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Preface for Students

Quantum field theory is the basic mathematical language that is used to
describe and analyze the physics of elementary particles. The goal of this
book is to provide a concise, step-by-step introduction to this subject, one
that covers all the key concepts that are needed to understand the Standard
Model of elementary particles, and some of its proposed extensions.

In order to be prepared to undertake the study of quantum field theory,
you should recognize and understand the following equations:

do 9
a'ln) = Vn+1 [n+1)

Jx|j,m) = Vi(j+1)—m(m=1) |4, m+1)
A(t) — e-i—th/hAe—th/h

H=p¢—L
ct’ = y(ct — Bx)
E = (p2 + m2ch)/?
E=—-A/c—Vy

This list is not, of course, complete; but if you are familiar with these
equations, you probably know enough about quantum mechanics, classical
mechanics, special relativity, and electromagnetism to tackle the material
in this book.

Quantum field theory has a reputation as a subject that is hard to
learn. The problem, I think, is not so much that its basic ingredients are
unusually difficult to master (indeed, the conceptual shift needed to go
from quantum mechanics to quantum field theory is not nearly as severe
as the one needed to go from classical mechanics to quantum mechanics),
but rather that there are a lot of these ingredients. Some are fundamental,
but many are just technical aspects of an unfamiliar form of perturbation
theory.

In this book, I have tried to make the subject as accessible to beginners
as possible. There are three main aspects to my approach.

Logical development of the basic concepts. This is, of course, very differ-
ent from the historical development of quantum field theory, which, like the
historical development of most worthwhile subjects, was filled with inspired
guesses and brilliant extrapolations of sometimes fuzzy ideas, as well as its
fair share of mistakes, misconceptions, and dead ends. None of that is in
this book. From this book, you will (I hope) get the impression that the



whole subject is effortlessly clear and obvious, with one step following the
next like sunshine after a refreshing rain.

Hllustration of the basic concepts with the simplest examples. In most
fields of human endeavor, newcomers are not expected to do the most de-
manding tasks right away. It takes time, dedication, and lots of practice to
work up to what the accomplished masters are doing. There is no reason to
expect quantum field theory to be any different in this regard. Therefore,
we will start off analyzing quantum field theories that are not immediately
applicable to the real world of electrons, photons, protons, etc., but that
will allow us to gain familiarity with the tools we will need, and to practice
using them. Then, when we do work up to “real physics”, we will be fully
ready for the task. To this end, the book is divided into three parts: Spin
Zero, Spin One Half, and Spin One. The technical complexities associated
with a particular type of particle increase with its spin. We will therefore
first learn all we can about spinless particles before moving on to the more
difficult (and more interesting) nonzero spins. Once we get to them, we
will do a good variety of calculations in (and beyond) the Standard Model
of elementary particles.

User friendliness. Each of the three parts is divided into numerous sec-
tions. Each section is intended to treat one idea or concept or calculation,
and each is written to be as self-contained as possible. For example, when
an equation from an earlier section is needed, I usually just repeat it, rather
than ask you to leaf back and find it (a reader’s task that I've always found
annoying). Furthermore, each section is labeled with its immediate pre-
requisites, so you can tell exactly what you need to have learned in order
to proceed. This allows you to construct chains to whatever material may
interest you, and to get there as quickly as possible.

That said, I expect that most readers of this book will encounter it as
the textbook in a course on quantum field theory. In that case, of course,
your reading will be guided by your professor, who I hope will find the
above features useful. If, however, you are reading this book on your own,
I have two pieces of advice.

The first (and most important) is this: find someone else to read it with
you. I promise that it will be far more fun and rewarding that way; talking
about a subject to another human being will inevitably improve the depth
of your understanding. And you will have someone to work with you on
the problems. (As with all physics texts, the problems are a key ingredient.
I will not belabor this point, because if you have gotten this far in physics,
you already know it well.)

The second piece of advice echoes the novelist and Nobel laureate
William Faulkner. An interviewer asked, “Mr. Faulker, some of your read-
ers claim they still cannot understand your work after reading it two or
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three times. What approach would you advise them to adopt?” Faulkner
replied, “Read it a fourth time.”

That’s my advice here as well. After the fourth attempt, though, you
should consider trying something else. This is, after all, not the only book
that has ever been written on the subject. You may find that a different
approach (or even the same approach explained in different words) breaks
the logjam in your thinking. There are a number of excellent books that
you could consult, some of which are listed in the Bibliography. I have also
listed particular books that I think could be helpful on specific topics in
Reference Notes at the end of some of the sections.

This textbook (like all finite textbooks) has a number of deficiencies.
One of these is a rather low level of mathematical rigor. This is partly en-
demic to the subject; rigorous proofs in quantum field theory are relatively
rare, and do not appear in the overwhelming majority of research papers.
Even some of the most basic notions lack proof; for example, currently
you can get a million dollars from the Clay Mathematics Institute simply
for proving that nonabelian gauge theory actually exists and has a unique
ground state. Given this general situation, and since this is an introductory
book, the proofs that we do have are only outlined. those proofs that we
do have are only outlined.

Another deficiency of this book is that there is no discussion of the
application of quantum field theory to condensed matter physics, where
it also plays an important role. This connection has been important in
the historical development of the subject, and is especially useful if you
already know a lot of advanced statistical mechanics. I do not want this
to be a prerequisite, however, and so I have chosen to keep the focus on
applications within elementary particle physics.

Yet another deficiency is that there are no references to the original
literature. In this regard, I am following a standard trend: as the foun-
dations of a branch of science retreat into history, textbooks become more
and more synthetic and reductionist. For example, it is now rare to see a
new textbook on quantum mechanics that refers to the original papers by
the famous founders of the subject. For guides to the original literature
on quantum field theory, there are a number of other books with extensive
references that you can consult; these include Peskin & Schroeder, Wein-
berg, and Siegel. (Italicized names refer to works listed in the Bibliography.)
Unless otherwise noted, experimental numbers are taken from the Review
of Particle Properties, available online at http://pdg.lbl.gov. Experimen-
tal numbers quoted in this book have an uncertainty of roughly 41 in the
last significiant digit. The Review should be consulted for the most recent
experimental results, and for more precise statements of their uncertainty.

To conclude, let me say that you are about to embark on a tour of one of
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humanity’s greatest intellectual endeavors, and certainly the one that has
produced the most precise and accurate description of the natural world as
we find it. I hope you enjoy the ride.
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Preface for Instructors

On learning that a new text on quantum field theory has appeared, one is
surely tempted to respond with Isidor Rabi’s famous comment about the
muon: “Who ordered that?” After all, many excellent textbooks on quan-
tum field theory are already available. I, for example, would not want to be
without my well-worn copies of Quantum Field Theory by Lowell S. Brown
(Cambridge 1994), Aspects of Symmetry by Sidney Coleman (Cambridge
1985), Introduction to Quantum Field Theory by Michael E. Peskin and
Daniel V. Schroeder (Westview 1995), Field Theory: A Modern Primer by
Pierre Ramond (Addison-Wesley 1990), Fields by Warren Siegel (arXiv.org
2005), The Quantum Theory of Fields, Volumes I, II, and III, by Steven
Weinberg (Cambridge 1995), and Quantum Field Theory in a Nutshell by
my colleague Tony Zee (Princeton 2003), to name just a few of the more
recent texts. Nevertheless, despite the excellence of these and other books,
I have never followed any of them very closely in my twenty years of on-
and-off teaching of a year-long course in relativistic quantum field theory.

As discussed in the Preface for Students, this book is based on the no-
tion that quantum field theory is most readily learned by starting with the
simplest examples and working through their details in a logical fashion.
To this end, I have tried to set things up at the very beginning to antici-
pate the eventual need for renormalization, and not be cavalier about how
the fields are normalized and the parameters defined. I believe that these
precautions take a lot of the “hocus pocus” (to quote Feynman) out of the
“dippy process” of renormalization. Indeed, with this approach, even the
anharmonic oscillator is in need of renormalization; see problem 14.7.

A field theory with many pedagogical virtues is ¢? theory in six di-
mensions, where its coupling constant is dimensionless. Perhaps because
six dimensions used to seem too outre (though today’s prospective string
theorists don’t even blink), the only introductory textbook I know of that
treats this model is Quantum Field Theory by George Sterman (Cambridge
1993), though it is also discussed in some more advanced books, such as
Renormalization by John Collins (Cambridge 1984) and Foundations of
Quantum Chromodynamics by T. Muta (World Scientific 1998). (There is
also a series of lectures by Ed Witten on quantum field theory for math-
ematicians, available online, that treat > theory.) The reason > theory
in six dimensions is a nice example is that its Feynman diagrams have a
simple structure, but still exhibit the generic phenomena of renormalizable
quantum field theory at the one-loop level. (The same cannot be said for *
theory in four dimensions, where momentum-dependent corrections to the
propagator do not appear until the two-loop level.) Thus, in Part I of this
text, ¢? theory in six dimensions is the primary example. I use it to give
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introductory treatments of most aspects of relativistic quantum field theory
for spin-zero particles, with a minimum of the technical complications that
arise in more realistic theories (like QED) with higher-spin particles.

Although I eventually discuss the Wilson approach to renormalization
and effective field theory (in section 29), and use effective field theory exten-
sively for the physics of hadrons in Part III, I do not feel it is pedagogically
useful to bring it in at the very beginning, as is sometimes advocated. The
problem is that the key notion of the decoupling of physical processes at dif-
ferent length scales is an unfamiliar one for most students; there is nothing
in typical courses on quantum mechanics or electomagnetism or classical
mechanics to prepare students for this idea (which was deemed worthy of a
Nobel Prize for Ken Wilson in 1982). It also does not provide for a simple
calculational framework, since one must deal with the infinite number of
terms in the effective lagrangian, and then explain why most of them don’t
matter after all. It’s noteworthy that Wilson himself did not spend a lot
of time computing properly normalized perturbative S-matrix elements, a
skill that we certainly want our students to have; we want them to have
it because a great deal of current research still depends on it. Indeed, the
vaunted success of quantum field theory as a description of the real world is
based almost entirely on our ability to carry out these perturbative calcula-
tions. Studying renormalization early on has other pedagogical advantages.
With the Nobel Prizes to Gerard 't Hooft and Tini Veltman in 1999 and to
David Gross, David Politzer, and Frank Wilczek in 2004, today’s students
are well aware of beta functions and running couplings, and would like to
understand them. I find that they are generally much more excited about
this (even in the context of toy models) than they are about learning to
reproduce the nearly century-old tree-level calculations of QED. And ¢?
theory in six dimensions is asymptotically free, which ultimately provides
for a nice segue to the “real physics” of QCD.

In general I have tried to present topics so that the more interesting as-
pects (from a present-day point of view) come first. An example is anoma-
lies; the traditional approach is to start with the 7% — ~~ decay rate,
but such a low-energy process seems like a dusty relic to most of today’s
students. I therefore begin by demonstrating that anomalies destroy the
self-consistency of the great majority of chiral gauge theories, a fact that
strikes me (and, in my experience, most students) as much more interest-
ing and dramatic than an incorrect calculation of the 7° decay rate. Then,
when we do eventually get to this process (in section 90), it appears as a
straightforward consequence of what we already learned about anomalies
in sections 75-77.

Nevertheless, I want this book to be useful to those who disagree with
my pedagogical choices, and so I have tried to structure it to allow for
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maximum flexibility. Each section treats a particular idea or concept or
calculation, and is as self-contained as possible. Each section also lists
its immediate prerequisites, so that it is easy to see how to rearrange the
material to suit your personal preferences.

In some cases, alternative approaches are developed in the problems.
For example, I have chosen to introduce path integrals relatively early
(though not before canonical quantization and operator methods are ap-
plied to free-field theory), and use them to derive Dyson’s expansion. For
those who would prefer to delay the introduction of path integrals (but since
you will have to cover them eventually, why not get it over with?), problem
9.5 outlines the operator-based derivation in the interaction picture.

Another point worth noting is that a textbook and lectures are ideally
complementary. Many sections of this book contain rather tedious mathe-
matical detail that I would not and do not write on the blackboard during
a lecture. (Indeed, the earliest origins of this book are supplementary notes
that I typed up and handed out.) For example, much of the development of
Weyl spinors in sections 34-37 can be left to outside reading. I do encour-
age you not to eliminate this material entirely, however; pedagogically, the
problem with skipping directly to four-component notation is explaining
that (in four dimensions) the hermitian conjugate of a left-handed field is
right handed, a deeply important fact that is the key to solving problems
such as 36.5 and 83.1, which are in turn vital to understanding the struc-
ture of the Standard Model and its extensions. A related topic is computing
scattering amplitudes for Majorana fields; this is essential for modern re-
search on massive neutrinos and supersymmetric particles, though it could
be left out of a time-limited course.

While I have sometimes included more mathematical detail than is ideal
for a lecture, I have also tended to omit explanations based on “physical
intuition.” For example, in section 90, we compute the 7= — £~ D, decay
amplitude (where ¢ is a charged lepton) and find that it is proportional to
the lepton mass. There is a well-known heuristic explanation of this fact
that goes something like this: “The pion has spin zero, and so the lepton
and the antineutrino must emerge with opposite spin, and therefore the
same helicity. An antineutrino is always right-handed, and so the lepton
must be as well. But only the left-handed lepton couples to the W, so
the decay amplitude vanishes if the left- and right-handed leptons are not
coupled by a mass term.”

This is essentially correct, but the reasoning is a bit more subtle than
it first appears. A student may ask, “Why can’t there be orbital angular
momentum? Then the lepton and the antineutrino could have the same
spin.” The answer is that orbital angular momentum must be perpendicular
to the linear momentum, whereas helicity is (by definition) parallel to the
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linear momentum; so adding orbital angular momentum cannot change the
helicity assignments. (This is explored in a simplified model in problem
48.4.) The larger point is that intuitive explanations can almost always be
probed more deeply. This is fine in a classroom, where you are available to
answer questions, but a textbook author has a hard time knowing where
to stop. Too little detail renders the explanations opaque, and too much
can be overwhelming; furthermore the happy medium tends to differ from
student to student. The calculation, on the other hand, is definitive (at
least within the framework being explored, and modulo the possibility of
mathematical error). As Roger Penrose once said, “The great thing about
physical intuition is that it can be adjusted to fit the facts.” So, in this
book, I have tended to emphasize calculational detail at the expense of
heuristic reasoning. Lectures should ideally invert this to some extent.

I should also mention that a section of the book is not intended to
coincide exactly with a lecture. The material in some sections could easily
be covered in less than an hour, and some would clearly take more. My
approach in lecturing is to try to keep to a pace that allows the students to
follow the analysis, and then try to come to a more-or-less natural stopping
point when class time is up. This sometimes means ending in the middle
of a long calculation, but I feel that this is better than trying to artificially
speed things along to reach a predetermined destination.

It would take at least three semesters of lectures to cover this entire
book, and so a year-long course must omit some. A sequence I might
follow is 1-23, 2628, 3343, 4548, 51, 52, 54-59, 62—-64, 66-68, 24, 69, 70,
44, 53, 71-73, 7577, 30, 32, 84, 87-89, 29, 82, 83, 90, and, if any time was
left, a selection of whatever seemed of most interest to me and the students
of the remaining material.

To conclude, I hope you find this book to be a useful tool in working to-
wards our mutual goal of bringing humanity’s understanding of the physics
of elementary particles to a new audience.
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1 ATTEMPTS AT RELATIVISTIC QUANTUM
MECHANICS

PREREQUISITE: NONE

In order to combine quantum mechanics and relativity, we must first un-
derstand what we mean by “quantum mechanics” and “relativity”. Let us
begin with quantum mechanics.

Somewhere in most textbooks on the subject, one can find a list of the
“axioms of quantum mechanics”. These include statements along the lines
of

The state of the system is represented by a vector in Hilbert
space.

Observables are represented by hermitian operators.

The measurement of an observable yields one of its eigenvalues

as the result.

And so on. We do not need to review these closely here. The axiom we
need to focus on is the one that says that the time evolution of the state of
the system is governed by the Schrédinger equation,

. 0
ihocb,t) = HIi 1) (1)

where H is the hamiltonian operator, representing the total energy.
Let us consider a very simple system: a spinless, nonrelativistic particle
with no forces acting on it. In this case, the hamiltonian is

1

where m is the particle’s mass, and P is the momentum operator. In the
position basis, eq. (1.1) becomes

9 h?
ihaQﬁ(X,t) = _%V2¢(X7t) ’ (13)

where ¢ (x,t) = (x]1),t) is the position-space wave function. We would like
to generalize this to relativistic motion.
The obvious way to proceed is to take

H =44/ P2¢2 + m2ct | (1.4)
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which yields the correct relativistic energy-momentum relation. If we for-
mally expand this hamiltonian in inverse powers of the speed of light ¢, we
get

1
H=mc*+—P?+.... 15
me” + 5 P7 (1.5)
This is simply a constant (the rest energy), plus the usual nonrelativistic

hamiltonian, eq. (1.2), plus higher-order corrections. With the hamiltonian
given by eq. (1.4), the Schrédinger equation becomes

ih%?[)(x,t) = +\/—h202V2 + m2ct P(x,t) . (1.6)

Unfortunately, this equation presents us with a number of difficulties. One
is that it apparently treats space and time on a different footing: the time
derivative appears only on the left, outside the square root, and the space
derivatives appear only on the right, under the square root. This asymme-
try between space and time is not what we would expect of a relativistic
theory. Furthermore, if we expand the square root in powers of V2, we get
an infinite number of spatial derivatives acting on 1 (x, t); this implies that
eq. (1.6) is not local in space.

We can alleviate these problems by squaring the differential operators
on each side of eq. (1.6) before applying them to the wave function. Then
we get

—h?—(x,t) = (—h202V2 + m2c4)1/1(x,t) . (1.7)

This is the Klein-Gordon equation, and it looks a lot nicer than eq. (1.6).
It is second-order in both space and time derivatives, and they appear in a
symmetric fashion.

To better understand the Klein-Gordon equation, let us consider in
more detail what we mean by “relativity”. Special relativity tells us that
physics looks the same in all inertial frames. To explain what this means, we
first suppose that a certain spacetime coordinate system (ct,x) represents
(by fiat) an inertial frame. Let us define 2° = ct, and write z*, where
uw=0,1,2,3, in place of (ct,x). It is also convenient (for reasons not at all
obvious at this point) to define g = —2° and x; = 2%, where i = 1,2,3.
This can be expressed more elegantly if we first introduce the Minkowski
metric,

-1
w= | (18)
+1

where blank entries are zero. We then have z, = g, 2", where a repeated
index is summed.
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To invert this formula, we introduce the inverse of g, which is confusingly
also called g, except with both indices up:

-1
+1
o _
g = 1 . (1.9)

+1

We then have ¢g/g,, = 6", where 6", is the Kronecker delta (equal to one
if its two indices take on the same value, zero otherwise). Now we can also
write x# = g x,,.

It is a general rule that any pair of repeated (and therefore summed)
indices must consist of one superscript and one subscript; these indices are
said to be contracted. Also, any unrepeated (and therefore unsummed)
indices must match (in both name and height) on the left- and right-hand
sides of any valid equation.

Now we are ready to specify what we mean by an inertial frame. If the
coordinates z* represent an inertial frame (which they do, by assumption),
then so do any other coordinates z* that are related by

= At 2" +at (1.10)

where A*,, is a Lorentz transformation matriz and a* is a translation vector.
Both A*, and a* are constant (that is, independent of z#). Furthermore,
A*, must obey

A oA 5 = Gpo - (1.11)

Eq. (1.11) ensures that the interval between two different spacetime points
that are labeled by z# and z/* in one inertial frame, and by z# and Z'* in
another, is the same. This interval is defined to be

(2 —a')? = gu (2 —2')!(x — 2)"
= (x—x)2 -t —1)?. (1.12)

In the other frame, we have

(8- 3)? = gl — 7@ — )"

= gu A N o (z — 2)P(z — 2')°
= gpo(x —2")P(x —2')°
= (z—2)?, (1.13)

as desired.

When we say that physics looks the same, we mean that two observers
(Alice and Bob, say) using two different sets of coordinates (representing
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two different inertial frames) should agree on the predicted results of all
possible experiments. In the case of quantum mechanics, this requires Alice
and Bob to agree on the value of the wave function at a particular spacetime
point, a point that is called x by Alice and by Bob. Thus if Alice’s
predicted wave function is ¥(x), and Bob’s is (Z), then we should have
Y(x) = 9(Z). Furthermore, in order to maintain 1(z) = v(Z) throughout
spacetime, v(x) and ¢(z) should obey identical equations of motion. Thus
a candidate wave equation should take the same form in any inertial frame.

Let us see if this is true of the Klein-Gordon equation. We first introduce
some useful notation for spacetime derivatives:

_ 0 10
oy = o <+2E,V> , (1.14)
0 10
w—_Y _(_-2
ot = Je, ( c@t’v>’ (1.15)
Note that
otx¥ = g" | (1.16)

so that our matching-index-height rule is satisfied.
If z and x are related by eq. (1.10), then 0 and O are related by

ot = A", 0¥ . (1.17)
To check this, we note that

0Pz = (AP, 0M) (A7 ,a” + a*) = AP, A7, (0 ") = AP A7 g = g™,
(1.18)
as expected. The last equality in eq. (1.18) is another form of eq. (1.11); see
section 2.
We can now write eq. (1.7) as

—h22RY(x) = (—h*AV2 + micy(x) (1.19)
After rearranging and identifying 6% = 9*9, = —03 + V2, we have
(=0* + m2H/R*)Y(z) = 0. (1.20)
This is Alice’s form of the equation. Bob would write
(=02 +m2Z/h2))(z) =0 . (1.21)

Is Bob’s equation equivalent to Alice’s equation? To see that it is, we set
¥(Z) = (), and note that

0’ = gy 0"0” = gu N A5 0P07 = 07 . (1.22)
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Thus, eq. (1.21) is indeed equivalent to eq. (1.20). The Klein-Gordon equa-
tion is therefore manifestly consistent with relativity: it takes the same
form in every inertial frame.

This is the good news. The bad news is that the Klein-Gordon equation
violates one of the axioms of quantum mechanics: eq. (1.1), the Schrodinger
equation in its abstract form. The abstract Schrodinger equation has the
fundamental property of being first order in the time derivative, whereas the
Klein-Gordon equation is second order. This may not seem too important,
but in fact it has drastic consequences. One of these is that the norm of a
state,

W tlo,t) = [ ot (xlt) = [ dev™ @@, (123)

is not in general time independent. Thus probability is not conserved. The
Klein-Gordon equation obeys relativity, but not quantum mechanics.
Dirac attempted to solve this problem (for spin-one-half particles) by
introducing an extra discrete label on the wave function, to account for
spin: ¥4(x), a = 1,2. He then tried a Schréodinger equation of the form

z’h%%(a:) = (—ihC(aj)abaj + mc2(5)ab)¢b(x) : (1.24)

where all repeated indices are summed, and o/ and /3 are matrices in spin-
space. This equation, the Dirac equation, is consistent with the abstract
Schrodinger equation. The state |1, a,t) carries a spin label a, and the
hamiltonian is

Heay = cPj(a? )ap + me2(B)ap (1.25)

where P; is a component of the momentum operator.

Since the Dirac equation is linear in both time and space derivatives,
it has a chance to be consistent with relativity. Note that squaring the
hamiltonian yields

(H?)ap = P Pp(a? a®) gy + mcPPj(a? B+ Bl ) g, + (mc?)2(6%)ap - (1.26)

Since P; P} is symmetric on exchange of j and k, we can replace alak by
its symmetric part, %{oﬂ,ak}, where {A, B} = AB + BA is the anticom-
mutator. Then, if we choose matrices such that

{aja ak}ab = 25jk5ab s {Oéj,ﬁ}ab =0 s (62)ab = 5(11) s (127)

we will get
(H)ap = (P2 + m?c!)dgp . (1.28)

Thus, the eigenstates of H? are momentum eigenstates, with H? eigenvalue
p2c® + m2c*. This is, of course, the correct relativistic energy-momentum
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relation. While it is outside the scope of this section to demonstrate it, it
turns out that the Dirac equation is fully consistent with relativity provided
the Dirac matrices obey eq. (1.27). So we have apparently succeeded in
constructing a quantum mechanical, relativistic theory!

There are, however, some problems. We would like the Dirac matrices
to be 2 x 2, in order to account for electron spin. However, they must
in fact be larger. To see this, note that the 2 x 2 Pauli matrices obey
{o?,07} = 26" and are thus candidates for the Dirac o’ matrices. However,
there is no fourth matrix that anticommutes with these three (easily proven
by writing down the most general 2 x 2 matrix and working out the three
anticommutators explicitly). Also, we can show that the Dirac matrices
must be even dimensional; see problem 1.1. Thus their minimum size is
4 x 4, and it remains for us to interpret the two extra possible “spin” states.

However, these extra states cause a more severe problem than a mere
overcounting. Acting on a momentum eigenstate, H becomes the matrix
ca-p+mc?B3. In problem 1.1, we find that the trace of this matrix is zero.
Thus the four eigenvalues must be +E(p), +E(p), —E(p), —E(p), where
E(p) = +(p?c + m?c*)'/2. The negative eigenvalues are the problem:
they indicate that there is no ground state. In a more elaborate theory
that included interactions with photons, there seems to be no reason why
a positive energy electron could not emit a photon and drop down into
a negative energy state. This downward cascade could continue forever.
(The same problem also arises in attempts to interpret the Klein-Gordon
equation as a modified form of quantum mechanics.)

Dirac made a wildly brilliant attempt to fix this problem of negative
energy states. His solution is based on an empirical fact about electrons:
they obey the Pauli exclusion principle. It is impossible to put more than
one of them in the same quantum state. What if, Dirac speculated, all
the negative energy states were already occupied? In this case, a positive
energy electron could not drop into one of these states, by Pauli exclusion.

Many questions immediately arise. Why don’t we see the negative elec-
tric charge of this Dirac sea of electrons? Dirac’s answer: because we're
used to it. (More precisely, the physical effects of a uniform charge density
depend on the boundary conditions at infinity that we impose on Maxwell’s
equations, and there is a choice that renders such a uniform charge density
invisible.) However, Dirac noted, if one of these negative energy electrons
were excited into a positive energy state (by, say, a sufficiently energetic
photon), it would leave behind a hole in the sea of negative energy elec-
trons. This hole would appear to have positive charge, and positive energy.
Dirac therefore predicted (in 1927) the existence of the positron, a particle
with the same mass as the electron, but opposite charge. The positron was
found experimentally five years later.
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However, we have now jumped from an attempt at a quantum descrip-
tion of a single relativistic particle to a theory that apparently requires
an infinite number of particles. Even if we accept this, we still have not
solved the problem of how to describe particles like photons or pions or
alpha nuclei that do not obey Pauli exclusion.

At this point, it is worthwhile to stop and reflect on why it has proven
to be so hard to find an acceptable relativistic wave equation for a sin-
gle quantum particle. Perhaps there is something wrong with our basic
approach.

And there is. Recall the axiom of quantum mechanics that says that
“Observables are represented by hermitian operators.” This is not entirely
true. There is one observable in quantum mechanics that is not represented
by a hermitian operator: time. Time enters into quantum mechanics only
when we announce that the “state of the system” depends on an extra
parameter t. This parameter is not the eigenvalue of any operator. This is
in sharp contrast to the particle’s position x, which s the eigenvalue of an
operator. Thus, space and time are treated very differently, a fact that is
obscured by writing the Schrédinger equation in terms of the position-space
wave function 1(x,t). Since space and time are treated asymmetrically, it
is not surprising that we are having trouble incorporating a symmetry that
mixes them up.

So, what are we to do?

In principle, the problem could be an intractable one: it might be im-
possible to combine quantum mechanics and relativity. In this case, there
would have to be some meta-theory, one that reduces in the nonrelativistic
limit to quantum mechanics, and in the classical limit to relativistic particle
dynamics, but is actually neither.

This, however, turns out not to be the case. We can solve our problem,
but we must put space and time on an equal footing at the outset. There
are two ways to do this. One is to demote position from its status as an
operator, and render it as an extra label, like time. The other is to promote
time to an operator.

Let us discuss the second option first. If time becomes an operator, what
do we use as the time parameter in the Schrodinger equation? Happily, in
relativistic theories, there is more than one notion of time. We can use the
proper time T of the particle (the time measured by a clock that moves
with it) as the time parameter. The coordinate time T (the time measured
by a stationary clock in an inertial frame) is then promoted to an operator.
In the Heisenberg picture (where the state of the system is fixed, but the
operators are functions of time that obey the classical equations of motion),
we would have operators X*(7), where X = T. Relativistic quantum
mechanics can indeed be developed along these lines, but it is surprisingly
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complicated to do so. (The many times are the problem; any monotonic
function of 7 is just as good a candidate as 7 itself for the proper time, and
this infinite redundancy of descriptions must be understood and accounted
for.)

One of the advantages of considering different formalisms is that they
may suggest different directions for generalizations. For example, once
we have X*(7), why not consider adding some more parameters? Then
we would have, for example, X*(o,7). Classically, this would give us a
continuous family of worldlines, what we might call a worldsheet, and so
XH"(o,7) would describe a propagating string. This is indeed the starting
point for string theory.

Thus, promoting time to an operator is a viable option, but is compli-
cated in practice. Let us then turn to the other option, demoting position
to a label. The first question is, label on what? The answer is, on oper-
ators. Thus, consider assigning an operator to each point x in space; call
these operators ¢(x). A set of operators like this is called a quantum field.
In the Heisenberg picture, the operators are also time dependent:

o(x,t) = et/hp(x, 0)e HM (1.29)

Thus, both position and (in the Heisenberg picture) time are now labels on
operators; neither is itself the eigenvalue of an operator.

So, now we have two different approaches to relativistic quantum theory,
approaches that might, in principle, yield different results. This, however,
is not the case: it turns out that any relativistic quantum physics that can
be treated in one formalism can also be treated in the other. Which we
use is a matter of convenience and taste. And, quantum field theory, the
formalism in which position and time are both labels on operators, is much
more convenient and efficient for most problems.

There is another useful equivalence: ordinary nonrelativistic quantum
mechanics, for a fixed number of particles, can be rewritten as a quantum
field theory. This is an informative exercise, since the corresponding physics
is already familiar. Let us carry it out.

Begin with the position-basis Schrédinger equation for n particles, all
with the same mass m, moving in an external potential U(x), and inter-
acting with each other via an interparticle potential V' (x; — x2):

n 2 n j—1
ih§¢ = Z —h—V? +U(xj) | + Z Z Vixj —xp) (v, (1.30)
ot =\ 2m j=1k=1

where ¢ = 9 (x1,...,X,;t) is the position-space wave function. The quan-
tum mechanics of this system can be rewritten in the abstract form of
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eq. (1.1) by first introducing (in, for now, the Schrédinger picture) a quan-
tum field a(x) and its hermitian conjugate af(x). We take these operators
to have the commutation relations

[a(x), a(x)] = 0
[af (x),a’(x)] = 0,
[a(x),a’ (x)] = &3 (x — %), (1.31)

where 6%(x) is the three-dimensional Dirac delta function. Thus, a'(x) and
a(x) behave like harmonic-oscillator creation and annihilation operators
that are labeled by a continuous index. In terms of them, we introduce the
hamiltonian operator of our quantum field theory,

H = /d3x aT(X)(—%V2 + U(X))a(x)

+3 /d?’x By V(x —y)a' (x)a’ (y)aly)a(x) . (1.32)

Now consider a time-dependent state of the form

b, ) = /d3:n1...d3xn b1y xmstal(x1) . af(x0)[0),  (1.33)

where ¥(X1,...,Xp;t) is some function of the n particle positions and time,
and |0) is the vacuum state, the state that is annihilated by all the a’s,

a(x)|0) =0. (1.34)

It is now straightforward (though tedious) to verify that eq.(1.1), the ab-
stract Schrodinger equation, is obeyed if and only if the function v satisfies
eq. (1.30).

Thus we can interpret the state |0) as a state of “no particles”, the state
af(x1)|0) as a state with one particle at position x1, the state a'(x1)a’(x2)|0)
as a state with one particle at position x; and another at position x5, and
so on. The operator

N = /d3ac a’ (x)a(x) (1.35)

counts the total number of particles. It commutes with the hamiltonian,
as is easily checked; thus, if we start with a state of n particles, we remain
with a state of n particles at all times.

However, we can imagine generalizations of this version of the theory
(generalizations that would not be possible without the field formalism) in
which the number of particles is not conserved. For example, we could try
adding to H a term like

AH /d3:17 {aT(x)a2(x) +h.c.} . (1.36)
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This term does not commute with /N, and so the number of particles would
not be conserved with this addition to H.

Theories in which the number of particles can change as time evolves are
a good thing: they are needed for correct phenomenology. We are already
familiar with the notion that atoms can emit and absorb photons, and so
we had better have a formalism that can incorporate this phenomenon. We
are less familiar with emission and absorption (that is to say, creation and
annihilation) of electrons, but this process also occurs in nature; it is less
common because it must be accompanied by the emission or absorption of
a positron, antiparticle to the electron. There are not a lot of positrons
around to facilitate electron annihilation, while eTe™ pair creation requires
us to have on hand at least 2mc? of energy available for the rest-mass
energy of these two particles. The photon, on the other hand, is its own
antiparticle, and has zero rest mass; thus photons are easily and copiously
produced and destroyed.

There is another important aspect of the quantum theory specified by
egs. (1.32) and (1.33). Because the creation operators commute with each
other, only the completely symmetric part of 1 survives the integration
in eq.(1.33). Therefore, without loss of generality, we can restrict our
attention to 1’s of this type:

(oo X X t) =YX XL t) (1.37)

This means that we have a theory of bosons, particles that (like photons or
pions or alpha nuclei) obey Bose-Einstein statistics. If we want Fermi-Dirac
statistics instead, we must replace eq. (1.31) with

{a(x),a(x")} =0,
{o'(x),a'(x)} =0,
{a(x),a'(x)} = 8*(x —x) | (1.38)
where again {A, B} = AB+ BA is the anticommutator. Now only the fully

antisymmetric part of ¢ survives the integration in eq. (1.33), and so we
can restrict our attention to

Yoo X X t) = =YX XL t) (1.39)

Thus we have a theory of fermions. It is straightforward to check that
the abstract Schrodinger equation, eq. (1.1), still implies that 1) obeys the
differential equation (1.30).! Interestingly, there is no simple way to write

'Now, however, the ordering of the a and at operators in the last term of eq. (1.32)
becomes significant, and must be as written.
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down a quantum field theory with particles that obey Boltzmann statistics,
corresponding to a wave function with no particular symmetry. This is a
hint of the spin-statistics theorem, which applies to relativistic quantum
field theory. It says that interacting particles with integer spin must be
bosons, and interacting particles with half-integer spin must be fermions.
In our nonrelativistic example, the interacting particles clearly have spin
zero (because their creation operators carry no labels that could be inter-
preted as corresponding to different spin states), but can be either bosons
or fermions, as we have seen.

Now that we have seen how to rewrite the nonrelativistic quantum me-
chanics of multiple bosons or fermions as a quantum field theory, it is time
to try to construct a relativistic version.

REFERENCE NOTES

The history of the physics of elementary particles is recounted in Pais. A
brief overview can be found in Weinberg I. More details on quantum field
theory for nonrelativistic particles can be found in Brown.

PROBLEMS

1.1) Show that the Dirac matrices must be even dimensional. Hint: show
that the eigenvalues of § are all &1, and that Tr 3 = 0. To show that
Tr 3 = 0, consider, e.g., Tra23. Similarly, show that Tra; = 0.

1.2) With the hamiltonian of eq.(1.32), show that the state defined in
eq. (1.33) obeys the abstract Schrédinger equation, eq.(1.1), if and
only if the wave function obeys eq. (1.30). Your demonstration should
apply both to the case of bosons, where the particle creation and anni-
hilation operators obey the commutation relations of eq.(1.31), and
to fermions, where the particle creation and annihilation operators
obey the anticommutation relations of eq. (1.38).

1.3) Show explicitly that [N, H] = 0, where H is given by eq. (1.32) and
N by eq. (1.35).



2 LORENTZ INVARIANCE

PREREQUISITE: 1

A Lorentz transformation is a linear, homogeneous change of coordinates
from z* to ¥,
= A av (2.1)

that preserves the interval 22 between x* and the origin, where

22 = atx, = guatc’ = x? — 2t? . (2.2)
This means that the matrix A#, must obey

Gu NN 5 = gpo (2.3)
where
-1
+1
+1

is the Minkowski metric.

Note that this set of transformations includes ordinary spatial rotations:
take A% = 1, A% = A%y = 0, and A'; = R;j, where R is an orthogonal
rotation matrix.

The set of all Lorentz transformations forms a group: the product of
any two Lorentz transformations is another Lorentz transformation; the
product is associative; there is an identity transformation, A¥, = J§*,;
and every Lorentz transformation has an inverse. It is easy to demonstrate
these statements explicitly. For example, to find the inverse transformation
(A~1)#,, note that the left-hand side of eq. (2.3) can be written as A,,A”,,

and that we can raise the p index on both sides to get A,?AY, = §”,. On
the other hand, by definition, (A~1)?,, A", = §”,. Therefore

(A_l)pl/ = Aup . (25)
Another useful version of eq. (2.3) is
g AP AN, = g7l (2.6)

To get eq. (2.6), start with eq. (2.3), but with the inverse transformations
(A=1)#, and (A1)”,. Then use eq. (2.5), raise all down indices, and lower
all up indices. The result is eq. (2.6).

For an infinitesimal Lorentz transformation, we can write

Al = 6, + Swh, | (2.7)
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Eq. (2.3) can be used to show that dw with both indices down (or up) is
antisymmetric:

dwpe = —0wgp - (2.8)

Thus there are six independent infinitesimal Lorentz transformations (in
four spacetime dimensions). These can be divided into three rotations
(0w;j = —€i;,xN100 for a rotation by angle 66 about the unit vector i) and
three boosts (dw;g = 7n;0n for a boost in the direction @i by rapidity on).

Not all Lorentz transformations can be reached by compounding in-
finitesimal ones. If we take the determinant of eq. (2.5), we get (det A)~! =
det A, which implies det A = +1. Transformations with det A = +1 are
proper, and transformations with det A = —1 are improper. Note that the
product of any two proper Lorentz transformations is proper, and that
infinitesimal transformations of the form A = 1 + dw are proper. There-
fore, any transformation that can be reached by compounding infinitesimal
ones is proper. The proper transformations form a subgroup of the Lorentz
group.

Another subgroup is that of the orthochronous Lorentz transformations:
those for which A% > +1. Note that eq. (2.3) implies (A%)? — AfgA%y = 1;
thus, either A% > +1 or A% < —1. An infinitesimal transformation is
clearly orthochronous, and it is straightforward to show that the product
of two orthochronous transformations is also orthochronous.

Thus, the Lorentz transformations that can be reached by compounding
infinitesimal ones are both proper and orthochronous, and they form a
subgroup. We can introduce two discrete transformations that take us out
of this subgroup: parity and time reversal. The parity transformation is

+1
Pr, = (P, = o . (2.9)
-1
It is orthochronous, but improper. The time-reversal transformation is
-1
TH, = (T YHr, = . : (2.10)
+1

It is nonorthochronous and improper.

Generally, when a theory is said to be Lorentz invariant, this means
under the proper orthochronous subgroup only. Parity and time reversal
are treated separately. It is possible for a quantum field theory to be
invariant under the proper orthochronous subgroup, but not under parity
and/or time-reversal.



2: Lorentz Invariance 32

From here on, in this section, we will treat the proper orthochronous
subgroup only. Parity and time reversal will be treated in section 23.

In quantum theory, symmetries are represented by unitary (or antiu-
nitary) operators. This means that we associate a unitary operator U(A)
to each proper, orthochronous Lorentz transformation A. These operators
must obey the composition rule

UNA) =UNYUA) . (2.11)

For an infinitesimal transformation, we can write
U(14+6w) = I + 56wy, M* (2.12)
where MH* = —M"" is a set of hermitian operators called the generators

of the Lorentz group. If we start with U(A)~1U(A)U(A) = U(A7LA'A), let
A =1+ 6w, and expand both sides to linear order in dw, we get

Swu UN)TMMU(A) = Sw AF )N o MP7 (2.13)

Then, since dw,, is arbitrary (except for being antisymmetric), the anti-
symmetric part of its coefficient on each side must be the same. In this
case, because M*" is already antisymmetric (by definition), we have

UA)TM™U(A) = A, A o MP (2.14)

We see that each vector index on M undergoes its own Lorentz trans-
formation. This is a general result: any operator carrying one or more
vector indices should behave similarly. For example, consider the energy-
momentum four-vector P*, where P is the hamiltonian H and P’ are the
components of the total three-momentum operator. We expect

U(A)PrU(A) = A*,P” . (2.15)

If we now let A = 1 4 dw in eq.(2.14), expand to linear order in dw,
and equate the antisymmetric part of the coefficients of dw,,, we get the
commutation relations

[, M7} = i (g M7 = ()] — (pesor) - (2.16)

These commutation relations specify the Lie algebra of the Lorentz group.
We can identify the components of the angular momentum operator J as
J; = %Eijijk, and the components of the boost operator K as K; = M.
We then find from eq. (2.16) that
[JZ',J]'] = ’ih&iijk s
[Ji, K] = iheij Ky
[KZ',KJ'] = —ih&iijk . (2.17)
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The first of these is the usual set of commutators for angular momentum,

and the second says that K transforms as a three-vector under rotations.

The third implies that a series of boosts can be equivalent to a rotation.
Similarly, we can let A =1+ dw in eq. (2.15) to get

[P, MP7) = it (g" P* — (po)) | (2.18)
which becomes
[Ji,H =0,
[Ji, Pj] = iheiiPr
[KZ',H] = ZhPZ' s
[K;, Pj| = iho; H (2.19)

[P, H] =0. (2.20)

Together, egs. (2.17), (2.19), and (2.20) form the Lie algebra of the Poincaré
group.

Let us now consider what should happen to a quantum scalar field ¢(z)
under a Lorentz transformation. We begin by recalling how time evolution
works in the Heisenberg picture:

UM (o, 0)e UM = (1) (2:21)
Obviously, this should have a relativistic generalization,
e~ iPe/h () PR — () | (2.22)

where Pr = Ptx, = P -x — Hct. We can make this a little fancier by
defining the unitary spacetime translation operator

T(a) = exp(—iP"a,/h) . (2.23)

Then we have
T(0) " p(@)T(a) = ¢ — a). (2:24)

For an infinitesimal translation,
T(6a) = I — £ba,P" . (2.25)
Comparing egs. (2.12) and (2.25), we see that eq. (2.24) leads us to expect
(M) @)U (A) = p(ha) (2.26)
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Derivatives of ¢ then carry vector indices that transform in the appropriate
way, e.g., B
U(AN) 10" p(z)U(A) = A“papgo(A_lzn) , (2.27)

where the bar on a derivative means that it is with respect to the argument
T = A"lz. Eq.(2.27) also implies
U(A)'0%p(x)U(A) = (A z) (2.28)

so that the Klein-Gordon equation, (—8? + m?/h?c?)¢ = 0, is Lorentz
invariant, as we saw in section 1.

REFERENCE NOTES

A detailed discussion of quantum Lorentz transformations can be found in
Weinberg 1.

PROBLEMS

2.1) Verify that eq. (2.8) follows from eq. (2.3).
2.2) Verify that eq. (2.14) follows from U(A)~'U(A)U(A) = U(AIA’A).

2.3
4

2.

)

2.16) follows from eq. (2.14

Verify that eq. (2.17) follows from eq. (2.16
)

Verify that eq. (2. :

(2. :

2.5 (2. .
2.6) Verify that eq. (2.19) follows from eq. (2.18

2.7) What property should be attributed to the translation operator T'(a)
that could be used to prove eq. (2.20)?

) (2.14).
) (2.16).
) Verify that eq. (2.18) follows from eq. (2.15).
) (2.18).
)

2.8) a) Let A =1+ dw in eq. (2.26), and show that
[p(2), MM] = L o(x) (2.29)

where
L = DL(hg” — Vo) . (2.30)
b) Show that [[¢(x), MH], MP?] = LIV LP7p(z).

¢) Prove the Jacobi identity, [[A, B],C] + [[B, C], A] + [[C, A], B] = 0.
Hint: write out all the commutators.

d) Use your results from parts (b) and (c) to show that

[p(2), M"Y, MP?]] = (LM LP7 = LP7 LM )p(x) - (2.31)
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e) Simplify the right-hand side of eq. (2.31) as much as possible.

f) Use your results from part (e) to verify eq. (2.16), up to the possi-
bility of a term on the right-hand side that commutes with ¢(z) and
its derivatives. (Such a term, called a central charge, in fact does not
arise for the Lorentz algebra.)

2.9) Let us write

AP =677 + 0w (SE7)°r (2.32)
where

(4P, = %(g”pé”T —g"Po* ;) (2.33)
are matrices which constitute the vector representation of the Lorentz
generators.

a) Let A =1+ 0w in eq. (2.27), and show that

[07p(x), MM] = LF0Pp(x) + (") -07p(x) . (2.34)

b) Show that the matrices S§” must have the same commutation
relations as the operators M*”. Hint: see the previous problem.

c¢) For a rotation by an angle 6 about the z axis, we have

1 0 0 0
0 cosf —sinf 0
no—
A 0 sinf cosf 0 (2.35)
0 O 0 1
Show that
A = exp(—ifSL2/n) . (2.36)
d) For a boost by rapidity n in the z direction, we have
coshn 0 0 sinhp
0 1 0 0
7
A, = 0 0 1 0 (2.37)
sinhn 0 0 coshn

Show that
A = exp(+inS3/n) . (2.38)
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3  CANONICAL QUANTIZATION OF SCALAR FIELDS

PREREQUISITE: 2

Let us go back and drastically simplify the hamiltonian we constructed in
section 1, reducing it to the hamiltonian for free particles:

where 3
~ £ —ip-x
a(p) = /W e "PXa(x) . (3.2)
Here we have simplified our notation by setting
h=1. (3.3)

The appropriate factors of i can always be restored in any of our formulas
via dimensional analysis. The commutation (or anticommutation) relations
of the @(p) and @'(p) operators are

N
—~
T
~
N
-
—~
ﬁ\
~
_H
I
(=)
w
T
|
Fc\
~

(3.4)

where [A, B+ is either the commutator (if we want a theory of bosons)
or the anticommutator (if we want a theory of fermions). Thus a'(p) can
be interpreted as creating a state of definite momentum p, and eq. (3.1)
describes a theory of free particles. The ground state is the vacuum |0); it
is annihilated by a(p),

a(p)|0) =0, (3.5)

and so its energy eigenvalue is zero. The other eigenstates of H are all of
the form @' (p1)...a'(pn)|0), and the corresponding energy eigenvalue is
E(p1) + ...+ E(py), where E(p) = 7-p>.

It is easy to see how to generalize this theory to a relativistic one; all we
need to do is use the relativistic energy formula E(p) = +(p?c? +m?2ct)!/2:

H= / & (p2¢* + m2c)2 G (p)a(p) . (3.6)

Now we have a theory of free relativistic spin-zero particles, and they can
be either bosons or fermions.
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Is this theory really Lorentz invariant? We will answer this question (in
the affirmative) in a very roundabout way: by constructing it again, from
a rather different point of view, a point of view that emphasizes Lorentz
invariance from the beginning.

We will start with the classical physics of a real scalar field ¢(x). Real
means that ¢(x) assigns a real number to every point in spacetime. Scalar
means that Alice [who uses coordinates z# and calls the field ¢(x)] and Bob
[who uses coordinates z#, related to Alice’s coordinates by z# = A¥,z" +a",
and calls the field ¢(Z)], agree on the numerical value of the field: p(z) =
@(Z). This then implies that the equation of motion for ¢(z) must be the
same as that for ¢(z). We have already met an equation of this type: the
Klein-Gordon equation,

(—0* +m?)p(z) =0. (3.7)
Here we have simplified our notation by setting
c=1 (3.8)

in addition to A = 1. As with A, factors of ¢ can restored, if desired, by
dimensional analysis.

We will adopt eq. (3.7) as the equation of motion that we would like
o(z) to obey. It should be emphasized at this point that we are doing
classical physics of a real scalar field. We are not to think of p(z) as a
quantum wave function. Thus, there should not be any factors of & in this
version of the Klein-Gordon equation. This means that the parameter m
must have dimensions of inverse length; m is not (yet) to be thought of as
a mass.

The equation of motion can be derived from variation of an action
S = [dt L, where L is the lagrangian. Since the Klein-Gordon equation is
local, we expect that the lagrangian can be written as the space integral of
a lagrangian density £: L = [d® L. Thus, S = [d*r L. The integration
measure d*z is Lorentz invariant: if we change to coordinates # = A*,z",
we have d*z = |det A|d%z = d*z. Thus, for the action to be Lorentz in-
variant, the lagrangian density must be a Lorentz scalar: L(z) = L(Z).
Then we have S = [d% L(z) = [d% L(z) = S. Any simple function of
@ is a Lorentz scalar, and so are products of derivatives with all indices
contracted, such as 0* 0, . We will take for £

L= —%8”<p<9u<p — %m2cp2 +Q, (3.9)

where Q) is an arbitrary constant. We find the equation motion (also known
as the Euler-Lagrange equation) by making an infinitesimal variation dp(x)
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in (), and requiring the corresponding variation of the action to vanish:

0=204S
= /d4:17 {—%8“5(,08“90 — %a’ﬂpﬁu&p —m?p 5@}
= /d4a: {—H‘)“(‘)ugo — ngp] dp . (3.10)

In the last line, we have integrated by parts in each of the first two terms,
putting both derivatives on ¢. We assume dp(x) vanishes at infinity in
any direction (spatial or temporal), so that there is no surface term. Since
d¢ has an arbitrary x dependence, eq.(3.10) can be true if and only if
(—0% +m?)p = 0.

One solution of the Klein-Gordon equation is a plane wave of the form
exp(ik-x £ iwt), where k is an arbitrary real wave-vector, and

w=—+(k>+m?)/2 (3.11)

The general solution (assuming boundary conditions that require ¢ to re-
main finite at spatial infinity) is then
d3k tk-x—iwt ik-x+iwt
o(x,t) = G la(k)e + bk)eriet] (3.12)
where a(k) and b(k) are arbitrary functions of the wave vector k, and f(k)
is a redundant function of the magnitude of k which we have inserted for
later convenience. Note that, if we were attempting to interpret p(z) as
a quantum wave function (which we most definitely are not), then the
second term would constitute the “negative energy” contributions to the
wave function. This is because a plane-wave solution of the nonrelativistic
Schrodinger equation for a single particle looks like exp(ip - x — iE(p)t),
with E(p) = ﬁp% there is a minus sign in front of the positive energy. We
are trying to interpret eq. (3.12) as a real classical field, but this formula
does not generically result in ¢ being real. We must impose ¢*(z) = ¢(x),
where
* d3k * —ik-x+iwt * —ik-x—iwt
o (x,t) = HO) [a (k)e Tl b (k)e }

-/ ;5:) [ (ke eorivt (ke i) (313)

In the second term on the second line, we have changed the dummy inte-
gration variable from k to —k. Comparing egs. (3.12) and (3.13), we see
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that ¢*(z) = ¢(x) requires b*(—k) = a(k). Imposing this condition, we
can rewrite ¢ as

p(x,1) = % :a(k)eik'x_m +a*(_k)eik~x+iwt]
Bk T ik-X—iw " KX
:/%_a(k)ek Lot (k)e kxt t}
d3k [ ikx * —ikx
- m _a(k)ek +a*(k)e k } , (3.14)

where kx = k-x — wt is the Lorentz-invariant product of the four-vectors
' = (t,x) and k* = (w,k): kx = ktx, = g, k'x”. Note that

k? = ktk, =k — w? = —m? . (3.15)

2 is said to be on the mass shell,

A four-momentum k* that obeys k? = —m
or on shell for short.

It is now convenient to choose f(k) so that d°k/f (k) is Lorentz invariant.
An integration measure that is manifestly invariant under orthochronous
Lorentz transformations is d% §(k*+m?) 0(k?), where §(x) is the Dirac delta
function, #(z) is the unit step function, and k° is treated as an independent

integration variable. We then have
1

/ T U0 S(km?) 0(°) = (3.16)

Here we have used the rule

/+°O dr 8(g(e)) =Y m , (3.17)

— o0

where g(x) is any smooth function of z with simple zeros at = z;; in our
case, the only zero is at £k = w.

Thus we see that if we take f(k) oc w, then d%/f(k) will be Lorentz
invariant. We will take f(k) = (27)32w. It is then convenient to give the
corresponding Lorentz-invariant differential its own name:

- 43
dk = (2m)32w

(3.18)

Thus we finally have

o(r) = /(/ﬁ{: [a(k)e““ —I—a*(k)e_““} . (3.19)
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We can also invert this formula to get a(k) in terms of p(x). We have

/d?’x e ’kxcp(a:) — ia(k) + Le2iwta*(_k) 7

2w 2w
/d3x e~k Php(x) = —fa(k) + te*™a*(—k) . (3.20)
We can combine these to get
alk) = [ d' e [i0yp(w) + wip(a)

= /d —ike 30 () (3.21)

where f<8_,;g = f(Oug) — (Ouf)g, and Oy = Op/0t = . Note that a(k) is
time independent.

Now that we have the lagrangian, we can construct the hamiltonian by
the usual rules. Recall that, given a lagrangian L(qg;,q;) as a function of
some coordinates ¢; and their time derivatives ¢;, the conjugate momenta
are given by p; = 0L/0¢;, and the hamiltonian by H = >, pigi — L. In
our case, the role of ¢;(t) is played by ¢(x,t), with x playing the role of a
(continuous) index. The appropriate generalizations are then

II(z) = &(Z(ﬁa:) (3.22)
and
H=Ip—-L, (3.23)

where H is the hamiltonian density, and the hamiltonian itself is H =
[ d® H. In our case, we have

I(z) = ¢(z) (3.24)

and
H =12+ L(Vp)? + Im%? — Q. (3.25)

Using eq. (3.19), we can write H in terms of the a(k) and a*(k) coefficients:
H:4mug/%%w%[
(—z'w a(k)eikx + iwa kx) ( i’ CL zk T 4G a*(k/)e—ik’x)
+ (+ika()e™™ — ika*( —Z’m) (+iK' a(K)e™s — ik a* (K')e'7)
+ m? (a(k)e““ +a*(k)e™ ’kx) (a(k')e’k T4a (k’)e_““'x)}
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= —QV + & 27r3/217<:217c'
5 (k — K)(+ww’ + k- k’ + m?)
x (0" (K)a(k)e = 4 g(k)a* (K)e+ =)
+ 3 (k 4+ K)(—ww' — k-K + m2)
< (a(a(k)e ) 4 a* (k)a™ (k) ")

— —QV + 3 / dk |
(+0? + K 4+ m?) (a" (K)a(k) + a(k)a* (k)
+(—w? + K+ mz)(a(k)a(—k)e_%“t + a*(k)a*(—k)e”i“tﬂ

-V +1 /Eﬁc w(a*(K)a(k) +a(k)a" (k) , (3.26)
where V is the volume of space. To get the second equality, we used

/ & 97 — (27)35%(q) . (3.27)

To get the third equality, we integrated over k’, using dk = & /(27m)32w'.
The last equality then follows from w = (k?>+m?)/2. Also, we were careful
to keep the ordering of a(k) and a*(k) unchanged throughout, in anticipa-
tion of passing to the quantum theory where these classical functions will
become operators that may not commute.

Let us take up the quantum theory now. We can go from classical
to quantum mechanics via canonical quantization. This means that we
promote ¢; and p; to operators, with commutation relations [¢;,q;] = 0,
[pi,p;] = 0, and [g;, p;] = ihd;;. In the Heisenberg picture, these operators
should be taken at equal times. In our case, where the “index” is continuous
(and we have set i = 1), we have

[SD(X’ t)’ @(le t)] =0,
[H(Xv t)v H(le t)] =0,
[o(x,1),TI(x,t)] = 63 (x — x') . (3.28)

From these canonical commutation relations, and from egs. (3.21) and (3.24),
we can deduce

la(k), a(k)] =0,
[a’(k), e’ (k)] = 0,
[a(k),a’ (K)] = (27)%2w % (k — K') . (3.29)
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We are now denoting a*(k) as af(k), since af(k) is now the hermitian
conjugate (rather than the complex conjugate) of the operator a(k). We
can now rewrite the hamiltonian as

H = /EZZ: wal (K)ak) + (& — Q)V , (3.30)

where

& = %(2w)—3/d3k: w (3.31)

is the total zero-point energy of all the oscillators per unit volume, and,
using eq. (3.27), we have interpreted (27)36%(0) as the volume of space V.

If we integrate in eq. (3.31) over the whole range of k, the value of & is
infinite. If we integrate only up to a maximum value of A, a number known
as the ultraviolet cutoff, we find

A4
T 16m2
where we have assumed A > m. This is physically justified if, in the real
world, the formalism of quantum field theory breaks down at some large
energy scale. For now, we simply note that the value of ) is arbitrary, and
so we are free to choose 0y = &. With this choice, the ground state has
energy eigenvalue zero. Now, if we like, we can take the limit A — oo, with
no further consequences. (We will meet more of these ultraviolet divergences
after we introduce interactions.)

The hamiltonian of eq. (3.30) is now the same as that of eq. (3.6), with
a(k) = [(27)%2w]"/? a(k). The commutation relations (3.4) and (3.29) are
also equivalent, if we choose commutators (rather than anticommutators)
in eq. (3.4). Thus, we have re-derived the hamiltonian of free relativistic
bosons by quantization of a scalar field whose equation of motion is the
Klein-Gordon equation. The parameter m in the lagrangian is now seen to
be the mass of the particle in the quantum theory. (More precisely, since
m has dimensions of inverse length, the particle mass is hcm.)

What if we want fermions? Then we should use anticommutators in
egs. (3.28) and (3.29). There is a problem, though; eq. (3.26) does not then
become eq. (3.30). Instead, we get H = —QV, a simple constant. Clearly
there is something wrong with using anticommutators. This is another hint
of the spin-statistics theorem, which we will take up in section 4.

Next, we would like to add Lorentz-invariant interactions to our theory.
With the formalism we have developed, this is easy to do. Any local func-
tion of ¢(z) is a Lorentz scalar, and so if we add a term like ¢® or ¢? to
the lagrangian density £, the resulting action will still be Lorentz invariant.
Now, however, we will have interactions among the particles. Our next task
is to deduce the consequences of these interactions.

&o (3.32)
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However, we already have enough tools at our disposal to prove the
spin-statistics theorem for spin-zero particles, and that is what we turn to
next.

PROBLEMS

3.1) Derive eq. (3.29) from egs. (3.21), (3.24), and (3.28).

3.2) Use the commutation relations, eq. (3.29), to show explicitly that a
state of the form

ki .. kp) = al(ky)...a'(ky)|0) (3.33)

is an eigenstate of the hamiltonian, eq.(3.30), with eigenvalue wy +
...+ wp. The vacuum |0) is annihilated by a(k), a(k)|0) = 0, and we
take Qo = & in eq. (3.30).

3.3) Use U(A)"Lp(x)U(A) = p(A~1z) to show that
UM a®)U(A) = a(A7'K)
UN)tal(K)U(A) = al(A7'K) (3.34)
and hence that
UA)|ky ... kp) = [Aky ... Aky) (3.35)

where |k ... k,) = af(k;)...a'(k,)[0) is a state of n particles with
momenta ki,...,ky,.

3.4) Recall that T'(a)"tp(z)T(a) = p(z — a), where T'(a) = exp(—iP"a,,)
is the spacetime translation operator, and P° is identified as the
hamiltonian H.

a) Let a* be infinitesimal, and derive an expression for [¢(z), P*].

b) Show that the time component of your result is equivalent to the
Heisenberg equation of motion i¢ = [p, H].

c) For a free field, use the Heisenberg equation to derive the Klein-
Gordon equation.

d) Define a spatial momentum operator

= —/d3x II(x)Ve(x) . (3.36)

Use the canonical commutation relations to show that P obeys the
relation you derived in part (a).

e) Express P in terms of a(k) and af (k).
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3.5) Consider a complex (that is, nonhermitian) scalar field ¢ with la-
grangian density

L= —8”4,0T8M<p —m2elp+ Q. (3.37)

a) Show that ¢ obeys the Klein-Gordon equation.

b) Treat ¢ and ¢! as independent fields, and find the conjugate mo-
mentum for each. Compute the hamiltonian density in terms of these
conjugate momenta and the fields themselves (but not their time
derivatives).

c) Write the mode expansion of ¢ as
o(z) = / dk [a(k)e™ 4 bf (1)e 7] (3.38)

Express a(k) and b(k) in terms of ¢ and ¢! and their time derivatives.

d) Assuming canonical commutation relations for the fields and their
conjugate momenta, find the commutation relations obeyed by a(k)
and b(k) and their hermitian conjugates.

e) Express the hamiltonian in terms of a(k) and b(k) and their her-
mitian conjugates. What value must €2y have in order for the ground
state to have zero energy?
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4  THE SPIN-STATISTICS THEOREM
PREREQUISITE: 3
Let us consider a theory of free, spin-zero particles specified by the hamil-

tonian

Hy — / dk w a' (K)a(k) , (4.1)

where w = (k? + m?)'/2, and either the commutation or anticommutation
relations

la(k),a(k)]z =0,
[at(k),a’ (k)] = 0,
la(k),a’ (K)]+ = 2m)%2w &3 (k — K/) . (4.2)

Of course, if we want a theory of bosons, we should use commutators, and
if we want fermions, we should use anticommutators.

Now let us consider adding terms to the hamiltonian that will result in
local, Lorentz invariant interactions. In order to do this, it is convenient to
define a nonhermitian field,

0T (x,0) = /EZZ: e** q(k) , (4.3)
and its hermitian conjugate
¢ (x,0) = /Efc e kX gl (k) . (4.4)
These are then time-evolved with Hy:
ot (x, 1) = oty (x, 0)eiHot — /Eﬁf ¢ a(k) |
©(x,t) = Moty (x,0)e 0t = /EZZ: e~k ol (k) . (4.5)

Note that the usual hermitian free field ¢(x) is just the sum of these:

p(z) =™ () + ¢~ (2).
For a proper orthochronous Lorentz transformation A, we have

UA) ™ o(2)U(A) = p(A™'2) . (4.6)

This implies that the particle creation and annihilation operators transform
as

UM taX)UA) = a(A k),
UM ta'(k)U(A) = af(A7'Kk) . (4.7)
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This, in turn, implies that ¢ (z) and ¢~ (z) are Lorentz scalars:
UN)'e™(@)UA) = ¢ (A 1a) . (4.8)

We will then have local, Lorentz invariant interactions if we take the in-
teraction lagrangian density £; to be a hermitian function of ¢ (z) and
¢ ().

To proceed we need to recall some facts about time-dependent pertur-
bation theory in quantum mechanics. The transition amplitude 7y, to
start with an initial state |i) at time ¢ = —oo and end with a final state | f)
at time t = 400 is

Troo= U Tesp| i [ ar o] 1 (4.9)

[e.e]

where Hj(t) is the perturbing hamiltonian in the interaction picture,
Hi(t) = exp(+iHot) Hy exp(—iHot) , (4.10)

H is the perturbing hamiltonian in the Schrédinger picture, and T is the
time ordering symbol: a product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at earlier
times. We write H; = [ d® H1(x,0), and specify Hj(x,0) as a hermitian
function of p*(x,0) and ¢~ (x,0). Then, using egs. (4.5) and (4.10), we
can see that, in the interaction picture, the perturbing hamiltonian density
Hi(x,t) is simply given by the same function of p*(x,t) and ¢~ (x,t).
Now we come to the key point: for the transition amplitude 7;_; to
be Lorentz invariant, the time ordering must be frame independent. The
time ordering of two spacetime points x and 2’ is frame independent if
their separation is timelike; this means that the interval between them is
negative, (x—x' )2 < 0. Two spacetime points whose separation is spacelike,
(x — 2')% > 0, can have different temporal ordering in different frames. In
order to avoid 7y.; being different in different frames, we must then require

[Hi(z),H;(z')] =0 whenever (z—2')2>0. (4.11)

Obviously, [T (2), T (2")]5 = [¢~ (x), ¢ (2/)]+ = 0. However,

(@) @)l = [ dhdk ¢ oo, (K5

_ /(’1\]; eik(w—m’)
m

= gz Frlm)

C(r). (4.12)
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In the next-to-last line, we have taken (z — 2/)? = r? > 0, and K;(z) is
a modified Bessel function. (This Lorentz-invariant integral is most easily
evaluated in the frame where ¢ = ¢.) The function C(r) is not zero for any
r > 0. (Not even when m = 0; in this case, C(r) = 1/472r2.) On the other
hand, Hy(z) must involve both ¢+ (z) and ¢~ (z), by hermiticity. Thus,
generically, we will not be able to satisfy eq. (4.11).

To resolve this problem, let us try using only particular linear combi-
nations of ¢t (z) and ¢~ (). Define

pa(a) = ot (@) + A~ (@)
cpi(a:) = () + Nt (2), (4.13)

where ) is an arbitrary complex number. We then have

[oa(@), o) (@)]g = [ (@), 0~ ()] + IMPle™ (@), ¢ (2))]5
= (1 AP)C(r) (4.14)

and

[pa(@), pa(a)]z = A" (2), 07 ()5 + Alp™ (2), ™ (¢)]5
= A1F1)C(r) . (4.15)

Thus, if we want ¢y (z) to either commute or anticommute with both ¢y (z')
and cpi(a;’ ) at spacelike separations, we must choose |A| = 1, and we must
choose commutators. Then (and only then), we can build a suitable H;(x)
by making it a hermitian function of @) (z).

But this has simply returned us to the theory of a real scalar field,
because, for A = e'@, e~ia/ 2pa(z) is hermitian. In fact, if we make the
replacements a(k) — e*/2q(k) and af(k) — e7/2at(k), then the com-
mutation relations of eq.(4.2) are unchanged, and e~**/2p,(z) = ¢(z) =
ot (x) + ¢~ (x). Thus, our attempt to start with the creation and annihila-
tion operators a'(k) and a(k) as the fundamental objects has simply led us
back to the real, commuting, scalar field ¢(x) as the fundamental object.

Let us return to thinking of ¢(z) as fundamental, with a lagrangian den-
sity given by some function of the Lorentz scalars ¢(z) and 0*¢(z)0,¢(x).
Then, quantization will result in [p(z), ¢(z)]5 = 0 for t = t'. If we choose
anticommutators, then [p(z)]? = 0 and [0,¢(z)]*> = 0, resulting in a trivial
L that is at most linear in ¢, and independent of . This clearly does not
lead to the correct physics.

This situation turns out to generalize to fields of higher spin, in any
number of spacetime dimensions. One choice of quantization (commuta-
tors or anticommutators) always leads to a trivial £, and so this choice
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is disallowed. Furthermore, the allowed choice is always commutators for
fields of integer spin, and anticommutators for fields of half-integer spin.
If we try treating the particle creation and annihilation operators as fun-
damental, rather than the fields, we find a situation similar to that of the
spin-zero case, and are led to the reconstruction of a field that must obey
the appropriate quantization scheme.

REFERENCE NOTES

This discussion of the spin-statistics theorem follows that of Weinberg I,
which has more details.

PROBLEMS

4.1) Verify eq. (4.12). Verify its limit as m — 0.
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5 TuE LSZ REDUCTION FORMULA

PREREQUISITE: 3

Let us now consider how to construct appropriate initial and final states
for scattering experiments. In the free theory, we can create a state of one
particle by acting on the vacuum state with a creation operator

k) = a'(k)|0) , (5.1)

where

= —z/d maogp (x) . (5.2)

The vacuum state |0) is annihilated by every a(k),

a(k)]0) =0, (5.3)

and has unit norm,

(0]0) = 1. (5.4)

The one-particle state |k) then has the Lorentz-invariant normalization
(kK'Y = 2m)? 2w (k — K') (5.5)

where w = (k? + m?)'/2,

Next, let us define a time-independent operator that (in the free theory)
creates a particle localized in momentum space near ki, and localized in
position space near the origin:

- / & f1(k)al (k) | (5.6)

where
f1(k) o exp[—(k — k;)?/40?] (5.7)

is an appropriate wave packet, and o is its width in momentum space.
Consider the state a“0>. If we time evolve this state in the Schrodinger
picture, the wave packet will propagate (and spread out). The particle is
thus localized far from the origin as t — 4oco. If we consider instead a
state of the form a1a£]0>, where ki # ko, then the two particles are widely
separated in the far past.

Let us guess that this still works in the interacting theory. One compli-
cation is that a'(k) will no longer be time independent, and so a];, eq. (5.6),
becomes time dependent as well. Our guess for a suitable initial state of a
scattering experiment is then

i) = lim_al(t)ab(®)[0) . (5.8)
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By appropriately normalizing the wave packets, we can make (i|i) = 1, and
we will assume that this is the case. Similarly, we can consider a final state

£y =, lim_al,(t)a} (1)]0) , (5.9)

where ki # Kk}, and (f|f) = 1. This describes two widely separated par-
ticles in the far future. (We could also consider acting with more creation
operators, if we are interested in the production of some extra particles in
the collision of two.) Now the scattering amplitude is simply given by (f|).

We need to find a more useful expression for (f|i). To this end, let us
note that

ol (+o0) —al(=o0) = [ at oval
- —z/d3k £k /da: A ’kx%w(x))
:—z/d?’kfl /d 7 (38 + w)p(x)
— _Z/di”k fi(k /d R (AR + K2 4+ m?)p(x)
— / & f1(k / d'z (B — V2 + m2)p(a)
— / &% f1(k / 'z % (R — V2 + m2)p(x)

= —i [ @ k) [ do (=07 4 mA)p(a) . (5.10)

The first equality is just the fundamental theorem of calculus. To get the
second, we substituted the definition of aJ{(t), and combined the d3r from
this definition with the dt to get d*z. The third comes from straightforward
evaluation of the time derivatives. The fourth uses w? = k? 4+ m?2. The fifth
writes k? as —V? acting on e’¥*. The sixth uses integration by parts to
move the V2 onto the field ¢(z); here the wave packet is needed to avoid a
surface term. The seventh simply identifies 93 — V2 as —9?.

In free-field theory, the right-hand side of eq. (5.10) is zero, since ¢(x)
obeys the Klein-Gordon equation. In an interacting theory, with (say)
Ly = %ggo?’ , we have instead (—0% + m?)p = % gp?. Thus the right-hand
side of eq. (5.10) is not zero in an interacting theory.

Rearranging eq. (5.10), we have

o} (=00) = al (+o0) +z/d3kf1 /d R (0% 4 mP)p(z) . (5.11)

We will also need the hermitian conjugate of this formula, which (after a
little more rearranging) reads

aj(400) = a1 (— —|—z/d3k‘ fik /d ek (9% + mPp(z) . (5.12)
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Let us return to the scattering amplitude,
(£1i) = {Olars (+00)az (+00)a} (~o0)ah(~00)[0) . (5.13)

Note that the operators are in time order. Thus, if we feel like it, we can
put in a time-ordering symbol without changing anything:

(f13) = (0] Tay (+o00)ax (+o0)al (—oo)al(—c0)|0) . (5.14)

The symbol T means the product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at
earlier times.

Now let us use egs. (5.11) and (5.12) in eq. (5.14). The time-ordering
symbol automatically moves all a;(—o0)’s to the right, where they anni-
hilate |0). Similarly, all a;f (+00)’s move to the left, where they annihilate
(0.

The wave packets no longer play a key role, and we can take the ¢ — 0
limit in eq. (5.7), so that fi(k) = 63(k — ky). The initial and final states
now have a delta-function normalization, the multiparticle generalization
of eq. (5.5). We are left with

(Fli) = ¢n+n’/d4x1 R 4 m?) ..
d' e (02 + m?) ...
X (0| Tp(xy) ... o(x})...]0) . (5.15)

This formula has been written to apply to the more general case of n
incoming particles and n’ outgoing particles; the ellipses stand for similar
factors for each of the other incoming and outgoing particles.

Eq. (5.15) is the Lehmann-Symanzik-Zimmermann reduction formula,
or LSZ formula for short. It is one of the key equations of quantum field
theory.

However, our derivation of the LSZ formula relied on the supposition
that the creation operators of free field theory would work comparably in
the interacting theory. This is a rather suspect assumption, and so we must
review it.

Let us consider what we can deduce about the energy and momentum
eigenstates of the interacting theory on physical grounds. First, we assume
that there is a unique ground state |0), with zero energy and momentum.
The first excited state is a state of a single particle with mass m. This
state can have an arbitrary three-momentum k; its energy is then F =
w = (k? + m?)'/2. The next excited state is that of two particles. These
two particles could form a bound state with energy less than 2m (like the
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\E/
2m
m
0 P

Figure 5.1: The exact energy eigenstates in the (P, E) plane. The ground
state is isolated at (0,0), the one-particle states form an isolated hyperbola
that passes through (0,m), and the multi-particle continuum lies at and
above the hyperbola that passes through (0,2m).

hydrogen atom in quantum electrodynamics), but, to keep things simple, let
us assume that there are no such bound states. Then the lowest possible
energy of a two-particle state is 2m. However, a two-particle state with
zero total three-momentum can have any energy above 2m, because the
two particles could have some relative momentum that contributes to their
total energy. Thus we are led to a picture of the states of theory as shown
in fig. (5.1).

Now let us consider what happens when we act on the ground state
with the field operator ¢(z). To this end, it is helpful to write

o(z) = exp(—iP"xz,)p(0)exp(+iPrz,) , (5.16)

where P* is the energy-momentum four-vector. (This equation, introduced
in section 2, is just the relativistic generalization of the Heisenberg equa-
tion.) Now let us sandwich ¢(x) between the ground state (on the right),
and other possible states (on the left). For example, let us put the ground
state on the left as well. Then we have

(Olip(2)]0) = {0le™ " (0)e™**|0)

= (0]¢(0)[0) . (5.17)
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To get the second line, we used P#|0) = 0. The final expression is just
a Lorentz-invariant number. Since |0) is the exact ground state of the
interacting theory, we have (in general) no idea what this number is.

We would like (0|¢(0)]|0) to be zero. This is because we would like
a{(ioo), when acting on |0), to create a single particle state. We do not
want aJ{(ioo) to create a linear combination of a single particle state and
the ground state. But this is precisely what will happen if (0[¢(0)|0) is not
Z€ero.

So, if v = (0]p(0)|0) is not zero, we will shift the field p(z) by the
constant v. This means that we go back to the lagrangian, and replace
o(x) everywhere by @(z) + v. This is just a change of the name of the
operator of interest, and does not affect the physics. However, the shifted
@(x) obeys, by construction, (0]p(x)|0) = 0.

Let us now consider (p|p(x)|0), where |p) is a one-particle state with
four-momentum p, normalized according to eq. (5.5). Again using eq. (5.16),
we have

(ple" " (0)etF*|0)
= e P (p|(0)]0) (5.18)

where (p|¢(0)|0) is a Lorentz-invariant number. It is a function of p, but
the only Lorentz-invariant functions of p are functions of p?, and p? is just
the constant —m?2. So (p|¢(0)|0) is just some number that depends on m
and (presumably) the other parameters in the lagrangian.

We would like (p|¢(0)|0) to be one. That is what it is in free-field theory,
and we know that, in free-field theory, a];(ioo) creates a correctly normal-
ized one-particle state. Thus, for a{(:l:oo) to create a correctly normalized
one-particle state in the interacting theory, we must have (p|¢(0)[0) = 1.

So, if (p|p(0)|0) is not equal to one, we will rescale (or, one might say,
renormalize) ¢(x) by a multiplicative constant. This is just a change of the
name of the operator of interest, and does not affect the physics. However,
the rescaled ¢(z) obeys, by construction, (p|¢(0)|0) = 1.

Finally, consider (p,n|p(x)|0), where |p,n) is a multiparticle state with
total four-momentum p, and n is short for all other labels (such as relative
momenta) needed to specify this state. We have

(p,nlp(@)]0) = (p,nle™ " p(0)e|0)
= ¢ " (p,n|(0)[0)
= e 74, (p), (5.19)

(plep(2)[0)

where A, (p) is a function of Lorentz invariant products of the various
(relative and total) four-momenta needed to specify the state. Note that,
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from fig. (5.1), p° = (p? 4+ M?)'/? with M > 2m. The invariant mass M is
one of the parameters included in the set n.

We would like (p,n|o(2)|0) to be zero, because we would like ai(:l:oo),
when acting on |0), to create a single particle state. We do not want
aI(:l:oo) to create any multiparticle states. But this is precisely what may
happen if (p,n|p(x)|0) is not zero.

Actually, we are being a little too strict. We really need (p, n|a1(:|:oo)|0>
to be zero, and perhaps it will be zero even if (p, n|p(x)|0) is not. Also, we
really should test ai(:l:oo)|0> only against normalizable states. Mathemat-
ically, non-normalizable states cause all sorts of trouble; mathematicians
don’t consider them to be states at all. In physics, this usually doesn’t

bother us, but here we must be especially careful. So let us write
) = Z/d?’p Un(P)lp, 1) (5.20)

where the 1, (p)’s are wave packets for the total three-momentum p. Note
that eq. (5.20) is highly schematic; the sum over n includes integrals over
continuous parameters like relative momenta.

Now we want to examine

@lal 010) = =13 [ i) [ @k fu(k) [ d's b (oo nlie(@)0)
" (5.21)
We will take the limit ¢ — +oo in a moment. Using eq. (5.19), eq. (5.21)
becomes

el 010) = =i Y [ dpvie) [ % fk) [ dn(e™ 5 ) A, (p)

S [t vie) [ @ fik) [t R0, (p)
" (5.22)

Next we use [ d*z e ~P)* = (27)3§3(k — p) to get
@lal()10) = 3 [ db (2r) (k)11 () An(R) P " (5.29)

where p° = (p? + M?)"/2 and k° = (p? + m?)'/2.

Now comes the key point. Note that p® is strictly greater than k°,
because M > 2m > m. Thus the integrand of eq. (5.23) contains a phase
factor that oscillates more and more rapidly as t — +oo. Therefore, by
the Riemann-Lebesgue lemma, the right-hand side of eq. (5.23) vanishes as
t — t+oo.
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Physically, this means that a one-particle wave packet spreads out dif-
ferently than a multiparticle wave packet, and the overlap between them
goes to zero as the elapsed time goes to infinity. Thus, even though our
operator aJ{(t) creates some multiparticle states that we don’t want, we
can “follow” the one-particle state that we do want by using an appropri-
ate wave packet. By waiting long enough, we can make the multiparticle
contribution to the scattering amplitude as small as we like.

Let us recap. The basic formula for a scattering amplitude in terms of
the fields of an interacting quantum field theory is the LSZ formula, which

is worth writing down again:

R
d'zy e (=03 +m?) ...
X (0| Tp(xy) ... o(x})...]0) . (5.24)
The LSZ formula is valid provided that the field obeys
(0le(x)]0) =0 and (k|o(x)|0) = e~ (5.25)

These normalization conditions may conflict with our original choice of field
and parameter normalization in the lagrangian. Consider, for example, a
lagrangian originally specified as

L= —%8“(,08“90 — %m2<p2 + %9903 . (5.26)

After shifting and rescaling (and renaming some parameters), we will have
instead
L= —%Zspa"cp(‘)ucp - %me2cp2 + %Zgggog +Yp. (5.27)

Here the three Z’s and Y are as yet unknown constants. They must be
chosen to ensure the validity of eq. (5.25); this gives us two conditions in
four unknowns. We fix the parameter m by requiring it to be equal to the
actual mass of the particle (equivalently, the energy of the first excited state
relative to the ground state), and we fix the parameter g by requiring some
particular scattering cross section to depend on ¢ in some particular way.
(For example, in quantum electrodynamics, the parameter analogous to g
is the electron charge e. The low-energy Coulomb scattering cross section
is proportional to e?, with a definite constant of proportionality and no
higher-order corrections; this relationship defines e.) Thus we have four
conditions in four unknowns, and it is possible to calculate Y and the three
Z’s order by order in powers of g.

Next, we must develop the tools needed to compute the correlation
functions (0|Ty(z1)...|0) in an interacting quantum field theory.
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REFERENCE NOTES

Useful discussions of the LSZ reduction formula can be found in Brown,
Itzykson € Zuber, Peskin € Schroeder, and Weinberg I.

PROBLEMS

5.1) Work out the LSZ reduction formula for the complex scalar field that
was introduced in problem 3.5. Note that we must specify the type
(a or b) of each incoming and outgoing particle.
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6 PATH INTEGRALS IN QUANTUM MECHANICS

PREREQUISITE: NONE

Consider the nonrelativistic quantum mechanics of one particle in one di-
mension; the hamiltonian is

H(P,Q) = +=P*+V(Q), (6.1)

where P and ) are operators obeying [@Q,P] = i. (We set h = 1 for
notational convenience.) We wish to evaluate the probability amplitude for
the particle to start at position ¢’ at time ¢/, and end at position ¢” at time
t”. This amplitude is (¢”|e~ """ =¥)|¢'), where |¢') and |¢”) are eigenstates
of the position operator Q.

We can also formulate this question in the Heisenberg picture, where op-
erators are time dependent and the state of the system is time independent,
as opposed to the more familiar Schrodinger picture. In the Heisenberg pic-
ture, we write Q(t) = ¢*Qe~"*, We can then define an instantaneous
eigenstate of Q(t) via Q(t)|q,t) = qlq,t). These instantaneous eigenstates
can be expressed explicitly as |¢,t) = et|q), where Q|q) = ¢|¢). Then
our transition amplitude can be written as (¢”,t”|¢’,t') in the Heisenberg
picture.

To evaluate (¢",t"|¢',t'), we begin by dividing the time interval T' =
t” —t" into N 4 1 equal pieces of duration 6t = T//(N 4 1). Then introduce
N complete sets of position eigenstates to get

N

(q".t"|q 1) = / 1T da; (¢"le™ " lqn) (anle™ " lan—1) .. (qrle g .
j=1
(6.2)
The integrals over the ¢’s all run from —oo to 4oc0.
Now consider (gz|e™*#%|q;). We can use the Campbell-Baker-Hausdorf
formula

exp(A + B) = exp(A) exp(B) exp(—3[4, B] +...) (6.3)

to write
exp(—iH6t) = exp[—i(5t/2m)P?] exp[—idtV (Q)] exp[O(6t?)] . (6.4)

Then, in the limit of small é¢, we should be able to ignore the final expo-
nential. Inserting a complete set of momentum states then gives

(aale™ a1} = [ dpn (gole™ O ) e Y @)

= /dp1 e~ 10t/ 2m)pt =0tV (1) (@2|p1){(p1lqr)
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— /@ e i(0t/2m)p} —idtV(q1) gip1(a2—q1)
27
— @ e~ (p1,q1)dt Jip1(92—q1) (6.5)
27
To get the third line, we used (q|p) = (27) /2 exp(ipq).

If we happen to be interested in more general hamiltonians than eq. (6.1),
then we must worry about the ordering of the P and () operators in any
term that contains both. If we adopt Weyl ordering, where the quantum
hamiltonian H (P, Q) is given in terms of the classical hamiltonian H (p, q)
by
dx dk
o 21 ©
then eq. (6.5) is not quite correct; in the last line, H(p1,q1) should be
replaced with H(p1,q1), where ¢ = %(ql + ¢g2). For the hamiltonian of
eq. (6.1), which is Weyl ordered, this replacement makes no difference in
the limit 6t — O.

Adopting Weyl ordering for the general case, we now have

H(P,Q) = ioP+ikQ / dpdge= =" [ (p. q) |  (6.6)

N N o o
(@t ) = [ T]day [T 2 emom) Homalt | (G)
k=1 =0

where q; = %(qj + ¢j+1), o = ¢, and gn+1 = ¢”. If we now define ¢; =
(gj+1 — g5)/dt, and take the formal limit of 6t — 0, we get

(q//,t//‘q/,t/> = /Dqu exp|:1/
t

/

t”

(i) ~ Ho(0).a(t)|. (69

The integration is to be understood as over all paths in phase space that
start at q(t') = ¢’ (with an arbitrary value of the initial momentum) and
end at ¢(t") = ¢" (with an arbitrary value of the final momentum).

If H(p,q) is no more than quadratic in the momenta [as is the case for
eq. (6.1)], then the integral over p is gaussian, and can be done in closed
form. If the term that is quadratic in p is independent of ¢ [as is the case
for eq. (6.1)], then the prefactors generated by the gaussian integrals are
all constants, and can be absorbed into the definition of Dq. The result of
integrating out p is then

t”

("¢t = / Dq expli dt L(q(t),q(t))], (6.9)
t/

where L(q,q) is computed by first finding the stationary point of the p

integral by solving

0= (pi~ Hip.q)) = i - %Z’Q)

5 (6.10)
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for p in terms of ¢ and ¢, and then plugging this solution back into pg — H
to get L. We recognize this procedure from classical mechanics: we are
passing from the hamiltonian formulation to the lagrangian formulation.

Now that we have egs. (6.8) and (6.9), what are we going to do with
them? Let us begin by considering some generalizations; let us examine,
for example, (¢, t"|Q(t1)|¢’,t’), where t' < t; < t”. This is given by

(q”,t”\Q(tl)\q/,t/> _ <q//’e—iH(t”_tl)Qe_iH(h—t’)’q/> ) (611)

In the path integral formula, the extra operator () inserted at time ¢; will
simply result in an extra factor of ¢(¢1). Thus

(@ 1Q()Id 1) = [ PoDya(t) e (612

where S = ftfn dt (pg — H). Now let us go in the other direction; consider
[ DpDqq(t)q(ta)e. This clearly requires the operators Q(t;) and Q(t2),
but their order depends on whether ¢; < to or t9 < t1. Thus we have

/Dqu q(t1)q(t2) € = (¢" . ¢"|TQ(t1)Q(t2)ld' t') - (6.13)

where T is the time ordering symbol: a product of operators to its right is
to be ordered, not as written, but with operators at later times to the left
of those at earlier times. This is significant, because time-ordered products
enter into the LSZ formula for scattering amplitudes.

To further develop these methods, we need another trick: functional
derivatives. We define the functional derivative 6/ f(t) via

0
o)) f(t2) =6(t —t2) , (6.14)
where §(t) is the Dirac delta function. Also, functional derivatives are
defined to satisfy all the usual rules of derivatives (product rule, chain
rule, etc). Eq.(6.14) can be thought of as the continuous generalization of
(8/8:17@)33] = 52]
Now, consider modifying the lagrangian of our theory by including ex-
ternal forces acting on the particle:

H(p,q) — H(p,q) — f(t)q(t) — h(t)p(t) , (6.15)

where f(t) and h(t) are specified functions. In this case we will write

t//
<q”,t”|q/7t/>f,h — /Dqu exp lz/ dt (pq — H+ fq+ hp) . (6.16)
t/
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where H is the original hamiltonian. Then we have

1- 5f?t ) (@" t"ld ) = /Dqu q(tl)eifdt [pa—H+fathp]
t 1
e T i -
i 6f(t1) i 6f(t2) (" t"lq' ) s = /DPDQ q(t1)q(t2) e J dt [pg—H+ fq+hp] :
1 9 "oy 1l i [ dt [pg—H+fq+hp]
g (5h(t1) <q b ’q’t>f7h = /Dqup(tl)e pq q+hp 7

(6.17)

and so on. After we are done bringing down as many factors of ¢(t;) or
p(t;) as we like, we can set f(t) = h(t) = 0, and return to the original
hamiltonian. Thus,

(@, t"ITQ(t1) ... P(ty) ... |d", ')
1 5 1 6 /T A )
R ROy R AT PP
Suppose we are also interested in initial and final states other than
position eigenstates. Then we must multiply by the wave functions for
these states, and integrate. We will be interested, in particular, in the
ground state as both the initial and final state. Also, we will take the
limits ¥ — —oo and t” — +o00. The object of our attention is then

00y = Jim [ dg"dq ia") (@210 ) vold) . (619)

t" —+oo

where 19(q) = (g|0) is the ground-state wave function. Eq.(6.19) is a
rather cumbersome formula, however. We will, therefore, employ a trick to
simplify it.

Let |n) denote an eigenstate of H with eigenvalue E,,. We will suppose
that Ey = 0; if this is not the case, we will shift H by an appropriate
constant. Next we write

¢ty = g

oo
= > ™ n)(nl¢)
n=0

= " wi(d)e B [ny (6.20)
n=0

where ¥,(q) = (¢n) is the wave function of the nth eigenstate. Now,
replace H with (1—ie)H in eq. (6.20), where € is a small positive infinites-
imal. Then, take the limit ¢ — —oo of eq. (6.20) with € held fixed. Every
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state except the ground state is then multiplied by a vanishing exponential
factor, and so the limit is simply ¢§(¢’)|0). Next, multiply by an arbi-
trary function y(¢’), and integrate over ¢’. The only requirement is that
(0]x) # 0. We then have a constant times |0), and this constant can be
absorbed into the normalization of the path integral. A similar analysis of
(¢", 1" = (¢"|e ™" shows that the replacement H — (1—ie)H also picks
out the ground state as the final state in the ¢ — +oo limit.

What all this means is that if we use (1—ie)H instead of H, we can be
cavalier about the boundary conditions on the endpoints of the path. Any
reasonable boundary conditions will result in the ground state as both the
initial and final state. Thus we have

0[0) s = / DpDq exp

z/:o dt (pq — (1—ie)H + fq+ hp)] . (6.21)

Now let us suppose that H = Hy + Hi, where we can solve for the
eigenstates and eigenvalues of Hy, and H; can be treated as a perturbation.
Suppressing the ie, eq. (6.21) can be written as

010)f.p, = /Dqu exp

+oo
z‘/oo dt (pq‘—Ho(p,q) —Hl(pﬂ)‘i‘fQ‘th”

exp[—i/_:o dtHl(%%(t)’ %%(t))]

X/Dqu exp i/;oodt (pq'—Ho(p,Q) +fq+hp)] . (6.22)

To understand the second line of this equation, take the exponential prefac-
tor inside the path integral. Then the functional derivatives (that appear
as the arguments of H;) just pull out appropriate factors of p(t) and ¢(t),
generating the right-hand side of the first line. We assume that we can
compute the functional integral in the second line, since it involves only
the solvable hamiltonian Hy. The exponential prefactor can then be ex-
panded in powers of Hy to generate a perturbation series.

If Hy depends only on ¢ (and not on p), and if we are only interested
in time-ordered products of @’s (and not P’s), and if H is no more than
quadratic in P, and if the term quadratic in P does not involve @, then
eq. (6.22) can be simplified to

()

X / Dq exp|i /_ ;OO dt (Lo(d.q) + fq)} . (6.23)

(0]0)y = exp

where Li(q) = —H1(q).
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REFERENCE NOTES

Brown and Ramond I have especially clear treatments of various aspects
of path integrals. For a careful derivation of the midpoint rule of eq. (6.7),
see Berry & Mount.

PROBLEMS

6.1) a) Find an explicit formula for Dg in eq. (6.9). Your formula should
be of the form Dqg = C’H;-V:l dgj, where C is a constant that you
should compute.

b) For the case of a free particle, V(Q) = 0, evaluate the path integral
of eq. (6.9) explicitly. Hint: integrate over ¢, then ¢o, etc, and look
for a pattern. Express you final answer in terms of ¢/, ¢/, ¢”, t’, and
m. Restore i by dimensional analysis.

¢) Compute (¢",t"|¢,t') = (¢"|e"H "= |¢) by inserting a complete
set of momentum eigenstates, and performing the integral over the
momentum. Compare with your result in part (b).
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7 THE PATH INTEGRAL FOR THE HARMONIC
OSCILLATOR

PREREQUISITE: 6
Consider a harmonic oscillator with hamiltonian
H(P,Q) = o= P? + imw?Q? . (7.1)

We begin with the formula from section 6 for the ground state to ground
state transition amplitude in the presence of an external force, specialized
to the case of a harmonic oscillator:

(010)f = /Dqu expi/

—0o0

+oo
dtlpq— (1=ie)H + fq] . (7.2)

Looking at eq. (7.1), we see that multiplying H by 1—ie is equivalent to
the replacements m = — (1—ie)m ™" [or, equivalently, m — (1+ie)m] and

mw? — (1—ie)mw?. Passing to the lagrangian formulation then gives

(00) s = / Dq expi /_ T: dt[%(l—i—ie)qu — 1(1—ie)mw?q® + fq] . (7.3)

From now on, we will simplify the notation by setting m = 1.
Next, let us use Fourier-transformed variables,

i) = [Taeman,  an= [ L emam). (14

o —oo 2m

The expression in square brackets in eq. (7.3) becomes

=5 5 G (0oEe - 0o

+ F(B)G(E) + F(ENG(E)|.  (75)

Note that the only ¢ dependence is now in the prefactor. Integrating over ¢
then generates a factor of 27§(F + E’). Then we can easily integrate over
E' to get

-1 / I (i) B - (1-i0)?) G E)G(~E)

0o 2T
+ f(B)i(—E) + f(-E)a(B)) . (7.6)
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The factor in large parentheses is equal to E? — w? + i(E? + w?)e, and we
can absorb the positive coefficient into € to get E? — w? + ie.
Now it is convenient to change integration variables to

I(E) = §(B) + % : (7.7)
Then we get

Furthermore, because eq. (7.7) is just a shift by a constant, Dg = Dx. Now
we have

(0]0); = exp [1 /de_E f(E)f(—E) ]

2 ) oo 21 —E?2 4+ w2 —je

[T dE
« / D exp[% / CHENE ~ o +ieF(-B)| . (19)
oo 2m

Now comes the key point. The path integral on the second line of
eq. (7.9) is what we get for (0|0); in the case f = 0. On the other hand,
if there is no external force, a system in its ground state will remain in its
ground state, and so (0[0) f—o = 1. Thus (0|0) is given by the first line of
eq. (7.9),

_ i (t>dE _f(E)f(-E)

<O‘O>f—expl2/_oo e (7.10)

We can also rewrite (0]0) ¢ in terms of time-domain variables as

i [t
(0/0); = exp{g / dtdt’ FOGE— 1) f(t’)] , (7.11)
where B(—)
too dF e~ tE=

t—1t') = / — . 12
G ) oo 2 — E? +w? — e (7.12)

Note that G(t—t') is a Green’s function for the oscillator equation of motion:

2
(@ tu ) Gt —t) =o(t—1). (7.13)

This can be seen directly by plugging eq. (7.12) into eq.(7.13) and then
taking the ¢ — 0 limit. We can also evaluate G(t —t’) explicitly by treating
the integral over E on the right-hand side of eq. (7.12) as a contour integral
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in the complex F plane, and then evaluating it via the residue theorem.
The result is

Gt —t) = i exp(—iwlt ) . (7.14)

Consider now the formula from section 6 for the time-ordered product
of operators. In the case of initial and final ground states, it becomes

1 4
OTQ(n) . 10) = 5 57 -+ <0|o>f]f:0 . (7.15)
Using our explicit formula, eq. (7.11), we have
1 6 1 4
1 5 +oo / / /
= 570 L @ ct =) ooy
= [1G(ta — 1) + (term with £'5)](0]0) f]fzo
=1G(ts —t1) . (7.16)

We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more Q(¢)’s. If the number of Q(¢)’s is odd,
then there is always a left-over f(t¢) in the prefactor, and so the result is
zero. If the number of Q(t)’s is even, then we must pair up the functional
derivatives in an appropriate way to get a nonzero result. Thus, for exam-

ple,

OITQU)Q()QUE)Q(10)10) = 5 [Gltr—2)Glts—t4)
+ Gt —t3)G(ta—t4)
G(h—t)G(ta—ts)|.  (7.17)

More generally,

OTQ(H) .- Qan)l0) = = 32 Gltr,~t1,) - Cltiy, 1) - (T.18)

pairings
PROBLEMS

7.1) Starting with eq. (7.12), do the contour integral to verify eq. (7.14).

7.2) Starting with eq. (7.14), verify eq. (7.13).
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7.3) a) Use the Heisenberg equation of motion, A= i[H, A], to find explicit
expressions for () and P. Solve these to get the Heisenberg-picture
operators Q(t) and P(t) in terms of the Schrédinger picture operators
Q@ and P.

b) Write the Schrodinger picture operators @ and P in terms of the
creation and annihilation operators a and af, where H = hw(afa+ %)
Then, using your result from part (a), write the Heisenberg-picture
operators Q(t) and P(t) in terms of a and af.

c¢) Using your result from part (b), and a|0) = (0la’ = 0, verify
egs. (7.16) and (7.17).

7.4) Consider a harmonic oscillator in its ground state at ¢ = —oo. It is
then then subjected to an external force f(¢). Compute the probabil-
ity [(0]0)¢|* that the oscillator is still in its ground state at ¢ = +o0.
Write your answer as a manifestly real expression, and in terms of
the Fourier transform f(E) = [ atePtf(t). Your answer should
not involve any other unevaluated integrals.



8: The Path Integral for Free Field Theory 67

8 THE PATH INTEGRAL FOR FREE FIELD THEORY

PREREQUISITE: 3, 7

Our results for the harmonic oscillator can be straightforwardly generalized
to a free field theory with hamiltonian density

Ho = %H2 + %(Vgo)2 + %m2<p2 . (8.1)
The dictionary we need is

q(t) — (x,t) (classical field)
Q(t) — w(x,t) (operator field)
f(t) — J(x,t) (classical source) (8.2)

The distinction between the classical field ¢(x) and the corresponding op-
erator field should be clear from context.

To employ the € trick, we multiply Hy by 1 — ie. The results are equiv-
alent to replacing m? in Hy with m? — ie. From now on, for notational
simplicity, we will write m? when we really mean m?

Let us write down the path integral (also called the functional integral)
for our free field theory:

— 1€.

Zo(J) = (0[0) = / Dy '] PalbotIel (83)
where
Lo = —%a‘ﬂpﬁu@ - %ngpz (8.4)

is the lagrangian density, and
Dy x Hd(p(:n) (8.5)

is the functional measure. Note that when we say path integral, we now
mean a path in the space of field configurations.

We can evaluate Zy(J) by mimicking what we did for the harmonic
oscillator in section 7. We introduce four-dimensional Fourier transforms,

B = [ate™ @), pla) = [ et (56)

where kx = —k% + k-x, and k° is an integration variable. Then, starting
with Sy = [ d*r [Lo + J], we get

4 ~
=5 [ %[_W(kz+m2><,z<_k>+J(k>¢<—k>+,]<—k>¢<k>], (8.7)
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where k% = k% — (k°)2. We now change path integration variables to

(1) _ s J(k)
X(k) = (k) = g5 s - (8.8)
Since this is merely a shift by a constant, we have Dy = Dyx. The action
becomes
L d% [JRI(=R) e o
5o = 5/ Crt | kR rm?2 X(k)(E* +m )X(=k)| . (8.9)

Just as for the harmonic oscillator, the integral over x simply yields a factor
of Zy(0) = (0|0) j=0 = 1. Therefore

i [ d%  Jk)J(—k
Fol) = e [é/ G EE )J

— exp [; / de d' J(2)A(z — x’)J(x’)] . (8.10)

Here we have defined the Feynman propagator,

d% eik(x—x’)
Alw—a') = / G R TR (8.11)

The Feynman propagator is a Green’s function for the Klein-Gordon equa-
tion,
(=2 +m?)A(x —2') =6z —2') . (8.12)

This can be seen directly by plugging eq. (8.11) into eq.(8.12) and then
taking the ¢ — 0 limit. We can also evaluate A(z — ') explicitly by
treating the k° integral on the right-hand side of eq.(8.11) as a contour
integral in the complex k° plane, and then evaluating it via the residue
theorem. The result is

Alw—1) = z/cﬁc ik (=) —iw|t—t'|

= if(t—t) / dk =) L ig('—t) / dk e~ ™@=2") (8.13)

where 6(t) is the unit step function. The integral over dk can also be
performed in terms of Bessel functions; see section 4.

Now, by analogy with the formula for the ground-state expectation
value of a time-ordered product of operators for the harmonic oscillator,
we have

{0[Te(z1)...10) = % 6J?xl)

...ZO(J)] (8.14)

J=0 "
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Using our explicit formula, eq. (8.10), we have

(
1 5 1 6
(

0Tp(z1)p(z2)]0) = —

:l 0 {/d A$2—$)J($/)} ZO(J)‘ _

J=0

_ 1

= ?A(LUQ - l‘l) . (8'15)
We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more ’s. If the number of ¢’s is odd, then
there is always a left-over J in the prefactor, and so the result is zero. If

the number of ¢’s is even, then we must pair up the functional derivatives
in an appropriate way to get a nonzero result. Thus, for example,

(0]Tp(z1)p(z2)p(z3)p(24)[0) = %[A(ﬂfl—HJZ)A(l’s—x@
+ A(ml—xg) (LEQ x )
+ A(ml—x4) (LEQ xg)} (816)

More generally,
<O‘Ttp($1) 90(33271 ‘O Z A le xm A(mi2n71_‘ri2n)’ (8'17)
palrlngs

This result is known as Wick’s theorem.
PROBLEMS
8.1) Starting with eq. (8.11), verify eq. (8.12).
8.2) Starting with eq. (8.11), verify eq. (8.13).

8.3) Starting with eq. (8.13), verify eq. (8.12). Note that the time deriva-
tives in the Klein-Gordon wave operator can act on either the field
(which obeys the Klein-Gordon equation) or the time-ordering step
functions.

8.4) Use egs. (3.19), (3.29), and (5.3) (and its hermitian conjugate) to
verify the last line of eq. (8.15).

8.5) The retarded and advanced Green’s functions for the Klein-Gordon
wave operator satisfy Apet(z—y) = 0 for 2% > 3% and A.qy(z—y) =0
for ° < 4°. Find the pole prescriptions on the right-hand side of
eq. (8.11) that yield these Green’s functions.
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8.6) Let Zy(J) = expiWy(J), and evaluate the real and imaginary parts
of Wo(J)

8.7) Repeat the analysis of this section for the complex scalar field that was
introduced in problem 3.5, and further studied in problem 5.1. Write
your source term in the form Jfp+ Jof, and find an explicit formula,
analogous to eq. (8.10), for ZO(JT, J). Write down the appropriate
generalization of eq. (8.14), and use it to compute (0|Tp(x1)¢(x2)[0),
(0| Tl (x1)@(22)[0), and (0|Te! (1) (22)[0). Then verify your re-
sults by using the method of problem 8.4. Finally, give the appropri-
ate generalization of eq. (8.17).

8.8) A harmonic oscillator (in units with m = h = 1) has a ground-state
wave function (g|0) oc e™*4°/2, Now consider a real scalar field ¢(z),
and define a field eigenstate |A) that obeys

p(x,0)|4) = A(x)|4) , (8.18)

where the function A(x) is everywhere real. For a free-field theory
specified by the hamiltonian of eq. (8.1), Show that the ground-state
wave functional is

3 ~ ~
(A]0) o exp [—% / %w(k)A(k)A(—k) O (819)

where A(k) = [ d®z e ¥ *A(x) and w(k) = (k? + m?)'/2.
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9 THE PATH INTEGRAL FOR INTERACTING FIELD
THEORY

PREREQUISITE: 8

Let us consider an interacting quantum field theory specified by a la-
grangian of the form

L= —%Zwa“go@ugo - % mm2<,02 + %Zgggpg +Yp. (9.1)

As we discussed at the end of section 5, we fix the parameter m by requiring
it to be equal to the actual mass of the particle (equivalently, the energy
of the first excited state relative to the ground state), and we fix the pa-
rameter g by requiring some particular scattering cross section to depend
on g in some particular way. (We will have more to say about this after we
have learned to calculate cross sections.) We also assume that the field is
normalized by

(Op(2)|0) =0 and  (k[p(z)[0) = e~ (92)

Here |0) is the ground state, normalized via (0|0) = 1, and |k) is a state of
one particle with four-momentum k*, where k? = ktE, = —m?, normalized
via
(K'|k) = (2m)32K°83 (K’ — k) . (9.3)
Thus we have four conditions (the specified values of m, g, (0|¢|0), and
(klp]0)), and we will use these four conditions to determine the values of
the four remaining parameters (Y and the three Z’s) that appear in L.
Before going further, we should note that this theory (known as ¢3
theory, pronounced “phi-cubed”) actually has a fatal flaw. The hamiltonian
density is
H = %Z;ll_[z —Ypo+ %me2<,02 — %Zgggpg . (9.4)
Classically, we can make this arbitrarily negative by choosing an arbitrarily
large value for . Quantum mechanically, this means that this hamiltonian
has no ground state. If we start off near ¢ = 0, we can tunnel through the
potential barrier to large ¢, and then “roll down the hill”. However, this
process is invisible in perturbation theory in g. The situation is exactly
analogous to the problem of a harmonic oscillator perturbed by a ¢3 term.
This system also has no ground state, but perturbation theory (both time
dependent and time independent) does not “know” this. We will be inter-
ested in eq. (9.1) only as an example of how to do perturbation expansions
in a simple context, and so we will overlook this problem.
We would like to evaluate the path integral for this theory,

2(7) = (00} = [ Dy e [l 9.5)
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We can evaluate Z(J) by mimicking what we did for quantum mechanics
at the end of section 6. Specifically, we can rewrite eq. (9.5) as

Z(J) — e’ifd4x 51(%%) /DQO eifd4m[£0+Jg0] )

x eifd4x Ll(%&Jiw)) ZO(J) , (96)

where Zy(J) is the result in free-field theory,
Zo(J) = exp E / de db J(2) A — ) ()] 9.7)

We have written Z(J) as proportional to (rather than equal to) the right-

hand side of eq. (9.6) because the € trick does not give us the correct overall

normalization; instead, we must require Z(0) = 1, and enforce this by hand.
Note that, in eq. (9.7), we have implicitly assumed that

Lo = —%8“<p<9u<p — %m2cp2 , (9.8)

since this is the £y that gives us eq. (9.7). Therefore, the rest of £ must be
included in £1. We write

Ly = 1Z,90° + Loy
Loy = _%(Zso_l)au‘PauSD - %(Zm_l)m2@2 +Yp, (9.9)

where L is called the counterterm lagrangian. We expect that, as g — 0,
Y — 0 and Z; — 1. In fact, as we will see, Y = O(g) and Z; = 1 + O(g?).

In order to make use of eq. (9.7), we will have to compute lots and lots of
functional derivatives of Zy(J). Let us begin by ignoring the counterterms.
We define

i 3
Z1(J) ox exp léZgg/d‘lx (% 5J(zx)> ] Zo(J) , (9.10)

where the constant of proportionality is fixed by Z;(0) = 1. We now make
a dual Taylor expansion in powers of g and J to get

o [ )

o) i P
XPZZ:O% {§/d4yd4z J(y)A(y—z)J(z)} . (9.11)

v

If we focus on a term in eq. (9.11) with particular values of V and P, then
the number of surviving sources (after we take all the functional derivatives)
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00 ©

S=2x3!

Figure 9.1: All connected diagrams with £ =0 and V = 2.

OO0 O-Z0

SN

=23x 3

Figure 9.2: All connected diagrams with £ =0 and V = 4.

is E = 2P — 3V. (Here FE stands for external, a terminology that should
become clear by the end of the next section; V' stands for vertex and P for
propagator.) The overall phase factor of such a term is then " (1/4)3V i =
iV+TE=F “and the 3V functional derivatives can act on the 2P sources in
(2P)!/(2P—3V)! different combinations. However, many of the resulting
expressions are algebraically identical.

To organize them, we introduce Feynman diagrams. In these diagrams,
a line segment (straight or curved) stands for a propagator —A(:L" Y), a
filled circle at one end of a line segment for a source i [ d*r J(x), and a
vertex joining three line segments for iZ,g [ d*z. Sets of diagrams with
different values of E and V are shown in figs. (9.1-9.11).

To count the number of terms on the right-hand side of eq. (9.11) that
result in a particular diagram, we first note that, in each diagram, the num-
ber of lines is P and the number of vertices is V. We can rearrange the
three functional derivatives from a particular vertex without changing the
resulting diagram; this yields a counting factor of 3! for each vertex. Also,
we can rearrange the vertices themselves; this yields a counting factor of
V1. Similarly, we can rearrange the two sources at the ends of a particular
propagator without changing the resulting diagram; this yields a counting
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factor of 2! for each propagator. Also, we can rearrange the propagators
themselves; this yields a counting factor of P!. All together, these count-
ing factors neatly cancel the numbers from the dual Taylor expansions in
eq. (9.11).

However, this procedure generally results in an overcounting of the num-
ber of terms that give identical results. This happens when some rearrange-
ment of derivatives gives the same match-up to sources as some rearrange-
ment of sources. This possibility is always connected to some symmetry
property of the diagram, and so the factor by which we have overcounted
is called the symmetry factor. The figures show the symmetry factor S of
each diagram.

Consider, for example, the second diagram of fig. (9.1). The three prop-
agators can be rearranged in 3! ways, and all these rearrangements can
be duplicated by exchanging the derivatives at the vertices. Furthermore
the endpoints of each propagator can be simultaneously swapped, and the
effect duplicated by swapping the two vertices. Thus, S =2 x 3! = 12.

Let us consider two more examples. In the first diagram of fig. (9.6),
the exchange of the two external propagators (along with their attached
sources) can be duplicated by exchanging all the derivatives at one vertex
for those at the other, and simultaneously swapping the endpoints of each
semicircular propagator. Also, the effect of swapping the top and bottom
semicircular propagators can be duplicated by swapping the corresponding
derivatives at each vertex. Thus, the symmetry factor is S =2 x 2 = 4.

In the diagram of fig. (9.10), we can exchange derivatives to match swaps
of the top and bottom external propagators on the left, or the top and
bottom external propagators on the right, or the set of external propagators
on the left with the set of external propagators on the right. Thus, the
symmetry factor is S =2 x 2 x 2 =8.

The diagrams in figs. (9.1-9.11) are all connected: we can trace a path
through the diagram between any two points on it. However, these are
not the only contributions to Z(J). The most general diagram consists of
a product of several connected diagrams. Let C; stand for a particular
connected diagram, including its symmetry factor. A general diagram D
can then be expressed as

1 ny
D= 5 1;[ cn™ (9.12)

where ny is an integer that counts the number of C;’s in D, and Sp is the
additional symmetry factor for D (that is, the part of the symmetry factor
that is not already accounted for by the symmetry factors already included
in each of the connected diagrams). We now need to determine Sp.
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Figure 9.3: All connected diagrams with £ =1 and V = 1.

o« D e OO OT0

S=23

Figure 9.4: All connected diagrams with £ =1 and V = 3.

Figure 9.5: All connected diagrams with £ =2 and V = 0.

S=22

Figure 9.6: All connected diagrams with £ =2 and V = 2.
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Since we have already accounted for propagator and vertex rearrange-
ments within each C7, we need to consider only exchanges of propagators
and vertices among different connected diagrams. These can leave the total
diagram D unchanged only if (1) the exchanges are made among different
but identical connected diagrams, and only if (2) the exchanges involve all
of the propagators and vertices in a given connected diagram. If there are
ny factors of C7 in D, there are nj! ways to make these rearrangements.
Overall, then, we have

Sp=]]nt. (9.13)
1

Now Zi(J) is given (up to an overall normalization) by summing all dia-
grams D, and each D is labeled by the integers n;. Therefore

Z1(J) Z D
{nr}

{ni} 1
=1
— (O™
> 1;[7”2:0 nl! ( I)
x Hexp(C’I)
I

x exp (>°;Cr) . (9.14)

Thus we have a remarkable result: Z;(J) is given by the exponential of the
sum of connected diagrams. This makes it easy to impose the normalization
Z1(0) = 1: we simply omit the vacuum diagrams (those with no sources),
like those of figs. (9.1) and (9.2). We then have

Z1(J) = exp[iWr(J)] , (9.15)
where we have defined
i)=Y r, (9.16)
I#{0}

and the notation I # {0} means that the vacuum diagrams are omitted
from the sum, so that Wi (0) = 0.1

Were it not for the counterterms in £, we would have Z(J) = Z1(J).
Let us see what we would get if this was, in fact, the case. In particular, let
us compute the vacuum expectation value of the field ¢(x), which is given

We have included a factor of i on the left-hand side of eq. (9.16) because then W1 (J)
is real in free-field theory; see problem 8.6.
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Figure 9.7: All connected diagrams with £ =2 and V = 4.

s

Figure 9.8: All connected diagrams with £ =3 and V = 1.
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Figure 9.9: All connected diagrams with £ =3 and V = 3.

w
1

N
@

Figure 9.10: All connected diagrams with £ =4 and V = 2.

S=28

4
S=22

L¥

Figure 9.11: All connected diagrams with £ =4 and V = 4.

8
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Figure 9.12: All connected diagrams with £ =1, X > 1 (where X is the
number of one-point vertices from the linear counterterm), and V + X < 3.

by

(Ol (2)[0) = = Z1(J)

0
= 57 Wi (J)

(9.17)

J=0

This expression is then the sum of all diagrams [such as those in figs. (9.3)
and (9.4)] that have a single source, with the source removed:

Olp@)0) = big [ dyIMa-pIAG-9) + 06" . (919)

Here we have set Z, = 1 in the first term, since Z, = 1+ O(g?). We see the
vacuum-expectation value of p(z) is not zero, as is required for the validity
of the LSZ formula. To fix this, we must introduce the counterterm Y ¢.
Including this term in the interaction lagrangian £; introduces a new kind
of vertex, one where a single line segment ends; the corresponding vertex
factor is 1Y [d%. The simplest diagrams including this new vertex are
shown in fig. (9.12), with a cross symbolizing the vertex.

Assuming Y = O(g), only the first diagram in fig. (9.12) contributes at
O(g), and we have

Olp@)0) = (i + i) 2a0)) [dyia@—y+06") . (9.19)
Thus, in order to have (0|p(z)|0) = 0, we should choose
Y = LigA(0) + O(g%) . (9.20)

The factor of 4 is disturbing, because Y must be a real number: it is the
coefficient of a hermitian operator in the hamiltonian, as seen in eq. (9.4).
Therefore, A(0) must be purely imaginary, or we are in trouble. We have

4
A(O):/(dk LI (9.21)

2m)4 k2 +m? — e
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From eq. (9.21), it is not immediately obvious whether or not A(0) is purely
imaginary, but eq. (9.21) does reveal another problem: the integral diverges
at large k. This is another example of an ultraviolet divergence, similar to
the one we encountered in section 3 when we computed the zero-point
energy of the field.

To make some progress, we introduce an ultraviolet cutoff A, which we
assume is much larger than m and any other energy of physical interest.
Modifications to the propagator above some cutoff may be well justified
physically; for example, quantum fluctuations in spacetime itself should
become important above the Planck scale, which is given by the inverse
square root of Newton’s constant, and has the numerical value of 10'? GeV
(compared to, say, the proton mass, which is 1 GeV).

In order to retain the Lorentz-transformation properties of the propa-
gator, we implement the ultraviolet cutoff in a more subtle way than we
did in section 3; specfically, we make the replacement

d*k eik(z—y) < A2 )2

Alw—y) = / (2m)* k2 4+ m? —ie \ k2 + A2 — ic (9.22)

The integral is now convergent, and we can evaluate the modified A(0)
with the methods of section 14; for A > m, the result is

? 2
A(0) = 75 A7 (9.23)
Thus Y is real, as required. If we like, we can now formally take the limit
A — oo. The parameter Y becomes infinite, but (0|¢(x)|0) remains zero,
at least to this order in g.

It may be disturbing to have a parameter in the lagrangian that is
formally infinite. However, such parameters are not directly measurable,
and so need not obey our preconceptions about their magnitudes. Also, it
is important to remember that Y includes a factor of g; this means that we
can expand in powers of Y as part of our general expansion in powers of g.
When we compute something measurable (like a scattering cross section),
all the formally infinite numbers will cancel in a well-defined way, leaving
behind finite coefficients for the various powers of g. We will see how this
works in detail in sections 14-20.

As we go to higher orders in ¢, things become more complicated, but
in principle the procedure is the same. Thus, at O(g3), we sum up the
diagrams of figs. (9.4) and (9.12), and then add to Y whatever O(g?) term
is needed to maintain (0|¢(x)|0) = 0. In this way we can determine the
value of Y order by order in powers of g.

Once this is done, there is a remarkable simplification. Our adjustment
of Y to keep (0]¢(z)|0) = 0 means that the sum of all connected diagrams
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oo o )0 oo
(e

Figure 9.13: All connected diagrams without tadpoles with £ < 4 and
V<4

with a single source is zero. Consider now that same infinite set of diagrams,
but replace the single source in each of them with some other subdiagram.
Here is the point: no matter what this replacement subdiagram 1is, the sum
of all these diagrams is still zero. Therefore, we need not bother to compute
any of them! The rule is this: ignore any diagram that, when a single line is
cut, falls into two parts, one of which has no sources. All of these diagrams
(known as tadpoles) are canceled by the Y counterterm, no matter what
subdiagram they are attached to. The diagrams that remain (and need to
be computed!) are shown in fig. (9.13).
We turn next to the remaining two counterterms. For notational sim-
plicity we define
A=Z,—-1, B=Z,-1, (9.24)
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and recall that we expect each of these to be O(g?). We now have

i 4 (1 6 9 o\ (1 6
Z(J) =exp {—E/dzn <;5J(:1:)) (—A@m + Bm ) <;W)] Z1(J) .

(9.25)

We have integrated by parts to put both 9,’s onto one 6/6.J(z). (Note that

the time derivatives in this interaction should really be treated by including

an extra source term for the conjugate momentum Il = ¢». However, the

space derivatives are correctly treated, and then the time derivatives must

work out comparably by Lorentz invariance.)

Eq. (9.25) results in a new vertex at which two lines meet. The corre-
sponding vertex factor is (—i) [ d*r (—A9? + Bm?); the 92 acts on the x in
one or the other (but not both) propagators. (Which one does not matter,
and can be changed via integration by parts.) Diagramatically, all we need
do is sprinkle these new vertices onto the propagators in our existing dia-
grams. How many of these vertices we need to add depends on the order
in g we are working to achieve.

This completes our calculation of Z(J) in 3 theory. We express it as

Z(J) = exp[iW (J)] , (9.26)

where W (J) is given by the sum of all connected diagrams with no tad-
poles and at least two sources, and including the counterterm vertices just
discussed.

Now that we have Z(J), we must find out what we can do with it.

PROBLEMS

9.1) Compute the symmetry factor for each diagram in fig. (9.13). (You
can then check your answers by consulting the earlier figures.)

9.2) Consider a real scalar field with £ = Lo + £, where
Lo = —50"p0up — gm°¢?
Ly = _ﬁZ)\)‘(P‘l + Let
Lot = —%(Zsp—l)(‘)“cp(‘)ucp — %(Zm—l)m2<,02 .

a) What kind of vertex appears in the diagrams for this theory (that
is, how many line segments does it join?), and what is the associated
vertex factor?

b) Ignoring the counterterms, draw all the connected diagrams with
1< FE<4and 0<V <2, and find their symmetry factors.

c¢) Explain why we did not have to include a counterterm linear in ¢
to cancel tadpoles.
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9.3) Consider a complex scalar field (see problems 3.5, 5.1, and 8.7) with
L =Ly+ Ly, where

Lo = 0" 0,0 —mPplep,
L1 = —1ZMp'0)? + Lot
Lop = —(Zp—1)0"0"0up — (Zm—1)m*¢l ..

This theory has two kinds of sources, J and J', and so we need a
way to tell which is which when we draw the diagrams. Rather than
labeling the source blobs with a J or J, we will indicate which is
which by putting an arrow on the attached propagator that points
towards the source if it is a JT, and away from the source if it is a J.

a) What kind of vertex appears in the diagrams for this theory, and
what is the associated vertex factor? Hint: your answer should involve
those arrows!

b) Ignoring the counterterms, draw all the connected diagrams with
1< FE<4and 0 <V <2, and find their symmetry factors. Hint:
the arrows are important!

9.4) Consider the integral

expW(g,J) dr exp —533 + ng +Ja:} . (9.27)

N

This integral does not converge, but it can be used to generate a joint
power series in g and J,

N=Y > Cupg's (9.25)

V=0FE=0

a) Show that
1
Cvg = — 9.29
v.e XI: S (9.29)

where the sum is over all connected Feynman diagrams with F sources
and V three-point vertices, and St is the symmetry factor for each
diagram.

b) Use egs. (9.27) and (9.28) to compute Cy g for V< 4 and E < 5.
(This is most easily done with a symbolic manipulation program like

Mathematica.) Verify that the symmetry factors given in figs. (9.1-
9.11) satisfy the sum rule of eq. (9.29).
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9.5)

c¢) Now consider W(g, J+Y'), with Y fixed by the “no tadpole” con-
dition

)
W Y =0. .
57 (9, J+Y) L 0 (9.30)
Then write o o
W(g, J+Y) =33 Cveg"J". (9.31)
V=0FE=0
Show that 1
Cve=Y —, 9.32
V,E XI: 5, (9.32)

where the sum is over all connected Feynman diagrams with F sources
and V three-point vertices and no tadpoles, and St is the symmetry
factor for each diagram.

d) Let Y = a1g + azg® + ..., and use eq. (9.30) to determine a; and
az. Compute Cy,g for V < 4 and F < 4. Verify that the symmetry
factors for the diagrams in fig. (9.13) satisfy the sum rule of eq. (9.32).

The interaction picture. In this problem, we will derive a formula for
(0|Te(xp) ... (x1)]|0) without using path integrals. Suppose we have
a hamiltonian density H = Ho + Hi, where Ho = II% + 3(V)? +
%m2<,02, and H; is a function of II(x,0) and ¢(x,0) and their spatial
derivatives. (It should be chosen to preserve Lorentz invariance, but
we will not be concerned with this issue.) We add a constant to H
so that H|0) = 0. Let |() be the ground state of Hy, with a constant
added to Hy so that Hy|()) = 0. (H; is then defined as H — Hy.) The
Heisenberg-picture field is

o(x,t) = eflp(x, 0)e (9.33)

We now define the interaction-picture field

o1(x,t) = etlotp(x, 0)etHot (9.34)

a) Show that ¢;(x) obeys the Klein-Gordon equation, and hence is a
free field.

b) Show that ¢(x) = UT(t)er(z)U(t), where U(t) = efote=iHt jg
unitary.

c¢) Show that U (t) obeys the differential equation i%U(t) = Hi(t)U(t),
where H(t) = e*Ho! [[;e~"H0ot is the interaction hamiltonian in the in-
teraction picture, and the boundary condition U(0) = 1.
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d) If H; is specified by a particular function of the Schrédinger-picture
fields II(x, 0) and ¢(x,0), show that H(¢) is given by the same func-
tion of the interaction-picture fields II;(x,t) and ¢;(x,t).

e) Show that, for ¢ > 0,

Ut) = Texp[—z' /0 "t Hj(t’)] (9.35)

obeys the differential equation and boundary condition of part (c).
What is the comparable expression for t < 0?7 Hint: you may need to
define a new ordering symbol.

f) Define U(ty,t1) = U(to)UT(t1). Show that, for ty > 1,

Ulte,t1) = Texp {—1 ’ dt’ Hf(t’)} : (9.36)

t1
What is the comparable expression for t1 > to?

g) For any time ordering, show that U(ts,t1) = U(ts, t2)U(te,t1) and
that Ut(ty,ts) = Ulta, t1).

h) Show that

p(@n) ... 1) = Ul(tn, 0)or(@n)U (tn, tn1)@r(zn-1)
. U(tg,tl)(p[(xl)U(tl,O) . (937)

i) Show that Uf(t,,0) = Uf(c0,0)U(c0,t,) and also that U(t;,0) =
U(ty, —00)U(—00,0).

j) Replace Hy with (1—ie)Hy, and show that (0|UT(c0,0) = (0|0) (0]
and that U(—o00,0)|0) = |0)(0]0).

k) Show that

(0’90(‘Tn)§0(x1)‘0> = (Q)’U( )@I(xn) (tnatn 1) I(‘Tn—l)---
U(t27t1)901($1) (t1, —00)|0)
{Blo)* . (9.38)

X

1) Show that

(O[Te(zn) ... p(@1)]0) = (D[ Tpr(zn) ... pr(z1)e —i [[d*sHr(x) |@>
< 1(0]0)? (9.3

m) Show that

1(00)|% = 1/(@|Te~" ] @7y (9.40)
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Thus we have

O Ter(xp) ... (p1($1)€_ifd4937'[1(x)|®>
<@|Te_ifd4$HI(x)|@>

(O[Te(zn) ... p(x1)]0) =

(9.41)
We can now Taylor expand the exponentials on the right-hand side
of eq. (9.41), and use free-field theory to compute the resulting corre-
lation functions.
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10 SCATTERING AMPLITUDES AND THE FEYNMAN
RULES

PREREQUISITE: 5, 9

Now that we have an expression for Z(J) = expiW (.J), we can take func-
tional derivatives to compute vacuum expectation values of time-ordered
products of fields. Consider the case of two fields; we define the exact
propagator via

%A(:El — x9) = (0| Tp(z1)p(x2)|0) . (10.1)
For notational simplicity let us define
1 4
0; =~ 10.2
J ) 5J($j) ( )

Then we have
O ()p(x2)10) = 61022(J)|
= 51522‘W(J)‘J_0 - 611'W(J)‘J:0 021 (J)|

(10.3)

= 51522‘W(J)‘J:O .

To get the last line we used §;W(J)|j=0 = (0|¢(x;)|0) = 0. Diagramat-
ically, 01 removes a source, and labels the propagator endpoint x1. Thus
%A(ml—a:g) is given by the sum of diagrams with two sources, with those
sources removed and the endpoints labeled 21 and zo. (The labels must be
applied in both ways. If the diagram was originally symmetric on exchange
of the two sources, the associated symmetry factor of 2 is then canceled by
the double labeling.) At lowest order, the only contribution is the “barbell”
diagram of fig. (9.5) with the sources removed. Thus we recover the obvious
fact that TA(z1—22) = TA(z1—22) + O(g%). We will take up the subject
of the O(g?) corrections in section 14.

For now, let us go on to compute

(0ITp(x1)p(w2)p(23)(24)|0) = 01020304 Z(T)
= | 81628504V
+ (0102tW)(6304iW)
+ (0103tW)(6204iW)
+ (5164W) (3851 | . (10.4)
We have dropped terms that contain a factor of (0|¢(x)|0) = 0. According

to eq. (10.3), the last three terms in eq. (10.4) simply give products of the
exact propagators.
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Let us see what happens when these terms are inserted into the LSZ
formula for two incoming and two outgoing particles,

f‘ =1 /dazld /1d4£/2 ei(k1m1+k2m2—ki$i—kém’2)
(=0} +m?)(=08 +m?)(=3F, + m*)(~05 +m?)
T o)y < Deela)[0) (105)

If we consider, for example, >A(z1—z})1A(z2—12%) as one term in the
correlation function in eq. (10.5), we get from this term

/d Tl d i) d d4:E/2 ei(k1m1+k2m2_kllxll_kéxlz)F(l‘lll)F($22/)
= (2m)* 6% (k1 —K}) (2m)46% (ka—kb) F(k11/) F (k) (10.6)

where F(x”) (=07 +m?) (=05 +m?) A(zy), F(k) is its Fourier transform,
Ty = xi—7, and kijo = (ki +k")/2 The important point is the two delta
functions: these tell us that the four-momenta of the two outgoing particles
(1" and 2') are equal to the four-momenta of the two incoming particles
(1 and 2). In other words, no scattering has occurred. This is not the
event whose probability we wish to compute! The other two similar terms
in eq. (10.4) either contribute to “no scattering” events, or vanish due to
factors like §*(k1-+ko) (which is zero because kY+k9 > 2m > 0). In general,
the diagrams that contribute to the scattering process of interest are only
those that are fully connected: every endpoint can be reached from every
other endpoint by tracing through the diagram. These are the diagrams
that arise from all the §’s acting on a single factor of W. Therefore, from
here on, we restrict our attention to those diagrams alone. We define the
connected correlation functions via

(0| Tp(z1) ... p(zE)|0)c = 6 ... 5Ez‘W(J)‘J:0 : (10.7)
and use these instead of (0|Ty(z1)...¢(xg)|0) in the LSZ formula.
Returning to eq. (10.4), we have
(0 Tp(x1)p(w2) o2 (wh) [0 = 818201, 8iW| (10.8)

The lowest-order (in g) nonzero contribution to this comes from the diagram
of fig. (9.10), which has four sources and two vertices. The four §’s remove
the four sources; there are 4! ways of matching up the §’s to the sources.
These 24 diagrams can then be collected into 3 groups of 8 diagrams each;
the 8 diagrams in each group are identical. The 3 distinct diagrams are
shown in fig. (10.1). Note that the factor of 8 neatly cancels the symmetry
factor S = 8 of the diagram with sources.
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1 vl 1 1 g

2 2/ 2 2/

Figure 10.1: The three tree-level Feynman diagrams that contribute to the
connected correlation function (0|Ty(z1)e(z2)e(x])e(x5)]|0)c.

This is a general result for tree diagrams (those with no closed loops):
once the sources have been stripped off and the endpoints labeled, each
diagram with a distinct endpoint labeling has an overall symmetry factor
of one. The tree diagrams for a given process represent the lowest-order (in
g) nonzero contribution to that process.

We now have

(0T (21 )p(x2) (2 )p(25)]0)c
2

+0(g") . (10.9)

Next, we use eq. (10.9) in the LSZ formula, eq. (10.5). Each Klein-Gordon
wave operator acts on a propagator to give

(—8Z-2 +m?)A(x; —y) = 6z —y) . (10.10)

The integrals over the external spacetime labels xy 1/ 9/ are then trivial,
and we get

(1) = (i9)? (1) [ dlyd's Aly—2) [ etttz

+ ei(lﬂl/-l-kzz—k&y—kéz)

1 eilkrythaz—k 2—kyy) ] +0(gY) . (10.11)
This can be simplified by substituting

d% eik(y—z)
Aly—2) = 10.12
(y —2) /(2ﬂ)4 K2+ m2 — e (10.12)
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into eq. (10.9). Then the spacetime arguments appear only in phase factors,
and we can integrate them to get delta functions:

'k
ig® (2m)* k2 + m2 — e
x [(277)45 (ky+ho+k) (2m) 64 (K, 4K +k)
+ (2m) 404 (ky — k) +k) (2m) 264 (kb —ko+F)
+ (2m) 6 (ki —kh+k) (2m) 64 (K —ka-+k) | + O(g?)

(fli) =

= ig? (2m) 26 (ky+-ko— k| —K))

1
X {(kﬁ/@)? e oy ) e R (v mQ}
+0(g") . (10.13)

In eq. (10.13), we have left out the ie’s for notational convenience only; m?

is really m? — ie. The overall delta function in eq. (10.13) tells that that
four-momentum is conserved in the scattering process, which we should, of
course, expect. For a general scattering process, it is then convenient to
define a scattering matrix element 7 via

<f|Z> = (27T)454(kin_k70ut)i7 9 (1014)

where ki, and kqyt are the total four-momenta of the incoming and outgoing
particles, respectively.

Examining the calculation which led to eq.(10.13), we can take away
some universal features that lead to a simple set of Feynman rules for
computing contributions to ¢7 for a given scattering process. The Feynman
rules are:

1. Draw lines (called external lines) for each incoming and each outgoing
particle.

2. Leave one end of each external line free, and attach the other to a
vertex at which exactly three lines meet. Include extra internal lines
in order to do this. In this way, draw all possible diagrams that are
topologically inequivalent.

3. On each incoming line, draw an arrow pointing towards the vertex.
On each outgoing line, draw an arrow pointing away from the vertex.
On each internal line, draw an arrow with an arbitrary direction.

4. Assign each line its own four-momentum. The four-momentum of
an external line should be the four-momentum of the corresponding
particle.
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Figure 10.2: The tree-level s-, t-, and u-channel diagrams contributing to
1T for two particle scattering.

10.

. Think of the four-momenta as flowing along the arrows, and conserve

four-momentum at each vertex. For a tree diagram, this fixes the
momenta on all the internal lines.

. The value of a diagram consists of the following factors:

for each external line, 1;
for each internal line with momentum k, —i/(k? +m? — ie);

for each vertex, iZ,g.

. A diagram with L closed loops will have L internal momenta that are

not fixed by rule #5. Integrate over each of these momenta ¢; with
measure d*/;/(2m)%.

. A loop diagram may have some leftover symmetry factors if there are

exchanges of internal propagators and vertices that leave the diagram
unchanged; in this case, divide the value of the diagram by the sym-
metry factor associated with exchanges of internal propagators and
vertices.

. Include diagrams with the counterterm verter that connects two prop-

agators, each with the same four-momentum k. The value of this
vertex is —i(Ak* + Bm?), where A = Z, — 1 and B = Z,,, — 1, and
each is O(g?).

The value of i7 is given by a sum over the values of all these diagrams.

For the two-particle scattering process, the tree diagrams resulting from
these rules are shown in fig. (10.2).

Now that we have our procedure for computing the scattering amplitude
7, we must see how to relate it to a measurable cross section.

PROBLEMS



10: Scattering Amplitudes and the Feynman Rules 92

10.1) Use eq. (9.41) of problem 9.5 to rederive eq. (10.9).

10.2) Write down the Feynman rules for the complex scalar field of prob-
lem 9.3. Remember that there are two kinds of particles now (which
we can think of as positively and negatively charged), and that your
rules must have a way of distinguishing them. Hint: the most direct
approach requires two kinds of arrows: momentum arrows (as dis-
cussed in this section) and what we might call “charge” arrows (as
discussed in problem 9.3). Try to find a more elegant approach that
requires only one kind of arrow.

10.3) Consider a complex scalar field ¢ that interacts with a real scalar
field x via £1 = gx¢'e. Use a solid line for the ¢ propagator and
a dashed line for the y propagator. Draw the vertex (remember the
arrows!), and find the associated vertex factor.

10.4) Consider a real scalar field with £ = % gpotpd,p. Find the associ-
ated vertex factor.

10.5) The scattering amplitudes should be unchanged if we make a field
redefinition. Suppose, for example, we have

L= —%8“(;78u<p — %m2cp2 ) (10.15)
and we make the field redefinition
© — @+ Ap? . (10.16)

Work out the lagrangian in terms of the redefined field, and the cor-
responding Feynman rules. Compute (at tree level) the pp — @p
scattering amplitude. You should get zero, because this is a free-field
theory in disguise. (At the loop level, we also have to take into ac-
count the transformation of the functional measure Dy; see section
85.)
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11 CROSS SECTIONS AND DECAY RATES

PREREQUISITE: 10

Now that we have a method for computing the scattering amplitude 7, we
must convert it into something that could be measured in an experiment.

In practice, we are almost always concerned with one of two generic
cases: one incoming particle, for which we compute a decay rate, or two
incoming particles, for which we compute a cross section. We begin with
the latter.

Let us also specialize, for now, to the case of two outgoing particles as
well as two incoming particles. In ¢? theory, we found in section 10 that
in this case we have

1 1 1
(k1+k2)% + m? * (k1—K})? 4+ m? * (k1—k5)? +m

_ 2 4
T=g 5| +0(9"),

(11.1)
where k1 and kg are the four-momenta of the two incoming particles, &} and
k% are the four-momenta of the two outgoing particles, and ki +ko = ki +kb.
Also, these particles are all on shell: kf = —m?. (Here, for later use, we
allow for the possibility that the particles all have different masses.)

Let us think about the kinematics of this process. In the center-of-
mass frame, or CM frame for short, we take ki + ko = 0, and choose ky
to be in the 4z direction. Now the only variable left to specify about the
initial state is the magnitude of k. Equivalently, we could specify the total
energy in the CM frame, F1 + F». However, it is even more convenient to
define a Lorentz scalar s = —(k; + k). In the CM frame, s reduces to
(E1 + F»)?; s is therefore called the center-of-mass energy squared. Then,
since By = (k3 +m3)Y/? and By = (k} + m3)"/2, we can solve for |k| in
terms of s, with the result

kq| = %g\/sz —2(m2 +m3)s + (m? —m2)2 (CM frame) . (11.2)

Now consider the two outgoing particles. Since momentum is conserved,
we must have ki + k), = 0, and since energy is conserved, we must also
have (E} + E})? = s. Then we find

1
k| = 2—\/5\/82 —2(m% +m2)s+ (m} —m3)? (CM frame) . (11.3)

Now the only variable left to specify about the final state is the angle 6
between kj and k). However, it is often more convenient to work with the
Lorentz scalar t = — (k1 — k})?, which is related to 6 by

t=m?+m? — 2F, E; + 2|kq||K}| cos 6 . (11.4)
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This formula is valid in any frame.
The Lorentz scalars s and ¢ are two of the three Mandelstam variables,
defined as

s = —(k1tke)? = — (K +k5)?
t = —(ki—k))? = —(ka—kp)*
u = —(ki—kh)? = —(ka—k})%. (11.5)

The three Mandelstam variables are not independent; they satisfy the linear
relation
s+t+u=mi+ms+md +md. (11.6)

In terms of s, t, and u, we can rewrite eq. (11.1) as

1 1 1
+ +0(g"), (11.7)

_ 9
T=y9 m2—8+m2—t m2 —u

which demonstrates the notational utility of the Mandelstam variables.

Now let us consider a different frame, the fized target or FT frame (also
sometimes called the lab frame), in which particle #2 is initially at rest:
ko = 0. In this case we have

1
k| = 2—m2\/s2 —2(m2 +m3)s+ (m} —m2)2 (FT frame).  (11.8)
Note that, from eqgs. (11.8) and (11.2),

ma|kiler = Vs [Kifow - (11.9)

This will be useful later.

We would now like to derive a formula for the differential scattering
cross section. In order to do so, we assume that the whole experiment is
taking place in a big box of volume V', and lasts for a large time T. We
should really think about wave packets coming together, but we will use
some simple shortcuts instead. Also, to get a more general answer, we will
let the number of outgoing particles be arbitrary.

Recall from section 10 that the overlap between the initial and final
states is given by

(fli) = (2m)*6" (kin—Kout )iT . (11.10)
To get a probability, we must square (f|i), and divide by the norms of the
initial and final states:
[(f]2) >

P = TR (11.11)
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The numerator of this expression is
[(£1i))> = [(2m)* 0" (kin—kout )] [T . (11.12)

We write the square of the delta function as

[(2m) 464 (kin—kow))* = (27)40% (kin—kous) x (27)26%(0) (11.13)

and note that
(2m)46%(0 /d . (11.14)

Also, the norm of a single particle state is given by

(k|k) = (2m)32k°53(0) = 2k°V . (11.15)

Thus we have
(ili) = 4E1E2V2 (11.16)
(f1f) = H 2KV (11.17)

where n’ is the number of outgoing particles.
If we now divide eq. (11.11) by the elapsed time T, we get a probability

per unit time

. 454(7.. 2
b (2m)8 (ki out)‘/:’,]-’ _ (11.18)
4B B V2T, 2KV

This is the probability per unit time to scatter into a set of outgoing par-
ticles with precise momenta. To get something measurable, we should sum
each outgoing three-momentum k;- over some small range. Due to the box,
all three-momenta are quantized: k;- (2m/ L)n where V = L3, and nj is
a three-vector with integer entries. (Here we have assumed periodic bound-
ary conditions, but this choice does not affect the final result.) In the limit
of large L, we have

(11.19)

Thus we should multiply P by a factor of Vd3/<;;- /(27)3 for each outgoing
particle. Then we get

(2m) 6% (kin—k

out) 2 i 37
VNG IT1* T] dk} (11.20)

J=1

P =
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where we have identified the Lorentz-invariant phase-space differential

—~ d%k
dk = ——=—=
(27)32k0

(11.21)

that we first introduced in section 3.

To convert P to a differential cross section do, we must divide by the
incident flux. Let us see how this works in the FT frame, where particle
#2 is at rest. The incident flux is the number of particles per unit volume
that are striking the target particle (#2), times their speed. We have one
incident particle (#1) in a volume V with speed v = |k;|/E7, and so the
incident flux is |k;|/E1V. Dividing eq. (11.20) by this flux cancels the last
factor of V', and replaces E; in the denominator with |ki|. We also set
Es = m9 and note that eq. (11.8) gives |kj|mz as a function of s; do will
be Lorentz invariant if, in other frames, we simply use this function as the
value of |kq|ms. Adopting this convention, and using eq. (11.9), we have

1
do = ———— |T|? dLIPS,, (k1+k2) , 11.22
4k1)omy/s 171 (hitk2) ( )

where |kj|cy is given as a function of s by eq. (11.2), and we have defined
the n/-body Lorentz-invariant phase-space measure

n’

LIPS, (k) = (2m)*6* (k=12 K)) H (11.23)

Eq. (11.22) is our final result for the differential cross section for the scat-
tering of two incoming particles into n’ outgoing particles.
Let us now specialize to the case of two outgoing particles. We need to

evaluate o
dLIPSy (k) = (2m)*6% (k—K} —kb) K dkY (11.24)

where k = k1 + ko. Since dLIPSs(k) is Lorentz invariant, we can compute
it in any convenient frame. Let us work in the CM frame, where k =
ki + ks =0 and k* = E; + Ey = /s; then we have

1

dLIPSy(k) = ———
S2(k) 4(27)2E! E

§(E,+Ey—/5) 6% (Ky+Kkb) dkydky . (11.25)

We can use the spatial part of the delta function to integrate over d®kb,
with the result

1

LIP SR —
dLIPS; (k) 4(27)2E! F}

S(E1+FEY—/5)dk) , (11.26)
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where now

E| = /K2 +m? and FE)=/kj2+m3 . (11.27)

Next, let us write
k) = |K))? dKy| dQ0ey (11.28)

where dQ2qy = sin8df d¢ is the differential solid angle, and 6 is the angle
between k; and k] in the CM frame. We can carry out the integral over the
magnitude of k] in eq. (11.26) using [ dz 6(f(z)) = ;| f/(z;)| 7L, where ;
satisfies f(z;) = 0. In our case, the argument of the delta function vanishes
at just one value of k)|, the value given by eq. (11.3). Also, the derivative
of that argument with respect to |kj| is

9 KK
E E =
gl (B + B2 = Vs) = T
E| + E}
=rkr(1 )
E1E2
Ki|\/s
= . 11.2
Bl 7 (11.29)

Putting all of this together, we get

_ K]
dLIPSy(k) = T6m 2\/_ (11.30)
Combining this with eq. (11.22), we have
d 1 K
A Ly (11.31)

dQen 64725 |k

where |ki| and |[k)| are the functions of s given by eqs. (11.2) and (11.3),
and dQcy is the differential solid angle in the CM frame.

The differential cross section can also be expressed in a frame-independent
manner by noting that, in the CM frame, we can take the differential of
eq. (11.4) at fixed s to get

dt = 2 |kq| |k}| dcos 6 (11.32)
dQCM

= 2|kq| [K}] (11.33)

Now we can rewrite eq. (11.31) as

do 1

_ 2
Fiat e A AR (11.34)
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where |kq| is given as a function of s by eq. (11.2).

We can now transform do/dt into do/d) in any frame we might like
(such as the FT frame) by taking the differential of eq. (11.4) in that frame.
In general, though, |kj| depends on 6 as well as s, so the result is more
complicated than it is in eq. (11.32) for the CM frame.

Returning to the general case of n’ outgoing particles, we can define a
Lorentz invariant total cross section by integrating completely over all the
outgoing momenta, and dividing by an appropriate symmetry factor S. If
there are n) identical outgoing particles of type 4, then

S=]]ni, (11.35)

and

o= %/da , (11.36)

where do is given by eq.(11.22). We need the symmetry factor because
merely integrating over all the outgoing momenta in dLIPS, treats the
final state as being labeled by an ordered list of these momenta. But if
some outgoing particles are identical, this is not correct; the momenta of
the identical particles should be specified by an unordered list (because, for
example, the state a{a£]0> is identical to the state aga“@). The symmetry
factor provides the appropriate correction.
In the case of two outgoing particles, eq. (11.36) becomes

1 do
= — Qo — 11.
7 S /d M dQcem (11.37)
o [+l do
= — — 11.
5/, dcos@dQCM, (11.38)

where S = 2 if the two outgoing particles are identical, and S = 1 if they
are distinguishable. Equivalently, we can compute ¢ from eq. (11.34) via

1 [tmex  do
= — t— 11.
7 S/ d dt’ (11.39)

tmin

where tyin and tyax are given by eq. (11.4) in the CM frame with cos§ = —1
and +1, respectively. To compute o with eq. (11.38), we should first express
t and u in terms of s and 6 via egs. (11.4) and (11.6), and then integrate
over 6 at fixed s. To compute o with eq. (11.39), we should first express u
in terms of s and ¢ via eq. (11.6), and then integrate over t at fixed s.

Let us see how all this works for the scattering amplitude of ¢? theory,
eq. (11.7). In this case, all the masses are equal, and so, in the CM frame,
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E = %\/5 for all four particles, and |kj| = |ki| = %(s — 4m?)Y/2. Then
eq. (11.4) becomes
t=—1(s—4m?)(1 — cosf) . (11.40)

From eq. (11.6), we also have
u=—1(s—4m?)(1 + cosb) . (11.41)

Thus |7? is quite a complicated function of s and #. In the nonrelativistic
limit, |ki| < m or equivalently s — 4m? < m?, we have

_ 5g° 8 (s—4m? 5 27 s —4m?\?
+0(g") . (11.42)

Thus the differential cross section is nearly isotropic. In the extreme rela-
tivistic limit, |ki| > m or equivalently s > m?, we have

2 2 )2 2
g 9 (34 cos®6) m
T = 3 0—|————-16| — +...
ssin? 6 eos ( sin? 6 s *
+0(gY) . (11.43)

Now the differential cross section is sharply peaked in the forward (6 = 0)
and backward (6 = 7) directions.

We can compute the total cross section o from eq. (11.39). We have in
this case tyin = —(s — 4m?) and tya = 0. Since the two outgoing particles
are identical, the symmetry factor is S = 2. Then setting v = 4m? — s — t,
and performing the integral in eq. (11.39) over t at fixed s, we get

gt 2 s —4m? 2
o=-—"
32ms(s — 4m?)

+ 4m? nl 2= 3m?
(s —m?)(s — 2m?) m?

In the nonrelativistic limit, this becomes

m?2 " (s—m2)2  s—3m2

+0(¢% . (11.44)

25¢g* 79 (s —4m? 6
=—|1—-—=[——— (@) . 11.45
7~ 11527m® l 60 ( m? >+ 0l (11.45)
In the extreme relativistic limit, we get
4 2
9 Tm 6
=—=|14+=-—+... (@) . 11.46
16mm2s2 + 2 s * +0(g) ( )
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These results illustrate how even a very simple quantum field theory can
yield specific predictions for cross sections that could be tested experimen-
tally.

Let us now turn to the other basic problem mentioned at the beginning
of this section: the case of a single incoming particle that decays to n’ other
particles.

We have an immediate conceptual problem. According to our develop-
ment of the LSZ formula in section 5, each incoming and outgoing particle
should correspond to a single-particle state that is an exact eigenstate of
the exact hamiltonian. This is clearly not the case for a particle that can
decay. Referring to fig. (5.1), the hyperbola of such a particle must lie above
the continuum threshold. Strictly speaking, then, the LSZ formula is not
applicable.

A proper understanding of this issue requires a study of loop corrections
that we will undertake in section 25. For now, we will simply assume that
the LSZ formula continues to hold for a single incoming particle. Then we
can retrace the steps from eq. (11.11) to eq. (11.20); the only change is that
the norm of the initial state is now

(i|i) = 2B,V (11.47)

instead of eq. (11.16). Identifying the differential decay rate dI’ with P then
gives

1
dl' = — |T|? dLIPS,, (k1) , (11.48)
2F,

where now s = —k? = m?. In the CM frame (which is now the rest frame of
the initial particle), we have Fy = myq; in other frames, the relative factor
of F1/my in dI' accounts for relativistic time dilation of the decay rate.

We can also define a total decay rate by integrating over all the outgoing
momenta, and dividing by the symmetry factor of eq. (11.35):

1
I'=— [dI'. 11.49
5/ (149
We will compute a decay rate in problem 11.1
REFERENCE NOTES

For a derivation with wave packets, see Brown, Itzykson & Zuber, or Peskin
& Schroeder.

PROBLEMS
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11.1) a) Consider a theory of a two real scalar fields A and B with an
interaction £; = gAB?. Assuming that m, > 2mj, compute the
total decay rate of the A particle at tree level.

b) Consider a theory of a real scalar field ¢ and a complex scalar field
x with £; = gox'x. Assuming that my > 2m,, compute the total
decay rate of the ¢ particle at tree level.

11.2) Consider Compton scattering, in which a massless photon is scattered
by an electron, initially at rest. (This is the FT frame.) In problem
59.1, we will compute |7 |? for this process (summed over the possible
spin states of the scattered photon and electron, and averaged over
the possible spin states of the initial photon and electron), with the
result

m*+m2(3s +u) —su  m*+m?(3u+s) - su
(2 — 37 (2 —w?

2m2(s +u + 2m?)

(m? — s)(m? —u)

IT|? = 321202

+0(a*) (11.50)

where @ = 1/137.036 is the fine-structure constant.

a) Express the Mandelstam variables s and w in terms of the initial
and final photon energies w and w’.

b) Express the scattering angle 0y between the initial and final pho-
ton three-momenta in terms of w and w'.

c) Express the differential scattering cross section do/dQpr in terms
of w and w’. Show that your result is equivalent to the Klein-Nishina

formula

do a2 W?Tw !

w . 9

— =——F |5+ — —sin“ 0| . 11.51

dQer  2m?2 W? W @ w o ( )

11.3) Consider the process of muon decay, = — e D.v,. In section 88,
we will compute |7 |2 for this process (summed over the possible spin
states of the decay products, and averaged over the possible spin
states of the initial muon), with the result

TP = 64GE (k- k) (K, -K) (11.52)

where Gy is the Fermi constant, ki is the four-momentum of the
muon, and k"172,3 are the four-momenta of the 7., v,, and e™, respec-
tively. In the rest frame of the muon, its decay rate is therefore

r_ 32G2

/(kl-kg)(k:’l-kg) LIPS, (k1) | (11.53)
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where k; = (m,0), and m is the muon mass. The neutrinos are
massless, and the electron mass is 200 times less than the muon mass,
so we can take the electron to be massless as well. To evaluate I', we
perform the following analysis.

a) Show that

32G% 37 ! L% /
/ dkY ki, kY, / kiyk dLIPSy (ki —k}) . (11.54)
m

r=

b) Use Lorentz invariance to argue that, for my = mo = 0,
/ KR LIPS, (k) — AR?g" + BRMR” (11.55)

where A and B are numerical constants.

c¢) Show that, for my = my =0,

/dLIPSQ(k:) _ Si . (11.56)

Uus

d) By contracting both sides of eq. (11.55) with g,, and with k,k,,
and using eq. (11.56), evaluate A and B.

e) Use the results of parts (b) and (d) in eq. (11.54). Set k1 = (m, 0),
and compute dI'/dE.; here E, = Ef is the energy of the electron.
Note that the maximum value of E. is reached when the electron
is emitted in one direction, and the two neutrinos in the opposite
direction; what is this maximum value?

f) Perform the integral over E, to obtain the muon decay rate I'.

g) The measured lifetime of the muon is 2.197 x 107%s. The muon
mass is 105.66 MeV. Determine the value of G in GeV~2. (Your
answer is too low by about 0.2%, due to loop corrections to the decay
rate.)

h) Define the energy spectrum of the electron P(E,) = I'"1dl'/dE..
Note that P(E.)dE, is the probability for the electron to be emit-
ted with energy between E. and E. + dE.. Draw a graph of P(E.)
vs. Ee/my,.

11.4) Consider a theory of three real scalar fields (A, B, and C) with
L= —30"A0,A — Im? A?
— 10"BO,B — $m%B?
—10"C9,C — m2C?
+gABC . (11.57)
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Write down the tree-level scattering amplitude (given by the sum of
the contributing tree diagrams) for each of the following processes:

AA — AA,
AA — AB,
AA — BB,
AA — BC,
AB — AB,
AB — AC. (11.58)

Your answers should take the form

Cs Ct Cu

T =g* , 11.59
g m§—8+m%—t+m3—u ( )

where, in each case, each c¢; is a positive integer, and each m? is m?

or m2 or m2. Hint: 7 may be zero for some processes.
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12 DIMENSIONAL ANALYSIS WITH h=c=1

PREREQUISITE: 3

We have set h = ¢ = 1. This allows us to convert a time T to a length L
via T = ¢ 'L, and a length L to an inverse mass M ~! via L = heM~!.
Thus any quantity A can be thought of as having units of mass to some
power (positive, negative, or zero) that we will call [A]. For example,

[m] = +1, (12.1)
[z4] = -1, (12.2)
[0M] = +1, (12.3)
[d%] = —d . (12.4)

In the last line, we have generalized our considerations to theories in d
spacetime dimensions.

Let us now consider a scalar field in d spacetime dimensions with la-
grangian density

N
L= —%Gucpaucp — %m2g02 — Z %gncp" . (12.5)
n=3
The action is
S = /ddxﬁ, (12.6)

and the path integral is

Z(J) = /Dgo exp[i/ d% (L + J@)] . (12.7)

From eq. (12.7), we see that the action S must be dimensionless, because
it appears as the argument of the exponential function. Therefore

[S]=0. (12.8)
Combining egs. (12.4) and (12.8) yields
L] =d. (12.9)

Then, from egs. (12.9) and (12.3), and the fact that 0*¢0,¢ is a term in L,
we see that we must have

[p] = 2(d—2). (12.10)
Then, since g, " is also a term in £, we must have

[9n) = d — n(d - 2) . (12.11)
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In particular, for the ¢3 theory we have been working with, we have
93] = 1(6 —d) . (12.12)

Thus we see that the coupling constant of ¢? theory is dimensionless in
d = 6 spacetime dimensions.

Theories with dimensionless couplings tend to be more interesting than
theories with dimensionful couplings. This is because any nontrivial de-
pendence of a scattering amplitude on a coupling must be expressed as a
function of a dimensionless parameter. If the coupling is itself dimension-
ful, this parameter must be the ratio of the coupling to the appropriate
power of either the particle mass m (if it isn’t zero) or, in the high-energy
regime s > m?, the Mandelstam variable s. Thus the relevant parame-
ter is gs~19/2. If [g] is negative [and it usually is: see eq.(12.11)], then
gs_[g]/ 2 blows up at high energies, and the perturbative expansion breaks
down. This behavior is connected to the nonrenormalizability of theories
with couplings with negative mass dimension, a subject we will take up in
section 18. It turns out that such theories require an infinite number of
input parameters to make sense; see section 29. In the opposite case, [g]
positive, the theory becomes trivial at high energy, because gs~[9/2 goes
rapidly to zero.

Thus the case of [g] = 0 is just right: scattering amplitudes can have a
nontrivial dependence on g at all energies.

Therefore, from here on, we will be primarily interested in 2 theory in
d = 6 spacetime dimensions, where [g3] = 0.

PROBLEMS

12.1) Express fic in GeV fm, where 1fm = 1 Fermi = 10713 cm.

12.2) Express the masses of the proton, neutron, pion, electron, muon, and
tau in GeV.

12.3) The proton is a strongly interacting blob of quarks and gluons. It
has a nonzero charge radius rp, given by rg = [ d3 p(r)r?, where p(r)
is the quantum expectation value of the electric charge distribution
inside the proton. Estimate the value of r,, and then look up its
measured value. How accurate was your estimate?
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13 THE LEHMANN-KALLEN FORM OF THE EXACT
PROPAGATOR

PREREQUISITE: 9

Before turning to the subject of loop corrections to scattering amplitudes,
it will be helpful to consider what we can learn about the exact propagator
A(z — y) from general principles. We define the exact propagator via

Az —y) = i(0]Te(x)e(y)[0) - (13.1)

We take the field ¢(z) to be normalized so that
(0]p(x)]0) =0 and (k|o(x)|0) = e~k (13.2)
In d spacetime dimensions, the one-particle state |k) has the normalization
(k|k') = (2m) 1 2w 69 (k — K') (13.3)

with w = (k? + m?)!/2. The corresponding completeness statement is

[ itk =11 (13.4)
where I; is the identity operator in the one-particle subspace, and

N dd_lk
dk = ————— 13.5
(2m)d-12w (13.5)
is the Lorentz invariant phase-space differential. We also define the exact
momentum-space propagator A (k?) via

d ~
Alx—y) = / (;Z:);d e* =Y A(K?) . (13.6)

In free-field theory, the momentum-space propagator is

< 1

A(k?) = R —— (13.7)
It has an isolated pole at k> = —m? with residue one; m is the actual, phys-
ical mass of the particle, the mass that enters into the energy-momentum
relation.

We begin our analysis with eq. (13.1). We take z° > 4°, and insert

a complete set of energy eigenstates between the two fields. Recall from
section 5 that there are three general classes of energy eigenstates:
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1. The ground state or vacuum |0), which is a single state with zero
energy and momentum.

2. The one particle states |k), specified by a three-momentum k and
with energy w = (k? +m?)Y/2.

3. States in the multiparticle continuum |k, n), specified by a three-
momentum k and other parameters (such as relative momenta among
the different particles) that we will collectively denote as m. The
energy of one of these states is w = (k?+ M?)'/2, where M > 2m; M
is one of the parameters in the set n.

Thus we get
Olp(@)p(y)10) = Olp()|0)(0le(1)]0)
+ [ dk Ol )kl 0)]0)

+ 30 [ @k Ol ks lo(w)l0) - (138)

The sum over n is schematic, and includes integrals over continuous pa-
rameters like relative momenta.

The first two terms in eq. (13.8) can be simplified via eq. (13.2). Also,
writing the field as p(x) = exp(—iP*x,)p(0)exp(+iP* x,), where P is the
energy-momentum operator, gives us

(k, nle(x)]0) = e (k,n|©(0)]0) (13.9)

where k0 = (k? + M?)Y/2. We now have
Olp@)p()|0) = [ dke e 4 3 [ dke @) nlp(©)0) . (13.10

Next, we define the spectral density

p(s) =D [k, nle(0)|0)* 6(s — M?) . (13.11)
Obviously, p(s) > 0 for s > 4m?, and p(s) = 0 for s < 4m?. Now we have

Olp@)p@0) = [dbe™e 4 [ dspis) [dRete . 31

4m?

In the first term, k% = (k2+m?)'/2, and in the second term, k* = (k% +s)/2.
Clearly we can also swap x and y to get

Olew)e(@)0) = [ e e 1 [~ asp(s) [dhe M 3.1

4m?
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as well. We can then combine egs. (13.12) and (13.13) into a formula for
the time-ordered product

(0[Tp(2)(y)|0) = Bz —y°)(0l(2)p(y)|0) + 8y —2°)(0lp(y)p(2)[0),
(13.14)
where 6(t) is the unit step function, by means of the identity

d% ety 000N [ 37 ik(z—
/(27T)d K2+ m2—ie iz —y )/dke o

—|—i9(y0—x0)/cjfc6_ik(x_y) ;o (13.15)

the derivation of eq. (13.15) was sketched in section 8. Combining egs. (13.12—
13.15), we get

T e@pl0) = [ A oo | o L
PRSI = (2m)d k2 +m?2 — ie
© 1
—_— . 13.1
* 4m2d8p(8)k2+s—z‘e] (13.16)
Comparing eqgs. (13.1), (13.6), and (13.16), we see that
ARy = — o [T dsp(s) (13.17)
k2 4+m?2 —ie  Jam2 k2 + s —ie

This is the Lehmann-Killén form of~the exact momentum-space propagator
A(k?). We note in particular that A(k?) has an isolated pole at k? = —m?
with residue one, just like the propagator in free-field theory.

PROBLEMS
13.1) Consider an interacting scalar field theory in d spacetime dimensions,
L= —%Zwaugoﬁugo - %me2<,02 —Li(p) , (13.18)

where L£1(p) is a function of ¢ (and not its derivatives). The exact
momentum-space propagator for ¢ can be expressed in Lehmann-
Kallén form by eq. (13.17). Find a formula for the renormalizing fac-
tor Z, in terms of p(s). Hint: consider the commutator [p(z), $(y)].
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14 LoorP CORRECTIONS TO THE PROPAGATOR
PREREQUISITE: 10, 12, 13

In section 10, we wrote the exact propagator as

LA (21—w2) = (0| Tep (1) p(2)]0) = 51522'W(J)’ , (14.1)

where iWW (J) is the sum of connected diagrams, and J; acts to remove a
source from a diagram and label the corresponding propagator endpoint
z;. In ¢3 theory, the O(g?) corrections to 1A (z1—x2) come from the di-
agrams of fig. (14.1). To compute them, it is simplest to work directly in
momentum space, following the Feynman rules of section 10. An appro-
priate assignment of momenta to the lines is shown in fig. (14.1); we then
have

2

LA(K?) = LAMK?) + LAGR?) [k LA(R?) + O(g") (14.2)

where 1
A= —— 14.
(k%) k2 +m? — e (14.3)

is the free-field propagator, and

d ~ ~
M) = b (1) [ e AUEDDAE)

—i(Ak* + Bm?) + O(g") (14.4)

is the self-energy. Here we have written the integral appropriate for d
spacetime dimensions; for now we will leave d arbitrary, but later we will
want to focus on d = 6, where the coupling g is dimensionless.

In the first term in eq. (14.4), the factor of one-half is the symmetry
factor associated with exchanging the top and bottom semicircular prop-
agators. Also, we have written the vertex factor as ig rather than iZ,g
because we expect Z, = 1+ O(g?), and so the Z4 — 1 contribution can
be lumped into the O(g?) term. In the second term, A = Z, — 1 and
B = Z,, — 1 are both expected to be O(g?).

It will prove convenient to define IT1(k?) to all orders via the geometric
series
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Figure 14.1: The O(g?) corrections to the propagator.

Figure 14.2: The geometric series for the exact propagator.

This is illustrated in fig. (14.2). The sum in eq. (14.5) will include all the
diagrams that contribute to A(k?) if we take iII(k?) to be given by the sum
of all diagrams that are one-particle irreducible, or 1PI for short. A diagram
is 1PI if it is still connected after any one line is cut. The 1PI diagrams
that make an O(g*) contribution to iI1(k?) are shown in fig. (14.3). When
writing down the value of one of these diagrams, we omit the two external
propagators.
If we sum up the series in eq. (14.5), we get

Ak = k2 -+ m? —12'6 “T(k2) (14.6)

In section 13, we learned that the exact propagator has a pole at k2 = —m?

with residue one. This is consistent with eq. (14.6) if and only if

(-m? =0, (14.7)
' (—m?) =0, (14.8)

where the prime denotes a derivative with respect to k2. We will use
eqs. (14.7) and (14.8) to fix the values of A and B.

48—+4©+®+x

Figure 14.3: The O(g*) contributions to iII(k?).
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Next we turn to the evaluation of the O(g?) contribution to iII(k?) in
eq. (14.4). We have the immediate problem that the integral on the right-
hand side diverges at large £ for d > 4. We faced a similar situation in
section 9 when we evaluated the lowest-order tadpole diagram. There we
introduced an wultraviolet cutoff A that modified the behavior of A(¢2) at
large ¢2. Here, for now, we will simply restrict our attention to d < 4,
where the integral in eq. (14.4) is finite. Later we will see what we can say
about larger values of d.

We will evaluate the integral in eq. (14.4) with a series of tricks. We
first use Feynman’s formula to combine denominators,

1

where the integration measure over the Feynman parameters x; is

/dF — (n—1)! /01 dy .. dwn 5(z1 4+ 20— 1) . (14.10)
This measure is normalized so that
/an 1=1. (14.11)
We will prove eq. (14.9) in problem 14.1.

In the case at hand, we have

1

@& w7 )
VAN (€4 k)2 +m?) + (1) (2 + m?) ] -

A(k+0?)A(2) =

0
1 - -2
= dx €2+2x€'k+xk2+m2}
0 L
1 - -2
= [ dx|(L+xk)? +2(1—2)k? —i—mz]
0 L
1 - -2
= [ dx qz—l—D} : (14.12)
0 L

where we have suppressed the ie’s for notational convenience; they can be
restored via the replacement m? — m2—ie. In the last line we have defined

q=0+zk (14.13)

and
D =z(1—2)k* + m? . (14.14)
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Figure 14.4: The ¢° integration contour along the real axis can be rotated
to the imaginary axis without passing through the poles at ¢° = —w + ie
and ¢ = +w — ie.

We then change the integration variable in eq. (14.4) from ¢ to g; the jaco-
bian is trivial, and we have d% = d%.

Next, think of the integral over ¢ from —oo to 400 as a contour integral
in the complex ¢° plane. If the integrand vanishes fast enough as |¢°| — oo,
we can rotate this contour clockwise by 90°, as shown in fig. (14.4), so that
it runs from —ioco to +ico. In making this Wick rotation, the contour
does not pass over any poles. (The ie’s are needed to make this statement
unambiguous.) Thus the value of the integral is unchanged. It is now
convenient to define a euclidean d-dimensional vector ¢ via ¢° = ig; and
qj = qj; then ¢*> = @2, where

F=G+...+3. (14.15)

Also, d% = id%. Therefore, in general,

/d f(q*—ie) —z/d (14.16)

as long as f(g?) — 0 faster than 1/¢% as § — oc.
Now we can write

I(k?) = 1% I(k?) — AK* — Bm? + O(g") (14.17)

I(k?) /d:n/ ddi @ +D) (14.18)

It is now straightforward to evaluate the d-dimensional integral over ¢ in
spherical coordinates.

Before we perform this calculation, however, let us introduce another
trick, one that can simplify the task of fixing A and B through the impo-
sition of eqs. (14.7) and (14.8). Here is the trick: differentiate I1(k?) twice
with respect to k% to get

"(k?) = 36°1"(K*) + O(g") , (14.19)

where
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where, from eqgs. (14.18) and (14.14),

d,
(k) = /0 i 622 (1—2)? / (jﬂ‘id (q2+1 ok (14.20)

Then, after we evaluate these integrals, we can get II(k?) by integrating with
respect to k%, subject to the boundary conditions of eqs. (14.7) and (14.8).
In this way we can construct II(k?) without ever explicitly computing A
and B.

Notice that this trick does something else for us as well. The integral
over ¢ in eq. (14.20) is finite for any d < 8, whereas the original integral in
eq. (14.18) is finite only for d < 4. This expanded range of d now includes
the value of greatest interest, d = 6.

How did this happen? We can gain some insight by making a Taylor

expansion of II(k?) about k? = —m?:

M(k?) = [1g*1(-m?) + (A - B)m? |
+ [%gzl’(—mz) + A} (K> + m?)
+ 3 3620 (—m?) | (B + m?)? +
+0(gh) . (14.21)

From egs. (14.18) and (14.14), it is straightforward to see that I(—m?)
is divergent for d > 4, I'(—m?) is divergent for d > 6, and, in general,
I (—m?) is divergent for d > 4 4 2n. We can use the O(g?) terms in
A and B to cancel off the $¢°I(—m?) and 1g?I’(—m?) terms in II(k?),
whether or not they are divergent. But if we are to end up with a finite
I1(k?), all of the remaining terms must be finite, since we have no more free
parameters left to adjust. This is the case for d < 8.

Of course, for 4 < d < 8, the values of A and B (and hence the la-
grangian coefficients Z = 1+ A and Z,,, = 1 4+ B) are formally infinite, and
this may be disturbing. However, these coefficients are not directly mea-
surable, and so need not obey our preconceptions about their magnitudes.
Also, it is important to remember that A and B each includes a factor of
g%; this means that we can expand in powers of A and B as part of our
general expansion in powers of g. When we compute II1(k?) (which enters
into observable cross sections), all the formally infinite numbers cancel in
a well-defined way, provided d < 8.

For d > 8, this procedure breaks down, and we do not obtain a finite
expression for I1(k2?). In this case, we say that the theory is nonrenormaliz-
able. We will discuss the criteria for renormalizability of a theory in detail
in section 18. It turns out that ¢® theory is renormalizable for d < 6. (The
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problem with 6 < d < 8 arises from higher-order corrections, as we will see
in section 18.)

Now let us return to the calculation of IT1(k%). Rather than using the
trick of first computing IT”(k?), we will instead evaluate IT(k?) directly
from eq. (14.18) as a function of d for d < 4. Then we will analytically
continue the result to arbitrary d. This procedure is known as dimensional
reqularization. Then we will fix A and B by imposing eqs. (14.7) and (14.8),
and finally take the limit d — 6.

We could just as well use the method of section 9. Making the replace-

ment
< 1 A?

2
A7) _)p2—|—m2—ie p2+ A2 —ie’
where A is the ultraviolet cutoff, renders the O(g?) term in TI(k?) finite
for d < 8; This procedure is known as Pauli—Villars reqularization. We
then evaluate II(k?) as a function of A, fix A and B by imposing eqs. (14.7)
and (14.8), and take the A — oo limit. Calculations with Pauli-Villars
regularization are generally much more cumbersome than they are with
dimensional regularization. However, the final result for I1(k?) is the same.
Eq. (14.21) demonstrates that any regularization scheme will give the same
result for d < 8, at least as long as it preserves the Lorentz invariance of
the integrals.
We therefore turn to the evaluation of I(k?), eq.(14.18). The angu-
lar part of the integral over ¢ yields the area 23 of the unit sphere in d
dimensions, which is

(14.22)

27Td/2

r(ld)’

d= (14.23)
this is most easily verified by computing the gaussian integral [ d% e in
both cartesian and spherical coordinates. Here I'(z) is the Euler gamma
function; for a nonnegative integer n and small z,

I'(n+1) = n!, (14.24)
I(n+3) = %ﬁ (14.25)
M(—ntz) = (_711!)” E 4+ Yk row| . (1426

where v = 0.5772. .. is the Euler-Mascheroni constant.
The radial part of the ¢ integral can also be evaluated in terms of gamma
functions. The overall result (generalized slightly) is

/ dq (@) _ I'(b—a—3d)T'(a+3d) D—(b-a—d/2)
(2m)4 (g2 + D) (4m)?/2T(b)T (34)

. (14.27)
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We will make frequent use of this formula throughout this book. In the
case of interest, eq. (14.18), we have a = 0 and b = 2.

There is one more complication to deal with. Recall that we want to
focus on d = 6 because in that case g is dimensionless. However, for general
d, g has mass dimension ¢/2, where

e=6-d. (14.28)

To account for this, we introduce a new parameter [ with dimensions of
mass, and make the replacement

g — g% . (14.29)

In this way g remains dimensionless for all €. Of course, i is not an actual
parameter of the d = 6 theory. Therefore, nothing measurable (like a cross
section) can depend on it.

This seemingly innocuous statement is actually quite powerful, and will
eventually serve as the foundation of the renormalization group.

We now return to eq. (14.18), use eq. (14.26), and set d = 6 — ¢; we get

I(2) = %/ dz D (‘g)m . (14.30)

Hence, with the substitution of eq. (14.29), and defining

O= (14.31)
for notational convenience, we have
1 ~9\&/2
(k) = %af(—H%)/O dz D <47g‘ )
— Ak* — Bm? + 0(a?) . (14.32)
Now we can take the ¢ — 0 limit, using eq. (14.26) and
A2 =14+ EmA+0(?). (14.33)

The result is

(k%) = —ta

(2+1) (182 +m?) /deln(t:?;)

— Ak* — Bm? 4+ 0(a?) . (14.34)




14: Loop Corrections to the Propagator 116

Here we have used fol dx D = %kz +m?. Tt is now convenient to define
p=Vare 2 (14.35)
and rearrange things to get
TI(k?) — %a/ol dz D1n(D/m?)
—{La[t +m(u/m) + 1] + A} #?
—{ a[L+mn(u/m)+ 1]+ B}m? +0(a?) . (1430)
If we take A and B to have the form
A= —%a[% +In(p/m) + 5 + IQA} +0(a?), (14.37)
B=-— a[% +In(p/m) + 5 + HB} +0(a?), (14.38)
where k4 and kp are purely numerical constants, then we get
(k%) = %a/ol dz DIn(D/m?) + a(%tmkz2 + /{Bm2) +0(a?) . (14.39)

Thus this choice of A and B renders II(k?) finite and independent of u, as
required.

To fix k4 and kg, we must still impose the conditions ITI(—m?) = 0 and
I'(—m?) = 0. The easiest way to do this is to first note that, schematically,

1
I(k?) = %a/ dz D1n D + linear in k% and m? + O(a?) . (14.40)
0
We can then impose II(—m?) = 0 via
1
M(#?) = la / dz DIn(D/Dy) + linear in (K2 +m?) + O(a?) . (14.41)
0

where

Dy=D = [1—z(1—z)m? . (14.42)

k2=—m2

Now it is straightforward to differentiate eq. (14.41) with respect to k2, and
find that II'(—m?) vanishes for

I(k?) = %a/ol dz DIn(D/Dy) — a(k* + m?) + O(a?) . (14.43)

The integral over x can be done in closed form; the result is

(k) = Sa [c1k2 + com? + 2k> f(r)} +0(a?), (14.44)
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10 20 30 n?

Figure 14.5: The real and imaginary parts of I1(k?)/(k? + m?) in units of
a.

where ¢; = 3—7V/3, ¢o = 3—271/3, and

f(r) = r3tanh~1(1/7) , (14.45)
r = (1+4m?/k*)/? . (14.46)
There is a branch point at k? = —4m?, and II(k?) acquires an imaginary

part for k%2 < —4m?; we will discuss this further in the next section.
We can write the exact propagator as

~ 1 1
AW = (= TR2) /(R + m2)> Erm? i (14.47)

In fig. (14.5), we plot the real and imaginary parts of II1(k?)/(k% 4+ m?) in
units of a. We see that its values are quite modest for the plotted range.
For much larger values of |k?|, we have

(k%)

2 mZ o %a[ln(k:?/mQ) - q} +0(a?) . (14.48)

If we had kept track of the ie’s, k2 would be k% — ie; when k? is negative,
we have In(k? — i¢) = In |k?| — iw. The imaginary part of II(k?)/(k* + m?)
therefore approaches the asymptotic value of —1—127Ta + O(a?) when k2 is
large and negative. The real part of I1(k?)/(k? + m?), however, continues
to increase logarithmically with |k%| when |k?| is large. We will begin to
address the meaning of this in section 26.
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PROBLEMS

14.1) Derive a generalization of Feynman’s formula,

1 (Z al Oél 1
dF, 14.49
AT AT T T T () (n—1)! / le Z)Zaz (14.49)
Hint: start with r -
(a) _ / dt t2~t e At (14.50)
Ao 0

which defines the gamma function. Put an index on A, «, and ¢, and
take the product. Then multiply on the right-hand side by

- /Ooo ds (s — Sit) . (14.51)

Make the change of variable t; = sz;, and carry out the integral over
s.

14.2) Verify eq. (14.23).
14.3) a) Show that

[ daas@) =o. (14.52)
/d "¢’ f(¢*) = Oy g””/ d% *f(¢%) (14.53)

and evaluate the constant C in terms of d. Hint: use Lorentz symme-
try to argue for the general structure, and evaluate Cy by contracting
with g,,.

b) Similarly evaluate [ d% ¢"q"q”q° f(q?).
14.4) Compute the values of k4 and kp.

14.5) Compute the O(\) correction to the propagator in ¢? theory (see
problem 9.2) in d = 4 — ¢ spacetime dimensions, and compute the
O()) terms in A and B.

14.6) Repeat problem 14.5 for the theory of problem 9.3.

14.7) Renormalization of the anharmonic oscillator. Consider an anhar-
monic oscillator, specified by the lagrangian

L=124-17 0% — Z\)\3¢h . (14.54)
2 2

We set h =1 and m = 1; X is then dimensionless.
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a) Find the hamiltonian H corresponding to L. Write it as H =
Hy + Hy, where Hy = %Pz + %wQQQ, and [Q, P] = 1.

b) Let |0) and |1) be the ground and first excited states of Hp, and
let |©2) and |I) be the ground and first excited states of H. (We
take all these eigenstates to have unit norm.) We define w to be the
excitation energy of H, w = E; — Fq. We normalize the position
operator @ by setting (I|Q|Q) = (1|Q|0) = (2w)~'/2. Finally, to
make things mathematically simpler, we set Z) equal to one, rather
than using a more physically motivated definition. Write Z =1+ A
and Z, = 1+ B, where A = ka\ + O(\?) and B = kA + O()\?).
Use Rayleigh—Schroédinger perturbation theory to compute the O(\)
corrections to the unperturbed energy eigenvalues and eigenstates.

c¢) Find the numerical values of k4 and kp that yield w = E; — Eq
and (I|Q|Q) = (2w)~ /2.

d) Now think of the lagrangian of eq. (14.54) as specifying a quantum
field theory in d = 1 dimensions. Compute the O(\) correction to
the propagator. Fix k4 and kp by requiring the propagator to have a
pole at k? = —w? with residue one. Do your results agree with those
of part (¢)? Should they?
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15 THE ONE-LOOP CORRECTION IN
LEEMANN-KALLEN FORM

PREREQUISITE: 14

In section 13, we found that the exact propagator could be written in
Lehmann-Kéllén form as

- 1 o0 1
AR = ——— / d _— 15.1
(%) k‘2—|—m2—ie+ 42 Sp(s)k‘2—|—8—ie ( )
where the spectral density p(s) is real and nonnegative. In section 14, on
the other hand, we found that the exact propagator could be written as
1

Ak = K2+ m? —ie — (k%) (15:2)

and that, to O(g?) in > theory in six dimensions,

(k%) = %a/ol dz DIn(D/Dy) — ok + m?) + O(a?) (15.3)
where

a=g*/(4n)3 (15.4)

D = z(1—2)k* + m* —ie (15.5)

Dy = [1—z(1—z)m? . (15.6)

In this section, we will attempt to reconcile egs. (15.2) and (15.3) with
eq. (15.1).

Let us begin by considering the imaginary part of the propagator. We
will always take k% and m? to be real, and explicitly include the appropriate
factors of ie whenever they are needed.

We can use eq. (15.1) and the identity

1 x 1€
; 2 2+ 2 2
T — 1€ T4+ € T4+ €

1
=P - +imd(x) , (15.7)
where P means the principal part, to write

Im A (k%) = n6(k* +m?) + ds p(s) wo(k* + s)

4m?

= 76(k* + m?) + np(—k?) , (15.8)
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where p(s) = 0 for s < 4m?. Thus we have
7p(s) =Im A(—s) for s>4m?. (15.9)

Let us now suppose that Im IT(k?) = 0 for some range of k%. (In section
14, we saw that the O(a) contribution to II(k?) is purely real for k2 >
—4m?.) Then, from egs. (15.2) and (15.7), we get

Im A(k?) = 76 (k* + m? —T1(k?)) for ImII(k?) =0. (15.10)

From TI(—m?) = 0, we know that the argument of the delta function van-
ishes at k? = —m?, and from II'(—m?) = 0, we know that the derivative of
this argument with respect to k? equals one at k> = —m?. Therefore

Im A(k?) = m6(k* + m?) for ImII(k*)=0. (15.11)

Comparing this with eq. (15.8), we see that p(—k?) = 0 if Im I1(k?) = 0.

Now suppose Im I1(k?) is not zero for some range of k2. (In section 14,
we saw that the O(a) contribution to I1(k?) has a nonzero imaginary part
for k2 < —4m?2.) Then we can ignore the ie in eq. (15.2), and

Im IT(k?)

Im A (k%) = for TmTI(k? :
mAR) = G Rel(2) 2 + () o ) #0
(15.12)
Comparing this with eq. (15.8) we see that
ImII(—
mp(s) = m I1(—s) . (15.13)

(—s+m2+ Rell(—s))2 + (ImII(—s))?

Since we know p(s) = 0 for s < 4m?, this tells us that we must also have
ImTII(—s) = 0 for s < 4m?, or equivalently ImII(k?) = 0 for k? > —4m?.
This is just what we found for the O(a) contribution to ITI(k?) in section
14.

We can also see this directly from eq. (15.3), without doing the integral
over x. The integrand in this formula is real as long as the argument of the
logarithm is real and positive. From eq. (15.5), we see that D is real and
positive if and only if z(1—z)k? > —m?. The maximum value of z(1—x)
is 1/4, and so the argument of the logarithm is real and positive for the
whole integration range 0 < x < 1 if and only if k2 > —4m?2. In this
regime, ImI1(k?) = 0. On the other hand, for k¥ < —4m?, the argument
of the logarithm becomes negative for some of the integration range, and
so ImTI(k?) # 0 for k* < —4m?. This is exactly what we need to reconcile
egs. (15.2) and (15.3) with eq. (15.1).

PROBLEMS
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15.1) In this problem we will verify the result of problem 13.1 to O(«).

a) Let Ioop(k?) be given by the first line of eq. (14.32), with £ > 0.
Show that, up to O(a?) corrections,

A =TI, (—m?) . (15.14)
Then use Cauchy’s integral formula to write this as

A o dw Hloop( )

2i (w+m2) (15.15)

where the contour of integration is a small counterclockwise circle
around —m? in the complex w plane.

b) By examining eq. (14.32), show that the only singularity of Ijo0p (k%)
is a branch point at k> = —4m?. Take the cut to run along the neg-
ative real axis.

c) Distort the contour in eq. (15.15) to a circle at infinity with a detour
around the branch cut. Examine eq. (14.32) to show that, for ¢ > 0,
the circle at infinity does not contribute. The contour around the
branch cut then yields

am? -y 1 ,
A= / 2t G P 7 [ Moop (wti€) — Moo (w—ie)| ,  (15.16)

where € is infinitesimal (and is not to be confused with £ = 6—d).

d) Examine eq. (14.32) to show that the real part of IIj,op(w) is con-
tinuous across the branch cut, and that the imaginary part changes
sign, so that

Moop (w-ti€) — Migop (w—i€) = —2i Im Mooy (w—i€) . (15.17)
e) Let w = —s in eq. (15.16) and use eq. (15.17) to get

1 [o© Im ITjo0p (—s—ie€)
A=—= d P ) 15.1
/4m2 § (s — m2)?2 (15.18)

Use this to verify the result of problem 13.1 to O(«).

15.2) Dispersion relations. Consider the exact II(k?), with ¢ = 0. Assume
that its only singularity is a branch point at k? = —4m?, that it obeys
eq. (15.17), and that I1(k?) grows more slowly than |k?|? at large |k?|.
By recapitulating the analysis in the previous problem, show that

2 ro°  ImII(—s—ie)

(k) = = ds

15.19
T Jam2 (k% + s)3 ( )
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This is a twice subtracted dispersion relation. It gives I1”(k?) through-
out the complex k2 plane in terms of the values of the imaginary part
of TI(k?) along the branch cut.
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16 LoorP CORRECTIONS TO THE VERTEX

PREREQUISITE: 14

Consider the O(g®) diagram of fig. (16.1), which corrects the 3 vertex. In
this section we will evaluate this diagram.

We can define an exact three-point vertex function iVs(ky, k2, k3) as the
sum of one-particle irreducible diagrams with three external lines carrying
momenta kq, ko, and ks, all incoming, with ki + ke + k3 = 0 by momentum
conservation. (In adopting this convention, we allow kY to have either sign;
if k; is the momentum of an external particle, then the sign of k¥ is positive
if the particle is incoming, and negative if it is outgoing.) The original
vertex iZ,g is the first term in this sum, and the diagram of fig. (16.1) is
the second. Thus we have

3 d
Valki, ke k) = iZ,9 + 9 (1) [ (;f;d

+0(g°) . (16.1)

A((0=k1)*)A((E+k2)?) A6

In the second term, we have set Z, = 1 + O(g?). We proceed immediately
to the evaluation of this integral, using the series of tricks from section 14.
First we use Feynman’s formula to write

A((L=k1)*)A((t4k2)*) A (%)
/ng[ (k) + wa(Cke) + a3 +m? ] (162)

1
/ng = 2/ dxq dxo dzs 5(3)1—1—3)2—1—3}3—1) . (16.3)
0

where

We manipulate the right-hand side of eq. (16.2) to get
A((=k1)") A((E+k2)*)A(6)
- -3
= /dF3 52 — 25'($1k‘1 — :EQICQ) + l‘lk‘% + IEQk% + mﬂ
= /dF3 —(f — l‘llﬁ + £E2k72)2 + :El(l—l‘l)k’% + :Eg(l—l‘Q)k‘%
-3
+ 2331332]€1 -kg + mﬂ

_ /dF3 2+D]". (16.4)

In the last line, we have defined ¢ = ¢ — z1k1 + x2ks, and
D = xl(l—xl)k% + xg(l—xg)k% + 2x129k1 ko + m?

= x301k? + x320ks + T120kE + M? (16.5)
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I+ Kk,

Figure 16.1: The O(g3) correction to the vertex iVs(ki, ko, k3).

where we used k3 = (k1 + k2)? and 1 + 22 + 23 = 1 to simplify the second
line.

After making a Wick rotation of the ¢" contour, we have
d% 1
2m) (@ + D)
where ¢ is a euclidean vector. This integral diverges for d > 6. We therefore
evaluate it for d < 6, using the general formula from section 14; the result

d% 1 I'(3—1d)
= D—(3=d/2) 16.7

/ (2m)d (g2 + D)3 2(4m)/2 ( )
Now we set d = 6 — . To keep g dimensionless, we make the replacement

g — gfif/2. Then we have

Vil ks k) = Zo+ o [ B [ - +0(g") . (166)

1S

4 fi?
D

£/2
Vg(kl,kg,kg)/g = Zg + %a P(%)/ng < ) + O(a2) R (168)

where a = ¢?/(47)%. Now we can take the ¢ — 0 limit. The result is
2 4 ji?
- dF; 1

€ * / s < evD )

where we have used [dF3 = 1. We now let u? = 4me~7ji%, set

Z,=1+4C, (16.10)

Vi(ki, ko, ks)/g = Zy + $a +0(a?), (16.9)

and rearrange to get
Vi(kt, ko, ks) /g = 1+ {a|L +In(u/m)| + C}
- %a/ng In(D/m?)
+ 0(a?) . (16.11)
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If we take C to have the form
C =—alL+m(u/m)+rc| +0(?) (16.12)
where k¢ is a purely numerical constant, we get
Vi(ki, ko, k3)/g =1 — %a/ng In(D/m?) — kca + O(a?) . (16.13)

Thus this choice of C renders V3(kq, ko, k3) finite and independent of y, as
required.

We now need a condition, analogous to II(—m?) = 0 and II'(—m?) = 0,
to fix the value of xc. These conditions on II(k?) were mandated by known
properties of the exact propagator, but there is nothing directly comparable
for the vertex. Different choices of k¢ correspond to different definitions of
the coupling ¢g. This is because, in order to measure g, we would measure
a cross section that depends on g; these cross sections also depend on k¢
Thus we can use any value for k¢ that we might fancy, as long as we all
agree on that value when we compare our calculations with experimental
measurements. It is then most convenient to simply set ko = 0. This
corresponds to the condition

V3(0,0,0) =g . (16.14)

This condition can then also be used to fix the higher-order (in g) terms in
Zg.

The integrals over the Feynman parameters in eq.(16.13) cannot be
done in closed form, but it is easy to see that if (for example) |k?| > m?,
then

Vi, b, ks)/g = 1= Sa[In(k3/m?) + O(1)] + 0(a?) . (16.15)

Thus the magnitude of the one-loop correction to the vertex function in-
creases logarithmically with |kZ| when |k?| > m?2. This is the same behavior
that we found for T1(k?)/(k? + m?) in section 14.

PROBLEMS

16.1) Compute the O(\?) correction to V4 in ¢? theory (see problem 9.2) in

d = 4—¢ spacetime dimensions. Take V4 = —\ when all four external
momenta are on shell, and s = 4m?. What is the O()\) contribution
to C?

16.2) Repeat problem 16.1 for the theory of problem 9.3. Take V4 = —\
when all four external momenta are on shell, and s = 4m? for the
process aa — aa. What is the O(X) contribution to C?
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17 OTHER 1PI VERTICES

PREREQUISITE: 16

In section 16, we defined the three-point vertex function iVs(ky, ko, k3) as
the sum of all one-particle irreducible diagrams with three external lines,
with the external propagators removed. We can extend this definition to
the n-point vertex iV, (ki,...,ky).

There are two key differences between V,,~3 and V3 in 2 theory. The
first is that there is no tree-level contribution to V,,~3. The second is that
the one-loop contribution to V,,~3 is finite for d < 2n. In particular, the
one-loop contribution to V>3 is finite for d = 6.

Let us see how this works for the case n = 4. We treat all the external
momenta as incoming, so that ki + ks + k3 + k4 = 0. One of the three
contributing one-loop diagrams is shown in fig. (17.1); in this diagram, the
ks vertex is opposite to the k; vertex. Two other inequivalent diagrams are
then obtained by swapping ks < ko and k3 < k4. We then have

. 4 dﬁg ~ 2\ X 2\ X 2\ A (92
Vi = 0 [ e MER)AEHk))A(E k) AE)

+ (k‘g — k‘g) + (kg — k4)
+0(¢%) . (17.1)

Feynman’s formula gives

_ 2 —4
—/dF4 q +D1234} , (172)

where ¢ = £ — x1k1 + x2ky + x3(k2+k3) and, after making repeated use of
r1+wo+r3+x4 = 1 and ki+ko+ks+ky = 0,

D1234 = x1x4k‘% + $2$4]€% + xgxgkg + xla;gkz
+ $1l‘2(k’1—|—k’2)2 + $3l‘4(k‘2—|—k‘3)2 + m2 . (17.3)
We see that the integral over ¢ is finite for d < 8, and in particular for

d = 6. After a Wick rotation of the ¢° contour and applying the general
formula of section 14, we find

d% 1 1
/ 2m)6 (2+ D)* ~ 6(4m)3D (17.4)
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k
Kook, 4

I+ Ky + Kg
Ky I +k, Ky

Figure 17.1: One of the three one-loop Feynman diagrams contributing
to the four-point vertex V4 (ky, ko, k3, k4); the other two are obtained by
swapping ks < ko and ks < ky.

Thus we get

4
g | | | ) ;
V, = / dF. ( + + + 0% 17.5

* 6(4m)3 “\Disss ' Disss = Dims (g") (175)

This expression is finite and well-defined; the same is true for the one-loop
contribution to V,, for all n > 3.

PROBLEMS

17.1) Verify eq. (17.3).
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18 HIGHER-ORDER CORRECTIONS AND
RENORMALIZABILITY

PREREQUISITE: 17

In sections 14-17, we computed the one-loop diagrams with two, three, and
four external lines for 3 theory in six dimensions. We found that the first
two involved divergent momentum integrals, but that these divergences
could be absorbed into the coefficients of terms in the lagrangian. If this is
true for all higher-order (in g) contributions to the propagator and to the
one-particle irreducible vertex functions (with n > 3 external lines), then
we say that the theory is renormalizable. If this is not the case, and further
divergences arise, it may be possible to absorb them by adding some new
terms to the lagrangian. If a finite number of such new terms is required,
the theory is still said to be renormalizable. However, if an infinite number
of new terms is required, then the theory is said to be nonrenormalizable.
Despite the infinite number of parameters needed to specify it, a nonrenor-
malizable theory is generally able to make useful predictions at energies
below some ultraviolet cutoff A; we will discuss this in section 29.

In this section, we will deduce the necessary conditions for renormaliz-
ability. As an example, we will analyze a scalar field theory in d spacetime
dimensions of the form

00
L= —%Z¢8“g08“g0 - %mez(,ﬁz - Z %ann(’pn : (18'1)

n=3

Consider a Feynman diagram with E external lines, I internal lines, L
closed loops, and V,, vertices that connect n lines. (Here V}, is just a num-
ber, not to be confused with the vertex function V,.) Do the momentum
integrals associated with this diagram diverge?

We begin by noting that each closed loop gives a factor of d%;, and each
internal propagator gives a factor of 1/(p? + m?), where p is some linear
combination of external momenta k; and loop momenta ¢;. The diagram
would then appear to have an ultraviolet divergence at large ¢; if there are
more {’s in the numerator than there are in the denominator. The number
of £’s in the numerator minus the number of £’s in the denominator is the
diagram’s superficial degree of divergence

D=dL-2I, (18.2)
and the diagram appears to be divergent if

D>0. (18.3)
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Next we derive a more useful formula for D. The diagram has E external
lines, so another contributing diagram is the tree diagram where all the lines
are joined by a single vertex, with vertex factor —iZggg; this is, in fact,
the value of this entire diagram, which then has mass dimension [gg]. (The
Z’s are all dimensionless, by definition.) Therefore, the original diagram
also has mass dimension [gg], since both are contributions to the same
scattering amplitude:

[diagram] = [gg] . (18.4)

On the other hand, the mass dimension of any diagram is given by the sum
of the mass dimensions of its components, namely

[diagram] = dL — 21 + i Valgn] - (18.5)

n=3

From egs. (18.2), (18.4), and (18.5), we get

D= lgs)— " Valau] (18.6)
n=3

This is the formula we need.

From eq. (18.6), it is immediately clear that if any [g,,] < 0, we expect
uncontrollable divergences, since D increases with every added vertex of
this type. Therefore, a theory with any [g,] < 0 is nonrenormalizable.

According to our results in section 12, the coupling constants have mass
dimension

[gn] = d — $n(d—2), (18.7)
and so we have d
g <0 if n> % . (18.8)
Thus we are limited to powers no higher than ¢? in four dimensions, and
no higher than ¢? in six dimensions.

The same criterion applies to more complicated theories as well: a the-
ory is nonrenormalizable if any coefficient of any term in the lagrangian
has negative mass dimension.

What about theories with couplings with only positive or zero mass
dimension? We see from eq. (18.6) that the only dangerous diagrams (those
with D > 0) are those for which [gg] > 0. But in this case, we can absorb
the divergence simply by adjusting the value of Zg. This discussion also
applies to the propagator; we can think of II(k?) as representing the loop-
corrected counterterm vertex Ak% + Bm?, with A and Bm? playing the
roles of two couplings. We have [A] = 0 and [Bm?] = 2, so the contributing
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Figure 18.1: The one-loop contribution to V.

_|_

Figure 18.2: A two-loop contribution to V4, and the corresponding coun-
terterm insertion.

diagrams are expected to be divergent (as we have already seen in detail),
and the divergences must be absorbed into A and Bm?.

D is called the superficial degree of divergence because a diagram might
diverge even if D < 0, or might be finite even if D > 0. The latter can
happen if there are cancellations among £’s in the numerator. Quantum
electrodynamics provides an example of this phenomenon that we will en-
counter in Part III; see problem 62.3. For now we turn our attention to the
case of diagrams with D < 0 that nevertheless diverge.

Consider, for example, the diagrams of figs. (18.1) and (18.2). The one-
loop diagram of fig. (18.1) with E' = 4 is finite, but the two-loop correction
from the first diagram of fig. (18.2) is not: the bubble on the upper prop-
agator diverges. This is an example of a divergent subdiagram. However,
this is not a problem in this case, because this divergence is canceled by
the second diagram of fig. (18.2), which has a counterterm vertex in place
of the bubble.

This is the generic situation: divergent subdiagrams are diagrams that,
considered in isolation, have D > 0. These are precisely the diagrams whose
divergences can be canceled by adjusting the Z factor of the corresponding
tree diagram (in theories where [g,] > 0 for all nonzero gy,).

Thus, we expect that theories with couplings whose mass dimensions
are all positive or zero will be renormalizable. A detailed study of the
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properties of the momentum integrals in Feynman diagrams is necessary
to give a complete proof of this. It turns out to be true without further
restrictions for theories that have spin-zero and spin-one-half fields only.

Theories with spin-one fields are renormalizable for d = 4 if and only if
these spin-one fields are associated with a gauge symmetry. We will study
this in Part III.

Theories of fields with spin greater than one are never renormalizable
for d > 4.

REFERENCE NOTES

Explicit two-loop calculations in ¢? theory can be found in Collins, Muta,
and Sterman.

PROBLEMS

18.1) In any number d of spacetime dimensions, a Dirac field ¥, (z) car-
ries a spin index «, and has a kinetic term of the form z@’y“@,ﬂ/,
where we have suppressed the spin indices; the gamma matrices v*
are dimensionless, and ¥ = W40,

a) What is the mass dimension [¥] of the field ¥?

b) Consider interactions of the form g,(¥W¥)", where n > 2 is an
integer. What is the mass dimension [g,] of g,?

c) Consider interactions of the form gy, ,™ (¥W)™, where ¢ is a scalar
field, and m > 1 and n > 1 are integers. What is the mass dimension
[9m,n] Of gm.n?

d) In d = 4 spacetime dimensions, which of these interactions are
allowed in a renormalizable theory?
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19 PERTURBATION THEORY TO ALL ORDERS

PREREQUISITE: 18

In section 18, we found that, generally, a theory is renormalizable if all
of its lagrangian coefficients have positive or zero mass dimension. In this
section, using ¢ theory in six dimensions as our example, we will see how
to construct a finite expression for a scattering amplitude to arbitrarily
high order in the ¢? coupling g.

We begin by summing all one-particle irreducible diagrams with two
external lines; this gives us the self-energy II(k?). We next sum all 1PI
diagrams with three external lines; this gives us the three-point vertex
function Vs(k1, ko, ks). Order by order in g, we must adjust the value
of the lagrangian coefficients Z,, Z,,, and Z; to maintain the conditions
I(—m?) =0, II'(—m?) = 0, and V3(0,0,0) = g.

Next we will construct the n-point vertex functions V,(ki,...,k,) with
4 < n < F, where F is the number of external lines in the process of
interest. We compute these using a skeleton expansion. This means that
we draw all the contributing 1PI diagrams, but omit diagrams that include
either propagator or three-point vertex corrections. That is, we include
only diagrams that are not only 1PI, but also 2PI and 3PI: they remain
connected when any one, two, or three lines are cut. (Cutting three lines
may isolate a single tree-level vertex, but nothing more complicated.) Then
we take the propagators and vertices in these diagrams to be given by the
exact propagator A(k?) = (k* + m? — II(k?))~" and vertex Vs (ki, ko, k3),
rather than by the tree-level propagator A(k?) = (k2 + m?)~! and vertex
g. We then sum these skeleton diagrams to get V,, for 4 < n < E. Order
by order in g, this procedure is equivalent to computing V,, by summing
the usual set of contributing 1PI diagrams.

Next we draw all tree-level diagrams that contribute to the process
of interest (which has E external lines), including not only three-point
vertices, but also n-point vertices for n = 3,4,...,E. Then we evaluate
these diagrams using the exact propagator A(kzz) for internal lines, and
the exact 1PI vertices V,; external lines are assigned a factor of one.! We
sum these tree diagrams to get the scattering amplitude; loop corrections
have all been accounted for already in A(kzz) and V,,. Order by order in
g, this procedure is equivalent to computing the scattering amplitude by
summing the usual set of contributing diagrams.

Thus we now know how to compute an arbitrary scattering amplitude

IThis is because, in the LSZ formula, each Klein-Gordon wave operator becomes (in
momentum space) a factor of kZ + m? that multiplies each external propagator, leaving
behind only the residue of the pole in that propagator at k2 = —m?; by construction,
this residue is one.
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to arbitrarily high order. The procedure is the same in any quantum field
theory; only the form of the propagators and vertices change, depending
on the spins of the fields.

The tree-level diagrams of the final step can be thought of as the Feyn-
man diagrams of a quantum action (or effective action, or quantum effective
action) T'(p). There is a simple and interesting relationship between the ef-
fective action I'(p) and the sum of connected diagrams with sources iW (J).
We derive it in section 21.

REFERENCE NOTES

The detailed procedure for renormalization at higher orders is discussed in
Coleman, Collins, Muta, and Sterman.
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20 TwO-PARTICLE ELASTIC SCATTERING AT ONE
Loor

PREREQUISITE: 19

We now illustrate the general rules of section 19 by computing the two-
particle elastic scattering amplitude, including all one-loop corrections, in
3 theory in six dimensions. Flastic means that the number of outgoing
particles (of each species, in more general contexts) is the same as the
number of incoming particles (of each species).

We computed the amplitude for this process at tree level in section 10,
with the result

Tiree = 1i0)*[A(=3) + A(=1) + A(-u)] (20.1)

where A(—s) = 1/(—s +m? — i€) is the free-field propagator, and s, ¢, and
u are the Mandelstam variables. Later we will need to remember that s is
positive, that ¢t and u are negative, and that s+t + u = 4m?2.

The exact scattering amplitude is given by the diagrams of fig. (20.1),
with all propagators and vertices interpreted as exact propagators and ver-
tices. (Recall, however, that each external propagator contributes only the
residue of the pole at k> = —m?2, and that this residue is one; thus the fac-
tor associated with each external line is simply one.) We get the one-loop
approximation to the exact amplitude by using the one-loop expressions
for the internal propagators and vertices. We thus have

iTitoop = +([IVa(s)2A(=5) + [iVs()PA(~1) + [iV3(u)2A(~u))

+iVa(s,t,u), (20.2)
where, suppressing the ie€’s,
~ 1

AC) = T (20.3)

M(—s) = a /0 Cda Dy(s)In(Da(s)/ D) — fa(—s+m?),  (204)

Vi(s)/g=1-— %a/ng ln(Dg(s)/mz) , (20.5)

! L ! } C(206)

a(s,t,u) = g7 Y Da(s, ) + Dy(t,u) * Dy(u, s)

Here a = ¢%/(47)3, the Feynman integration measure is

1
/an flz) = (n_1)!/0 dry .. den §(x1+ . .. +an—1)f ()
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1 1—x1 l—-z1—...—xp_2o
= (n—l)!/ da:l/ da:g.../ dxn_1
0 0 0
x f(x

) i1 (20.7)
and we have defined
Dy(s) = —z(1—z)s +m? (20.8)
Dy = +[1—z(1—2z)]m?, (20.9)
Ds(s) = —a1725 + [1—(21+x9)z3)m? (20.10)
Dy(s,t) = —x1295 — 2324t + [1— (21 +22) (23+24)]M> . (20.11)

We obtain V3(s) from the general three-point function Vs(ky, k2, k3) by set-
ting two of the three k? to —m?, and the third to —s. We obtain V4(s,t,u)
from the general four-point function Vy(ky,...,ks) by setting all four k2
to —m?, (k1 + k2)? to —s, (k1 + k3)? to —t, and (k1 + k4)? to —u. (Recall
that the vertex functions are defined with all momenta treated as incoming;
here we have identified —k3 and —k, as the outgoing momenta.)

Egs. (20.2-20.11) are formidable expressions. To gain some intuition
about them, let us consider the limit of high-energy, fixed angle scattering,
where we take s, |t|, and |u| all much larger than m?. Equivalently, we are
considering the amplitude in the limit of zero particle mass.

We can then set m? = 0 in Ds(s), D3(s), and Dy(s,t). For the self-
energy, we get

II(—s) = —%as/ol dr z(1—x) {ln<;l—(;) +ln<%)] + Las

= —lias[ln(—s/m2)+3—77\/§} . (20.12)
Thus,
A =~y

- 1(1+%a[1n(—s/m2)+3—m/§})+0(a2). (20.13)

s
The appropriate branch of the logarithm is found by replacing s by s + ie.
For s real and positive, —s lies just below the negative real axis, and so

In(—s) =Ins —in. (20.14)
For ¢ (or u), which is negative, we have instead
In(—t) = In|t|,
Int = In|t| +im . (20.15)



20: Two-Particle Elastic Scattering at One Loop 137

Figure 20.1: The Feynman diagrams contributing to the two-particle elastic
scattering amplitude; a double line stands for the exact propagator %A(k‘),
a circle for the exact three-point vertex Vs(ky, k2, k3), and a square for the
exact four-point vertex Vy(kq, ko, k3, kq). An external line stands for the

unit residue of the pole at k2 = —m?.
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For the three-point vertex, we get
Vs(s)/g =1— %a/ng {ln(—s/mz) +ln(a:1x2)} ,
= 1-la[In(=s/m?) - 3], (20.16)
where the same comments about the appropriate branch apply.

For the four-point vertex, the integral over the Feynman parameters
can be done in closed form, with the result

dF. 3
D4(s‘ft) - s +t <F2 * [ln(s/t)r)

_ +% (H 4 [1n(s/t)]2> , (20.17)

where the second line follows from s + ¢+« = 0.
Putting all of this together, we have

Titoop = 6| F(s,t,0) + F(t,u,5) + F(u,s,1) |, (20.18)

where
F(s,t,u) = — % <1 - %a{ln(—s/m2) + c} - %a{ln(t/u)r) . (20.19)

and ¢ = (672 + /3 — 39)/11 = 2.33. This is a typical result of a loop
calculation: the original tree-level amplitude is corrected by powers of log-
arithms of kinematic variables.

PROBLEMS
20.1) Verify eq. (20.17).

20.2) Compute the O(«) correction to the two-particle scattering amplitude
at threshold, that is, for s = 4m? and t = u = 0, corresponding to
zero three-momentum for both the incoming and outgoing particles.
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21 THE QUANTUM ACTION

PREREQUISITE: 19

In section 19, we saw how to compute (in > theory in d = 6 dimensions) the
1PT vertex functions V,(kq,...,k,) for n > 4 via the skeleton expansion:
draw all Feynman diagrams with n external lines that are one-, two-, and
three-particle irreducible, and compute them using the exact propagator
A(k?) and three-point vertex function Vi(ky, kg, k3).

We now define the quantum action (or effective action, or quantum
effective action)

d
Ne) = 5 [ Gy PR (K + m? =10 3(8)

1 [ d% d%,, e
+,;H/W 2n)d 2m) 46 (ky+ . . . +ky)

Vi, kn) @(k1) ... 3(kn) | (21.1)

where @(k) = [ d% e~**p(x). The quantum action has the property that
the tree-level Feynman diagrams it generates give the complete scattering
amplitude of the original theory.

In this section, we will determine the relationship between I'(¢) and the
sum of connected diagrams with sources, iW(J), introduced in section 9.
Recall that W (J) is related to the path integral

Z(J):/Dgo exp[z’S(g@)—l—i/ddegp} , (21.2)
where S = [ d% L is the action, via

Z(J) = exp[iW (J)] . (21.3)

Consider now the path integral

Zr(J)

/Dgo exp[if(go) —I—i/ddx Jgp} (21.4)

= exp[iWp(J)] . (21.5)

Wr(J) is given by the sum of connected diagrams (with sources) in which
each line represents the exact propagator, and each n-point vertex rep-
resents the exact 1PI vertex V,,. Wr(J) would be equal to W(J) if we
included only tree diagrams in Wr(J).
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We can isolate the tree-level contribution to a path integral by means of
the following trick. Introduce a dimensionless parameter that we will call
h, and the path integral

Zrn(J) = /Dgp exp [% <F(<p) + /ddx Jgp)] (21.6)

= expliWr x(J)] . (21.7)

In a given connected diagram with sources, every propagator (including
those that connect to sources) is multiplied by h, every source by 1/h, and
every vertex by 1/h. The overall factor of 7 is then RY=E=V \where V is the
number of vertices, E is the number of sources (equivalently, the number of
external lines after we remove the sources), and P is the number of prop-
agators (external and internal). We next note that P—E—V is equal to
L—1, where L is the number of closed loops. This can be seen by counting
the number of internal momenta and the constraints among them. Specif-
ically, assign an unfixed momentum to each internal line; there are P—F
of these momenta. Then the V vertices provide V constraints. One lin-
ear combination of these constraints gives overall momentum conservation,
and so does not constrain the internal momenta. Therefore, the number of
internal momenta left unfixed by the vertex constraints is (P—FE)—(V—1),
and the number of unfixed momenta is the same as the number of loops L.
So, Wr 4(J) can be expressed as a power series in 7 of the form

Wrn(J) = i YW () (21.8)
L=0

If we take the formal limit of 7 — 0, the dominant term is the one with
L = 0, which is given by the sum of tree diagrams only. This is just what
we want. We conclude that

W(J) = Wi i—olJ) - (21.9)

Next we perform the path integral in eq. (21.6) by the method of station-
ary phase. We find the point (actually, the field configuration) at which
the exponent is stationary; this is given by the solution of the gquantum
equation of motion

0
dp()
Let ¢ (2) denote the solution of eq. (21.10) with a specified source function
J(z). Then the stationary-phase approximation to Zr 5(J) is

L(p)=—J(z) . (21.10)

Zrw(J) = exp [% (r(ng) + / d Jng) + O(ho)] . (21.11)
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Combining the results of egs. (21.7), (21.8), (21.9), and (21.11), we find

W(J)=T(er) /d:EJ<pJ (21.12)

This is the main result of this section.
Let us explore it further. Recall from section 9 that the vacuum expec-
tation value of the field operator ¢(z) is given by

0
Olp(x)|0) = ——W(J . 21.13
{0l ()[0) 57(0) ()J:O (21.13)
Now consider what we get if we do not set J = 0 after taking the derivative:
0
= . 21.14
{Ole(@)0)s = 57 p W(J) (21.14)

This is the vacuum expectation value of ¢(z) in the presence of a nonzero
source function J(z). We can get some more information about it by using
eq. (21.12) for W(J). Making use of the product rule for derivatives, we
have

Q@0 = =Tl + este) + [Ea) 2B 1)

We can evaluate the first term on the right-hand side by using the chain

rule,
o' (¢ 5<PJ( )
d° . 21.16

Then we can comblne the first and third terms on the right-hand side of
eq. (21.15) to get

(0]¢p()[0).; = /dﬁy {iiﬁi + J(y)] 55(’3"(%) +(@) . (21.17)

Now we note from eq. (21.10) that the factor in large brackets on the right-
hand side of eq. (21.17) vanishes, and so

(0lp(@)[0)y = ws(x) . (21.18)

That is, the vacuum expectation value of the field operator ¢(x) in the
presence of a nonzero source function is also the solution to the quantum
equation of motion, eq. (21.10).

We can also write the quantum action in terms of a derivative expansion,

_ /ddx [—u(p) - 12(9)0" 00+ .., (21.19)
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where the ellipses stand for an infinite number of terms with more and more
derivatives, and U(yp) and Z(p) are ordinary functions (not functionals)
of p(x). U(yp) is called the quantum potential (or effective potential, or
quantum effective potential), and it plays an important conceptual role in
theories with spontaneous symmetry breaking; see section 31. However, it
is rarely necessary to compute it explicitly, except in those cases where we
are unable to do so.

REFERENCE NOTES

Construction of the quantum action is discussed in Coleman, Itzykson &
Zuber, Peskin & Schroeder, and Weinberg II.

PROBLEMS
21.1) Show that
T(p) =W (J,) — /ddx Jop (21.20)
where J, () is the solution of
i W(J) = p(x) (21.21)
5.7 () A '

for a specified ¢(x).

21.2) Symmetries of the quantum action. Suppose that we have a set of
fields ¢, (x), and that both the classical action S(p) and the integra-
tion measure Dy are invariant under

pale) = [ % Rl )en(y) (21.22)

for some particular function Ru,(x,y). Typically Rep(x,y) is a con-
stant matrix times §%(x—y), or a finite number of derivatives of
§%(x—1y); see sections 22, 23, and 24 for some examples.

a) Show that W (J) is invariant under
Tolw) = [ % T Ria(y,2) (21.23)

b) Use egs. (21.20) and (21.23) to show that the quantum action I'(y)
is invariant under eq. (21.22). This is an important result that we will
use frequently.
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21.3) Consider performing the path integral in the presence of a background
field ¢(x); we define

exp[iW (J;9)] = /Dcp exp[iS(g@—Hp) —i—i/ddx Jcp] . (21.24)

Then W (J;0) is the original W (J) of eq. (21.3). We also define the
quantum action in the presence of the background field,

T(p;0) =W (Jy;0) — /ddx Jo (21.25)

where J, () is the solution of

J
0J(x)

W(J;¢) = p(x) (21.26)
for a specified ¢(z). Show that

L(p;0) = T(p+;0) , (21.27)

where I'(p, 0) is the original quantum action of eq. (21.1).
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22 CONTINUOUS SYMMETRIES AND CONSERVED
CURRENTS

PREREQUISITE: 8

Suppose we have a set of scalar fields ¢,(z), and a lagrangian density
L(z) = L(pa(x),0upa(x)). Consider what happens to L(z) if we make
an infinitesimal change ¢, (z) — @a(z) + dpa(x) in each field. We have
L(z) — L(x) + dL(x), where 6L(z) is given by the chain rule,

oL oL

) = Fo@ ) 5 Epat@)

0u0pa(x) . (22.1)

Next consider the classical equations of motion (also known as the Euler-
Lagrange equations, or the field equations), given by the action principle

08
dpq ()

where S = [ d* L(y) is the action, and §/5¢, () is a functional derivative.
(For definiteness, we work in four spacetime dimensions, though our re-
sults will apply in any number.) We have (with repeated indices implicitly
summed )

5S [ 4 0Ly
Spalx) /d 4 dpa ()

_/fl Spn(y) | OL(y) &@%@w
Oep(y) dpa(z) — ODupp(y))  Gpalx)

=0, (22.2)

. 4 4 —r 8£(y) 4 —r
= / dy [a% Spad (y Hi@(@uwb(y)) 0ba0ud” (y )]

_ OL(z) OL(x)
= D@ B Opa@) (22.3)

We can use this result to make the replacement

OL(x) . OL(x) dS
Opa(z) g a(au‘lpa(x)) dpa(T)

in eq. (22.1). Then, combining two of the terms, we get

(22.4)

0L(x) = 8,;(% (54,%(95)) + 5(2?33)64,0@(95) . (22.5)
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Next we identify the object in large parentheses in eq. (22.5) as the Noether
current

. _ 0L(x)
jH(x) = m dpa(x) . (22.6)
Eq. (22.5) then implies
0" (x) = 6L(x) — 550 (o). (22.7)

If the classical field equations are satisfied, then the second term on the
right-hand side of eq. (22.7) vanishes.

The Noether current plays a special role if we can find a set of in-
finitesimal field transformations that leaves the lagrangian unchanged, or
invariant. In this case, we have 6L = 0, and we say that the lagrangian has
a continuous symmetry. From eq. (22.7), we then have 0,j* = 0 whenever
the field equations are satisfied, and we say that the Noether current is
conserved. In terms of its space and time components, this means that

20@ﬁ+v&@ﬂ:0. (22.8)

ot

If we interpret jO(z) as a charge density, and j(z) as the corresponding cur-

rent density, then eq. (22.8) expresses the local conservation of this charge.
Let us see an example of this. Consider a theory of a complex scalar

field with lagrangian

L=—-0"p'0,0 —mPplp — IA(pTe)? . (22.9)

We can also rewrite £ in terms of two real scalar fields by setting ¢ =
(01 +ip2)/V2 to get

L= —10"010,01 — 10 020,00 — Am? (0 + 03) — EA(PT +¢3)% . (22.10)

In the form of eq. (22.9), it is obvious that £ is left invariant by the trans-
formation

() (22.11)
where « is a real number. This is called a U(1) transformation, a transfor-
mation by a unitary 1x 1 matrix. In terms of ¢ and s, this transformation

reads .
(gpﬂx)) ~ < oS o Slnoz> <<,01(:17)> ' (22.19)
wa(z) —sina  cos« pa(z)

If we think of (¢1,¢2) as a two-component vector, then eq. (22.12) is just
a rotation of this vector in the plane by angle a. Eq.(22.12) is called an

p(z) — e
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S0O(2) transformation, a transformation by an orthogonal 2 x 2 matrix with
a special value of the determinant (namely +1, as opposed to —1, the only
other possibility for an orthogonal matrix). We have learned that a U(1)
transformation can be mapped into an SO(2) transformation.

The infinitesimal form of eq. (22.11) is

p(x) = o(z) —iap(z) ,
cpT(a;) — ng(a:) + iacp*(x) , (22.13)

where « is now infinitesimal. In eq. (22.6), we should treat ¢ and ¢! as in-
dependent fields. It is also conventional to scale the infinitesimal parameter
out of the current, so that we have

oL 50+ oL 5t
0(0up) A(Opuel)

= (=0l (—iagp) + (—0"p)(+iayp')

= aIm(@Tg‘w) , (22.14)

ajt =

where AJ"B = A9"B — (0*A)B. Canceling out «, we find that the Noether

current is

j* = Im(p! o) . (22.15)
We can also repeat this exercise using the SO(2) form of the trans-
formation. For infinitesimal «, eq.(22.12) becomes dp; = +aps and
dpo = —apy. Then the Noether current is given by
. oL oL
ajt = ==y +

R
= (—0"p1)(Fagpz) + (=0 p2)(—apr)
= a(p10Mpy) (22.16)

which is (hearteningly) equivalent to eq. (22.14).
Let us define the Noether charge

Q= /d3xj0(x) = /d?’x Im(p'80p) | (22.17)
and investigate its properties. If we integrate eq. (22.8) over d°z, use Gauss’s

law to write the volume integral of V-j as a surface integral, and assume
that the boundary conditions at infinity fix j(x) = 0 on that surface, then
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we find that @ is constant in time. To get a better idea of the physical
implications of this, let us rewrite ) using the free-field expansions

= [k [at)e 1 5 oeie]
_ / ks [b()e™ + a* (k)e ] (22.18)

We have written a*(k) and b*(k) rather than af(k) and bf(k) because so
far our discussion has been about the classical field theory. In a theory
with interactions, these formulae (and their first time derivatives) are valid
at any one particular time (say, t = —o0). Then, we can plug them into
eq. (22.17), and find (after some manipulation similar to what we did for
the hamiltonian in section 3)

Q= / dk [a — ()b (K)] . (22.19)

In the quantum theory, this becomes an operator that counts the number
of a particles minus the number of b particles. This number is then time-
independent, and so the scattering amplitude vanishes identically for any
process that changes the value of (). This can be seen directly from the
Feynman rules, which conserve @) at every vertex.

To better understand the implications of the Noether current in the
quantum theory, we begin by considering the path integral,

J) = /D(p el [d'y Jupa] (22.20)

The value of Z(J) is unchanged if we make the change of variable p,(z) —
©a(z) + dpq(x), with dp,(z) an arbitrary infinitesimal shift that (we as-
sume) leaves the measure Dy invariant. Thus we have

0=62(J)

= /Dgﬁe i[S+ [dYy Jyey) /d4 (5cpa @ + Ja(x)> dpa(z) . (22.21)

We can now take n functional derivatives with respect to J,(z;), and then
set J =0, to get

0—/D<,pels/d

+ Z Vaq(1) Saa; 54(x—a;j) e cpan(a;n)] dpq(x) . (22.22)

SDa1( 1)+ Pan(Tn)

5%
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Since ¢, () is arbitrary, we can drop it (and the integral over d*z). Then,
since the path integral computes the vacuum expectation value of the time-
ordered product, we have

0 z‘wﬁm GanlE1) - PanlEn)|0)

+ > (0| Ta,(1) - - - baa, 0 (x—25) . .. Pa,(x)[0) . (22.23)
j=1

These are the Schwinger-Dyson equations for the theory.
To get a feel for them, let us look at free-field theory for a single real
scalar field, for which 6S/dp(x) = (02 — m?)p(x). For n = 1 we get

(=02 + m?)i{0| Tp(a)p(21)]0) = 6" (1) . (22.24)

That the Klein-Gordon wave operator should sit outside the time-ordered
product (and hence act on the time-ordering step functions) is clear from
the path integral form of eq. (22.22). We see from eq. (22.24) that the free-
field propagator, A(z—z1) = i(0|Te(x)p(x1)|0), is a Green’s function for
the Klein-Gordon wave operator, a fact we first learned in section 8.

More generally, we can write

5S
<0|TW Var(T1) - an(xn)]|0) =0 for x#x1  p. (22.25)

We see that the classical equation of motion is satisfied by a quantum field
inside a correlation function, as long as its spacetime argument differs from
those of all the other fields. When this is not the case, we get extra contact
terms.

Let us now consider a theory that has a continuous symmetry and a
corresponding Noether current. Take eq. (22.22), and set dp4(z) to be the
infinitesimal change in ¢, (z) that results in 0£(z) = 0. Now sum over the
index a, and use eq. (22.7). The result is the Ward (or Ward-Takahashi)
identity

0 = 0, (0|T5" (@) par(1) - - - Pan(wn)]0)
+i > (0|Tqy(w1) ... 6pa)(@)8* (z—25) ... Par(2n)|0) . (22.26)
j=1

Thus, conservation of the Noether current holds in the quantum theory,
with the current inside a correlation function, up to contact terms with a
specific form that depends on the details of the infinitesimal transformation
that leaves £ invariant.
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The Noether current is also useful in a slightly more general context.
Suppose we have a transformation of the fields such that 6£(z) is not zero,
but instead is a total divergence: 0L(x) = 0, K*(x) for some K*(zx). Then
there is still a conserved current, now given by

g OL(z)
T 5 Buata)
An example of this is provided by the symmetry of spacetime translations.
We transform the fields via ¢q(x) — @q(x+a), where a* is a constant four-
vector. The infinitesimal version of this is ¢, () — wu () + a”0yp4(x), and
so we have dp,(x) = a0y (x). Under this transformation, we obviously
have L(z) — L(z + a), and so 0L(z) = a0, L(z) = 0,(a”L(x)). Thus in
this case K" (x) = a”L(x), and the conserved current is

0pq(r) — KM (x) . (22.27)

OL(x)
M) = =———F—a"0,p.(x) — a"L(x
= B Bypatay ) )
= —a,T"(x) , (22.28)
where we have defined the stress-energy or energy-momentum tensor
OL(x)
T (z) = — ————F— 0"pa(x) + g"L(x) . 22.29
)= ~ ooy P0ele) + 9L (22.20)

For a renormalizable theory of a set of real scalar fields ¢, (z), the
lagrangian takes the form

L =—30"pa0u0a — V(p), (22.30)
where V() is a polynomial in the ¢,’s. In this case
TH = 9lpadpq + g™ L . (22.31)
In particular,
T = 12 + 2(Vpa)* + V() (22.32)

where II, = 9yp, is the canonical momentum conjugate to the field ¢,.
We recognize T as the hamiltonian density H that corresponds to the
lagrangian density of eq. (22.30). Then, by Lorentz symmetry, 7% must be
the corresponding momentum density. We have

TY = 8000, = —,Vig, . (22.33)

To check that this is a sensible result, we use the free-field expansion for
a set of real scalar fields [the same as eq. (22.18) but with b(k) = a(k) for
each field]; then we find that the momentum operator is given by

pi— / P T(2) = / dk ¥ af (K)a, (k) | (22.34)
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which is just what we would expect. We therefore identify the energy-
momentum four-vector as

PH = / d>z T(x) . (22.35)

Recall that in section 2 we defined the spacetime translation operator
as
T(a) = exp(—iP"a,) , (22.36)

and announced that it had the property that
T(a)" pa(2)T(a) = palz — a) . (22.37)

Now that we have an explicit formula for P¥, we can check this. This is
easiest to do for infinitesimal a; then eq. (22.37) becomes

[pa(2), P*] = ;0" pa(2) . (22.38)

This can indeed be verified by using the canonical commutation relations
for ¢, (z) and I, (z).

One more symmetry we can investigate is Lorentz symmetry. If we make
an infinitesimal Lorentz transformation, we have ,(x) — ¢q(x + dw- ),
where dw-x is shorthand for dw”,z”. This case is very similar to that of
spacetime translations; the only difference is that the translation parameter
a” is now = dependent, a” — dw” ,x”. The resulting conserved current is

MHPP(g) = 2" THP(x) — 2PTH (x) (22.39)

and it obeys 0,M"P = 0, with the derivative contracted with the first
index. MM? is antisymmetric on its second two indices; this comes about
because dw"? is antisymmetric. The conserved charges associated with this
current are

MYP = / d3x M"P(z) (22.40)

and these are the generators of the Lorentz group that were introduced
in section 2. Again, we can use the canonical commutation relations for
the fields to check that the Lorentz generators have the right commutation
relations, both with the fields and with each other.

REFERENCE NOTES

The path-integral approach to Ward identities is treated in more de-

tail in Peskin € Schroeder. An operator-based derivation can be found in
Weinberg 1.
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PROBLEMS

22.1) For the Noether current of eq. (22.6), and assuming that dp, does not
involve time derivatives, use the canonical commutation relations to
show that

[pa, Q] = i6pq , (22.41)
where @ is the Noether charge.

22.2) Use the canonical commutation relations to verify eq. (22.38).

22.3) a) With T* given by eq. (22.31), compute the equal-time (z° = )
commutators [T9%(xz), T%(y)], [T%(x), T®(y)], and [T%(x), T%(y)].

b) Use your results to verify egs. (2.17), (2.19), and (2.20).
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23  DISCRETE SYMMETRIES: P, T, C, AND Z
PREREQUISITE: 22
In section 2, we studied the proper orthochronous Lorentz transformations,

which are continuously connected to the identity. In this section, we will
consider the effects of parity,

+1
pr, — (P, = o . (23.1)
-1
and time reversal,
—1
TH, = (T, = +1+1 . (23.2)
+1

We will also consider certain other discrete transformations such as charge
conjugation.

Recall from section 2 that for every proper orthochronous Lorentz trans-
formation A*, there is an associated unitary operator U(A) with the prop-
erty that

U(A) " p(@)U(A) = p(A"2) . (23.3)

Thus for parity and time-reversal, we expect that there are corresponding
unitary operators

P=U(P), (23.
T =U(T), (23.5)
such that
P lo(z)P =

o(Px) , (23.6)
T ()T = o(Tx) . (23.7)

There is, however, an extra possible complication. Since the P and
7 matrices are their own inverses, a second parity or time-reversal trans-
formation should transform all observables back into themselves. Using
eqs. (23.6) and (23.7), along with P? =1 and 7?2 = 1, we see that

P~ 2p(z)P
T 2p(x)T

2 (), (23.8)
2 .

@
p(x) (23.9)
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Since ¢(z) is a hermitian operator, it is in principle an observable, and so
egs. (23.8) and (23.9) are just what we expect. However, another possibility
for the parity transformation of the field, different from egs. (23.6) and
(23.7) but nevertheless consistent with egs. (23.8) and (23.9), is

P lo(x)P = —p(Pzx), (23.10)
T o(x)T = —p(Tx) . (23.11)

This possible extra minus sign cannot arise for proper orthochronous Lorentz
transformations, because they are continuously connected to the identity,
and for the identity transformation (that is, no transformation at all), we
must obviously have the plus sign.

If the minus sign appears on the right-hand side, we say that the field
is odd under parity (or time reversal). If a scalar field is odd under parity,
we sometimes say that it is a pseudoscalar.!

So, how do we know which is right, egs. (23.6) and (23.7), or egs. (23.10)
and (23.11)7 The general answer is that we get to choose, but there is a
key principle to guide our choice: if at all possible, we want to define P
and T so that the lagrangian density is even,

P 'L(x)P = +L(Px), (23.12)
T'L(x)T = +L(Tx) . (23.13)

Then, after we integrate over d*z to get the action S, the action will be
invariant. This means that parity and time-reversal are conserved.

For theories with spin-zero fields only, it is clear that the choice of
egs. (23.6) and (23.7) always leads to egs. (23.12) and (23.13), and so there is
no reason to flirt with egs. (23.10) and (23.11). For theories that also include
spin-one-half fields, certain scalar bilinears in these fields are necessarily odd
under parity and time reversal, as we will see in section 40. If a scalar field
couples to such a bilinear, then egs. (23.12) and (23.13) will hold if and only
if we choose egs. (23.10) and (23.11) for that scalar, and so that is what we
must do.

There is one more interesting fact about the time-reversal operator 7T
it is antiunitary, rather than unitary. Antiunitary means that T—1iT = —i.

To see why this must be the case, consider a Lorentz transformation of
the energy-momentum four-vector,

U(A)"LPHU(A) = A*, PV . (23.14)

Tt is still a scalar under proper orthochronous Lorentz transformations; that is,
eq. (23.3) still holds. Thus the appellation scalar often means eq.(23.3), and either
eq. (23.6) or eq.(23.10), and that is how we will use the term.
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For parity and time-reversal, we therefore expect

P7lprp = PP (23.15)
T-'PHT = TH,PY . (23.16)

In particular, for 1 = 0, we expect P"'HP = +H and T"'HT = —H.
The first of these is fine; it says the hamiltonian is invariant under parity,
which is what we want.? However, eq. (23.16) is a disaster: it says that the
hamiltonian is invariant under time-reversal if and only if H = —H, which
is possible only if H = 0.

Can we just put an extra minus sign on the right-hand side of eq. (23.16),
as we did for eq.(23.11)7 The answer is no. We constructed P* explicitly
in terms of the fields in section 22, and it is easy to check that choosing
eq. (23.11) for the fields does not yield an extra minus sign in eq. (23.16)
for the energy-momentum four-vector.

Let us reconsider the origin of eq. (23.14). We first recall that the space-
time translation operator

T(a) = exp(—iP-a) . (23.17)

(which should not be confused with the time-reversal operator T') trans-
forms a scalar field according to

T(a) p(2)T(a) = p(z — a) . (23.18)

The spacetime translation operator is a scalar with a spacetime coordinate
as a label; by analogy with eq. (23.3), we should have

UM T (a)UA) = T(A ta) . (23.19)
Now, treat a* as infinitesimal in eq. (23.19) to get
UN) I —ia,P"YUA) = T —i(A),"a,P”
=1 —iAN')a,P" . (23.20)
For time-reversal, this becomes
T - ia,P")T = I —iT",a,P" . (23.21)

If we now identify the coefficients of —ia, on each side, we get eq. (23.16),
which is bad. In order to get the extra minus sign that we need, we must
impose the antiunitary condition

74T = —i. (23.22)

2When spin-one-half fields are present, it may be that no operator exists that satisfies
either eq.(23.6) or eq.(23.10) and also eq.(23.15); in this case we say that parity is
explicitly broken.
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We then find
TP = —TH, P (23.23)

instead of eq.(23.16). This yields T-'HT = +H, which is the correct
expression of time-reversal invariance.

We turn now to other unitary operators that change the signs of scalar
fields, but do nothing to their spacetime arguments. Suppose we have a
theory with real scalar fields ¢,(x), and a unitary operator Z that obeys

Z_l@a(x)z = NaPa(T) , (23.24)

where 7, is either +1 or —1 for each field. We will call Z a Z operator, be-
cause Zo is the additive group of the integers modulo 2, which is equivalent
to the multiplicative group of +1 and —1. This also implies that Z? = 1,
and so Z~! = Z. (For theories with spin-zero fields only, the same is also
true of P and T', but things are more subtle for higher spin, as we will see
in Part II.)

Consider the theory of a complex scalar field ¢ = (¢ + ip2)/v/2 that
was introduced in section 22, with lagrangian

L= —d"pd 1 — m? olp— 1/\(90 ©)? (23.25)
= —30"010,01 — 50"P20,pa — 5P (PF + 93) — 1A #T + 93)%. (23.26)

In the form of eq. (23.25), £ is obviously invariant under the U(1) transfor-
mation

o(x) — e “p(x) . (23.27)

In the form of eq.(23.26), £ is obviously invariant under the equivalent
SO(2) transformation,

e1(z) cosa  sina v1(x)
— . (23.28)
a(x) —sina cosa /) \ p2(x)
However, it is also obvious that £ has an additional discrete symmetry,

o(z) < ¢l () (23.29)

in the form of eq. (23.25), or equivalently

¢1(2) +1 0 [pi(z)
< ) — < . (23.30)
p2(x) 0 -1/ \¢2(2)
in the form of eq.(23.26). This discrete symmetry is called charge conju-

gation. It always occurs as a companion to a continuous U(1) symmetry.
In terms of the two real fields, it enlarges the group from SO(2) (the group
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of 2 x 2 orthogonal matrices with determinant +1) to O(2) (the group of
2 x 2 orthogonal matrices).

We can implement charge conjugation by means of a particular Zy op-
erator C' that obeys

Clo(x)C = ¢l (2) | (23.31)
or equivalently
C7 o1 (2)C = +oi (), (23.32)
Cla(x)C = —pa(x) . (23.33)
We then have
CL(z)C = L(z), (23.34)

and so charge conjugation is a symmetry of the theory. Physically, it implies
that the scattering amplitudes are unchanged if we exchange all the a-type
particles (which have charge +1) with all the b-type particles (which have
charge —1). This means, in particular, that the a and b particles must have
exactly the same mass. We say that b is a’s antiparticle.

More generally, we can also have Zs symmetries that are not related
to antiparticles. Consider, for example, ¢* theory, where ¢ is a real scalar
field with lagrangian

L= _%au(pau(p — %m2902 - i)\gpﬂ‘ . (23.35)
If we define the Zy operator Z via
27 p(2)Z = (@) | (23.36)

then £ is obviously invariant. We therefore have Z~'HZ = H, or equiva-
lently [Z, H] = 0, where H is the hamiltonian. If we assume that (as usual)
the ground state is unique, then, since Z commutes with H, the ground
state must also be an eigenstate of Z. We can fix the phase of Z [which is
undetermined by eq. (23.36)] via

Z|0) = Z710) = +0) . (23.37)
Then, using egs. (23.36) and (23.37), we have

(Ole(2)[0) = (012Z p(x)2Z1|0)
= —(0[(2)[0) . (23.38)

Since (0|¢(x)|0) is equal to minus itself, it must be zero. Thus, as long as
the ground state is unique, the Zy symmetry of ¢? theory guarantees that
the field has zero vacuum expectation value. We therefore do not need to
enforce this condition with a counterterm Y, as we did in ¢® theory. (The
assumption of a unique ground state does not necessarily hold, however, as
we will see in section 30.)
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24 NONABELIAN SYMMETRIES

PREREQUISITE: 22

Consider the theory (introduced in section 22) of a two real scalar fields ¢,
and o with

L= —50"010up1 — 50" 020 pa — §m* (] + 03) — 15 A (T +93)° . (24.1)
We can generalize this to the case of N real scalar fields ; with
L= —10"0;0up; — EmPpip; — N\ pipi)? (24.2)

where a repeated index is summed. This lagrangian is clearly invariant
under the SO(N) transformation

pi(z) = Rijpj(z) (24.3)

where R is an orthogonal matrix with a positive determinant: RT = R™!,
det R = +1. This largrangian is also clearly invariant under the Zs trans-
formation ¢;(z) — —p;(x), which enlarges SO(N) to O(N); see section
23. However, in this section we will be concerned only with the continuous
SO(N) part of the symmetry.

Next we will need some results from group theory. Consider an infinites-
imal SO(N) transformation,

Rij = 0;5 + 05 + 0(92) . (24.4)

Orthogonality of R;; implies that 0;; is real and antisymmetric. It is con-
venient to express 6;; in terms of a basis set of hermitian matrices (7%);;.
The index a runs from 1 to $N(N—1), the number of linearly independent,
hermitian, antisymmetric, N x N matrices. We can, for example, choose
each T to have a single nonzero entry —i above the main diagonal, and
a corresponding +i below the main diagonal. These matrices obey the
normalization condition

Te(T9T?) = 26% . (24.5)
In terms of them, we can write
O = —i0°(T) i , (24.6)

where 6% is a set of %N (N—1) real, infinitesimal parameters.
The T%s are the generator matrices of SO(NN). The product of any two
SO(N) transformations is another SO(NN) transformation; this implies (see
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problem 24.2) that the commutator of any two generator matrices must be
a linear combination of generator matrices,

(7%, T = ifebere (24.7)

The numerical factors f®¢ are the structure coefficients of the group, and
eq. (24.7) specifies its Lie algebra. If fo%¢ = 0, the group is abelian. Other-
wise, it is nonabelian. Thus, U(1) and SO(2) are abelian groups (since they
each have only one generator that obviously must commute with itself),
and SO(N) for N > 3 is nonabelian.

If we multiply eq.(24.7) on the right by T? take the trace, and use
eq. (24.5), we find

o = i (e, 7)) (24.8)

Using the cyclic property of the trace, we find that f*¢ must be completely

antisymmetric. Taking the complex conjugate of eq. (24.8) (and remember-

ing that the T%’s are hermitian matrices), we find that f*¢ must be real.
The simplest nonabelian group is SO(3). In this case, we can choose

(T")ij = —ie® | where €% is the completely antisymmetric Levi-Civita,
symbol, with ¢'?3 = +1. The commutation relations become
(7%, T = ieeTe (24.9)

That is, the structure coefficients of SO(3) are given by f¢ = g,
Consider now a theory with N complez scalar fields ¢;, and a lagrangian

L= 8" 8,p0i — m*ploi — I\plpi)? (24.10)

where a repeated index is summed. This lagrangian is clearly invariant
under the U(N) transformation

vi(x) — Uipj(x) , (24.11)

where U is a unitary matrix: UT = U~'. We can write Ui = e‘ieﬁij,
where 0 is a real parameter and det ﬁij =+1; Ij}j is called a special unitary
matrix. Clearly the product of two special unitary matrices is another
special unitary matrix; the N x N special unitary matrices form the group
SU(N). The group U(N) is the direct product of the group U(1) and the
group SU(N); we write U(N) = U(1) x SU(N).

Consider an infinitesimal SU(N) transformation,

Uij = 6 — i04(T%)i; + O(6?) (24.12)

where 0 is a set of real, infinitesimal parameters. Unitarity of U implies
that the generator matrices T® are hermitian, and detU = +1 implies



24: Nonabelian Symmetries 159

that each T* is traceless. (This follows from the general matrix formula
Indet A = Trln A.) The index a runs from 1 to N2—1, the number of lin-
early independent, hermitian, traceless, N x N matrices. We can choose
these matrices to obey the normalization condition of eq. (24.5). For SU(2),
the generators can be chosen to be the Pauli matrices; the structure coeffi-
cients of SU(2) then turn out to be f%¢ = 2¢%%¢, the same as those of SO(3),
up to an irrelevant overall factor [which could be removed by changing the
numerical factor on right-hand side of eq. (24.5) from 2 to 3].

For SU(N), we can choose the T%s in the following way. First, there
are the SO(IV) generators, with one —i above the main diagonal a corre-
sponding +:¢ below; there are %N (N—1) of these. Next, we get another set
by putting one +1 above the main diagonal and a corresponding +1 below;
there are %N (N—1) of these. Finally, there are diagonal matrices with n
1’s along the main diagonal, followed a single entry —n, followed by zeros
[times an overall normalization constant to enforce eq. (24.5)]; the are N—1
of these. The total is N2—1, as required.

However, if we examine the lagrangian of eq. (24.10) more closely, we
find that it is actually invariant under a larger symmetry group, namely
SO(2N). To see this, write each complex scalar field in terms of two real
scalar fields, ¢; = (p;1 + ip;2)/v2. Then

ploj =Ll + o+ ..+ dn + oha) - (24.13)
Thus, we have 2N real scalar fields that enter £ symmetrically, and so
the actual symmetry group of eq. (24.10) is SO(2N), rather than just the
obvious subgroup U(N).

We will, however, meet the SU(IN) groups again in Parts II and III,
where they will play a more important role.

PROBLEMS

24.1) Show that 6;; in eq. (24.4) must be antisymmetric if R is orthogonal.

24.2) By considering the SO(N) transformation R'~"'R™'R'R, where R
and R’ are independent infinitesimal SO(N) transformations, prove
eq. (24.7).

24.3) a) Find the Noether current j% for the transformation of eq. (24.6).
b) Show that [p;, Q%] = (T)i;j;, where Q% is the Noether charge.

c¢) Use this result, eq. (24.7), and the Jacobi identity (see problem 2.8)
to show that [Q?, Q°] = if®eQ°.
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24.4) The elements of the group SO(NV) can be defined as N x N matrices
R that satisfy

The elements of the symplectic group Sp(2N) can be defined as 2N x
2N matrices S that satisfy

Siir Sy = nij (24.15)
where the symplectic metric n;; is antisymmetric, 7;; = —nj;, and
squares to minus the identity: 72 = —I. One way to write 7 is

(! 24.16
n—(_I 0>, (24.16)

where [ is the NV x N identity matrix. Find the number of generators
of Sp(2N).
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25 UNSTABLE PARTICLES AND RESONANCES

PREREQUISITE: 14
Consider a theory of two real scalar fields, ¢ and y, with lagrangian
L= —%a“cpaucp — %micﬁ — %8“)(8,0( — %mixz + %gcpxz + %hg@g . (25.1)

This theory is renormalizable in six dimensions, where g and h are dimen-
sionless coupling constants.

Let us assume that my, > 2m,. Then it is kinematically possible for
the ¢ particle to decay into two y particles. The amplitude for this process
is given at tree level by the Feynman diagram of fig. (25.1), and is simply
T = g. We can also choose to define g as the value of the exact ¢x? vertex

function V(k, k{, k) when all three particles are on shell: k* = —m2,
ki? = k4* = —m?2. This implies that

T=g (25.2)
exactly.

According to the formulae of section 11, the differential decay rate (in
the rest frame of the initial ¢ particle) is

1
dl' = —— dLIPS, |T|?, (25.3)
2my,

where dLIPSs is the Lorentz invariant phase space differential for two out-
going particles, introduced in section 11. We must make a slight adaptation
for six dimensions:

dLIPS, = (2m)06% (K} +-ky—k) dk'y dk) . (25.4)
Here k = (my, 0) is the energy-momentum of the decaying particle, and

d%

k= Gryaw

(25.5)
is the Lorentz-invariant phase-space differential for one particle. Recall that
we can also write it as

dSk

dk = oo 2o (k% +m?2) 0(k°) (25.6)

where 0(z) is the unit step function. Performing the integral over k" turns
eq. (25.6) into eq. (25.5).
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Figure 25.1: The tree-level Feynman diagram for the decay of a ¢ particle
(dashed line) into two x particles (solid lines).

Repeating for six dimensions what we did in section 11 for four dimen-
sions, we find
[y

ds) , (25.7)
where [K)j| = %(mfo - 4mi)1/ 2 is the magnitude of the spatial momentum
of one of the outgoing particles. We can now plug this into eq. (25.3), and
use [dQ = Q5 = 21%/2/T'(3) = 872, We also need to divide by a symmetry
factor of two, due to the presence of two identical particles in the final state.
The result is

1 1
— . — [ dLIPS, |T|? 25.
3 g | LIPS T (25.8)

= Lra(l - 4mi/mi)3/2 My , (25.9)

where a = g2 /(47)3.

However, as we discussed in section 11, we have a conceptual problem.
According to our development of the LSZ formula in section 5, each incom-
ing and outgoing particle should correspond to a single-particle state that
is an exact eigenstate of the exact hamiltonian. This is clearly not the case
for a particle that can decay.

Let us, then, compute something else instead: the correction to the ¢
propagator from a loop of x particles, as shown in fig. (25.2). The diagram
is the same as the one we already analyzed in section 14, except that the
internal propagators contain m, instead of my. (There is also a contri-
bution from a loop of ¢ particles, but we can ignore it if we assume that
h < g.) We have

1
TI(k2) = %a/ de DInD — A'K? — B'm? (25.10)
0

where
D = z(1—z)k* + mi — i€, (25.11)
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Figure 25.2: A loop of x particles correcting the ¢ propagator.

and A’ and B’ are the finite counterterm coefficients that remain after the
infinities have been absorbed. We now try to fix A’ and B’ by imposing
the usual on-shell conditions H(—m?o) =0 and IT' (—m?p) =0.

But, we have a problem. For k? = —mi and my, > 2m,, D is negative
for part of the range of x. Therefore In D has an imaginary part. This
imaginary part cannot be canceled by A’ and B’, since A’ and B’ must be
real: they are coefficients of hermitian operators in the lagrangian. The
best we can do is ReIl(—m?) = 0 and RelIl'(—m2) = 0. Imposing these

gives
1
T(k2) = %Q/O dz DIn(D/|Dy|) — Sa(k? +m2) (25.12)

where
Dy = —z(1—z)m? +m}, . (25.13)

Now let us compute the imaginary part of II(k?). This arises from the
integration range x_ < x < x4, where z4 = %j: %(1 + mi/kzz)l/2 are
the roots of D = 0 when k? < —4m§<. In this range, ImIn D = —in; the
minus sign arises because, according to eq. (25.11), D has a small negative
imaginary part. Now we have

2 1 o
ImII(k*) = —iwa/ dx D

= —Sma(l+ 4mi/kz2)3/2 k2 (25.14)
when k% < —4mi. Evaluating eq. (25.14) at k? = —m?p, we get
ImII(—m2) = Hra(l — 4m2 /m2)*/? m? . (25.15)

From this and eq. (25.9), we see that
ImII(—m2) = myT . (25.16)

This is not an accident. Instead, it is a general rule. We will argue
this in two ways: first, from the mathematics of Feynman diagrams, and
second, from the physics of resonant scattering in quantum mechanics.
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We begin with the mathematics of Feynman diagrams. Return to the
diagrammatic expression for IT1(k?), before we evaluated any of the integrals:

[ e
1) = -4is” | )t s 27 (+ah

1 1
X
03 +m?2 —ie 13+ m2 —ie

— (AK® + Bm?) . (25.17)

Here, for later convenience, we have assigned the internal lines momenta
¢1 and ¢, and explicitly included the momentum-conserving delta function
that fixes one of them. We can take the imaginary part of I1(k?) by using

the identity
1

T — 1€

= P% +imd(z) , (25.18)

where P means the principal part. We then get, in a shorthand notation,
ImI(k?) = — L’ /(P1P2 —n%16) (25.19)

Next, we notice that the integral in eq. (25.17) is the Fourier transform
of [A(z—y)]?, where

dSk eik(m—y)

is the Feynman propagator. Recall (from problem 8.5) that we can get the
retarded or advanced propagator (rather than the Feynman propagator)
by replacing the € in eq. (25.20) with, respectively, —se or +se, where s =
sign(kY). Therefore, in eq.(25.19), replacing d; with —s;8; and o with
458909 yields an integral that is the real part of the Fourier transform of
Avet(x—y)Auav(z—y). But this product is zero, because the first factor
vanishes when 2 > 4°, and the second when z° < 3°. So we can subtract
the modified integrand from the original without changing the value of the
integral. Thus we have

ImH(kz2) = %9271'2/(1 + 8182)5152 . (25.21)

The factor of 1+ 5152 vanishes if £ and £3 have opposite signs, and equals 2
if they have the same sign. Because the delta function in eq. (25.17) enforces
0+ 03 = k9 and k° = my, is positive, both £ and ¢J must be positive.
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So we can replace the factor of 1 + sy1s9 in eq.(25.21) with 26(£9)6(¢9).
Rearranging the numerical factors, we have
d%,  d%
2y _ 1.2 1 2 6 56 _
ImTI(K?) = 1g / 5 g 2k
x 2m6 (07 +m3)0(07) 2m5(5 + m3)0(63) . (25.22)

If we now set k? = —mi, use eqgs. (25.4) and (25.6), and recall that 7 = ¢

is the decay amplitude, we can rewrite eq. (25.22) as
T TI(—m2) = L / dLIPS, | T2 . (25.23)

Comparing eqs. (25.8) and (25.23), we see that we indeed have
ImII(—m2) = myI . (25.24)

This relation persists at higher orders in perturbation theory. Our anal-
ysis can be generalized to give the Cutkosky rules for computing the imag-
inary part of any Feynman diagram, but this is beyond the scope of our
current interest.

To get a more physical understanding of this result, recall that in non-
relativistic quantum mechanics, a metastable state with energy Ey and
angular momentum quantum number ¢ shows up as a resonance in the
partial-wave scattering amplitude,

1
E)~v —M— . 25.2
If we imagine convolving this amplitude with a wave packet ¢(E)e "Et, we
will find a time dependence
1 - ,
t) ~ [ dE —————p(E)eF!
V() /d F-m B
~ e E0t=T2 (25.26)

Therefore |¢(t)]? ~ e and we identify T' as the inverse lifetime of the
metastable state.

In the relativistic case, consider the scattering process xx — xx. The
contributing diagrams from the effective action are those of fig.(20.1),
where the exact internal propagator can be either ¢ or x. Suppose that
the center-of-mass energy squared s is close to m?o. Since the ¢ progator
has a pole near s = m?p, s-channel ¢ exchange, shown in fig. (25.3), makes

the dominant contribution to the yyx scattering amplitude. We then have

2

g
T ~ . 25.27
—s+m2 —TI(—s) ( )
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Figure 25.3: For s near mi, the dominant contribution to yy scattering is
s-channel ¢ exchange.

Here we have used the fact that the exact @xx vertex has the value g when
all three particles are on-shell. Now let us write

s=(my+e)?~ mfo + 2mye , (25.28)

where ¢ < m,, is the amount of energy by which our incoming particles are
off resonance. We find

~ —g*/2my,
e+ TI(=m2)/2m,

(25.29)

Recalling that Re H(—m?p) = 0, and comparing with eq. (25.25), we see that
we should make the identification of eq. (25.24).

REFERENCE NOTES

The Cutkosky rules are discussed in more detail in Peskin € Schroeder.
More details on resonances can be found in Weinberg I.
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26 INFRARED DIVERGENCES

PREREQUISITE: 20

In section 20, we computed the pp — @@ scattering amplitude in 3 theory
in six dimensions in the high-energy limit (s, ||, and |u| all much larger
than m?). We found that

T =Ty |1 - Ha(in(s/m?) + 0(m?)) + 0(a?)] , (26.1)

where Ty = —¢?(s™! +t~! + u™!) is the tree-level result, and the O(m°)
term includes everything without a large logarithm that blows up in the
limit m — 0.1

Suppose we are interested in the limit of massless particles. The large
log is then problematic, since it blows up in this limit. What does this
mean?

It means we have made a mistake. Actually, two mistakes. In this
section, we will remedy one of them.

Throughout the physical sciences, it is necessary to make various ide-
alizations in order to make progress. (Recall the “massless springs” and
“frictionless planes” of freshman mechanics.) Sometimes these idealiza-
tions can lead us into trouble, and that is one of the things that has gone
wrong here.

We have assumed that we can isolate individual particles. The reasoning
behind this was explained in section 5, and it depends on the existence of an
energy gap between the one-particle states and the multiparticle continuum.
However, this gap vanishes if the theory includes massless particles. In this
case, it is possible that the scattering process involved the creation of some
extra very low energy (or soft) particles that escaped detection. Or, there
may have been some extra soft particles hiding in the initial state that
discreetly participated in the scattering process. Or, what was seen as a
single high-energy particle may actually have been two or more particles
that were moving colinearly and sharing the energy.

Let us, then, correct our idealization of a perfect detector and account
for these possibilities. We will work with ¢? theory, initially in d spacetime
dimensions.

Let 7 be the amplitude for some scattering process in ¢ theory. Now
consider the possibility that one of the outgoing particles in this process
splits into two, as shown in fig. (26.1). The amplitude for this new process

1n writing 7 in this form, we have traded factors of Int and In u for In s by first using
Int = Ins 4 In(t/s), and then hiding the In(t/s) terms in the O(m°) catchall.
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Figure 26.1: An outgoing particle splits into two. The gray circle stands
for the sum of all diagrams contributing to the original amplitude 7.

is given in terms of 7 by

—1

Tsplit =g m T,

(26.2)
where k = k1 + ko, and k1 and ko are the on-shell four-momenta of the
two particles produced by the split. (For notational convenience, we drop
our usual primes on the outgoing momenta.) The key point is this: in the
massless limit, it is possible for 1/(k? + m?) to diverge.

To understand the physical consequences of this possibility, we should
compute an appropriate cross-section. To get the cross section for the
original process (without the split), we multiply |7|? by dk (as well as by
similar differentials for other outgoing particles, and by an overall energy-
momentum delta function). For the process with the split, we multiply
|Topiit|> by %dkldkg instead of dk. (The factor of one-half is for counting
of identical particles.) If we assume that (due to some imperfection) our
detector cannot tell whether or not the one particle actually split into two,
then we should (according to the usual rules of quantum mechanics) add
the probabilities for the two events, which are distinguishable in principle.
We can therefore define an effectively observable squared-amplitude via

T \2s die = [T dks + | Topie|* Sdkrdka + ... . (26.3)

Here the ellipses stand for all other similar processes involving emission of
one or more extra particles in the final state, or absorption of one or more
extra particles in the initial state.

We can simplify eq. (26.3) by including a factor of

1= (2m)% " 2w 6% (ky +ko—k) dk (26.4)
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in the second term. Now all terms in eq. (26.3) include a factor of cﬁ:, SO
we can drop it. Then, using eq. (26.2), we get

g2

TP = TP 14+ —F—
| |0bs | | +(k2+m2)2(

2m) %1 20 6% (kg +ko—k) Ldkidks + .. | .

(26.5)
Now we come to the point: in the massless limit, the phase space integral
in the second term in eq. (26.5) can diverge. This is because, for m = 0,

k72 = (k’l + k’g)2 = —4wiwsy Sin2(9/2) , (26.6)

where 6 is the angle between the spatial momenta k; and ko, and wy o =
|ki2|. Also, for m =0,

dkydks ~ (w83 dwy) (WE3 duw,) (sin®=3 6 db) . (26.7)
Therefore, for small 6,

(/1\];1&7?2 dwl dWQ db
22 "~ W2 G5 T

(26.8)

Thus the integral over each w diverges at the low end for d < 4, and the
integral over 6 diverges at the low end for d < 6. These divergent integrals
would be cut off (and rendered finite) if we kept the mass m nonzero, as
we will see below.

Our discussion leads us to expect that the m — 0 divergence in the
second term of eq. (26.5) should cancel the m — 0 divergence in the loop
correction to |7'|2. We will now see how this works (or fails to work) in detail
for the familiar case of two-particle scattering in six spacetime dimensions,
where 7 is given by eq.(26.1). For d = 6, there is no problem with soft
particles (corresponding to the small-w divergence), but there is a problem
with collinear particles (corresponding to the small-6 divergence).

Let us assume that our imperfect detector cannot tell one particle from
two nearly collinear particles if the angle 6 between their spatial momenta
is less than some small angle . Since we ultimately want to take the m — 0
limit, we will evaluate eq. (26.5) with m¥/k? < 62 < 1.

We can immediately integrate over d’%» using the delta function, which
results in setting ko = k — k; everywhere. Let § then be the angle between
k; (which is still to be integrated over) and k (which is fixed). For two-
particle scattering, |k| = % s in the limit m — 0. We then have

o 0 w
5 5 1y 1 4 4 .3
(27T) 2w o (k1—|—k2 k) 2dk‘1dk’2 — 74(27_‘_)5 —w1w2 |k1| d|k1| sin®3dg
(26.9)
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where 4 = 272 is the area of the unit four-sphere. Now let v be the angle
between ko and k. The geometry of this trio of vectors implies 8 = § + v,
|kq| = (sin~y/sin 0)|k|, and |ko| = (sin 5/sin 0)|k|. All three of the angles are
small and positive, and it then is useful to write 8 = z6 and v = (1—xz)#0,
with0 <z <landf << 1.

In the low mass limit, we can safely set m = 0 everywhere in eq. (26.5)
except in the propagator, 1/(k% + m?). Then, expanding to leading order
in both 6§ and m, we find (after some algebra)

K 4 m? = —a(1-2)k? [02 + (mYk?) f(2)] , (26.10)
where f(z) = (1—a+2?)/(x—22)2. Everywhere else in eq. (26.5), we can

safely set w; = |k;j| = (1—2)|k| and we = |ko| = x|k|. Then, changing the
integration variables in eq. (26.9) from |k;| and 3 to x and 6, we get

20 1 g 63 do
TRy =T |1 u/ 1- /
Tlows =T\ 1+ 335 Jy "0 ), G iy oe
(26.11)
Performing the integral over 6 yields
$In(6°k*/m?) — $In f(z) — 1 . (26.12)

Then, performing the integral over = and using 4 = 272 and o = ¢%/(47)3,
we get

T2 = TP |1+ o (@ /m?) +¢) + .|, (26.13)

where ¢ = (4 — 3v/37)/3 = —4.11.

The displayed correction term accounts for the possible splitting of one
of the two outgoing particles. Obviously, there is an identical correction
for the other outgoing particle. Less obviously (but still true), there is
an identical correction for each of the two incoming particles. (A glib
explanation is that we are computing an effective amplitude-squared, and
this is the same for the reverse process, with in and outgoing particles
switched. So in and out particles should be treated symmetrically.) Then,
since we have a total of four in and out particles (before accounting for any
splitting),

T2, = TP [1+ 50 (In(0*2/m?) +¢) + O(a?)] . (26.14)

We have now accounted for the O(«) corrections due to the failure of
our detector to separate two particles whose spatial momenta are nearly
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parallel. Combining this with eq. (26.1), and recalling that k? = is, we get

T2 = 1% [1 = Fa(In(s/m?) + O(m?)) + O(a?)]
X [1 + %a(ln(ézs/mz) + O(mo)) + O(az)}

= [T |1 — a3 In(s/m?) + 1 In(1/6%) + O(m"))
+0(a?)]. (26.15)

We now have two kinds of large logs. One is In(1/62); this factor depends
on the properties of our detector. If we build a very good detector, one
for which aIn(1/42) is not small, then we will have to do more work, and
calculate higher-order corrections to eq. (26.15).

The other large log is our original nemesis In(s/m?). This factor blows
up in the massless limit. This means that there is still a mistake hidden
somewhere in our analysis.

REFERENCE NOTES
Infrared divergences in quantum electrodynamics are discussed in Brown

and Peskin & Schroeder. More general treatments can be found in Sterman
and Weinberg I
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27 OTHER RENORMALIZATION SCHEMES

PREREQUISITE: 26

To find the remaining mistake in eq.(26.15), we must review our renor-
malization procedure. Recall our result from section 14 for the one-loop
correction to the propagator,

(k) = — [A+ ta(L+ 3|82 = [B+a(L+1)]m?
+ %a/ol dx DIn(D/u?) + O(c?) , (27.1)

where a = g?/(47)3 and D = z(1—x)k*+m?. The derivative of I1(k?) with
respect to k2 is

(k) = - [A+ ba(% +1)]
+ 3a /01 dr (1 —z) [ln(D/Mz) + 1} +0(a®) . (27.2)

We previously determined A and B via the requirements I1(—m?) = 0 and
II'(—m?) = 0. The first condition ensures that the exact propagator A(k:Q)
has a pole at k> = —m?, and the second ensures that the residue of this
pole is one. Recall that the field must be normalized in this way for the
validity of the LSZ formula.

We now consider the massless limit. We have D = x(1—x)k?, and we
should apparently try to impose II(0) = IT'(0) = 0. However, II(0) is now
automatically zero for any values of A and B, while IT'(0) is ill defined.

Physically, the problem is that the one-particle states are no longer sep-
arated from the multiparticle continuum by a finite gap in energy. Mathe-
matically, the pole in A(k:Q) at k2 = —m? merges with the branch point at
k? = —4m?, and is no longer a simple pole.

The only way out of this difficulty is to change the renormalization
scheme. Let us first see what this means in the case m # 0, where we know
what we are doing.

Let us try making a different choice of A and B. Specifically, let

A=-lal+0(a?),
B=—-al+0(?. (27.3)

Here we have chosen A and B to cancel the infinities, and nothing more;
we say that A and B have no finite parts. This choice represents a different
renormalization scheme. Our original choice (which, up until now, we have
pretended was inescapable!) is called the on-shell or OS scheme. The choice



27: Other Renormalization Schemes 173

of eq. (27.3) is called the modified minimal-subtraction or MS (pronounced
“emm-ess-bar”) scheme. [“Modified” because we introduced p via g —
gfif/?, with p? = 4me~ 7 i%; had we set p = i instead, the scheme would be
just plain minimal subtraction or MS.] Now we have

1
His(k?) = —5a(k? + 6m?) + %a/ de DIn(D/p*) + O(a®), (27.4)
0
as compared to our old result in the on-shell scheme,
1
Mog(k?) = —%a(kzz +m?) + %a/ dz DIn(D/Dy) + O(a?),  (27.5)
0

where again D = z(1—x)k? + m?, and Dy = [~x(1—z)+1]m?. Notice that
I55(k?) has a well-defined m — 0 limit, whereas Ilos(k?) does not. On the
other hand, Ilg5(k?) depends explicitly on the fake parameter u, whereas
s (k?) does not.

What does this all mean?

First, in the MS scheme, the propagator Axs(k?) will no longer have a

pole at k2 = —m?. The pole will be somewhere else. However, by definition,
the actual physical mass mpy, of the particle is determined by the location
of this pole: k% = —m%h. Thus, the lagrangian parameter m is no longer

the same as mpy,.

Furthermore, the residue of this pole is no longer one. Let us call the
residue R. The LSZ formula must now be corrected by multiplying its
right-hand side by a factor of R~1/2 for each external particle (incoming
or outgoing). This is because it is the field R~'/2p(z) that now has unit
amplitude to create a one-particle state.

Note also that, in the LSZ formula, each Klein-Gordon wave operator
should be —82+m§h, and not —9%+m?; also, each external four-momentum
should square to —mf)h, and not —m?2. A review of the derivation of the
LSZ formula clearly shows that each of these mass parameters must be the
actual particle mass, and not the parameter in the lagrangian.

Finally, in the LSZ formula, each external line will contribute a factor of
R when the associated Klein-Gordon wave operator hits the external prop-
agator and cancels its momentum-space pole, leaving behind the residue R.
Combined with the correction factor of R~1/2 for each field, we get a net
factor of RY/? for each external line when using the MS scheme. Internal
lines each contribute a factor of (—i)/(k?4+m?), where m is the lagrangian-
parameter mass, and each vertex contributes a factor of iZ,g, where g is
the lagrangian-parameter coupling.

Let us now compute the relation between m and mpy, and then compute
R. We have

Ars(EH) 7 = k2 + m? — Iys(K?) (27.6)
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and, by definition,
Ags(—m2,) "' =0. (27.7)
Setting k2 = —m%h in eq. (27.6), using eq. (27.7), and rearranging, we find
m2y, =m® — Tgs(—m2,) . (27.8)

Since Tlgs(k?) is O(a), we see that the difference between mf)h and m? is
O(a). Therefore, on the right-hand side, we can replace mf)h with m?2, and

only make an error of O(a?). Thus
m2y, =m? — Igs(—m?) + 0(a?) . (27.9)

Working this out, we get
m2y, =m® — %o{%mz —m?+ /01 dx Dy ln(Do//f)} +0(a?), (27.10)
where Do = [1—2(1—x)]m?2. Doing the integrals yields
mly, =m? {1 + %a(ln(uz/mQ) + c') + O(az)} : (27.11)

where ¢ = (34 — 37/3)/15 = 1.18.

Now, physics should be independent of the fake parameter u. However,
the right-hand side of eq. (27.11) depends explicitly on p. It must, be, then,
that m and « take on different numerical values as p is varied, in just the
right way to leave physical quantities (like m,},) unchanged.

We can use this information to find differential equations that tell us
how m and « change with p. For example, take the logarithm of eq. (27.11)
and divide by two to get

Inmpp = Inm + %a(ln(u/m) + %c') +0(a?) . (27.12)

Now differentiate with respect to In ;1 and require mpy to remain fixed:

= 1
0 I 1 nMmph

1 dm 5 9
= ——+ . 27.1
mdln,u+12a+0(a) (27.13)
To get the second line, we had to assume that da/dInu = O(a?), which
we will verify shortly. Then, rearranging eq. (27.13) gives

dm
Ay~ (~Za+0(*)m. (27.14)
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The factor in large parentheses on the right is called the anomalous dimen-
sion of the mass parameter, and it is often given the name ~,, ().
Turning now to the residue R, we have

_ d _
R = [ Am(®) ] (27.15)
dk 2 2
k =—mgy,
Using eq. (27.6), we get
RV =1 —Tl(—m2y)
= 1 —I<(—m?) + O(a?)
= 1+ Fa((u?/m?) + ') + 0(a?) (27.16)
where ¢ = (17 — 37/3)/3 = 0.23.
We can also use MS to define the vertex function. We take
C=-al+0(?), (27.17)
and so
Viss(kr, ko ks) = g {1 _la / P, n(D/i2) + O(a2) (27.18)

where D = zyk} + yzk3 + zzk3 + m?.

Let us now compute the pp — @ scattering amplitude in our fancy
new renormalization scheme. In the low-mass limit, repeating the steps
that led to eq. (26.1), and including the LSZ correction factor (RY/?)%, we
get

T = R2T [1 - Ba(ln(s/p?) + O(m?)) + 0(a?)] , (27.19)

where Tg = —g?(s ™!+t~ +u™!) is the tree-level result. Now using R from
eq. (27.16), we find

T =T [1 - a(HIn(s/n?) + LIn(u?/m?) + O(m")) + 0(e?)] . (27.20)

To get an observable amplitude-squared with an imperfect detector, we
must square eq. (27.20) and multiply it by the correction factor we derived
in section 26,

T2 = 1T [1 4+ Ja(n(0%5/m?) + O(m") ) + 0(a?)] (27.21)
where § is the angular resolution of the detector. Combining this with
eq. (27.20), we get

T2 = 1T [1 = a3 In(s/1®) + § In(1/8%) + O(m") ) + O(a?)]
(27.22)
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All factors of In m? have disappeared! Finally, we have obtained an expres-
sion that has a well-defined m — 0 limit.

Of course, p is still a fake parameter, and so \T\gbs cannot depend on
it. It must be, then, that the explicit dependence on p in eq. (27.22) is
canceled by the implicit 4 dependence of a. We can use this information
to figure out how a must vary with p. Noting that |Zy|? = O(g*) = O(a?),
we have

|73, = C1 + 2lna + 3a(lnp+ Cz) + O(a?) (27.23)

where Cy and Cy are independent of 1 and a (but depend on the Mandel-
stam variables). Differentiating with respect to In u then gives

d
0= In |72

d].n/,l/ n| |ObS
2 da 9

= — 27.24
ozdln,u+3a+0(a)’ (27.24)

or, after rearranging,
do 3024 0(a?) (27.25)
dlnp 2 i '

The right-hand side of this equation is called the beta function.

Returning to eq. (27.22), we are free to choose any convenient value of
that we might like. To avoid introducing unnecessary large logs, we should
choose % ~ s.

To compare the results at different values of s, we need to solve eq. (27.25).
Keeping only the leading term in the beta function, the solution is

_ a(p)
) = g G /) (27.20)

Thus, as p increases, () decreases. A theory with this property is said
to be asymptotically free. In this case, the tree-level approximation (in the
MS scheme with p? ~ s) becomes better and better at higher and higher
energies.

Of course, the opposite is true as well: as p decreases, a(u) increases.
As we go to lower and lower energies, the theory becomes more and more
strongly coupled.

If the particle mass is nonzero, this process stops at u ~ m. This
is because the minimum value of s is 4m?, and so the factor of In(s/u?)
becomes an unwanted large log for p < m. We should therefore not use
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values of 1 below m. Perturbation theory is still good at these low energies
if a(m) < 1.

If the particle mass is zero, a(u) continues to increase at lower and lower
energies, and eventually perturbation theory breaks down. This is a signal
that the low-energy physics may be quite different from what we expect on
the basis of a perturbative analysis.

In the case of 3 theory, we know what the correct low-energy physics
is: the perturbative ground state is unstable against tunneling through the
potential barrier, and there is no true ground state. Asymptotic freedom
is, in this case, a signal of this impending disaster.

Much more interesting is asymptotic freedom in a theory that does have
a true ground state, such as quantum chromodynamics. In this example,
the particle excitations are colorless hadrons, rather than the quarks and
gluons we would expect from examining the lagrangian.

If the sign of the beta function is positive, then the theory is infrared
free. The coupling increases as u increases, and, at sufficiently high en-
ergy, perturbation theory breaks down. On the other hand, the coupling
decreases as we go to lower energies. Once again, though, we should stop
this process at u ~ m if the particles have nonzero mass. Quantum elec-
trodynamics with massive electrons (but, of course, massless photons) is in
this category.

Still more complicated behaviors are possible if the beta function has
a zero at a nonzero value of a. We briefly consider this case in the next
section.

REFERENCE NOTES

Minimal subtraction is treated in more detail in Brown, Collins, and Ra-
mond I.

PROBLEMS

27.1) Suppose that we have a theory with

B(a) = bia® + 0(a?) (27.27)
Tm(a@) = cra+0(a?) . (27.28)

Neglecting the higher-order terms, show that

a c1/b1
mi) = [ 22 ). (27.29)
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28 THE RENORMALIZATION GROUP

PREREQUISITE: 27

In section 27 we introduced the MS renormalization scheme, and used the
fact that physical observables must be independent of the fake parameter
1 to figure out how the lagrangian parameters m and g must change with
. In this section we re-derive these results from a much more formal (but
calculationally simpler) point of view, and see how they extend to all or-
ders of perturbation theory. Equations that tells us how the lagrangian
parameters (and other objects that are not directly measurable, like cor-
relation functions) vary with p are collectively called the equations of the
renormalization group.

Let us recall the lagrangian of our theory, and write it in two different
ways. In d = 6 — € dimensions, we have

L=-32,0"0,p — s Znm*0* + £ 2,970 + Y (28.1)

and
L = —30"00up0 — mies + §9095 + Yoo - (28.2)

The fields and parameters in eq. (28.1) are the renormalized fields and pa-
rameters. (And in particular, they are renormalized using the MS scheme,
with p? = 4we™7ji2.) The fields and parameters in eq. (28.2) are the bare
fields and parameters. Comparing eqs. (28.1) and (28.2) gives us the rela-
tionships between them:

po(x) = Z2p(x) | (28.3)
mo = Z,2Z)*m (28.4)
90 = 2, 24907 (28.5)

_ —-1/2
Yo = Z;'%Y (28.6)

Recall that, after using dimensional regularization, the infinities coming
from loop integrals take the form of inverse powers of ¢ = 6 — d. In the
MS renormalization scheme, we choose the Z’s to cancel off these powers
of 1/e, and nothing more. Therefore the Z’s can be written as

Zp=1+Y a’;(f) , (28.7)
n=1
00 b,

Zm:1+2%, (28.8)
n=1

Zy=1+Y C"E(f) , (28.9)



28: The Renormalization Group 179

where a = g2?/(4n)3. Computing IT1(k?) and V3(ki, ko, k3) in perturbation
theory in the MS scheme gives us Taylor series in « for a,(a), b,(c), and
¢n(a). So far we have found

ar(a) = —ta+0(a?) , (28.10)
bi(a) = —a+ 0(a?), (28.11)
ci(a) = —a+ 0(a?), (28.12)

and that a,(a), by(a), and ¢, () are all at least O(a?) for n > 2.

Next we turn to the trick that we will employ to compute the beta
function for «, the anomalous dimension of m, and other useful things.
This is the trick: bare fields and parameters must be independent of .

Why is this so? Recall that we introduced p when we found that we had
to regularize the theory to avoid infinities in the loop integrals of Feynman
diagrams. We argued at the time (and ever since) that physical quantities
had to be independent of p. Thus p is not really a parameter of the theory,
but just a crutch that we had to introduce at an intermediate stage of the
calculation. In principle, the theory is completely specified by the values
of the bare parameters, and, if we were smart enough, we would be able
to compute the exact scattering amplitudes in terms of them, without ever
introducing p. The point is this: since the exact scattering amplitudes are
independent of u, the bare parameters must be as well.

Let us start with gg. It is convenient to define

ag = g5/(4m) = 22 Z 0o (28.13)

and also
Gove) =In(Z72;°) . (28.14)

From the general structure of egs. (28.7) and (28.9), we have

Glae) =Y szf‘> , (28.15)
n=1
where, in particular,
Gi(a) = 2¢1(a) — 3aq ()
= —3a+0(a?) . (28.16)

The logarithm of eq. (28.13) can now be written as

Inay =G(a,e) +lna+celnfpi. (28.17)
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Next, differentiate eq. (28.17) with respect to In i, and require ag to be
independent of it:

= |
0 I 1 nag

0G(a,e) da 1 da
= — . 28.1
Oa dln,u+ozd/ha,u—i_(€ (28.18)

Now regroup the terms, multiply by «, and use eq. (28.15) to get

! !
oG (a) n anz(a) L )
€ €

0= (1 + LI (28.19)
nu
Next we use some physical reasoning: da/dIn p is the rate at which «
must change to compensate for a small change in In . If compensation is
possible at all, this rate should be finite in the € — 0 limit. Therefore, in a
renormalizable theory, we should have

do

T —ea+ f(a) . (28.20)

The first term, —eq, is fixed by matching the O(¢) terms in eq. (28.19). The
second term, the beta function (), is similarly determined by matching
the O(g") terms; the result is

Bla) = a?Gh(a) . (28.21)

Terms that are higher-order in 1/e must also cancel, and this determines
all the other G} («)’s in terms of G(«). Thus, for example, cancellation
of the O(e7!) terms fixes Gh(a) = aG)(a)?. These relations among the
G, (a)’s can of course be checked order by order in perturbation theory.
From eq. (28.21) and eq. (28.16), we find that the beta function is

Bla) = —3a* 4+ 0(a?) . (28.22)

Hearteningly, this is the same result we found in section 27 by requiring the
observed scattering cross section |72, to be independent of y. However,
simply as a matter of practical calculation, it is much easier to compute
G1(a) than it is to compute |7 |?,,.

Next consider the invariance of mg. We begin by defining

M(a,e) = ln(Zrl,{2Z;1/2)

00
>
n=1

M, () '
677/

(28.23)
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From egs. (28.10) and (28.12) we have
Mi(e) = ibi(a) — Lai(a)
= —Sa+0(a?). (28.24)
Then, from eq. (28.4), we have
Inmg = M(a,e)+1Inm . (28.25)

Take the derivative with respect to In u and require mg to be unchanged:

= 1
0 T 1 nimo

OM(a,e) da 1 dm
da dlnp  mdlnp

_ OM(o,¢) 1 dm
= (—ea+B(a)) + I (28.26)
Rearranging, we find
1 dn > M ()
m dlnp (&?a B ﬂ(a)) ngl
= aM{(a) +..., (28.27)

where the ellipses stand for terms with powers of 1/¢. In a renormalizable
theory, dm/dIn p should be finite in the ¢ — 0 limit, and so these terms
must actually all be zero. Therefore, the anomalous dimension of the mass,

defined via
1 dm

ym(a) = — dIngs (28.28)
is given by
Ym(a) = M ()
= —Za+0(a?). (28.29)

Comfortingly, this is just what we found in section 27.
Let us now consider the propagator in the MS renormalization scheme,

A(k?) —1/d e™*2 (0| Tp(2)(0)]0) . (28.30)

The bare propagator,

o) =i [ d (O[T o (a)i0(0)0) (28.31)
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should be (by the now-familiar argument) independent of p. The bare and
renormalized propagators are related by

Ag(k?) = Z,A(K?) . (28.32)

Taking the logarithm and differentiating with respect to In u, we get

d -
0= In Ag(k?)

dln
dnZ, d . = ,
= In A
ding T amp AR
dln Z,, 1 0 do 0 dm 0\«
B A ) A(K?). (28.
dlnp +A(k2) <8lnu+dlnu 9o " dnp am> (k7). (28.33)

We can write

1
InZ, = + 2 +.... (28.34)

Then we have

dinZ, O0lnZ, do
dlnp Oa  dlnp

:<M

€

+.. ) (—6a + ﬁ(a))
= —adj(a) +... (28.35)

where the ellipses in the last line stand for terms with powers of 1 /€. Since
A (k?) should vary smoothly with g in the ¢ — 0 limit, these must all be
zero. We then define the anomalous dimension of the field

o) = 5 Gt (28.36)
From eq. (28.35) we find
Ye(a) = —5aai(a)
= +5a+0(a?). (28.37)

Eq. (28.33) can now be written as

(e + )z + aml@mz -+ 2,() ) A7) =0 (2838)
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in the ¢ — 0 limit. This is the Callan-Symanzik equation for the propagator.

The Callan-Symanzik equation is most interesting in the massless limit,
and for a theory with a zero of the beta function at a nonzero value of «.
So, let us suppose that 3(a.) = 0 for some a, # 0. Then, for & = a, and
m = 0, the Callan-Symanzik equation becomes

(618 + 2%(04*)) Ak =0. (28.39)
The solution is (@)

. Clay) (p2\ 0

A(k?) = 22 ) <ﬁ> , (28.40)

where C(c,) is an integration constant. (We used the fact that A(k?)
has mass dimension —2 to get the k2 dependence in addition to the pu
dependence.) Thus the naive scaling law A(k?) ~ k=2 is changed to
A(k?) ~ k~20=70(e-)] This has applications in the theory of critical phe-
nomena, which is beyond the scope of this book.

REFERENCE NOTES

The formal development of the renormalization group is explored in more
detail in Brown, Collins, and Ramond I.

PROBLEMS
28.1) Consider ¢* theory,
L= ——Z "0, p — me ©? — ﬁZA)\,u (28.41)

in d = 4 — ¢ dimensions. Compute the beta function to O(A\?), the
anomalous dimension of m to O(\), and the anomalous dimension of

@ to O(N).
28.2) Repeat problem 28.1 for the theory of problem 9.3.

28.3) Consider the lagrangian density
L= —%Zwa“go@ugo - —me 902 +Yop
—12,0"x0,ux — L ZyuMX?
+ 2 Zggut?0® + L Zphp P (28.42)

in d = 6 — € dimensions, where ¢ and y are real scalar fields, and Y
is adjusted to make (0|¢(x)|0) = 0. (Why is no such term needed for

x7)
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a) Compute the one-loop contributions to each of the Z’s in the MS
renormalization scheme.

b) The bare couplings are related to the renormalized ones via

90 = 2, Zyqu? (28.43)
ho = 25  Z 2 Zyhytl? (28.44)

Define
G(g,he) = 302 Gulg, h)e™ = In(Z,%%2,) (28.45)
H(g,h,e) =302 Ho(g,h)e ™ = In(Z2;' 212 2,) . (28.46)

By requiring gg and hg to be independent of i, and by assuming that
dg/dp and dh/dy are finite as e — 0, show that

dg

0Gy 0Gy
= - _1 1 il — 28.4
dh 1 OH, OH,
/L@ = —5eh + §h<98—g + hw) . (28.48)

c) Use your results from part (a) to compute the beta functions
Bg(g, h) = lime_o pdg/dp and By, (g, h) = lime_o pdh/dp. You should
find terms of order g3, gh?, and h? in By, and terms of order g*h, gh?,
and h3 in 3.

d) Without loss of generality, we can choose g to be positive; h can
then be positive or negative, and the difference is physically signifi-
cant. (You should understand why this is true.) For what numerical
range(s) of h/g are 3, and fj,/h both negative? Why is this an inter-
esting question?
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29 EFFECTIVE FIELD THEORY

PREREQUISITE: 28

So far we have been discussing only renormalizable theories. In this section,
we investigate what meaning can be assigned to nonrenormalizable theories,
following an approach pioneered by Ken Wilson.

We will begin by analyzing a renormalizable theory from a new point
of view. Consider, as an example, ¢* theory in four spacetime dimensions:

L=—32,0"00up — 3 Zmmine® — 31 ZaApnep" . (29.1)

(This example is actually problematic, because this theory is trivial, a tech-
nical term that we will exlain later. For now we proceed with a perturbative
analysis.) We take the renormalizing Z factors to be defined in an on-shell
scheme, and have emphasized this by writing the particle mass as mp), and
the coupling constant as A\p,. We define Ay, as the value of the exact 1PI
four-point vertex with zero external four-momenta:

)‘ph = V4(0, 0, 0, 0) . (292)

The path integral is given by
Z(J) = /Dso eistifTe (29.3)

where S = [d* £ and [Jy is short for [ d* Jo.

Our first step in analyzing this theory will be to perform the Wick
rotation (applied to loop integrals in section 14) directly on the action. We
define a euclidean time 7 = it. Then we have

Z(J) = /’D(p e=Se=[ ¢ (29.4)

where Sg = [ d*r Lg, d*z = d®v dr,
Ly = %ZSO@MD@M@ + %meghg02 + iZA)\phgoll , (29.5)

and
OOy = (8(;7/87')2 + (ch)2 . (29.6)

Note that each term in Sg is always positive (or zero) for any field configu-
ration ¢(z). This is the advantage of working in euclidean space: eq. (29.4),
the euclidean path integral, is strongly damped (rather than rapidly oscil-
lating) at large values of the field and/or its derivatives, and this makes its
convergence properties more obvious.
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Next, we Fourier transform to (euclidean) momentum space via

d*: ik ~
o) = [ e B0, (29.7)
The euclidean action becomes

1 [ d% _ ~
S — = / o Bk (Zh? + Z,)(K)

2J) (2m)
+ iZ)\)\ph / ((1247]{:)14 ... (2?;4 (27T)454(]€1+k‘2+/€3+k4)
x (k1)@ (k2)p(k3)p(ka) - (29.8)

Note that k? = k? + k2 > 0.

We now introduce an ultraviolet cutoff A. It should be much larger than
the particle mass mpyp, or any other energy scale of practical interest. Then
we perform the path integral over all (k) with |[k|] > A. We also take

J(k) =0 for |k| > A. Then we find
2(0) = [ Dpjgyen e Sonle=J 72, (209)

where
e~ Sett (¢3A) _ /D¢\k|>A e~ Sele) (29.10)

Set(¢; A) is called the Wilsonian effective action. We can write the corre-
sponding lagrangian density as

Le(0; N) = 3Z(M)0,u00,0 + m2(M)* + L A(A)g*
+ > cai(A)Oay (29.11)

d>6 i

where the Fourier components of ¢(x) are now cut off at |k| > A:

A4 ,
o) = /0 (;17:;4 e* 5(k) . (29.12)

The operators Og; in eq. (29.11) consist of all terms that have mass dimen-
sion d > 6 and that are even under ¢ < —; 7 is an index that distinguishes
operators of the same dimension that are inequivalent after integrations by
parts of any derivatives that act on the fields. (The operators must be even
under ¢ < —y in order to respect the ¢ <> —p symmetry of the original
lagrangian.)

The coefficients Z(A), m?(A), A(A), and cg;(A) in eq.(29.11) are all
finite functions of A. This is established by the following argument. We can
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Figure 29.1: A one-loop 1PI diagram with 2n external lines. Fach external
line represents a field with |k| < A. The internal (dashed) line represents a
field with |k| > A.

differentiate eq. (29.9) with respect to J(z) to compute correlation functions
of the renormalized field ¢(z), and correlation functions of renormalized
fields are finite. Using eq. (29.9), we can compute these correlation functions
as a series of Feynman diagrams, with Feynman rules based on L.g. These
rules include an ultraviolet cutoff A on the loop momenta, since the fields
with higher momenta have already been integrated out. Thus all of the
loop integrals in these diagrams are finite. Therefore the other parameters
that enter the diagrams—Z(A), m?(A), A(A), and cg;(A)—must be finite
as well, in order to end up with finite correlation functions.

To compute these parameters, we can think of eq. (29.8) as the action
for two kinds of fields, those with |k| < A and those with |k| > A. Then
we draw all 1PI diagrams with external lines for |k| < A fields only. For
Aph < 1, the dominant contribution to ¢4 ;(A) for an operator Og4; with 2n
fields and d — 2n derivatives is then given by a one-loop diagram with 2n
external lines (representing |k| < A fields), n vertices, and a |k| > A field
circulating in the loop; see fig. (29.1).

The simplest case to consider is Oy, 1 = @2". With 2n external lines,
there are (2n)! ways of assigning the external momenta to the lines, but
2™ xn x 2 of these give the same diagram: 2™ for exchanging the two external
lines that meet at any one vertex; n for rotations of the diagram; and 2
for reflection of the diagram. Since there are no derivatives on the external
fields, we can set all of the external momenta to zero; then all (2n)!/(2"2n)
diagrams have the same value. With a euclidean action, each internal line
contributes a factor of 1/(k? + m%h), and each vertex contributes a factor
of —ZxAph = —Aph + O(Agh). The vertex factor associated with the term
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con1(A)@?™ in Leg is —(2n)! can1(A). Thus we have

—(2n)lcana(A) = (_)‘ph)n(zn)!/w d'k < 1 )

212, A (2m) \ K2+ m2y

+O(\) (29.13)

For 2n > 6, the integral converges, and we find

(_)‘ph/2)n 1

can1(A) =  3272n(n—2) A2n—4

+O(N) (29.14)

We have taken A > mpy, and dropped terms down by powers of mpp/A.
For 2n = 4, we have to include the tree-level vertex; in this case, we
have

2
_ 3 2 [ d% 1
—)\(A) = _Z)\)\ph + 5(_)‘ph) A (271')4 <k2 + mf)h)

+O(N) . (29.15)
This integral diverges. To evaluate it, we note that the one-loop contribu-

tion to the exact four-point vertex is given by the same diagram, but with
fields of all momenta circulating in the loop. Thus we have

2
_ 3 o [ d'k 1
—V4(0, 0,0, 0) - _Z)\/\ph + 5(_/\Ph) /0 (271')4 <k2 + m?)}])

+ O\ - (29.16)

Then, using V4(0,0,0,0) = App and subtracting eq. (29.15) from eq. (29.16),
we get

1
2 2
k2 +mg

A A 2
_)\ph—i—)\(A):g(_)\ph)? /0 (%4( h) +OM,) . (20.17)

Evaluating the (now finite!) integral and rearranging, we have

A(A) = A\ + %Agh [m(A/mph) - %} + O\ . (29.18)
Note that this result has the problem of a large log; the second term is
smaller than the first only if App In(A/mp,) < 1. To cure this problem, we
must change the renormalization scheme. We will take up this issue shortly,
but first let us examine the case of two external lines while continuing to
use the on-shell scheme.
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For the case of two external lines, the one-loop diagram has just one
vertex, and by momentum conservation, the loop integral is completely
indepedent of the external momentum. This implies that the one-loop
contribution to Z(A) vanishes, and so we have

Z(A) =1+ O0(N\3) - (29.19)

The one-loop diagram does, however, give a nonzero contribution to m?(A);
after including the tree-level term, we find

2(A) = — Zpum2y + (= )/md% L o002, (2020)

—m = — m. —(— . .
mURh Ty @m)t R+ ml, ph

This integral diverges. To evaluate it, recall that the one-loop contribution

to the exact particle mass-squared is given by the same diagram, but with

fields of all momenta circulating in the loop. Thus we have

1 o d¥% 1
—m2y = —Zmm?Z, + =(— 20 - (29.21
i = ~Zoiy+ 5 () [ Gy OO - (2921
Then, subtracting eq. (29.20) from eq. (29.21), we get
1 A d% 1
—m? 2(A) == (=A / AZn) - 29.22
mph+m ( ) 2( ph) 0 (271')4 L2 +m§h +O( ph) ( 9 )

Evaluating the (now finite!) integral and rearranging, we have

m3(A) = m, - 12?2 (A2 = m2y In(A2/m2)] + 003 . (20.23)
We see that we now have an even worse situation than we did with the
large log in A(A): the correction term is quadratically divergent.

As already noted, to fix these problems we must change the renormal-
ization scheme. In the context of an effective action with a specific value of
the cutoff Ag, there is a simple way to do so: we simply treat this effective
action as the fundamental starting point, with Z(Ag), m?(Ag), A(Ag), and
ca,i(Ao) as input parameters. We then see what physics emerges at energy
scales well below Ag. We can set Z(Ag) = 1, with the understanding that
the field no longer has the LSZ normalization (and that we will have to
correct the LSZ formula to account for this). We will also assume that
the parameters A(Ag), m2(Ag), and cq;(Ao) are all small when measured in
units of the cutoff:

AMAg) < 1, (29.24)
m?(Ao)| < AF, (29.25)

cai(ho) < Ay TY (29.26)
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The proposal to treat the effective action as the fundamental starting
point may not seem very appealing. For one thing, we now have an infinite
number of parameters to specify, rather than two! Also, we now have an
explicit cutoff in place, rather than trying to have a theory that works at
all energy scales.

On the other hand, it may well be that quantum field theory does not
work at arbitrarily high energies. For example, quantum fluctuations in
spacetime itself should become important above the Planck scale, which is
given by the inverse square root of Newton’s constant, and has a numerical
value of ~10' GeV (compared to, say, the proton mass, which is ~1GeV).

So, let us leave the cutoff Ay in place for now. We will then make a two-
pronged analysis. First, we will see what happens at much lower energies.
Then, we will see what happens if we try to take the limit Ag — oo.

We begin by examining lower energies. To make things more tractable,
we will set

cd,i(Ao) =03 (29.27)

later we will examine the effects of a more general choice.

A nice way to see what happens at lower energies is to integrate out some
more high-energy degrees of freedom. Let us, then, perform the functional
integral over Fourier modes @(k) with A < |k| < Ag; we have

e Sen(#ih) — /D‘PA<\k|<Ao ¢~ Serr(@iflo) (29.28)

We can do this calculation in perturbation theory, mimicking the procedure
that we used earlier. We find

1 Ao @k 1
m2(A) = m2(Ao) +§)\(A0)/A o TRy T (2929)
3 Ao % 1 2
A(A) = AMAo) — §A2(Ao)/A 2t (k:? +m2(Ao)> oo, (29.30)
—1)" Ao d4k‘ 1 n
o1 (M) = —%A”(Ao)/A (277)4(k2+m2(A0)) +...,  (29.31)

where the ellipses stand for higher-order corrections. For A not too much
less than Ag (and, in particular, for |m?(Ag)| < A?), we find

m2(A) = m2(Ag) + M%A(Ao)(zxg A4 (29.32)
A(A) = A(Ag) — 163?>\2(A0)ln % b (29.33)

(—1)" ( 1 1 )
e o A (Ao) | g — g | F e - (29.34)
32m22nn(n—2) A=t pZnd

con1(A) =
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Figure 29.2: A one-loop contribution to the * vertex for fields with |k| < A.
The internal (dashed) line represents a field with |k| > A.

We see from this that the corrections to m?(A), which is the only coefficient
with positive mass dimension, are dominated by contributions from the
high end of the integral. On the other hand, the corrections to cq;(A),
coefficients with negative mass dimension, are dominated by contributions
from the low end of the integral. And the corrections to A(A), which is
dimensionless, come equally from all portions of the range of integration.

For the cg4;(A), this means that their starting values at Ag were not
very important, as long as eq.(29.26) is obeyed. Nonzero starting values
would contribute another term of order 1/A2"™* to ¢y, 1(A), but all such
terms are less important than the one of order 1/A?"~* that comes from
doing the integral down to |k| = A.

Similarly, nonzero values of ¢4;(Ag) would make subdominant contri-
butions to A(A). As an example, consider the contribution of the diagram
in fig. (29.2). Ignoring numerical factors, the vertex factor is cg1(Ag), and
the loop integral is the same as the one that enters into m?(A); it yields a
factor of A3 — A2 ~ A2. Thus the contribution of this diagram to A(A) is
of order cg1(Ao)AZ. This is a pure number that, according to eq. (29.26),
is small. This contribution is missing the logarithmic enhancement factor
In(Ag/A) that we see in eq. (29.33).

On the other hand, for m?(A), there are infinitely many contributions of
order A% when c4;(Ag) # 0. These must add up to give m?(A) a value that
is much smaller. Indeed, we want to continue the process down to lower
and lower values of A, with m?(A) dropping until it becomes of order m%h
at A ~ mpy. For this to happen, there must be very precise cancellations
among all the terms of order AZ that contribute to m?(A). In some sense, it
is more “natural” to have mf)h ~ A(Ag)AZ, rather than to arrange for these
very precise cancellations. This philosophical issue is called the fine-tuning
problem, and it generically arises in theories with spin-zero fields.

In theories with higher-spin fields only, the action typically has more
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symmetry when these fields are massless, and this typically prevents diver-
gences that are worse than logarithmic. These theories are said to be tech-
nically natural, while theories with spin-zero fields (with physical masses
well below the cutoff) generally are not. (The only exceptions are theories
where supersymmetry relates spin-zero and spin-one-half fields; the spin-
zero fields then inherent the technical naturalness of their spin-one-half
partners.) For now, in ¢* theory, we will simply accept the necessity of
fine-tuning in order to have my, < A.

Returning to eqgs. (29.32-29.34), we can recast them as differential equa-
tions that tell us how these parameters change with the vaule of the cutoff
A. In particular, let us do this for A(A). We take the derivative of eq. (29.33)
with respect to A, multiply by A, and then set Ag = A to get

d \ 3

T h M) =1 M(A) +... . (29.35)

Notice that the right-hand side of eq. (29.33) is apparently the same as the
beta function S(\) = dA/dIn p that we calculated in problem 28.1, where
it represented the rate of change in the MS parameter A that was need to
compensate for a change in the MS renormalization scale p. Eq.(29.33)
gives us a new physical interpretation of the beta function: it is the rate of
change in the coefficient of the p? term in the effective action as we vary
the ultraviolet cutoff in that action.

Actually, though, there is a technical detail: it is really Z(A)72A(A)
that is most closely analogous to the MS parameter A. This is because, if
we rescale ¢ so that it has a canonical kinetic term of %Gugpﬁucp, then the
coefficient of the p* term is Z(A)72\(A). Since Z(A) = 1+ O(A?(A)), this
has no effect at the one-loop level, but it does matter at two loops. We
can account for the effect of this wave function renormalization (in all the
couplings) by writing, instead of eq. (29.11),

Lot (p;A) = $Z(N)0,p0,0 + L Z(MNmP(A)* + L Z2H(A)A(A)p?
+ 33" 202 (A)eq (M) Oy (29.36)

d>6 1

where ng; is the number of fields in the operator Og;. Now the beta
function for A is universal up through two loops; see problem 29.1. At
three and higher loops, differences with the MS beta function can arise,
due to the different underlying definitions of the coupling A in the cutoff
scheme and the MS scheme.

We now have the overall picture of Wilson’s approach to quantum field
theory. First, define a quantum field theory via an action with an explicit
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momentum cutoff in place.! Then, lower the cutoff by integrating out

higher-momentum degrees of freedom. As a result, the coefficients in the
effective action will change. If the field theory is weakly coupled—which in
practice means eqgs. (29.24-29.26) are obeyed—then the coefficients of the
operators with negative mass dimension will start to take on the values
we would have computed for them in perturbation theory, regardless of
their precise initial values. If we continuously rescale the fields to have
canonical kinetic terms, then the dimensionless coupling constant(s) will
change according to their beta functions. The final results, at an energy
scale E well below the initial cutoff Ay, are the same as we would predict
via renormalized perturbation theory, up to small corrections by powers of
E/Ao.

The advantage of the Wilson scheme is that it gives a nonperturbative
definition of the theory which is applicable even if the theory is not weakly
coupled. With a spacetime lattice providing the cutoff, other techniques
(typically requiring large-scale computer calculations) can be brought to
bear on strongly-coupled theories.

The Wilson scheme also allows us to give physical meaning to nonrenor-
malizable theories. Given an action for a nonrenormalizable theory, we can
regard it as an effective action. We should then impose a momentum cutoff
Ag, where Ag can be defined by saying that the coefficient of every operator
O; with mass dimension D; > 4 is given by c¢; /Ag) i~* with ¢; < 1. Then
we can use this theory for physics at energies below Ag. At energies F far
below Ag, the effective theory will look like a renormalizable one, up to
corrections by powers of F/Ag. (This renormalizable theory might simply
be a free-field theory with no interactions, or no theory at all if there are
no particles with physical masses well below Ay.)

We now turn to the final issue: can we remove the cutoff completely?

Returning to the example of ¢? theory, let us suppose that we are
somehow able to compute the exact beta function. Then we can integrate
the renormalization-group equation dA\/dInA = (X)) from A = mpy to
A = Ag to get

(Mpn) ﬁ()‘) " Mph .
We would like to take the limit Ag — oo. Obviously, the right-hand side of
eq. (29.37) becomes infinite in this limit, and so the left-hand side must as
well.

However, it may not. Recall that, for small A, S()) is positive, and it

Aho)
/ VA g Ao (20.37)
A

1This can be done in various ways: for example, we could replace continuous spacetime
with a discrete lattice of points with lattice spacing a; then there is an effective largest
momentum of order 1/a.
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increases faster than A. If this is true for all A\, then the left-hand side of
eq. (29.37) will approach a fixed, finite value as we take the upper limit of
integration to infinity. This yields a maximum possible value for the initial

cutoff, given by
pp A / A (29.38)
Mph A(mpn) ﬁ()‘)

If we approximate the exact beta function with its leading term, 3\ /1672,
and use the leading term in eq. (29.18) to get A(mph) = Aph, then we find

Ammax = My €107 73en (29.39)

The existence of a maximum possible value for the cutoff means that we
cannot take the limit as the cutoff goes to infinity; we must use an effective
action with a cutoff as our starting point. If we insist on taking the cutoff
to infinity, then the only possible value of App is App = 0. Thus, ¢? theory
is trivial in the limit of infinite cutoff: there are no interactions. (There is
much evidence for this, but as yet no rigorous proof. The same is true of
quantum electrodynamics, as was first conjectured by Landau; in this case,
Amax is known as the location of the Landau pole.)

However, the cutoff can be removed if the beta function grows no faster
than X at large A; then the left-hand side of eq. (29.37) would diverge as we
take the upper limit of integration to infinity. Or, 3(\) could drop to zero
(and then become negative) at some finite value \.. Then, if Aph < Ay, the
left-hand side of eq. (29.37) would diverge as the upper limit of integration
approaches A.. In this case, the effective coupling at higher and higher
energies would remain fixed at A, and A = A, is called an ultravioldet fized
point of the renormalization group.

If the beta function is negative for A = A(mpy), the theory is said to
be asymptotically free, and A(A) decreases as the cutoff is increased. In
this case, there is no barrier to taking the limit A — oco. In four space-
time dimensions, the only asymptotically free theories are nonabelian gauge
theories; see section 69.

REFERENCE NOTES

Effective field theory is discussed in Georgi, Peskin € Schroeder, and Wein-
berg I. An introduction to lattice theory can be found in Smit.

PROBLEMS

29.1) Consider a theory with a single dimensionless coupling g whose beta
function takes the form 3(g) = b1g? +bog®+. ... Now consider a new
definition of the coupling g; in the regime where eq. (29.40) holds, it
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can be a function only of g. We assume that the couplings agree at
lowest order, so that we have § = g+ cog®> + ... .

a) Show that 3(§) = b1§% + b2 + ... .

b) Generalize this result to the case of multiple dimensionless cou-
plings.

29.2) Consider a nonrenormalizable theory that has a set of n dimensionless
couplings go(A), a = 1,...,n, and a set of couplings cq;(A) with
negative mass dimension. Assume that all couplings are small in the
sense of egs. (29.24) and (29.26), and that all masses are small enough
to be neglected. Argue that, for A < Ag, the renormalization-group
equations take the functional form

_d
dln A Je

ﬁc[m(A) = ZVd,ij(gl(A),...,gn(A))ch(A) , (29.41)

(A) = Balg1(A), ..., gn(N)) (29.40)

where 74,5 is the anomalous dimension matriz for the coefficients of
operators with mass dimension d.

29.3) Consider 3 theory in six euclidean spacetime dimensions, with la-
grangian

L= 37(Ao)0updup + 5 7% (No)g(Ao)p® . (29.42)

We assume that we have fine-tuned to keep m?(A) < A?, and so we
neglect the mass term.

a) Show that

1 1 1 d
200~ Z(hy) <1+§g2(A0)%[

/Ao ds¢ 1 1 )
- +...],
A (2m)8 (k+0)202 20

B Z3/2(A0)

Ao 6
g(A) = Z?’T(A)Q(AO)<1 +g2(A0)/A (;7:;6 (;)3 —|—> )

Hint: note that the tree-level propagator is A(k) = [Z(Ag)k?] 1.

b) Use your results to compute the beta function

Blo(h) = o g(A) (20.43

and compare with your result in problem 28.1.
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30 SPONTANEOUS SYMMETRY BREAKING

PREREQUISITE: 21

Consider ¢* theory, where ¢ is a real scalar field with lagrangian
L=~ 10t~ P — ot 0.1

As we discussed in section 23, this theory has a Zs symmetry: £ is invari-
ant under p(z) — —¢(x), and we can define a unitary operator Z that
implements this:
Z7 o(2)Z = —p(x) . (30.2)

We also have Z? =1, and so Z~! = Z. Since unitarity implies Z~' = ZT,
this makes Z hermitian as well as unitary.

Now suppose that the parameter m? is, in spite of its name, negative
rather than positive. We can write £ in the form

L= —%a‘ﬂpﬁu@ —Vip), (30.3)
where the potential is
V() = gm*e” + gpr¢"
= i)\(cf — 1)2)2 — i)\vﬂ‘ i (30.4)
In the second line, we have defined
v = +(6|m?[/\)2 . (30.5)

We can (and will) drop the last, constant, term in eq. (30.4).

From eq. (30.4) it is clear that there are two classical field configurations
that minimize the energy: ¢(x) = +v and ¢(x) = —v. This is in contrast
to the usual case of positive m?, for which the minimum-energy classical
field configuration is p(z) = 0.

We can expect that the quantum theory will follow suit. For m? < 0,
there will be two ground states, |0+) and |0—), with the property that

(0+p(x)|04) = +v,
(0—p(2)[0—) = —v, (30.6)

up to quantum corrections from loop diagrams that we will treat in detail
in section 30. These two ground states are exchanged by the operator Z,

Z|0+) = [0-) | (30.7)

and they are orthogonal: (0+]0—) = 0.
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This last claim requires some comment. Consider a similar problem in
quantum mechanics,

H=1p* + 4% —v?)?. (30.8)

There are two approximate ground states in this case, specified by the
approximate wave functions

Vi (z) = (2|0£) ~ exp[—w(z Fv)?/2], (30.9)

where w = (A\v?/3)1/2 is the frequency of small oscillations about the mini-
mum. However, the true ground state is a symmetric linear combination of
these. The antisymmetric linear combination has a slightly higher energy,
due to the effects of quantum tunneling.

We can regard a field theory as an infinite set of oscillators, one for each
point in space, each with a hamiltonian like eq. (30.8), and coupled together
by the (V)2 term in the field-theory hamiltonian. There is a tunneling
amplitude for each oscillator, but to turn the field-theoretic state |0+) into
|0—), all the oscillators have to tunnel, and so the tunneling amplitude gets
raised to the power of the number of oscillators, that is, to the power of
infinity (more precisely, to a power that scales like the volume of space).
Therefore, in the limit of infinite volume, (0+|0—) vanishes.

Thus we can pick either |0+) or [0—) to use as the ground state. Let
us choose |0+). Then we can define a shifted field,

plx) = pla) — v, (30.10)

which obeys (0+|p(x)|0+) = 0. (We must still worry about loop corrections,
which we will do at the end of this section.) The potential becomes

V(p) = gAl(p+0v)? = v*?
= tM%p% + Phwp® + A" (30.11)
and so the lagrangian is now
L= —%Gupﬁup - %)\v2p2 - %)\vp?’ — ﬁ)\p4 . (30.12)

We see that the coefficient of the p? term is %)\v2 = |m?|. This coefficient
should be identified as %m%, where m,, is the mass of the corresponding p
particle. Also, we see that the shifted field now has a cubic as well as a
quartic interaction.

Eq. (30.12) specifies a perfectly sensible, renormalizable quantum field
theory, but it no longer has an obvious Zo symmetry. We say that the Zq

symmetry is spontaneously broken.
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This leads to a question about renormalization. If we include renormal-
izing Z factors in the original lagrangian, we get

L= Z 20" 00, — me o 24Z)\)\<p (30.13)

For positive m?2, these three Z factors are sufficient to absorb infinities for
d < 4, where the mass dimension of A is positive or zero. On the other
hand, looking at the lagrangian for negative m? after the shift, eq. (30.12),
we would seem to need an extra Z factor for the p? term. Also, once we
have a p? term, we would expect to need to add a p term to cancel tadpoles.
So, the question is, are the original three Z factors sufficient to absorb all
the divergences in the Feynman diagrams derived from eq. (30.13)7

The answer is yes. To see why, consider the quantum action (introduced
in section 21)

=3 / d% 5( (k2—|—m (k) 3(k)

Zn,/ d4k1 . )"4 (2m)4 6 (k1 + .. 4ky)
n(k:l, k) @k Pk (30.14)

computed with m? > 0. The ingredients of I'(¢)—the self-energy II(k?)
and the exact 1PI vertices V,—are all made finite and well-defined (in,
say, the MS renormalization scheme) by adjusting the three Z factors in
eq. (30.13). Furthermore, for m? > 0, the quantum action inherits the Zo
symmetry of the classical action. To see this directly, we note that V,
must zero for odd n, simply because there is no way to draw a 1PI diagram
with an odd number of external lines using only a four-point vertex. Thus
I'(¢) also has the Zy symmetry. This is a simple example of a more general
result that we proved in problem 21.2: the quantum action inherits any
linear symmetry of the classical action, provided that it is also a symmetry
of the integration measure Dy. (Linear means that the transformed fields
are linear functions of the original ones.) The integration measure is almost
always invariant; when it is not, the symmetry is said to be anomalous. We
will meet an anomalous symmetry in section 75.

Once we have computed the quantum action for m* > 0, we can go
ahead and consider the case of m? < 0. Recall from section 21 that the
quantum equation of motion in the presence of a source is 0I'/dp(x) =
—J(z), and that the solution of this equation is also the vacuum expectation
value of ¢(x). Now set J(z) = 0, and look for a translationally invariant
(that is, constant) solution ¢(z) = wv. If there is more than one such
solution, we want the one(s) with the lowest energy. This is equivalent to

2
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minimizing the quantum potential U(p), where

T(p) = / d's [~ U(e) ~ $2(0)0" 000 + .| | (30.15)

and the ellipses stand for terms with more derivatives. In a weakly coupled
theory, we can expect the loop-corrected potential U(y) to be qualitatively
similar to the classical potential V(). Therefore, for m? < 0, we expect
that there are two minima of U () with equal energy, located at ¢(z) = +wv,
where v = (0]|¢(2)|0) is the exact vacuum expectation value of the field.

Thus we have a description of spontaneous symmetry breaking in the
quantum theory based on the quantum action, and the quantum action
is made finite by adjusting only the three Z factors that appear in the
original, symmetric form of the lagrangian.

In the next section, we will see how this works in explicit calculations.
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31 BROKEN SYMMETRY AND LLOOP CORRECTIONS

PREREQUISITE: 30

Consider ¢* theory, where ¢ is a real scalar field with lagrangian
L= —%Zwa“go@ugp — %me2<,02 — ﬁZ)\/\gp4 . (31.1)

In d = 4 spacetime dimensions, the coupling A is dimensionless.

We begin by considering the case m? > 0, where the Z, symmetry of £
under ¢ — —¢ is manifest. We wish to compute the three renormalizing
Z factors. We work in d = 4 — ¢ dimensions, and take A — A\ (where fi
has dimensions of mass) so that A remains dimensionless.

The propagator correction II(k?) is given by the diagrams of fig. (31.1),
which yield

dI(k?) = 4 (—iNia€)2A(0) — i(AK* + Bm?) (31.2)
where A= Z, —1and B = Z,, — 1, and
< d% 1
A(0 :/— —_— . 31.3
( ) (27T)d 02 + m?2 ( )
Using the usual bag of tricks from section 14, we find
- —i [2
~EA0:—Z{— 1+ In(p2 2] 2 31.4
FEAO) = (| S+ 1 I /m?) (314
where p? = 4me~7fi2. Thus
A 2
I(k?) = Z 4+ 1+ In(p? 2]2—142—B2. 1.
(k2) 2(47T)2L+ +In(2/m?)|m? — Ak? — Bm (31.5)
From eq. (31.5) we see that we must have
A=0(\?), (31.6)
_ 1 1.
(24 mm) +00%), (31.7)

where kp is a finite constant (that may depend on p). In the MS renor-
malization scheme, we take kg = 0, but we will leave kp arbitrary for
now.

Next we turn to the vertex correction, given by the diagram of fig. (31.2),
plus two others with ky < k3 and ko < ky; all momenta are treated as
incoming. We have

iValk ko, ks k) = —iZoA+ 5(=iN? (1) [iF(—s) +iF(—1) + iF(~u)]
+0(\?). (31.8)
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+ S>>
k k

Figure 31.1: O(\) corrections to II(k?).

I +ki+ Ky

Ky

k, Ky

Figure 31.2: The O()?) correction to Vy(ki, ko, k3, ks). Two other dia-

grams, obtained from this one via ky < kg and ke < k4, also contribute.

Here we have defined s = —(ky + k2)?, t = — (k1 + k3)2, u = — (k1 + k4)?,
and

/ ddé 1
= h ((C+5)2 + m2) (2 + m?)

16%2{ / dz In(p /D)} , (31.9)

where D = x(1—z)k? + m?. Setting Zy = 1 + C in eq. (31.8), we see that

we need
3\

"~ 1672
where k¢ is a finite constant.
We may as well pause to compute the beta function, S(A) = d\/dIn p,
where the derivative is taken with the bare coupling Ay held fixed, and
the finite parts of the counterterms set to zero, in accord with the MS
prescription. We have

G + Iic) +0(\?), (31.10)

Xo = ZaZ;PNQ (31.11)
with a1
-2\ +

In(2,2;?) = ez TON). (31.12)

Let Li(\) be the coefficient of 1/¢ in eq.(31.12). Our analysis in section
28 shows that the beta function is then given by B(\) = A2L{(\). Thus we
find

3\2

o2+ O3 . (31.13)

BA) =
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%—®|+%ﬁ<
k k

Figure 31.3: The O(\) correction to the vacuum expectation value of the
p field.

The beta function is positive, which means that the theory becomes more
and more strongly coupled at higher and higher energies.

Now we consider the more interesting case of m? < 0, which results in
the spontaneous breakdown of the Zo symmetry.

Following the procedure of section 30, we set p(x) = p(x) + v, where
v = (6|/m?|/A\)'/? minimizes the potential (without Z factors). Then the
lagrangian becomes (with Z factors)

L= —5Z,0"0up — 5(120—5Zm)mip®
+ H(Zn—25) (3/NEE)Pmip
— 323N Py, p® — L ZNifpt (31.14)
where m% = 2|m*|. Now we can compute various one-loop corrections.
We begin with the vacuum expectation value of p. The O(\) correction

is given by the diagrams of fig. (31.3). The three-point vertex factor is
—iZg3, where g3 can be read off of eq. (31.14):

2|.

g3 = (3\i°)*m, . (31.15)
The one-point vertex factor is iY', where Y can also be read off of eq. (31.14):
Y = §(Zn—=22) 3/ Ni) 2m) (31.16)

Following the discussion of section 9, we then find that
Olp(@)0) = (1Y + §(~iZag)}AO) [ dyta—y), (3117

plus higher-order corrections. Using egs. (31.15) and (31.16), and eq. (31.4)
with m? — m%, the factor in large parentheses in eq. (31.17) becomes

1672

Using Z,, = 1+ B and Z) = 1+ C, with B and C from eqs. (31.7) and
(31.10), the factor in large parentheses in eq. (31.18) becomes

A
1672

3/ (Zm—ZA L2 [§ 414 In(2 /mg)] + O(A2)> . (31.18)

k5 — ke + 1+ In(u?/m2)] . (31.19)
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All the 1/¢’s have canceled. The remaining finite vacuum expectation value
for p(x) can now be removed by choosing

kKB — ko =—1— ln(,u2/m§) . (31.20)

This will also cancel all diagrams with one-loop tadpoles.

Next we consider the p propagator. The diagrams contributing to the
O() correction are shown in fig. (31.4). The counterterm insertion is —i X,
where, again reading off of eq. (31.14),

X = Ak + (3C — {B)m>.. (31.21)

Putting together the results of eq. (31.2) for the first diagram (with m? —
m%), eq. (31.9) for the second (ditto), and eq. (31.21) for the third, we get

(k) = —5 (i)

A(0) + 23 F(K?) — X + O(N\?)
2
g

+ Lm {; +/01 dx ln(,u2/D)}
— AK* — (3C — 1B)m> + O(\). (31.22)

Again using egs. (31.7) and (31.10) for B and C, we see that all the 1/¢’s
cancel, and we’re left with

)\
(k%) = o {1 + In(p /m / dz In(u?/D) + + 3(95¢ — KB)
- O(AZ) . (31.23)
We can now choose to work in an OS scheme, where we require II(—m ) =0

and II'(—m2) = 0. We see that, to this order in A, II(k?) is mdependent of
k2. Thus, we automatically have IT'(—m p) = 0, and we can choose 9xc — kKB
to fix H(—m%) = 0. Together with eq. (31.20), this completely determines
kB and k¢ to this order in .

Next we consider the one-loop correction to the three-point vertex, given
by the diagrams of fig. (31.5). We wish to show that the infinities are
canceled by the value of Zy = 1+ C that we have already determined. The
first diagram in fig. (31.5) is finite, and so for our purposes we can ignore
it. The remaining three, plus the original vertex, sum up to give

2
iV (k1. ko, k3)aw = —iZxg3 + 2(—iX)(—igs) (%)
x [iF (k) + iF (k3) + iF (k3)|
+0(\?), (31.24)
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Figure 31.5: O(\) corrections to the vertex for three p fields.

where the subscript div means that we are keeping only the divergent part.
Using eq. (31.9), we have

31 1 )
V3(ky, ko, k3)aiv = —gg<1 +C-qes o O\ )) . (31.25)

From eq. (31.10), we see that the divergent terms do indeed cancel to this
order in .

Finally, we have the correction to the four-point vertex. In this case,
the divergent diagrams are just those of fig. (31.1), and so the calculation
of the divergent part of V4 is exactly the same as it is when m? > 0 (but
with m, in place of m). Since we have already done that calculation (it
was how we determined C in the first place), we need not repeat it.

We have thus seen how we can compute the divergent parts of the coun-
terterms in the simpler case of m? > 0, where the Zy symmetry is unbroken,
and that these counterterms will also serve to cancel the divergences in the
more complicated case of m? < 0, where the Z, symmetry is spontaneously
broken. This a general rule for renormalizable theories with spontaneous
symmetry breaking, regardless of the nature of the symmetry group.

REFERENCE NOTES

Another example of renormalization of a spontaneously broken theory is
worked out in Peskin & Schroeder.
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32 SPONTANEOUS BREAKING OF CONTINUOUS
SYMMETRIES
PREREQUISITE: 22, 30

Consider the theory (introduced in section 22) of a complex scalar field ¢
with

L=—-0"o'0,0 —m*olp — IA(plp)? . (32.1)
This lagrangian is obviously invariant under the U(1) transformation
p(z) — e () (32.2)

where « is a real number.
Now suppose that m? is negative. The minimum of the potential of
eq. (32.1) is achieved for

plz) = Zgve™ (32.3)
where
v=(4m? /N, (32.4)

and the phase 6 is arbitrary; the factor of root-two in eq.(32.3) is con-
ventional. Thus we have a continuous family of minima of the potential,
parameterized by 6. Under the U(1) transformation of eq. (32.2), 6 changes
to 0 + «; thus the different minimum-energy field configurations are all
related to each other by the symmetry.

In the quantum theory, we therefore expect to find a continuous family
of ground states, labeled by #, with the property that

(Olo(2)|0) = J5ve™. (32.5)

Also, according to the discussion in section 30, we expect (¢'|6) = 0 for
0 #£0.

Returning to classical language, there is a flat direction in field space
that we can move along without changing the energy. The physical con-
sequence of this is the existence of a massless particle called a Goldstone
boson.

Let us see how this works in more detail. We first choose the phase
f# = 0, and then write

o(x) = %[v + a(z) 4+ ib(2)], (32.6)

where a and b are real scalar fields. Substituting eq. (32.6) into eq. (32.1),
we find

L= —éaﬂaa“a — %8“1)8“1)
— |m?|a® — INY2|mla(a® + 0%) — 2@ +0H)? . (32.7)
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We see from this that the a field has a mass given by %mg = |m?|. The b
field, on the other hand, is massless, and we identify it as the Goldstone
boson.

A different parameterization brings out the role of the massless field
more clearly. We write

p(z) = J5(v + p(a))e XD, (32.8)

where p and x are real scalar fields. Substituting eq. (32.8) into eq. (32.1),
we get

2
£ =~ — §(1+ £ 0'x0,x
— [m?[p® — A2 |mlp® — 50" (32.9)

We see from this that the p field has a mass given by %m% = |m?|, and that
the x field is massless. These are the same particle masses we found using
the parameterization of eq.(32.6). This is not an accident: the particle
masses and scattering amplitudes are independent of field redefinitions.

Note that the x field does not appear in the potential at all. Thus it
parameterizes the flat direction. In terms of the p and y fields, the U(1)
transformation takes the simple form x(z) — x(z) + a.

Does the masslessness of the x field survive loop corrections? It does.
To see this, we note that if the x field remains massless, its exact propagator
Ax(kzz) should have a pole at kf = 0; equivalently, the self-energy II, (k?),
related to the propagator by A, (k?) = 1/[k? — I1,(k?)], should satisfy
I1(0) = 0.

We can evaluate II, (0) by summing all 1PI diagrams with two external
X lines, each with four-momentum k£ = 0. We note from eq. (32.9) that the
derivatives acting on the x fields imply that the vertex factors for the pyx
and ppxx vertices are each proportional to ki-ko, where k1 and ko are the
momenta of the two x lines that meet at that vertex. Since the external
lines have zero momentum, the attached vertices vanish; hence, II,(0) = 0,
and the x particle remains massless.

The same conclusion can be reached by considering the quantum action
I'(¢), which includes all loop corrections. According to our discussion in
section 29, the quantum action has the same symmetries as the classical
action. Therefore, in the case at hand,

I(p) =T(e"p). (32.10)

Spontaneous symmetry breaking occurs if the minimum of T'(¢) is at a
constant, nonzero value of ¢. Because of eq.(32.10), the phase of this



32: Spontaneous Breaking of Continuous Symmetries 207

constant is arbitrary. Therefore, there must be a flat direction in field
space, corresponding to the phase of ¢(z). The physical consequence of
this flat direction is a massless particle, the Goldstone boson.
All of this has a straightforward extension to the nonabelian case. Con-
sider
L= —10"0;0up; — EmPpip; — N pii)? (32.11)

where a repeated index is summed. This lagrangian is invariant under the
infinitesimal SO(N) transformation

dp; = —i0°(T")ij05 , (32.12)

where runs from 1 to $N(N—1), 6% is a set of $N(N—1) real, infinitesi-
mal parameters, and each antisymmetric generator matrix T has a single
nonzero entry —¢ above the main diagonal, and a corresponding +i below
the main diagonal.

Now let us take m? < 0 in eq. (32.11). The minimum of the potential
is achieved for ¢;(x) = v;, where v?> = v;v; = 4/m?|/\, and the direction
in which the N-component vector ¢ points is arbitrary. In the quantum
theory, we interpret v; as the vacuum expectation value (VEV for short)
of the quantum field ¢;(x). We can choose our coordinate system so that
v; = vd;n; that is, the VEV lies entirely in the last component.

Now consider making an infinitesimal SO(NNV) transformation. This
changes the VEV; we have

Vi — Uy — i@“(T“)ijvj
= voin — i0(T")inv . (32.13)

For some choices of 6%, the second term on the right-hand side of eq. (32.13)
vanishes. This happens if the corresponding 7® has no nonzero entry in the
last column. There are N—1 T%s with a nonzero entry in the last column:
those with the —i¢ in the first row and last column, in the second row and
last column, etc, down to the N—1*" row and last column. These T%’s are
said to be broken generators. A generator is broken if (7%);jv; # 0, and
unbroken if (7%);;v; = 0.

An infinitesimal SO(N) transformation that involves a broken genera-
tor changes the VEV of the field, but not the energy. Thus, each broken
generator corresponds to a flat direction in field space. Each flat direction
implies the existence of a corresponding massless particle. This is Gold-
stone’s theorem: there is one massless Goldstone boson for each broken
generator.

The unbroken generators, on the other hand, do not change the VEV
of the field. Therefore, after rewriting the lagrangian in terms of shifted
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fields (each with zero VEV), there should still be a manifest symmetry cor-
responding to the set of unbroken generators. In the present case, the num-
ber of unbroken generators is $N(N—1) — (N—1) = 3(N—1)(N—2). This
is the number of generators of SO(N—1). Therefore, we expect SO(N—1)
to be an obvious symmetry of the lagrangian after it is written in terms of
shifted fields.

Let us see how this works in the present case. We can rewrite eq. (32.11)
as

L=—30"0i0u0i — V(p), (32.14)
with

V(e) = 15 M(pipi — v%)?, (32.15)
where v = (4/m?|/\)"/2, and the repeated index i is implicitly summed

from 1 to N. Now let on(x) = v + p(x), and plug this into eq. (32.14).
With the repeated index i now implicitly summed from 1 to N—1, we have

L= —50"0i0upi — 50"00up — V(p, ) , (32.16)
where
V(p, ) = tM(v+p)? + pipi — v?]?
= EX2vp + p* + vi;)?

W=

M p? + %)«u,o(,o2 + @ipi) + 1—16)\(/)2 + @ipi)? . (32.17)

There is indeed a manifest SO(N—1) symmetry in egs. (32.16) and (32.17).
Also, the N—1 y; fields are massless: they are the expected N—1 Goldstone
bosons.

REFERENCE NOTES

Further discussion of Goldstone’s theorem can be found in Georgi, Peskin
& Schroeder, and Weinberg 1.

PROBLEMS

32.1) Consider the Noether current j* for the U(1) symmetry of eq. (32.1),
and the corresponding charge Q.

a) Show that e~1@ e Tia@ = etiag,
b) Use eq. (32.5) to show that e=*Q[0) = [0 + ).

c) Show that Q|0) # 0; that is, the charge does not annihilate the
0 = 0 vacuum. Contrast this with the case of an unbroken symmetry.
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32.2) In problem 24.3, we showed that [p;, Q%] = (T');j¢;, where Q* is the
Noether charge in the SO(N) symmetric theory. Use this result to
show that Q*|0) # 0 if and only if Q* is broken.

32.3) We define the decay constant f of the Goldstone boson via
(k|j* (2)|0) = fhre ™, (32.18)

where |k) is the state of a single Goldstone boson with four-momentum
k, normalized in the usual way, |0) is the # = 0 vacuum, and j*(z) is
the Noether current.

a) Compute f at tree level. (That is, express j* in terms of the p
and x fields, and then use free field theory to compute the matrix
element.) A nonvanishing value of f indicates that the corresponding
current is spontaneously broken.

b) Discuss how your result would be modified by higher-order correc-
tions.



Part II
Spin One Half
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33 REPRESENTATIONS OF THE LORENTZ GROUP

PREREQUISITE: 2

In section 2, we saw that we could define a unitary operator U(A) that
implemented a Lorentz transformation on a scalar field ¢(x) via

UA) ™ o(@)U(A) = p(A™1z) . (33.1)

As shown in section 2, this implies that the derivative of the field transforms
as
U(M) "1 0"p(x)U(A) = A*,07 (A ) (33.2)

where the bar on he derivative means that it is with respect to the argument
z=A1z
Eq. (33.2) suggests that we could define a vector field A*(x) that would
transform as
U(A)TrAP(2)U(A) = A* AP (A ) | (33.3)

or a tensor field B* (x) that would transform as
U(A)™'B" (2)U(A) = A*,A” B (A ') . (33.4)

Note that if B* is either symmetric, B*(z) = B"#(x), or antisymmetric,
B#(x) = —BY#(x), then the symmetry is preserved by the Lorentz trans-
formation. Also, if we take the trace to get T'(x) = g, B""(x), then, using
G ,AY 5 = gpe, we find that T'(x) transforms like a scalar field,

UN T (2)UN) =T(A ) . (33.5)

Thus, given a tensor field B*(z) with no particular symmetry, we can
write

BM(z) = A™ (z) + S (z) + g™ T(x) , (33.6)

where A" is antisymmetric (A* = —A"*) and S* is symmetric (S =
S¥I) and traceless (g, " = 0). The key point is that the fields A*, SH,
and T do not mix with each other under Lorentz transformations.

Is it possible to further break apart these fields into still smaller sets
that do not mix under Lorentz transformations? How do we make this
decomposition into irreducible representations of the Lorentz group for a
field carrying n vector indices? Are there any other kinds of indices we
could consistently assign to a field? If so, how do these behave under a
Lorentz transformation?

The answers to these questions are to be found in the theory of group
representations. Let us see how this works for the Lorentz group (in four
spacetime dimensions).



33: Representations of the Lorentz Group 212

Consider a field (not necessarily hermitian) that carries a generic Lorentz
index, @4 (x). Under a Lorentz transformation, we have

UN)Loa(x)UA) = LaB(AN)pp(A2), (33.7)

where L4P(A) is a matrix that depends on A. These finite-dimensional
matrices must obey the group composition rule

LAP(AYLC(A) = LAC(NA) . (33.8)

We say that the matrices LsP(A) form a representation of the Lorentz

group.
For an infinitesimal transformation A*, = §*, + dw*,, we can write

U(l40w) = I + Léwy, M" (33.9)

where the operators M* are the generators of the Lorentz group. As
shown in section 2, the generators obey the commutation relations

(M, M) = i (g MY — (peov)) = (pvo), (3310)

which specify the Lie algebra of the Lorentz group.

We can identify the components of the angular momentum operator J as
Ji = %Eijijk and the components of the boost operator K as K; = MO,
We then find from eq. (33.10) that

[JZ', Jj] = +isz~ijk , (33.11)
[Ji,Kj] = +ig;j Ky , (33.12)
[Ki,Kj] = —iEiijk . (3313)

For an infinitesimal transformation, we also have
LaP(1+6w) = 047 + L6w,u (S") 47, (33.14)
Eq. (33.7) then becomes
[pala), MH) = LM pa(x) + (") aPpp(2) | (33.15)

where £H = (219" — z¥0"). Both the differential operators £* and the
representation matrices (S#¥) 4% must separately obey the same commuta-
tion relations as the generators themselves; see problems 2.8 and 2.9.

Our problem now is to find all possible sets of finite-dimensional matri-
ces that obey eq. (33.10), or equivalently egs. (33.11-33.13). Although the
operators M must be hermitian, the matrices (S**)4” need not be.
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If we restrict our attention to eq.(33.11) alone, we know (from stan-
dard results in the quantum mechanics of angular momentum) that we
can find three (2j+1) x (2j+1) hermitian matrices J1, Jo, and J3 that
obey eq. (33.11), and that the eigenvalues of (say) J3 are —j, —j+1,...,+7,
where j has the possible values 0, %, 1,.... We further know that these ma-
trices constitute all of the inequivalent, irreducible representations of the
Lie algebra of SO(3), the rotation group in three dimensions. Inequivalent
means not related by a unitary transformation; irreducible means cannot be
made block-diagonal by a unitary transformation. (The standard deriva-
tion assumes that the matrices are hermitian, but allowing nonhermitian
matrices does not enlarge the set of solutions.) Also, when j is a half inte-
ger, a rotation by 27 results in an overall minus sign; these representations
of the Lie algebra of SO(3) are therefore actually not represenations of the
group SO(3), since a 27 rotation should be equivalent to no rotation. As
we saw in section 24, the Lie algebra of SO(3) is the same as the Lie algebra
of SU(2); the half-integer representations of this Lie algebra do qualify as
representations of the group SU(2).

We would like to extend these conclusions to encompass the full set of
egs. (33.11-33.13). In order to do so, it is helpful to define some nonher-
mitian operators whose physical significance is obscure, but which simplify
the commutation relations. These are

NZ'E
NZ-TE

(Ji —iK;) , (33.16)
(J; +iK;) . (33.17)

Nl—= N[

In terms of NV; and N;f, egs. (33.11-33.13) become

[Ni, N;| = igiju Ny (33.18)
[Ni,NI] =0. (33.20)

We see that we have two different SU(2) Lie algebras that are exchanged
by hermitian conjugation. As we just discussed, a representation of the
SU(2) Lie algebra is specified by an integer or half integer; we therefore
conclude that a representation of the Lie algebra of the Lorentz group in
four spacetime dimensions is specified by two integers or half-integers n
and n'.

We will label these representations as (2n+1,2n/+1); the number of
components of a representation is then (2n+1)(2n'+1). Different compo-
nents within a representation can also be labeled by their angular mo-
mentum representations. To do this, we first note that, from egs. (33.16)
and (33.17), we have J; = N; + NJ. Thus, deducing the allowed values
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of j given n and n’ becomes a standard problem in the addition of an-
gular momenta. The general result is that the allowed values of j are
|n—n/|, |n—n/|+1,...,n+n’, and each of these values appears exactly once.

The four simplest and most often encountered representations are (1, 1),
(2,1), (1,2), and (2,2). These are given special names:

(1,1) = Scalar or singlet

(2,1) = Left-handed spinor
(1,2)
(2,2)

2,2

= Right-handed spinor
= Vector (33.21)

It may seem a little surprising that (2,2) is to be identified as the vector
representation. To see that this must be the case, we first note that the
vector representation is irreducible: all the components of a four-vector
mix with each other under a general Lorentz transformation. Secondly, the
vector representation has four components. The only candidate irreducible
representations are (4,1), (1,4), and (2,2). The first two of these contain
angular momenta j = % only, whereas (2,2) contains j = 0 and j = 1.
This is just right for a four-vector, whose time component is a scalar under
spatial rotations, and whose space components are a three-vector.

In order to gain a better understanding of what it means for (2,2) to
be the vector representation, we must first investigate the spinor represen-
tations (1,2) and (2,1), which contain angular momenta j = % only.

REFERENCE NOTES

An extended treatment of representations of the Lorentz group in four
dimensions can be found in Weinberg I.

PROBLEMS

33.1) Express A*(x), S*(x), and T'(z) in terms of B*(x).

33.2) Verify that egs. (33.18-33.20) follow from egs. (33.11-33.13).
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34 LEFT- AND RIGHT-HANDED SPINOR FIELDS

PREREQUISITE: 3, 33

Consider a left-handed spinor field 1, (x), also known as a left-handed Weyl
field, which is in the (2, 1) representation of the Lie algebra of the Lorentz
group. Here the index a is a left-handed spinor index that takes on two
possible values. Under a Lorentz transformation, we have

U(A) ™ a(@)U(A) = Lo (A)p(A ') (34.1)

where L,?(A) is a matrix in the (2, 1) representation. These matrices satisfy
the group composition rule

LP(NYLyS(A) = LS(NA) . (34.2)
For an infinitesimal transformation A#, = 6, + dw,, we can write
L (146w) = 6,° + 20w, (SE")a" (34.3)

where (S£),0 = —(St*)4? is a set of 2 x 2 matrices that obey the same
commutation relations as the generators M*”, namely

8L, 807 = i(9" 817 — (wew)) = (po) (34.4)

Using
U(l+6w) = I + Léw, M™ (34.5)

eq. (34.1) becomes

[Ya (), MM] = Lo () + (SE)a () , (34.6)

where LM = 1(2#0” — 2¥9"). The LM term in eq. (34.6) would also be
present for a scalar field, and is not the focus of our current interest; we
will suppress it by evaluating the fields at the spacetime origin, z# = 0.
Recalling that M% = 9% J, where J}, is the angular momentum operator,
we have

% [1pa(0), Ji] = (S7)a"10(0) - (34.7)

Recall that the (2,1) representation of the Lorentz group includes an-
gular momentum j = % only. For a spin-one-half operator, the standard
convention is that the matrix on the right-hand side of eq. (34.7) is %aijkak,
where we have suppressed the row index a and the column index b, and
where o, is a Pauli matrix:

0'1:<(1) (1)), 02:<(z') BZ>, 03:<(1) _01> (34.8)
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We therefore conclude that

(5)a" = 560y | (34.9)
Thus, for example, setting i=1 and j=2 yields (5}2),> = %sl%ak = %03,

and so (S12);! = 41, (S1%),% = —1, and (S12),2 = (S12),! = 0.

Once we have the (2, 1) representation matrices for the angular momen-
tum operator J;, we can easily get them for the boost operator K = M.
This is because J, = Nj + Ng and Ky = i(Ny — N,I), and, acting on a
field in the (2,1) representation, N,I is zero. Therefore, the representation
matrices for K} are simply i times those for Ji, and so

(SF0), = Jioy, . (34.10)

Now consider taking the hermitian conjugate of the left-handed spinor
field 14 (x). Recall that hermitian conjugation swaps the two SU(2) Lie
algebras that comprise the Lie algebra of the Lorentz group. Therefore,
the hermitian conjugate of a field in the (2,1) representation should be a
field in the (1,2) representation; such a field is called a right-handed spinor
field or a right-handed Weyl field. We will distinguish the indices of the
(1,2) representation from those of the (2, 1) representation by putting dots
over them. Thus, we write

()] = pl(z) . (34.11)

Under a Lorentz transformation, we have
U(A) L) U(A) = Ra* (M) (A~'2) (34.12)

where Rdi’(A) is a matrix in the (1, 2) representation. These matrices satisfy
the group composition rule

RiP(M)R;E(A) = Rif(A'A) . (34.13)
For an infinitesimal transformation A#, = 6, + dw,, we can write

Rab (14+6w) = 62" + 0w, (SE)a? | (34.14)

where (Sl‘{”)di’ = —(Sp")ab is a set of 2 x 2 matrices that obey the same
commutation relations as the generators M*. We then have

[}(0), M) = (SE )bl (0) . (34.15)

Taking the hermitian conjugate of this equation, we get

(M 404 (0)] = [(SE)a"T*403(0) . (34.16)
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Comparing this with eq. (34.6), we see that
(SE)ab = ~[(SE)a"" . (34.17)

In the previous section, we examined the Lorentz-transformation prop-
erties of a field carrying two vector indices. To help us get better acquainted
with the properties of spinor indices, let us now do the same for a field that
carries two (2, 1) indices. Call this field Cyy(x). Under a Lorentz transfor-
mation, we have

U(A) " O (x)U(A) = Lo®(A) Ly (M) Cog(A™ ) . (34.18)

The question we wish to address is whether or not the four components of
Cup can be grouped into smaller sets that do not mix with each other under
Lorentz transformations.

To answer this question, recall from quantum mechanics that two spin-
one-half particles can be in a state of total spin zero, or total spin one.
Furthermore, the single spin-zero state is the unique antisymmetric com-
bination of the two spin-one-half states, and the three spin-one states are
the three symmetric combinations of the two spin-one-half states. We can
write this schematically as 2 ® 2 = 15 @ 3g, where we label the representa-
tion of SU(2) by the number of its components, and the subscripts S and
A indicate whether that representation appears in the symmetric or anti-
symmetric combination of the two 2’s. For the Lorentz group, the relevant
relation is (2,1) ® (2,1) = (1,1)a @ (3,1)s. This implies that we should be
able to write

Cap() = eapD(x) + Gap() , (34.19)

where D(x) is a scalar field, e, = —&3, is an antisymmetric set of constants,
and Ggp(z) = Gpe(z). The symbol g4, is uniquely determined by its sym-
metry properties up to an overall constant; we will choose €91 = —e19 = +1.
Since D(x) is a Lorentz scalar, eq. (34.19) is consistent with eq. (34.18)

only if
Lo (M) Ly (MN)eeq = €ap - (34.20)

This means that g4 is an invariant symbol of the Lorentz group: it does
not change under a Lorentz transformation that acts on all of its indices.
In this way, €4, is analogous to the metric g,,,, which is also an invariant
symbol, since

APA Gpo = G - (34.21)

We use g, and its inverse g"” to raise and lower vector indices, and
we can use €4, and and its inverse €% to raise and lower left-handed spinor
indices. Here we define €™ via

612 =¢e91 =+1, 621 =¢e10=-—1. (34.22)
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With this definition, we have

Eabe™ = 6,° , e%ep, = 6%, . (34.23)
We can then define
Y (x) = 6“b¢b(x) . (34.24)
We also have (suppressing the spacetime argument of the field)
¢a = €ab7pb = 6abgbcqﬁc = 5ac¢c 5 (3425)

as we would expect. However, the antisymmetry of ¢ means that we
must be careful with minus signs; for example, eq. (34.24) can be written
in various ways, such as

P = €ab¢b = —€ba¢b = —T,Z)beba = ¢b€ab . (34.26)

We must also be careful about signs when we contract indices, since

waXa = Eabwaa = _Ebawaa = _wbxb . (34.27)

In section 35, we will (mercifully) develop an index-free notation that au-
tomatically keeps track of these essential (but annoying) minus signs.

An exactly analogous discussion applies to the second SU(2) factor;
from the group-theoretic relation (1,2) ® (1,2) = (1,1)a @ (1,3)s, we can
deduce the existence of an invariant symbol ¢,; = —¢;.. We will normalize
€% according to eq. (34.22). Then eqgs. (34.23-34.27) hold if all the undotted
indices are replaced by dotted indices.

Now consider a field carrying one undotted and one dotted index, A ().
Such a field is in the (2,2) representation, and in section 33 we concluded
that the (2, 2) representation was the vector representation. We would more
naturally write a field in the vector representation as A*(x). There must,
then, be a dictionary that gives us the components of Ay (z) in terms of
the components of A#(x); we can write this as

Agi(z) =0t A () , (34.28)

where o', is another invariant symbol. That such a symbol must exist can

be deduced from the group-theoretic relation
2,)®((1,2)®(2,2)=(1,1)®.... (34.29)

As we will see in section 35, it turns out to be consistent with our already
established conventions for S and SL” to choose

ot = (1,5). (34.30)

aa
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Thus, for example, Ui’i =41, 052)’2 =—1, a‘:’g = ag’i = 0.
In general, whenever the product of a set of representations includes
the singlet, there is a corresponding invariant symbol. For example, we can

deduce the existence of g,, = g,,, from
(2,2) ®(2,2) =(1,1)s & (1,3)a® (3,1)a & (3,3)s - (34.31)
Another invariant symbol, the Levi-Civita symbol, follows from
(2,2)®(2,2)®(2,2) ®(2,2) = (1, )a ..., (34.32)

where the subscript A denotes the completely antisymmetric part. The
Levi-Civita symbol is P9, which is antisymmetric on exchange of any
pair of its indices, and is normalized via €212 = +1. To see that e**7 is
invariant, we note that A*,AY gA’ﬂ,AC’(gEO‘ﬁ'Y‘S is antisymmetric on exchange
of any two of its uncontracted indices, and therefore must be proportional
to e”P?. The constant of proportionality works out to be det A, which is
+1 for a proper Lorentz transformation.

We are finally ready to answer a question we posed at the beginning of
section 33. There we considered a field B*(x) carrying two vector indices,
and we decomposed it as

B (z) = AP (z) + S* (z) + +g"' T (2) , (34.33)

where A is antisymmetric (A" = —A"*) and S* is symmetric (S* =
S¥I) and traceless (g, S* = 0). We asked whether further decomposition
into still smaller irreducible representations was possible. The answer to
this question can be found in eq. (34.31). Obviously, T'(x) corresponds to
(1,1), and S*(x) to (3,3).! But, according to eq. (34.31), the antisymmet-
ric field A*(z) should correspond to (3,1) @ (1,3). A field in the (3,1)
representation carries a symmetric pair of left-handed (undotted) spinor
indices; its hermitian conjugate is a field in the (1,3) representation that
carries a symmetric pair of right-handed (dotted) spinor indices. We should,
then, be able to find a mapping, analogous to eq. (34.28), that gives A" (x)
in terms of a field G4, () and its hermitian conjugate Glb(a:).

This mapping is provided by the generator matrices S-” and S§”. We
first note that the Pauli matrices are traceless, and so egs.(34.9) and
(34.10) imply that (S£”),* = 0. Using eq.(34.24), we can rewrite this
as €% (SH")ap = 0. Since €™ is antisymmetric, (S/”), must be symmetric
on exchange of its two spinor indices. An identical argument shows that

Note that a symmetric traceless tensor has three independent diagonal components,
and six independent off-diagonal components, for a total of nine, the number of compo-
nents of the (3, 3) representation.
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(Sﬁ“’)ai) must be symmetric on exchange of its two spinor indices. Further-

more, according to eqgs. (34.9) and (34.10), we have
(510" = =i(SP)a" . (34.34)
This can be written covariantly with the Levi-Civita symbol as
(SE)a" = — 5" (S, po)a” - (34.35)

Similarly, . .
(SE")a" = +5€"7 (Srpo)a” - (34.36)

Eq. (34.36) follows from taking the complex conjugate of eq.(34.35) and
using eq. (34.17).
Now, given a field Gg(z) in the (3,1) representation, we can map it
into a self-dual antisymmetric tensor G (x) via
GH () = (SM)P Gy () . (34.37)
By self-dual, we mean that G*”(x) obeys
G (2) = —LeMP7 Gy () (34.38)
Taking the hermitian conjugate of eq. (34.37), and using eq. (34.17), we get
G (2) = —(S8)"G (@) | (34.39)
which is anti-self-dual,
G (z) = +4e™P7 Gl (x) . (34.40)

Given a hermitian antisymmetric tensor field A" (z), we can extract its
self-dual and anti-self-dual parts via

GM () = LAM (2) — LelPIA o (x) (34.41)
Gl (z) = LA™ () + LetP7A,, () . (34.42)

Then we have
AP (z) = G* (z) + G () (34.43)

The field G*(z) is in the (3,1) representation, and the field G (x) is in
the (1, 3) representation; these do not mix under Lorentz transformations.

PROBLEMS

34.1) Verify that eq. (34.6) follows from eq. (34.1).
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34.2) Verify that egs. (34.9) and (34.10) obey eq. (34.4).

34.3) Show that the Levi-Civita symbol obeys

VPO ey = — Pl g0P s — G 56Y 6P o — B1 0¥ 40P 5

¥ 0 40P + 00" 0P 5 4 P 6Y 5600, (34.44)
P 0y = —2(6" 00" 5 — 156" ) | (34.45)

P e = —6 07, . (34.46)

34.4) Consider a field C%~¢%¢(z), with N undotted indices and M dotted
indices, that is furthermore symmetric on exchange of any pair of un-
dotted indices, and also symmetric on exchange of any pair of dotted
indices. Show that this field corresponds to a single irreducible rep-
resentation (2n+1,2n'+1) of the Lorentz group, and identify n and

n'.
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35 MANIPULATING SPINOR INDICES

PREREQUISITE: 34

In section 34 we introduced the invariant symbols e, g® ¢ by and gb,
where
el2 =12 = €21 = €] = +1, g2l =2l = €12 = €5y = —1. (35.1)

We use the € symbols to raise and lower spinor indices, contracting the
second index on the €. (If we contract the first index instead, then there is
an extra minus sign).

Another invariant symbol is

ot = (1,5), (35.2)

where [ is the 2 x 2 identity matrix, and

01:((1) é) 0'22((2,) _OZ> 0'32((1) _01> (35.3)

are the Pauli matrices.

Now let us consider some combinations of invariant symbols with some
indices contracted, such as g, 0,0 bb This object must also be invariant.
Then, since it carries two undotted and two dotted spinor indices, it must
be proportional to eqye,;. Using egs. (35.1) and (35.2), we can laboriously
check this; it turns out to be correct.! The proportionality constant works
out to be minus two:

Ugaaubb 2€ab6db . (354)
Similarly, e%e ab must be proportional to g"¥, and the proportionality

aa bb
constant is again minus two:

eelibalt g¥ = 291 . (35.5)
Next, let’s see what we can learn about the generator matrices (S£),°
and (S4")sb from the fact that e,p, e, and 0!, are all invariant symbols.

Begin with
cap = LN L(A )z (35.6)

which expresses the Lorentz invariance of g,,. For an infinitesimal trans-
formation A, = 6*, + dw,, we have

Lo (140w) = 6,° + 26w, (SE")a" (35.7)

'f it did not turn out to be correct, then eq. (35.2) would not be a viable choice of
numerical values for this symbol.
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and eq. (35.6) becomes
Cab = Eap + %(MW[(S{‘ Jaeer + (SEY )b Ead] + O(0w?)
= cap + 50wy | —(SE)ap + (S )b | + O(0w?) (35.8)

Since eq. (35.8) holds for any choice of dw,,, it must be that the factor in
square brackets vanishes. Thus we conclude that (S£)a = (S£”)pa, Which
we had already deduced in section 34 by a different method. Similarly,
starting from the Lorentz invariance of e,;, we can show that (S£"),; =
(Sgu)i,a-
Next, start from
of = A’.L(A), R(A)

or (35.9)

which expresses the Lorentz invariance of ¢”.. For an infinitesimal trans-
formation, we have

AP = 6P + Lowu (S§)P+ (35.10)
" (14+0w) = 6" + 20w, (SE)a" (35.11)
Ra(146w) = 6> + 16w, (SE)a" (35.12)
where
(SEYP, = H(ges¥, — g'Pot,) . (35.13)

Substituting egs. (35.10-35.13) into eq. (35.9) and isolating the coefficient
of dw,,, yields

(ghPo" . — g"Pot ot + z(S’“’) ab. + z(SW) ol =0. (35.14)
Now multiply by o, to get

ohat, — ol +i(SE)a ol 0 pei + i(SKY )a 0liopee = 0. (35.15)

cc” aa

Next use eq. (35.4) in each of the last two terms to get

O'gc-O' — oot + 22(5” )acé‘ac' + 2i(5gu)ac'€ac =0. (35.16)

cc” aa

If we multiply eq. (35.16) by £%¢, and remember that £%¢(S5")sc = 0 and
that €%, = —2, we get a formula for (S1")4c, namely

(SE)qe = 1e%(0 0%, — alyots) . (35.17)

aa® cé aa® cc
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Similarly, if we multiply eq. (35.16) by £%¢, we get

(SE Voo = %6“(0‘“- ol —olot) . (35.18)

aa” cé aa” cé

These formulae can be made to look a little nicer if we define
Ghia = gabgibgh (35.19)
Numerically, it turns out that
gt = (I,-3) . (35.20)
Using ¢#, we can write egs. (35.17) and (35.18) as
(SE")a" = +4(0"0" — 0"5")." (35.21)
(SR = —4(6"0” — 5" 0")"; . (35.22)

In eq. (35.22), we have suppressed a contracted pair of undotted indices
arranged as ., and in eq. (35.21), we have suppressed a contracted pair of
dotted indices arranged as ¢ ¢.

We will adopt this as a general convention: a missing pair of contracted,
undotted indices is understood to be written as ¢ ., and a missing pair of
contracted, dotted indices is understood to be written as ¢ ¢. Thus, if ¥ and
1 are two left-handed Weyl fields, we have

XY =x"%, and x'yl=xlyf®. (35.23)

We expect Weyl fields to describe spin-one-half particles, and (by the spin-
statistics theorem) these particles must be fermions. Therefore the corre-
spoding fields must anticommute, rather than commute. That is, we should
have

Xa(2)U6(y) = —t(y)Xa(®) - (35.24)
Thus we can rewrite eq. (35.23) as
XY = X"a = —thaX" = ¥"Xa = ¥X . (35.25)

The second equality follows from anticommutation of the fields, and the
third from switching , to *, (which introduces an extra minus sign).
Eq. (35.25) tells us that x@ = vy, which is a nice feature of this notation.
Furthermore, if we take the hermitian conjugate of xv, we get

)T = ()t = (W) (T = wixt = vixt. (35.26)

That (xt)" = ¢ xT is just what we would expect if we ignored the indices
completely. Of course, by analogy with eq. (35.25), we also have iyt =

XMt
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In order to tell whether a spinor field is left-handed or right-handed
when its spinor index is suppressed, we will adopt the convention that a
right-handed field is always written as the hermitian conjugate of a left-
handed field. Thus, a right-handed field is always written with a dagger,
and a left-handed field is always written without a dagger.

Let’s try computing the hermitian conjugate of something a little more
complicated:

oty = plaracy, . (35.27)

This behaves like a vector field under Lorentz transformations,
UM e XU (M) = A, [pTa"x] - (35.28)

(To avoid clutter, we suppressed the spacetime argument of the fields; as
usual, it is 2 on the left-hand side and A~'x on the right.) The hermitian
conjugate of eq. (35.27) is

[wlarx]T = [l o x.]!
= L") b
= X164,
= xfaty . (35.29)
In the third line, we used the hermiticity of the matrices 6* = (I, —37).

We will get considerably more practice with this notation in the follow-
ing sections.

PROBLEMS

35.1) Verify that eq. (35.20) follows from egs. (35.2) and (35.19).

35.2) Verify that eq. (35.21) is consistent with egs. (34.9) and (34.10).
35.3) Verify that eq. (35.22) is consistent with eq. (34.17).
35.4) Verify eq. (35.5).

Hint for all problems: write everything in “matrix multiplication”

order, and note that, numerically, e = —e4, = io9. Then make use

of the properties of the Pauli matrices.



36: Lagrangians for Spinor Fields 226

36 LAGRANGIANS FOR SPINOR FIELDS

PREREQUISITE: 22, 35

Suppose we have a left-handed spinor field v¢,. We would like to find a
suitable lagrangian for it. This lagrangian must be Lorentz invariant, and
it must be hermitian. We would also like it to be quadratic in % and
its hermitian conjugate 1/)}:, because this will lead to a linear equation of
motion, with plane-wave solutions. We want plane-wave solutions because
these describe free particles, the starting point for a theory of interacting
particles.

Let us begin with terms with no derivatives. The only possibility is
P = P®hg = e®hyi),, plus its hermitian conjugate. Because of anticom-
mutation of the fields (p1), = —1a1lp), this expression does not vanish (as
it would if the fields commuted), and so we can use it as a term in L.

Next we need a term with derivatives. The obvious choice is 00,1,
plus its hermitian conjugate. This, however, yields a hamiltonian that is
unbounded below, which is unacceptable. To get a bounded hamiltonian,
the kinetic term must involve both t and 1f. A candidate is WT&“@“?X).
This not hermitian, but

(ipfa"a, )T = (! 719°0,1),)1
= —i0,0] (@) a
= —i, ! 1,
= W] 7,1 — 10, (1] 7P,
= i1, — 0, (VT5Hp) . (36.1)

In the third line, we used the hermiticity of the matrices 6# = (I, —&). In
the fourth line, we used —(0A)B = A0B — 0(AB). In the last line, the
second term is a total divergence, and vanishes (with suitable boundary
conditions on the fields at infinity) when we integrate it over d*r to get
the action S. Thus inﬁ‘L@Mw has the hermiticity properties necessary for
a term in L.

Our complete lagrangian for v is then

L =i, — tmyp — Im*ylyt (36.2)

where m is a complex parameter with dimensions of mass. The phase of m
is actually irrelevant: if m = |m|e’®, we can set ¥ = e /24 in eq. (36.2);
then we get a lagrangian for 1/; that is identical to eq. (36.2), but with m
replaced by |m|. So we can, without loss of generality, take m to be real
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and positive in the first place, and that is what we will do, setting m* = m

in eq. (36.2).
The equation of motion for 1 is then
08 .
0= i —ig" 0, +mapt (36.3)

Restoring the spinor indices, this reads
0 = —ig"*d,p. + map® . (36.4)

Taking the hermitian conjugate (or, equivalently, computing —3§.S/dv), we
get

0 = +i(a"%)* Oup] + my*
= i, ] + map
= —io", 9,1 + map, . (36.5)

In the second line, we used the hermiticity of the matrices 6# = (I, —7).
In the third, we lowered the undotted index, and switched ¢; to ¢, which
gives an extra minus sign.

Egs. (36.5) and (36.4) can be combined to read

mo,°© —iagc-ﬁ Ve
| - ) =o0. (36.6)
—ightc g, mot, )\l

We can write this more compactly by introducing the 4 x 4 gamma matrices
0 k.
w= ). (36.7)
ghec 0
Using the sigma-matrix relations,
(cta” + o"at),c = —2¢"6,°,
(610" +5"o")%: = —29" 5% (36.8)

which are most easily derived from the numerical formulae o, = (I, ) and
ghte = (I,—3), we see that the gamma matrices obey

"} = —29", (36.9)

where {A, B} = AB + BA denotes the anticommutator, and there is an
understood 4 x 4 identity matrix on the right-hand side. We also introduce
a four-component Majorana field

U= (ZJ . (36.10)
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Then eq. (36.6) becomes
(—iy" 0y +m)¥ =0 . (36.11)

This is the Dirac equation. We first encountered it in section 1, where the
gamma matrices were given different names (3 = 7% and o = 4%9*). Also,
in section 1 we were trying (and failing) to interpret ¥ as a wave function,
rather than as a quantum field.

Now consider a theory of two left-handed spinor fields with an SO(2)
Symmetry,

L =i a" 0, — smps; — Smyplol | (36.12)

where the spinor indices are suppressed and ¢ = 1, 2 is implicitly summed.
As in the analogous case of two scalar fields discussed in sections 22 and
23, this lagrangian is invariant under the SO(2) transformation

U cosa sina Py
- . (36.13)
o —sina  cosa o
We can write the lagrangian so that the SO(2) symmetry appears as a U(1)
symmetry instead; let

X = J5(¥1 +iv) (36.14)
¢ = G5t —ithy) . (36.15)

In terms of these fields, we have
L= iXTﬁ“auX + sz&“auf —my& —méxT. (36.16)

Eq. (36.16) is invariant under the U(1) version of eq. (36.13),
X — e,
£ — etiag, (36.17)

Next, let us derive the equations of motion that we get from eq. (36.16),
following the same procedure that ultimately led to eq. (36.6). The result

1S
md,°© ) Xe
< . . “)( .):0. (36.18)
—ighicd,  moi, ) \ &t

We can now define a four-component Dirac field

U= (;) : (36.19)
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which obeys the Dirac equation, eq. (36.11). (We have annoyingly used the
same symbol ¥ to denote both a Majorana field and a Dirac field; these are
different objects, and so we must always announce which is meant when we
write W.)

We can also write the lagrangian, eq. (36.16), in terms of the Dirac field
U, eq. (36.19). First we take the hermitian conjugate of ¥ to get

v =(xf, €. (36.20)

Introduce the matrix 0 g
8= < ) . 36.21
55 0 ( )

Numerically, 3 = 7°. However, the spinor index structure of 3 and ~° is
different, and so we will distinguish them. Given 3, we define

T=wlg= (). (36.22)
Then we have .
T = %% + x,&™ . (36.23)
Also, . _
U1, W = %% 0,61 4+ x1 519° 0, x, . (36.24)

Using AOB = —(0A)B + 0(AB), the first term on the right-hand side of
eq. (36.24) can be rewritten as

oy, 8u§Té = —(0u&") ol ¢ + o, (ot §Té) . (36.25)

Then the first term on the right-hand side of eq. (36.25) can be rewritten
as
—(0u8") ol €1¢ = €10, 0,6" = +€] 70,8 . (36.26)

Here we used anticommutation of the fields to get the first equality, and
switched ¢ to ¢ and ,* to ¢, (thus generating two minus signs) to get
the second. Combining egs. (36.24-36.26), we get

Uk 9, U = 1610, x + £1610,€ + 0, (EotT) . (36.27)
Therefore, up to an irrelevant total divergence, we have
L =109,V —mUV . (36.28)
This form of the lagrangian is invariant under the U(1) transformation
U — e
U — ety (36.29)
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which, given eq.(36.19), is the same as eq.(36.17). The Noether current
associated with this symmetry is

GH =Tyl = yTaty — lare . (36.30)

In quantum electrodynamics, the electromagnetic current is e¥y#¥, where
e is the charge of the electron.

As in the case of a complex scalar field with a U(1) symmetry, there is
an additional discrete symmetry, called charge conjugation, that enlarges
SO(2) to O(2). Charge conjugation simply exchanges x and {. We can
define a unitary charge conjugation operator C that implements this,

C™'Xa(2)C = &ulx)
C7 L, (2)C = xalx) , (36.31)

where, for the sake of precision, we have restored the spinor index and
spacetime argument. We then have C~1L(z)C = L(x).

To express eq. (36.31) in terms of the Dirac field, eq. (36.19), we first
introduce the charge conjugation matrix

€ae O
C = ( ) . (36.32)
0 E[lC

Next we notice that, if we take the transpose of ¥, eq. (36.22), we get
_ &
Ut = < i ) : (36.33)
Xa

Then, if we multiply by C, we get a field that we will call ¥, the charge
conjugate of W,

v =Cco" = ( Sa ) . (36.34)

We see that W€ is the same as the original field U, eq. (36.19), except that
the roles of y and £ have been switched. We therefore have

C~1(x)C = U°(x) (36.35)

for a Dirac field.
The charge conjugation matrix has a number of useful properties. As a
numerical matrix, it obeys

C*=cl=c'=-cC, (36.36)
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and we can also write it as

_ECLC O
C= ( ) . (36.37)
0  —eae

A result that we will need later is

g 0 o €ee O
ClytC = . N
0 &4 ohbe 0 e
< 0 gbgl! gt )
a € db&“i’%ce 0

0 —ghae
_ . (36.38)
—O'ge 0

The minus signs in the last line come from raising or lowering an index by
contracting with the first (rather than the second) index of an ¢ symbol.

Comparing with
" < ’ 05"’) (36.39)
"Y = . s .
ghee 0

we see that
CINHC = —(vM)T . (36.40)

Now let us return to the Majorana field, eq. (36.10). It is obvious that a
Majorana field is its own charge conjugate, that is, ¥© = ¥. This condition
is analogous to the condition ¢! = ¢ that is satisfied by a real scalar field.
A Dirac field, with its U(1) symmetry, is analogous to a complex scalar
field, while a Majorana field, which has no U(1) symmetry, is analogous to
a real scalar field.

We can write our original lagrangian for a single left-handed spinor field,
eq. (36.2), in terms of a Majorana field, eq. (36.10), by retracing eqgs. (36.20—
36.28) with x — ¢ and & — 1. The result is

L= 5040,V — ImPv . (36.41)

However, we cannot yet derive the equation of motion from eq.(36.41)
because it does not yet incorporate the Majorana condition ¥¢ = ¥. To
remedy this, we use eq. (36.36) to write the Majorana condition ¥ = C¥ "
as U = UTC. Then we can replace V¥ in eq. (36.41) by U*C to get

L=L1U"Cy"9,¥ — imU"CV . (36.42)

The equation of motion that follows from this lagrangian is once again the
Dirac equation.
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We can also recover the Weyl components of a Dirac or Majorana field
by means of a suitable projection matrix. Define

<_5“C ’ ) (36.43)
5 = ), -
i 0 +0%;

where the subscript 5 is simply part of the traditional name of this matrix,
rather than the value of some index. Then we can define left and right

projection matrices
0s° 0
PLE%(l_%")):( )7

0 0
Pr=Li1+v)= oo 36.44
R =3 Vs) = A (36.44)

Thus we have, for a Dirac field,

Pw— <Xc> |
0
0
PU = <£Té>. (36.45)

The matrix ~5 can also be expressed as

75 = iyl
= —318mwpo V"V VY7 (36.46)

where £0123 = —1.

Finally, let us consider the behavior of a Dirac or Majorana field under
a Lorentz transformation. Recall that left- and right-handed spinor fields
transform according to

UM pa(2)U(N) = L(A)otpe(A ) (36.47)
U l(2)U(A) = R(A)a‘ gl(A ) , (36.48)

where, for an infinitesimal transformation A#, = 6, + dwh,,
L(1+6w),® = 6,5+ 50w, (SE)a (36.49)

R(140w)s¢ = 6:° + &6w,w (SE")a" (36.50)
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and where

(SE")a = +

(SEV) e = —

(015" — 0¥5")o° (36.51)

IS

(6Fo” —G"ot)%; . (36.52)

NS

From these formulae, and the definition of v*, eq. (36.7), we can see that

QA l AV +(517)a” 0 — ouv
= < 0 —(Sﬁ”’)%) = SH. (36.53)

Then, for either a Dirac or Majorana field ¥, we can write
UN) 10 (z)U(A) = DAY (A ), (36.54)
where, for an infinitesimal transformation, the 4 x 4 matrix D(A) is
D(1+6w) = 14 6w, S™ | (36.55)

with S# given by eq. (36.53). The minus sign in front of S§” in eq. (36.53)
is compensated by the switch from a ¢; contraction in eq. (36.50) to a ¢
contraction in eq. (36.54).

PROBLEMS

36.1) Using the results of problem 2.9, show that, for a rotation by an angle
f about the z axis, we have

D(A) = exp(—ifS*?) | (36.56)
and that, for a boost by rapidity 7 in the z direction, we have
D(A) = exp(+inS3°) . (36.57)
36.2) Verify that eq. (36.46) is consistent with eq. (36.43).

36.3) a) Prove the Fierz identities

(x1e"x2) Odauxa) = —2(xixd) (xaxa) (36.58)
(x}5"x2) Ochauxa) = (x1a"xa) haxe) - (36.59)

b) Define the Dirac fields

Xi
¢l

< i) . (36.60)
Xi
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Use egs. (36.58) and (36.59) to prove the Dirac form of the Fierz
identities,

(El’y‘uPL\I’g)(Eg’yuPL\Ifgl) = —2(E1PR\I’§:)(E2PL\I/2) 5 (3661)

(El’y‘uPL\I’g)(Eg’yuPL\Ifgl) == (El’y‘uPL\I’ZL)(Eg’yuPL\IfQ) . (3662)

c¢) By writing both sides out in terms of Weyl fields, show that

TyH Py = —W5yH P | (36.63)
TP,y = +T5P, 0 (36.64)
T, Py = + TSP 0E (36.65)

Combining eqgs. (36.63-36.65) with eqgs. (36.61-36.62) yields more use-
ful forms of the Fierz identities.

36.4) Consider a field p4(z) in an unspecified representation of the Lorentz
group, indexed by A, that obeys

UM pa()UA) = La®(N)ep(A ") . (36.66)
For an infinitesimal transformation,

LaP(146w) = 647 + $6w,u, (S") 47 . (36.67)

a) Following the procedure of section 22, show that the energy-momentum
tensor is
oL

I(Opspa)

b) Show that the Noether current corresponding to a Lorentz trans-
formation is

TH = g [ — o4 . (36.68)

MMP = gV THP — pPTH | BIP (36.69)
where or
BMP = —j——— _(§"P) ,Bop . 36.70
0, (’DA)( ) (36.70)
c) Use the conservation laws 0,7*" = 0 and 9, M*? = 0 to show
that
T =T 4 0,B"P =0 . (36.71)

e) Define the improved energy-momentum tensor or Belinfante tensor

OM = TH 4+ 19,(BP" — BI# — BVPIY . (36.72)
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Show that ©*" is symmetric: ©* = ©Y#. Also show that ©* is
conserved, 9,0" = 0, and that [d®x 0% = [d®x T = P, where
PV is the energy-momentum four-vector. (In general relativity, it is
the Belinfante tensor that couples to gravity.)

f) Show that the improved tensor
SO = " QP — PO (36.73)

obeys 9,Z#P = 0, and that [d*x 2% = [ d% M"P = M"?, where
MP"P are the Lorentz generators.

g) Compute O for a left-handed Weyl field with £ given by eq. (36.2),
and for a Dirac field with £ given by eq. (36.28).

36.5) Symmetries of fermion fields. (Prerequisite: 24.) Consider a theory
with N massless Weyl fields 15,

L=iplo"d,n; (36.74)

where the repeated index j is summed. This lagrangian is clearly
invariant under the U(NN) transformation,

Yj — Ui (36.75)

where U is a unitary matrix. State the invariance group for the
following cases:

a) N Weyl fields with a common mass m,
L = iplo .y — sm(tse; +jyl) . (36.76)
b) N massless Majorana fields,
L=5V7Cy"0,9; . (36.77)
¢) N Majorana fields with a common mass m,
L= ViCy"0,¥; — 3mUjCY; . (36.78)
d) N massless Dirac fields,
L=i%;y"9,¥; . (36.79)

e) N Dirac fields with a common mass m,

ﬁ = i@j’}/ua‘uqu — mﬁjqu . (36.80)
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37 CANONICAL QUANTIZATION OF SPINOR FIELDS I

PREREQUISITE: 36

Consider a left-handed Weyl field 1 with lagrangian

L=ip'a"dn — Im(yy +yiyl) . (37.1)
The canonically conjugate momentum to the field v, (z) is then'
m(z) = oL
9(0otha(2))
= itp] ()% | (37.2)
The hamiltonian is
H = 7%0gq — L
_ wla_oaawa _r
= —i6'0i + Fm(vy + Tyl . (37.3)
The appropriate canonical anticommutation relations are
{tha(x,1), ey, 1)} = 0, (37.4)
{ta(x,1), 7(y, 1)} = i0.°8°(x — ) - (37.5)
Substituting in eq. (37.2) for 7¢, we get
{Ya (1) vy 1}0" = 0, 0% (x —y) . (37.6)
Then, using 6° = 0% = I, we have
{Ya (1), 0Ly, 1)} = 0: 0°(x —y) , (37.7)
or, equivalently,
{w" (e, ), 4"y, )} = " 6% (x — y) - (37.8)

We can also translate this into four-component notation for either a

Dirac or a Majorana field. A Dirac field is defined in terms of two left-
handed Weyl fields x and & via

U= (;) . (37.9)

"Here we gloss over a subtlety about differentiating with respect to an anticommuting
object; we will take up this topic in section 44, and for now simply assume that eq. (37.2)
is correct.
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We also define

T=0=( xl). (37.10)
where .
_ < 0 5%) 37.11)
= 5.° 0 ) (87.

The lagrangian is
L= z’XTé“aﬂX + sz&“auf —m(x€ + £xh)
= iUy"9, ¥ — mUV . (37.12)

The fields x and £ each obey the canonical anticommutation relations of
eq. (37.5). This translates into

{Wa(x,1), sy, 1)} = (1")ap 0’ (x —y) , (37.14)
where o« and (§ are four-component spinor indices, and
# 0 ou (37.15)
Y= . . .
Fhac 0

Egs. (37.13) and (37.14) can also be derived directly from the four-component
form of the lagrangian, eq. (37.12), by noting that the canonically conjugate
momentum to the field ¥ is 9L/9(9p¥) = i¥4", and that (7°)? = 1.

A Majorana field is defined in terms of a single left-handed Weyl field

1 via
Ye
U= . (37.16)
Pt
We also define
U=uig=(y, v)). (37.17)
A Majorana field obeys the Majorana condition
v =v"C, (37.18)
where
= <_€ac ’ ) (37.19)
= 0 s .

is the charge conjugation matrix. The lagrangian is
L =it o, — sm(py + 9Tyl
= %@V“GM\II — %mW\II
= LUTCAH0, ¥ — ImUTCV . (37.20)
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The field ¢ obeys the canonical anticommutation relations of eq. (37.5).
This translates into

{Wa(x, 1), Us(y, )} = (CY°)ap 8 (x —¥) (37.21)
{\IIQ(X, t)v Eﬁ(Yv t)} = (70)a5 53(}( - Y) ’ (37'22)

where a and [ are four-component spinor indices. To derive egs. (37.21) and
(37.22) directly from the four-component form of the lagrangian, eq. (37.20),
requires new formalism for the quantization of constrained systems. This is
because the canonically conjugate momentum to the field ¥ is 0L/9(9y¥) =
%\I'TCVO, and this is linearly related to W itself; this relation constitutes a
constraint that must be solved before imposition of the anticommutation
relations. In this case, solving the constraint simply returns us to the Weyl
formalism with which we began.
The equation of motion that follows from either eq. (37.12) or eq. (37.20)
is the Dirac equation,
(=i +m)¥ =0. (37.23)

Here we have introduced the Feynman slash: given any four-vector a*, we
define
h=a, " . (37.24)

To solve the Dirac equation, we first note that if we act on it with
i@ + m, we get

0

(i@ + m)(—i@d + m)¥

= (PP +m*) ¥
(=0% + mHW . (37.25)

Here we have used
dd = aya,y"
— o m v lrop AV
= aua, (3{0",7"} + 30, 7)
= auau(_gwj + %[7“)’7/”])
= —aua,g" +0

= —d?. (37.26)

From eq. (37.25), we see that U obeys the Klein-Gordon equation. There-
fore, the Dirac equation has plane-wave solutions. Let us consider a specific
solution of the form

U(z) = u(p)e®” + v(p)e P* . (37.27)
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where p¥ = w = (p? + m?)"/2, and u(p) and v(p) are four-component
constant spinors. Plugging eq. (37.27) into the eq. (37.23), we get

(# + m)u(p)e® + (—f + m)v(p)e P* = 0. (37.28)
Thus we require

(#+m)u(p) =0,

(=#+m)v(p) =0.
Each of these equations has two linearly independent solutions that we
will call uy(p) and vy (p); their detailed properties will be worked out in

the next section. The general solution of the Dirac equation can then be
written as

W)= 3 [ [bup)us @)™ + @i ™]  (37.30)
s==+

(37.29)

where the integration measure is as usual

— d3p

dp = . 31
P = 2m)s2w (37:31)
PROBLEMS

37.1) Verify that egs. (37.13) and (37.14) follow from egs. (37.4) and (37.5).
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38 SPINOR TECHNOLOGY

PREREQUISITE: 37

The four-component spinors us(p) and vs(p) obey the equations

(# +m)us(p) = 0,

(—p+m)vs(p) = 0. (38.1)
Each of these equations has two solutions, which we label via s = + and
s = —. For m # 0, we can go to the rest frame, p = 0. We will then
distinguish the two solutions by the eigenvalue of the spin matrix
1
) ) 503 0
S. =i = 571 = <2 ) : (38.2)
0 1o
593

Specifically, we will require
Soux(0) = +5ux(0),
S.v4(0) = Fiv4(0) . (38.3)

The reason for the opposite sign for the v spinor is that this choice results
in

(2,6 (0)] = +50L.(0) .

[z, d(0)] = £3d(0) , (38.4)
where J, is the z component of the angular momentum operator. Eq. (38.4)
implies that bﬂ_ (0) and dl (0) each creates a particle with spin up along the

z axis. We will verify eq. (38.4) in problem 39.2.
For p = 0, we have § = —m~", where

0—<0 I) (38.5)
T\ o) '

Egs. (38.1) and (38.3) are then easy to solve. Choosing (for later conve-
nience) a specific normalization and phase for each of w4 (0) and v4(0), we
get

; v_(0) = vm (38.6)
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For later use we also compute the barred spinors

u,(p) = ul(p)B

vs(p) = vl(p)3 (38.7)
where
= (O I) 38.8)
=0 (38
satisfies
Br=p=p"=5. (38.9)
We get
. (0) = \/E (1,0,1,0),
u_(0) = \/E (0,1,0,1),
54_(0) = \/E (0’ -1, 0, 1) )
v_(0) = v/m (1,0, =1, 0) . (38.10)

We can now find the spinors corresponding to an arbitrary three-momentum
p by applying to us(0) and vs(0) the matrix D(A) that corresponds to an
appropriate boost. This is given by

D(A) = exp(inp-K) , (38.11)

where P is a unit vector in the p direction, K/ = ﬁ'[vj A0 = %ijo is
the boost matrix, and 1 = sinh ™! (|p|/m) is the rapidity (see problem 2.9).
Thus we have

vs(p) = exp(inp-K)vs(0) . (38.12)
We also have
us(p) = Us(0) exp(—inp-K) ,
Us(p) = 0s(0) exp(—inp-K) . (38.13)

This follows from KJ = K7, where for any general combination of gamma
matrices,

A=pAT3. (38.14)
In particular, it turns out that
v =",
5 — g
ivs = 075,
Vs = s

5O = iry5 MY (38.15)
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The barred spinors satisfy the equations

Hs(p)(p/—’_Tn) =0,
Ts(p)(—p+m) =0. (38.16)

It is not very hard to work out us(p) and vs(p) from eq. (38.12), but
it is even easier to use various tricks that will sidestep any need for the
explicit formulae. Consider, for example, Ty (p)us(p); from egs. (38.12)
and (38.13), we see that Uy (p)us(p) = Ty (0)us(0), and this is easy to
compute from egs. (38.6) and (38.10). We find

Uy (p)us(p) = +2m s ,

Tg(P)vs(P) = —2m by ,

Ty (P)vs(p) = 0,

Ty (P)us(p) = 0. (38.17)

Also useful are the Gordon identities,

2m Ty (B us(p) = Ty (B[ (0 + p)* = 205" (p — p)u |us(P)
~2m Ty (p)1"0(p) = T (D) [(F' + P)¥ — 28" (p' — p)u|vs(p) - (38.18)
To derive them, start with
7= 30" B+ 3 ] = P - 218", (38.19)
P =50 s = P 208, (38.20)
Add egs. (38.19) and (38.20), sandwich them between u’ and w spinors (or
v’ and v spinors), and use egs. (38.1) and (38.16). An important special
case is p’ = p; then, using eq. (38.17), we find
Uy (p)Y us(p) = 290y
g (P)YHvs(P) = 2pH g5 - (38.21)

With a little more effort, we can also show

ﬂs/(p)’yovs(—p)
6S’(Iﬁ))’YOUs(_Iﬁ))

0,
0. (38.22)
We will need egs. (38.21) and (38.22) in the next section.

Consider now the spin sums > ._, us(p)us(p) and Y . vs(P)s(P),

each of which is a 4 x 4 matrix. The sum over eigenstates of S, should
remove any memory of the spin-quantization axis, and so the result should
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be expressible in terms of the four-vector p* and various gamma matrices,
with all vector indices contracted. In the rest frame, y = —m~?, and it is
easy to check that >, us(0)Ts(0) = my? +m and 3 ,_L v4(0)7,4(0) =
m~°? —m. We therefore conclude that

> us(p)us(p) = —f+m,

s==

Y vs(P)Ts(p) = —p—m . (38.23)

s==

We will make extensive use of eq. (38.23) when we calculate scattering cross
sections for spin-one-half particles.

From eq. (38.23), we can get uy (p)u+(p), etc, by applying appropriate
spin projection matrices. In the rest frame, we have

(1+2s85,)ug(0) = ds5 us(0)
(1 —2s85,)vg(0) = 055 v5(0) . (38.24)

D= NI

In order to boost these projection matrices to a more general frame, we
first recall that

-1 0
7 =i’y = : (38.25)
0 I
This allows us to write S, = %7172 as S, = —%757370. In the rest frame,

we can write 70 as —g/m, and 43 as £, where 2z = (0,2); thus we have

S. = st (38.26)

Now we can boost S, to any other frame simply by replacing # and p with
their values in that frame. (Note that, in any frame, 2* satisfies 22 = 1 and
z-p = 0.) Boosting eq. (38.24) then yields

%(1 - 5’75%)“3’(1)) = Ogg/ Us'(P) s
%(1 - 8’75¢)'Us’(p) = gy Us’(p) s (38.27)

where we have used eq. (38.1) to eliminate . Combining egs. (38.23) and
(38.27) we get

(1= sy52) (= +m),
(1= sy2)(=p —m) . (38.28)

D= N[

It is interesting to consider the extreme relativistic limit of this formula.
Let us take the three-momentum to be in the z direction, so that it is
parallel to the spin-quantization axis. The component of the spin in the
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direction of the three-momentum is called the helicity. A fermion with
helicity +1/2 is said to be right-handed, and a fermion with helicity —1/2
is said to be left-handed. For rapidity n, we have

%PM = (coshn,0,0,sinhn) ,
2! = (sinhn, 0,0, coshn) . (38.29)

The first equation is simply the definition of 1, and the second follows from
2?2 =1 and p-z = 0 (along with the knowledge that a boost of a four-vector
in the z direction does not change its  and y components). In the limit of
large 1, we see that

Z=Lpt L O(e™). (38.30)
Hence, in eq. (38.28), we can replace # with y/m, and then use the matrix
relation (§/m)(—p £ m) = F(—p§ & m), which holds for p> = —m?. For
consistency, we should then also drop the m relative to g, since it is down
by a factor of O(e™"). We get

us(p)s(p) — 5(14 575)(—¥) ,
1

vs(P)Vs(P) — 5(1 = 575)(—¥) - (38.31)

The spinor corresponding to a right-handed fermion (helicity +1/2) is
us(p) for a b-type particle and v_(p) for a d-type particle. According
to eq.(38.31), either of these is projected by %(1 + v5) = diag(0,0,1,1)
onto the lower two components only. In terms of the Dirac field ¥(z), this
is the part that corresponds to the right-handed Weyl field. Similarly, left-
handed fermions are projected (in the extreme relativistic limit) onto the
upper two spinor components only, corresponding to the left-handed Weyl
field.

The case of a massless particle follows from the extreme relativistic limit
of a massive particle. In particular, egs. (38.1), (38.16), (38.17), (38.21),
(38.22), and (38.23) are all valid with m = 0, and eq.(38.31) becomes
exact.

Finally, for our discussion of parity, time reversal, and charge conjuga-
tion in section 40, we will need a number of relationships among the u and
v spinors. First, note that fus(0) = +us(0) and [vs(0) = —v4(0). Also,
BKJ = —KJ3. We then have

us(=p) = +Pus(p) ,
vs(—=p) = —Pus(p) - (38.32)
Next, we need the charge conjugation matrix
0 -1 0 0
+1 0 0 O
0 0 0 +1
0o 0 -1 0

C= (38.33)
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which obeys

C*=C'=c1=-c, (38.34)

BC =—Cp , (38.35)

CIyrC = —(vM)" . (38.36)

Using egs. (38.6), (38.10), and (38.33), we can show that Ctus(0)" = v,(0)

and Cv,(0)" = uy(0). Also, eq.(38.36) implies C"'K/C = —(K7)*. From
this we can conclude that

Cﬂs(p)T = Us(p) )

Cos(p)" = us(p) - (38.37)

Taking the complex conjugate of eq. (38.37), and using @™ = u' = fu, we
get

us(p) = Chus(p) ,
vg(p) = CPus(p) - (38.38)
Next, note that y5us(0) = +sv_s(0) and y5v5(0) = —su_4(0), and that

75 K7 = K'7s5. Therefore

Ysus(P) = +sv—s(P) ,

Y50s(P) = —su—_s(p) - (38.39)
Combining egs. (38.32), (38.38), and (38.39) results in

*

u”(—=p) = —5Cysus(p)
vE(—=p) = —sCysus(p) - (38.40)

We will need eq. (38.32) in our discussion of parity, eq. (38.37) in our dis-
cussion of charge conjugation, and eq.(38.40) in our discussion of time
reversal.

PROBLEMS

38.1) Use eq.(38.12) to compute us(p) and vs(p) explicity. Hint: show
that the matrix 2ip-K has eigenvalues 41, and that, for any matrix
A with eigenvalues +1, ¢4 = (coshc) + (sinhc)A, where ¢ is an
arbitrary complex number.

38.2) Verify eq. (38.15).
38.3) Verify eq. (38.22).
38.4) Derive the Gordon identities
o (p) (0 + )" = 25" (0 = p)u | 5us(p) = 0,

T (P)| (0 +p)" = 28" (0 = p)u]5vs(P) = 0. (38.41)
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39 CANONICAL QUANTIZATION OF SPINOR FIELDS
I1

PREREQUISITE: 38

A Dirac field ¥ with lagrangian
L=ivdy — mb¥ (39.1)
obeys the canonical anticommutation relations
{¥a(x,t),Vs(y,t)} =0, (39.2)
{Ta(x,1), Us(y, 1)} = (17)ap 8 (x ~ ), (39.3)
and has the Dirac equation
(=i +m)¥ =0 (39.4)

as its equation of motion. The general solution is
=3 [do [ + i@l . (305)
s==%

where by(p) and df(p) are operators; the properties of the four-component
spinors ug(p) and vs(p) were belabored in the previous section.

Let us express bs(p) and di(p) in terms of ¥(x) and ¥(z). We begin
with

[ ds e @) = 3 [Lbou(p) + e dl (~plos(-p)|

=t (39.6)

Next, multiply on the left by %s(p)7°, and use U (p)7 uy (p) = 2wdss and
Ts(p)Y vy (—p) = 0 from section 38. The result is

/d e~ P T, (p)y W (z) . (39.7)

Note that bs(p) is time independent.
To get bi(p), take the hermitian conjugate of eq. (39.7), using

(0 0 ()]

)
()7 us(p) , (39.8)

where, for any general combination of gamma matrices A,

A=BAT6. (39.9)
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Thus we find
/d €7 G (1)1 uy (p) (39.10)

To extract df(p) from ¥(z), we start with

/d 21’90\11 Z [2}”6_2wtb ( p)us’(_ ) 2wdl( ) (p)} ’

s'=+

(39.11)

Next, multiply on the left by 7 (p)y°, and use 7,(p)y vy (p) = 2wdss and
Ts(p)7 uy (—p) = 0 from section 38. The result is

/ & AU () . (39.12)
To get ds(p), take the hermitian conjugate of eq. (39.12), which yields
/ & =P T(2)7 %0, (p) - (39.13)

Next, let us work out the anticommutation relations of the b and d op-
erators (and their hermitian conjugates). From eq. (39.2), it is immediately
clear that

{bs(p)7 bs’ (p,)} =0 5
{ds(p)v ds’ (p,)} =0 5
{bs(p),d},(p)} = 0, (39.14)

because these involve only the anticommutator of ¥ with itself, and this
vanishes. Of course, hermitian conjugation also yields

{vl(p), bl (p")} =0,
{di(p),dl, (p)} =0,
{bi(p), ds (P')} = 0. (39.15)

Now consider
{bs(p), b, (')} = / dx dPy e PG (p)y* (W (), T (y) 1y us ()
N / d’r e PG (p)y 7w (p)
= (2m)%6°(p — p') Ts(p)7 us (P)
= (27)36%(p — p') 2wisy . (39.16)

In the first line, we are free to set 2° = y° because b(p) and bl,(p’ ) are
actually time independent. In the third, we used ()2 = 1, and in the
fourth, @s(p)y uy (P) = 2wy
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Similarly,
{di(P),dy(p)} = [ ddly e, (p)y* (W (), Tly) v (B
= / d*x PPV, (D)4 vy (P)
= (21)°8*(p — P') Ts(P)7 05 (P)
= (27)30%(p — p) 2wy - (39.17)
And finally,
(Bu(p). du (@)} = [ dedy e P 7w (p)) {W(2), F(y) 1 v ()
= / d’x e P ()77 0 (P)
= (2m)°6*(p + P') Us(p)1 05 (—P)
~0. (39.18)

According to the discussion in section 3, egs. (39.14-39.18) are exactly what
we need to describe the creation and annihilation of fermions. In this case,
we have two different kinds: b-type and d-type, each with two possible spin
states, s = 4+ and s = —.

Next, let us evaluate the hamiltonian

H= /d3a; U(—in'0; +m)¥ (39.19)
in terms of the b and d operators. We have
(—in' 0+ m)w = Y [ dp (in'0; + m)( by (D) ()™
- + di(p)vs(p)e ")
= / dp )(+7'pi + m)us(p)e®”
- + dl( )(—='pi + m)vs(p)e‘m]
= Z / dp )(Y'w)ug(p)e™”
+ dl( )(—7 w)vs(p)e ™| (39.20)

Therefore

H =Y [dpdp’ d's (b (90 (p)e 7" + dy (0 (p)e )
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= [ o[ s m) - d@)lm)]. (30.21)

Using eq. (39.17), we can rewrite this as
H=Y [ o [tlEmm) +dede ] -6y, (@.2)
s==%

where & = %(27?)_3 [ d% w is the zero-point energy per unit volume that
we found for a real scalar field in section 3, and V = (27)36%(0) = [ d%r
is the volume of space. That the zero-point energy is negative rather than
positive is characteristic of fermions; that it is larger in magnitude by a
factor of four is due to the four types of particles that are associated with a
Dirac field. We can cancel off this constant energy by including a constant
term Qg = —4&p in the original lagrangian density; from here on, we will
assume that this has been done.

The ground state of the hamiltonian (39.22) is the vacuum state |0)
that is annihilated by every bs(p) and d4(p),

bs(p)|0) = ds(p)[0) = 0. (39.23)

Then, we can interpret the bl(p) operator as creating a b-type particle
with momentum p, energy w = (p? + m?)/2, and spin S, = %s, and the
d]; (p) operator as creating a d-type particle with the same properties. The
b-type and d-type particles are distinguished by the value of the charge
Q = [ d® j°, where j# = Uy"¥ is the Noether current associated with the
invariance of £ under the U(1) transformation ¥ — e~ 0, ¥ — eHaQ,
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Following the same procedure that we used for the hamiltonian, we can
show that

Thus the conserved charge () counts the total number of b-type particles
minus the total number of d-type particles. (We are free to shift the overall
value of ) to remove the constant term, and so we shall.) In quantum
electrodynamics, we will identify the b-type particles as electrons and the
d-type particles as positrons.

Now consider a Majorana field ¥ with lagrangian

L=LU"CPU — ImITCV . (39.25)

The equation of motion for ¥ is once again the Dirac equation, and so the
general solution is once again given by eq.(39.5). However, ¥ must also
obey the Majorana condition ¥ = CW¥". Starting from the barred form of
eq. (39.5),

Tw)= Y [dp plo)mp)e # + d(p)mp)e™],  (3920)
s==+
we have

0" (@)= Y [ dp [php)Cut(ple 7 +du(p) CTT )] (39.27)
s=%

From section 38, we have

Cﬂs(p)T = Us(p) )
Cgs(p)T = us(p) ) (3928)

and so

CT () =Y / dp [l(p)va(p)e™" + du(p)us(p)e®| . (30.29)
s==+

Comparing eqs. (39.5) and (39.29), we see that we will have ¥ = CU " if

ds(p) = bs(p) - (39.30)
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Thus a free Majorana field can be written as
U(x) = Z /c/l;) {bs(p)us(p)eim + bi(p)vs(p)e_im} ) (39.31)
s=+

The anticommutation relations for a Majorana field,
{Ta(x,1), Ua(y, 1)} = (CY)apd®(x —y) (39.32)
{Wa(x,), Up(y, 1)} = (1°)ap 0°(x —¥) , (39.33)
can be used to show that
{bs(p), bsr ()} = 0,
{bs(p), b}, (P')} = (27)%6°(p — D) 2wdssr (39.34)

as we would expect.
The hamiltonian for the Majorana field W is

H = %/dgzn UTC(—iy'0; + m)¥
=1 / d®x U(—iy'0; + m)V | (39.35)

and we can work through the same manipulations that led to eq. (39.21); the
only differences are an extra overall factor of one-half, and ds(p) = bs(p).
Thus we get

H=3 ;/313 w [ B (P)bs(p) — b()bl(P) |- (39.36)

Note that this would reduce to a constant if we tried to use commutators
rather than anticommutators in eq. (39.34), a reflection of the spin-statistics
theorem. Using eq. (39.34) as it is, we find

=3 [ dpwbl(p)b(p) - 26V. (39.37)
s==+

Again, we can (and will) cancel off the zero-point energy by including a
term g = —2&p in the original lagrangian density.

The Majorana lagrangian has no U(1) symmetry. Thus there is no
associated charge, and only one kind of particle (with two possible spin
states).

PROBLEMS



39: Canonical Quantization of Spinor Fields IT 252

39.1) Verify eq. (39.24).

39.2) Use [¥(x), M*] = —i(zM0” — 2V 0*)¥(x) + S* U (x), plus whatever
spinor identities you need, to show that

bl (p2)0) = §sbl(p2)|0) ,
. df(p2)|0) = §sdl(p2)[0) , (39.38)

where p = pz is the three-momentum, and Z is a unit vector in the z
direction.

39.3) Show that

UN)ldi(p)U(A) = dl(A'p), (39.39)

and hence that
U(A)|p,s,q) = [Ap,s,q) , (39.40)

where

Ip,s,+) = bl(p)|0) ,
p,s,—) = di(p)|0) (39.41)

are single-particle states.

39.4) The spin-statistics theorem for spin-one-half particles. We will follow
the proof for spin-zero particles in section 4. We start with bs(p)
and bf(p) as the fundamental objects; we take them to have either
commutation (—) or anticommutation (4) relations of the form

[bs(p),bsr (p,)H =0,
bi(p). b, (P))]; =0,
[bs(p). bl (p)]5 = (27)%2w8% (p — P')dss (39.42)

Define

U(z) =Y / dp bl (p)vs(p)e " . (39.43)
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b) Show that [+ (z)]" = [T~ (2)]"CB. Thus a hermitian interaction
term in the lagrangian must involve both ¥ (z) and ¥~ (x).

c) Show that [UF(z), U5 (y)]5 # 0 for (z —y)* > 0.
) Show that [ (2), V5 ()]s =~ (y), ¥z ()]s for (z — y)* > 0.

e) Consider ¥(x) = Ut (z)+ AV~ (z), where \ is an arbitrary complex
number, and evaluate both [V, (z), ¥s(y)]+ and [P (z), Us(y)]s for
(x —y)? > 0. Show these can both vanish if and only if |\| = 1 and
we use anticommutators.
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40 PaArITY, TIME REVERSAL, AND CHARGE
CONJUGATION
PREREQUISITE: 23, 39

Recall that, under a Lorentz transformation A implemented by the unitary
operator U(A), a Dirac (or Majorana) field transforms as

U(A) W (2)UA) = DAY (A ) . (40.1)

For an infinitesimal transformation A*, = §*, + dwt,, the matrix D(A) is
given by ‘
D(1+6w) = I + 56w, S* (40.2)

where the Lorentz generator matrices are
SH = 1,1 (40.3)

In this section, we will consider the two Lorentz transformations that cannot
be reached via a sequence of infinitesimal transformations away from the
identity: parity and time reversal. We begin with parity.

Define the parity transformation

+1
ph, =Py = h (10.4)
-1
and the corresponding unitary operator
P=U(P). (40.5)
Now we have
P~ (2)P = D(P)¥(Pzx) . (40.6)

The question we wish to answer is, what is the matrix D(P)?
First of all, if we make a second parity transformation, we get

P20 (2)P% = D(P)*¥(x) , (40.7)

and it is tempting to conclude that we should have D(P)? = 1, so that we
return to the original field. This is correct for scalar fields, since they are
themselves observable. With fermions, however, it takes an even number
of fields to construct an observable. Therefore we need only require the
weaker condition D(P)? = +1.
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We will also require the particle creation and annihilation operators to
transform in a simple way. Because

P7'PP =P, (40.8)
PP =147, (40.9)

where P is the total three-momentum operator and J is the total angu-
lar momentum operator, a parity transformation should reverse the three-
momentum while leaving the spin direction unchanged. We therefore re-
quire

P'bi(p)P = nbl(-p),
Pldi(p)P = ndi(-p), (40.10)

where 7 is a possible phase factor that (by the previous argument about
observables) should satisfy n? = £1. We could in principle assign different
phase factors to the b and d operators, but we choose them to be the same so
that the parity transformation is compatible with the Majorana condition
ds(p) = bs(p). Writing the mode expansion of the free field

U(z)=> /ft{; [bs(p)us(p)ei”x + dl(p)vs(p)e‘i”ﬂ , (40.11)
s=+

the parity transformation reads
P lo(z)P
= 3 [ [(Pbu(p)P)usp)e™ + (P dl(p)P)es(p)e ]
s==+ )

=2 / dp [1"bs(—p)us(P)e™ + ndf(=p)vs(p)e "]

= 3 [ [0 )us (P + il (Do (p)e ] (40.12)
s=+ )

In the last line, we have changed the integration variable from p to —p.
We now use a result from section 38, namely that

us(—p) = +Pus(p) ,
vs(=p) = —Pvs(p) (40.13)

(" 40.14
B—(I 0)- (40.14)

where
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Then, if we choose n = —i, eq. (40.12) becomes

P—1\IJ(JE)P = Z /C/Z\]/? [ibs(p)ﬁus(p)eippx_‘_,L-dl(p)ﬁvs(p)e—ippx}
s==+

— i3 U(Pz) . (40.15)

Thus we see that D(P) = i3. (We could also have chosen n = i, resulting
in D(P) = —if3; either choice is acceptable.)

The factor of ¢ has an interesting physical consequence. Consider a
state of an electron and positron with zero center-of-mass momentum,

6) = [ db oIl (e)dl (~p)I0) (40.16)

here ¢(p) is the momentum-space wave function. Let us assume that the
vacuum is parity invariant: P|0) = P~!|0) = |0). Let us also assume that
the wave function has definite parity: ¢(—p) = (—)?¢(p). Then, applying
the inverse parity operator on |¢), we get

P76 = [ dp o) (P8 ) P) (Pl (-p)P) P10)
= (i [ dp o(p)bi(-p)dL,(P)IO)
= (i [ dp o(-PL(P)L(~P)I0)
= (=)o

Thus, the parity of this state is opposite to that of its wave function; an
electron-positron pair has an intrinsic parity of —1. This also applies to a
pair of Majorana fermions. This influences the selection rules for fermion
pair annihilation in theories that conserve parity. (A pair of electrons also
has negative intrinsic parity, but this is less interesting because the electrons
are prevented from annihilating by charge conservation.)

Let us see what eq. (40.15) implies for the two Weyl fields that comprise
the Dirac field. Recalling that

v = (;Z) , (40.18)

we see from egs. (40.14) and (40.15) that

) - (40.17)

P~ Xa(@)P = i"(Px)
PV ()P = ix,(Px) . (40.19)
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Thus a parity transformation exchanges a left-handed field for a right-
handed one.

If we take the hermitian conjugate of eq. (40.19), then raise the index on
one side while lowering it on the other (and remember that this introduces
a relative minus sign!), we get

P (2)P = i&y(Px)
P, (x)P = ix"(Pzx) . (40.20)

Comparing eqgs. (40.19) and (40.20), we see that they are compatible with
the Majorana condition x4 (z) = &,(x).
Next we take up time reversal. Define the time-reversal transformation

-1
(TR Cy el VU +1
T, = (T ", = 11 (40.21)
+1

and the corresponding operator

T=U(T). (40.22)
Now we have

T7'9(2)T = D(T)¥(Tx) . (40.23)

The question we wish to answer is, what is the matrix D(7)?

As with parity, we can conclude that D(7)? = 41, and we will require
the particle creation and annihilation operators to transform in a simple
way. Because

T7'PT = P, (40.24)
TIT = -7, (40.25)

where P is the total three-momentum operator and J is the total angu-
lar momentum operator, a time-reversal transformation should reverse the
direction of both the three-momentum and the spin. We therefore require

T} (p)T = ¢ ,(—p)
T1di(p)T = ¢od' (—p) . (40.26)

This time we allow for possible s-dependence of the phase factor. Also,
we recall from section 23 that 7" must be an antiunitary operator, so that
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T—Y%T = —i. Then we have
T ()T
-y / dp [(T~"0u(p)T)u(p)e ™" + (T di(p)T ) v} (p)e"]

= > [ dp[Ghos(=p)ui(p)e ™ + Gudl (~p)us (D)™’

= Z /(/1\1/) :{isbs(p)u*_s(—p)eip'fl‘ + é'_sdl(p)v*_s(_p)e—ip'fx} )
(40.27)

In the last line, we have changed the integration variable from p to —p, and
the summation variable from s to —s. We now use a result from section
38, namely that

u” (—=p) = —5Cysus(p)
' (—p) = —sCysus(p) - (40.28)
Then, if we choose (s = s, eq. (40.27) becomes

T (2)T = Cys0(T2) . (40.29)

Thus we see that D(7) = Cvys. (We could also have chosen (s = —s,
resulting in D(7) = —Crys; either choice is acceptable.)

As with parity, we can consider the effect of time reversal on the Weyl
fields. Using egs. (40.18), (40.29),

_Eab 0
C= , (40.30)
0 _Eizi)
and
<_6“C ’ ) (40.31)
V5 = . s .
° 0 +0%

we see that

Tt (@) = —¢l(Tx) . (40.32)

Thus left-handed Weyl fields transform into left-handed Weyl fields (and
right-handed into right-handed) under time reversal.
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If we take the hermitian conjugate of eq. (40.32), then raise the index on
one side while lowering it on the other (and remember that this introduces
a relative minus sign!), we get

T\ @)T = —x}(Tw),
T %, ()T = +&%(Tx) . (40.33)

Comparing eqgs. (40.32) and (40.33), we see that they are compatible with
the Majorana condition x4 (z) = &,(x).

It is interesting and important to evaluate the transformation properties
of fermion bilinears of the form WAV, where A is some combination of
gamma matrices. We will consider A’s that satisfy A = A, where A =
BAY3: in this case, VAW is hermitian.

Let us begin with parity transformations. From ¥ = ¥4 and eq. (40.15)
we get

PV (2)P = —i¥(Pz)3 , (40.34)

Combining egs. (40.15) and (40.34) we find
-1 (@AW)P = E(ﬁAﬁ) v, (40.35)

where we have suppressed the spacetime arguments (which transform in
the obvious way). For various particular choices of A we have

p18 = +1,
BivsB = —ivs
BB = +7 :
BB =~
B8 = =75,
By 56 = +7"s - (40.36)

Therefore, the corresponding hermitian bilinears transform as
P—l(mf)P = + 0V,
(\Imsxlf)P — ViV,
(\Iwﬂqf)P = +PH TN
(\Iw 75\1/)P = — POy s T (40.37)

Thus we see that YW and U~y#¥ are even under a parity transformation,
while Wivs¥U and Un*y5¥ are odd. We say that UV is a scalar, U U
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is a vector or polar vector, WivsVU is a pseudoscalar, and WyHvy5V is a
pseudovector or axial vector.
Turning to time reversal, from eq. (40.29) we get

T ()T =T (Tz)yC . (40.38)
Combining eqs. (40.29) and (40.38), along with 7-'AT = A*, we find
TH(TAW)T = T(y5C71A"Cx5) W (40.39)

where we have suppressed the spacetime arguments (which transform in the
obvious way). Recall that C™19*C = —(7*)T and that C~'y5C = ~5. Also,
+? and 75 are real, hermitian, and square to one, while 4 is antihermitian.
Finally, 75 anticommutes with ~#. Using all of this info, we find

CT 1 Crys = +1,
€ (iv5)*Cys = —ivs
1C T ) Crs = +9°,
CT () Cys = =",
C () Crs = +7%s
sC (¥ 5)*Cs = =75 - (40.40)

o)
)
V)"
’Ys)

Therefore,

( )T LTV,
- (5)
)

(xpwm

T = —E’i’}/g)\lf 5
T = —Tr,T"T
(\I/fy 75\I/)T = —TH, Ty s . (40.41)

Thus we see that UW is even under time reversal, while Wiys ¥, Wy#W, and
WAk~ys U are odd.

For completeness we will also consider the transformation properties of
bilinears under charge conjugation. Recall that

C\(z)C = CT"(2),
C W (z)C = ¥ (2)C . (40.42)
The bilinear WAV therefore transforms as

CH(TAT)C = UTCACT™ . (40.43)
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Since all indices are contracted, we can rewrite the right-hand side as its
transpose, with an extra minus sign for exchanging the order of the two
fermion fields. We get

CH(TAD)C = ~TCTACTV . (40.44)
Recalling that CT = C~! = —C, we have
CH(TAv)C =T(c'ATC)w . (40.45)
Once again we can go through the list:
cl1"c = +1,
C(ivs)"C = +ins
T yre =~
CH(yHy5)TC = +Hys . (40.46)

Therefore,

C = + Uty . (40.47)

Thus we see that WU, Wiys W, and Uy 5V are even under charge conju-
gation, while Uv*¥ is odd.

For a Majorana field, we have C™'W(C = ¥ and C~'WC = V: this
implies C~{(WAW)C = WAV for any combination of gamma matrices A.
Since eq. (40.47) tells that C~1(¥~y*W)C = —U~H*T for either a Dirac or
Majorana field, it must be that ¥4#¥ = 0 for a Majorana field.

Let us consider the combined effects of the three transformations (C,
P, and T') on the bilinears. From egs. (40.37), (40.41), and (40.47), we have

(CPT)(TW)CPT = + TV,
(CPT)™ (\Ilwg)\II)C’PT + Uiy
(CPT)~ ( fw\y)cpT = — T
(CPT)~ (\Iw 75\II)C’PT = — Uty 0 (40.48)

where we have used P*, 7", = —d#,. We see that W and Uiys¥ are both
even under C' PT, while U4#¥ and U~#y5¥ are both odd. These are (it
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turns out) examples of a more general rule: a fermion bilinear with n vector
indices (and no uncontracted spinor indices) is even (odd) under CPT if n
is even (odd). This also applies if we allow derivatives acting on the fields,
since each component of d,, is odd under the combination PT and even
under C.

For scalar and vector fields, it is always possible to choose the phase
factors in the C, P, and T transformations so that, overall, they obey the
same rule: a hermitian combination of fields and derivatives is even or odd
depending on the total number of uncontracted vector indices. Putting this
together with our result for fermion bilinears, we see that any hermitian
combination of any set of fields (scalar, vector, Dirac, Majorana) and their
derivatives that is a Lorentz scalar (and so carries no indices) is even under
CPT. Since the lagrangian must be formed out of such combinations, we
have £(z) — £(—x) under CPT, and so the action S = [ d*z £ is invariant.
This is the CPT theorem.

REFERENCE NOTES
A detailed treatment of C' PT for fields of any spin is given in Weinberg I.
PROBLEMS

40.1) Find the transformation properties of WS* ¥ and WiS*~5W¥ under
P, T, and C. Verify that they are both even under C'PT, as claimed.
Do either or both vanish if ¥ is a Majorana field?
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41 LSZ REDUCTION FOR SPIN-ONE-HALF
PARTICLES

PREREQUISITE: 5, 39

Let us now consider how to construct appropriate initial and final states
for scattering experiments. We will first consider the case of a Dirac field
U, and assume that its interactions respect the U(1) symmetry that gives
rise to the conserved current j* = W~y*¥ and its associated charge Q.

In the free theory, we can create a state of one particle by acting on the

vacuum state with a creation operator:
I, s, +) = bl(p)[0) , (41.1)
p,s,—) = di(p)|0) (41.2)

where the label £ on the ket indicates the value of the U(1) charge @, and
bl(p) = /d?’x P W ()7 u,(p) , (41.3)
ai(p) = [ d e o (p) V() (41.4)

Recall that bl (p) and dl(p) are time independent in the free theory. The
states |p, s,+) have the Lorentz-invariant normalization

<p7 S, q|p/7 8/7 q/> = (27T)3 2w 53(p - p/) 588/ 5‘1‘1’ ’ (415)

where w = (p? + m?)'/2.

Let us consider an operator that (in the free theory) creates a particle
with definite spin and charge, localized in momentum space near py, and
localized in position space near the origin:

b= [ @ fieinl ) (116

where
f1(p) x exp[—(p — p1)*/40?] (41.7)

is an appropriate wave packet, and o is its width in momentum space. If
we time evolve (in the Schrédinger picture) the state created by this time-
independent operator, then the wave packet will propagate (and spread
out). The particle will thus be localized far from the origin as ¢t — +oo. If
we consider instead an initial state of the form |i) = bib;]m, where p; # po,
then we have two particles that are widely separated in the far past.

Let us guess that this still works in the interacting theory. One compli-
cation is that bf(p) will no longer be time independent, and so b];, eq. (41.6),
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becomes time dependent as well. Our guess for a suitable initial state for
a scattering experiment is then

i) = lim_b](£)bh(1)]0) . (41.8)

By appropriately normalizing the wave packets, we can make (i|7) = 1, and
we will assume that this is the case. Similarly, we can consider a final state

1) = lim_ bl (08}, (5)]0) (41.9)

where p} # ph, and (f|f) = 1. This describes two widely separated par-
ticles in the far future. (We could also consider acting with more creation
operators, if we are interested in the production of some extra particles in
the collision of two, or using d' operators instead of bf operators for some
or all of the initial and final particles.) Now the scattering amplitude is
simply given by (f]i).

We need to find a more useful expression for (f|i). To this end, let us
note that

bl (—o0) — bl (+00)
+oo
= —/ dt bl (1)

= - / d’p f1(p) / d'z 90 (™" W (x)) us, (p)) -
= = [ 1) [ e T @) (1090 = 12 s, (p)e

—

=~ [ fip) [ d' T) (D0 — in'pi — im)us, ()
=~ [ @ £ip) [ d's T@) (1090 ~ ', — im)us, (p)e”
~ [ ) [ de T@)(5°B0 +779; — im)us, (p)e”

—i / & f1(p) / 4% T(2)(+id + m)us, (p)e™ . (41.10)

The first equality is just the fundamental theorem of calculus. To get the
second, we substituted the definition of bi(t), and combined the d* from
this definition with the dt to get d*z. The third comes from straightforward
evaluation of the time derivatives. The fourth uses (y + m)us(p) = 0. The
fifth writes ip; as 0; acting on e’P*. The sixth uses integration by parts to
move the 9; onto the field ¥(z); here the wave packet is needed to avoid a
surface term. The seventh simply identifies v°0y + +0; as @.

In free-field theory, the right-hand side of eq. (41.10) is zero, since ¥(x)
obeys the Dirac equation, which, after barring it, reads

T(2)(+id +m) =0. (41.11)
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In an interacting theory, however, the right-hand side of eq. (41.10) will not
be zero.

We will also need the hermitian conjugate of eq. (41.10), which (after
some slight rearranging) reads

bl(+OO) — bl )
—z/d fi(p /d ' (p)(—i@ +m)¥(z), (41.12)

and the analogous formulae for the d operators,

_ / & f1(p) / % T () (419 + m)vs, (p)e#* . (41.14)
Let us now return to the scattering amplitude we were considering,
(£1i) = (0lby (++00)by (++00)b] (—00)b (—00) 0) - (41.15)

Note that the operators are in time order. Thus, if we feel like it, we can
put in a ttme-ordering symbol without changing anything:

(£13) = (0] T by (+00)b1s (+00)b] (—00)bb (—00)|0) . (41.16)

The symbol T means the product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at
earlier times. However, there is an extra minus sign if this rearrangement
tnwolves an odd number of exchanges of these anticommuting operators.

Now let us use egs. (41.10) and (41.12) in eq. (41.16). The time-ordering
symbol automatically moves all by (—o0)’s to the right, where they anni-
hilate |0). Similarly, all b;f (+00)’s move to the left, where they annihilate
(0.

The wave packets no longer play a key role, and we can take the ¢ — 0
limit in eq. (41.7), so that fi1(p) = d°(p — p1). The initial and final states
now have a delta-function normalization, the multiparticle generalization of
eq. (41.5). We are left with the Lehmann-Symanzik-Zimmermann reduction
formula for spin-one-half particles,

f| —Z/d$1dl‘2dl‘1/dl‘2/

x e~ g, (pr) (=i + m)la,,
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x e [Ty, (o) (— iy + m)]ay,

X (0] T W, (22)Way, (1) Wy (1) Py (2)]0)

X [(+iP1 + m)ug, (p1)]a, €7

% [(+i P2 + M), (D2)]ay €722 . (41.17)

The generalization of the LSZ formula to other processes should be clear;
insert a time-ordering symbol, and make the following replacements:

bl(p)in — +i / d*z () (+id + m)us(p) e+ | (41.18)
belPlous — +i [ d'e P w(p)(—ig) + m)U() . (41.19)
AP — i [ d's P () (i £ m) V@), (41.20)
Au(Plout — =i [ ds V(o) (+i) + mvy(p) ™7 (41.21)

where we have used the subscripts “in” and “out” to denote t — —oo and
t — +o00, respectively.

All of this holds for a Majorana field as well. In that case, ds(p) = bs(p),
and we can use either eq. (41.18) or eq. (41.20) for the incoming particles,
and either eq. (41.19) or eq. (41.21) for the outgoing particles, whichever is
more convenient. The Majorana condition U = WTC guarantees that the
results will be equivalent.

As in the case of a scalar field, we cheated a little in our derivation
of the LSZ formula, because we assumed that the creation operators of
free field theory would work comparably in the interacting theory. After
performing an analysis that is entirely analogous to what we did for the
scalar in section 5, we come to the same conclusion: the LSZ formula holds
provided the field is properly normalized. For a Dirac field, we must require

where (0]0) = 1, and the one-particle states are normalized according to
eq. (41.5).
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The zeros on the right-hand sides of eqgs. (41.23) and (41.26) are required
by charge conservation. To see this, start with [U(x), Q] = +¥(z), take the
matrix elements indicated, and use Q|0) = 0 and Q|p, s, £) = £|p, s, +).

The zero on the right-hand side of eq.(41.22) is required by Lorentz
invariance. To see this, start with [¥(0), M*] = S¥¥(0), and take the
expectation value in the vacuum state |0). If |0) is Lorentz invariant (as we
will assume), then it is annihilated by the Lorentz generators M*”, which
means that we must have S*”(0|¥(0)|0) = 0; this is possible for all u and
v only if (0|¥(0)|0) = 0, which (by translation invariance) is possible only
if (0|¥(z)[0) = 0.

The right-hand sides of egs. (41.24) and (41.25) are similarly fixed by
Lorentz invariance: only the overall scale might be different in an interact-
ing theory. However, the LSZ formula is correctly normalized if and only if
egs. (41.24) and (41.25) hold as written. We will enforce this by rescaling
(or, one might say, renormalizing) ¥(z) by an overall constant. This is
just a change of the name of the operator of interest, and does not affect
the physics. However, the rescaled ¥(z) will obey egs. (41.24) and (41.25).
(These two equations are related by charge conjugation, and so actually
constitute only one condition on W.)

For a Majorana field, there is no conserved charge, and we have

(0[¥(z)[0) =0, (41.27)
(p, 5|9 (2)|0) = vs(p)e ™", (41.28)
(p, s[¥(2)|0) = Ts(p)e™", (41.29)

instead of egs. (41.22-41.26).
The renormalization of ¥ necessitates including appropriate Z factors
in the lagrangian. Consider, for example,

L=iZVPV — Z,mIV — 17, g(T0)? (41.30)

where V is a Dirac field, and g is a coupling constant. We choose the three
constants Z, Z,,, and Z, so that the following three conditions are satisfied:
m is the mass of a single particle; g is fixed by some appropriate scattering
cross section; and eq.(41.24) and is obeyed. [Eq.(41.25) then follows by
charge conjugation.]

Next, we must develop the tools needed to compute the correlation

functions (0]TW,,, (71/)... Vo, (21)...]0) in an interacting quantum field
theory.

PROBLEMS

41.1) Assuming that eq. (39.40) holds for the exact single-particle states,
verify egs. (41.23) and (41.26), up to overall scale.
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42 THE FREE FERMION PROPAGATOR

PREREQUISITE: 39

Consider a free Dirac field
Va) = Y [ dp [bu(®)u(p)e™ + dip)os(p)e ] (42.1)
s==+

T) = 30 [dp’ bl (p)e " + d (5 ()] L (422
g

where
bs(p)|0) = dy(p)|0) =0, (42.3)
and
{bs(p), bl ()} = (27)°8%(p — P') 2wy (42.4)
{dy(p),dl,(p)} = (27)36%(p — P') 2w,y (42.5)

and all the other possible anticommutators between b and d operators (and
their hermitian conjugates) vanish.
We wish to compute the Feynman propagator

S(@ = y)ag = i{0|TWa(2)¥s(y)[0) , (42.6)
where T denotes the time-ordered product,

TWa(2)¥p(y) = 0(2° — ") Wa(2)Ts(y) — 0(y° — 2*)Vs(y)Valz) , (42.7)
and 6(t) is the unit step function. Note the minus sign in the second term;
this is needed because W, (2)Vs(y) = —V3(y)¥q(z) when 20 £ °.

We can now compute (0|%,(z)¥5(y)|0) and (0|¥s(y)¥4(2)|0) by in-
serting egs. (42.1) and (42.2), and then using egs. (42.3-42.5). We get
(0] (z)¥s(y)[0)

= 3 [ dpdp’ e e (o) (6)5 (01, (PIVL ()10)
=3 [ dpdp’ €7 7 (Pt (B) (276 (p — P') 20
=3 [ e o)t (p);

_ /gl;, EP@) (—f + ) g - (42.8)
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To get the last line, we used a result from section 38. Similarly,

(0w 5(y)Wa(x)|0)

=3 [dpdp’ e e v, (p)T (B)5 (01d (b)) 0)
=3 / dpdp' e~ 7'V vy (p)aTy (P')g (27)°6° (p — P') 2w,y
= / dp eV ,(p)aTs(p) 5

_ / dp =PV (—ff — m)ag . (42.9)

We can combine eqgs. (42.8) and (42.9) into a compact formula for the time-
ordered product by means of the identity

/ d'p eP@ Y f(p)
(

2m)4 p? +m? —ie

= i0(z"—y") / dp ™Y f(p)

+i0(y°—20) / dpe™ @) f(—p), (42.10)

where f(p) is a polynomial in p; the derivation of eq. (42.10) was sketched
in section 8. We get

(0T (2) T 5()[0) = + / (;434 Jin(a—) ;—f_;imjﬁ L (a211)
and so
Sz —y)ap = / % e'P(@=y) % . (42.12)

Note that S(x —y) is a Green’s function for the Dirac wave operator:

(—Zax + m)aﬁS(JE — y)ﬁ'y - / d4p4 eip(m—y) (ﬂ + m)aﬁ(_ﬁ“‘ m)ﬁy

(2m) p? + m?2 — ie
— d4p eip(:c—y) (p2 + m2)50l’y
(2m)4 p?+m? — ie
= 0"z — y)dary - (42.13)
Similarly,
o _ d4p ip(z—1y) (_Zj + m)a,@(lj + m)ﬁ’Y
S(x — y)ap(+idy +m)sy = / (2m)* € p2 +m2 —ie
— / d4p eip(x—y) (p2 + m2)50¢’7
(2m)4 p? + m?2 — ie

= 04z — y)dary - (42.14)
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We can also consider (0|TV, (z)¥3(y)|0) and (0|TW,(z)¥s(y)|0), but it is
easy to see that now there is no way to pair up a b with a b’ or a d with a
d', and so

(0T (2)Ws(y)[0) =0, (42.15)
(0T () ¥s(y)[0) = 0. (42.16)

Next, consider a Majorana field

U(r) = Z /El}V? {bs(P)us(p)ei”x —I—bl(p)vs(p)e_ipx} , (42.17)
s==+

Ty) = > / dp’ [bl,(p’)ﬂs/(p’)e—ip’y +bs/(p’)m/(p’)ei¥”y} . (42.18)
=+

It is easy to see that (0]TW,(x)¥s(y)|0) is the same as it is in the Dirac
case; the only difference in the calculation is that we would have b and b' in
place of d and d' in the second line of eq. (42.9), and this does not change
the final result. Thus,

(0] T (2)¥s(y)|0) = S(x = y)ag , (42.19)

where S(x — y) is given by eq. (42.12).

However, eqgs. (42.15) and (42.16) no longer hold for a Majorana field.
Instead, the Majorana condition ¥ = WTC, which can be rewritten as
UT = WC~!, implies

{0 TTo ()T 5(y)|0) = i(0|TWq ()T, (1)|0)(C")ys

= [S(z —y)C ag - (42.20)

1

Similarly, using CT = C~!, we can write the Majorana condition as U" =

C~ ', and so

i{0] T o (€)W ()|0) = i(C™)ar (O] T (2)Ws(y)|0)
= [C7'S(z = )]s - (42.21)

Of course, C~! = —C, but it will prove more convenient to leave eqs. (42.20)
and (42.21) as they are.

We can also consider the vacuum expectation value of a time-ordered
product of more than two fields. In the Dirac case, we must have an equal
number of ¥’s and ¥’s to get a nonzero result; and then, the ¥’s and ¥’s
must pair up to form propagators. There is an extra minus sign if the
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ordering of the fields in their pairs is an odd permutation of the original
ordering. For example,

(0| TW o (2)Us(y) Vs (2)Ts(w)[0) = + S(x —Y)as S(z — w)ys
— Sz —w)as S(z —y)yp - (42.22)

In the Majorana case, we may as well let all the fields be ¥’s (since we can
always replace a ¥ with WTC). Then we must pair them up in all possible
ways. There is an extra minus sign if the ordering of the fields in their pairs
is an odd permutation of the original ordering. For example,

PO T a(2)¥s(y)Us (2)¥s(w)[0) = + [S(z —y)C ap [S(z — w)C M55
— [S(z = 2)C  ay [S(y — w)Cps
+[S(z = w)C a5 [S(y = 2)C gy -

(42.23)
Note that the ordering within a pair does not matter, since
[S(z —y)C ap = —[S(y — )C 34 - (42.24)

This follows from anticommutation of the fields and eq. (42.20).
PROBLEMS

42.1) Prove eq. (42.24) directly, using properties of the C matrix.
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43 THE PATH INTEGRAL FOR FERMION FIELDS

PREREQUISITE: 9, 42

We would like to write down a path integral formula for the vacuum-
expectation value of a time-ordered product of free Dirac or Majorana fields.
Recall that for a real scalar field with

Ly = —%8“@8“@ — %m2<p2

= —39(=0" + m*)p — 30.(p0" ) , (43.1)
we have L s
(OT (1) -10) = 5 570 ...ZO(J)]JZO, (43.2)
where
Zy(J) = /Dgo exp {z’/d‘l"n (Lo + JQD)} . (43.3)

In this formula, we use the epsilon trick (see section 6) of replacing m? with

m? — ie to construct the vacuum as the initial and final state. Then we get

Zy(J) = exp [% /d4a: dYy J(z) Az — y)J(y)} , (43.4)

where the Feynman propagator

d% eik(w—y)
Alr — ) = 43.
@=y) / (2m)4 k2 +m? —ie (43.5)
is the inverse of the Klein-Gordon wave operator:
(=02 +mPA(x —y) = 54z —y) . (43.6)

For a complex scalar field with

Lo = —0"p18,0 —mPply

= = (=0 + m?)p — Ou(pT0"p) , (43.7)
we have instead
1 6 1 6
T oty 0= = ———— = o Zo(JT
OTpon) oo ) 10 = 5 5575 7 570 20 D]y

where

ZO(JT,J) = /DcpTDcp exp[z’/d% (Eo—l—JTcp—HpTJ)]

= exp [z / diz dYy JT () Az — y)J(y)] . (43.9)
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We treat J and JT as independent variables when evaluating eq. (43.8).

In the case of a fermion field, we should have something similar, except
that we need to account for the extra minus signs from anticommutation.
For this to work out, a functional derivative with respect to an anticom-
muting variable must itself be treated as anticommuting. Thus if we define
an anticommuting source n(x) for a Dirac field, we can write

#ix) / d'y [n(y)(y) + Ty)n(y)| = ~T(w) (43.10)
5ﬁ?ﬂf) / d'y )P () +Tynw)| = +¥(@) . (43.11)

The minus sign in eq. (43.10) arises because the §/dn must pass through ¥
before reaching 7.
Thus, consider a free Dirac field with

Lo = VPV — mI¥
= —U(—id + m)V . (43.12)

A natural guess for the appropriate path-integral formula, based on analogy
with eq. (43.9), is

(0’T\I’a1($1)...\1151(y1)...‘O>
i_é 0
i 0M, (z1) ~ Onmg (1)

= Zo@m)| L (43.13)

where
Zo(m,m) = /D\I/ DU exp [z / dz (Lo + 7P + Wn)}
= exp|i [ ety @)S( - ()| (43.14)

and the Feynman propagator

_ [ A (Pt m)er)
S(x—y) = / @)t I i (43.15)
is the inverse of the Dirac wave operator:
(=i, +m)S(z —y) = 6" (z —y) . (43.16)

Note that each §/0n in eq. (43.13) comes with a factor of i rather than the
usual 1/i; this reflects the extra minus sign of eq. (43.10). We treat n and 7
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as independent variables when evaluating eq. (43.13). It is straightforward
to check (by working out a few examples) that eqs. (43.13-43.16) do indeed
reproduce the result of section 42 for the vacuum expectation value of a
time-ordered product of Dirac fields.

This is really all we need to know. Recall that, for a complex scalar
field with interactions specified by £ (¢, ), we have

1 ) 1 0
i6J(x) 1 6J1 ()

Z(JJ) exp[z’/d‘*x £1< ﬂ Zo(JT,J),  (43.17)

where the overall normalization is fixed by Z(0,0) = 1. Thus, for a Dirac
field with interactions specified by £1(V¥, ¥), we have

o 1 96
Z(7, i | d? ﬁ('—,——ﬂz 7,1) , 43.18
(M:m) o eXp[Z/ L\ is s Ty )| o) (43.18)
where again the overall normalization is fixed by Z(0,0) = 1. Vacuum

expectation values of time-ordered products of Dirac fields in an interact-
ing theory will now be given by eq. (43.13), but with Zy(7,n) replaced by
Z(7,n). Then, just as for a scalar field, this will lead to a Feynman-diagram
expansion for Z(7,n). There are two extra complications: we must keep
track of the spinor indices, and we must keep track of the extra minus signs
from anticommutation. Both tasks are straightforward; we will take them
up in section 45.
Next, let us consider a Majorana field with

Lo = LUTCYHV — ImVTCY
= —UTC(—ip + m)V . (43.19)

A natural guess for the appropriate path-integral formula, based on analogy
with eq. (43.2), is
1 1)

O, (1) J0) = 55—

Zo()| (43.20)

n=0

where

Zo(n) = /D\I’ exp {z’/d‘l"n (Lo +77T\IJ)]

= exp [—%/d% d*y " (x)S(x — y)C_ln(y)} . (43.21)

The Feynman propagator S(x — y)C~! is the inverse of the Majorana wave
operator C(—i@ + m):

C(—id, +m)S(x —y)Ct = *(x —y) . (43.22)
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The extra minus sign in eq.(43.21), as compared with eq. (43.14), arises
because all functional derivatives in eq.(43.20) are accompanied by 1/i,
rather than half by 1/i and half by 7, as in eq. (43.13). It is now straight-
forward to check (by working out a few examples) that egs. (43.20-43.22)
do indeed reproduce the result of section 42 for the vacuum expectation
value of a time-ordered product of Majorana fields.
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44 FORMAL DEVELOPMENT OF FERMIONIC PATH
INTEGRALS

PREREQUISITE: 43

In 43, we formally defined the fermionic path integral for a free Dirac field
U via

Zo(m,n) = /mf DY eXp{i/d%@(i@ —m)¥ + 7V + En]
= e[ i [ diealym@)S@ - ). (44.1)

where the Feynman propagator S(z — y) is the inverse of the Dirac wave
operator:
(=i, +m)S(z —y) =6 (z —y) . (44.2)

We would like to find a mathematical framework that allows us to derive
this formula, rather than postulating it by analogy.

Consider a set of anticommuting numbers or Grassmann variables ;
that obey

{¥i, ¢} =0, (44.3)

where ¢ = 1,...,n. Let us begin with the very simplest case of n = 1, and
thus a single anticommuting number 1) that obeys 12 = 0. We can define
a function f(¢)) of such an object via a Taylor expansion; because 2 = 0,
this expansion ends with the second term:

f(W) =a+¢b. (44.4)

The reason for writing the coefficient b to the right of the variable ¢ will
become clear in a moment.

Next we would like to define the derivative of f(1)) with respect to .
Before we can do so, we must decide if f(v) itself is to be commuting
or anticommuting; generally we will be interested in functions that are
themselves commuting. In this case, a in eq. (44.4) should be treated as an
ordinary commuting number, but b should be treated as an anticommuting
number: {b,b} = {b,9} = 0. In this case, f(¢)) = a + b =a — bi).

Now we can define two kinds of derivatives. The left derivative of f ()
with respect to 1) is given by the coefficient of ¢ when f(1) is written with
the 1 always on the far left:

Oy f(¥) =+b. (44.5)
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Similarly, the right derivative of f(v¢)) with respect to 1 is given by the
coefficient of ¢ when f(1) is written with the 1 always on the far right:

F)dy = —b. (44.6)

Generally, when we write a derivative with respect to a Grassmann vari-
able, we mean the left derivative. However, in section 37, when we wrote
the canonical momentum for a fermionic field ¢ as m = 9L/9(0py), we
actually meant the right derivative. (This is a standard, though rarely
stated, convention.) Correspondingly, we wrote the hamiltonian density as
H = w0y — L, with 0ytp to the right of 7.

Finally, we would like to define a definite integral, analogous to inte-
grating a real variable z from minus to plus infinity. The key features of
such an integral over x (when it converges) are linearity,

+o0o +oo
/ dxcf(x) = c/ dx f(z) (44.7)
and invariance under shifts of the dependent variable x by a constant:
+00 “+oo
/ de f(r +a) = / dx f(x) . (44.8)

Up to an overall numerical factor that is the same for every f(v), the
only possible nontrivial definition of [ di f(1)) that is both linear and shift
invariant is

[av s = (44.9)
Now let us generalize this to n > 1. We have

where the indices are implicitly summed. Here we have written the coef-
ficients to the right of the variables to facilitate left-differentiation. These
coefficients are completely antisymmetric on exchange of any two indices.
The left derivative of f(1) with respect to 1); is

8—23]0(1[)) = bj + ¢icji +...+ ﬁﬂ)w - ¢indji2...in . (44.11)

Next we would like to find a linear, shift-invariant definition of the
integral of f(v)). Note that the antisymmetry of the coefficients implies
that

dil---in = dEil...in . (4412)

where d is a just a number (ordinary if f is commuting and n is even, Grass-
mann if f is commuting and n is odd, etc.), and &;, ;, is the completely
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antisymmetric Levi-Civita symbol with €1, = +1. This number d is a
candidate (in fact, up to an overall numerical factor, the only candidate!)
for the integral of f(v):

/ v f() = d . (44.13)

Although eq. (44.13) really tells us everything we need to know about [ d"™p,
we can, if we like, write d™) = di), ...dy; (note the backwards ordering),
and treat the individual differentials as anticommuting: {di;,dy;} = 0,
{di,;} = 0. Then we take [di); = 0 and [dy;¥; = 6;; as our basic
formulae, and use them to derive eq. (44.13).

Let us work out some consequences of eq. (44.13). Consider what hap-
pens if we make a linear change of variable,

Vi = Ji (44.14)

where Jj; is a matrix of commuting numbers (and therefore can be written
on either the left or right of ¢;). We now have

Next we use

Eirvindivi - Jingn = (det J)ej i, (44.16)

which holds for any n x n matrix J, to get

fW)=a+...+ Sl ... & i, (det J)d . (44.17)
If we now integrate f(i)) over d")', eq.(44.13) tells us that the result is
(det J)d. Thus,

[ sw) = @etn [a fw). (44.18)

Recall that, for integrals over commuting real numbers x; with z; = Jijx;-,
we have instead

/d"a; f(z) = (det J)*? /d"a;'f(a:) . (44.19)

Note the opposite sign on the power of the determinant.

Now consider a quadratic form ™My = ;M;;1;, where M is an anti-
symmetric matrix of commuting numbers (possibly complex). Let’s evalu-
ate the gaussian integral [ d™) eXp(%ipTM ¥). For example, for n = 2, we

have
0 +m
M = , (44.20)
-m 0
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and "M = 2map11po. Thus eXp(%Q/JTMxﬁ) =1+ m119, and so

/d ) exp(3 Lyy™™Myp) =m . (44.21)
For larger n, we use the fact that a complex antisymmetric matrix can be
brought to a block-diagonal form via
0 +my
U™MU = | —mu 0 , (44.22)

where U is a unitary matrix, and each mjy is real and positive. (If n is odd
there is a final row and column of all zeroes; from here on, we assume n is
even.) We can now let ¢; = Ul-jz/);; then, we have

n/2

/ " exp(Ly™My) = (det U) 11‘[ / d%pr exp(Ly™Mpp),  (44.23)

where M represents one of the 2 x 2 blocks in eq. (44.22). Each of these
two-dimensional integrals can be evaluated using eq. (44.21), and so

n/2

/d"?,!) exp(39"™M1p) = (det Uyt H my . (44.24)
I=1
Taking the determinant of eq. (44.22), we get
n/2
(det U')*(det M) H my . (44.25)

We can therefore rewrite the right-hand side of eq. (44.24) as

/ dp exp(L™My) = (det M)V2 . (44.26)

In this form, there is a sign ambiguity associated with the square root; it
is resolved by eq.(44.24). However, the overall sign (more generally, any
overall numerical factor) will never be of concern to us, so we can use
eq. (44.26) without worrying about the correct branch of the square root.

It is instructive to compare eq. (44.26) with the corresponding gaussian
integral for commuting real numbers,

/d v exp(—2ax™z) = (21)"/*(det M) ™12 . (44.27)
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Here M is a complex symmetric matrix. Again, note the opposite sign on
the power of the determinant.
Now let us introduce the notion of complex Grassmann variables via

X = =5 (%1 +iths)

s (Y1 — i) (44.28)

<
Il
s o

We can invert this to get

(01 11 X
= % . (44.29)
(> i —i) \X
The determinant of this transformation matrix is —¢, and so

d%p = dipadipy = (—i) " dx dy . (44.30)

Also, Y1199 = —ixx. Thus we have

[axaxsx = (=i(=i)" [ dbadin gy =1 (4431)
Thus, if we have a function
fO6X) =a+xb+xc+ xxd, (44.32)
its integral is
[dxdxsoen =d. (44.33)
In particular,
/dx dx exp(myx) =m . (44.34)

Let us now consider n complex Grassmann variables y; and their com-
plex conjugates, x;. We define

d™ d™ = dxpdXn .. .dx1dX1 . (44.35)
Then under a change of variable, x; = J;; X} and x; = Kj;X};, we have
d™ d"y = (det J)"H(det K)~'d™ d"Y . (44.36)

*

Note that we need not require Kj; = Jjj, because, as far as the integral is
concerned, it is does not matter whether or not y; is the complex conjugate
of Xi-

We now have enough information to evaluate [ d™yd™y exp(x'My),
where M is a general complex matrix. We make the change of variable
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x = Ux' and x! = 'V, where U and V are unitary matrices with the
property that VMU is diagonal with positive real entries m;. Then we get

/d " exp(x' Myx) = (det U)"Y(det V)~ * H/dx,-d)zi exp(m; XiXi)

= (detU) "' (det V) 7! f[ m;

i=1

= det M . (44.37)

This can be compared to the analogous integral for commuting complex
variables z; = (v; + iy;)/V2 and 2 = (z; — iy;)/V/2, with d"z d"z = d"x d™y,

namely

/ " "% exp(—=1Mz) = (27)" (det M)~ . (44.38)

We can now generalize egs. (44.26) and (44.37) by shifting the integra-
tion variables, and using shift invariance of the integrals. Thus, by making
the replacement ¢ — ¢ — M !5 in eq. (44.26), we get

/d b exp(30TMY + n") = (det M)V? exp(3n"M~'n) . (44.39)

(In verifying this, remember that M and its inverse are both antisym-
metric.) Similarly, by making the replacements Y — x — M~'n and
X' — xT —nTM~1 in eq. (44.37), we get

/d"xd % exp(xTMx +n'x + x'n) = (det M) exp(—ntM~1n) . (44.40)

We can now see that eq. (44.1) is simply a particular case of eq. (44.40),
with the index on the complex Grassmann variable generalized to include
both the ordinary spin index « and the continuous spacetime argument x
of the field ¥, (z). Similarly, eq.(43.21) for the path integral for a free
Majorana field is simply a particular case of eq. (44.39). In both cases, the
determinant factors are constants (that is, independent of the fields and
sources) that we simply absorb into the overall normalization of the path
integral. We will meet determinants that cannot be so neatly absorbed in
sections 53 and 71.
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45 THE FEYNMAN RULES FOR DIRAC FIELDS
PREREQUISITE: 10, 12, 41, 43

In this section we will derive the Feynman rules for Yukawa theory, a theory
with a Dirac field U (with mass m) and a real scalar field ¢ (with mass
M), interacting via

L1 =geVV (45.1)

where ¢ is a coupling constant. In this section, we will be concerned with
tree-level processes only, and so we omit renormalizing Z factors.

In four spacetime dimensions, ¢ has mass dimension [p] = 1 and ¥ has
mass dimension [¥] = %; thus the coupling constant ¢ is dimensionless:
[g] = 0. As discussed in section 12, this is generally the most interesting
situation.

Note that £; is invariant under the U(1) transformation ¥ — e~ W,
as is the free Dirac lagrangian. Thus, the corresponding Noether current
W~HY s still conserved, and the associated charge @ (which counts the
number of b-type particles minus the number of d-type particles) is constant
in time.

We can think of @) as electric charge, and identify the b-type particle
as the electron e~, and the d-type particle as the positron e™. The scalar
particle is electrically neutral (and could, for example, be thought of as the
Higgs boson; see section 88).

We now use the general result of sections 9 and 43 to write

261m.9) x| ig [ a GN(Z:U)><i5775(:'3)>G5ﬁj($))]20(ﬁ’n’ i
(45.2)

where
Zafm.n. ) = e[ [ diealy m@)S G — )]

X exp [% /d4x dYy J(z)A(z — y)J(y)] , (45.3)

and

—+ m)ePlz—y)
- [ Gy

d% eik(x—y)
Ale—y) = / (2m)4 k2 + M2 — e

are the appropriate Feynman propagators for the corresponding free fields.
We impose the normalization Z(0,0,0) = 1, and write

Z(,m,J) = exp[iW (17, n, J)] - (45.6)

(45.5)
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© (d)

Figure 45.1: Tree contributions to iW (7, n, J) with four or fewer sources.

Then iW (7,7, J) can be expressed as a series of connected Feynman dia-
grams with sources.

We use a dashed line to stand for the scalar propagator %A(z —v),
and a solid line to stand for the fermion propagator %S (z —y). The only
allowed vertex joins two solid lines and one dashed line; the associated
vertex factor is 4g. The blob at the end of a dashed line stands for the ¢
source i [ d*r J(x), and the blob at the end of a solid line for either the ¥
source i [ d*r7j(x), or the ¥ source i [ d*zn(x). To tell which is which, we
adopt the “arrow rule” of problem 9.3: the blob stands for i [ d*r n(x) if the
arrow on the attached line points away from the blob, and the blob stands
for i [ d*x7j(z) if the arrow on the attached line points towards the blob.
Because £; involves one ¥ and one ¥, we also have the rule that, at each
vertex, one arrow must point towards the vertex, and one away. The first
few tree diagrams that contribute to i{W (7,7, J) are shown in fig. (45.1). We
omit tadpole diagrams; as in 3 theory, these can be cancelled by shifting
the ¢ field, or, equivalently, adding a term linear in ¢ to £. The LSZ
formula is valid only after all tadpole diagrams have been cancelled in this
way.

The spin indices on the fermionic sources and propagators are all con-
tracted in the obvious way. For example, the complete expression corre-
sponding to fig. (45.1)(b) is

Fig. (45.1)(b) = i3(1)3 (ig)/d43: dYy d*z d*w

x [7(2)S(z = y)S(y - 2)n(2)]
X Ay —w)J(w) . (45.7)

Our main purpose in this section is to compute the tree-level amplitudes
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Figure 45.2: Diagrams corresponding to eq. (45.8).

for various two-body elastic scattering processes, such as e~ — e~ and
ete™ — pp; for these, we will need to evaluate the tree-level contributions
to connected correlation functions of the form (0|T¥Wpp|0)c. Other pro-
cesses of interest include e”e™ — e"e~ and ete™ — ete™; for these, we
will need to evaluate the tree-level contributions to connected correlation
functions of the form (0]T¥YYW|0)c.

For (0|T¥Wyp|0)c, the relevant tree-level contribution to iW (7,7, J)
is given by fig. (45.1)(c). We have

(0T o (2)Ts(y)p(21)0(22)|0)c
16 0§ 1 6§ 1 3

T i 0m,(x) 0np(y) 107 (z1) 70 (=)

W
5
= (1) (ig)® / d*wy d*ws
x [S(z—w1)S(w1—w2) S(wa—y)]as
X A(Zl—wl)A(Zg—wg)
+ (Zl “— ZQ) + 0(94) . (458)
The corresponding diagrams, with sources removed, are shown in fig. (45.2).
For (0|T¥WW¥W|0)¢c, the relevant tree-level contribution to iW (7,7, J)
is given by fig. (45.1)(d), which has a symmetry factor S = 2. We have
(01T a, (21) W, (1) Wa, (22) U, (42)[0)c

1 1) ; 1) l 1) ; 1)
i 0T, (21) O, (1) @ 074, (22) 0N, (y2)

W (T, J)\ﬁ:n;,zo .

(45.9)

The two n derivatives can act on the two n’s in the diagram in two different
ways; ditto for the two 77 derivatives. This results in four different terms,
but two of them are algebraic duplicates of the other two; this duplication
cancels the symmetry factor (which is a general result for tree diagrams).



45: The Feynman Rules for Dirac Fields 285

Y1 Wy X1 Y1 Wy X2

Y2 Wo X2 Y2 Wo X1

Figure 45.3: Diagrams corresponding to eq. (45.10).

We get
(O]TW g, (21) W, (y1) Vay, (22) s, (y2)[0)c

= (%)5 (19)2/654’&)1 d*ws
x [S(z1—w1)S(w1—y1)]a: 8,
X A(wy—ws)

x [§ )S(wa2—y2)]aszp

- ((91751) “ (y2762)) +0(gh) . (45.10)

The corresponding diagrams, with sources removed, are shown in fig. (45.3).
Note that we now have a relative minus sign between the two diagrams,
due to the anticommutation of the derivatives with respect to 7.

In general, the overall sign for a diagram can be determined by the
following procedure. First, draw each diagram with all the fermion lines
horizontal, with their arrows pointing from left to right, and with the left
endpoints labeled in the same fixed order (from top to bottom). Next, in
each diagram, note the ordering (from top to bottom) of the labels on the
right endpoints of the fermion lines. If this ordering is an even permutation
of an arbitrarily chosen fixed ordering, then the sign of that diagram is
positive, and if it is an odd permutation, the sign is negative. (This rule
arises because endpoints with arrows pointing away from the vertex come
from derivatives with respect to 77 that anticommute. Of course, we could
equally well put the right endpoints in a fixed order, and get the sign from
the permutation of the left endpoints, which come from derivatives with
respect to 7 that anticommute.) Also, in loop diagrams, a closed fermion
loop yields an extra minus sign; we will discuss this rule in section 51.

Let us now consider a particular scattering process: e~ — e~ . The
scattering amplitude is

(f’l> = <O‘ Ta(k/)outbs’(p/)outbl(p)inaT(k)in ’0> . (45.11)

Next we make the replacements

(xg—wo

—

P = 1 [ dyT)(iD +musp)et™ . (@512
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pptk p’ ppk p’
N N N N N N
> : : 7 7 : 7 : 7
kN VK + KV Ak

Figure 45.4: Diagrams for e~ ¢ — e~ ¢, corresponding to eq. (45.16).

@(pqmn—ei/}ﬁte%ﬂxﬂyﬁfﬂ—dﬁ%—WUWCw, (45.13)
K)in — i / d*zy et (=02 + mP)p(21) , (45.14)
Nout = 1 [ 'z 52 (=0% 4 m?)p(z2) (45.15)

in eq. (45.11), and then use eq. (45.8). The wave operators (either Klein-
Gordon or Dirac) act on the external propagators, and convert them to
delta functions. After using eqs. (45.4) and (45.5) for the internal propa-
gators, all dependence on the various spacetime coordinates is in the form
of plane-wave factors, as in section 10. Integrating over the internal co-
ordinates then generates delta functions that conserve four-momentum at
each vertex. The only new feature arises from the spinor factors us(p) and
Uy (p’). We find that us(p) is associated with the external fermion line
whose arrow points towards the vertex, and that Ty (p’) is associated with
the external fermion line whose arrow points away from the vertex. We can
therefore draw the momentum-space diagrams of fig. (45.4). Since there is
only one fermion line in each diagram, the relative sign is positive. The
tree-level e~ — e~ scattering amplitude is then given by

—y — /}é+m+—¢+k’+m

. _ 1
Te-pme—p = 7(ig)* e (P') -5+ m? —u + m?

us(p) , (45.16)

where s = —(p+k)? and u = —(p—k')%. (We can safely ignore the ie’s in the
propagators, because their denominators cannot vanish for any physically
allowed values of s and w.)

Next consider the process ety — eT¢. We now have

(f1i) = (0] T a(K)ourds (P')ourdl (P)inal (k)in |0) . (45.17)

The relevant replacements are

/d e TP G (p)(—id + m)¥(x) , (45.18)
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- -ptk -’ P pk
& & < < < <
kAN VKt KV Ak

Figure 45.5: Diagrams for et — et p, corresponding to eq. (45.22).

ds’(p/)out — =1 / d4y @(y)(—l—zg + m)vs’(p/) e—ipy ) (45'19)
K)in — i / diz et * 5 (=02 + m?)p(2) (45.20)
out — z/d 29 €7 R22(—9% 4+ m2)p(2) . (45.21)

We substitute these into eq.(45.17), and then use eq.(45.8). This ulti-
mately leads to the momentum-space Feynman diagrams of fig. (45.5). Note
that we must now label the external fermion lines with minus their four-
momenta; this is characteristic of d-type particles. (The same phenomenon
occurs for a complex scalar field; see problem 10.2.) Regarding the spinor
factors, we find that —vs(p) is associated with the external fermion line
whose arrow points away from the vertex, and —vy(p’) with the external
fermion line whose arrow points towards the vertex. The minus signs at-
tached to each v and T can be consistently dropped, however, as they only
affect the overall sign of the amplitude (and not the relative signs among
contributing diagrams). The tree-level expression for the ety — et am-
plitude is then

P +m g%+4é+m

—u + m? —s+m2

ig—e+g0—>e+go = %( g) ( ) v ’(p/) ) (4522)

where again s = —(p+k)? and u = —(p — k)%

After working out a few more of these (you might try your hand at
some of them before reading ahead), we can abstract the following set of
Feynman rules.

1. For each incoming electron, draw a solid line with an arrow pointed
towards the vertex, and label it with the electron’s four-momentum,
bi-

2. For each outgoing electron, draw a solid line with an arrow pointed
away from the vertex, and label it with the electron’s four-momentum,

i
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3. For each incoming positron, draw a solid line with an arrow pointed
away from the vertex, and label it with minus the positron’s four-
momentum, —p;.

4. For each outgoing positron, draw a solid line with an arrow pointed
towards the vertex, and label it with minus the positron’s four-momentum,

—pi-
5. For each incoming scalar, draw a dashed line with an arrow pointed
towards the vertex, and label it with the scalar’s four-momentum, k;.

6. For each outgoing scalar, draw a dashed line with an arrow pointed
away from the vertex, and label it with the scalar’s four-momentum,

7. The only allowed vertex joins two solid lines, one with an arrow point-
ing towards it and one with an arrow pointing away from it, and one
dashed line (whose arrow can point in either direction). Using this
vertex, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
mequivalent.

8. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

9. The value of a diagram consists of the following factors:
for each incoming or outgoing scalar, 1;
for each incoming electron, us, (p;);
for each outgoing electron, Uy, (P});
for each incoming positron, U, (p;);
for each outgoing positron, vs;(pg);
for each vertex, ig;
for each internal scalar, —i/(k% + M? — ie);
for each internal fermion, —i(—p +m)/(p* + m? — ic).

10. Spinor indices are contracted by starting at one end of a fermion line:
specifically, the end that has the arrow pointing away from the vertex.
The factor associated with the external line is either @ or 7. Go along

the complete fermion line, following the arrows backwards, and write
down (in order from left to right) the factors associated with the
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p k p k
#--}-j;‘ %i__>_2_
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Figure 45.6: Diagrams for ete™ — ¢y, corresponding to eq. (45.23).

vertices and propagators that you encounter. The last factor is either
a u or v. Repeat this procedure for the other fermion lines, if any.

11. The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative).

12. The value of i7 (at tree level) is given by a sum over the values of
the contributing diagrams.

There are additional rules for counterterms and loops; in particular, each
closed fermion loop contributes an extra minus sign. We will postpone
discussion of loop corrections to section 51.

Let us apply these rules to eTe™ — @o. Let the initial electron and
positron have four-momenta p; and po, respectively, and the two final
scalars have four-momenta k] and k4. The relevant diagrams are shown
in fig. (45.6); there is only one fermion line, and so the relative sign is
positive. The result is

Z‘,]-eJre*—mpcp = %(29)2 Vs, (p2)

/ /
—251:%1 ‘12'7” n K —I;m ws, (p1) |
—t+m —u+m

(45.23)
where t = —(p; — k})? and u = —(p; — Kk})>.

Next, consider e"e~ — e~e~. Let the initial electrons have four-
momenta p; and pe, and the final electrons have four-momenta p} and
ph. The relevant diagrams are shown in fig. (45.7), and according to rule
#11 the relative sign is negative. Thus the result is
_ 1(ig)? (@w)(Tguz)  (Tyur)(Tjus) (45.24)

Zy—e*e*—w*e* -3

—t+ M? —u+ M2 |’
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YPi-pp — Y P1-P2
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Figure 45.7: Diagrams for e"e~ — e~ e, corresponding to eq. (45.24).

P1 - p1 o p1
- 7 P1+P2
Ypi-p1 — )T m> -
< Py P
—Po P2

Figure 45.8: Diagrams for eTe™ — eTe™, corresponding to eq. (45.25).

where u; is short for us, (p1), etc., and t = —(p; — p})?, u = —(p1 — ph)>.

One more: ete™ — eTe™. Let the initial electron and positron have
four-momenta p; and po, respectively, and the final electron and positron
have four-momenta p} and p}, respectively. The relevant diagrams are
shown in fig. (45.8). If we redraw them in the the standard form of rule
#11, as shown in fig. (45.9), we see that the relative sign is negative. Thus
the result is

(Wu)(D2vy)  (Dou)(w{v)

; — 12 _
Z,TeJre*—>e+e* - i(Zg) —t+ M2 —u+ M? ’ (45'25)
/
Py P21 Py - P2
7 I 7 Ve T 7
1 1
Ypi-p1  — Y P1+P;
: N N : N
/ 7 7 // 7 /
-P2 P2 -P2 P1

Figure 45.9: Same as fig. (45.8), but with the diagrams redrawn in the
standard form given in rule #11.
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where s = —(p; + p2)? and t = —(p; — p})%.
PROBLEMS

45.1) a) Determine how ¢(z) must transform under parity, time reversal,
and charge conjugation in order for these to all be symmetries of the
theory. (Prerequisite: 39)

b) Same question, but with the interaction given by £ = igpWrys¥
instead of eq. (45.1).

45.2) Use the Feynman rules to write down (at tree level) ¢7 for the pro-
cesses etet — etet and pp — ete™.
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46  SPIN SUMS

PREREQUISITE: 45

In the last section, we calculated various tree-level scattering amplitudes in
Yukawa theory. For example, for e~ ¢ — e~ ¢ we found

_ —p—F+m  —g+¥+m

T— Pup)| 2=F . 46.1
9" Uy (p') T S Ry us(p) (46.1)
where s = —(p + k)? and u = —(p — k¥')%. In order to compute the cor-

responding cross section, we must evaluate |T|?> = 77*. We begin by
simplifying eq. (46.1) a little; we use (f +m)us(p) = 0 to replace the —p in
each numerator with m. We then abbreviate eq. (46.1) as

T =7'Au , (46.2)
where ,
—f+2m  F +2m
A=d? K 46.3
I ™" m2—s + m2 —u (46.3)
Then we have
T" =T =0'Au =1Ad (46.4)

where in general A = BA'3, and, for the particular A of eq. (46.3), A = A.
Thus we have

T2 = (@'Au)(TAu)

= Z ﬂ:anﬁuﬂﬂfy Aﬁﬂgug
afvyo

= > u§ToAasuslyAss
afvyo

= Tr|(w/@) A(ut)A] . (46.5)
Next, we use a result from section 38:

us (P)Ts (P) = 5(1—s752) (=4 + m) , (46.6)

where s = + tells us whether the spin is up or down along the spin quan-
tization axis z. We then have

T2 = 3Tr|[(1=s52) (=3 + m)A(1=sys ) (—p+m)A] . (46.7)

We now simply need to take traces of products of gamma matrices; we will
work out the technology for this in the next section.



46: Spin Sums 293

However, in practice, we are often not interested in (or are unable to
easily measure or prepare) the spin states of the scattering particles. Thus,
if we know that an electron with momentum p’ landed in our detector, but
know nothing about its spin, we should sum |7|? over the two possible spin
states of this outgoing electron. Similarly, if the spin state of the initial
electron is not specially prepared for each scattering event, then we should
average |T|? over the two possible spin states of this initial electron. Then
we can use

> us(p)us(p) = —p+m (46.8)

s==

in place of eq. (46.6).
Let us, then, take |7 |2, sum over all final spins, and average over all
initial spins, and call the result (|7 |?). In the present case, we have

(TP = L30T
= ITx[(—p + m)A(—§ + m)A] (46.9)
which is much less cumbersome than eq. (46.7).

Next let’s try something a little harder, namely ete™ — ete™. We
found in section 45 that

'(ﬂ’ul)(ﬁgv’) (52U1)(U”Ul)_
T =g | 2_t2 — 2—132 : (46.10)
We then have
_ () (@) (wyve) (Thuf) |
T=9\"p—r ~ar-s | (46.11)

When we multiply 7 by 7, we will get four terms. We want to arrange the
factors in each of them so that every u and every v stands just to the left
of the corresponding @ and v. In this way, we get

2 94 — 1 e
T = + Gae T mmoi] Tr i)
94

m Tr |:U1U1'U252:| Tr {véﬁéuﬁﬂ{}

Tr [ulﬂl Ugﬁgvéﬁéuﬁﬂ{}

Tr [ulﬂl u'ﬂ{véﬁévﬁg} . (46.12)
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Then we average over initial spins and sum over final spins, and use eq. (46.8)
and

> vs(p)us(p) = —p—m. (46.13)

s==+

We then must evaluate traces of products of up to four gamma matrices.
PROBLEMS

46.1) Compute (|7 |?) for et — eT .

46.2) Compute (|7|?) for e”e~ ¢ — e~e.
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47 GAMMA MATRIX TECHNOLOGY

PREREQUISITE: 36

In this section, we will learn some tricks for handling gamma matrices. We
need the following information as a starting point:

{47} = 29", (47.1)
=1, (47.2)
{5} =0, (47.3)
Trl=4. (47.4)

Now consider the trace of the product of n gamma matrices. We have

Te[y" ... 4] = Trlyn™ g ... 2y"]

Tr[(vs7v"5) - - - (757" s5)]
Tr[(—237") .. (=93]

(—1)" Trfytr ...y . (47.5)

We used eq. (47.2) to get the first equality, the cyclic property of the trace
for the second, eq. (47.3) for the third, and eq. (47.2) again for the fourth.
If n is odd, eq. (47.5) tells us that this trace is equal to minus itself, and
must therefore be zero:

Trlodd # of v*’s] =0. (47.6)
Similarly,
Tr[vs (odd # of ¥#'s)] = 0. (47.7)
Next, consider Tr[y#~"]. We have

Tr[y""] = Tr[y"+*"]
= 3T[y"y"” +9""]
= —g"Trl
= —4g"” . (47.8)
The first equality follows from the cyclic property of the trace, the second
averages the left- and right-hand sides of the first, the third uses eq. (47.1),
and the fourth uses eq. (47.4).

A slightly nicer way of expressing eq. (47.8) is to introduce two arbitrary
four-vectors a* and b, and write

Teldf] = —4(ab) , (47.9)
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where ¢ = a,v*, § = b,¥*, and (ab) = a*b,.
Next consider Tr[al¢d]. We evaluate this by moving ¢ to the right, using
eq. (47.1), which is now more usefully written as

#p = —Pd — 2(abd) . (47.10)

Using this repeatedly, we have

Tr[gpéd] = —Tr[fadd] — 2(ab) Tr[¢d]
= +Tr[Bdd] + 2(ac)Tr[pd] — 2(ab) Tr[¢]
= —Tr[p¢dd] — 2(ad) Tr[p¢] + 2(ac) Tr[fd] — 2(ab) Tr[¢d] . (47.11)
Now we note that the first term on the right-hand side of the last line is,

by the cyclic property of the trace, equal to minus the left-hand side. We
can then move this term to the left-hand side to get

2Te[ghed] = — 2(ad)Tr[B¢] + 2(ac) Tr(pd] — 2(ab) Tr{gd] . (47.12)

Finally, we evaluate each Tr[a§] with eq. (47.9), and divide by two:

Trliifd] = 4] (ad)(be) — (ac)(bd) + (ab)(cd)] . (47.13)

This is our final result for this trace.

Clearly, we can use the same technique to evaluate the trace of the
product of any even number of gamma matrices.

Next, let’s consider traces that involve v5’s and v#’s. Since {7y5,7*} = 0,
we can always bring all the ~5’s together by moving them through the v*’s
(generating minus signs as we go). Then, since 72 = 1, we end up with
either one 75 or none. So we need only consider Tr[ysy#1...~v#"]. And,
according to eq. (47.7), we need only be concerned with even n.

Recall that an explicit formula for ~5 is

s = iyt y2y3 (47.14)

Eq. (47.13) then implies
Trs = 0. (47.15)

Similarly, we can show that
Tr[ysv#4"] = 0. (47.16)

Finally, consider Tr[y5v*#~"+”~7]. The only way to get a nonzero result is to
have the four vector indices take on four different values. If we consider the
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special case Tr[y573v2714Y], plug in eq. (47.14), and then use (7%)? = —1
and (7)% = 1, we get i(—1)3 Tr1 = —4i, or equivalently
Trlysya"yP7 7] = —4ie!™r” (47.17)
where 9123 = 3210 — 41,
Another category of gamma matrix combinations that we will eventually
encounter is y*¢ ...~,. The simplest of these is

Y% = Gury”
= 39 {7" 7"}
= _g,uz/glw
= —d. (47.18)
To get the second equality, we used the fact that g, is symmetric, and
so only the symmetric part of v#+* contributes. In the last line, d is the
number of spacetime dimensions. Of course, our entire spinor formalism
has been built around d = 4, but we will need formal results for d = 4—¢

when we dimensionally regulate loop diagrams involving fermions.
We move on to evaluate

Vo = (=t — 20,)

= ="yl — 24
= (d—2)¢ . (47.19)
We continue with
Vi = 4(ab) — (d—4)dp (47.20)

and
Vv = 2¢pd + (d—4)db¢ ; (47.21)

the derivations are left as an exercise.
PROBLEMS

47.1) Verify eq. (47.16).

47.2) Verify eqs. (47.20) and (47.21).

47.3) Show that the most general 4 x 4 matrix can be written as a linear
combination (with complex coefficients) of 1, ¥, SH S ~5, vz,
and ~s5, where 1 is the identity matrix and S*” = %[7“, ~"]. Hint: if A
and B are two different members of this set, prove linear independence
by showing that Tr AT B = 0 vanishes. Then count.
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48 SPIN-AVERAGED CROSS SECTIONS

PREREQUISITE: 46, 47

298

In section 46, we computed |7 |2 for (among other processes) ee™ — ete™.
We take the incoming and outgoing electrons to have momenta p; and pf,
respectively, and the incoming and outgoing positrons to have momenta po
and p), respectively. We have p? = p> = —m?, where m is the electron

(and positron) mass. The Mandelstam variables are
s = —(p1 +p2)? = —(p1 +15)?,
t =—(p1 —p)* = —(p2—ph)*,
u=—(p1—ps)* = —(p2 — p1)?,
and they obey s + t 4+ u = 4m?. Our result was

(I)ss (ps + (I)ts (I)tt
T 2 _ 4 o t :|
Tr=9lar—sp  or-soe-y t or-u2)

where M is the scalar mass, and

b, = Tr U1E1U252} Tr[véﬁéu'lﬂﬂ s
o [ I—1 . —
by = Tr ulululul} Tr {1}2?]2?}21)2} ,

[P Ry Ny
by ="Tr ululuiu{vﬂzvgvg} ,

[y
d,s = Tr U1U1U2U2U2U2U1U1:| .

(48.1)

(48.2)

(48.3)

Next, we average over the two initial spins and sum over the two final

spins to get
2y _ 1 2
(TR =43, o T

Then we use

> us(p)us(p) = —f+m,

s==+
Z vs(P)Vs(P) = —p—m,
s==+

to get

(Bs) = §T| (= +m) (—phy—m) | Tr | (—ph—m)(—p{+m)] ,
(®n) = 3Tx | (=, +m)(—f{+m)]| Tr | (~ps—m) (s —m)] ,

(®or) = FTe[ (=) +m) (—p{+m)(—s—m) (—pp—m)] ,
= LT[ (= +m) (= —m) (=) (= +m)| .

—
A
o~
»
~
|
N

(48.4)

(48.5)

(48.6)
(48.7)
(48.8)

(48.9)
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It is now merely tedious to evaluate these traces with the technology of
section 47.
For example,

Tr[(‘ﬁl‘””)(‘%‘”")] = Tr[ppy] — m* Tr1
= —4(p1po) — 4m? (48.10)

It is convenient to write four-vector products in terms of the Mandelstam
variables. We have

pip2 = Piph = —3(s —2m?)

piph = pophy = +5(t —2m?)
piph = phip2 = +3(u—2m?), (48.11)

and so

Tr[(—y+m)(—fy—m)| = 25 — 8m? . (48.12)

Thus, we can easily work out eqgs. (48.6) and (48.7):
(Bgs) = (s —4m?)? (48.13)
(By) = (t —4m?)%. (48.14)

Obviously, if we start with (®ss) and make the swap s < ¢, we get (D).
We could have anticipated this from eqs. (48.6) and (48.7): if we start with
the right-hand side of eq. (48.6) and make the swap ps < —p), we get
the right-hand side of eq.(48.7). But from eq.(48.11), we see that this
momentum swap is equivalent to s < t.

Let’s move on to (®g) and (Pys). These two are also related by py <
—p}, and so we only need to compute one of them. We have

(Pst) = %Tr[%ﬁl,ﬁz,ﬁz]
+ %m2 Te[p ] — s — ity — Pits — ity + o] + %mﬁt Trl
= (p1ph)(p2ph) — (p1p3) (p2ph) + (P1p2) (P11Y)
— m2[p1p} — p1py — p1p2 — Piph — Pip2 + paph) + m?
= —1st+ 2mu . (48.15)
To get the last line, we used eq. (48.11), and then simplified it as much as
possible via s 4+t + u = 4m?. Since our result is symmetric on s < t, we
have (®y) = (Dgy).
Putting all of this together, we get
(s — 4m?)? N st — 4m2u N (t — 4m?)?
(M? — 5)2 (M? — s)(M? —t) (M2 —t)2

(IT%) = g* (48.16)
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This can then be converted to a differential cross section (in any frame) via
the formulae of section 11.

Let’s do one more: e~ — e~ . We take the incoming and outgoing
electrons to have momenta p and p/, respectively, and the incoming and
outgoing scalars to have momenta k and k', respectively. We then have
p? =p? = —m? and k% = k> = —M?. The Mandelstam variables are

s=—(p+k)P=—@+K)?,
t=—-(p-p)P=—(k—FK)>,
u=—(p-K)=—-(k-p)*, (48.17)

and they obey s 4+t 4+ u = 2m? + 2M?2. Our result in section 46 was

(IT2) = $Te[A(—p+ m)A(—' +m)| , (48.18)
where ,
A=ge|hrEm KL (48.19)
Thus we have
ITF) =g { (m? — )2 * (m? —s)(m2—u) (m?—u)? ] ’ (48.20)

where now

(Pys) = %Tr:(—pf/+m)(—6é+2m)(—ﬁ+m)(—%+2m)} o (48.21)
(@uu) = $Tr| (=9 +m) (+] +2m) (—p+m) (+F+2m)| ,  (48.22)

(@o) = FTr|(—'+m) (—f+2m) (—p+m)(+F +2m)| ,  (48.23)

(@us) = FTr|(—'+m) (+H+2m)(—pm) (—f+2m)| . (48.24)

We can evaluate these in terms of the Mandelstam variables by using our
trace technology, along with

pk =p'k = —§(s —m® - M?)
p’ = +5(t —2m?),
kk' = +1(t—2M?),
pk' =p'k = +3(u—m? - M?). (48.25)

Examining eqs. (48.21) and (48.22), we see that (®4s) and (®P,,) are trans-
formed into each other by k < —k’. Examining eqgs. (48.23) and (48.24), we
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see that (®g,) and (®,,) are also transformed into each other by k <« —k&’.
From eq. (48.25), we see that this is equivalent to s <> u. Thus we need
only compute (®,) and (P, ), and then take s < u to get (Py,,) and (D).
This is, again, merely tedious, and the results are

= —su+m?(9s +u) + Tm* — 8m M?* + M* | 48.26

)
= —su+m?(9u + s) + Tm* — 8m M? + M* | 48.27
)+ 9mt — 8m2M? — M*, 48.
)

su+3m2(s+u 28

(48.26)

(48.27)
+ (48.28)
+su+ 3m?(s +u) + Im* — 8m?*M? — M* . (48.29)
PROBLEMS

48.1) The tedium of these calculations is greatly alleviated by making use of
a symbolic manipulation program like Mathematica or Maple. One
approach is brute force: compute 4 x 4 matrices like § in the CM
frame, and take their products and traces. If you are familiar with a
symbolic-manipulation program, write one that does this. See if you
can verify egs. (48.26-48.29).

48.2) Compute (|T|?) for ete™ — pp. You should find that your result
is the same as that for e“¢p — e, but with s < ¢, and an extra
overall minus sign. This relationship is known as crossing symmetry.
There is an overall minus sign for each fermion that is moved from
the initial to the final state.

48.3) Compute (|7|?) for e“e~ — e~e~. You should find that your result is
the same as that for eTe™ — eTe™, but with s «» u. This is another
example of crossing symmetry.

48.4) Suppose that M > 2m, so that the scalar can decay to an electron-
positron pair.

a) Compute the decay rate, summed over final spins.

b) Compute |7|? for decay into an electron with spin s; and a positron
with spin s9. Take the fermion three-momenta to be along the z axis,
and let the z-axis be the spin-quantization axis. You should find
that |T|*> = 0 if s; = —sg, or if M = 2m (so that the outgoing
three-momentum of each fermion is zero). Discuss this in light of
conservation of angular momentum and of parity. (Prerequisite: 40.)

c¢) Compute |7|? for decay into an electron with helicity s; and a
positron with helicity so. (See section 38 for the definition of helicity.)
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You should find that the decay rate is zero if s1 = —so. Discuss this
in light of conservation of angular momentum and of parity.

d) Now consider changing the interaction to £1 = igpW¥+5¥, and com-
pute the spin-summed decay rate. Explain (in light of conservation of
angular momentum and of parity) why the decay rate is larger than
it was without the i in the interaction.

e) Repeat parts (b) and (c) for the new form of the interaction, and
explain any differences in the results.

48.5) The charged pion 7~ is represented by a complex scalar field ¢, the
muon p~ by a Dirac field M, and the muon neutrino v, by a spin-
projected Dirac field P, N, where P, = %(1—75). The charged pion
can decay to a muon and a muon antineutrino via the interaction

Ly = 2¢1Gp fr0,pMA*PLN + hec. (48.30)

where ¢q is the cosine of the Cabibbo angle, G is the Fermi constant,
and f, is the pion decay constant.

a) Compute the charged pion decay rate I'.

b) The charged pion mass is m, = 139.6 MeV, the muon mass is
m,, = 105.7MeV, and the muon neutrino is massless. The Fermi
constant is measured in muon decay to be Gp = 1.166 x 107° GeV 2,
and the cosine of the Cabibbo angle is measured in nuclear beta decays
to be ¢; = 0.974. The measured value of the charged pion lifetime is
2.603 x 10~®s. Determine the value of f; in MeV.
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49 THE FEYNMAN RULES FOR MAJORANA FIELDS

PREREQUISITE: 45

In this section we will deduce the Feynman rules for Yukawa theory, but
with a Majorana field instead of a Dirac field. We can think of the particles
associated with the Majorana field as massive neutrinos.

We have

L1 = 3900V
= 3990"CY , (49.1)
where U be a Majorana field (with mass m), ¢ is a real scalar field (with
mass M), and g is a coupling constant. In this section, we will be concerned
with tree-level processes only, and so we omit renormalizing Z factors.

From section 41, we have the LSZ rules appropriate for a Majorana
field,

b (P — —i / d'z et 5,(p) (=i + m)¥ () (49.2)
~ / &'z UM (2)C(+i9 + m)us(p)et®® | (49.3)

b (B Jout — 1 [ ' 7 T (p) (i) + ) U() (19.4)
— / &' e YT (2)C(+id + m)vg (p)e=PT . (49.5)

Eq. (49.3) follows from eq. (49.2) by taking the transpose of the right-hand
side, and using Ty (p')* = —Cuy(p’) and (—i@ + m)* = C(+id + m)C~};
similarly, eq. (49.5) follows from eq. (49.4). Which form we use depends on
convenience, and is best chosen on a diagram-by-diagram basis, as we will
see shortly.

Eqgs. (49.2-49.5) lead us to compute correlation functions containing W’s,
but not U’s. In position space, this leads to Feynman rules where the
fermion propagator is %S (x —y)C~!, and the W vertex is igC; the factor
of % in £ is canceled by a symmetry factor of 2! that arises from having
two identical ¥ fields in £1. In a particular diagram, as we move along
a fermion line, the C~! in the propagator will cancel against the C in the
vertex, leaving over a final C~! at one end. This C~! can be canceled by
a C from eq. (49.3) (for an incoming particle) or eq. (49.5) (for an outgoing
particle). On the other hand, for the other end of the same line, we should
use either eq. (49.2) (for an incoming particle) or eq. (49.4) (for an outgoing
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particle) to avoid introducing an extra C at that end. In this way, we can
avoid ever having explicit factors of C in our Feynman rules.!
Using this approach, the Feynman rules for this theory are as follows.

1.

The total number of incoming and outgoing neutrinos is always even;
call this number 2n. Draw n solid lines. Connect them with internal
dashed lines, using a vertex that joins one dashed and two solid lines.
Also, attach an external dashed line for each incoming or outgoing
scalar. In this way, draw all possible diagrams that are topologically
inequivalent.

Draw arrows on each segment of each solid line; keep the arrow di-
rection continuous along each line.

. Label each external dashed line with the momentum of an incoming

or outgoing scalar. If the particle is incoming, draw an arrow on the
dashed line that points towards the vertex; If the particle is outgoing,
draw an arrow on the dashed line that points away from the vertex.

. Label each external solid line with the momentum of an incoming or

outgoing neutrino, but include a minus sign with the momentum if (a)
the particle is incoming and the arrow points away from the vertex, or
(b) the particle is outgoing and the arrow points towards the vertex.
Do this labeling of external lines in all possible inequivalent ways.
Two diagrams are considered equivalent if they can be transformed
into each other by reversing all the arrows on one or more fermion
lines, and correspondingly changing the signs of the external momenta
on each arrow-reversed line.

. Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

. The value of a diagram consists of the following factors:

for each incoming or outgoing scalar, 1;
for each incoming neutrino labeled with +p;, us, (pi);

for each incoming neutrino labeled with —p;, Ts, (p;);
for each outgoing neutrino labeled with +p!, Uy, (p));
/),

for each outgoing neutrino labeled with —p/, Vg (p));

IThis is not always possible if the Majorana fields interact with Dirac fields, and we
use the usual rules for the Dirac fields; see problems 49.2 and 91.3.
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Figure 49.1: Two equivalent diagrams for ¢ — vv.

for each vertex, ig;
for each internal scalar, —i/(k% + M? — ie);

for each internal fermion, —i(—p + m)/(p* + m? — ie).

7. Spinor indices are contracted by starting at one end of a fermion
line: specifically, the end that has the arrow pointing away from the
vertex. The factor associated with the external line is either @ or .
Go along the complete fermion line, following the arrows backwards,
and writing down (in order from left to right) the factors associated
with the vertices and propagators that you encounter. The last factor
is either a u or v. Repeat this procedure for the other fermion lines,
if any.

8. The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative). To
compare two diagrams, it may be necessary to use the arrow-reversing
equivalence relation of rule #4; there is then an extra minus sign for
each arrow-reversed line.

9. The value of ¢7 is given by a sum over the values of all these diagrams.

There are additional rules for counterterms and loops, but we will postpone
those to section 51.

Let’s look at the simplest process, ¢ — vv. There are two possible
diagrams for this, shown in fig. (49.1). However, according to rule #4,
these two diagrams are equivalent, and we should keep only one of them.
The first diagram yields i73 = igvju} and the second iTy = igvju,. Rule
#8 then implies that we should have 77 = —75. To check this, we note that
(after dropping primes to simplify the notation)

Tiug = [Drug]”
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Py pP1 Py P2 Py P2
. . —_—
Yp-p;  — Yp-p;  + VY p1+P;
! ! NN
P2 P2 P P -pj p;

Figure 49.2: Diagrams for vv — vv, corresponding to eq. (49.7).

= uy U]
= @C_lC_lul

= —Vaus , (496)

as required.

In general, for processes with a total of just two incoming and outgo-
ing neutrinos, such as vy — v or vv — @, these rules give (up to an
irrelevant overall sign) the same result for i7 as we would get for the cor-
responding process in the Dirac case, e"¢ — e p or eTe™ — pp. (Note,
however, that in the Dirac case, we have £; = go¥V, as compared with
L= %g(p@lll in the Majorana case.)

The differences between Dirac and Majorana fermions become more
pronounced for vv — vv. Now there are three inequivalent contributing
diagrams, shown in fig. (49.2). The corresponding amplitude can be written
as

Sy —/ —/ —/ — —1 !
T — L(ig)2 (wur) (Tyus) o (Wgu1)(@ug) | (Daur)(Wyvy) 49.
iT =309 |~ Sy — oz | (497

where s = —(p1+p2)?, t = —(p1—p})? and u = —(p1—ph)?. After arbitrarily
assigning the first diagram a plus sign, the minus sign of the second diagram
follows from rule #8. To get the sign of the third diagram, we compare it
with the first. To do so, we reverse the arrow direction on the lower line
of the first diagram (which yields an extra minus sign), and then redraw
it in standard form. Comparing this modified first diagram with the third
diagram (and invoking rule #8) reveals a relative minus sign. Since the
modified first diagram has a minus sign from the arrow reversal, we conclude
that the third diagram has an overall plus sign.

After taking the absolute square of eq. (49.7), we can use relations like
eq. (49.6) on a term-by-term basis to put everything into a form that allows
the spin sums to be performed in the standard way. In fact, we have already
done all the necessary work in the Dirac case. The s-s, s-t, and ¢-t terms in
(|T)?) for vv — vv are the same as those for efe™ — ete™, while the ¢-t,
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t-u, and u-u terms are the same as those for the crossing-related process
e"e” — e~ e~ . Finally, the s-u terms can be obtained from the s-t terms
via t < u, or equivalently from the t-u terms via t «<» s. Thus the result is

2 (s 47712)2 st — 4m>u
<|T| > - ( 8)2 ( S)(M2 _ t)
(t 4m2)2 tu — 4m?s
Tor— T Gr o0 - )

,4;

(u m?)? us — 4m?t

tor—wr Tor—mor ) WY

which is neatly symmetric on permutations of s, ¢, and u.
PROBLEMS

49.1) Let ¥ be a Dirac field (representing the electron and positron), X
be a Majorana field (represeting the photino, the hypothetical super-
symmetric partner of the photon, with mass my), and E;, and Ey be
two different complex scalar fields (representing the two selectrons,
the hypothetical supersymmetric partners of the left-handed electron
and the right-handed electron, with masses M, and Mpg; note that
the subscripts L and R are just part of their names, and do not sig-
nify anything about their Lorentz transformation properties). They
interact via

= \V2eE]XP, U 4+ V2eE{ X P,V + h.c. | (49.9)

where o = €2 /41 ~ 1/137 is the fine-structure constant, and P, =
5(1F 7).
a) Write down the hermitian conjugate term explicitly.

b) Find the tree-level scattering amplitude for ete™ — 7. Hint:
there are four contributing diagrams, two each in the ¢t and u channels,
with exchange of either F, or Fy.

c¢) Compute the spin-averaged differential cross section for this process
in the case that m, (the electron mass) can be neglected, and |¢|, |u| <
M, = My. Express it as a function of s and the center-of-mass
scattering angle 6.

49.2) Consider the theory specified in the previous problem.

a) Find the tree-level scattering amplitude for e“e~ — E_E;. Use
suitable identities to eliminate factors of the charge-conjugation ma-
trix C.
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b) Compute the spin-averaged differential cross section for this pro-
cess. Neglect the electron mass.
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50 MASSLESS PARTICLES AND SPINOR HELICITY

PREREQUISITE: 48

Scattering amplitudes often simplify greatly if the particles are massless
(or can be approximated as massless because the Mandelstam variables all
have magnitudes much larger than the particle masses squared). In this
section we will explore this phenomenon for spin-one-half (and spin-zero)
particles. We will begin developing the technology of spinor helicity, which
will prove to be of indispensible utility in Part III.

Recall from section 38 that the w spinors for a massless spin-one-half
particle obey

us(P)Us(p) = 3(1+ 575)(—¥) (50.1)

where s = =+ specifies the helicity, the component of the particle’s spin
measured along the axis specified by its three-momentum; in this notation
the helicity is %S. The v spinors obey a similar relation,

0s(P)0s(P) = 3(1 — 575)(—¥) - (50.2)

In fact, in the massless case, with the phase conventions of section 38,
we have vs(p) = u_s(p). Thus we can confine our discussion to u-type
spinors only, since we need merely change the sign of s to accomodate
v-type spinors.

Consider a u spinor for a particle of negative helicity. We have

u_(p)u_(p) = 5(1 —5)(—¥) - (50.3)
Let us define
Paa = puo'gd . (504)
Then we also have . B _
P = %" pee = puott® . (50.5)

Then, using

0 ot . 1 0
’Y”Z(au 0>= 5(1—75):(0 0) (50.6)

in eq. (50.3), we find

P T 50.7
U—(p)U—(p)—<0 0 ) (50.7)

On the other hand, we know that the lower two components of u_(p)

vanish, and so we can write
Pa
u_(p) = ( 0 ) (50.8)
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Here ¢, is a two-component numerical spinor; it is not an anticommuting
object. Such a commuting spinor is sometimes called a twistor. An explicit
numerical formula for it (verified in problem 50.2) is

—sin($60)e~% )

+ cos(36) (509)

¢a:\/ﬂ<

where 6 and ¢ are the polar and azimuthal angles that specify the direction
of the three-momentum p, and w = |p|. Barring eq. (50.8) yields

7 (p)=(0, ). (50.10)
where ¢} = (¢q)*. Now, combining egs. (50.8) and (50.10), we get

0 ¢a¢2§>

(50.11)
0 0

u—(p)u-(p) = (

Comparing with eq. (50.7), we see that

Pai = —Pa®y, - (50.12)

This expresses the four-momentum of the particle neatly in terms of the
twistor that describes its spin state. The essence of the spinor helicity
method is to treat ¢, as the fundamental object, and to express the parti-
cle’s four-momentum in terms of it, via eq. (50.12).

Given eq. (50.8), and the phase conventions of section 38, the positive-
helicity spinor is

0
uy(p) = ( ) : (50.13)

¢*d
where ¢*@ = ¢%¢%. Barring eq. (50.13) yields
@ (p) = (6% 0). (50.14)

Computation of uy (p)u,(p) via egs. (50.13) and (50.14), followed by com-
parison with eq. (50.1) with s = 4, then reproduces eq. (50.12), but with
the indices raised.

In fact, the decomposition of p,; into the direct product of a twistor
and its complex conjugate is unique (up to an overall phase for the twistor).
To see this, use o = (I,5) to write

<—p° +p* pl—ip? ) (50.15)
Paa = . . .
pl + Zp2 _pO o p3

The determinant of this matrix is —(p%)? + p?, and this vanishes because
the particle is (by assumption) massless. Thus p,, has a zero eigenvalue.
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Therefore, it can be written as a projection onto the eigenvector correspond-
ing to the nonzero eigenvalue. That is what eq. (50.12) represents, with the
nonzero eigenvalue absorbed into the normalization of the eigenvector ¢,.
Let us now introduce some useful notation. Let p and k& be two four-
momenta, and ¢, and k, the corresponding twistors. We define the twistor

product
pk] = ¢%q - (50.16)

Because ¢%kg = €*“@ckq, and the twistors commute, we have
lkp] = —[pH] - (50.17)
From egs. (50.8) and (50.14), we can see that
. (pu(k) = [pk] . (50.18)

Similarly, let us define .
(pk) = ¢ir™" . (50.19)

Comparing with eq. (50.16) we see that
(pk) = [kp]", (50.20)

which implies that this product is also antisymmetric,

(kp)=—(pk) . (50.21)
Also, from egs. (50.10) and (50.13), we have
u-(p)ut (k) = (pk) . (50.22)

Note that the other two possible spinor products vanish:
Uy (p)uy (k) =u-(p)u—(k) =0. (50.23)
The twistor products (pk) and [p k] satisfy another important relation,
(pk)[kp] = (55) (K" ¢a)
= (¢5a) (KK")
= Paak®
= —2pik, | (50.24)

where the last line follows from 144", = —2gH".
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Let us apply this notation to the tree-level scattering amplitude for
e~ — e~ in Yukawa theory, which we first computed in Section 44, and
which reads

Tys = 20y () [S(p+k) + S(p— k)] us(p) (50.25)

For a massless fermion, S(p) = —y/p?. If the scalar is also massless, then
(p+k)2=2p-kand (p—k')? = —2p-k'. Also, we can remove the jf’s in the
propagator numerators in eq. (50.25), because pus(p) = 0. Thus we have

Tys = 9" Uy (P') 2;—_;2 + 2;%,;,]%(1)) : (50.26)
Now consider the case s’ = s = +. From egs. (50.13), (50.14), and
—= < " Kaﬁz‘) , (50.27)
K"k 0
we get
Wy (p')(—K)us(p) = ¢ Karfe™
= [p' k] (kp) . (50.28)
Similarly, for s’ = s = —, we find
T (p)(~K)u-(p) = ¢k K 04
= (p'k) [kp], (50.29)

while for s’ # s, the amplitude vanishes:

T (p) (~K)us(p) = T (p)(—F)u—(p) = 0. (50.30)

Then, using eq. (50.24) on the denominators in eq. (50.26), we find
/ ! 1./
YL NI

T\ ok " pw]
o (k) DK
T _=—g <<pk> + o ), (50.31)
while
T =T ,=0. (50.32)

Thus we have rather simple expressions for the fixed-helicity scattering
amplitudes in terms of twistor products.
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REFERENCE NOTES
Spinor-helicity methods are discussed by Siegel.
PROBLEMS

50.1) Consider a bra-ket notation for twistors,

(p| =u-(p) =7+(p) . (50.33)
We then have
(k| lp) = (kp) ,
[kl |p] = [kp] .
(k| |pl =0,
[k [p) = 0. (50.34)
a) Show that
—¢ = Ip)[p| + [pl{p] (50.35)

where p is any massless four-momentum.

b) Use this notation to rederive egs. (50.28-50.30).

50.2) a) Use egs. (50.9) and (50.15) to verify eq. (50.12).

b) Let the three-momentum p be in the +Z direction. Use eq. (38.12)
to compute uy(p) explicitly in the massless limit (corresponding to
the limit 7 — oo, where sinhn = |p|/m). Verify that, when 6 = 0,
your results agree with egs. (50.8), (50.9), and (50.13).

50.3) Prove the Schouten identity,

(pq)(rs)+(pr)(sq) +(ps){gr) =0. (50.36)

Hint: note that the left-hand side is completely antisymmetric in the
three labels ¢, r, and s, and that each corresponding twistor has only
two components.
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50.4) Show that
(pa)lar] (rs)[sp] = Tr 5 (1—7s)pdr'# | (50.37)

and evaluate the right-hand side.

50.5) a) Prove the useful identities

(ply"[k] = [kIv"|p) (50.38)
(ply"[k]" = (kIv"|p] (50.39)
(plv*[p] = 2p", (50.40)
(p*|k) =0, (50.41)
[plv*|k] = 0. (50.42)

b) Extend the last two identies of part (a): show that the product
of an odd number of gamma matrices sandwiched between either (p|
and |k) or [p| and |k] vanishes. Also show that the product of an even
number of gamma matrices between either (p| and |k] or [p| and |k)
vanishes.

c¢) Prove the Fierz identities,

—3phulay™ = lal(pl + Ip)lal , (50.43)

—[plvl)r* = )bl + Ip)(al - (50.44)

Now take the matrix element of eq. (50.44) between (r| and |s] to get
another useful form of the Fierz identity,

[Ph*la) (rlvulsl = 2[p sl (q7) - (50.45)
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51 LoorP CORRECTIONS IN YUKAWA THEORY
PREREQUISITE: 19, 40, 48

In this section we will compute the one-loop corrections in Yukawa theory
with a Dirac field. The basic concepts are all the same as for a scalar field,
and so we will mainly be concerned with the extra technicalities arising
from spin indices and anticommutation.

First let us note that the general discussion of sections 18 and 29 leads
us to expect that we will need to add to the lagrangian all possible terms
whose coefficients have positive or zero mass dimension, and that respect
the symmetries of the original lagrangian. These include Lorentz symmetry,
the U(1) phase symmetry of the Dirac field, and the discrete symmetries
of parity, time reversal, and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are
[p] =1 and [¥] = 3. Thus any power of ¢ up to ¢? is allowed. But there
are no additional required terms involving W: the only candidates contain
either v5 (e.g., i¥5¥) and are forbidden by parity, or C (e.g, $TCV¥) and
are forbidden by the U(1) symmetry.

Nevertheless, having to deal with the addition of three new terms (¢,
3, ¢*) is annoying enough to prompt us to look for a simpler example.
Consider, then, a modified form of the Yukawa interaction,

Lyuk = igpPrysP . (51.1)
This interaction will conserve parity if and only if ¢ is a pseudoscalar:
P lo(x,t)P = —p(—x,t) . (51.2)

Then, ¢ and ¢? are odd under parity, and so we will not need to add them
to £. The one term we will need to add is ¢*.
Therefore, the theory we will consider is

L=Ly+ L, (51.3)
Lo = TPV — mUV — L0400, — S M?*p* (51.4)
L1 = iZ,9900 — L 2" + Loy (51.5)

Lot = i(Zy—1)UPV — (Z,,—1)mI ¥
— YN Zp—1)0" 000 — L (Zn—1)MPp? (51.6)

where A is a new coupling constant. We will use an on-shell renormaliza-
tion scheme. The lagrangian parameter m is then the actual mass of the
electron. We will define the couplings g and A as the values of appropri-
ate vertex functions when the external four-momenta vanish. Finally, the
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fields are normalized according to the requirements of the LSZ formula. In
practice, this means that the scalar and fermion propagators must have
appropriate poles with unit residue.

We will assume that M < 2m, so that the scalar is stable against decay
into an electron-positron pair. The exact scalar propagator (in momentum
space) can be then written in Lehmann-K&llén form as

1 > p(s)

AR = — — ds —P\5)
(k%) /<;2+M2—ie+ M2, Sk2+s—ie’

(51.7)
where the spectral density p(s) is real and nonnegative. The threshold mass
My, is either 2m (corresponding to the contribution of an electron-positron
pair) or 3M (corresponding to the contribution of three scalars; by parity,
there is no contribution from two scalars), whichever is less.

We can also write

ARH L =K+ M? —ie —TI(K?) (51.8)

where iI1(k?) is given by the sum of one-particle irreducible (1PI for short;
see section 14) diagrams with two external scalar lines, and the external
propagators removed. The fact that A(k‘2) has a pole at k> = —M? with
residue one implies that II(—M?) = 0 and IT'(—~M?) = 0; this fixes the
coefficients Z, and Z).

All of this is mimicked for the Dirac field. When parity is conserved, the
exact propagator (in momentum space) can be written in Lehmann-Ké&llén
form as

p*+m?—ie  Jm2 P+ s —ie

: (51.9)

where the spectral densities p1(s) and pa(s) are both real, and p1(s) is non-
negative and greater than po(s). The threshold mass myy is m + M (corre-
sponding to the contribution of a fermion and a scalar), which, by assump-
tion, is less than 3m (corresponding to the contribution of three fermions;
by Lorentz invariance, there is no contribution from two fermions).

Since p? = —py, we can rewrite eq. (51.9) as

S N R A O RV
S0 = L Mo MO

with the understanding that 1/(...) refers to the matrix inverse. However,
since p is the only matrix involved, we can think of g(p’) as an analytic
function of the single variable . With this idea in mind, we see that S(j)
has an isolated pole at y = —m with residue one. This residue corresponds
to the field normalization that is needed for the validity of the LSZ formula.
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Figure 51.1: The one-loop and counterterm corrections to the scalar prop-
agator in Yukawa theory.

We can also write the exact fermion propagator in the form

SGH =g+ m—ie— 2P, (51.11)

where i3(j) is given by the sum of 1PI diagrams with two external fermion
lines, and the external propagators removed. The fact that g(gﬁ) has a pole
at p = —m with residue one implies that X(—m) = 0 and X/(—m) = 0; this
fixes the coefficients Zy and ~Z,,.

We proceed to the diagrams. The Yukawa vertex carries a factor of
i(iZ49)ys = —Z497s. Since Z; = 1+ O(g?), we can set Z;, = 1 in the
one-loop diagrams.

Consider first I1(k?), which receives the one-loop (and counterterm)
corrections shown in fig. (51.1). The first diagram has a closed fermion loop.
As we will see in problem 51.1 (and section 53), anticommutation of the
fermion fields results in an extra factor of minus one for each closed fermion
loop. The spin indices on the propagators and vertices are contracted in
the usual way, following the arrows backwards. Since the loop closes on
itself, we end up with a trace over the spin indices. Thus we have

Mooy (7) = (007 (3) [ oo TS H0sS U] (5112

where
1 p— (51.13)

C p? 4+ m?2 —ie
is the free fermion propagator in momentum space.
We now proceed to evaluate eq. (51.12). We have

Tr[(—f = ¥+ m)ys(—f + m)vs] = Te[(—f — K+ m)(+f + m)]
= A[(L + k)¢ + m?]
= 4N . (51.14)
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The first equality follows from 42 = 1 and vspy5 = —p-
Next we combine the denominators with Feynman’s formula. Suppress-

ing the i€’s, we have
1 1 1 1
= [ dv —-— 51.15
(l4+k)2 +m? 2+ m? /0 "@+D)y2’ ( )

where ¢ = ¢ + 2k and D = x(1—x)k* + m?.
We then change the integration variable in eq. (51.12) from ¢ to ¢; the

result is
N

1 d4q
10l 00k2:42/d/ 1.1
iy 100p(K7) = 49 0 x 2m)t (@ + D)2’ (51.16)

where now N = (q+(1—z)k)(¢—xk)+m?. The integral diverges, and so we

analytically continue it to d = 4—e spacetime dimensions. (Here we ignore a

subtlety with the definition of 75 in d dimensions, and assume that 72 = 1

and yspy5 = —p continue to hold.) We also make the replacement g —

gfi€/?, where fi has dimensions of mass, so that ¢ remains dimensionless.
Expanding out the numerator, we have

N =¢* —a(1—)k* +m’ + (1—-2z)kq . (51.17)

The term linear in ¢ integrates to zero. For the rest, we use the general
result of section 14 to get

- d? 1 i 9
a 6/ (27r(§d @+ D)2 1672 [g —hl(D/uz)} , (51.18)

d 2 i
ﬂe/ (;lw(;d (q2-(|]-D)2 = 1622 E +3 —IH(D/;F)} (-=2D), (51.19)

where p? = 4me~7ji?, and we have dropped terms of order . Plugging
egs. (51.18) and (51.19) into eq. (51.16) yields

2
g 1
quloop(k'z) =0 [g(k‘z + 2m2) + %k‘2 + m?

1
- / dz (3:17(1—:E)1<:2 + m2)ln(D/,u2)] . (51.20)
0

We see that the divergent term has (as expected) a form that permits
cancellation by the counterterms.

We evaluated the second diagram of fig. (51.1) in section 31, with the
result

A
(4m)

Hcp loop(k2) =

N

1
-+ 3 - éln(M2/u2)} M2 (51.21)
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Figure 51.2: The one-loop and counterterm corrections to the fermion prop-
agator in Yukawa theory.

The third diagram gives the contribution of the counterterms,
et (k) = —(Zo—1)k* — (Zy—1)M? . (51.22)

Adding up eqgs. (51.20-51.22), we see that finiteness of II(k?) requires

9> (1, ..
ZSD =1- m (g + ﬁnlte> s (5123)
A g> m?\/1 .
Zy =1 —— — =——— || = + finit 51.24
M +<16772 27T2M2><E+ " e>’ (51.24)

plus higher-order (in g and/or A) corrections. Note that, although there is
an O(\) correction to Zyy, there is not an O(\) correction to Z,.
We can impose I1(—M?) = 0 by writing

H(k) = A [/01 du (333(1_33)%2 + mz)ln(D/Do) + ki (K* + M2)} ,

T 4?2
(51.25)
where Dy = —z(1—z)M? +m?, and £, is a constant to be determined. We
fix K, by imposing Il'(—M?) = 0, which yields
1
Ky = / dr x(1—x)[3z(1—z)M? — m?]/Dy . (51.26)
0

Note that, in this on-shell renormalization scheme, there is no O(\) correc-
tion to II(k2).

Next we turn to the ¥ propagator, which receives the one-loop (and
counterterm) corrections shown in fig. (51.2). The spin indices are con-
tracted in the usual way, following the arrows backwards. We have

Eioo ) = (-9 (4)" [ % S+ ] AW, (5127)

where S(j) is given by eq. (51.13), and

<9 1
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is the free scalar propagator in momentum space.
We evaluate eq. (51.27) with the usual bag of tricks. The result is

i1 100p(#) = —g° /01 dx/ (5;34 (2 _]:rD)z ) (51.29)

where ¢ = ¢/ + zp and
N=g+(1-2)p+m, (51.30)
D = x(1—z)p? + zm? + (1—z)M? . (51.31)

The integral diverges, and so we analytically continue it to d = 4 — ¢
spacetime dimensions, make the replacement ¢ — ¢i€/2, and take the limit
as ¢ — 0. The term linear in ¢ in eq.(51.30) integrates to zero. Using
eq. (51.18), we get

2

1 100p () = —

1
1672

- . (51.32)

(F+2m) — /01 de ((1=2)p+m)n(D/u?)

We see that the divergent term has (as expected) a form that permits
cancellation by the counterterms, which give

Eet(p) = —(Zo—1)p — (Zn—1)m. . (51.33)

Adding up egs. (51.32) and (51.33), we see that finiteness of () requires

g (1, ..
g (1 ..

plus higher-order corrections.
We can impose X(—m) = 0 by writing

2 1

S = U de (1=} +m)In(D/Do) + (i + m)] . (51.36)
167 0

where Dy is D evaluated at p> = —m?, and ky is a constant to be deter-

mined. We fix kg by imposing ¥'(—m) = 0. In differentiating with respect
to g, we take the p? in D, eq. (51.31), to be —p?; we find

1
Ry = —2/ dx x*(1—x)m?/Dy . (51.37)
0
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Figure 51.3: The one-loop correction to the scalar-fermion-fermion vertex
in Yukawa theory.

Next we turn to the correction to the Yukawa vertex. We define the
vertex function iVy (p/,p) as the sum of one-particle irreducible diagrams
with one incoming fermion with momentum p, one outgoing fermion with
momentum p’, and one incoming scalar with momentum k = p’ — p. The
original vertex —Z,g7s is the first term in this sum, and the diagram of
fig. (51.3) is the second. Thus we have

iVy(0',p) = —Zgg75 + iVy. 1100p (P, 0) + O(g°) , (51.38)
where
d ~ ~ ~
Vy oo (#'o0) = (-9 (3) [ % [ SW H015(H)s | AE)
(51.39)

The numerator can be written as
N=@"+1£+m)(—p—L+m)s, (51.40)

and the denominators combined in the usual way. We then get

Vv 11oon (2 D) '3/dF/ dq N (51.41)
i = —i .
Y, 1loop\P s P g 3 (27T)4 (q2 + D)3 )
where the integral over Feynman parameters was defined in section 16, and
now

q={+azp+xp, (51.42)

N = [ —xif+ (1—x2)p + m][—¢ — (1—z1)p + 2oy’ + m]ys, (51.43)

D = xl(l—xl)pQ + :172(1—$2)p’2 — 2z 122p-p
+ (@1 4x2)m? + 23 M2 . (51.44)

Using ¢¢ = —q?, we can write N as

N = ¢*y5 + N + (linear in q) , (51.45)
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Figure 51.4: One of six diagrams with a closed fermion loop and four
external scalar lines; the other five are obtained by permuting the external
momenta in all possible inequivalent ways.

where
N = [—a1p+ (1—z2)y’ + m][=(1=21)p + 229’ + m]7s5 - (51.46)

The terms linear in ¢ in eq. (51.45) integrate to zero, and only the first term
is divergent. Performing the usual manipulations, we find

: Py 9 (L1 1 2 1 N
ZVY,lloop(pyp)— 172 dF3 In(D/p*) Y5+ 7 ngD .

8m2 [\e
(51.47)
From eq. (51.38), we see that finiteness of Vy (p/, p) requires
9> (1

plus higher-order corrections.

To fix the finite part of Z,, we need a condition to impose on Vy (p/, p).
We will mimic what we did in (3 theory in section 16, and require Vy- (0, 0)
to have the tree-level value igy;. We leave the details to problem 51.2.

Next we turn to the corrections to the p? vertex iVy(ky, kg, k3, k4); the
tree-level contribution is —iZy\. There are diagrams with a closed fermion
loop, as shown in fig. (51.4), plus one-loop diagrams with ¢ particles only
that we evaluated in section 31. We have

4 ~ ~
Vasoan = (~1(0)" (1) [ G5z B[S0k )s
X S(["‘%"‘ks)%g@‘i‘%z)%}
+ 5 permutations of (kq, k3, ky) . (51.49)

Again we can employ the standard methods; there are no unfamiliar as-
pects. This being the case, let us concentrate on obtaining the divergent
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part; this will give us enough information to calculate the one-loop contri-
butions to the beta functions for g and A.

To obtain the divergent part of eq. (51.49), it is sufficient to set k; = 0.
Then the numerator in eq. (51.49) becomes simply Tr (fy5)* = 4(£?)?, and
the denominator is (£2 + m?)*. Then we find, after including the identical
contributions from the other five permutations of the external momenta,

3g* (1 .
V4,\I/loop = _? <g + ﬁmte) . (5150)
From section 31, we have
33X /1 .
V4,4p100p - W (E + ﬁn1te> . (5151)
Then, using
Vy=-2A+ V4,\I/loop + V4,gploop +o, (5152)
we see that finiteness of V4 requires
30 3¢%\/1
Zy=1 —— — —— || — + finit 51.53
A + (16#2 772)\><6+ o e>, ( )

plus higher-order corrections.
REFERENCE NOTES

A detailed derivation of the Lehmann-Kéllén form of the fermion propaga-
tor can be found in Itzykson € Zuber.

PROBLEMS

51.1) Derive the fermion-loop correction to the scalar propagator by work-
ing through eq. (45.2), and show that it has an extra minus sign rel-
ative to the case of a scalar loop.

51.2) Finish the computation of Vy (p/,p), imposing the condition

Vy(0,0) = igvys . (51.54)

51.3) Consider making ¢ a scalar rather than a pseudoscalar, so that the
Yukawa, interaction is Ly = gpWPW¥. In this case, renormalizability
requires us to add a term L3 = %Z,{/{(,Dg, as well as term linear in ¢ to
cancel tadpoles. Find the one-loop contributions to the renormalizing
Z factors for this theory in the MS scheme.
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52 BETA FUNCTIONS IN YUKAWA THEORY
PREREQUISITE: 28, 51
In this section we will compute the beta functions for the Yukawa coupling

g and the ¢* coupling X in Yukawa theory, using the methods of section 28.
The relations between the bare and renormalized couplings are

g0 = 2,124 24y (52.1)
Xo = Z2Z\i X (52.2)
Let us define
/2 — Gnlg, N
(2,122, 2,) = 3 T (52.3)
n=1
> Ln(g, A
n(2;22,) =3 gl ). (52.4)
n=1
From our results in section 51, we have
_ 5¢°
3\ 2 3g%
Li(g,\) = + -2 (52.6)

1672 272 72\

where the ellipses stand for higher-order (in g? and/or \) corrections.
Taking the logarithm of eqs. (52.1) and (52.2), and using egs. (52.3) and
(52.4), we get

> Gnlg, A

Ingy = Z#—I—lng—i—%elnﬂ, (52.7)
n=1
>, L,(g,\

In)y = Z%—Hn)\—i—slnﬂ. (52.8)
n=1

We now use the fact that go and Ay must be independent of u. We differen-
tiate egs. (52.7) and (52.8) with respect to In u; the left-hand sides vanish,
and we multiply the right-hand sides by g and A, respectively. The result
is

_°°<8Gndg 8Gnd)\>1 dg

1
5 2.
0g dln,u—i—g O\ dlnp + 5€9 , (52.9)

en dln p

0 9
L, d L, d\ \ 1  dx
0 ()\a 91,9 ) tex.  (52.10)

dg dlnp O\ dln

E_"+ dlnp
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In a renormalizable theory, dg/dInp and dA\/dInp must be finite in the
€ — 0 limit. Thus we can write

dg

_ _1
dng 569+ B4(9,A) , (52.11)
dA

= —e A) . 2.12
o = —eA+ Brlg ) (5212

Substituting these into egs. (52.9) and (52.10), and matching powers of ¢,
we find

d o
— (1,2
By(g:A) = g<2989 +A8A>G1 : (52.13)
d d
_ (12
Bilg, A) = >\<2989 —I—Aa)\)Ll : (52.14)

The coefficients of all higher powers of 1/ must also vanish, but this gives
us no more information about the beta functions.
Using egs. (52.5) and (52.6) in egs. (52.13) and (52.14), we get

5¢°
1
Br(g,\) = @(3% +8Xg? — 48¢") + ... . (52.16)

The higher-order corrections have extra factors of g2 and/or .
PROBLEMS

52.1) Compute the one-loop contributions to the anomalous dimensions of
m, M, ¥, and .

52.2) Consider the theory of problem 51.3. Compute the one-loop con-
tributions to the beta functions for g and A, and to the anomalous
dimensions of m, M, k, ¥, and .

52.3) Consider the beta functions of egs. (52.15) and (52.16).

a) Let p = A/g?, and compute dp/dInu. Express your answer in
terms of ¢ and p. Explain why it is better to work with ¢ and p
rather than g and A. Hint: the answer is mathematical, not physical.

b) Show that there are two fized points, p% and p* , where dp/dIn p =
0, and find their values.

¢) Suppose that, for some particular value of the renormalization scale
u, we have p = 0 and g <& 1. What happens to p at much higher
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values of p (but still low enough to keep g < 1)? At much lower
values of u?

d) Same question, but with an initial value of p = 5.
e) Same question, but with an initial value of p = —5.

f) Find the trajectory in the (p,g) plane that is followed for each
of the three starting points as p is varied up and down. Hint: you
should find that the trajectories take the form

* 14
pP— P+
p—p

g =290

for some particular exponent v. Put arrows on the trajectories that
point in the direction of increasing pu.

g) Explain why p* is called an wltraviolet stable fixed point, and why

*

p’ is called an infrared stable fixed point.
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53 FUNCTIONAL DETERMINANTS

PREREQUISITE: 44, 45

In the section we will explore the meaning of the functional determinants
that arise when doing gaussian path integrals, either bosonic or fermionic.
We will be interested in situations where the path integral over one partic-
ular field is gaussian, but generates a functional determinant that depends
on some other field. We will see how to relate this functional determinant
to a certain infinite set of Feynman diagrams. We will need the technology
we develop here to compute the path integral for nonabelian gauge theory
in section 70.
We begin by considering a theory of a complex scalar field y with

X, (53.1)

where ¢ is a real scalar background field. That is, ¢(x) is treated as a fixed
function of spacetime. Next we define the path integral

L=-0"x"0,x — m*xTx + gpx'

Z(p) = /DXJr Dx el di L , (53.2)

where we use the € trick of section 6 to impose vacuum boundary conditions,
and the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex variables z;, then we
can evaluate gaussian integrals by the general formula

/dnz d"z exp (—iz; M;;z;) oc (det M)~ . (53.3)

In the case of the functional integral in eq. (53.2), the index 7 on the inte-
gration variable is replaced by the continuous spacetime label x, and the
“matrix” M becomes

M(z,y) = [-02 + m? — gp(z)]6*(z — y) . (53.4)

In order to apply eq. (53.3), we have to understand what it means to com-
pute the determinant of this expression. .

To this end, let us first note that we can write M = MM, which is
shorthand for

M(w,2) = [ 'y Mo, )M (y.2) (5.5
where

Moy(z,y) = (=02 + m?*)d*(z —y) , (53.6)

M(y,z) = 6"y — z) — gA(y — 2)¢(2) . (53.7)
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Here A(y — z) is the Feynman propagator, which obeys
(—85 +m?)A(y —2) =6y —2) . (53.8)

After various integrations by parts, it is easy to see that egs. (53.5-53.7)
reproduce eq. (53.4).
Now we can use the general matrix relation det AB = det A det B to
conclude that .
det M = det My det M . (53.9)

The advantage of this decomposition is that M, is independent of the
background field ¢, and so the resulting factor of (det My)~! in Z() can
simply be absorbed into the overall normalization. Furthermore, we have
M=1I- G, where

I(z,y) =6 (z —y) (53.10)

is the identity matrix, and
G(z,y) = gA(z —y)e(y) - (53.11)

Thus, for ¢(x) = 0, we have M = I and so det M = 1. Then, using
eq. (53.3) and the normalization condition Z(0) = 1, we see that for nonzero
() we must have simply

Z(p) = (det M)~". (53.12)

Next, we need the general matrix relation det A = exp Trln A, which is
most easily proved by working in a basis where A is in Jordan form (that
is, all entries below the main diagonal are zero). Thus we can write

det M = eXpTrlnM

=exp Trin(I — G)
= exp Tr|— i 1G" . (53.13)
n=1 n
Combining egs. (53.12) and (53.13) we get
> 1
VA = —TrG" 14
(¢ =exp Yy S TrG" (55.14)

n=1

where

T G" = g / A2y % A —22)p(13) - .. Awn—z1)p(21) . (53.15)
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Figure 53.1: All connected diagrams with ¢(x) treated as an external field.
Each of the n dots represents a factor of igp(z), and each solid line is a x
or ¥ propagator.

This is our final result for Z ().

To better understand what it means, we will rederive it in a different
way. Consider treating the gy x term in £ as an interaction. This leads
to a vertex that connects two y propagators; the associated vertex factor
is igp(xz). According to the general analysis of section 9, we have Z(p) =
exp i'(¢), where iI'(¢) is given by a sum of connected diagrams. (We have
called the exponent I' rather than W because it is naturally interpreted as a
quantum action for ¢ after x has been integrated out.) The only connected
diagrams we can draw with these Feynman rules are those of fig. (53.1),
with n insertions of the vertex, where n > 1. The diagram with n vertices
has an n-fold cyclic symmetry, leading to a symmetry factor of S = n.
The factor of i associated with each vertex is canceled by the factor of 1/i
associated with each propagator. Thus the value of the n-vertex diagram
is

%g” /d4:171 codir, A(zi—x2) () .. Az —z1)0(T1) - (53.16)

Summing up these diagrams, and using eq. (53.15), we find

il'(¢) = i 1 TrG" . (53.17)

n=1

This neatly reproduces eq. (53.14). Thus we see that a functional determi-
nant can be represented as an infinite sum of Feynman diagrams.
Next we consider a theory of a Dirac fermion ¥ with

L=i0PV — mUV + goUW¥ | (53.18)
where @ is again a real scalar background field. We define the path integral

Z(p) = /Dﬁmf gL (53.19)
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where we again use the € trick to impose vacuum boundary conditions, and
the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex Grassmann variables
1;, then we can evaluate gaussian integrals by the general formula

/ d™p d™p exp (—ih; M;jap;) o det M . (53.20)

In the case of the functional integral in eq.(53.19), the index i on the
integration variable is replaced by the continuous spacetime label x plus
the spinor index «, and the “matrix” M becomes

Mag(@,y) = [=i@, +m — go(@)]apd (z — y) - (53.21)

In order to apply eq.(53.20), we have to understand what it means to
compute the determinant of this expression. .

To this end, let us first note that we can write M = MM, which is
shorthand for

Moy (z,2) = /d4y Moag(x,y)]\?m(y, z), (53.22)
where
Moas(z,y) = (=i, +m)asd'(z —y) , (53.23)
Mgy (y,2) = 03,0 (y — 2) — gSpy(y — 2)p(2) . (53.24)
Here Sg,(y — z) is the Feynman propagator, which obeys
(=i, + M)aSn (4 — 2) = S (y — 2) (53.25)

After various integrations by parts, it is easy to see that egs. (53.22-53.24)
reproduce eq. (53.21).

Now we can use eq. (53.9). The advantage of this decomposition is that
My is independent of the background field ¢, and so the resulting factor
of det My in Z(¢p) can simply be absorbed into the overall normalization.
Furthermore, we have M = I — GG, where

Lo (x,y) = 600" (z — y) (53.26)
is the identity matrix, and
Gog(,y) = gSap(x — y)p(y) - (53.27)

Thus, for ¢(z) = 0, we have M = I and so det M = 1. Then, using
eq. (53.20) and the normalization condition Z(0) = 1, we see that for
nonzero ¢(x) we must have simply

Z(p) = det M . (53.28)
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Next, we use egs. (53.13) and (53.28) to get

Z() =exp =) %ﬁcn , (53.29)

n=1

where now
TrG" = g"/d4x1 i tr S(z—z0)@(z2) .. S(zn—x1)@(x1) , (53.30)

and “tr” denotes a trace over spinor indices. This is our final result for
Z ().

To better understand what it means, we will rederive it in a different
way. Consider treating the gpWUW term in £ as an interaction. This leads
to a vertex that connects two W propagators; the associated vertex factor
is igp(x). According to the general analysis of section 9, we have Z(p) =
exp iI'(¢), where iI'(¢) is given by a sum of connected diagrams. (We have
called the exponent I' rather than W because it is naturally interpreted
as a quantum action for ¢ after U has been integrated out.) The only
connected diagrams we can draw with these Feynman rules are those of
fig. (53.1), with n insertions of the vertex, where n > 1. The diagram with
n vertices has an n-fold cyclic symmetry, leading to a symmetry factor of
S = n. The factor of ¢ associated with each vertex is canceled by the factor
of 1/i associated with each propagator. The closed fermion loop implies a
trace over the spinor indices. Thus the value of the n-vertex diagram is

%g” /d4a;1 o dYg tr S(x—x0)0(x2) . . . S(xy—21) (1) - (53.31)

Summing up these diagrams, we find that we are missing the overall minus
sign in eq. (53.29). The appropriate conclusion is that we must associate
an extra minus sign with each closed fermion loop.
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54  MAXWELL’S EQUATIONS

PREREQUISITE: 3

The most common (and important) spin-one particle is the photon. Emis-
sion and absorption of photons by matter is an important phenomenon in
many areas of physics, and so that is the context in which most physicists
first encounter a serious treatment of photons. We will use a brief review
of this subject (in this section and the next) as our entry point into the
theory of quantum electrodynamics.

Let us begin with classical electrodynamics. Maxwell’s equations are

V-E =p, (54.1)
VxB-E=17, (54.2)
VXxE+B=0, (54.3)

V-B=0, (54.4)

where E is the electric field, B is the magnetic field, p is the charge density,
and J is the current density. We have written Maxwell’'s equations in
Heaviside-Lorentz units, and also set ¢ = 1. In these units, the magnitude
of the force between two charges of magnitude Q is Q2/4nr2.

Maxwell’s equations must be supplemented by formulae that give us
the dynamics of the charges and currents (such as the Lorentz force law for
point particles). For now, however, we will treat the charges and currents as
specified sources, and focus on the dynamics of the electromagnetic fields.

The last two of Maxwell’s equations, the ones with no sources on the
right-hand side, can be solved by writing the E and B fields in terms of a
scalar potential ¢ and a vector potential A,

E=-Vop—A, (54.5)
B=VxA. (54.6)

The potentials uniquely determine the fields, but the fields do not uniquely
determine the potentials. Given a particular ¢ and A that result in a
particular E and B, we will get the same E and B from any other potentials
¢ and A’ that are related by

¢ =p+T, (54.7)
A=A VI, (54.8)

where I' is an arbitrary function of spacetime. A change of potentials that
does not change the fields is called a gauge transformation. The E and B
fields are gauge invariant.
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All this becomes more compact and elegant in a relativistic notation.
We define the four-vector potential or gauge field

AP = (p,A) . (54.9)
We also define the field strength
FH = 9rAY — 9VAF . (54.10)

Obviously, F* is antisymmetric: F* = —F"#*. Comparing egs. (54.5) and
(54.6) with egs. (54.9) and (54.10), we see that

FY% = F' (54.11)

Fii = ¢ikpy . (54.12)
The first two of Maxwell’s equations can now be written as

o, FH = gt | (54.13)

where
JH = (p,J) (54.14)
is the charge-current density four-vector.

If we take the four-divergence of eq. (54.13), we get 0,0, F" = 0,J".
The left-hand side of this equation vanishes, because 0,0, is symmetric on
exchange of y and v, while F*” is antisymmetric. We conclude that we
must have

At =0, (54.15)

or equivalently
p+V-JI=0; (54.16)

that is, the electromagnetic current must be conserved.
The last two of Maxwell’s equations can be written as

Epo PP =0 | (54.17)

where €, is the completely antisymmetric Levi-Civita tensor; see section
34. Plugging in eq. (54.10), we see that eq. (54.17) is automatically satisfied,
since the antisymmetric combination of two derivatives vanishes.

Egs. (54.7) and (54.8) can be combined into

A = AP hT (54.18)
Setting F'* = 9HA"Y — 9¥A'" and using eq. (54.18), we get

FI = I (9RY — 9YOMT (54.19)
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The last term vanishes because derivatives commute; thus the field strength
is gauge invariant,
F'W — v (54.20)

Next we will find an action that results in Maxwell’s equations as the
equations of motion. We will treat the current as an external source. The
action we seek should be Lorentz invariant, gauge invariant, parity and
time-reversal invariant, and no more than second order in derivatives. The
only candidate is S = [ d*r £, where

L=-Lr"p,, + J'A, . (54.21)

The first term is obviously gauge invariant, because F*¥ is. After a gauge
transformation, eq. (54.18), the second term becomes .J “AL, and the differ-
ence is

JHA, — A,) = —J"9,T
= —(0,J")T = 0,(J'T) . (54.22)
The first term in eq. (54.22) vanishes because the current is conserved. The
second term is a total divergence, and its integral over d*r vanishes (assum-
ing suitable boundary conditions at infinity). Thus the action specified by
eq. (h4.21) is gauge invariant.
Setting F* = 0FAY — VA" and multiplying out the terms, eq. (54.21)
becomes

L= —30"AY0,A, + §0"AYD, A, + JHA, (54.23)
= —i—%Au(glwaz _ auau)Au + JMAM _ aMKM , (54'24)

where K, = £ 4(9,A,—0,A,). The last term is a total divergence, and can
be dropped. From eq. (54.24), we can see that varying A* while requiring
S to be unchanged yields the equation of motion

(g™ 0* — M)A, +JF =0 . (54.25)

Noting that 9,F* = §,(0HAY — ¥A*) = (9*9¥ — g d?) A, we see that
eq. (54.25) is equivalent to eq. (54.13), and hence to Maxwell’s equations.
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55 ELECTRODYNAMICS IN COULOMB GAUGE

PREREQUISITE: 54

Next we would like to construct the hamiltonian, and quantize the electro-
magnetic field.

There is an immediate difficulty, caused by the gauge invariance: we
have too many degrees of freedom. This problem manifests itself in several
ways. For example, the lagrangian

L= —3F"WE, +J'A, (55.1)
= —10rAY 9, A, + $0MAVO, A, + JFA, (55.2)

does not contain the time derivative of A°. Thus, this field has no canoni-
cally conjugate momentum and no dynamics.

To deal with this problem, we must eliminate the gauge freedom. We
do this by choosing a gauge. We choose a gauge by imposing a gauge
condition. This is a condition that we require A*(z) to satisfy. The idea
is that there should be only one A*(x) that results in a given F*”(z) and
that also satisfies the gauge condition.

One possible class of gauge conditions is n*4,(x) = 0, where n* is a
constant four-vector. If n is spacelike (n? > 0), then we have chosen azial
gauge; if n is lightlike, (n? = 0), it is lightcone gauge; and if n is timelike,
(n? <0), it is temporal gauge.

Another gauge is Lorenz gauge, where the condition is 9#4, = 0. We
will meet a family of closely related gauges in section 62.

In this section, we will work in Coulomb gauge, also known as radiation
gauge or transverse gauge. The condition for Coulomb gauge is

V-A(z)=0. (55.3)
We can impose eq. (55.3) by acting on A;(x) with a projection operator,

Ay(r) — (5 _ %)Aj(x) . (55.4)

We construct the right-hand side of eq. (55.4) by Fourier-transforming A;(z)
to A;(k), multiplying A;(k) by the matrix &;; — k;k;/k?, and then Fourier-
transforming back to position space. From now on, whenever we write 4;,
we will implicitly mean the right-hand side of eq. (55.4).

Now let us write out the lagrangian in terms of the scalar and vector
potentials, ¢ = AY and A;, with A; obeying the Coulomb gauge condition.
Starting from eq. (55.2), we get
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+ %V,’AjVin + Aivi(p
+3VieVie — pp . (55.5)

In the second line of eq. (55.5), the V; in each term can be integrated by
parts; in the first term, we will then get a factor of V;(V;4;), and in the
second term, we will get a factor of V;A4;. Both of these vanish by virtue
of the gauge condition V;A; = 0, and so both of these terms can simply be
dropped.

If we now vary ¢ (and require S = [d* L to be stationary), we find
that ¢ obeys Poisson’s equation,

—Vip=p. (55.6)

The solution is

3 7
o(x, 1) /d 47T|X y| (55.7)

This solution is unique if we impose the boundary conditions that ¢ and p
both vanish at spatial infinity.

Eq. (55.7) tells us that ¢(x,t) is given entirely in terms of the charge
density at the same time, and so has no dynamics of its own. It is therefore
legitimate to plug eq. (55.7) back into the lagrangian. After an integration
by parts to turn V;oV; into —pV?2p = ¢p, the result is

L= %AZAZ B %VJAZVJAZ + Jidi + Leou (558)
where . .80y, 1
ou g3y P VP Y _
Looul = 2 Am|x—y]| (55.9)

We can now vary A;; keeping proper track of the implicit projection opera-
tor in eq. (55.4), we find that A; obeys the massless Klein-Gordon equation
with the projected current as a source,

_82A2(x) = <5ZJ — %) Jj(:E) . (55.10)

For a free field (J; = 0), the general solution is

-y / dk [3()ax (k)e™ + ex(K)al (k)e ], (55.11)
A==+

where k0 = w = [k|, dk = d®%/(27)32w, and e, (k) and e_(k) are po-
larization vectors. In order to satisfy the Coulomb gauge condition, the
polarization vectors must be orthogonal to the wave vector k. We will
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choose them to correspond to right- and left-handed circular polarizations;
for k = (0,0, k), we then have

e-(k) = 55(1,+i,0) . (55.12)

More generally, the two polarization vectors along with the unit vector in
the k direction form an orthonormal and complete set,

k-ey(k) =0, (55.13)

EA/(k)‘Ei(k) = 5)\/)\ y (55.14)

Z en(k)ejn(k) = 055 — k—zj . (55.15)
A==+

The coefficients ay (k) and ai\(k) will become operators after quantization,
which is why we have used the dagger symbol for conjugation.

In complete analogy with the procedure used for a scalar field in section
3, we can invert eq. (55.11) and its time derivative to get

ax(k) = +iex(k)- / & e~ 5y A(z) | (55.16)

al (k) = —ie}(k)- / & ethT 5y A(z) | (55.17)
where [3,9 = f(0u9) — ()9

Now we can proceed to the hamiltonian formalism. First, we compute
the canonically conjugate momentum to A;,

II; = or _ A; . (55.18)
0A;
Note that V;A; = 0 implies V;II; = 0. The hamiltonian density is then
H=1LA;—L
= %HiHi + %VinVin — JiAi + Heoul (55.19)
where Heou = —Leoul-

To quantize the field, we impose the canonical commutation relations.
Keeping proper track of the implicit projection operator in eq. (55.4), we
have

(Ao 0. T 0] = (35— 3 )8°x )

3 . . .
. / Ph cixey) <5ij_ ’“zkﬁ>, (55.20)
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The commutation relations of the ay(k) and a;(k) operators follow from
eq. (55.20) and [A;, A;] = [II;,11;] = 0 (at equal times). The result is

[ak(k%a)\’ (k/)] =0 ) (5521)
[} (k), af, ()] = 0, (55.22)
[ax(k), al, (K)] = (27)%2w 63 (K — k)b - (55.23)

We interpret ai(k) and ay(k) as creation and annihilation operators for

photons of definite helicity, with helicity 4+1 corresponding to right-circular
polarization and helicity —1 to left-circular polarization.

It is now straightfoward to write the hamiltonian explicitly in terms of
these operators. We find

H=Y / dk w af (K)ax (k) + 260V — / &1 J(@)-A(z) + Hoow , (55.24)

where & = %(277)_3 [ d% w is the zero-point energy per unit volume that
we found for a real scalar field in section 3, V' is the volume of space, the
Coulomb hamiltonian is

x,t)p(y,
Heou = /d3 d pmx (; b (55.25)

and we use eq. (55.11) to express A;(z) in terms of ay (k) and ai\(k) at any
one particular time (say, ¢ = 0). This is sufficient, because H itself is time
independent.

This form of the hamiltonian of electrodynamics is often used as the
starting point for calculations of atomic transition rates, with the charges
and currents treated via the nonrelativistic Schrodinger equation. The
Coulomb interaction appears explicitly, and the J-A term allows for the
creation and annihilation of photons of definite polarization.

REFERENCE NOTES

A more rigorous treatment of quantization in Coulomb gauge can be found
in Weinberg 1.

PROBLEMS

55.1) Use egs. (55.16), (55.17), (55.20) and [A;, A;] = [II;,II;] = 0 (at equal
times) to verify egs. (55.21-55.23).

55.2) Use egs. (55.11), (55.19), and (55.21-55.23) to verify eq. (55.24).
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56 LSZ REDUCTION FOR PHOTONS

PREREQUISITE: 5, 55

In section 55, we found that the creation and annihilation operators for free
photons could be written as

al (k) = —iel(k)- / & et 5y Az) (56.1)
ar(k) = +iex(k)- / & e~ 5y A) (56.2)

where €) (k) is a polarization vector. From here, we can follow the analysis
of section 5 line by line to deduce the LSZ reduction formula for photons.
The result is that the creation operator for each incoming photon should
be replaced by

ol (€ — 25 () [ d'o e (~0%) 4, () (56.3)

and the destruction operator for each outgoing photon should be replaced
by

i (K)ou — i€ (K) / de e (— %) A, () | (56.4)

and then we should take the vacuum expectation value of the time-ordered
product. Note that, in writing eqs. (56.3) and (56.4), we have made them
look nicer by introducing E())\(k) = 0, and then using four-vector dot prod-
ucts rather than three-vector dot products.

The LSZ formula is valid provided the field is normalized according to
the free-field formulae

(0|A%(2)[0) = 0, (56.5)
(k, \|A¥ (2)]0) = &b (k)e™™ | (56.6)

where |k, \) is a single photon state, normalized according to
(' Nk, \) = (20)32w 8% (K — K)dyy (56.7)

The zero on the right-hand side of eq. (56.5) is required by rotation invari-
ance, and only the overall scale of the right-hand side of eq. (56.6) might
be different in an interacting theory.
The renormalization of A; necessitates including appropriate Z factors
in the lagrangian,
L= —1Z3F"E,, + Z1J'A, . (56.8)
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Here Z3 and Z; are the traditional names; we will meet Zs in section 62.
We must choose Z3 so that eq. (56.6) holds. We will fix Z; by requiring the
corresponding vertex function to take on a certain value for a particular set
of external momenta.

Next we must compute the correlation functions (0|TA;(x)...|0). As
usual, we begin by working with free field theory. The analysis is again
almost identical to the case of a scalar field; see problem 8.4. We find that,
in free field theory,

(OITA (2) A’ (y)|0) = ;A7 (2 —y) , (56.9)
where the propagator is

ij Ak ehley) i* (1) o]
AY(z —y) = / @m0t B —ic Y=zt (k)ey(k) (56.10)

As with a free scalar field, correlations of an odd number of fields van-
ish, and correlations of an even number of fields are given in terms of the
propagator by Wick’s theorem; see section 8.

We would now like to evaluate the path integral for the free electromag-
netic field

Zo(J) = (0[0); = /DA ¢t [ AP Bt A (56.11)

Here we treat the current J#(x) as an external source.

We will evaluate Zyp(J) in Coulomb gauge. This means that we will
integrate over only those field configurations that satisfy V-A = 0.

We begin by integrating over A. Because the action is quadratic in
AF | this is equivalent to solving the variational equation for A%, and then
substituting the solution back into the lagrangian. The result is that we
have the Coulomb term in the action,

T@) 1)

56.12
drr|x—y]| ( )

1
Scoul = _5 /d4$ d4y 5($0_y0)
Since this term does not depend on the vector potential, we simply get a
factor of exp(iScou) in front of the remaining path integral over 4;. We wll
perform this integral formally (as we did for fermion fields in section 43)
by requiring it to yield the correct results for the correlation functions of

A; when we take functional derivatives with respect to J;. In this way we
find that

Zo(J) = exp [z’Scoul + % / d*x d*y J;(x) A (z — y)J;(y)] . (56.13)
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We can make Zy(.J) look prettier by writing it as

Zo(J) = exp[% /d4:17 dYy J,(2) A" (2 — ), (y)] (56.14)
where we have defined
'k .
AP (z —y) = / @) eF@=y) A (k) | (56.15)
A LV 1 17 1 * v
AP (k) = — 2 SHO50 1 o Saeieh (k)ek (k) . (56.16)

The first term on the right-hand side of eq. (56.16) reproduces the Coulomb
term in eq. (56.13) by virtue of the facts that

o0 dkY o0 _y0) 0_,0
/_OO 5 € =0(z" —y"), (56.17)
/ Ph e (56.18)
(2m)3 k2 Adwx -yl '

The second term on the right-hand side of eq. (56.16) reproduces the second
term in eq. (56.13) by virtue of the fact that £ (k) = 0.

Next we will simplify eq. (56.16). We begin by introducing a unit vector
in the time direction,

t" = (1,0) . (56.19)

Next we need a unit vector in the k direction, which we will call z#. We
first note that -k = —k°, and so we can write

(0,k) = kM + (t-k)t" . (56.20)

The square of this four-vector is

k2 =k* 4 (t-k)?, (56.21)
where we have used £2 = —1. Thus the unit vector that we want is
X k# o+ (t-k)tH
H= al 56.22
z [k2 + (t-k‘)2]1/2 ( )
Now we recall from section 55 that
> eN(k)el (k) = 655 — k; : (56.23)

A=%
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This can be extended to ¢ — y and j — v by writing

Y A (k)eK (k) = g i — 2z (56.24)
A==+

It is not hard to check that the right-hand side of eq.(56.24) vanishes if
uw=0orv=0,and agrees with eq. (56.23) for u = ¢ and v = j. Putting
all this together, we can now write eq. (56.16) as
XLy thtY g 4 thtY — 2z
AW (k) = — [EETRAT + 7 e . (56.25)
The next step is to consider the terms in this expression that contain
factors of k* or k; from eq. (56.22), we see that these will arise from the
zH2Y term. In eq. (56.15), a factor of k* can be written as a derivative with
respect to z* acting on e*(#=%_ This derivative can then be integrated
by parts in eq. (56.14) to give a factor of 9"J,(x). But 0"J,(x) vanishes,
because the current must be conserved. Similarly, a factor of k¥ can be
turned into 0%J,(y), and also leads to a vanishing contribution. Therefore,
we can ignore any terms in AP (k) that contain factors of k" or kY.
From eq. (56.22), we see that this means we can make the substitution

(F-k)in

Then eq. (56.25) becomes
- 1 = Ek)? .
A (k) = L T P G —
W=7 [9 +< PR R ER)y?
(56.27)

where the three coefficients of ##¥ come from the Coulomb term, the t#¢”
term in the polarization sum, and the Z#Z” term, respectively. A bit of
algebra now reveals that the net coefficient of ##¢” vanishes, leaving us
with the elegant expression

A 9"

APV (k) = 2
Written in this way, the photon propagator is said to be in Feynman gauge.
(It would still be in Coulomb gauge if we had retained the k* and k" terms
that we previously dropped.)

In the next section, we will rederive eq.(56.28) from a more explicit

path-integral point of view.

(56.28)

PROBLEMS

56.1) Use egs. (55.11) and (55.21-55.23) to verify egs. (56.9-56.10).
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57 THE PATH INTEGRAL FOR PHOTONS

PREREQUISITE: 8, 56

In this section, in order to get a better understanding of the photon path

integral, we will evaluate it directly, using the methods of section 8. We
begin with

Zo(J) = / DA ™0 | (57.1)

So = / d'r [—iF‘“’FW - J“Au} . (57.2)

Following section 8, we Fourier-transform to momentum space, where we

find

So =

/ A% [ A0 (W29 — k) A, (k)

1
2/ (2r)4

+ (k) A (k) + T (-k) A, (k)| (573)

The next step is to shift the integration variable A so as to “complete the
square”. This involves inverting the 4 x 4 matrix k?g" — k*kY. However,
this matrix has a zero eigenvalue, and cannot be inverted.

To see this, let us write

k2g" — kMEY = E2PM (k) | (57.4)
where we have defined

P (k) = g" — KMEV/K? . (57.5)
This is a projection matrix because, as is easily checked,

P (k)P,NE) = P*\(E) . (57.6)

Thus the only allowed eigenvalues of P are zero and one. There is at least
one zero eigenvalue, because

P*(k)k, =0. (57.7)
On the other hand, the sum of the eigenvalues is given by the trace
gu P (k) =3. (57.8)

Thus the remaining three eigenvalues must all be one.
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Now let us imagine carrying out the path integral of eq. (57.1), with
Sp given by eq. (57.3). Let us decompose the field /L(k‘) into components
aligned along a set of linearly independent four-vectors, one of which is k.
(It will not matter whether or not this basis set is orthonormal.) Because
the term quadratic in Zlu involves the matrix k2P (k), and P* (k)k, = 0,
the component of /Nlu(k:) that lies along k, does not contribute to this
quadratic term. Furthermore, it does not contribute to the linear term
either, because 0"J,(x) = 0 implies k*J,(k) = 0. Thus this component
does not appear in the path integal at all! It then makes no sense to
integrate over it. We therefore define [ DA to mean integration over only
those components that are spanned by the remaining three basis vectors,
and therefore satisfy k“ﬁu(k‘) = 0. This is equivalent to imposing Lorenz
gauge, 0MA,(z) = 0.

The matrix P* (k) is simply the matrix that projects a four-vector into
the subspace orthogonal to k#. Within the subspace, P* (k) is equiva-
lent to the identity matrix. Therefore, within the subspace, the inverse
of k2P (k) is (1/k?)P* (k). Employing the e trick to pick out vacuum
boundary conditions replaces k% with k% — ie.

We can now continue following the procedure of section 8, with the
result that

Zo(J) = expli / Ak 5y PR j”(_k)]

2/ (2m)2 TPV k2 — e
= exp E / d'z d*y J,(z) A" (z — y)J,,(y)] , (57.9)
where uv d'k ik(z—y) PMV(k;)
Az —y) = / n) ¢ Ea—s (57.10)

is the photon propagator in Lorenz gauge (also known as Landau gauge).
Of course, because the current is conserved, the k#k” term in P (k) does
not contribute, and so the result is equivalent to that of Feynman gauge,
where P* (k) is replaced by gM.



58: Spinor Electrodynamics 346

58 SPINOR ELECTRODYNAMICS

PREREQUISITE: 45, 57

In the section, we will study spinor electrodynamics: the theory of photons
interacting with the electrons and positrons of a Dirac field. (We will
use the term quantum electrodynamics to denote any theory of photons,
irrespective of the kinds of particles with which they interact.)

We construct spinor electrodynamics by taking the electromagnetic cur-
rent j*(x) to be proportional to the Noether current corresponding to the
U(1) symmetry of a Dirac field; see section 36. Specifically,

G (x) = eW(x)y" ¥ (z) . (58.1)

Here e = —0.302822 is the charge of the electron in Heaviside-Lorentz
units, with 2 = ¢ = 1. (We will rely on context to distinguish this e
from the base of natural logarithms.) In these units, the fine-structure
constant is a = €?/47 = 1/137.036. With the normalization of eq. (58.1),
Q = [ d® j°(x) is the electric charge operator.

Of course, when we specify a number in quantum field theory, we must
always have a renormalization scheme in mind; e = —0.302822 corresponds
to a specific version of on-shell renormalization that we will explore in
sections 62 and 63. The value of e is different in other renormalization
schemes, such as MS, as we will see in section 66.

The complete lagrangian of our theory is thus

L=—1F"F,, +i09¥ — mUV + eU"TA, . (58.2)

In this section, we will be concerned with tree-level processes only, and so
we omit renormalizing Z factors.

We have a problem, though. A Noether current is conserved only when
the fields obey the equations of motion, or, equivalently, only at points
in field space where the action is stationary. On the other hand, in our
development of photon path integrals in sections 56 and 57, we assumed
that the current was always conserved.

This issue is resolved by enlarging the definition of a gauge transfor-
mation to include a transformation on the Dirac field as well as the elec-
tromagnetic field. Specifically, we define a gauge transformation to consist
of

At (z) — AF(x) — O"T'(z) , (58.3)
U(z) — exp|—iel'(z)]¥(z) , (58.4)

W(x) — exp[+iel(z)]¥(z) . (58.5)
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It is not hard to check that £(z) is invariant under this transformation,
whether or not the fields obey their equations of motion. To perform this
check most easily, we first rewrite £ as

L=-LP"E, 4GPV - mTV, (58.6)

where we have defined the gauge covariant derivative (or just covariant
derivative for short)
D, =0, —ie4, . (58.7)

In the last section, we found that F*" is invariant under eq.(58.3), and
so the F'F term in L is obviously invariant as well. It is also obvious
that the mPW term in £ is invariant under eqs. (58.4) and (58.5). This
leaves the WPW term. This term will also be invariant if, under the gauge
transformation, the covariant derivative of ¥ transforms as

D,V (x) — exp[—iel'(z)]|D,¥(x) . (58.8)
To see if this is true, we note that
D,V — (C% —ie[A, — 8NF]) (exp[—ief]\ll)
= exp|—iel’] (QL\IJ —ie(0, W —ie[A, — OHF]\I')
= exp[—iel’] (@L - z'eAH)\I’
= exp[—iel'|D,¥ . (58.9)
So eq. (58.8) holds, and WPV is gauge invariant.
We can also write the transformation rule for D, a little more abstractly

as
D, — e D, et (58.10)

where the ordinary derivative in D, is defined to act on anything to its
right, including any fields that are left unwritten in eq. (58.10). Thus we
have

D,V — (e—ieI‘Due—l—ieF) (e—ieI‘\I’)
= e “'D,¥, (58.11)

which is, of course, the same as eq. (58.9). We can also express the field
strength in terms of the covariant derivative by noting that

[DF,D¥|¥(x) = —ieF" (z)¥(x) . (58.12)
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We can write this more abstractly as
F# = L[DF D], (58.13)

where, again, the ordinary derivative in each covariant derivative acts on
anything to its right. From egs. (58.10) and (58.13), we see that, under a
gauge transformation,

Yo %{e—zeFDu e—i—zef’ e—zeFDV e—l—zef‘}

— e—ieF (% [DM, Du])e-i-ief‘
e—ieFF/u/e—i-ieF
= P (58.14)

In the last line, we are able to cancel the el factors against each other
because no derivatives act on them. Eq. (58.14) shows us that (as we already
knew) F'* is gauge invariant.

It is interesting to note that the gauge transformation on the fermion
fields, eqgs. (58.4-58.5), is a generalization of the U(1) transformation

U — e (58.15)
U — ey (58.16)

that is a symmetry of the free Dirac lagrangian. The difference is that,
in the gauge transformation, the phase factor is allowed to be a function
of spacetime, rather than a constant that is the same everywhere. Thus,
the gauge transformation is also called a local U(1) transformation, while
egs. (58.15-58.16) correspond to a global U(1) transformation. We say that,
in a gauge theory, the global U(1) symmetry is promoted to a local U(1)
symmetry, or that we have gauged the U(1) symmetry.

In section 57, we argued that the path integral over A, should be re-
stricted to those components of ﬁu(k‘) that are orthogonal to k,, because
the component parallel to &, did not appear in the integrand. Now we must
make a slightly more subtle argument. We argue that the path integral over
the parallel component is redundant, because the fermionic path integral
over ¥ and V¥ already includes all possible values of I'(x). Therefore, as in
section 57, we should not integrate over the parallel component. (We will
make a more precise and careful version of this argument when we discuss
the quantization of nonabelian gauge theories in section 71.)
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By the standard procedure, this leads us to the following form of the
path integral for spinor electrodynamics:

Z(M,n,J) o explie/d{"" <%5J3(:c)>(i5nj(w))(7u)“5 G%)]

x Zo(m,m, J) (58.17)
where
Zofi.n. ) = e [ diwaly m@)S@ — )]
X exp [% / d'z dy J*(z) A (z — y)J”(y)] , (58.18)
and

Sl —y) = / (d4p (HH+m)_ipey) (58.19)

2m)4 p2 +m? —ie

% g -
Az —y) = / W gik(z=y) 58.20

(@ =) (2m)* k2 — e ¢ ( )
are the appropriate Feynman propagators for the corresponding free fields,

with the photon propagator in Feynman gauge. We impose the normaliza-
tion Z(0,0,0) = 1, and write

Z(m,n,J) = expliW (1,1, J)] . (58.21)

Then iW (7,n,J) can be expressed as a series of connected Feynman dia-
grams with sources.

The rules for internal and external Dirac fermions were worked out in
the context of Yukawa theory in section 45, and they follow here with no
change. For external photons, the LSZ analysis of section 56 implies that
each external photon line carries a factor of the polarization vector * (k).

Putting everything together, we get the following set of Feynman rules
for tree-level processes in spinor electrodynamics.

1. For each incoming electron, draw a solid line with an arrow pointed
towards the vertex, and label it with the electron’s four-momentum,

bi-
2. For each outgoing electron, draw a solid line with an arrow pointed
away from the vertex, and label it with the electron’s four-momentum,

/

;-
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3. For each incoming positron, draw a solid line with an arrow pointed
away from the vertex, and label it with minus the positron’s four-
momentum, —p;.

4. For each outgoing positron, draw a solid line with an arrow pointed
towards the vertex, and label it with minus the positron’s four-momentum,

—pj.

5. For each incoming photon, draw a wavy line with an arrow pointed
towards the vertex, and label it with the photon’s four-momentum,
k;. (Wavy lines for photons is a standard convention.)

6. For each outgoing photon, draw a wavy line with an arrow pointed
away from the vertex, and label it with the photon’s four-momentum,

7. The only allowed vertex joins two solid lines, one with an arrow point-
ing towards it and one with an arrow pointing away from it, and one
wavy line (whose arrow can point in either direction). Using this
vertex, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
mequivalent.

8. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

9. The value of a diagram consists of the following factors:
for each incoming photon, sﬁj(ki);
for each outgoing photon, Ef\‘,i(k;);
for each incoming electron, us, (p;);
for each outgoing electron, ﬂsg(p;);
for each incoming positron, Us, (p;);
for each outgoing positron, vsg(pg);
for each vertex, iey";
for each internal photon, —ig"” /(k? — ie);
for each internal fermion, —i(—p + m)/(p* + m? — ie).

10. Spinor indices are contracted by starting at one end of a fermion

line: specifically, the end that has the arrow pointing away from the
vertex. The factor associated with the external line is either @ or .
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11.

12.

Go along the complete fermion line, following the arrows backwards,
and write down (in order from left to right) the factors associated with
the vertices and propagators that you encounter. The last factor is
either a u or v. Repeat this procedure for the other fermion lines, if
any. The vector index on each vertex is contracted with the vector
index on either the photon propagator (if the attached photon line
is internal) or the photon polarization vector (if the attached photon
line is external).

The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative).

The value of 7 (at tree level) is given by a sum over the values of all
the contributing diagrams.

In the next section, we will do a sample calculation.

PROBLEMS

58.1) Compute P~1AH(x,t)P, T71A#(x,t)T, and C~AH(x,t)C, assuming

that P, T, and C' are symmetries of the lagrangian. (Prerequisite:
40.)

58.2) Furry’s theorem. Show that any scattering amplitude with no exter-

nal fermions, and an odd number of external photons, is zero.
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59  SCATTERING IN SPINOR ELECTRODYNAMICS
PREREQUISITE: 48, 58

In the last section, we wrote down the Feynman rules for spinor electro-
dynamics. In this section, we will compute the scattering amplitude (and
its spin-averaged square) at tree level for the process of electron-positron
annihilation into a pair of photons, ete™ — 7.

The contributing diagrams are shown in fig. (59.1), and the associated
expression for the scattering amplitude is

_ —p +H +m —h+tk+m
T =¢2 6%65/ U2 {7u<%>%¢ +7u<%>%’} Ut
(59.1)

where e/, is shorthand for €, (k}), Ty is shorthand for T, (pz), and so on.
The Mandelstam variables are

s = —(p1+p2)? = — (K +kb)?,
t=—(p1—k)* = —(p2— k3)?,
u=—(p1 — ky)* = —(p2 — k1)*, (59.2)

and they obey s+t +u = 2m?2.
Following the procedure of section 46, we write eq. (59.1) as

T =eley oA, (59.3)
where
—p L +m —p K +m
A, = 2|y, 2 1 > ( 1 2 >V] y
p =€ {7< —t + m? Yo+ Vu —u+m? )7 (59.4)
We also have
T =T =eljeSfw Ay vs . (59.5)
Using @§f... = ...}, we see from eq. (59.4) that
A, = Ay (59.6)
Thus we have
1T |? = elel e e (TaAwur) (T Agpua) - (59.7)

Next, we will average over the initial electron and positron spins, using
the technology of section 46; the result is

LS ITP = kel elreg T A (—y +m) Agp(—pp—m)] - (59.8)

51,52
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Figure 59.1: Diagrams for eTe™ — ~+, corresponding to eq. (59.1).

We would also like to sum over the final photon polarizations. From
eq. (59.8), we see that we must evaluate

> eh(k)ed (k) . (59.9)

A=+

We did this polarization sum in Coulomb gauge in section 56, with the
result that
> k)R (k) = gh? + P — 5120 (59.10)
A==+

where t# is a unit vector in the time direction, and Z* is a unit vector in
the k direction that can be expressed as

Kt + (F-k)t#
t-k)2]

= — T
(k2 + (£-k)?] 12

(59.11)

It is tempting to drop the k* and k” terms in eq. (59.10), on the grounds
that the photons couple to a conserved current, and so these terms should
not contribute. (We indeed used this argument to drop the analogous
terms in the photon propagator.) This also follows from the notion that
the scattering amplitude should be invariant under a gauge transformation,
as represented by a transformation of the external polarization vectors of
the form

el (k) — el (k) —iT(k)k" . (59.12)

Thus, if we write a scattering amplitude 7 for a process that includes a
particular outgoing photon with four-momentum £ as

T =eN(k)M,, , (59.13)
or a particular incoming photon with four-momentum k* as

T =k (k)M,, , (59.14)
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then in either case we should have
EFM, =0. (59.15)

Eq. (59.15) is in fact valid; we will give a proof of it, based on the Ward

identity for the electromagnetic current, in section 67. For now, we will

take eq. (59.15) as given, and so drop the k* and k” terms in eq. (59.10).
This leaves us with

~

i t-k)? .
H (k)b (k) — g 4 fip — — R g (59.16)
é ATTEA k2 + (k)2

But, for an external photon, k2 = 0. Thus the second and third terms in
eq. (59.16) cancel, leaving us with the beautifully simple substitution rule

> k)R (k) — g7 (59.17)
A==+

Using eq. (59.17), we can sum |7 |? over the polarizations of the outgoing
photons, in addition to averaging over the spins of the incoming fermions;
the result is

(T =1> > ITF

LA, 81,52
— 4T () A7 ()|
Dy Dy D, Dy
= 64[ (m<2 _>t)2 + (n; —>75;an2 _>u) (m<2 w 2)2 ,  (59.18)

where
(@) = 3T [ (—dh L+ () (i Hm)y” (=)
(@u) = FTr [ (—py+Batm) (= +m)n” (—ph Hy+m)y (—pp—m)] |

(®ra) = TTr | (= FHr+m) v (= )Y (— +Hm)y (—pp=m)]

(@ue) = e |9 (=t Fm)n (= +m)y (= + R +m)n (—p—m)| -
(59.19)
Examinging (®4) and (®,,), we see that they are transformed into each
other by k] < kf, which is equivalent to ¢ <> u. The same is true of (®y,)

and (®,;). Thus we need only compute (Py) and (Py,), and then take
t — u to get (Pyy) and (Pyy).
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Now we can apply the gamma-matrix technology of section 47. In
particular, we will need the d = 4 relations

Vo = —4,
Vi = 24,
’YN(M’YM = 4(ab) ,
Vbt = 24 (59.20)

in addition to the trace formulae. We also need

pip2 = —5(s —2m?),
Kk, = —%S,
piky = paky = +5(t —m?)
piky = pok| = +3(u —m?) (59.21)
which follow from eq. (59.2) plus the mass-shell conditions p? = p3 = —m?
and k72 = k2 = 0. After a lengthy and tedious calculation, we find
(Py) = 2[tu — m2(3t +u) — m4] , (59.22)
(D) = 2m>(s — 4m?) , (59.23)
which then implies
(D) = 2[tu —m*(3u +t) —m?], (59.24)
(Pyr) = 2m>(s — 4m?) . (59.25)

This completes our calculation.

Other tree-level scattering processes in spinor electrodynamics pose no
new calculational difficulties, and are left to the problems.

In the high-energy limit, where the electron can be treated as massless,
we can reduce our labor with the method of spinor helicity, which was
introduced in section 50. We take this up in the next section.

PROBLEMS

59.1) Compute (|T|?) for Compton scattering, e~y — e~ 7. You should
find that your result is the same as that for eTe™ — ~v, but with
s < t, and an extra overall minus sign. This is an example of crossing
symmetry; there is an overall minus sign for each fermion that is
moved from the initial to the final state.
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59.2) Compute (|T|?) for Bhabha scattering, ete™ — eTe™.

59.3) Compute (|7 |?) for Moller scattering, e"e~ — e~e~. You should
find that your result is the same as that for eTe™ — ete™, but with
s <> u. This is another example of crossing symmetry.
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60 SPINOR HELICITY FOR SPINOR
ELECTRODYNAMICS

PREREQUISITE: 50, 59

In section 50, we introduced a special notation for u and v spinors of definite
helicity for massless electrons and positrons. This notation greatly simpli-
fies calculations in the high-energy limit (s, |t|, and |u| all much greater
than m?).

We define the twistors

(60.1)
We then have

0
(k[ [p] =0, (60.2)
where the twistor products [kp] and (kp) are antisymmetric,
[kp] = [Pk,
(kp) = —(pk) , (60.3)

and related by complex conjugation, (pk)* = [k p]. They can be expressed
explicitly in terms of the components of the massless four-momenta &k and
p. However, more useful are the relations

{kp) [pk] = Tr 5 (1—s) ks
= —2k-p
= —(k+p)? (60.4)
and
{pa)[gr] (rs)[sp] = Try(1—s)pdr#

= 2[(p-q)(r-s) — (p-r)(g-s) + (p-s)(q-7)
+ 1e"P7 LT pSs) - (60.5)
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Finally, for any massless four-momentum p we can write

— = Ip)[pl + Iplpl - (60.6)

We will quote other results from section 50 as we need them.
To apply this formalism to spinor electrodynamics, we need to write
photon polarization vectors in terms of twistors. The formulae we need are

o () = — Sah"Ik (60.7)

el (k) = — M (60.8)

where ¢ is an arbitrary massless reference momentum.

We will verify egs. (60.7) and (60.8) for a specific choice of k, and then
rely on the Lorentz transformation properties of twistors to conclude that
the result must hold in any frame (and therefore for any massless four-
momentum k).

We will choose k* = (w,wZz) = w(1,0,0,1). Then, the most general
form of €/} (k) is

eh (k) = ei¢%(o, 1,—i,0) + Ck* . (60.9)
Here €'® is an arbitrary phase factor, and C' is an arbitrary complex num-
ber; the freedom to add a multiple of £ comes from the underlying gauge
invariance.

To verify that eq. (60.7) reproduces eq. (60.9), we need the explicit form
of the twistors |k] and |k) when the three-momentum is in the z direction.
Using results in section 50 we find

0 0
] = v/2w (1) , k) = V2w ‘f (60.10)
0 0
For any value of ¢, the twistor (g| takes the form
(¢ =(0,0, v, B) , (60.11)

where a and 3 are complex numbers. Plugging egs. (60.10) and (60.11) into

eq. (60.7), and using
z ( ’ Uﬂ) (60.12)
= :
ot 0
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along with o# = (I,5) and 6# = (I,—&), we find that we reproduce
eq. (60.9) with e’ = 1 and C = —3/(v/2aw). There is now no need to check
eq. (60.8), because e (k) = —[e" (k)]*, as can be seen by using (qk)* =

—[g k] along with another result from section 50, (q|v*|k]* = (k|v"|q].

In spinor electodynamics, the vector index on a photon polarization
vector is always contracted with the vector index on a gamma matrix. We
can get a convenient formula for ¢, (k) by using the Fierz identities

— 3" alvulk] = 1K)(al + la) [kl | (60.13)
— 37" lalvulk) = |)al + ) (k] - (60.14)
We then have
V2
(ki) = 7 (Wkldal + la) k1 ) (60.15)
V2
¢ (ki) = oo (IR lal +1al(kl) (60.16)

where we have added the reference momentum as an explicit argument on
the left-hand sides.

Now we have all the tools we need for doing calculations. However,
we can simplify things even further by making maximal use of crossing
symimetry.

Note from eq. (60.1) that u_ (which is the factor associated with an in-
coming electron) and v (an outgoing positron) are both represented by the
twistor |p], while T4 (an outgoing electron) and T_ (an incoming positron)
are both represented by [p|. Thus the square-bracket twistors correspond
to outgoing fermions with positive helicity, and incoming fermions with
negative helicity. Similarly, the angle-bracket twistors correspond to out-
going fermions with negative helicity, and incoming fermions with positive
helicity.

Let us adopt a convention in which all particles are assigned four-
momenta that are treated as outgoing. A particle that has an assigned four-
momentum p then has physical four-momentum e,p, where ¢, = sign(p?) =
+1 if the particle is physically outgoing, and ¢, = sign(p’) = —1 if the
particle is physically incoming.

Since the physical three-momentum of an incoming particle is opposite
to its assigned three-momentum, a particle with negative helicity relative
to its physical three-momentum has positive helicity relative to its assigned
three-momentum. From now on, we will refer to the helicity of a particle
relative to its assigned momentum. Thus a particle that we say has “pos-
itive helicity” actually has negative physical helicity if it is incoming, and
positive physical helicity if it is outgoing.
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Figure 60.1: Diagrams for fermion-fermion scattering, with all momenta
treated as outgoing.

With this convention, the square-bracket twistors |p] and [p| represent
positive-helicity fermions, and the angle-bracket twistors |p) and (p| repre-
sent negative-helicity fermions. When ¢, = sign(p’) = —1, we analytically
continue the twistors by replacing each w'/? in eq. (60.10) with i|w|*/2. Then
all of our formulae for twistors and polarizations hold without change, with
the exception of the rule for complex conjugation of a twistor product,
which becomes

(k)" = epexlhp) (60.17)

Now we are ready to calculate some amplitudes. Consider first the
process of fermion-fermion scattering. The contributing tree-level diagrams
are shown in fig. (60.1).

The first thing to notice is that a diagram is zero if two external fermion
lines that meet at a vertex have the same helicity. This is because (as shown
in section 50) we get zero if we sandwich the product of an odd number of
gamma matrices between two twistors of the same helicity. In particular,
we have (p|y*|k) = 0 and [p|y*|k] = 0. Thus, we will get a nonzero result
for the tree-level amplitude only if two of the helicities are positive, and
two are negative. This means that, of the 2* = 16 possible combinations
of helicities, only six give a nonzero tree-level amplitude: 7, __, 74 |
T 4, T 4, T 4 4, and 7_4,_, where the notation is 7, s,s4s,. Fur-
thermore, the last three of these are related to the first three by complex
conjugation, so we only have three amplitudes to compute.

Let us begin with 7, __4. Only the first diagram of fig. (60.1) con-
tributes, because the second has two postive-helicity lines meeting at a
vertex. To evaluate the first diagram, we note that the two vertices con-
tribute a factor of (ie)? = —e?, and the internal photon line contributes a
factor of ig,, /s13, where we have defined the Mandelstam variable

sij = —(pi +pj)?* . (60.18)

Following the charge arrows backwards on each fermion line, and dividing
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by i to get 7 (rather than i7), we find
Ty = =€ By [4ul2) /513
= +2e2[14](23) /513 , (60.19)

where (3| is short for (ps|, etc, and we have used yet another form of the
Fierz identity to get the second line.

The computation of 7, _, _ is exactly analogous, except that now it is
only the second diagram of fig. (60.1) that contributes. According to the
Feynman rules, this diagram comes with a relative minus sign, and so we
have

Ti o = —2e2[13](24) /s14 . (60.20)
Finally, we turn to 7, __. Now both diagrams contribute, and we have
Toy = ¢ (<3|7“|1] (Ayul2l Al <3|%|2])
S13 514
1 1
= —2e2[12](34 (—+—)
EECE N S
= +2¢2[12] (34) ( o1 ) , (60.21)
513514

where we used the Mandelstam relation s19 4+ s13 + s14 = 0 to get the last
line.

To get the cross section for a particular set of helicities, we must take the
absolute squares of the amplitudes. These follow from eqgs. (60.4), (60.17),
and (60.18) :

[(12)]% = |[12]]* = e1€2512 = |s12] . (60.22)

We can then compute the spin-averaged cross section by summing the ab-
solute squares of eqgs. (60.19-60.21), multiplying by two to account for the
processes in which all helicities are opposite (and which have amplitudes
that are related by complex conjugation), and then dividing by four to aver-
age over the initial helicities. Making use of s34 = $12 and its permutations,
we find

2 2 .2
513 S14 513514

- 264<M> . (60.23)
513514

2 2 4
(1) = 2(% I )

For the processes of e"e~ — e"e~ and eTe™ — eTe™, we have s19 = s,
s13 = t, and s;4 = u; for ete™ — ete™, we have s13 = s, s;4 = t, and
S12 = U.
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Figure 60.2: Diagrams for fermion-photon scattering, with all momenta
treated as outgoing.

Now we turn to processes with two external fermions and two external
photons, as shown in fig. (60.2). The first thing to notice is that a diagram is
zero if the two external fermion lines have the same helicity. This is because
the corresponding twistors sandwich an odd number of gamma matrices:
one from each vertex, and one from the massless fermion propagator S (p) =
—#/p*. Thus we need only compute Ty _),», since T_,,», is related by
complex conjugation.

Next we use egs. (60.15-60.16) and (60.2-60.3) to get

¢_(kp)lpl =0, (60.24)
[pl¢_(kip) = 0 (60.25)
¢4 (kp)lp) =0, (60.26)
(pl¢ (ksp) = 0 (60.27)

Thus we can get some amplitudes to vanish with appropriate choices of the
reference momenta in the photon polarizations.
So, let us consider

Tions = —€ (202, (kaiqa) Py + Ks)é,(ksias) 1] /513

—e? <2’¢(>\3(k33q£’>)(ﬁ1 + %4)¢(>\4(k4;Q4)’1] /s14 . (60.28)

If we take A3 = \y = —, then we can get both terms in eq. (60.28) to vanish
by choosing g3 = g4 = p1, and using eq. (60.24). If we take A3 = Ay = +,
then we can get both terms in eq. (60.28) to vanish by choosing g3 = g4 = p2,
and using eq. (60.27).

Thus, we need only compute 7, __, and 7, _,_. For 7, _,_, we can
get the second term in eq. (60.28) to vanish by choosing g3 = p2, and using
eq. (60.27). Then we have

T = —e®(2¢_ (kaqa) (P, + K3)¢ ., (k3ip2)[1] /513



60: Spinor Helicity for Spinor Electrodynamics 363

V2 V2 1

= —¢ ooq GOl + K)R2) B g o (6029)

N4

Next we note that [p|p = 0, and so it is useful to choose either ¢4 = py
or g4 = k3. There is no obvious advantage in one choice over the other,
and they must give equivalent results, so let us take g4 = k3. Then, using
eq. (60.6) for ks, we get

(24)[31](12) [31]

Ty =262
Tt [34] <23> 513

(60.30)

Now we use [31](12) = —[34](42) in the numerator (see problem 60.2),
and set s13 = (13) [31] in the denominator. Canceling common factors and
using antisymmetry of the twistor product then yields

24)2
To oy —2e2 24 31
T T 13)(23) (60.31)
We can now get 7, __ simply by exchanging the labels 3 and 4,

_ o2 (23)?

We can compute the spin-averaged cross section by summing the abso-
lute squares of eqs. (60.31) and (60.32), multiplying by two to account for
the processes in which all helicities are opposite (and which have ampli-
tudes that are related by complex conjugation), and then dividing by four
to average over the initial helicities. The result is

514

513

513
S14

(71 =26

) . (60.33)

For the processes of e™v — e~ and ety — eTv, we have si3 = s, 519 = t,
and s14 = u; for ete™ — vy and vy — ete™ we have s;5 = s, s13 = ¢, and
S14 = U.

PROBLEMS
60.1) a) Show that
_y_ {ap) [pk]
p-€+(k‘7q) - \/5 <q k> ’ (6034)
laplpk) (60.35)

pe—(kiq) = NATD
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Use this result to show that
k-ey(k;q) =0, (60.36)

which is required by gauge invariance, and also that

q-e+(kiq) =0. (60.37)
b) Show that
ex(kiq) e (Ksd) = % : (60.38)
e—(kiq)-e—(K'3d) = % : (60.39)
e (kiq)-e_(Kiq) = % : (60.40)

Note that the right-hand sides of egs. (60.38) and (60.39) vanish if
¢ = q, and that the right-hand side of eq. (60.40) vanishes if ¢ = &’
or ¢ =k.

60.2) a) For a process with n external particles, and all momenta treated
as outgoing, show that
n n
(ij)[jk]=0 and > [ij](jk)=0. (60.41)
-1 j=1

J

Hint: make use of eq. (60.6).
b) For n = 4, show that [31] (12) = — [34] (42).

60.3) Use various identities to show that eq. (60.31) can also be written as

[13]2

Ty = —2€? nazd

(60.42)

60.4) a) Show explicitly that you would get the same result as eq. (60.31)
if you set g4 = p; in eq. (60.29).

b) Show explicitly that you would get the same result as eq. (60.31)
if you set g4 = p2 in eq. (60.29).

60.5) Show that the tree-level scattering amplitude for two or more photons
that all have the same helicity, plus any number of fermions with
arbitrary helicities, vanishes.
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61 SCALAR ELECTRODYNAMICS

PREREQUISITE: 58

In this section, we will consider how charged spin-zero particles interact
with photons. We begin with the lagrangian for a complex scalar field with
a quartic interaction,

L=—0"o10,0 —m’olo — 1A(T0)” . (61.1)

This lagrangian is obviously invariant under the global U(1) symmetry
p(x) — e p(x)
pl(x) — et ol () . (61.2)

We would like to promote this global symmetry to a local symmetry,

p(x) — exp[—iel'(z)]p(z) , (61.3)
cpT(a:) — exp[+ieF(m)]g@T(aj) . (61.4)
To do so, we must replace each ordinary derivative in eq.(61.1) with a

covariant derivative
Dy =0, —ied, (61.5)

where A, transforms as
At (z) — A¥(z) — o'T'(x) , (61.6)
which implies that D, transforms as
D,, — exp[—iel'(z)] D, exp[+iel'(x)] . (61.7)
Our complete lagrangian for scalar electrodynamics is then
L=—(D!yp )TDucp m? cp 0 — 1)\(g0 cp) %FWFW . (61.8)

We have added the usual gauge-invariant kinetic term for the gauge field.
The quartic interaction term has a dimensionless coeflicient, and so is nec-
essary for renormalizability. For now, we omit the renormalizing 7 factors.

Of course, eq. (61.8) is invariant under a global U(1) transformation as
well as a local U(1) transformation: we simply set I'(x) to a constant. Then
we can find the conserved Noether current corresponding to this symmetry,
following the procedure of section 22. In the case of spinor electrodynamics,
this current is same as it is for a free Dirac field, j* = U~*W. In the case
of a complex scalar field, we find

j* = —ilp' Dt — (DFp)Ty] . (61.9)
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Figure 61.1: The three vertices of scalar electrodynamics; the corresponding
vertex factors are ie(k + k'), —2ieg,,, and —i\.

With a factor of e, this current should be identified as the electromag-
netic current. Because the covariant derivative appears in eq. (61.9), the
electromagnetic current depends explicitly on the gauge field. We had not
previously contemplated this possibility, but in scalar electrodynamics it
arises naturally, and is essential for gauge invariance.

It also poses no special problem in the quantum theory. We will make
the same assumption that we did for spinor electrodynamics: namely, that
the correct procedure is to omit integration over the component of flu(k:)
that is parallel to k,, on the grounds that this integration is redundant.
This leads to the same Feynman rules for internal and external photons
as in section 58. The Feyman rules for internal and external scalars are
the same as those of problem 10.2. We will call the spin-zero particle with
electric charge +e a scalar electron or selectron (recall that our convention
is that e is negative), and the spin-zero particle with electric charge —e
a scalar positron or spositron. Scalar lines (traditionally drawn as dashed
in scalar electrodynamics) carry a charge arrow whose direction must be
preserved when lines are joined by vertices.

To determine the kinds of vertices we have, we first write out the inter-
action terms in the lagrangian of eq. (61.8):

L1 = ie AP0 ) — @l 0u0] — 2 APAL 0T — TA(0T)? . (61.10)

This leads to the vertices shown in fig. (61.1). The vertex factors associated
with the last two terms are —22’629,“, and —iX. To get the vertex factor
for the first term, we note that if |k) is an incoming selectron state, then
(0|¢(x)|k) = e** and (0]pf(x)|k) = 0; and if (k’| is an outgoing selectron
state, then (k| (2)]0) = e~™*'* and (0] (x)|k) = 0. Therefore, in free field
theory,

(K (90" )plk) = —ik] e”iF' =R (61.11)

(Kot Buplk) = +ike =P (61.12)
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This implies that the vertex factor for the first term in eq. (61.10) is given
by i(ie)[(—ik],) — (iky)] = ie(k + k).

Putting everything together, we get the following set of Feynman rules
for tree-level processes in scalar electrodynamics.

1.

For each incoming selectron, draw a dashed line with an arrow pointed
towards the vertex, and label it with the selectron’s four-momentum,
k;.

. For each outgoing selectron, draw a dashed line with an arrow pointed

away from the vertex, and label it with the selectron’s four-momentum,

. For each incoming spositron, draw a dashed line with an arrow pointed

away from the vertex, and label it with minus the spositron’s four-
momentum, —k;.

. For each outgoing spositron, draw a dashed line with an arrow pointed

towards the vertex, and label it with minus the spositron’s four-
momentum, —k;.

. For each incoming photon, draw a wavy line with an arrow pointed

towards the vertex, and label it with the photon’s four-momentum,
k.

. For each outgoing photon, draw a wavy line with an arrow pointed

away from the vertex, and label it with the photon’s four-momentum,

. There are three allowed vertices, shown in fig. (61.1). Using these

vertices, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
imequivalent.

. Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

. The value of a diagram consists of the following factors:

for each incoming photon, E/)C_k(ki);
for each outgoing photon, E’;Z_ (ki);
for each incoming or outgoing selectron or spositron, 1;

for each scalar-scalar-photon vertex, ie(k + k') ;
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Figure 61.2: Diagrams for ete~ — 7.

for each scalar-scalar-photon-photon vertex, —22’629,“,;
for each four-scalar vertex, —iA\;
for each internal photon, —ig"” /(k? — ie);
for each internal scalar, —i/(k? + m? — ie).
10. The vector index on each vertex is contracted with the vector index
on either the photon propagator (if the attached photon line is inter-

nal) or the photon polarization vector (if the attached photon line is
external).

11. The value of i7 (at tree level) is given by a sum over the values of all
the contributing diagrams.

Let us compute the scattering amplitude for a particular process, et e~ —
~v7, where €~ denotes a selectron. We have the diagrams of fig. (61.2). The
amplitude is

1 (le—ki)u&“/f/ (kl—ki—kg),,&“g/

T = (ie)? U2
i (ie) ; R + (1" = 2))

— 2ie’gueliel (61.13)
where ¢t = —(k; — k})? and u = —(k; — k%)%, This expression can be

simplified by noting that k1 — k] — ko = kb — 2ks, and that k;-e; = 0. Then
we have

T = —¢? [4(1{:1'61')(%2'52’) n A(ky-e9r)(ko-e1)

m2 — ¢ m2 —u +2(ev-ex)| . (61.14)

To get the polarization-summed cross section, we take the absolute square
of eq. (61.14), and use the substitution rule

eh(k)eb (k) — g . (61.15)
Z A A
A=+

This is a straightforward calculation, which we leave to the problems.
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PROBLEMS

61.1) Compute (|7|?) for eté~ — 77, and express your answer in terms of
the Mandelstam variables.

61.2) Compute (|7|?) for the process €~y — € 7. You should find that
your result is the same as that for é"é~ — v+, but with s « ¢, an
example of crossing symmetry.
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62 LoorP CORRECTIONS IN SPINOR
ELECTRODYNAMICS

PREREQUISITE: 51, 59

In this section we will compute the one-loop corrections in spinor electro-
dynamics.

First let us note that the general discussion of sections 18 and 29 leads
us to expect that we will need to add to the free lagrangian

Lo=iUPV —mP¥ — LFF,, (62.1)

all possible terms whose coefficients have positive or zero mass dimension,
and that respect the symmetries of the original lagrangian. These include
Lorentz symmetry, the U(1) gauge symmetry, and the discrete symmetries
of parity, time reversal, and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are
[A¥] =1 and [V] = % Gauge invariance requires that A* appear only in
the form of a covariant derivative D*. (Recall that the field strength F*”
can be expressed as the commutator of two covariant derivatives.) Thus,
the only possible term we could add to Ly that does not involve the ¥
field, and that has mass dimension four or less, is €, F'* F/*?. This term,
however, is odd under parity and time reversal. Similarly, there are no terms
meeting all the requirements that involve W: the only candidates contain
either v5 (e.g., i¥y5¥) and are forbidden by parity, or C (e.g, ¥TCV¥) and
are forbidden by the U(1) symmetry.

Therefore, the theory we will consider is specified by £ = Lo+ L1, where
Ly is given by eq. (62.1), and

L1 = Z1eVAY + Ly , (62.2)
Loy = i(Zo—1)UPV — (Z,—1)ymU¥ — X(Z3—1)F"F,, . (62.3)

We will use an on-shell renormalization scheme.
We can write the exact photon propagator (in momentum space) as a
geometric series of the form

AL (k) = A, (k) + AL, (B)TTP (k) Ay, (k) + ..., (62.4)

where 1" (k) is given by a sum of one-particle irreducible (1PI for short;
see section 14) diagrams with two external photon lines (and the external
propagators removed), and A, (k) is the free photon propagator,

< kuk
2

A (k) = ﬁ <gW - (-g > . (62.5)
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Here we have used the freedom to add k, or k, terms to put the propa-
gator into generalized Feynman gauge or Re gauge. (The name R¢ gauge
has historically been used only in the context of spontaneous symmetry
breaking—see section 85—but we will use it here as well. R stands for
renormalizable and & stands for £.) Setting £ = 1 gives Feynman gauge,
and setting £ = 0 gives Lorenz gauge (also known as Landau gauge).

Observable squared amplitudes should not depend on the value of £.
This suggests that II*”(k) should be transverse,

ke, 19 (k) = ke, TT* (k) = 0, (62.6)

so that the & dependent term in AW(k‘) vanishes when an internal photon
line is attached to II*¥ (k). Eq. (62.6) is in fact valid; we will give a proof of
it, based on the Ward identity for the electromagnetic current, in problem
68.1. For now, we will take eq. (62.6) as given. This implies that we can
write

I (k) = (k) (kg™ — k') (62.7)
= E2IL(K*) P (k) , (62.8)

where II(k?) is a scalar function, and P* (k) = g — kMkY /k? is the pro-
jection matrix introduced in section 57.
Note that we can also write

- 1 k. ky
B = g5 (Pl + €757 ). (629)

Then, using egs. (62.8) and (62.9) in eq. (62.4), and summing the geometric
series, we find

A By ()

Kk, K2
A (k) = ]2[1 — I(k2)] — ie =

k2 —ie

+& (62.10)
The £ dependent term should be physically irrelevant (and can be set to
zero by the gauge choice & = 0, corresponding to Lorenz gauge). The
remaining term has a pole at k? = 0 with residue P, (k)/[1 —II(0)]. In our
on-shell renormalization scheme, we should have

I1(0) = 0. (62.11)

This corresponds to the field normalization that is needed for validity of
the LSZ formula.
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+ ~AAAN

Figure 62.1: The one-loop and counterterm corrections to the photon prop-
agator in spinor electrodynamics.

Let us now turn to the calculation of II*” (k). The one-loop and coun-
terterm contributions are shown in fig. (62.1). We have

4 ~ ~
() = (02102 (3 [ o TSRS
—i(Z3—=1)(K*g" — kMEY) + O(e?) | (62.12)

where the factor of minus one is for the closed fermion loop, and S() =
(—p+m)/(p?>+m?—ie) is the free fermion propagator in momentum space.
Anticipating that Z; = 14 O(e?), we set Z; = 1 in the first term.

We can write

T [S(f+K)y / dx q4T;; (62.13)

where we have combined denominators in the usual way: ¢ = £ + zk and
D = z(1—2)k* + m? — ie . (62.14)
The numerator is
ANM = T | (~f—F+m)y* (~f+m)y"] (62.15)
Completing the trace, we get
NW = (C+k)Y + 4 (0+k)” — [L(b+k) +m?]g" . (62.16)

Setting ¢ = ¢ — zk and and dropping terms linear in ¢ (because they inte-
grate to zero), we find

N* = 2g1q" — 2x(1—2)kPE” — [¢* — x(1—2)k* + m2]|g" . (62.17)

The integrals diverge, and so we analytically continue to d = 4 — £ dimen-
sions, and replace e with efi/2 (so that e remains dimensionless for any

d).
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Next we recall a result from problem 14.3,

[ s = 5o [ (62.18)
This allows the replacement
NH — —2x(1—x)kHEY + K% - 1)q2 + z(1—z)k* — mﬂg‘“’ . (62.19)

Using the results of section 14, along with a little manipulation of gamma
functions, we can show that

d% 7> d% 1
G-/ @ wiop =2/ @w geoe @)

Thus we can make the replacement (% —1)¢?> — D in eq. (62.19), and we
find

NM — 2z (1—z)(K*g" — k"kY) . (62.21)

This guarantees that the one-loop contribution to IT* (k) is transverse (as
we expected) in any number of spacetime dimensions.
Now we evaluate the integral over ¢, using

e [ d° 1 i i /
“E/ (27561 (¢ + D)2~ 1672 O (§) (tn/ D)

_ E - %ln(D/,uz)} , (62.22)

872

where ;2 = 4me™" ji?, and we have dropped terms of order ¢ in the last line.
Combining egs. (62.7), (62.12), (62.13), (62.21), and (62.22), we get

62
5 [ [ L i) - g o) . 029

Imposing I1(0) = 0 fixes

e T1
Z=1- 1 [g _ 1n(m/u)} +O(eM) (62.24)
and
(k%) = 27T2/ dz z(1—z)In(D/m?) + O(e*) . (62.25)

Next we turn to the fermion propagator. The exact propagator can be
written in Lehmann-K&llén form as

s 1 o . pw(s)
S0) = gt L B (62:26)
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We see that the first term has a pole at = —m with residue one. This
residue corresponds to the field normalization that is needed for the validity
of the LSZ formula.

There is a problem, however: in quantum electrodynamics, the thresh-
old mass myy, is m, corresponding to the contribution of a fermion and a
zero-energy photon. Thus the second term has a branch point at y = —m.
The pole in the first term is therefore not isolated, and its residue is ill
defined.

This is a reflection of an underlying infrared divergence, associated with
the massless photon. To deal with it, we must impose an infrared cutoff
that moves the branch point away from the pole. The most direct method
is to change the denominator of the photon propagator from k? to k? —l—mg/,
where m,, is a fictitious photon mass. Ultimately, as in section 26, we must
deal with this issue by computing cross-sections that take into account
detector inefficiencies. In quantum electrodynamics, we must specify the
lowest photon energy wy,in, that can be detected. Only after computing cross
sections with extra undectable photons, and then summing over them, is
it safe to take the limit m. — 0. It turns out that it is not also necessary
to abandon the on-shell shell renormalization scheme (as we were forced to
do in massless ? theory in section 27), as long as the electron is massive.

An alternative is to use dimensional regularization for the infrared di-
vergences as well as the ultraviolet ones. As discussed in section 25, there
are no soft-particle infrared divergences for d > 4 (and no colinear diver-
gences at all in quantum electrodynamics with massive charged particles).
In practice, infrared-divergent integrals are finite away from even-integer
dimensions, just like ultraviolet-divergent integrals. Thus we simply keep
d = 4 — ¢ all the way through to the very end, taking the ¢ — 0 limit
only after summing over cross sections with extra undetectable photons, all
computed in 4 — e dimensions. This method is calculationally the simplest,
but requires careful bookkeeping to segregate the infrared and ultraviolet
singularities. For that reason, we will not pursue it further.

We can write the exact fermion propagator in the form

SH L =p+m—ic— (), (62.27)

where iX(j) is given by the sum of 1PI diagrams with two external fermion
lines (and the external propagators removed). The fact that S(j) has a pole
at p = —m with residue one implies that X(—m) = 0 and X/(—m) = 0; this
fixes the coefficients Z5 and Z,,. As we will see, we must have an infrared
cutoff in place in order to have a finite value for X'(—m).

Let us now turn to the calculation of (). The one-loop and counter-



62: Loop Corrections in Spinor Electrodynamics 375

Figure 62.2: The one-loop and counterterm corrections to the fermion prop-
agator in spinor electrodynamics.

term contributions are shown in fig. (62.2). We have

) = (702 (2) [ (j‘;[ S+ 177] A0
— i(Zy—1)p — i(Zm—1)m + O(e?) . (62.28)

It is simplest to work in Feynman gauge, where we take

A Juv
M) = m“;y — (62.29)

here we have included the fictitious photon mass m, as an infrared cutoff.
We now apply the usual bag of tricks to get

s = [ 8y

— i(Zy—1)p — i(Zm—1)m + O(e?) , (62.30)

where ¢ = ¢ + zp and

D = z(1—z)p* + zm® + (1-z)m2 , (62.31)
N = yu(=p—f+m)y"

= —(d=2)(p+1) -

= —(d-2)[¢ + Q—z)p] — dm , (62.32)

where we have used (from section 47) v,v* = —d and vy py* = (d—2)p.
The term linear in ¢ integrates to zero, and then, using eq. (62.22), we get

2

S = — g [ de(@-a)0-2+ (a-am) [ L L(D/)

— (Zy—1)p — (Zp—1)m + O(e?) . (62.33)
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T

p pH > p'+ p’

Figure 62.3: The one-loop correction to the photon-fermion-fermion vertex
in spinor electrodynamics.

We see that finiteness of ¥()) requires

e? (1 . 4
T =1— < (1 - ﬁnite) +0(eh) (62.35)
"o 22 \ e ’ ’

We can impose X(—m) = 0 by writing

2 1
S0 = o [/ de (1=} +2m)In(D/Do) + ray + m)] Lo,
0
(62.36)
where Dg is D evaluated at p? = —m?,
Dy = z*m? + (1—:17)m,2y , (62.37)

and kg is a constant to be determined. We fix ko by imposing 3'(—m) = 0.
In differentiating with respect to g, we take the p? in D, eq. (62.31), to be
—p%; we find

1
Ko = —2/0 dz x(1—z*)m?/Dy

= —2In(m/m,) +1, (62.38)

where we have dropped terms that go to zero with the infrared cutoff m.,.

Next we turn to the loop correction to the vertex. We define the vertex
function iV#(p’, p) as the sum of one-particle irreducible diagrams with one
incoming fermion with momentum p, one outgoing fermion with momentum
p’, and one incoming photon with momentum k = p’—p. The original vertex
iZ1ey* is the first term in this sum, and the diagram of fig. (62.3) is the
second. Thus we have

iVH(p',p) = iZien” + iV, (0, p) + O(€%) (62.39)
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where

i NN N I G T T e
Voo #'.9) = (0 (1)' [ 5 [ SW 407 S0 | Aun(t)
(62.40)
We again use eq. (62.29) for the photon propagator, and combine denomi-
nators in the usual way. We then get

A% P, dF N 241
2 lloop / 3/ q —|—D) (6 . )
where the integral over Feynman parameters is
1
/dF3 = 2/ dxidrodrs §(x1+xotas—1) , (62.42)
0
and
q =L+ z1p+x2p (62.43)

D = x1(1—21)p* + 22(1— $2) — 2z139pp
+ (z14a9)m? + !Egm,\/ ) (62.44)

Nt =y (=" =+ m)y" (=9 — f + m)y"
= Wl—d + 21y — (I-z2)pf’ + my" [~ — (1—21)y + 229" + m]y"
= " dy” + N* + (linear in q) , (62.45)
where
N* =y [erp — (1—wo)p + m]y*[—(1—z1)p + wop’ + m]y” . (62.46)

The terms linear in ¢ in eq. (62.45) integrate to zero, and only the first term
is divergent. After continuing to d dimensions, we can use eq. (62.18) to
make the replacement

1
A S T R TSt e (62.47)

Then we use v,7#7” = (d—2)y" twice to get

d—2)°
gy — 20 y Ly (62.48)

Performing the usual manipulations, we find

63 1 f\}u
Viioop(?'sP) = g3 Kg —1- %/dFs ln(D/u2)>’y“+i/dF3 31 .
(62.49)
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From eq. (62.39), we see that finiteness of V#(p/, p) requires

2 /1

Zy=1-— % (E + ﬁnite) +0(eh) . (62.50)

To completely fix V¥(p/, p), we need a suitable condition to impose on it.
We take this up in the next section.

PROBLEMS

62.1) Show that adding a gauge fizing term —%5_1(8%4#)2 to L results in
eq. (62.9) as the photon propagator. Explain why £ = 0 corresponds
to Lorenz gauge, 0#A, = 0.

62.2) Find the coefficients of 62/6 in Z123m in Re gauge. In particular,
show that Z; = Zs = 1 + O(e?) in Lorenz gauge.

62.3) Consider the six one-loop diagrams with four external photons (and
no external fermions). Show that, even though each diagram is log-
arithmically divergent, their sum is finite. Use gauge invariance to
explain why this must be the case.



63: The Vertex Function in Spinor Electrodynamics 379

63 THE VERTEX FUNCTION IN SPINOR
ELECTRODYNAMICS

PREREQUISITE: 62

In the last section, we computed the one-loop contribution to the vertex
function V#(p/, p) in spinor electrodynamics, where p is the four-momentum
of an incoming electron (or outgoing positron), and p’ is the four-momentum
of an outgoing electron (or incoming positron). We left open the issue of
the renormalization condition we wish to impose on V¥ (p/, p).

For the theories we have studied previously, we have usually made the
mathematically convenient (but physically obscure) choice to define the
coupling constant as the value of the vertex function when all external four-
momenta are set to zero. However, in the case of spinor electrodynamics,
the masslessness of the photon gives us the opportunity to do something
more physically meaningful: we can define the coupling constant as the
value of the vertex function when all three particles are on shell: p? = p'? =
—m?2, and ¢ = 0, where ¢ = p’ — p is the photon four-momentum. Because
the photon is massless, these three on-shell conditions are compatible with
momentum conservation.

To be more precise, let us sandwich V#(p', p) between the spinor factors
that are appropriate for an incoming electron with momentum p and an
outgoing electron with momentum p’, impose the on-shell conditions, and
define the electron charge e via

ﬂs/(p’)V“(p’,p)us(P) 222 = eﬂs/(p/),yﬂus(p) D2y p2 (631)

p
(»'—p)2=0 (»'—p)2=0

This definition is in accord with the usual one provided by Coulomb’s
law. To see why, consider the process of electron-electron scattering. Ac-
cording to the general discussion in section 19, we compute the exact ampli-
tude for this process by using tree diagrams with exact internal propagators
and vertices, as shown in fig. (63.1). In the last section, we renormalized
the photon propagator so that it approaches its tree-level value Auy(q)
when ¢?> — 0. And we have just chosen to renormalize the electron-photon
vertex function by requiring it to approach its tree-level value ey* when
¢*> — 0, and when sandwiched between external spinors for on-shell incom-
ing and outgoing electrons. Therefore, as ¢ — 0, the first two diagrams
in fig. (63.1) approach the tree-level scattering amplitude, with the electron
charge equal to e. Furthermore, the third diagram does not have a pole at
¢*> = 0, and so can be neglected in this limit. Physically, ¢> — 0 means
that the electron’s momentum changes very little during the scattering.
Measuring a slight deflection in the trajectory of one charged particle (due
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Figure 63.1: Diagrams for the exact electron-electron scattering amplitude.
The vertices and photon propagator are exact; external lines stand for the

usual u and T spinor factors, times the unit residue of the pole at p? = —m?.

to the presence of another) is how we measure the coefficient in Coulomb’s
law. Thus, eq. (63.1) corresponds to this traditional definition of the charge
of the electron.

We can simplify eq. (63.1) by noting that the on-shell conditions actually
enforce p’ = p. So we can rewrite eq. (63.1) as

us(p) V¥ (p, p)us(p) = eWs(p)y"us(p)
= 2ep" , (63.2)
where p? = —m? is implicit. We have taken s’ = s, because otherwise the
right-hand side vanishes (and hence does not specify a value for e).
Now we can use eq. (63.2) to completely determine V#(p', p). Using the
freedom to choose the finite part of Z;, we write

3

e K
Vi, p) = 67“—167/dFsl(ln(D/Do)Hm)’y”——

N
5D +0(e%) , (63.3)

where

D = xl(l—:nl)pz + l’2(1—$2)p/2 — 2z 129p-p’

+ (z14a9)m? + xgmgf , (63.4)
Dy is D evaluated at p’ = p and p? = —m?,
Dy = (z1422)°m? + 3:3m,2y
= (1—z3)*m?* + 3:3m,2y ) (63.5)

and

Nt = [z — (1=z2)p’ + mly"[—(L—a1)p + z2p'm]y"” ; (63.6)
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N* was called N* in section 62, but we have dropped the tilde for notational
convenience.
We fix the constant 1 in eq. (63.3) by imposing eq. (63.2). This yields

p) N us(p)
4rypht = / dF S0 s 63.7
K1p 2Dq ( )
where N§ is N# with p’ = p and p? = p’? = —m?.
So now we must evaluate TNj'u. To do so, we first write
N =y (dy +m)y* (do+m)y” (63.8)
where
a1 = z1p — (1—x2)p
as = xop) — (1—x1)p . (63.9)
Now we use the gamma matrix contraction identities to get
NF = 27", + 4m(ar+ag)” + 2m>y* . (63.10)
Here we have set d = 4, because we have already removed the divergence
and taken the limit e — 0. Setting p’ = p, and using pu = —mu and
up = —mu, along with wy*u = 2p* and wu = 2m, and recalling that

r1+xo+x3 = 1, we find
TN u = 4(1—4xz3+23)m*p" . (63.11)

Using egs. (63.5), (63.7), and (63.11), we get

/d 1- 4x3+a;3
K1 =
! 3 (1—xz3)2 + azgm,zy/m2

1 1—4xs+a3
/o 73 (1) (1—23)2 + x3m2 /m?

= —2In(m/m,) + 3 (63.12)

in the limit of m, — 0. We see that an infrared regulator is necessary for
the vertex function as well as the fermion propagator.

Now that we have V#(p/, p), we can extract some physics from it. Con-
sider again the process of electron-electron scattering, shown in fig. (63.1).
In order to compute the contributions of these diagrams, we must evalu-
ate Uy (p')VH(p', p)us(p) with p? = —p2 = —m?, but with ¢> = (p/ — p)?
arbitrary.
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To evaluate ' N u, we start with eq. (63.10), and use the anticommu-
tation relations of the gamma matrices to move all the p’s in N* to the far
right (where we can use pu = —mu) and all the p’’s to the far left (where
we can use u'p’ = —mu’). This results in

N# — [4(1—z1—2o+x129)p-p + 2(221 — 234209 —23)m?]y*
+ dm(zt—zo+x 20)pH + dm(25—2 1 +3122) " (63.13)

Next, replace p-p’ with —%qz—mz, group the p# and p’* terms into p’ + p
and p’ — p combinations, and make use of x1+zo+x3 = 1 to simplify some
coefficients. The result is

N* = 2[(1—2x3—a3)m? — (z3+3129) ¢ "
—2m(z3—x3)(p' + p)*

—2m[(z1+22) — (zot2)](p' — p)* . (63.14)
In the denominator, set p? = p’2 = —m? and p-p/ = —%(JQ—m2 to get
D — z129¢° + (1—23)*m” + z3m? . (63.15)

Note that the right-hand side of eq. (63.15) is symmetric under z; < xs.
Thus the last line of eq.(63.14) will vanish when we integrate u’N*u/D
over the Feynman parameters. Finally, we use the Gordon identity from
section 38,

a'(p + p)Hu =T [2my*" + 2iS"q,]u , (63.16)

where SH = %[’y“,’y”], to get

N# — 2[(1—das+x3)m? — (z3+x129)¢* "
— dim(z3—x3)S"g, . (63.17)

So now we have
Ty (P VH (0, p)us (P) = €' | Fu(@)7" = 7 Fo(a)S"quJu (6318

where we have defined the form factors

2 2/, 2 2
e T1T2q%/Mm 1—4x3+x3
F(d?) =1— —/dF In|1
1@ 1672 3 [ n( + (1—x3)2 ) (1—23)% + 23m2/m?
(z3tx122)q%/ m? — (1—daz+a3)

O(e*), (63.19
x122q%/m? + (1—23)? + x3m2/m? +0(e), ( )

2
B(?) = < / F 1303 4y 2
2(47) 4F3 z172¢%/m? + (1-23)? 0 (63.20)
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We have set m., = 0 in eq. (63.20), and in the logarithm term in eq. (63.19),
because these terms do not suffer from infrared divergences.

We can simplify Fy(g?) by using the delta function in dF3 to do the
integral over xo (which replaces xo with 1—x3—x1), making the change of
variable 1 = (1—xz3)y, and performing the integral over xz3 from zero to
one; the result is

2

e 1
Fy(¢*) = @/0 — y(ld—:l;)qz/mz +0(eh) . (63.21)

This last integral can also be done in closed form, but we will be mostly
interested in its value at ¢®> = 0, corresponding to an on-shell photon:

F3(0) = 4& + 0(a?) (63.22)

where o = €2/4m = 1/137.036 is the fine-structure constant. We will explore
the physical consequences of eq. (63.22) in the next section.

PROBLEMS

63.1) The most general possible form of u'V#(p/, p)u is a linear combination
of v#, p*, and p’* sandwiched between u’ and u, with coefficients that
depend on ¢2. (The only other possibility is to include terms with ~s,
but 75 does not appear in the tree-level propagators or vertex, and so
it cannot be generated in any Feynman diagram; this is a consequence
of parity conservation.) Thus we can write

uy () V(0 p)us(p) = eu'[A(¢*) + B(¢*) (W' +p)*
+ O P —p)Hu.  (63.23)

a) Use gauge invariance to show that ¢, a'V*(p’,p)u = 0, and deter-
mine the consequences for A, B, and C.

b) Express F} and F5 in terms of A, B, and C.
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64 THE MAGNETIC MOMENT OF THE ELECTRON

PREREQUISITE: 63

In the last section, we computed the one-loop contribution to the vertex
function V#(p’, p) in spinor electrodynamics, where p is the four-momentum
of an incoming electron, and p’ is the four-momentum of an outgoing elec-
tron. We found

T (0 )V (0, p)us (B) = €' | Fu (@) = 75 Fo(a®)S"auJu, (64.1)

where ¢ = p’ —p is the four-momentum of the photon (treated as incoming),
and with complicated expressions for the form factors Fi(q*) and Fy(q?).
For our purposes in this section, all we will need to know is that

Fi(0) =1 exactly,

F3(0) = g +0(a?) . (64.2)
Eq. (64.1) follows from a quantum action of the form
r— / dr [eFy(0)TAY + 5& Fy(0)F TSHW + . ] (64.3)

where the ellipses stand for terms with more derivatives. The displayed
terms yield the vertex factor of eq. (64.1) with ¢?> = 0. To see this, recall

that an incoming photon translates into a factor of A, ~ &, €' and there-

fore of F),,, ~ i(qusi—qysﬁ)eiqx; the two terms in F),,, canceluthe extra factor
of one half in the second term in eq. (64.3).

Now we will see what eq. (64.3) predicts for the magnetic moment of
the electron. We define the magnetic moment by the following procedure.
We take the photon field A* to be a classical field that corresponds to a
constant magnetic field in the z direction: A° = 0 and A = (0, Bz, 0). This
yields F3 = —F» = B, with all other components of F},,, vanishing. Then
we define a normalized state of an electron at rest, with spin up along the
z axis:

0= [ dp FEIL )0}, (64.4)

where the wave packet is rotationally invariant (so that there is no orbital
angular momentum) and sharply peaked at p = 0, something like

f(p) ~ exp(—a’p?/2) (64.5)

with a < 1/m. We normalize the wave packet by [ dp|f(p)|® = 1; then we
have (ele) = 1.
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Now we define the interaction hamiltonian as what we get from the
two displayed terms in eq. (64.3), using our specified field A*, and with the
form-factor values of eq. (64.2):

Hy=—eB / o 272 + 2512w (64.6)
Then the electron’s magnetic moment p is specified by
uB = —(e|Hyle) . (64.7)

In quantum mechanics in general, if we identify H; as the piece of the
hamiltonian that is linear in the external magnetic field, then eq. (64.7)
defines the magnetic moment of a normalized quantum state with definite
angular momentum in the B direction.

Now we turn to the computation. We need to evaluate (e| U, (z)¥g(z)|e).
Using the usual plane-wave expansions, we have

(01b4 ()T (2) T ()b (P)[0) = Ty (P )atis () P77 . (64.8)

Thus we get

(e|Hile) = —eB/ZiE E{g’ A3y i P—p)z
X f*(p’)U+(p’) [mﬁ + ﬁslz}m(p)f(p) . (64.9)

We can write the factor of x as —id,, acting on eP=P)* and integrate
by parts to put this derivative onto u4(p)f(p); the wave packets kill any
surface terms. Then we can complete the integral over d?z to get a factor
of (27)383(p’ — p), and do the integral over dp’. The result is

(elHile) = —eB / ) (0)[ 720y, + 525" () (D)
(64.10)
Suppose the 0y, acts on f(p). Since f(p) is rotationally invariant, the
result is odd in p;. We then use %, (p)y‘uy (p) = 2p° to conclude that this
term is odd in both p; and ps, and hence integrates to zero.
The remaining contribution from the first term has the 0,, acting on
us(p). Recall from section 38 that

us(p) = exp(inp-K)us(0) , (64.11)

where K7 = 670 = %’yj’yo is the boost matrix, p is a unit vector in the p
direction, and n = sinh~!(|p|/m) is the rapidity. Since the wave packet is
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sharply peaked at p = 0, we can expand eq. (64.11) to linear order in p,
take the derivative with respect to p1, and then set p = 0; the result is

Opu(p)| = ik u(0)

= — 591"y (0)
= — 57" (0), (64.12)
where we used 7%u,(0) = us(0) to get the last line. Then we have

e (P)i Oy (p)] ) = Te(0)5,0777 e (0)

= L 7,(0)5"2u,(0) (64.13)
Plugging this into eq. (64.10) yields
elmle) = —8 [ 2@ (1+ £) Lm0

B 0)5"2u. (0 64.14
= 2mz(+27r) 4 (0)5"u, (0) . (64.14)

Next we use S'%uy (0) = +1uy (0) and We(0)uy (0) = 2m to get

_ _eB a

(e|Hyle) = — %(1 +L). (64.15)

Comparing with eq. (64.7), we see that the magnetic moment of the electron
is
=955 (64.16)

where e/2m is the Bohr magneton, the extra factor of one-half is for the
electron’s spin (a classical spinning ball of charge would have a magnetic
moment equal to the Bohr magneton times its angular momemtum), and
g is the Landé g factor, given by

g=2(14 4 +0(e?) . (64.17)

Since g can be measured to high precision, calculations of p provide a
stringent test of spinor electrodynamics. Corrections up through the a?
term have been computed; the result is currently in good agreement with
experiment.

PROBLEMS

64.1) Let the wave packet be f(p) ~ exp(—a®p?/2)Yym(P), where Yy, (D)
is a spherical harmonic. Find the contribution of the orbital angular
momentum to the magnetic moment.



65: Loop Corrections in Scalar Electrodynamics 387

65 LooprP CORRECTIONS IN SCALAR
ELECTRODYNAMICS

PREREQUISITE: 61, 62

In this section we will compute the one-loop corrections in scalar electro-
dynamics. We will concentrate on the divergent parts of the diagrams,
enabling us to compute the renormalizing Z factors in the MS scheme, and
hence the beta functions. This gives us the most important qualitative in-
formation about the theory: whether it becomes strongly coupled at high
or low energies.

Our lagrangian for scalar electrodynamics in section 61 already includes
all possible terms whose coefficients have positive or zero mass dimension,
and that respect Lorentz symmetry, the U(1) gauge symmetry, parity, time
reversal, and charge conjugation. Therefore, the theory we will consider is

L=Lo+ Ly, (65.1)
Ly = —8”90]@”90 —m2plp — %FWFW , (65.2)
L1 = iZie[pTdp — ("N P A, — Zae*plpAr A,

— 120M70) + Lot (65.3)
Lep = —(Zo-1)0"¢0 0y — (Zin—1)mPplp — L(Z3—1)F™F,, . (65.4)

We will use the MS renormalization scheme to fix the values of the Z’s.
We begin with the photon self-energy, 11" (k). The one-loop and coun-
terterm contributions are shown in fig. (65.1). We have

e . 2 [ d¥Y (20 + k)H(20 + k)Y
k) = (27 (1) [ G (s e @
d¥ 1
@)t 2+ m?

+ (—2iZ4)e2g"

—i(Z3—1)(K*g" — kMEF) + ..., (65.5)

where the ellipses stand for higher-order (in e and/or \) terms. We can
set Z; = 14+ O(e?\) in the first two terms.
It will prove convenient to combine these first two terms into
d¥ N
I (k) = € /
AR = | Gt (@ h? 1 md) (@ 1 i)

—i(Z3—1)(K*g"" — K"EMY + ..., (65.6)
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where

N = (20 + k(20 + k)Y — 2[(0+k)? + m?]g" . (65.7)

Then we continue to d dimensions, replace e with ei€/2, and combine the
denominators with Feynman’s formula; the result is

1 dd N#Y
T (k) = 2~E/d/ d
MEE) = S5 ) 4 | Gayt g+ DP
—i(Z3—1) (K> g — kFEF) + ..., (65.8)

where ¢ = £ + zk and D = x(1—x)k? + m?. The numerator is
N = (2q + (1-22)k)"(2q + (1-22)k)" — 2[(q + (1-2)k)* + m®]g"”

= 4g"q” + (1-22)%kMEY — 2[¢* + (1—2)%k? + m?] g™
+ (linear in q)

— 4d g 4 (1-22)2 K1k — 2[¢* + (1—2)%k® + m?]g" , (65.9)

where we used the symmetric-integration identity from problem 14.3 to get
the last line. We can rearrange eq. (65.9) into

N — 2(3 - 1)g“Vq2 + (1-22)2 kMK — 2[(1—2)%k> + m?)g" . (65.10)

Now we recall from section 62 that, when ¢ is integrated against (¢>+D)~2,
we can make the replacement (% —1)¢?> — D; thus we have

NH — 2Dg" + (1—-2x)%k"kY — 2[(1—x)%k? + m2)g™
= (1-22)%kMkY — 2(1—2x)(1—z)k2g"” . (65.11)

Next we note that if we make the change of variable x = y + %, then we
have D = (1— iyz)k2 +m?, and y is integrated from —% to —i—%. Therefore,
any term in N# that is even in y will integrate to zero. We then get

NM = d?kHkY — 22y —y) k2 g™
— —dy2 (K2 g" — EFEY) . (65.12)

Thus we see that I1#7(k) is transverse, as expected.
Performing the integral over ¢ in eq. (65.8), and focusing on the diver-
gent part, we get

. d% 1 i1 0
;ﬁ/ @l (F1DP 82 < +0(eY) . (65.13)
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Figure 65.1: The one-loop and counterterm corrections to the photon prop-
agator in scalar electrodynamics.

\
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Figure 65.2: The one-loop and counterterm corrections to the scalar prop-
agator in scalar electrodynamics.

Then performing the integral over y yields

1/2
/ dy N# = —L(k2gh — prgY) | (65.14)
~1/2

Combining egs. (65.8), (65.13), and (65.14), we get

T (k) = TI(K2) (2" — kR (65.15)
where
(k) = — © 1 finite— (Z5 —1) + (65.16)
= Y P 3 e .

Thus we find, in the MS scheme,

Zom1- S 1, (65.17)
3 = 24n? = e .
Now we turn to the one-loop corrections to the scalar propagator, shown
in fig. (65.2). It will prove very convenient to work in Lorenz gauge, where
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the photon propagator is

AL = Z“”_(Z , (65.18)

with P, (€) = gu — £uly/0?. The diagrams in fig. (65.2) then yield

. d% P, (0)(¢ + 2k)*(¢ + 2k)¥
L,02) = 2102 (1) [ oy BAR R0

d¥% P (0)
9z 2 _pvy(1 My
+ (—2iZye“g )(i)/@ﬂ)4 g2+mgy

4
() f

— i(Zy—1)k* —i(Zp—1)m? + ... . (65.19)

In the second line, m, is a fictitious photon mass; it appears here as an
infrared regulator.

We can set Z; = 1+ O(e?)\) in the first three lines. Continuing to d
dimensions, making the replacements e — efif/2 and A — A€, and using
the relations ¢/ P, () = ¢ P,,(¢) =0 and ¢"' P, ({) = d — 1, we get

[ dY P (O
M) = 462”6/ (2m) e2(<5+(k))2 +m?)

d¥ 1
_ —1\e27€ -
2d-De'f / @m)d 2 +m?

4
_Wg/ a1
(2m)% 02 + m?

— i(Zo—1)k?* —i(Zp—1)m* + ... . (65.20)
We evaluate the second and third lines via
¥ 1 i1
~& 2 0
—_— = — —— = @) . 65.21
a /(27r)d€2+m2 g2z () ( )

Then, taking the limit m? — 0 (with ¢ fixed) in eq. (65.21) shows that the
second line of eq. (65.20) vanishes when the infrared regulator is removed.

To evaluate the first line of eq. (65.20), we multiply the numerator and
denominator by ¢? and use Feynman’s formula to get

d EP (R N
F: .22
/ (2 5252((e+/<; 2 / d 3/ @+pp (62
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Figure 65.3: The one-loop corrections to the three-point vertex in scalar
electrodynamics.

where ¢ = £ + x3k, D = x3(1—x3)k? + 3m?, and
N = 2k* — (0-k)*
= (¢ — w3k)’k* — (q-k — z3k?)?

= ¢’k* — (¢-k)? + (linear in q)

— ¢k? —d Pk . (65.23)
Now we use y )
- d% q 7 1
€ 0
= — - . .24
s /(271)d (¢2+ D)3 8n?¢ +0() (65:24)
Combining egs. (65.20-65.24), and requiring I1,,(k?) to be finite, we find
3e? 1
Zo =14+ ——+... 2
2= 14 g5 : (65.25)
Al
Iy =14+ ——4+... 2
+ oy + (65.26)

in the MS scheme.

Now we turn to the one-loop corrections to the three-point (scalar—
scalar—photon) vertex, shown in fig. (65.3). In order to simplify the calcu-
lation of the divergent terms as much as possible, we have chosen a special
set of external momenta. (If we wanted the complete vertex function, in-
cluding the finite terms, we would need to use a general set of external
momenta.) We take the incoming scalar to have zero four-momentum, and
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the photon (treated as incoming) to have four-momentum k; then, by mo-
mentum conservation, the outgoing scalar also has four-momentum k. We
take the internal photon to have four-momentum ¥¢.

Now comes the magic of Lorenz gauge: in the second and third diagrams
of fig. (65.3), the vertex factor for the leftmost vertex is ief, and this is
zero when contracted with the P,,(¢) of the internal photon propagator.
Thus the second and third diagrams vanish.

Alas, we will have to do some more work to evaluate the first and fourth
diagrams. We have

iVE(k,0) = ieZ k"

4% P, (0) (¢ + 2k)°
2m)4 02((0+k)% + m?)

‘ ‘ 2 d* (20 + k)"
n (_ZZA)\)(zZle)(%) / 2m)T (2 + m2)(((+k)2 + m?2)

T (65.27)

+ (z‘Zle)(—2iZ4e2gw)(%)2/ (

We can set Z; = 1+ O(e%)) in the second and third lines. We then do the
usual manipulations; the integral in the third line becomes

! dig  2¢" + (1—22)k"
/0 dx/ (2m)d (2 + D)2 ) (65.28)

where ¢ = £ + zk and D = z(1—x)k* + m?. The term linear in ¢ vanishes
upon integration over ¢, and the term linear in k£ vanishes upon integration
over z. Thus the third line of eq. (65.27) evaluates to zero.

To evaluate the second line of eq. (65.27), we note that, since P, ,(¢)¢* =
0, it already has an overall factor of k. We can then treat k as infinitesi-
mal, and set £ = 0 in the denominator. We can then use the symmetric-
integration identity to make the replacement ¢,¢, J0? — d71 gup in the nu-
merator. Putting all of this together, and using eq. (65.13), we find

3e? 1

VHE(k,0) /e = Z1kH — = Z kP + O(%) + . .. 65.29

Lk 0)fe = Zik! — S5 RO o, (65.29)
and so )
3es 1

Zi=14+——-4... 65.30

1 +87T2€+ ) ( )

in the MS scheme.

Next up is the four-point, scalar—scalar-photon—photon vertex. Because
the tree-level vertex factor, —2iZ4e2g"", does not depend on the external
four-momenta, we can simply set them all to zero. Then, whenever an



65: Loop Corrections in Scalar Electrodynamics 393

—>——r—— - il P ol
s N s N
’

Figure 65.4: The nonvanishing one-loop corrections to the scalar—scalar—
photon—photon vertex in scalar electrodynamics (in Lorenz gauge with van-
ishing external momenta).

internal photon line attaches to an external scalar with a three-point vertex,
the diagram is zero, for the same reason that the second and third diagrams
of fig. (65.3) were zero. This kills a lot of diagrams; the survivors are shown
in fig. (65.4). We have

iVi¥(0,0,0) = —2iZse* g™

4 ov
+ (—21'2462)2(%)2/ (2d7rl;4 92?(%:{?32) + (pev)

4 v
2PN G G+ 0

4
+ (—iZAA)(—2iZ4€29“V)(%)2/ (2d7rl;4 (€ +1m2)2

T (65.31)

The notation +(pu«<v) in the second and third lines means that we must
add the same expression with these indices swapped; this is because the
original and swapped versions of each diagram are topologically distinct,
and contribute separately to the vertex function.

As usual, we set Z; = 14+ O(e%)\) in the second through fourth lines.
After using the symmetric-integration identity, along with egs. (65.13) and
(65.24), we can see that the divergent parts of the third and fourth lines
cancel each other. The first line is easily evaluated with symmetric inte-
gration and eq. (65.13). Then we have

3e? 1

VA (0,0,0)/e? = —2Z,9" + e O(E") + ..., (65.32)

and so
Z4:1+—E+... (65.33)
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Figure 65.5: The nonvanishing one-loop corrections to the four-scalar ver-
tex in scalar electrodynamics (in Lorenz gauge with vanishing external mo-
menta).

in the MS scheme.

Finally, we have the one-loop corrections to the four-scalar vertex. Once
again, because the tree-level vertex factor, —iZ)\, does not depend on the
external four-momenta, we can set them all to zero. Then, whenever an
internal photon line attaches to an external scalar with a three-point vertex,
the diagram is zero. The remaining diagrams are shown in fig. (65.5).

Even though we have set the external momenta to zero, we still have
to keep track of which particle is which, in order to count the diagrams
correctly; thus the external lines are labelled 1 through 4. Lines 1 and 2 have
arrows pointing towards their vertices, and 3 and 4 have arrows pointing
away from their vertices. The symmetry factor for each of the first three
diagrams is S = 2; for each of the last two, it is S = 1. The difference arises
because the last two diagrams have the charge arrows pointing in opposite
directions on the two internal propagators, and so these propagators cannot
be exchanged.

It is clear that the first two diagrams will yield identical contributions
to the vertex function (when the external momenta are all zero). Similarly,
except for symmetry factors, the contributions of the last three diagrams
are also identical. Thus we have

iV4,(0,0,0) = —iZyA

. % ¢ P,,(0)g"°P,, (¢
+ (% + %) (—2iZye?)? (%)2/ oo g" Izég(ﬁg;gfgu( )
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+ (% +1+ 1) (—iZWQ(%)Z/ (fj;i‘l (¢2 +1m2)2

+ ... (65.34)
Using the familiar techniques, we find

41 21
3¢ X L o 4., (65.35)

Vi (0,0,0) = —iZyh + oo = 4 22
1(0,0,0) = =iDA+ o5 -+ {52 ¢

and so A
ZA:1+<2?T62)\+%>§+... (65.36)
in the MS scheme.
PROBLEMS

65.1) What conditions should be imposed on V% (p/,p) and V4" (k,p',p)
in the OS scheme? (Here k is the incoming four-momentum of the
photon at the u vertex, and p’ and p are the four-momenta of the
outgoing and incoming scalars, respectively.)

65.2) Consider a gauge transformaton A* — A* — 0*T". Show that there
is a transformation of ¢ that leaves the lagrangian of egs. (65.1-65.4)
invariant if and only if Zy = Z%/Z,.
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66 BETA FUNCTIONS IN QUANTUM
ELECTRODYNAMICS

PREREQUISITE: 52, 62

In this section we will compute the beta function for the electromagnetic
coupling e in spinor electrodynamics and scalar electrodynamics. We will
also compute the beta function for the ¢* coupling A in scalar electrody-
namics.
In spinor electrodynamics, the relation between the bare and renormal-
ized couplings is
eo = 23225 7y i€ % . (66.1)

It is convenient to recast this formula in terms of the fine-structure constant
o = €2 /4 and its bare counterpart o = €3 /4,

o =23 2527 ifa (66.2)
From section 62, we have
al 9
al 9
2a0 1
Zy=1- 2210, (66.5)
3T e

in the MS scheme. Let us write

e = En(a)
1 272 n
(251 2;%23) = nZ::l e (66.6)
Then we have
[e%S) E,
Inay = Z Eloz) +hha+elni. (66.7)
n=1
From egs. (66.3-66.5), we get
2a
Ei(a) = 3+ 0(a?) . (66.8)
Then, the general analysis of section 28 yields
Ba) = *Eq(a) (66.9)
where the prime denotes differentiation with respect to . Thus we find
2 2
Bla) = = + 0(a?) (66.10)

3
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in spinor electrodynamics, We can, if we like, restate this in terms of e as

Ble) +0(e) . (66.11)

T 1272
To go from eq. (66.10) to eq. (66.11), we use a = €?/4r and & = eé/2m,
where the dot denotes d/d1n p.

The most important feature of either eq. (66.10) or eq. (66.11) is that
the beta function is positive: the electromagnetic coupling in spinor elec-
trodynamics gets stronger at high energies, and weaker at low energies.

It is easy to generalize egs. (66.10) and (66.11) to the case of N Dirac
fields with electric charges @;e. There is now a factor of Zy; for each field,
and of Zy; for each interaction. These are found by replacing « in egs. (66.3)
and (66.4) with Q?a. Then we find Z1;/Z2; = 1+ O(a?), so that this ratio
is universal, at least through O(«). In fact, as we will see in section 67,
Z1i/ Z9; is always exactly equal to one, and so it always cancels in eq. (66.6).
As for Z3, now each Dirac field contributes separately to the fermion loop
in the photon self-energy, and so we should replace « in eq. (66.5) with
> Q?a. Thus we find that the generalization of eq. (66.11) is

D19 5 o
Ble) = o2 ¢ +O(e) . (66.12)
Now we turn to scalar electrodynamics. (Prerequisite: 65.) The rela-

tions between the bare and renormalized couplings are

co = Z; 2212, (e . (66.13)
ef = 23722 2y fite” (66.14)
Xo = Z2Z\iEN . (66.15)

We have two different relations between e and ey, coming from the two
types of vertices. We can guess (and will demonstrate in section 67) that
these two renormalizations must work out to give the same answer. Indeed,
from section 65, we have

3e2 1

Zy =1+ 4. 66.16
1=l ot (66.16)
Zo—14 291 (66.17)
2— 87T2€ cee .
e? 1
Zy=1——_ = 4. . 66.18
3 2nZz (66.18)
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3e? 1
Zy=14+"" "4 . 66.19
4 + 871'2 c + ) ( )
3et 51\ 1
Zy =1 S .4 2
A + <27r2>\ + 167r2> et (66.20)

in the MS scheme; the ellipses stand for higher powers of e? and/or . We
see that Z; = Zy = Z,, at least through O(e?,\). The correct guess is
that this is true exactly. Thus egs. (66.13) and (66.14) both collapse to
ey =Zg Y 26, just as in spinor electrodynamics.

Thus we can write

-1/2\ _ > En(e,/\)
In(z;'?) = nzzjl Eaa (66.21)
_ > Ln(e, M)
In(Z5%2)) = L 66.22
n(2522,) PR (66.22)
Then we have
> En(ev/\) 1 ~
lneO:;T—Hne—kielnu, (66.23)
In A —io:M—Hn)\—i—eln~ (66.24)
" n=1 e & '
Using egs. (66.17), (66.18) and (66.20), we have
o2
1 4 2
Li(e,\) = W(5A+24e A—12e7) . (66.26)
Now applying the general analysis of section 52 yields
&3
66(6, )\) = 48? +..., (6627)
1 2 2 4
Brle.N) = 1o (572 = 6Ac + 24¢%) 4 ... . (66.28)

Both right-hand sides are strictly positive, and so both e and A\ become
large at high energies, and small at low energies.

Generalizing eq. (66.25) to the case of several complex scalar fields with
charges (Q;e works in the same way as it does in spinor electrodynamics.
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For a theory with both Dirac fields and complex scalar fields, the one-loop
contributions to Z3 simply add, and so the beta function for e is

1

5e(€7 )\) = 1972

(un QY + 12, Qi)e?’ +.... (66.29)
PROBLEMS

66.1) Compute the one-loop contributions to the anomalous dimensions of
m, ¥, and A" in spinor electrodynamics.

66.2) Compute the one-loop contributions to the anomalous dimensions of
m, @, and A" in scalar electrodynamics.

66.3) Use the results of problem 62.2 to compute the anomalous dimension
of m and the beta function for e in spinor electrodynamics in R
gauge. You should find that the results are independent of &.

66.4) The value of a(My). The solution of eq. (66.12) is

a(z\l4w) - a(lﬂ) - 3% > Qi n(My/p) , (66.30)

where the sum is over all quarks and leptons (each color of quark
counts separately), and we have chosen the W= boson mass My as
a reference scale. We can define a different renormalization scheme,
modified decoupling subtraction or DS, where we imagine integrating
out a field when p is below its mass. In this scheme, eq.(66.30)
becomes

L _ 1 —%ZQ?ln[Mw/min(mi,,u)], (66.31)

a(My)  ap)

where the sum is now over all quarks and leptons with mass less than
My,. For p < me, the DS scheme coincides with the OS scheme, and

we have
1 1 2

- — > Q7 In(My/my) (66.32)

a(My) o 3w

where o = 1/137.036 is the fine-structure constant in the OS scheme.
Using m,, = mg = ms ~ 300 MeV for the light quark masses (because
quarks should be replaced by hadrons at lower energies), and other
quark and lepton masses from sections 83 and 88, compute a(My).
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67 WARD IDENTITIES IN QUANTUM
ELECTRODYNAMICS I

PREREQUISITE: 22, 59

In section 59, we assumed that scattering amplitudes would be gauge in-
variant, in the sense that they would be unchanged if we replaced any
photon polarization vector €* with e* + ck*, where k* is the photon’s
four-momentum and c¢ is an arbitrary constant. Thus, if we write a scat-
tering amplitude 7 for a process that includes an external photon with

four-momentum k" as
T=e'M,, (67.1)

then we should have
KM, =0. (67.2)

In this section, we will use the Ward identity for the electromagnetic current
to prove eq. (67.2).
We begin by recalling the LSZ formula for scalar fields,

(Fli) = z‘/d4x1 e~ (92 4 m?) .. (0[Tp(x1)...|0) . (67.3)

We have treated all external particles as outgoing; an incoming particle has
kY < 0. We can rewrite eq. (67.3) as

(fl3) Elflmz(k% +m?) ... (0|T@(ky)...|0) . (67.4)

e

Here ¢(k) = i [d*re *®p(z) is the field in momentum space (with an
extra factor of i), and we do not fix k2 = —m?.
We know that the right-hand side of eq. (67.4) must include an overall

energy-momentum delta function, so let us write
(OITG (k) ... [0) = (2m) 6" (3, k) F (K7, Ki-ks) (67.5)

where F(k2, k;-k;) is a function of the Lorentz scalars k? and k;-k;. Then,
since

(fli) = i(2m)*0* (X, ki) T (67.6)

eq. (67.4) tells us that F should have a multivariable pole as each /<;Z2 ap-
proaches —m?, and that ¢7 is the residue of this pole. That is, near
k? = —m?, F takes the form

v

2
F kT kicks) = (k2 +m?) ... (k2 +m?)

+ nonsingular . (67.7)
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The key point is this: contributions to F that do not have this multivariable
pole do not contribute to 7.

We have framed this discussion in terms of scalar fields in order to keep
the notation as simple as possible, but the general point holds for fields of
any spin.

In section 22, we analyzed how various classical field equations apply
to quantum correlation functions. For example, we derived the Schwinger-
Dyson equations

05

O s @

Gay (1) - - - Pay, (2)]0)

z“: (0T g, (z1) - .. dga 54($—l‘j)...¢an($n)|0> . (67.8)

Here we have used ¢,(z) to denote any kind of field, not necessarily a
scalar field, carrying any kind of index or indices. The classical equation
of motion for the field ¢,(x) is §5/0¢,(x) = 0. Thus, eq. (67.8) tells us
that the classical equation of motion holds for a field inside a quantum
correlation function, as long as its spacetime argument and indices do not
match up exactly with those of any other field in the correlation function.
These matches, which constitute the right-hand side of eq. (67.8), are called
contact terms.

Suppose we have a correlation function that, for whatever reason, in-
cludes a contact term with a factor of, say, d*(wx1—z2). After Fourier-
transforming to momentum space, this contact term is a function of k1 + ks,
but is independent of k1 — ks; hence it cannot take the form of the singular
term in eq. (67.7). Therefore, contact terms in a correlation function F do
not contribute to the scattering amplitude T .

Now let us consider a scattering process in quantum electrodyamics that
involves an external photon with four-momentum k. In Lorenz gauge (the
simplest for this analysis), the LSZ formula reads

zz—:“/d —ike(_g2) . (0| TAu(x)...|0) | (67.9)

and the classical equation of motion for A* is

oL

_ 2
Z50°, = 50

(67.10)
In spinor electrodynamics, the right-hand side of eq. (67.10) is Z;1j*, where
j* is the electromagnetic current. (This is also true for scalar electrodynam-
ics if Zy = Z%/Z5; we saw in problem 65.2 that this condition is necessary
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for gauge invariance.) We therefore have

(fli) = z‘Zg_lZla“/dA‘a: e~tke {(O\Tju(x) ...|0) + contact terms}.

(67.11)
The contact terms arise because, as we saw in eq. (67.8), the classical equa-
tions of motion hold inside quantum correlation functions only up to contact
terms. However, the contact terms cannot generate singularities in the k%’s
of the other particles, and so they do not contribute to the left-hand side.
(Remember that, for each of the other particles, there is still an appropriate
wave operator, such as the Klein-Gordon wave operator for a scalar, acting
on the correlation function. These wave operators kill any term that does
not have an appropriate singularity.)

Now let us try replacing £ in eq. (67.11) with k#. We are attempting
to prove that the result is zero, and we are almost there. We can write the
factor of ik* as —O* acting on the e~"** and then we can integrate by parts
to get O* acting on the correlation function. (Strictly speaking, we need a
wave packet for the external photon to kill surface terms.) Then we have
0"(0|Tju(x)...|0) on the right-hand side. Now we use another result from
section 22, namely that a Noether current for an exact symmetry obeys
0"j, = 0 classically, and

0"(0|Tju(x)...|0) = contact terms (67.12)

quantum mechanically; this is the Ward (or Ward-Takahashi) identity.
But once again, the contact terms do not have the right singularities to
contribute to (f|i). Thus we conclude that (f|i) vanishes if we replace an
external photon’s polarization vector e* with its four-momentum £k, quo
erat demonstratum.

REFERENCE NOTES

Diagrammatic proofs of the Ward identity in spinor electrodynamics can
be found in Peskin € Schroeder and Zee.

PROBLEMS

67.1) Show explicitly that the tree-level e"e~ — 7~ scattering amplitude
in scalar electrodynamics,

62 4(k1-€1/)(]€2'€2/) + 4(k1-€2/)(k2'€11)
m?—t m? —u

T =— —1—2(61/'62/) ,

. . . . /
vanishes if €}, is replaced with k"
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67.2) Show explicitly that the tree-level eTe™ — 7~ scattering amplitude
in spinor electrodynamics,

7= em[p (LRI gy (FAERE L

m t m U

. . . . /
vanishes if £/, is replaced with k.



68: Ward Identities in Quantum Electrodynamics I1 404

68 WARD IDENTITIES IN QUANTUM
ELECTRODYNAMICS II

PREREQUISITE: 63, 67

In this section, we will show that Z; = Z5 in spinor electrodynamics, and
that Z1 = Zy = Z, in scalar electrodyanimes (in the OS and MS renormal-
ization schemes).

Let us specialize to the case of spinor electrodynamics with a single
Dirac field, and consider the correlation function

Cgﬁ(k,p',p) = iZl/d4a: dYy d'z etk —iv'ytipz (0] Tj" ()W o (y)¥ps(2)|0) ,

(68.1)
where j# = eW~y*¥ is the electromagnetic current. As we saw in section
67, including Z;j*(z) inside a correlation function adds a vertex for an
external photon; the factor of Z; provides the necessary renormalization of
this vertex. The explicit fermion fields on the right-hand side of eq. (68.1)
combine with the fermion fields in the current to generate propagators.
Thus we have

Chig(k.p',p) = (2m) 6" (ktp—p') [18()iV (0. p)18(0)] . (682)

where g(p) is the exact fermion propagator, and V#(p’, p) is the exact 1PI
photon—fermion—fermion vertex function.

Now let us consider k,Cks(k,p’,p). Using eq. (68.1), we can write the
factor of ik, on the right-hand side as J,, acting on e** and then integrate
by parts to get —d,, acting on j#(x). (Strictly speaking, we need a wave
packet for the external photon to kill surface terms.) Thus we have

B Cl(hp/,p) = = [ oy ds c=rrme g (O (@)W (4)Ta(2) 0)
(68.3)
Now we use the Ward identity from section 22, which in general reads

=0 0| TJ*(2)Pay (71) - - - Pay, (¥2)]0)

ZZ 0|Thay (1) - - - 6¢ba; (2)6*(x—2;) . .. Pa, (,)]0) . (68.4)
j=1

Here d¢,(z) is the change in a field ¢,(z) under an infinitesimal transfor-
mation that leaves the action invariant, and
oL

. .
= ey (68.5)
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is the corresponding Noether current. In the case of spinor electrodynamics,
0U(z) = —ieV(x),
oW (z) = +ie¥(x) , (68.6)

where we have dropped an infinitesimal parameter on the right-hand sides,
but included a factor of the electron charge e. Using 0L/9(9, W) = iZoW#
and 9L£/9(9,¥) = 0 we find that, with these conventions, the Noether
current is J* = ZoeWUyHW = Zyj*. Thus the Ward identity becomes
—Z20,, (0T (2)Wa (y)W5(2)[0) = +e 8 (a—y) (0] T4 (y)¥s(2)[0)
—e 8" (3-2)(0|TWa(y)Ts(2)|0) . (68.7)

Recall that

4 . ~
OB )TN0 = 5 [ e 8@ (653)

Using egs. (68.7) and (68.8) in eq. (68.3), and carrying out the coordinate
integrals, we get

kuClig (k0 p) = —iZy ' 2, (2m)' 5" (k+p—p') [eS(p) — eS(p)| . (68.9)

&7

On the other hand, from eq. (68.2) we have
kuClis (k. p) = —i(2m)"6" (k=) S0 bV (0, p)s(p)}aﬁ . (68.10)
Comparing egs. (68.9) and (68.10) shows that
(7' =p)uSE )V, p)S(p) = Z3 ' Z1e[S(p) - S()) . (68.11)

where we have dropped the spin indices. We can simglify eq. (68.11) by
multiplying on the left by S(p')~!, and on the right by S(p)~!, to get

(0 —p) V"0 10) = 23 Z1e[SW) ' = 8(0) '] - (68.12)

Thus we find a relation between the exact photon—fermion—fermion vertex
function V#(p/,p) and the exact fermion propagator g(p)

Since both S(p) and V£ (p/, p) are finite, eq. (68.12) implies that Z; /Zs
must be finite as well. In the MS scheme (where all corrections to Z; = 1
are divergent), this immediately implies that

7y =2 . (68.13)
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In the OS scheme, we recall that near the on-shell point p? = p'? = —m?

and (p' — p)? = 0 we have g(p) = g+ m and V¥(p',p) = ey". Plugging
these expressions into eq. (68.12) then yields Z; = Z, for the OS scheme.

To better understand this result, we note that when Z; = Zy, we
can combine the fermion kinetic term iZo¥@¥ and the interaction term
Z1eW AV into iZoWIPW, where DH = O* — je A* is the covariant derivative.
Recall that it is D* that has a simple gauge transformation, and so we
might expect the lagrangian, written in terms of renormalized fields, to
include 9#* and A* only in the combination D#. It is still necessary to go
through the analysis that led to eq. (68.12), however, because quantization
requires fixing a gauge, and this renders suspect any naive arguments based
on gauge invariance. Still; in this case, those arguments yield the correct
result.

We can make a similar analysis in scalar electrodynamics. We leave the
details to the problems.

REFERENCE NOTES

BRST symmetry (see section 74) can be used to derive the Ward identities;
see Ramond 1.

PROBLEMS

68.1) Consider the current correlation function (0|Tj*(x)j"(y)|0) in spinor
electrodynamics.

a) Show that its Fourier transform is proportional to

T (k) + T (k) A o ()T (k) + ... (68.14)

b) Use this to prove that II*V(k) is transverse: k,II* (k) = 0.

68.2) Verify that eq. (68.12) holds at the one-loop level in
a) the OS scheme.
b) the MS scheme.

68.3) Scalar electrodynamics. (Prerequisite: 65.)
a) Consider the Fourier transform of (0|TJ*(z)p(y)¢'(2)]0), where

JH = —ieZy[pT ot — (OM@T )] — 2212 AT (68.15)

is the Noether current. You may assume that Zy = Z?/Z, (which is
necessary for gauge invariance). Show that

(P =p)uVE W, p) = Zy ' Zie|[AW) ' = Ap)!] (68.16)
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where V% (p,p) is the exact scalar-scalar-photon vertex function, and
A(p) is the exact scalar propagator.

b) Use this result to show that Z; = Z in both the MS and OS

renormalization schemes.

¢) Consider the Fourier transform of (0|TJH(z)AY (w)e(y)e!(2)]0).
Show that

k‘uvgu(k,’,p/,p) = Z1_124€{V§(p/—k,‘,p) - Vg(p/,p—l—k‘)} ) (6817)

where V" (k,p’,p) is the exact scalar-scalar-photon-photon vertex
function, with k& the incoming momentum of the photon at the p
vertex.

68.4) Repeat problem 68.1 for scalar electrodynamics.
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69 NONABELIAN GAUGE THEORY

PREREQUISITE: 24, 58

Consider a lagrangian with N scalar or spinor fields ¢;(z) that is invariant
under a continuous SU(N) or SO(N) symmetry,

pi(z) — Uij0;(2) , (69.1)

where U;; is an N x N special unitary matrix in the case of SU(NV), or an
N x N special orthogonal matrix in the case of SO(N). (Special means
that the determinant of U is one.) Eq.(69.1) is called a global symmetry
transformation, because the matrix U does not depend on the spacetime
label z.

In section 58, we saw that quantum electrodynamics could be under-
stood as having a local U(1) symmetry,

¢(x) = U(z)p(x) , (69.2)

where U(z) = exp[—iel'(z)] can be thought of as a 1 x 1 unitary matrix
that does depend on the spacetime label x. Eq. (69.2) can be a symmetry
of the lagrangian only if we include a U(1) gauge field A, (x), and promote
ordinary derivatives 0, of ¢(x) to covariant derivatives D, = 9, — ieA,,.
Under the transformation of eq. (69.2), we have

D, — U(z)D,U'(z) . (69.3)

With this transformation rule, a scalar kinetic term like —(Dugp)TD“go, ora
fermion kinetic term like iW )W, is invariant, as are mass terms like m2pTep
and m¥PW¥. We call eq.(69.3) a gauge transformation, and say that the
lagrangian is gauge invariant.

Eq. (69.3) implies that the gauge field transforms as

Au(z) = U(z) Ay (@)U (@) + LU (2)0,U 1 (2) . (69.4)
If we use U(z) = exp[—iel'(z)], then eq. (69.4) simplifies to
Ay(z) — Ayu(z) — 0,1 (), (69.5)

which is what we originally had in section 54.

We can now easily generalize this construction of U(1) gauge theory
to SU(N) or SO(N). (We will consider other possibilities later.) To be
concrete, let us consider SU(N). Recall from section 24 that we can write
an infinitesimal SU(N) transformation as

Ujk(x) = 851, — ig6” () (T*) jx + O(6?) , (69.6)
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where we have inserted a coupling constant g for later convenience. The
indices j and k run from 1 to N, the index a runs from 1 to N2—1 (and
is implicitly summed), and the generator matrices T® are hermitian and
traceless. (These properties of T follow immediately from the special uni-
tarity of U.) The generator matrices obey commutation relations of the
form

(7%, T = ifebere (69.7)

where the real numerical factors f¢ are called the structure coefficients of
the group. If f%¢ does not vanish, the group is nonabelian.

We can choose the generator matrices so that they obey the normaliza-
tion condition

Te(T°T°) = 157 ; (69.8)

then egs. (69.7) and (69.8) can be used to show that f¢ is completely
antisymmetric. For SU(2), we have T = 30, where ¢ is a Pauli matrix,
and fe¢ = g%¢ where €%¢ is the completely antisymmetric Levi-Civita
symbol.

Now we define an SU(NN) gauge field A,(x) as a traceless hermitian
N x N matrix of fields with the gauge transformation property

Ap(@) = U@) Au(@)Uf (@) + LU2)0,U (@) . (69.9)

Note that this is identical to eq.(69.4), except that now U(x) is a spe-
cial unitary matrix (rather than a phase factor), and A,(x) is a traceless
hermitian matrix (rather than a real number). (Also, the electromagnetic
coupling e has been replaced by g.) We can write U(x) in terms of the
generator matrices as

U(x) = exp[—igl'*(z)T"] , (69.10)

where the real parameters I'*(z) are no longer infinitesimal.
The covariant derivative is

D, =0, —igA.(x), (69.11)

where there is an understood N x N identity matrix multiplying 0,,. Acting
on the set of N fields ¢;(z) that transform according to eq.(69.2), the
covariant derivative can be written more explicitly as

(Dpg)j(x) = 0udj(x) — igAu()jndr(x) , (69.12)

with an understood sum over k. The covariant derivative transforms ac-
cording to eq. (69.3). Replacing all ordinary derivatives in £ with covariant
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derivatives renders £ gauge invariant (assuming, of course, that £ originally
had a global SU(N) symmetry).
We still need a kinetic term for A, (x). Let us define the field strength

Fu(x) = L[D,, D) (69.13)
= 0, A, — D,A, —ig[A,, A, . (69.14)

Because A, is a matrix, the final term in eq. (69.14) does not vanish, as
it does in U(1) gauge theory. Egs. (69.3) and (69.13) imply that, under a
gauge transformation,

Fu(z) — U(x)F, (x)U(2) . (69.15)
Therefore,
Liin = —3Tr(F* F,) (69.16)

is gauge invariant, and can serve as a kinetic term for the SU(N) gauge
field. (Note, however, that the field strength itself is not gauge invariant,
in contrast to the situation in U(1) gauge theory.)

Since we have taken A, (x) to be hermitian and traceless, we can expand
it in terms of the generator matrices:

Au(x) = A%(2)T* . (69.17)

Then we can use eq. (69.8) to invert eq. (69.17):

Al(z) =2Tr Ay (z) T . (69.18)
Similarly, we have

Fu(z) = F T, (69.19)

Fi,(z) = 2T F,, T* . (69.20)

Using eq. (69.19) in eq. (69.14), we get
FS,T¢ = (0,45 — 0,A5)T° — ig A% AL [T, T
= (O AL — 0, AS, + g f* AL AL T . (69.21)
Then using egs. (69.20) and (69.8) yields
FS, = 0,45 — 0,AS + gf ™A% AL . (69.22)
Also, using egs. (69.19) and (69.8) in eq. (69.16), we get

Lyin = —1FHFS, . (69.23)
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From eq. (69.22), we see that Ly, includes interactions among the gauge
fields. A theory of this type, with nonzero f%°, is called nonabelian gauge
theory or Yang—Mills theory.

Everything we have just said about SU(V) also goes through for SO(N),
with unitary replaced by orthogonal, and traceless replaced by antisym-
metric. There is also another class of compact nonabelian groups called
Sp(2N), and five exceptional compact groups: G(2), F(4), E(6), E(7), and
E(8). Compact means that Tr(T?T?) is a positive definite matrix. Non-
abelian gauge theory must be based on a compact group, because otherwise
some of the terms in Ly, would have the wrong sign, leading to a hamil-
tonian that is unbounded below.

As a specific example, let us consider quantum chromodynimcs, or QCD,
which is based on the gauge group SU(3). There are several Dirac fields
corresponding to quarks. Each quark comes in three colors; these are the
values of the SU(3) index. (These colors have nothing to do with ordinary
color.) There are also six flavors: up, down, strange, charm, bottom (or
beauty) and top (or truth). Thus we consider the Dirac field ¥;;(x), where
i is the color index and [ is the flavor index. The lagrangian is

L=iU; iV —mpU ¥y — LT (FWE,,) , (69.24)

where all indices are summed. The different quark flavors have different
masses, ranging from a few MeV for the up and down quarks to 175 GeV
for the top quark. (The quarks also have electric charges: —i—%\e[ for the u,
¢, and t quarks, and —%|e| for the d, s, and b quarks. For now, however, we
omit the appropriate coupling to the electromagnetic field.) The covariant
derivative in eq. (69.24) is

(Dp)ij = 0150, — igALT (69.25)

The index a on Aj runs from 1 to 8, and the corresponding massless spin-
one particles are the eight gluons.

In a nonabelian gauge theory in general, we can consider scalar or spinor
fields in different representations of the group. A representation of a com-
pact nonabelian group is a set of finite-dimensional hermitian matrices T}
(the R is part of the name, not an index) that obey that same commuta-
tion relations as the original generator matrices T%. Given such a set of
D(R) x D(R) matrices (where D(R) is the dimension of the representa-
tion), and a field ¢(x) with D(R) components, we can write its covariant
derivative as D), = 9, —igAf, Ty, with an understood D(R) x D(R) identity
matrix multiplying 0,. Under a gauge transformation, ¢(z) — Ur(x)¢(z),
where Ug(x) is given by eq. (69.10) with 7" replaced by 7. The theory
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will be gauge invariant provided that the transformation rule for A, is in-
depedent of the representation used in eq. (69.9); we show in problem 69.1
that it is.

We will not need to know a lot of representation theory, but we collect
some useful facts in the next section.

PROBLEMS

69.1) Show that eq. (69.9) implies a transformation rule for A}, that is in-
dependent of the representation used in eq. (69.9). Hint: consider an
infinitesimal transformation.

69.2) Show that [T°T®, T?] = 0.



70: Group Representations 413

70 GROUP REPRESENTATIONS

PREREQUISITE: 69

Given the structure coefficients f2¢ of a compact nonabelian group, a rep-
resentation of that group is specified by a set of D(R) x D(R) traceless
hermitian matrices T){ (the R is part of the name, not an index) that obey
that same commutation relations as the original generators matrices T,
namely

(T8, T2 = ifoTe . (70.1)

The number D(R) is the dimension of the representation. The original
T%s correspond to the fundamental or defining representation.

Consider taking the complex conjugate of the commutation relations,
eq. (70.1). Since the structure coefficients are real, we see that the matrices
—(T¢)* also obey these commutation relations. If —(T){)* = T2, or if we can
find a unitary transformation 7¢ — U~'T2U that makes —(T¢)* = T¢ for
every a, then the representation R is real. If such a unitary transformation
does not exist, but we can find a unitary matrix V' # I such that —(7}¢)* =
V=ITaV for every a, then the representation R is pseudoreal. If such a
unitary matrix also does not exist, then the representation R is complexz.
In this case, the complex conjugate representation R is specified by

T2 =—(T9)" . (70.2)

One way to prove that a representation is complex is to show that
at least one generator matrix 7){ (or a real linear combination of them)
has eigenvalues that do not come in plus-minus pairs. This is the case
for the fundamental representation of SU(N) with N > 3. For SU(2),
the fundamental representation is pseudoreal, because —(%0’“)* #+ %0’“,
but —(30%)* = V-1(30%)V with V = 0y. For SO(N), the fundamental
representation is real, because the generator matrices are antisymmetric,
and every antisymmetric hermitian matrix is equal to minus its complex
conjugate.

An important representation for any compact nonabelian group is the
adjoint representation A. This is given by

(T2 = —jfabe . (70.3)

Because %€ is real and completely antisymmetric, T¢ is manifestly her-
mitian, and also satisfies eq. (70.2); thus the adjoint representation is real.
The dimension of the adjoint representation D(A) is equal to the number
of generators of the group; this number is also called the dimension of the

group.
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To see that the T)’s satisfy the commutation relations, we use the Jacobi
identity
fabdfdce + fbcdfdae + fcadfdbe =0 (704)

which holds for the structure coefficients of any group. To prove the Jacobi
identity, we note that

e ([[7e, 78, T + [1°, 79, 7°) + [[7°, 7], T"]) = 0, (70.5)

where the T%s are the original generator matrices. That the left-hand
side of eq. (70.5) vanishes can be seen by writing out all the commutators
as matrix products, and noting that they cancel in pairs. Employing the
commutation relations twice in each term, followed by

Te(T°T°) = 15, (70.6)

ultimately yields eq. (70.4). Then, using the antisymmetry of the structure
coefficients, inserting some judicious factors of i, and moving the last term
of eq. (70.4) to the right-hand side, we can rewrite it as

(—ifabd)(—idee) _ (—ibed)(—ifade) — ifaCd(—ifdbe) ) (707)
Now we use eq. (70.3) in eq. (70.7) to get
(T — (T M) = iy (0.8

or equivalently [T¢, T¢] = if*T¢. Thus the T®s satisfy the appropriate
commutation relations.

Two related numbers usefully characterize a representation: the indez
T(R) and the quadratic Casimir C'(R). The index is defined via

Tr(TeT?) = T(R)5 . (70.9)

Next we recall from 69.2) that the matrix T){Tyy commutes with every gen-
erator, and so must be a number times the identity matrix; this number is
the quadratic Casimir C(R). It is easy to show that

T(R)D(A) = C(R)D(R) . (70.10)

With the standard normalization conventions for the generators, we have
T(N) = 3 for the fundamental representation of SU(N) and T'(N) = 2 for
the fundamental representation of SO(N). We show in problem 70.2 that
T(A) = N for the adjoint representation of SU(N), and in problem 70.3
that T'(A) = 2N — 4 for the adjoint representation of SO(N).

A representation R is reducible if there is a unitary transformation 7jf —
U~'T2U that puts all the nonzero entries into the same diagonal blocks for
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each a; otherwise it is irreducible. Consider a reducible representation R
whose generators can be put into (for example) two blocks, with the blocks
forming the generators of the irreducible representations Ry and Ro. Then
R is the direct sum representation R = Rq @ Ry, and we have

D(Rl@Rg) = D(Rl) + D(Rg) , (70.11)
T(R1@R2) = T(Ry) + T(R2) . (70.12)

Suppose we have a field p;7(x) that carries two group indices, one for
the representation Ry and one for the representation Ry, denoted by 4 and
I respectively. This field is in the direct product representation Rq ® Rs.
The corresponding generator matrix is

(1], ony)ir g0 = (T%,)ijors + 0i(T5,) 1 (70.13)

where ¢ and I together constitute the row index, and j and J together
constitute the column index. We then have

D(R1®R2) = D(R1)D(Ry) , (70.14)
T(R1®R2) = T(Rl)D(RQ) + D(Rl)T(Rg) . (70.15)

To get eq. (70.15), we need to use the fact that the generator matrices are
traceless, (1)§)i = 0.

At this point it is helpful to introduce a slightly more refined notation for
the indices of a complex representation. Consider a field ¢ in the complex
representation R. We will adopt the convention that such a field carries
a “down” index: ¢;, where i = 1,2,...,D(R). Hermitian conjugation
changes the representation from R to R, and we will adopt the convention
that this also raises the index on the field,

(e)T =" (70.16)

Thus a down index corresponds to the representation R, and an up index to
R. Indices can be contracted only if one is up and one is down. Generator
matrices for R are then written with the first index down and the second
index up: (7%);7. An infinitesimal group transformation of ¢; takes the
form

pi — (1 —i0°T%) o
= ¢ — 0 (TH) I p; . (70.17)
The generator matrices for R are then given by

(T9)'j = —(T3);" , (70.18)
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where we have used the hermiticity to trade complex conjugation for trans-
position of the indices. An infinitesimal group transformation of ¢ takes
the form

et — (1 - 0Ty
= It — 0 (T)" "
= o' 4 i07(T2) 1, (70.19)

where we used eq. (70.18) to get the last line. Note that egs. (70.17) and
(70.19) together imply that o', is invariant, as expected.

Consider the Kronecker delta symbol with one index down and one up:
8. Under a group transformation, we have

67 — (14 i6°T2)" (1 4 i6°T2)7 5,
= (14d6"Ty) "6 (1 — i6°T3),
= 67 +0(0?) . (70.20)

Eq. (70.20) shows that &;/ is an invariant symbol of the group. This exis-
tence of this invariant symbol, which carries one index for R and one for
R, tells us that the product of the representations R and R must contain
the singlet representation 1, specified by 71" = 0. We therefore can write

ReR=1@®.... (70.21)

The generator matrix (72);7, which carries one index for R, one for R,
and one for the adjoint representation A, is also an invariant symbol. To see
this, we make a simultaneous infinitesimal group transformation on each of
these indices,

(TR)i — (1= i0T)i" (1 — 0" Tg)1(1 — 6" T)* (T
= (TR)i? =0 [(TF T + (T2 (T + (T (1))
+0(6%) . (70.22)

The factor in square brackets should vanish if (as we claim) the generator

matrix is an invariant symbol. Using egs. (70.3) and (70.18), we have
[--] = (TR)F TR — (T (TR)i = if*(Tg)i?
= (TRTR)7 — (TRT%)7 — if **(T5)

=0, (70.23)
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where the last line follows from the commutation relations. The fact that

(Tg);7 is an invariant symbol implies that
RoR®A=1®.... (70.24)

If we now multiply both sides of eq. (70.24) by A, and use AQ A=1d...
[which follows from eq. (70.21) and the reality of A], we find R®R = A®. .. .
Combining this with eq. (70.21), we have

RoR=1@Aa.... (70.25)

That is, the product of a representation with its complex conjugate is al-
ways reducible into a sum that includes (at least) the singlet and adjoint
representations.

For the fundamental representation N of SU(/V), we have

NeN=16A, (70.26)

with no other representations on the right-hand side. To see this, recall that
D(1) =1, D(N) = D(N) = N, and, as shown in section 24, D(A) = N2—1.
From eq.(70.14), we see that there is no room for anything else on the
right-hand side of eq. (70.26).
Consider now a real representation R. From eq. (70.25), with R = R,
we have
ReR=1®0A®.... (70.27)

The singlet on the right-hand side implies the existence of an invariant
symbol with two R indices; this symbol is the Kronecker delta ¢;;. It is
invariant because

Sij — (1 —40°T) (1 —i0°TE); 0
= 0ij —i0°((T3)ij + (T3)jil + O(6%) . (70.28)
The term in square brackets vanishes by hermiticity and eq.(70.18). The
fact that 0;; = d;; implies that the singlet on the right-hand side of eq. (70.28)
appears in the symmetric part of this product of two identical representa-

tions.
The fundamental representation N of SO(N) is real, and we have

The subscripts tell whether the representation appears in the symmetric or
antisymmetric part of the product. The representation S corresponds to
a field with a symmetric traceless pair of fundamental indices: ¢;; = @j;,
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¢i; = 0, where the repeated index is summed. We have D(1) =1, D(N) =
N, and, as shown in section 24, D(A) = 1N(N—1). Also, a traceless
symmetric tensor has D(S) = %N (N+1)—1 independent components; thus
eq. (70.14) is fulfilled.

Consider now a pseudoreal representation R. Since R is equivalent to its
complex conjugate, up to a change of basis, eq. (70.27) still holds. However,
we cannot identify d;; as the corresponding invariant symbol, because then
eq. (70.28) shows that R would have to be real, rather than pseudoreal.
From the perspective of the direct product, the only alternative is to have
the singlet appear in the antisymmetric part of the product, rather than
the symmetric part. The corresponding invariant symbol must then be
antisymmetric on exchange of its two R indices.

An example (the only one that will be of interest to us) is the funda-
mental representation of SU(2). For SU(N) in general, another invariant
symbol is the Levi-Civita tensor €;,.;,, which carries N fundamental in-
dices and is completely antisymmetric. It is invariant because, under an
SU(N) transformation,

Eip.iny Uiljl . UiNjNejlij
= (det U)gil...iN . (70.30)

Since det U = 1 for SU(N), we see that the Levi-Civita symbol is invariant.
We can similarly consider €N | which carries N completely antisymmetric
antifundamental indices. For SU(2), the Levi-Civita symbol is €;; = —&ji;
this is the two-index invariant symbol that corresponds to the singlet in the
product

22=1,® 3, (70.31)

where 3 is the adjoint representation.

We can use €7 and ¢;; to raise and lower SU(2) indices. This is another
way to see that there is no distinction between the fundamental represen-
tation 2 and its complex conjugate 2. That is, if we have a field ¢; in the
representation 2, we can get a field in the representation 2 by raising the
index: ¢’ = sijgoj.

The structure constants f2¢ are another invariant symbol. This follows
from (T2)% = —if%e, since we have seen that generator matrices (in any
representation) are invariant. Alternatively, given the generator matrices
in a representation R, we can write

T(R)f% = —i Te(Te[TE, TS)) . (70.32)

Since the right-hand side is invariant, the left-hand side must be as well.
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If we use an anticommutator in place of the commutator in eq. (70.32),
we get another invariant symbol,

AR)d™ = §Te(THTY, T8 (70.33)

where A(R) is the anomaly coefficient of the representation. The cyclic
property of the trace implies that A(R)d®° is symmetric on exchange of
any pair of indices. Using eq. (70.18), we can see that

AR)=-AR) . (70.34)

Thus, if R is real or pseudoreal, A(R) = 0. We also have
AR1®R2) = A(R1) + A(Ra) , (70.35)
A(R1®Rg) = A(R1)D(R2) + D(R1)A(Rz2) . (70.36)

We normalize the anomaly coefficient so that it equals one for the smallest
complex representation. In particular, for SU(/V) with N > 3, the smallest
complex representation is the fundamental, and A(N) = 1. For SU(2), all
representations are real or pseudoreal, and A(R) = 0 for all of them.

REFERENCE NOTES
More group and representation theory can be found in Ramond II.
PROBLEMS
70.1) Verify eq. (70.10).

70.2) a) Use eqs. (70.12) and (70.26) to compute T'(A) for SU(N).

b) For SU(2), the adjoint representation is specified by (T¢)* =
—ig®, Use this to compute T(A) explicitly for SU(2). Does your
result agree with part (a)?

c¢) Consider the SU(2) subgroup of SU(N) that acts on the first two
components of the fundamental representation of SU(N). Under this
SU(2) subgroup, the N of SU(N) transforms as 2 ® (N—2)1’s. Us-
ing eq. (70.26), figure out how the adjoint representation of SU(V)
transforms under this SU(2) subgroup.

d) Use your results from parts (b) and (c) to compute T'(A) for SU(N).
Does your result agree with part (a)?
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70.3) a) Consider the SO(3) subgroup of SO(N) that acts on the first three
components of the fundamental representation of SO(N). Under this
SO(3) subgroup, the N of SO(N) transforms as 3 @& (N—3)1’s. Us-
ing eq. (70.29), figure out how the adjoint representation of SO(N)
transforms under this SO(3) subgroup.

b) Use your results from part (a) and from problem 70.2 to compute
T(A) for SO(N).
70.4) a) For SU(N), we have
NoON=A, &S, (70.37)

where A corresponds to a field with two antisymmetric fundamental
SU(N) indices, ¢;; = —j;, and S corresponds to a field with two
symmetric fundamental SU(NN) indices, ¢;; = +¢j;. Compute D(A)
and D(S).

b) By considering an SU(2) subgroup of SU(N), compute T(A) and
T(S).

c¢) For SU(3), show that A = 3.

d) By considering an SU(3) subgroup of SU(/V), compute A(A) and
A(S).

70.5) Consider a field ¢; in the representation R; and a field y; in the
representation Ro. Their product ¢;xs is then in the direct product
representation R; ® Reo, with generator matrices given by eq. (70.13).

a) Prove the distribution rule for the covariant derivative,
[Du(ex)lir = (Due)ixt + €i(Dux)r - (70.38)
b) Consider a field ¢; in the complex representation R. Show that
Ou(¢"0i) = (Due!)'pi + 0" (Dpugp)i - (70.39)
Explain why this is a special case of eq. (70.38).

70.6) The field strength in Yang-Mills theory is in the adjoint representa-
tion, and so its covariant derivative is

(DpFuw)" = 0,F, —igAS(T)™Fp, . (70.40)
Prove the Bianchi identity,

(DuFup)* + (DyFp)* + (DpFu)* =0. (70.41)
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71 THE PATH INTEGRAL FOR NONABELIAN GAUGE
THEORY

PREREQUISITE: 53, 69

We wish to evaluate the path integral for nonabelian gauge theory (also
known as Yang—Mills theory),

Z(J) /DA etS(Ad) (71.1)
Sun(A, J) = / de [~ 1P Es, 4 geas] (71.2)

In section 57, we evaluated the path integral for U(1) gauge theory by
arguing that, in momentum space, the component of the U(1) gauge field
parallel to the four-momentum k* did not appear in the action, and hence
should not be integrated over. This argument relied on the form of the
U(1) gauge transformation,

Ay(x) = Ay(x) — 0,0 () . (71.3)
In the nonabelian case, however, the gauge transformation is nonlinear,
Ap(@) = U@) Au(@)U' (@) + LU2)9, U (@) , (71.4)
where A, (z) = Aj(z)T*. For an infinitesimal transformation,
Ux) = I —igh(z) + O(6%)
= I —igh"(x)T" + O(6?), (71.5)

we have

Ay(x) = Ay(z) +ig[Au(x),0(x)] — 0.0(x) , (71.6)

or equivalently
Al (z) — Al(z) — gf " AL (2)0(x) — 9,0%(x)

(z)
= Aj(x) = [67°0, + gf A} (2))0%()
() — [6%0y, — igAf (=i f*))6%(2)
= Aj(x) — [67°0, — ig A}, (T3))0°(x)

= Al (z) — Dio°(x) , (71.7)

where D¢ is the covariant derviative in the adjoint representation. We
see the similarity with the abelian case, eq. (71.3). However, the fact that
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it is D,, that appears in eq. (71.7), rather than J,, means that we cannot
account for gauge redundancy in the path integral by simply excluding the
components of AZ that are parallel to k,. We will have to do something
more clever.

Consider an ordinary integral of the form

Z x /d:rdy @) (71.8)

where both = and y are integrated from minus to plus infinity. Because y
does not appear in S(z), the integral over y is redundant. We can then
define Z by simply dropping the integral over v,

Z = /dx @) (71.9)

This is how we dealt with gauge redundancy in the abelian case.
We could get the same answer by inserting a delta function, rather than
by dropping the y integral:

Z = /dx dy 6(y) 5@ | (71.10)

Furthermore, the argument of the delta function can be shifted by an ar-
bitrary function of x, without changing the result:

Z = /dx dyd(y — f(z)) @) (71.11)

Suppose we are not given f(x) explicitly, but rather are told that y = f(x)
is the unique solution, for fixed x, of G(x,y) = 0. Then we can write

6(y — f(2))
0(G(x, = 71.12
(Gla)) = S (11.12)
where we have used a standard rule for delta functions. We can drop the

absoute-value signs if we assume that 0G/Jy is positive when evaluated at
y = f(z). Then we have

7z - / da dy aa—j 5(G) e (71.13)

Now let us generalize this result to an integral over d"x dy. We will need
n functions G;(x,y) to fix all n components of y. The generalization of
eq. (71.13) is

7 = /d”a; d"y det(?GZ) [1,6(Gy) e . (71.14)
Yj
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Now we are ready to translate these results to path integrals over non-
abelian gauge fields. The role of the redundant integration variable y is
played by the set of all gauge transformations 6%(x). The role of the inte-
gration variables x and y together is played by the gauge field AZ(m) The
role of GG is played by a gauge-firing function. We will use the gauge-fixing
function appropriate for R¢ gauge, which is

G(x) = 0'Aj (z) — w(7) , (71.15)

where w?(z) is a fixed, arbitrarily chosen function of z. (We will see how
the parameter £ enters later.) In eq. (71.15), the spacetime argument x and
the index a play the role of the index i in eq.(71.14). Our path integral
becomes

o</DAd t( )nma( ) eiSn (71.16)

where Sy is given by eq. (71.2).

Now we have to evaluate the functional derivative §G?(x)/50°(y), and
then its functional determinant. From egs. (71.7) and (71.15), we find that,
under an infinitesimal gauge transformation,

G(x) — G"(z) — O"DIPO" (x) . (71.17)
Thus we have 56 (x)
T — _aupabsd(. _
T I'Dy6" (x —y) (71.18)

where the derivatives are with respect to x.

Now we need to compute the functional determinant of eq.(71.18).
Luckily, we learned how to do this in section 53. A functional determi-
nant can be written as a path integral over complex Grassmann variables.
So let us introduce the complex Grassmann field ¢*(x), and its hermitian
conjugate ¢®(x). (We use a bar rather than a dagger to keep the notation
a little less cluttered.) These fields are called Faddeev-Popov ghosts. Then
we can write

det (i?(;b /Dch etJen | (71.19)

where the ghost action is Sgp = [ d* 2 Lgn, and the ghost lagrangian is
Loy, = E“@“Dzbcb
= —8“6”Dzbcb
= —0"c"0,c" + ig@“é“Aﬁ(Tﬁ)“bcb

= —0"e"9uc” + gf AL . (71.20)
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We dropped a total divergence in the second line. We see that ¢*(z) has
the standard kinetic term for a complex scalar field. (We need the factor of
i in front of Sy in eq. (71.19) for this to work out; this factor affects only
the overall phase of Z(J), and so we can choose it at will.) The ghost field
is also a Grassmann field, and so a closed loop of ghost lines in a Feynman
diagram carries an extra factor of minus one. We see from eq. (71.20) that
the ghost field interacts with the gauge field, and so we will have such loops.

Since the particles associated with the ghost field do not in fact exist
(and would violate the spin-statistics theorem if they did), it must be that
the amplitude to produce them in any scattering process is zero. This is
indeed the case, as we will discuss in section 74.

We note that in abelian gauge theory, where f®¢ = 0, there is no
interaction term for the ghost field. In that case, it is simply an extra free
field, and we can absorb its path integral into the overall normalization.

We have one final trick to perform. Our gauge-fixing function, G*(x)
contains an arbitrary function w®(z). The path integral Z(J) is, however,
independent of w?(x). So, we can multiply Z(J) by an arbitrary functional
of w, and then perform a path integral over w; the result can change only
the overall normalization of Z(J). In particular, let us multiply Z(J) by

exp {— é /d%w“w“] . (71.21)

Because of the delta-functional in eq. (71.16), it is easy to integrate over w.
The final result for Z(J) is

Z(J) x / DADEDe exp(iSni +iSgh + iS4 ) » (71.22)

where Sy is given by eq.(71.2), Sgp is given by the integral over d'z of
eq. (71.20), and Syt (gf stands for gauge fizing) is given by the integral over
d*z of

Lot = —% _18“AZOVA$ . (71.23)

In the next section, we will derive the Feynman rules that follow from
this path integral.
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72 THE FEYNMAN RULES FOR NONABELIAN GAUGE
THEORY

PREREQUISITE: 71

Let us begin by considering nonabelian gauge theory without any scalar or
spinor fields. The lagrangian is

Lyy = _%FGIWF;Z/
— —%(8” ev _ grAeH _‘_gfabeAauAbu)(auA,ej _ 8I/AZ +ngdeAZA,le)
= —LOPATO,AL + LAV, AL
_ gfabeAauAbuauAle/ _ %92 fabefcdeAauAbuAZAg ) (721)
To this we should add the gauge-fixing term for R¢ gauge,
Lo = — 3 OMASOVAS, (72.2)

Adding egs. (72.1) and (72.2), and doing some integrations-by-parts in the
quadratic terms, we find

Lyui + Lgg = $A%(g,,0% — 0,0,) A + 1¢7TA% 0,0, A%
o gfabcAauAbuauA’c/ o %g2fab6fcdeAauAbuAZAg ] (723)

The first line of eq. (72.3) yields the gluon propagator in R¢ gauge,

< §ab kuk kuk
ab v v
Auy(k) = —k‘2 e (g/u/ - 22 +§ 22 ) . (724)

The second line of eq. (72.3) yields three- and four-gluon vertices, shown in
fig. (72.1). The three-gluon vertex factor is

iV (,q,r) = i(—gf™) (—irugup)
+ [5 permutations of (a,u,p), (b,v,q), (¢,p,r)]

= 9f**l(a=")ugvp + (r—D)uGou + (P—a)pgw] - (72.5)
The four-gluon vertex factor is
iVZIb/cde' _ _,L-g2 fabefcdeg“pgyo
+ [5 permutations of (b,v), (¢,p), (d,0)]
= _Z'.g2 [fabedee(g,upgucr — Guo9vp

)

ace pdbe
+ f4°f (g;w.gpu - .g,uugpo)
)

+ fadefbce(guugcrp — GupYov ] (72.6)



72: The Feynman Rules for Nonabelian Gauge Theory 426

Figure 72.1: The three-gluon and four-gluon vertices in nonabelian gauge
theory.

These vertex factors are quite a bit more complicated that the ones we
are used to, and they lead to rather involved formulae for scattering cross
sections. For example, the tree-level gg — gg cross section (where g is a
gluon), averaged over initial spins and colors and summed over final spins
and colors, has 12,996 terms! Of course, many are identical and the final
result can be expressed much more simply, but this is no help to us at the
initial stages of computation. For this reason, we postpone any attempt
at tree-level calculations until section 81, where we will make use of some
techniques (color ordering and Gervais-Neveu gauge) that, combined with
spinor-helicity methods, greatly reduce the necessary labor.

For loop calculations, we need to include the ghosts. The ghost la-
grangian is

Lon = — 0Dl
= OOyt + igdhe AL(T) e
= —OMTDuc + g f AL (72.7)
The ghost propagator is

. §ab
A (k) = e (72.8)

Because the ghosts are complex scalars, their propagators carry a charge
arrow. The ghost-ghost-gluon vertex shown in fig. (72.2); the associated
vertex factor is

iViP(a.r) = i(gf ") (~iqu)

= gfabcqu . (72.9)
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Figure 72.2: The ghost-ghost-gluon vertex in nonabelian gauge theory.

] i
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Figure 72.3: The quark-quark-gluon vertex in nonabelian gauge theory.

If we include a quark coupled to the gluons, we have the quark la-
grangian
Ly = z@i@ij@j —m¥, ¥,
= iUV, — mW, U, + gAZWZ-’y“TZ-‘}\I/j ) (72.10)
The quark propagator is

G (¢ +m)di;
Sii = 7F. 72.11
() = A0 (12.11)
The quark-quark-gluon vertex shown in fig. (72.3); the associated vertex
factor is
Z'VZ-G = igy"T3; . (72.12)

If the quark is in a representation R other than the fundamental, then T3
becomes (T7);;-

PROBLEMS

72.1) Consider a complex scalar field ¢; in a representation R of the gauge
group. Find the vertices that involve this field, and the associated
vertex factors.
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73 THE BETA FUNCTION IN NONABELIAN GAUGE
THEORY

PREREQUISITE: 70, 72

In this section, we will do enough loop calculations to compute the beta
function for the Yang-Mills coupling g.
We can write the complete lagrangian, including Z factors, as

L = 3Z3A%(g,,0° — 0,0,) A" + 3671A%9,0,A™

_ ZgggfabcAaMAbuaMA,cj o %Z4gg2fabef6deAauAbuAZAg

— Zyd"C0,C" + Zy g Ao CUCP

+ ’LZQEZa\I’Z — meEZ\IfZ + ZlgAZEZ")/“ECJL-\Ifj . (731)
Note that the gauge-fixing term in the first line does not need a Z factor;
we saw in section 62 that the {-dependent term in the propagator is not
renormalized.

We see that g appears in several places in £, and gauge invariance leads

us to expect that it will renormalize in the same way in each place. If

we rewrite £ in terms of bare fields and parameters, and compare with
eq. (73.1), we find that

212 2-~€ 212' 2~E Z?%g 2~€ Z4g 2~E
= =7 = 73.2
Z22239,U g p Zgg“ Zgg“ > ( )

9% =

where d = 4—¢ is the number of spacetime dimensions. To prove eq. (73.2),
we have to derive the nonabelian analogs of the Ward identities, known as
Slavnov-Taylor identities. For now, we simply assume that eq. (73.2) holds;
we will return to this issue in section 74.

The simplest computation to perform is the renormalization of the
quark-quark-gluon vertex. This is partly because much of the calculation
is the same as it is in spinor electrodynamics, and so we can make use of
our results in section 62. We then must compute Z;, Zs, and Z3. We will
work in Feynman gauge, and use the MS renormalization scheme.

We begin with Z3. The O(g?) corrections to the fermion propagator
are shown in fig. (73.1). These diagrams are the same as in spinor elec-
trodynamics, except for the factors related to the color indices. The loop
diagram has a color-factor of (T%T%);; = C(R)d;;. (Here we have allowed
the quark to be in an arbitrary representation R; for notational simplicity,
we will continue to omit the label R on the generator matrices.) In section
62, we found that, in spinor electrodynamics, the divergent part of this
diagram contributes —(e?/872¢)y to the electron self-energy (). Thus
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Figure 73.1: The one-loop and counterterm corrections to the quark prop-
agator in quantum chromodynamics.
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Figure 73.2: The one-loop corrections to the quark—quark—gluon vertex in
in quantum chromodynamics.

in Yang—Mills gauge theory, the divergent part of this diagram contributes
—(g?/87%e)C(R)é;;p to the quark self-energy ¥;;(p). This divergent term
must be cancelled by the counterterm contribution of —(Z,—1)d;;. There-
fore, in Yang—Mills theory, with a quark in the representation R, using
Feynman gauge and the MS renormalization scheme, we have

Zy=1-CR)Z =+ 0(gh) . (73.3)

Moving on to the quark-quark-gluon vertex, we the contributing one-
loop diagrams are shown in fig. (73.2). The first diagram is again the same
as it is in spinor electrodynamics, except for the color factor of (TbT“Tb)ij.
We can simplify this via

Tbad — b (TbTa 4 fabcTc)

= C(R)T* + Li fb[1°, 17

= CR)T* + 3(if*) (i f )T

= C(R)T* — 5(T)*(TH "1

= [C(R) - sT(A)] T (73.4)

In the second line, we used the complete antisymmetry of f®¢ to replace
T°T° with %[Tb, T¢]. To get the last line, we used Tr(T¢T¢) = T(A)5%¢. In
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section 62, we found that, in spinor electrodynamics, the divergent part of
this diagram contributes (e?/8m2¢)iey" to the vertex function iVA(p/, p).
Thus in Yang-Mills theory, the divergent part of this diagram contributes

[CR) = 3T(A)] ghoz ig T (73.5)
to the quark-quark-gluon vertex function z'V?]“ (p’,p). This divergent term,
along with any divergent term from the second diagram of fig. (73.2), must
be cancelled by the tree-level vertex iZ;gy*1T}.

Now we must evaluate the second diagram of fig. (73.2). The divergent
part is independent of the external momenta, and so we can set them to
zero. Then we get a contribution to z'VZC-”j“ (0,0) of

. abe (e d' M)
(29)29f ’ (T Tb)ij (%)3/ (2m)* Zgézé;:_n);)
X [({=(=0))"g"" + (=£=0)"g" + (0=0)"g"] . (73.6)

We can simplify the color factor with the manipulations of eq. (73.4),

fabcTch — %fabc[Tc’ Tb]

— %ifabchded
= —2iT(A)T" . (73.7)
The numerator in eq. (73.6) is
NF = 4,(=vL7 +m)y, (201 g"P — 07 gPH — 1P gh”) . (73.8)

We can drop the terms linear in ¢, and make the replacement ¢°/* —
d='0?¢°*. Thus we have

N — —d™ 2 (115 7) (297197 = g7 g™ — g7 g™)
— —=d7'C (29" Y — 7Y W — 17 )
— —d % (2(d—2) + d+ d)y* . (73.9)

Because we are only keeping track of the divergent term, we are free to set
d = 4, which yields
NH — —3024H (73.10)

Using egs. (73.7) and (73.10) in eq. (73.6), we get

d* 1
(2m)4 £2(024-m?)

3T(A) g’ i’}%“/ (73.11)
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Figure 73.3: The one-loop and counterterm corrections to the gluon prop-
agator in quantum chromodynamics.

After continuing to d dimensions, the integral becomes i/87%c + O(eY).
Combining egs. (73.5) and (73.6), we find that the divergent part of the
quark-quark-gluon vertex function is

2 2
a, g g "
Vi (0,0)aiy = <Z1 + {C’(R)—%T(A)} e+ 3T(A) %> gTaAb .
(73.12)
Requiring V{#(0,0) to be finite yields
9> 1 s
Zi=1-[CR) +T(A)] T 2 +0(s" (73.13)

in Feynman gauge and the MS renormalization scheme.

Note that we have found that Z; does not equal Z5. In electrodynamics,
we argued that gauge invariance requires all derivatives in the lagrangian
to be covariant derivatives, and that both pieces of D, = J, —ieA, should
therefore be renormalized by the same factor; this then implies that Z;
must equal Zs. In Yang—Mills theory, however, this argument fails. This
failure is due to the introduction of the ordinary derivative in the gauge-
fixing function for R¢ gauge: once we have added Ly and Lgy, to Ly, we
find that both ordinary and covariant derivatives appear. (This is especially
obvious for Lgp,.) Therefore, to be certain of what gauge invariance does and
does not imply, we must derive the appropriate Slavnov-Taylor identities,
a subject we will take up in section 74.

Next we turn to the calculation of Z3. The O(g?) corrections to the
gluon propagator are shown in fig. (73.3). The first diagram is proportional
to [ d* /(% as we saw in section 65, this integral vanishes after dimensional
regularization.
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The second diagram yields a contribution to iII* (k) of

1 2 pacdpbed (1 2/ d't NH

where the one-half is a symmetry factor, and

NI = [(+0=(=0)9" + (= (R g™ + (—R)=(+0) 9]
X[~k =) —0)" gpo + (E=k) 05" + (k—(—k—))56",)
= —[(20+k)! g7 — (L—k)Pg°H — (0+2k)° g"?]
X[(2048)"Gpo — (LK) b5 — (€+2k)0",] (73.15)

The color factor can be simplified via f*?fbed = T(A)§5%. We combine de-
nominators with Feynman’s formula, and continue to d = 4 — ¢ dimensions;
we now have

A)s®® 5/ d:z:/ T +D) (73.16)

where D = x(1—z)k? and ¢ = £ + zk. The numerator is

N* = —[(2¢+(1-22)k)"¢"7 — (¢—(1+2)k) g — (q+(2—2)k)"g"]
x[(2a+(1=22)k)" gps — (a—(1H+2)k) 006" — (q+(2=2)k)50" ] -

(73.17)
Terms linear in ¢ will integrate to zero, and so we have
NM — —2¢°g" — (4d—6)q"q"
= [(1+2)* + (2-2)*|k?g"
— [d(1—22)? + 2(1—2x)(1+2)
—2(2—2)(142) — 2(2—2)(1—-22) K"k . (73.18)

Since we are only interested in the divergent part, we can go ahead and set
d = 4 in the numerator. We can also make the replacement ¢*¢” — %qz gt
Then we find

NW — — 3g%g" — (5—2z+22%)k*g" + (2+10z—102%)k k" . (73.19)

We saw in section 62 that, when integrated against (¢? + D)72, ¢ can be
replaced with (2—1)~'D; in our case this is —2z(1—2)k?. This yields

N® — — (5—11z+112%)k*g" + (24+102—1022) kK" . (73.20)
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We now use

o [ d% 1 i 0
a / 2m)i (@2 + D)2 8l +0() (73:21)
in eq. (73.16) to get
_ig" T(A)§% ! /1 dx N* + O(°) . (73.22)
1672 cJo

Performing the integral over z yields

PN (—L2k2gm + Liri”) (73.23)
1672 e\TEE I '
as the divergent contribution of the second diagram to iIT#% (k).

Next we have the third diagram of fig. (73.3), which makes a contribu-
tion to iT1*% (k) of

4 v
(—1)5721"“‘11‘"’“(%)2 / (%4 (ﬁgJ(rﬁZf? : (73.24)

where the factor of minus one is from the closed ghost loop. The color factor
is facdfbde — _T(A)§%. After combining denominators, the numerator
becomes

L+ = (g+ (1—2)k)!(q — xk)¥
— %q2g’“’ —xz(l—z)k"E"
— —%x(l—:n)k2g’“’ —z(l—z)kIE" . (73.25)

We then use eq. (73.21) in eq. (73.24); performing the integral over x yields

)
ig 1
— aa T(A)* 2 (— k%" — Fhk”) (73.26)
as the divergent contribution of the third diagram to iI1#V (k).

Finally, we have the fourth diagram. This is the same as it is in spinor
electrodynamics, except for the color factor of Tr(T%T%) = T(R)§%. If
there is more than one flavor of quark, each contributes separately, leading

to a factor of the number of flavors ny. Then, using our results in section

62, we find
: 2
o g abl 2 uv v
o3 T (R)5 (kg™ — k&) (73.27)

as the divergent contribution of the fourth diagram to iIT#V (k).
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Adding up egs. (73.23), (73.26), and (73.27), as well as the counterterm
contriubtion, we find that the gluon self-energy is transverse,

H,uz/ab(k,) — H(k,2)(k,2guu _ k,,uku)éab , (7328)
and that
2 5 4 92 1 4
H()an = — (Zs=1) + [§T(A) = 4T (®)] 25— +0(g") . (73.29)
Thus we find
Zs =14 [37(A) -t )] L2 L 1 04 73.30
=1+ [3T(A) - 4 TR)] L - +0(s")  (7330)

in Feynman gauge and the MS renormalization scheme.
Let us collect our results:

7 =1-[C(R)+T(A)] 89—; % +0(g") (73.31)
92 1 4
Zy =1-C(R) 3 = +0(g"). (73.32)
5 4 9> 1 4
Zy =1+ [3T(A) - 4n.T(R)] o -+ 0(gh) (73.33)

a=-—. (73.34)

Then we have

afic . (73.35)

Let us write

1 > Gh(a)

In(Z;12,%7%) = — 73.36
n( 3 22 1) n;l o ( )

Then we have -
lnaozan—Ela)—l—lna—l—z—:lnﬂ. (73.37)

n=1

From egs. (73.31-73.33), we get

«

Gi(a) = —[XT(A) - 4n.T(R)] 5 +0(@*). (73.38)

Then, the general analysis of section 28 yields

Bla) = ?Gy(a), (73.39)
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where the prime denotes differentiation with respect to . Thus we find

2
Bla) = —[HT(A) — 4n, T(R)] ;— +0(?) . (73.40)
i
in nonabelian gauge theory with ny Dirac fermions in the representation R
of the gauge group.
We can, if we like, restate eq. (73.40) in terms of g as

3
Blo) = ~[HT(A) — 4T (®R)] ;5 +0(") . (7341
To go from eq. (73.40) to eq. (73.41), we use a = ¢g*/4w and & = gg/2m,
where the dot denotes d/d1In p.

In quantum chromodynamics, the gauge group is SU(3), and the quarks
are in the fundamental representation. Thus T'(A) = 3 and T(R) = 3, and
the factor in square brackets in eq. (73.41) is 11 — %nF So for ny < 16, the
beta function is negative: the gauge coupling in quantum chromodynamics
gets weaker at high energies, and stronger at low energies.

This has dramatic physical consequences. Perturbation theory cannot
serve as a reliable guide to the low-energy physics. And indeed, in nature we
do not see isolated quarks or gluons. (Quarks, in particular, have fractional
electric charges and would be easy to discover.) The appropriate conclusion
is that color is confined: all finite-energy states are invariant under a global
SU(3) transformation. This has not yet been rigorously proven, but it is
the only hypothesis that is consistent with all of the available theoretical
and experimental information.

PROBLEMS

73.1) Compute the beta function for Yang-Mills theory with a complex
scalar field in the representation R of the gauge group. Hint: all the
real work has been done already in this section, problem 72.1, and
section 66.

73.2) Write down the beta function for the gauge coupling in Yang-Mills
theory with several Dirac fermions in the representations R,;, and
several complex scalars in the representations R;-.

73.3) Compute the one-loop contributions to the anomalous dimensions of
m, U, and AH.
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74 BRST SYMMETRY

PREREQUISITE: 70, 71

In this section we will rederive the gauge-fixed path integral for nonabelian
gauge theory from a different point of view. We will discover that the
complete gauge-fixed lagrangian, £ = Lyy + Lgr + Lgn, still has a residual
form of the gauge symmetry, known as Becchi- Rouet-Stora- Tyutin symme-
try, or BRST symmetry for short. BRST symmetry can be used to derive
the Slavnov-Taylor identities that, among other useful things, show that
the coupling constant is renormalized by the same factor at each of its ap-
pearances in £. Also, we can use BRST symmetry to show that gluons
whose polarizations are not both spacelike and transverse (perpendicular
to the four-momentum) decouple from physical scattering amplitudes (as
do particles that are created by the ghost field).

Consider a nonabelian gauge theory with a gauge field Af(z), and a
scalar or spinor field ¢;(x) in the representation R. Then, under an in-
finitesimal gauge transformation parameterized by 0%(x), we have

§A%(x) = —D™60"(x) (74.1)
0gi(z) = —igh*(z)(T)i;0;(x) - (74.2)

We now introduce a scalar Grassmann field ¢*(z) in the adjoint represen-
tation; this field will turn out to be the ghost field that we introduced in
section 71. We define an infinitesimal BRST transformation via

dpAj(x) = Dzbcb(aj) (74.3)
= 0,0(w) — g AL @) ) (74.9)
dpgi(x) = ige”(x)(T3)ijd; () - (74.5)

This is simply an infinitesimal gauge transformation, with the ghost field
¢®(z) in place of the infinitesimal parameter —6%(x). Therefore, any combi-
nation of fields that is gauge invariant is also BRST invariant. In particular,
the Yang—Mills lagrangian Ly, (including the appropriate lagrangian for
the scalar or spinor field ¢;) is BRST invariant,

We now place a further restriction on the BRST transformation: we
require a BRST variation of a BRST variation to be zero. This requirement
will determine the BRST transformation of the ghost field. Consider

O (0di) = ig(0nc”)(T5)ij 05 — ige® (1%)ij0nd; - (74.7)
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There is a minus sign in front of the second term because dg acts as an
anticommuting object, and it generates a minus sign when it passes through
another anticommuting object, in this case ¢*. Using eq. (74.5), we have

05 (0nhi) = ig(0uc™)(T)ijb; — g (TETR)indrc - (74.8)

We now use c’c® = —c%" in the second term to replace T¢T? with its anti-

symmetric part, %[Tg, 1Y) = % feeTe. Then, after relabeling some dummy
indices, we have

0n(6ndi) = ig(dnc” + 39 ) (TF)id5 - (74.9)
The right-hand side of eq. (74.9) will vanish for all ¢;(z) if and only if
dpc(z) = —%gf“bcc“(a;)cb(m) . (74.10)

We therefore adopt eq. (74.10) as the BRST variation of the ghost field.
Let us now check to see that the BRST variation of the BRST variation
of the gauge field also vanishes. From eq. (74.4) we have

05 (0 A%) = (670, — gf**AS) (0uc”) — gf (5. A5)c
— Dzb(éBcb) _ gfabc(DdeCd)Cb
= Dzb((sBCb) _ gfabC(aMcc)cb + g2fab0fcdeAchcb ) (74'11)

We now use the antisymmetry of % in the second term to replace (8Mcc)cb
with its antisymmetric part,

(auc[c)cb} = %(&Lcc)cb - %(@ch)cc
= %(@tcc)cb + %Cc(aucb)
= 10u(c°c) . (74.12)

Similarly, we use the antisymmetry of ¢?c® in the third term to replace
fabefede with its antisymmetric part,

S(peteede — peiepebe) = —[(TR)(Td) — (Te(r) )
_ _%,L-fbdh(Tliz)ae
_ _%fbdhfhae 7 (74.13)
which is just the Jacobi identity. Now we have
5s(05A%) = Dzb(&acb) _ %gfabC(aucccb) _ %g2fbdhfhaeAzcdcb
_ Dzh(éBCh) — (899, — gfaheAz)%gfbchcccb

= Dzh(éBch + %gbehcbcc) . (74.14)
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We see that this vanishes if the BRST variation of the ghost field is given
by eq. (74.10).
Now we introduce the antighost field ¢*(z). We take its BRST trans-
formation to be
0sc*(x) = BY(x) , (74.15)

where B*(z) is a commuting (as opposed to Grassmann) scalar field, the
Lautrup-Nakanishi auziliary field. Because B*(x) is itself a BRST variation,
we have

s B () = 0. (74.16)

Note that eq. (74.15) is in apparent contradiction with eq. (74.10). How-
ever, there is actually no need to identify ¢%(x) as the hermitian conjugate
of ¢*(z). The role of these fields (in producing the functional determinant
that must accompany the gauge-fixing delta functional) is fulfilled as long
as ¢®(x) and ¢®(x) are treated as independent when we integrate them:;
whether or not they are hermitian conjugates of each other is irrelevant.
We identified them as hermitian conjugates in section 71 only for the sake
of familiarity in deriving the associated Feynman rules. Now, however, we
must abandon this notion. In fact, it will be most convenient to treat ¢*(z)
and ¢*(z) as two real Grassmann fields.

Now that we have introduced a collection of new fields—c*(z), ¢*(z),
and B*(x)—what are we to do with them?

Consider adding to Lvy a new term that is the BRST variation of some
object O,

L= Lyy+ 050 . (74.17)

Clearly £ is BRST invariant, because Ly is, and because d5(050) = 0.
We will see that adding dzO corresponds to fixing a gauge; which gauge we
get depends on O.

We will choose

O(x) = ¢(2)[3€B"(x) - G“(w)] , (74.18)

where G*(z) is a gauge-fixing function, and ¢ is a parameter. If we further
choose
G%(x) = 0'Aj () , (74.19)

then we end up with R¢ gauge.
Let us see how this works. We have

050 = (050" [ 3B — 0"A5| — & [16(5aB) — O"(5uAf)| . (74.20)

There is a minus sign in front of the second set of terms because dy acts
as an anticommuting object, and so it generates a minus sign when it
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passes through another anticommuting object, in this case ¢*. Now using
eqgs. (74.3), (74.15), and (74.16), we get

050 = 3EB*B* — BUOMAY + 0" D" . (74.21)

We see that the last term is the ghost lagrangian L, that we found in
section 71. If we like, we can integrate the ordinary derivative by parts, so
that it acts on the antighost field,

350 — LB B — B OMAS — 9" D . (74.22)

Examining the first two terms in eq. (74.22), we see that no derivatives
act on the auxiliary field B%(x). Furthermore, it appears only quadratically
and linearly in 65O. We can, therefore, perform the path integral over it;
the result is equivalent to solving the classical equation of motion

9(00)
0B%(x)

=§{B%(z) — 0"Aj(x) =0, (74.23)

and substituting the result back into dgzO. This yields
050 — —LETTOPALOVAG — 0Me" DIV (74.24)

We see that the first term is the gauge-fixing lagrangian Ly that we found
in section 71.

We now take note of all the symmetries of the action S = [ d* L, where
L = Lyy+650. With our choice of O, they are: (1) Lorentz invariance; (2)
the discrete symmetries of parity, time reversal, and charge conjugation; (3)
global gauge invariance (that is, invariance under a gauge transformation
with a spacetime-independent parameter 6¢); (4) BRST invariance; (5)
ghost number conservation; and (6) antighost translation invariance.

Global gauge invariance simply requires every term in £ to have all
the group indices contracted in a group-invariant manner. Ghost number
conservation corresponds to assigning ghost number +1 to ¢*, —1 to ¢*, and
zero to all other fields, and requiring every term in £ to have ghost number
zero. Antighost translation invariance corresponds to ¢%(x) — ¢*(x) + x,
where x is a Grassmann constant. This leaves £ invariant because, in the
form of eq. (74.22), £ contains only a derivative of ().

We now claim that £ already includes all terms consistent with these
symmetries that have coefficients with positive or zero mass dimension.
This means that we will not encounter any divergences in perturbation
theory that cannot be absorbed by including a Z factor for each term
in £. Furthermore, loop corrections should respect the symmetries, and
BRST symmetry requires that g renormalize in the same way at each of
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its appearances. (Filling in the mathematical details of these claims is a
lengthy project that we will not undertake.)

We can regard a BRST transformation as infinitesimal, and hence con-
struct the associated Noether current via the standard formula

0= W%w’) , (74.25)

where ®;(x) stands for all the fields, including the matter (scalar and/or
spinor), gauge, ghost, antighost, and auxiliary fields. We can then define
the BRST charge

Qs = / d*x jo () . (74.26)

If we think of ¢%(z) and ¢%(x) as independent hermitian fields, then Qg is
hermitian. The BRST charge generates a BRST transformation,

i[Qp, A% (2)] = D’ () (74.27)
i{Qp, ()} = —59f*(2)c"(x) |
i{Qsp, % (x)} = B%(x) ,

i[Qs, B*(x)] = 0,

i[Qp, ¢i(2)] = ige® (x)(T)ijdj(x) -

where {A, B} = AB+ BA is the anticommutator, and [, ]+ is the commu-
tator if ¢; is a scalar field, and the anticommutator if ¢; is a spinor field.
Also, since the BRST transformation of a BRST transformation is zero, Qg
must be nilpotent,

Q2=0. (74.32)

Eq. (74.32) has far-reaching consequences. In order for it to be satisfied,
many states must be annihilated by @Qg; such states are said to be in the
kernel of Qg. A state |¢) which is annihilated by Qg may take the form
of Qs acting on some other state; such states are said to be in the image
of Q. There may be some states in the kernel of QJg that are not in the
image; such states are said to be in the cohomology of Q5. Two states in
the cohomology of Qg are identified if their difference is in the image; that
is, if Qg|Y)) = 0 but |¢)) # Qzlx) for any state |x), and if [¢') = |¢) + Qs|C)
for some state |¢), then we identify |¢)) and [¢)) as a single element of the
cohomology of Q.

Note any state in the image of Qg has zero norm, since if |[¢)) = Qg|x),
then (¢[y) = (¥|Qs|x) = 0. (Here we have used the hermiticity of Qg to
conclude that Qg|y) = 0 implies (¢|Qg = 0.)
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Now consider starting at some initial time with a normalized state [1))
in the cohomology: (¥|Y) =1, QglY) =0, [¢) # Qs|x). (This last equation
is actually redundant, because if [)) = Qg|x) for some state |x), then |)
has zero norm.) Since £ is BRST invariant, the hamiltonian that we derive
from it must commute with the BRST charge: [H,Qg] = 0. Thus, an
initial state |¢) that is annihilated by Qg must still be annihilated by it at
later times, since Qpe™t|y)) = e HtQy ) = 0. Also, since unitary time
evolution does not change the norm of a state, the time-evolved state must
still be in the cohomology.

We now claim that the physical states of the theory correspond to the
cohomology of Q. We have already shown that if we start with a state
in the cohomology, it remains in the cohomology under time evolution.
Consider, then, an initial state of widely separated wave packets of incoming
particles. According to our discussion in section 5, we can treat these states
as being created by the appropriate Fourier modes of the fields, and ignore
interactions. We will suppress the group index (because it plays no essential
role when interactions can be neglected) and write the mode expansions

Ay = 3 / dk [ ()ar ()™ + eh(l)al (e ], (74.33)

o(z) = [ dk :c(k)e““ + cT(k)e_““} , (74.34)
o) = [ dk [bk)e™ + b ()e ] (74.35)
(@) = [ dk[ag(k)e™ + al(k)e~ k] | (74.36)

Here, for maximum simplicity, we have taken ¢(x) to be a real scalar field.
(This is possible if R is a real representation.) In eq.(74.33), we have
included four polarization vectors that span four-dimensional spacetime.
For k* = (w,k) = w(1,0,0,1), we choose these four polarization vectors to
be

(1,0,0,1),

[©)
V
=

Il

S

2

el (k) = 55(1,0,0,-1) ,

o
i S
G
Il
S S

(07 17 _ia 0) )

e’ (k) = =55(0,1,+4,0) . (74.37)

S

The first two of these, > and <, are lightlike vectors; €4 (k) is parallel to
k#, and €% (k) is spatially opposite. The latter two, + and —, are spacelike
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and transverse: they correspond to physical photon polarizations of definite
helicity.

We set g = 0, plug eqgs. (74.33-74.36) into eqs. (74.27-74.31), and use
eq. (74.23) to eliminate the auxiliary field. Matching coefficients of e~
we find

Q. al (K)] = V2w dys ¢l (k) (74.38)
{Qs,c'(K)} =0, (74.39)
{Qs, b (K)} = ¢ WVa2wal (k) , (74.40)
[Qs, al (k)] = 0. (74.41)

Consider a normalized state |1) in the cohomology: (¢|¢) = 1, @gly) = 0.
Eq. (74.38) tells us that if we add a photon with the unphysical polarization
> by acting on |¢) with a]; (k), then this state is not annihilated by Qg;
hence the state a]; (k)|¢) is not in the cohomology. Eq. (74.40) tells us that
the state aL( k)|) is proportional to Qub'(k)[1)); hence the state a<( )|)
1s also not in the cohomology. On the other hand, the states ai( )|®) and

( )|1) are annihilated by Qg, but they cannot be written as Qg acting
on some other state; hence these states are in the cohomology Also, by
similar reasoning, the state with one extra ¢ particle, a¢( )|1), is in the
cohomology.

Eq. (74.38) tells us that if we add a ghost partlcle by acting on |[v)
with ¢f(k), then this state is proportional to QBa>( )|1); hence the state
cf(k)|¢) is not in the cohomology. Eq.(74.40) tells us that if we add an
antighost particle by acting on |¢) with bf(k), then this state is not anni-
hilated by Qg; hence the state bf(k)|1) is also not in the cohomology.

We conclude that the only particle creation operators that do not take
a state out of the cohomology are aL(k), aﬂ_ (k), and a' (k). Of course, it
is precisely these operators that create the expected physical particles.

Finally, we note that the vacuum |0) must be in the cohomology, because
it is the unique state with zero energy and positive norm.

Thus we can conclude that we can build an initial state of widely sep-
arated particles that is in the cohomology only if we do not include any
ghost or antighost particles, or photons with polarizations other than +
and —. Since a state in the cohomology must evolve to another state in the
cohomology, no ghosts, antighosts, or unphysically polarized photons can
be produced in the scattering process.

REFERENCE NOTES

A detailed treatment of BRST symmetry can be found in Weinberg I1.
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PROBLEMS

74.1) The creation operator for a photon of positive helicity can be written
as

ol (k) = —i e (k / e et 5 A () (74.42)

Consider the state a Jr( )|1), where |¢) is in the BRST cohomology.
Define a gauge-transformed polarization vector

el (k) = el (k) + k", (74.43)

where ¢ is a constant, and a corresponding creation operator &1 (k).
Show that

il (l)y) = al (1)) + Qulx) , (74.44)

which implies that @/ Y (k)]¢) and a +(k)|1[)> represent the same element
of the cohomology, and hence are physically equivalent. Find the state

X)-
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75 CHIRAL GAUGE THEORIES AND ANOMALIES

PREREQUISITE: 70, 72

So far, we have only discussed gauge theories with Dirac fermion fields.
Recall that a Dirac field ¥ can be written in terms of two left-handed Weyl

fields x and & as
X
U= <§T> . (75.1)

If U is in a representation R of the gauge group, then y and &' must be as
well. Equivalently, y must be in the representation R, and £ must be in the
complex conjugate representation R. (For an abelian theory, this means
that if ¥ has charge +@Q, then x has charge +@Q and & has charge —(Q).)
Thus a Dirac field in a representation R is equivalent to two left-handed
Weyl fields, one in R and one in R.

If the representation R is real, then we can have a Majorana field

wz<$> (75.2)

instead of a Dirac field; the left-handed Weyl field ¥ and and its hermitian
conjugate ¢! are both in the representation R. Thus a Majorana field in a
real representation R is equivalent to a single left-handed Weyl field in R.
Now suppose that we have a single left-handed Weyl field v in a complex
representation R. Such a gauge theory is automatically parity violating
(because the right-handed hermitian conjugate of the left-handed Weyl field
is in an inequivalent represetnation of the gauge group), and is said to be
chiral. The lagrangian is
L =ip'e" Dy — TFFS, (75.3)
where D), = 0, —igA}Tg. Since T is a hermitian matrix (even when R
is a complex representation), iné“DMw is hermitian (up to a total diver-
gence, as usual). We cannot include a mass term for 1, though, because
iy transforms as R ® R, and R ® R does not contain a singlet if R is
complex. Thus, ¥ is not gauge invariant. But without a mass term, this
lagrangian would appear to possess all the required properties: Lorentz
invariance, gauge invariance, and no terms with coefficients with negative
mass dimension.
However, it turns out that most chiral gauge theories do not exist as
quantum field theories; they are anomalous. The problem can ultimately
be traced back to the functional measure for the fermion field; it turns out
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that this measure is, in general, not gauge invariant. We will explore this
surprising fact in section 77.

For now we will content ourselves with analyzing Feynman diagrams.
We will find an insuperable problem with gauge invariance at the one-loop
level that afflicts most chiral gauge theories.

We will work with the simplest possible example: a U(1) theory with a
single Weyl field ¢ with charge +1. The lagrangian is

L =it (0, —igAu ) — LFWE,, . (75.4)

We can use the following trick to write this theory in terms of a Dirac field

. We note that
(0
PU = NE (75.5)

where P, = %(1—75) is the left-handed projection matrix, does not involve
the right-handed components of ¥. Then we can write eq. (75.4) as

L =iUy"(8, —igA,) P,V — LF™E,, (75.6)

and treat ¥ as a Dirac field when we derive the Feynman rules.
To better understand the physical consequences of eq. (75.5), consider
the case of a free field. The mode expansion is

P(@) = X [ dp [bup) Pus(p)e™ + di(p) Puos(p)e ] . (75.7)
s==+

For a massless field, we learned in section 38 that P ui(p) = 0 and
Pov_(p) =0. Thus we can write eq. (75.7) as

Pv(@) = [ dp [b-(0)u- () +db o (pre ] . (75

Eq. (75.8) shows us that there are only two kinds of particles associated with
this field (as opposed to four with a Dirac field): bl (p) creates a particle
with charge +1 and helicity —1/2, and dl(p) creates a particle with charge
—1 and helicity +1/2. In this theory, charge and spin are correlated.

We can easily read the Feynman rules off of eq.(75.6). In particular,
the fermion propagator in momentum space is — P, j/p?, and the fermion—
fermion—photon vertex is igv* P,.

When we go to evaluate loop diagrams, we need a method of regulat-
ing the divergent integrals. However, our usual choice, dimensional reg-
ularization, is problematic, due to the close connection between 5 and
four-dimensional spacetime. In particular, in four dimensions we have

Trlys vy 'y y) = —4ieh? (75.9)
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+ AAN

Figure 75.1: The one-loop and counterterm corrections to the photon prop-
agator.

where £0123 = 1. Tt is not obvious what should be done with this formula

in d dimensions. One possibility is to take d > 4 and define v5 = i7"y'y2~3.
Then eq. (75.9) holds, but with each of the four vector indices restricted to
span 0, 1, 2, 3. We also have {y*,v5} = 0 for p =0,1,2,3, but [y*,75] =0
for p > 3. This approach is workable, but cumbersome in practice.

It is therefore tempting to abandon dimensional regularization in favor

of, say, Pauli—Villars regularization, which involves the replacement

PLﬁ—>PL<_—¢ _WHA). (75.10)

P2 2 p2+ A2

Pauli—Villars regularization is equivalent to adding an extra fermion field
with mass A, and a propagator with the wrong sign (corresponding to
changing the signs of the kinetic and mass terms in the lagrangian). But,
a Dirac field with a chiral coupling to the gauge field cannot have a mass,
since the mass term would not be gauge invariant. So, in a chiral gauge
theory, Pauli-Villars regularization violates gauge invariance, and hence is
unacceptable.

Given the difficulty with regulating chiral gauge theories (which is a
hint that they may not make sense), we will sidestep the issue for now, and
see what we can deduce about loop diagrams without a regulator in place.

Consider the correction to the photon propagator, shown in fig. (75.1).
We have

(1) = (060 (1) [ o
—i(Z3—1) (K2 g™ — kMEY) + O(g%) , (75.11)
where the numerator is
N = Te[P,(f+¥)y" PP S P (75.12)

We have P2 = P, and P,y* = 4" Py (and hence P,y*y" = y*4"P,), and so
all the P.’s in eq. (75.12) can be collapsed into just one; this is generically
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true along any fermion line. Thus we have
NH = Tr[(f+F)y"f~" P . (75.13)

The term in eq. (75.13) with P, — 5 simply yields half the result that we
get in spinor electrodynamics with a Dirac field.

The term in eq. (75.13) with P, — —%75, on the other hand, yields a
vanishing contribution to IT*” (k:) To see this, first note that

NP — =3 T[(f+ )" 17" 5]
= 2isa“ﬁ”(€—|—k)a€5
= 2§kl . (75.14)

Thus we have

d4€

— (Z3—1)(K*g"" — K*EY) + O(g ) . (75.15)

The integral is logarithmically divergent. But, it carries a single vector
index (3, and the only vector it depends on is k. Therefore, any Lorentz-
invariant regularization must yield a result that is proportional to kg. This
then vanishes when contracted with e*%k,. We therefore conclude that,
at the one-loop level, the contribution to IT**(k) of a single charged Weyl
field is half that of a Dirac field. This is physically reasonable, since a Dirac
field is equivalent to two charged Weyl fields.

Nothing interesting happens in the one-loop corrections to the fermion
propagator, or the fermion—fermion—photon vertex. There is simply an
extra factor of P, along the fermion line, which can be moved to the far
right. Except for this factor, the results exactly duplicate those of spinor
electrodynamics.

All of this implies that a single Weyl field makes half the contribution of
a Dirac field to the leading term in the beta function for the gauge coupling.

Next we turn to diagrams with three external photons, and no external
fermions, shown in fig. (75.2). In spinor electrodynamics, the fact that the
vector potential is odd under charge conjugation implies that the sum of
these diagrams must vanish; see problem 58.2. For the present case of a
single Weyl field, there is no charge-conjugation symmetry, and so we must
evaluate these diagrams.

The second diagram in fig. (75.2) is the same as the first, with p < ¢
and p < v. Thus we have

V) = (0 () [ s

2m)1 (—p)22(l+q)?
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l-p I+p
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Figure 75.2: One-loop contributions to the three-photon vertex.

+ (p, = q,v) +0(g°) (75.16)

where
NP = Te{(— -+~ (—f~417 P, (75.17)

The term in eq. (75.17) with P, — % simply yields half the result that we
get in spinor electrodynamics with a Dirac field, which gives a vanishing
contribution to V#?(p, q,r). Hence, we can make the replacement P, —

—%75 in eq. (75.17). Then, after cancelling some minus signs, we have

M2 — T [y (f+ s (75.13)

We would now like to verify that V#*P(p,q,r) is gauge invariant. We
should have

pu V" (p,q,7) =0, (75.19)
w V" (p,q,r) =0, (75.20)
rpV*P(p,q,r) = 0. (75.21)

Let us first check the last of these. From eq. (75.16) we find

d o, Nwr
(2m)* ((—p)?*£*(l+q)*

+ (p, = q,v) +0(g°) (75.22)

r,VF(p,q,r) = ig® /

where
rp NI = ST [(f= ) Iy (s - (75.23)

It will be convenient to use the cyclic property of the trace to rewrite
eq. (75.23) as

rp NP = STy (f-)rpn” (=) s (75.24)
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To simplify eq. (75.24), we write r,y* = ¢ = —(4+¢) = —({+4) + ({—P).
Then

(Fd)rpy” (=) = D)= +4) + L=DI(/-P)
= ((+)*({~#) — (t=p)*(f+4) - (75.25)

Now we have
roNHP = L(04q)* Trlfy" (1= 7" vs] — 5 (0—p)* Trlfy” (f+4)7"75)
= —2ie M [((4q)2a (=p)g — (=p)*la(t+q)s]
= +2ie°0 | ((49)*apy + ((~P)*lags] (75.26)

Putting eq. (75.26) into eq. (75.22), we get

d¥ Lop laq
VP — 9 3 al/ﬁu/ [ alp adp ]
Tp (p,q,7) g € (2m)t [ 2(t—p)? " 2(l+q)?
+(p = q,v) +0(g°) (75.27)

Consider the first term in the integrand. Because the only four-vector
that it depends on is p, any Lorentz-invariant regularization of its integral
must yield a result proportional to p,pg. Similarly, any Lorentz-invariant
regularization of the integral of the second term must yield a result pro-
portional to g,q3. Both p,pg and g.qg vanish when contracted with e#* s,
Therefore, we have shown that

raVIP(p,q,r) = 0, (75.28)

as required by gauge invariance.

It might seem that now we are done: we can invoke symmetry among
the external lines to conclude that we must also have p, V#?(p,q,r) = 0
and q, V*P(p,q,r) = 0. However, eq. (75.16) is not manifestly symmetric
on the exchanges (p,u < r,p) and (q,v < r,p). So it still behooves us to
compute either p, V*?(p,q,r) or ¢, V*?(p,q,r).

From eq. (75.16) we find

d N
Ve — 3/ [
pu (p,q,?") Z.g (27’(’)4 (g_p)2€2(€+q)2
+(p, = q,v) +0(g°) (75.29)

where
pulN?? = ST [(f=H)puy" 17" (F+4)7" 5] - (75.30)
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To simplify eq. (75.30), we write p,7* = = —(f—p) + {. Then
=Pyt = (=) [-(/—1¥) + /)Y
= (t=p)*f — C(f—) - (75.31)
Now we have
PuN*P = 5 (=p)? Te[fy" ()" v5] — 36 Te[(L=)" (-+4)7 )

= —2i"[(L—p)*bags — P(C~p)a(t+q)g]

— —2jeovPr :(f—p)2faqg — (l—p)o(t—p + p-i-Q)ﬁ}

= —2ie% | ((~p)*lags — CF(1=p)a(p+a)s] - (75.32)
Putting eq. (75.32) into eq. (75.29), we get

d* { laqp _(f—p)a(erq)ﬁ}
2m)t L2 (t+q)?  ((—p)*(t+q)?

+ (p, = q,v) + 0(g°) (75.33)

PV (p.q,r) = 2¢° P /

The first term on the right-hand side of eq. (75.33) must vanish, because
any Lorentz-invariant regularization of the integral must yield a result pro-
portional to g,qg, and this vanishes when contracted with e*” Pe.

As for the second term, we can shift the loop momentum from £ to £+ p,
which results in

((=p)alp+a)s _ La(p+9)s
(L=p)*(t+q)*  C(l+p+q)*
We can now use Lorentz invariance to argue that the integral of the right-
hand side of eq. (75.34) must yield something proportional to (p+¢)a (p+4q)s;
this vanishes when contracted with with €*/%?. Thus, we have shown that
puV*P(p,q,r) = 0, as required by gauge invariance, provided that the
shift of the loop momentum did not change the value of the integral. This
would of course be true if the integral was convergent. Instead, however,
the integral is linearly divergent, and so we must be more careful.
Consider a one-dimensional example of a linearly divergent integral: let

(75.34)

I(a) = / ™ de fata) | (75.35)

— 00

where f(d£00) = c4, with ¢4 and c_ two finite constants. If the integral con-
verged, then I(a) would be independent of a. In the present case, however,
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we can Taylor expand f(xz+a) in powers of a, and note that f(£oo) = cy
implies that every derivative of f(z) vanishes at x = +o00. Thus we have

I(a) = /;OO do [f(x) +af (@) + 3a*f"(@) + ...

= I(0) + a(cy —c_). (75.36)

We see that I(a) is not independent of a. Furthermore, even if we cannot
assign a definite value to I(0) (because the integral is divergent), we can
assign a definite value to the difference

I(a) — I(0) = a(cy —c_) . (75.37)
Now let us return to egs. (75.33) and (75.34). Define
1
W) = ——— 75.38
) = g (75.3%)

Using Lorentz invariance, we can argue that

4
/ (d ‘;4 fall) = Ap+a)a (75.39)

where A is a scalar that will depend on the regularization scheme. Now
consider

Falt=p) = fall) ~ P s fal) .. (75.40)

The integral of the first term on the right-hand side of eq. (75.40) is given
by eq.(75.39). The integrals of the remaining terms can be converted to
surface integrals at infinity. Only the second term in eq.(75.40) falls off
slowly enough to contribute. To determine the value of its integral, we
make a Wick rotation to euclidean space, which yields a factor of i as
usual; then we have

4
/(%4 aiﬁfa() ¢ lim (dsf fa(0), (75.41)

where dSg = Ezﬁng is a surface-area element, and d) is the differential
solid angle in four dimensions. We thus find

/ d¥ .00 = / lgl,,
(2m)4 azﬂ * e + (b+ptq)?

=1

T 19

i
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where we used Q4 = 272, Combining eqs. (75.38-75.42), we find

d¥ (l—p)a i
=A a— =— Pa - 75.43
/(27?)4 (0—p)2(l+q)? (+a) 3272 P ( )
Using this in eq. (75.33), we find
pp ig® avfp 5
PV (pa,1) = 155 € PPalpta)s + (0,1 a,v) + O(97)
Z‘93 avBp 5
An exactly analogous calculation results in
pp ig’ apBp 5
WV (p,q,r) = o5 aaps +O(97) - (75.45)

Egs. (75.44) and (75.45) show that the three-photon vertex is not gauge
invariant. Since 7,V#?(p,q,r) =0, eqgs. (75.44) and (75.45) also show that
the three-photon vertex does not exhibit the expected symmetry among
the external lines.

This is a puzzle, because the only asymmetric aspects of the diagrams in
fig. (75.2) are the momentum labels on the internal lines. The resolution of
the puzzle lies in the fact that the integral in eq. (75.16) is linearly divergent,
and so shifting the loop momentum changes its value. To account for this,
let us write V#P(p, q,r) with £ replaced with ¢+ a, where a is an arbitrary
linear combination of p and q. We define

d¥ Tr[(f+a—p)v* (f+a)y" (f+atd)y"s]
2m)* (L+a—p)*(l+a)*((+a+q)?

VI (p,q.ria) = %igg/(

+ (p, = q,v)+ O0(g°) . (75.46)

Our previous expression, eq. (75.16), corresponds to a = 0. The integral
in eq.(75.46) is linearly divergent, and so we can express the difference
between VHP(p,q,r;a) and VFP(p,q,r;0) as a surface integral. Let us
write

By AP ]

+ (ppu e q,v) + 0(g%) (75.47)

VHP(p,q,r:a) = Lig* I, (a) Tr[y*y*y

where

19%9(q) = / (d4€ (t+a—p)®(t+a)P (t+a—q)? (75.48)

—J @2n)t (b+a—p)2(l+a)?(l+atq)?
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Then we have

Iaﬁ’y(a) - Iaﬁ’y(o) =a

5/ d i{(f—p)aﬁﬁ(ﬁ_q)ﬁ/]
(2m)" 000 | (¢—p)22(t+q)?
il tim [ B L(=p)als(t—q);
(—oo ) (2m) ((=p)*(t+q)
. § Q4 1

=10 (27r)4 o (ggaggfy + 9539ya + g&ygaﬁ)

;
m (aaggfy + 3G9y + a'ygaﬁ) . (7549)
Using this in eq. (75.47), we get contractions of the form gaﬁyayﬂyﬁ = 2yH.
The three terms in eq. (75.49) all end up contributing equally, and after
using eq. (75.9) to compute the trace, we find
. 3

+ (p, < q,v) +0(g°) . (75.50)

V#P(p,q,m5a) — V*P(p,q,7;0) = —

Since the Levi-Civita symbol is antisymmetric on p < v, only the part of
a that is antisymmetric on p <> ¢ contributes to V#?(p, q,r;a). Therefore
we will set @ = ¢(p — q), where ¢ is a numerical constant. Then we have
;3
i
VI (p,g,ria) = VI(p,,7:0) = — g e (p—q)s + O(g") . (75.51)
T
Using this, along with egs. (75.28), (75.44), and (75.45), and making some
simplifying rearrangements of the indices and momenta on the right-hand
sides (using p+q+r = 0), we find

;3
7
pu V" (p,q,r5a) = —#(1—@5””0‘5%% +0(g°) , (75.52)
. 3
pvp oy Y puaf3 5
ql/V (p7 qu7a) = _@(1_6)5 TaPp + O(g ) s (7553)
uvp igg prof 5
T,V (p,q,r5a) = —@(2(:)6 Paqs + O(g°) . (75.54)

We see that choosing ¢ = 1 removes the anomalous right-hand side from
egs. (75.52) and (75.53), but it then necessarily appears in eq. (75.54). Chos-
ing ¢ = % restores symmetry among the external lines, but now all three
right-hand sides are anomalous. (This is what results from dimensional reg-
ularization of this theory with 5 = i7%y!v243.) We have therefore failed to
construct a gauge-invariant U(1) theory with a single charged Weyl field.



75: Chiral Gauge Theories and Anomalies 454

Consider now a U(1) gauge theory with several left-handed Weyl fields
1, with charges Q;, so that the covariant derivative of v; is (0, —i9Q;A.);.
Then each of these fields circulates in the loop in fig. (75.2), and each vertex
has an extra factor of @);. The right-hand sides of eqgs. (75.52-75.54) are
now multiplied by >, Q7. And if 3, Q? happens to be zero, then gauge
invariance is restored! The simplest possibility is to have the t’s come in
pairs with equal and opposite charges. (In this case, they can be assembled
into Dirac fields.) But there are other possibilities as well: for example,
one field with charge 4+2 and eight with charge —1. Such a gauge theory
is still chiral, but it is anomaly free. (It could be that further obstacles to
gauge invariance arise with more external photons and/or more loops, but
this turns out not to be the case. We will discuss this in section 77.)

All of this has a straightforward generalization to nonabelian gauge
theories. Suppose we have a single Weyl field in a (possibly reducible)
representation R of the gauge group. Then we must attach an extra factor
of Tr(TeTETY) to the first diagram in fig. (75.2), and a factor of Tr(TSTSTY)
to the second; here the group indicies a, b, c go along with the momenta
D, q, T, respectively. Repeating our analysis shows that the diagrams with
P, — % come with an extra factor of $Tr([T¢,TR|TE) = 2T(R)f*°Tg;
these contribute to the renormalization of the tree-level three-gluon vertex.
Diagrams with P, — —%75 come with an extra factor of

ITr({T8, THYTE) = AR)d™ T . (75.55)

Here d*¢ is a completely symmetric tensor that is independent of the rep-
resentation, and A(R) is the anomaly coefficient of R, introduced in sec-
tion 70. In order for this theory to exist, we must have A(R) = 0. As
shown in section 70, A(R) = —A(R); thus a theory whose left-handed Weyl
fields come in R @ R pairs is automatically anomaly free (as is one whose
Weyl fields are all in real representations). Otherwise, we must arrange
the cancellation by hand. For SU(2) and SO(N), all representations have
A(R) = 0. For SU(N) with N > 3, the fundamental representation has
A(N) =1, and most complex SU(N) representations R have A(R) # 0. So
the cancellation is nontrivial.

We mention in passing two other kinds of anomalies: if we couple our
theory to gravity, we can draw a triangle diagram with two gravitons and
one gauge boson. This diagram violates general coordinate invariance (the
gauge symmetry of gravity). If the gauge boson is from a nonabelian group,
the diagram is accompanied by a factor of Tr T = 0, and so there is no
anomaly. If the gauge boson is from a U(1) group, the diagram is accom-
panied by a factor of ), );, and this must vanish to cancel the anomaly.

There is also a global anomaly that afflicts theories with an odd number
of Weyl fermions in a pseudoreal representation, such as the fundamental



75: Chiral Gauge Theories and Anomalies 455

representation of SU(2). The global anomaly cannot be seen in perturba-
tion theory; we will discuss it briefly in section 77.

REFERENCE NOTES

Discussions of anomalies emphasizing different aspects can be found in
Georgi, Peskin € Schroeder, and Weinberg I.

PROBLEMS

75.1) Consider a theory with a nonabelian gauge symmetry, and also a
U(1) gauge symmetry. The theory contains left-handed Weyl fields
in the representations (R;, @;), where R; is the representation of the
nonabelian group, and @; is the U(1) charge. Find the conditions for
this theory to be anomaly free.
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76  ANOMALIES IN GLOBAL SYMMETRIES

PREREQUISITE: 75

In this section we will study anomalies in global symmetries that can arise
in gauge theories that are free of anomalies in the local symmetries (and
are therefore consistent quantum field theories). A phenomenological ap-
plication will be discussed in section 90.
The simplest example is electrodynamics with a massless Dirac field ¥
with charge @ = +1. The lagrangian is
L=iVDPV — JF*"FS (76.1)
where I) = 4*D,, and D, = 0, — igA,. (We call the coupling constant g
rather than e because we are using this theory as a formal example rather
than a physical model.) We can write ¥ in terms of two left-handed Weyl

fields x and & via
X
0= ( ) , (76.2)
gT

where x has charge Q = +1 and £ has charge () = —1. In terms of y and
&, the lagrangian is

L =ix16"(0, —igAu)x +i&16" (0, + igA,)e — YF™FS, . (76.3)

The lagrangian is invariant under a U(1) gauge transformation

U(z) — e 9 @g(g) (76.4)
U(x) — et 9@ () (76.5)
AM(z) — AMz) — 0T (x) . (76.6)

In terms of the Weyl fields, egs. (76.4) and (76.5) become
x(z) — e 9@y (z) (76.7)
(@) — e () (76.8)

Because the fermion field is massless, the lagrangian is also invariant under
a global symmetry in which y and £ transform with the same phase,

x(x) — etx(x) (76.9)

£(z) — et (x) . (76.10)
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In terms of W, this is
U(x) — e 5 (z) , (76.11)
V() — W(x)e " (76.12)

This is called azial U(1) symmetry, because the associated Noether current

ji(z) = U(2)y" 50 (2) (76.13)
is an axial vector (that is, its spatial part is odd under parity). Noether’s
theorem leads us to expect that this current is conserved: 0, jh = 0. How-
ever, in this section we will show that the axial current actually has an
anomalous divergence,

2

it = —# PO oy . (76.14)
We will see in section 77 that eq. (76.14) is exact; there are no higher-order

corrections.
We will demonstrate eq. (76.14) by making use of our results in section
75. Consider the matrix element (p,q|j%(2)|0), where (p,q| is a state of two
outgoing photons with four-momenta p and ¢, and polarization vectors ¢,
and &/, respectively. (We omit the helicity label, which will play no essential

role.) Using the LSZ formula for photons (see section 67), we have

Pl (N0) = (i9)* el [ dledlye T OT (@) ()12(2)10)
(76.15)

where

g (x) = U(x)y" ¥ (z) (76.16)

is the Noether current corresponding to the U(1) gauge symmetry. Since
both j#(z) and j4(z) are Noether currents, we expect the Ward identities

T ) W) )0 = 0. (7617
S O @) (A ()10) = 0. (7615
O (@) )R]0 = 0, (76.19)

to be satisfied. Note that there are no contact terms in egs. (76.17-76.19),
because both j#(z) and ji(z) are invariant under both U(1) transforma-
tions. If we use eq. (76.19) in eq. (76.15), we see that we expect

Al ()I0) = 0. (76.20)
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However, our experience in section 75 leads us to proceed more cautiously.
Let us define C*P(p, q,r) via

(2m)*0* (p+q+r)CH P (p, q,7)

= / d'e dYy d'z e PP (0|51 (1) 57 (y) 4 (2)[0) . (76.21)

Then we can rewrite eq. (76.15) as

(palik(2)10) = =g, C" " (py g, )™ _ (76.22)
Taking the divergence of the current yields
(p.6l0p38(2)[0) = —ig’e,e,roC* (pyq,)e™| (76.23)
The expected Ward identities become
puC*"*P(p,q,r) =0, (76.24)
wC*"?(p,q,m) =0, (76.25)
rpCH*P(p,q,r) = 0. (76.26)

To check egs. (76.24-76.26), we compute C**P(p,q,r) with Feynman dia-
grams. At the one-loop level, the contributing diagrams are exactly those
we computed in section 75, except that the three vertex factors are now
F*, ~¥, and yPvs, instead of igy* Py, igy” P, and igv° P,. But, as we saw,
the three P.’s can be combined into just one at the last vertex, and then
this one can be replaced by —%75. Thus, the vertex function iV#*?(p, q,r)
of section 75 is related to C*?(p, q,r) by

VI (p.q.r) = ~(ig) CM(p,q.r) + O(g") . (76.21)

In section 75, we saw that we could choose a regularization scheme that
preserved egs. (76.24) and (76.25), but not also (76.26). For the theory of
this section, we definitely want to preserve egs. (76.24) and (76.25), because
these imply conservation of the current coupled to the gauge field, which is
necessary for gauge invariance. On the other hand, we are less enamored of
eq. (76.26), because it implies conservation of the current for a mere global
symmetry.

Using eq. (76.27) and our results from section 75, we find that preserving
egs. (76.24) and (76.25) results in

?
PP (p..7) = ~ 556" pags + O(g?) (76.28)
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in place of eq. (76.26). Using this in eq. (76.23), we find

2
(,4l0,38(2)|0) = —;’?s””“ﬁpaqgausf,e‘“”q)z +0(gY) . (76.29)
Now we come to the point. The right-hand side of eq. (76.29) is exactly
what we get in free-field theory for the matrix element of the right-hand
side of eq. (76.14). We conclude that eq. (76.14) is correct, up to possible
higher-order corrections.
In the next section, we will see that eq. (76.14) is exact.

PROBLEMS

76.1) Verify that the right-hand side of eq. (76.29) is exactly what we get
in free-field theory for the matrix element of the right-hand side of
eq. (76.14).
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77 ANOMALIES AND THE PATH INTEGRAL FOR
FERMIONS

PREREQUISITE: 76

In the last section, we saw that in a U(1) gauge theory with a massless
Dirac field ¥ with charge @) = +1, the axial vector current

Jh =Ty 0, (77.1)

which should (according to Noether’s theorem) be conserved, actually has
an anomalous divergence,

2
Dt = —# PO Fy (77.2)
In this section, we will derive eq.(77.2) directly from the path integral,
using the Fujikawa method. We will see that eq. (77.2) is exact; there are
no higher-order corrections.

We can also consider a nonabelian gauge theory with a massless Dirac
field ¥ in a (possibly reducible) representation R of the gauge group. In
this case, the triangle diagrams that we analyzed in the last section carry
an extra factor of Tr(T¢T?%) = T(R)d%, and we have

2
. g vV po a a
ik = =75z TR P70, A3 01,45 + O(5%) , (77.3)
where 9, A}, = 0, A} — 0, Aj;. We expect the right-hand side of eq. (77.3)
to be gauge invariant (since this theory is free of anomalies in the currents
coupled to the gauge fields); this suggests that we should have

2
. g o
(%jﬁ = —WT(R)E“VP Fﬁngg s (774)
where Fj, = 9,4} — 0,A], + g f“bCAZA,c/ is the nonabelian field strength.
We will see that eq.(77.4) is correct, and that there are no higher-order
corrections.
We can write eq. (77.4) more compactly by using the matrix-valued
gauge field
A, =TRA, (77.5)

and field strength
Fu, =0,A, —0,A, —iglAu, A)] . (77.6)

Then eq. (77.4) can be written as

g2

1672

8}1]& = - eM’P? Ty F/u/Fpa . (777)
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We now turn to the derivation of egs. (77.2) and (77.7). We begin with
the path integral over the Dirac field, with the gauge field treated as a fixed
background, to be integrated later. We have

- / DU DT 54 | (77.8)
where
- / &'z Tipw (77.9)
is the Dirac action, i]p) = iy*D,, is the Dirac wave operator, and
D, =0, —1igA, (77.10)

is the covariant derivative. Here A, is either the U(1) gauge field, or the
matrix-valued nonabelian gauge field of eq. (77.5), depending on the theory
under consideration. Our notation allows us to treat both cases simultane-
ously.

We can formally evaluate eq. (77.8) as a functional determinant,

Z(A) = det(iD)) . (77.11)

However, this expression is not useful without some form of regularization.
We will take up this issue shortly.

Now consider an axial U(1) transformation of the Dirac field, but with
a spacetime dependent parameter o(z):

U(z) — e @By (z) | (77.12)
U(x) — U(z)e @@ (77.13)

We can think of egs. (77.12) and (77.13) as a change of integration variable
in eq. (77.8); then Z(A) should be independent of a(x). The corresponding
change in the action is

S(A) — S(A) + /d 2 (2)a(x) - (77.14)
We can integrate by parts to write this as
S(A) /d )9, () - (77.15)

If we assume that the measure DW DV is invariant under the axial U(1)
transformation, then we have

Z(A4) — / DY DY ¢S5t [ d'r a(@)duif (@) (77.16)
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This must be equal to the original expression for Z(A), eq.(77.8). This
implies that 9,54 (z) = 0 holds inside quantum correlation functions, up to
contact terms, as discussed in section 22.

However, the assumption that the measure DW DV is invariant under
the axial U(1) transformation must be examined more closely. The change
of variable in egs. (77.12) and (77.13) is implemented by the functional
matrix

J(w,y) = 6" (@—y)e "o . (77.17)

Because the path integral is over fermionic variables (rather than bosonic),
we get a jacobian factor of (det J)™! (rather than detJ) for each of the
transformations in egs. (77.12) and (77.13), so that we have

DYDY — (det J) > DU DV . (77.18)

Using logdet J = Trlog J, we can write
(det J)™2 = exp{%/ d*r a(x) Tr 6* (z—2)7s | (77.19)

where the explicit trace is over spin and group indices. Like eq.(77.11),
this expression is not useful without some form of regularization.

We could try to replace the delta-function with a gaussian; this is equiv-
alent to

5 (z—y) — eag/M2(54(a:—y) , (77.20)

where M is a regulator mass that we would take to infinity at the end of the
calculation. However, the appearance of the ordinary derivative 0, rather
than the covariant derivative D, implies that eq.(77.20) is not properly
gauge invariant. So, another possibility is

5 z—y) — eD2/M 54 (z—y) . (77.21)

However, eq. (77.21) presents us with a more subtle problem. Our regular-
ization scheme for eq. (77.19) should be compatible with our regularization
scheme for eq. (77.11). It is not obvious whether or not eq. (77.21) meets
this criterion, because D? has no simple relation to iI). To resolve this
issue, we use

5t (m—y) — eP=)*/M? 545y (77.22)

to regulate the delta function in eq. (77.19).
To evaluate eq. (77.22), we write the delta function on the right-hand
side of eq. (77.22) as a Fourier integral,

4 . .
sa-y) — [ (jﬂ’; i M k(o) (77.23)
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Then we use f(9)e’*® = e f(9 + ik); eq. (77.23) becomes

k. .
5 (z—y) — / Wel’m—y) iP—K M (77.24)

where a derivative acting on the far right now yields zero. We have
(i — ) = ¥ — ik, p}y — p*
= —k* —i{»", "}k, D, — y*+'D,D,, . (77.25)
Next we use Y1y = %({’Y“,’YV} + [y*,9"]) = —g" — 2iSH to get
(ilp — §)* = —k* + 2ik-D + D* + 2iS"' D,D,, . (77.26)

In the last term, we can use the antisymmetry of S#¥ to replace D, D, with
(D, D)) = —%igF,,, which yields

(i — )? = —k* + 2ik-D + D? + gS™F,, . (77.27)
We use eq. (77.27) in eq. (77.24), and then rescale k by M; the result is

4
54(x—y) R M4/ d’k oMk (z—y) e—k2e2ik-D/M+D2/M2+gS“"EW/M2 '

(2m)*
(77.28)
Thus we have
4 4 d'k —k2 2ik-D/M+D?/M?+gSHVE),,, /M?
Tré*(z—z)ys — M / G e " Tre 9o [ e
(77.29)

We can now expand the exponential in inverse powers of M; only terms up
to M—* will survive the M — oo limit. Furthermore, the trace over spin
indices will vanish unless there are four or more gamma matrices multiply-
ing v5. Together, these considerations imply that the only term that can
make a nonzero contribution is 3(gS#“F,,)*/M*. Thus we find

d*%
(2m)*

Tr 6t (z—z)vys — %gz/ e_kz(Tr EyFye)(Tr S SP75) , (77.30)

where the first trace is over group indices (in the nonabelian case), and the
second trace is over spin indices. The spin trace is

Te §1SP7y5 = Tr (579"9") (577775
= — 1Ty
— et (77.31)



77: Anomalies and the Path Integral for Fermions 464

To evaluate the integral over k in eq. (77.30), we analytically continue
to euclidean spacetime; this results in an overall factor of i, as usual. Then
each of the four gaussian integrals gives a factor of 71/2. So we find

2
9 vpo
Tr 6% (z—x)y5 — ~ 3573 eMPT Tr By By (77.32)
Using this in eq. (77.19), we get
-2 ig2 4 uvpo
(det J)™* = exp —w?/da:a(a:)s Tr B (z)Fyp ()| - (77.33)

Including the transformation of the measure, eq. (77.18), in the transfor-
mation of the path integral, eq. (77.16), then yields

Z(A) — /D\If D ¢i5(A) =i [ d' a(@)[(g%/1672)eH7 77 Tr Fuy (2) Fpo () +0,54 (2)]

(77.34)
in place of eq.(77.16). This must be equal to the original expression for
Z(A), eq. (77.8). This implies that eq. (77.7) holds inside quantum correla-
tion functions, up to possible contact terms.

Note that this derivation of eq. (77.7) did not rely on an expansion in
powers of g, and so eq. (77.7) is exact; there are no higher-order corrections.
This result is known as the Adler-Bardeen theorem. It can also be (and
originally was) established by a careful study of Feynman diagrams.

The Fujikawa method can be used to find the anomaly in the chiral
gauge theories that we studied in section 75, but the analysis is more in-
volved. Here we will quote only the final result.

Consider a left-handed Weyl field in a (possibly reducible) represen-
tation R of the gauge group. We define the chiral gauge current j* =
WTAy*P,W. Tts covariant divergence (which should be zero, according to
Noether’s theorem) is given by

2

Dabjtr — 22? P70, Te [T (4,0,A, — YigA,A)As)| . (77.35)
Note that the right-hand side of eq. (77.35) is not gauge invariant. The
anomaly spoils gauge invariance in chiral gauge theories, unless this right-
hand side happens to vanish for group-theoretic reasons. We show in prob-
lem 77.1 that this occurs if and only if A(R) = 0, where A(R) is the anomaly
coefficient of the representation R.

For comparison, note that eq. (77.7) can be written as

2
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The relative value of the overall numerical prefactor in egs. (77.35) and
(77.36) is easy to understand: there is a minus one-half in eq. (77.35) from
P — - %75, and a one-third from regularizing to preserve symmetry among
the three external lines in the triangle diagram. (The relative coefficients
of the second terms have no comparably simple explanation.)

Finally, a related but more subtle problem, known as a global anomaly,
arises for theories with an odd number of Weyl fields in a pseudoreal rep-
resentation, such as the fundamental representation of SU(2). In this
case, every gauge field configuration A, can be smoothly deformed into
another gauge field configuration A:L that has the same action, but has
Z(A") = —Z(A). Thus, when we integrate over A, the contribution from
A’ cancels the contribution from A, and the result is zero. Since its path
integral is trivial, this theory does not exist.

PROBLEMS

77.1) Show that the right-hand side of eq.(77.35) vanishes if and only if
AR) =0.

77.2) Show that the right-hand side of eq. (77.36) equals the right-hand side
of eq. (77.7).
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78 BACKGROUND FIELD GAUGE

PREREQUISITE: 73

In the section, we will introduce a clever choice of gauge, background field
gauge, that greatly simplifies the calculation of the beta function for Yang—
Mills theory, especially at the one-loop level.

We begin with the lagrangian for Yang—Mills theory,

‘CYI\/I == _%Fa/“/ ;,LII/ 5 (781)

where the field strength is
Ff, = 0, AL — 0,A% + g f**Ab AS (78.2)

To evaluate the path integral, we must choose a gauge. As we saw in section
71, one large class of gauges corresponds to choosing a gauge-fixing function
G(x), and adding Lgf + Lgn to Ly, Where

Ly = —1¢7'G G, (78.3)
ﬂaGa be ¢
Leh =C 8AZD“ . (78.4)

Here fo = 60, —ig(T, Z)bCAZ =60, +gf bacAZ is the covariant derivative
in the adjoint representation, and ¢ and ¢ are the ghost and antighost fields.
The notation 90G%/ OAZ means that any derivatives that act on AZ in G*
now act to the right in eq. (78.4).

We get R¢ gauge by choosing G* = 9"4}. To get background field
gauge, we first introduce a fixed, classical background field AZ(x), and the
corresponding background covariant derivative,

D, =0, —igT{ A, . (78.5)
Then we choose B -
G* = (D")™(A-A)}, . (78.6)

The ghost lagrangian becomes Lg}, = E“D““bDZCCC, or, after an integration
by parts, B
Lgn = —(D"¢)*(Dpc)® (78.7)

where (DFE)® = DHAYE and (D,c)® = Djfce.
Under an infinitesimal gauge transformation, the change in the fields is

5 A% (x) = —D%*0%(x) (78.8)
Soc(x) = —igh*(x)(TH) e (x) , (78.9)
6 AL (z) = 0. (78.10)
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The antighost ¢ transforms in the same way as ¢ (since the adjoint repre-
sentation is real). The background field A is fixed, and so does not change
under a gauge transformation. Of course, this means that Ly and Ly, are
not gauge invariant; their role is to fix the gauge.

We can, however, define a background field gauge transformation, under
which only the background field transforms,

OpaAl(z) = —Di6%(x) (78.11)
Spa®(z) =0 . (78.13)

Obviously, Ly, is invariant under this transformation (since it does not
involve the background field at all), but Lo and Lgy, are not. However,
Ler and Lgy, are invariant under the combined transformation dgipg. For
Lgn, as given by eq.(78.7), this follows immediately from the fact that
D, and Du have the same transformation property under the combined
transformation, and that using covariant derivatives with all group indices
contracted always yields a gauge-invariant expression.

To use this argument on Ly, as given by egs. (78.3) and (78.6), we need
to show that (A — A)Z transforms under the combined transformation in
the same way as does an ordinary field in the adjoint representation, such
as the ghost field in eq. (78.9). To show this, we write

5G+BG(A - A)Z == —(D - D)Z{lea
= +ig(A — A);(T5)"0°
= —igh™(T2)" (A — A)S, . (78.14)

We used the complete antisymmetry of (T$)*® = —if? to get the last line.
We see that (A — fl)z transforms like an ordinary field in the adjoint rep-
resentation, and so any expression that involves only covariant derivatives
(either Du or D,,) acting on this field, with all group indices contracted, is
invariant under the combined transformation.

Therefore, the complete lagrangian, £ = Lyy + Lgt + Lgn, is invariant
under the combined transformation.

Now consider constructing the quantum action I'(4, ¢, &; A). Recall from
section 21 that the quantum action can be expressed as the sum of all
1PI diagrams, with the external propagators replaced by the corresponding
fields. In a gauge theory, the quantum action is in general not gauge
invariant, because we had to fix a gauge in order to carry out the path
integral. The quantum action thus depends on the choice of gauge, and
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hence (in the case of background field gauge) on the background field A.
This is why we have written A as an argument of I', but separated by a
semicolon to indicate its special role.

An important property of the quantum action is that it inherits all lin-
ear symmetries of the classical action; see problem 21.2. In the present
case, these symmetries include the combined gauge transformation dq,pg-
Therefore, the quantum action is also invariant under the combined trans-
formation. The quantum action takes its simplest form if we set the exter-
nal field A equal to the background field A. Then, I'(4,¢,¢; A) is invariant
under a gauge transformation of the form

dcrncAf(z) = —Dio%(x) (78.15)
Soinac’ () = —igh®(z)(T) " (x) . (78.16)

This is now simply an ordinary gauge transformation, with A as the gauge
field.

The quantum action can be expressed as the classical action, plus loop
corrections. For A = A, we have

T'(4,ccA) = / d'z |~ 4P, — (D' (Due)® |+, (78.17)

where the ellipses stand for the loop corrections. Note that L, has dis-
appeared [because we set A = A in eq. (78.6)], and Ly, has the form of a
kinetic term for a complex scalar field in the adjoint representation. This
term is therefore manifestly gauge invariant, as is the F'F term.

The gauge invariance of the quantum action has an important conse-
quence for the loop corrections. In background field gauge, the renormal-
izing Z factors must respect the gauge invariance of the quantum action.
Therefore, using the notation of section 73, we must have

71 = 7y, (78.18)
Zy = Zy | (78.19)
Ty = Zsg = Zag . (78.20)

Thus the relation between the bare and renormalized gauge couplings be-
comes
g = Z5 'g°i° . (78.21)

This relation now involves only Z3. We can therefore compute the beta
function from Zs alone. This is the major advantage of background field
gauge.
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To compute the loop corrections, we need to evaluate 1PI diagrams in
background-field gauge with the external propagators removed and replaced
with external fields; the external gauge field should be set equal to the
background field. The easiest way to do this is to set

A=A+ A (78.22)

at the beginning, and to write the path integral in terms of A. Then the A

field appears only on internal lines, and the A field only on external lines.
The gauge-fixing term now reads

Lot = —% _1(D”AM)Q(DVA,,)“ , (78.23)

and the ghost term is given by eq. (78.7).

The Feynman rules that follow from Ly + Lgf + L1, are closely related
to those we found in R¢ gauge in section 72. The ghost and gluon prop-
agators are the same, and vertices involving all internal lines are also the
same. But if one or more gluon lines are external, then there are additional
contributions to the vertices from Ly and Lg,. We leave the details to
problem 78.1.

Further simplifications arise at the one-loop level. Using eq. (78.22) in
eq. (78.2), we find

Ff, = 0,A% — 0, A% + gf ™AL AL
+ 0, AL — 0 AL + gf P (ALAS + A AC) + g f AL AS
= F2, + (DAL — (DyAy)® + gf " ALAS (78.24)
We then have
Lyy = —iF"“”FﬁV — %(D“A”)“(D“Ay)a + %(D“A”)“(D,,Au)a
— Sgf AL A+ (78.25)
where the ellipses stand for terms that are linear, cubic, or quartic in A.
Vertices arising from terms linear in A cannot appear in a 1PI diagram, and
the cubic and quartic vertices do not appear in the one-loop contribution
to the A propagator.

The last term on the first line of eq. (78.25) can be usefully manipulated

with some dummy-index relabelings and integrations by parts; we have
(DFA")"(DyAy)* = (D"Ay)*(DFA,)°
= —AL(D DAL
= —AZ(D“D” — [D*, D¥])*A
= —Ab(D"D¥)AS — ig(T3)  F " ALAS

— +(DFA,) (DYA,)C — gf P P AL AS . (78.26)
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Figure 78.1: The one-loop contributions to the A propagator in background
field gauge; the dashed lines can be either ghosts or internal A gauge fields.
The dot denotes the F.AA vertex.

Now the first term on the right-hand side of eq. (78.26) has the same form
as the gauge-fixing term. If we choose £ = 1, these two terms will cancel.

Setting £ = 1, and including a renormalizing factor of Z3, the terms of
interest in the complete lagrangian become

£ = A FES, LI DR (DA — (D) (Do)’
- ZggfabcpauuAZA,C/ . (78.27)

In the ghost term, we have replaced D, with Du; the vertex corresponding
to the dropped A term does not appear in the one-loop contribution to
the A propagator. Also, we can rescale A to absorb Z3 in all terms except
the first; since A never appears on an external line, its normalization is
irrelevant, and always cancels among propagators and vertices. (The same
is true of the ghost field.)

The one-loop diagrams that contribute to the A propagator are shown in
fig. (78.1). The dashed lines in the first two diagrams represent either the A
field or the ghost fields. In either case, the second diagram vanishes, because
it is proportional to [ d*/¢?, which is zero after dimensional regularization.

Note that the ghost term in eq. (78.27) has the form of a kinetic term
for a complex scalar field in the adjoint representation. In problem 73.1,
we found the contribution of a complex scalar field in a representation Rcg
to TI(k?) is

g2
- 24n2
The ghost contribution is minus this, with Rcs — A. (The minus sign is
from the closed ghost loop.) Thus we have

1
s (k%) = T(Res) - + finite . (78.28)

2
2\ _ g 1 : 4
Iy, (k%) = +—247r2 T(A) - + finite + O(g") . (78.29)

For reference we recall that the counterterm contribution is

e (k%) = —(Z3—1) . (78.30)
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Next we consider the diagrams with A fields in the loop. If the FAA
interaction term was absent, the calculation would again be a familiar one;
the DADA term in eq. (78.27) has the form of a kinetic term for a real
scalar field that carries an extra index v. That this index is a Lorentz
vector index is immaterial for the diagrammatic calculation; the index is
simply summed around the loop, yielding an extra factor of d = 4. There
is also an extra factor of one-half (relative to the case of a complex scalar)
because A is real rather than complex. (Equivalently, the diagram has a
symmetry factor of S = 2 from exchange of the top and bottom internal
propagators when they do not carry charge arrows.) We thus have

2

papa(k?) = —13? T(A) é + finite + O(g*) . (78.31)
If we now include the F.AA interaction, we can think of F' 4 @s a constant
external field. We can then draw the third diagram of fig. (78.1), where and
each dot denotes a vertex factor of —2ig f®°F 4y This vacuum diagram has
a symmetry factor of S = 2 x 2: one factor of two for exchanging the top
and bottom propagators, and one for exchanging the left and right sources.

Its contribution to the quantum action is

. 1 . acd pa . beg b 1 2 - ddg g 506 gugéd
Traa/VT = Z(_2ng Fi)(=2igf ngo)(f) H /(27r)d “2)2 02 .

_ 2 Fau ¢ -
=g T(A)FGHVF[}V (% + ﬁmte) s (7832)
where VT is the Yolume of spacetime. Comparing this with the tree-level
lagrangian —3Z3F'F, and recalling eq. (78.30), we see that eq.(78.32) is
equivalent to a contribution to IT(k2) of

2
2 g 1 .
Mpqa(k®) = +2—7T2 T(A) B + finite . (78.33)

There is also a one-loop diagram with one DADA vertex and one FAA
vertex; however, contracting the vector indices on the A fields around the
loop leads to a factor of F' "9, = 0. Similarly, a one-loop diagram with a
single FAA vertex vanishes.

We could also couple the gauge field to a Dirac fermion in the rep-
resentation Rpp, and a complex scalar in the representation Reg. The
corresponding contributions to I1(k?) were computed in section 73, and are
given by eq. (78.28) and

g2

1
Hpe(k?) = — 53 T(Ror) — + finite, (78.34)
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Adding up egs. (78.28), (78.29), (78.30), (78.31), (78.33), and (78.34), we
find that finiteness of II(k?) requires

2
.9 B N N 1 4
Zy = 1+ 555 [ (+1-2+12) T(A) ~ 4T (Ror) ~ T(Res ) —+0(g") (78.35)
in the MS renormalization scheme.

The analysis of section 28 now results in a beta function of

3

Bly) = —7o—5 [UT(A) = 4T (Ror) = T(Res)| +O(6) . (7836)
A Majorana fermion or a Weyl fermion makes half the contribution of a
Dirac fermion in the same representation; a real scalar field makes half the
contribution of a complex scalar field. (Majorana fermions and real scalars

must be in real representations of the gauge group.)
In quantum chromodynamics, the gauge group is SU(3), and there are
ng = 6 flavors of quarks (which are Dirac fermions) in the fundamental
representation. We therefore have T(A) = 3, T(Rpr) = 21, and T'(Res) =

0; therefore
3

B(g) = —13?(11 _ gnF) +0(g°). (78.37)

We see that the beta function is negative for ny < 16, and so QCD is
asymptotically free.

PROBLEMS

78.1) Compute the tree-level vertex factors in background field gauge for all
vertices that connect one or more external gluons with two or more
internal lines (ghost or gluon).

78.2) Our one-loop corrections can be interpreted as functional determi-
nants. Define

Ok 0y = D? + 913 F,S(y (78.38)

where D, = 9, — ig(T; f{)fiﬁ is the background-covariant derivative in
the representation R, implicitly multiplied by the indentity matrix

for the (a,b) representation of the Lorentz group, and Séz Vb) are the
Lorentz generators for that representation; in particular,

Sﬁ'il) =0, (78.39)

Seas = 10", (78.40)

(Séu,z))aﬁ = —i(0"00"5 — 0”0 0" ) . (78.41)
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Show that the one-loop contribution to the terms in the quantum
action that do not depend on the ghost fields is given by

exp i1 _1o0p(A4,0,0; A) oc (det DA7(171))+1
x(det DA’(Q’Q))_1/2
x (det DRDF7(271)@(1,2))+1/2

x (det Ogeg (1,1)) " - (78.42)

Verify that this expression agrees with the diagrammatic analysis in
this section.
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79 GERVAIS-NEVEU GAUGE

PREREQUISITE: 78

In section 78, we used background field gauge to set up the computation
of a quantum action that is gauge invariant. Given this quantum action,
we can use it to compute scattering amplitudes via the corresponding tree
diagrams, as discussed in section 19. Since the ghost fields in the quantum
action do not contribute to tree diagrams, we can simply drop all the ghost
terms in the quantum action.

Because the quantum action computed in background field gauge is
itself gauge invariant, it requires further gauge fixing to specify the gluon
propagator and vertices. We can choose whatever gauge is most convenient;
for example, R¢ gauge. In principle, this gauge fixing involves introducing
new ghost fields, but, once again, these do not contribute to tree diagrams,
and so we can ignore them.

If we start with the tree-level approximation to the quantum action,
then, in R¢ gauge, we simply get the gluon propagator and vertices of
section 72. As we noted there, the complexity of the three- and four-gluon
vertices in R gauge leads to long, involved computations of even simple
processes like gluon-gluon scattering.

In this section, we will introduce another gauge, Gervais—Neveu gauge,
that simplifies these tree-level computations.

We begin by specializing to the gauge group SU(N), and working with
the matrix-valued field A, = AjjT. For later convenience, we will normal-
ize the generators via

Te 7T = 59 . (79.1)
With this choice, their commutation relations become
[T, T = iv2f%ere. (79.2)
The tree-level action is specified by the Yang—Mills lagrangian,
Lyy =—3Tr F*F,, (79.3)
where the matrix-valued field strength is
Fou = 0,A, — 0,4, — 414,.4,). (79.4)

Let us introduce the matrix-valued complex tensor

Hyy = 0,4, — 44,4, . (79.5)

Then F},, is the antisymmetric part of H,,,

F,uz/ =11y — Hyp . (796)
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The Yang-Mills lagrangian can now be written as
Loy = —4Tr (HWHW - H“”H,,M) . (79.7)

To fix the gauge, we choose a matrix-valued gauge-fixing function G(z),
and add
Lyt = —3TrGG (79.8)

to Lyyu. Here we have set the gauge parameter £ to one, and ignored the
ghost lagrangian (since, as we have already discussed, it does not affect tree
diagrams). The choice of G that yields Gervais—Neveu gauge is

G=H",. (79.9)

At first glance, this choice seems untenable, because we see from eq. (79.5)
that this G' (and hence Lg¢) is not hermitian. However, because the role of
L is merely to fix the gauge, it is acceptable for Lyt to be nonhermitian.

Combining eqs. (79.7) and (79.8), we get a total, gauge-fixed lagrangian

L= —{Tx(H"H,, — H"H,, + H",H",) . (79.10)

Consider the terms in £ with two derivatives. After some integrations by
parts, those from the third term in eq. (79.10) cancel those from the second,
leading to

Log = —3Tro"A0,A, (79.11)

just as in R, gauge with { = 1. Now consider the terms with no derivatives.
Once again, those from the third term in eq. (79.10) cancel those from the
second (after using the cyclic property of the trace), leading to

Lo = +1g Tr APAYA,LA, . (79.12)
Finally, we have the terms with one derivative,
L1p = + 4 T (0rA"AL A, — "AYAL A, + DPA,AVA,) (79.13)

Each derivative acts only on the field to its immediate right. If we integrate
by parts in the last term in eq. (79.13), we generate two terms; one of these
cancels the first term in eq. (79.13), and the other duplicates the second.
Thus we have

Lip = —iV2g Tr "AYA, A, . (79.14)

Combining egs. (79.11), (79.12), and (79.14), we find

L£o="Tr(-30"4"0, A, — iV29 "A"A, A, + JP APAYALA) . (79.15)
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Because this lagrangian has a rather simple structure in terms of the matrix-
valued field A, it is helpful to stick with this notation, rather than trying
to reexpress £ in terms of A}, = Tr(7%4,,). In the next section, we explore
the Feynman rules for a matrix-valued field in a simplified context.

REFERENCE NOTES

Gervais—Neveu gauge and some interesting variations are discussed in Siegel.
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80 THE FEYNMAN RULES FOR N X N MATRIX
FIELDS

PREREQUISITE: 10

In section 79, we found that the lagrangian for SU(N) Yang—Mills theory
in Gervais—Neveu gauge is

L= Tr(—%@“A”@HAV — V29 0" AYA, A, + %92A“A”AuA,,) . (80.1)

where A, () is a traceless hermitian N x N matrix. In this section, we will
work out the Feynman rules for a simplified model of a scalar field that
keeps the essence of the matrix structure.

Let B(z) be a hermitian N x N matrix that is not traceless. Let T be
a complete set of N? hermitian N x N matrices normalized according to

Tr 79T = 69 (80.2)

We will take one of these matrices, TN 2, to be proportional to the identity
matrix; then eq. (80.2) requires the rest of the T%’s to be traceless. We can
expand B(z) in the T%'s, with coefficient fields B*(x),

B(z) = Bx)T°, (80.3)
B*(z) = Tt T*B(z) , (80.4)

where the repeated index in eq. (80.3) is implicitly summed over a = 1 to
N2
Consider a lagrangian for B(x) of the form

L= Tr(—%@“B@uB +1gB% - %AB”‘) . (80.5)

Using egs. (80.2) and (80.3), we find an expression for £ in terms of the
coefficient fields,
L= -10"B"9,B" + g Tv(T°T"T*) B"B"B*
~I\Te(rTtTeT?) B°B*B°B? . (80.6)
It is easy to read off the Feynman rules from this form of £. The propagator
for the coefficient field B* is
5ab

A (k%) = e (80.7)

There is a three-point vertex with vertex factor 2ig Tr(T*T®T*), and a four-
point vertex with vertex factor —6i\ Tr(T*T°T°T¢). This clearly leads to
messy and complicated formulae for scattering amplitudes.
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Figure 80.1: The double-line notation for the propagator of a hermitian

\/>/
PN

Figure 80.2: 3- and 4-point vertices in the double-line notation.

Instead, let us work with £ in the form of eq. (80.5). Writing the matrix
indices explicitly, with one up and one down (and employing the rule that

two indices can be contracted only if one is up and one is down), we have
B(x)# = B%x)(T%);. This implies that the propagator for B,/ is

(T (1)’

AJ 112
A (k) k? — ie

(80.8)
Since the T matrices form a complete set, there is a completeness relation
of the form (T%);7(T%);! o 6;'017. To get the constant of proportionality, set
j=k and [=i to turn the left-hand side into (7%);*(T?);* = Tr(T*T®), and
the right-hand side into §;%6;,* = N2. From eq. (80.2) we have Tr(T°T%) =
§%% = N2. So the constant of proportionality is one, and

(T (T = 6,L6,7 . (80.9)

We can represent the B propagator with a double-line notation, as
shown in fig. (80.1). The arrow on each line points from an up index to
a down index. Since the interactions are simple matrix products, with an
up index from one field contracted with a down index from an adjacent
field, the vertices follow the pattern shown in fig. (80.2). Since an n-point
vertex of this type has only an n-fold cyclic symmetry (rather than an n!-
fold permutation symmetry), the vertex factor is 7 times the coefficient of
Tr(B") in £ times n (rather than n!). Thus, for the lagrangian of eq. (80.5),
the 3- and 4-point vertex factors are ig and —i\.

Now consider a scattering process. Particles corresponding to the coef-
ficient fields labeled by the indices a; and as (and with four-momenta k;
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2 3
Figure 80.3: Tree diagrams with four external lines. Five more diagrams

of each of these three types, with the external labels 2, 3, and 4 permuted,
also contribute.

and ky) scatter into particles corresponding to the coefficient fields labeled
by the indices ag and a4 (and with four-momenta k3 and k4). We wish to
compute the scattering amplitude for this process, at tree level.

There are 18 contributing Feynman diagrams. Three are shown in
fig. (80.3); the remaining 15 are obtained by making noncylic permutations
of the labels 1,2,3,4 (equivalent to making unrestricted permutations of
2,3,4). For simplicity, we will treat all external momenta as outgoing;
then kY and k9 are negative, and ki + ka2 + k3 + k4 = 0. Each external
line carries a factor of 7%, with its matrix indices contracted by following
the arrows backward through the diagrams. Omitting the i€’s in the prop-
agators (which are not relevant for tree diagrams), the resulting tree-level
amplitude is

. _ a1 ag masmag (19)2(_2) (19)2(_2) .
iT = Te(T"T2TST )<(k1+k2)2 + CETE —zA)

+ ((234) — (342), (423), (243), (432), (324)) : (80.10)

More generally, we can see that the value of any tree-level diagram with
n external lines is proportional to Tr(7'%1 ... T%n ). If the diagram is drawn
in planar fashion (that is, with no crossed lines), then the ordering of the
a; indices in the trace is determined by the cyclic ordering of the labels
on the external lines (which we take to be couterclockwise). Then, each
internal line contributes a factor of —i/k?, each 3-point vertex a factor of
ig, and each four-point vertex a factor of —i\. These are the color-ordered
Feynman rules for this theory.

Return now to i7 as given by eq.(80.10). Suppose that we wish to
square this amplitude, and sum over all possible particle types for each
incoming or outgoing particle. We then have to evaluate expressions like

Te(T T TS T [Te(T™ T TT))* (80.11)
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Figure 80.4: Evaluation of Tr(T® T2 T )[Tr(T* T T T)]*, with all
repeated indices summed. Each of the two closed single-line loops yields a
factor of §;* = N.

with all repeated indices summed. Using the hermiticity of the T* matrices,
we have
[Te(T ... T)]" = Te(T ... T"), (80.12)

It is then easiest to evaluate eq.(80.11) diagrammatically, as shown in
fig. (80.4). Each closed single-line loop yields a factor of & = N. The
result is that the absolute square of any particular trace yields a factor of
N*, and the product of any trace times the complex conjugate of any other
different trace yields a factor of N2.

The coefficient of both Tr(T*T%T*T%) and Tr(TT*T*T) in
eq. (80.10) is

A= g A (80.13)
VS Gtk Gt |

Similarly, the coefficient of both Tr(T“T*T%T) and Tr(T T2 T*T)
is

9 g9
A= + -, 80.14
4 (k’l+k3)2 (k1+k2)2 ( )
and of both Tr(T“ T T*2T) and Tr(T* T3 T%2T*) is
2 2
A= I A (80.15)

(k1+ka)? * (kitks)®
Thus we have

STITP = @N*+2N?) Y AP +4N? ) AT A,
J J#k

a1,a2,a3,a4

= (2N* = 2N?) > AP +4N* (O AN Ar) . (80.16)
j j k

where j and k are summed over 2, 3, 4.
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Figure 80.5: The propagator for a traceless hermitian field.

Now suppose we wish to impose the condition that the matrix field B
is traceless: Tr B = 0. This means that we eliminate the component field
with a=N?, corresponding to the matrix TN = N=1/2]. We must also
climinate TV* from the sum in eq. (80.9), leading to

(T (T = 6617 — %675, . (80.17)

This can all be done diagrammatically by replacing the propagator in
fig. (80.1) with the one in fig. (80.5). (The kinematic factor, —i/k?, is un-
changed.) Fig.(80.5) must now be used as the internal propagator in the
diagrams of fig. (80.3). Also, when we multiply one diagram by the complex
conjugate of another in the computation of 3, , |7|?, we must use the
propagator of fig. (80.5) to connect the external line of one diagram with
the matching external line of the complex conjugate diagram. Although
these computations are still straightforward, they can become considerably
more involved.

PROBLEMS

80.1) Show that the color-ordered Feynman rules, and the rules for compo-
nent fields given after eq. (80.6), agree in the case N = 1.

80.2) Verify the results quoted after eq. (80.12).

80.3) Compute >
T%s.

| Tr(T* 72T T%) |2 for the case of traceless

a1,a2,a3,a4

80.4) The large-N limit. Let A\ = cg?, where c is a number of order one. Now
consider evaluating the path integral, without sources, as a function
of g and N,

Z(g,N) = ¢WeN) = /DB el d%L (80.18)

where W (g, N) is normalized by W (0, N) = 0. As usual, W can be
expressed as a sum of connected vacuum diagrams, which we draw
in the double-line notation. Consider a diagram with V3 three-point
vertices, V4 four-point vertices, F propagators or edges, and F' closed
single-line loops or faces.
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a) Find the dependence on g and N of a diagram specified by the
values of V3, V4, E, and F.

b) Express F for a vacuum diagram in terms of V3 and Vj.

c¢) Recall, derive, or look up the formula for the Fuler character x of
the two-dimensional surface of a polyhedron in terms of the values of
V =V3+Vy, E, and F. The Euler character is related to the genus
G of the surface by x = 2 — 2G; G counts the number of handles, so
that a sphere has genus zero, a torus has genus one, etc.

(j) Consider the limit g — 0 and N — oo with the 't Hooft coupling
A = ¢?N held fixed (and not necessarily small). Show that W (), N)
has a topological expansion of the form

W N) = fj N2 We(N) (80.19)
G=0

where Wg(A) is given by a sum over diagrams that form polyhedra
with genus G. In particular, the leading term, Wy(\), is given by
a sum over diagrams with spherical topology, also known as planar

diagrams.
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81  SCATTERING IN QUANTUM CHROMODYNAMICS
PREREQUISITE: 60, 79, 80

In section 79, we found that the lagrangian for SU(N) Yang—Mills theory
in Gervais—Neveu gauge is

L£=Tr(~30"4"0,A, — iV29 0"A"A, A, + JP APAYALA, ) (81)

where A, () is a traceless hermitian N x N matrix. For quantum chromo-
dynamics, N = 3, but we will leave N unspecified in our calculations. In
section 80, we worked out the color-ordered Feynman rules for a scalar ma-
trix field; the same technology applies here as well. In particular, we draw
each tree diagram in planar fashion (that is, with no crossed lines). Then
the cyclic, counterclockwise ordering i, ..., of the external lines fixes the
color factor as Tr(T%1 ...T%n), where the generator matrices are normal-
ized via Tr(T°T%) = §%. The tree-level n-gluon scattering amplitude is
then written as

T=g"7%> Te(T™...T")A(L,...,n), (81.2)
noncyclic
perms
where we have pulled out the coupling constant dependence, and A(1,...,n)

is a partial amplitude that we compute with the color-ordered Feynman
rules. The partial amplitudes are cyclically symmetric,

A(2,...,n,1) = A(1,2,...,n) . (81.3)

The sum in eq. (81.2) is over all noncyclic permutations of 1...n, which is
equivalent to a sum over all permutations of 2...n.
From the first term in eq. (81.1), we see that the gluon propagator is
simply g
A (k) = ﬁ : (81.4)
Here we have left out the matrix indices since we have already accounted
for them with the color factor in eq.(81.2). The second and third terms
in eq. (81.1) yield three- and four-gluon vertices. The three-gluon vertex

factor (again without the matrix indices) is

ivuup(py q, T) = i(_i\/ig)(_ippg/w)
+ [2 cyclic permutations of (u.p), (v,q), (p,r)]
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where the four-momenta p, ¢, and r are all taken to be outgoing. The
four-gluon vertex factor is simply

Z‘\f;wpa = Z‘gzgupgua . (816)

However, in the context of the color-ordered rules, it is simpler to designate
the outgoing four-momentum on each external line as k;, and contract the
vector index with the corresponding polarization vector ;. (For now we
suppress the helicity label A = +.) In this notation, the vertex factors
become

iVizg = ~iV2g[(e122) (kies) + (e23) (kaer) + (e321) (se) |, (BLT)
1V1934 = +ig2(€183)(€2&‘4) s (81.8)

where the external lines are numbered sequentially, counterclockwise around
the vertex. (Of course, if an attached line is internal, the corresponding
polarization vector is simply a placeholder for an internal propagator.)

The color-ordered three-point vertex, eq. (81.7), is antisymmetric on the
reversal 123 < 321, while the four-point vertex, eq. (81.8), is symmetric on
the reversal 1234 < 4321. This implies the reflection identity,

An,...,2,1) = (~1)"A(1,2,...,n) , (81.9)

which will be useful later.

It is clear from egs. (81.7) and (81.8) that every term in any tree-level
scattering amplitude is proportional to products of polarization vectors
with each other, or with external momenta. (Actually, this follows directly
from Lorentz invariance, and the fact that the scattering amplitude is linear
in each polarization.) We get one momentum factor from each three-point
vertex. Since every tree diagram with n external lines has no more than
n—2 vertices, there are no more than n—2 momenta to contract with the
n polarizations. Therefore, every term in every tree-level amplitude must
include at least one product of two polarization vectors. Then, if the prod-
uct of every possible pair of polarization vectors vanishes, the tree-level
amplitude for that process is zero.

We will now show that this is indeed the case if all, or all but one, of
the external gluons have the same helicity. (Here we are using the seman-
tic convention of section 60: the helicity of an external gluon is specified
relative to the outgoing four-momentum k; that labels the corresponding
external line. If that gluon is actually incoming—as indicated by a negative
value of k)—then its physical helicity is opposite to its labeled helicity.)
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To proceed, we recall from section 60 some formulae for products of
polarization vectors in the spinor-helicity formalism,

e g (k) = (LB (8110
e (g)e- (ki) = LULERL (s1.11)
e (lia)-e-(0sg) = (LI DAL (31.12)

The first argument of each ¢ is the momentum of the corresponding line;
the second argument is an arbitrary reference momentum. Recall that the
twistor producs (g k) and [q k] are antisymmetric, and hence (qq) = [qq] =
0. Using this fact in eq. (81.10), we see that choosing the same reference
momentum ¢ for all positive-helicity polarizations results in a vanishing
product for any pair of them. Furthermore, if we choose this ¢ equal to
the momentum %" of a negative-helicity gluon, eq. (81.12) tells us that the
product of its polarization with that of any positive-helicity gluon also
vanishes. Thus, if all, or all but one, of the external gluons have positive
helicity, all possible polarization products are zero, and hence the tree-level
scattering amplitude is also zero. Thus we have shown that

A(Q*E 2T ... nt) =0, (81.13)

where the superscripts are the helicities. Of course, the same is true if all,
or all but one, of the helicities are negative,

A(1%27,...,n7) =0. (81.14)

Now we turn to the calculation of some nonzero tree-level partial am-
plitudes, beginning with A(17,27,3%,47). The contributing color-ordered
Feynman diagrams are shown in fig. (81.1). We choose the reference mo-
menta to be g1 = g2 = k3 and g3 = q4 = k9. Then all polarization products
vanish, with the exception of

e1-64 = e_(k1,q1) €4 (ka,qa)
= 6_(k’1, k‘3)'€+(k’4, k‘Q)
~ (21)[43]
C(24)[31]

With this choice of the reference momenta, the third diagram in fig. (81.1)
obviously vanishes, because it has a factor of ;-3 = 0 (and also, for good

(81.15)
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Figure 81.1: Diagrams for the partial amplitude A(1,2,3,4).

measure, €3-¢4 = 0). Now consider the 235 vertex in the second diagram;
we have

Vass o (e2e3)(kaes) + (e365) (k) + (e562)(kse3) | (81.16)

where e5 is a placeholder for an internal propagator. The first term in
eq. (81.16) vanishes because €2-c3 = 0. The second term vanishes because
ks = g2 and ¢o-e2 = 0. Finally, the third term vanishes because ks =
—ko—ks = —q3—ks, and g3-¢3 = k3-e3 = 0. Hence the 235 vertex vanishes,
and therefore so does the second diagram.

That leaves only the first diagram. We then have

.92 — 99— oF A+\ _ /s . ,
ig“A(17,27,37,47) = (iV125)(iV345) el — ighvfsyy (81.17)
where 5 means the momentum is —ks rather than ks, and
s1o=—(k1 +k2)? = (12)[21] . (81.18)

We have
iVies = —i\/ig{(61€2)(]€1€5) + (e9e5)(kae1) + (5551)(/<:5€2)} ,  (81.19)
but the first term vanishes because €1-e9 = 0. Similarly, the first term of
iVaiz = —iv/2g[(esea) (kses) + (as5) (kues) + (e5es)(—hsea)|  (81.20)

also vanishes. When we take the product of these two vertices, and replace
the internal polarizations with the propagator, as indicated in eq. (81.17),
only the product of the third term of eq.(81.19) with the second term
of eq.(81.20) is nonzero; all other terms include a vanishing product of
polarizations. We get

ig? A(17,27,37.4%) = (—iv29)2(i/s12) (e164) (ksea) (kae3) . (81.21)
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Since ks = —k1—ko, and kg-g9 = 0, we have k5-e9 = —k1-e9. We evaluate
ki-e9 and k4-e3 via the general formulae

p-e+(kiq) = % : (81.22)
pe_(k;q) = % : (81.23)
Setting g2 = k3 and g3 = k2, we get
ki-eg = % : (81.24)
kye3 = % : (81.25)

Using egs. (81.15), (81.18), (81.24), and (81.25) in eq.(81.21), and using
antisymmetry of the twistor products to cancel common factors, we get

(21) [43)?

AW = B )

(81.26)
We can make our result look nicer by multiplying the numerator and
denominator by (34). In the numerator, we use

<3 4> [4 3] — 834 — S12 = <1 2> [2 1] 5 (8127)

and cancel the [2 1] with the one in the denominator. Now multiply the nu-
merator and denominator by (41), and use the momentum-conservation
identity (see problem 60.2) to replace (41)[43] in the numerator with
—(21) [23], and cancel the [23] with the [32] in the denominator (which
yields a minus sign). Finally, multiply the numerator and denominator by
(12) to get
(12)*

(12)(23)(34)(41)

This is our final result for A(17,27,3%,4T).
Now, using cyclic symmetry, we can get any partial amplitude where
the two negative helicities are adjacent; for example,

(23)*
(12)(23)(34)(41)

A(17,27,37,47) = (81.28)

A(17,27,37,47) =

(81.29)

We must still calculate one partial amplitude where the negative helicities
are not adjacent, such as A(17,27,37,47). Once we have it, we can use
cyclic symmetry to get all the remaining partial amplitudes.
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Before turning to this calculation, let us consider the problem of squar-
ing the total amplitude and summing over colors. Because the generator
matrices are traceless, we should (as we discussed in section 80) use the
completeness relation

(T (T = 6! — 5070k . (81.30)
However, recall that the Yang—Mills field strength is

Fu = 0uAy = 9, A — FALA) - (81.31)
If we allow a generator matrix proportional to the identity, which corre-
sponds to a gauge group of U(N) rather than SU(N), then this extra U(1)
generator commutes with every other generator. Thus the U(1) field does
not appear in the commutator term in eq. (81.31). Since it is this commuta-
tor term that is responsible for the interaction of the gluons, the U(1) field
is a free field. Therefore, any scattering amplitude involving the associated
particle (which we will call the fictitious photon) must be zero. Thus, if we
write a scattering amplitude in the form of eq. (81.2), and replace one of
the T%s with the identity matrix, the result must be zero.
This decoupling of the fictitious photon allows us to use the much simpler
completeness relation
(T (T = 6,16, (81.32)

in place of eq.(81.30). There is no need to subtract the U(1) generator
from the sum over the generators, as we did in eq.(81.30), because the
terms involving it vanish anyway.

The decoupling of the fictitious photon is useful in another way. Let us
apply it to the case of n =4, and set 7% o I in eq. (81.2). Then we have

0 = Tr(T“T2T%) [A(L 2,3,4) + A(1,2,4,3) + A(1,4,2, 3)}
+ Te(T T%T™)[A(1,3,2,4) + A(1,3,4,2) + A(1,4,3,2)] . (81.33)

The contents of each square bracket must vanish. Requiring this of the first
term yields

A(1,2,3,4) = — A(1,2,4,3) — A(1,4,2,3) . (81.34)
Assigning some helicities, this reads
A(17,27,37,47) = — A(17,27,47,37) - A(17,47,27,37) . (81.35)

Note that we have now expressed a partial amplitude with nonadjacent
negative helicities in terms of partial amplitudes with adjacent negative
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helicities, which we have already calculated. Thus we have

) o (31)4 (31)*
AT25874%) = — | oo s (31><14>(42><23>]

@3’ 1 1 ]

Ty (1B T aaes)

_ (13 ra4)23) + (1 ><34>]

(24) [ (12)(34)(14)(23)
13 —(13)(42)
- oy [arEeaaET ) (8150

where the last line follows from the Schouten identity (see problem 50.3).
A final clean-up yields

(13)*
(12)(23)(34)(41) °

Now that we have all the partial amplitudes, we can compute the color-
summed |7 |2. There are only three partial amplitudes that are not related
by either cyclic permutations, eq. (81.3), or reflections, eq. (81.9); we can
take these to be

A(17,2%,37,47) =

(81.37)

Ay = A(1,2,3,4) (81.38)
Ay = A(1,3,4,2) (81.39)
Ay = A(1,4,2,3) (81.40)

where the subscript on the left-hand side is the third argument on the
right-hand side. (Switching the second and fourth arguments is equivalent
to a reflection and a cyclic permutation, and so leaves the partial amplitude
unchanged.) This mimics the notation we used at the end of section 80,
and we can apply our result from there to the color sum,

> _ITI? =2N*(N*~1)g ZIA 4Nt (AN Ay, (8141)

colors i k

where j and k are summed over 2,3,4. In the present case, however,
eq. (81.34) is equivalent to >5;A; = 0, so the second term in eq. (81.41)
vanishes. Our result for the color-summed squared amplitude is then

SOITE = 2NA(N2-1)g* (| A2l + [ A3 + [Aaf?) . (81.42)

colors
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Figure 81.2: Color-ordered diagrams for gggg scattering.
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Figure 81.3: The double-line version of fig. (81.2); the associated color factor
s (TeT%),;,n,

For the case where 1 and 2 are the incoming gluons, and 3 and 4 are
the outgoing gluons, we can write this in terms of the usual Mandelstam
variables s = s19 = S34, t = S13 = So4, and u = s14 = s93 by recalling that
[(12)]? = |[12]|*> = |s12], etc. Let us take the case where gluons 1 and 2
have negative helicity, and 3 and 4 have positive helicity. In this case, we
see from eqgs. (81.28) and (81.37) that the numerator in every nonvanishing
partial amplitude is (12)*. Then we get

1 1 1
C(%S\T\l o-z+4tr = 2N?(N?=1)g"s <s2t2 + 22 + ’LL282) . (81.43)

We can also sum over helicities. There are six patterns of two positive
and two negative helicities; ——+4 and ++4—— yield a factor of s*, —4—+
and +—+— yield t*, and —++— and +——+ yield u*. The helicity sum is
therefore

1 1 1

T)? =4N*(N?-1 et 4( ) 81.44
12\ | o' (st ) st m st g ) (8144)
helicities

Of course, we really want to average (rather than sum) over the initial

colors and helicities; to do so we must divide eq. (81.44) by 4(N2—1)2.
Next we turn to scattering of quarks and gluons. We consider a single

type of massless quark: a Dirac field in the N representation of SU(N).
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The lagrangian for this field is £ = iWI)W¥, where the covariant derivative
is D, = 8, — (ig/V2)A,. Thus the color-ordered vertex factor is

iVH = (ig/V2)y" . (81.45)

To get the color factor, we use the double-line notation, with a single line
for the quark. As an example, consider the process of g¢g — gg (and its
crossing-related cousins). The contributing color-ordered tree diagrams are
shown in fig. (81.2). The corresponding double-line diagrams are shown in
fig. (81.3); the quark is represented by a single line, with an arrow direction
that matches its charge arrow. To get the color factor, we start with line 2,
and follow the arrows backwards; the result is (T%7%);,“. The complete
amplitude can then be written as

T = g? [(T*T™);, " A(15,24,3,4) + (TT%);, " A(15,24,4,3)| , (81.46)

where A(1g,24,3,4) is the appropriate partial amplitude. The subscripts ¢
and ¢ indicate the labels that correspond to an outgoing quark and outgoing
antiquark, respectively.

From our results for spinor electrodynamics in section 60, we know that
a nonzero amplitude requires opposite helicities on the two ends of any
fermion line. Consider, then, the case of 7_, ,),. The partial amplitude
corresponding to the diagrams of fig. (81.2) is

ig° A(17,27,3,4) = (ig/V2)*(1/0)[21¢5(~sh5/p3)4]1)

+ (ig/V2)[2l¢5]1)i Vs, (81.47)

el s ighsyy

Suppose both gluons have positive helicity. Then using

V2
kiq) = —=( |k k 81.48
(ki) = 7o (IRldal + la) K1) (81.48)
we can get both lines of eq. (81.47) to vanish by choosing ¢3 = q4 = p1.
Similarly, if both gluons have negative helicity, then using

V2
- (ki) = ¢ (1) lal +lalCkl ) (81.49)

we can get both lines of eq. (81.47) to vanish by choosing g3 = g4 = p2. So
the gluons must have opposite helicities to get a nonzero amplitude.

Consider, then, the case of A\3 = + and Ay = —. We can get V3y5 to
vanish by choosing ¢3 = k4 and g4 = k3. The partial amplitude is then
given by just the first line of eq. (81.47),

A(lq_, 23—7 3+,4_) = % [2|¢3+ (251‘1'%4#47 |1>/(—814) . (81-50)
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With g3 = k4 and g4 = k3, we have

V2
Foe = Tygy (1031 +13)4]) (81.51)
V2
_=—(4 4| . 1.52
Fi = g (131 + 1314)) (81.52)
Using the identity
¥= —Ippl = Iplipl (81.53)
eq. (81.50) becomes
_ _ 23](41)[13](41)
AL, 2,35 47) = b . 81.54
In the numerator, we use [13](41) = —[23](42). In the denominator, we
set $14 = S23 = (23) [32]. Then we multiply the numerator and denomina-
tor by (12), and use [23](12) = —[43](14) in the numerator. Finally we
multiply both by (14), and rearrange to get
_ _ 14)3 (24)
A7 28,37 47y = : 81.55
( 7:2,347) (12)(23)(34)(41) ( )
An analogous calculation yields
_ _ 13)3(23)
A28 37,40y = : 81.56
(1g,24,37,47) (12)(23)(34)(41) ( )

The remaining nonzero amplitudes are related by complex conjugation.

Now that we have all the partial amplitudes, we can compute the color-
summed |7 |2. To do so, we multiply eq. (81.46) by its complex conjugate,
and use hermiticity of the generator matrices to get

SOITP = gt [Te(To T T T (| 452 + |Aaf?)
colors

+ Te(TTPTT") (434, + 4345, (81.57)

where Az = A(15,24,3,4) and Ay = A(15,24,4,3). The traces are easily
evaluated with the double-line technique of section 80; because the ficti-
tious photon couples to the quark, we must use eq. (81.30) to project it
out. The traces in eq.(81.57) are also easily evaluated with the group-
theoretic methods of section 70, with the normalization that the index of
the fundamental representation is one: T'(N) = 1. Either way, the results
are

Te(TeT°TPT?) = +(N2—1)?/N , (81.58)
Te(T°T°T°T®) = —(N?—1)/N . (81.59)
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The sum over the four possible helicity patterns (—++—, —+—+, +——+,
+—+—) is left as an exercise.

Now that we have calculated these scattering amplitudes for quarks
and gluons, an important questions arises: why did we bother to do it?
Quarks and gluons are confined inside colorless bound states, the hadrons,
and so apparently cannot appear as incoming and outgoing particles in a
scattering event.

To answer this question, suppose we collide two hadrons with a center-
of-mass energy E = /s large enough so that the QCD coupling g is small
when renormalized in the MS scheme with = E. (In the real world, we
have a = ¢g?/4n = 0.12 for 4 = M, = 91GeV.) Then we can think of
each hadron as being made up of a loose collection of quarks and gluons,
and these parts of a hadron, or partons, can be treated as independent
participants in scattering processes. In order to extract quantitative results
for hadron scattering (a project beyond the scope of this book), we need
to know how each hadron’s energy and momentum is shared among its
partons. This is described by parton distribution functions. At present,
these cannot be calculated from first principles, but they have to satisfy
a variety of consistency conditions that can be derived from perturbation
theory, and that relate their values at different energies. These conditions
are well satisfied by current experimental data.

REFERENCE NOTES

More detail on how hadron scattering experiments can be compared with
parton scaterring amplitudes can be found in Peskin & Schroeder, Muta,
Quigg, and Sterman.

PROBLEMS

81.1) Compute the four-gluon partial amplitude A(17,2%,37,4T) directly
from the Feynman diagrams, and verify eq. (81.37).

81.2) Compute the Gggg partial amplitude A(1;,2},37,4") with ¢4 = py
and g3 = k4. Show that, with this choice of the reference momenta,
the first line of eq.(81.47) vanishes. Evaluate the second line, and
verifiy eq. (81.55).

81.3) Compute A(17,25,37,4%), and verify eq. (81.56).

q>“q>
81.4) a) Verify egs. (81.58) and (81.59) using the double-line notation of
section 80.
b) Compute Tr(T¢TETETE) and Tr(T2TLTETY) in terms of the index
T(R) and dimension D(R) of the representation R, and the index
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T(A) and dimension D(A) of the adjoint representation. Verify that
your results reproduce egs. (81.58) and (81.59).

81.5) Compute the sum over helicities of eq. (81.57). Express your answer
in terms of s, t, and u for the process gqg — gg.

81.6) Consider the partial amplitude A(17,27,37,4%,5%). Show that, with
the choice q3 = ko and q4 = q5 = k1, there are just two contributing
diagrams. Evaluate them. After some manipulations, you should be
able to put your result in the form

(13)° (23)
(12)(23)(34)(45)(51)

A(17,25,37,47,5%) =

(81.60)
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82  WILSON LooPs, LATTICE THEORY, AND
CONFINEMENT

PREREQUISITE: 29, 73

In this section, we will contruct a gauge-invariant operator, the Wilson loop,
whose vacuum expectation value (VEV for short) can diagnose whether
or not a gauge theory exhibits confinement. A theory is confining if all
finite-energy states are invariant under a global gauge transformation. U(1)
gauge theory—quantum electrodynamics—is not confining, because there
are finite-energy states (such as the state of a single electron) that have
nonzero electric charge, and hence change by a phase under a global gauge
transformation.

Confinement is a nonperturbative phenomenon; it cannot be seen at any
finite order in the kind of weak-coupling perturbation theory that we have
been doing. (This is why we had no trouble calculating quark and gluon
scattering amplitudes.) In this section, we will introduce lattice gauge the-
ory, in which spacetime is replaced by a discrete set of points; the inverse
lattice spacing 1/a then acts as an ultraviolet cutoff (see section 29). This
cutoff theory can be analyzed at strong coupling, and, as we will see, in
this regime the VEV of the Wilson loop is indicative of confinement. The
outstanding question is whether this phenomenon persists as we simul-
taneously lower the coupling and increase the ultraviolet cutoff (with the
relationship between the two governed by the beta function), or whether we
encounter a phase transition, signalled by a sudden change in the behavior
of the Wilson loop VEV.

We take the gauge group to be SU(N). Consider two spacetime points
x* and x* + ¢, where " is infinitesimal. Define the Wilson link

W (z+e,x) = expligetA,(x)] , (82.1)

where A,(x) is an N x N matrix-valued traceless hermitian gauge field.
Since ¢ is infinitesimal, we also have

W (x+e,z) = I +igelA,(z) + O(e?) . (82.2)

Let us determine the behavior of the Wilson link under a gauge trans-
formation. Using the gauge transformation of A,(x) from section 69, we
find

W (z+e,x) — 1+ ige"U(x) A, (2)UT(z) — e'U(x)0, Ut (z) , (82.3)

where U(z) is a spacetime-dependent special unitary matrix. Since UUT =
1, we have —UQ,UT = +(9,U)UT; thus we can rewrite eq. (82.3) as

W(z+e,x) — ((1 + E“@M)U(x))UT(x) +igelU(z)Au(x)UT () . (82.4)
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In the first term, we can use (1 + &"9,)U(z) = U(z+e) + O(?). In the
second term, which already contains an explicit factor of e#, we can replace
U(z) with U(z+e€) at the cost of an O(g?) error. Then we get

W(z+e,z) — U(x—l—s)(l + igE”Au(x))UT(a:) , (82.5)
which is equivalent to
W (z+e, ) — Ulz+e)W (z+e, 2)UT (z) . (82.6)

Note also that eq.(82.1) implies Wi(z+e,2) = W(z—e,z). We can
shift = to  + ¢ at the cost of an O(e?) error, and so

Wi(zte,x) = W(z,z+e) , (82.7)

which is consistent with eq. (82.6).

Now consider mutiplying together a string of Wilson links, specified by
a starting point z and n sequential infinitesimal displacement vectors ;.
The ordered set of €’s defines a path P through spacetime that starts at x
and ends at y =z +¢e1 4+ ...+ &,. The Wilson line for this path is

Wp(y,x) = W(y,y—en) ... W(x+e14e9, x+e1)W(x+e1,x) . (82.8)

Using eq. (82.6) and the unitarity of U(z), we see that, under a gauge
transformation, the Wilson line transforms as

Wp(y,z) = U(y)We(y,2)U' (z) . (82.9)

Also, since hermitian conjugation reverses the order of the product in
eq. (82.8), using eq. (82.7) yields

Why, z) = W_p(x,y) (82.10)

where — P denotes the reverse of the path P.

Now consider a path that returns to its starting point, forming a closed,
oriented curve C' in spacetime. The Wilson loop is the trace of the Wilson
line for this path,

We =TrWe(z,z) . (82.11)

Using eq. (82.9), we see that the Wilson loop is gauge invariant,
We — We . (82.12)

Also, eq. (82.10) implies
WL =W_¢, (82.13)
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where —C' denotes the curve C traversed in the opposite direction.

To gain some intuition, we will calculate (0|W¢|0) for U(1) gauge theory,
without charged fields. This is simply a free-field theory, and the calculation
can be done exactly.

In order to avoid dealing with ie issues, it is convenient to make a Wick
rotation to euclidean spacetime (see section 29). The action is then

S = / d'z YF,,F,, (82.14)

where F,, = 0,A, — 0,A,. The VEV of the Wilson loop is now given by
the path integral

(0|We|0) = / DA ¢ o ondng=5 (82.15)

If we formally identify g ¢ dz,, as a current J,,(x), we can apply our results
for the path integral from section 57. After including a factor of 7 from the
Wick rotation, we get

(0] We|0) = exp[—%gz 72 dz,, 72 dyy Ap(z—y)| | (82.16)
where A, (z—y) is the photon propagator in euclidean spacetime. In Feyn-
man gauge, we have

d4% eik-(m—y)
Ap(x—y) =6 | ===

(2m)t k2
_ 4m K dk ™ : 2p ik|z—y| cosf
= O (271)4/0 2 /0 df sin“fe
s 47 /°° k3 dk wJy(k|lz—y|)
et k2 klz—y|

O 0
e /0 du Jy (u)

O

where Ji(u) is a Bessel function. Since A, (z—y) depends only on z—y,
the double line integral in eq. (82.16) will yield a factor of the perimeter P
of the curve C. There is also an ultraviolet divergence as x approaches y;
we will cut this off at a length scale a. The result is then

(0|We|0) = exp[—(ég*/a)P] (82.18)
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where ¢ is a numerical constant that depends on the shape of C' and the de-
tails of the cutoff procedure. This behavior of the Wilson loop in euclidean
spacetime—exponential decay with the length of the perimeter—is called
the perimeter law. It is indicative of unconfined charges.

We can gain more insight into the meaning of (0|W¢|0) by taking C
to be a rectangle, with length 7" in the time direction and R in a space
direction, where a < R <« T. (Of course, in euclidean spacetime, the
choice of the time direction is an arbitrary convention.) The reason for
this particular shape is that the current g §,dz, corresponds to a point
charge moving along the curve C'. When the particle is moving backwards
in time, the associated minus sign is equivalent to a change in the sign of
its charge. So when we compute (0|W¢|0), we are doing the path integral
in the presence of a pair of point charges with opposite sign, separated by
a distance R, that exists for a time 7. On general principles (see section
6), this path integral is proportional to exp(—FEpairT’), where Epqir is the
ground-state energy of the quantum electrodynamic field in the presence of
the charged particle pair.

We now turn to the calculation. If both z and y are on the same side
of the rectangle, we find

//L dxdy > =2L/a—2In(L/a) + O(1), (82.19)

where L is the length of the side (either R or T), and the O(1) term is a
numerical constant that depends on the details of the short-distance cutoff.
If x and y are on perpendicular sides, the double line integral is zero,
because then dx - dy = 0. If = is on one short side and y on the other, the
integral evaluates to R2/T?, and this we can neglect. Finally, if 2 is on one
long side and y is on the other, we have

/ / (@ _dx di 2 = "T/R-2In(T/R) -2+ O(R?/T?).  (82.20)

Adding up all these contributions, we find in the limit of large T" that
dr - d
]{ 7{ T y = (4/a—21/R)T+O(InT) . (82.21)

Combining this with egs. (82.16) and (82.17), and setting o = g?/4n, we

find
2a «

(0]We|0) = exp {— (E - E)T} . (82.22)

Comparing this with the general expectation (0|W¢|0) o< exp(—EpairT),
we find a cutoff dependent contribution to Fp,i that represents a divergent



82: Wilson Loops, Lattice Theory, and Confinement 499

A

Y xeo

Figure 82.1: The minimal Wilson loop on a hypercubic lattice goes around
an elementary plaquette; this one lies in the 1-2 plane.

self-energy for each point particle, plus the Coulomb potential energy for
the pair, V(R) = —a/R.

In the nonabelian case, where there are interactions among the gluons,
we must expand everything in powers of g. Then we find

(0[We|0) = Tr[l _1eTeTe 72 dz,, 740 dyy, A (z—y) +0(gh)| . (82.23)

Since T%T“ equals the quadratic Casimir C'(N) for the fundamental repre-
sentation (times an identity matrix), we see that to leading order in g? we
simply reproduce the results of the abelian case, but with g — ¢g2C(N).
We can also consider a Wilson loop in a different representation by setting
Au(z) = Al (z)T. Then, at leading order, we get a factor of C'(R) instead
of C'(N). Perturbative corrections can be computed via standard Feynman
diagrams with gluon lines that, in position space, have at least one end on
the curve C.

Next we turn to a strong coupling analysis. We begin by constructing
a lattice action for nonabelian gauge theory. Consider a hypercubic lattice
of points in four-dimensional euclidean spacetime, with a lattice spacing a
between nearest-neighbor points. The smallest Wilson loop we can make
on this lattice goes around an elementary square or plaquette, as shown in
fig. (82.1). Let 1 and &2 be vectors of length a in the 1 and 2 directions,
and let z be the point at the center of the plaquette. Using the center of
each link as the argument of the gauge field, and using the lower-left corner
as the starting point, we have (multiplying the Wilson links from right to
left along the path)

Wplaq - Tr e—igaAz(w—€1/2)e—igaA1(m+€2/2)e+igaA2 (m+€1/2)e+igaA1(m—52/2) ]
(82.24)
If we now treat the gauge field as smooth and expand in a, we get
Wplaq - Ty e—igaAg(w)+iga281A2(m)/2+... e—z’gaAl (x)—iga?B2 A1 (z)/24...

% e—l—igaAz(m)+iga281A2(m)/2+... e—i—igaAl(x)—igazazAl(m)/2+... ] (8225)
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Next we use edeP = eA+tBFABl/ 2+ t4 combine the two exponential factors
on the first line of eq. (82.25), and also the two exponential factors on the
second line. Then we use this formula once again to combine the two results.

We get
Wplaq — Tre+iga2(81A2—82A1 —ig[Al,Az])+... , (8226)

where all fields are evaluated at x. If we now take Wylaq + W_plaq and
expand the exponentials, we find

Wolaq + Weplaq = 2N — ¢%a* TrFE, + ..., (82.27)

where Fio = 01 Ay — 0 A1 —ig[Aq, As] is the Yang—Mills field strength. From
eq. (82.27), we conclude that an appropriate action for Yang—Mills theory
on a euclidean spacetime lattice is

1
S = 5 > Whlaq » (82.28)

plaq
where the sum includes both orientations of all plaquettes. Each Wiaq is
expressed as the trace of the product of four special unitary N x N matrices,
one for each oriented link in the plaquette. If U is the matrix associated
with one orientation of a particular link, then UT is the matrix associated
with the opposite orientation of that link. The path integral for this lattice
gauge theory is

Z = /DU e, (82.29)
where
DU = [[ dUnx , (82.30)
links

and dU is the Haar measure for a special unitary matrix. The Haar measure
is invariant under the transformation U — VU, where V is a constant spe-
cial unitary matrix, and is normalized via [dU = 1; this fixes it uniquely.
For N > 3, it obeys

/ dU Uy; =0, (82.31)
/ dU UyUyy = 0 , (82.32)
/ AU UUfy = L6a6 , (82.33)

which is all we will need to know.

Now consider a Wilson loop, expressed as the trace of the product of
the U’s associated with the oriented links that form a closed curve C. For
simplicity, we take this curve to lie in a plane. We have

(0|Wel0) = Z71 / DU Wee ™™ . (82.34)
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We will evaluate eq. (82.34) in the strong coupling limit by expanding e~

in powers of 1/g2. At zeroth order, e — 1; then eq. (82.31) tells us that
the integral over every link in C vanishes. To get a nonzero result, we need
to have a corresponding U from the expansion of e~°. This can only come
from a plaquette containing that link. But then the integral over the other
links of this plaquette will vanish, unless there is a compensating U' for
each of them. We conclude that a nonzero result for (0|W¢|0) requires us
to fill the interior of C' with plaquettes from the expansion of e~°. Since
each plaquette is accompanied by a factor of 1/¢g%, we have

(O[We|0) ~ (1/g3) A, (82.35)

where A is the area of the surface bounded by C, and A/a? is the number
of plaquettes in this surface. Eq. (82.35) yields the area law for a Wilson
loop,

(0|Wel0) < e ™ | (82.36)

where

7 =c(g)/a® (82.37)

is the string tension. In the strong coupling limit, ¢(g) = In(g?) + O(1).

The area law for the Wilson loop implies confinement. To see why,
let us again consider a rectangular loop with area A = RT. Comparing
eq. (82.36) with the general expectation (0|W¢|0) o< exp(—EpairT’), we see
that Epair = V(R) = 7R. This corresponds to a linear potential between
nonabelian point charges in the fundamental representation. It takes an
infinite amount of energy to separate these charges by an infinite distance;
the charges are therefore confined. The coefficient 7 of R in V(R) is called
the string tension because a linear potential is what we get from two points
joined by a string with a fixed energy per unit length; the energy per unit
length of a string is its tension.

The string tension 7 is a physical quantity that should remain fixed
as we remove the cutoff by lowering a. Thus lowering a requires us to
lower g. The outstanding question is whether ¢(g) reaches zero at a finite,
nonzero value of g. If so, at this point there is a phase transition to an
unconfined phase with zero string tension. This has been proven to be the
case for abelian gauge theory (which also exhibits an area law at strong
coupling, by the identical argument). In nonabelian gauge theory, on the
other hand, analytic and numerical evidence strongly suggests that c(g)
remains nonzero for all nonzero values of g.

At small @ and small g, the behavior of g as a function of a is governed
by the beta function, 3(g) = —adg/da. (The minus sign arises because the
ultraviolet cutoff is a=!.) Requiring 7 to be independent of a yields

d(g) = —3B8(9)cly) - (82.38)
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At small g, we have
Blg) = —big’ +0(g) , (82.39)

where by = 11N /4872 for SU(N) gauge theory without quarks. Solving for
c(g) yields
c(g) = Cexp(1/b1g?) (82.40)

where C' is an integration constant, which is nonzero if there is no phase
transition. In this case, at small g, the string tension has the form

7= Cexp(1/b1g*)/a® . (82.41)

We then want to take the continuum limit of a — 0 and ¢ — 0 with 7 held
fixed.

Note that eq. (82.41) shows that the string tension, at weak coupling,
is not analytic in g, and so cannot be computed via the Taylor expansion
in g that is provided by conventional weak-coupling perturbation theory.
Instead, the path integrals of eqs. (82.29) and (82.34) can be performed on
a finite-size lattice via numerical integration. The limiting factor in such a
calculation is computer resources.

REFERENCE NOTES
An introduction to lattice theory is given in Smit.
PROBLEMS

82.1) Let C be a circle of radius R. Evaluate the constant ¢ in eq. (82.18),
where P = 27 R is the circumference of the circle. Replace 1/(z—y)?
with zero when |z—y| < a. Assume a < R.
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83 CHIRAL SYMMETRY BREAKING

PREREQUISITE: 76, 82

In the previous section, we discussed confinement in Yang—Mills theory
without quarks. In the real world, there are six different flavors of quark;
see Table 1. Each flavor has a different mass, and is represented by a Dirac
field in the fundamental or 3 representation of the color group SU(3). Such
a Dirac field is equivalent to two left-handed Weyl fields, one in the funda-
mental representation, and one in the antifundamental or 3 representation.

The lightest quarks are the up and down quarks, with masses of a few
MeV. These masses are small, in the following sense. The gauge coupling
g of QCD becomes large at low energies. If we truncate the beta function
after some number of terms (in practice, four or fewer), and integrate it,
we find that g becomes infinite at some finite, nonzero value of the MS
parameter pu; this value is called Aqcp. Measurements of the strength of
the gauge coupling at high energies imply Aqop ~ 0.2GeV. The up and
down quark masses are much less than Aqcp. We can therefore begin with
the approximation that the up and down quarks are massless. The mass of
the strange quark is also somewhat less than Agcp. It is sometimes useful
(though clearly less justified) to treat the strange quark as massless as well.

If we are interested in hadron physics at energies below ~1 GeV, we can
ignore the charm, bottom, and top quarks entirely; we will also ignore the
strange quark for now. Let us, then, consider QCD with ny = 2 flavors
of massless quarks. We then have left-handed Weyl fields x;, where a =
1,2, 3 is a color index for the 3 representation, and i = 1,2 is a flavor index,
and left-handed Weyl fields €%, where o = 1,2,3 is a color index for the
3 representation, and 7 = 1,2 is a flavor index; we distinguish this flavor
index from the one for the x’s by putting a bar over it, and we write it as
a superscript for later notational convenience. We suppress the undotted
spinor index carried by both x and &. The lagrangian is

£ =ix1* a"(Dy)o” xpi + i€, 0" (D) 5 €7 = JFFy, . (83.1)

where D), = 8, —igT§ A}, and D,, = 8, — igTZ Ay, with (T2)% = —(T¥') 5~
In addition to the SU(3) color gauge symmetry, this lagrangian has a global
U(2) x U(2) flavor symmetry: £ is invariant under

Xoi = Li'Xaj » (83.2)
€7 — (R7)' 56, (83.3)

where L and R* are independent 2 x 2 constant unitary matrices. (The
complex conjugation of R is a notational convention that turns out to be
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name symbol mass Q
(GeV)

up u 0.0017 +2/3
down d 0.0039 —1/3
strange s 0.076 —1/3
charm c 1.3 +2/3
bottom b 43 -1/3
top t 178 +2/3

Table 1: The six flavors of quark. Each flavor is represented by a Dirac
field in the 3 representation of the color group SU(3). @ is the electric
charge in units of the proton charge. Masses are approximate, and are MS
parameters. For the u, d, and s quarks, the MS scale y is taken to be 2 GeV.
For the ¢, b, and t quarks, u is taken to be equal to the corresponding mass;
e.g., the bottom quark mass is 4.3 GeV when y = 4.3 GeV.

convenient.) In terms of the Dirac field

Uy = <Xm> , (83.4)

els
egs. (83.2) and (83.3) read
PV, — LiP. Y, , (83.5)
PaVy; — RIP W, , (83.6)

where P = %(1 F 75). Thus the global flavor symmetry is often called
U(2)r, x U(2)gr. A symmetry that treats the left- and right-handed parts of
a Dirac field differently is said to be chiral.

However, there is an anomaly in the axial U(1) symmetry corresponding
to L = R* = '] (which is equivalent to ¥ — e~ W for the Dirac field).
Thus the nonanomalous global flavor symmetry is SU(2), x SU(2)r x U(1)v,
where V stands for vector. The U(1)y transformation corresponds to
L = R = e ], or equivalently ¥ — e~ W. The corresponding con-
served charge is quark number, the number of quarks minus the number of
antiquarks; this is one third of the baryon number, the number of baryons
minus the number of antibaryons. (Baryons are color-singlet bound states
of three quarks; the proton and neuton are baryons. Mesons are color-
singlet bound states of a quark and an antiquark; pions are mesons.)

Thus, U(1)y results in classification of hadrons by their baryon num-
ber. How is the SU(2), x SU(2)r symmetry realized in nature? The vector
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subgroup SU(2)v, obtained by setting R = L in eq. (83.3), is known as iso-
topic spin or isospin symmetry. Hadrons clearly come in representations
of SU(2)y: the lightest spin-one-half hadrons (the proton, mass 0.938 GeV,
and the neutron, mass 0.940 GeV) form a doublet or 2 representation, while
the lightest spin-zero hadrons (the 7°, mass 0.135GeV, and the 7+, mass
0.140 GeV) form a triplet or 3 representation. Isospin is not an exact sym-
metry; it is violated by the small mass difference between the up and down
quarks, and by electromagnetism. Thus we see small differences in the
masses of the hadrons assigned to a particular isotopic multiplet.

The role of the axial part of the SU(2);, x SU(2)g symmetry, obtained
by setting R = LT in eq. (83.3), is harder to identify. The hadrons do not
appear to be classified into multiplets by a second SU(2) symmetry group.
In particular, there is no evidence for a classification that distinguishes the
left- and right-handed components of spin-one-half hadrons like the proton
and neutron.

Reconciliation of these observations with the SU(2)r, xSU(2)r symmetry
of the underlying lagrangian is only possible if the axial generators are
spontaneously broken. The three pions (which have spin zero, odd parity,
and are by far the lightest hadrons) are then identified as the corresponding
Goldstone bosons. They are not exactly massless (and hence are sometimes
called pseudogoldstone bosons) because the SU(2);, x SU(2)r symmetry is,
as we just discussed, not exact.

To spontaneously break the axial part of the SU(2)1, x SU(2)R, some op-
erator that transforms nontrivially under it must acquire a nonzero vacuum
expectation value, or VEV for short. To avoid spontaneous breakdown of
Lorentz invariance, this operator must be a Lorentz scalar, and to avoid
spontaneous breakdown of the SU(3) gauge symmetry, it must be a color
singlet. Since we have no fundamental scalar fields that could acquire a
nonzero VEV, we must turn to composite fields instead. The simplest can-
didate is x%;£%7 = WP, W,;, where a is an undotted spinor index. (The
product of two fields is generically singular, and a renormalization scheme
must be specified to define it.) We assume that

(0x8:€5710) = =087, (83.7)

where v is a parameter with dimensions of mass. Its numerical value
depends on the renormalization scheme; for MS with © = 2GeV, v ~
0.23 GeV.

To see that this fermion condensate does the job of breaking the axial
generators of SU(2);, x SU(2)r while preserving the vector generators, we
note that, under the transformation of egs. (83.2) and (83.3),

(Ol5:€2710) — LiE(R)m (0l |0)
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— —v3(LR")7 , (83.8)

where we used eq. (83.7) to get the second line. If we take R = L, cor-
responding to an SU(2)y transformation, the right-hand side of eq. (83.8)
is unchanged from its value in eq. (83.7). This signifies that SU(2)y [and
also U(1)y] is unbroken. However, for a more general transformation with
R # L, the right-hand side of eq. (83.8) does not match that of eq. (83.7),
signifying the spontaneous breakdown of the axial generators.

Eq. (83.7) is nonperturbative: (0|x2,£57|0) vanishes at tree level. Pertur-
bative corrections then also vanish, because of the chiral flavor symmetry
of the lagrangian. Thus the value of v is not accessible in perturbation the-
ory. On general grounds, we expect v ~ Agep, since Agop is the only mass
scale in the theory when the quarks are massless. Similarly, Aqcp sets the
scale for the masses of all the hadrons that are not pseudogoldstone bosons,
including the proton and neutron.

We can construct a low-energy effective lagrangian for the three pseu-
dogoldstone bosons (to be identified as the pions) in the following way. We
allow the orientation in flavor space of the VEV of x%.£%7 to vary slowly as
a function of spacetime. That is, in place of eq. (83.7), we write

(OlxGs(2)€57 ()[0) = —v° U (x) , (83.9)
where U(x) is a spacetime dependent unitary matrix. We can write it as
U(zx) = exp[2in®(z)T*/ fx] , (83.10)

where T¢ = %a“ with @ = 1,2,3 are the generator matrices of SU(2),
m%(x) are three real scalar fields to be identified with the pions, and fr is
a parameter with dimensions of mass, the pion decay constant. We do not
include a fourth generator matrix proportional to the identity, since the
corresponding field would be the Goldstone boson for the U(1)s symmetry
that is eliminated by the anomaly. Equivalently, we require det U(x) = 1.
We will think of U(z) as an effective, low energy field. Its lagrangian
should be the most general one that is consistent with the underlying
SU(2)r, x SU(2)gr symmetry.! Under a general SU(2);, x SU(2)r trans-

formation, we have
U(x) — LU(z)R' , (83.11)

where L and R are independent special unitary matrices. We can organize
the terms in the effective lagrangian for U(x) (also known as the chiral
lagrangian) by the number of derivatives they contain. Because UTU = 1,

'U(1)v acts trivially on U(z), and so we need not be concerned with it.
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there are no terms with no derivatives. There is one term with two (all
others being equivalent after integrations by parts),

=121 oruto,U . (83.12)

If we substitute in eq. (83.10) for U, and expand in inverse powers of f,
we find

L=-10"n"0,n" + %f;2(7r“71“8“7rb8u7rb — w9, ) + ... . (83.13)

Thus the pion fields are conventionally normalized, and they have interac-
tions that are dictated by the general form of eq. (83.12). These interactions
lead to Feynman vertices that contain factors of momenta p divided by f;.
Therefore, we can think of p/f; as an expansion parameter. Of course,
we should also add to £ all possible inequivalent terms with four or more
derivatives, with coefficients that include inverse powers of f.. These will
lead to more vertices, but their effects will be suppressed by additional
powers of p/fr. Comparison with experiment then yields f; = 92.4MeV.
(In practice, the value of f is more readily determined from the decay rate
of the pion via the weak interaction; see section 90 and problem 48.5.)

This value for f; may seem low; it is, for example, less than the mass
of the “almost masless” pions. However, it turns out that tree and loop
diagrams contribute roughly equally to any particular process if each extra
derivative in £ is accompanied by a factor of (47 f)~! rather that f-!, and
each loop momentum is cut off at 4w f;. Thus it is 47 f; ~ 1 GeV that sets
the scale of the interactions, rather than f; ~ 100 MeV.

Now let us consider the effect of including the small masses for the up
and down quarks. The most general mass term we can add to the lagrangian
is

Emass = _SaijiXoci + h.c.
= —M;'X0i€% + h.c.
= —Tr M xo.£% + h.c., (83.14)

where M is a complex 2 x 2 matrix. By making an SU(2);, x SU(2)g
transformation, we can bring M to the form

my, O )
M = ( >e—29/2 , (83.15)
0 my

where m, and mg are real and positive. We cannot remove the overall
phase 6, however, without making a forbidden U(1)a transformation. A
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nonzero value of 6 has physical consequences, as we will discuss in section
94. For now, we note that experimental observations fix |#| < 107, and so
we will set # = 0 on this phenomenological basis.

Next, we replace &% in eq. (83.14) with its spacetime dependent VEV,
eq. (83.7). The result is a term in the chiral lagrangian that incorporates
the leading effect of the quark masses,

Linass = v° Te(MU + MTUT) . (83.16)

Here we continue to distinguish M and M7, even though, with § = 0, they
are the same matrix. If we think of M as transforming as M — RITML,
while U transforms as U — LURT, then Tr MU is formally invariant. We
then require all terms in the chiral lagrangian to exhibit this formal invari-
ance.

If we expand Lmass in inverse powers of f,, and use MT = M, we find

Loass = =403/ f2) Te(MT*T?) 77 4 ...
= —2(®/f2) Te(M{T*, T°} )77’ + ...
= —(3/F2)(Tr M)m%7 + ... . (83.17)

We used the SU(2) relation {7, 7%} = 16% to get the last line. From
eq. (83.17), we see that all three pions have the same mass, given by the
Gell-Mann—Qakes—Renner relation,

m2 = 2(my + mg)v3/f2. (83.18)

™

On the right-hand side, the quark masses and v depend on the renormaliza-
tion scheme, but their product does not. In the real world, electromagnetic
interactions raise the mass of the 7% slightly above that of the 7°.

This framework is easily expanded to include the strange quark. The
three pions (7F, 77, mass 0.140 GeV; 7°, mass 0.135 GeV), the four kaons
(K+, K~, mass 0.494 GeV; K°, K°, mass 0.498 GeV), and the eta (1, mass
0.548 GeV) are identified as the eight expected Goldstone bosons. We can
assemble them into the hermitian matrix

ROy VErt VEK
o= 7_‘_aTa/fﬂ_ - \/571-_ —71'0 + %’I’] \/§K0 . (8319)
_ 70 2
\/EK \/5 K - ﬁﬂ
The second line of eq. (83.17) still applies, but now the 7'*’s are the genera-

tors of SU(3), and M includes a third diagonal entry for the strange quark
mass. We leave the details to the problems.
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Next we turn to the coupling of the pions to the nucleons (the proton
and neutron). We define a Dirac field N;, where Ny = p (the proton)
and Ny = n (the neutron). We assume that, under an SU(2);, x SU(2)r
transformation,

P.N; — L;?P,Nj , (83.20)
PiN; — Ry PyN; . (83.21)
The standard Dirac kinetic term iN@N is then SU(2)L, x SU(2)g invariant,
but the standard mass term muy NN is not. (Here my is the value of the
nucleon mass in the limit of zero up and down quark masses.) However,
we can construct an invariant mass term by including appropriate factors

of U and UT,
Linass = _mNN(UTPL + UPR)N . (8322)

There is one other parity, time-reversal, and SU(2);, x SU(2)g invariant
term with one derivative. Including this term, we have

L = iNJN —myN({U'P, + UPy)N
— Hga—1)iNA*(UB, U P, + U9, U PN (83.23)

where g, = 1.27 is the axial vector coupling. Its value is determined from
the decay rate of the neutron via the weak interaction; see section 90.

The form of the lagrangian in eq. (83.23) is somewhat awkward. It can
be simplified by first defining

u(z) = explin®(x)T/ fx] (83.24)
so that U(x) = u?(z). Then we define a new nucleon field
N = (u'P, + uPy)N . (83.25)

(This is a field redefinition in the sense of problem 11.5.) Equivalently,
using the unitarity of u, we have

N = (uP, +u' PN . (83.26)

Using eq. (83.26) in eq. (83.23), along with the identities 0,U = (O u)u +
u(9,u), (Out)u = —ul(9,u), etc., we ultimately find

L =iNIN — myNN + NN — g NdgysN | (83.27)

where we have defined the hermitian vector fields
v = Siful (9pu) + u(d,uh)] (83.28)
a, = Yifu (0,u) — w(9uuh)] . (83.29)
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If we now expand v and u' in inverse powers of f., we get
L =iNIN — mNNN + (ga/ fz)0um N TV s N + ... . (83.30)

We can integrate by parts in the interaction term to put the derivative on
the N and N fields. Then, if we consider a process where an off-shell pion
is scattered by an on-shell nucleon, we can use the Dirac equation to replace
the derivatives of A/ and N with factors of my. We then find a coupling
of the pion to an on-shell nucleon of the form

L sy = —ig, 7y No" N, (83.31)
where we have set T% = %a“, and identified the pion-nucleon coupling
constant,

9. NN = 9amn/ fr . (83.32)

The value of g_7 can be determined from measurements of the neutron-
proton scattering cross section, assuming that it is dominated by pion ex-
change; the result is g~ = 13.5. Eq.(83.32), known as the Goldberger—
Treiman relation, is then satisfied to within about 5%.

REFERENCE NOTES

The chiral lagrangian is treated in Georgi, Ramond II, and Weinberg II.
Light quark masses are taken from MILC.

PROBLEMS

83.1) Suppose that the color group is SO(3) rather than SU(3), and that
each quark flavor is represented by a Dirac field in the 3 representation

of SO(3).

a) With ny flavors of massless quarks, what is the nonanomalous
flavor symmetry group?

b) Assume the formation of a color-singlet, Lorentz scalar, fermion
condensate. Assume that it preserves the largest possible unbroken
subgroup of the flavor symmetry. What is this unbroken subgroup?

c) For the case np = 2, how many massless Goldstone bosons are
there?

d) Now suppose that the color group is SU(2) rather than SU(3),
and that each quark flavor is represented by a Dirac field in the 2
representation of SU(2). Repeat parts (a), (b), and (c) for this case.
Hint: at least one of the answers is different!
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83.2) Why is there a minus sign on the right-hand side of eq. (83.7)?
83.3) Verify that eq. (83.13) follows from eq. (83.12).

83.4) Use egs. (83.12) and (83.16) to compute the tree-level contribution to
the scattering amplitude for 7¢7® — 7¢7¢. Work in the isospin limit,
my = Mg = m. Express your answer in terms of the Mandelstam

variables and the pion mass m.
83.5) Verify that eq. (83.27) follows from egs. (83.26) and eq. (83.23).

83.6) Consider the case of three light quark flavors, with masses m,,, mg,
and mg.

a) Find the masses-squared of the eight pseudogoldstone bosons. Take
the limit m,, 4 < ms, and drop terms that are of order mz a/Ms.

b) Assume that m?ri and m%d each receive an electromagnetic con-
tribution; to zeroth order in the quark masses, this contribution is the
same for both, but the comparatively large strange quark mass results
in an electromagnetic contribution to m%i that is roughly twice as
large as the electromagnetic contribution Am2, to m?,. Use the
observed masses of the 7%, 7%, K*, and K° to compute m,v3/f2,
mdvg/fgv msvg/fgv and Am%M'

c¢) Compute the quark mass ratios m,/mg and ms/mg.

d) Use your results from part (b) to predict the n mass. How good is

your prediction?

83.7) Suppose that the U(1)s symmetry is not anomalous, so that we must
include a ninth Goldstone boson. We can write

U(x) = exp| 2in®(2)T/ fr + im%(x)/ fo] . (83.33)

The ninth Goldstone boson is given its own decay constant fo, since
there is no symmetry that forces it to be equal to f,. We write the
two-derivative terms in the lagrangian as

L=-122Tvo"UT0,U — 1F?0"(det UT)d,(det U) . (83.34)

a) By requiring all nine Goldstone fields to have canonical kinetic
terms, determine F' in terms of f, and fy.

b) To simplify the analysis, let m, = mg = m < mg. Find the masses
of the nine pseudogoldstone bosons. Identify the three lightest as the
pions, and call their mass m,. Show that another one of the nine
has a mass less than or equal to V3m.,. (The nonexistence of such a
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particle in nature is the U(1) problem; the axial anomaly solves this
problem.)

83.8) a) Write down all possible parity and time-reversal invariant terms
with no derviatives that are bilinear in the nucleon field N and that
have one factor of the quark mass matrix M.

b) Reexpress your result in terms of the nucleon field V.

c) Use the observed neutron-proton mass difference, m, — m, =
1.293MeV, and the m,/mg ratio you found in problem 83.6, to de-
temine as much as you can about the coefficients of the terms wrote
down. (Ignore the mass difference due to electromagnetism.)
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84  SPONTANEOUS BREAKING OF GAUGE
SYMMETRIES

PREREQUISITE: 32, 70

Consider scalar electrodynamics, specified by the lagrangian
L= ~(D"0)'Dyp = V(@) = §F"F (84.1)
where ¢ is a complex scalar field, D, = 9, — igA,,, and

V(p) = m2plp+ IA(pTp)? . (84.2)

(We call the gauge coupling constant g rather than e because we are using
this theory as a formal example rather than a physical model.) So far we
have always taken m? > 0, but now let us consider m? < 0. We analyzed
this model in the absence of the gauge field in section 32. Classically, the
field has a nonzero vacuum expectation value (VEV for short), given by

Olp(@)I0) = v, (843)

where we have made a global U(1) transformation to set the phase of the
VEV to zero, and
v = (4/m?|/A)Y? . (84.4)

We therefore write
p(r) = %(v + p(x))eX@/ (84.5)

where p(x) and x(z) are real scalar fields. The scalar potential depends
only on p, and is given by
Vie) = %)\v2p2 + %)\vpg + %/\pﬂ‘ . (84.6)
Since x does not appear in the potential, it is massless; it is the Goldstone
boson for the spontaneously broken U(1) symmetry.
The big difference in the gauge theory is that we can make a gauge
transformation that shifts the phase of ¢(xz) by an arbitrary spacetime

function. We can use this gauge freedom to set y(x) = 0; this choice is
called unitary gauge. Using eq. (84.5) with x(z) = 0 in eq. (84.1), we have

—(D*¢) D = —3( + ig(v + p)A")(Bup — ig(v + p)Ay)
= —20"p0p — %92(1) +p)2AFA,, . (84.7)
Expanding out the last term, we see that the gauge field now has a mass

M =gv. (84.8)
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This is the Higgs mechanism: the Goldstone boson disappears, and the
gauge field acquires a mass. Note that this leaves the counting of particle
spin states unchanged: a massless spin-one particle has two spin states,
but a massive one has three. The Goldstone boson has become the third
or longitudinal state of the now-massive gauge field. A scalar field whose
VEV breaks a gauge symmetry is generically called a Higgs field.

This generalizes in a straightforward way to a nonabelian gauge theory.
Consider a complex scalar field ¢ in a representation R of the gauge group.
The kinetic term for ¢ is —(D*¢)TD, ¢, where the covariant derivative is
(Dug)i = 0ui —iga A% (TE)i @j, and the indices i and j run from 1 to d(R).
We assume that ¢ acquires a VEV

(Olei (2)]0) = Z5vi , (84.9)

where the value of v; is determined (up to a global gauge transformation)
by minimizing the potential. If we replace ¢ by its VEV in —(DH )T D¢,
we find a mass term for the gauge fields,

Linnss = —5(M?)*A™AL | (84.10)
where the mass-squared matrix is
(M?)* = $g°0i {T, T2 }ijvj - (84.11)

The anticommutator appears because A‘WAZ is symmetric on a < b, and
so we replaced T¢TY with {72, T2}.

If the field ¢ is real rather than complex (which is possible only if R
is a real representation), then we remove the factor of root-two from the
right-hand side of eq. (84.9), but this is compensated by an extra factor of
one-half from the kinetic term for a real scalar field; thus eq. (84.11) holds
as written. If there is more than one gauge group, then the g2 in eq. (84.11)
is replaced by g,gs, where g, is the coupling constant that goes along with
the generator 7%, and all generators of all gauge groups are included in the
mass-squared matrix.

Recall from section 32 that a generator T is spontaneously broken if
(T3)ijvj # 0. From eq.(84.11), we see that gauge fields corresponding
to broken generators get a mass, while those corresponding to unbroken
generators do not. The unbroken generators (if any) form a gauge group
with massless gauge fields. The massive gauge fields (and all other fields)
form representations of this unbroken group.

Let us work out some simple examples.

Consider the gauge group SU(N), with a complex scalar field ¢ in the
fundamental representation. We can make a global SU(N) transforma-
tion to bring the VEV entirely into the last component, and furthermore
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make it real. Any generator (7%);/ that does not have a nonzero entry in
the last column will remain unbroken. These generators form an unbro-
ken SU(N—1) gauge group. There are three classes of broken generators:
those with (7%);V = 1 for i # N (there are N—1 of these); those with
(T%);N = —%i for i # N (there are also N—1 of these), and finally the sin-
gle generator TV’~1 = [2N(N—1)]""/2 diag(1,...,1, —(N—1)). The gauge
fields corresponding to the generators in the first two classes get a mass
M = % gv; we can group them into a complex vector field that transforms in
the fundamental representation of the unbroken SU(N—1) subgroup. The
gauge field corresponding to TN?-1 gets a mass M = [(N—1)/2N]2gv; it
is a singlet of SU(N—1).

Consider the gauge group SO(N), with a real scalar field in the fun-
damental representation. We can make a global SO(N) transformation to
bring the VEV entirely into the last component. Any generator (7%);/ that
does not have a nonzero entry in the last column will remain unbroken.
These generators form an unbroken SO(N—1) subgroup. There are N—1
broken generators, those with (7'%);Y = —i for i # N. The corresponding
gauge fields get a mass M = gv; they form a fundamental representation
of the unbroken SO(N—1) subgroup. In the case N = 3, this subgroup is
SO(2), which is equivalent to U(1).

Consider the gauge group SU(N), with a real scalar field ®* in the
adjoint representation. It will prove more convenient to work with the
matrix-valued field ® = ¢%7“; the covariant derivative of ® is D,® =
0u® — igAL[T?, @], and the VEV of ¢ is a traceless hermitian N x N
matrix V. Thus the mass-squared matrix for the gauge fields is (M?)* =
—1g? Te{[T*, V],[T% V]}. We can make a global SU(N) transformation to
bring V into diagonal form. Suppose the diagonal entries consist of N v1’s,
followed by Ny wvy’s, etc., where v; < vy < ..., and > ; N;u; = 0. Then all
generators whose nonzero entries lie entirely within the i*" block commute
with V| and hence form an unbroken SU(N;) subgroup. Furthermore, the
linear combination of diagonal generators that is proportional to V also
commutes with V', and forms a U(1) subgroup. Thus the unbroken gauge
group is SU(Ny) x SU(Nz) x ... x U(1). The gauge coupling constants for
the different groups are all the same, and equal to the original SU(N) gauge
coupling constant.

As a specific example, consider the case of SU(5), which has 24 gener-
ators. Let the diagonal entries of V' be given by (—%, —%, —%,—F%,—i—%)fu.
The unbroken subgroup is then SU(3) x SU(2) x U(1). The number of
broken generators is 24 —8 —3 — 1 = 12. The generator of the U(1) sub-
group is T = diag(—%c, —%c, —%c, +%c, —i—%c), where ¢? = 3/5. Under the
unbroken SU(3) x SU(2) x U(1) subgroup, the 5 representation of SU(5)
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transforms as

5—(3,1,-3) @ (1,2,+1). (84.12)

Here the last entry is the value of 724/c. The 5 of SU(5) then transforms
as
5—(3,1,+3) @ (1,2,-3) . (84.13)

To find out how the adjoint or 24 representation of SU(5) transforms under
the SU(3) x SU(2) x U(1) subgroup, we use the SU(5) relation

5@5=24®1. (84.14)
From egs. (84.12) and (84.13), we have
505 —[3,1,-3)®(1,2,+3)]®[(3,1,+3) & (1,2,—3)] . (84.15)
If we expand this out, and compare with eq. (84.14), we see that

24 — (8,1,0) @ (1,3,0) @ (1, 1,0)
@ (3,2,-2)®(3,2,+2) . (84.16)

The first line on the right-hand side of eq.(84.16) is the adjoint repre-
sentation of SU(3) x SU(2) x U(1); the corresponding gauge fields remain
massless. The second line shows us that the gauge fields corresponding to
the twelve broken generators can be grouped into a complex vector field
in the representation (3,2, —%). Since it is an irreducible representation of
the unbroken subgroup, all twelve vectors fields must have the same mass.
This mass is most easily computed from (M?)* = —g? Tr([T*, V][T*,V]),
where we have defined (T%);/ = %(52-15j4+5i45j1); the result is M = 6\5591).

PROBLEMS

84.1) Conside a theory with gauge group SU(N), with a real scalar field ®
in the adjoint representation, and potential

V(®) = m? Trd? + 10 Tr d* + 1o (Tr #%)2. (84.17)

This is the most general potential consistent with SU(N) symmetry
and a Zo symmetry ® < —®, which we impose to keep things sim-
ple. We assume m? < 0. We can work in a basis in which & =
vdiag(a,...,ay), with the constraints 3, ; =0 and 3, a? = 1.

a) Extremize V(®) with respect to v. Solve for v, and plug your result
back into V(®). You should find

_1

(m
V)= ) 0B

2)2

(84.18)
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where A(a) and B(«) are functions of «;.

b) Show that A\; A(a) + Ao B(«) must be everywhere positive in order
for the potential to be bounded below.

c¢) Show that the absolute mimimum of the potential (assuming that
it is bounded below) occurs at the absolute minimum of A\ A(«) +
)\QB (a)

d) Show that, at any extremum of the potential, the a; take on at most
three different values. Hint: impose the constraints with Lagrange
multipliers.

e) Show that, for A; > 0 and Ay > 0, at the absolute minimum of

V(®) the unbroken symmetry group is SU(N;) x SU(N_) x U(1),
where Ny = N_ = 3N if N is even, and Ny = $(N+£1) if N is odd.
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85 SPONTANEOUSLY BROKEN ABELIAN GAUGE
THEORY

PREREQUISITE: 61, 84
Consider scalar electrodynamics, specified by the lagrangian
L=—(D") Dyp —V(p) — LFMF,, (85.1)
where ¢ is a complex scalar field and D,, = 9, —igA,. We choose
V(p) = 1Mo — 50%)2, (85.2)
which yields a nonzero VEV for ¢. We therefore write
p(z) = J5(v + p(x))e XD, (85.3)

where p(x) and x(z) are real scalar fields. The scalar potential depends
only on p, and is given by

Vip) = %)\v2p2 + %)\vpg + %/\p4 . (85.4)
We can now make a gauge transformation to set
x(@) =0. (85.5)
This is unitary gauge. The kinetic term for ¢ becomes
—(D"0)' Dy = —30"p0up — 39°(v + p)° AMA,, . (85.6)
We see that the gauge field has acquired a mass
M =gv. (85.7)
The terms in £ that are quadratic in A, are
Lo=—1FMF,, — LMAFA,, . (85.8)
The equation of motion that follows from eq. (85.8) is
[(—0% + M*)gh” + 9"9"]A, = 0. (85.9)
If we act with 9, on this equation, we get

M?9"A, =0 . (85.10)
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If we now use eq. (85.10) in eq. (85.9), we find that each component of A,
obeys the Klein-Gordon equation,

(=0% + M*)A, =0. (85.11)
The general solution of egs. (85.9) and (85.10) is
Ay = Y / I [e8" (R)ax (R)e™ + h(R)al (ke 7], (85.12)
A=—0,+

where the polarization vectors must satisfy k,eh (k) = 0. In the rest frame,
where k = (M, 0,0,0), we choose the polarization vectors to correspond to
definite spin along the Z axis,

€+(0) = 12(0717_i70) ;

W
S

2(07 17 +Zv 0) )
,0,0,1) . (85.13)

)

e0(0) = (

More generally, the three polarization vectors along with the timelike unit
vector k¥ /M form an orthonormal and complete set,

k-ek(k) =0, (85.14)
E)\/(k)-&‘i(k) = (5)\/)\ N (8515)
> el (k)eX(k) = g + kﬁj (85.16)

Since the lagrangian of eq.(85.8) has no manifest gauge invariance,
quantization is straightforward. The coefficients aif\(k) and a) (k) become
particle creation and annihilation operators in the usual way, and the prop-
agator of the A, field is given by

4 eik‘(w— )
T2 @AW = [ 5 g L B

d% ety kY

B / (2m)* k2 + M? — e <gW - W) - (85.17)

The interactions of the massive vector field A, with the real scalar field p

can be read off of eq. (85.6). The self-interactions of the p field can be read

off of eq.(85.4). The resulting Feynman rules can be used for tree-level
calculations.

Loop calculations are more subtle. We have imposed the gauge condi-

tion x(x) = 0, which corresponds to inserting a functional delta function
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[1,0(x(x)) into the path integral. In order to integrate over y, we must
make a change of integration variables from Re ¢ and Im ¢ to p and x; this
is simply a transformation from cartesian to polar coordinates, analogous
to drdy = rdrd¢. So we must include a factor analogous to r in the
functional measure; this factor is

H(v + p(a:)) = det(v + p)
’ o det(1+ v p)

x / DeDe e man [ dw 2040 p)e (85.18)

In the last line, we have written the functional determinant as an integral
over ghost fields. We see that they have no kinetic term, and we have
chosen the overall nomalization of their action so that their mass is mgy,
where myg), is an arbitrary mass parameter. Thus the momentum-space
propagator for the ghosts is simply A(k?) =1/ méh. We also see that there
is a ghost-ghost-scalar vertex, with vertex factor —imghfu—l, but there is no
interaction between the ghosts and the vector field.

This seems like a fairly convenient gauge for loop calculations, but there
is a complication. The fact that the ghost propagator is independent of the
momentum means that additional internal ghost propagators do not help
the convergence of loop-momentum integrals. The same is true of vector-
field propagators; from eq.(85.17) we see that, in momentum space, the
propagator scales like 1/M? in the limit that all components of k become
large. Thus, in unitary gauge, loop diagrams with arbitrarily many external
lines diverge. This makes it difficult to establish renormalizability.

A gauge that does not suffer from this problem is a generalization of
R¢ gauge (and in fact this name has traditionally been applied only to this
generalization). We begin by using a cartesian basis for ¢,

0= %(v—kh—i—ib), (85.19)
where h and b are real scalar fields. In terms of h and b, the potential is
V(p) = 120?h? + Ihoh(h? + b)) + LA (R? +b%)?, (85.20)
and the covariant derivative of ¢ is
Dyp = 2 [(auh + gbA,) + (Db — g(v+h)Au)} . (85.21)
Thus the kinetic term for ¢ becomes

—(D"¢)'D,p = —2(8uh + gbA,)? — $(9ub — g(v+h)A,)?* . (85.22)
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Expanding this out, and rearranging, we get
(D) Dy = —28,hd,h — 10,68,b — 1g* 0> APA, + guA*D,b

+ gA" (ho,b — bO,h)

— gohAFA, — 2% (R + b AFA,, . (85.23)
The first line on the right-hand side of eq. (85.23) contains all the terms
that are quadratic in the fields. The first two are the kinetic terms for the
h and b fields. The third is the mass term for the vector field. The fourth
is an annoying cross term between the vector field and the derivative of b.

In abelian gauge theory, in the absence of spontaneous symmetry break-
ing, we fix R¢ gauge by adding to £ the gauge-fixing and ghost terms

Lot + Lon = —2¢71G* — Cp O (85.24)

where G = 0"A,,, and () parameterizes an infinitesimal gauge transfor-
mation,

Ay — Ay — 0,0, (85.25)
¢ — o —ighp . (85.26)

With G = 9"4,,, we have §G/60 = —0?. Thus the ghost fields have no
interactions, and can be ignored.
In the presence of spontaneous symmetry breaking, we choose instead

G = 0"'A, — &gub , (85.27)
which reduces to 04, when v = 0. Multiplying out G?, we have
Lot = —361 04,04, + gubd' Ay, — 640
= 171, 0YA, — guALOth — LegPVPH? (85.28)

where we integrated by parts in the first two terms to get the second line.
Note that the second term on the second line of eq.(85.28) cancels the
annoying last term on the first line of eq. (85.23). Also, the last term on
the second line of eq. (85.28) gives a mass £/2M to the b field.

We must still evaluate Lgp,. To do so, we first translate eq. (85.26) into

h — h+ gb, (85.29)

b—b—gl(v+h). (85.30)
Then we have sC

= -0 +¢%v(w+h). (85.31)

59"
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From eq. (85.24) we see that the ghost lagrangian is
Lon = —¢|—0* + &g%v(v + h)}c
= —0"co,c — £g?v%ec — EgPvhec . (85.32)

We see from the second term that the ghost has acquired the same mass
as the b field, £/2M.

Now let us examine the vector field. Including L, the terms in £ that
are quadratic in the vector field can be written as

Lo=—3A,[g" (=07 + M?) + (1-¢ 1) 0" | A, . (85.33)
In momentum space, this reads
Lo = =3 A,(=k) (K + M*)g" + (1€~ )Rk | A, (k) . (85.34)
The kinematic matrix is
[ ] = 2+ Mg 4 (=g Rk
= (K + M) (P (k) + K*R/K?) + (1= )Rk
= (k* + M*) P (k) + & (k* + EMPEFEY/K*, (85.35)

where P (k) = g" — kMkY/k? projects onto the transverse subspace;
P (k) and k*k¥/k? are orthogonal projection matrices. Using this fact,
it is easy to invert eq. (85.35) to get the propagator for the massive vector
field in R, gauge,

. P (k) € Rk k2
Ly —
AR (k) k‘2—|—M2—ie+k‘2—|—£M2—ie’

(85.36)

We see that the transverse components of the vector field propagate with
mass M, while the longitudinal component propagates with the same mass
as the b and ghost fields, £'/2M.
Eq. (85.36) simplifies greatly if we choose £ = 1; then we have
_ v
A/ﬂ/(k) _ g

- €= (85.37)

On the other hand, leaving ¢ as a free parameter allows us to check that all
& dependence cancels out of any physical scattering amplitude. Since their
masses depend on £, the ghosts, the b field, and the longitudinal component
of the vector field must all represent unphysical particles that do not appear
in incoming or outgoing states.
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To summarize, in B¢ gauge we have the physical h field with mass-
squared m% = %)\fu2 and propagator 1/(k? + m%), the unphysical b field
with propagator 1/(k? + £M?), the ghost fields ¢ and ¢ with propagator
1/(k® + £M?), and the vector field with the propagator of eq. (85.36). For
external vectors, the polarizations are still given by eq. (85.13), and obey
the sum rules of eq. (85.16). The mass parameter M is given by M = gv.

The interactions of these fields are governed by

L1 = —3 vh(h? +b*) — AR + b?)?
+ gA*(hdub — b0, h) — guh AFA, — Lg% (h* + b?) AYA,,
— &g*vhec . (85.38)

It is interesting to consider the limit & — oo. In this limit, the vector
propagator in R gauge, eq. (85.36), turns into the massive vector propa-
gator of eq. (85.17),

_ Nz w1V 2

AP (k) = WT;“% (€ = o0) . (85.39)
The b field becomes infinitely heavy, and we can drop it. (Equivalently,
its propagator goes to zero.) The ghost fields also become infinitely heavy,
but we must be more careful with them because their interaction term, the
last line of eq. (85.38), also contains a factor of £. The vertex factor for this
interaction is —ifg?v = —i(¢M?)v~!. Note that this is the same vertex
factor that we found in unitary gauge for the ineraction between the p field
and the ghost fields; see eq. (85.18) and take mgh = ¢M?. Thus we cannot
drop the ghost fields, but we can take their propagator to be 1/ méh rather
than 1/(k? + méh), since k? < mgh = ¢M? in the limit ¢ — oo. This is
the ghost propagator that we found in unitary gauge. We conclude that
R¢ gauge in the limit { — oo is equivalent to unitary gauge. Of course, in
this limit, we reencounter the problems with divergent diagrams that led us
to consider alternative gauge choices in the first place. For practical loop
calculations, R, gauge with { = 1 is typically the most convenient.

In the next section, we consider R¢ gauge for nonabelian theories.



86: Spontaneously Broken Nonabelian Gauge Theory 524

86 SPONTANEOUSLY BROKEN NONABELIAN GAUGE
THEORY

PREREQUISITE: 85

In the previous section, we worked out the lagrangian for a U(1) gauge
theory with spontaneous symmetry breaking in R¢ gauge. In this section,
we extend this analysis to a general nonabelian gauge theory.

As in section 85, it will be convenient to work with real scalar fields.
We therefore decompose any complex scalar fields into pairs of real ones,
and organize all the real scalar fields into a big list ¢;, i = 1,..., N. These
real scalar fields form a (possibly reducible) representation R of the gauge
group. Let 7% be the gauge-group generator matrices that act on ¢; they
are linear combinations of the generators of the SO(N) group that rotates
all components of ¢; into each other. Because these SO(IN) generators
are hermitian and antisymmetric, so are the 7%’s. Thus i(7%);; is a real,
antisymmetric matrix.

The lagrangian for our theory can now be written as

L=-1D'¢D,¢ — V(¢) — TF o (86.1)

where
(Du@)i = Oudi — 19a Ay (T7)ij&; (86.2)

is the covariant derivative, and the adjoint index a runs over all generators
of all gauge groups. Because ¢; and Ajj are real fields, and i(7%);5 is a real
matrix, (D, ¢); is real.
Now we suppose that the potential V(¢) is minimized when ¢ has a
VEV
(0]¢pi(2)[0) = v; . (86.3)

A generator 7¢ is unbroken if (7%);;v; = 0, and broken if (7%);;v; # 0.
Each broken generator results in a massless Goldstone boson. To see
this, we note that the potential must be invariant under a global gauge
transformation,
V((1—i0T*)p) = V(o) . (86.4)
Expanding to linear order in the infinitesimal parameter 6, we find

ov

(T, -0. .
3 qu( )jkbr =0 (86.5)
We differentiate eq. (86.5) with respect to ¢y to get
0*V ov
(Tt + 5 —(T")jk =0 (86.6)

00;09; 09,
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Now set ¢; = v;; then OV/0¢; vanishes, because ¢; = v; minimizes V().
Also, we can identify

1 0V

= 86.7
2 00:06; |, _, (86.7)

(m?)i

as the mass-squared matrix for the scalars (after spontaneous symmetry
breaking). Thus eq. (86.6) becomes

(m?);;(T); = 0. (86.8)

We see that if 7% # 0, then 7%v is an eigenvector of the mass-squared
matrix with eigenvalue zero. So there is a zero eigenvalue for every linearly
independent broken generator.

Let us write

oi(x) = v + xi(x) , (86.9)
where x; is a real scalar field. The covariant derivative of ¢ becomes
(Dud)i = 0uxi — i9a A (T)ij(v + X); (86.10)
It is now convenient to define a set of real antisymmetric matrices
(195 = 19a(T%)ij , (86.11)
and the real rectangular matrix
F = (1505 . (86.12)
We can now write
(Dpd)i = Opxi — Ap(F* +7X); - (86.13)
The kinetic term for ¢ becomes
—iDF¢DLd = —20"Xi0uxi — S (F*F")A™AD + P A%0 X,
+ AGx(T)i 0 x — AMALF ()i
- %AaﬂAzxi(TaTb)inj . (86.14)

We see (from the second term on the right-hand side) that the mass-squared
matrix for the vector fields is

(M?)% = FoFb = (FFT)® (86.15)
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A theorem of linear algebra states that every real rectangular matrix can
be written as
F = S®(M°))R;; (86.16)

where S and R are orthogonal matrices, and the diagonal entries M® are
real and nonnegative. From eq. (86.15) we see that these diagonal entries
are the masses of the vector fields. The vector fields of definite mass are
then given by le =5 baAZ.

Now we are ready to fix R¢ gauge. To do so, we add to £ the gauge-
fixing and ghost terms

‘;C;b ¢, (86.17)

Lo+ Lo = —Le1GoGo — &

where we choose
G° = 8“AZ - fFaiXi . (8618)

Then we have
Loy = — 367 MALVAL + FOyx0PAL — Le(FOF)xix;
- _%5—13%35%2 - FaiA38“Xi - %S(FaiFaj)Xin . (86.19)

We integrated by parts in the first two terms to get the second line. Note
that the second term on the second line of eq. (86.19) cancels the annoying
last term on the first line of eq. (86.14). Also, the last term on the second
line of eq. (86.19) makes a contribution to the mass-squared matrix for the
x fields,

E(M?);; = EF"F = E(F'F);; . (86.20)

Eq. (86.16) tells us that the eigenvalues of this matrix are £/2M¢, where
M?® are the vector-boson masses. The mass-squared matrix ¢M? should
be added to the mass-squared matrix m? that we get from the potential,
eq. (86.7). Note that eqgs.(86.8) and (86.12) imply that (m?);;F; = 0;
eq. (86.20) then yields (m?);;(£M?);x = 0. Thus these two contributions to
the mass-squared matrix of the scalar fields live in orthogonal subspaces.
The scalar fields of definite mass are x; = R;;X;, where the block of R in the
m? subspace is chosen to diagonalize m?. The m? subspace consists of the
physical, massive scalars, and the £ M? subspace consists of the unphysical
Goldstone bosons; these are the fields that would be set to zero in unitary
gauge.

We must still evaluate Ly1,. To do so, we recall that §¢(x) parameterizes
an infinitesimal gauge transformation,

a a abnb
AL s A% Debgh (86.21)
Xi — —Ha(Ta)ij(U + X)j . (86.22)
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Thus we have

0G*

Sgr = 0D+ EF () k(v + )k

= 0D + EFFP ) + EF% (%) jixn
= —OMDWY + E(MP)™ + EF () X (86.23)
and so the ghost lagrangian is
Loy = ="' DPc — (M) e — EF5(r°) jrxue’c” . (86.24)

The ghost fields of definite mass are é* = S%¢b and & = Sbegb.

The complete gauge-fixed lagrangian is now given by egs. (86.1), (86.14)
(86.19), and (86.24). We can rewrite it in terms of the fields of definite mass.
This results in the replacements

F — M2, (86.25)
()i — S™(R'T"R)i , (86.26)
fabc _ SadSbESCQdeQ (8627)

throughout £. The Feynman rules then follow in the usual way.
PROBLEMS

86.1) Let ¢; be a complex scalar field in a complex representation R of the
gauge group. Under an infinitesimal gauge transformation, we have
dpi = —109(TF) j. Let us write ¢; = %(¢i+i¢i+d(m), where ¢; is a
real scalar field with the index ¢ running from 1 to 2d(R). Then, under
an infinitesimal gauge transformation, we have d¢; = —i0%(7%);;p;.
a) Express 7 in terms of the real and imaginary parts of 7.

b) Show that the 7% matrices satisfy the appropriate commutation
relations.
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87 THE STANDARD MODEL: GAUGE AND HIGGS
SECTOR

PREREQUISITE: 84

We now turn to the construction of the Standard Model of elementary
particles, also called the Glashow—Weinberg—Salam model. This is the com-
plete (except for gravity) quantum field theory that appears to describe our
world. It can be succinctly specified as a gauge theory with gauge group
SU(3) x SU(2) x U(1), with left-handed Weyl fields in three copies of the
representation (1,2, —%)@(1, L+1)®(3,2, —i—%)@(g, 1, —%)@(3, 1, +%), and
a complex scalar field in the representation (1,2, —%) Here the last entry
of each triplet gives the value of the U(1) charge, known as hypercharge.
The lagrangian includes all terms of mass dimension four or less that are
allowed by the gauge symmetries and Lorentz invariance.

We will construct the Standard Model over several sections. We begin
with the electroweak part of the gauge group, SU(2)x U(1), and the complex
scalar field ¢, known as the Higgs field, in the representation (2, —%) The
Higgs field acquires a nonzero VEV that spontaneously breaks SU(2) x U(1)
to U(1); the unbroken U(1) is identified as electromagnetism.

We begin with the covariant derivative of the Higgs field ¢,

(Dup)i = Oupi — i[g2ALT* + 1 B, Y1 ¢ (87.1)

where T% = %a“ and Y = —%I ; Y is the hypercharge generator. It will
prove useful to write out g2 AT + g1 B,Y in matrix form,

wa 1 [ 92A) —q1B,  ga(Al, —iA2)

G AT + 1 B,Y = 3 L 5 .
QQ(AH + ZAH) _ngH — ng#

Now suppose that ¢ has a potential

V(e) = 1MpTp — $0%)%. (87.3)

(87.2)

This potential gives ¢ a nonzero VEV. We can make a global gauge trans-
formation to bring this VEV entirely into the first component, and further-
more make it real, so that

Ole@I0) = - (0) | (874

The kinetic term for ¢ is —(D“cp)TDucp. After replacing ¢ by its VEV, we
find a mass term for the gauge fields,

. 2
9 A% — 1B, g2(A), —iA2) ) <1>  s75)

Emass:_%v2(1a O)( 1 . 492 3
gg(AM + ZAM) —ggAu - ngM 0
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To diagonalize this mass-squared matrix, we first define the weak mizing
angle

Ow = tan"'(g1/92) , (87.6)
and the fields
Wi = %(Ai TiAY), (87.7)
Zy = cw A — swBy (87.8)
A, = swAi + cwBy (87.9)

where sy = sin Oy, ¢y = cos fy. In terms of these fields, eq. (87.5) becomes

1 +1\2
1.2 9 WZ” \/EWM 1
ﬁmass = —g9v (17 0) _ 1
\/§WH —%Au 0

= —(g2v/2? WHHW,T = 5(g20/2cw)* 22,

n
= —MyWHHW, —IM; 2V 7, (87.10)

where we have identified
My = gov/2, (87.11)
M, = My /cos Oy . (87.12)

The observed masses of the W+ and Z° particles are My, = 80.4 GeV and
M, = 91.2GeV. Eq. (87.12) then implies cos 6y = 0.882, or, as it is more
usually expressed, sinfy, = 0.223.!

Note that the A, field remains massless; this signifies that there is an
unbroken U(1) subgroup. We will identify this unbroken U(1) with the
gauge group of electromagnetism.

Before introducing leptons and quarks (which we do in sections 87 and
88), let us work out the complete lagrangian for the gauge and Higgs fields,
in unitary gauge. This is sufficient for tree-level calculations.

The two complex components of the ¢ field yield four real scalar fields;
three of these become the longitudinal components of the W+ and Z°. The

LOf course, this number is only meaningful once a renormalization scheme has been
specified. We are implicitly using an on-shell scheme in which 0w is defined by the
relation cosOw = Mw/Myz, where Mw and My are the actual particle masses. The
relation g1 = g2 tan fw is then subject to loop corrections that depend on the precise
definitions adopted for g1 and g2. In the MS scheme, on the other hand, O is defined
by eq. (87.6), and for u = My, we have sin® 6y = 0.231.
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remaining scalar field must be able to account for shifts in the overall scale
of ¢. Thus we can write, in unitary gauge,

1 [v+ H(x)
p(z) = 7 < . ) : (87.13)

where H is a real scalar field; the corresponding particle is the Higgs boson.
The potential now reads

V(p) = IM2H? + IwH? + LaH* . (87.14)

We see that the mass of the Higgs boson is given by m? = %)\vz. (As of
this writing, the Higgs boson has not been observed; the lower limit on its
mass is my > 115GeV.) The kinetic term for H comes from the kinetic
term for ¢, and is the usual one for a real scalar field, —%G“H 0, H. Finally,
recall that the mass term for the gauge fields, eq. (87.10), is proportional
to v2. Hence it should be multiplied by a factor of (1 +v~1H)2.
Now we have to work out the kinetic terms for the gauge fields. We
have
L=—1F"F — 1B"B,, (87.15)

where
Fl, = 0,A, — 0,A), + ga(AZAS — AZAD) (87.16)
F2, = 0,AL — 0,A% + go(AS AL — AZA)) (87.17)
F2, = 0,43 — 0,A + ga(AL AL — ALAY) (87.18)
B, = 8,8, — 0,B, . (87.19)

Next, form the combinations F /}V +iF 3,/. Using eq. (87.7), we find

%(Fﬁy —iF.,) = D,W,F —D,W; (87.20)
T5(Fay +iF4,) = Diw, —Diw, (87.21)

where we have defined a covariant derivative that acts on WJ ,
D, =0,—- z'ggAi
=0y —ig2(swAy +cwZy,) - (87.22)

If we identify A, as the electromagnetic vector potential, and assign electric
charge @ = +1 (in units of the proton charge) to the W7, then we see from
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eq. (87.22) that we must identify the electromagnetic coupling constant e
as
e = gasinfy . (87.23)

Here we are adopting the convention that e is positive. (In our treatment
of quantum electrodynamics, we used the convention that e is negative, but
that is less convenient in the present context.)

We also have

Fj, = 0,A% — 0,A% —igy(W,F W, — WIW,)
= swFu + cwZu — ig2(WIW, = WIWr), (87.24)
B,uz/ = CWF/J,V - SWZ;W s (8725)

where F),, = 9,A, — 0, A, is the usual electromagnetic field strength, and
Zyw = 0uZ, — 0,7, (87.26)

is the abelian field strength associated with the Z,, field.

Now we can assemble all of this into the complete lagrangian for the
electroweak gauge fields and the Higgs boson in unitary gauge. We will
express go in terms of e and Oy, via g2 = e/sinfy, and X in terms of my
and v via A = 2m?2 /v2. We ultimately get

L =—%F"F,, — +7"Z,, — D"W~"D,W, + D"W~"D,W,;}
+ ie(F" + cot HWZ"”)WJVV;
— $(e¥/sin®0y ) (WHHW, WHW,” — WHW W "W,)
— (MgW™HW, + §M7Z"Z,)(1+ v H)?
— L0'HOH — ImiH? — mpv ' H? — tmv™?H" | (87.27)
where
D, =0, —ie(A, + cotbwZ,) . (87.28)

With the W; field assigned electric charge () = +1, this lagrangian exhibits
manifest electromagnetic gauge invariance. The full underlying SU(2) x
U(1) gauge invariance is not manifest, however, because we have fixed uni-
tary gauge.

REFERENCE NOTES

Discussions of the Standard Model in R¢ gauge can be found in Cheng &
Li and Ramond II.

PROBLEMS
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87.1) Find the generator ) of the unbroken U(1) subroup as a linear com-
bination of the 7%’s and Y.

87.2) a) Ignoring loop corrections, find the numerical values of v, g1, and
go. Take e?/4m = a = 1/137.036.

b) The Fermi constant is defined (at tree level) as

62

Gp=——>——.
! 44/2 sin20y M2,

(87.29)

Find its numerical value in GeV~2. Because of loop corrections to
eq. (87.29), your answer is about 3% lower than the actual value of
Gy, which is determined by the muon decay rate; see section 88.

c¢) Express Gf in terms of v.

87.3) In this problem we will work out the generator matrices introduced
in section 86 for the case of the Standard Model.
a) Write the Higgs field as

_L<¢1+i¢3> (87.30)
(p_\/g $o +ids) .

where ¢; is a real scalar field. Express the SU(2) generators 7% and
the hypercharge generator Y as 4 x 4 matrices 7% and ) that act on
¢;. Hint: see problem 86.1.

b) Compute the matrix F'*;, defined in eq. (86.12).

¢) Compute the mass-squared matrix for the vector fields, (M?2)% =
Fo;Fb and find its eigenvalues.

87.4) Work out the Feynman rules for the lagrangian of eq. (87.27). Hint:
the three-gauge-boson vertices are more easily derived from eqs. (87.7—
87.9), (87.15-87.18), and our result in section 72 for the three-gluon
vertex.

87.5) Assume that my > 2M,, and compute (at tree level) the decay rate of
the Higgs boson into W+W = and Z°Z" pairs. Express your answer
in GeV for mg = 200 GeV.
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88 THE STANDARD MODEL: LEPTON SECTOR

PREREQUISITE: 75, 87

Leptons are spin-one-half particles that are singlets of the color group.
There are six different flavors of lepton; see Table 2. The six flavors are
naturally grouped into three families or generations: e and v,, u and v,
7 and v,.

Let us begin by describing a single lepton family, the electron and its
neutrino. We introduce left-handed Weyl fields ¢ and € in the representa-
tions (2, —3) and (1,41) of SU(2) x U(1). Here the bar over the e in the
field € is part of the name of the field, and does not denote any sort of

conjugation. The covariant derivatives of these fields are
(Dul)i = 8l — iga AL (T*)i l; —igi (—3)Byuls (88.1)
D,é = 0,e —igi(+1)B,e, (88.2)
and their kinetic terms are
Lyin = il1'6"(D,0); +ie'a"D,é . (88.3)

The representation (2, —%) @ (1,+1) for the left-handed Weyl fields is com-
plex; hence the gauge theory is chiral, and therefore parity violating.

We cannot write down a mass term involving ¢ and/or € because there
is no gauge-group singlet contained in any of the products

(2’_%) ® (27_%) )
(2’_%) ® (17+1) )
(1,+1) ® (1,41) . (88.4)

However, we are able to write down a Yukawa coupling of the form
Ly = —yepilje + h.c. (88.5)

where ¢ is the Higgs field in the (2, —%) representation that we introduced in
the last section, and y is the Yukawa coupling constant. A gauge-invariant
Yukawa coupling is possible because there is a singlet on the right-hand
side of

(2,-3)®(2,—3) ® (1,+1) = (1,0) & (3,0) . (88.6)

There are no other gauge-invariant terms involving ¢ or € that have mass
dimension four or less. Hence there are no other terms that we could add
to L while preserving renormalizability.

We add egs. (88.3) and (88.5) to the lagrangian for ¢ and the gauge
fields that we worked out in the last section. In unitary gauge, we replace
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name symbol mass Q

(MeV)
electron e 0.511 -1
electron neutrino Ve 0 0
muon " 105.7 -1
muon neutrino vy 0 0
tau T 177 —1
tau neutrino Vr 0 0

Table 2: The six flavors of lepton. @ is the electric charge in units of
the proton charge. Each charged flavor is represented by a Dirac field, each
neutral flavor by a Majorana field (or, equivalently, a left-haned Weyl field).
Neutrino masses are exactly zero in the Standard Model.

1 with %(U—I—H ), where H is the real scalar field representing the physical
Higgs boson, and @9 with zero. The Yukawa term becomes

Ly, = —%y(?) + H)(f9¢ + h.c.) . (88.7)

It is now convenient to assign new names to the SU(2) components of ¢,

(= <V> . (88.8)

(We will rely on context to distinguish the field e from the electromagnetic
coupling constant e.) Then eq. (88.7) becomes

Lyvux = —%y(’u + H)(eé + éTeT)

—%y(v + H)EE (88.9)

where we have defined a Dirac field for the electron,

&= <:T> . (88.10)

We see that the electron has acquired a mass

me = % . (88.11)

The neutrino has remained massless.
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We can describe the neutrino with a Majorana field
v
N = . (88.12)
i

However, it is often more convenient to work with
v

where P, = %(1—75). We can think of NV, as a Dirac field; for example, the
neutrino kinetic term Z'VTG'“@HV can be written as iNLPNL.

Now we return to egs.(88.1) and (88.2), and express the covariant
derivatives in the terms of the Wﬁt, Z,, and A, fields. From our results in
section 87, we have

+
G AT + g ANT? = \9_} ( 0_ W ) (88.14)
2\W,; 0

and

RAGT? + 1BY = £ (swAy + ewZ)T? + & (ewdy — swZ,)Y
= e(Ay + cot OwZ,)T? + e(A,, — tan 0w Z,)Y
= e(T? +Y)A, + e(cot O T? — tan 6 Y)Z, . (88.15)

Since we identify A, as the electromagnetic field and e as the electromag-
netic coupling constant (with the convention that e is positive), we identify

Q=T+Y (88.16)

as the generator of electric charge. Then, since

TPy = +iv, T’e=-ie, T°e=0, (88.17)

Yv = —%1/, Ye:—%e, Ye=+te, (88.18)
we see from eq. (88.16) that

Qv =0, Qe = —e, Qe = +eé. (88.19)

This is just the set of electric charge assignments that we expect for the
electron and the neutrino. Then (since the action of @ on the fields is more
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familiar than the action of Y') it is convenient to replace Y in eq. (88.15)
with Q — T3. We find

ggAiT3 +g1B,Y = eQA, + e[(cot Oy + tan HW)T3 —tanfwQ|Z,
= eQA, + 5.5 (T° — 53,Q)Z, (88.20)
In terms of the four-component fields, we have

(ASTS + i B,Y)E = |—ed, + 55— (-3R +s%)Z.]€, (83.21)

(2 A45T° + 1 BLY )Ny = 55— (+3)Zu M - (88.22)

Using egs. (88.14) and (88.21-88.22) in egs. (88.1-88.3), we find the coup-
ings of the gauge fields to the leptons,

Line = J592WiT ™ + J505W,1. LY+ eA,Jhy, (88.23)
where we have defined the currents

JHH = E "N, (88.24)

= NAPEL (88.25)

Y = T — sE Tk (88.26)

Ji = INLAYPNL — SEAMEL (88.27)

Jby = —EPE . (88.28)

In many cases, we are interested in scattering amplitudes for leptons
whose momenta are all well below the W+ and Z° masses. In this case, we
can integrate the Wﬁt and Z, fields out of the path integral, as discussed
in section 29. We get the leading term (in a double expansion in powers
of the gauge couplings and inverse powers of My, and M) by ignoring the
kinetic energy and other interactions of the Wﬁt and Z, fields, solving the
equations of motion for them that follow from Lass + Lint, where Lin is
given by eq. (88.23) and

Liass = —M\?VW+“W; - %Mzzz'uzu y (8829)

and finally substituting the solutions back into Lyass + Ling. This is equiv-
alent to evaluating tree-level Feynman diagrams with a single W* or Z°
exchanged, with the propagator g"” /M&, ,- The result is

2

R A ¢
Lot = a7+ 2 a7 o
62 +p7— [
= 5o i+ )

= 2V2GR(J T, + Tf T, (88.30)




88: The Standard Model: Lepton Sector 537

Figure 88.1: Feynman diagram for muon decay. The wavy line is a W
propagator.

We used e = g9 sin by and My, = My cos Oy to get the second line, and we
defined the Fermi constant

62

Gp= —F—7———
" 44/2sin%0y M2,

(88.31)

in the third line. We can use L.g to compute the tree-level scattering
amplitude for processes like v.e™ — v.e™; we leave this to the problems.

Having worked out the interactions of a single lepton generation, we
now examine what happens when there is more than one of them. Let us
consider the fields ¢;; and €;, where I = 1,2,3 is a generation index. The
kinetic term for all these fields is

Lign = il}'6"(D,)i? 0, + ieta"D,e; (88.32)

where the repeated generation index is summed. The most general Yukawa
term we can write down now reads

Ly = —€7¢ilj1y1,8, + hec. (88.33)

where y;; is a complex 3 X 3 matrix, and the generation indices are summed.
We can make unitary transformations in generation space on the fields:
¢; — L0, and &, — E,;,e;, where L and E are independent unitary
matrices. The kinetic terms are unchanged, and the Yukawa matrix y is
replaced with LTyE. We can choose L and E so that L™y E is diagonal with
positive real entries y;. The charged leptons &£; then have masses m., =
y;v/V/2, and the neutrinos remain massless. In the currents, eqs. (88.24-
88.28), we simply add a generation index I to each field, and sum over
it.

Let us work out the details for one process of particular importance:
muon decay, p~ — e Uevy. Let the four-component fields be & for the
electron, M for the muon, N, for the electron neutrino, and N,, for the
muon neutrino. Only the charged currents Jff are relevant; the neutral
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current J} and the electromagnetic current J4,; do not contribute. Ignoring
the 7 terms in the charged currents, we have

JHH = E v Ney, + My N, (88.34)
JH = Nay"E + Ny My, . (88.35)
The relevant term in the effective interaction is
Lot = 2V2 Gr(ELy"New) (N7 ML) - (88.36)
This can be simplified by means of a Fierz identity (see problem 36.3),
Lo = —4V2Gp(MCPLN,)(EPRNS) . (88.37)

Assigning momenta as shown in fig. (88.1), and using the usual Feynman
rules for incoming and outgoing particles and antiparticles, the scattering
amplitude is

T = —4V2 Gp(uTCPvy) (W PrC)")
= —4V2 Gy (T PLvh) (wh Pru)) (88.38)
Taking the complex conjugate, and using P, = Pg, we find
T* = —4V/2 Gp(Th Pav1 ) (T} Poub) (88.39)

Multiplying eqgs. (88.38) and (88.39), summing over final spins and averag-
ing over the initial spin, we get

(ITP) = $(4vV2)°GE Tx[(—p,—my) P.(—p5) Pr]
x Tr[(—ph+me) Pa(—p1) P - (88.40)

The traces are easily evaluated, with the result

(IT1?) = 64GE (p1p3) (P P5) - (88.41)

We get the decay rate I' by multiplying (|7|?) by dLIPS3(p;) and integrat-
ing over p} , 3. We worked out the result (in the limit m. < m,) in problem
11.3,

_cim

19273
After including one-loop corrections from electromagnetism, and account-
ing for the nonzero electron mass, the measured muon decay rate is used
to determine the value of Gy, with the result Gp = 1.166 x 107 GeV 2.

(88.42)
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REFERENCE NOTES

Lepton phenomonology is covered in more detail in in Cheng & Li, Georgi,
Peskin & Schroeder, Quigg, and Ramond II.

PROBLEMS

88.1) Verify the claim made immediately after eq. (88.6).

88.2) Show that a neutrino always has negative helicity, and that an an-
tineutrino always has positive helicity. Hint: see section 75.

88.3) Show that the sum of eqs. (88.32) and (88.33), when rewritten in terms
of fields of definite mass, has a global symmetry U(1) x U(1) x U(1).
The corresponding charges are called electron number, muon number,
and tau number; the sum of the charges is the lepton number. List
the value of each charge for each Dirac field £ and N} ;.

88.4) Compute (|7|?) for muon decay using eq. (88.36), without making the
Fierz transformation to eq. (88.37), and verify eq. (88.41).

88.5) a) Write down the term in Leg that is relevant for and v,e™ — v e™.
Express your answer in the form

Lo = %GF N7”(1—75)N37“(CV—CA75)5 ) (88.43)

where A is the muon neutrino field, and determine the values of C
and C,.

b) Repeat part (a) for vee™ — vee™.

c¢) Compute (|7?) as a function of the Mandelstam variables and C\,
and C,.

88.6) Compute the rates for the decay processes W+ — etv,, Z% — ete™,
and Z° — T.v.. Neglect the electron mass. Express your results in
GeV.

88.7) Anomalous dimension of the Fermi constant. The coefficient of the
effective interaction for muon decay, eq. (88.36), is subject to renor-
malization by quantum electrodynamic processes. In particular, we
can compute its anomalous dimension 7, defined via

%GFW — 26()Cr(n) (88.44)

where a = €2 /47 is the fine-structure constant in the MS scheme with
renormalization scale pu.
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a) Argue that it is Gp(My) that is given by eq. (88.31).
b) Multiply eq. (88.36) by a renormalzing factor Z¢, and define

In(Z¢/Zs) = i % , (88.45)
n=1

where Zs is the renormalizing factor for a field of unit charge in spinor
electrodynamics. Show that

v6(a) = agi(a) . (88.46)

c) If y¢(a) = cra + O(a?) and B(a) = bia? + O(a3), show that

o c1/b1
Gr(p) = {a(l(\;\i)] Gr(My) (88.47)

for u < My. (For p > My, we should not be using an effective
interaction.)

d) If a(p) In(My /@) < 1, show that eq. (88.47) becomes

Gr(w) = (1~ cra(u) (M /1) | Gr(My) (88.48)

e) Use a Fierz identity to rewrite eq. (88.36) in charge retention form,

Lot = 2V2 ZaGr(Exy" My) (N yuNer) - (88.49)

f) Consider the process of muon decay with an extra photon con-
necting the p and e lines. Work in Lorenz gauge, and with the four-
fermion vertex provided by eq. (88.49). Use your results from problem
62.2 to show that, in this gauge, there is no O(«) contribution to Zg
in the MS scheme.

g) Use your result from part (d), and your result for Zs in Lorenz
gauge from problem 62.2, to show that ¢ = 0, and hence that
Gr(p) = Gr(My) at the one-loop level.
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89 THE STANDARD MODEL: QUARK SECTOR

PREREQUISITE: 88

Quarks are spin-one-half particles that are triplets of the color group. There
are six different flavors of quark; see Table 1 in section 83. The six flavors
are naturally grouped into three families or generations: u and d, ¢ and s,
t and b.

Let us begin by describing a single quark family, the up and down
quarks. We introduce left-handed Weyl fields ¢, @, and d in the represen-
tations (3,2,4%), (3,1,—2), and (3,1,+1%) of SU(3) x SU(2) x U(1). Here
the bar over the letter in the fields u and d is part of the name of the field,
and does not denote any sort of conjugation. The covariant derivatives of
these fields are

(Dp@)ai = Opoi — ig3 A5 (T5)a qps — ig2 AL(TS)i g3

—ig1(+2)Bpudai » (89.1)
(D)™ = 9,u* — igs AL(T3)* su” — igy (—2)Bu® (89.2)
(Dpd)® = 0,d* — igs A% (T)*3d” — igy(+3)B,d® . (89.3)

We rely on context to distinguish the SU(3) gauge fields from the SU(2)
gauge fields. The kinetic terms for ¢, u, and d are

Lign = iq"*6"(Dyuq) i + i0l,a" (D, @)™ + id},6" (D,d)" . (89.4)

The representation (3,2,4—%) @ (3,1, —%) @ (3, 1,+%) for the left-handed
Weyl fields is complex; hence the gauge theory is chiral, and therefore
parity violating.

We cannot write down a mass term involving ¢, 4, and/or d because
there is no gauge-group singlet contained in any of the products of their
representations. But we are able to write down Yukawa couplings of the
form

Lyuk = —9'€70iqa;d™ — " o1 qoii® + hc. (89.5)

where ¢ is the Higgs field in the (1, 2, —%) representation that we introduced
in section 87, and ' and y” are the Yukawa coupling constants. These
gauge-invariant Yukawa couplings are possible because there are singlets
on the right-hand sides of

(1727 _%) & (3727—’_%) ® (

E,O\
=
_|_

)=1L0)®..., (89.6)

ol
\.H
|
Wl Wl
~—
Il

(1,2,+1) ® (3,2,+2) ® ( (1,1,0) ... . (89.7)
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There are no other gauge-invariant terms involving ¢, %, or d that have
mass dimension four or less. Hence there are no other terms that we could
add to £ while preserving renormalizability.

In unitary gauge, we replace ¢ with %(v + H), where H is the real
scalar field representing the physical Higgs boson, and o with zero. The
Yukawa term becomes

Lk = —%y'(v + H)qo2d™ — %y”(v + H)qo1u™ + hec. . (89.8)

It is now convenient to assign new names to the SU(2) components of ¢,

< ! ) (89.9)
q= . .

d

Then eq. (89.8) becomes

Lk = —%y’(v + H)(dpd® + di,d') — %y”(v + H)(uqu® + alu'®)

= — 1y (v+ HYD Dy — L5y (0 + I Uy . (89.10)

where we have defined Dirac fields for the down and up quarks,

D = do . Uq
o = d:;fl , U, = ra:fx . (89.11)

We see from eq. (89.10) that the up and down quarks have acquired masses

/ /!
yv yv
mg = —, My = —= . 89.12
Now we return to egs. (89.1-89.3), and express the covariant derivatives
in the terms of the W/jc, Z,, and A, fields. From our results in section 88,
we have

pALT 4 g, 277 = 22 ( G ) , (89.13)
V2 \w,; o
RAT? + 1 BY = eQAy + 55 (T° = s3,Q) 2, (89.14)
where

Q=T+Y (89.15)

is the generator of electric charge. Then, since
Tu = +iu, T*d=-id, T*u=0, T3d =0, (89.16)
Yu=+4iu, Yd=+id, Yu=-32u, Yd=+id, (89.17)

we see from eq. (89.15) that
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Qu=+3u Qd=—3d, Qu=-3u, Qd=+3d. (89.18)

This is just the set of electric charge assignments that we expect for the up
and down quarks. In terms of the four-component fields, we have

(ASTS + B U = [+3ed, + s E (43R - 2s3)Z,] U, (89.19)
(ASTS + 1 B,Y)D = |—hed, + 55— (=3P + §53)2,| D, (89.20)

Using egs. (89.13) and (89.19-89.20) in egs. (89.1-89.4), we find the coup-
ings of the electroweak gauge fields to the quarks,

Ling = 592 W, T+ G5 W, T + LY+ eA,Jhy, (89.21)
where we have defined the currents

J = DA*U,, (89.22)

J M= UANDy (89.23)

R [ (89.24)

Ji = U AU, — iDA'D,, (89.25)

iy = +3UN"U — 1DA'D . (89.26)

Having worked out the interactions of a single quark generation, we
now examine what happens when there is more than one of them. Let us
consider the fields quir, 4r, and d;, where I = 1,2,3 is a generation index.
The kinetic term for all these fields is

Lyin = MJTQH (Du)oﬂﬂjq,@j] + Z‘ﬂglaﬂ(Du)aﬁﬁ? + Z'CZLI(?“(DM)QIQJ? )
(89.27)
where the repeated generation index is summed. The most general Yukawa
term we can write down now reads

£Yuk = _EijSDiQ(ijygjg(j - (pTiQOcin;/Ja? + h.c. ) (8928)
where ¢/, and y”, are complex 3 x 3 matrices, and the generation indices
are summed. In unitary gauge, this becomes

Lyuk = —%(v + H)dory,,dS — %(v + H)uay),uS +he. . (89.29)

We can make unitary transformations in generation space on the fields:
d; — D,;,d,, d; — D,,d,, u; — U,yu,, and 4; — U,,4,, where U, D, U
and D are independent unitary matrices. The kinetic terms are unchanged



89: The Standard Model: Quark Sector 544

(except for the couplings to the W, as we will discuss momentarily), and
the Yukawa matrices 3 and y” are replaced with DTy’D and UTy"U. We
can choose D, D, U, and U so that D™y’D and U"y"U are diagonal with
positive real entries y, and y/. The down quarks D, then have masses
ma, = y,v/Vv/2, and the up quarks U, have masses m,, = y’v/v/2. In
the neutral currents J' and Jf,,, we simply add a generation index I to
each field, and sum over it. The charged currents are more complicated,
however; they become

J+l“ — fLI(VT)”’yMULJ 5 (8930)
JH = ULI‘/IJ'.YMDLK ) (89.31)

where V = U'D is the Cabibbo-Kobayashi-Maskawa matriz (or CKM ma-
triz for short). Note that we did not have this complication in the lepton
sector, because there we had only one Yukawa term.

A 3 x 3 unitary matrix has 9 real parameters. However, we are still free
to make the independent phase rotations D; — €D, and U, — etPr U,
as these leave the kinetic and mass terms invariant. These phase changes
allow us to make the first row and column of V;; real, eliminating 5 of the
9 parameters. The remaining four can be chosen as 6; (the Cabibbo angle),
02, 03, and §, where

c1 +s1c3 +5153

V=1 —sico cicocg — 3233ei‘5 c1c283 + 8263€i6 , (89.32)

—S8189 C189C3 + 0233ei5 C158283 — CQCgeié

and ¢; = cosf; and s; = sinf;. The measured values of these angles are
s1 = 0.224, so = 0.041, s3 = 0.016, and 6 = 40°. Note that the charged
currents now have some terms with a phase factor €%, and some without.
Since the time-reversal operator T is antiunitary (T~%T = —i), the charged
currents do not transform in a simple way under time reversal. This implies
that the charged current terms in Liy are is not time-reversal invariant;
hence the electroweak interactions violate time-reversal symmetry. Since
CPT is always a good symmetry, time-reversal violation is equivalent to
C'P violation; ¢ is therefore sometimes called the C'P wviolating phase.

At high energies, we can use our results to compute electroweak con-
tributions to scattering amplitudes involving quarks. This is because, at
high energies, the SU(3) coupling g3 is weak; we can, for example, re-
liably compute the decay rates of the W* and Z° into quarks, because
az(My) = g3(My)/4m = 0.12 is small enough to make QCD loop correc-
tions a few-percent effect.



89: The Standard Model: Quark Sector 545

To understand low-energy processes such as neutron decay, we must first
write the currents in terms of hadron fields. We take this up in the next
section. For now, we simply note that the terms in the charged currents
that involve only up and down quarks are

JtH = 1Dy Uy, (89.33)

JH = Upy'Dy (89.34)
where ¢y is the cosine of the Cabibbo angle.

REFERENCE NOTES

Electroweak interactions of quarks are discussed in more detail in Cheng &
Li, Georgi, Peskin € Schroeder, Quigg, and Ramond II.

PROBLEMS

89.1) Verify the claims made immediately after egs. (89.4) and (89.7).

89.2) Compute the rates for the decay processes W+ — ud, Z° — au,
and Z° — dd. Neglect the quark masses. Express your results in
GeV. Combine your answers with those of problem 88.6, and sum
over generations to get the total decay rates for the W= and Z°. You
can neglect the masses of all quarks and leptons except the top quark,
and take 05 = 63 = 0.

89.3) Show that the Standard Model is anomaly free. Hint: you must
consider 3-3-3, 2-2-2, 3-3—-1, 2-2-1, and 1-1-1 anomalies, where the
number denotes the gauge group of one of the external gauge fields
in the triangle diagram. Why do we not need to worry about the
unlisted combinations?

89.4) Compute the leading term in the beta function for each of the three
gauge couplings of the Standard Model.

89.5) After integrating out the W7 fields, we get an effective interaction
between the hadron and lepton currents that includes

Leg = 2V2 ZcC(E AN ) (UAD,) | (89.35)

where we have defined C' = ¢;GF at a renormalization scale p = My,
and Zg is a renormalizing factor. This interaction contributes to
neutron decay; see section 90. In this problem, following the analysis
of problem 88.7, we will compute the anomalous dimension v of C
due to one-loop photon and gluon exchange.
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a) Use Fierz identities to show that eq. (89.35) can be rewritten as
Leg = 2V2 ZoC(EA* D) (U N (89.36)
and also as

Leg = —4V2 ZoC(DCP, N,) (EPLUC) . (89.37)

b) Working in Lorenz gauge and using the results of problem 88.7,
show that gluon exchange does not make a one-loop contribution to
Ze.

c¢) Show that only a photon connecting the e and u lines makes a
one-loop contribution to Z.

d) Note that EP;UC = eful, and compare this with £ = efel +
h.c.. Argue that the photon-exchange contribution to Z¢ is given by
the one-loop contribution to Z,, in spinor electrodynamics in Lorenz
gauge, with the replacement (—1)(+1)e? — (—1)(4—%)62.

e) Let yo(a) = cia + ..., where a = €?/4n, and find ¢;. (This ¢;
should not be confused with the cosine of the Cabibbo angle.)
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90 ELECTROWEAK INTERACTIONS OF HADRONS

PREREQUISITE: 83, 89

Now that we know how quarks couple to the electroweak gauge fields, we
can use this information to obtain amplitudes for various processes in-
volving hadrons. We will focus on three of the most important: neutron
decay, n — pe” ; charged pion decay, m~ — p~ 7,; and neutral pion decay,
70 — y7.

Recall from section 83 the chiral lagrangian for pions and nucleons,

L=-1f2Tro"U0,U +v* Tr(MU + M'UT)
+iNJN — myN(U'P, + UPy)N
— Hga—1)iNA*(UB, U P, + U9, U PN (90.1)

where U(z) = exp[2in®(x)T?/f=], 7@ is the pion field, N is the nucleon field,
fx is the pion decay constant, M is the quark mass matrix, v is the value
of the quark condensate, my is the nucleon mass, and g, is the axial vector
coupling. The electroweak gauge group SU(2) x U(1) is a subgroup of the
SU(2)r, x SU(2)g x U(1)y flavor group that we have in the limit of zero
quark mass. It will prove convenient to go through the formal procedure
of gauging the full flavor group, and only later identifying the electroweak
subgroup. We therefore define matrix-valued gauge fields ,,(x) and 7,(x)
that transform as

ly, — LI, LT +iLo,L", (90.2)
ry — Rr,R' +iRO,R' . (90.3)

Here L(x) and R(z) are 2 X 2 unitary matrices that correspond to a general
SU(2)r, x SU(2)r x U(1)v gauge transformation; we restrict the U(1) part
of the transformation to the vector subgroup by requiring det L = det R
and Tr/, = Trr,. The transformation rules for the pion and nucleon fields
are

U — LUR', (90.4)
N, — LN, , (90.5)
Ny — RNy , (90.6)

where N, = PLN and Ny = PgN are the left- and right-handed parts of
the nucleon field.

We can make the chiral lagrangian gauge invariant (except for terms
involving the quark masses) by replacing ordinary derivatives with appro-
priate covariant derivatives. We determine the covariant derivative of each
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field by requiring it to transform in the same way as the field itself; for
example, D,U — L(D,U)R'. We thus find

DU = 9,U —il,U +iUr, (90.7)
DU = 9,U" +iUMl, —ir, U, (90.8)
DNy, = (8, —il,)Ny, (90.9)
D, Ng = (8, — ir,) Ny . (90.10)

Making the substitution 0 — D in £, we learn how the pions and nucleons
couple to these gauge fields.
As in section 83, it is more convenient to work with the nucleon field
N, defined via
N = (uP, +u' Py)N (90.11)

where u? = U. Making this transformation, we ultimately find

L= -ip2meeutoU — irvaut —iruto,U
+ 1M, + iy, — 20U, UT)
+ 03 Te(MU + MUY + iNIN — myNN
+ NG+ 3+ 3N =g N+ 3 — 3PN, (90.12)

where
v = Liful (9pu) + w(d,uh)] (90.13)
a, = %z‘[uT((‘)uu) —u(dul)], (90.14)
Iy = ullu, (90.15)
7= ur,ul (90.16)
It is now convenient to set
Ly =T + by, (90.17)
Ty =1, T+ by, . (90.18)

We have normalized b, so that the corresponding charge is baryon number.
The SU(2) gauge fields of the Standard Model can now be identified as

GAL =1, (90.19)
and the electromagnetic gauge field as

€A, =1+ 7+ by - (90.20)
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Eq. (90.20) follows from reconciling egs. (90.9) and (90.10) with the re-
quirement that the electromagnetic covariant derivatives of the proton field
p =N and the neutron field n = N5 be given by (9,, — ieA,)p and 9,n.

We can now find the hadronic parts of the currents that couple to the
gauge fields by differentiating £ with respect to them, and then setting
them to zero. We find

o = (9L/0L)

l=r=0
= L2 Te T*UUT + LN ui T (1 g5 )ulN

= +1 fr0t7m® — Letberbornt + INT y#(1—guys)N + ..., (90.21)

R = (0L/ory)

l=r=0
= L2 Te T°U MU + LN uT (14 gays)ul N

= Lf orna — Leabenbgune ¢ IRTTOR(1 gy )N + ..., (90.22)

= 0L/ob)|

= NN . (90.23)

In the third lines of egs. (90.21) and (90.22), we have expanded in inverse
powers of fr. We can now identify the currents that couple to the physical
W/jc, Z,, and A, fields as

JH = e (JH =g
= %Cl(fwauﬂ-—i_ + iWO@TﬂJF) +sem ! (l—gays)p+ .., (90.24)
T = ey (JF + i)
- %cl(fwa”ﬂ_ — iﬂog“ﬂ_) + %clﬁ’y”(l—gA’yg,)n +..., (90.25)
= T — s3 Tk (90.26)
gy =

= L(fz0"7° + intoin~)
— Z‘ﬂ_-i-allﬂ-_ + ﬁfyup + ..., (9028)
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where ¢ is the cosine of the Cabibbo angle, and the interactions are spec-
ified by

Lint = % @W, T+ % W, JHH + Soo Zudy eAu i . (90.29)

For low-energy processes involving W or Z° exchange, we can use the
effective current-current interaction that we derived in section 88,

Leg = 2V2Gp(JTI, + T Jy,) - (90.30)

We should include both hadronic and leptonic contributions to the currents.
Consider charged pion decay, 7~ — p~7,. The relevant terms in the
charged currents (neutral currents do not contribute) are

JH = %qfﬂaﬂw— , (90.31)
JHH = S My (1—5) N (90.32)

where M is the muon field and N, is the muon neutrino field. The relevant
term in the effective interaction is then

Lot = Grey frO ™ My, (1=75) Ny, (90.33)

The corresponding decay amplitude is
T = Grey frkF Ty, (1=5)va (90.34)
where the four-momenta of the pion, muon, and antineutrino are k, pi,

and pa. Eq.(90.34) can be simplified by using ¥ = p, + p§, along with
Ui, = —myur and pova = 0; we get

T = —GFCIfﬂ-m“ﬂl(l—’y5)'U2 . (90.35)

We see that 7 is proportional to the muon mass; since m,, > m., decay to
p~ v, is preferred over decay to e~ 7.
Squaring 7 and summing over final spins, we find

(IT?) = (Grer frmy)*(—8p1-p2) -

= A(Grer famp)*(ma —m?,) . (90.36)

We used —2p1-pa = p3 + p3 — (p1+p2)? = —mi + 0+ m?2 to get the second
line. We now have
1
I = /dLIPS2(I<:)(|T|2>

2my

P
= 2P 7y

2 22 2 2\2
- _GFcl-Zrﬂmum”< _ﬂ) , (90.37)
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where we used [p1| = (m2 — m2)/2m; to get the last line. Since we deter-

mine the value of G from the decay rate of the muon (see section 88), the
charged pion decay rate allows us to fix the value of ¢y fr.

The value of ¢; can be determined from the rate for the decay pro-
cess T~ — me” ., which we will calculate in problem 90.6. The relevant
hadronic term in the charged current is

JH = — Liey 0 a (90.38)
which depends on ¢; but not f,. Comparison with experiment then yields
c¢1 = 0.974. We note that the key feature of eq.(90.38) is that it involves
spin-zero hadrons that are members of an isospin triplet; eq. (90.38) applies
to any such hadrons, including nuclei. Thus ¢; can also be measured in
superallowed Fermi decays, which take a nucleus from one spin-zero state to
another spin-zero state with the same parity in the same isospin multiplet.

Next we consider neutron decay, n — pe~ .. The relevant terms in the
charged currents (neutral currents do not contribute) are

JH = e py*(1—gavs)n (90.39)
JH = 2 (1—5)N, (90.40)

where £ is the electron field and A, is the electron neutrino field. The
relevant term in the effective interaction is then

Log = %GFQ]_97”(1—9A75)n27u(1_75)/\/e . (90.41)

Consider a neutron with four-momentum p,, = (my, 0), and spin up along
the z axis; the decay amplitude is

T = %GFCI [EP7“(1_9A75)UTL] [ue’yu(l—vg))v,;] ) (90.42)
where u, @, = $(1—75¢)(—Pn+m,). We take the absolute square of 7 and
sum over the final spins. Since the maximum available kinetic energy is
My — my — me = 0.782MeV < m,,, the proton is nonrelativistic, and we
can use the approximations p,p. ~ —mpE, and p,py; ~ —m,Ej in addition
to the exact formulae p,,-p. = —m, E, and p,py = —m,E5. After a tedious
but straightforward calculation, we find

(IT1?) = 16 GEci (1 + 3¢2)mpmyEEp

Pe Py z-pe ‘Po
1 A B 90.43
x|1+a E.E, + B, + 2 | ( )
where the correlation coefficients are given by
1— g 295 (1 — 2, (1
o= 179, 9a(1—ga) . B= 9a(1+9a) (90.44)
1+ 3g% 1+ 392 1+ 3g%
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Figure 90.1: One-loop diagrams contributing to 7% — 7. The solid line is
a proton.

When we integrate over the final momenta to get the total decay rate, the
correlation terms vanish, and so the rate is proportional to GZc3(1 + 3g2).
Since we get the value of G&c? from the rate for 7~ — 7’e~ 7. the neutron
decay rate allows us to determine 1 + 3g2. To get the sign of g,, we need
a measurement of either A or B. (The antineutrino three-momentum can
be determined from the electron and proton three-momenta.) The result is
that g, = +1.27. The measured values of the three correlation coefficients
are all consistent with eq. (90.44).

Finally, we consider the decay of the neutral pion into two photons,
7% — ~v. None of the terms in our chiral lagrangian, eq. (90.12), couple
a single ¥ to two photons. Therefore, without adding more terms, this
process does not occur at tree level. However, at the one-loop level, we
have the diagrams of fig. (90.1); a proton circulates in the loop. Let us
evaluate these diagrams. In section 83, we found that the coupling of the
70 to the nucleons is given by

Loown = —5(9a/ F2)0um’ (57" 5p — yFysm) - (90.45)

This leads to a 7%pp vertex factor of %(gA /fr)kpy?ys. The diagrams in
fig. (90.1) are then identical to the diagrams we evaluated in section 76,
and so the one-loop decay amplitude is

ij—l—loop = %(gA/fﬂ)(ie)251u52ukpcwjp(kly k27 k) ’ (9046)

where )
ki CHP (key, kg, ki) = —;?gwﬁklak% . (90.47)

Here we have chosen to renormalize so as to have k1, C*P(ki, kg, k) = 0 and
ko, CHP(ky, ko, k) = 0; this is required by electromagnetic gauge invariance.
Combining egs. (90.46) and (90.47), we get

ga e?

A gamnbr, k . 4
47T2f7r€ 1(161” 2582,, (90 8)

7-1—100p = -
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This result is subject to higher-loop corrections. Note that diagrams with
extra internal pion lines attached to the nucleon loop are not suppressed by
any small expansion parameter. Thus we cannot trust the overall coefficient
in eq. (90.48).

Note that this amplitude would arise at tree level from an interaction
of the form Lo, o nOgonbrp ualyg. If we integrate out the nucleon fields
to get an effective lagrangian for the pions and photons alone, such a term
should appear.

There is a problem, however. The SU(2)1, x SU(2)r x U(1)y symmetry
of the effective lagrangian implies that a pion field that has no derivatives
acting on it must be accompanied by at least one factor of a quark mass.
For example, we could have Lo, Z'Tr(MU—MTUT)e‘WﬁVFWFVg. The
problem is that there are no quark-mass factors in eq. (90.48). So we have an
apparent contradiction between our explicit one-loop result, and a general
argument based on symmetry.

This contradiction is resolved by noting that the electromagnetic gauge

field results in an anomaly in the axial current JoF = J2* — J3*. In terms
of the quark doublet
U
Q= ( ) : (90.49)
D

this current is
= QT 50
= 1UAN'vsU — 3Dy v5D | (90.50)

where we have suppressed the color indices. Using our results in sections
76 and 77, the anomalous divergence of this current is given by

2
3 € vpo
O Jyt = —M?Tr(Tng)e” P F o Foo (90.51)
where >
_|__
Q= < ’ 1) (90.52)
0 -3

is the electric charge matrix acting on the quark fields, and the trace in-
cludes a factor of three for color; we thus have

TH(T3QY) =3(5(+3)? - §(-1)?) = +1 . (90.53)

and so
2

P

553 " FurFi - (90.54)
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This formula is exact in the limit of zero quark mass.
Now using egs. (90.21) and (90.22), we can write the axial current in
terms of the pion fields as

3 3p 3
A = L T YR
= froMn0 4 ... . (90.55)

(We do not include the nucleon contribution because we are considering
the effective lagrangian for pions and photons after integrating out the
nucleons.) From eq. (90.55) we have C%Ji” = f-0%7%+...; Combining this
with eq. (90.54), we get

2

- 32m2 f,

—7° NP Fay + O(f12) . (90.56)
This equation of motion would follow from an effective lagrangian that
included an interaction term of the form

e2

" T 32 ),

L TP, F oy . (90.57)

This interaction leads to a 7° — v decay amplitude of

62

T = _47T2f Euypo-kluglyk2p€2o' . (90.58)

This amplitude receives no higher-order corrections in e?, but is subject
to quark-mass corrections; these are suppressed by powers of m2 /(47 f,)?2.
Comparing eq. (90.58) with eq. (90.48), we see the one-loop result (which
receives unsuppressed corrections) is too large by a factor of g, = 1.27.
Squaring 7, summing over final spins, integrating over dLIPSy(k), and
multiplying by a symmetry factor of one half (because there are two iden-
tical particles in the final state), we ultimately find that the decay rate

1S

2,3
o m;,

~ 64n3 e
This prediction is in agreement with the experimental result, which has an
uncertainty of about 7%.

(90.59)

REFERENCE NOTES
FElectoweak interactions of hadrons are treated in Georgi and Ramond II.

PROBLEMS
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90.1) Verify that the covariant derivatives in egs. (90.7-90.10) transform
appropriately.

90.2) Verify that substituting eq. (90.11) into eq. (90.1) yields eq. (90.12).

90.3) Compute the rate for the decay process 7= — m~v,. Look up the
measured value and compare with your result.

90.4) a) Verify eq. (90.43).

b) Compute the total neutron decay rate. Given the measured neu-
tron lifetime 7 = 8865, and using Gy = 1.166 x 107> GeV~2 and
c1 = 0.974, compute g,. Your answer is about 4% too high, because
we neglected loop corrections, and the Coulomb interaction between
the outgoing electron and proton.

90.5) Use your results from problems 88.7 and 89.5 to show that the neutron
decay rate is enhanced by a factor of 1+ ZaIn(My/m,). How much
of the 4% discrepancy is accounted for by this effect?

90.6) Compute the rate for the decay process 7= — 7’e~ .. Note that,
since Mg+ — myo = 4.594MeV < m, o, the outgoing 7° is nonrela-
tivistic. Compare your calculated rate with the measured value of
0.397s7! to determine ¢;. Your answer is about 1% too low, due to
neglect of loop corrections.

90.7) Verify eq. (90.59). Express I' in eV.
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91 NEUTRINO MASSES

PREREQUISITE: 89

Recall from sections 88 and 89 that a single generation of quarks and leptons
consists of left-handed Weyl fields g, @®, d*, ¢;, and € in the representa-
tions (3,2,—1—%), (3,1, —%), (3, 1,+%), (1,2, —%), and (1,1,41) of the gauge
group SU(3) x SU(2) x U(1). The Higgs field is a complex scalar ¢; in the
representation (1,2, —%) The Yukawa couplings among these fields that
are allowed by the gauge symmetry are

Lyvuk = —yeijgpifjé — y'eijgoiqajcza - y”gp“qaiﬁa +h.c.. (91.1)

After the Higgs field acquires its VEV, these three terms give masses to the
electron, down quark, and up quark, respectively. The neutrino remains
massless. Thus, massless neutrinos are a prediction of the Standard Model.

However, there is now good experimental evidence that the three neutri-
nos actually have small masses. The data implies that mass of the heaviest
neutrino is in the range from 0.04 eV to 0.5eV. To account for this, we must
extend the Standard Model.

Let us continue to consider a single generation. We introduce a new
left-handed Weyl field 7 in the representation (1,1,0); this field does not
couple to the gauge fields at all, and its kinetic term is simply iDTﬁ"@“D.
(The bar over the v in the field ¥ is part of the name of the field, and does
not denote any sort of conjugation.) With this new field, we can introduce
a new Yukawa coupling of the form

Lyvax =~ i+ h.c. . (91.2)
In unitary gauge, this becomes
Lovak = =550+ H)(vw +7'h) . (91.3)

We see that the neutrino mass is m = jv/v/2.

If this was the end of the story, we would have no understanding of why
the neutrino mass is so much less than the other first-generation quark and
lepton masses; we would simply have to take § much less than v, 3/, and
Y.

However, because 7 is in a real representation of the gauge group, we
are allowed by the gauge symmetry to add a mass term of the form

Lomass = —5M (o0 +0'07) . (91.4)

Here M is an arbitrary mass parameter. In particular, it could be quite
large.
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Adding egs. (91.3) and (91.4), we find a mass matrix of the form

0 m v
Lypmass = —3 (v u)(~ M><_>+h.c.. (91.5)

m v

If we take M > m, then the eigenvalues of this mass matrix are M and
—m?/M. (The sign of the smaller eigenvalue can be absorbed into the
phase of the corresponding eigenfield.) Thus, if m is of the order of the
electron mass, then m?/M is less than 1eV if M is greater than 10% GeV.
So ¢ can be of the same order as the other Yukawa couplings, provided M
is large. This is called the seesaw mechanism for getting small neutrino
masses. The eigenfield corresponding to the smaller eigenvalue is mostly v,
and the eigenfield corresponding to the larger eigenvalue is mostly v.
Another way to get this result is to integrate out the heavy v field at
the beginning of our analysis. We get the leading term (in an expansion in
inverse powers of M) by ignoring the kinetic energy of the ¥ field, solving
the equation of motion for it that follows from L mass + £, vuk, and finally
substituting the solution back into L3 mass + £, yuk- The result is

~2 . .
ﬁuYuk—l—mass = 2y—M {(SOTZ@)(QOT]@) + hC}

= —im, (v + vV (1 + Hjv)?, (91.6)
where y 5
m Yy

Again, we can absorb the minus sign in eq. (91.7) by making the field re-
definition v — iv.

The seesaw mechanism has a straightforward extension to three gen-
erations. Let us consider the fields ¢;;, é;, and U;, where I = 1,2,3 is a
generation index. The most general Yukawa and mass terms we can write
down now read

Lyuk4mass = —gijcpiﬁjjy”éj - (P“eif?julzl - %MIJDIDJ +h.c., (91’8)

where y;; and 3;; are complex 3 x 3 matrices, M;; is a complex symmetric
3 x 3 matrix, and the generation indices are summed. In unitary gauge,
this becomes

Lyuk+mass = —%(U‘FH)EIZJUEJ - %(U—FH)VI:']IJDJ - %MIJDIDJ +h.c..

(91.9)
We can now integrate out the v, fields; eq. (91.9) is then replaced with

Lovuktmass = —%(v—l—H)e,yUéJ—%(my)l‘](VIVJ+V;[Vj)(1—|—H/v)2 , (91.10)
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where we have defined the complex symmetric neutrino mass matrix
(my)rs = =502 M 1)1 - (91.11)

We can make unitary transformations in generation space on the fields:
e; — E;e;, € — E;e,;, and v; — N;,v;, where E, E, and N are inde-
pendent unitary matrices. The kinetic terms are unchanged (except for the
couplings to the W, as we will discuss momentarily), and the matrices y
and m,, are replaced with ETyE and N"m,N. We can choose the unitary
matrices E, E, and N so that ETyE and N"m, N are diagonal with posi-
tive real entries y; and m,,. The neutrinos NV, then have masses m,,, and
the charged leptons &£, have masses m., = y,v/ v/2. In the neutral currents
J§ and JEy, we simply add a generation index I to each field, and sum
over it. The charged currents are more complicated, however; they become

J-HJ = ELI(XT)]J’YuNLJ s (9112)
J_M = NLIXInyugLK 3 (9113)

where X = NTE is the analog in the lepton sector of the CKM matrix V
in the quark sector.

One difference, though, between X and V is that the phases of the
Majorana N; fields are fixed by the requirement that the neutrino masses
are real and positive. Thus we cannot change these phases to make the first
column of X real, as we did with V. We are allowed to change the phases
of the Dirac &, fields, so we can make the first row of X real. Thus X has
9 — 3 = 6 parameters, two more than the CKM matrix V.

The presence of X in the charged currents leads to the phenomenon of
neutrino oscillations. A neutrino that is produced by scattering an electron
off a target will be a linear combination X;,;v; of the neutrinos of definite
mass. The different mass eigenstates propagate at different speeds, and
then (in a subsequent scattering) may become (if there is enough energy)
muons or taus rather than electrons. It is the observation of neutrino
oscillations that leads us to believe that neutrinos do, in fact, have mass.

REFERENCE NOTES
Neutrino masses are discussed in detail in Ramond I1.
PROBLEMS

91.1) Show that introducing neutrino masses via the seesaw mechanism
results in lepton number no longer being conserved.
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91.2) Estimate the rate for the muon-number and electron-number violating
process p= — e 7.

91.3) Consider neutrinoless double-beta decay, in which a nucleus with charge
Z decays to a nucleus with charge Z + 2 and two electrons.

a) Compute the amplitude for nn — ppe~e™.

b) Compute the rate. Take the two neutrons to be at rest, and treat
the two protons as a single nonrelativistic particle when doing the
phase-space integral. Take the neutrino mass to be much less than
the electron mass.
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92 SOLITONS AND MONOPOLES

PREREQUISITE: 84

Consider a real scalar field ¢ with lagrangian
L=—50"00,0 —V(p), (92.1)

with
V() = IA(g? — 02)? (92.2)

As we discussed in section 30, this potential yields two ground states or
vacua, corresponding to the classical field configurations ¢(z) = +v and
o(z) = —v. After shifting the field by its VEV (either +v or —v), we find
that the particle mass is m = A\/20.

Let us consider this theory in two spacetime dimensions (one space
dimension x and time ¢). In this case, ¢ and v are dimensionless, and \ has
dimensions of mass squared. In the quantum theory, the coupling is weak
if A < m?.

The case of one space dimension is interesting for the following reason.
The boundary of one-dimensional space consists of two points, + = —oo
and = +oo. This topology of the spatial boundary is mirrored by the
topology of the space of vacuum field configurations, which also consists
of two points, p(x) = —v and ¢(x) = 4v. In each vacuum, both spatial
boundary points (x = —oo and x = 400) are mapped to the same field
value (either —v or +wv). This is a trivial map. More interesting is the
identity map, where x = —oo is mapped to ¢ = —v, and x = +o00 is
mapped to ¢ = +v. This map does not correspond to a vacuum; the field
must smoothly interpolate between ¢ = —v at * = —o0 and ¢ = 4v at
T = 400, and this requires energy. The interesting question is whether it
can be done at the cost of a finite amount of energy.

To make these notions more precise, we will look for a minimum en-
ergy, time-independent solution of the classical field equations, with the
boundary conditions

lim p(x) =+v. (92.3)

r—+o00

The total energy is given by
Ee [ d[ip 4 L4y 92.4
. T3¢+ 59 T VI(9)] - (92.4)

The solution of interest is time independent, so we can set ¢ = 0. We can
also rewrite the remaining terms in E as

E= /_+: de |3~ V2V (p) )2 +V2V(0) |
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:/+°de%(¢’—\/21/(¢))2+/ V2V (p) dp

—00 —v

— /+°° dx %((p' — \/T((’p)f +2(m2/N)m . (92.5)

—00

Since the first term in eq. (92.5) is positive, the minimum possible energy is
M = 2(m?/A)m; this is much larger than the particle mass m if the theory
is weakly coupled (A < m?). Requiring the first term in eq. (92.5) to vanish
yields ¢’ = v/2V (), which is easily integrated to get

o(z) = vtanh(%m(m - :L'o)) , (92.6)

where xg is a constant of integration. The energy density is localized near
x = g, and goes to zero exponentially fast for |x — zo| > 1/m.

This solution is a soliton, a solution of the classical field equations with
an energy density that is localized in space, and that does not dissipate or
change its shape with time. In this case (and in all cases of interest to us),
its existence is related to the topology of the boundary of space and the
topology of the set of vacua, and the existence of a nontrivial map from the
boundary of space to the set of vacua.

Given eq. (92.6), we can get other soliton solutions by making a Lorentz
boost; these solutions take the form

o(z,t) = vtanh(%vm(:n —xzy— ﬁt)) , (92.7)

where v = (1 — 32)~'/2; their energy is E = vM = (p?> + M?)'/2, where
M = 2(m?/\)m is the energy of the soliton at rest, and p = yBM is
the momentum of the soliton, found by integrating the momentum density
701 — (,0/ 8090.

We see that the soliton behaves very much like a particle. We may
expect that, in the quantum theory, the soliton will correspond to a new
species of particle with mass M, in addition to the elementary field excita-
tion with mass m.

The soliton solution is still interesting if there is more than one spatial
dimension. In that case, eq. (92.6) describes a domain wall, a structure that
is localized in one particular spatial direction, but extended in the others.
The wall has a surface tension (energy per unit transverse area) given by
o=2m?/\.

Having found a theory that has a soliton that is localized in one spatial
direction, let us try to find a theory that has a soliton that is localized in
two spatial directions. In two space dimensions, the spatial boundary has
the topology of a circle, denoted by the symbol S'. There is no smooth
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nontrivial map from a circle to two points; continuity of the map requires
the entire circle to be mapped into one of the two points. But there do
exist smooth nontrivial maps from one circle to another circle, as we will
discuss momentarily.
So, we would like to find a theory whose vacua have the topology of
a circle. To this end, let us consider a complex scalar field p(z), with
lagrangian
L=—-0"0"0up - V(p), (92.8)

where
V() = 2x(plp —v?)2. (92.9)

The vacuum field configurations are
o(x) = ve'™ (92.10)

where « is an arbitrary angle. This angle specifies a point on a circle, and
so the space of vacua does indeed have the topology of S!.

Let us write x = r(cos ¢, sin ¢); then the angle ¢ specifies a point on
the spatial circle at infinity. We can specify a map from the spatial circle
to the vacuum circle by giving « as a function of ¢. In order for ¢(z) to be
single valued, this function must obey a(¢ + 27) = a(¢) + 27n, where the
integer n is the winding number of the map: we wind around the vacuum
circle n times for every one time that we wind around the spatial circle.
(If n is negative, the vacuum winding is opposite in direction to the spatial
winding.) An example of a map with winding number n is U(¢) = ™.
Setting n = 0 then yields the trival map, n = 1 the identity map, and
n = —1 the inverse of the identity map.

Given a smooth map U(¢), its winding number can be written as

7 2
_ 4 i
B 27T/O do UdUT (92.11)

where UT is the complex conjugate of U. To verify that eq. (92.11) agrees
with our previous definition, we first check that plugging in our example
map indeed yields the correct value of the winding number. We then show
that the right-hand side of eq.(92.11) is invariant under smooth deforma-
tions of U(¢); see problem 92.2. Thus any U(¢) that can be smoothly
deformed to €® has winding number n.

Next, we want to look for a finite-energy solution of the classical field
equations for the theory specified by eqs. (92.8) and (92.9), with the bound-
ary condition

lim (r,¢) = vU(6) . (92.12)
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with U(¢) corresponding to a map with nonzero winding number. We
therefore make the ansatz

o(r,¢) = vf(r)e™?, (92.13)

where f(r) is a real function that obeys f(co) = 1. We must also have
f(0) = 0 so that V(r, ¢) is well defined at r = 0.

Alas, it is easy to see that there is no finite-energy solution of this form.
The gradient of the field is

V= v[f’(r)f + inr_lf(r)qﬂ emn? (92.14)
and the gradient energy density is
Vel = o[£/ (r)? + 0?2 £(r)?] (92.15)

At large r, f(r) must approach one; then the integral over the second term
in eq. (92.15) diverges logarithmically,

2 2 2 2 [ dr
/d z |Vp|® ~2mn*v / o (92.16)
So the energy is infinite. This is, in fact, a very general result, known as
Derrick’s theorem: with scalar fields only, there are no finite-energy, time-
independent solitons that are localized in more than one dimension. The
problem is that the gradient energy always diverges at large distances from
the putative soliton’s core.

To get solitons that are localized in more than one dimension, we must
introduce gauge fields. Note that the lagrangian of eq. (92.8) has a global
U(1) symmetry. Let us gauge this U(1) symmetry, so that the lagrangian
becomes

L=—(D")'Dyp — V(p) — 1FMF,, (92.17)
where
Dy = 0up —ieAup , (92.18)

and V() still given by eq. (92.9). The gauge symmetry is therefore sponta-
neously broken, and the mass of the vector particle is m, = ev. The mass
of the scalar particle is mg = A\/2v.

The gradient energy density of the scalar field is now

|Dy|? = |(V —ieA)p|? . (92.19)

Thus we have the opportunity to choose A so as to partially cancel the
badly behaved second term in eq. (92.14). To see how to do this, recall that



92: Solitons and Monopoles 564

a gauge transformation in this theory takes the form
o —Up, (92.20)
A, — UAUT + LUa, Ut (92.21)

where U is a 1 x 1 unitary matrix that is a function of spacetime. Asr — oo,
our ansatz for ¢, eq.(92.13), corresponds to a gauge transformation of a
vacuum, ¢ = v, by U = €®. The corresponding transformation of A, =0
is

lim A(r,¢) = LUVU!

n -
=—09. 2.22
25 (9222)

Before making the gauge transformation, we have ¢ = v and A, = 0, and
so D, = 0; by gauge invariance, this must be true after the transformation
as well. Indeed, it is easy to check that, with A given by eq.(92.22), we
have (V — ieA)ve!® = 0.

For n # 0, the gauge transformation U = €!"® is large: it cannot be
smoothly deformed to U = 1. This implies that we cannot extend it from
r = oo into the interior of space without meeting an obstruction, a point
where U (r, ¢) is ill defined. For example, the simplest attempt at such an
extension, U(r,¢) = €™?, is ill defined at 7 = 0. Near the obstruction,
the fields ¢ and A must deviate from a gauge transformation of a vacuum.
This deviation costs energy, and results in a soliton.

Our ansatz for a soliton in the theory specified by eq. (92.17) is then

o(r,d) = vf (NU($) (92.23)
A(r,¢) = La(r)U(¢)VU' (), (92.24)

where U(¢) = ¢™?, and we require f(co0) = a(oc) = 1 (so that the solution
approaches a large gauge transformation of a vacuum as r — oo0) and
f(0) = a(0) =0 (so that A and V¢ are well defined at r = 0). For n =1,
this soliton is a Nielsen—Olesen vortex.

The nonzero vector potential results in a perpendicular magnetic field

B=VxA
170 0 .
-~ <§(7~A¢) - a—(bAr)z
_ndl) . (92.25)

(& r
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The corresponding magnetic flux is

<I>:/dS-B

= —. (92.26)

Here the second line follows from Stokes’ theorem, the third from eq. (92.24),
and the fourth from eq. (92.11).
The energy of the soliton is

E= /d2x (V= ieA)p* + V(p) + §B?] . (92.27)

Substituting in our ansatz, egs. (92.23) and (92.24), we get

0o 2
E= 277@2/ drr[f’2+%(a—1)2f2+§m2(f2—1)2+ a’2]. (92.28)
0

e2v?r?
It is convenient to define a dimensionless radial coordinate p = evr = myr.
Let us also define 32 = \/e? = m2/m?2. Then eq. (92.28) becomes

0o 2 2
E= 277@2/ dpp[f’2 - %(a — 1224+ 18%(f7 - 1) + %a’ﬂ, (92.29)
0

where a prime now denotes a derivative with respect to p. We can find the
equations obeyed by f(p) and a(p) either by substituting the ansatz into
the equations of motion, or by applying the variational principle directly
to eq. (92.29). Either way, the result is

el np—2(1 —a)?+ 3871 -fA)f =0, (92.30)
a" — % t(1-a)f=0, (92.31)

with the boundary conditions a(0) = f(0) = 0 and a(c0) = f(o0) = 1.
Egs. (92.30) and (92.31) have no closed-form solution. However, for
p < 1, we can show that a(p) ~ p? and f(p) ~ p"; and for p > 1, that
1—a(p) ~e?and 1— f(p) ~ e, where ¢ = min(f3,2); see problem
92.4. For n and 3 of order one, the integral in eq. (92.29) also results in a
number of order one, and so we have E ~ 2rv?. For 3 > 1, it is possible
to prove a Bogomolny bound, E > 2mv?|n|. In this case, a soliton with
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winding number n is unstable against breaking up into |n| solitons, each
with winding number one (or minus one, if n is negative).

Once we have our soliton solution, we can translate and /or boost it; thus
we expect the soliton to behave like a particle in two space dimensions. In
three space dimensions, the soliton becomes a Nielsen-Olesen string (also
called a gauge string), a structure that is localized in two directions, but
extended in the third. Such strings can bend, and even form closed loops.
In certain unified theories (see section 97), gauge strings may have formed
in the early universe; they are then called cosmic strings.

Now let us try to find a soliton that is localized in three spatial direc-
tions. In three space dimensions, the spatial boundary has the topology of
a two-dimensional sphere S2. There are smooth nontrivial maps from S? to
S2, as we will discuss momentarily, so let us look for a theory whose vacua
have the topology of S2.

Consider three real scalar fields 9%, a = 1,2, 3, with lagrangian

L=—-10"p"0,0" — V(p), (92.32)

where
V(p) = sA(@"p" — v*)?. (92.33)

The vacuum field configurations are
¢ (x) = vp® (92.34)

where ¢ is an arbitrary unit vector. This unit vector specifies a point on a
two-sphere, and so the space of vacua does indeed have the topology of S2.

Let us write x = r(sin 6 cos ¢, sin f sin ¢, cos 6); then the polar and az-
imuthal angles 8 and ¢ specify a point on the spatial two-sphere at infinity.
We can specify a map from the spatial two-sphere to the vacuum two-
sphere by giving ¢ as an (appropriately periodic) function of 6 and ¢. We
can define a winding number n that counts the number of times the vacuum
two-sphere covers the spatial two-sphere, with n negative if the orientation
is reversed. An example of a map with winding number n can be con-
structed by taking the polar angle of ¢ to be #, and the azimuthal angle to
be n¢. Setting n = 1 then yields the identity map, and n = —1 the inverse
of the identity map.

Given a smooth map ¢, (0, ¢), its winding number can be written as

1 g
n=o / A2 e 29,30 0;5° (92.35)

where d?0 = dfde, 01 = 0/00, Oy = 0/0¢, and e'? = —e = +1. To
verify that eq.(92.35) agrees with our previous definition, we first check
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that plugging in our example map indeed yields the correct value of the
winding number; see problem 92.5. We then show that the right-hand
side of eq. (92.35) is invariant under smooth deformations of ¢, (6, ¢); see
problem 92.6. It is also worthwhile to note that the right-hand side of
eq. (92.35) is invariant under a change of coordinates, because the jacobian
for d?6 is cancelled by the jacobian for ;0. This is of course closely related
to the invariance under smooth deformations, since one way to make such
a deformation is via a coordinate change.

Next, we want to look for a finite-energy solution of the classical field
equations with nonzero winding number, but we already know that these
will not exist unless we introduce gauge fields. We therefore take ¢® to be
in the adjoint representation of an SU(2) gauge group. The lagrangian is
now

L=-LD"'o)"(Dup)® — V() — SFFE, (92.36)

where
(Dup)® = 0" + ™Ao" (92.37)
Ff, = 0,A% — 0,A% + e AL A (92.38)

and V(p) is given by eq. (92.33). We have called the gauge coupling e for
reasons that will become clear in a moment.

The gauge symmetry is spontaneously broken to U(1). If we take the
vacuum field configuration to be ¢* = v6*, then the Ai field remains
massless; we will think of it as the electromagnetic field. The complex
vector fields Wﬁt = (AL F ZAi) /V/2 get a mass my = ev, and have electric
charge +e. (This is the reason for calling the gauge coupling e.) This
theory, known as the Georgi-Glashow model, was once considered as an
alternative to the Standard Model of electroweak interactions (but is now
ruled out, because it does not have a Z° boson).

When the vacuum field configuration is ¢ = v§%3, the electromagnetic
field strength is F},, = OHA,?j — 8,,Af’, We can write down a gauge-invariant
expression that reduces to F),, when we set ¢ = v9%3; this expression is

Fu = ¢ Ff, — e e (D) (Dyg)° . (92.39)

Here ¢% = /||, where || = (¢p%p®)'/2. We can, in fact, use eq. (92.39) as
the definition of the electromagnetic field strength at any spacetime point
where |p| # 0. (If || = 0, the SU(2) symmetry is unbroken, and there is no
gauge-invariant way to pick out a particular component of the nonabelian
field strength Fy,.) If we substitute in egs. (92.37) and (92.38), and make
repeated use of ¢¢»® = 1 and the identity e2ccde = gbdgee — sbeged it is
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possible to rewrite eq. (92.39) as
Fuy = 0u(¢°A%) — 9, ($"A%) — e 13 0,¢"0,¢° . (92.40)
In particular, the magnetic field is
BF = Lciikpy,
= e7F0,(p"AY) — (2¢) ' eVre 0, 01" . (92.41)

Let us consider the magnetic flux through a sphere at spatial infinity;
this is given by ® = [dS-B, where dS; = r?sin0df d¢ iy, and & = x/r
is a radially outward unit vector. The first term in eq.(92.41) for B is
V x (¢®A%); since this is a curl, it has zero divergence, and therefore zero
surface integral. From eq. (92.35), we see that the second term in eq. (92.41)

results in
4mn

b= (92.42)
This flux implies that any soliton with nonzero winding number is a mag-
netic monopole with magnetic charge Qy = ®. (In Heaviside-Lorentz units,
the Coulomb field of an electric point charge Qg is F; = Qg;/47r?, and
so the total electric flux is Q. We adopt the same convention for magnetic
charge.)

If we add a field in the fundamental representation of SU(2), then the
component fields have electric charges j:%e. This is the smallest electric
charge we can get, and all possible electric charges are integer multiples
of it. Eq.(92.42) tells us that all possible magnetic charges are integer
multiples of 47/e. Thus the possible electric and magnetic charges obey
the Dirac charge quantization condition, which is

QeQwm = 27k, (92.43)

where k is an integer. This condition can be derived from general consid-
erations of the quantum properties of monopoles.

Now let us turn to the explicit construction of a soliton solution. This
simplest case to consider is provided by the identity map (which has winding
number n = 1); the soliton we will find is the ’t Hooft- Polyakov monopole.

The boundary condition on the scalar field is

. a _ a
lim ¢ (x) = vzYr . (92.44)
We can find the appropriate boundary condition on the gauge field by
requiring (D,¢)® = 0 in the limit of large r. This condition yields

D5 (xYr) + ecAbs/r =0 . (92.45)
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We have 0;(x%/r) = (1264 — zqx:)/r3. Next we multiply by rx;e7%, and
use the identity e/%cabe = §ibgde — §icsdb 1o get

ey 4 e(xla; Al —1r2A%) = 0. (92.46)

If we ingore the first term in the parentheses, we find A¢ = %z /er?. But
then did = 0, and so the first term in the parentheses vanishes. Thus we
have found the needed asymptotic behavior of Af. Our ansatz is therefore

e (x) = vf(r)zYr, (92.47)
AY(x) = a(r)e™xj/er?. (92.48)
We require f(o0) = a(o0) =1 (so that A and ¢® have the desired asymp-
totic limits) and f(0) = a(0) = 0 (so that A? and ¢® are well defined at
r=0).
The total energy of the soliton (which we will call M, because it is the
mass of the monopole) is given by

M= / d [ABEBY + H(Die)" (Dig)* + V(9)] - (92.49)
The nonabelian magnetic field is
B} = zeijnk
= €ij0; A} + %esijksabcAI;Ai . (92.50)

If we write eq. (92.48) as A% = e K j,» then after some manipulation we
find that eq.(92.50) becomes B¢ = 9,K; — 6,;0; K’ + K,K;. Plugging in
K; = a(r)z;/er? then yields

1|ad . 20 —a?® | .
Bff = — - l? (5m- — xaxi) + xaxi] . (92.51)

e r2

The magnetic field energy then becomes

laa

5o [27«2 ? 4 (2a - a?)?]. (92.52)

The covariant derivative of the scalar field is

J[eso

T

(Dip)* = (5m~ - a:a:c) + f xax} : (92.53)

The scalar gradient energy density then becomes
2
= ﬁ

L(Dip)*(Dip)® 20— a2+ 1217 (92.54)
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The scalar potential energy density is
Vip) = sxt(f2=1)%. (92.55)

We can plug egs. (92.52), (92.54), and (92.55) into eq.(92.49), and then
use the variational principle to get the second-order differential equations
obeyed by f(r) and a(r).

We can get a lower bound on M by performing a trick analogous to the
one we used in eq. (92.5). We write

LBIBY + 1(Dig)"(Dig)" = 1[BY + (Dyo) "2 — BUDyg)" . (92.56)

We can apply the distribution rule for covariant derivatives (see problem
70.5) to rewrite the last term as B{(D;p)® = 0;(Bf¢®) — (D;B;)%¢®. Then
we note that the Bianchi identity (see problem 70.6) implies (D;B;)* = 0.
Thus B (D;p)* = 0;(Bf*¢?), and this is a total divergence. Then Gauss’s
theorem yields

/ &z 0,(Biy®) = / ds; Bie® | (92.57)

where the integral is over the surface at spatial infinity. On this surface,
we have % = vz®.

Next we use eq.(92.39). At spatial infinity, the covariant derivatives
of ¢ vanish; thus we have Bfp® = vB;, where B; is the magnetic field of
electromagnetism. We can now see that the right-hand side of eq. (92.57)
evaluates to v®, where & = @y = —47n/e is the magnetic charge of the
monopole.

In our case, n = 1 and Qy is negative; thus the last term in eq. (92.56)
integrates to v|Qum|. (For the case of positive Qn, we can swap the plus
and minus signs in eq. (92.56) to get the same result.) Thus the mass of
the monopole, eq. (92.49), can be written as

4r|n|v

M= + / de [YBY + (sisnm) (D) + V()] . (92.58)

e
Both terms in the integrand of eq. (92.58) are positive, and so we have a
Bogomolny bound on the mass of the monopole. For A > 0, a monopole
with winding number n is unstable against breaking up into |n| monopoles,
each with winding number one (or minus one, if n is negative).

Using my = ev and o = €2 /47, we can write the Bogomolny bound as

M > %lnl . (92.59)

Since a < 1, the monopole is much heavier than the W boson.
Alas, the Georgi-Glashow model, which has monopole solutions, is not
in accord with nature, while the Standard Model, which is in accord with
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nature, does not have monopole solutions. This is because, in the Standard
Model, electric charge is a linear combination of an SU(2) generator and
the U(1) hypercharge generator. Nothing prevents us from introducing
an SU(2) singlet field with an arbitrarily small hypercharge. Such a field
would have an arbitrarily small electric charge (in units of e), and then
the Dirac charge quantization condition would preclude the existence of
magnetic monopoles.

This disappointing situation is remedied in unified theories (see section
97), where the gauge group has a single nonabelian factor like SU(5). In
unified theories, the monopole mass is of order my /a, where my is the mass
of a superheavy vector boson; typically myx ~ 105 GeV.

Returning to the Georgi-Glashow model, we can saturate the Bogo-
molny bound if we consider the formal limit of A — 0; then V() vanishes.
(This limit is formal because we need a nonzero potential to fix the magni-
tude of ¢ at infinity.) Then we saturate the bound if B} = —(signn)(D;¢)*.
In the case of the 't Hooft-Polyakov monopole, we have n = 1, and B}
and (D;p)® are given by egs.(92.51) and (92.53). Matching the coeffi-
cients of 0, — T,%; and Z,Z; yields a pair of first-order differential equa-
tions. These look nicer if we introduce the dimensionless radial coordinate
p = evr = myr; then we find

ad=(1-a)f, (92.60)
' = (2a —a?)/p*, (92.61)

where a prime now denotes a derivative with respect to p. These equations
have a closed-form solution,

P
=1- 2.62
alp) =1- g (9262)

f(p) = cothp — % . (92.63)

This is the Bogomolny-Prasad-Sommerfeld (or BPS for short) solution.
A soliton that saturates a Bogomolny bound is generically called a BPS
soliton.

REFERENCE NOTES

Discussions of solitons, and their relation to the theory of homotopy groups,
can be found in Coleman and Weinberg I1.

PROBLEMS



92: Solitons and Monopoles 572

92.1) Derrick’s theorem says that, in a theory with scalar fields only, there
are no solitons localized in more than one dimension. To prove this,
consider a theory in D space dimensions with a set of real scalar fields
w;; any complex scalar fields are written as a pair of real ones. The
lagrangian is £ = —%8“g0i8ucpi — V(pi), with V(¢;) > 0. Suppose
we have a soliton solution ¢;(x); its energy is E = T + U, where
T =13 [dPx(Ve:)? and U = [dPx V().

a) Now consider ¢;(x/«), where « is a positive real number. Show
that, for this field configuration, the energy is E(a) = a? 2T +aPU.

b) Argue that we must have E’(1) = 0.

c¢) Use this to prove the theorem.

92.2) The winding number n for a map from S' — St is given by eq. (92.11),
where UTU = 1. We will prove that n is invariant under an infinites-
imal deformation of U. Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of U, U — U + §U. Show
that 6UT = —UT?6U.

b) Use this result to show that §(U9,UT) = —9,(UT6U).

c¢) Use this to show that én = 0.

92.3) Show that if U, (¢) and Ug(¢) are maps from S! — S! with winding
numbers n and k, then U, (¢)Uk(¢) is a map with winding number
n + k. Hint: consider smoothly deforming U, (¢) to equal one for
0 < ¢ < 7. How should Ug(¢) be deformed?

92.4) Verify the statements made about the solutions to egs. (92.30) and
(92.31) in the limit of large and small p.

92.5) Use eq. (92.35) to compute the winding number for the map specified
by ¢ = (sin 6 cos n¢, sin  sin ng, cos 9).

92.6) The winding number n for a map from S? — S is given by eq. (92.35),
where *@® = 1. We will prove that n is invariant under an infinites-
imal deformation of . Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of ¢, » — ¢ 4+ 0¢. Show
that ¢-0¢ = 0 and that ¢-0;¢ = 0.

b) Use these results to show that e2¢§3® igéb@jgbc =

c¢) Use this to show that én = 0.
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93 INSTANTONS AND THETA VACUA

PREREQUISITE: 92

Consider SU(2) gauge theory, with gauge fields only. The classical field con-
figuration corresponding to the ground state is F}j, = 0. This implies that
the vector potential Aj is a gauge transformation of zero, A, = AT =
iU,

Let us restrict our attention to gauge transformations that are time
independent, U = U(x). This fixes temporal gauge, Ay = 0. We will also
impose the boundary condition that U(x) approaches a particular constant
matrix as |x| — oo, independent of direction. This is equivalent to adding
a spatial “point at infinity” where U has a definite value; space then has
the topology of a three-dimensional sphere S3.

Can every U(x) be smoothly deformed into every other U(x)? If the
answer is yes, then all these field configurations are gauge equivalent, and
they correspond to a single quantum vacuum state. If the answer is no, then
there must be more than one quantum vacuum state. To see why, suppose
that U(x) and U(x) cannot be smoothly deformed into each other. The
associated vector potentials, A, = éU 0,U  and flu = %U 8uﬁ t, are both
gauge transformations of zero, and so both F},,, and F wv vanish. However, if
we try to smoothly deform A, into flu, we must pass through vector poten-
tials that are not gauge transformations of zero, and whose field strengths
therefore do not vanish. These nonzero field strengths imply nonzero en-
ergy: there is an energy barrier between the field configurations A, and
flu. Therefore, they represent two different minima of the hamiltonian in
the space of classical field configurations. Different minima in the space of
classical field configurations correspond to different vacuum states in the
quantum theory.

It turns out that every U(x) can not be smoothly deformed into every
other U(x); the field configurations specified by U(x) are classified by a
winding number. To see this, we first note that any 2 x 2 special unitary
matrix U can be written in the form

U=a4+id-a, (93.1)
where a4 and the three-vector a@ are real, and
a’+al=1; (93.2)

see problem 93.1. Thus a,, = (@, a4) specifies a euclidean four-vector of unit
length, a,a, = 1, and hence a point on a three-sphere. We will call this
the vacuum three-sphere. Since our boundary conditions give space the
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topology of a three-sphere, U(x) provides a map from the spatial three-
sphere to the vacuum three-sphere. We can define a winding number n
that counts the number of times the vacuum three-sphere covers the spatial
three-sphere, with n negative if the orientation is reversed.

It is convenient to specify the spatial three-sphere by a euclidean four-
vector z, = (Z,z4) of unit length, 2,2, = 1. An explicit relation between
z, and x can be constructed by (for example) stereographic projection:
we take 2 = 7/|Z| = &, and |Z| = 2r/(1+7?), z4 = (1-72)/(1+r?), where
r = |x|. Then we can construct an example of a map from the spatial S3
to the vacuum S3 with winding number n by taking the two polar angles
of a, to be equal to the two polar angles of z,, and the azimuthal angle of
a,, to be equal to n times the azimuthal angle of z,. (The polar angles run
from 0 to 7, and the azimuthal angle from 0 to 27.)

Given a smooth map U(x), its winding number can be written as

- / & T U U U U UTN] . (93.3)
Here we have used the original x coordinates, but we could also use the
angles that specify z,: the integral in eq. (93.3) is invariant under a change
of coordinates, because the jacobian for d®c is cancelled by the jacobian
for 010205. To verify that eq. (93.3) agrees with our previous definition, we
first check that plugging in our example map indeed yields the correct value
of the winding number; see problem 93.5. We then show that the right-
hand side of eq. (93.3) is invariant under smooth deformations of U(x); see
problem 93.3.

So, we have concluded that SU(2) gauge theory has an infinite number
of classical field configurations of zero energy, distinguished by an integer
n, and separated by energy barriers. This is analogous to a scalar field
theory with a potential

V(p) = M1 — cos(2mp/v)] . (93.4)

This potential has minima at ¢ = nv, where n is an integer. Let |n) be
the quantum state corresponding to the minimum at ¢ = nv. Generically,
between two quantum states |n) and |n') that are separated by an energy
barrier, there is a tunneling amplitude of the form

(n'|H|n) ~e™%, (93.5)

where H is the hamltonian, and S is the euclidean action for a classical
solution of the euclidean field equations that mediates between the field
configuration corresponding to n at t = —oo, and the field configuration
corresponding to n’ at t = +oo. In the scalar field theory, this solution
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is independent of x. Thus, S scales like the volume of space V, and so
(n’|H|n) vanishes in the infinite volume limit. The minima of eq. (93.4)
therefore remain exactly degenerate in the quantum theory.

Things are different in the SU(2) gauge theory. In this case, there is
a classical solution of the euclidean field equations that mediates between
states with winding numbers n and n’, and that has an action that stays
fixed and finite in the infinite-volume limit. The value of this action is
S = |n’—n|S;, where S; = 872/¢?, and g is the Yang-Mills coupling con-
stant. For n’ = n + 1, this solution is the instanton. The instanton is
localized in all four euclidean directions. For n’ = n — 1, the solution is
the antiinstanton. For |n’ — n| > 1, the solution is a dilute gas of |n' — n|
instantons (or antiinstantons, if n’ — n is negative) distributed throughout
euclidean spacetime.

We will shortly construct the instanton and examine its properties, but
first we study the consequences of its existence. For SU(2) gauge theory,
eq. (93.5) reads

(n'|H|n) ~ e I'=nlS1 (93.6)

These matrix elements depend only on n’ —n, and so H can be diagonalized
by theta vacua of the form

“+oo
6) = > e n); (93.7)

n=—oo

see problem 93.2. For weak coupling, S; > 1, and so we can neglect all
matrix elements of H except those with n’ = n 4+ 1. Then we find that the
energy of a theta vacuum is proportional to — cosf. (We are of course free
to add a constant to H so that the lowest lying state, the theta vacuum
with 6 = 0, has energy zero.)

We have derived these results in the weak-coupling regime. However,
we are discussing properties of low-energy states, and the gauge coupling
becomes large at low energies. Therefore we must consider the theory to
be in the strong-coupling regime. How does this affect our conclusions?

The topological properties of the gauge fields are independent of the
value of the coupling constant, so we still expect vacuum states labeled by
the winding number n to exist. We also expect that (n/|H|n) will depend
only on |n/ — n|. To see this, consider making a gauge transformation by
U (x), where Ug(x) has winding number k. The product of two maps
with winding numbers n and k is a map with winding number n + k; see
problem 93.4. Thus, making a gauge transformation by Uy(x) converts a
field configuration with winding number n to one with winding number
n+ k. In the quantum theory, the gauge transformation is implemented by
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a unitary operator U, and we should have
Ui|n) = In+k) . (93.8)

On the other hand, the hamiltonian, which is built out of field strengths,
must be invariant under time-independent gauge transformations:

UHU = H . (93.9)

Inserting factors of I = L{,IZ/{k on either side of H in (n’|H|n), and using
egs. (93.8) and (93.9), we find

(W |H|n) = (n'-+k|H|n+Fk) . (93.10)

We conclude that (n'|H|n) depends only on n’ —n. We can also note that
winding number is reversed by parity, Pln) = |—n), and that the Yang-
Mills hamiltonian is parity invariant, PHP~! = H, to conclude similarly
that (n'|H|n) = (—n/|H|—n). Thus (n’|H|n) depends only on |n’ — n.

The fact that (n/|H|n) depends only on |n’ — n| tells us that the theta
vacua are still eigenstates of H. Furthermore, their energies must be a
periodic, even function of 8. Of course, the eigenvalues of H should scale
with the volume of space V. Then, on dimensional grounds, we have

H|0) = VAL f(0)]6) (93.11)

where Aqgcp is the scale where the gauge coupling becomes strong. The
function f(6) must obey f(0 + 2m) = f(0) and f(—6) = f(0). We expect
the minimum of f(€) to be at § = 0.

We turn now to the solutions of the euclidean field equations. At eu-
clidean time z4 = —T, we set A,(x) = %U_(X)C%Ui(x), where U_(x)
has winding number n_. Similarly, at euclidean time z4 = +7, we set
Au(x) = %UJF(X)GMUI(X), where Uy (x) has winding number ny. At
|x| = R, for =T < x4 < T, we set the boundary condition A, = 0. This
is equivalent to A, = tU9,UT with 9,U" = 0; we therefore set U(x) to a
constant matrix at [x| = R. We want to take 7" and R to infinity at the
end of the calculation.

We have now specified U(x,z4) on the cylindrical boundary of four-
dimensional spacetime shown in fig. (93.1). This boundary is topologically
a three-sphere. The winding number of the map on this three-sphere is
ny—n_. We see this by using eq. (93.3), and noting that the cylindrical wall
makes no contribution (because 9, U T=0 there), the upper cap contributes
n4, and the lower cap contributes —n_; the sign is negative because the
orientation of the cap as part of the boundary is reversed from its original
orientation.
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Figure 93.1: The boundary in euclidean spacetime. We have a field con-
figuration with winding number n_ on the cap at x4 = —7', and one with
winding number ny on the cap at 4 = +7. On the cylindrical surface at
|x| = R, the field vanishes.

Since we are interested in large R and T, and since the shape of the
boundary should not matter in this limit, we instead consider the boundary
to be a three-sphere at p = (a:usvu)l/2 = 00. On this boundary, we have a
map U(z), where &, = x,/p; this map has winding number n =n, —n_.

Our first task will be to construct a Bogomolny bound on the euclidean
action

S=1 / d*z Tr(FMF,,) (93.12)
of a field that obeys the boundary condition
Jim Au(e) = §U(@)8,U"(#) (93.13)

where U(Z) is a map with winding number n. The field strength is given
in terms of the vector potential by

Fly = 0,4, — 0,A, —ig[A,, A . (93.14)

We begin by defining the polar angles x and ¢, and the azimuthal angle
¢, via

&, = (sin x sin 1) cos ¢, sin x sin ¢ sin ¢, sin x cos 1), cos x) . (93.15)

(We use 1 rather than € in order to avoid any possible confusion with the
vaccum angle.) Next we write the winding number in terms of these angles,

-1

"= 2472

/ "dy / "dp / T o Te(UA U (U,U ) U8, L (93.16)
0 0 0
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where o, 3,7 run over x,,¢; 05 = 0/0¢, etc.; and eX¥® = +1. Now
we write eq. (93.16) as a surface integral over a surface at infinity in four-
dimensional euclidean space,

n =

o / dS,, &7 Te[(U9, U Ua,UN U8, U] (93.17)

where 9, = 0/9z", and €'?3* = +1. (This implies that ePX¥® = _1, as can
be checked by computing the jacobian for this change of coordinates; that
is why the overall minus sign disappeared.) Now we use eq. (93.13) to write
the winding number in terms of the vector potential,

n =

s / dS, 7T Tr(A, Ay Ay) . (93.18)

Next, we will write this surface integral as a volume integral.
To do so, we first define the Chern-Simons current,

Jbs = 27T Tr(A, Fyr + 3igA, AL AL) (93.19)

This current is not gauge invariant, but the relative coefficient of its two
terms has been chosen so that its divergence is gauge invariant,

Oy Jby = " Tr(F,, F,,)
= 2T (F"™F,,), (93.20)

where .
FW = LetoTE, (93.21)

is the dual field strength.

On the surface at infinity, the vector potential is a gauge transformation
of zero, and so the field strength F),, vanishes there. Thus we can use
eq. (93.19) to write eq. (93.18) as

n —=

3972 / dS, Jts . (93.22)

Using Gauss’s theorem, this becomes

n =

357 / d'r 0, Jks . (93.23)

Finally, we use eq. (93.20) to get

n = / d*c Te(F'™F,,) . (93.24)

167T2
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Thus we have expressed the winding number as a (four-dimensional) volume
integral of a gauge-invariant expression.

Now it is easy to construct a Bogomolny bound. We first note that
FWFW = '"F,,,, and hence

ITe(F, £ F,)? = Te(F*F,,) £ Te(F*™F,,) . (93.25)

The left-hand side of eq. (93.25) is nonnegative, and so we have
/ d'z Te(FMF,,) > ‘ / d*z Te(F"F,,)| . (93.26)

The left-hand side of eq.(93.26) is twice the euclidean action, while the
right-hand side is, according to eq. (93.24), 167%|n|/g?. Thus we have

S > 8r%|n|/g? . (93.27)

Eq. (93.27) gives us the minimum value of the euclidean action for a solution
of the euclidean field equations that mediates between a vacuum configu-
ration with winding number n_ at x4 = —oo and a vacuum configuration
with winding number ny =n_ +n at x4 = 4o0.

From eq. (93.25) we see that we can saturate the bound in eq. (93.27) if
and only if

F, = (signn)F,, . (93.28)

We can find an explicit solution of eq.(93.28) for a map with winding
number n = 1; this solution is the instanton.

We take the map on the boundary to be the identity map,

T4+ 1T-C

U(#) =

cos x + ¢sin x cos isiny sin 1 e~
_ (cosxHisinxcosy xsin e . (93.29)
isin  sin e et?® cOos X — 1sin x cos ¢
which has n = 1. We then make the ansatz
Au(x) = 5 f()U(@)8,U1 (&) , (93.30)

where f(oo0) =1 (so that the solution obeys the boundary condition) and
f(0) = 0 (so that A, is well defined at p = 0). Using eq. (93.14), we find
that the field strength is

Fu = L[@,0U0,U" + fo,U0,U" + fA(U0,UN)(UB,UT)
— (uev)| - (93.31)



93: Instantons and Theta Vacua 580

Using (0,UT)U = —U'9,U in the third term, eq. (93.31) can be simplified
to
Fu = L[0.)U0,UY + F1-1)0,U0,U" = (nesv)] . (93.32)

In three-spherical coordinates, we have
B=pd,+ X p 0y + 1 (psinx) 1y + & (psin xsing) LDy, (93.33)

where 0, = 0/0¢, etc., and p is the same radial unit vector as . Note
that f is a function of p only, while U is a function of the angles only. We
therefore have

Fp = Lfp tvout, (93.34)
Fyy = LF(1=F)(p* sin*ysing) 1 (0,U0,U" — 0,U0,U7) . (93.35)

Next we note that that eq. (93.21) implies F,, = —Fy (since ePX¥? = —1),
and since F;w = F,, for the instanton solution, we have Fj,, = —Fyq.
Thus the right-hand side of eq. (93.34) equals minus the right-hand side of
eq. (93.35). We then use separation of variables to conclude that

pf' = cf(1-f), (93.36)
U UT = —csinysin ) 1 (0pUd,UT — 0,U8,UT) , (93.37)

where ¢ is the separation constant. If we plug eq.(93.29) into eq. (93.37),
we find that it is satisfied if ¢ = 2. The solution of eq. (93.36) is then

2
f(p) P (93.38)

R
where a, the size of the instanton, is a constant of integration. The instan-
ton solution is also parameterized by the location of its center; we have
used the spacetime origin, but translation invariance allows us to displace
it.

If we consider initial and final states whose winding numbers differ by
more than one, we can construct a mediating solution by patching together
instantons (or antiinstantons) whose centers are widely separated on the
scale set by their sizes. Each instanton (or antiinstanton) contributes S; =
87%/g* to the action, and so the minimum total action is |[n—n_|S;.

To better understand the role of the 8 parameter, let us consider the
euclidean path integral, with the boundary condition that we start with a
state of winding number n_ at x4 = —o00, and end with a state with winding
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number ny at x4 = +00. The only field configurations that contribute are
those with winding number ny —n_. We can therefore write

Zyn (J) = / DAy, e 54 (93.39)

where JA is short for [ d*z Tr(J A,), and the subscript on the field differ-
ential means that we integrate only over fields with that winding number.
We see that Z,,, —,_(J) depends only on ny — n_, and not separately on
n4 and n_. This in accord with our previous conclusion that (n'|H|n)
depends only on n’ — n.

Suppose now that we are interested in starting with a particular theta
vacuum |6), and ending with a (possibly different) theta vacuum |6’). Then,
we see from eq. (93.7) that the corresponding path integral is

Zyo(J)= Y emtminOz, 0 (J). (93.40)

n—,n4

Let ny =n_+mn,so that ni 6’ —n_0 =n_(§'—0)+nb'. Since Z,, —,_(J)
depends only on n, n_ appears in eq.(93.40) only through a factor of
e =% Summing over n_ then generates (¢ — ), which implies that
the value of € is time indpendent. (Of course, we already knew this, because
0 labels energy eigenstates.) We now have

Zy—g(J) = 6(0/ — )3 e / DA, e S+A (93.41)
We can drop the delta function, and just define

Zo(J) =3 el / DA, e SHA (93.42)

Next, we combine the sum over n and the integral over A,, into an integral
over all A. To account for the factor of ¢, we use eq. (93.24); we get
Zo(J) = [ DA T |~ pp,, 1+ 90 pup o gea | (93,43

o(J) = exp zTr| 3 ’W—i_@ v + ul - (93.43)
The vacuum angle 6 now appears as the coefficient of an extra term in the
Yang-Mills lagrangian.

We can write the path integral in Minkowski space by setting x4 = it.
The extra term contains one derivative with respect to x4, and thus picks
up a factor of —i. Also, €23 = +1 but ¢!?%0 = —1. Putting all this
together, we get

9%6

1 g
Zp(J) = /DA exp i/d4x Tr l—gF“”FW - WFWFW + JHA, | (93.44)
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in Minkowski space. We see that the extra term is gauge invariant, Lorentz
invariant, hermitian, and has a dimensionless coefficient. We therefore
could have included it when we first considered Yang-Mills theory. We did
not do so because this term is a total divergence; see eq. (93.20). We have
always dropped total divergences from the lagrangian, because they do not
affect the equations of motion or the Feynman rules. In this case, however,
the new term does change the quantum physics, as we have seen. We will
explore this in more detail in the next section.

So far, we have only discussed SU(2) gauge theory, without scalar or
fermion fields. What can we say more generally?

Adding scalar fields has no effect on our analysis. Changing from SU(2)
to another simple nonabelian group also has no effect; instanton solutions
always reside in an SU(2) subgroup. If the gauge group is U(1), there are no
instantons, and hence no vacuum angle. If the gauge group includes more
than one nonabelian factor, then there is an independent vacuum angle for
each of these factors.

On the other hand, adding fermions can significantly change the physics.
We take this up in the next section.

REFERENCE NOTES
Instantons are treated in more detail in Coleman and Weinberg I1.
PROBLEMS

93.1) Show that any 2 x 2 special unitary matrix U can be written in the
form U = a4 + id-&, where a4 and the three-vector d are real, and
a’+a3 =1.

93.2) Verify that a state of the form of eq.(93.7) is an eigenstate of any
hamiltonian with matrix elements of the form (n'|H|n) = f(n' —n).

93.3) The winding number n for a map from S? — S? is given by eq. (93.3),
where UTU = 1. We will prove that n is invariant under an infinites-
imal deformation of U. Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of U, U — U + §U. Show
that 0UT = —UTSUUT, and hence that §(UO,UT) = —~Ud(UTSU)UT.

b) Show that

-3

on =
" 2472

/ P TeUaUN U UNSUB U] . (93.45)
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Plug in your result from part (a), and integrate 0 by parts. Show
that the resulting integrand vanishes. Hint: make repeated use of
Ud;UT = —9;UUT, and the antisymmetry of %%,

93.4) Show that if U, (x) and Ug(x) are maps from S* — S? with winding
numbers n and k, then U, (x)U(x) is a map with winding number

n + k. Hint: consider smoothly deforming U,(x) to equal one for
x3 < 0. How should Uy (x) be deformed?

93.5) Use eq. (93.16) to compute the winding number for the map given in
eq. (93.29), and for a generalization where ¢ is replaced by ne.

93.6) Use eq. (93.16) to compute the winding number for U™, where U is
the map given in eq. (93.29). Hint: first show that U can be written
in the form U = exp[ix-7], where Y is a three-vector that you should
specify. Is your result in accord with the theorem of problem 93.47
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94  (QUARKS AND THETA VACUA
PREREQUISITE: 77, 83, 93
Consider quantum chromodynamics with one flavor of massless quark, rep-

resented by a Dirac field ¥ in the fundamental representation of the gauge
group SU(3). The path integral is

— _ 1 929 ~
_ . 4 | - apyma apvra | .
Z= /DAD\IID\IJ exp z/d xlz\IIIP\I/—ZF HE, g FE |3 (94.0)

for the sake of brevity, we have not written the source terms explicitly.

In addition to the SU(3) gauge symmetry, there is a U(1)y x U(1)a
global symmetry of the quark action. However, the U(1)s symmetry is
anomalous. As we saw in section 77, under a U(1)a transformation

U — e By (94.2)
U — Ue o (94.3)
the integration measure picks up a phase factor,

ga
1672

DU DT — exp [—z’ / d'z F“WF;V] DYDY . (94.4)
Using this in eq. (94.1), we see that the effect of a U(1) transformation is to
change the value of the theta angle from 6 to 4 2«. Since the value of 6 can
be changed by making a U(1)4 transformation (which is simply a change of
the dummy integration variable in the path integral), we must conclude that
Z does not depend on 6. Apparently (and surprisingly), adding a massless
quark has turned the theta angle into a physically irrelevant, unobservable
parameter.

How do we reconcile this with our analysis in the previous section,
where we concluded that instanton-mediated tunneling amplitudes make
the vacuum energy density depend on 67 The answer is that when we
perform the integral over the quark field in eq. (94.1), we get a functional
determinant; the path integral becomes

Z = / DA det(ip)e™¥e™ (94.5)

where S is the Yang-Mills action and n is the winding number. We see from
eq. (94.5) that Z would be independent of 6 if gauge fields with nonzero
winding number did not contribute. This will be the case if det(i]p) van-
ishes for gauge fields with n # 0. We conclude that i) must have a zero
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eigenvalue or zero mode whenever the gauge field has nonzero winding num-
ber. This renders Z independent of 6.

Now consider adding a mass term for the quark. If we write the Dirac
field ¥ in terms of two left-handed Weyl fields x and &,

U= (;) , (94.6)

£mass = —mxﬁ - m*gTXT . (947)

the mass term reads

We have allowed m to be complex: m = |m|e’®. In terms of ¥, eq. (94.7)
can be written as ‘
Linass = _|m|§6_2¢75\1j . (948)

A U(1)p transformation changes ¢ to ¢ + 2a. Since 6 simultaneously
changes to 6 + 2a, we see that ¢ — 6, or equivalently me~*, is unchanged.
Thus, the path integral can (and does) depend on me~" but not on m and
0 separately.

With more quark fields, the mass term is £ = —M;;x;&; +h.c.; a U(1)a
transformation changes the phase of every x; and & by €@, and so every
matrix element of M picks up a factor of €@, Simultaneously, 6 changes
to § + 2Na, where N is the number of quark fields. Thus (det M)e™% is
invariant under a U(1)a transformation.

To understand the effects of the theta angle on hadronic physics, we
turn to the effective lagranagian (for the case of two light flavors) that we
developed in section 83,

L=—-1f2Tro"U9,U + v* Tr (MU + M'UT)
+iNJN —myN(U'P, + UP)N
— Lga=1)iNA* (U8, U P, + U0, UP)N
— e N(MP, + M'P;))N — eN(U'M'UTP, + UMUP,)N
— 3 Te(MU + MTUNYN(U'P, + UP)N
— ey e (MU — MTUNYN(U'P, — UPy)N , (94.9)

where U is a 2 x 2 special unitary matrix field representing the pions, N is
the field for the nucleon doublet,

my, O )
M = ( )(’9/2 (94.10)
0 my

is the quark mass matrix, v is the value of the quark condensate, and g,
and ¢; are numerical constants. (The terms in the last three lines were
introduced in problem 83.8.)
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For the case of 8 = 0, the potential
V(U) = —v*>Tr MU + h.c. (94.11)

is minimized by U = I, and we can expand about this point in powers of the
pion fields, as we did in section 83. However, for nonzero 6, the minimum
of V(U) occurs at U = Uy, where Uy is diagonal (because M is) and has
unit determinant (because U is required to have unit determinant). We

can therefore write .
e+z¢> 0
Uy = . 94.12
0 ( 0 ¢> ( )

We determine ¢ by minimizing

V(Ug) = —20° [mu cos(¢p — %9) + mgcos(¢ + %9)} ; (94.13)
the result is m m
. u — Md 1
tan ¢ = e tan(50) . (94.14)

As we will see shortly, experimental results require the value of |f| to be less
than 107?; therefore, we can work to first order in an expansion in powers
of §. For < 1, egs. (94.12) and (94.14) can be written in the elegant form

MUy = My — i0ml + O(6?) , (94.15)
where
m, 0O
My = (94.16)
0 my
is the quark mass matrix with 6 set to zero, I is the identity matrix, and
= (94.17)
My, + Mgy

is the reduced mass of the up and down quarks.

We can now expand in powers of the pion fields. Though it is not at all
obvious, it turns out that the most convenient way to define the pion fields
is by writing

U(x) = ugu®(x)uo , (94.18)

where u? = Uy and u(x) = exp[ir®(z)T%/f.]. We also define U(x) = u?(z),
and a new nucleon field N via

N = (uouPy, + uguTPR)N ) (94.19)
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Substituting eqs. (94.18) and (94.19) into eq. (94.9), and using upMug =
MU, (which follows because uy and M are both diagonal, and hence com-
mute), we ultimately get

L=-L2Trorv19,U + v* Tr[(MUG)U + (MUp) U]
+iNPIN — my NN + NYN — gaNdys N
— e Nu(MUp)u + ul (MUp) ul |V
+ e N [uw(MUp)u — u! (MUp) T ul]ys N
— e3 Te[(MUG)U + (MUy) UV NN
+ ey Te[(MU)U — (MUQ) U Ns N, (94.20)

where v, = Zi[ul(0,u) + u(0,ul)], ay = 3i[ul(O,u) — u(d,ul)], and ¢y =

c1 2. Eq.(94.20) is exactly what we found in section 83, except that the
quark mass matrix M has been replaced everywhere by MUj.

We can now use eq. (94.15) to get the O(#) contributions to £. Using
the fact that Tr(U — UT) vanishes in the case of two light flavors, we find

Lo = _iem[_%C+N(U — UNN + L N(U + Uy N
+eaTe(U + U Ny | (94.21)
FExpanding in powers of the pion fields yields

Ly = —ifm(c_+4dcy) ) Nys N — (Ocym/ fr) 7" NN + ..., (94.22)

where we used T¢ = %J“. We can eliminate the first term with a field

redefinition of the form A — e~ N. This generates some new terms
in eq. (94.20), but all have at least two factors of quark masses, and hence
can be neglected. The second term in eq. (94.22) provides a pion-nucleon
coupling that violates both parity P and time-reversal T (equivalently,
CP).

The value of c; can be fixed by baryon mass differences. The cy
term in eq. (94.20) makes a contribution of c4(m, — mg) to the proton-
neutron mass difference, m, — m,, = —1.3MeV. Using m, = 1.7MeV
and mg = 3.9MeV yields ¢y = 0.6. However, there is a comparable
electromagnetic contribution to the proton-neutron mass difference. We
get a better estimate from the masses of baryons with strange quarks,
cr(mg — %mu — %md) = mzo — myo = 122MeV; using ms = 76 MeV yields
ct = 1.7. (All these values assume the MS renormalization scheme with
w=2GeV.)

For comparison with the interaction of eq. (94.22), the dominant (P and
CP conserving) pion-nucleon interaction comes from the last term in the
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Figure 94.1: Diagrams contributing to the electric dipole moment of the
neutron that are enhanced by a chiral log. The C'P violating vertex is
denoted with a cross.

second line of eq. (94.20), and is
L.wn = (9a/ fr)Oum* N Ty s N (94.23)

where g, = 1.27. As we did in section 83, we can integrate by parts to put
the derivative on the nucleon fields, and then (for on-shell nucleons) use
the Dirac equation to get

L~y = —i(gamn/ fr)m* No® N . (94.24)

The strongest limit on a C'P violating pion-nucleon coupling comes from
measurements of the electric dipole moment of the neutron. The Feynman
diagrams of fig. (94.1) contribute to an ampitude of the form

T = —2iD(q* )}, (@) Ty (P') S""qivsus(P) (94.25)

where ¢ = p’ — p. In the ¢ — 0 limit, this corresponds to a term in the
effective lagrangian of

L = D(0)F,, mS" iysn (94.26)

where n is the neutron field; see section 64. If the factor of iys was absent,
this would represent a contribution of D(0) to the magnetic dipole moment
of the neutron. To account for the factor of ivys, we use

St inys = —2eMPoS, (94.27)
to see that eq. (94.26) is equivalent to
L =-D(0)F,,nS"n, (94.28)

where FW = %guuponU is the dual field strength. Since B = —E, eq. (94.26)
represents a contribution of D(0) to the electric dipole moment of the
neutron d,,.
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Figure 94.2: Momentum flow in the diagrams of fig. (94.1).

The salient feature of the diagrams shown in fig. (94.1) is that the pho-
ton line attaches to the pion line. These diagrams are enhanced by a chiral
log In(A%/m?2) ~ 4.2, where A ~ 47 f, is the ultraviolet cutoff in the effec-
tive theory. No other contributing diagrams have this enhancement; it is an
infrared effect, due to the light pion. Of course, 4.2 is not an impressively
large number, and so we cannot be certain that the remaining contribu-
tions are not significant. These contributions depend on coefficients in the
effective lagrangian that are not well determined by other experimental

results.
Using
70 V2rt
4ot = , 94.29
e (\/571'_ —70 ) ( )

we can write the charged-pion terms in eqs. (94.24) and (94.21) as
Loxn = —iV2(gamn/ fx) (7T Prsn+ 7 ) (94.30)
Lomn = —V20cim/ fz) (7 P+ 7 7p) . (94.31)

From these we read off the pion-nucleon vertex factors. We label the in-
ternal momenta as shown in fig. (94.2); for small ¢, ¢ is a pion momentum
that should be cut off at A ~ 4w f;. Because the terms of interest have a
chiral log produced by an infrared divergence at small £, we can treat ¢ as
much less than p and p’. Thus the internal proton is nearly on-shell, which
justifies the use of eq. (94.24) for the C'P conserving interaction.

The diagrams of fig. (94.1) yield an amplitude of

A g4
iT = (1) e}V Enamn  £2) (i Desi) 1055 [ oo
(269) W[(~f~F + m )5 + 35(—f =+ ma

((+D)? + m3) ((€+59)* + m2)(((—59)* + m2)

. (94.32)
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where p = %(p’ +p). Using {v*,75} = 0, the spinor factors in the numerator
simplify to
'l Ju=2myuvsu . (94.33)

From the spinor properties established in section 38, it is easy to check that
u'vsu vanishes when p’ = p; thus u’~y5u must be O(q), and so we can set
q = 0 everywhere else. Also, taking ¢ < p, we can set (£+p)? + m?v =2p-
in the denominator of eq. (94.32). We now have

A dY (20M) W' ysu
T = 4(efgncymmi/ f2)es / . (94.34)
* NI Jo 2m)t (2p-0)(€2 + m2)?
Integrating over the direction of £ results in
0 1 1t
f_g G . Ay (94.35)
b p my
Next we use the Gordon identity (see problem 38.4)
PPa vsu = 7' SMqivsu 4+ O(q°) | (94.36)
which verifies that u’y5u is linear in . We now have
T = —4(eBgncom/ f2)e T S g, i /A d' 1 (94.37)
= —4(efgacym/ f2)e) w SH g ivsu . .
A a v o (2m)* (02 +m2)?

In the limit m, — 0, the integral diverges at small ¢, generating a chiral
log. This infrared divergence can only arise from diagrams with two pion
propagators, which is why it appears only if the photon is attached to the
pion.

After a Wick rotation, the integral evaluates to (i/16m%)In(A%?/m?2).
Comparing with eq. (94.25), we see that the electric dipole moment of the

neutron is ~
efgacem

82 f7

Putting in numbers (g, = 1.27, ¢y = 1.7, m = 1.2MeV), we find

dy = [m(A? /m2) + 0(1)] . (94.38)

dp=32x10"%9ecm . (94.39)

The experimental upper limit is |d,| < 6.3 x 10726 ecm, and so we must
have 0| < 2 x 10710,

Such a small value for a fundamental parameter cries out for an ex-
planation; this is the strong CP problem. Several solutions have been pro-
posed. (1) The up quark mass may actually be zero, since a massless quark
renders 6 unobservable (and effectively zero). This requires higher-order
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corrections in the quark masses to account for the masses of the pseudo-
goldstone bosons. (2) The fundamental lagrangian may be C'P invariant,
and the observed C'P violation in weak interactions due to spontaneous
breaking of C'P symmetry. (3) The theta parameter may be promoted to
a field, the azion, which would minimize its energy by rolling to 8 = 0; see
problem 94.2. All of these solutions have interesting physical consequences.

REFERENCE NOTES

Quarks and theta vacua are discussed in Coleman, Ramond II, and Wein-
berg II.

PROBLEMS

94.1) Carry out the field redefinition discussed after eq. (94.22), and verify
that all new terms generated in the lagrangian are suppressed by at
least two powers of quark masses.

94.2) Consider adding to the Standard Model a massless quark, represented
by a pair of Weyl fermions y and ¢ in the 3 and 3 representations
of SU(3). Also add a complex scalar ® in the singlet representa-
tion. Assume that these fields have a Yukawa interaction of the form
Lyvux = yPx€ + h.c., where y is the Yukawa coupling constant. As-
sume that the scalar potential V(®) depends only on ®T®.

a) Show that the lagrangian is invariant under a Peccei-Quinn trans-
formation x — €%y, & — €9, & — 722 all other fields un-
changed.

b) Show that this global U(1)pq symmetry is anomalous, and that
6 — 0 + 2o under a U(1)pq transformation.

c) Suppose that V(®) has its minimum at |®| = v/v/2, with v # 0.
Show that this gives a mass to the quark we introduced.

d) Write ® = 27 1/2(v + p)e’™/?, where p and a are fields. Argue that,
in eq. (94.10), we should replace 6 with 6§ + a/v, and add to eq. (94.9)
a kinetic term —%G“aaua for the a field.

d) Show that the minimum of V(U), defined in eq. (94.11), isat U = I
and a = —vf. Show that P and C'P are conserved at this minimum.

e) The particle corresponding to the a field is the azion; compute its
mass, assuming v > fr.

f) Note that if v is large, the extra quark becomes very heavy, and
the axion becomes very light. Show that couplings of the axion to
the hadrons are all suppressed by a factor of 1/v.
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95 SUPERSYMMETRY

PREREQUISITE: 69

Supersymmetry is a continuous symmetry that mixes up bosonic and fer-
mionic degrees of freedom. A supersymmetric theory (in four spacetime
dimensions) has a set of supercharges a4, where a is a left-handed spinor
index, and A is an internal index that runs from 1 to N, where the al-
lowed values of A/ are 1, 2, and 4. The supercharges can be obtained as
integrals over d°r of the time component of a supercurrent. The supercur-
rent is found via the Noether procedure, once we have identified the set of
supersymmetry transformations that leaves the action invariant.

The supercharges Q4 and their hermitian conjugates QZ; 4, together
with the generators of the Poincare group P* and M*”, obey a supersym-
metry algebra

[Qaa, P*] =0, (95.1)
Q4 P* =0, (95.2)
[Qaa, M"™] = (S£7)a"Qeca (95.3)
Q44 M™] = (SE)a“Qla (95.4)
{Qan, Qv} = Zapea , (95.5)
{Qaa, Qlp} = —204p0’, P, . (95.6)

Eqgs. (95.1) and (95.2) simply say that the supercharges are conserved, and
egs. (95.3) and (95.4) simply say that their spinor indices are indeed spinor
indices. In eq. (95.5), Zyp = —Zp4 must commute with Q,4, P*, and M*",
and so represents a central charge in the supersymmetry algebra. We will
be concerned only with the case of N' = 1 supersymmetry: the index A
then takes on only one value (and so can be dropped), and Z4p = 0.

N = 1 supersymmetric theories are most easily formulated in super-
space, where we augment the usual spacetime coordinate z* with an anti-
commuting left-handed spinor coordinate 6, and its right-handed complex
conjugate 0;. We define superfields ®(x,0,6*) that are functions of all these
coordinates.

The energy-momentum vector generates translations of the usual space-
time coordinate z* in the usual way,

[®(x,0,0%), P'] = —iol®(x,0,607) . (95.7)
By analogy, we would expect

[<1>(x7979*)7Qa] = —’iQa(I)(JE,Q,Q*) ) (958)
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[ (z,0,6%),QL] = —iQ®(x,0,6") (95.9)

where Q, and Q} are appropriate differential operators. To figure out
what they should be, we first introduce the anticommuting derivatives 9, =
0/00% and 9 = 0/00*%, which obey 9,0 = §,° and 9;0*¢ = §,°. Note,
however, that complex conjugation should reverse the order of a product
of Grassmann variables, in order to maintain consistency with hermitian
conjugation. Then we have §,° = (9,0°)* = 0*¢(0,)* = —(0,)*0*¢, which
implies

(04)" = =05 . (95.10)
Thus, our first guess for the differential operators in egs. (95.8) and (95.9)
is Q, = 0, and Q) = —0;. However, this choice is inconsistent with

{Qanl} = _205(1]3#'
An alternative that avoids this pitfall is

Qq = 404 + ich.070,, (95.11)
Qf = —0; — i0°%".0, . (95.12)
These obey the anticommutation relations
{Qa, D} ={0Q5,Q;} =0, (95.13)
{Q,, 9%} = —2ict.0,, . (95.14)

It is straightforward to check that egs. (95.5-95.12) are now mutually com-
patible. In particular, the Jacobi identity

{[*,Q, Q" +{[2,Q",Q} - [¢,{Q,QT}] =0 (95.15)

is satisfied.
Next we introduce the supercovariant derivatives

D, = +0, — id!.0%0, (95.16)
Di = —0; + i0°0",0, . (95.17)
These obey
{Du, Dy} = {D};,D;} =0, (95.18)
{D., D} = 2i0".0, , (95.19)
{Da, Qp} = {Da, O} } = {D}, Q} = {D}, Q;} = 0. (95.20)

Because of eq. (95.20), we could impose the condition D,® = 0 or D P =0
on a superfield, and this condition would be preserved by the supersymme-
try transformations of egs. (95.8) and (95.9). A superfield that obeys

Did(x,0,0%) =0 (95.21)
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is a left-handed chiral superfield. Tts hermitian conjugate ®(z, 8, #*) obeys
D,®"(x,0,0%) =0, (95.22)

and is a right-handed chiral superfield.
We can solve eq. (95.21) by introducing

Yt =t — it 0% (95.23)

and noting that
D;0,=0 and D;y" =0. (95.24)

(When verifying Diy* = 0, remember that there is a minus sign from
pulling the 9} through 6¢.) Thus, any superfield ®(y, ) that is a function
of y and # only is a left-handed chiral superfield.

We can expand ®(y, ) in powers of 6; because 6 is an anticommuting
variable with a two-valued index, we have 6,0,0. = 0, and so the expansion
terminates after the quadratic term. We thus have

d(y,0) = Aly) + V20 (y) + 060F (y) , (95.25)

where A(y) and F(y) are complex scalar fields, 1,(y) is a left-handed Weyl
field, and we have used our standard index-suppression conventions: 6 =
0%, and 60 = 6*8,. The factor of root-two is conventional.

We can now substitute in eq. (95.23), and continue to expand in powers
of 6 and #*. Making use of the spinor identities

0,0y = +300eq, 00" = —100e™ (95.26)
00 = —30°0%c,; . 070" = 110707 (95.27)

where 00 = 00, and 0*0* = (00)* = 0:0*% along with the Fierz identity

(00"0*)(0576*) = —1000%0* g™ (95.28)
we find
D(z,0,0%) = A(z) + V20 (x) + 00F (x) — i(5+0%)0,A(x)
— %i@@@*&“@uw(a:) + 1000°0* 0*A(x) . (95.29)

Let us investigate the properties of a left-handed chiral superfield under
a supersymmetry transformation, given by egs.(95.8) and (95.9). It is
easiest to use the y and 6 coordinates, since

b’ =4,  Quy'=0,
Q:0® =0, Qiyt = —2i0°"., . (95.30)
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We thus have

Qu®(y,0) = 0.2(y,0)

= V2¢a(y) + 20, F(y) , (95.31)
Q;®(y,0) = —2i0°",0,P(y, )
= —2i60°0". 0, Ay) +iv2000,9°(y)or, ,  (95.32)

where 0,, is with respect to y; we used eq. (95.26) to get the last line. We
can now find the supersymmetry transformations of the component fields
A, 1, and F' by matching powers of 8 on each side of egs. (95.8) and (95.9).
Remembering that the @ and QT operators anticommute with 6 and 6*, we
get

[4,Qa] = —iV2¢q , [4,Ql] =0, (95.33)
(e, Qu} = —iV2e0cF,  {¥e,QL} = —V20%0,A,  (95.34)
[F.Q.) =0, [F,Ql] = V29,y°0", , (95.35)

where all component fields have spacetime argument y. However, y is
arbitrary, and so we are free to replace it with x.

Eq. (95.35) is the most important: it tells us that the supersymmetry
transformation of the F field is a total derivative. Therefore, [ d*z F(x)
is invariant under a supersymmetry transformation, and hence could be a
term in the action of a supersymmetric theory.

The product of two left-handed chiral superfields is another left-handed
chiral superfield; this is obvious from eq.(95.25), and the fact that the
0 expansion always terminates with the quadratic term. For two chiral
superfields @4 (y,0) and ®2(y, 0), we have

D1 Py = Ay Ag + V20( A1) + Agthy) + 00(A1Fy 4+ AsFy — 9h1aby) . (95.36)

More generally, given a set of left-handed chiral superfields ®;, we can
consider a function of them W (®); this function is itself a left-handed chiral
superfield. Its F' term (the coefficient of 09) is

COW(4) 1WA
P oA, 1T 2 aA04, Vit (95.37)

W(<I>)‘

where repeated indices are summed. The spacetime integral of this term
(like the spacetime integral of any F' term) is invariant under supersymme-
try, and hence could be a term in the action of a supersymmetric theory.
In this case, the function W (®) is called the superpotential.
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We still need kinetic terms. To get them, we first investigate the prop-
erties of a vector superfield. A vector superfield V' (z, 8, 0*) is hermitian,

[V (x, 0,0 = V(x,6,0%), (95.38)
but is not subject to any other constraint. Its component expansion is

V(z,0,0%) = C(z) + Ox(z) + 0*x'(z) + 00M (z) + 6°60* M (z)
+ 0010% v, (z) + 000"\ () + 607070 (x)
+1666°0"D(x) (95.39)

where C and D are real scalar fields, M is a complex scalar field, y and A
are left-handed Weyl fields, and v, is a real vector field.
Following the analysis that led to eq. (95.35), we find

[D,Qa] = —ck0,\ . [D,QL]=+3,X0k, . (95.40)

We see that the supersymmetry transformation of the D component of a
vector superfield is a total derivative. Therefore, [d* D(x) is invariant
under a supersymmetry transformation, and hence could be a term in the
action of a supersymmetric theory.

Consider the product of a left-handed chiral superfield ®(z,0,6%), as
given by eq. (95.29), and its hermitian conjugate

' (2,0,0) = A(z) + V20 ' () + 070" F' () + i(00"0%)0, Al (v)
- %i@*@*@uw(a:)ﬁw + 100079 9°Al () . (95.41)
The product ®'® is obviously hermitian, and so is a vector superfield.
After considerable use of eqgs. (95.26-95.28), we find that the D term (the
coefficient of 0060*6™) of this vector superfield is

of| = — 10rAT9,A + 145%AT + L ATo%
D
+ Liptat o, — idaptatap
+ FTF . (95.42)

The spacetime integral of this term (like the spacetime integral of any D
term) is invariant under supersymmetry, and hence could be a term in the
action of a supersymmetric theory. After some integrations by parts, and
dropping total divergences, we find

oo = -0Al,A+iyple" o + FIF . (95.43)

We see that we have standard kinetic terms for the complex scalar field A
and the left-handed Weyl field 1. We also have a term with no derivatives
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for the complex scalar field F'. The F field is therefore called an auziliary
field.

If we consider a set of left-handed chiral superfields ®;, we get a hermi-
tian, supersymmetric action if we take as the lagrangian

L=al,

ot (W(@)}F +he) (95.44)

where the index in the first term is summed. Since F; appears only quadrat-
ically and without derivatives, we can easily perform the path integral over
it. The result is equivalent to solving the classical equation of motion for
F;
oL _ OW (A)
OF; ¢ 0A;

and substituting the solution back into the lagrangian; the result is

=0, (95.45)

L= —0rAL0,A; + i) 57 0bi
B ‘8W(A) 21 [a?wm)

04; 2| 94:04; Vi +he. |, (95.46)

where the indices are summed in each term.
As an example, let us consider a single left-handed chiral superfield,
with superpotential
W(A) = imA? + $gA® . (95.47)

This is the Wess-Zumino model. The scalar potential is
V(A) = [0W/DA|?
= m2ATA + Lgm(ATA% + AT24) + 16%(ATA)2 . (95.48)
We see that the scalar has mass m. The last term in eq. (95.46) becomes

Luass+yuk = —3mph — 2g Ay + hee. . (95.49)

We see that the fermion also has mass m, and a Yukawa interaction with
the scalar. The Yukawa couping is related (by supersymmetry) to the cubic
and quartic self-interactions of the scalar.

Next we would like to introduce gauge fields. Recall that the vector
superfield V(z,0,0*) has among its components a real vector field v, (z)
that could be identified as an abelian gauge field. (Later we will add an
adjoint index to the superfield in order to get a nonabelian gauge field.)

We need to generalize the notion of a gauge transformation to super-
fields. We begin by noting that if = is a left-handed chiral superfield, then
i(2t —Z) is a vector superfield. We then define a supergauge transformation

VoV+iE -8). (95.50)
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We will attempt to construct actions that are invariant under eq. (95.50).
Following the pattern of egs. (95.29) and (95.41), we write

=(x,0,0%)

B(z) + 0&(x) + 060G (x)
—i(0c"6*)0,B(x) + ... , (95.51)

(
=(x,0,0%) = Bi(z) + 6*¢'(z) + 00" G(z)
+i(05"0%)9, BT (x) + ... . (95.52)

If we set B = %(b + ia), where a and b are real scalar fields, we find
i(E —2) = a — 0 +i0*¢ —i00G +i0*0*GT — (00"0*)0,b+ ... . (95.53)

From eq. (95.39), we see that the supergauge transformation of eq. (95.50)
results in

C—-C+a,

X — x—1i,

M — M —iG

vy — Uy — Oub . (95.54)

The last of these is the usual abelian gauge transformation. The first three
allow us to gauge away the C, x, and M components of a vector superfield.
That is, we can make a supergauge transformation with a = —C', £ = —iy
and G = —iM; in this gauge, known as Wess-Zumino gauge, the vector
superfield becomes

V = (000 v, + 000"\ + 0700\ + 1006*0° D . (95.55)

Note that we still have the freedom to make the supergauge transformation
of eq. (95.50) with B(z) = $b(x), and that this still implements the ordinary
abelian gauge transformation of eq. (95.54).

Now consider a left-handed chiral superfield ® that has charge +1 under
a U(1) gauge group. We take the kinetic term for ® to be

Lign = dTe"2V @ ‘D , (95.56)

where ¢ is the gauge coupling. The vector superfield ®fe=29V® is clearly
invariant under the supergauge transformation

d — e HEP (95.57)
of — plet2ig=" (95.58)
V - V+iE-5). (95.59)
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Let us evaluate eq. (95.56) in Wess-Zumino gauge, where we have
V2 = —1000°0*v"v,, (95.60)
V3i=0. (95.61)
The exponential factor in eq. (95.56) becomes

e29Y =1 —29(00"0* v, — 29000\ — 2g0*6* O\
— 000"0% (gD + g*vtv,) . (95.62)

The relevant terms in ®T® are

OTd = ATA + V20"TA + V20 AT
+ (05"0%) (V15,0 — iAT9,A + A0, AT)
...+ 00070 (TD)p , (95.63)

where we used 2(0*%1)(0v) = (00#0%)(1)T5,10) to get the first term in the
second line, and (®T®)p is given by eq. (95.42).

Combining egs. (95.62) and (95.63), taking the D term, and performing
the same integrations by parts that led to eq. (95.43), we find

Pte=29V P ‘D _ —(D”A)TDMA + iT/JT&MDul/J + FIF
+ V29t ATA + V2gATAY — gATDA,  (95.64)

where D, = d,, —igv, is the usual gauge covariant derivative acting on field
of charge +1.

We still need a kinetic term for the vector superfield. To get it, we first
introduce a superfield that carries a left-handed spinor index,

W, = iD;D*D,V . (95.65)

Since the two components of D* anticommute, we have D;D;D; = 0.
Thus W, obeys D:W, = 0, and is therefore a left-handed chiral super-
field. Furthermore, W, is invariant under the supergauge transformation
of eq. (95.50). To see this, we first note that D;D*4D, annihilates =1 (be-
cause D, does). Then, we use eq. (95.19) to write

D:D**D, = —(DiD, + 2ic",0,)D*" . (95.66)

Thus, DiD**D, also annihilates = (because D** does). Therefore, W, is
invariant under eq. (95.50).

Since W, is a left-handed chiral superfield, it has an expansion in the
form of eq.(95.25). To find the component fields of W,, we set x = y +
160 in eq. (95.55), and expand in # and 6*. The result is

V = (00"0" v, + 000\ + 0°6* 0\ + 1060°6* (D — io*v,) . (95.67)
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where all component fields have spacetime argument y. From eq. (95.24),
we see that D} = —0} when it acts on a function of y, 6, and 6*. We also
have

Dy = (Dab°)0c + (Dab*)0F + (Day*)0y = 0y + 0 — 2ic",6*49, , (95.68)
where 0, is with respect to y. Using eq. (95.68), we find

D,V = 00" \q + (D — i0-0) = i(0"5"0)adyv,, + i00(" 3\
... (95.69)

When we act on D,V with DiD*® = 90*¢ to get W, only the coefficient
of 0*0* survives. Since 9;9*%(0*0*) = 4, we find

Wy = A+ 0a(D — i0-v) —i(0"570)a0,v, +i00(a" A\ ) . (95.70)
We can simplify eq. (95.70) by using the identity
(HG")a? = —g" 5, — 2i(SH)" . (95.71)

Remembering that S{" is antisymmetric on p < v, and defining the field
strength
F =00, —0,v,, (95.72)

we get
Wo = Ao +0,D — (S£Y),0:F,, + 600", 9,210 . (95.73)

We see that W, involves the vector field v, only through its gauge-invariant
field strength F},,,. Since W, is supergauge invariant, this is to be expected.

Next, consider the F' term of WeW,. This term is Lorentz invariant,
and its spacetime integral (like the spacetime integral of any F' term) is
invariant under supersymmetry, and hence could be a term in the action of
a supersymmetric theory. Working out the components, we find

Wew,

o = 20000\ — STe(SESE) Fyuy Fpo + D* (95.74)

where Tr(SL”SE7) = (SE),°(S27).% To get the spin matrices into this
form, we used the fact that (SL”),. is symmetric on a <> c¢. Now we use
the identity

Te(SL“SE7) = (9" 9" — g7 ") — hiehP (95.75)
to get

wWew,

= 20N0 00N — SFME,, — 3iFYE,, + D? (95.76)
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where FH = %E“V'DUFPU. We can now identify the kinetic term for the
vector superfield as

Lin = 2WW, o the
= iNgho\ — LFMEF,, + $D? . (95.77)

We integrated by parts and dropped total divergences to get the second
line. We see that we have the standard kinetic terms for the gauge field v,
and the gaugino field A, while D is an auxiliary field.

All of this generalizes in a straightforward way to the nonabelian case.
We define a matrix-valued vector superfield V' = V%I, and a matrix-
valued chiral superfield = = ZT}, where a is an adjoint group index. A
chiral superfield ® in the representation R still transforms according to
egs. (95.57) and (95.58), but for the vector field we have
AN e-2z’gETe—2gve+2iga : (95.78)
this reduces to eq. (95.59) in the abelian case.

The field-strength superfield is now

W, = =g DiD* e 20V Dye 9V (95.79)
Under a supergauge transformation,
W, — e 2951, eT29= (95.80)

Eq. (95.73) still holds, but the derivative that acts on AT is now the gauge co-
variant derivative for the adjoint representation, and F** now includes the
usual nonabelian commutator term. These changes also apply to eq. (95.77),

where we must also trace over the group indices and (for proper normal-
ization) divide by the index T'(R).

REFERENCE NOTES

Introductions to supersymmetry can be found in Martin, Siegel, Weinberg
III, and Wess & Bagger.

PROBLEMS
95.1) Use eq. (95.6) to show that the hamiltonian is positive semidefinite,

and that a state with zero energy must be annihilated by all the
supercharges.
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95.2) Supersymmetry is spontaneously broken if the ground state |0) is not
annihilated by all the supercharges.

a) Use the first of egs. (95.34) to show that supersymmetry is spon-
taneously broken if (0|F|0) # 0.

b) Compute {\y, @p}. Use the result to show that supersymmetry is
spontaneously broken if (0|D]0) # 0.

95.3) Consider a supersymmetric theory with three chiral superfields A, B,
and C, and a superpotential W = mBC + kA(C? —v?), where m and
v are parameters with dimensions of mass, and k is a dimensionless
coupling constant. This is the O’Raifeartaigh model.

a) Show that one or more F' components is nonzero at the minimum
of the potential, and hence that supersymmetry is spontaneously bro-
ken.

b) Show that the potential is minimized along a line in field space,
and find the masses of the particles at an arbitrary point on this
line. You should find that there is a massless Goldstone fermion or
goldstino that is related by supersymmetry to the linear combination
of F fields that gets a nonzero vacuum expectation value.

95.4) Supersymmetric Quantum Electrodynamics. Consider a supersym-
metric U(1) gauge theory with chiral superfields ® and ® with charges
+1 and —1, respectively. Here the bar over the ® in the field ® is part
of the name of the field, and does not denote any sort of conjugation.
We include a gauge invariant superpotential W = m®®.

a) Work out the lagrangian in terms of the component fields.
b) Eliminate the auxilliary fields F, F, and D.

c) Work out the Feynman rules.

95.5) In a supersymmetric gauge theory with a U(1) factor, we can add a
Fayet-Illiopoulos term Ly = £D to the lagrangian, where D is the
auxilliary field for the U(1) gauge field, and & is a parameter with
dimensions of mass-squared.

a) Explain why adding this term preserves supersymmetry. Explain
why the corresponding gauge field cannot be nonabelian.

b) Add this term to the SQED lagrangian that you found in problem
94.4, and eliminate the auxilliary fields.

¢) Minimize the resulting potential. Show that supersymmetry is
spontaneously broken if £ is in a certain range.
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95.6) R symmetry. Given a supersymmetric gauge theory (abelian or non-
abelian), consider a global U(1) transformation that changes the
phase of the gaugino fields, A\, — e **),; we say that the gauginos
have R charge +1.

a) If R symmetry is to be a good symmetry of the lagrangian, what
relation must hold between the R charges of the scalar and fermion
components of a chiral superfield that couples to the gauge fields?

b) In additon, what conditions must be placed on the superpotential?
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96 THE MINIMAL SUPERSYMMETRIC STANDARD
MODEL

PREREQUISITE: 89, 95

Having seen how to construct a general supersymmetric gauge theory in
section 95, we can now write down a supersymmetric version of the Stan-
dard Model.

To do so, we introduce vector superfields for the gauge group SU(3) x
SU(2) x U(1), which include the usual gauge bosons along with their fer-
mionic partners, the gauginos; chiral superfields L;;, E;, Quir, U, and D
that include three generations of quarks and leptons along with their scalar
partners, the squarks and sleptons; and chiral superfields H; and H; in the
representations (1,2, —%) and (1,2,4—%), which include two copies of the
usual Higgs field along with their fermionic partners, the higgsinos. We
give all these fields supersymmetric, gauge invariant kinetic terms, and a
superpotential

W = _yIJEiniLjIEJ _y;JHiQajID? _?J;,JﬁiQaiIU? _MEijﬁiHj ) (96-1)

where 1 is a mass parameter. This superpotential generates the usual
Yukawa couplings, among others, and gives a positive mass-squared to both
Higgs fields. We forbid terms of the form H'L;; (which are allowed by
the gauge symmetry) by invoking a discrete symmetry, R parity. Under R
parity, all Standard Model fields (including both Higgs scalars) are taken to
be even, and all superpartner fields (gauginos, higgsinos, squarks, sleptons)
are taken to be odd.

Supersymmetry is clearly not an exact symmetry of the real world,
and so if present must be spontaneously broken. Correct phenomenology
requires supersymmetry breaking to be triggered by fields other than those
listed above. There are many possibilities for the dynamics of the fields
in this hidden sector, and an exploration of them is beyond our scope.
However, we can parameterize the effects of the hidden sector via a spurion
field. This is a constant chiral superfield of the form

S =m%60, (96.2)

where mg is the supersymmetry breaking scale. We couple S to the quark,
lepton, and Higgs superfields via D terms of the form

Lopur.p = m32S'S {C<H>HTH LoD ath
+ Y [eP L, + P EE, + ciPqlq,

+c0lo, + D] . (963)
D
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Here we have suppressed all but generation indices; each CI(?) is a dimen-

sionless hermitian matrix in generation space. The parameter my; is the
messenger scale. Eq. (96.3) gives masses of order m%/mjy to the scalars.

We also couple S to the chiral gauge superfields Wéi) via F' terms of
the form

ﬁspur,gauge :ijS Z C(Z)W(Z)awy)
i=1,2,3

+he., (96.4)
F

where the sum is over the three gauge-group factors; a is a spinor index.
Eq. (96.4) gives masses of order m%/my; to the gauginos.
Finally, we couple S to the chiral superfields via F' terms of the form

28

ﬁspur,F = m]T/jls Z C(AVVA
A=1 F

+he., (96.5)

where W4 is one of the 28 gauge-invariant terms in the superpotential. In
particular, eq. (96.5) includes a mass term of the form HH + h.c. for the
Higgs scalars.

Egs. (96.1) and (96.3-96.5) specify the Minimal Supersymmetric Stan-
dard Model, or MSSM for short. Obviously, it has a complicated phe-
nomenology that is beyond our scope to explore in detail. One point worth
noting is that R parity implies that the lightest superpartner, or LSP, is
absolutely stable.

REFERENCE NOTES

Supersymmetric versions of the Standard Model are discussed in Martin,
Ramond II, and Weinberg I11.

PROBLEMS

96.1) Explain why we need two Higgs doublets.

96.2) a) Write the mass terms for the Higgs scalars as
Litiggsmass = — M3 HH — m3HH — m2e¥ (H;H; +h.c.), (96.6)
and compute the quartic terms in H and H that arise from eliminating

the auxilliary SU(2) and U(1) D fields.

b) Find the conditions on the mass parameters in eq. (96.6) in order
for the potential to be bounded below.

c¢) Find the conditions on the mass parameters in eq. (96.6) in order
to have spontaneous breaking of the SU(2) x U(1) symmetry.
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d) Show that there are five physical Higgs particles, two charged and
three neutral.

e) Let tan § = /v be the ratio of the two Higgs VEVs. Show that

2 _ .2
tan 3 = % . (96.7)
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97 GRAND UNIFICATION

PREREQUISITE: 89

The Standard Model is based on the gauge group SU(3) x SU(2) x U(1),
with left-handed Weyl fields in three copies of the representation (1,2, —%)EB
(1,1,41) @ (3,2,+%) @ (3,1, —%) @ (3, 1,+%), and a complex scalar field
in the representation (1,2, —%) The lagrangian includes all terms of mass
dimension four or less that are allowed by the gauge symmetries and Lorentz
invariance.

To complete the specification of the Standard Model, we need twenty
real numbers: the three gauge couplings; the three diagonal entries of each
of the three diagonalized Yukawa coupling matrices (for the up quarks, the
down quarks, and the charged leptons); the four angles in the CKM mixing
matrix for the quarks; the vacuum angles for the SU(3) and SU(2) gauge
groups; the scalar quartic coupling; and the scalar mass-squared.

The goal of grand unification is to construct a more compact model
with fewer parameters by supposing that the Standard Model is the result
of the spontaneous breaking of a larger gauge symmetry. The simplest
model along these lines is the Georgi-Glashow SU(5) model. Its start-
ing point is the grand unified gauge group SU(5). We include a scalar
field & = ®%T* in the adjoint or 24 representation, and assume that
the scalar potential for this field results in a vacuum expectation value
(VEV) of the form (0|®|0) = diag(—%,—%,—3%,+3,+3)V. As we saw in
section 84, this VEV spontaneously breaks the gauge symmetry down to
SU(3) x SU(2) x U(1). The generator of the unbroken U(1) subgroup is
7% = cdiag(—1%, -4 —%,—F%,—i—%)c, where ¢2 = 3/5. It will prove conve-

T3 3
T = [ty (97.1)

nient to write
and express the U(1) charge as the value of Y rather than the value of 7%,
We also note that the SU(5) breaking scale V' must be considerably larger
than the SU(2) x U(1) breaking scale v ~ 250 GeV in order to suppress the
observable effects of the extra gauge fields.

Under the SU(3) x SU(2) x U(1) subgroup, the fundamental and anti-
fundamental representations of SU(5) transform as

5— (3,1,—-3) & (1,2,+3) . (97.2)
5— (3,1,+3) @ (1,2,—3) . (97.3)
Next we use eq. (97.2) to find that the product 5 ® 5 transforms as
d®95 — (67 1, _%)S D (37 2, +%)S D (37 1, _%)S
(3L -3)a®B2+5a® (L3, +1)a,  (974)
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where the subscripts indicate the symmetric and antisymmetric parts of
the product. In terms of SU(5), we have

5®5 =155 @ 104 . (97.5)
Comparing egs. (97.4) and (97.5), we find
10— (3,1,-2)® (3,2, +2) ® (1,3, +1) . (97.6)

From egs. (97.2) and (97.6), we see that one generation of quark and lepton
fields fits exactly into the representation 5@ 10 of SU(5).

We therefore define a left-handed Weyl field 7¢ in the 5 representation
of SU(5), and a left-handed Weyl field Xij = —Xj; in the 10 representation.
The gauge covariant derivatives of these fields are

(D) = O’ — igs AS (T2 4

= 9" + igs AL (T%) ;" (97.7)
(Dux)ij = Ouxij — igs Ag(Tio)is™ X

= Ouxij — 19 AL[(T*)i Xy + (T);'xal (97.8)

where g5 is the SU(5) gauge coupling and T is the generator matrix in the
fundamental representation. The kinetic terms for these fields are

Lign = i} *(D,0) + Lixt961(D,x)ij (97.9)

where the implicit sum over ¢ and j is unrestricted; this necessitates the
prefactor of one-half in the second term to avoid double counting. The
interaction terms with the gauge fields then work out to be

Lim = —gs [0 (AR 507 + XV (A,) 5] (97.10)

where A, = AT is the matrix-valued gauge field, and A}, is its transpose.
Note that we have written the factors in matrix-multiplication order (with
a trace for the second term).

We can identify the components of 1/* and Xij as

Y= ( d" d* d9 e —v), (97.11)
0 @ —at ou,  d
—u9 0 u” Up dp

Xij = ab  —ar 0 u, dyl, (97.12)
—Up  —U  —Ug 0 e

—d, —dy —d; —& 0
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where r, b, and g stand for the three colors (red, blue, and green). We can
also write the gauge fields as

G,"—3cB G,b G,9 %X} %Xﬁ
Gy Gyb—2cB Gp9 %Xl} %Xﬁ
AT = Gy Gy’ Gy?—3cB %X; %ng
1y A yib 1 yig ly3.1 1 i+
1 r 1 yTb 1 yvig 1 - 1y73. 1
E)(2 EX2 EX2 WW —EW +§CB
(97.13)

where the Lorentz index has been omitted. Here B is the hypercharge
gauge field, and W3 and V2 W+ = W' £ iW? are the SU(2) gauge fields.
The gluon fields G,/ are subject to the constraint G," +be+G99 = 0. The
X! fields correspond to the broken generators of SU(5), and hence become
massive; here i is an SU(2) index and « is an SU(3) index. As we saw in
section 84, the X, fields transform as (3,2, —2) under SU(3) x SU(2) x U(1),
and their mass is My = 6—\5/5 gsV.

If we substitute eqs. (97.11-97.13) into eq.(97.10), we find the usual
interactions of the SU(3) x SU(2) x U(1) gauge fields with the quarks and
leptons, but with

\/ggl =92 =93=0s - (97.14)

These relations among the gauge couplings hold in the MS renormalization
scheme; later we will discuss a modified scheme that is more appropriate
at energies well below M.

We also find the couplings of the X field to quarks and leptons; these
work out to be

Lxin = —sg5 | X[2(dlo"e — &5t do + uPor e s,)

+ X3 (—dflety + elatug + dTﬁaﬂa’Yaam)} +h.c.

= —%95Xgﬁ(a"jd;[6”€j — e G g0 + qwié”zﬂaam) + h.c.
= _%95)(};%“ +he., (97.15)

where the last line defines the current J# that couples to the X, field. (To
include more than one generation, we add a generation index I to each
quark and lepton field, and sum over it.) The most interesting feature of
eq. (97.15) is that the first two terms in the current have baryon number
B = +% and lepton number L = +1, while the third term has B = —%
and L = 0. Thus exchange of an X boson can violate baryon and lepton
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number conservation, leading to phenomena such as proton decay. Proton
decay has not been observed; the limit on the rate 1/7 for p — eT70 is
7 > 10%yr. A rough estimate of 1/7 from eq.(97.15) is gimb /8w My.
Taking g5 ~ g2 ~ 0.6, we find that we must have My > 3 x 10'° GeV.

We still need a scalar field in the representation (1,2, —%) The smallest
complete representation of SU(5) that includes this piece is the 5. Call the
corresponding field H?; we can identify its components as

Hi=(¢" ¢ ¢ o= —¢°). (97.16)

The possible gauge-invariant Yukawa couplings with the v’ and Xi; fields
are o -
Lyae = —yH'"¢YIx;; — %y"s”klmHjxjkxlm +hec.; (97.17)

with three generations, y and 3" become matrices in generation space. We
can write out Lyyx using egs. (97.11), (97.12), and (97.16); the result is

", _ti

Lyae = —yelpilje — ye piqa;d* — y" o quii®
— g dPu — ysijqbaqaiﬁj — "¢l u% +h.c. . (97.18)

The terms on the first line are those of the Standard Model, except that
the down-quark Yukawa coupling matrix (called 3’ in section 89) is the
same as the charged-lepton Yukawa coupling matrix (called y in section
88). Since the quark and lepton masses are directly proportional to the
Yukawa couplings, eq. (97.18) predicts

my = m;,, me =my , mg = M . (97.19)

These relations hold in the MS renormalization scheme; later we will discuss
a modified scheme that is more appropriate at energies well below Mx. The
terms on the second line of eq. (97.18) are the couplings of the colored scalar
field ¢ to the quarks and leptons; we see that these couplings, like those of
the X, field, violate baryon and lepton number conservation. Since first-
generation Yukawa couplings are smaller than gauge couplings by a factor
of 10%, the limit on My from proton decay is roughly M, > 1010 GeV.

To compute Mgy, we need the complete scalar potential. For simplic-
ity, we assume a Zo symmetry under & < —®. Then the most general
renormalizable potential is

V(®,H) = — imi Tr @ + I\ Tr &* + 1(Tr #%)2
+myHH + Ly (H H)? - Lo HTO?H . (97.20)

We take all the parameters (m?b, m%], A1, A2, K1, K2) to be positive. We
found in problem 84.1 that in this case the first line of eq. (97.20) is mini-
mized by ® = diag(—3, —%, -3, +3,+3)V, with V? = 36m3,/(TA1 +30X2).
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From the first and third terms on the second line of eq. (97.20), we find that
the masses-squared of the ¢ ~ (1,2, —%) and ¢ ~ (3,1, —I—%) scalar fields are

m2, = mi — skaV?, (97.21)
M7 = m¥ — kraV2. (97.22)

We want m? ~ —(100GeV)? and Mq% > +(10'9GeV)2. This requires
m?; to be equal to %H2V2 to at least sixteen significant digits (but not
exactly). There is no obvious reason for the parameters in eq. (97.20) to
satisfy this odd relation; we would more naturally expect m?p and M q% to
have the same order of magnitude (and furthermore to have kg ~ g2 and
hence My ~ My > 10 GeV). This is the fine tuning problem of grand
unified theories. More generally, we can ask why the breaking scale of
the grand unified group is so much larger than the breaking scale of the
electroweak subgroup; this is gauge hierarchy problem.

Since the X, and ¢ fields are so heavy, we can integrate them out,
generating effective interactions among the quarks and leptons.! For the
X, field, we get the leading term (in a double expansion in powers of g5 and
inverse powers of M) by ignoring the kinetic energy and other interactions
of the X, field, solving the equations of motion for X, that follow from
L X mass + Lx,int, where Lx in¢ is given by eq. (97.15) and

EX,mass = —MiXiT;Xé“ 5 (9723)

and finally substituting the solutions back into £x mass + Lx,int- This is
equivalent to evaluating tree-level Feynman diagrams with a single X ex-
changed. The result is

1 a5
EX,eff - 2—M%JZ“ JOCM . (9724)

Keeping only fields from the first generation, we find that the baryon- and
lepton-number violating terms in Lx g are

2
AB|=1 y — e L
ﬁL(,eff‘ = —2]9\2_2 EZ]EOCB’Y(d;O'MEi _ eTUqu'a)uTﬁguq]’»Y +he.
X
2
g .. . .
- _]\452 ele [(&qj«,)(dlu};) + (eTui,)(qZ'anﬁ)} +h.c., (97.25)
X

where the second line follows from a Fierz identity and a relabeling of
the color indices in the second term. We can treat the ¢ field similarly;

"We should also integrate out the heavy components of ®, which transform as (8,1,0)®
(1,3,0)® (1,1, 0) under SU(3) x SU(2) x U(1), but these do not couple directly to quarks
and leptons.
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see problem 97.2. We will compute the decay rate for p — etn% from
eq. (97.25) in problem 97.4.

Once the heavy fields have been integrated out, we can apply the MS
renormalization scheme to the theory with the remaining light fields. This
is not the same as MS for the original theory, because now only light fields
circulate in loops. (Loops of heavy fields contribute to corrections to the
effective interactions.) With the usual fields of the Standard Model, we
find from our results in sections 66 and 73 that the one-loop beta functions
for the three gauge couplings are given by

d b;
a9 = o2 g +0(g)) (97.26)

with
by = =11+ in, (97.27)
by=—-%+3n+5, (97.28)
b = +3n+ 3, (97.29)

where n = 3 in the number of generations; the —i—% contributions to b
and b; are from the ¢ field. These formulae apply for p < Myx. (We
are assuming that the heavy scalars do not have masses much less than
Myx.) For p > My, we must restore the heavy fields, and then eq. (97.14)
applies. If we now neglect the higher-loop corrections, integrate eq. (97.26)
for each coupling, impose eq. (97.14) at u = My, and set go = e/ sin fy and
g1 = €/ cos Oy, we find for p < My that

r 1 b_3 N
as(n)  as(M) T 5, (Mx/p) (97.30)
sin? Ow (1) B 1 b_2 )
o) mny Tag /) (97.31)
cos? Oy (1) _5/3 b_l )
alp)  as(My) + 27T1 (Mx/p) - (97.32)

The quantities on the left-hand sides are measured at y = M, to be
ag(My) = 0.1187 £ 0.0020 . (97.33)
1/a(My) = 127.91 £0.02, (97.34)
sin? Oy (M) = 0.23120 4 0.00015 . (97.35)
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We can use egs. (97.30-97.32) to solve for 1/as(Mx) and In(Mx/M,) in
terms of the known parameters o(My) and ag(My); the result is

1 1 —bs b1+by )
= + , 97.36
o 05) ~ iba—S0 (a<MZ> s (0) (67.36)

B 27 1 8/3
In(My/M,) = b1—|—b2—§b3 (a(MZ) ag(MZ)) . (97.37)

Plugging in egs. (97.27-97.29) and egs. (97.33-97.34), we find 1/a5(Mx) =
41.5 and My = 7x 10 GeV; two-loop corrections lower My to 4x 10 GeV.
This value of My is about an order of magnitude below the lower limit
imposed by proton decay.

We can also use eqgs. (97.30-97.32) to express sin? 6y, (M) in terms of
a(My) and as(My); the result is

1

2

Ow(My) = ———+—
sin (My) b by %b3

(bg—b3 + (b1—2by) O‘Z((M]\;Z))) . (97.38)

This is a prediction of the SU(5) model that we can test. Plugging in
eqs. (97.27-97.29) and eqs. (97.33-97.34), we find sin? 6y (M) = 0.207.
Two-loop corrections raise this to 0.210£0.001. Comparing with eq. (97.35),
we see that the SU(5) prediction is too low by about 10%.

The situation improves considerably if we consider the Minimal Su-
persymmetric Standard Model, discussed in section 96. In this case the
beta-function coefficients become

by = —9+2n, (97.39)
by = —6+2n+1, (97.40)
by = +¥n+1. (97.41)

Now we find sin? 6y (M) = 0.231, with two-loop corrections raising it to
0.234; there are, however, numerous sources of uncertainty related to the
masses of the supersymmetric particles. We also find My = 2 x 106 GeV;
this result (which is not changed significantly by two-loop corrections) is
high enough to avoid too-rapid proton decay.

Next, let us consider the predicted equality of the down quark and
charged lepton masses, eq. (97.19). These relations are subject to renormal-
ization; see problem 97.5. However, the one-loop corrections from gauge-
boson exchange cancel in the predicted ratios

Me — md My — ms (97 42)
my,  mg’ mr  my '
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Alas, these predictions are not satisfied, in the first case by an order of
magnitude. Resolving this problem requires either a more complicated
set of Higgs fields, and/or including higher-dimension, nonrenormalizable
terms in the lagrangian that are suppressed by inverse powers of the some
mass scale larger than My, such as the Planck mass Mp = 1.2 x 10*° GeV.
To get neutrino masses in the SU(5) model (see section 91), we must add
left-handed Weyl fields 7, that are singlets of SU(5), and couple them to
the neutrinos via Ly = —ngJHjl/Jfﬂj.

A more elegant scheme starts with SO(10) as the grand unified gauge
group. SO(10) has a complex sixteen dimensional spinor representation
that transforms as 1@ 5 @ 10 under the SU(5) subgroup; thus, each gen-
eration of fermions (including 7) fits into a single Weyl field in this 16
representation. A scalar field in the 10 representation is needed for the
Standard Model Higgs field, and additional scalars in higher dimensional
representations (such as the 45 dimesional adjoint representation and the
16) are needed to break SO(10) down to SU(3) x SU(2) x U(1).

A great variety of grand unified models can be constructed, with and
without supersymmetry. Which, if any, are relevant to the natural world is
a question yet to be answered.

PROBLEMS

97.1) Is the gauge symmetry of the SU(5) model anomalous? If it is, modify
the model to turn it into a consistent quantum field theory. Prereq-
uisite: section 75. Hint: see problem 70.4.

97.2) Compute the AB = +£1 terms in the effective lagrangian that arise
from ¢ exchange.

97.3) Let us write eq. (97.25) as
Log = — ch Ci0, — 2020202 +h.c., (97.43)

where O; = Eij&?aﬁ”(&qm)(czgﬂp and Oy = Eijsaﬁ'y(éTﬂjy)(qmqjg),
Zc, and Z¢, are renormalizing factors, and C; and Cy are coefficients
that depend on the MS renormalization scale pu. At u = My, we have
C1(My) = Cy(My) = dmas(My) /M.

a) Working in Lorenz gauge, and using the results of problems 88.7
and 89.5, show that the one-loop contribution to Zg, from gauge-
boson exchange is given by Z,, in spinor electrodynamics in Lorenz
gauge, with

(=D (+1)e? = [0+ 7T 0 (15)5 7 27| 63
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+ (@) (@), /27 + 0] 3
F[EDED+EDED]E . ora

Evaluate these coefficients.

b) Similarly, compute the one-loop contribution to Z¢, from gauge-
boson exchange.

c¢) Compute the corresponding anomalous dimensions ~; and 7, of Cy
and Cs.

d) Compute the numerical values of C(u) and Ca(p) at p = 2GeV.
For simplicity, take the top quark mass equal to My, and all other
quark masses less than 2 GeV.

97.4) Consider the proton decay mode with the most stringent experimental
bound, p — eT7’. The terms in eq. (97.43) relevant for this mode are

Lo = C1e®P (ew,)(d}al) +2Ce* (&'l (daug) + hoc. . (97.45)

Note that, under the SU(2), x SU(2)Rr global symmetry of QCD that
we discussed in section 83, the operator u(dfa') transforms as the
first component of a (2,1) representation, while the operator @' (du)
is related by parity, and transforms as the first component of a (1, 2)
representation. At low energies, we can replace these operators (up to
an overall constant factor) with hadron fields with the same properties
under Lorentz and SU(2)1, x SU(2)gr x U(1)y transformations.

a) Show that P.(uN); and Py (u'N); transform appropriately. Here
u = exp[im®T?/ fr], where 7 is the triplet of pion fields, and N is
the Dirac field for the proton-neutron doublet.

b) Show that the low-energy version of eq. (97.45) is then
Leog = CLAECP, (uN)| + 2C5AECPy(ulN)y +hee.,  (97.46)

where £€ is the charge conjugate of the Dirac field for the electron
(in other words, £° is the Dirac field for the positron), and A is a
constant with dimensions of mass-cubed. Lattice calculations have
yielded a value of A = 0.0090 GeV? for u = 2GeV.

c) Write out the terms in eq. (97.45) that contain the proton field and
either zero or one 7° fields.

d) Compute the amplitude for p — e*7%. Note that there are two
contributing Feynman diagrams: one where eq. (97.46) supplies the
proton-positron-pion vertex, and one where the proton emits a pion
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via the interaction in eq. (83.30), and then converts to a positron via
the no-pion terms in eq. (97.46). Neglect the positron mass. Hint:
your result should be proportional to 1 + g,.

e) Compute the spin-averaged decay rate for p — eTn% Use the
values of C7 and Cy for p = 2GeV that you computed in problem
97.3. How does your answer compare with the naive estimate we
made earlier? Hint: your result should be proportional to CF + 4C35.

97.5) Consider the Yukawa couplings for the the down quark and charged
lepton of one generation,

Lyvuk = — Zyyepilie — Zyy'e” 0iqa;d* (97.47)

where we have included renormalizing factors.

a) Consider one-loop contributions from gauge-boson exchange to
Zy/Z,. Show that the only contributions of this type that do not
cancel in the ratio are those where the gauge boson connects the two
fermion lines.

b) Show that, in Lorenz gauge, these contributions to Z, and Z,
are given by Z,, in spinor electrodynamics in Lorenz gauge, with a
replacement analogous to eq. (97.44) that you should specify.

¢) Let r = ¢//y, and compute the anomalous dimension of r.

d) Take r(Mx) = 1, and evaluate r(My). For simplicity, take the top
quark mass equal to M.

e) Below My, treat the top quark as heavy, and neglect the small elec-
tromagnetic contribution to the anomalous dimension of r. Compute
r(my), where myp = my(my) = 4.3 GeV is the bottom quark mass pa-
rameter. Use your results to predict the tau lepton mass. How does
your prediction compare with its observed value, m, = 1.8 GeV ?
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