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Abstract. Interpreting wave phenomena in terms of an underlying ray dynamics
adds a new dimension to the analysis of linear wave equations. Forming explicit
connections between spectra and wave functions on the one hand and the
properties of a related ray dynamics on the other hand is a comparatively new
research area, especially in elasticity and acoustics. The theory has indeed been
developed primarily in a quantum context; it is increasingly becoming clear,
however, that important applications lie in the field of mechanical vibrations
and acoustics. We provide an overview over basic concepts in this emerging field
of wave chaos. This ranges from ray-approximations of the Green function to
periodic orbit trace formulae and random matrix theory and summarises the state
of the art in applying these ideas in acoustics - both experimentally and from a
theoretical /numerically point of view.
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1. Introduction

1.1. General remarks

We will in this review focus on the solutions of linear wave equations describing
acoustic or vibrational phenomena; we will relate these solutions to an underlying ray
dynamics generated by, in general, nonlinear ordinary differential equations or maps.
We approach the field from two main directions: we first consider explicit connections
between ray and wave dynamics on the level of individual system. In a second
approach, universal behaviour of wave solutions are considered from a statistical point
of view. We will in the following work in the continuum approximation disregarding
the underlying discreteness of materials in terms of atoms and molecules. We will
thus not consider the quantum limit of elasticity - that is, the existence of quantised
lattice vibrations or phonons.

The theory describing linear wave equations in form of ray solutions is
well established using Eikonal or WKB techniques and the limitations of such
approximations are understood in principle. In the last few decades, the interest
shifted towards relating the solutions of linear wave equations to the dynamical
properties of the underlying ray dynamics. It could be shown that dynamical features
ranging from regular to purely chaotic behaviour leave distinct fingerprints in the
solutions of associated wave equations. The theory has mainly advanced in a quantum
context giving rise to the name quantum chaos. Schrédinger’s equation is a scalar,
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linear wave equation and is in that respect not very different from other physically
relevant wave equations such as in optics or linear elasticity. The 'weirder’ properties
of quantum mechanics, as for example, the measurement process or the violation of
Bell’s inequalities are in fact not considered in semiclassical approaches to quantum
mechanics. In that sense, techniques and insights from quantum chaos can and have
been applied to classical wave equations such as in optics, elastodynamics or acoustics
giving rise to a much broader field often referred to as wave chaos. In fact, many of
the methods and concepts used and developed in quantum chaos have been considered
independently in the optics and engineering community and developments have run
in parallel often with little cross fertilisation.

The main goal of this review is to bring the different approaches and communities
together and to discuss progress in the theory of elasticity and acoustics where it has
a distinct wave chaos component. To keep the review at a manageable length, we
will not consider developments in optics such as the studies on flat microwave cavi-
ties reviewed by, for example, [Stéckmann (1999) and [Kuhl et al (2005) or wave chaos
applications to micro cavity lasers by [Nockel and Stond d_L9_9_ﬂ) Likewise, we shall
only briefly discuss diffraction in Sec. LIl which may lead to randomness and disorder
and thus wave chaos effects (IM, ) Indeed, we will in general consider wave
scattering on obstacles large compared to typical wave lengths; "randomness” is thus
introduced through the chaoticity of the ray dynamics alone and is independent of the
wave length in contrast to diffractive wave scattering effects.

The name quantum or wave chaos has led to a considerable amount of confusion,
prompting Michael Berry to promote the name quantum chaology instead , ,
). It is thus important to stress that

a) we do only consider properties of linear wave equations; we are not concerned
with non-linear wave effects becoming important when going beyond the
linear approximations in acoustics and elasticity theory as considered by
[Lauterborn et al (1981);

b) we are not primarily interested in possible chaotic behaviour of the solutions of
the linear wave equations which can only exist as a transient effect due to the
linearity of the underlying partial differential equation (PDE), and

¢) we do not study the ’classical’ limit, that is, the transition from a wave dynamics
to a deterministic ray dynamics; this limit lies in fact outside a semiclassical
approach considering k — oo with k being a typical wave number in the system.

We will instead adopt the now generally accepted definition of wave or quantum chaos:
we consider the wave properties of systems described by linear wave equations which
have an associated ray or classical dynamics being chaotic.

The research field can roughly be divided into two areas: firstly, one can ex-
press wave operators such as Green functions in terms of the ray dynamics using
semiclassical or large wave number asymptotics which will be considered in Sec. 2
Secondly, there is a connection between statistical properties of spectra and eigen-
functions (or modes) of wave systems on the one hand and random matrix theory
(RMT) on the other hand. Here, the random matrix ensembles in question depend
on properties of the underlying ray dynamics and symmetries of the problem and will
be reviewed in Sec. Bl From a quantum chaos perspectlve both these areas have

been covered in a series of text books (Gutzwiller, [1990; [Brack and Bhaduri, [1997;
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Stéckmann, [1999; [Haake, 2001; (Cvitanovié et al, 2006) and review articles
11998; [Tanner et gJ 2000; [Kuhl et al, 2005) and will thus only be con81dered in as far
as links between wave chaos and elasticity exist. We would like to also mention the
article collections edited by Sebbah (2001) and [Fink et al (2002) which may serve as
an ideal starting point for a more in-depth introduction into this research area from
an acoustics point of view.

Our emphasis will be on a ray-analysis of wave phenomena in the presence of
multiple scattering events and ray chaos. A ray description is common in elasticity
especially when considering scattering of elastic waves at interface boundaries. The
interpretation of seismographs in terms of wave pulses moving on curved rays in
the earth, for example, is one of the basic applications of ray methods. Especially
the ray conversion between longitudinal and transversal wave components and the
excitation of surface waves giving rise to earthquakes such as Rayleigh waves on solid-
air interfaces or Lamb waves at the sea bottom have been studied in great detail
(IBr_e&hgxskigH, |19&j) Processes entailing only a few scattering events such as reflection
on multi-layered surfaces (Brechovskichl, [1980) or scattering of obstacles such as cracks
Achenbach et _al, |L9§Z) are often studied in a WKB-type approach along rays obeying
Fermat’s principle of shortest travel time. Effects related to the boundary conditions
such as surface waves or diffraction can be treated by considering ray dynamics in the
complex plane (Ilﬁalle;r_am_K_ar_a], 11960, [1964; Rulf, 119_6_9) These studies are important
in the geophysical domain as well as for non-destructive evaluation using ultra-sound
to investigate materials for cracks and defects.

In the examples above wave signals are often treated in terms of only a few
ray paths where interference effects play no or only a minor role. This changes
drastically when extending a ray analysis to long-time wave dynamics including
multiple scattering; examples are wave propagation in reverberant bodies of finite size
undergoing multiple reflections on the boundary or open systems containing many,
disordered scatterers. The number of ray paths reaching a point r from a source point
ro will then grow quickly with the travel time due to scattering off boundaries. Not
including mode conversion, the proliferation of possible paths with time is a power-
law for systems associated with an integrable ray dynamics. For chaotic behaviour,
the effect is even more drastic leading to an exponential increase of ray trajectories
connecting rg and r in time ¢ |Gutz willex d_Qmj The possiblity of mode conversion at
boundaries gives additional contributions as discussed in Secs. 2.2.3 and 23]

Waves travelling along different paths will interfere leadmg to complicated wave
patterns. A ray analysis may thus indeed seem hopeless here. We will demonstrate
that this is not necessarily the case and review quantum chaos techniques and their
modifications to an elastodynamics setting in Sec. ZI1 The vectorial nature of the
wave equations and the phenomenon of wave splitting due to mode-dependent wave
speeds leads to a multi-component classical ray dynamics. This gives rise to new
dynamical features not possible in ordinary Hamiltonian dynamics as discussed in
Sec. Applications of ray chaos effects in wave splitting billiards, Sec. 23] time
reversal imaging, Sec. 24 and its connection to fidelity decay, Sec. 25 as well as
underwater acoustics in Sec. will be reviewed.

Statistical considerations will be treated in Sec. Bl Some of the aspects of RMT
and wave chaos have been reviewed recently by [Kuhl et al (2005) in the context of
chaotic wave scattering. A partly complementary overview will be given in section
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Sec. BT} it includes a short overview on RMT as well as key results from experiments
on elastic bodies. We will point out how wave function statistics and cross-correlation
functions are related to the Green function in Sec.[3.1.4] and discuss weak localisation
effects in Sec. In practical applications, absorption and other dissipative chan-
nels always play a large role in acoustic problems; a realistic treatment thus needs to
take into account losses of wave energy, that is, the openness of the wave problem.
In Sec. we focus on a statistical approach towards transport of wave energy in
dissipative wave systems leading to an RMT treatment of correlation functions and
higher moments of the Green function. We conclude this section by discussing the
relation between wave chaos and a method widely used in engineering applications
for estimating the flow of vibrational energy in large structures, Statistical Energy
Analysis (SEA) in Sec.

We close the review by giving an outlook on possible further applications of wave
chaos methods in elasticity. We highlight some of the areas where there are still
plenty of unresolved problems; these are in particular diffraction effects, the influence
of curved surfaces, or the impact on the wave dynamics due to anisotropy of the ma-
terial. These topics are discussed in Sec. [l

We start, however, by giving a short overview over the basic wave equations
considered in detail in the review in the next section.

1.2. Basic wave equations

We start by introducing the linear wave equations discussed in more detail in this
review. We will restrict ourselves to wave propagation in solids, fluids and gases
in the continuum approximations and for small deformations. Similar wave equations
appear frequently in the context of electromagnetism or quantum mechanics, however,
often in a different setting; we will thus focus on applications to acoustics and elasticity
throughout.

Linear elastodynamics has applications ranging from acoustic and structural
engineering to seismology. Typical time scales are much larger than in the optical
or quantum regime with sound speeds and frequencies allowing for time resolved
measurements of wave signals. We will in the following assume that the wave equations
are not explicitly time dependent due to for example time dependent variations in
material densities and we work in the frequency domain if not stated otherwise.

Wave equations in continuum mechanics are only linearised approximations and
the applicability of the equations are limited by non-linear terms and dissipation.
Including these nonlinearities can lead to chaotic effects due to nonlinear interactions
between acoustic waves, also referred to as ’Acoustic Chaos’ in the literature
Lauterborn et al (1981). These effects are beyond the scope of this review and are
negligible in many applications. "Wave Chaos’, as we understand it here, refers
solely to linear wave problems where chaos is introduced through the underlying ray
dynamics.

1.2.1. The Helmholtz equation One of the most important wave equations in the
context of continuum mechanics is the scalar Helmholtz equation describing, for
example, acoustic pressure waves in fluids and gases, vibrations of thin membranes,
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shallow water waves, electromagnetic waves in thin cavities and a free quantum particle
in a finite domain, a so called quantum billiard.

The Helmholtz equation can be derived from a linearisation of the Navier-Stokes
equation in the adiabatic approximation and has the form (for constant density p)

AAD(r) + w?d(r) =0; (1)
here, ® is a scalar function such as the variation in pressure P (in dimensionless
units) and ¢* = (9P/0p)s denotes the wave velocity (where the derivatives are taken
in the adiabatic limit at constant entropy S). The latter is, for example, ¢ = /T/p for
vibrating membranes with 7', the tension applied at the boundary. In the more general

case of inhomogeneous fluids (IBIQthLSkj&H, UM), the equation for the pressure
variation P becomes

V- (ivp) + Kk(rw?P =0 (2)
p(r)

where k(r) is the adiabatic compressibility. The general form, Eq. (), is recovered

when switching to ¢ = P/,/p with a new effective wave number w/c depending on

position r.

In acoustics, damping caused by viscous or non-adiabatic effects plays an
important role where the latter are due to the finite thermo-conductivity of the
medium. In addition losses, at interfaces and boundaries can be quite substantial;
typical boundary conditions are Dirichlet, Neumann or Robin boundary conditions.
More complicated conditions may apply if energy transfer at interfaces such as

at fluid/solid boundaries becomes important as discussed by M) and
Kinsler et al (1999).
Going from a wave to a ray pictures, one writes the wave function in the form
®(r) = A(r)e™®)
After inserting ® into ({J) and neglecting terms of the form AA/A < (w/c)?, this leads
to the Eikonal equation for the phase S, that is,
A(r)(VS)? = w?. (3)

The PDE (@) is a Hamilton-Jacobi equation which can be solved by the method of
characteristics. After defining the wave number k = V.S (referred to as momentum p
in the context of classical mechanics) and the Hamilton function

Hk,r) =2 (r)k? =w?, (4)

one obtains the ray-trajectories (r(7)), k(7)) from Hamilton’s equations

d d
—r=V,H=2k; —k=-V,H=-2k?Ve. (5)
dr dr

Here, 7 is a fictitious time conjugate to the energy FE = w? which is related to the real
time by ¢ = 2w7. This translates into the more common equations of motion

F=ck; k=-2ve; (6)
c
The dimensionless action S is given as
S(r,rg) = /dr' k(r') (7)

where the integration is taken along a ray from rg to r. An r-dependence of the ‘'mass’
term m = 1/2¢? gives rise to bending of ray trajectories. The ray equations (G may
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also be obtained by a principle of least action, referred to as Fermat’s principle in
optics. This principle leads to an effect often observed for example in seismology;
the apparent wave velocity, that is, the ratio of the distance L between source and
receiver point and the pulse travel time, increases with L. Following Fermat’s principle
in inhomogeneous media, it is easier to find an optimal path avoiding regions with
high density and slow local velocities for longer ray trajectories than for short rays.
The theory including scaling laws and the onset of saturation has been worked out

in [Tworzydlo and Beenakker (2000) using methods from structure optimisations for

polymers.

1.2.2.  The biharmonic equation The flexural motion of a plate of constant
thickness and without curvature is well described by the biharmonic wave equation

(Landau and Lifshit, [1959)

D

— A% - WP =0 (8)

ph
where the scalar ’wave function’” ®(z,y) now corresponds to the displacement
amplitude normal to the plate. The flexural rigidity D is given as

Eh?
- i ©)
12(1 — o2)

with material constants referring to Young’s modulus of extension, E, and the Poisson
ratio, o; h is the thickness of the plate. The biharmonic equation can be derived

from the basic equations of elastodynamics, see (4] below, by assuming a vanishing
component of the stress tensor normal to the plate; this approximation is called the

Kirchhoff-Love model dLM, 11944; |Achenbach et al, |19ﬁﬂ) If the assumption of no

curvature is relaxed one arrives at the more general shell theories discussed in Sec.
Common boundary conditions are clamped,

®=0, 9P/On=0, (10)
simply supported

0%® do 0P
or free boundary conditions
0AD 0 . 0?® 9% .9 5 02
- + (1 — O')& [cos@sm@ (@ — 8—y2) + (sin® 0 — cos 9)8x8y] =0(12)

. ?e 0@ 5, 0?®
AD+ (1 -0) (281n600898x8y — sin GW — cos 05‘—3/2) =0,

where n and ¢ refer to the normal and tangential direction at the boundary in the
plane of the plate and § = Z(r,n) (Landau and Lifshitz, [1959). Note that plates also
support wave modes related to deformations in the plane of the plate. These in-plane
deformations are discussed in the next paragraph and, in the context of shell theory,
in Sec.
The wave equation (§]) factorises in the form

(A—E)(A+E)D =0 with k*= %uﬂ (13)
giving rise to strong dispersion and propagating and decaying solutions. The
latter exist near boundaries whereas the former obey the Helmholtz equation with
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conventional ray dynamics. The boundary conditions lead to mixing between
propagating and decaying modes resulting in non-trivial phase shifts for the
propagating wave field far from the boundaries, see Sec. [2.2.2

1.2.5. Wave equation for isotropic elastic bodies The propagation of elastic
deformations in a three dimensional, isotropic body written in terms of the forces
acting on volume elements has the form

2

V.o(u) (14)

~ o™
Here u(r) describes the displacement from the equilibrium position r and
oij = AOkurdij + p (diuj + Oju;) (15)

is the isotropic stress tensor representing the force F; acting on the surface dA; where,
the summation convention is used. The wave equation (I4]) can be written in terms
of the Navier-Cauchy equation which in the frequency domain has the form

pAu+ A+ p)V(V-u) +pw’u=0, (16)

with material constants A, u, the so-called Lamé coefficients; see Landau and Lifshitz
(1959); [Bedford and Drumhelled (1994) as well as a review by [Weaveld (2001) for an
introduction.

Introducing elastic potentials ® and W by using standard Helmholtz
decomposition of the displacement field u, that is,

u=u,+u, with u,=V®, u,=Vx¥, (17)

the Navier-Cauchy equation reduces to two Helmholtz equations, that is,
(A+E)®=0; (A+E)T =0 with kps=w/cps (18)

where k, ; stands for the wave numbers for pressure (longitudinal) and shear
(transversal) wave components, respectively. The wave velocities are different for
the two different polarisations, that is,

_ A2 El-0)  _ fi_ [ B
Cp\/ p \/p(1+0)(1—2a)’ 5\/; \/E. (19)

Note, that pressure waves are always faster than shear waves.

By setting ¥ = (0,0, ¥)’, one obtains the wave equation (If]) in two dimensions
describing in-plane deformations in plates (plane stress) or wave propagation in bodies
extending to infinity along one axis (plane strain). In the case of plane stress, the
longitudinal wave speed is given as

E 20

Cp = p(l _ 02) : ( )

A more careful treatment of in-plane and flexural modes in plates solving explicitly the
infinite plate problem leads to the Rayleigh-Lamb dispersion relations. These contain
the plate and bulk dispersion relations in equations (I3]) and (8] only in the limit
of w small compared to the cut-off frequency; the next to leading order terms in a

expansion in w have been given by Bertelsen et al (1201)11)
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Figure 1. Wave splitting for in-plane waves at the boundary; here, conversion
from an incoming s wave to an s and p wave are shown.

The wave equations ([I8)) couple at boundaries for typical boundary conditions.
For example, if no forces act on the boundary, that is, free boundary conditions apply,
one obtains

t(u) =o(u) -n=0, (21)

Here, t is called the traction and n denotes the normal to the boundary. For a free
boundary there are still non-vanishing tangential stresses as discussed in
(@) and [Achenbach et al (Il%j), one has: oy # 0, whereas 0,, = opt = 0y, = 0
with ¢ denoting the directions tangential to the boundary.

The ray dynamics related to the vectorial PDE (@) consists of longitudinal
and transversal components propagating according to (@) with different velocities.
Formally, this can be derived via a WKB-ansatz, see [Achenbach et al
from the free Green function in the limit of large wave numbers
For inhomogeneous media, a WKB treatment can be found in
Brechovskich dl%d ) taking into account variations in the density. In 1sotr0plc bodies,
the two polarisations are decoupled in the interior giving rise to independent ray paths.
Fermat’s principle leads to a modified Snell’s law at impact with boundaries according
to

cp _ sin 0, (22)
cs sinf,’

where 6,,, 65 denote the angle of incident or reflection of the pressure and shear wave,
respectively, measured with respect to the normal to the surface, see Fig.[Il This leads
to mode conversion and ray splitting at boundaries with reflection coefficients obtained
asymptotically from solving the wave equation (Il for plane waves impacting on a
straight boundary; for free boundary conditions one obtains, dL_and_a;l_am_Llfshle,

11959; |[Couchman et al, [1992)

sin 26, sin 26, — k2 cos? 20, (23)
« =
PP sin 20 sin 20, + K2 cos? 20,

Qss = Qpp

— 2 2 _
aps = —agp and  ag, +ag, =1

where . relates components normal to the boundary of incoming waves of
polarisation ©’ € {p,s} to outgoing waves of polarisation 7 and k = ¢,/cs > 1.
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Defining |a,./|* as the proportion of the energy density of the wave undergoing
transition from 7’ — 7, one obtains

| ¢ cos b
Arp! = u = Ayt . (24)
Cyr COS O/

with |ag.|?, the ratio of the corresponding energy fluxes normal to the boundary
(with normal velocity ¢, cos@,). The unitarity of a implies flux conservation normal
to the boundary.

When taking into account boundaries, solutions for problems such as scattering
from the infinite half plane or the interior/exterior wave problem for a circular
plate/hole can be treated analytically, see for example (Landau and Lifshit, [1959;
Keller and Karal, [1964; Sendergaard and Tanner, [2002; Wirzba. et al, mﬂﬂ) Apart
from these simple geometries, numerical or approximative techniques need to be
employed for solving wave problems in elasticity. Such an analysis is complicated by
the fact, that for the Navier-Cauchy equation, the solutions for corners are not known
in closed form. In the next section, we will review asymptotic methods covering the
high frequency regime and connecting wave problems to a ray dynamics.

2. Wave dynamics - a ray perspective

The idea of wave energy travelling along rays is a useful guiding principle in wave
propagation problems in acoustics and elastodynamics, espemall in areas such
as underwater acoustics, seismology or acoustic microscopy . The
connection between wave problems and the details of an underlymg long term ray
dynamics has been considered very early in room acoustics (M, ), more
systematic studies started, however, only in the late 1980ies. In many applications, it is
indeed only the early arrival times of acoustic signals which are considered important.
This part of the signal is related to short ray paths with relatively simple dynamics. For
earthquakes, for example, it is the early signal which causes most of the destruction at
well defined arrival times from the epicentre; the seismic signal arriving at later times,
the so-called seismic coda, is in general incoherent and has received attention only
recently in the context of reconstructing the Green function from cross correlated
data, see Sec. B.I.4l Acoustic signals undergoing multiple scattering such as the
propagation through a disordered media, in room acoustics or in determining the
distribution of vibrational energy in large build-up structures, often show seemingly
random fluctuations. Statistical methods are favoured, here, which imply certain
assumptions on the underlying ray dynamics such as ergodic or diffusive behaviour.
These methods disregard the actual ray dynamics completely and can describe generic,
universal features of wave systems; these techniques will be discussed in more detail
in Sec. Blin the context of random matrix theory.

The relation between wave and ray dynamics became a focus in quantum
mechanics in the early 1990ies. Gutzwiller’s progress on small wavelength
approximations of the Green function in the time and frequency domain ,
) as well as uncovering the duality between eigenfrequencies and periodic rays in
the asymptotic regime offered a new way forward for studying the imprint of regular
or chaotic ray dynamics on the associated wave problem. In the acoustics communlty,
this way of thinking has been picked up in the early to mid 1990ies

[Ellegaard et al, 1995, 1996; [Fink, [1997; Tappert and Browul, |j_9ﬂ and is recelvmg

increasing attention in an engineering context.
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We will focus in this section on the interplay between wave and ray dynamics.
We start by briefly reviewing short wave-length approximations of Green functions
and related operators derived in a quantum context. This is followed by a survey of
wave versus ray chaos aspects in acoustics and elastodynamics including a discussion
on trace formulae for elastic, isotropic bodies in Sec. and ray-splitting billiards
in Sec. We will then introduce the concepts of time-reversal imaging in Sec. 241
based on the time-reversal invariance of both the ray and wave dynamics and finally
discuss wave chaos aspects in ocean acoustics in Sec.

We will in the following assume that absorption can be neglected and that the
problems considered are not explicitly time dependent. We will avoid references to
quantum mechanics. The high-frequency or semiclassical limit is thus understood
in the sense that the wave length is small compared to typical dimensions such
as the size of the resonator. This limit is formal as ultimately the wave length
becomes as small as the inter-atomic distances in the medium and the continuum
approximation breaks down. In the case of a single crystal resonator, for example,
the actual phonon dispersion relation should then be used. We will not consider such
complications, but merely note that ballistic effects have been observed experimentally
also for phonons by [Hensel and Dyned (1977) and Northrop and Wolfd (1979). For
isotropic media, often produced through fusion thus destroying the crystal structure,
there is a minimum grain size at which the continuum approximation breaks down
Weaver M) Likewise, cut-off effects may become important for wave propagation
in plates or membranes when the thickness becomes comparable to the wave length
and nonlinear terms enter the wave equation for large excitations, which will, however,
not be our primary concern here.

We end this introductory part with a general note. In acoustics, a distinction is
often made between a ray, wave or modal picture. In the terminology of semiclassics,
rays correspond to the classical limit, wave dynamics refers to wave packet propagation
and modes are related to the eigen- or wave-functions of the system, respectively.
The main emphasis in this section is thus on a describing eigenfrequencies and
eigenfunctions in terms of an underlying classical, long-term ray dynamics; this is
in contrast to traditional approaches in acoustics classifying arrival times for wave
packets or impulses in terms of a ray picture for short times.

2.1. A brief review of quantum chaos

Quantum spectra and wave functions are influenced by the underlying classical ray
dynamics in an intricate way. While the wave equations are linear thus obeying the
superposition principle, the often non-linear dynamics of the ray motion manifests
itself in a wide range of wave phenomena. Wave systems being integrable in the clas-
sical limit tend to be ordered and a set of integer ’'quantum numbers’ can be assigned
to each eigenfrequency. Wavefunctions are localised on classical tori and there are no
correlations between levels corresponding to series with different quantum numbers.
Quite the opposite is true for wave problems related to classically chaotic systems; the
eigenfrequency spectra have no obvious structure and wavefunctions are extended over
the whole phase spacelil. Eigenfrequency statistics is again very different for systems
with an integrable or a chaotic classical counterpart as will be discussed in more detail

1 Phase space representations of wave functions can be obtained by suitable transformations such as
the Wigner transformation, see [Gutzwillel )
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in Sec.

A convenient starting point for a semiclassical treatment is the Green function in
the time and frequency domain solving

2 ~ ~
<_% _H> G(raro;t) zé(ro_r)é(t)’ (25)
(w? = H) G(r,ro;w) — 5(ro — 1) o)

where H is a time independent wave operator such as listed in Sec. In the
following, we will consider hyperbolic wave equations and the spectral parameter is
thus not E/h but the square of the frequency. Note that G(t) and G(w) are related
by Laplace transformation.

Gutzwiller derived a semiclassical expression for the quantum propagator
é(r, ro;t) starting from Feynman’s path integral (Feynman and Hibbd, |l9_6£j) Using
stationary phase approximation, G can be written as a sum over all possible classical
trajectories from ry to r in the time ¢, see dszzwil]_eﬂ, |19_9ﬂ) Such a treatment
is not immediately amendable to hyperbolic wave equations as listed in Sec.
due to time-ordering problems. A formulation in terms of path integrals has been
proposed by adding an additional (fictitious) time variable to the time independent
problem (26) and constructing an artificial parabolic equation 1981
Bothelho and Vilhend, |J£_9_4I) or by employing parabolic approx1mat10ns of the orlgmal
equations (IDaahﬁﬂ |;I.919 MacDonald and Kupermar, [1987; Dacol, @) such as
discussed in Sec.[2.6l For an exact treatment of arrival time problems in acoustics and
elasticity see the discussion by Miklowitz (1978) and [Hudson (1980). We circumvent
the problem here by focusing on time independent problems considering the Green
function in the frequency domain, Eq. (Z0)); it has the same structure irrespective
whether the associate time dependent PDE is hyperbolic and parabolic and can thus
be expressed in terms of the same semiclassical formulae.

The Green function exhibits poles at the eigenfrequencies or resonances; for closed
systems, G may be written in terms of the real eigenfunctions (or modes) u,, which
for scalar wave equations reads,

Gr,ro,w) = Un(T)un(ro) (27)

2 _ 2
w? — w2

n

In the high frequency limit, G may be approximated using expressions derived in a
quantum context. For short distances and direct paths with |r — rg|k ~ 1, the Green
function can be written in terms of the free Green function with local wave number
k = k(r). Contributions from paths long compared to the wave length give rise to the
approximate form

.
GSC(I‘,I‘(), )* 27” (d+1)/2 Z V |D exp [ZS r,ro; )_ZM§ (28)

cl.tr
r—ro

w (

where d is the dimension of the system and the sum is over all classical paths from
ro — r on the energy manifold H(p,r) = w?. The Hamilton function H is given for
example by Eq. ). The action S(r,rg;w) defined in (@) is taken along the classical
path. The amplitude can be written as

D, r0;w) = — det( 03 ) (29)

| 7] 2] OriOr;’
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where 1/, T are the velocities at the start and end points of the trajectory and the partial
derivatives are taken in a local coordinate system perpendicular to the classical path,
see (Gutzwille, [1971, |LQ9ﬂ) The integer index p counts the number of caustics or
singular points for which D! = 0 along the classical path on the energy manifold. The
validity of (28] is so far independent of the type of the underlying classical dynamics,
e.g. chaotic, integrable or mixed behaviour. Deviations from the exact Green functions
due to the stationary phase approximation are most prominent at classical caustics
where the amplitudes D(r,rg;w) diverges. Note, that the semiclassical approximation
contains wave-like elements such as the interference of paths, but can in this form
not account for effects such as diffraction or tunnelling. These can be incorporated
by including non-classical paths in terms of solutions of the complexified equations of

motion (G) as discussed by, for example, [Keller and Karal (1962) and |Creagh (1996).

2.1.1. Trace formulae and spectral determinants The information about the
eigenfrequency spectrum {w,} is contained in the trace of the Green function

1
_ _ d .
gw)=TrG(w) = / d%r G(r,r;w) ~ Z g (30)
For systems of finite size, the density of states is related to the trace by
2
d(w) = zn: S(w—wp) = —?w 61ir61+ Im g(w + ie) (31)

Inserting the semiclassical approximation, (@8)), into ([@0) and evaluating
the resulting integrals by stationary phase leads to unphysical singularities near
bifurcation points in mixed regular and chaotic systems. Closed semiclassical
expressions for the trace in its simplest form can thus be given only for integrable
or completely chaotic systems. The trace can in both cases be written as a sum over
classical periodic orbits of the system; this establishes a Fourier relation between the
eigenfrequencies of a wave system and the set of periodic orbits of the underlying
ray dynamics. Bifurcations can be taken into account using uniform approximation
which leads to contributions going beyond Gutzwiller’s treatment, see for example

'Schomerus and Sieber (1997).

Trace formulae: In integrable problems such as the ray dynamics in rectangular
or spherical cavities, phase space can be foliated in terms of invariant tori and the
Hamiltonian can in action-angle variables be written as a function of the actions
I alone. Approximations to the eigenfrequencies can be obtained in terms of the
Einstein-Brillouin-Keller (EBK) condition, the multidimensional generalisation of
WKB-quantisation in one dimension. Periodic boundary conditions on the tori
demand

Imj:27r(mj+%), m;ENand j=1,....d, (32)

where the integer Maslov index o; labels the number of caustics along a 27 rotation in
the angle ¢; conjugated to I;. The eigenfrequencies are then obtained by (m,

1990)
Wi =H Iy, Imy) - (33)

m

The corresponding wavefunction (in Wigner representation) is localised on the torus

I, (Berryl, 19774, i ,11983). For integrable systems, the
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integration in (B0) can be performed in angle variables giving rise to contributions
from continuous families of periodic orbits on tori with rational winding numbers.
The resulting periodic orbit formula is equivalent to the EBK - quantisation (B3]
(Berry and Tabor, [1976).

The other extreme case, hard chaos, is characterised by ergodic classical motion
with exponential separation of neighbouring trajectories. Inserting the expression (28)
into ([B0), only those trajectories contribute which close in coordinate space. The main
contributions to the trace integral come from stationary phase points giving rise to
the additional condition k = k’, that is, the initial and final momentum coincides.
The trace can thus be written as a sum over (unstable) periodic orbits of the chaotic
system and the density of states takes on the form dGJ_lLZjMﬂlﬁJJ, |;|_9_9ﬂ),

o0

- 1 cos(1Spo(w) — Topem/2)
dw)~=dw)+—=> Ty . 34
R RNy e (34)

The first sum is taken over all periodic orbits (po) of the classical ray system and
the sum over r accounts for the repetitions. In a chaotic system, these orbits form
a dense set of measure zero in phase space. The action S is taken along the orbit
and T represents the period. The Monodromy or stability matrix M is the Jacobian
matrix of the full phase space flow in a reduced local phase space coordinate system
perpendicular to the trajectory and on the energy manifold. It describes the linearised
dynamics in the neighbourhood of the orbit after one revolution. The stability of a
periodic orbit is characterised by the eigenvalues A of M. The integer index o, also
called the Maslov index, is closely related to the number of caustics p in [28). It
is equivalent to a winding number counting twice the number of revolutions of the
stable or unstable eigenvectors of M around the periodic trajectories as investigated
in |Creagh et al (1990) and [Robbing (1991).

The smooth part d(w) originates from contributions of the form lim, . G(r, ', w)
giving rise to the mean level density, also called the Thomas-Fermi contribution in
atomic physics or the Weyl term in the context of resonators, see Sec. Z.2.1] for details.
For scalar wave equations of the Helmholtz-type, one obtains in leading order

d(w) = (22:)(1 //ddrddk 5(w? — H(p,r)), (35)

see for example (Gutzwillex, [1990).

Spectral determinants: It is sometimes advantageous to consider the so-called spectral
determinant

D(w) = det(w? — H) = 1_[(602 —w?)

which has zeros at the position of the eigenfrequencies; it is obtained from the trace
[B0) via the relation D(w) = exp ([ 2wg(w) dw). Making use of (4] valid for chaotic
systems, one obtains

[e )

Dg.(w) ~ e_iﬂﬁ(w) exp | — €Xp [iT(Spo(w) - UpO7T/2)) 36
e lp_o[ ’ ; ry/|det (M5, — 1) (36)

_ efiﬂ'ﬁ(w)gsfcl (w) ,




CONTENTS 15

where N denotes the smooth part of the spectral staircase
N(w) = / A’ (). (37)
0+

The integration over frequency is carried out using the relation T}, = 0Sp,/0w. The
last equality defines the semiclassical zeta function ¢! which for bound problems has

properties reminiscent of the Riemann zeta function d.’]:ilmhma.tsﬂ, [1986; Berry, 1986;
Brack and Bhaduri, [1997).

The S—matriz and periodic orbits The periodic orbit formulae discussed in the
previous sections are valid also for open systems provided the Green function has been
appropriately regularised before taking the trace. In acoustics, one often considers
waves scattering from walls or other obstacles in an otherwise open setting, where
it is more useful to work with the scattering matrix directly. For a more in depth
discussion of open systems, see Sec. and especially Sec.

A connection between the S-matrix and the trace of the Green function, (and

thus periodic orbit formulae), is provided by Krein’s formula , )
i d
2w lim Im'Tr [G(w? + i€) — Go(w” +ie)] = %@ logdet S(w);  (38)

(see also Eq. ([B0) defining a relation between the Green function and the scattering
matrix in the presence of well defined scattering channels.) The periodic orbit
contributions are contained in the trace of the total Green function G, whereas the
reference Green function G regularises the expressions for r — oo.

One obtains the determinant of the S-matrix in terms of semiclassical zeta
functions after formally integrating and exponentiating [B8)) on both sides. Splitting
the imaginary part into a contribution from the upper and the lower complex energy
half plane, one obtains (Wirzba, [1997):

det S(w) = 672”iN(w)C‘gCi57ww . (39)
Gse (W)

The zeta function (' (w) introduced here is defined in (B6]); the product is taken now
over all classical periodic orbits trapped in the scattering system. The phase N (w)
is the effective phase space volume of the scatterer i ishki ,|;|_9_9ﬂ);
its derivative with respect to energy is directly related to the mean delay time due
to the scattering process, also referred to as the Wigner-Smith time delay ,
). Eq. (B9) reveals the connection between the zeros of the zeta function and the
poles of the S—matrix. The resonances of a scattering system are thus again intimately
connected to the classical periodic orbits.

The semiclassical formulae (34)), (B8) and (B9) establish Fourier relations between
eigen-frequencies or resonances of a wave systems and the periodic orbits of the related
classical or ray dynamics. The classical ingredients, such as, actions, stabilities and
winding numbers of periodic orbits as well as the eigenvalues, are invariant under
coordinate transformation and so are the quantum and semiclassical traces. Note,
however, that both for classically chaotic as well as for integrable systems, it is the
sum over all periodic orbits which gives rise to the poles at the eigenenergies.

§ Strictly speaking, (3R] is applicable only after considering the whole system in a large box to
obtain a discrete spectrum for both G and Gp. The imaginary part of the traces is (up to a
factor of 7) the level density (BI)); it is properly defined only by setting Im TrG(w? + ie) :=
—%[TrG(w2 + ie) — TrG(w? — ie)]. Letting the box radius go to infinity before taking e to zero
provides the finite, nontrivial result.
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2.1.2. The transfer operator and semiclassical quantisation conditions The periodic
orbit formulae (4] or (30) for chaotic systems are not absolutely convergent for real
energies E = w? as discussed in [Eckhardt and Aurell (IL%Q), to obtain convergent
expressions on the real axis, it is vital to find an efficient ordering scheme in
the summation to ensure maximal cancellation between terms (Aurich et al, 1988,
Cvitanovi¢ and Eckhardt], [1989; Berry and Kgatiné, 11990; [Tanner et al, 11991). An
ordering is naturally provided by the so-called transfer operator method ,
) which will be briefly introduced here. Transfer operators are a generalisation of
boundary integral kernels; the latter find widespread use as a numerical tool to obtain
eigenfrequencies in acoustics and elasticity in finite domains (m, @) As usual,
we will restrict the discussion to scalar wave equations, the generalisation to elasticity
will be treated in Sec.

We start from a classical Poincaré map defined on a 2d — 2 dimensional sub-
manifold of the full phase space - the surface of section - by a condition f(r,p) = 0;
H(r,p) — w? = 0. The mapping is given by subsequent intersections of a trajectory
with the surface of section. Choosing, e.g. f = r4, (which may be achieved after an
appropriate coordinate transformation), one defines in analogy a quantum Poincaré
map acting as a discrete-time propagator on wave functions

¢m+1 /dsg ! T(S So; W )wm(so)

with s,s9 on the d — 1 dimensional surface of section. The so-called transfer
operator T'(s,sp;w) is unitary reflecting the phase space conservation of the classical
map. Neither the classical Poincaré map nor the corresponding quantum transfer
operators can in general be given analytically. The classical map is usually obtained
by solving the equations of motion numerically. Constructing the corresponding
quantum map explicitly is a more elaborate task; quite general methods are presented

in (Doron and Smilansky, 1992; Dietz and Smilansky, 1993; [Prosen, 11994,1995,1996:
Rouvinez and Smilansky, QM) The quantum Poincaré map contains the whole

information about the eigenfrequency spectrum given by the fixed point condition
1 = T(w) 1, that is, eigenfrequencies correspond to the zeros of the function
¢ Hw) = det[1 — T(w)]. (40)

A direct connection between ([@0) and the semiclassical zeta function ([B8) can be
established for chaotic systems; by writing 7" in semiclassical form, one obtains

(Bogomolnyl, 1992; [Doron and Smilansky, [1992)
25
TSC(S,S(); ) 27TZ (n 1)/2 Z (8 0s 0)

Cl tr
where the sum is taken over trajectories form sg to s without crossing the Poincaré
surface of section. For chaotic systems, the trace of the transfer operator 7" is linked
to the periodic orbits of length n by stationary phase approximation, i.e.

exp (iS(s,so;w) — zu%) , (41)

Tr 77 (w Z exp(iSpo(w iapog). (42)
oo |det(M,,, — 1

Using the relation

3|H

det(1 —T) = exp[Trlog(l — T')] = exp ( i Tr T") =¢1 (43)
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one regains the semiclassical zeta function, [B@). Provided the operator T' has the
so called trace class property, (which essentially means, that the Tr T exists and is

finite), one can show (Reed and Simorl, [1972; [Wirzbal, [1997) that the determinant (#Q)

converges when expanded in terms of cumulants, that is,

W) = detll - Tw)] = Y enlw), (44)
n=0

where the ¢, are obtained recursively

1 _
n:—EZ:TrT"mcm; co=1. (45)

Writing out the first few terms in the expansion, one obtains

(Mw)=1-TrT - % (TrT? - (TrT)Q) (46)

! (TYT3 S+ L (TYT) )
3 2 2

The convergence of the cumulant expansion (@) originates from cancellations between
the terms in brackets. Thus, an exponentially increasing number of periodic orbits
contained in Tr T is balanced in a delicate way by products of shorter orbits leading to
a rapid decay in the ¢,’s for large n. The so-called cycle expansion technique makes use
of these cancellations on the level of individual periodic orbits, see (Cvitanovid @M),
Artuso et al (1990); ICvitanovié et al (2006) and references therein. Periodic orbit
quantisation using cycle expansion techniques has been applied to chaotic systems
ranging from the stadium billiard to the three-body Coulomb problem helium, see

for example |Cvitanovié¢ and Eckhardt (1989); [Ezra et al (1991); [Tanner et al d;|.9_9_].|
Wirzba (1992); [Tanner and Wintgen (1995); [Tanner et af (1996, 2000).

2.2. Trace formulae in elastodynamics

The general theory sketched in the last section can directly be applied to problems
in linear acoustics. The two-dimensional Helmholtz equation with constant wave-
velocity has been studied in detail in the context of "quantum billiards” and has
been realised experimentally in flat micro-wave cavities. The underlying classical
dynamics is here only influenced by the shape of the boundary and model systems
with desired properties can easily be constructed; a detailed account of studies on

quantum billiard is, for example, given by Stockmant (1 (I_QQQ and [Kuhl et al (Ijj)fj

For an experimental dem(ai;-gdatlon of wave chaos effects in water-filled cavities, see
(Chinnery and Humphreyl

In the following, we will review progress in adapting the methods introduced in
Sec. 2] to the more complex wave equations found in elastodynamics. The presence
of longitudinal and transversal waves with different velocities leads to ray-splitting and
thus a non-deterministic ray dynamics. Ray-splitting is in fact a general phenomenon
of wave propagation occurring, for example, in optics at interfaces with a sudden
change in the refractive index or in quantum mechanics at step-potential barriers. Its
presence leads to interesting new effects when studying the relation between linear
wave equations and an underlying ray dynamics. We will consider some simple
geometries for elastic bodies in Sec. and ray splitting billiards in Sec. in
more detail. We start by giving the known results for the mean density of states for
plate and bulk spectra.
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2.2.1.  Mean density of eigenfrequencies and the Weyl expansion The average
density of eigenfrequencies of bodies of finite size can be given in terms of a
series expansion in the wave number also referred to as Weyl expansion ,
11976 Safarov and Vasil’ev, []_9_92) The mean density enters as a leading, non-
oscillatory term in the trace formula ([B4) or in integrated form in the spectral
determinant, Eq. [B6). Weyl’s original motivation for studying the mean density
was to estimate thermodynamic quantities such as the heat capacity for elastic bodies
, ); it furthermore plays an important role in energy transport problems
such as SEA, see Sec. B3l Systematic methods for obtaining the Weyl expansion
beyond the leadmg order, Eq. ([38), have been given for the Schrodinger equation
(1979) and for the Helmholtz equation with smooth
boundarles by IStewartson and Waechter (1971) and Berry and Howls (1994). The
latter demonstrate that the resulting series is asymptotic and that its divergence is
controlled by “short “ periodic orbits. The theory can also be applied to the biharmonic
equation, which acts in many ways as a Helmholtz equation with special (mixed)
boundary conditions (ILﬁgr_a.ndj_LaJ, [1992: IBQngan;Land_Hugud,[L%ﬁ) In isotropic
elastodynamics, however, only the first two terms of the Weyl series are known at
present and for shells and anisotropic media only the leading term has been derived
explicitly, see Secs. and
The smooth part of the spectral staircase function ([B7) for wave equations in two
dimensions and homogeneous and isotropic media is of the general form (m, ;

Safarov and Vasil'ewl, [1992; Bogomolny and Hugues, M)

_ A, L
N(k) = a K + Bk +co

where A and L denote the area and perimeter length of the domain, respectively,
and «, 0 depend on the wave equation and the boundary conditions. For scalar wave
equations and smooth boundaries, the constant terms is given in terms of the curvature
R of the boundary

and 7 depends on the boundary conditions. Extra contributions arise at sharp
corners (Bogomolny and H]]gngé, [L%ﬁ) For the Helmholtz equation, one obtains
a = 1,8 = +1 for Neumann and Dirichlet boundary conditions, respectively and
v = 1/12m. A general method for calculating the boundary term [ is, for example,
given in [Prange et al (1996).

The first few terms of the Weyl expansion for bending modes in plates were derived

by (1987), see also [Safarov and Vasil'ev (1992). Common to both of these

mathematical derivations is the use of Krein’s formula ([38). [Bogomolny and H
(@) offer a derivation in the spirit of Balian and Blocll (1970) for quantum billiards.
Boundary corrections are determined by considering the free Green function as well
as the half plane Green function with appropriate boundary conditions. One obtains
for clamped edges

TG
= A 0

and for free edges

—1/4
B= —1+44 (0(2 — 30") + 20'\/202 — 20 + 1)
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(48)

4 [ [T=1 (1401
— ;/0 dt arctan T2 <m> (49)
with modified Poisson ratio ¢’ =1 — ¢ and k is the flexural wave number as given in
([@3). The constant term co is also discussed by Bogomolny and Hugues (1998).
We finally turn to the Navier-Cauchy equation in two spatial dimensions

describing plane strain in bulk elasticity or in-plane modes in plates. The leading
term is now given by the 'phase space’ volume of shear and pressure modes separately

and one obtains the expansion (Vasil'ev, [1987; [Safarov and Vasil’evl, [wj)

Nk =M Py o) (50)
with
1 4 [t
B=-1-——— y d¢arctan /(1 — (k€)"2)(€2 — 1) (51)

for a clamped boundary and

1 4 [t (2 —£72)2
B=4/y—=3+—+— d¢ arctan
AV V(= (86)72)(E2 - 1)
for free boundaries. Here, k = ¢,/cs where the pressure wave speed is given by
equations ([I9) for bulk waves and (20) for plates. The term containing v in (52])
originates from Rayleigh surface wave contributions, see Sec. @] with v € (0,1) given
by the equation

15— 8y 483 -26"2)? —16(1 — k%) =0, (53)
the so-called Rayleigh equation (Ewing and Jardetzky, [1957; [Landan and Lifshitz,

). It determines the wave number of surface Rayleigh waves as kr = vks.

The explicit form of § has first been discussed by (@), an improved
version has been published by [Bertelsen et al (2000). The boundary corrections in
three dimensions have been derived by Dupuis et al ([L%ﬂ), see also
([19_9_d) Weaver <[19§_9_a|) obtained experimentally a large set of eigenfrequencies for
aluminium blocks and tested the random matrix hypothesis for elastic wave equations
as discussed in Sec. Bl Later experiments by Schaadt et al (@iﬁial) provided an
accurate confirmation of (B0 using up to 2500 eigenfrequencies of a 3-dimensional
quartz block, see Fig. 2

For anisotropic, homogeneous media, only the leading term of the Weyl expansion
is known and has been worked out explicitly by |Sendergaard et al ([20_0_4!) It can again
be interpreted in terms of the available phase space volume albeit with an anisotropic
set of momentum surfaces; see for more details.

In an interesting experiment by [Lobkis and Weaver ([20_0_13]), the spectral density
of aluminium foam was determined. Somewhat surprisingly, it was found that the
mean density is independent of the frequency; this indicates that the metal foam in
the wave length regimes considered behaves very much like a 'quasi’ one-dimensional

system similar to quantum graphs or lattice models studied by [Kottos and Smilansky]

(52)
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Figure 2. Experimental staircase function measured for a rectangular fused
quartz block by [Schaadt et al (2003d). Inlet shows fluctuations around the mean.

2.2.2. Trace formulae for bending modes in plates By factorising the biharmonic
equation in the form ([3)), one recovers the Helmholtz equation as the wave part of
the PDE. The other factor, (A — k?), gives rise to exponentially decaying modes;
they contribute only in a strip of size 1/k near the boundary. A semiclassical
description of the wave dynamics in the interior of the plate is thus identical for
both plates and membranes. Especially, rays contributing to the approximate Green
function (28] or trace formulae such as ([34) are governed by Hamiltonian equation of
motion of the from (@l). The decaying modes act effectively as a modified boundary
condition. Semiclassically, this enters in the form of extra phases at ray-impact with
the boundary.

ILegrand et al (1992) were the first to consider wave chaos in the context of
plates by studying numerically the solutions of the biharmonic equation in a stadium
shaped domain with clamped boundary conditions. Good agreement could be achieved
comparing their results with solutions of the Helmholtz equation with a special type
of mixed boundary conditions. By investigating the wave functions, signs of scarring,
that is, enhanced intensities along periodic orbits have been found; for references on

scarring see ,1979; [Hellex, |J_9&4I) and the more recent review
bi @ ). Scarring effects have also been seen experimentally by

). A semiclassical theory for the biharmonic equation was finally worked out
by Bogomolny and Hugued (IL&%) By employing single layer potential theory on the
boundary both for the propagating and decaying modes and working out the large
k asymptotics, a transfer operator kernel of the form (4I]) has been derived. Those
components of T describing transitions from propagating to decaying modes at the
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boundary vanish in the semiclassical limit and one obtains in leading order
Ty(s, s0; k) = ei‘z’(e’k)Th(s, so;k), with s, sgon the boundary

and where T}, refers to the semiclassical expression [{I)) for the Helmholtz equation
with Neumann boundary conditions and 6 is the angle with respect to the normal at
the boundary point sg. The phase ¢ coincides with the phase shift obtained by solving

the infinite half-plane problem and is given as (Vasil'ev, [1987; |Safarov and Vasil'ev,
1992)

0
¢ = — 2arctan o8 clamped; (54)
1 +sin@
! i 2 2
¢ = — 2arctan cosf <1 to s?n2 0) free
V1 +sin20 \1—0'sin"0

with o/ =1 — 0.

Periodic orbit trace formulae of the form (@2) have been derived by
Bogomolny and Hugues (ILQQH), the periodic orbit contributions contain extra phases
here due to the phase jumps, Eq. (&), at impact with the boundary. Numerically
calculated spectra for a disk and a stadium shaped plate have been obtained. By
comparing the Fourier transform of the trace with periodic orbit contributions,
excellent agreement with the semiclassical expressions were obtained. Note, that
for the integrable disc geometry, a modified trace formula applies and periodic orbit
families contribute with weights proportional to vk , see Bogomolny and H

M) for details.

Experimental verification for periodic orbit contributions in plate spectra has been
obtained by [Neicu et al (2001) and Neicu and Kudrolli (2002) using a clover shaped,
fused quartz plate. The validity of semiclassical trace formulae is not immediately
evident given that the biharmonic equation is itself an approximation of the true
plate dynamics. Unambiguous result could only be obtained by [Nei
) after including higher order corrections to the dispersion relation as given by

) and carefully tracing individual peaks in the Fourier transformed
spectrum by making small changes to the shape of the plate. An overall scaling factor
in the frequency remained unaccounted for.

An interesting application of wave chaos effects to the radiation patterns of plates
and membranes has been suggested by Delande and Sornettd (|L9_9_ﬁ) It is pointed out
that acoustic radiation is linked via Rayleigh’s formula to the Fourier transformed
eigenmodes of the plate, that is, the wave function in momentum representation. In
particular, it is demonstrated that a high degree of directionality of the sound emission
is achieved along scars in momentum space, see figure Such scaring effects have

been studied also by [Bicker and Schubert (2003). Directionality due to dynamical

ray effects have found widespread interest in the optics community in the context of

micro-lasers (Nockel and Stond, [1997).

2.2.3. Bulk elasticity - wave dynamics and mode mizing The ray dynamics associated
with waves in isotropic elastic media is fundamentally different from the type of
classically deterministic dynamics considered so far. While the elastic potentials still
obey Helmholtz equations, the two modes have different wave speeds leading to ray
splitting at the boundary with conversion coefficients depending on the boundary
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Figure 3. a) Scar in the stadium billiard at £ = 12.918 and b) the corresponding
radiation diagram (essentially the square of the Fourier transform of the wave
function). The latter shows large directivity in the direction of periodic orbits

,[1997).

conditions, see Sec. (We will not distinguish between bulk elasticity and in-
plane modes in plates in what follows). Thus, a new feature enters, not normally
considered in dynamical systems theory: trajectories can convert from one mode type
to another on impact with the boundary which leads to a change of the momentum
component normal to the boundary. The conversion rates are given by the modulus
square of the coefficients (23]), thus adding a probabilistic component to the dynamics.
This has interesting consequences for semiclassical expressions as well as the notation
of 'chaos’ of the underlying ray dynamics.

Periodic orbit formulae While the evolution of wave impulses along elastic rays has
been studied in detail in a wave scattering context such as seismology, m
(@) were the first to consider seriously the influence of mode mixing on the
ray dynamics in a closed elastic cavity. The authors showed in classical trajectory
simulations that ray-splitting leads to an enhancement of chaos in so-called Benettin-
Strelcyn ovals ([B&ueﬁiumi&tmlgxﬂ, 119_73), a class of billiards, whose boundaries
interpolate between a circle and a stadium billiard. By comparing phase space plots
with and without mode conversion, it is demonstrated that ray splitting tends to
destroy invariant tori and stable islands and to increase the ergodic component of the
dynamics. Exceptions are phase space regions where ray splitting is suppressed such
as for s-rays hitting the boundary at angles 6 > 6., with 6., = arcsin(1/x), the critical
angle for s — p conversion. Likewise, two-bounce orbits with normal impact at the
boundary at both ends have s = a5p = 0, and thus do not mode convert, see (23)).
\Couchman et _al ([]_9_92) also give a trace formula for elastic media in analogy to
Gutzwiller’s original work for quantum systems as presented in Sec. 2Jl The resulting
formula for completely chaotic resonators (here given in the notation used throughout
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the paper) is

1 a Tpo |atpol” T
Tocl) = 2 2 2 (Bt (V) D72 8 T oo = tpo3)] (55)

the sum is over all periodic orbits (including rays undergoing mode conversion) which
are assumed to be isolated and unstable here. The index r denotes repetitions and
Tpo is the accumulated time over the various shear (s) or pressure (p) segments
when traversing the orbit. The amplitude consists of a geometric and a ray splitting
contribution. Denoting the segments along an n-bounce orbit as {v1,...v,} with
v; = p or s, mode conversion enters through oy, = [[; v, with mode
conversion factors given in ([23)). The Monodromy matrix M, is calculated as the
accumulated product of stability matrices including extra contributions whenever
refraction takes place. Note, that the dynamics including ray splitting is still
symplectic - [Safarov and Vasil'ey M) refer to it as “a branching Hamiltonian
flow“. The phase (i, is the Maslov index keeping track of passages through caustics
(Gutzwiller, 1990) and ®,, = arg(ay,).

The short wavelength asymptotics of a boundary integral kernel has been
postulated by |Sendergaard and Tanned (2002) and explicitly derived from the
governing equations (I6) by [Tanner and Sendergaard (Izo_o_ﬂ) employing methods
similar to those used in Bogomolny and Hugues 419_98) The resulting transfer
operator is now a matrix kernel, but otherwise similar to the scalar case (@I). In
two dimensions, it takes on the form

0%L
0s0sq

T(s, s0) = \/%m a(s, so) - < mgika \/E?e““L ) (56)

where L(s, sg) is the length of a ray segment from boundary points sg — s and « is
the 2 x 2 matrix of reflection coefficients (23] for free boundary conditions. The trace
formula (BH]) can then be derived by stationary phase approximation.

A serious discussion on the interplay between eigensolutions of the Navier Cauchy
equation in finite elastic bodies and the underlying classical ray dynamics including ray
splitting is still in its infancy. Two geometries considered in more detail are circular
boundaries in two dimensions and rectangular bodies in two or three dimensions.

Circular geometries For a circular disc, the wave equation is still separable in
cylindrical coordinates (Sendergaard and Tanngﬂ, |201)2), from a ray dynamics point of
view, this means that the angular momentum is a conserved quantity also under mode
conversion. The dynamics is thus integrable in each component; transitions between
a shear and pressure torus having the same angular momentum occur at impact with
the boundary at a rate given by the square of the coefficients (23]). The dynamics is

equivalent to that of a simple two-leg quantum graph (Kottos and Smilanskal, |L9_9_ﬂ)

with classical limit given in terms of a purely probabilistic two level Markov chain.

A trace formula for the elastic disc has been derived by [Sendergaard and Tanner

(@) starting from the scattering matrix and using the so-called inside-outside
duality (Smilansky, 1994); that is, the scattering matrix S(w) describing wave
scattering from the exterior has a unit eigenvalue at an eigenfrequency w of the interior
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Figure 4. Example of a periodic orbit undergoing ray splitting (in a disc with
cp/cs = 3.61); solid line (red): s-wave, dashed line (blue): p-wave. The orbit
shown here has 8 bounces and winds around 3 times.

problem. The oscillatory part of the density of states for this integrable problem reads

o0 ’I’

[ aw
Z W > s os[r (Wl —mpom/2) + /4], (57)
cos 65°

cos 9P r=1

where n denotes the number of bounces of a periodic ray which contains n,, segments
of pressure polarised rays and ns segments of shear polarised rays with n = n, + n,
and T, is the period of a periodic ray. For an example of such an orbit see Fig. [l The
fluctuations are enhanced by a factor of \/w here, compared to semiclassical periodic
orbit contributions for fully chaotic systems, (B5); this is in accordance with the
trace formula given by [Berry and Tabor (ILM) for quantum systems with integrable
classical limit. The total amplitude in (&7)) can again be decomposed into a geometric
factor depending on the angles of incidence 6,, 6, and a mode conversion factor ay,
similar to (B3]). The Fourier transformed density of states is depicted in Fig. Bl showing
pronounced peaks at periodic rays including those undergoing mode converswn
The N-disc scattering problem discussed in detail by ) for the
Helmholtz equation has been adapted for elasticity by [Sendergaar d (IJ)DJ and
Wirzba et al (|2QO_H In this context, the wave dynamics is that of an infinite plate
with N circular holes governed by the vectorial PDE ([I6]). The determinant of the
scattering matrix for the full system can be given in a form similar to (B9); the
poles of the S matrix are expressed in terms of the zeros of a zeta-function given
here as the determinant of an inter-disc scattering matrix. It can be written in
semiclassical approximation as a product over periodic orbits of the scattering problem.
(2001) and [Wirzba._et al (2005) studied the two-disc problem in more
detail, both numerically and semiclassically. In this system, there is only one geometric
periodic orbit supporting both polarisations. In addition, there are diffractive

or creeping waves, also called Franz resonances, (Frand, 11954; Keller and Karal,
) which also exist in the Helmholtz case (Vattay et al, M) giving rise to an
exponentially decaying surface contribution. More importantly, weakly attenuated
Rayleigh surface waves enter in the case of free boundary conditions giving rise
to additional periodic orbit contributions comnsisting of segments of geometric and
Rayleigh rays. The interplay between shear, pressure and Rayleigh contributions
leads to a rather complicated resonance pattern for this simple problem (Wirzba et al,
M), especially when compared to the two disc Helmholtz spectrum (Wirzba, M)
Further details on diffractive orbits are given in Sec. @
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Figure 5. Fourier transform of spectral fluctuations in an elastic disc

(Sendergaard and Tanner, 2003). Thin/thick lines: Longitudinal/transverse

polarisation. Peaks corresponding to ray-splitting orbits can be identified.

Rectangular geometries The coupling between shear and pressure modes lifts the
translational symmetry in rectangular plates and blocks, and the wave equation (I6)
is no longer separable in Cartesian coordinates. Still, the periodic orbits of the
ray dynamics are not geometrically hyperbolic, that is, nearby trajectories of the
same mode type separate at most algebraically. Rectangular bodies thus represent
an interesting intermediate geometry Where all the wave chaos (if it exists) must
originate from mode conversion effects. [Bohigas et al (199 ) Eomted out that finding
RMT statistics in Weaver’s early experiment is surprising in that
sense; Weaver used aluminium blocks with slits cut into them for which the geometric
ray-dynamics is at most pseudo-integrable (Richens and Berryl, |L9§i|) and deviations
from GOEM are to be expected (Bogomolny et al, [1&&9) A more careful reanalysis of
Weaver’s original data (IDela.nde_e_t_aJ, |19_9_4I) showed good agreement with GOE as well
as periodic orbit contributions on large spectral scales in agreement with semiclassical
theories. This finding has furthermore been confirmed by more recent experiments
on rectangular, fused quartz plates (Schaadt et al, |24)Q;|) and blocks (m,

); due to the enhanced number of resolved eigenfrequencies in the experiment, it
could be verified that the spectral statistics coincides with a superposition of several
independent GOE spectra (due to the discrete symmetries of the objects) and not a
Poisson distribution as suggested in an earlier experiment by [Ellegaard et al (|L9_9jj)
This is a clear indication of wave chaos behaviour. The result was surprising as the ray

|| GOE statistics applies to eigenvalues of random, symmetric matrices reflecting the underlying time
reversal symmetry; for more details, see 3]
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Figure 6. In plane modes for a rectangular plate of fused quartz; (the notation
df ] f refers to a frequency shift with respect to variations in temperature being
different for longitudinal and transversal waves) \

dynamics (including ray splitting) in rectangular geometries is not ergodic, that is, for
all kK > 1 only a finite number of directions are explored by a given trajectory ,
11996; [Schaadt et al, 12001, [2003a). Such a behaviour is typical for pseudo-integrable
systems (IRj_chens_a,mi_B_emyI, U%JJ) However, it has also been shown numerically, that
the number of periodic rays increases exponentially (m, m), a phenomenon
known only from classically chaotic systems.
The intermediate character of rectangular bodies is also revealed in the nodal line
patterns measured by [Schaadt et al (2001), [Ellegaard et al (2001) and
) for in-plane modes of rectangular plates. A large number of wave functions
show ergodic nodal line patterns such as the wave pattern at 556.5 kHz, 592.1 kHz,
599.0 kHz or 645.9 kHz in Fig. B} they appear very similar to wave functions in
fully chaotic geometries such as for quantum billiards with Sinai or stadium shaped
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Figure 7. The 68’th wave function in a disc billiard with potential step exhibiting
ray-splitting (Bliimel et al, [1996).

boundaries or flexural eigenmodes in stadium shaped plates such as shown in Fig.
(Ellegaard et al, 2001; ISchaadt et al, 2003h). Besides, one finds regular patterns in
Fig. @ similar to the chequer-board patterns observed for flexural modes in rectangular
plates such as shown in Fig.[[7 Note, that the biharmonic equation (§)) is separable for
rectangular geometries having clamped boundaries, but that when all edges are free,
the solution cannot be given in closed form but only as an infinite series expansion
(Gorman, 1978, [1982). Wave functions of the type shown in the first and the last
row in Fig. [0 are reminiscent of so-called bouncing ball (bb) modes observed for, for
example, the stadium Helmholtz billiard (Sieber et al, [1993). The first row in Fig.
has indeed been identified mainly as shear type bb-mode whereas the last two rows
have characteristics typical for pure pressure waves.

It is, however not clear whether the ratio of regular to irregular modes vanishes
asymptotically in elastic rectangles as it does in the stadium (Tanner, [1997). This
question is closely related to an extension of Shnirelman’s theorem (Shnirelman,1974)
to elastic wave equations (Weaver, [1982; |Akolzin and Weaver, 2004). The precise
nature of the wave chaos aspects found in rectangular elastic bodies is still an open
question.

2.3. Ray-splitting billiards

Inspired by the theoretical study on ray propagation in elastic media by
Couchman et al (1992), [Prange et al (1996) and [Bliimel et al (1996) started to
consider dynamical systems with ray splitting associated with scalar wave equations.
Ray splitting occurs generally at interfaces at which the wave velocity ¢(r) changes
discontinuously (that is, fast on the scale of the wave length considered). Possible
realisations are quantum billiards with step potentials, see Fig. [[, or thin microwave
cavities with abrupt changes in height or in the index of refraction. Thus, ray splitting
does not require the underlying wave equation to be of vectorial nature.

The next-to-leading order terms in the Weyl expansion for ray splitting billiards
have been derived by [Prange et al (1996) and [Kohler and Bliimel (1998h) and
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Figure 8. Wave function in a Sinai-type micro-wave billiard with circular Teflon
scatterer. Teflon acts as a potential step producing ray splitting; scarring and
transmission into the Teflon disc can be observed s

experimentally verified by Vaa et al M) A systematic way to calculate higher
order terms similar to the approach by Berry and Howls (IM) for the Helmholtz
equation was discussed by [Décanini and Folacci (2003). Bliimel et al (1996) showed
that ray-splitting typically enhances the degree of chaos in the system; in their
example, a circle billiard with a change in wave speed along the diameter was
considered. The classical phase space is mostly chaotic which is reflected in the
spectral statistics being close to GOE, see also (I&ELWMJ, M) A modified
transfer operator of the form (I including ray splitting amplitudes was derived
by [Bliimel et al (|L9_9d) and generalised trace formulae were deduced and applied
to the circular billiard. Diffractive contributions along the wave-splitting boundary
lateral orbits’) were considered and discussed in more detail by [Kohler and Bliimel

). A numerical test of the semiclassical formulae has been performed in
Kohler and Bliimel, 1999). An experimental realisation of a ray splitting billiard was
first presented by Sirko et al (|L9_9_ﬂ), the eigenfrequencies of thin microwave cavities of
stadium and rectangular shape were measured using dielectric (Teflon) and metal bars
as ray-splitting interfaces. Periodic orbits introduced through ray-splitting could be
identified in the Fourier transformed spectrum. In a similar experiment,

) measured both the eigenfrequencies and wave functions in a rectangular cavity
with a circular Teflon scatterer - a ray-splitting Sinai billiard. Scars along ray-splitting
orbits have been observed, see Fig. Bl

Kohler et al deQ_ﬂ) considered the influence of a ray splitting barrier on the
dynamics of a class of triangular billiards. They demonstrated that the dynamics,
which is integrable or pseudo-integrable without ray-splitting, becomes completely
chaotic. This provided for the first time an example of strong chaos induced by ray-
splitting alone. Similar observations were made for rectangular elastic bodies, see Sec.
The equivalence between one-dimensional ray-splitting billiards and two-state

quantum graphs were pointed out by Dabaghian et al (|21)_Q1|), this is in analogy to the
connection between in-plane modes of circular elastic plates and quantum graphs as
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(second step)

Figure 9. Typical setup for a time reversal experiment; in a first step the source
(A) transmits a short pulse that propagates through the rods. The scattered
waves are recorded on a 128-element array (B). In the second step, the 128
elements retransmit the time-reversed signals through the rods. The piezoelectric
element (A) is now used as a detector and can be translated along the z direction

(Fink et al, [2000).

discussed by [Sendergaard and Tanner (2002), see Sec. 223

2.4. Time reversal imaging

Time reversal invariance together with the linearity of the wave equations gives rise
to remarkable effects of which weak localisation, discussed in more detail in Sec.
BIH and time reversal imaging (TRI) are the most prominent once. We will briefly
summarise the ideas behind TR techniques here and highlight some of the main
results; for a more comprehensive overview, see the review papers by (@)
and [Fink et al (2000).

In a time reversal experiment, a medium is typically excited by a short pulse at
a source point ry at time ¢ = 0 and the resulting wave field is measured at one or
several receiver points r, see Fig. [@ It is important that the time dependence of the
signal is fully resolved, that is, that both the intensity and the phase is recorded. For
acoustic signals with frequencies in the MHz range, standard transducers can achieve
this easily; the same is non-trivial for, for example, optical signals. (A technique
similar to TRI used in optics is phase conjugation, where a time reversal effect is
achieved by reversing the sign of the phase; for similarities and differences of both
techniques, see the discussion by [Fink et al (2000); Derode et al (2001).) A stretch of
the signal in a time interval [to,¢1] is then time reversed electronically and fed back
into the system, typically at the receiver point. Starting the time measurement at
—t1, the resulting wave field combines and forms a localised peak of high intensity at
the source point at t = 0.
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Interpreting the effect in a ray picture, wave energy is transported along classical
rays from ro — r and the signal at the receiver position r is a coherent superposition
of waves having the same arrival time. The time reversed signal thus produces wave
fronts which travel back along the ray paths from r — ry and interfere constructively
at the source point ry at time ¢ = 0. In an ideal TR experiment, the signal is recorded
over a closed surface surrounding the source thus retaining the full information of the
wave field. But even if only parts of the wave field are recorded by for example, an
array of receivers - a time reversal mirror (TRM) - there is always a coherent part of
the time reversed field which will refocus at the source point. In addition, there is now
a reproducible background field due to wave fronts launched at angles not reversing
the original ray path from source to receiver.

Derode et al @9_&3, M) demonstrated experimentally the robustness of the
effect in the presence of multiple scattering by sending an acoustic underwater pulse
through a layer of 2000 randomly distributed steel rods. After recording the diffusive
signal by a TRM and resending the time reversed signal through the layer, a TR
peak could be produced. Chaotic scattering leads to an effective enhancement of the
aperture of the device due to ray paths reaching the source/receiver which would have
been lost without the scatterers. The resolution of the peak is significantly better
compared to TRI without scattering medium and is independent of the length of the
time window t; — to as long as the window is taken in the diffusive regime produced
by multiple scattering events. When choosing a periodic array of scatterers, however,
hyper-focusing is not observed (Tourin et al, [2006) and the spatial resolution of the
TR peak is the same as that without a scattering medium, limited by the size of the
TRM alone. Chaos thus enhances the resolution of the signal!

It came as a surprise that wave dynamics is so stable under a time reversal
operation in a chaotic scattering environment whereas the corresponding ray dynamics
is unstable and thus sensitive to small perturbations. [Snieder and Scales (1998) point
out that interference acts as a filter singling out the ’good’ rays while other paths
give rise to an incoherent background signal only. They show furthermore that the
system is indeed exponentially unstable, but with respect to changing the positions
of the scatterers before applying the time reversed signal. The authors consider
in fact the fidelity of the wave system (without mentioning this); their findings
are in agreement with the theory outlined in Sec. such as the arguments given
by |Cerruti and Tomsovid (Ijjﬁ based on Lagrangian manifold techniques and also
discussed in the context of underwater acoustics in Sec. 2.6l The overall properties of
TRM have been studied in detail in [Derode et _al (lZDD_]J . It is shown experimentally,
that the hyper-focusing property of the TR peak saturates and that side lobes appear
when increasing the width of the scattering layer. It is suggested that the additional
side peaks are caused by correlations in the arrival time distributions for paths from
ro — r due to, for example, crossing of scattering paths. Such correlations have been
shown to be of importance in a semiclassical description of the universality of spectral
statistics (Sieber and Richter, [2001; Berkolaiko et al, 2002; Heusler et al, 2004, 2007),
see Sec. Bl Applying a TR process is indeed equivalent to measuring the auto-
correlation functions of the Green function, that is, the signal s(t) at the source point
ro after applying the TR signal is

*tO ~
-3 / G(ro, v, 7)G(ro,r t 47). (58)

where G denotes the time dependent Green function defined in [23) and the summation
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Figure 10. Numerical simulation of a one-channel time reversal experiment;

from (Draeger and FinK, [1997): (a) - (e) injection of a short pulse in A and

recording in B; (f ) - (1) emission of the time-reversed signal in B and refocusing
in A.

is taken over the receiver positions 4; furthermore, the symmetry G’(ro,r, t) =
@(r,ro,t) is used. It is shown that the number of transducers does not affect the
spatial resolution, but enhances the signal to noise ratio up to a saturation level. TRI
is closely related to another wave effect, namely recovering the Green function from
cross correlation signals as discussed in Sec. B.I.Z} this link has been worked out in

detail in (Derode et al, 2003b).

Draeger and Fink ([]_9_9_7] demonstrate that TRI works also in a chaotic cavity
using a single transducer. Here, the wave field in a mono-crystalline silicon wafer is
excited at a source point by a short pulse and is measured at a single point on the
boundary; see Fig. for a numerical simulation. The time reversed and re-emitted
signal focuses at the source point with a signal to noise ratio proportional to the time
window AT = t; — ty. Chaos in the underlying ray dynamics is essential as it leads
to a fast equidistribution of the wave field making single channel TRI possible - the
technique does indeed not work for rectangular cavities. The theory behind TRI in
closed domains has been developed by Draeger and Fink (LL(_LQQ) For chaotic cavities,
the so-called cavity equation holds

s(t) = /_ i dr G(ro,r,7)G(ro,r,t +7) (59)

—t1
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o
= / dr G(ro,ro, 7)G(r,r,t +7), (60)
—t
that is, the signal G(ro,ro,t) emanating from and refocusing at the source rq is
convoluted by the signal at the receiver position r. Side lobes, observed also in cavity
TRI, can be related to correlations between the travel times entering G’(ro, ro,t) and
G(r,r,t) which are of the order of the mean travel time between two reflections on
the boundary. Information loss thus happens entirely at the receiver point due to
undirected reemission. In an experimental study carried out by [Draeger et al (1999),
the refocused wave field of the bending modes of a silicon plate is measured using laser
interferometry. The influence of the time window AT on the peak to side lobes as well
as peak to noise levels is studied confirming a saturation regime for the former and
linear increase for the latter. Similar results are obtained in time reversal experiments
in elastic solids by [Sutin et al (2004) using doped glass and Berea sandstone. Neither
strong mode conversion leading from a pressure dominated early signal to a shear
wave dominated coda, nor the large difference in the attenuation properties of the two
material influences the time reversal properties significantly confirming theoretical
considerations by [Draeger et al (1997).

In a conventional TRI experiment, the time reversal symmetry is actually broken
as the energy inserted at time ¢ = 0 is not taken out of the system after refocusing.
This limits the resolution of the refocused peak to half a wave length \ as the TR signal
still consists of an incoming and outgoing wave at ¢ = 0. |de Rosny and Fink (IZDﬂj)
demonstrate that by applying a time reversed pulse at ¢t = 0, the size of the focus can
indeed be decreased further; the pulse interferes destructively with the outgoing wave
thus producing a sharp peak with focal spot size \/14, see figure [[1]

Just retaining the qualitative features of the phase of the time reversed signal
seems sufficient for TRI: in (Derode et al,1999), the signal was time reversed and only
its sign was kept. This one-bit-digitised signal was then used instead and produced
even sharper peaks with a signal to noise-ratio lowered by 1.2 dB.

In a recent study by |lde Rosny et al @M), it has been pointed out that an
enhancement of the peak signal by a factor of two is observed when performing a
TR experiment where source and receiver position coincide; signals travel back along
two distinct paths from r — r, namely the original ray and its time reversed partner.
This effect is reminiscent of coherent backscattering enhancement as discussed in
in Sec. de Rosny et al (2005) show, however, that there is a subtle, but
important difference between these two effects. When performing an experiment in a
rotating cylinder filled with water, coherent backscattering enhancement vanishes as
the rotation frequency is increased from zero. The TR signal vanishes, however, only
for r # rg, but approaches a constant, but finite value for r = ry. The enhancement of
the TR signal at the source is here due to waves travelling along rays which return to
the source point; these rays exist even when time reversal invariance is broken making
refocusing possible if r and rg coincide.

The possibility of the detection of a noise source using TRI is discussed
theoretically and studied experimentally by [Ribay et al (|21)1L5|) The time dependent
field amplitude produced by a noisy signal localised in space, but not in time, is
recorded and time reversed. The TR wave field shows an enhanced amplitude at
the source point with a focus size A\/2. The signal to noise ratio depends only
on the number of transducers used in the TRM. The possibility of separating two
nearby noise sources is discussed. Applying TRI for acoustic communication has been
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Figure 11. TRI-experiment without (a) respective with (b) an acoustic sink

, [2003).

explored by Heinemann et al (2002) and Derode et al (2003a)); Heinemann et al (2002)
use TRI to efficiently communicate a signal to a desired spot within a reverberant
acoustic enclosure. [Derode et al (2003a) showed that contrary to intuition, the
capacity to transport information in form of acoustic signals is enhanced in a chaotic
scattering medium compared to a ballistic channel due to the hyper-focusing propert,

of TRI. Likewise TRI has been demonstrated with radio waves m, m:

[Popovski et al, 12007).

2.5. Fidelity studies in elastodynamics

In recent years, studies of the stability of linear wave propagation under changes of
the system parameters (in contrast to changes in the initial conditions) have found
renewed interest in quantum mechanics in the context of quantum computation. A
useful measure is here the fidelity (also referred to as “Loschmidt echo”) defined as

(Peres, [1984)
F(t) =1/ ft) = @IE" (=G D))

with G(t), G'(t), the Green functions for two slightly different systems and [¢) refers
to the initial wave excitation at time ¢ = 0; we use here Dirac notation, that is,

G()|[Y) = p(r,t) = / dro G(r,ro;t) 1h(ro,0).

Fidelity is obviously relevant for the applicability of TRI giving an estimate for how
much the system can change between recording and re-emitting the signal.
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Various time regimes have been identified: a perturbative regime with Gaussian
decay for very short times is followed by an exponential decay with exponent obtained
from time-dependent perturbation theory, the so-called “Fermi golden rule” regime
and for larger times by the classical Lyapunov exponent

2001; Jacquod et al, [2001; [Cerruti and Tomsovid, 2002; [Prosen and Znidarid, 120112)

see also (IPAlMMJ, m for an overview. These predictions have been verified
experimentally in a chaotic micro-wave cavity by |Schifer et al (2005). In the

experiment, the cross correlation function of a scattering matrix, that is, the signal
transmitted and received at the input and output antenna with and without changing
the cavity was measured. The correlation function is directly related to the fidelity
F(t). The theme has recently been picked up in seismology and elastodynamics:
Snieder et al (2002) considered the influence of changes in the position of the scatters
in a multiple scattering wave system. By working in the perturbative regime,
estimates for the mean displacement of the scatterers can be inferred from the cross-
correlation function; this has direct applications in seismology for monitoring small
scale movements due to for example temperature changes in the earth crust. In
an experiment similar in spirit (Lobkis and Weaver, M), an aluminium block was
excited by a short pulse and changes in the output signal under changes in temperature
were recorded. The experiment of [Lobkis and Weaver (2003) has been reconsidered
by Gorin_et_al (2006) in the context of fidelity theory. The cross correlation function
used in [Lobkis and Weaver (2003) was shown to coincide with the fidelity and the
distortion coefficient measured is related to the exponent found in the Fermi golden
rule regime. Good agreement with RMT results were found both for irregularly shaped
blocks as well as a rectangular block. The latter came as a surprise, again underlining
the “chaotic” nature of rectangular geometries in elasticity, see Sec.

2.6. Wave chaos in underwater acoustics

The influence of wave chaos effects in acoustics has been discussed in some detail in

the context of sound transmission in oceans, see (Brown et al, 12003; Beron-Vera et al,
) for comprehensive overviews. In 1948, [Ewing and Worzel (1948) discovered the
existence of a sound channel in mid-latitudes at an ocean depth of about 1 km; this
channel guides sound waves over ranges of several 1000’s of kilometres. It arises from
the depth dependence of the wave velocity which decreases in the upper ocean layers
due to typical changes in temperature and salinity, but increases again in the deep
ocean region where the rising water pressure becomes the dominant factor. Sound
rays bend towards smaller wave velocities, see Eq. (B]), and rays emanating in forward
direction start to oscillate around the sound speed minimum without touching the
strongly attenuating sea bed or the ocean surface (acting as a random scatterer).
For a detailed account of the physics behind wave velocity profiles in oceans, see
Flatté et al (1979) or [Kuperman and Jackson (2002). Recent experimental results on
acoustic wave transport over a 3250-km range can be found in (Worcester et al, |J_9_9_g)

By employing so-called parabolic approximations of the wave equation valid for
small angle scattering, the three dimensional Helmholtz equation describing acoustic
wave propagation in water can be written in form of a one-dimensional time-dependent
Schrédinger equation; here, the range r, that is the distance from source to receiver,
takes on the role of a fictitious "time” and the depth z < 0 below sea-level acts as
the other variable, see (Tappert and Browr, [1996; [Virovlyansky and Zaslavsky, [1999)

and references therein. (Castor et al (|21)_O_4]) discuss wave propagation including non-
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linear terms in the wave equation). Assuming a range independent velocity profile,
that is, setting ¢(r) = cp(2), leads to a one-dimensional Helmholtz equation () and
the resulting ray dynamics is integrable; a realistic c¢p; - profile has been given by
Munk, see (Flatté et al, 11919) On the other hand, Tappert and co-workers pointed
out ([Smiﬂlj_LaJ, [1&92) that range dependent velocity profiles

e(r,z) = cm(2) + ez, )

lead to an in general chaotic ray dynamics with possible implications for the stability of
an analysis of acoustic signals in terms of ray or wave travel times d[]:apmj_and_B_mﬂ,

11996; [Virovlyansky and Zaslavsky, @93) The fluctuations dcy; are caused by, for
example, water waves on scales of 102 — 10*m and mesoscale inhomogeneities such as
synoptic eddies on scales of 10* — 10°m @mwim, ﬂ9_98) The instability in
the ray dynamics turned out to be a less serious problem than anticipated. Finding
relevant ray contributions corresponds to solving a boundary value problem, that is,
finding a trajectory travelling from a source point ro to a receiver point r in time ¢;
while individual trajectories with the same initial condition will deviate exponentially
under a perturbation of the system, the same is not the case for solutions to the
boundary problem. In fact, [Cerruti and Tomsovid (2002) and Brown et al (2003)
point out that the Lagrangian manifold associated with the initial conditions rq fixed,
p arbitrary, is structurally stable under perturbations. Similar observations have
been made by Mazur and Gilbertl (1997) using variational methods based on Fermat’s
principle and |Collins and Kupermarl @394) using boundary value techniques. This
theme has also been discussed in the context of time reversal imaging and fidelity,
see Secs. [Z4] and In underwater acoustics, stability is furthermore added to the
classical ray dynamics by intermittency effects and large scale dynamical structures
such as can-tori near stable islands; they dominate in particular the rays contributing
to early arrival times (Brown et al, 2003).

In recent years the discussion has centred on a wave description of underwater
signals. While early arrival times in the signal measured by [Worcester et al (ILQQQ)
can be assigned to individual ray trajectories, long time signals are dominated by
interference effects strongly affected by range dependent fluctuations, see figure
Smith et al (1992) coined the term wave chaos in the context of underwater acoustics.
The connection to quantum chaos was established in more detail in the late
90’s. [Virovlyansky and Zaslavsky (1999) and [Virovlyansky (2000) related the wave
propagation to a ray dynamics by expanding the wave front in terms of modes (or
eigenfunctions) of the unperturbed problem using classical perturbation theory and
action-angle variables in the z coordinate. The onset of chaos in terms of Chirikov’s
criterion, see , ), was also discussed. Wave packet dynamics was studied
in terms of Husimi-distributions by [Sunaram and Zaslavsky (1999) and
M) (The Husimi distribution is a phase space representation of a wave function

fregue tlir emgloyed in the quantum chaos, see for example (l_’]:akahashl_a.nd_s_and,
Mirroring the debate in quantum chaos (Sepulveda et al, [ﬂ ), the time horizon

for a break-down of semiclassical approximations has been discussed; it has been
suggested that the log-time, that is, the time at which semiclassical expressions
develop singularities due to caustics in chaotic systems, is not a limiting time-scale.
Wolfson and Tomsovid (2001) pointed out that interference can be well described by
semiclassical expressions containing sums over classical paths. It is noted, however,
that the number of contributing trajectories increases exponentially with time in
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Figure 12. Time front measured at a vertical line array stationed near Hawaii.
Peak intensity was obtained as function of ocean depth and travel time of the
signal (Worcester et al,

chaotic systems and semiclassical approximation become impractical for long time-
scales MMXL 12000), see Sec. 2l Mixed phase space structures typical for
ocean environments (Smirnov et al, 2001) lead to an enhancement of stability of
wave mechanical propagation. These effects explain naturally the stability of the
wave patterns for early arrival times as well as the log-normal distribution seen in

the late arrivals measured by [Worcester et al (1999), see also Brown et al (2003)
and Beron-Vera. et al (2003). Recently, [Hegewisch et al (2005) pointed out that the

fluctuations dcy; in the wave speed profile need to be taken only up to scales of the
order of the (mean) wave length; including higher order terms leads to enhanced
ray chaos which in turn results in a higher density of caustics; these semiclassical
singularities need to be smoothed out by for example uniform approximations thus
leading to an effectively smoothed wave-speed potential.

In separate developments, aspects of time reversal imaging, phase conjugation
and cross correlation functions have been discussed and experimentally tested in the
underwater acoustics community. Time reversal imaging as introduced in Sec. 24
has been demonstrated experimentally and numerically in an underwater waveguide
by [Roux and Fink (2000). Recently, [Roux and Kupermann (2005) show, that it is
possible to extract information about ocean wave fronts from noisy data sets by
combining TRI methods with cross-correlation function techniques as discussed in Sec.
B.I4 For a comprehensive overview on applications of TRI in underwater acoustics,

see [Kuperman and Jackson (120112) In a series of further experimental, theoretical,
and numerical studies (IBmx_a.nd_EinH, 12003; Roux_et al, 12004; Sabra. et al, lZDDﬂ),
the connections between cross-correlation functions and Green functions have been
investigated in ocean acoustics, see Sec. 3.4 for details.

3. Wave dynamics - statistical approaches

Analysing wave signals in terms of statistical measures has a long tradition in acoustics
predating the developments in quantum chaos and even the discovery of quantum
mechanics itself; a historical account is given in Sec. Recent advances in using
statistical methods are largely based on applying random matrix theory (RMT) to
wave problems in the presence of wave chaos and disorder. This connection was

first discussed by McDonald and Kaufman (1979), [Casati et al (1980), Berry (1981)
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and [Bohigas et al (1 (I_%A: in a quantum context and introduced into acoustics in

a pioneering study by We review in the relation between RMT
and eigenmode spectra, Wavefunctlons, correlation functions and weak localisation
phenomena in Sec. 3l For open systems with energy loss through absorption or other
decay channels, decay time distributions and statistical description of power transfer
are typically considered in acoustics and elastodynamics, see Sec. A statistical
technique widely used in the engineering community to estimate vibrational energy
transfer between parts of complex build-up structures, statistical energy analysis, will
be briefly introduced in Sec.

3.1. Random Matriz Theory

Since the early work by Wishart on multivariate statistics , )7 random
matrix theory has grown into an industry with applications ranging from condensed
matter physics, QCD, integrable systems, quantum and wave chaos, wireless
communication, uncertainties in structural dynamics, numerical linear algebra, signal
processing and information theory to number theory and free probability theory.
We refer the interested reader to the excellent text books and review articles
highlighting the mathematical (Mehta, 1991; [Forrester et al, 2004), physics (Efeto,
11997; \Guhr et al,1998; Haakd, 2 |_O_(ﬂ|) and electrical engineering and telecommunication
(ITJ_lth_andjﬁardﬂ lZDD_éII ) aspects of the theory. We start by giving a brief introduction
of RMT before discussing the experimental and theoretical results on spectral statistics
in acoustics and elasticity. We consider in this section mostly systems for which
attenuation can be neglected; we come to a statistical treatment of open systems and
transport problems in Sec.

8.1.1. Introductory remarks Random matrix theory deals with statistical properties
of ensembles of random matrices. In the context of spectra of self-adjoint operators,
one considers mostly ensembles of so-called Gaussian Wigner matrices, that is,
Hermitian N x N matrices H with independently Gaussian distributed variables
H;j,1 > j with unit variance. One distinguishes in particular the Gaussian Unitary
Ensemble (GUE) of general hermitian matrices, the Gaussian Orthogonal Ensemble
(GOE) of real symmetric matrices and the Gaussian Symplectic Ensemble (GSE) of
Hermitian matrices invariant under symplectic transformations. The physically most
important ensembles are the GUE associated with wave operators with broken time
reversal symmetry and GOE for systems which are time reversal invariant. The latter
is the norm for classical wave equations and will thus be considered from now on.
Notable exceptions have been presented by IStoffregen et al (1995) and
M), where the breaking of time-reversal symmetry has been achieved in micro-
wave experiments by inserting ferrite into the cavity - however, at the price of strong
absorption. For an overview over other matrix ensembles considered in the literature,
see for example (Tulino and Verdd, MM) and, in the context of vibrational dynamics,
the work on uncertainties in structural dynamics by (@) Often also the
ensemble of real diagonal matrices with random entries is considered which yields
trivially a Poisson distribution for the eigenvalues.

For the Gaussian ensembles mentioned above, the joint probability distribution
for the eigenvalues can be given explicitly and from there, many statistical properties
can be deduced analytically. We mention here only two popular statistical measures:
these are the two-point correlation function Rs(z) measuring spectral correlations over
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a distance = and the nearest neighbour spacing (NNS) distribution P(s) expressing
the probability distribution for the distance between two adjacent eigenvalues of the
ordered spectrum. After rescaling the spectrum to a mean eigenvalue density one, one
obtains for the GOE ensemble

Ro(z) =1 — s*(z) — </:° s(x’)dx’) (%q@) (61)

= % - g—o 3 for zx1
with
sin
s(z) = —

The correlation function vanishes linearly for x — 0 indicating linear repulsion between
nearby eigenvalues. Also the Fourier transformed Y'(7) of the level cluster function
Y(z) = 1 — Ra(x), the so-called form factor, is considered, often written in the form
(here for GOE):

N {27’—7111(1—1—27’) for0<7<1

K(r)=1-Y(1) = 2—7ln 1+§: forl<r

(62)

Note that K(r) ~ 27 for 7 < 1 and approaches one for large 7. The NNS
distribution, popular for comparing experimental and numerical results with theory,
can not easily be written down in closed form , ) For the GOE case, it is
well approximated by a Rayleigh distribution with variance /2/7, that is,

P(s) =~ gse_%s2 . (63)

Wigner obtained this as well as the results for the unitary and symplectic ensemble by
carrying out the calculations for 2 x 2 matrices. The remarkable level of coincidence
with the true distribution in all three cases gave rise to the name ”Wigner surmise”
for this kind of approximation. Note that the level repulsion is again linear for small s.
For comparison, a randomly distributed spectrum following a Poisson process yields

Ro(z)=1; K(r)=1; P(s)=e"". (64)

Main parts of the theory were worked out in the 50s and 60s by Wigner,
Dyson, Gaudin, Mehta and others, see (Forrester et al, |21)_O_4]) for a brief historical
overview and relevant references. In its early stages, it was mainly motivated by
modelling properties of excited states of atomic nuclei - then perceived as an in-
tractable, complex many-body system with largely unknown forces. It emerged in
the early 80s, that it is the complexity of the underlying classical dynamics and
not the many-particle aspect alone, which is captured by random matrix ensembles

11979; |Casati et _al, [1980; [Berry, 1981); this was expressed
explicitly by Bohigas, Giannoni and Schmif (IL%A) conjecturing that the spectra of
quantum systems whose underlying classical dynamics is chaotic generically have
statistical properties following RMT. A couple of years earlier, it was argued by

Berry and Tabor d;l_9_7_ﬂ that quantum systems with integrable classical limit behave

generically like a Poisson process. [Hannay and de Almeida dl%AI and m (@

obtained the asymptotics of the form factor for individual wave chaotic systems coin-
ciding with the RMT result (62)) by starting from Gutzwiller’s semiclassical periodic
orbit formula ([34]). Recently, the power series expansion of the form factor could be
reproduced using periodic orbit correlations in fully chaotic systems. Starting from
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Figure 13. The transmission amplitude as a function of the frequency in steps
of the parameter X. The flexural modes are joined by a solid curve to guide the
eye. Other modes pass through the diagram without any interaction with the
flexural modes. These are the in-plane modes, which are not included in the data
analysis (see text). Inset: The shape of the Sinai-Stadium plate. The side which

is polished to effect a parametric change is indicated by X (Schaadt and Kudrolli,
[1999).

the 72 term (Sieber and Richted, M), the full expansion for K (7) first for 7 < 1

Heusler et al, M) and later also for all 7 (Heusler et al,[2007) has been worked out.
Equivalent results for quantum graphs as introduced by [Kottos and Smilansky d_L9_9_ﬂ)
have been obtained by [Berkolaiko et al (2002) which in addition provide bounds for
the border of the universal regime, see also [Tanner (IM) For quantum graphs,
the random matrix conjecture could be confirmed using super-symmetric techniques

Gnutzmann and Altland, M)

Statistical measures related to parametric changes in the eigenfrequency spectrum
have been discussed at some length in the context of elastodynamics. Changing the
properties of an elastic or reverberant body as a function of a parameter ¢ describing
for example changes in the volume, the shape or the elastic parameters of the body
leads to variations in the eigenfrequencies; an example is shown in Fig. [[3] for a plate
where one of the sides was shortened and the relevant parameter ¢t = X is the mass
of the total plate (lSd]_a@dLa.nd_Iﬁldmlli, |J_9_9_9) After rescaling the spectrum to mean
level density one (for each ¢) and normalising the parameter according to 7 = ot with
0% = ((dx/dt)?) with x, the rescaled eigenfrequencies, one considers the velocity and
curvature distributions P(v) and P(k) with v, = dx,,/dr and k,, = 7~ *d%x,/d*T of
the parameterised eigenvalues z,,. RMT predicts a standard Gaussian distribution for
P(v) (Simons and Altshuler, [1993) and

1 1

P(k) = IS (65)
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for the GOE ensemble (Zakrzewski and Delandd, [1993; lvon Oppen, 11994, 1995
Fyodorov and Sommerl, [mﬂ) Another popular measure is the velocity autocorre-

lation function

o(r) = (G () (7)) (66)

dTO

for which asymptotic results have been given by [Szafer and Altshuler ([19_93), see also
Bruus et al M) The results above apply to parametric changes under global
perturbations; the case of localised perturbing potentials and the crossover regime

is discussed in Marchetti et al (2003).

8.1.2. Spectral statistics in elastodynamics

Spacing statistics: Eigenvalue spacing statistics has been considered in acoustic as
early as 1946 (Bolfl, 11946; [Schroder, 1954a); actual experiments have been carried
out by |Schroder 19545) measuring the spacing distribution for rectangular cavities
and comparing the results with theoretical calculations predicting a Poisson process.
In 1969, Lyon took up the subject in the context of the then emerging SEA theory
and briefly discussed the Wigner surmise (63). However, based on the results of
Schroder ([]_9_5_4H and early data from spacing distributions in nuclei, he concluded
that level repulsion may lead to a depletion of the distribution for small s, but
that an exponential tail in P(s) is generic - in contrast to the GOE result (IE{I)E]
This point of view has dominated the acoustics literature until recently, see for
example (IE_ljis_a.ka,_a.nd_TQh;Lamd, [21)_03) A systematic study of spectral statistics
in acoustics and elastodynamics started with Weaver @), who measured the
eigenfrequency spectra of rectangular aluminium blocks using ultrasound detecting
several hundred spacings. The discrete symmetries of the blocks were broken by
cutting slits into the surface. Good agreement with GOE statistics was obtained,
a result which was surprising at first; in the light of the RMT - conjecture
dMJmﬁmmmmnd_Sﬁhm}_ﬂ [19&41 one may expect that a regular geometry
such as an isotropic and homogeneous rectangular block would show deviations
from GOE and tend towards a Poisson distribution. It was thus suggested by
Bohigas et al (1991) and Delande et al (1994), that the slits act as defocusing elements
effectively introducing ray- and thus wave-chaos. Indeed, early experiments on
aluminium blocks without slits by [Ellegaard et al (1995) seemed to indicate a Poisson
spacing distribution. Subsequent measurements on eigenmodes in rectangular blocks
; IZDDB_aI) and for in-plane modes of rectangular plates m,

) revealed that the distributions are more in line with a superposition of k
independent GOE spectra; here, k& counts the number of discrete symmetries with
k = 4 for plates and k = 8 for blocks. The enhanced statistics in these experiments
was achieved by using plates and blocks made of fused quartz with a Q - value E, of the
order 10° - 10% compared to about 5-10? for the experiments by [Ellegaard et _al (IIM)
using aluminium. It is thus likely that the mixing between shear and pressure modes at
the boundaries or likewise the ray-splitting dynamics alone introduces enough ”wave

9 Such a behaviour is typical for pseudo-integrable systems , ); plates or other
structures carrying waves in an engineering context often contain straight edges meeting at rational
angles and may thus well be of pseudo-integrable type. The Poisson tail is easily destroyed, however,
by e.g. wave splitting effects

* The Q-value is defined as Q = f/Af where A f is the mean width of a measured resonance.
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chaos” to ensure RMT statistics. The exact nature of the statistics of rectangular
elastic bodies is still an open questions; it is linked to the features of the underlying
ray-dynamics when including ray splitting as discussed in Sec.

Introducing a series of experimental innovations, the Copenhagen group led by
Ellegaard managed to obtain spectra and wave functions of eigenmodes of elastic
bodies with unprecedented accuracy. Details about the experimental set-up can be
found in m, ) Effects due to symmetry breaking were considered, first
in an aluminium block (Ellegaard et al, 1995) and later in a block of anisotropic
quartz dEllega@Idj_LaJ, [IM) In both cases, an octant of a sphere was gradually
removed from one of the corners of the blocks and a transition towards a single GOE
spectrum was observed. In the experiment by [Ellegaard et al dlB_Qﬂ) using anisotropic
quartz, the orginal quartz block was cut such as to possess a single two-fold symmetry.
By breaking this symmetry, details of the transition from two to one GOE could
be studied. They were found by Leitnet (M) to be in good agreement with the
theoretical predictions by |Guhr and Weidenmiiller (ll&&d) Experiments with Sinai-
shaped (aluminium) plates were conducted by [Bertelsen et al (2000) and a transition
from two to one GOE distributions was found after coupling in-plane and flexural
modes by making cuts (of half the thickness of the plate) into the surface; the mean
density for both mode types (as discussed in Sec. [Z2ZT]) is approximately equal in
the frequency range considered which explains the two to one transition. The two
mode types can be distinguished in the spectrum by making use of the enhanced
damping of flexural modes compared to in-plane modes under an increase in air
pressure from vacuum (< 10? Torr) to atmospheric pressure h nd Kudrolli,
11999). |Andersen et al (2001) varied the thickness of the plate slightly (by removing
material from the surface with sandpaper) which led to a variation in the position of
the resonance peaks; this made it possible to detect nearly degenerate eigenfrequencies
and to obtain the full spectrum for both mode types without missing levels. By
gradually making a single cut into the plate, the transition from two independent
sub-spectra to one GOE-spectrum was measured and reproduced in an RMT model.
The flexural modes of a clover shaped plate with Cy4, were measured by
M) and computed numerically (IBmdj_er_e_uJ, lZDD_]J), the symmetry induces an exact
degeneracy in the spectrum. A transition from an NNS distribution strongly peaked
at s = 0, a so-called Shnirelman peak, to full GOE is observed when breaking the
symmetry of the plate.

The statistical properties of the flexural modes of a stadium shaped plates
were modelled numerically using the biharmonic equation (g]) dngmdm, ;
Bogomolny and Hugues, [1998; [Neicu et al, 2001); irregularly shaped membranes
including damping were considered by Burkhardt and Weaver (|L9_9§d) In all cases,

good agreement with GOE was observed.

Parametric level wvariation In 1999, the Copenhagen group presented two
measurements of parametric correlations on elastic bodies, which showed significant
deviations from RMT. Bertelsen et al (1999) measured the spectrum of a mono-
crystalline quartz block having the shape of a 3d Sinai billiard as a function of
an external parameter, in this case the temperature. The flexural eigenmodes of
an aluminium plate were measured by |Schaadt and Kudrolli (Il&&q) while changing
the length of one side of the plate. In both cases, deviations from the velocity
and curvature distribution function (65]) and velocity correlation function (G6) were
found, see Fig. [4] and Fig. The NNS - distributions coincided well with the
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Figure 14. Experimentally obtained curvature distribution P(k), (65]), shown
as crosses, and the analytical GOE result as a solid line. There is a deviation in

the centre, whereas the tails agree well , ).

GOE result in both cases. Statistical measures of parametric changes are known
to be very sensitive to non-chaotic features in the underlying dynamics resulting
in deviations from RMT. Non-universal curvature distributions were found for the
Helmholtz equation by [Takami and Hasegawa (1992) and Sieber et al (1995) and could
be attributed to the bouncing ball orbits in the stadium billiard. They vanished after
eliminating this effect from the spectrum. Deviations from RMT found in microwave
experiments (Barth et al, 1999) have been related to the locality of the perturbation
introduced, see also Marchetti et al (2003). Such effects can, however, not explain the
deviations from RMT in the Copenhagen experiments. The perturbations applied
in both experiments act globally and bouncing ball contributions do either not

exist (Sch nd Kudrolli, [1999) or have been accounted for (Bertelsen et al, 1999).

This is in contrast to the experiments on a clover shaped fused-quartz plate by
Neicu and Kudrolli (2002), where deviations in ¢(r) for the flexural spectrum may
be due to stable periodic orbits present in the system. Two further studies on ray-
splitting billiards as discussed in Sec. tried to shed light on this issue. For two
of the billiard problems considered, namely a ray-splitting annulus (Hlushchuk et al,
) and a triangular billiard d&a&ﬁsky;uﬂj, M), strong deviations from RMT
have been recorded. However, it is expected that in both cases, regions of stability
exist which may account for the non-universal features.

It was proposed that a hidden approximate symmetry may be responsible for
the deviations from RMT in the elastic body measured by Bertelsen et al (1999); this
could be due to non-complete coupling between transversal and longitudinal modes
at the boundaries. In two theoretical studies, the effect of symmetry breaking on the
curvature distribution P(k) was studied; [Hussein et al (2002) obtained the transition
from two to one GOE numerically from a model Hamiltonian, while for a similar
scenario the distributions were calculated analytically by [Ergiin and Fyodorov (12_0_03)
In the latter study, the tendency of having a higher probability for large curvatures
when introducing symmetry - as displayed in Fig. [[4l- could be reproduced. However,
the exact nature of the deviations from RMT in the experiments remains an open
question.
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Figure 15. (m’, m) Experimentally obtained velocity correlator
c(x) as crosses versus unfolded temperature x , compared with the numerical GOE
result m, m) There is a considerable deviation for medium values
of z. As an inset, the experimental result for ¢(z) is shown for the spectra from
which the bouncing-ball-like modes have not been removed.

3.1.8. Wave function statistics The notion of random or diffusive wave fields in
irregularly shaped reverberant bodies has played an important role both in acoustics
and elastodynamics (Morse and Bolt,, 1944; [Schrodex, 1959, [1962; [Lyon, Mg) and
form an integral part of statistical transport theories as discussed in Sec. B3l In
these theories, an equilibrium configuration is considered having its wave energy
equipartitioned over the available (phase space) volume. This principle has been
shown to hold rigorously by [Shnirelman 419_7_41) stating that a generic eigenmode is
equidistributed over ergodic components of the underlying ray-dynamics in the limit
w — 00; see alsolde Verdiérd (1985) and |Zelditch (1987). [Weaver (1982) points out that
the wave energy of a diffusive field in an elastic solid is distributed over the different
modes according to the relative density of eigenfrequencies for each mode-type and
thus, from Weyl’s law, relative to the phase space volume available for each component
of the wave field. Equipartition in seismic signals confirming this expectation have
been reported by [Hennino et al (2001).

A connection between random wave fields and the underlying ray dynamics has
been established bym M) He conjectured that in the presence of ray chaos,
individual eigenfunctions of the scalar Schrédinger equation behave in the asymptotic
limit on small scales like a superposition of plane waves with fixed wave number k
sampled randomly over the wave direction k/k and phases. A proof of this conjecture
for ballistic systems (performing averages by adding a random potential) has recently
been given by|Gornyi and Mirlin (lZDQﬂ) It follows immediately that the wave function
amplitudes u are Gaussian distributed and that the intensities obey a one-dimensional
x? - distribution, that is,

1

e (67)
7T

P(jul*) =

The relation (67) has originally been considered in the context of resonance-
width distributions in nuclei and is often referred to as Porter-Thomas distribution

Porter and Thomas, ﬂ%ﬂ), see also Sec.[3.2.3] Scalar random waves show correlations
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on length scales of the wave length, that is,

Cr;x) = (u(r) u(r + %)) =T (g) <%) - Ty (ka) (68)

where I'(z) is the Gamma function, .J,, denotes Bessel functions and d is the dimension
of the system; one thus finds C(x) ~ Jy(kz) and C(x) ~ sin(kx)/kz in two and three
dimensions. For the intensity correlation function, one obtains assuming a Gaussian
random process

Cr(r;x) = (u?(r)u?(r +x)) = 1+ 2C%(r,x) (69)

where the relation on the RHS is again valid only on scales of a few wavelengths; it is
assumed that the wave functions are normalised such that (u?(r)) = 1. The so-called
inverse participation ratio is given as

4(r
—Cilri0) = (70)
one thus obtains I, = 3 from RMT. The equations (G8]) and (GJ)) are indeed valid
only on short scales of the order of a wave length and correspond to a zeroth order
approximation. Corrections due to the presence of boundaries in billiards have been
discussed bym (@) and others. A more systematic way for expressmg dev1at10ns
from the random wave approximation have been presented by

(@) and [Urbina and Richter (I_ODJ ); the authors point out that the correlation

function ([@8) can be written in terms of the Green function, that is,

2w

C(r;x) = —(SG(r,r + x;k)) (71)

T
where the average is taken over a small frequency range. After inserting semiclassical
expressions of the form (28], one obtains the Bessel function contributions in (68) to
leading order with corrections given by classical orbits. |Akolzin and Weavel (IJ)M
independently suggested the relation (7I)) and generalise it to vector wave equations
such as the Navier-Cauchy equation ([I6) using the Green function in tensorial form.
The correlation functions for vectorial eigenfunctions are in analogy to (G8) given by
the free tensor Green function of the wave equation. The result (71 is also valid
for open systems in equilibrium with a diffusive environment (Weaver and Lobkis,

); here, the field is considered locally in a volume V produced by an incoherent
superposition of incoming random waves. The Green function is in this case obtained
inside V.

Wave function intensities for both flexural and in-plane eigenmodes were
measured experimentally by the Copenhagen group for aluminium plates being Sinai
and stadium-type shaped as well as for rectangular plates (Schaadt et al, [2001;
Ellegaard et al, 12001 |Schaadt et al, lZDDB_H) Examples of measured wave functions
are displayed in Figs. [0 and [T as well as in Fig. [ taken from (Ellegaard et al, 2001
Schaadt_et_al, |21)ﬂ].|) The difference between regular and chaotic geometries becomes
clear by inspection, see Figs. [0l and [[7l Note, however, that the biharmonic equation
@) is not separable for rectangular geometries other than for clamped boundaries
(IGQrmaﬂ, 11978, [1%2) The separability observed in the experiments, Fig. [[7 is thus
only approximate, but is well fulfilled sufficiently far from the boundary where the
wave functions are in good approximation solutions of the Helmholtz equation with
modified boundary conditions, see Sec. 2.2.2
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Figure 16. Measurement of wave function in the chaotic Sinai billiard: in-plane
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Figure 17. Rectangular plate of fused quartz: regular wave functions of flexural
type from (Ellegaard et al,

The validity of the Porter-Thomas distribution was confirmed both for bending
and in-plane eigenmodes; this was also found in numerical studies for the biharmonic
equation in chaotic cavities (Brodier et al, 2001). Further, [Schaadt et al (2003h)
demonstrated, that for bending modes the intensity correlation functions follow the
scalar Gaussian wave model (68). For in-plane modes carrying two polarisations with
different wave speeds, the correlations show significant deviations from the scalar case
revealing the vectorial nature of the wave equations. Possible theoretical treatments

were discussed in (Schaadt et al, [2003b) and (Akolzin and Weaver, |2Q0_4ﬂ§; a related
tudy on three dimensional microwave cavities was carried out by

s
(@é) showing good agreement between theory and experiment.

3.1.4.  Recovering the Green function from cross correlations |Lobkis and Weaver
(2001b) and [Weaver and Lobkis (2001, 2003) point out, that the cross correlation

function for a chaotic wave field can be written in the form

C(r,ro,t) = /dt u(r, 7)u(ro, t +7) ~ % {G(I',I'o,t) — G(r,xo, —t)} ; (72)

where G(t) is the Green function in the time domain, Eq. (ZH), describing wave
propagation form a source point rg to r in time ¢t. Equation (2] follows immediately
from (TI) when going from the frequency domain to the time domain. The relation
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holds for random (diffusive) fields in the regime where there is no net current into or
out of a region containing both r and rg. It implies, that information about the Green-
function, that is, the response of the system at point r to an excitation at rg, can be
obtained by measuring a 'noisy’ signal at ry and r simultaneously. The diffusive field
may be produced at some other point 1’ (such as by an earthquake) or may be due to
thermal phonons or some other form of random excitation. This makes it possible to
perform ultrasonic measurements without a source (Weaver and Lobkis, 2001, 2003)
which is of particular importance to seismology and underwater acoustics. Note, that
the cross correlation function is symmetric about ¢ = 0 due to time-reversal symmetry
which is reflected in the terms G(t) and G(—t) on the LHS in (T2); recall that G(t) is
non-zero for ¢ > 0 only.

This idea was in fact presented earlier in helioseismology by Duvall et al (|L9_9j)
Its full potential started to emerge only after the theoretical and experimental work
by [Weaver and Lobkis 420_0_]_,_21)_(3) They demonstrated that the autocorrelation
function obtained from thermal noise in a cylindrical aluminium body coincides with
the signal obtained from a pulse-echo experiment and thereby managed to reconstruct
G (r,r,t) for short times. In a similar experiment, the same authors studied the cross
correlation function C' (r,rg,t) of an experimental signal obtained from a single source

excitation (Lobkis and Weavei, 2001H) The results were less convincing prompting a

series of papers on the influence of absorption and the extension of the idea to open
system (I]lamdumj, 12003b; Weaver and Lobkis, [2_0_0_41) It was pointed out that the
relation ([2)) holds for open systems as long as there is a random distribution of sources
or more generally, the local wave field is in equilibrium with a global random field and
there is no net flux. There is a close relationship between cross correlated signals and
time reversal imaging as discussed in Sec.[2:4l Cross-correlation and convolution with
a time reversed signal are identical operations; using a generalisation of the cavity
equation (B9), the cross correlation function can be obtained by applying a pulse
at ro and recording at some point r’ Mﬁ%, 2003H). Exciting the medium with
the time-reversed signal again at r’ leads to refocusing of the wave field at rg; this
implies, that the signal measured at the point r is equivalent to C (r,ro,t) (up to a
convolution with the Green function G(r’, ', t)).

lvan Tiggelen (2003) re-derive () in terms of a diffusion equation obtained from
multiple scattering theory. The asymmetry around the point ¢ = 0 often observed
in experimental data is related to deviations from equipartition of the wave field
Malcolm et al, MM) Weaver and Lobkis (miﬁ) give estimates for the variance of
the reconstructed Green function both for open and closed systems. It is established
that the variance scales like

var C(t) ~ (tg /t)*(1 — exp(=2tg /t))

where tz is the Heisenberg time and ¢ is the sampling time. Here, the variance is
large for small sampling time ¢ at high frequencies as ty ~ w?. The theoretical studies
mentioned above are mostly based on a modal picture expressing the Green function
in terms of the eigenfunctions strictly valid only for closed systems. A theoretical
analysis relating the cross correlation function to the time-dependent Green function
written in terms of ray paths has been presented by Snieder 42110_4]) and [Roux et al
M) for the ballistic case and by Sabra et ol (2005) in the presence of multiple
scattering in an ocean wave guide. Recently, de Verdiére dﬁ)ﬂﬂ) picked up this theme
giving a rigorous mathematical description in terms of pseudo-differential operators
and random fields.
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Figure 18. Signals measured between two seismological stations in California
(“PHL” vs. “MLAC”). Top: Earthquake pulse. Middle: Cross correlations of
ambient seismic noise over one year. Bottom: Four samplings over three months
of ambient noise. The earthquake signal was normalised to the noise signal

, [2003).

The effect can be used most efficiently in analysing ambient noise data in
seismology. [Campillo and Paul (IMJ) considered the late seismic coda, that is,
the diffusive signal following an earthquake, for 110 earthquake events measured
simultaneously at two different locations in central Mexico. The cross correlated
signal clearly exhibited peaks at travel-times of the corresponding Rayleigh and
Love surface-wave between the two locations. In a further large scale study by
Shapiro and Campilld (2004) and [Shapiro et al (2005), surface wave speeds could be
mapped with an unprecedented resolution by measuring ambient seismic noise on a
grid of stations in California, see Fig. [I[8 The results depend, however, on the time
window chosen reflecting the fact that the seismic wave field is not fully diffusive.
This allows for a depth dependent analysis. The connection between cross-correlation
functions, TRI and seismology has recently been reviewed by [Larose et _al (1201)11)

Coherent wave signals could also be extracted from noisy data sets in ocean
acoustic waveguides as discussed in Sec. This was demonstrated in numerical
simulations dRmx_am_EinH, 12003; [Sabra. et al, |21)_05|) as well as using experimental
data taken from an array of hydro-phones dRmmm, |21)_O_4]) It was shown that the
dominant contribution to the signal comes from noise sources aligned with the two
receivers producing the cross correlated signal. [Roux and Kupermann (IZ)DE) went a
step further by producing a time reversal mirror as discussed in Sec.[Z4]using the cross
correlation function obtained from passive noise measurements thereby mimicking a
true, that is, active point source! The coherent backscattering effect, discussed in the
next section, has been demonstrated using cross correlation functions (m,
) allowing for an enhanced spatial resolution for small (virtual) source and receiver
distances.

3.1.5.  Weak localisation and the modal echo Weak localisation, more commonly
known as coherent backscattering in the acoustics literature, has first been discussed
in the context of electronic transport through disordered media and Anderson

localisation; see [Bergmann 4194&41) and references therein. The effect amounts to
an enhancement of the backscattered field at the source. In a typical experiment,
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the field is excited by a localised pulse at a source point ry and returns to that
point after undergoing multiple, chaotic scattering in some medium. The ensemble
averaged intensity distribution for times larger than some characteristic scattering
time is considered. For open scattering systems, the field intensity at ry is enhanced
by a factor of two compared to the far-field intensities. For closed systems such as
cavities, one observes an enhancement rising from two to three for times larger than the

Heisenberg time (Weaver and Burkhardd, M), this increase has been called modal
echo by [Weaver and Lobkis (2000a).

The factor two can be easily explained in a ray picture; due to time reversal
invariance, every path from ro — ry has a time reversed partner with which it
interferes constructively. In closed systems with an underlying classically chaotic
dynamics, there is an extra contribution; the initial impulse leads to a random wave
field which can be expressed in terms of a random superposition of the eigenfunctions
of the cavity. The time dependence of the intensity of the wave field at point r
excited initially at ro can for times ¢ > {gnrenfest L1 be written in terms of th

correlation function C(rg,r) B (Weaver and Burkhardt, 1994; id,
12000a; de Rosny et al, 12000; Langley and Cotoni, M) Including correlations due to

RMT, one obtains in particular
(Ju(ro,r;8)[) = 1+ [1 + K(t/tn)] C*(ro, 1), (73)

where K (t) denotes the form factor defined in (G2 and tj is the Heisenberg time. (g
is proportional to the mean level density, and may thus be regarded infinitely large
for open systems.)

Coherent backscattering peaks were first observed in optics in the 80s

by [Tsang and Ishimaru (Il%_ljl) Experiments in acoustics started in the 90s

recording the backscattered signal from a random media immersed in water
(Bayer and Niederdrink, 1993; [Sakai et al, 11997; [Tourin et al, |LQ9_ﬂ) In particular,
Tourin et al (ILM) used the time dependence of the pulse width to extract information
about dynamic transport properties of the medium such as the diffusion constant.
Weak localisation in closed systems was first considered in the context of quantum
dots by [Prigodin et al (1994) and then derived in terms of an eigenfunction expansion
of the propagator (Weaver and Burkhardd, M) A first experimental verification of
the transition from 2 to 3 was given by Weaver and Lobkis (20004) using a 3d irregular
shaped aluminium block, see Fig. Recently, Larose et al (|2D_Oﬂ) measured coher-
ent backscattering signals passively using cross correlation methods as discussed in the
previous section. Both active (laser) and passive (thermal phonons) sources have been
considered; deviations from the enhancement factor three in the passive experiment
was attributed to losses. Excitation by polarised sources was considered experimen-
tally using silicon plates by lde Rosny et al (|21)_Q].|) and numerically by
). Polarised sources are particularly important in seismology as earthquakes em-
anating from dislocations often have a large bipolar component. Weak localisation

has been observed in an experiment with seismic waves in (Larose et al, 2004).

Weak localisation is often discussed in the context of Anderson localisation, that
is, the regime where wave solutions are localised in extended systems due to the
presence of disorder. Strong localisation is a phenomenon linked to multiple scattering,
interference and classical diffusion; it depends crucially on the dimension of the system

* The Ehrenfest time is the time at which classical and quantum evolution deviate and is for chaotic
systems of the order tgp enfest < logk.



CONTENTS 49

energy ratio

time (msec)

Figure 19. (Weaver and Lobkis, [2000a): experimental observation of the modal
echo, that is, the enhancement of the coherent backscattering peak from a factor
2 to 3; different curves correspond to different frequencies and thus different Ty .

and its interpretation in terms of an underlying ray dynamics and wave chaos is still an
open problem. This review focuses on the interplay between wave and ray dynamics
and no attempt will be made here to cover the extensive literature on Anderson
localisation in general and in acoustics and elasticity in particular.

We refer the reader with particular interest in localisation phenomena
to the reviews by |Guhr ef al 41398) focusing on concepts from random ma-
trix theory, [Beenakker| (|;|_9_9_Z|) with special emphasis on wave transport and

[Hodge and Woodhousd (1984) covering localisation in elastic media. Some more re-

cent studies on localisation and its influence on the description of wave transport

through elasto-mechanical systems can be found in [Weaver and Burkhardd (Iﬁ)j)ﬂ),
Weaver and Lobkis (2000H) and |Gréngvist and Guhi (2005). For time resolved

studies considering pulse transmission through disorder, quasi-one dimensional mi-

crowave guides, see for example Titov and Beenalkker (2000); [Schomerus et al (2000);
Chabanov and Genacll (2001)); (Chabanov et al (2004) and references therein. The dy-

namics of localised wave fields in three dimensional, open systems has been considered

by ISkipetrov and van Tiggelenl (2006).

3.2. Transport and decay in dissipative systems

Signals in acoustics are often dominated by dissipation due to, for example, wall
absorption of acoustic waves, energy loss caused by internal friction in elastic bodies
or damping due to coupling at boundaries. From a wave perspective this leads to
finite width resonances and wave functions coupled to decay channels. The study
of signal decay, energy transfer through open systems and the statistics of their
fluctuations has a remarkable history in acoustics and goes back more than a century;
it ranges from early attempts to measure and predict decay times in reverberation
rooms such as concert halls in the late 19th century to a general theory of vibrational
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energy flow in large build up structures (such as cars or buildings) to recent studies
describing fluctuations in the Green function within the framework of RMT using
super-symmetric methods.

8.2.1. Decay times - early considerations (@) found experimentally that
the exponential decay of acoustic signals often does not depend on the shape of the
room, but is given by a simple universal expression for the decay time Tg, that is,
4V 1
Ts = S va’
where V' and S are the volume and surface of the room, respectively, v is the speed
of sound and 0 < o < 1 is the mean surface absorptivity. The expression 4V/S can
be interpreted as the mean distance between two points on the surface of a three
dimensional convex body. The latter result dates back at least to (@) (In
two dimensions, 4V/S is replaced by 75/ P, where S is the area and P the perimeter).
The relation (74) is valid only for small absorptivity «, extension to intermediate o
values yield

(74)

4V 1
Tne = S vln(1—a)’

often referred to as Norris-Eyring time ([nglmﬂ, [1924; ISchuster and Waetzmanul,
1929), see also Morse and Bolf (1944). The universality of Sabine’s formula (Z4) or
Eq. (@) were soon questioned leading to a discussion on the relation between decay
times and the underlying (acoustic) ray dynamics. It was found that Sabine’s formula
does not hold for rectangular rooms without dispersing elements such as for example
an audience (M, @) The confusion was lifted only in the 1970’s when the
connection between the validity of Sabine’s law and ergodicity of the corresponding ray
dynamics became clear, see m (@) and references therein. m (@) points
out in particular that universality holds only if the correlation time 7, measuring
the decay of correlations in the ray dynamics obeys the relation T, < T.. The
inequality ensures that phase space is sufficiently explored before absorption takes
over IH ILegrand and Sornettd d]_9_9_d) test Sabine’s law numerically for the classical ray
dynamics in enclosures such as stadium or Sinai billiards. Good agreement with Eq.
([3) is found for small absorption, but deviations occur due to non-exponential decay
of correlation in these systems caused by bouncing ball orbits ([Mﬂsaagm,
). Corrections to the Norris-Eyring law due to fluctuations in the mean
free path length between bounces with the billiard boundaries have been considered
by Mortessagne et al (1992, 1993), see also [Kuttruff (1970, 1971).

With the arrival of dynamical systems theory in the 1980’s, it became clear
that the above mentioned decay times are approximations of the so-called classical

escape time T, (Kadanoff and Tang, 11984; @‘MSm_ﬂszky], 11988; [Doron et al,
11990; [Lewenkopf and Weidenmiillei, u9_9i|) In open chaotic systems, T, measures the
exponential decay of the probability P(t) ~ exp(—t/T.) for a particle to stay in the
reverberation or reaction region; absorption is treated here as an escape channel. The
escape rate v, = 1/7, is the leading eigenvalue of a linear phase space propagator,
the Perron-Frobenius operator (Cvitanovic and Eckhardt, [1991); effective methods for
calculating these eigenvalues can be found in (Cvitanovié et al, IM) and references
therein.

# Joyce talks about a mixing time; [Legrand and Sornette (M) point out the importance of the

correlation time as the relevant time scale

(75)
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The above analysis is entirely based on the classical ray dynamics and gives
the mean decay of acoustic or elastic signals neglecting fluctuations due to wave
interference. Different approaches are favoured in different communities when dealing
with the full wave problem. In quantum systems, the excitation of a system due to
particles such as photons, electrons or neutrons has a strong influence on the systems
as a whole and the process is best treated as a scattering problem with well defined
entrance and exit channels. This is in contrast to acoustics and elastodynamics, where
the main source of dissipation is due to absorption in the interior or on boundaries
whereas the influence of the source or the receiver on the system is often negligible.
A Green function approach including absorptive channels is thus favoured here. Both
approaches are of course closely related, see m, M) for a discussion of this
topic.

3.2.2. The Green function approach and the scattering matriz The wave equation
with absorption can be written in operator form as

H=Hy—iWwwT (76)

where Hj is the linear operator for the isolated system without absorption and W
represents the coupling to dissipative channels such as contacts, friction or absorption
at boundaries. For the wave equations considered here, Hy can be chosen real
symmetric reflecting the time reversal symmetry of the problem; the real matrix
elements W;; represent the coupling of the i-th wavefunction to the j-th channel.
It is assumed that the coupling is independent of frequency. This is assumption
is generally valid in the high frequency limit and for chaotic wave fields where the
coupling elements are roughly constant over frequency ranges large compared to the
mean separation of resonances. Note that the actual number of channels does not enter
into (Z6)); absorption acts as a multitude of dissipative channels and it is often easier
to work with the symmetric operator WW7 instead, whose matrix elements may be
deduced from experiments or taken randomly from appropriate matrix ensembles.

In a typical experimental situation, a force F' is applied to the system at a source
point rg with frequency w and the signal is detected by a receiver at r. The stationary
wave field u(r) induced by a localised source is a solution of the inhomogeneous
equation

(w? — H)u(r) = Fé(r — 1)
with appropriate boundary conditions. The wave amplitude at the receiver is then
proportional to the Green function including dissipation, that is,

1

CWw) =
It is assumed here, that source and receiver do not act as dissipative channels
themselves and thus do not influence the pole distribution of G. The acoustic energy
absorbed by the source or receiver can in general be kept small when injecting or
detecting signals through point contacts; this is in contrast to quantum systems or
microwave cavities where source and receiver generally act as scattering channels.

The operator H is complex symmetric with complex eigenvalues (w,, — iv,)? and

eigenfunctions u,(r). For a typical system, the eigenvalues of H will be distinct, and
one can write the Green function in spectral form as

G(r,ro,w) = Z Un (x)un (o) . (78)

w? — (wp, — i9n)?

(77)

n
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where one uses the fact that
/ Adr Up () U (r) = Op.m (79)

for the square-integrable, in general complex eigenfunctions w,,. Note, however, that
H in contrast to Hy is not necessarily diagonalisable as ([[9) does not induce a norm,
ie. [ dru?(r) = 0 does not imply u = 0 for complex wave functions.

The Green function (78) or its modulus, the power transmission function
T(r,ro,w) = |G(r,ro,w)|?, are of special importance in elasticity and acoustics; they
describe the transport of wave energy through a system. The Green function is closely
related to the scattering matrix through

S=1-2iwT

=1-2iwTGw (80)

describing the transition between well defined scattering channels.

(@) first coined the term Statistical Wave Acoustics for analysing
the seemingly random response signals obtained from typical reverberation chambers.
The connection to RMT was established only in the late 80s by Weaverl (IM)
Recent progress in analysing scattering processes in the framework of random matrix
theory has led to a wealth of results in a quantum context, see for example the review
articles by [Fjodorov et al (2005) on the application of super-symmetric techniques in
RMT as well as by [Stéckmann (|L9_9_9) and [Kuhl et_al (2005) focusing on experimental
verification of the results in microwave billiards. A statistical treatment of dissipative
systems in acoustics and elastodynamics has focused on correlations in the Green
function G(w) and the variance of the power transmission function 72(w) which will
be reviewed below. The power variance is of interest to an SEA treatment as presented
in section and has so far defied a full random matrix analysis.

3.2.3.  Correlations in the Green function Starting from (73], (@)

considered the Green function in the time domain, (250]), that is
A Z Un(T)un(r0) _ip t—yt
G 1) = Wnt=9nl 81
(1'7 To; ) n 21(wn — Z’)/n) € ( )

Approximating the decay rates by their mean value (v,) = 4 and treating the wave
functions u,,’s as Gaussian random fields, one obtains

. G2 _
ot = LGL) s
(IG(0)1)
after averaging over source and receiver positions. The exponential decay immediately
leads to a Lorentzian shape of the auto-correlation function, that is,
G 2)G*(wp — w/2))
Cloy - Clart el a2} _ [y 000
(IG(wo)[?)
Schroder associated 1/7 with Sabine’s decay time (74). The connection to the classical
decay time becomes apparent when writing C(¢) in ([82) in terms of semiclassical

approximations for G(t) similar to ([28); the dominant contributions to the resulting
double sum over trajectories from ry to r stems from diagonal terms and one obtains

é(r7r07t) ~ Z |A7"o—>7'|2 = ;C(I',I'Q,t) ~ e—’Yet7 (84)

ro—r

(82)

2w2 .(83)
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where A,,_, is the semiclassical amplitude and £ is the Frobenius-Perron operator,

a classical propagator acting on phase space densities (Cvitanovi¢ et al, [ﬁ)ﬂﬁ) The

decay pattern is thus determined by the eigenvalue spectrum of L£: the eigenvalue

closest to the real axis gives the escape rate v, (lﬁzmangmm_am_Egkh_aIdﬂ 11991)) which
1988

dominates decay of the correlation function for large ¢

(Bliimel and Smilansky
Doron et al, 11990; Lewenkopf and Weidenmiiller, [1991); [Lai et al, [1999). Eigenvalues
of the Frobenius-Perron operator other than 7. give rise to fast decay on short time
scales which has been verified in microwave experiments by [Pance and Sridhai (2000).
Remarkably, Schroder derived (83) for room acoustics independently and at about
the same time as Ericson working in nuclear scattering (M,M) It took another
30 years until acoustics fully embraced the usefulness of random matrix theory in a
statistical description of wave phenomena.
Ode M) also noted that exponential decay is only valid in the limit of
uniform damping or a large number of dissipative channels. Defining the number of
dissipative channels v as the rank of W, we may write the decay width as

1 & ,
n=— 3 milul|?
“n i

where u!, is the projection of w, on the i-th channel and 7; are (real) coupling
constants. The decay widths are distributed according to sums over squares of
Gaussian random variables if the wave functions u, (r) behave like Gaussian random
functions, as is generally assumed in Sec. If the u,(r) are furthermore

approximately real (IBJ_mkh_a.rdLa.ndMLQamﬂ, [19_9_6_H) and the 7; are independent of

n, one obtains a x? - distribution, that is,

v u/2 1 .—Y’Y

(2y)7/2 T(v/2)
where I'(x) is the Gamma function. Decay then becomes algebraic, that is,

P,(v) =

(85)

C~ <1+2t—w>_g (86)

approaching the exponential distribution (82]) only in the limit ¥ — oco. These results,
well known from nuclear physics (Porter and Thomas, 119_65), have been introduced by
Schroder (1965) and later by [Burkhardt and Weaved (19965) and Burkhardf (1997)
into the acoustics community. However, absorption in reverberation rooms or elastic
media tends to be uniformly distributed leading to WW?™ ~ I'T with I the identity,
and thus exponential decay. Algebraic tails in response signals (often referred to
as ’decay curvature’, that is, deviations from purely exponential decay) have been
reported in acoustic reverberation chambers (Kawakami and Yamiguchi, [1986) and in
experiments on aluminium blocks (Burkhardt, [1998; Lobkis et al, M), where v and 7
were treated as fit-parameters. Burkhardt (ﬂ9_9_?]) suggested to use this information as a
measure for non-destructive characterisation of micro structural damages in materials;
dislocations contribute indeed to a large part to the friction and thus dissipation in
elastic bodies. Experiments performed on aluminium blocks for which localised areas
of increased friction were simulated by adding water-filled plunge cut slots on top of
the block were reported by Burkhardt (ﬂ9_9ﬁ) Information about the area of enhanced
friction could be extracted.

For a more sophisticated treatment of the correlation functions (82) and (83),
one averages over an ensemble of Hamiltonians Hy in (77); the ensemble average
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can be carried out using super-symmetric techniques, see (Verbaarschot et al, [1985:;
Fyodorov and Sommers, 1997). A controlled experiment comparing (B8] with super-

symmetric results is difficult in the presence of absorption as the channel number v is
usually not well defined. [Lobkis et al (1201)3) circumvented this problem by attaching
a wire to an aluminium block. The wire was immersed in water acting as a sink
with a well defined number of channels. By subtracting the decay signals with and
without wire, an algebraic decay curve could be extracted with fitted channel numbers
v in agreement with expectations. The experimental curves were compared to both
[®6) and the full super-symmetric result; small but significant differences at high
frequencies and thus large resonance overlap could be detected clearly favouring the
full RMT result. It is remarkable that after a century of studying response decay
signals, acoustics and ultrasonics provide the most sensitive tests of a statistical theory
originally developed in a quantum setting.

8.2.4. Variance of the power transmission function The mean energy density induced
in a given part of the system by a source at some point rg (as used in an SEA treatment)
can be obtained from

E(w) ~ <T(I‘7 To; Ld)> ) (87)

where T' = |G|? is the transmission function and the averages are carried out over
receiver and source positions. As pointed out in m M), a proper analysis of
the range of applicability of SEA needs information about the fluctuations in the
energy density. This requires the evaluation of quantities not normally considered in
quantum scattering theory such as the 4th moment (|G|*) ~ (|T|?) discussed in more
detail below.

ILyon (1969) and Davy (1981) noted that the 2-point correlation function Ry (z)
measuring correlations between the real parts of the resonances, w,, plays a role in
evaluating (T?(r,ro;w)). The energy density E(w), on the other hand, is independent
of these correlations (assuming real u,); including decay rate distributions according

to Eq. (85), Burkhardt and Weaver (19964) obtained

dr 1
2 —_
Bw) ~ (6P ~ Ty

(88)

with o = 2/v, the relative variance of the x? distributions P, (7). Here, d denotes the
mean density of resonances in the same way as Weyl’s law gives the mean density of
eigenmodes in a closed system. (The concept of a mean density is somewhat vague for a
dissipative system and is here in general understood as the density of eigenfrequencies
of the corresponding isolated system.)

Assuming constant decay rates vy, [Legrand et al (|L9_9jj) showed that the Fourier
transformed averaged input impedance has, in contrast to the correlation function

[®2), the form

(TP
Cr(t) = AT\ 7
1O0=mréo)p)

where K (t/d) denotes the spectral form factor ([GZ). The auto-correlation function for
TrG(w) thus becomes the derivate of a Lorentzian.

~ e K (/D) ~ %e—% (89)
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The relative variance of the power transmission function is a useful tool to measure
deviations from the mean energy density as obtained in (88]) or in an SEA analysis.
It turns out that the variance
(?)
(T
is very sensitive to the various approximations made. Early attempts m, @;

Daxyl, 1981; (Weaved, [1989D; [Burkhardt and Weave, Mab arrived at expressions of

the form

relvar(T?) = -1

1
relvar(T?) = 1 + i (I; = 3a+40(I; — a)) (90)

where M is the so-called modal overlap factor, that is, the ratio of mean decay rate
to the separation of nearby resonances A = 1/d(w), that is,

M =2rd(w)y ~ w1, (91)

I, is the inverse participation ratio (70)) and a is a measure for the degree of level
repulsion with a = 0 for a Poisson distribution and ¢ = 1 for GOE. Eq. [@0) was
presented in this form first by Burkhardt and Weaverd (1996a) and includes decay
rate variations according to (8H]) as well as level repulsion, albeit using a fairly crude
approximation for the form factor (G2)) (M, M)

The result ([@0) was seemingly in good agreement with experiments (Im, @)
and numerical simulations (Burkhardt and Weaver, |L9_9§a|) A more careful study by
Lobkis et al (2000) comparing experimental data from aluminium blocks to a refined
theory retaining the full GOE and x? expressions led to significant discrepancies.
The authors concluded that the remaining approximations, namely the assumption
of real wave functions v and the statistical independence of real and imaginary parts
of the eigenvalues are not satisfied. It was indeed shown theoretically and confirmed
experimentally that by dropping the assumptions of real u, the inverse participation
ratio I, decreases from 3 to 2 as the ratio (Imu)/({Reu) increases (Lobkis and Weaver,

) bringing theory more in line with experiment. A similar study implementing
GOE-statistics for the spacings, but assuming constant resonance widths has been
carried out by [Langley and Brown (2004) leading to a generalisation of equation (@0);
agreement with numerical results is again only obtained when choosing I, ~ 2.75,
that is, different from the random matrix expectation I, = 3. Extension of these
results including spatial correlation in the ensemble averaged transmission function

©R) and the modal echo (Z3) have been presented in (Langley and Cotond, 121)1)33

Accompanying numerical and experimental results can be found in
2005).

A full treatment based on evaluating the fourth moment of the Green function
(7)) by averaging Hy over an appropriate matrix ensemble and using super-symmetric
techniques was carried out by [Rozhkov et al (|2D_(ﬁ7 |2M)_4]) In a first calculation, results
for averaging over the physically less interesting GUE ensemble were obtained and
excellent agreement with numerical simulations was found (Rozhkov et al, @Dj) The
more challenging case of GOE statistics was tackled by [Rozhkov et al (IZJ)M), however,
parameters in the theoretical model can no longer be related easily to measurable
quantities (such as %) which prevented a direct comparison between theory and
experiment so far.

)
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3.3. Statistical energy analysis (SEA)

A technique widely used for estimating the power flow of elastic wave energy in large
built-up structures such as vehicles, buildings or other multi-component objects is
the so-called statistical energy analysis (SEA). The theory is based on a flow model
describing mean values for the energy distribution in sub-components of the structure
under a set of simplifying assumptions. Testing the validity of these assumptions and
getting reliable estimates for the variance of the energy distribution function naturally
leads to connections with wave and ray chaos problems as discussed in Sec.[2l It also
triggered the interest in spectral statistics of reverberant bodies as discussed in Sec.
BT and especially Sec. B.241 We provide here an overview over the main ideas behind
SEA and discuss briefly some of the more recent developments. The text books by
Keane and Pricd (1994), Lyon and DeJong (1995) and [Craik (1996) provide a more in
depth introduction and give practical engineering applications.

The starting point for an SEA treatment is a division of the whole system into
subsystems; this will usually be along natural boundaries, such as joints between
plates or walls in a building. Vibrational energy is pumped into the system from
sources (such as motors, etc) and is distributed throughout the systems in terms of
vibrational energy in one form or another. The goal of an SEA analysis is to get
estimates for the distribution of energy between these subsystems. These estimates
are subsequently converted to quantities of interest for engineering purposes such as
mean-square vibrational levels, sound, pressure and noise levels, etc.

The basic idea of SEA goes back to (@) who adopted a ‘thermodynamical’
approach describing the power flow between subsystems in the form

_ B E
where P;; is the power flowing from subsystem i to j, w is the (mean) frequency of the
source, and d; and Jj are the mean densities H of eigenfrequencies (or modes) of the
(uncoupled) subsystems as discussed in Sec. 22Tl Furthermore, 7;; are coupling loss
factors and Fj;, E; are the total vibrational energies stored in the subsystems. After
setting up a power balance equation for each subsystem including possible source terms
as well as dissipation, one obtains a set of linear equations which can be solved for the
unknown energies F;. Estimates for the modal densities can be obtained from Weyl’s
law, the coupling constants 7;; can be estimated from experimental or numerical data
, 12002; Macd, 121)1)3_,2_0_0_5) or in terms of a local analysis assuming
random wave fields on both sides of the boundary (Lyon and DeJong,1995). Note that
the wave energies F; per subcomponent are related to the square of the amplitude of
the wave-field integrated over the subsystem. SEA gives mean values for these energies
in the same way as Weyl’s law gives the mean density of eigenfrequencies or the mean
level staircase function such as shown in Fig.[2l It can not account for the fluctuations
in the signal when for example viewed as a function of w which are due to resonance
or interference effects and reveal the true wave nature of the problem, see Fig.
SEA is often regarded as a statistical theory in the sense that averaging over an
ensemble of similar systems is deemed necessary; this is slightly misleading as the
mean can also be defined for a single system. In practical applications, the mean is
obtained by performing local frequency averaging.

11 Modal densities are generally denoted as n; in the engineering literature; we keep here in line with
the notation adopted in the Sec.
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Figure 20. From m, M) energy frequency response of a structure
consisting of a cylinder and three plates (a); plate 1 is driven by a point force and
the response is measured in plate 2 (b) and 3 (c). Gray: different samples (extra
loads, different source and receiver positions); fluctuating black: mean over all
samples; smooth solid line: SEA prediction; dashed line: theoretical bounds of
99% confidence interval.

The validity of the SEA treatment ([@2]) is based on assumptions such as this is
the so-called coupling power proportionality, Eq. (@2), stating that power flows along
the energy gradient just like thermal energy does along the temperature gradient

; 119_9_5]), furthermore, it is assumed that the systems have no
memory, that is, the coupling constants 7;; depend only on the properties of the
subsystems ¢ and j; and thirdly, that the eigenfunctions of the (uncoupled) subsystem
behave similarly and can locally be described in terms of random Gaussian fields
(7 diffusive wave fields”). Weak coupling between subsystems is often cited as a further
condition (@, ). In a wave chaos context, the SEA assumptions may be
formulated as follows: the underlying ray dynamics in each subsystems is chaotic,
the escape rates for each subsystem are small and one works in the high-frequency
limit where a high modal density favours equipartition of the energy between modes.
Details of the subsystems become irrelevant due to the universality of the spectral
correlations and only the volume of the subsystem and the coupling mechanism enter
the theory. Explicit bounds for the validity of the SEA theory have been given by
Mace (IZDDB_,ZDD_H) calculating the SEA parameters directly from an FE solution for
relative simple model systems and comparing with the SEA prediction.

By the nature of the technique, only relatively rough estimates for energy
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distributions can be obtained. Still, for high frequency noise sources, SEA or variants
thereof are often the method of choice. ‘Exact’ solution tools such as finite element
(FE) or boundary element methods become both too expensive computationally and
unreliable, that is, small uncertainties in the systems may lead to very different
outputs. One of the big challenges in mechanical engineering is the so-called mid-
frequency problem - that is, handling the frequency range which is out of reach
for ‘exact’ numerical methods but not yet in the high-frequency regime where a
purely statistical treatment may suffice. SEA has been discussed as a starting point
for penetrating the mid-frequency regime by employing hybrid-methods based on
combining an FE and SEA treatment (IL_a.ngle;La.nd_B_rfmneﬂ, 11999; Mace and Shorter,
12002; Shorter and Langleyl, 2005). An approach similar in spirit is the so-called ‘fuzzy
structure theory’ by Soize (1 (|_9_9jﬂ7 u)ﬂj where randomness is directly introduced in the
set of (sub-)system parameters.

Theoretical work on predicting the variance of the energies found in each
subsystem for an ensemble of similar systems (or by considering a frequency interval)
has provided a bridge towards spectral statistics and ultimately RMT. For such
an analysis, the statistics of the eigenfrequency spectrum of the sub-systems are
important, see also Sec. B.Z4l Whereas historically a Poissonian distribution or
ad-hoc model probability distributions were assumed (ILM, 11969; [Davyl, 1981
ILyon_and DeJong, 1995; [Langley, [1999), a random matrix point of view as presented
in Sec. is now generally accepted (Soizd, [2003; Langley and Brown, IZDDAI) Using
the approximative results by [Langley and Browil (IM) valid for single systems,
Langley and Cotoni (2004) developed a reliable method for calculating the variance
for multi-component systems making use of power-balance conditions between the
subsystems; the method is expected to work well for systems, for which SEA gives a
good approximation of the mean and the subsystems follow GOE statistics (when
isolated). This has been confirmed in numerical dL_ang]_emndLMpnj 2004) and

experimental studies (Cotoni et al, [2003), see Fig.

4. Diffraction, curvature and anisotropy

Diffraction, elastic waves on curved bodies and anisotropic materials lead to new effects
which are beyond the ray versus wave chaos picture for isotropic and homogeneous
media discussed so far. We will briefly summarise some know results and point out
connections to wave chaos applications.

4.1. Diffraction

The simple ray theory discussed in Sec. breaks down or needs to be modified
when considering bodies with curved surfaces, curved plates such as shells or
wave solutions near corners and point/line defects. Including diffraction effects
Keller and Karal, 1960) is important when modelling materials with mechanical
defects dAgbﬂ]_baghj_LaJ, [1%2) and play a role in semiclassical expressions such as
the density of states as discussed in Sec. in the low to medium frequency regime.
Below we shall discuss typical diffractive phenomena such as surface waves occurring
in elastodynamics. We first give an overview over surface waves in the case of no
curvature and will then move on to the general case of curved boundaries. Diffractive
effects at corners and wedges will be briefly reviewed at the end of this section.
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4.1.1.  Surface waves on flat boundaries The general problem of determining the
elastic Green function with traction free boundary conditions in an infinite half space
is called the Lamb problem (Ewing and Jardetzky, 1957; Brechovskicli, M) It
does not admit closed form solutions but can be written in terms of an integral
representation. The asymptotic analysis reveals that besides direct geometric rays
and rays involving mode conversion at impact with the boundary, there are further
contributions which can be interpreted as surface waves. The most prominent one is
the Rayleigh earthquake wave, see also (B3)), which can be associated with a pole in the
reflection coeflicients (23)) entering the integral representation of the Green function.
Another surface contribution is due to head waves which occur when an incoming
transverse wave converts to a fast longitudinal wave at the critical angle where the
longitudinal wave glances along the boundary. In the integral representation of the
%n function, these wave types appear as branch cuts in k-space ,

).

Thus, the infinite half-space problem supports the Rayleigh surface waves and
head waves at the boundary. The surface wave that carries most energy in, for
example, an earthquake is the Rayleigh wave. This wave moves without attenuation
along the boundary with a velocity slightly lower than the transverse wave, decays
exponentially into the medium and propagates without dispersion. Head waves moving
with the wave speed of longitudinal waves are faster than Rayleigh waves and act as
early warning systems for earthquakes. They decay, however algebraically along the
boundary. Head wave contributions can also be observed in microwaves where these
wave types are called lateral waves. Glancing rays in quantum billiards were considered
by (Sieber et al, 1995). Head wave contributions have not been considered in wave
chaos except in a ray splitting billiards by Bliimel et al (1996), see Sec.

Another surface contribution is the so-called pseudo-Rayleigh wave which like the
Rayleigh wave corresponds to a pole in the reflection coefficients ([23). This wave is
a leaky wave with a complex wave number in the direction along the boundary. It
therefore looses amplitude exponentially with distance and is not considered a proper
surface wave.

At the interface between two media propagating waves, so-called Stonely waves
(Brechovskich, [1980; [Ewing and Jardetzky, [1957) may be supported. In the case of
layers of finite thickness the corresponding waves are called Love waves. They are
transversal waves travelling inside the layer in the limit when the wave length becomes
small compared to the thickness of the layer. Such waves occur for instance in layered
regions of the earth or in thin films on top of a secondary solid half space.

4.1.2. Surface waves on curved boundaries The effects of curvature on surface waves
have been studied by [Viktorov (1967) and Izbicki et al (1998) who investigated the
specific example of scattering on a circular cavity. [Viktorov (@j) focused on Rayleigh
waves and their attenuation whereas Izbicki et al (|L9_9ﬁ) also treated pseudo-Rayleigh
waves and two kinds of so-called Franz creeping waves , ) to be discussed
in more detail below. [Izbicki et al (1998) considered the full scattering problem and
found in the limit of high wave numbers the scattering determinant ([B39) to be related
to (&), the Rayleigh equation for the infinite half-plane problem. This and further
asymptotic analysis allowed to group the scattering poles into four types: Rayleigh,
pseudo-Rayleigh and transversal respective longitudinal Franz waves.
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Rayleigh waves The Rayleigh and the pseudo-Rayleigh waves were originally
discussed in the context of an infinite half-plane but can also be found for curved
boundaries at high wave numbers. In the case of cavities, curvature introduces
dispersion and attenuation along the boundary. A general discussion of dispersion
of Rayleigh waves was given by @ (@) He also showed that Rayleigh wave
packets move on geodesics on the surfaces of isotropic solids. A dispersion relation
for the Rayleigh wave in the case of a circular disc was studied by [Rulf (@ and
Izbicki et al (1998). The wave number itself has an imagin part Wthh becomes
exponentially small with increasing frequency m Hence, at wave
lengths small compared to the radius of curvature, the Raylelgh wave can propagate
with virtually no attenuation almost being a pure surface wave. Rayleigh waves
are therefore less attenuated compared to pseudo-Rayleigh waves and, hence, are
expected to give the most important contribution. The influence of curvature on the
attenuation in dielectrics with impedance conditions was discussed bym (@) in
the electromagnetic case.

Besides existing as pure surface waves, it is also possible to excite Rayleigh
waves from the bulk or re-radiate back from a Rayleigh wave into the bulk. The
corresponding launching and excitation coefficients were given by Keller and Karal
(@, ) These diffraction coefficients become exponentially small for high
frequencies scaling asymptotically as exp(—w7;) where the coefficients 7; may be
interpreted as an imaginary travelling time dB.ul]f - IDoolittle and Uberall, |J_9_6ﬁ)
Rulf (@ considered cylindrical geometries; solutlons to the interior and exterior
problem were given and longitudinal as well as transverse line sources were studied. For
the interior problem, ) showed that the excitation of Rayleigh waves takes
place by waves with complex wave numbers. These Rayleigh waves shed waves back
into the bulk being exponentially damped away from the boundary. The geometrical
theory of diffraction for surface waves as outlined by [Keller and Karal (1964) were
found to be less accurate at intermediate frequencies, for instance with respect to
dispersion , ) This is in contrast to, for example, the scalar Helmholtz case
(Ilﬁal]_eLa.nd_Kam], U%ﬂ) or electromagnetism where diffraction theory remains valid
for wave lengths comparable to the radius of curvature. [Doolittle and Uberall (1968)

studied the more complicated problem of acoustic pressure waves impinging on an
elastic cylinder. The imaginary time 7; was found to be small relative to the real time
for transverse waves coupling to Rayleigh waves. Therefore, at finite frequencies such
rays may have a large contribution.

Besides this additional imaginary time, the diffraction coefficients also contain
amplitude prefactors which decay like w'/? with frequency. This is interpreted by
Keller and Karal (1964) as a fractional half-derivative in the time domain.

Despite the exponential suppression, there is evidence that closed orbits
containing segments of Rayleigh surface propagation contribute to semiclassical
expressions, at least at intermediate frequencies. |Sendergaard dZ_O_O_]J) and Wirzba._et_al

) considered the exterior scattering from two cavities in an elastic medium, see
also Sec. The Wigner-Smith time delay as defined in Sec. 2T.T] was calculated
numerically in a low frequency region. Similar to the length spectra of quantum
billiards, the time delay was found to contain fluctuations corresponding to trapped
orbits and some of these were of the Rayleigh type.

Franz creeping waves The remaining scattering poles in the cavity case (m,
@) besides Rayleigh and pseudo-Rayleigh waves are similar to those discussed by
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Franz in the scalar Helmholtz case Franzl, 1954; Keller and Karal, M) These poles

and the pseudo-Rayleigh poles are accompanied by strong exponential decay along
the surface. Hence, they are only expected to show up at low frequencies. These
poles can be of longitudinal and transversal polarisation. Closed orbits containing
creeping segments have been found in the scalar Helmholtz case in scattering from discs

. 11994; [Wirzba and Rosenqvist, [1996; Wirzba, M) Closed, creeping
orbits were incorporated into cumulant expansions, ([f]), of the scattering determinant
39). This made it possible to classify strongly damped scattering resonances deeper
in the complex k-plane and to improve the agreement between semiclassical and
numerical calculations for small k.

4.1.8. Wedges and corners In the scalar case, the general theory of diffraction for
wedges has been developed by [Keller and Karal (Il%ﬂ) These ideas have been pursued
also in quantum chaos. For a scattering problem with only diffractive orbits, Whelan

) combined the zeta function formalism with that of wedge diffraction. Another
example is the case of pseudo-integrable billiards, where diffractive orbits hitting the
corners were found to have a significant contribution even in the semiclassical limit
Bogomolny et _al, 2000).

The free elastic wedge is a difficult problem which does not admit separation of
variables in general, (not even if the angle is rational e.g. 7/2); integral representations

have been given by [Babich et al (2000, 2004)

4.2. Including curvature: Shells

Shells are important in many civil applications serving as structural elements in cars
and aeroplanes. Shell theory started with the building of domes and with the attempt
to understand spectra of church bells Mﬁm& |L&9ﬂ) Shells in architecture are
often designed to have wide span and to be of small mass but also to be sufficiently
strong. For an introduction into the acoustic properties of bells, see (@)

In shell theory the dimensionality of the problem is reduced by considering the
field only on the curved two-dimensional middle-section of the shell and not in the
full three-dimensional volume. There is a large literature on governing equations for
shells, see the monographs of |Gol’denveizel dl9ﬁ_].|) and [Fliigge <|J_9_Zﬂ) as well as a
recent article by Sendergaard d20_01|) for a mathematical introduction. The simplest
form of a shell theory by Kirchoff-Love is a curved formulation of the theory for
plates. To leading order, the flexural vibrations obey a biharmonic wave equation
(Sec. [[22) whereas the in-plane modes follow conventional two-dimensional vectorial
elasticity (Sec.[L23]) with the use of covariant derivatives to include curvature. Thus,
in principle the same questions and methods of wave chaos can be applied to the
spectral theory of shells.

Kirchoff-Love’s shell theory is known to be less accurate for higher modes, that is,
in the high frequency limit where the bulk properties of the shell become important.
A ray description is expected to work for the intermediate part of the spectrum, where
the wave lengths are much larger than the thickness. Rays are replaced by geodesics
(Gol'denveizex, [1961; [Safarov and Vasil’ev, 1992); at sufficiently small wave lengths
- which yet are larger than the thickness of the shell - conventional WKB-analysis
yields that wave splitting occurs only among the in-plane vibrations and that the
trace formula for the density of states can be separated into in-plane and flexural
contributions.
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2004).

New effects enter when the wave lengths become comparable to the radii of
curvature as discussed by [Piercd (1991) and Norris and Rebinskyl (1994). The bi-
characteristics are no longer geodesics but are also influenced by a potential. This
potential depends on the position but also on the direction of the momentum.
h this result was found for the particular simple Donnel shell theory, see
oe ), similar effects are expected to occur for other shell theories.

4.8. Anisotropic elastic resonators

The review has focused on isotropic elastic materials, so far. However, some of the
best resonators are made of anisotropic single crystals. It is therefore of interest to
extend the discussion to three-dimensional anisotropic media.

4.3.1. Background Elastic anisotropy dL_and_au_and_LifshiLzl, U%_Q) manifests itself in

a more general elasticity tensor obeying the symmetries

Cijkl = Cjikl = Cijlk = Cklij (93)

corresponding to at most 21 elastic constants. The stress tensor becomes

1 8uk 8ul
Oij = Cijkl U with Upl == | =— + 7 94
ij ijkl Wkl kl 9 (8.1?1 8.1?k ( )
and the elastic wave equation (I4]) takes on the form
8211,1 2
Cijkl =——F=— wu; =0. 95
9k G aay TP (95)
The free boundary conditions can be written as in Eq. (21]).
In k-space the corresponding wave vectors depend linearly on the given angular
velocity w. In elastodynamics, this has lead to the introduction of a conveniently
scaled momentum

s=k/w, (96)

the so-called slowness. The strongly anisotropic behaviour of the slowness is shown in

Fig. 211
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4.3.2.  Smooth counting function In Sec. 221l we discussed Weyl theory in the
isotropic case. In the anisotropic case governed by Eq. (@H), the notation of 'phase
space’ has to be modified. A derivation of the leading term in the Weyl formula
for anisotropic media has been given by [Sendergaard et al (1201)_41) and the result has
been compared with experimental data of measured resonances of a single crystal
quartz sphere. In that experiment, a sphere of the size of a small grape fruit was
excited by various transducers. The resonance positions were extracted using an
advanced filtering and fitting algorithm based on maximum entropy methods. Using
this method, approximately 40,000 resonances could be isolated.

The wave equation ([@3]) does not admit closed form solutions even for spherical
symmetries. The leading Weyl terms was calculated using a suitable representation of
the Green function via the Radon transform following the work of (IM) and
Wang et al (ILZ%I) After taking the trace, the leading term in the counting function
of eigenmodes could be determined, which is - like in the isotropic case - given by the
available phase space volume (lS_Qnd_e_rga@:d_e_t_aJ, 121)_0_4]) In the anisotropic case this
volume has a more complicated shape than in the isotropic case: it consists of three
sheets and is a so-called sextic algebraic surface whose volume Vy must be calculated
numerically. That volume together with the physical volume of the resonator V
determines the counting function if the material properties are assumed constant
within the resonator. Thus the number of states as a function of frequency f goes to
leading order as

N(f):Vszf3- (97)

4.83.3. Ewolution of open rays Presently there are no discussions of closed orbits and
trace formulae in the literature in the anisotropic case. However, there exists a body
of work on the ray dynamics associated with anisotropy. In the anisotropic case, there
is a discrepancy in direction between the wave vector and the group velocity, referred
to as “extraordinary refraction” M&mﬁ, 11970; [Auld, |L9_L’:ﬂ) Hence, increments in
configuration space are no longer parallel with the momentum but the group velocity.
Nevertheless, the tangential momentum is still conserved at impact with boundaries.
Thus, the tangential part of the wave vector remains unchanged as in the isotropic
case. The dispersion surface is no longer simple, so the normal wave vector of a
reflected wave can be quite different from that of the incoming wave. In particular,
orbits as seen in configuration space only, may no longer seem to fulfil the law of
reflection even if mode conversion does not occur. In conclusion, ray trajectories in an
anisotropic resonator are very different from those of an isotropic cavity. Regarding
the evolution of the amplitude of wave packets, there are particular directions in

the crystal where decay is considerably weaker than (kr)*1 , @: This
has been observed experimentally by [Wichard and Dietschd (1992) and

) for heat transport in crystals and is called phonon-focusing.

5. Summary and conclusions

The review aims at describing wave phenomena in acoustics and elastodynamics by
relating them to an underlying classical ray dynamics. This has been done in Sec.
by making explicit connections between Green functions and related functions to
ray trajectories using semiclassical or short-wave length asymptotics. In a second
part, in Sec. Bl we discussed statistical approaches based mainly on the observation
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that statistical properties of ‘typical’ wave systems coincide with that of ensembles
of random matrices. The universalities observed are related to universality in the
underlying ray dynamics for chaotic systems such as ergodicity and exponential decay
of correlations; the long time dynamics of chaotic systems looks alike on scales small
compared to the system size.

The way of thinking advocated in this review has enormous potential and
predictive value. Small wave length asymptotics can reach frequency regimes outside
the range of direct numerical solution methods keeping at the same time some of the
details of the system which get lost in purely statistical approaches. In the universal
regime, statistical distributions can be obtained analytically using RMT techniques.
Deviations from universal behaviour can be predicted whenever the underlying ray
dynamics shows 'non-chaotic’ features.

Wave chaos methods have so far not had a larger impact on applications in an
engineering context. This is the more surprising as wave chaos techniques are much
easier to apply and to implement in a controlled way in an acoustics setting than in,
for example, quantum systems. We hope that the present review will help to make
wave chaos ideas more widely known and accepted also among engineers, and to test
the full potential of these approaches by applying them to theories such as SEA. In
fact, scattering on irregular structures producing “diffusive” (electronic) wave fields as
considered in SEA has been studied in great detail in, for example, disordered system
theory. Many of the sophisticated methods used in this field such as supersymmetric
techniques have indeed by now found a place in elastodynamics as described in Sec.
B:Z4l Remarkably, the best experimental verification of the supersymmetric predic-
tion of the correlation function, Eq. (82]), has been carried out in an elastic resonators,

see Sec. 3.2.3

There are a wide variety of other open questions touched on in this review
which deserve mentioning. Among them are higher order corrections to Weyl’s law
in elasticity, especially for anisotropic elastic bodies or shells. Likewise, the ray
dynamics including effects of ray splitting and mode conversion have not been studied
systematically. They become important when considering the counting function on
a finer scale such as in generalisations of Gutzwiller’s trace formula introduced in
Sec. Ray splitting adds new features to a dynamical system rendering, for
example, rectangular geometries non-integrable. The actual nature of the dynamics
and its influence on the eigenspectra and wave functions is still an open problem. A
semiclassical ray theory for anisotropic media or curved surfaces is largely missing.

The connection between RMT statistics and chaos will help to reshape some of
the statistical assumptions made with respect to the diffusivity of wave fields or the
distribution of eigenfrequencies and resonance widths. We have stressed throughout
the review that the RMT assumption only holds when the underlying ray dynamics is
chaotic. This assumption may, however, often not be fulfilled for structures relevant
in an engineering context; build-up structures may consist of different, weakly coupled
elements such as plates connected to frames, plate stiffeners, shells or rods fixed to
plates and walls. Thus, wave chaos methods will need to deal with coupled and
strongly non-uniformly hyperbolic systems in general; in addition, each of the elements
may have quite regular features such as straight edges or polygonal boundaries. A
future task will be to use wave chaos ideas to characterise these intermediate regimes
between order and chaos; it will also be important when considering wave effects caused
by the non-diffusive part of the wave field. Such features introduce non-universal
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effects, which can not be described in an RMT analysis alone. Combining statistical
tools with ray methods for a wave analysis may lead to extensions of existing SEA
theories towards a global description of wave problems in the mid-frequency regime.
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