have a boundary value problem in which the wave 
velocity c is an eigenvalue and the wave number (Y 
is a parameter. 

Using the nonlinear stability theory, it is easy to 
show that a periodic solution with infinitesimal 
amplitude branches from the trivial solution of eq. 
(2.1) at (Y = 1. It continues into the region of 
linear instability ((Y -C 1). This is a supercritical 
type of branching. 

Periodic solutions of eq. (2.1) with finite ampli- 
tude are found numerically. For this purpose, they 
are represented as a Fourier series: 

H= f H,exp[icun[]. (2.4) 
PI---m 

nzo 

Since H is a real function, then 

H_,=i?,,. 

The overbar denotes the complex conjugate. 
Taking into account the first N harmonics in 

the series (2.4), let us substitute it into eq. (2.1). 
Putting the coefficients equal to zero at the same 
exponents, we obtain a system of N complex 
equations for the unknown real c and N complex 
H H,,,: 1,“‘, 

(-icunc - (bin* + CX”~“) H, 

+ 2ian 2 H,,,H,_,=O, n=l,..., N. 
m--n-N 

(2.5) 



338 0. Yu. Tsvelodub and Yu. Ya. Trifonov/Steady-state travelling solutions of an evolution equation 

Since eq. (2.1) is invariant to the coordinate We obtain a linear ordinary differential equation 
shift with periodic coefficients for h,(c): 

5 -+ 5 + const (2.6) -yh, - ch,[ + 4(K,h,)S + hlt5 + h11555 = 0. 

the origin of coordinates was chosen such that 
(2.11) 

Re(H,) =O. (2.7) 

Thus the system (2.5) is complete due to (2.7). The 
Newton-Kantorovich method was used to solve it 
numerically. While reducing the series (2.4) the 
number of harmonics was taken so as to satisfy 
the relation 

Since, while investigating stability, disturbances 
in (2.8) are limited at the initial moment of time 
for all values of 5, it is clear that we are interested 
in the solutions of eq. (2.11) which are also limited 
for all [. From Floquet’s theorem it follows that 
such solutions are of the form 

IHjJ/sup IH,I 5 1r3. 

For this purpose, the number IV had to be varied 
depending on the value OL in the range from 8 to 
64. 

h, = cp([)e’@t (2.12) 

where (p(5) is a periodic function of the same 
period as H,(E), and Q is a real parameter. Sub- 
stituting (2.12) into (2.11) we obtain 

The main difficulty in solving (2.1) is to deter- 
mine the initial approximation that is close enough 
to the solution. An analytic solution is used as 
such an approximation for the first solution family 
branching from the trivial one at (Y = 1. To deter- 
mine the solution for (Y < 1, the step of the wave 
number is selected in such a way that using the 
solution previously found as an initial approxima- 
tion, the numerical process converges to the solu- 
tion of this family at a new (Y too. 

Acp + BQY + (1 - 6a2Q2) QI” 

+ 4icuQq”’ + cp”” = y(p) 

where 

(2.13) 

A = 4Hd + 4iaQH,, - a2Q2 + a4Q4 - icuQc, 

B = 4H, + 2icuQ - 4i(u3Q3 - c. 

and the prime means differentiation with respect 
to & 

Let H,(t) be a periodic solution of eq. (1.2) 
with the wave number 0~. Substituting 

H=H&) +h(&t) (2.8) 

into (1.1) and linearizing it with respect to the 
disturbance h (5, t), we obtain the equation [l] 

Thus the investigation of stability of periodic 
steady-state travelling wave solutions of eq. (1.2) 
is reduced to studying the spectrum of such eigen- 
values y at different values Q for which eq. (2.13) 
has periodic solutions of the same period as for 
Ho. The wave is stable if for any Q all y have 

h, - ch, + 4( H,h)~ + h,, + h,,,, = 0 (2.9) 

to investigate the stability of the solution H, with 
respect to infinitesimal disturbances. 

Re(y) > 0. 

Since the variable t is not explicitly incorpo- 
rated in (2.9), we search for a solution of the form 

From (2.12) it is clear that it is sufficient to 
consider Q in any interval of unit length, for 
example, [ - 0.5,0.5]. Performing the operation of 
complex conjugation on (2.13), it is easy to be- 
come convinced that 

h = epy’ h,( E) + K.C. (2.10) Y(-Q) = Y(Q). (2.14) 
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Thus it is sufficient to consider the solutions (2.13) a/r is generated which is periodic with respect 
for to 5. 

0 I Q I 0.5. 

At Q = 0 one of the solutions of eq. (2.13) is 
readily found analytically: 

y=O, cp=H;. 

This result is a consequence of the Andronov- 
Vitt theorem [6] concerning the presence of at 
least one zero Lyapunov index for a closed trajec- 
tory. Since for eq. (2.1) an integral exists, 

Relation (2.15) means that numbers &iQ in 
(2.12) are Lyapunov indices of periodic solution 
H,,. Since the third derivative is not incorporated 
in eq. (2.1), the divergence of phase flow of this 
equation is equal to zero. Hence the sum of all 
four Lyapunov indices for any periodic solution of 
eq. (2.1) is also equal to zero [8]. As shown above, 
among these indices two are zero and, hence, two 
remaining indices are either imaginary and have 
the form f iQ where Q 2 0, or are nonzero real 
and have the form +A where A > 0. Therefore, 
though eq. (2.15) is a system of two independent 
conditions, 

Re(Yk Q>) = 0 
then any such trajectory has among Lyapunov 
indices one more index which is equal to zero [7]; 
in other words, at Q = 0 the root of y = 0 is 

doubly degenerate. 

and 

Im(Y(a, Q)) = 0, 
In the general case the boundary value problem 

(2.13) was solved numerically. Performing the 
Fourier transformation on (2.13) we obtain an 
infinite system of linear algebraic homogeneous 
equations to determine ‘p,. Setting all cp,,, (n 1 2 N, 

equal to zero, we obtain its finite approximation: 

[-i,(Q+n)c-a2(Q+,)2+a4(Q+.)4]cpn 

min(N,n+N) 

+4iar(Q + n) c ‘p,-, = Y(P,* 
m=max(-N,n-N) 

From (2.9)-(2.11) it follows that if the real part 
of some eigenvalue vanishes at some point (a, Q), 
then a new wave regime branches from the origi- 
nal one. If Im(y) # 0, time-dependent regimes 
may be generated. New steady-state travelling 
regimes arise from the solution HO if 

it determines not a set of points but curves on the 
plane (a, Q). These curves may be almost parallel 
to the Q-axis (see figs. 1 and 13) but taking into 
account (2.14) it is clear that within a considered 
interval Q (0 I Q I 0.5) any straight line (Y = 
(Ye = const crosses them at not more than two 
points, one of which is a point (cY,,,~). In other 
words, for any periodic solution H,, of eq. (2.1) a 
unique value of Q different from zero out of the 
considered interval can exist at which (2.15) can 
be fulfilled. Otherwise, such a solution HO with 
the wave number (Y,, would have more than four 
Lyapunov indices. 

~(a, Q) = 0. (2.15) 

A double periodic regime is generated, if Q is 
an irrational number, and if Q =p/r is a rational 
number, a regime with a new wave number (Y,,, = 

In the present paper we shall be limited to 
considering only steady-state travelling periodic 
waves. To find these new solutions of eq. (2.1) 
with the wave numbers from the neighbourhood 

of %ew, as an initial approximation the expression 
(2.8) is used. The function h in it is taken to be 
proportional to the eigenfunction cp satisfying eq. 
(2.13) for the values of wave number LY- and Q = 
p/r at eigenvalue y = 0. The calculations show 
that it is more convenient to use the value of some 
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harmonic as a varying parameter in the neigh- 
bourhoods of these origin points. Further, passing 
to the parameter (Y we find solution for the values 
(Y, which are far from origin point (Y,,, of this 
family. 

3. Results 

Nepomnyashchy has shown in his paper [l] that 
the first family of periodic solutions of eq. (2.1) 
branching from the trivial solution at (Y = 1 can be 
continued to the range of smaller wave numbers 
up to the value (Y* = 0.4979. Each odd harmonic 
of the series (2.4) becomes equal to zero at this 
point. As a result we obtain a solution with the 
wave number (Y = ICY* = 0.9958. It appears that 
this is the same solution that has been previously 
obtained for this 0~. Thus this family is closed on 
itself. Note that for all the values (Y from the 
region of solution existence the value of phase 
velocity is equal to zero, 

c=o. (2.16) 

In accordance with (2.2) such solutions are anti- 
symmetric. Further, up to fig. 11 the results con- 
cerning only antisymmetric families of solutions 
will be discussed. The real parts of all harmonics 
become equal to zero while fulfilling (2.7). 

Fig. 1 shows some results of the investigation 
into stability of the first solution family. Here on 
the plane ((Y, Q) curves l-4 are plotted on which 
correlation (2.15) is satisfied for some of the eigen- 
values y. Discussing subsequently the solutions 
branching from some of these curves, we shall call 
them generating curves. By means of these curves 
it is easy to find new wave numbers a,,,_,,, with 
which new periodic steady-state solutions are gen- 
erated. The calculations show that these solutions 
are intricately interlaced with each other. 

Fig. 2 demonstrates some mutual transforma- 
tions of new solutions onto each other. The ampli- 
tude of the first harmonic Im (Hi) depending on (Y 
is presented here. Since (2.6) holds for (2.1), it is 

oq 
425 

Fig. 1. Bifurcation lines (2.15) (curves l-4) and stability zone 

(dashed region) for solutions of the first family. 

clear that in this figure and the analogous ones 
below, all the curves have their mirror doubles 
with respect to the axis Im(H,) = 0, which corre- 
spond to the same solution shifted by half a 
period. These curves are not shown to prevent the 
figures from getting overcrowded. Though for all 
families one could take Im (Hi) 2 0, the represen- 

w - 

0 f d 

-41 - 

Fig. 2. The first harmonic vs. OL for solutions of the first family 
(curve I) and solution families generating from the first one 

along curve 1 of fig. 1 (curve II). 
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Fig. 3. Profiles of families shown in fig. 2 by curve II. 
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tation used allows one to see graphically how the 
solutions pass into each other. 

In all analogous figures solutions are generated 
just in the points where Im(H,) = 0 (except for 
some specified cases). A single new solution is 
generated (see, for example, the points a and b in 
fig. 2) if these points are related to branching from 
Q = l/2, and two new solutions are generated if 
Q=l/r, t-23. 

Curve I in fig. 2 demonstrates how the first 
family disappears closing on the family generated 
from the first one with a new maximally possible 
wave number - point a ((Y, = 0.4979). Solution 
branching from curve 1 in fig. 1, with Q = l/2, 
actually appears in this point. While describing 
below new solution families generated directly 

from the first family from curves l-4 in fig. 1, and 
speaking about the corresponding generating 
curve, we shall not emphasize every time that the 
curves from fig. 1 are meant. 

Curve II (fig. 2) shows that new solution fami- 
lies can pass into each other. Its boundary point b 
is related to branching from curve 2 with Q = l/2. 
Moving from the origin point we shall be sequen- 
tially passing the points c, d, e, f, g and h generat- 
ing new solution families related to branching 
from curve 1 (fig. 1) with Q = l/3, l/4, l/5, l/6, 
l/7 and l/S, respectively. 

Fig. 3 shows variations of the wave form H(E) 
with variation of the wave number values from (Ye 
to (or. The numbers of the profiles presented are 
unambiguously related to the numbered points on 
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curve II in fig. 2. Here and further the waves are 
presented on one period X = 2n/a according to 
the given wave number CL Since at the points d, e 
and f of new family generation we actually have a 
wave with the wave number ICY (belonging to 
curve 1 in fig. l), respective r wavelengths are 
presented in one period of these families. Fig. 3 
graphically shows how new wave regimes change 
into each other. 

Based on the results presented one could state 
that new solutions bifurcating from curve 1 with 
Q = l/r pass into solution branching from the 
same curve with Q = l/(r + l), if L-X decreases. 
A similar statement is given in the paper by 
Demekhin [9]. Using the general theory of nonlin- 
ear equation solution branching and taking into 
account that periodic solutions of the first family 
are represented well enough by two terms of the 
series (2.4) at CY E {0.75,1}, he has actually inves- 
tigated some bifurcations from curves 1 and 2 
with Q = l/r. Thus he has semianalytically found 
the branching points a, b, c, d (and j -see fig. 4). 
The wave numbers (Y, = 0.4979, (Y~ = 0.4352, (Y, = 
0.3323, CX~ = 0.2994 and aj = 0.2923 found by him 
are close enough to (Y, = 0.4979, CY,, = 0.4211, (Y, = 
0.3323, (Ye = 0.2494 and ‘Ye = 0.2803 found by 
means of our method. Development of these solu- 
tions was followed by Demekhin only up to (Y = 
0.25. He stated that the solution of eq. (2.1) with 
period 2~r bifurcating from the solution of the 
first family with period 2a changes to the solution 
with period 2n(r + 1). However, our investiga- 
tions of branching from curves 2-4 show that this 
is not a general statement. 

Thus, for example, at branching from curve 2 
with Q = l/3, one of the solutions monotonically 
continues along (Y up to the minimal value of the 
wave number, atin = 0.1, which was only consid- 
ered in the present paper. The second solution 
branches to the side of large (Y, then it quickly 
turns and merges with the solution generated by 
curve 4 with Q = l/2. These three families are 
represented by line I in fig. 4. The corresponding 
wave profiles are given in fig. 5. Identification of 
profiles here and further is analogous to that pre- 
sented above for figs. 2 and 3. 

Note that at the moment of generation, the 
wave numbers of the families generated by curve 1 
with Q = l/4 and curve 4 with Q = l/2 are very 
close to each other: (Ye = 0.2494 and (Ye = 0.2505, 
respectively. Nevertheless the given method of bi- 
furcation analysis discriminates them unambigu- 
ously enough (compare the first curves in figs. 3 
and 5). 

Solution families generated from curve 2 with 
Q = l/4 evolve with changing of (Y similar to the 
families generated from the same curve with Q = 
l/3. Indeed, one of them continues from the point 
(Y, = 0.2090 of generation of these families to the 
side of smaller (Y and exists up to amin. The second 
one, having branched to the side of larger 1y turns 
to the region of smaller (Y and may be continued 
up to CX, = 0.1992. This point, as the analysis 
shows, is, in its turn, the point where two new 
families are generated from curve 1 with Q = 2/5. 
Thus we have merging of two different families 
again. 

Peculiarity of the point (Y, in comparison with 
the similar points considered above consists in the 
following: according to eqs. (2.8), (2.10) and (2.12) 
the second harmonic Im( Hz) increases faster in 
the neighbourhood of this point, but not the first 
harmonic as at branching with Q = l/r. 

The second family appearing at the point (Y, 
also continues into the region of small (Y at least 
up to amin. On the plane (Im (Hi), CY) this solution 
first goes to the region of large LX, intersects the 
horizontal axis at the point (Y + = 0,211 and only 
after that monotonically goes into the region of 
small (Y. Unlike all the other points lying on the 
intersection of the curves presented in figs. 2-4 
with the horizontal axis, the point (Y+ is not 
related with generating any new solution families. 
Only one harmonic Im(H,) vanishes at this point. 
In particular, the imaginary part of the second 
harmonic Im ( Hz) monotonically increases in ab- 
solute magnitude on passing this point in the 
given direction. 

In fig. 4 the solution families generated at the 
points (Y, and am are represented by line II. The 
behaviour of curve II in the neighbourhood of 
points a,, CY, and (Y, is shown on a larger scale in 
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Fig. 4. The first harmonic vs. OL for families generating from same points of curves l-4 (fig. 1). 

the right upper part of this figure. Figs. 6 and 7 
show profiles of the families which do not pass 
into each other. Fig. 8 demonstrates how the sec- 
ond families generated at these points merge. 

Lines I and II in fig. 9 show the families gener- 
ated by curve 3 with Q = l/2 and l/3. The points 
of their appearance are (Y, = 0.275 and (or = 
0.1836, respectively. These solutions extend to the 
region of small (Y without incidents. 

For all the families of periodic solutions of eq. 
(2.1) considered above, the values of phase veloc- 
ity satisfy the relation (2.16). Therefore in the 
limit ff + 0, they cannot pass into soliton solu- 
tions. Hence these solutions either exist on the 

finite interval of wave numbers, closing on each 
other, or can continue up to any small (Y. In this 
case more and more local maxima and minima 
appear on the wave period, if (Y decreases (see, for 
example, figs. 6, 7). As a result, such solution may 
pass into a stochastic one in the limit (Y --f 0. 

The above examples of branchings from curves 
l-4 (fig. 1) show how newer and newer solutions 
appear with the decrease of (Y. Distances between 
the points of new regime generation decrease in 
this case, and we have a countable set of solutions 
inthelimit a-0. 

Investigating stability of the obtained solutions, 
one can obtain new generating curves (2.15) on 
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Fig. 5. Profiles of families shown by curve I (fig. 4). 

the plane (q Q) which are analogous to curves 

l-4 in fig. 1. It is clear that in principle this 

procedure can be performed an unlimited number 

of times. 

To illustrate what is said above, fig. 10 presents 

a family appearing as a result of such “secondary” 

branching. This regime has branched from the 

family presented in fig. 4 by a part of curve I lying 

above the horizontal axis. Remember that this 

family appears at branching from curve 4 with 

Q = l/2. The new regime branched from the point 

(Y = 0.2602 also with Q = l/2. The first harmonic 

amplitude corresponding to it is represented by 

line III in fig. 4. 

The shading in fig. 1 shows stability region for 

the first family. Only a real part of one of the 

eigenvalues goes through zero on its lower bound- 

ary. Therefore, corresponding unsteady-state 

time-dependent regimes are generated from this 

line, e.g. bifurcation of the Landau-Hopf type 

occurs here. 

This figure shows that in accordance with the 

results of the paper by Nepomnyashchy [l], 

regimes with the wave numbers belonging to the 

interval [0.837-0.7781 are stable to all infinitesimal 

flat disturbances. 

The calculations show that the range of stability 

to special but important type of disturbances (dis- 
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turbances of the same period, i.e. with Q = 0) is 
wider (from the upper boundary of instability of 
the trivial solution a = 1 up to a** = 0.554). For 
this point all Lyapunov indices are equal to zero 
and a new solution of the same period with the 
phase velocity c > 0 bifurcates from the first fam- 
ily. Recall that we shall not consider solutions 
with c < 0 by virtue of (2.2) and (2.3). It is clear, 
in particular, that they appear at the same point 
a** too. 

Tsvelodub [10] was the first to obtain this fam- 
ily except for the neighbourhood of the bifurca- 
tion point a** and Nepomnyashchy [11] was the 
first to obtain this family in the neighbourhood of 
this point though the value of this bifurcation 
wave number, a -- 0.58, given in his paper slightly 
differs from that obtained by us. In a later paper 
by Nepomnyashchy [12], this value is revised and 
it coincides with the value found by us. The same 
value for a** is given in the papers by Chang and 
Chen [5] and Michelson [13]. 

The curve I in fig. 11 represents the values of 
the amplitudes A =-- Hm~ x - Hmi n depending on the 
wave number, for the waves of the first antisym- 
metric family, and curve II represents the ampli- 
tude values of a new family bifurcating from the 
first one at the point a** and having the phase 
velocity differing from zero. Evolution of the pro- 
files of this family is given in fig. 12. It is evident 
that for sufficiently small a a region of compara- 
tively fast variation of the wave profile H and a 
region with nearly constant function can be sin- 
gled out on the wavelength. 

The wave form in the region of fast variation 
remains practically unchanged on further wave 
number decrease for the values a _< 0.3, only the 
region of slow variation of the function H in- 
creases. In the limit a ---, 0, the family passes into 
a positive soliton, for which 

Fig. 6. Profiles of families generating in a e (fig. 4) and extend- 
ing to the region of small a. 

f_oo Hd~j > O. 
0 o  

In contrast to soliton solution of the KdV equa- 
tion it represents "a  hump" which monotonically 
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Fig. 7. Profiles of families generating in a, (fig. 4) and extending to the region of small O. 

Fig. 8. Profiles of families generating in a, and OL, (fig. 4) and Fig. 9. The first harmonic vs. a for families generating from 

merging with each other. curve 3 (fig. 1) with Q = l/2 (curve I) and Q = l/3 (curve II). 
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Fig. 10. Profiles of the family generating as a result of “sec- 
ondary” branching. 

0 o,= qs 0,75 4 o( 

Fig. 11. Amplitude vs. CT for the first antisymmetric family 
(curve I), for the first family with c > 0 (curve II) and the 
family branching from curve II with Q = l/2 (curve III). 

Fig. 12. Profiles of the first family with c > 0. 

decays along the exponent in the tailing front and 
possesses characteristic attenuating oscillations in 
the leading front [lo]. The value of its phase 
velocity is c = 1.2161. 

Investigation of this family stability has shown 
that it is unstable at any value of the wave number 
(Y. There are many lines (2.15) for it crowding on 
decrease of CL These lines are almost parallel to 
the Q axis on the plane (cy, Q). The first eight of 

Fig. 13. Bifurcation lines (2.15) (curves 1-8) for solutions of 
the first family with c > 0. 
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As seen from the results presented, all these 
families continue into the region of small (Y in 
contrast to the antisymmetric solutions described 
above. 

If the region of the original family (fig. 12) with 
fast variation of Z-Z consists of one hump, then 
according to the calculations the corresponding 
new families possess r such humps at branching 
from one of the lines (2.15) with Q = l/r and at (Y 
small enough. In this case these humps practic- 
ally reproduce the soliton from the paper by 

0 o]f C@ 93 

Fig. 14. Phase velocity c vs. a for families branching from the 

first one with c > 0. 

them are shown in fig. 13. A part of them is 
related to the oscillations of the some eigenvalue 
y, another part is related to a single passing of the 
eigenvalue through zero. It is clear that all the 
above ideology on new family appearance is appli- 
cable in this case too. 

We have calculated several new families gener- 
ated from the original family at a few points of the 
curves (2.15) presented in fig. 13, i.e. the regimes 
branching from curves 1 and 2 at Q = l/2 and 
l/3, and from curve 3 with Q = l/2. The depen- 
dence of velocities of these families on the wave 
number a is illustrated in fig. 14 by the following 
lines: for the family generating from curve 1 with 
Q = l/2 -line II, with Q = l/3 -lines III, IV; for 
the family generating from curve 2 with Q = 
1/2-V, with Q = l/3 -VI, VII; for the family 
generating from curve 3 with Q = l/2 -VIII. The 
points of family generation are designated by let- 
ters. The first family with c > 0 is shown by line I 
for comparison. 

Curve III in fig. 11 represents dependence of the 
wave amplitude on (Y for the family branching 
from curve I with Q = l/2. Amplitudes of other 
families also quickly approach curve II represent- 
ing the principal generating family on decrease of 
(Y, and consequently they are not shown here. Fig. 15. Profiles of the family shown by line II in fig. 14 
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Fig. 16. Profiles of the family shown by line III in fig. 14. 

Tsvelodub [lo]. Thus at small (Y these new solu- 
tions differ from each other by the distances be- 
tween humps and their numbers. This is illustrated 
in figs. 15-18. These figures show evolution of the 
profiles of the families represented in fig. 14 by the 
lines II-V respectively. In the limit cu + 0 these 
families are very likely to pass into corresponding 
solitons with r humps. This assumption agrees 
with the results of the paper by Demekhin and 
Shkadov [14], in which similar multi-hump soli- 
tons have been calculated by a completely differ- 
ent method. 

It is clear that new sets of curves (2.15) can be 
obtained exactly as while analyzing branchings of 
antisymmetric solutions of eq. (2.1) i.e. by means 
of investigating the family of solutions with c > 0 
for stability. New regimes are generated in their 
turn from these solutions along these curves (2.15). 
These regimes also have velocities differing from 
zero. And if branching takes place at a rational Q, 
then new periodic families appearing at such “sec- 
ondary” branching can also produce solitons in 
the limit a + 0, and these solitons are of a more 
complex form. 

2 

??45c 3 

4 

5 

2 

L-44 

Fig. 17. Profiles of the family shown by line IV in fig. 14. 

For example, curve III in fig. 14 represents 
dependence of the phase velocity value on CY for 
the family branched from the family represented 
by curve II in the same figure and by curve III in 
fig. 11. The evolution of wave profiles of this 
family is shown in fig. 19. As one can see, if seems 
already to have a 4-hump soliton in the limit at 
CY + 0. The wave number of the point where the 
new family appears is (or = 0.1373. 

Besides, concurrent with the first family (exist- 
ing in the interval 0.4979 I (Y I l), other antisym- 
metric families (if not all then at least some of 
them) are also sources of solutions with the phase 
velocity value c # 0. They also have points analo- 
gous to ff**, at which new families with c # 0 
bifurcate from the given family. Thus, this bifur- 
cation is illustrated in fig. 20 by the dependences 
of phase velocity (curve I) and amplitude (curve 
II) for the family branched with Q = 0 from the 
antisymmetric family represented by curve I in fig. 
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Fig. 18. Profiles of the family shown by line V in fig. 14. 

4. The corresponding profiles are shown in fig. 21. 
Here, (ho = 0.26018. 

From the above results it follows that eq. (1.2) 
possesses a multitude of families of steady-state 
travelling solutions quaintly related to each other. 
Their number is tinite for any fixed wave number 
and increases in an avalanche on decrease of (Y, 
producing a countable multitude of periodic and 
soliton solutions in the limit (Y + 0. 

In particular, the corresponding bifurcations 
from periodic solutions with c # 0 at irrational Q 
probably will also give regimes possessing the 
same characteristic humps as a structural element, 
the distance between the humps will vary irregu- 
larly. An arbitrary periodic solution of eq. (1.2) is 
to become stochastic in the time evolution process 
due to instability of the regimes considered. In an 
approximate modelling of such regimes we shall 
observe a complex behaviour, that will be closer to 

Fig. 19. Profiles of the family shown by line IX in fig. 14. 

A,C I 

Fig. 20. Velocity (curve I) and amplitude (curve II) vs. OL for 
the family bifurcating from antisymmetric families shown in 

fig. 14 by the upper part of curve I. 

the real one when the larger number of the wave- 
lengths A of the original disturbance will be taken 
as a principal wavelength rh. In the language of 
the Fourier series it means that r zero harmonics 
will be taken between the original nonzero har- 
monics in (2.4). 
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\ A G 

Fig. 21. Profiles of the family generating at point coo = 0.2602 
with c>O. 

Such complex behaviour of solutions was actu- 
ally observed in a number of investigations (see, 
e.g., [15,16]) on direct numerical calculation of eq. 
(1.2). With certain care these solutions can be 
apparently interpreted as the stochastic ones. 

Characteristic soliton-like structures are to be 
discriminated in stochastical regimes, as it follows 
from the results presented. 
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