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Preface for Students

Quantum field theory is the basic mathematical language that is used to
describe and analyze the physics of elementary particles. The goal of this
book is to provide a concise, step-by-step introduction to this subject, one
that covers all the key concepts that are needed to understand the Standard
Model of elementary particles, and some of its proposed extensions.

In order to be prepared to undertake the study of quantum field theory,
you should recognize and understand the following equations:

dσ

dΩ
= |f(θ, φ)|2

a†|n〉 =
√
n+1 |n+1〉

J±|j,m〉 =
√
j(j+1)−m(m±1) |j,m±1〉

A(t) = e+iHt/h̄Ae−iHt/h̄

H = pq̇ − L

ct′ = γ(ct− βx)

E = (p2c2 +m2c4)1/2

E = −Ȧ/c−∇ϕ
This list is not, of course, complete; but if you are familiar with these
equations, you probably know enough about quantum mechanics, classical
mechanics, special relativity, and electromagnetism to tackle the material
in this book.

Quantum field theory has a reputation as a subject that is hard to
learn. The problem, I think, is not so much that its basic ingredients are
unusually difficult to master (indeed, the conceptual shift needed to go
from quantum mechanics to quantum field theory is not nearly as severe
as the one needed to go from classical mechanics to quantum mechanics),
but rather that there are a lot of these ingredients. Some are fundamental,
but many are just technical aspects of an unfamiliar form of perturbation
theory.

In this book, I have tried to make the subject as accessible to beginners
as possible. There are three main aspects to my approach.

Logical development of the basic concepts. This is, of course, very differ-
ent from the historical development of quantum field theory, which, like the
historical development of most worthwhile subjects, was filled with inspired
guesses and brilliant extrapolations of sometimes fuzzy ideas, as well as its
fair share of mistakes, misconceptions, and dead ends. None of that is in
this book. From this book, you will (I hope) get the impression that the
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whole subject is effortlessly clear and obvious, with one step following the
next like sunshine after a refreshing rain.

Illustration of the basic concepts with the simplest examples. In most
fields of human endeavor, newcomers are not expected to do the most de-
manding tasks right away. It takes time, dedication, and lots of practice to
work up to what the accomplished masters are doing. There is no reason to
expect quantum field theory to be any different in this regard. Therefore,
we will start off analyzing quantum field theories that are not immediately
applicable to the real world of electrons, photons, protons, etc., but that
will allow us to gain familiarity with the tools we will need, and to practice
using them. Then, when we do work up to “real physics”, we will be fully
ready for the task. To this end, the book is divided into three parts: Spin
Zero, Spin One Half, and Spin One. The technical complexities associated
with a particular type of particle increase with its spin. We will therefore
first learn all we can about spinless particles before moving on to the more
difficult (and more interesting) nonzero spins. Once we get to them, we
will do a good variety of calculations in (and beyond) the Standard Model
of elementary particles.

User friendliness. Each of the three parts is divided into numerous sec-
tions. Each section is intended to treat one idea or concept or calculation,
and each is written to be as self-contained as possible. For example, when
an equation from an earlier section is needed, I usually just repeat it, rather
than ask you to leaf back and find it (a reader’s task that I’ve always found
annoying). Furthermore, each section is labeled with its immediate pre-
requisites, so you can tell exactly what you need to have learned in order
to proceed. This allows you to construct chains to whatever material may
interest you, and to get there as quickly as possible.

That said, I expect that most readers of this book will encounter it as
the textbook in a course on quantum field theory. In that case, of course,
your reading will be guided by your professor, who I hope will find the
above features useful. If, however, you are reading this book on your own,
I have two pieces of advice.

The first (and most important) is this: find someone else to read it with
you. I promise that it will be far more fun and rewarding that way; talking
about a subject to another human being will inevitably improve the depth
of your understanding. And you will have someone to work with you on
the problems. (As with all physics texts, the problems are a key ingredient.
I will not belabor this point, because if you have gotten this far in physics,
you already know it well.)

The second piece of advice echoes the novelist and Nobel laureate
William Faulkner. An interviewer asked, “Mr. Faulker, some of your read-
ers claim they still cannot understand your work after reading it two or
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three times. What approach would you advise them to adopt?” Faulkner
replied, “Read it a fourth time.”

That’s my advice here as well. After the fourth attempt, though, you
should consider trying something else. This is, after all, not the only book
that has ever been written on the subject. You may find that a different
approach (or even the same approach explained in different words) breaks
the logjam in your thinking. There are a number of excellent books that
you could consult, some of which are listed in the Bibliography. I have also
listed particular books that I think could be helpful on specific topics in
Reference Notes at the end of some of the sections.

This textbook (like all finite textbooks) has a number of deficiencies.
One of these is a rather low level of mathematical rigor. This is partly en-
demic to the subject; rigorous proofs in quantum field theory are relatively
rare, and do not appear in the overwhelming majority of research papers.
Even some of the most basic notions lack proof; for example, currently
you can get a million dollars from the Clay Mathematics Institute simply
for proving that nonabelian gauge theory actually exists and has a unique
ground state. Given this general situation, and since this is an introductory
book, the proofs that we do have are only outlined. those proofs that we
do have are only outlined.

Another deficiency of this book is that there is no discussion of the
application of quantum field theory to condensed matter physics, where
it also plays an important role. This connection has been important in
the historical development of the subject, and is especially useful if you
already know a lot of advanced statistical mechanics. I do not want this
to be a prerequisite, however, and so I have chosen to keep the focus on
applications within elementary particle physics.

Yet another deficiency is that there are no references to the original
literature. In this regard, I am following a standard trend: as the foun-
dations of a branch of science retreat into history, textbooks become more
and more synthetic and reductionist. For example, it is now rare to see a
new textbook on quantum mechanics that refers to the original papers by
the famous founders of the subject. For guides to the original literature
on quantum field theory, there are a number of other books with extensive
references that you can consult; these include Peskin & Schroeder, Wein-
berg, and Siegel. (Italicized names refer to works listed in the Bibliography.)
Unless otherwise noted, experimental numbers are taken from the Review
of Particle Properties, available online at http://pdg.lbl.gov. Experimen-
tal numbers quoted in this book have an uncertainty of roughly ±1 in the
last significiant digit. The Review should be consulted for the most recent
experimental results, and for more precise statements of their uncertainty.

To conclude, let me say that you are about to embark on a tour of one of
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humanity’s greatest intellectual endeavors, and certainly the one that has
produced the most precise and accurate description of the natural world as
we find it. I hope you enjoy the ride.
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Preface for Instructors

On learning that a new text on quantum field theory has appeared, one is
surely tempted to respond with Isidor Rabi’s famous comment about the
muon: “Who ordered that?” After all, many excellent textbooks on quan-
tum field theory are already available. I, for example, would not want to be
without my well-worn copies of Quantum Field Theory by Lowell S. Brown
(Cambridge 1994), Aspects of Symmetry by Sidney Coleman (Cambridge
1985), Introduction to Quantum Field Theory by Michael E. Peskin and
Daniel V. Schroeder (Westview 1995), Field Theory: A Modern Primer by
Pierre Ramond (Addison-Wesley 1990), Fields by Warren Siegel (arXiv.org
2005), The Quantum Theory of Fields, Volumes I, II, and III, by Steven
Weinberg (Cambridge 1995), and Quantum Field Theory in a Nutshell by
my colleague Tony Zee (Princeton 2003), to name just a few of the more
recent texts. Nevertheless, despite the excellence of these and other books,
I have never followed any of them very closely in my twenty years of on-
and-off teaching of a year-long course in relativistic quantum field theory.

As discussed in the Preface for Students, this book is based on the no-
tion that quantum field theory is most readily learned by starting with the
simplest examples and working through their details in a logical fashion.
To this end, I have tried to set things up at the very beginning to antici-
pate the eventual need for renormalization, and not be cavalier about how
the fields are normalized and the parameters defined. I believe that these
precautions take a lot of the “hocus pocus” (to quote Feynman) out of the
“dippy process” of renormalization. Indeed, with this approach, even the
anharmonic oscillator is in need of renormalization; see problem 14.7.

A field theory with many pedagogical virtues is ϕ3 theory in six di-
mensions, where its coupling constant is dimensionless. Perhaps because
six dimensions used to seem too outre (though today’s prospective string
theorists don’t even blink), the only introductory textbook I know of that
treats this model is Quantum Field Theory by George Sterman (Cambridge
1993), though it is also discussed in some more advanced books, such as
Renormalization by John Collins (Cambridge 1984) and Foundations of
Quantum Chromodynamics by T. Muta (World Scientific 1998). (There is
also a series of lectures by Ed Witten on quantum field theory for math-
ematicians, available online, that treat ϕ3 theory.) The reason ϕ3 theory
in six dimensions is a nice example is that its Feynman diagrams have a
simple structure, but still exhibit the generic phenomena of renormalizable
quantum field theory at the one-loop level. (The same cannot be said for ϕ4

theory in four dimensions, where momentum-dependent corrections to the
propagator do not appear until the two-loop level.) Thus, in Part I of this
text, ϕ3 theory in six dimensions is the primary example. I use it to give



13

introductory treatments of most aspects of relativistic quantum field theory
for spin-zero particles, with a minimum of the technical complications that
arise in more realistic theories (like QED) with higher-spin particles.

Although I eventually discuss the Wilson approach to renormalization
and effective field theory (in section 29), and use effective field theory exten-
sively for the physics of hadrons in Part III, I do not feel it is pedagogically
useful to bring it in at the very beginning, as is sometimes advocated. The
problem is that the key notion of the decoupling of physical processes at dif-
ferent length scales is an unfamiliar one for most students; there is nothing
in typical courses on quantum mechanics or electomagnetism or classical
mechanics to prepare students for this idea (which was deemed worthy of a
Nobel Prize for Ken Wilson in 1982). It also does not provide for a simple
calculational framework, since one must deal with the infinite number of
terms in the effective lagrangian, and then explain why most of them don’t
matter after all. It’s noteworthy that Wilson himself did not spend a lot
of time computing properly normalized perturbative S-matrix elements, a
skill that we certainly want our students to have; we want them to have
it because a great deal of current research still depends on it. Indeed, the
vaunted success of quantum field theory as a description of the real world is
based almost entirely on our ability to carry out these perturbative calcula-
tions. Studying renormalization early on has other pedagogical advantages.
With the Nobel Prizes to Gerard ’t Hooft and Tini Veltman in 1999 and to
David Gross, David Politzer, and Frank Wilczek in 2004, today’s students
are well aware of beta functions and running couplings, and would like to
understand them. I find that they are generally much more excited about
this (even in the context of toy models) than they are about learning to
reproduce the nearly century-old tree-level calculations of QED. And ϕ3

theory in six dimensions is asymptotically free, which ultimately provides
for a nice segue to the “real physics” of QCD.

In general I have tried to present topics so that the more interesting as-
pects (from a present-day point of view) come first. An example is anoma-
lies; the traditional approach is to start with the π0 → γγ decay rate,
but such a low-energy process seems like a dusty relic to most of today’s
students. I therefore begin by demonstrating that anomalies destroy the
self-consistency of the great majority of chiral gauge theories, a fact that
strikes me (and, in my experience, most students) as much more interest-
ing and dramatic than an incorrect calculation of the π0 decay rate. Then,
when we do eventually get to this process (in section 90), it appears as a
straightforward consequence of what we already learned about anomalies
in sections 75–77.

Nevertheless, I want this book to be useful to those who disagree with
my pedagogical choices, and so I have tried to structure it to allow for
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maximum flexibility. Each section treats a particular idea or concept or
calculation, and is as self-contained as possible. Each section also lists
its immediate prerequisites, so that it is easy to see how to rearrange the
material to suit your personal preferences.

In some cases, alternative approaches are developed in the problems.
For example, I have chosen to introduce path integrals relatively early
(though not before canonical quantization and operator methods are ap-
plied to free-field theory), and use them to derive Dyson’s expansion. For
those who would prefer to delay the introduction of path integrals (but since
you will have to cover them eventually, why not get it over with?), problem
9.5 outlines the operator-based derivation in the interaction picture.

Another point worth noting is that a textbook and lectures are ideally
complementary. Many sections of this book contain rather tedious mathe-
matical detail that I would not and do not write on the blackboard during
a lecture. (Indeed, the earliest origins of this book are supplementary notes
that I typed up and handed out.) For example, much of the development of
Weyl spinors in sections 34–37 can be left to outside reading. I do encour-
age you not to eliminate this material entirely, however; pedagogically, the
problem with skipping directly to four-component notation is explaining
that (in four dimensions) the hermitian conjugate of a left-handed field is
right handed, a deeply important fact that is the key to solving problems
such as 36.5 and 83.1, which are in turn vital to understanding the struc-
ture of the Standard Model and its extensions. A related topic is computing
scattering amplitudes for Majorana fields; this is essential for modern re-
search on massive neutrinos and supersymmetric particles, though it could
be left out of a time-limited course.

While I have sometimes included more mathematical detail than is ideal
for a lecture, I have also tended to omit explanations based on “physical
intuition.” For example, in section 90, we compute the π− → ℓ−ν̄ℓ decay
amplitude (where ℓ is a charged lepton) and find that it is proportional to
the lepton mass. There is a well-known heuristic explanation of this fact
that goes something like this: “The pion has spin zero, and so the lepton
and the antineutrino must emerge with opposite spin, and therefore the
same helicity. An antineutrino is always right-handed, and so the lepton
must be as well. But only the left-handed lepton couples to the W−, so
the decay amplitude vanishes if the left- and right-handed leptons are not
coupled by a mass term.”

This is essentially correct, but the reasoning is a bit more subtle than
it first appears. A student may ask, “Why can’t there be orbital angular
momentum? Then the lepton and the antineutrino could have the same
spin.” The answer is that orbital angular momentum must be perpendicular
to the linear momentum, whereas helicity is (by definition) parallel to the
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linear momentum; so adding orbital angular momentum cannot change the
helicity assignments. (This is explored in a simplified model in problem
48.4.) The larger point is that intuitive explanations can almost always be
probed more deeply. This is fine in a classroom, where you are available to
answer questions, but a textbook author has a hard time knowing where
to stop. Too little detail renders the explanations opaque, and too much
can be overwhelming; furthermore the happy medium tends to differ from
student to student. The calculation, on the other hand, is definitive (at
least within the framework being explored, and modulo the possibility of
mathematical error). As Roger Penrose once said, “The great thing about
physical intuition is that it can be adjusted to fit the facts.” So, in this
book, I have tended to emphasize calculational detail at the expense of
heuristic reasoning. Lectures should ideally invert this to some extent.

I should also mention that a section of the book is not intended to
coincide exactly with a lecture. The material in some sections could easily
be covered in less than an hour, and some would clearly take more. My
approach in lecturing is to try to keep to a pace that allows the students to
follow the analysis, and then try to come to a more-or-less natural stopping
point when class time is up. This sometimes means ending in the middle
of a long calculation, but I feel that this is better than trying to artificially
speed things along to reach a predetermined destination.

It would take at least three semesters of lectures to cover this entire
book, and so a year-long course must omit some. A sequence I might
follow is 1–23, 26–28, 33–43, 45–48, 51, 52, 54–59, 62–64, 66–68, 24, 69, 70,
44, 53, 71–73, 75–77, 30, 32, 84, 87–89, 29, 82, 83, 90, and, if any time was
left, a selection of whatever seemed of most interest to me and the students
of the remaining material.

To conclude, I hope you find this book to be a useful tool in working to-
wards our mutual goal of bringing humanity’s understanding of the physics
of elementary particles to a new audience.
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1 Attempts at relativistic quantum

mechanics

Prerequisite: none

In order to combine quantum mechanics and relativity, we must first un-
derstand what we mean by “quantum mechanics” and “relativity”. Let us
begin with quantum mechanics.

Somewhere in most textbooks on the subject, one can find a list of the
“axioms of quantum mechanics”. These include statements along the lines
of

The state of the system is represented by a vector in Hilbert
space.

Observables are represented by hermitian operators.

The measurement of an observable yields one of its eigenvalues
as the result.

And so on. We do not need to review these closely here. The axiom we
need to focus on is the one that says that the time evolution of the state of
the system is governed by the Schrödinger equation,

ih̄
∂

∂t
|ψ, t〉 = H|ψ, t〉 , (1.1)

where H is the hamiltonian operator, representing the total energy.
Let us consider a very simple system: a spinless, nonrelativistic particle

with no forces acting on it. In this case, the hamiltonian is

H =
1

2m
P2 , (1.2)

where m is the particle’s mass, and P is the momentum operator. In the
position basis, eq. (1.1) becomes

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∇2ψ(x, t) , (1.3)

where ψ(x, t) = 〈x|ψ, t〉 is the position-space wave function. We would like
to generalize this to relativistic motion.

The obvious way to proceed is to take

H = +

√
P2c2 +m2c4 , (1.4)
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which yields the correct relativistic energy-momentum relation. If we for-
mally expand this hamiltonian in inverse powers of the speed of light c, we
get

H = mc2 +
1

2m
P2 + . . . . (1.5)

This is simply a constant (the rest energy), plus the usual nonrelativistic
hamiltonian, eq. (1.2), plus higher-order corrections. With the hamiltonian
given by eq. (1.4), the Schrödinger equation becomes

ih̄
∂

∂t
ψ(x, t) = +

√
−h̄2c2∇2 +m2c4 ψ(x, t) . (1.6)

Unfortunately, this equation presents us with a number of difficulties. One
is that it apparently treats space and time on a different footing: the time
derivative appears only on the left, outside the square root, and the space
derivatives appear only on the right, under the square root. This asymme-
try between space and time is not what we would expect of a relativistic
theory. Furthermore, if we expand the square root in powers of ∇2, we get
an infinite number of spatial derivatives acting on ψ(x, t); this implies that
eq. (1.6) is not local in space.

We can alleviate these problems by squaring the differential operators
on each side of eq. (1.6) before applying them to the wave function. Then
we get

−h̄2 ∂
2

∂t2
ψ(x, t) =

(
−h̄2c2∇2 +m2c4

)
ψ(x, t) . (1.7)

This is the Klein-Gordon equation, and it looks a lot nicer than eq. (1.6).
It is second-order in both space and time derivatives, and they appear in a
symmetric fashion.

To better understand the Klein-Gordon equation, let us consider in
more detail what we mean by “relativity”. Special relativity tells us that
physics looks the same in all inertial frames. To explain what this means, we
first suppose that a certain spacetime coordinate system (ct,x) represents
(by fiat) an inertial frame. Let us define x0 = ct, and write xµ, where
µ = 0, 1, 2, 3, in place of (ct,x). It is also convenient (for reasons not at all
obvious at this point) to define x0 = −x0 and xi = xi, where i = 1, 2, 3.
This can be expressed more elegantly if we first introduce the Minkowski
metric,

gµν =




−1
+1

+1
+1


 , (1.8)

where blank entries are zero. We then have xµ = gµνx
ν , where a repeated

index is summed.
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To invert this formula, we introduce the inverse of g, which is confusingly
also called g, except with both indices up:

gµν =




−1
+1

+1
+1


 . (1.9)

We then have gµνgνρ = δµρ, where δµρ is the Kronecker delta (equal to one
if its two indices take on the same value, zero otherwise). Now we can also
write xµ = gµνxν .

It is a general rule that any pair of repeated (and therefore summed)
indices must consist of one superscript and one subscript; these indices are
said to be contracted. Also, any unrepeated (and therefore unsummed)
indices must match (in both name and height) on the left- and right-hand
sides of any valid equation.

Now we are ready to specify what we mean by an inertial frame. If the
coordinates xµ represent an inertial frame (which they do, by assumption),
then so do any other coordinates x̄µ that are related by

x̄µ = Λµνx
ν + aµ , (1.10)

where Λµν is a Lorentz transformation matrix and aµ is a translation vector.
Both Λµν and aµ are constant (that is, independent of xµ). Furthermore,
Λµν must obey

gµνΛ
µ
ρΛ

ν
σ = gρσ . (1.11)

Eq. (1.11) ensures that the interval between two different spacetime points
that are labeled by xµ and x′µ in one inertial frame, and by x̄µ and x̄′µ in
another, is the same. This interval is defined to be

(x− x′)2 ≡ gµν(x− x′)µ(x− x′)ν

= (x − x′)2 − c2(t− t′)2 . (1.12)

In the other frame, we have

(x̄− x̄′)2 = gµν(x̄− x̄′)µ(x̄− x̄′)ν

= gµνΛ
µ
ρΛ

ν
σ(x− x′)ρ(x− x′)σ

= gρσ(x− x′)ρ(x− x′)σ

= (x− x′)2 , (1.13)

as desired.
When we say that physics looks the same, we mean that two observers

(Alice and Bob, say) using two different sets of coordinates (representing
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two different inertial frames) should agree on the predicted results of all
possible experiments. In the case of quantum mechanics, this requires Alice
and Bob to agree on the value of the wave function at a particular spacetime
point, a point that is called x by Alice and x̄ by Bob. Thus if Alice’s
predicted wave function is ψ(x), and Bob’s is ψ̄(x̄), then we should have
ψ(x) = ψ̄(x̄). Furthermore, in order to maintain ψ(x) = ψ̄(x̄) throughout
spacetime, ψ(x) and ψ̄(x̄) should obey identical equations of motion. Thus
a candidate wave equation should take the same form in any inertial frame.

Let us see if this is true of the Klein-Gordon equation. We first introduce
some useful notation for spacetime derivatives:

∂µ ≡ ∂

∂xµ
=

(
+

1

c

∂

∂t
,∇
)
, (1.14)

∂µ ≡ ∂

∂xµ
=

(
−1

c

∂

∂t
,∇
)
. (1.15)

Note that
∂µxν = gµν , (1.16)

so that our matching-index-height rule is satisfied.
If x̄ and x are related by eq. (1.10), then ∂̄ and ∂ are related by

∂̄µ = Λµν∂
ν . (1.17)

To check this, we note that

∂̄ρx̄σ = (Λρµ∂
µ)(Λσνx

ν + aµ) = ΛρµΛ
σ
ν(∂

µxν) = ΛρµΛ
σ
νg
µν = gρσ ,

(1.18)
as expected. The last equality in eq. (1.18) is another form of eq. (1.11); see
section 2.

We can now write eq. (1.7) as

−h̄2c2∂2
0ψ(x) = (−h̄2c2∇2 +m2c4)ψ(x) . (1.19)

After rearranging and identifying ∂2 ≡ ∂µ∂µ = −∂2
0 + ∇2, we have

(−∂2 +m2c2/h̄2)ψ(x) = 0 . (1.20)

This is Alice’s form of the equation. Bob would write

(−∂̄2 +m2c2/h̄2)ψ̄(x̄) = 0 . (1.21)

Is Bob’s equation equivalent to Alice’s equation? To see that it is, we set
ψ̄(x̄) = ψ(x), and note that

∂̄2 = gµν ∂̄
µ∂̄ν = gµνΛ

µ
ρΛ

µ
σ∂

ρ∂σ = ∂2 . (1.22)
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Thus, eq. (1.21) is indeed equivalent to eq. (1.20). The Klein-Gordon equa-
tion is therefore manifestly consistent with relativity: it takes the same
form in every inertial frame.

This is the good news. The bad news is that the Klein-Gordon equation
violates one of the axioms of quantum mechanics: eq. (1.1), the Schrödinger
equation in its abstract form. The abstract Schrödinger equation has the
fundamental property of being first order in the time derivative, whereas the
Klein-Gordon equation is second order. This may not seem too important,
but in fact it has drastic consequences. One of these is that the norm of a
state,

〈ψ, t|ψ, t〉 =

∫
d3x 〈ψ, t|x〉〈x|ψ, t〉 =

∫
d3xψ∗(x)ψ(x), (1.23)

is not in general time independent. Thus probability is not conserved. The
Klein-Gordon equation obeys relativity, but not quantum mechanics.

Dirac attempted to solve this problem (for spin-one-half particles) by
introducing an extra discrete label on the wave function, to account for
spin: ψa(x), a = 1, 2. He then tried a Schrödinger equation of the form

ih̄
∂

∂t
ψa(x) =

(
−ih̄c(αj)ab∂j +mc2(β)ab

)
ψb(x) , (1.24)

where all repeated indices are summed, and αj and β are matrices in spin-
space. This equation, the Dirac equation, is consistent with the abstract
Schrödinger equation. The state |ψ, a, t〉 carries a spin label a, and the
hamiltonian is

Hab = cPj(α
j)ab +mc2(β)ab , (1.25)

where Pj is a component of the momentum operator.
Since the Dirac equation is linear in both time and space derivatives,

it has a chance to be consistent with relativity. Note that squaring the
hamiltonian yields

(H2)ab = c2PjPk(α
jαk)ab +mc3Pj(α

jβ + βαj)ab + (mc2)2(β2)ab . (1.26)

Since PjPk is symmetric on exchange of j and k, we can replace αjαk by
its symmetric part, 1

2{αj , αk}, where {A,B} = AB + BA is the anticom-
mutator. Then, if we choose matrices such that

{αj , αk}ab = 2δjkδab , {αj , β}ab = 0 , (β2)ab = δab , (1.27)

we will get
(H2)ab = (P2c2 +m2c4)δab . (1.28)

Thus, the eigenstates of H2 are momentum eigenstates, with H2 eigenvalue
p2c2 +m2c4. This is, of course, the correct relativistic energy-momentum
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relation. While it is outside the scope of this section to demonstrate it, it
turns out that the Dirac equation is fully consistent with relativity provided
the Dirac matrices obey eq. (1.27). So we have apparently succeeded in
constructing a quantum mechanical, relativistic theory!

There are, however, some problems. We would like the Dirac matrices
to be 2 × 2, in order to account for electron spin. However, they must
in fact be larger. To see this, note that the 2 × 2 Pauli matrices obey
{σi, σj} = 2δij , and are thus candidates for the Dirac αi matrices. However,
there is no fourth matrix that anticommutes with these three (easily proven
by writing down the most general 2 × 2 matrix and working out the three
anticommutators explicitly). Also, we can show that the Dirac matrices
must be even dimensional; see problem 1.1. Thus their minimum size is
4×4, and it remains for us to interpret the two extra possible “spin” states.

However, these extra states cause a more severe problem than a mere
overcounting. Acting on a momentum eigenstate, H becomes the matrix
c α·p +mc2β. In problem 1.1, we find that the trace of this matrix is zero.
Thus the four eigenvalues must be +E(p), +E(p), −E(p), −E(p), where
E(p) = +(p2c2 + m2c4)1/2. The negative eigenvalues are the problem:
they indicate that there is no ground state. In a more elaborate theory
that included interactions with photons, there seems to be no reason why
a positive energy electron could not emit a photon and drop down into
a negative energy state. This downward cascade could continue forever.
(The same problem also arises in attempts to interpret the Klein-Gordon
equation as a modified form of quantum mechanics.)

Dirac made a wildly brilliant attempt to fix this problem of negative
energy states. His solution is based on an empirical fact about electrons:
they obey the Pauli exclusion principle. It is impossible to put more than
one of them in the same quantum state. What if, Dirac speculated, all
the negative energy states were already occupied? In this case, a positive
energy electron could not drop into one of these states, by Pauli exclusion.

Many questions immediately arise. Why don’t we see the negative elec-
tric charge of this Dirac sea of electrons? Dirac’s answer: because we’re
used to it. (More precisely, the physical effects of a uniform charge density
depend on the boundary conditions at infinity that we impose on Maxwell’s
equations, and there is a choice that renders such a uniform charge density
invisible.) However, Dirac noted, if one of these negative energy electrons
were excited into a positive energy state (by, say, a sufficiently energetic
photon), it would leave behind a hole in the sea of negative energy elec-
trons. This hole would appear to have positive charge, and positive energy.
Dirac therefore predicted (in 1927) the existence of the positron, a particle
with the same mass as the electron, but opposite charge. The positron was
found experimentally five years later.
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However, we have now jumped from an attempt at a quantum descrip-
tion of a single relativistic particle to a theory that apparently requires
an infinite number of particles. Even if we accept this, we still have not
solved the problem of how to describe particles like photons or pions or
alpha nuclei that do not obey Pauli exclusion.

At this point, it is worthwhile to stop and reflect on why it has proven
to be so hard to find an acceptable relativistic wave equation for a sin-
gle quantum particle. Perhaps there is something wrong with our basic
approach.

And there is. Recall the axiom of quantum mechanics that says that
“Observables are represented by hermitian operators.” This is not entirely
true. There is one observable in quantum mechanics that is not represented
by a hermitian operator: time. Time enters into quantum mechanics only
when we announce that the “state of the system” depends on an extra
parameter t. This parameter is not the eigenvalue of any operator. This is
in sharp contrast to the particle’s position x, which is the eigenvalue of an
operator. Thus, space and time are treated very differently, a fact that is
obscured by writing the Schrödinger equation in terms of the position-space
wave function ψ(x, t). Since space and time are treated asymmetrically, it
is not surprising that we are having trouble incorporating a symmetry that
mixes them up.

So, what are we to do?
In principle, the problem could be an intractable one: it might be im-

possible to combine quantum mechanics and relativity. In this case, there
would have to be some meta-theory, one that reduces in the nonrelativistic
limit to quantum mechanics, and in the classical limit to relativistic particle
dynamics, but is actually neither.

This, however, turns out not to be the case. We can solve our problem,
but we must put space and time on an equal footing at the outset. There
are two ways to do this. One is to demote position from its status as an
operator, and render it as an extra label, like time. The other is to promote
time to an operator.

Let us discuss the second option first. If time becomes an operator, what
do we use as the time parameter in the Schrödinger equation? Happily, in
relativistic theories, there is more than one notion of time. We can use the
proper time τ of the particle (the time measured by a clock that moves
with it) as the time parameter. The coordinate time T (the time measured
by a stationary clock in an inertial frame) is then promoted to an operator.
In the Heisenberg picture (where the state of the system is fixed, but the
operators are functions of time that obey the classical equations of motion),
we would have operators Xµ(τ), where X0 = T . Relativistic quantum
mechanics can indeed be developed along these lines, but it is surprisingly
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complicated to do so. (The many times are the problem; any monotonic
function of τ is just as good a candidate as τ itself for the proper time, and
this infinite redundancy of descriptions must be understood and accounted
for.)

One of the advantages of considering different formalisms is that they
may suggest different directions for generalizations. For example, once
we have Xµ(τ), why not consider adding some more parameters? Then
we would have, for example, Xµ(σ, τ). Classically, this would give us a
continuous family of worldlines, what we might call a worldsheet, and so
Xµ(σ, τ) would describe a propagating string. This is indeed the starting
point for string theory.

Thus, promoting time to an operator is a viable option, but is compli-
cated in practice. Let us then turn to the other option, demoting position
to a label. The first question is, label on what? The answer is, on oper-
ators. Thus, consider assigning an operator to each point x in space; call
these operators ϕ(x). A set of operators like this is called a quantum field.
In the Heisenberg picture, the operators are also time dependent:

ϕ(x, t) = eiHt/h̄ϕ(x, 0)e−iHt/h̄ . (1.29)

Thus, both position and (in the Heisenberg picture) time are now labels on
operators; neither is itself the eigenvalue of an operator.

So, now we have two different approaches to relativistic quantum theory,
approaches that might, in principle, yield different results. This, however,
is not the case: it turns out that any relativistic quantum physics that can
be treated in one formalism can also be treated in the other. Which we
use is a matter of convenience and taste. And, quantum field theory, the
formalism in which position and time are both labels on operators, is much
more convenient and efficient for most problems.

There is another useful equivalence: ordinary nonrelativistic quantum
mechanics, for a fixed number of particles, can be rewritten as a quantum
field theory. This is an informative exercise, since the corresponding physics
is already familiar. Let us carry it out.

Begin with the position-basis Schrödinger equation for n particles, all
with the same mass m, moving in an external potential U(x), and inter-
acting with each other via an interparticle potential V (x1 − x2):

ih̄
∂

∂t
ψ =

[
n∑

j=1

(
− h̄2

2m
∇2
j + U(xj)

)
+

n∑

j=1

j−1∑

k=1

V (xj − xk)

]
ψ , (1.30)

where ψ = ψ(x1, . . . ,xn; t) is the position-space wave function. The quan-
tum mechanics of this system can be rewritten in the abstract form of
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eq. (1.1) by first introducing (in, for now, the Schrödinger picture) a quan-
tum field a(x) and its hermitian conjugate a†(x). We take these operators
to have the commutation relations

[a(x), a(x′)] = 0 ,

[a†(x), a†(x′)] = 0 ,

[a(x), a†(x′)] = δ3(x − x′) , (1.31)

where δ3(x) is the three-dimensional Dirac delta function. Thus, a†(x) and
a(x) behave like harmonic-oscillator creation and annihilation operators
that are labeled by a continuous index. In terms of them, we introduce the
hamiltonian operator of our quantum field theory,

H =

∫
d3x a†(x)

(
− h̄2

2m∇2 + U(x)
)
a(x)

+ 1
2

∫
d3x d3y V (x − y)a†(x)a†(y)a(y)a(x) . (1.32)

Now consider a time-dependent state of the form

|ψ, t〉 =

∫
d3x1 . . . d

3xn ψ(x1, . . . ,xn; t)a
†(x1) . . . a

†(xn)|0〉 , (1.33)

where ψ(x1, . . . ,xn; t) is some function of the n particle positions and time,
and |0〉 is the vacuum state, the state that is annihilated by all the a’s,

a(x)|0〉 = 0 . (1.34)

It is now straightforward (though tedious) to verify that eq. (1.1), the ab-
stract Schrödinger equation, is obeyed if and only if the function ψ satisfies
eq. (1.30).

Thus we can interpret the state |0〉 as a state of “no particles”, the state
a†(x1)|0〉 as a state with one particle at position x1, the state a†(x1)a

†(x2)|0〉
as a state with one particle at position x1 and another at position x2, and
so on. The operator

N =

∫
d3x a†(x)a(x) (1.35)

counts the total number of particles. It commutes with the hamiltonian,
as is easily checked; thus, if we start with a state of n particles, we remain
with a state of n particles at all times.

However, we can imagine generalizations of this version of the theory
(generalizations that would not be possible without the field formalism) in
which the number of particles is not conserved. For example, we could try
adding to H a term like

∆H ∝
∫
d3x

[
a†(x)a2(x) + h.c.

]
. (1.36)
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This term does not commute with N , and so the number of particles would
not be conserved with this addition to H.

Theories in which the number of particles can change as time evolves are
a good thing: they are needed for correct phenomenology. We are already
familiar with the notion that atoms can emit and absorb photons, and so
we had better have a formalism that can incorporate this phenomenon. We
are less familiar with emission and absorption (that is to say, creation and
annihilation) of electrons, but this process also occurs in nature; it is less
common because it must be accompanied by the emission or absorption of
a positron, antiparticle to the electron. There are not a lot of positrons
around to facilitate electron annihilation, while e+e− pair creation requires
us to have on hand at least 2mc2 of energy available for the rest-mass
energy of these two particles. The photon, on the other hand, is its own
antiparticle, and has zero rest mass; thus photons are easily and copiously
produced and destroyed.

There is another important aspect of the quantum theory specified by
eqs. (1.32) and (1.33). Because the creation operators commute with each
other, only the completely symmetric part of ψ survives the integration
in eq. (1.33). Therefore, without loss of generality, we can restrict our
attention to ψ’s of this type:

ψ(. . . xi . . . xj . . . ; t) = +ψ(. . . xj . . .xi . . . ; t) . (1.37)

This means that we have a theory of bosons, particles that (like photons or
pions or alpha nuclei) obey Bose-Einstein statistics. If we want Fermi-Dirac
statistics instead, we must replace eq. (1.31) with

{a(x), a(x′)} = 0 ,

{a†(x), a†(x′)} = 0 ,

{a(x), a†(x′)} = δ3(x − x′) , (1.38)

where again {A,B} = AB+BA is the anticommutator. Now only the fully
antisymmetric part of ψ survives the integration in eq. (1.33), and so we
can restrict our attention to

ψ(. . . xi . . . xj . . . ; t) = −ψ(. . . xj . . .xi . . . ; t) . (1.39)

Thus we have a theory of fermions. It is straightforward to check that
the abstract Schrödinger equation, eq. (1.1), still implies that ψ obeys the
differential equation (1.30).1 Interestingly, there is no simple way to write

1Now, however, the ordering of the a and a† operators in the last term of eq. (1.32)
becomes significant, and must be as written.
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down a quantum field theory with particles that obey Boltzmann statistics,
corresponding to a wave function with no particular symmetry. This is a
hint of the spin-statistics theorem, which applies to relativistic quantum
field theory. It says that interacting particles with integer spin must be
bosons, and interacting particles with half-integer spin must be fermions.
In our nonrelativistic example, the interacting particles clearly have spin
zero (because their creation operators carry no labels that could be inter-
preted as corresponding to different spin states), but can be either bosons
or fermions, as we have seen.

Now that we have seen how to rewrite the nonrelativistic quantum me-
chanics of multiple bosons or fermions as a quantum field theory, it is time
to try to construct a relativistic version.

Reference Notes

The history of the physics of elementary particles is recounted in Pais. A
brief overview can be found in Weinberg I. More details on quantum field
theory for nonrelativistic particles can be found in Brown.

Problems

1.1) Show that the Dirac matrices must be even dimensional. Hint: show
that the eigenvalues of β are all ±1, and that Trβ = 0. To show that
Trβ = 0, consider, e.g., Trα2

1β. Similarly, show that Trαi = 0.

1.2) With the hamiltonian of eq. (1.32), show that the state defined in
eq. (1.33) obeys the abstract Schrödinger equation, eq. (1.1), if and
only if the wave function obeys eq. (1.30). Your demonstration should
apply both to the case of bosons, where the particle creation and anni-
hilation operators obey the commutation relations of eq. (1.31), and
to fermions, where the particle creation and annihilation operators
obey the anticommutation relations of eq. (1.38).

1.3) Show explicitly that [N,H] = 0, where H is given by eq. (1.32) and
N by eq. (1.35).



2 Lorentz Invariance

Prerequisite: 1

A Lorentz transformation is a linear, homogeneous change of coordinates
from xµ to x̄µ,

x̄µ = Λµνx
ν , (2.1)

that preserves the interval x2 between xµ and the origin, where

x2 ≡ xµxµ = gµνx
µxν = x2 − c2t2 . (2.2)

This means that the matrix Λµν must obey

gµνΛ
µ
ρΛ

ν
σ = gρσ , (2.3)

where

gµν =




−1
+1

+1
+1


 . (2.4)

is the Minkowski metric.
Note that this set of transformations includes ordinary spatial rotations:

take Λ0
0 = 1, Λ0

i = Λi0 = 0, and Λij = Rij, where R is an orthogonal
rotation matrix.

The set of all Lorentz transformations forms a group: the product of
any two Lorentz transformations is another Lorentz transformation; the
product is associative; there is an identity transformation, Λµν = δµν ;
and every Lorentz transformation has an inverse. It is easy to demonstrate
these statements explicitly. For example, to find the inverse transformation
(Λ−1)µν , note that the left-hand side of eq. (2.3) can be written as ΛνρΛ

ν
σ,

and that we can raise the ρ index on both sides to get Λν
ρΛνσ = δρσ. On

the other hand, by definition, (Λ−1)ρνΛ
ν
σ = δρσ. Therefore

(Λ−1)ρν = Λν
ρ . (2.5)

Another useful version of eq. (2.3) is

gµνΛρµΛ
σ
ν = gρσ . (2.6)

To get eq. (2.6), start with eq. (2.3), but with the inverse transformations
(Λ−1)µρ and (Λ−1)νσ. Then use eq. (2.5), raise all down indices, and lower
all up indices. The result is eq. (2.6).

For an infinitesimal Lorentz transformation, we can write

Λµν = δµν + δωµν . (2.7)
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Eq. (2.3) can be used to show that δω with both indices down (or up) is
antisymmetric:

δωρσ = −δωσρ . (2.8)

Thus there are six independent infinitesimal Lorentz transformations (in
four spacetime dimensions). These can be divided into three rotations
(δωij = −εijkn̂kδθ for a rotation by angle δθ about the unit vector n̂) and
three boosts (δωi0 = n̂iδη for a boost in the direction n̂ by rapidity δη).

Not all Lorentz transformations can be reached by compounding in-
finitesimal ones. If we take the determinant of eq. (2.5), we get (det Λ)−1 =
detΛ, which implies detΛ = ±1. Transformations with detΛ = +1 are
proper, and transformations with detΛ = −1 are improper. Note that the
product of any two proper Lorentz transformations is proper, and that
infinitesimal transformations of the form Λ = 1 + δω are proper. There-
fore, any transformation that can be reached by compounding infinitesimal
ones is proper. The proper transformations form a subgroup of the Lorentz
group.

Another subgroup is that of the orthochronous Lorentz transformations:
those for which Λ0

0 ≥ +1. Note that eq. (2.3) implies (Λ0
0)

2 −Λi0Λ
i
0 = 1;

thus, either Λ0
0 ≥ +1 or Λ0

0 ≤ −1. An infinitesimal transformation is
clearly orthochronous, and it is straightforward to show that the product
of two orthochronous transformations is also orthochronous.

Thus, the Lorentz transformations that can be reached by compounding
infinitesimal ones are both proper and orthochronous, and they form a
subgroup. We can introduce two discrete transformations that take us out
of this subgroup: parity and time reversal. The parity transformation is

Pµ
ν = (P−1)µν =




+1
−1

−1
−1


 . (2.9)

It is orthochronous, but improper. The time-reversal transformation is

T µ
ν = (T −1)µν =




−1
+1

+1
+1


 . (2.10)

It is nonorthochronous and improper.
Generally, when a theory is said to be Lorentz invariant, this means

under the proper orthochronous subgroup only. Parity and time reversal
are treated separately. It is possible for a quantum field theory to be
invariant under the proper orthochronous subgroup, but not under parity
and/or time-reversal.
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From here on, in this section, we will treat the proper orthochronous
subgroup only. Parity and time reversal will be treated in section 23.

In quantum theory, symmetries are represented by unitary (or antiu-
nitary) operators. This means that we associate a unitary operator U(Λ)
to each proper, orthochronous Lorentz transformation Λ. These operators
must obey the composition rule

U(Λ′Λ) = U(Λ′)U(Λ) . (2.11)

For an infinitesimal transformation, we can write

U(1+δω) = I + i
2h̄δωµνM

µν , (2.12)

where Mµν = −Mνµ is a set of hermitian operators called the generators
of the Lorentz group. If we start with U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ), let
Λ′ = 1 + δω′, and expand both sides to linear order in δω, we get

δωµνU(Λ)−1MµνU(Λ) = δωµνΛ
µ
ρΛ

ν
σM

ρσ . (2.13)

Then, since δωµν is arbitrary (except for being antisymmetric), the anti-
symmetric part of its coefficient on each side must be the same. In this
case, because Mµν is already antisymmetric (by definition), we have

U(Λ)−1MµνU(Λ) = ΛµρΛ
ν
σM

ρσ . (2.14)

We see that each vector index on Mµν undergoes its own Lorentz trans-
formation. This is a general result: any operator carrying one or more
vector indices should behave similarly. For example, consider the energy-
momentum four-vector Pµ, where P 0 is the hamiltonian H and P i are the
components of the total three-momentum operator. We expect

U(Λ)−1PµU(Λ) = ΛµνP
ν . (2.15)

If we now let Λ = 1 + δω in eq. (2.14), expand to linear order in δω,
and equate the antisymmetric part of the coefficients of δωµν , we get the
commutation relations

[Mµν ,Mρσ] = ih̄
(
gµρMνσ − (µ↔ν)

)
− (ρ↔σ) . (2.16)

These commutation relations specify the Lie algebra of the Lorentz group.
We can identify the components of the angular momentum operator J as
Ji ≡ 1

2εijkM
jk, and the components of the boost operator K as Ki ≡M i0.

We then find from eq. (2.16) that

[Ji, Jj ] = ih̄εijkJk ,

[Ji,Kj ] = ih̄εijkKk ,

[Ki,Kj ] = −ih̄εijkJk . (2.17)
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The first of these is the usual set of commutators for angular momentum,
and the second says that K transforms as a three-vector under rotations.
The third implies that a series of boosts can be equivalent to a rotation.

Similarly, we can let Λ = 1 + δω in eq. (2.15) to get

[Pµ,Mρσ ] = ih̄
(
gµσP ρ − (ρ↔σ)

)
, (2.18)

which becomes

[Ji,H] = 0 ,

[Ji, Pj ] = ih̄εijkPk ,

[Ki,H] = ih̄Pi ,

[Ki, Pj ] = ih̄δijH , (2.19)

Also, the components of Pµ should commute with each other:

[Pi, Pj ] = 0 ,

[Pi,H] = 0 . (2.20)

Together, eqs. (2.17), (2.19), and (2.20) form the Lie algebra of the Poincaré
group.

Let us now consider what should happen to a quantum scalar field ϕ(x)
under a Lorentz transformation. We begin by recalling how time evolution
works in the Heisenberg picture:

e+iHt/h̄ϕ(x, 0)e−iHt/h̄ = ϕ(x, t) . (2.21)

Obviously, this should have a relativistic generalization,

e−iPx/h̄ϕ(0)e+iPx/h̄ = ϕ(x) , (2.22)

where Px = Pµxµ = P · x − Hct. We can make this a little fancier by
defining the unitary spacetime translation operator

T (a) ≡ exp(−iPµaµ/h̄) . (2.23)

Then we have
T (a)−1ϕ(x)T (a) = ϕ(x− a) . (2.24)

For an infinitesimal translation,

T (δa) = I − i
h̄δaµP

µ . (2.25)

Comparing eqs. (2.12) and (2.25), we see that eq. (2.24) leads us to expect

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (2.26)
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Derivatives of ϕ then carry vector indices that transform in the appropriate
way, e.g.,

U(Λ)−1∂µϕ(x)U(Λ) = Λµρ∂̄
ρϕ(Λ−1x) , (2.27)

where the bar on a derivative means that it is with respect to the argument
x̄ = Λ−1x. Eq. (2.27) also implies

U(Λ)−1∂2ϕ(x)U(Λ) = ∂̄2ϕ(Λ−1x) , (2.28)

so that the Klein-Gordon equation, (−∂2 + m2/h̄2c2)ϕ = 0, is Lorentz
invariant, as we saw in section 1.

Reference Notes

A detailed discussion of quantum Lorentz transformations can be found in
Weinberg I.

Problems

2.1) Verify that eq. (2.8) follows from eq. (2.3).

2.2) Verify that eq. (2.14) follows from U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ).

2.3) Verify that eq. (2.16) follows from eq. (2.14).

2.4) Verify that eq. (2.17) follows from eq. (2.16).

2.5) Verify that eq. (2.18) follows from eq. (2.15).

2.6) Verify that eq. (2.19) follows from eq. (2.18).

2.7) What property should be attributed to the translation operator T (a)
that could be used to prove eq. (2.20)?

2.8) a) Let Λ = 1 + δω in eq. (2.26), and show that

[ϕ(x),Mµν ] = Lµνϕ(x) , (2.29)

where
Lµν ≡ h̄

i (x
µ∂ν − xν∂µ) . (2.30)

b) Show that [[ϕ(x),Mµν ],Mρσ ] = LµνLρσϕ(x).

c) Prove the Jacobi identity, [[A,B], C] + [[B,C], A] + [[C,A], B] = 0.
Hint: write out all the commutators.

d) Use your results from parts (b) and (c) to show that

[ϕ(x), [Mµν ,Mρσ ]] = (LµνLρσ − LρσLµν)ϕ(x) . (2.31)
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e) Simplify the right-hand side of eq. (2.31) as much as possible.

f) Use your results from part (e) to verify eq. (2.16), up to the possi-
bility of a term on the right-hand side that commutes with ϕ(x) and
its derivatives. (Such a term, called a central charge, in fact does not
arise for the Lorentz algebra.)

2.9) Let us write
Λρτ = δρτ + i

2h̄δωµν(S
µν
V )ρτ , (2.32)

where
(SµνV )ρτ ≡ h̄

i (g
µρδντ − gνρδµτ ) (2.33)

are matrices which constitute the vector representation of the Lorentz
generators.

a) Let Λ = 1 + δω in eq. (2.27), and show that

[∂ρϕ(x),Mµν ] = Lµν∂ρϕ(x) + (SµνV )ρτ∂
τϕ(x) . (2.34)

b) Show that the matrices SµνV must have the same commutation
relations as the operators Mµν . Hint: see the previous problem.

c) For a rotation by an angle θ about the z axis, we have

Λµν =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 . (2.35)

Show that
Λ = exp(−iθS12

V /h̄) . (2.36)

d) For a boost by rapidity η in the z direction, we have

Λµν =




cosh η 0 0 sinh η
0 1 0 0
0 0 1 0

sinh η 0 0 cosh η


 . (2.37)

Show that
Λ = exp(+iηS30

V /h̄) . (2.38)
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3 Canonical Quantization of Scalar Fields

Prerequisite: 2

Let us go back and drastically simplify the hamiltonian we constructed in
section 1, reducing it to the hamiltonian for free particles:

H =

∫
d3x a†(x)

(
− 1

2m∇2
)
a(x)

=

∫
d3p 1

2mp2 ã†(p)ã(p) , (3.1)

where

ã(p) =

∫
d3x

(2π)3/2
e−ip·x a(x) . (3.2)

Here we have simplified our notation by setting

h̄ = 1 . (3.3)

The appropriate factors of h̄ can always be restored in any of our formulas
via dimensional analysis. The commutation (or anticommutation) relations
of the ã(p) and ã†(p) operators are

[ ã(p), ã(p′)]∓ = 0 ,

[ ã†(p), ã†(p′)]∓ = 0 ,

[ ã(p), ã†(p′)]∓ = δ3(p − p′) , (3.4)

where [A,B]∓ is either the commutator (if we want a theory of bosons)
or the anticommutator (if we want a theory of fermions). Thus ã†(p) can
be interpreted as creating a state of definite momentum p, and eq. (3.1)
describes a theory of free particles. The ground state is the vacuum |0〉; it
is annihilated by ã(p),

ã(p)|0〉 = 0 , (3.5)

and so its energy eigenvalue is zero. The other eigenstates of H are all of
the form ã†(p1) . . . ã

†(pn)|0〉, and the corresponding energy eigenvalue is
E(p1) + . . .+ E(pn), where E(p) = 1

2mp2.
It is easy to see how to generalize this theory to a relativistic one; all we

need to do is use the relativistic energy formula E(p) = +(p2c2 +m2c4)1/2:

H =

∫
d3p (p2c2 +m2c4)1/2 ã†(p)ã(p) . (3.6)

Now we have a theory of free relativistic spin-zero particles, and they can
be either bosons or fermions.
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Is this theory really Lorentz invariant? We will answer this question (in
the affirmative) in a very roundabout way: by constructing it again, from
a rather different point of view, a point of view that emphasizes Lorentz
invariance from the beginning.

We will start with the classical physics of a real scalar field ϕ(x). Real
means that ϕ(x) assigns a real number to every point in spacetime. Scalar
means that Alice [who uses coordinates xµ and calls the field ϕ(x)] and Bob
[who uses coordinates x̄µ, related to Alice’s coordinates by x̄µ = Λµνx

ν+aν ,
and calls the field ϕ̄(x̄)], agree on the numerical value of the field: ϕ(x) =
ϕ̄(x̄). This then implies that the equation of motion for ϕ(x) must be the
same as that for ϕ̄(x̄). We have already met an equation of this type: the
Klein-Gordon equation,

(−∂2 +m2)ϕ(x) = 0 . (3.7)

Here we have simplified our notation by setting

c = 1 (3.8)

in addition to h̄ = 1. As with h̄, factors of c can restored, if desired, by
dimensional analysis.

We will adopt eq. (3.7) as the equation of motion that we would like
ϕ(x) to obey. It should be emphasized at this point that we are doing
classical physics of a real scalar field. We are not to think of ϕ(x) as a
quantum wave function. Thus, there should not be any factors of h̄ in this
version of the Klein-Gordon equation. This means that the parameter m
must have dimensions of inverse length; m is not (yet) to be thought of as
a mass.

The equation of motion can be derived from variation of an action
S =

∫
dtL, where L is the lagrangian. Since the Klein-Gordon equation is

local, we expect that the lagrangian can be written as the space integral of
a lagrangian density L: L =

∫
d3xL. Thus, S =

∫
d4xL. The integration

measure d4x is Lorentz invariant: if we change to coordinates x̄µ = Λµνx
ν ,

we have d4x̄ = |detΛ| d4x = d4x. Thus, for the action to be Lorentz in-
variant, the lagrangian density must be a Lorentz scalar: L(x) = L̄(x̄).
Then we have S̄ =

∫
d4x̄ L̄(x̄) =

∫
d4xL(x) = S. Any simple function of

ϕ is a Lorentz scalar, and so are products of derivatives with all indices
contracted, such as ∂µϕ∂µϕ. We will take for L

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 + Ω0 , (3.9)

where Ω0 is an arbitrary constant. We find the equation motion (also known
as the Euler-Lagrange equation) by making an infinitesimal variation δϕ(x)
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in ϕ(x), and requiring the corresponding variation of the action to vanish:

0 = δS

=

∫
d4x

[
−1

2∂
µδϕ∂µϕ− 1

2∂
µϕ∂µδϕ −m2ϕδϕ

]

=

∫
d4x

[
+∂µ∂µϕ−m2ϕ

]
δϕ . (3.10)

In the last line, we have integrated by parts in each of the first two terms,
putting both derivatives on ϕ. We assume δϕ(x) vanishes at infinity in
any direction (spatial or temporal), so that there is no surface term. Since
δϕ has an arbitrary x dependence, eq. (3.10) can be true if and only if
(−∂2 +m2)ϕ = 0.

One solution of the Klein-Gordon equation is a plane wave of the form
exp(ik·x ± iωt), where k is an arbitrary real wave-vector, and

ω = +(k2 +m2)1/2 . (3.11)

The general solution (assuming boundary conditions that require ϕ to re-
main finite at spatial infinity) is then

ϕ(x, t) =

∫
d3k

f(k)

[
a(k)eik·x−iωt + b(k)eik·x+iωt

]
, (3.12)

where a(k) and b(k) are arbitrary functions of the wave vector k, and f(k)
is a redundant function of the magnitude of k which we have inserted for
later convenience. Note that, if we were attempting to interpret ϕ(x) as
a quantum wave function (which we most definitely are not), then the
second term would constitute the “negative energy” contributions to the
wave function. This is because a plane-wave solution of the nonrelativistic
Schrödinger equation for a single particle looks like exp(ip · x − iE(p)t),
with E(p) = 1

2mp2; there is a minus sign in front of the positive energy. We
are trying to interpret eq. (3.12) as a real classical field, but this formula
does not generically result in ϕ being real. We must impose ϕ∗(x) = ϕ(x),
where

ϕ∗(x, t) =

∫
d3k

f(k)

[
a∗(k)e−ik·x+iωt + b∗(k)e−ik·x−iωt

]

=

∫
d3k

f(k)

[
a∗(k)e−ik·x+iωt + b∗(−k)e+ik·x−iωt

]
. (3.13)

In the second term on the second line, we have changed the dummy inte-
gration variable from k to −k. Comparing eqs. (3.12) and (3.13), we see
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that ϕ∗(x) = ϕ(x) requires b∗(−k) = a(k). Imposing this condition, we
can rewrite ϕ as

ϕ(x, t) =

∫
d3k

f(k)

[
a(k)eik·x−iωt + a∗(−k)eik·x+iωt

]

=

∫
d3k

f(k)

[
a(k)eik·x−iωt + a∗(k)e−ik·x+iωt

]

=

∫
d3k

f(k)

[
a(k)eikx + a∗(k)e−ikx

]
, (3.14)

where kx = k ·x − ωt is the Lorentz-invariant product of the four-vectors
xµ = (t,x) and kµ = (ω,k): kx = kµxµ = gµνk

µxν . Note that

k2 = kµkµ = k2 − ω2 = −m2 . (3.15)

A four-momentum kµ that obeys k2 = −m2 is said to be on the mass shell,
or on shell for short.

It is now convenient to choose f(k) so that d3k/f(k) is Lorentz invariant.
An integration measure that is manifestly invariant under orthochronous
Lorentz transformations is d4k δ(k2+m2) θ(k0), where δ(x) is the Dirac delta
function, θ(x) is the unit step function, and k0 is treated as an independent
integration variable. We then have

∫ +∞

−∞
dk0 δ(k2+m2) θ(k0) =

1

2ω
. (3.16)

Here we have used the rule
∫ +∞

−∞
dx δ(g(x)) =

∑

i

1

|g′(xi)|
, (3.17)

where g(x) is any smooth function of x with simple zeros at x = xi; in our
case, the only zero is at k0 = ω.

Thus we see that if we take f(k) ∝ ω, then d3k/f(k) will be Lorentz
invariant. We will take f(k) = (2π)32ω. It is then convenient to give the
corresponding Lorentz-invariant differential its own name:

d̃k ≡ d3k

(2π)32ω
. (3.18)

Thus we finally have

ϕ(x) =

∫
d̃k
[
a(k)eikx + a∗(k)e−ikx

]
. (3.19)
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We can also invert this formula to get a(k) in terms of ϕ(x). We have

∫
d3x e−ikxϕ(x) = 1

2ωa(k) + 1
2ωe

2iωta∗(−k) ,

∫
d3x e−ikx∂0ϕ(x) = − i

2a(k) + i
2e

2iωta∗(−k) . (3.20)

We can combine these to get

a(k) =

∫
d3x e−ikx

[
i∂0ϕ(x) + ωϕ(x)

]

= i

∫
d3x e−ikx

↔
∂0ϕ(x) , (3.21)

where f
↔
∂µg ≡ f(∂µg) − (∂µf)g, and ∂0ϕ = ∂ϕ/∂t = ϕ̇. Note that a(k) is

time independent.
Now that we have the lagrangian, we can construct the hamiltonian by

the usual rules. Recall that, given a lagrangian L(qi, q̇i) as a function of
some coordinates qi and their time derivatives q̇i, the conjugate momenta
are given by pi = ∂L/∂q̇i, and the hamiltonian by H =

∑
i piq̇i − L. In

our case, the role of qi(t) is played by ϕ(x, t), with x playing the role of a
(continuous) index. The appropriate generalizations are then

Π(x) =
∂L
∂ϕ̇(x)

(3.22)

and
H = Πϕ̇− L , (3.23)

where H is the hamiltonian density, and the hamiltonian itself is H =∫
d3x H. In our case, we have

Π(x) = ϕ̇(x) (3.24)

and
H = 1

2Π2 + 1
2(∇ϕ)2 + 1

2m
2ϕ2 − Ω0 . (3.25)

Using eq. (3.19), we can write H in terms of the a(k) and a∗(k) coefficients:

H = −Ω0V + 1
2

∫
d̃k d̃k

′
d3x

[

(
−iω a(k)eikx + iω a∗(k)e−ikx

) (
−iω′ a(k′)eik′x + iω′ a∗(k′)e−ik

′x
)

+
(
+ik a(k)eikx − ik a∗(k)e−ikx

)
·
(
+ik′ a(k′)eik

′x − ik′ a∗(k′)e−ik
′x
)

+m2
(
a(k)eikx + a∗(k)e−ikx

) (
a(k′)eik

′x + a∗(k′)e−ik
′x
)]
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= −Ω0V + 1
2(2π)3

∫
d̃k d̃k

′ [

δ3(k− k′)(+ωω′ + k·k′ +m2)

×
(
a∗(k)a(k′)e−i(ω−ω

′)t + a(k)a∗(k′)e+i(ω−ω
′)t
)

+ δ3(k + k′)(−ωω′ − k·k′ +m2)

×
(
a(k)a(k′)e−i(ω+ω′)t + a∗(k)a∗(k′)e+i(ω+ω′)t

)

= −Ω0V + 1
2

∫
d̃k 1

2ω

[

(+ω2 + k2 +m2)
(
a∗(k)a(k) + a(k)a∗(k)

)

+ (−ω2 + k2 +m2)
(
a(k)a(−k)e−2iωt + a∗(k)a∗(−k)e+2iωt

)]

= −Ω0V + 1
2

∫
d̃k ω

(
a∗(k)a(k) + a(k)a∗(k)

)
, (3.26)

where V is the volume of space. To get the second equality, we used
∫
d3x eiq·x = (2π)3δ3(q) . (3.27)

To get the third equality, we integrated over k′, using d̃k
′
= d3k′/(2π)32ω′.

The last equality then follows from ω = (k2+m2)1/2. Also, we were careful
to keep the ordering of a(k) and a∗(k) unchanged throughout, in anticipa-
tion of passing to the quantum theory where these classical functions will
become operators that may not commute.

Let us take up the quantum theory now. We can go from classical
to quantum mechanics via canonical quantization. This means that we
promote qi and pi to operators, with commutation relations [qi, qj ] = 0,
[pi, pj ] = 0, and [qi, pj ] = ih̄δij . In the Heisenberg picture, these operators
should be taken at equal times. In our case, where the “index” is continuous
(and we have set h̄ = 1), we have

[ϕ(x, t), ϕ(x′, t)] = 0 ,

[Π(x, t),Π(x′, t)] = 0 ,

[ϕ(x, t),Π(x′, t)] = iδ3(x− x′) . (3.28)

From these canonical commutation relations, and from eqs. (3.21) and (3.24),
we can deduce

[a(k), a(k′)] = 0 ,

[a†(k), a†(k′)] = 0 ,

[a(k), a†(k′)] = (2π)32ω δ3(k− k′) . (3.29)
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We are now denoting a∗(k) as a†(k), since a†(k) is now the hermitian
conjugate (rather than the complex conjugate) of the operator a(k). We
can now rewrite the hamiltonian as

H =

∫
d̃k ω a†(k)a(k) + (E0 − Ω0)V , (3.30)

where

E0 = 1
2(2π)−3

∫
d3k ω (3.31)

is the total zero-point energy of all the oscillators per unit volume, and,
using eq. (3.27), we have interpreted (2π)3δ3(0) as the volume of space V .

If we integrate in eq. (3.31) over the whole range of k, the value of E0 is
infinite. If we integrate only up to a maximum value of Λ, a number known
as the ultraviolet cutoff, we find

E0 =
Λ4

16π2
, (3.32)

where we have assumed Λ ≫ m. This is physically justified if, in the real
world, the formalism of quantum field theory breaks down at some large
energy scale. For now, we simply note that the value of Ω0 is arbitrary, and
so we are free to choose Ω0 = E0. With this choice, the ground state has
energy eigenvalue zero. Now, if we like, we can take the limit Λ → ∞, with
no further consequences. (We will meet more of these ultraviolet divergences
after we introduce interactions.)

The hamiltonian of eq. (3.30) is now the same as that of eq. (3.6), with
a(k) = [(2π)32ω]1/2 ã(k). The commutation relations (3.4) and (3.29) are
also equivalent, if we choose commutators (rather than anticommutators)
in eq. (3.4). Thus, we have re-derived the hamiltonian of free relativistic
bosons by quantization of a scalar field whose equation of motion is the
Klein-Gordon equation. The parameter m in the lagrangian is now seen to
be the mass of the particle in the quantum theory. (More precisely, since
m has dimensions of inverse length, the particle mass is h̄cm.)

What if we want fermions? Then we should use anticommutators in
eqs. (3.28) and (3.29). There is a problem, though; eq. (3.26) does not then
become eq. (3.30). Instead, we get H = −Ω0V , a simple constant. Clearly
there is something wrong with using anticommutators. This is another hint
of the spin-statistics theorem, which we will take up in section 4.

Next, we would like to add Lorentz-invariant interactions to our theory.
With the formalism we have developed, this is easy to do. Any local func-
tion of ϕ(x) is a Lorentz scalar, and so if we add a term like ϕ3 or ϕ4 to
the lagrangian density L, the resulting action will still be Lorentz invariant.
Now, however, we will have interactions among the particles. Our next task
is to deduce the consequences of these interactions.
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However, we already have enough tools at our disposal to prove the
spin-statistics theorem for spin-zero particles, and that is what we turn to
next.

Problems

3.1) Derive eq. (3.29) from eqs. (3.21), (3.24), and (3.28).

3.2) Use the commutation relations, eq. (3.29), to show explicitly that a
state of the form

|k1 . . . kn〉 ≡ a†(k1) . . . a
†(kn)|0〉 (3.33)

is an eigenstate of the hamiltonian, eq. (3.30), with eigenvalue ω1 +
. . .+ωn. The vacuum |0〉 is annihilated by a(k), a(k)|0〉 = 0, and we
take Ω0 = E0 in eq. (3.30).

3.3) Use U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) to show that

U(Λ)−1a(k)U(Λ) = a(Λ−1k) ,

U(Λ)−1a†(k)U(Λ) = a†(Λ−1k) , (3.34)

and hence that

U(Λ)|k1 . . . kn〉 = |Λk1 . . .Λkn〉 , (3.35)

where |k1 . . . kn〉 = a†(k1) . . . a
†(kn)|0〉 is a state of n particles with

momenta k1, . . . , kn.

3.4) Recall that T (a)−1ϕ(x)T (a) = ϕ(x− a), where T (a) ≡ exp(−iPµaµ)
is the spacetime translation operator, and P 0 is identified as the
hamiltonian H.

a) Let aµ be infinitesimal, and derive an expression for [ϕ(x), Pµ].

b) Show that the time component of your result is equivalent to the
Heisenberg equation of motion iϕ̇ = [ϕ,H].

c) For a free field, use the Heisenberg equation to derive the Klein-
Gordon equation.

d) Define a spatial momentum operator

P ≡ −
∫
d3xΠ(x)∇ϕ(x) . (3.36)

Use the canonical commutation relations to show that P obeys the
relation you derived in part (a).

e) Express P in terms of a(k) and a†(k).
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3.5) Consider a complex (that is, nonhermitian) scalar field ϕ with la-
grangian density

L = −∂µϕ†∂µϕ−m2ϕ†ϕ+ Ω0 . (3.37)

a) Show that ϕ obeys the Klein-Gordon equation.

b) Treat ϕ and ϕ† as independent fields, and find the conjugate mo-
mentum for each. Compute the hamiltonian density in terms of these
conjugate momenta and the fields themselves (but not their time
derivatives).

c) Write the mode expansion of ϕ as

ϕ(x) =

∫
d̃k
[
a(k)eikx + b†(k)e−ikx

]
. (3.38)

Express a(k) and b(k) in terms of ϕ and ϕ† and their time derivatives.

d) Assuming canonical commutation relations for the fields and their
conjugate momenta, find the commutation relations obeyed by a(k)
and b(k) and their hermitian conjugates.

e) Express the hamiltonian in terms of a(k) and b(k) and their her-
mitian conjugates. What value must Ω0 have in order for the ground
state to have zero energy?



4: The Spin-Statistics Theorem 45

4 The Spin-Statistics Theorem

Prerequisite: 3

Let us consider a theory of free, spin-zero particles specified by the hamil-
tonian

H0 =

∫
d̃k ω a†(k)a(k) , (4.1)

where ω = (k2 +m2)1/2, and either the commutation or anticommutation
relations

[a(k), a(k′)]∓ = 0 ,

[a†(k), a†(k′)]∓ = 0 ,

[a(k), a†(k′)]∓ = (2π)32ω δ3(k − k′) . (4.2)

Of course, if we want a theory of bosons, we should use commutators, and
if we want fermions, we should use anticommutators.

Now let us consider adding terms to the hamiltonian that will result in
local, Lorentz invariant interactions. In order to do this, it is convenient to
define a nonhermitian field,

ϕ+(x, 0) ≡
∫
d̃k eik·x a(k) , (4.3)

and its hermitian conjugate

ϕ−(x, 0) ≡
∫
d̃k e−ik·x a†(k) . (4.4)

These are then time-evolved with H0:

ϕ+(x, t) = eiH0tϕ+(x, 0)e−iH0t =

∫
d̃k eikx a(k) ,

ϕ−(x, t) = eiH0tϕ−(x, 0)e−iH0t =

∫
d̃k e−ikx a†(k) . (4.5)

Note that the usual hermitian free field ϕ(x) is just the sum of these:
ϕ(x) = ϕ+(x) + ϕ−(x).

For a proper orthochronous Lorentz transformation Λ, we have

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (4.6)

This implies that the particle creation and annihilation operators transform
as

U(Λ)−1a(k)U(Λ) = a(Λ−1k) ,

U(Λ)−1a†(k)U(Λ) = a†(Λ−1k) . (4.7)
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This, in turn, implies that ϕ+(x) and ϕ−(x) are Lorentz scalars:

U(Λ)−1ϕ±(x)U(Λ) = ϕ±(Λ−1x) . (4.8)

We will then have local, Lorentz invariant interactions if we take the in-
teraction lagrangian density L1 to be a hermitian function of ϕ+(x) and
ϕ−(x).

To proceed we need to recall some facts about time-dependent pertur-
bation theory in quantum mechanics. The transition amplitude Tf←i to
start with an initial state |i〉 at time t = −∞ and end with a final state |f〉
at time t = +∞ is

Tf←i = 〈f |T exp

[
−i
∫ +∞

−∞
dt HI(t)

]
|i〉 , (4.9)

where HI(t) is the perturbing hamiltonian in the interaction picture,

HI(t) = exp(+iH0t)H1 exp(−iH0t) , (4.10)

H1 is the perturbing hamiltonian in the Schrödinger picture, and T is the
time ordering symbol : a product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at earlier
times. We write H1 =

∫
d3xH1(x, 0), and specify H1(x, 0) as a hermitian

function of ϕ+(x, 0) and ϕ−(x, 0). Then, using eqs. (4.5) and (4.10), we
can see that, in the interaction picture, the perturbing hamiltonian density
HI(x, t) is simply given by the same function of ϕ+(x, t) and ϕ−(x, t).

Now we come to the key point: for the transition amplitude Tf←i to
be Lorentz invariant, the time ordering must be frame independent. The
time ordering of two spacetime points x and x′ is frame independent if
their separation is timelike; this means that the interval between them is
negative, (x−x′)2 < 0. Two spacetime points whose separation is spacelike,
(x − x′)2 > 0, can have different temporal ordering in different frames. In
order to avoid Tf←i being different in different frames, we must then require

[HI(x),HI(x
′)] = 0 whenever (x− x′)2 > 0 . (4.11)

Obviously, [ϕ+(x), ϕ+(x′)]∓ = [ϕ−(x), ϕ−(x′)]∓ = 0. However,

[ϕ+(x), ϕ−(x′)]∓ =

∫
d̃k d̃k

′
ei(kx−k

′x′)[a(k), a†(k′)]∓

=

∫
d̃k eik(x−x

′)

=
m

4π2r
K1(mr)

≡ C(r) . (4.12)
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In the next-to-last line, we have taken (x − x′)2 = r2 > 0, and K1(z) is
a modified Bessel function. (This Lorentz-invariant integral is most easily
evaluated in the frame where t′ = t.) The function C(r) is not zero for any
r > 0. (Not even when m = 0; in this case, C(r) = 1/4π2r2.) On the other
hand, HI(x) must involve both ϕ+(x) and ϕ−(x), by hermiticity. Thus,
generically, we will not be able to satisfy eq. (4.11).

To resolve this problem, let us try using only particular linear combi-
nations of ϕ+(x) and ϕ−(x). Define

ϕλ(x) ≡ ϕ+(x) + λϕ−(x) ,

ϕ†λ(x) ≡ ϕ−(x) + λ∗ϕ+(x) , (4.13)

where λ is an arbitrary complex number. We then have

[ϕλ(x), ϕ
†
λ(x
′)]∓ = [ϕ+(x), ϕ−(x′)]∓ + |λ|2[ϕ−(x), ϕ+(x′)]∓

= (1 ∓ |λ|2)C(r) (4.14)

and

[ϕλ(x), ϕλ(x
′)]∓ = λ[ϕ+(x), ϕ−(x′)]∓ + λ[ϕ−(x), ϕ+(x′)]∓

= λ(1 ∓ 1)C(r) . (4.15)

Thus, if we want ϕλ(x) to either commute or anticommute with both ϕλ(x
′)

and ϕ†λ(x
′) at spacelike separations, we must choose |λ| = 1, and we must

choose commutators. Then (and only then), we can build a suitable HI(x)
by making it a hermitian function of ϕλ(x).

But this has simply returned us to the theory of a real scalar field,
because, for λ = eiα, e−iα/2ϕλ(x) is hermitian. In fact, if we make the
replacements a(k) → e+iα/2a(k) and a†(k) → e−iα/2a†(k), then the com-
mutation relations of eq. (4.2) are unchanged, and e−iα/2ϕλ(x) = ϕ(x) =
ϕ+(x)+ϕ−(x). Thus, our attempt to start with the creation and annihila-
tion operators a†(k) and a(k) as the fundamental objects has simply led us
back to the real, commuting, scalar field ϕ(x) as the fundamental object.

Let us return to thinking of ϕ(x) as fundamental, with a lagrangian den-
sity given by some function of the Lorentz scalars ϕ(x) and ∂µϕ(x)∂µϕ(x).
Then, quantization will result in [ϕ(x), ϕ(x′)]∓ = 0 for t = t′. If we choose
anticommutators, then [ϕ(x)]2 = 0 and [∂µϕ(x)]2 = 0, resulting in a trivial
L that is at most linear in ϕ, and independent of ϕ̇. This clearly does not
lead to the correct physics.

This situation turns out to generalize to fields of higher spin, in any
number of spacetime dimensions. One choice of quantization (commuta-
tors or anticommutators) always leads to a trivial L, and so this choice
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is disallowed. Furthermore, the allowed choice is always commutators for
fields of integer spin, and anticommutators for fields of half-integer spin.
If we try treating the particle creation and annihilation operators as fun-
damental, rather than the fields, we find a situation similar to that of the
spin-zero case, and are led to the reconstruction of a field that must obey
the appropriate quantization scheme.

Reference Notes

This discussion of the spin-statistics theorem follows that of Weinberg I,
which has more details.

Problems

4.1) Verify eq. (4.12). Verify its limit as m → 0.
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5 The LSZ Reduction Formula

Prerequisite: 3

Let us now consider how to construct appropriate initial and final states
for scattering experiments. In the free theory, we can create a state of one
particle by acting on the vacuum state with a creation operator

|k〉 = a†(k)|0〉 , (5.1)

where

a†(k) = −i
∫
d3x eikx

↔
∂0ϕ(x) . (5.2)

The vacuum state |0〉 is annihilated by every a(k),

a(k)|0〉 = 0 , (5.3)

and has unit norm,
〈0|0〉 = 1 . (5.4)

The one-particle state |k〉 then has the Lorentz-invariant normalization

〈k|k′〉 = (2π)3 2ω δ3(k− k′) , (5.5)

where ω = (k2 +m2)1/2.
Next, let us define a time-independent operator that (in the free theory)

creates a particle localized in momentum space near k1, and localized in
position space near the origin:

a†1 ≡
∫
d3k f1(k)a†(k) , (5.6)

where
f1(k) ∝ exp[−(k − k1)

2/4σ2] (5.7)

is an appropriate wave packet, and σ is its width in momentum space.
Consider the state a†1|0〉. If we time evolve this state in the Schrödinger
picture, the wave packet will propagate (and spread out). The particle is
thus localized far from the origin as t → ±∞. If we consider instead a
state of the form a†1a

†
2|0〉, where k1 6= k2, then the two particles are widely

separated in the far past.
Let us guess that this still works in the interacting theory. One compli-

cation is that a†(k) will no longer be time independent, and so a†1, eq. (5.6),
becomes time dependent as well. Our guess for a suitable initial state of a
scattering experiment is then

|i〉 = lim
t→−∞

a†1(t)a
†
2(t)|0〉 . (5.8)
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By appropriately normalizing the wave packets, we can make 〈i|i〉 = 1, and
we will assume that this is the case. Similarly, we can consider a final state

|f〉 = lim
t→+∞

a†1′(t)a
†
2′(t)|0〉 , (5.9)

where k′1 6= k′2, and 〈f |f〉 = 1. This describes two widely separated par-
ticles in the far future. (We could also consider acting with more creation
operators, if we are interested in the production of some extra particles in
the collision of two.) Now the scattering amplitude is simply given by 〈f |i〉.

We need to find a more useful expression for 〈f |i〉. To this end, let us
note that

a†1(+∞) − a†1(−∞) =

∫ +∞

−∞
dt ∂0a

†
1(t)

= −i
∫
d3k f1(k)

∫
d4x ∂0

(
eikx

↔
∂0ϕ(x)

)

= −i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 + ω2)ϕ(x)

= −i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 + k2 +m2)ϕ(x)

= −i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 −
←
∇2 +m2)ϕ(x)

= −i
∫
d3k f1(k)

∫
d4x eikx(∂2

0 −
→
∇2 +m2)ϕ(x)

= −i
∫
d3k f1(k)

∫
d4x eikx(−∂2 +m2)ϕ(x) . (5.10)

The first equality is just the fundamental theorem of calculus. To get the
second, we substituted the definition of a†1(t), and combined the d3x from
this definition with the dt to get d4x. The third comes from straightforward
evaluation of the time derivatives. The fourth uses ω2 = k2 +m2. The fifth
writes k2 as −∇2 acting on eik·x. The sixth uses integration by parts to
move the ∇2 onto the field ϕ(x); here the wave packet is needed to avoid a
surface term. The seventh simply identifies ∂2

0 −∇2 as −∂2.
In free-field theory, the right-hand side of eq. (5.10) is zero, since ϕ(x)

obeys the Klein-Gordon equation. In an interacting theory, with (say)
L1 = 1

6gϕ
3, we have instead (−∂2 + m2)ϕ = 1

2gϕ
2. Thus the right-hand

side of eq. (5.10) is not zero in an interacting theory.
Rearranging eq. (5.10), we have

a†1(−∞) = a†1(+∞) + i

∫
d3k f1(k)

∫
d4x eikx(−∂2 +m2)ϕ(x) . (5.11)

We will also need the hermitian conjugate of this formula, which (after a
little more rearranging) reads

a1(+∞) = a1(−∞) + i

∫
d3k f1(k)

∫
d4x e−ikx(−∂2 +m2)ϕ(x) . (5.12)
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Let us return to the scattering amplitude,

〈f |i〉 = 〈0|a1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)|0〉 . (5.13)

Note that the operators are in time order. Thus, if we feel like it, we can
put in a time-ordering symbol without changing anything:

〈f |i〉 = 〈0|Ta1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)|0〉 . (5.14)

The symbol T means the product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at
earlier times.

Now let us use eqs. (5.11) and (5.12) in eq. (5.14). The time-ordering
symbol automatically moves all ai′(−∞)’s to the right, where they anni-

hilate |0〉. Similarly, all a†i (+∞)’s move to the left, where they annihilate
〈0|.

The wave packets no longer play a key role, and we can take the σ → 0
limit in eq. (5.7), so that f1(k) = δ3(k − k1). The initial and final states
now have a delta-function normalization, the multiparticle generalization
of eq. (5.5). We are left with

〈f |i〉 = in+n′
∫
d4x1 e

ik1x1(−∂2
1 +m2) . . .

d4x′1 e
−ik′1x′1(−∂2

1′ +m2) . . .

× 〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉 . (5.15)

This formula has been written to apply to the more general case of n
incoming particles and n′ outgoing particles; the ellipses stand for similar
factors for each of the other incoming and outgoing particles.

Eq. (5.15) is the Lehmann-Symanzik-Zimmermann reduction formula,
or LSZ formula for short. It is one of the key equations of quantum field
theory.

However, our derivation of the LSZ formula relied on the supposition
that the creation operators of free field theory would work comparably in
the interacting theory. This is a rather suspect assumption, and so we must
review it.

Let us consider what we can deduce about the energy and momentum
eigenstates of the interacting theory on physical grounds. First, we assume
that there is a unique ground state |0〉, with zero energy and momentum.
The first excited state is a state of a single particle with mass m. This
state can have an arbitrary three-momentum k; its energy is then E =
ω = (k2 + m2)1/2. The next excited state is that of two particles. These
two particles could form a bound state with energy less than 2m (like the
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2m

m

0

E

P

Figure 5.1: The exact energy eigenstates in the (P, E) plane. The ground
state is isolated at (0, 0), the one-particle states form an isolated hyperbola
that passes through (0,m), and the multi-particle continuum lies at and
above the hyperbola that passes through (0, 2m).

hydrogen atom in quantum electrodynamics), but, to keep things simple, let
us assume that there are no such bound states. Then the lowest possible
energy of a two-particle state is 2m. However, a two-particle state with
zero total three-momentum can have any energy above 2m, because the
two particles could have some relative momentum that contributes to their
total energy. Thus we are led to a picture of the states of theory as shown
in fig. (5.1).

Now let us consider what happens when we act on the ground state
with the field operator ϕ(x). To this end, it is helpful to write

ϕ(x) = exp(−iPµxµ)ϕ(0)exp(+iPµxµ) , (5.16)

where Pµ is the energy-momentum four-vector. (This equation, introduced
in section 2, is just the relativistic generalization of the Heisenberg equa-
tion.) Now let us sandwich ϕ(x) between the ground state (on the right),
and other possible states (on the left). For example, let us put the ground
state on the left as well. Then we have

〈0|ϕ(x)|0〉 = 〈0|e−iPxϕ(0)e+iPx|0〉

= 〈0|ϕ(0)|0〉 . (5.17)
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To get the second line, we used Pµ|0〉 = 0. The final expression is just
a Lorentz-invariant number. Since |0〉 is the exact ground state of the
interacting theory, we have (in general) no idea what this number is.

We would like 〈0|ϕ(0)|0〉 to be zero. This is because we would like

a†1(±∞), when acting on |0〉, to create a single particle state. We do not

want a†1(±∞) to create a linear combination of a single particle state and
the ground state. But this is precisely what will happen if 〈0|ϕ(0)|0〉 is not
zero.

So, if v ≡ 〈0|ϕ(0)|0〉 is not zero, we will shift the field ϕ(x) by the
constant v. This means that we go back to the lagrangian, and replace
ϕ(x) everywhere by ϕ(x) + v. This is just a change of the name of the
operator of interest, and does not affect the physics. However, the shifted
ϕ(x) obeys, by construction, 〈0|ϕ(x)|0〉 = 0.

Let us now consider 〈p|ϕ(x)|0〉, where |p〉 is a one-particle state with
four-momentum p, normalized according to eq. (5.5). Again using eq. (5.16),
we have

〈p|ϕ(x)|0〉 = 〈p|e−iPxϕ(0)e+iPx|0〉

= e−ipx〈p|ϕ(0)|0〉 , (5.18)

where 〈p|ϕ(0)|0〉 is a Lorentz-invariant number. It is a function of p, but
the only Lorentz-invariant functions of p are functions of p2, and p2 is just
the constant −m2. So 〈p|ϕ(0)|0〉 is just some number that depends on m
and (presumably) the other parameters in the lagrangian.

We would like 〈p|ϕ(0)|0〉 to be one. That is what it is in free-field theory,

and we know that, in free-field theory, a†1(±∞) creates a correctly normal-
ized one-particle state. Thus, for a†1(±∞) to create a correctly normalized
one-particle state in the interacting theory, we must have 〈p|ϕ(0)|0〉 = 1.

So, if 〈p|ϕ(0)|0〉 is not equal to one, we will rescale (or, one might say,
renormalize) ϕ(x) by a multiplicative constant. This is just a change of the
name of the operator of interest, and does not affect the physics. However,
the rescaled ϕ(x) obeys, by construction, 〈p|ϕ(0)|0〉 = 1.

Finally, consider 〈p, n|ϕ(x)|0〉, where |p, n〉 is a multiparticle state with
total four-momentum p, and n is short for all other labels (such as relative
momenta) needed to specify this state. We have

〈p, n|ϕ(x)|0〉 = 〈p, n|e−iPxϕ(0)e+iPx|0〉
= e−ipx〈p, n|ϕ(0)|0〉
= e−ipxAn(p) , (5.19)

where An(p) is a function of Lorentz invariant products of the various
(relative and total) four-momenta needed to specify the state. Note that,
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from fig. (5.1), p0 = (p2 +M2)1/2 with M ≥ 2m. The invariant mass M is
one of the parameters included in the set n.

We would like 〈p, n|ϕ(x)|0〉 to be zero, because we would like a†1(±∞),
when acting on |0〉, to create a single particle state. We do not want

a†1(±∞) to create any multiparticle states. But this is precisely what may
happen if 〈p, n|ϕ(x)|0〉 is not zero.

Actually, we are being a little too strict. We really need 〈p, n|a†1(±∞)|0〉
to be zero, and perhaps it will be zero even if 〈p, n|ϕ(x)|0〉 is not. Also, we
really should test a†1(±∞)|0〉 only against normalizable states. Mathemat-
ically, non-normalizable states cause all sorts of trouble; mathematicians
don’t consider them to be states at all. In physics, this usually doesn’t
bother us, but here we must be especially careful. So let us write

|ψ〉 =
∑

n

∫
d3p ψn(p)|p, n〉 , (5.20)

where the ψn(p)’s are wave packets for the total three-momentum p. Note
that eq. (5.20) is highly schematic; the sum over n includes integrals over
continuous parameters like relative momenta.

Now we want to examine

〈ψ|a†1(t)|0〉 = −i
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x eikx

↔
∂0 〈p, n|ϕ(x)|0〉 .

(5.21)
We will take the limit t → ±∞ in a moment. Using eq. (5.19), eq. (5.21)
becomes

〈ψ|a†1(t)|0〉 = −i
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x
(
eikx

↔
∂0 e
−ipx

)
An(p)

=
∑

n

∫
d3p ψ∗n(p)

∫
d3k f1(k)

∫
d3x (p0+k0)ei(k−p)xAn(p) .

(5.22)

Next we use
∫
d3x ei(k−p)·x = (2π)3δ3(k − p) to get

〈ψ|a†1(t)|0〉 =
∑

n

∫
d3p (2π)3(p0+k0)ψ∗n(p)f1(p)An(p)ei(p

0−k0)t , (5.23)

where p0 = (p2 +M2)1/2 and k0 = (p2 +m2)1/2.
Now comes the key point. Note that p0 is strictly greater than k0,

because M ≥ 2m > m. Thus the integrand of eq. (5.23) contains a phase
factor that oscillates more and more rapidly as t → ±∞. Therefore, by
the Riemann-Lebesgue lemma, the right-hand side of eq. (5.23) vanishes as
t→ ±∞.



5: The LSZ Reduction Formula 55

Physically, this means that a one-particle wave packet spreads out dif-
ferently than a multiparticle wave packet, and the overlap between them
goes to zero as the elapsed time goes to infinity. Thus, even though our
operator a†1(t) creates some multiparticle states that we don’t want, we
can “follow” the one-particle state that we do want by using an appropri-
ate wave packet. By waiting long enough, we can make the multiparticle
contribution to the scattering amplitude as small as we like.

Let us recap. The basic formula for a scattering amplitude in terms of
the fields of an interacting quantum field theory is the LSZ formula, which
is worth writing down again:

〈f |i〉 = in+n′
∫
d4x1 e

ik1x1(−∂2
1 +m2) . . .

d4x1′ e
−ik′1x′1(−∂2

1′ +m2) . . .

× 〈0|Tϕ(x1) . . . ϕ(x′1) . . . |0〉 . (5.24)

The LSZ formula is valid provided that the field obeys

〈0|ϕ(x)|0〉 = 0 and 〈k|ϕ(x)|0〉 = e−ikx . (5.25)

These normalization conditions may conflict with our original choice of field
and parameter normalization in the lagrangian. Consider, for example, a
lagrangian originally specified as

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 + 1
6gϕ

3 . (5.26)

After shifting and rescaling (and renaming some parameters), we will have
instead

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 + 1
6Zggϕ

3 + Y ϕ . (5.27)

Here the three Z’s and Y are as yet unknown constants. They must be
chosen to ensure the validity of eq. (5.25); this gives us two conditions in
four unknowns. We fix the parameter m by requiring it to be equal to the
actual mass of the particle (equivalently, the energy of the first excited state
relative to the ground state), and we fix the parameter g by requiring some
particular scattering cross section to depend on g in some particular way.
(For example, in quantum electrodynamics, the parameter analogous to g
is the electron charge e. The low-energy Coulomb scattering cross section
is proportional to e4, with a definite constant of proportionality and no
higher-order corrections; this relationship defines e.) Thus we have four
conditions in four unknowns, and it is possible to calculate Y and the three
Z’s order by order in powers of g.

Next, we must develop the tools needed to compute the correlation
functions 〈0|Tϕ(x1) . . . |0〉 in an interacting quantum field theory.
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Reference Notes

Useful discussions of the LSZ reduction formula can be found in Brown,
Itzykson & Zuber, Peskin & Schroeder, and Weinberg I.

Problems

5.1) Work out the LSZ reduction formula for the complex scalar field that
was introduced in problem 3.5. Note that we must specify the type
(a or b) of each incoming and outgoing particle.
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6 Path Integrals in Quantum Mechanics

Prerequisite: none

Consider the nonrelativistic quantum mechanics of one particle in one di-
mension; the hamiltonian is

H(P,Q) = 1
2mP

2 + V (Q) , (6.1)

where P and Q are operators obeying [Q,P ] = i. (We set h̄ = 1 for
notational convenience.) We wish to evaluate the probability amplitude for
the particle to start at position q′ at time t′, and end at position q′′ at time
t′′. This amplitude is 〈q′′|e−iH(t′′−t′)|q′〉, where |q′〉 and |q′′〉 are eigenstates
of the position operator Q.

We can also formulate this question in the Heisenberg picture, where op-
erators are time dependent and the state of the system is time independent,
as opposed to the more familiar Schrödinger picture. In the Heisenberg pic-
ture, we write Q(t) = eiHtQe−iHt. We can then define an instantaneous
eigenstate of Q(t) via Q(t)|q, t〉 = q|q, t〉. These instantaneous eigenstates
can be expressed explicitly as |q, t〉 = e+iHt|q〉, where Q|q〉 = q|q〉. Then
our transition amplitude can be written as 〈q′′, t′′|q′, t′〉 in the Heisenberg
picture.

To evaluate 〈q′′, t′′|q′, t′〉, we begin by dividing the time interval T ≡
t′′− t′ into N + 1 equal pieces of duration δt = T/(N + 1). Then introduce
N complete sets of position eigenstates to get

〈q′′, t′′|q′, t′〉 =

∫ N∏

j=1

dqj 〈q′′|e−iHδt|qN 〉〈qN |e−iHδt|qN−1〉 . . . 〈q1|e−iHδt|q′〉 .

(6.2)
The integrals over the q’s all run from −∞ to +∞.

Now consider 〈q2|e−iHδt|q1〉. We can use the Campbell-Baker-Hausdorf
formula

exp(A+B) = exp(A) exp(B) exp(−1
2 [A,B] + . . .) (6.3)

to write

exp(−iHδt) = exp[−i(δt/2m)P 2] exp[−iδtV (Q)] exp[O(δt2)] . (6.4)

Then, in the limit of small δt, we should be able to ignore the final expo-
nential. Inserting a complete set of momentum states then gives

〈q2|e−iHδt|q1〉 =

∫
dp1 〈q2|e−i(δt/2m)P 2 |p1〉〈p1|e−iδtV (Q)|q1〉

=

∫
dp1 e

−i(δt/2m)p21 e−iδtV (q1) 〈q2|p1〉〈p1|q1〉
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=

∫
dp1

2π
e−i(δt/2m)p21 e−iδtV (q1) eip1(q2−q1) .

=

∫
dp1

2π
e−iH(p1,q1)δt eip1(q2−q1) . (6.5)

To get the third line, we used 〈q|p〉 = (2π)−1/2 exp(ipq).
If we happen to be interested in more general hamiltonians than eq. (6.1),

then we must worry about the ordering of the P and Q operators in any
term that contains both. If we adopt Weyl ordering, where the quantum
hamiltonian H(P,Q) is given in terms of the classical hamiltonian H(p, q)
by

H(P,Q) ≡
∫
dx

2π

dk

2π
eixP+ikQ

∫
dp dq e−ixp−ikqH(p, q) , (6.6)

then eq. (6.5) is not quite correct; in the last line, H(p1, q1) should be
replaced with H(p1, q̄1), where q̄1 = 1

2(q1 + q2). For the hamiltonian of
eq. (6.1), which is Weyl ordered, this replacement makes no difference in
the limit δt → 0.

Adopting Weyl ordering for the general case, we now have

〈q′′, t′′|q′, t′〉 =

∫ N∏

k=1

dqk

N∏

j=0

dpj
2π

eipj(qj+1−qj) e−iH(pj ,q̄j)δt , (6.7)

where q̄j = 1
2(qj + qj+1), q0 = q′, and qN+1 = q′′. If we now define q̇j ≡

(qj+1 − qj)/δt, and take the formal limit of δt → 0, we get

〈q′′, t′′|q′, t′〉 =

∫
DqDp exp

[
i

∫ t′′

t′
dt
(
p(t)q̇(t) −H(p(t), q(t))

)]
. (6.8)

The integration is to be understood as over all paths in phase space that
start at q(t′) = q′ (with an arbitrary value of the initial momentum) and
end at q(t′′) = q′′ (with an arbitrary value of the final momentum).

If H(p, q) is no more than quadratic in the momenta [as is the case for
eq. (6.1)], then the integral over p is gaussian, and can be done in closed
form. If the term that is quadratic in p is independent of q [as is the case
for eq. (6.1)], then the prefactors generated by the gaussian integrals are
all constants, and can be absorbed into the definition of Dq. The result of
integrating out p is then

〈q′′, t′′|q′, t′〉 =

∫
Dq exp

[
i

∫ t′′

t′
dt L(q̇(t), q(t))

]
, (6.9)

where L(q̇, q) is computed by first finding the stationary point of the p
integral by solving

0 =
∂

∂p

(
pq̇ −H(p, q)

)
= q̇ − ∂H(p, q)

∂p
(6.10)
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for p in terms of q̇ and q, and then plugging this solution back into pq̇−H
to get L. We recognize this procedure from classical mechanics: we are
passing from the hamiltonian formulation to the lagrangian formulation.

Now that we have eqs. (6.8) and (6.9), what are we going to do with
them? Let us begin by considering some generalizations; let us examine,
for example, 〈q′′, t′′|Q(t1)|q′, t′〉, where t′ < t1 < t′′. This is given by

〈q′′, t′′|Q(t1)|q′, t′〉 = 〈q′′|e−iH(t′′−t1)Qe−iH(t1−t′)|q′〉 . (6.11)

In the path integral formula, the extra operator Q inserted at time t1 will
simply result in an extra factor of q(t1). Thus

〈q′′, t′′|Q(t1)|q′, t′〉 =

∫
DpDq q(t1) eiS , (6.12)

where S =
∫ t′′
t′ dt (pq̇ −H). Now let us go in the other direction; consider∫ DpDq q(t1)q(t2)eiS . This clearly requires the operators Q(t1) and Q(t2),

but their order depends on whether t1 < t2 or t2 < t1. Thus we have

∫
DpDq q(t1)q(t2) eiS = 〈q′′, t′′|TQ(t1)Q(t2)|q′, t′〉 . (6.13)

where T is the time ordering symbol : a product of operators to its right is
to be ordered, not as written, but with operators at later times to the left
of those at earlier times. This is significant, because time-ordered products
enter into the LSZ formula for scattering amplitudes.

To further develop these methods, we need another trick: functional
derivatives. We define the functional derivative δ/δf(t) via

δ

δf(t1)
f(t2) = δ(t1 − t2) , (6.14)

where δ(t) is the Dirac delta function. Also, functional derivatives are
defined to satisfy all the usual rules of derivatives (product rule, chain
rule, etc). Eq. (6.14) can be thought of as the continuous generalization of
(∂/∂xi)xj = δij .

Now, consider modifying the lagrangian of our theory by including ex-
ternal forces acting on the particle:

H(p, q) → H(p, q) − f(t)q(t) − h(t)p(t) , (6.15)

where f(t) and h(t) are specified functions. In this case we will write

〈q′′, t′′|q′, t′〉f,h =

∫
DpDq exp

[
i

∫ t′′

t′
dt
(
pq̇ −H + fq + hp

)]
. (6.16)
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where H is the original hamiltonian. Then we have

1

i

δ

δf(t1)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq q(t1) ei

∫
dt [pq̇−H+fq+hp] ,

1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq q(t1)q(t2) ei

∫
dt [pq̇−H+fq+hp] ,

1

i

δ

δh(t1)
〈q′′, t′′|q′, t′〉f,h =

∫
DpDq p(t1) ei

∫
dt [pq̇−H+fq+hp] ,

(6.17)

and so on. After we are done bringing down as many factors of q(ti) or
p(ti) as we like, we can set f(t) = h(t) = 0, and return to the original
hamiltonian. Thus,

〈q′′, t′′|TQ(t1) . . . P (tn) . . . |q′, t′〉

=
1

i

δ

δf(t1)
. . .

1

i

δ

δh(tn)
. . . 〈q′′, t′′|q′, t′〉f,h

∣∣∣∣
f=h=0

. (6.18)

Suppose we are also interested in initial and final states other than
position eigenstates. Then we must multiply by the wave functions for
these states, and integrate. We will be interested, in particular, in the
ground state as both the initial and final state. Also, we will take the
limits t′ → −∞ and t′′ → +∞. The object of our attention is then

〈0|0〉f,h = lim
t′→−∞
t′′→+∞

∫
dq′′ dq′ ψ∗0(q

′′) 〈q′′, t′′|q′, t′〉f,h ψ0(q
′) , (6.19)

where ψ0(q) = 〈q|0〉 is the ground-state wave function. Eq. (6.19) is a
rather cumbersome formula, however. We will, therefore, employ a trick to
simplify it.

Let |n〉 denote an eigenstate of H with eigenvalue En. We will suppose
that E0 = 0; if this is not the case, we will shift H by an appropriate
constant. Next we write

|q′, t′〉 = eiHt
′ |q′〉

=
∞∑

n=0

eiHt
′ |n〉〈n|q′〉

=
∞∑

n=0

ψ∗n(q
′)eiEnt′ |n〉 , (6.20)

where ψn(q) = 〈q|n〉 is the wave function of the nth eigenstate. Now,
replace H with (1−iǫ)H in eq. (6.20), where ǫ is a small positive infinites-
imal. Then, take the limit t′ → −∞ of eq. (6.20) with ǫ held fixed. Every
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state except the ground state is then multiplied by a vanishing exponential
factor, and so the limit is simply ψ∗0(q

′)|0〉. Next, multiply by an arbi-
trary function χ(q′), and integrate over q′. The only requirement is that
〈0|χ〉 6= 0. We then have a constant times |0〉, and this constant can be
absorbed into the normalization of the path integral. A similar analysis of
〈q′′, t′′| = 〈q′′|e−iHt′′ shows that the replacement H → (1−iǫ)H also picks
out the ground state as the final state in the t′′ → +∞ limit.

What all this means is that if we use (1−iǫ)H instead of H, we can be
cavalier about the boundary conditions on the endpoints of the path. Any
reasonable boundary conditions will result in the ground state as both the
initial and final state. Thus we have

〈0|0〉f,h =

∫
DpDq exp

[
i

∫ +∞

−∞
dt
(
pq̇ − (1−iǫ)H + fq + hp

)]
. (6.21)

Now let us suppose that H = H0 + H1, where we can solve for the
eigenstates and eigenvalues of H0, and H1 can be treated as a perturbation.
Suppressing the iǫ, eq. (6.21) can be written as

〈0|0〉f,h =

∫
DpDq exp

[
i

∫ +∞

−∞
dt
(
pq̇ −H0(p, q) −H1(p, q) + fq + hp

)]

= exp

[
−i
∫ +∞

−∞
dtH1

(
1

i

δ

δh(t)
,
1

i

δ

δf(t)

)]

×
∫

DpDq exp

[
i

∫ +∞

−∞
dt
(
pq̇ −H0(p, q) + fq + hp

)]
. (6.22)

To understand the second line of this equation, take the exponential prefac-
tor inside the path integral. Then the functional derivatives (that appear
as the arguments of H1) just pull out appropriate factors of p(t) and q(t),
generating the right-hand side of the first line. We assume that we can
compute the functional integral in the second line, since it involves only
the solvable hamiltonian H0. The exponential prefactor can then be ex-
panded in powers of H1 to generate a perturbation series.

If H1 depends only on q (and not on p), and if we are only interested
in time-ordered products of Q’s (and not P ’s), and if H is no more than
quadratic in P , and if the term quadratic in P does not involve Q, then
eq. (6.22) can be simplified to

〈0|0〉f = exp

[
i

∫ +∞

−∞
dtL1

(
1

i

δ

δf(t)

)]

×
∫

Dq exp

[
i

∫ +∞

−∞
dt
(
L0(q̇, q) + fq

)]
. (6.23)

where L1(q) = −H1(q).
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Reference Notes

Brown and Ramond I have especially clear treatments of various aspects
of path integrals. For a careful derivation of the midpoint rule of eq. (6.7),
see Berry & Mount.

Problems

6.1) a) Find an explicit formula for Dq in eq. (6.9). Your formula should
be of the form Dq = C

∏N
j=1 dqj, where C is a constant that you

should compute.

b) For the case of a free particle, V (Q) = 0, evaluate the path integral
of eq. (6.9) explicitly. Hint: integrate over q1, then q2, etc, and look
for a pattern. Express you final answer in terms of q′, t′, q′′, t′′, and
m. Restore h̄ by dimensional analysis.

c) Compute 〈q′′, t′′|q′, t′〉 = 〈q′′|e−iH(t′′−t′)|q′〉 by inserting a complete
set of momentum eigenstates, and performing the integral over the
momentum. Compare with your result in part (b).
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7 The Path Integral for the Harmonic

Oscillator

Prerequisite: 6

Consider a harmonic oscillator with hamiltonian

H(P,Q) = 1
2mP

2 + 1
2mω

2Q2 . (7.1)

We begin with the formula from section 6 for the ground state to ground
state transition amplitude in the presence of an external force, specialized
to the case of a harmonic oscillator:

〈0|0〉f =

∫
DpDq exp i

∫ +∞

−∞
dt
[
pq̇ − (1−iǫ)H + fq

]
. (7.2)

Looking at eq. (7.1), we see that multiplying H by 1−iǫ is equivalent to
the replacements m−1 → (1−iǫ)m−1 [or, equivalently, m → (1+iǫ)m] and
mω2 → (1−iǫ)mω2. Passing to the lagrangian formulation then gives

〈0|0〉f =

∫
Dq exp i

∫ +∞

−∞
dt
[

1
2 (1+iǫ)mq̇2 − 1

2(1−iǫ)mω2q2 + fq
]
. (7.3)

From now on, we will simplify the notation by setting m = 1.
Next, let us use Fourier-transformed variables,

q̃(E) =

∫ +∞

−∞
dt eiEt q(t) , q(t) =

∫ +∞

−∞

dE

2π
e−iEt q̃(E) . (7.4)

The expression in square brackets in eq. (7.3) becomes

[
· · ·
]

=
1

2

∫ +∞

−∞

dE

2π

dE′

2π
e−i(E+E′)t

[(
−(1+iǫ)EE′ − (1−iǫ)ω2

)
q̃(E)q̃(E′)

+ f̃(E)q̃(E′) + f̃(E′)q̃(E)
]
. (7.5)

Note that the only t dependence is now in the prefactor. Integrating over t
then generates a factor of 2πδ(E + E′). Then we can easily integrate over
E′ to get

S =

∫ +∞

−∞
dt
[
· · ·
]

=
1

2

∫ +∞

−∞

dE

2π

[(
(1+iǫ)E2 − (1−iǫ)ω2

)
q̃(E)q̃(−E)

+ f̃(E)q̃(−E) + f̃(−E)q̃(E)
]
. (7.6)
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The factor in large parentheses is equal to E2 − ω2 + i(E2 + ω2)ǫ, and we
can absorb the positive coefficient into ǫ to get E2 − ω2 + iǫ.

Now it is convenient to change integration variables to

x̃(E) = q̃(E) +
f̃(E)

E2 − ω2 + iǫ
. (7.7)

Then we get

S =
1

2

∫ +∞

−∞

dE

2π

[
x̃(E)(E2 − ω2 + iǫ)x̃(−E) − f̃(E)f̃(−E)

E2 − ω2 + iǫ

]
. (7.8)

Furthermore, because eq. (7.7) is just a shift by a constant, Dq = Dx. Now
we have

〈0|0〉f = exp

[
i

2

∫ +∞

−∞

dE

2π

f̃(E)f̃ (−E)

− E2 + ω2 − iǫ

]

×
∫

Dx exp

[
i

2

∫ +∞

−∞

dE

2π
x̃(E)(E2 − ω2 + iǫ)x̃(−E)

]
. (7.9)

Now comes the key point. The path integral on the second line of
eq. (7.9) is what we get for 〈0|0〉f in the case f = 0. On the other hand,
if there is no external force, a system in its ground state will remain in its
ground state, and so 〈0|0〉f=0 = 1. Thus 〈0|0〉f is given by the first line of
eq. (7.9),

〈0|0〉f = exp

[
i

2

∫ +∞

−∞

dE

2π

f̃(E)f̃ (−E)

− E2 + ω2 − iǫ

]
. (7.10)

We can also rewrite 〈0|0〉f in terms of time-domain variables as

〈0|0〉f = exp

[
i

2

∫ +∞

−∞
dt dt′ f(t)G(t− t′)f(t′)

]
, (7.11)

where

G(t− t′) =

∫ +∞

−∞

dE

2π

e−iE(t−t′)

− E2 + ω2 − iǫ
. (7.12)

Note that G(t−t′) is a Green’s function for the oscillator equation of motion:

(
∂2

∂t2
+ ω2

)
G(t− t′) = δ(t− t′) . (7.13)

This can be seen directly by plugging eq. (7.12) into eq. (7.13) and then
taking the ǫ→ 0 limit. We can also evaluate G(t− t′) explicitly by treating
the integral over E on the right-hand side of eq. (7.12) as a contour integral
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in the complex E plane, and then evaluating it via the residue theorem.
The result is

G(t− t′) =
i

2ω
exp

(
−iω|t− t′|

)
. (7.14)

Consider now the formula from section 6 for the time-ordered product
of operators. In the case of initial and final ground states, it becomes

〈0|TQ(t1) . . . |0〉 =
1

i

δ

δf(t1)
. . . 〈0|0〉f

∣∣∣
f=0

. (7.15)

Using our explicit formula, eq. (7.11), we have

〈0|TQ(t1)Q(t2)|0〉 =
1

i

δ

δf(t1)

1

i

δ

δf(t2)
〈0|0〉f

∣∣∣
f=0

=
1

i

δ

δf(t1)

[∫ +∞

−∞
dt′G(t2 − t′)f(t′)

]
〈0|0〉f

∣∣∣
f=0

=
[

1
iG(t2 − t1) + (term with f ’s)

]
〈0|0〉f

∣∣∣
f=0

= 1
iG(t2 − t1) . (7.16)

We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more Q(t)’s. If the number of Q(t)’s is odd,
then there is always a left-over f(t) in the prefactor, and so the result is
zero. If the number of Q(t)’s is even, then we must pair up the functional
derivatives in an appropriate way to get a nonzero result. Thus, for exam-
ple,

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =
1

i2

[
G(t1−t2)G(t3−t4)

+G(t1−t3)G(t2−t4)
+G(t1−t4)G(t2−t3)

]
. (7.17)

More generally,

〈0|TQ(t1) . . . Q(t2n)|0〉 =
1

in

∑

pairings

G(ti1−ti2) . . . G(ti2n−1−ti2n) . (7.18)

Problems

7.1) Starting with eq. (7.12), do the contour integral to verify eq. (7.14).

7.2) Starting with eq. (7.14), verify eq. (7.13).
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7.3) a) Use the Heisenberg equation of motion, Ȧ = i[H,A], to find explicit
expressions for Q̇ and Ṗ . Solve these to get the Heisenberg-picture
operators Q(t) and P (t) in terms of the Schrödinger picture operators
Q and P .

b) Write the Schrödinger picture operators Q and P in terms of the
creation and annihilation operators a and a†, where H = h̄ω(a†a+ 1

2).
Then, using your result from part (a), write the Heisenberg-picture
operators Q(t) and P (t) in terms of a and a†.

c) Using your result from part (b), and a|0〉 = 〈0|a† = 0, verify
eqs. (7.16) and (7.17).

7.4) Consider a harmonic oscillator in its ground state at t = −∞. It is
then then subjected to an external force f(t). Compute the probabil-
ity |〈0|0〉f |2 that the oscillator is still in its ground state at t = +∞.
Write your answer as a manifestly real expression, and in terms of
the Fourier transform f̃(E) =

∫+∞
−∞ dt eiEtf(t). Your answer should

not involve any other unevaluated integrals.
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8 The Path Integral for Free Field Theory

Prerequisite: 3, 7

Our results for the harmonic oscillator can be straightforwardly generalized
to a free field theory with hamiltonian density

H0 = 1
2Π2 + 1

2(∇ϕ)2 + 1
2m

2ϕ2 . (8.1)

The dictionary we need is

q(t) −→ ϕ(x, t) (classical field)

Q(t) −→ ϕ(x, t) (operator field)

f(t) −→ J(x, t) (classical source) (8.2)

The distinction between the classical field ϕ(x) and the corresponding op-
erator field should be clear from context.

To employ the ǫ trick, we multiply H0 by 1− iǫ. The results are equiv-
alent to replacing m2 in H0 with m2 − iǫ. From now on, for notational
simplicity, we will write m2 when we really mean m2 − iǫ.

Let us write down the path integral (also called the functional integral)
for our free field theory:

Z0(J) ≡ 〈0|0〉J =

∫
Dϕ ei

∫
d4x[L0+Jϕ] , (8.3)

where
L0 = −1

2∂
µϕ∂µϕ− 1

2m
2ϕ2 (8.4)

is the lagrangian density, and

Dϕ ∝
∏

x

dϕ(x) (8.5)

is the functional measure. Note that when we say path integral , we now
mean a path in the space of field configurations.

We can evaluate Z0(J) by mimicking what we did for the harmonic
oscillator in section 7. We introduce four-dimensional Fourier transforms,

ϕ̃(k) =

∫
d4x e−ikx ϕ(x) , ϕ(x) =

∫
d4k

(2π)4
eikx ϕ̃(k) , (8.6)

where kx = −k0t+ k·x, and k0 is an integration variable. Then, starting
with S0 =

∫
d4x [L0 + Jϕ], we get

S0 =
1

2

∫
d4k

(2π)4

[
−ϕ̃(k)(k2 +m2)ϕ̃(−k)+ J̃(k)ϕ̃(−k)+ J̃(−k)ϕ̃(k)

]
, (8.7)
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where k2 = k2 − (k0)2. We now change path integration variables to

χ̃(k) = ϕ̃(k) − J̃(k)

k2 +m2
. (8.8)

Since this is merely a shift by a constant, we have Dϕ = Dχ. The action
becomes

S0 =
1

2

∫
d4k

(2π)4

[
J̃(k)J̃(−k)
k2 +m2

− χ̃(k)(k2 +m2)χ̃(−k)
]
. (8.9)

Just as for the harmonic oscillator, the integral over χ simply yields a factor
of Z0(0) = 〈0|0〉J=0 = 1. Therefore

Z0(J) = exp

[
i

2

∫
d4k

(2π)4
J̃(k)J̃(−k)
k2 +m2 − iǫ

]

= exp

[
i

2

∫
d4x d4x′ J(x)∆(x− x′)J(x′)

]
. (8.10)

Here we have defined the Feynman propagator,

∆(x− x′) =

∫
d4k

(2π)4
eik(x−x

′)

k2 +m2 − iǫ
. (8.11)

The Feynman propagator is a Green’s function for the Klein-Gordon equa-
tion,

(−∂2
x +m2)∆(x− x′) = δ4(x− x′) . (8.12)

This can be seen directly by plugging eq. (8.11) into eq. (8.12) and then
taking the ǫ → 0 limit. We can also evaluate ∆(x − x′) explicitly by
treating the k0 integral on the right-hand side of eq. (8.11) as a contour
integral in the complex k0 plane, and then evaluating it via the residue
theorem. The result is

∆(x− x′) = i

∫
d̃k eik·(x−x′)−iω|t−t′|

= iθ(t−t′)
∫
d̃k eik(x−x

′) + iθ(t′−t)
∫
d̃k e−ik(x−x

′) , (8.13)

where θ(t) is the unit step function. The integral over d̃k can also be
performed in terms of Bessel functions; see section 4.

Now, by analogy with the formula for the ground-state expectation
value of a time-ordered product of operators for the harmonic oscillator,
we have

〈0|Tϕ(x1) . . . |0〉 =
1

i

δ

δJ(x1)
. . . Z0(J)

∣∣∣
J=0

. (8.14)
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Using our explicit formula, eq. (8.10), we have

〈0|Tϕ(x1)ϕ(x2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
Z0(J)

∣∣∣
J=0

=
1

i

δ

δJ(x1)

[∫
d4x′∆(x2 − x′)J(x′)

]
Z0(J)

∣∣∣
J=0

=
[

1
i∆(x2 − x1) + (term with J ’s)

]
Z0(J)

∣∣∣
J=0

= 1
i∆(x2 − x1) . (8.15)

We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more ϕ’s. If the number of ϕ’s is odd, then
there is always a left-over J in the prefactor, and so the result is zero. If
the number of ϕ’s is even, then we must pair up the functional derivatives
in an appropriate way to get a nonzero result. Thus, for example,

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 =
1

i2

[
∆(x1−x2)∆(x3−x4)

+ ∆(x1−x3)∆(x2−x4)

+ ∆(x1−x4)∆(x2−x3)
]
. (8.16)

More generally,

〈0|Tϕ(x1) . . . ϕ(x2n)|0〉 =
1

in

∑

pairings

∆(xi1−xi2) . . .∆(xi2n−1−xi2n) . (8.17)

This result is known as Wick’s theorem.

Problems

8.1) Starting with eq. (8.11), verify eq. (8.12).

8.2) Starting with eq. (8.11), verify eq. (8.13).

8.3) Starting with eq. (8.13), verify eq. (8.12). Note that the time deriva-
tives in the Klein-Gordon wave operator can act on either the field
(which obeys the Klein-Gordon equation) or the time-ordering step
functions.

8.4) Use eqs. (3.19), (3.29), and (5.3) (and its hermitian conjugate) to
verify the last line of eq. (8.15).

8.5) The retarded and advanced Green’s functions for the Klein-Gordon
wave operator satisfy ∆ret(x−y) = 0 for x0 ≥ y0 and ∆adv(x−y) = 0
for x0 ≤ y0. Find the pole prescriptions on the right-hand side of
eq. (8.11) that yield these Green’s functions.
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8.6) Let Z0(J) = exp iW0(J), and evaluate the real and imaginary parts
of W0(J).

8.7) Repeat the analysis of this section for the complex scalar field that was
introduced in problem 3.5, and further studied in problem 5.1. Write
your source term in the form J†ϕ+Jϕ†, and find an explicit formula,
analogous to eq. (8.10), for Z0(J

†, J). Write down the appropriate
generalization of eq. (8.14), and use it to compute 〈0|Tϕ(x1)ϕ(x2)|0〉,
〈0|Tϕ†(x1)ϕ(x2)|0〉, and 〈0|Tϕ†(x1)ϕ

†(x2)|0〉. Then verify your re-
sults by using the method of problem 8.4. Finally, give the appropri-
ate generalization of eq. (8.17).

8.8) A harmonic oscillator (in units with m = h̄ = 1) has a ground-state
wave function 〈q|0〉 ∝ e−ωq

2/2. Now consider a real scalar field ϕ(x),
and define a field eigenstate |A〉 that obeys

ϕ(x, 0)|A〉 = A(x)|A〉 , (8.18)

where the function A(x) is everywhere real. For a free-field theory
specified by the hamiltonian of eq. (8.1), Show that the ground-state
wave functional is

〈A|0〉 ∝ exp

[
− 1

2

∫
d3k

(2π)3
ω(k)Ã(k)Ã(−k)

]
, (8.19)

where Ã(k) ≡ ∫
d3x e−ik·xA(x) and ω(k) ≡ (k2 +m2)1/2.
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9 The Path Integral for Interacting Field

Theory

Prerequisite: 8

Let us consider an interacting quantum field theory specified by a la-
grangian of the form

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 + 1
6Zggϕ

3 + Y ϕ . (9.1)

As we discussed at the end of section 5, we fix the parameter m by requiring
it to be equal to the actual mass of the particle (equivalently, the energy
of the first excited state relative to the ground state), and we fix the pa-
rameter g by requiring some particular scattering cross section to depend
on g in some particular way. (We will have more to say about this after we
have learned to calculate cross sections.) We also assume that the field is
normalized by

〈0|ϕ(x)|0〉 = 0 and 〈k|ϕ(x)|0〉 = e−ikx . (9.2)

Here |0〉 is the ground state, normalized via 〈0|0〉 = 1, and |k〉 is a state of
one particle with four-momentum kµ, where k2 = kµkµ = −m2, normalized
via

〈k′|k〉 = (2π)32k0δ3(k′ − k) . (9.3)

Thus we have four conditions (the specified values of m, g, 〈0|ϕ|0〉, and
〈k|ϕ|0〉), and we will use these four conditions to determine the values of
the four remaining parameters (Y and the three Z’s) that appear in L.

Before going further, we should note that this theory (known as ϕ3

theory, pronounced “phi-cubed”) actually has a fatal flaw. The hamiltonian
density is

H = 1
2Z
−1
ϕ Π2 − Y ϕ+ 1

2Zmm
2ϕ2 − 1

6Zggϕ
3 . (9.4)

Classically, we can make this arbitrarily negative by choosing an arbitrarily
large value for ϕ. Quantum mechanically, this means that this hamiltonian
has no ground state. If we start off near ϕ = 0, we can tunnel through the
potential barrier to large ϕ, and then “roll down the hill”. However, this
process is invisible in perturbation theory in g. The situation is exactly
analogous to the problem of a harmonic oscillator perturbed by a q3 term.
This system also has no ground state, but perturbation theory (both time
dependent and time independent) does not “know” this. We will be inter-
ested in eq. (9.1) only as an example of how to do perturbation expansions
in a simple context, and so we will overlook this problem.

We would like to evaluate the path integral for this theory,

Z(J) ≡ 〈0|0〉J =

∫
Dϕ ei

∫
d4x[L0+L1+Jϕ] . (9.5)
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We can evaluate Z(J) by mimicking what we did for quantum mechanics
at the end of section 6. Specifically, we can rewrite eq. (9.5) as

Z(J) = e
i
∫
d4x L1

(
1
i

δ
δJ(x)

) ∫
Dϕ ei

∫
d4x[L0+Jϕ] .

∝ e
i
∫
d4x L1

(
1
i

δ
δJ(x)

)
Z0(J) , (9.6)

where Z0(J) is the result in free-field theory,

Z0(J) = exp

[
i

2

∫
d4x d4x′ J(x)∆(x− x′)J(x′)

]
. (9.7)

We have written Z(J) as proportional to (rather than equal to) the right-
hand side of eq. (9.6) because the ǫ trick does not give us the correct overall
normalization; instead, we must require Z(0) = 1, and enforce this by hand.

Note that, in eq. (9.7), we have implicitly assumed that

L0 = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 , (9.8)

since this is the L0 that gives us eq. (9.7). Therefore, the rest of L must be
included in L1. We write

L1 = 1
6Zggϕ

3 + Lct ,

Lct = −1
2(Zϕ−1)∂µϕ∂µϕ− 1

2(Zm−1)m2ϕ2 + Y ϕ , (9.9)

where Lct is called the counterterm lagrangian. We expect that, as g → 0,
Y → 0 and Zi → 1. In fact, as we will see, Y = O(g) and Zi = 1 +O(g2).

In order to make use of eq. (9.7), we will have to compute lots and lots of
functional derivatives of Z0(J). Let us begin by ignoring the counterterms.
We define

Z1(J) ∝ exp

[
i

6
Zgg

∫
d4x

(
1

i

δ

δJ(x)

)3
]
Z0(J) , (9.10)

where the constant of proportionality is fixed by Z1(0) = 1. We now make
a dual Taylor expansion in powers of g and J to get

Z1(J) ∝
∞∑

V=0

1

V !

[
iZgg

6

∫
d4x

(
1

i

δ

δJ(x)

)3
]V

×
∞∑

P=0

1

P !

[
i

2

∫
d4y d4z J(y)∆(y−z)J(z)

]P
. (9.11)

If we focus on a term in eq. (9.11) with particular values of V and P , then
the number of surviving sources (after we take all the functional derivatives)
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3  S = 2   S = 2 x 3!

Figure 9.1: All connected diagrams with E = 0 and V = 2.

     4      3

S = 24

       S = 4!

   S = 2  x 3!3

S = 2 S = 2

Figure 9.2: All connected diagrams with E = 0 and V = 4.

is E = 2P − 3V . (Here E stands for external , a terminology that should
become clear by the end of the next section; V stands for vertex and P for
propagator .) The overall phase factor of such a term is then iV (1/i)3V iP =
iV+E−P , and the 3V functional derivatives can act on the 2P sources in
(2P )!/(2P−3V )! different combinations. However, many of the resulting
expressions are algebraically identical.

To organize them, we introduce Feynman diagrams. In these diagrams,
a line segment (straight or curved) stands for a propagator 1

i∆(x−y), a
filled circle at one end of a line segment for a source i

∫
d4xJ(x), and a

vertex joining three line segments for iZgg
∫
d4x. Sets of diagrams with

different values of E and V are shown in figs. (9.1–9.11).
To count the number of terms on the right-hand side of eq. (9.11) that

result in a particular diagram, we first note that, in each diagram, the num-
ber of lines is P and the number of vertices is V . We can rearrange the
three functional derivatives from a particular vertex without changing the
resulting diagram; this yields a counting factor of 3! for each vertex. Also,
we can rearrange the vertices themselves; this yields a counting factor of
V !. Similarly, we can rearrange the two sources at the ends of a particular
propagator without changing the resulting diagram; this yields a counting
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factor of 2! for each propagator. Also, we can rearrange the propagators
themselves; this yields a counting factor of P !. All together, these count-
ing factors neatly cancel the numbers from the dual Taylor expansions in
eq. (9.11).

However, this procedure generally results in an overcounting of the num-
ber of terms that give identical results. This happens when some rearrange-
ment of derivatives gives the same match-up to sources as some rearrange-
ment of sources. This possibility is always connected to some symmetry
property of the diagram, and so the factor by which we have overcounted
is called the symmetry factor. The figures show the symmetry factor S of
each diagram.

Consider, for example, the second diagram of fig. (9.1). The three prop-
agators can be rearranged in 3! ways, and all these rearrangements can
be duplicated by exchanging the derivatives at the vertices. Furthermore
the endpoints of each propagator can be simultaneously swapped, and the
effect duplicated by swapping the two vertices. Thus, S = 2 × 3! = 12.

Let us consider two more examples. In the first diagram of fig. (9.6),
the exchange of the two external propagators (along with their attached
sources) can be duplicated by exchanging all the derivatives at one vertex
for those at the other, and simultaneously swapping the endpoints of each
semicircular propagator. Also, the effect of swapping the top and bottom
semicircular propagators can be duplicated by swapping the corresponding
derivatives at each vertex. Thus, the symmetry factor is S = 2 × 2 = 4.

In the diagram of fig. (9.10), we can exchange derivatives to match swaps
of the top and bottom external propagators on the left, or the top and
bottom external propagators on the right, or the set of external propagators
on the left with the set of external propagators on the right. Thus, the
symmetry factor is S = 2 × 2 × 2 = 8.

The diagrams in figs. (9.1–9.11) are all connected : we can trace a path
through the diagram between any two points on it. However, these are
not the only contributions to Z(J). The most general diagram consists of
a product of several connected diagrams. Let CI stand for a particular
connected diagram, including its symmetry factor. A general diagram D
can then be expressed as

D =
1

SD

∏

I

(CI)
nI , (9.12)

where nI is an integer that counts the number of CI ’s in D, and SD is the
additional symmetry factor for D (that is, the part of the symmetry factor
that is not already accounted for by the symmetry factors already included
in each of the connected diagrams). We now need to determine SD.
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  S = 2

Figure 9.3: All connected diagrams with E = 1 and V = 1.

  S = 23  S = 22   S = 22

Figure 9.4: All connected diagrams with E = 1 and V = 3.

  S = 2

Figure 9.5: All connected diagrams with E = 2 and V = 0.

  S = 22  S = 22

Figure 9.6: All connected diagrams with E = 2 and V = 2.
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Since we have already accounted for propagator and vertex rearrange-
ments within each CI , we need to consider only exchanges of propagators
and vertices among different connected diagrams. These can leave the total
diagram D unchanged only if (1) the exchanges are made among different
but identical connected diagrams, and only if (2) the exchanges involve all
of the propagators and vertices in a given connected diagram. If there are
nI factors of CI in D, there are nI ! ways to make these rearrangements.
Overall, then, we have

SD =
∏

I

nI ! . (9.13)

Now Z1(J) is given (up to an overall normalization) by summing all dia-
grams D, and each D is labeled by the integers nI . Therefore

Z1(J) ∝
∑

{nI}
D

∝
∑

{nI}

∏

I

1

nI !
(CI)

nI

∝
∏

I

∞∑

nI=0

1

nI !
(CI)

nI

∝
∏

I

exp (CI)

∝ exp (
∑
I CI) . (9.14)

Thus we have a remarkable result: Z1(J) is given by the exponential of the
sum of connected diagrams. This makes it easy to impose the normalization
Z1(0) = 1: we simply omit the vacuum diagrams (those with no sources),
like those of figs. (9.1) and (9.2). We then have

Z1(J) = exp[iW1(J)] , (9.15)

where we have defined
iW1(J) ≡

∑

I 6={0}
CI , (9.16)

and the notation I 6= {0} means that the vacuum diagrams are omitted
from the sum, so that W1(0) = 0.1

Were it not for the counterterms in L1, we would have Z(J) = Z1(J).
Let us see what we would get if this was, in fact, the case. In particular, let
us compute the vacuum expectation value of the field ϕ(x), which is given

1We have included a factor of i on the left-hand side of eq. (9.16) because then W1(J)
is real in free-field theory; see problem 8.6.
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                              S = 2
3

           S = 23

3                              S = 2

           S = 24

           S = 22            S = 22

           S = 2
           S = 22

3

           S = 2 2

Figure 9.7: All connected diagrams with E = 2 and V = 4.

              S = 3!

Figure 9.8: All connected diagrams with E = 3 and V = 1.
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                              S = 22 S = 22S = 3!

Figure 9.9: All connected diagrams with E = 3 and V = 3.

S = 23

Figure 9.10: All connected diagrams with E = 4 and V = 2.

2

                              S = 23

S = 24

S = 24

S = 2

                              S = 22

S = 22

Figure 9.11: All connected diagrams with E = 4 and V = 4.
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  S = 2   S = 2   S = 2S = 1

Figure 9.12: All connected diagrams with E = 1, X ≥ 1 (where X is the
number of one-point vertices from the linear counterterm), and V +X ≤ 3.

by

〈0|ϕ(x)|0〉 =
1

i

δ

δJ(x)
Z1(J)

∣∣∣∣
J=0

=
δ

δJ(x)
W1(J)

∣∣∣∣
J=0

. (9.17)

This expression is then the sum of all diagrams [such as those in figs. (9.3)
and (9.4)] that have a single source, with the source removed:

〈0|ϕ(x)|0〉 = 1
2 ig

∫
d4y 1

i∆(x−y)1
i∆(y−y) +O(g3) . (9.18)

Here we have set Zg = 1 in the first term, since Zg = 1+O(g2). We see the
vacuum-expectation value of ϕ(x) is not zero, as is required for the validity
of the LSZ formula. To fix this, we must introduce the counterterm Y ϕ.
Including this term in the interaction lagrangian L1 introduces a new kind
of vertex, one where a single line segment ends; the corresponding vertex
factor is iY

∫
d4y. The simplest diagrams including this new vertex are

shown in fig. (9.12), with a cross symbolizing the vertex.
Assuming Y = O(g), only the first diagram in fig. (9.12) contributes at

O(g), and we have

〈0|ϕ(x)|0〉 =
(
iY + 1

2 (ig)1
i∆(0)

) ∫
d4y 1

i∆(x−y) +O(g3) . (9.19)

Thus, in order to have 〈0|ϕ(x)|0〉 = 0, we should choose

Y = 1
2 ig∆(0) +O(g3) . (9.20)

The factor of i is disturbing, because Y must be a real number: it is the
coefficient of a hermitian operator in the hamiltonian, as seen in eq. (9.4).
Therefore, ∆(0) must be purely imaginary, or we are in trouble. We have

∆(0) =

∫
d4k

(2π)4
1

k2 +m2 − iǫ
. (9.21)
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From eq. (9.21), it is not immediately obvious whether or not ∆(0) is purely
imaginary, but eq. (9.21) does reveal another problem: the integral diverges
at large k. This is another example of an ultraviolet divergence, similar to
the one we encountered in section 3 when we computed the zero-point
energy of the field.

To make some progress, we introduce an ultraviolet cutoff Λ, which we
assume is much larger than m and any other energy of physical interest.
Modifications to the propagator above some cutoff may be well justified
physically; for example, quantum fluctuations in spacetime itself should
become important above the Planck scale, which is given by the inverse
square root of Newton’s constant, and has the numerical value of 1019 GeV
(compared to, say, the proton mass, which is 1GeV).

In order to retain the Lorentz-transformation properties of the propa-
gator, we implement the ultraviolet cutoff in a more subtle way than we
did in section 3; specfically, we make the replacement

∆(x− y) →
∫

d4k

(2π)4
eik(x−y)

k2 +m2 − iǫ

(
Λ2

k2 + Λ2 − iǫ

)2
. (9.22)

The integral is now convergent, and we can evaluate the modified ∆(0)
with the methods of section 14; for Λ ≫ m, the result is

∆(0) =
i

16π2
Λ2 . (9.23)

Thus Y is real, as required. If we like, we can now formally take the limit
Λ → ∞. The parameter Y becomes infinite, but 〈0|ϕ(x)|0〉 remains zero,
at least to this order in g.

It may be disturbing to have a parameter in the lagrangian that is
formally infinite. However, such parameters are not directly measurable,
and so need not obey our preconceptions about their magnitudes. Also, it
is important to remember that Y includes a factor of g; this means that we
can expand in powers of Y as part of our general expansion in powers of g.
When we compute something measurable (like a scattering cross section),
all the formally infinite numbers will cancel in a well-defined way, leaving
behind finite coefficients for the various powers of g. We will see how this
works in detail in sections 14–20.

As we go to higher orders in g, things become more complicated, but
in principle the procedure is the same. Thus, at O(g3), we sum up the
diagrams of figs. (9.4) and (9.12), and then add to Y whatever O(g3) term
is needed to maintain 〈0|ϕ(x)|0〉 = 0. In this way we can determine the
value of Y order by order in powers of g.

Once this is done, there is a remarkable simplification. Our adjustment
of Y to keep 〈0|ϕ(x)|0〉 = 0 means that the sum of all connected diagrams
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Figure 9.13: All connected diagrams without tadpoles with E ≤ 4 and
V ≤ 4.

with a single source is zero. Consider now that same infinite set of diagrams,
but replace the single source in each of them with some other subdiagram.
Here is the point: no matter what this replacement subdiagram is, the sum
of all these diagrams is still zero. Therefore, we need not bother to compute
any of them! The rule is this: ignore any diagram that, when a single line is
cut, falls into two parts, one of which has no sources. All of these diagrams
(known as tadpoles) are canceled by the Y counterterm, no matter what
subdiagram they are attached to. The diagrams that remain (and need to
be computed!) are shown in fig. (9.13).

We turn next to the remaining two counterterms. For notational sim-
plicity we define

A = Zϕ − 1 , B = Zm − 1 , (9.24)



9: The Path Integral for Interacting Field Theory 82

and recall that we expect each of these to be O(g2). We now have

Z(J) = exp

[
− i

2

∫
d4x

(
1

i

δ

δJ(x)

)(
−A∂2

x +Bm2
)(1

i

δ

δJ(x)

)]
Z1(J) .

(9.25)
We have integrated by parts to put both ∂x’s onto one δ/δJ(x). (Note that
the time derivatives in this interaction should really be treated by including
an extra source term for the conjugate momentum Π = ϕ̇. However, the
space derivatives are correctly treated, and then the time derivatives must
work out comparably by Lorentz invariance.)

Eq. (9.25) results in a new vertex at which two lines meet. The corre-
sponding vertex factor is (−i) ∫ d4x (−A∂2

x +Bm2); the ∂2
x acts on the x in

one or the other (but not both) propagators. (Which one does not matter,
and can be changed via integration by parts.) Diagramatically, all we need
do is sprinkle these new vertices onto the propagators in our existing dia-
grams. How many of these vertices we need to add depends on the order
in g we are working to achieve.

This completes our calculation of Z(J) in ϕ3 theory. We express it as

Z(J) = exp[iW (J)] , (9.26)

where W (J) is given by the sum of all connected diagrams with no tad-
poles and at least two sources, and including the counterterm vertices just
discussed.

Now that we have Z(J), we must find out what we can do with it.

Problems

9.1) Compute the symmetry factor for each diagram in fig. (9.13). (You
can then check your answers by consulting the earlier figures.)

9.2) Consider a real scalar field with L = L0 + L1, where

L0 = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 ,

L1 = − 1
24Zλλϕ

4 + Lct ,

Lct = −1
2(Zϕ−1)∂µϕ∂µϕ− 1

2(Zm−1)m2ϕ2 .

a) What kind of vertex appears in the diagrams for this theory (that
is, how many line segments does it join?), and what is the associated
vertex factor?

b) Ignoring the counterterms, draw all the connected diagrams with
1 ≤ E ≤ 4 and 0 ≤ V ≤ 2, and find their symmetry factors.

c) Explain why we did not have to include a counterterm linear in ϕ
to cancel tadpoles.
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9.3) Consider a complex scalar field (see problems 3.5, 5.1, and 8.7) with
L = L0 + L1, where

L0 = −∂µϕ†∂µϕ−m2ϕ†ϕ ,

L1 = −1
4Zλλ(ϕ†ϕ)2 + Lct ,

Lct = −(Zϕ−1)∂µϕ†∂µϕ− (Zm−1)m2ϕ†ϕ .

This theory has two kinds of sources, J and J†, and so we need a
way to tell which is which when we draw the diagrams. Rather than
labeling the source blobs with a J or J†, we will indicate which is
which by putting an arrow on the attached propagator that points
towards the source if it is a J†, and away from the source if it is a J .

a) What kind of vertex appears in the diagrams for this theory, and
what is the associated vertex factor? Hint: your answer should involve
those arrows!

b) Ignoring the counterterms, draw all the connected diagrams with
1 ≤ E ≤ 4 and 0 ≤ V ≤ 2, and find their symmetry factors. Hint:
the arrows are important!

9.4) Consider the integral

expW (g, J) ≡ 1√
2π

∫ +∞

−∞
dx exp

[
−1

2x
2 + 1

6gx
3 + Jx

]
. (9.27)

This integral does not converge, but it can be used to generate a joint
power series in g and J ,

W (g, J) =
∞∑

V=0

∞∑

E=0

CV,E g
VJE . (9.28)

a) Show that

CV,E =
∑

I

1

SI
, (9.29)

where the sum is over all connected Feynman diagrams with E sources
and V three-point vertices, and SI is the symmetry factor for each
diagram.

b) Use eqs. (9.27) and (9.28) to compute CV,E for V ≤ 4 and E ≤ 5.
(This is most easily done with a symbolic manipulation program like
Mathematica.) Verify that the symmetry factors given in figs. (9.1–
9.11) satisfy the sum rule of eq. (9.29).
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c) Now consider W (g, J+Y ), with Y fixed by the “no tadpole” con-
dition

∂

∂J
W (g, J+Y )

∣∣∣∣
J=0

= 0 . (9.30)

Then write

W (g, J+Y ) =
∞∑

V=0

∞∑

E=0

C̃V,E g
VJE . (9.31)

Show that

C̃V,E =
∑

I

1

SI
, (9.32)

where the sum is over all connected Feynman diagrams with E sources
and V three-point vertices and no tadpoles, and SI is the symmetry
factor for each diagram.

d) Let Y = a1g + a3g
3 + . . . , and use eq. (9.30) to determine a1 and

a3. Compute C̃V,E for V ≤ 4 and E ≤ 4. Verify that the symmetry
factors for the diagrams in fig. (9.13) satisfy the sum rule of eq. (9.32).

9.5) The interaction picture. In this problem, we will derive a formula for
〈0|Tϕ(xn) . . . ϕ(x1)|0〉 without using path integrals. Suppose we have
a hamiltonian density H = H0 + H1, where H0 = 1

2Π2 + 1
2 (∇ϕ)2 +

1
2m

2ϕ2, and H1 is a function of Π(x, 0) and ϕ(x, 0) and their spatial
derivatives. (It should be chosen to preserve Lorentz invariance, but
we will not be concerned with this issue.) We add a constant to H
so that H|0〉 = 0. Let |∅〉 be the ground state of H0, with a constant
added to H0 so that H0|∅〉 = 0. (H1 is then defined as H −H0.) The
Heisenberg-picture field is

ϕ(x, t) ≡ eiHtϕ(x, 0)e−iHt . (9.33)

We now define the interaction-picture field

ϕI(x, t) ≡ eiH0tϕ(x, 0)e−iH0t . (9.34)

a) Show that ϕI(x) obeys the Klein-Gordon equation, and hence is a
free field.

b) Show that ϕ(x) = U †(t)ϕI(x)U(t), where U(t) ≡ eiH0te−iHt is
unitary.

c) Show that U(t) obeys the differential equation i ddtU(t) = HI(t)U(t),
where HI(t) = eiH0tH1e

−iH0t is the interaction hamiltonian in the in-
teraction picture, and the boundary condition U(0) = 1.
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d) If H1 is specified by a particular function of the Schrödinger-picture
fields Π(x, 0) and ϕ(x, 0), show that HI(t) is given by the same func-
tion of the interaction-picture fields ΠI(x, t) and ϕI(x, t).

e) Show that, for t > 0,

U(t) = T exp

[
−i
∫ t

0
dt′ HI(t

′)
]

(9.35)

obeys the differential equation and boundary condition of part (c).
What is the comparable expression for t < 0? Hint: you may need to
define a new ordering symbol.

f) Define U(t2, t1) ≡ U(t2)U
†(t1). Show that, for t2 > t1,

U(t2, t1) = T exp

[
−i
∫ t2

t1
dt′ HI(t

′)
]
. (9.36)

What is the comparable expression for t1 > t2?

g) For any time ordering, show that U(t3, t1) = U(t3, t2)U(t2, t1) and
that U †(t1, t2) = U(t2, t1).

h) Show that

ϕ(xn) . . . ϕ(x1) = U †(tn, 0)ϕI (xn)U(tn, tn−1)ϕI(xn−1)

. . . U(t2, t1)ϕI(x1)U(t1, 0) . (9.37)

i) Show that U †(tn, 0) = U †(∞, 0)U(∞, tn) and also that U(t1, 0) =
U(t1,−∞)U(−∞, 0).

j) Replace H0 with (1−iǫ)H0, and show that 〈0|U †(∞, 0) = 〈0|∅〉〈∅|
and that U(−∞, 0)|0〉 = |∅〉〈∅|0〉.
k) Show that

〈0|ϕ(xn) . . . ϕ(x1)|0〉 = 〈∅|U(∞, tn)ϕI(xn)U(tn, tn−1)ϕI(xn−1) . . .

U(t2, t1)ϕI(x1)U(t1,−∞)|∅〉
× |〈∅|0〉|2 . (9.38)

l) Show that

〈0|Tϕ(xn) . . . ϕ(x1)|0〉 = 〈∅|TϕI(xn) . . . ϕI(x1)e
−i
∫
d4xHI(x)|∅〉

× |〈∅|0〉|2 . (9.39)

m) Show that

|〈∅|0〉|2 = 1/〈∅|Te−i
∫
d4xHI(x)|∅〉 . (9.40)
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Thus we have

〈0|Tϕ(xn) . . . ϕ(x1)|0〉 =
〈∅|TϕI (xn) . . . ϕI(x1)e

−i
∫
d4xHI(x)|∅〉

〈∅|Te−i
∫
d4xHI (x)|∅〉

.

(9.41)
We can now Taylor expand the exponentials on the right-hand side
of eq. (9.41), and use free-field theory to compute the resulting corre-
lation functions.
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10 Scattering Amplitudes and the Feynman

Rules

Prerequisite: 5, 9

Now that we have an expression for Z(J) = exp iW (J), we can take func-
tional derivatives to compute vacuum expectation values of time-ordered
products of fields. Consider the case of two fields; we define the exact
propagator via

1
i∆(x1 − x2) ≡ 〈0|Tϕ(x1)ϕ(x2)|0〉 . (10.1)

For notational simplicity let us define

δj ≡
1

i

δ

δJ(xj)
. (10.2)

Then we have

〈0|Tϕ(x1)ϕ(x2)|0〉 = δ1δ2Z(J)
∣∣∣
J=0

= δ1δ2iW (J)
∣∣∣
J=0

− δ1iW (J)
∣∣∣
J=0

δ2iW (J)
∣∣∣
J=0

= δ1δ2iW (J)
∣∣∣
J=0

. (10.3)

To get the last line we used δjW (J)|J=0 = 〈0|ϕ(xj)|0〉 = 0. Diagramat-
ically, δ1 removes a source, and labels the propagator endpoint x1. Thus
1
i∆(x1−x2) is given by the sum of diagrams with two sources, with those
sources removed and the endpoints labeled x1 and x2. (The labels must be
applied in both ways. If the diagram was originally symmetric on exchange
of the two sources, the associated symmetry factor of 2 is then canceled by
the double labeling.) At lowest order, the only contribution is the “barbell”
diagram of fig. (9.5) with the sources removed. Thus we recover the obvious
fact that 1

i∆(x1−x2) = 1
i∆(x1−x2) + O(g2). We will take up the subject

of the O(g2) corrections in section 14.
For now, let us go on to compute

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 = δ1δ2δ3δ4Z(J)

=
[
δ1δ2δ3δ4iW

+ (δ1δ2iW )(δ3δ4iW )

+ (δ1δ3iW )(δ2δ4iW )

+ (δ1δ4iW )(δ2δ3iW )
]
J=0

. (10.4)

We have dropped terms that contain a factor of 〈0|ϕ(x)|0〉 = 0. According
to eq. (10.3), the last three terms in eq. (10.4) simply give products of the
exact propagators.
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Let us see what happens when these terms are inserted into the LSZ
formula for two incoming and two outgoing particles,

〈f |i〉 = i4
∫
d4x1 d

4x2 d
4x′1 d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2)

×(−∂2
1 +m2)(−∂2

2 +m2)(−∂2
1′ +m2)(−∂2

2′ +m2)

×〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉 . (10.5)

If we consider, for example, 1
i∆(x1−x′1)1

i∆(x2−x′2) as one term in the
correlation function in eq. (10.5), we get from this term

∫
d4x1 d

4x2 d
4x′1 d

4x′2 e
i(k1x1+k2x2−k′1x′1−k′2x′2)F (x11′)F (x22′)

= (2π)4δ4(k1−k′1) (2π)4δ4(k2−k′2) F̃ (k̄11′) F̃ (k̄22′) , (10.6)

where F (xij) ≡ (−∂2
i +m

2)(−∂2
j +m2)∆(xij), F̃ (k) is its Fourier transform,

xij′ ≡ xi−x′j , and k̄ij′ ≡ (ki+k
′
j)/2. The important point is the two delta

functions: these tell us that the four-momenta of the two outgoing particles
(1′ and 2′) are equal to the four-momenta of the two incoming particles
(1 and 2). In other words, no scattering has occurred. This is not the
event whose probability we wish to compute! The other two similar terms
in eq. (10.4) either contribute to “no scattering” events, or vanish due to
factors like δ4(k1+k2) (which is zero because k0

1+k
0
2 ≥ 2m > 0). In general,

the diagrams that contribute to the scattering process of interest are only
those that are fully connected : every endpoint can be reached from every
other endpoint by tracing through the diagram. These are the diagrams
that arise from all the δ’s acting on a single factor of W . Therefore, from
here on, we restrict our attention to those diagrams alone. We define the
connected correlation functions via

〈0|Tϕ(x1) . . . ϕ(xE)|0〉C ≡ δ1 . . . δEiW (J)
∣∣∣
J=0

, (10.7)

and use these instead of 〈0|Tϕ(x1) . . . ϕ(xE)|0〉 in the LSZ formula.
Returning to eq. (10.4), we have

〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C = δ1δ2δ1′δ2′iW
∣∣∣
J=0

. (10.8)

The lowest-order (in g) nonzero contribution to this comes from the diagram
of fig. (9.10), which has four sources and two vertices. The four δ’s remove
the four sources; there are 4! ways of matching up the δ’s to the sources.
These 24 diagrams can then be collected into 3 groups of 8 diagrams each;
the 8 diagrams in each group are identical. The 3 distinct diagrams are
shown in fig. (10.1). Note that the factor of 8 neatly cancels the symmetry
factor S = 8 of the diagram with sources.
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Figure 10.1: The three tree-level Feynman diagrams that contribute to the
connected correlation function 〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C.

This is a general result for tree diagrams (those with no closed loops):
once the sources have been stripped off and the endpoints labeled, each
diagram with a distinct endpoint labeling has an overall symmetry factor
of one. The tree diagrams for a given process represent the lowest-order (in
g) nonzero contribution to that process.

We now have

〈0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0〉C
= (ig)2

(
1
i

)5 ∫
d4y d4z∆(y−z)

×
[

∆(x1−y)∆(x2−y)∆(x′1−z)∆(x′2−z)
+ ∆(x1−y)∆(x′1−y)∆(x2−z)∆(x′2−z)
+ ∆(x1−y)∆(x′2−y)∆(x2−z)∆(x′1−z)

]

+O(g4) . (10.9)

Next, we use eq. (10.9) in the LSZ formula, eq. (10.5). Each Klein-Gordon
wave operator acts on a propagator to give

(−∂2
i +m2)∆(xi − y) = δ4(xi − y) . (10.10)

The integrals over the external spacetime labels x1,2,1′,2′ are then trivial,
and we get

〈f |i〉 = (ig)2
(

1
i

) ∫
d4y d4z∆(y−z)

[
ei(k1y+k2y−k

′
1z−k′2z)

+ ei(k1y+k2z−k
′
1y−k′2z)

+ ei(k1y+k2z−k
′
1z−k′2y)

]
+O(g4) . (10.11)

This can be simplified by substituting

∆(y − z) =

∫
d4k

(2π)4
eik(y−z)

k2 +m2 − iǫ
(10.12)
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into eq. (10.9). Then the spacetime arguments appear only in phase factors,
and we can integrate them to get delta functions:

〈f |i〉 = ig2
∫

d4k

(2π)4
1

k2 +m2 − iǫ

×
[
(2π)4δ4(k1+k2+k) (2π)4δ4(k′1+k

′
2+k)

+ (2π)4δ4(k1−k′1+k) (2π)4δ4(k′2−k2+k)

+ (2π)4δ4(k1−k′2+k) (2π)4δ4(k′1−k2+k)
]
+O(g4)

= ig2 (2π)4δ4(k1+k2−k′1−k′2)

×
[

1

(k1+k2)2 +m2
+

1

(k1−k′1)2 +m2
+

1

(k1−k′2)2 +m2

]

+O(g4) . (10.13)

In eq. (10.13), we have left out the iǫ’s for notational convenience only; m2

is really m2 − iǫ. The overall delta function in eq. (10.13) tells that that
four-momentum is conserved in the scattering process, which we should, of
course, expect. For a general scattering process, it is then convenient to
define a scattering matrix element T via

〈f |i〉 = (2π)4δ4(kin−kout)iT , (10.14)

where kin and kout are the total four-momenta of the incoming and outgoing
particles, respectively.

Examining the calculation which led to eq. (10.13), we can take away
some universal features that lead to a simple set of Feynman rules for
computing contributions to iT for a given scattering process. The Feynman
rules are:

1. Draw lines (called external lines) for each incoming and each outgoing
particle.

2. Leave one end of each external line free, and attach the other to a
vertex at which exactly three lines meet. Include extra internal lines
in order to do this. In this way, draw all possible diagrams that are
topologically inequivalent.

3. On each incoming line, draw an arrow pointing towards the vertex.
On each outgoing line, draw an arrow pointing away from the vertex.
On each internal line, draw an arrow with an arbitrary direction.

4. Assign each line its own four-momentum. The four-momentum of
an external line should be the four-momentum of the corresponding
particle.
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Figure 10.2: The tree-level s-, t-, and u-channel diagrams contributing to
iT for two particle scattering.

5. Think of the four-momenta as flowing along the arrows, and conserve
four-momentum at each vertex. For a tree diagram, this fixes the
momenta on all the internal lines.

6. The value of a diagram consists of the following factors:

for each external line, 1;

for each internal line with momentum k, −i/(k2 +m2 − iǫ);

for each vertex, iZgg.

7. A diagram with L closed loops will have L internal momenta that are
not fixed by rule #5. Integrate over each of these momenta ℓi with
measure d4ℓi/(2π)4.

8. A loop diagram may have some leftover symmetry factors if there are
exchanges of internal propagators and vertices that leave the diagram
unchanged; in this case, divide the value of the diagram by the sym-
metry factor associated with exchanges of internal propagators and
vertices.

9. Include diagrams with the counterterm vertex that connects two prop-
agators, each with the same four-momentum k. The value of this
vertex is −i(Ak2 + Bm2), where A = Zϕ − 1 and B = Zm − 1, and
each is O(g2).

10. The value of iT is given by a sum over the values of all these diagrams.

For the two-particle scattering process, the tree diagrams resulting from
these rules are shown in fig. (10.2).

Now that we have our procedure for computing the scattering amplitude
T , we must see how to relate it to a measurable cross section.

Problems
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10.1) Use eq. (9.41) of problem 9.5 to rederive eq. (10.9).

10.2) Write down the Feynman rules for the complex scalar field of prob-
lem 9.3. Remember that there are two kinds of particles now (which
we can think of as positively and negatively charged), and that your
rules must have a way of distinguishing them. Hint: the most direct
approach requires two kinds of arrows: momentum arrows (as dis-
cussed in this section) and what we might call “charge” arrows (as
discussed in problem 9.3). Try to find a more elegant approach that
requires only one kind of arrow.

10.3) Consider a complex scalar field ϕ that interacts with a real scalar
field χ via L1 = gχϕ†ϕ. Use a solid line for the ϕ propagator and
a dashed line for the χ propagator. Draw the vertex (remember the
arrows!), and find the associated vertex factor.

10.4) Consider a real scalar field with L1 = 1
2gϕ∂

µϕ∂µϕ. Find the associ-
ated vertex factor.

10.5) The scattering amplitudes should be unchanged if we make a field
redefinition. Suppose, for example, we have

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 , (10.15)

and we make the field redefinition

ϕ→ ϕ+ λϕ2 . (10.16)

Work out the lagrangian in terms of the redefined field, and the cor-
responding Feynman rules. Compute (at tree level) the ϕϕ → ϕϕ
scattering amplitude. You should get zero, because this is a free-field
theory in disguise. (At the loop level, we also have to take into ac-
count the transformation of the functional measure Dϕ; see section
85.)
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11 Cross Sections and Decay Rates

Prerequisite: 10

Now that we have a method for computing the scattering amplitude T , we
must convert it into something that could be measured in an experiment.

In practice, we are almost always concerned with one of two generic
cases: one incoming particle, for which we compute a decay rate, or two
incoming particles, for which we compute a cross section. We begin with
the latter.

Let us also specialize, for now, to the case of two outgoing particles as
well as two incoming particles. In ϕ3 theory, we found in section 10 that
in this case we have

T = g2
[

1

(k1+k2)2 +m2
+

1

(k1−k′1)2 +m2
+

1

(k1−k′2)2 +m2

]
+O(g4) ,

(11.1)
where k1 and k2 are the four-momenta of the two incoming particles, k′1 and
k′2 are the four-momenta of the two outgoing particles, and k1+k2 = k′1+k

′
2.

Also, these particles are all on shell : k2
i = −m2

i . (Here, for later use, we
allow for the possibility that the particles all have different masses.)

Let us think about the kinematics of this process. In the center-of-
mass frame, or CM frame for short, we take k1 + k2 = 0, and choose k1

to be in the +z direction. Now the only variable left to specify about the
initial state is the magnitude of k1. Equivalently, we could specify the total
energy in the CM frame, E1 + E2. However, it is even more convenient to
define a Lorentz scalar s ≡ −(k1 + k2)

2. In the CM frame, s reduces to
(E1 + E2)

2; s is therefore called the center-of-mass energy squared. Then,
since E1 = (k2

1 + m2
1)

1/2 and E2 = (k2
1 + m2

2)
1/2, we can solve for |k1| in

terms of s, with the result

|k1| =
1

2
√
s

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 (CM frame) . (11.2)

Now consider the two outgoing particles. Since momentum is conserved,
we must have k′1 + k′2 = 0, and since energy is conserved, we must also
have (E′1 + E′2)

2 = s. Then we find

|k′1| =
1

2
√
s

√
s2 − 2(m2

1′ +m2
2′)s+ (m2

1′ −m2
2′)

2 (CM frame) . (11.3)

Now the only variable left to specify about the final state is the angle θ
between k1 and k′1. However, it is often more convenient to work with the
Lorentz scalar t ≡ −(k1 − k′1)

2, which is related to θ by

t = m2
1 +m2

1′ − 2E1E
′
1 + 2|k1||k′1| cos θ . (11.4)
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This formula is valid in any frame.
The Lorentz scalars s and t are two of the three Mandelstam variables,

defined as

s ≡ −(k1+k2)
2 = −(k′1+k

′
2)

2 ,

t ≡ −(k1−k′1)2 = −(k2−k′2)2 ,
u ≡ −(k1−k′2)2 = −(k2−k′1)2 . (11.5)

The three Mandelstam variables are not independent; they satisfy the linear
relation

s+ t+ u = m2
1 +m2

2 +m2
1′ +m2

2′ . (11.6)

In terms of s, t, and u, we can rewrite eq. (11.1) as

T = g2
[

1

m2 − s
+

1

m2 − t
+

1

m2 − u

]
+O(g4) , (11.7)

which demonstrates the notational utility of the Mandelstam variables.
Now let us consider a different frame, the fixed target or FT frame (also

sometimes called the lab frame), in which particle #2 is initially at rest:
k2 = 0. In this case we have

|k1| =
1

2m2

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2 (FT frame) . (11.8)

Note that, from eqs. (11.8) and (11.2),

m2|k1|FT =
√
s |k1|CM . (11.9)

This will be useful later.
We would now like to derive a formula for the differential scattering

cross section. In order to do so, we assume that the whole experiment is
taking place in a big box of volume V , and lasts for a large time T . We
should really think about wave packets coming together, but we will use
some simple shortcuts instead. Also, to get a more general answer, we will
let the number of outgoing particles be arbitrary.

Recall from section 10 that the overlap between the initial and final
states is given by

〈f |i〉 = (2π)4δ4(kin−kout)iT . (11.10)

To get a probability, we must square 〈f |i〉, and divide by the norms of the
initial and final states:

P =
|〈f |i〉|2
〈f |f〉〈i|i〉 . (11.11)
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The numerator of this expression is

|〈f |i〉|2 = [(2π)4δ4(kin−kout)]
2 |T |2 . (11.12)

We write the square of the delta function as

[(2π)4δ4(kin−kout)]
2 = (2π)4δ4(kin−kout) × (2π)4δ4(0) , (11.13)

and note that

(2π)4δ4(0) =

∫
d4x ei0·x = V T . (11.14)

Also, the norm of a single particle state is given by

〈k|k〉 = (2π)32k0δ3(0) = 2k0V . (11.15)

Thus we have

〈i|i〉 = 4E1E2V
2 , (11.16)

〈f |f〉 =
n′∏

j=1

2k′j
0V , (11.17)

where n′ is the number of outgoing particles.
If we now divide eq. (11.11) by the elapsed time T , we get a probability

per unit time

Ṗ =
(2π)4δ4(kin−kout)V |T |2

4E1E2V 2
∏n′

j=1 2k
′0
j V

. (11.18)

This is the probability per unit time to scatter into a set of outgoing par-
ticles with precise momenta. To get something measurable, we should sum
each outgoing three-momentum k′j over some small range. Due to the box,
all three-momenta are quantized: k′j = (2π/L)n′j , where V = L3, and n′j is
a three-vector with integer entries. (Here we have assumed periodic bound-
ary conditions, but this choice does not affect the final result.) In the limit
of large L, we have

∑

n′
j

→ V

(2π)3

∫
d3k′j . (11.19)

Thus we should multiply Ṗ by a factor of V d3k′j/(2π)3 for each outgoing
particle. Then we get

Ṗ =
(2π)4δ4(kin−kout)

4E1E2V
|T |2

n′∏

j=1

d̃k′j , (11.20)
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where we have identified the Lorentz-invariant phase-space differential

d̃k ≡ d3k

(2π)32k0
(11.21)

that we first introduced in section 3.
To convert Ṗ to a differential cross section dσ, we must divide by the

incident flux. Let us see how this works in the FT frame, where particle
#2 is at rest. The incident flux is the number of particles per unit volume
that are striking the target particle (#2), times their speed. We have one
incident particle (#1) in a volume V with speed v = |k1|/E1, and so the
incident flux is |k1|/E1V . Dividing eq. (11.20) by this flux cancels the last
factor of V , and replaces E1 in the denominator with |k1|. We also set
E2 = m2 and note that eq. (11.8) gives |k1|m2 as a function of s; dσ will
be Lorentz invariant if, in other frames, we simply use this function as the
value of |k1|m2. Adopting this convention, and using eq. (11.9), we have

dσ =
1

4|k1|CM

√
s
|T |2 dLIPSn′(k1+k2) , (11.22)

where |k1|CM is given as a function of s by eq. (11.2), and we have defined
the n′-body Lorentz-invariant phase-space measure

dLIPSn′(k) ≡ (2π)4δ4(k−∑n′

j=1 k
′
i)

n′∏

j=1

d̃k′j . (11.23)

Eq. (11.22) is our final result for the differential cross section for the scat-
tering of two incoming particles into n′ outgoing particles.

Let us now specialize to the case of two outgoing particles. We need to
evaluate

dLIPS2(k) = (2π)4δ4(k−k′1−k′2) d̃k′1d̃k′2 , (11.24)

where k = k1 + k2. Since dLIPS2(k) is Lorentz invariant, we can compute
it in any convenient frame. Let us work in the CM frame, where k =
k1 + k2 = 0 and k0 = E1 + E2 =

√
s; then we have

dLIPS2(k) =
1

4(2π)2E′1E
′
2

δ(E′1+E
′
2−

√
s ) δ3(k′1+k′2) d

3k′1d
3k′2 . (11.25)

We can use the spatial part of the delta function to integrate over d3k′2,
with the result

dLIPS2(k) =
1

4(2π)2E′1E
′
2

δ(E′1+E
′
2−

√
s ) d3k′1 , (11.26)
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where now

E′1 =
√

k′1
2 +m2

1′ and E′2 =
√

k′1
2 +m2

2′ . (11.27)

Next, let us write
d3k′1 = |k′1|2 d|k′1| dΩCM , (11.28)

where dΩCM = sin θ dθ dφ is the differential solid angle, and θ is the angle
between k1 and k′1 in the CM frame. We can carry out the integral over the
magnitude of k′1 in eq. (11.26) using

∫
dx δ(f(x)) =

∑
i |f ′(xi)|−1, where xi

satisfies f(xi) = 0. In our case, the argument of the delta function vanishes
at just one value of |k′1|, the value given by eq. (11.3). Also, the derivative
of that argument with respect to |k′1| is

∂

∂|k′1|
(
E′1 +E′2 −

√
s
)

=
|k′1|
E′1

+
|k′1|
E′2

= |k′1|
(
E′1 + E′2
E′1E

′
2

)

=
|k′1|

√
s

E′1E
′
2

. (11.29)

Putting all of this together, we get

dLIPS2(k) =
|k′1|

16π2
√
s
dΩCM . (11.30)

Combining this with eq. (11.22), we have

dσ

dΩCM

=
1

64π2s

|k′1|
|k1|

|T |2 , (11.31)

where |k1| and |k′1| are the functions of s given by eqs. (11.2) and (11.3),
and dΩCM is the differential solid angle in the CM frame.

The differential cross section can also be expressed in a frame-independent
manner by noting that, in the CM frame, we can take the differential of
eq. (11.4) at fixed s to get

dt = 2 |k1| |k′1| d cos θ (11.32)

= 2 |k1| |k′1|
dΩCM

2π
. (11.33)

Now we can rewrite eq. (11.31) as

dσ

dt
=

1

64πs|k1|2
|T |2 , (11.34)
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where |k1| is given as a function of s by eq. (11.2).
We can now transform dσ/dt into dσ/dΩ in any frame we might like

(such as the FT frame) by taking the differential of eq. (11.4) in that frame.
In general, though, |k′1| depends on θ as well as s, so the result is more
complicated than it is in eq. (11.32) for the CM frame.

Returning to the general case of n′ outgoing particles, we can define a
Lorentz invariant total cross section by integrating completely over all the
outgoing momenta, and dividing by an appropriate symmetry factor S. If
there are n′i identical outgoing particles of type i, then

S =
∏

i

n′i! , (11.35)

and

σ =
1

S

∫
dσ , (11.36)

where dσ is given by eq. (11.22). We need the symmetry factor because
merely integrating over all the outgoing momenta in dLIPSn′ treats the
final state as being labeled by an ordered list of these momenta. But if
some outgoing particles are identical, this is not correct; the momenta of
the identical particles should be specified by an unordered list (because, for

example, the state a†1a
†
2|0〉 is identical to the state a†2a

†
1|0〉). The symmetry

factor provides the appropriate correction.
In the case of two outgoing particles, eq. (11.36) becomes

σ =
1

S

∫
dΩCM

dσ

dΩCM

(11.37)

=
2π

S

∫ +1

−1
d cos θ

dσ

dΩCM

, (11.38)

where S = 2 if the two outgoing particles are identical, and S = 1 if they
are distinguishable. Equivalently, we can compute σ from eq. (11.34) via

σ =
1

S

∫ tmax

tmin

dt
dσ

dt
, (11.39)

where tmin and tmax are given by eq. (11.4) in the CM frame with cos θ = −1
and +1, respectively. To compute σ with eq. (11.38), we should first express
t and u in terms of s and θ via eqs. (11.4) and (11.6), and then integrate
over θ at fixed s. To compute σ with eq. (11.39), we should first express u
in terms of s and t via eq. (11.6), and then integrate over t at fixed s.

Let us see how all this works for the scattering amplitude of ϕ3 theory,
eq. (11.7). In this case, all the masses are equal, and so, in the CM frame,
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E = 1
2

√
s for all four particles, and |k′1| = |k1| = 1

2 (s − 4m2)1/2. Then
eq. (11.4) becomes

t = −1
2(s− 4m2)(1 − cos θ) . (11.40)

From eq. (11.6), we also have

u = −1
2(s − 4m2)(1 + cos θ) . (11.41)

Thus |T |2 is quite a complicated function of s and θ. In the nonrelativistic
limit, |k1| ≪ m or equivalently s− 4m2 ≪ m2, we have

T =
5g2

3m2

[
1 − 8

15

(
s− 4m2

m2

)
+

5

18

(
1 +

27

25
cos2 θ

)(
s− 4m2

m2

)
2

+ . . .

]

+O(g4) . (11.42)

Thus the differential cross section is nearly isotropic. In the extreme rela-
tivistic limit, |k1| ≫ m or equivalently s≫ m2, we have

T =
g2

s sin2 θ

[
3 + cos2 θ −

(
(3 + cos2 θ)2

sin2 θ
− 16

)
m2

s
+ . . .

]

+O(g4) . (11.43)

Now the differential cross section is sharply peaked in the forward (θ = 0)
and backward (θ = π) directions.

We can compute the total cross section σ from eq. (11.39). We have in
this case tmin = −(s− 4m2) and tmax = 0. Since the two outgoing particles
are identical, the symmetry factor is S = 2. Then setting u = 4m2 − s− t,
and performing the integral in eq. (11.39) over t at fixed s, we get

σ =
g4

32πs(s − 4m2)

[
2

m2
+

s− 4m2

(s−m2)2
− 2

s− 3m2

+
4m2

(s−m2)(s − 2m2)
ln

(
s− 3m2

m2

)]
+O(g6) . (11.44)

In the nonrelativistic limit, this becomes

σ =
25g4

1152πm6

[
1 − 79

60

(
s− 4m2

m2

)
+ . . .

]
+O(g6) . (11.45)

In the extreme relativistic limit, we get

σ =
g4

16πm2s2

[
1 +

7

2

m2

s
+ . . .

]
+O(g6) . (11.46)
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These results illustrate how even a very simple quantum field theory can
yield specific predictions for cross sections that could be tested experimen-
tally.

Let us now turn to the other basic problem mentioned at the beginning
of this section: the case of a single incoming particle that decays to n′ other
particles.

We have an immediate conceptual problem. According to our develop-
ment of the LSZ formula in section 5, each incoming and outgoing particle
should correspond to a single-particle state that is an exact eigenstate of
the exact hamiltonian. This is clearly not the case for a particle that can
decay. Referring to fig. (5.1), the hyperbola of such a particle must lie above
the continuum threshold. Strictly speaking, then, the LSZ formula is not
applicable.

A proper understanding of this issue requires a study of loop corrections
that we will undertake in section 25. For now, we will simply assume that
the LSZ formula continues to hold for a single incoming particle. Then we
can retrace the steps from eq. (11.11) to eq. (11.20); the only change is that
the norm of the initial state is now

〈i|i〉 = 2E1V (11.47)

instead of eq. (11.16). Identifying the differential decay rate dΓ with Ṗ then
gives

dΓ =
1

2E1
|T |2 dLIPSn′(k1) , (11.48)

where now s = −k2
1 = m2

1. In the CM frame (which is now the rest frame of
the initial particle), we have E1 = m1; in other frames, the relative factor
of E1/m1 in dΓ accounts for relativistic time dilation of the decay rate.

We can also define a total decay rate by integrating over all the outgoing
momenta, and dividing by the symmetry factor of eq. (11.35):

Γ =
1

S

∫
dΓ . (11.49)

We will compute a decay rate in problem 11.1

Reference Notes

For a derivation with wave packets, see Brown, Itzykson & Zuber, or Peskin
& Schroeder.

Problems
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11.1) a) Consider a theory of a two real scalar fields A and B with an
interaction L1 = gAB2. Assuming that mA > 2mB, compute the
total decay rate of the A particle at tree level.

b) Consider a theory of a real scalar field ϕ and a complex scalar field
χ with L1 = gϕχ†χ. Assuming that mϕ > 2mχ, compute the total
decay rate of the ϕ particle at tree level.

11.2) Consider Compton scattering, in which a massless photon is scattered
by an electron, initially at rest. (This is the FT frame.) In problem
59.1, we will compute |T |2 for this process (summed over the possible
spin states of the scattered photon and electron, and averaged over
the possible spin states of the initial photon and electron), with the
result

|T |2 = 32π2α2

[
m4 +m2(3s+ u) − su

(m2 − s)2
+
m4 +m2(3u+ s) − su

(m2 − u)2

+
2m2(s + u+ 2m2)

(m2 − s)(m2 − u)

]
+O(α4) (11.50)

where α = 1/137.036 is the fine-structure constant.

a) Express the Mandelstam variables s and u in terms of the initial
and final photon energies ω and ω′.

b) Express the scattering angle θFT between the initial and final pho-
ton three-momenta in terms of ω and ω′.

c) Express the differential scattering cross section dσ/dΩFT in terms
of ω and ω′. Show that your result is equivalent to the Klein-Nishina
formula

dσ

dΩFT

=
α2

2m2

ω′2

ω2

[
ω

ω′
+
ω′

ω
− sin2 θFT

]
. (11.51)

11.3) Consider the process of muon decay, µ− → e−νeνµ. In section 88,
we will compute |T |2 for this process (summed over the possible spin
states of the decay products, and averaged over the possible spin
states of the initial muon), with the result

|T |2 = 64G2
F(k1 ·k′2)(k′1 ·k′3) , (11.52)

where GF is the Fermi constant, k1 is the four-momentum of the
muon, and k′1,2,3 are the four-momenta of the νe, νµ, and e−, respec-
tively. In the rest frame of the muon, its decay rate is therefore

Γ =
32G2

F

m

∫
(k1 ·k′2)(k′1 ·k′3) dLIPS3(k1) , (11.53)
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where k1 = (m,0), and m is the muon mass. The neutrinos are
massless, and the electron mass is 200 times less than the muon mass,
so we can take the electron to be massless as well. To evaluate Γ, we
perform the following analysis.

a) Show that

Γ =
32G2

F

m

∫
d̃k′3 k1µk

′
3ν

∫
k′2
µk′1

ν dLIPS2(k1−k′3) . (11.54)

b) Use Lorentz invariance to argue that, for m1′ = m2′ = 0,
∫
k′1
µk′2

ν dLIPS2(k) = Ak2gµν +Bkµkν , (11.55)

where A and B are numerical constants.

c) Show that, for m1′ = m2′ = 0,
∫
dLIPS2(k) =

1

8π
. (11.56)

d) By contracting both sides of eq. (11.55) with gµν and with kµkν ,
and using eq. (11.56), evaluate A and B.

e) Use the results of parts (b) and (d) in eq. (11.54). Set k1 = (m,0),
and compute dΓ/dEe; here Ee ≡ E′3 is the energy of the electron.
Note that the maximum value of Ee is reached when the electron
is emitted in one direction, and the two neutrinos in the opposite
direction; what is this maximum value?

f) Perform the integral over Ee to obtain the muon decay rate Γ.

g) The measured lifetime of the muon is 2.197 × 10−6 s. The muon
mass is 105.66MeV. Determine the value of GF in GeV−2. (Your
answer is too low by about 0.2%, due to loop corrections to the decay
rate.)

h) Define the energy spectrum of the electron P (Ee) ≡ Γ−1dΓ/dEe.
Note that P (Ee)dEe is the probability for the electron to be emit-
ted with energy between Ee and Ee + dEe. Draw a graph of P (Ee)
vs. Ee/mµ.

11.4) Consider a theory of three real scalar fields (A, B, and C) with

L = − 1
2∂

µA∂µA− 1
2m

2
AA

2

− 1
2∂

µB∂µB − 1
2m

2
BB

2

− 1
2∂

µC∂µC − 1
2m

2
CC

2

+ gABC . (11.57)
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Write down the tree-level scattering amplitude (given by the sum of
the contributing tree diagrams) for each of the following processes:

AA → AA ,

AA → AB ,

AA → BB ,

AA → BC ,

AB → AB ,

AB → AC . (11.58)

Your answers should take the form

T = g2
[

cs
m2
s − s

+
ct

m2
t − t

+
cu

m2
u − u

]
, (11.59)

where, in each case, each ci is a positive integer, and each m2
i is m2

A

or m2
B or m2

C. Hint: T may be zero for some processes.
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12 Dimensional Analysis with h̄ = c = 1

Prerequisite: 3

We have set h̄ = c = 1. This allows us to convert a time T to a length L
via T = c−1L, and a length L to an inverse mass M−1 via L = h̄cM−1.
Thus any quantity A can be thought of as having units of mass to some
power (positive, negative, or zero) that we will call [A]. For example,

[m] = +1 , (12.1)

[xµ] = −1 , (12.2)

[∂µ] = +1 , (12.3)

[ddx] = −d . (12.4)

In the last line, we have generalized our considerations to theories in d
spacetime dimensions.

Let us now consider a scalar field in d spacetime dimensions with la-
grangian density

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 −
N∑

n=3

1
n!gnϕ

n . (12.5)

The action is

S =

∫
ddxL , (12.6)

and the path integral is

Z(J) =

∫
Dϕ exp

[
i

∫
ddx (L + Jϕ)

]
. (12.7)

From eq. (12.7), we see that the action S must be dimensionless, because
it appears as the argument of the exponential function. Therefore

[S] = 0 . (12.8)

Combining eqs. (12.4) and (12.8) yields

[L] = d . (12.9)

Then, from eqs. (12.9) and (12.3), and the fact that ∂µϕ∂µϕ is a term in L,
we see that we must have

[ϕ] = 1
2(d− 2) . (12.10)

Then, since gnϕ
n is also a term in L, we must have

[gn] = d− 1
2n(d− 2) . (12.11)
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In particular, for the ϕ3 theory we have been working with, we have

[g3] = 1
2 (6 − d) . (12.12)

Thus we see that the coupling constant of ϕ3 theory is dimensionless in
d = 6 spacetime dimensions.

Theories with dimensionless couplings tend to be more interesting than
theories with dimensionful couplings. This is because any nontrivial de-
pendence of a scattering amplitude on a coupling must be expressed as a
function of a dimensionless parameter. If the coupling is itself dimension-
ful, this parameter must be the ratio of the coupling to the appropriate
power of either the particle mass m (if it isn’t zero) or, in the high-energy
regime s ≫ m2, the Mandelstam variable s. Thus the relevant parame-
ter is g s−[g]/2. If [g] is negative [and it usually is: see eq. (12.11)], then
g s−[g]/2 blows up at high energies, and the perturbative expansion breaks
down. This behavior is connected to the nonrenormalizability of theories
with couplings with negative mass dimension, a subject we will take up in
section 18. It turns out that such theories require an infinite number of
input parameters to make sense; see section 29. In the opposite case, [g]
positive, the theory becomes trivial at high energy, because g s−[g]/2 goes
rapidly to zero.

Thus the case of [g] = 0 is just right: scattering amplitudes can have a
nontrivial dependence on g at all energies.

Therefore, from here on, we will be primarily interested in ϕ3 theory in
d = 6 spacetime dimensions, where [g3] = 0.

Problems

12.1) Express h̄c in GeV fm, where 1 fm = 1 Fermi = 10−13 cm.

12.2) Express the masses of the proton, neutron, pion, electron, muon, and
tau in GeV.

12.3) The proton is a strongly interacting blob of quarks and gluons. It
has a nonzero charge radius rp, given by r2p =

∫
d3x ρ(r)r2, where ρ(r)

is the quantum expectation value of the electric charge distribution
inside the proton. Estimate the value of rp, and then look up its
measured value. How accurate was your estimate?
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13 The Lehmann-Källén Form of the Exact

Propagator

Prerequisite: 9

Before turning to the subject of loop corrections to scattering amplitudes,
it will be helpful to consider what we can learn about the exact propagator
∆(x− y) from general principles. We define the exact propagator via

∆(x− y) ≡ i〈0|Tϕ(x)ϕ(y)|0〉 . (13.1)

We take the field ϕ(x) to be normalized so that

〈0|ϕ(x)|0〉 = 0 and 〈k|ϕ(x)|0〉 = e−ikx . (13.2)

In d spacetime dimensions, the one-particle state |k〉 has the normalization

〈k|k′〉 = (2π)d−1 2ω δd−1(k − k′) , (13.3)

with ω = (k2 +m2)1/2. The corresponding completeness statement is

∫
d̃k |k〉〈k| = I1 , (13.4)

where I1 is the identity operator in the one-particle subspace, and

d̃k ≡ dd−1k

(2π)d−12ω
(13.5)

is the Lorentz invariant phase-space differential. We also define the exact
momentum-space propagator ∆̃(k2) via

∆(x− y) ≡
∫

ddk

(2π)d
eik(x−y) ∆̃(k2) . (13.6)

In free-field theory, the momentum-space propagator is

∆̃(k2) =
1

k2 +m2 − iǫ
. (13.7)

It has an isolated pole at k2 = −m2 with residue one; m is the actual, phys-
ical mass of the particle, the mass that enters into the energy-momentum
relation.

We begin our analysis with eq. (13.1). We take x0 > y0, and insert
a complete set of energy eigenstates between the two fields. Recall from
section 5 that there are three general classes of energy eigenstates:
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1. The ground state or vacuum |0〉, which is a single state with zero
energy and momentum.

2. The one particle states |k〉, specified by a three-momentum k and
with energy ω = (k2 +m2)1/2.

3. States in the multiparticle continuum |k, n〉, specified by a three-
momentum k and other parameters (such as relative momenta among
the different particles) that we will collectively denote as n. The
energy of one of these states is ω = (k2 +M2)1/2, where M ≥ 2m; M
is one of the parameters in the set n.

Thus we get

〈0|ϕ(x)ϕ(y)|0〉 = 〈0|ϕ(x)|0〉〈0|ϕ(y)|0〉

+

∫
d̃k 〈0|ϕ(x)|k〉〈k|ϕ(y)|0〉

+
∑

n

∫
d̃k 〈0|ϕ(x)|k, n〉〈k, n|ϕ(y)|0〉 . (13.8)

The sum over n is schematic, and includes integrals over continuous pa-
rameters like relative momenta.

The first two terms in eq. (13.8) can be simplified via eq. (13.2). Also,
writing the field as ϕ(x) = exp(−iPµxµ)ϕ(0)exp(+iPµxµ), where Pµ is the
energy-momentum operator, gives us

〈k, n|ϕ(x)|0〉 = e−ikx〈k, n|ϕ(0)|0〉 , (13.9)

where k0 = (k2 +M2)1/2. We now have

〈0|ϕ(x)ϕ(y)|0〉 =

∫
d̃k eik(x−y) +

∑

n

∫
d̃k eik(x−y)|〈k, n|ϕ(0)|0〉|2 . (13.10)

Next, we define the spectral density

ρ(s) ≡
∑

n

|〈k, n|ϕ(0)|0〉|2 δ(s −M2) . (13.11)

Obviously, ρ(s) ≥ 0 for s ≥ 4m2, and ρ(s) = 0 for s < 4m2. Now we have

〈0|ϕ(x)ϕ(y)|0〉 =

∫
d̃k eik(x−y) +

∫ ∞

4m2
ds ρ(s)

∫
d̃k eik(x−y) . (13.12)

In the first term, k0 = (k2+m2)1/2, and in the second term, k0 = (k2+s)1/2.
Clearly we can also swap x and y to get

〈0|ϕ(y)ϕ(x)|0〉 =

∫
d̃k e−ik(x−y) +

∫ ∞

4m2
ds ρ(s)

∫
d̃k e−ik(x−y) (13.13)
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as well. We can then combine eqs. (13.12) and (13.13) into a formula for
the time-ordered product

〈0|Tϕ(x)ϕ(y)|0〉 = θ(x0−y0)〈0|ϕ(x)ϕ(y)|0〉 + θ(y0−x0)〈0|ϕ(y)ϕ(x)|0〉,
(13.14)

where θ(t) is the unit step function, by means of the identity

∫
ddk

(2π)d
eik(x−y)

k2 +m2 − iǫ
= iθ(x0−y0)

∫
d̃k eik(x−y)

+ iθ(y0−x0)

∫
d̃k e−ik(x−y) ; (13.15)

the derivation of eq. (13.15) was sketched in section 8. Combining eqs. (13.12–
13.15), we get

i〈0|Tϕ(x)ϕ(y)|0〉 =

∫
ddk

(2π)d
eik(x−y)

[
1

k2 +m2 − iǫ

+

∫ ∞

4m2
ds ρ(s)

1

k2 + s − iǫ

]
. (13.16)

Comparing eqs. (13.1), (13.6), and (13.16), we see that

∆̃(k2) =
1

k2 +m2 − iǫ
+

∫ ∞

4m2
ds ρ(s)

1

k2 + s− iǫ
. (13.17)

This is the Lehmann-Källén form of the exact momentum-space propagator
∆̃(k2). We note in particular that ∆̃(k2) has an isolated pole at k2 = −m2

with residue one, just like the propagator in free-field theory.

Problems

13.1) Consider an interacting scalar field theory in d spacetime dimensions,

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 − L1(ϕ) , (13.18)

where L1(ϕ) is a function of ϕ (and not its derivatives). The exact
momentum-space propagator for ϕ can be expressed in Lehmann-
Källén form by eq. (13.17). Find a formula for the renormalizing fac-
tor Zϕ in terms of ρ(s). Hint: consider the commutator [ϕ(x), ϕ̇(y)].
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14 Loop Corrections to the Propagator

Prerequisite: 10, 12, 13

In section 10, we wrote the exact propagator as

1
i∆(x1−x2) ≡ 〈0|Tϕ(x1)ϕ(x2)|0〉 = δ1δ2iW (J)

∣∣∣
J=0

, (14.1)

where iW (J) is the sum of connected diagrams, and δi acts to remove a
source from a diagram and label the corresponding propagator endpoint
xi. In ϕ3 theory, the O(g2) corrections to 1

i∆(x1−x2) come from the di-
agrams of fig. (14.1). To compute them, it is simplest to work directly in
momentum space, following the Feynman rules of section 10. An appro-
priate assignment of momenta to the lines is shown in fig. (14.1); we then
have

1
i ∆̃(k2) = 1

i ∆̃(k2) + 1
i ∆̃(k2)

[
iΠ(k2)

]
1
i ∆̃(k2) +O(g4) , (14.2)

where

∆̃(k2) =
1

k2 +m2 − iǫ
(14.3)

is the free-field propagator, and

iΠ(k2) = 1
2(ig)2

(
1
i

)2 ∫ ddℓ

(2π)d
∆̃((ℓ+k)2)∆̃(ℓ2)

− i(Ak2 +Bm2) +O(g4) (14.4)

is the self-energy. Here we have written the integral appropriate for d
spacetime dimensions; for now we will leave d arbitrary, but later we will
want to focus on d = 6, where the coupling g is dimensionless.

In the first term in eq. (14.4), the factor of one-half is the symmetry
factor associated with exchanging the top and bottom semicircular prop-
agators. Also, we have written the vertex factor as ig rather than iZgg
because we expect Zg = 1 + O(g2), and so the Zg − 1 contribution can
be lumped into the O(g4) term. In the second term, A = Zϕ − 1 and
B = Zm − 1 are both expected to be O(g2).

It will prove convenient to define Π(k2) to all orders via the geometric
series

1
i ∆̃(k2) = 1

i ∆̃(k2) + 1
i ∆̃(k2)

[
iΠ(k2)

]
1
i ∆̃(k2)

+ 1
i ∆̃(k2)

[
iΠ(k2)

]
1
i ∆̃(k2)

[
iΠ(k2)

]
1
i ∆̃(k2)

+ . . . . (14.5)
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Figure 14.1: The O(g2) corrections to the propagator.

Figure 14.2: The geometric series for the exact propagator.

This is illustrated in fig. (14.2). The sum in eq. (14.5) will include all the
diagrams that contribute to ∆̃(k2) if we take iΠ(k2) to be given by the sum
of all diagrams that are one-particle irreducible, or 1PI for short. A diagram
is 1PI if it is still connected after any one line is cut. The 1PI diagrams
that make an O(g4) contribution to iΠ(k2) are shown in fig. (14.3). When
writing down the value of one of these diagrams, we omit the two external
propagators.

If we sum up the series in eq. (14.5), we get

∆̃(k2) =
1

k2 +m2 − iǫ− Π(k2)
. (14.6)

In section 13, we learned that the exact propagator has a pole at k2 = −m2

with residue one. This is consistent with eq. (14.6) if and only if

Π(−m2) = 0 , (14.7)

Π′(−m2) = 0 , (14.8)

where the prime denotes a derivative with respect to k2. We will use
eqs. (14.7) and (14.8) to fix the values of A and B.

Figure 14.3: The O(g4) contributions to iΠ(k2).
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Next we turn to the evaluation of the O(g2) contribution to iΠ(k2) in
eq. (14.4). We have the immediate problem that the integral on the right-
hand side diverges at large ℓ for d ≥ 4. We faced a similar situation in
section 9 when we evaluated the lowest-order tadpole diagram. There we
introduced an ultraviolet cutoff Λ that modified the behavior of ∆̃(ℓ2) at
large ℓ2. Here, for now, we will simply restrict our attention to d < 4,
where the integral in eq. (14.4) is finite. Later we will see what we can say
about larger values of d.

We will evaluate the integral in eq. (14.4) with a series of tricks. We
first use Feynman’s formula to combine denominators,

1

A1 . . . An
=

∫
dFn (x1A1 + . . .+ xnAn)

−n , (14.9)

where the integration measure over the Feynman parameters xi is

∫
dFn = (n−1)!

∫ 1

0
dx1 . . . dxn δ(x1 + . . .+ xn − 1) . (14.10)

This measure is normalized so that
∫
dFn 1 = 1 . (14.11)

We will prove eq. (14.9) in problem 14.1.
In the case at hand, we have

∆̃((k+ℓ)2)∆̃(ℓ2) =
1

(ℓ2 +m2)((ℓ+ k)2 +m2)

=

∫ 1

0
dx
[
x((ℓ+ k)2 +m2) + (1−x)(ℓ2 +m2)

]−2

=

∫ 1

0
dx
[
ℓ2 + 2xℓ·k + xk2 +m2

]−2

=

∫ 1

0
dx
[
(ℓ+ xk)2 + x(1−x)k2 +m2

]−2

=

∫ 1

0
dx
[
q2 +D

]−2
, (14.12)

where we have suppressed the iǫ’s for notational convenience; they can be
restored via the replacement m2 → m2−iǫ. In the last line we have defined

q ≡ ℓ+ xk (14.13)

and
D ≡ x(1−x)k2 +m2 . (14.14)
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Re q 0

Im q 0

Figure 14.4: The q0 integration contour along the real axis can be rotated
to the imaginary axis without passing through the poles at q0 = −ω + iǫ
and q0 = +ω − iǫ.

We then change the integration variable in eq. (14.4) from ℓ to q; the jaco-
bian is trivial, and we have ddℓ = ddq.

Next, think of the integral over q0 from −∞ to +∞ as a contour integral
in the complex q0 plane. If the integrand vanishes fast enough as |q0| → ∞,
we can rotate this contour clockwise by 90◦, as shown in fig. (14.4), so that
it runs from −i∞ to +i∞. In making this Wick rotation, the contour
does not pass over any poles. (The iǫ’s are needed to make this statement
unambiguous.) Thus the value of the integral is unchanged. It is now
convenient to define a euclidean d-dimensional vector q̄ via q0 = iq̄d and
qj = q̄j; then q2 = q̄2, where

q̄2 = q̄21 + . . . + q̄2d . (14.15)

Also, ddq = i ddq̄. Therefore, in general,
∫
ddq f(q2−iǫ) = i

∫
ddq̄ f(q̄2) (14.16)

as long as f(q̄2) → 0 faster than 1/q̄d as q̄ → ∞.
Now we can write

Π(k2) = 1
2g

2I(k2) −Ak2 −Bm2 +O(g4) , (14.17)

where

I(k2) ≡
∫ 1

0
dx

∫
ddq̄

(2π)d
1

(q̄2 +D)2
. (14.18)

It is now straightforward to evaluate the d-dimensional integral over q̄ in
spherical coordinates.

Before we perform this calculation, however, let us introduce another
trick, one that can simplify the task of fixing A and B through the impo-
sition of eqs. (14.7) and (14.8). Here is the trick: differentiate Π(k2) twice
with respect to k2 to get

Π′′(k2) = 1
2g

2I ′′(k2) +O(g4) , (14.19)
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where, from eqs. (14.18) and (14.14),

I ′′(k2) =

∫ 1

0
dx 6x2(1−x)2

∫
ddq̄

(2π)d
1

(q̄2 +D)4
. (14.20)

Then, after we evaluate these integrals, we can get Π(k2) by integrating with
respect to k2, subject to the boundary conditions of eqs. (14.7) and (14.8).
In this way we can construct Π(k2) without ever explicitly computing A
and B.

Notice that this trick does something else for us as well. The integral
over q̄ in eq. (14.20) is finite for any d < 8, whereas the original integral in
eq. (14.18) is finite only for d < 4. This expanded range of d now includes
the value of greatest interest, d = 6.

How did this happen? We can gain some insight by making a Taylor
expansion of Π(k2) about k2 = −m2:

Π(k2) =
[

1
2g

2I(−m2) + (A−B)m2
]

+
[

1
2g

2I ′(−m2) +A
]
(k2 +m2)

+ 1
2!

[
1
2g

2I ′′(−m2)
]
(k2 +m2)2 + . . .

+O(g4) . (14.21)

From eqs. (14.18) and (14.14), it is straightforward to see that I(−m2)
is divergent for d ≥ 4, I ′(−m2) is divergent for d ≥ 6, and, in general,
I(n)(−m2) is divergent for d ≥ 4 + 2n. We can use the O(g2) terms in
A and B to cancel off the 1

2g
2I(−m2) and 1

2g
2I ′(−m2) terms in Π(k2),

whether or not they are divergent. But if we are to end up with a finite
Π(k2), all of the remaining terms must be finite, since we have no more free
parameters left to adjust. This is the case for d < 8.

Of course, for 4 ≤ d < 8, the values of A and B (and hence the la-
grangian coefficients Z = 1 +A and Zm = 1 +B) are formally infinite, and
this may be disturbing. However, these coefficients are not directly mea-
surable, and so need not obey our preconceptions about their magnitudes.
Also, it is important to remember that A and B each includes a factor of
g2; this means that we can expand in powers of A and B as part of our
general expansion in powers of g. When we compute Π(k2) (which enters
into observable cross sections), all the formally infinite numbers cancel in
a well-defined way, provided d < 8.

For d ≥ 8, this procedure breaks down, and we do not obtain a finite
expression for Π(k2). In this case, we say that the theory is nonrenormaliz-
able. We will discuss the criteria for renormalizability of a theory in detail
in section 18. It turns out that ϕ3 theory is renormalizable for d ≤ 6. (The
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problem with 6 < d < 8 arises from higher-order corrections, as we will see
in section 18.)

Now let us return to the calculation of Π(k2). Rather than using the
trick of first computing Π′′(k2), we will instead evaluate Π(k2) directly
from eq. (14.18) as a function of d for d < 4. Then we will analytically
continue the result to arbitrary d. This procedure is known as dimensional
regularization. Then we will fix A and B by imposing eqs. (14.7) and (14.8),
and finally take the limit d→ 6.

We could just as well use the method of section 9. Making the replace-
ment

∆̃(p2) → 1

p2 +m2 − iǫ

Λ2

p2 + Λ2 − iǫ
, (14.22)

where Λ is the ultraviolet cutoff, renders the O(g2) term in Π(k2) finite
for d < 8; This procedure is known as Pauli–Villars regularization. We
then evaluate Π(k2) as a function of Λ, fix A and B by imposing eqs. (14.7)
and (14.8), and take the Λ → ∞ limit. Calculations with Pauli-Villars
regularization are generally much more cumbersome than they are with
dimensional regularization. However, the final result for Π(k2) is the same.
Eq. (14.21) demonstrates that any regularization scheme will give the same
result for d < 8, at least as long as it preserves the Lorentz invariance of
the integrals.

We therefore turn to the evaluation of I(k2), eq. (14.18). The angu-
lar part of the integral over q̄ yields the area Ωd of the unit sphere in d
dimensions, which is

Ωd =
2πd/2

Γ(1
2d)

; (14.23)

this is most easily verified by computing the gaussian integral
∫
ddq̄ e−q̄

2
in

both cartesian and spherical coordinates. Here Γ(x) is the Euler gamma
function; for a nonnegative integer n and small x,

Γ(n+1) = n! , (14.24)

Γ(n+1
2) =

(2n)!

n!2n
√
π , (14.25)

Γ(−n+x) =
(−1)n

n!

[
1

x
− γ +

∑n

k=1
k−1 +O(x)

]
, (14.26)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
The radial part of the q̄ integral can also be evaluated in terms of gamma

functions. The overall result (generalized slightly) is

∫
ddq̄

(2π)d
(q̄2)a

(q̄2 +D)b
=

Γ(b−a−1
2d)Γ(a+ 1

2d)

(4π)d/2Γ(b)Γ(1
2d)

D−(b−a−d/2) . (14.27)
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We will make frequent use of this formula throughout this book. In the
case of interest, eq. (14.18), we have a = 0 and b = 2.

There is one more complication to deal with. Recall that we want to
focus on d = 6 because in that case g is dimensionless. However, for general
d, g has mass dimension ε/2, where

ε ≡ 6 − d . (14.28)

To account for this, we introduce a new parameter µ̃ with dimensions of
mass, and make the replacement

g → gµ̃ε/2 . (14.29)

In this way g remains dimensionless for all ε. Of course, µ̃ is not an actual
parameter of the d = 6 theory. Therefore, nothing measurable (like a cross
section) can depend on it.

This seemingly innocuous statement is actually quite powerful, and will
eventually serve as the foundation of the renormalization group.

We now return to eq. (14.18), use eq. (14.26), and set d = 6 − ε; we get

I(k2) =
Γ(−1+ε2 )

(4π)3

∫ 1

0
dxD

(
4π

D

)ε/2
. (14.30)

Hence, with the substitution of eq. (14.29), and defining

α ≡ g2

(4π)3
(14.31)

for notational convenience, we have

Π(k2) = 1
2αΓ(−1+ε2 )

∫ 1

0
dxD

(
4πµ̃2

D

)ε/2

−Ak2 −Bm2 +O(α2) . (14.32)

Now we can take the ε→ 0 limit, using eq. (14.26) and

Aε/2 = 1 + ε
2 lnA+O(ε2) . (14.33)

The result is

Π(k2) = −1
2α

[(
2
ε + 1

)(
1
6k

2 +m2
)

+

∫ 1

0
dxD ln

(
4πµ̃2

eγD

)]

−Ak2 −Bm2 +O(α2) . (14.34)
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Here we have used
∫ 1
0 dxD = 1

6k
2 +m2. It is now convenient to define

µ ≡
√

4π e−γ/2 µ̃ , (14.35)

and rearrange things to get

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/m2)

−
{

1
6α
[

1
ε + ln(µ/m) + 1

2

]
+A

}
k2

−
{
α
[

1
ε + ln(µ/m) + 1

2

]
+B

}
m2 +O(α2) . (14.36)

If we take A and B to have the form

A = −1
6α
[

1
ε + ln(µ/m) + 1

2 + κA
]
+O(α2) , (14.37)

B = − α
[

1
ε + ln(µ/m) + 1

2 + κB
]
+O(α2) , (14.38)

where κA and κB are purely numerical constants, then we get

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/m2) + α

(
1
6κAk

2 + κBm
2
)

+O(α2) . (14.39)

Thus this choice of A and B renders Π(k2) finite and independent of µ, as
required.

To fix κA and κB , we must still impose the conditions Π(−m2) = 0 and
Π′(−m2) = 0. The easiest way to do this is to first note that, schematically,

Π(k2) = 1
2α

∫ 1

0
dxD lnD + linear in k2 and m2 +O(α2) . (14.40)

We can then impose Π(−m2) = 0 via

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/D0) + linear in (k2 +m2) +O(α2) . (14.41)

where
D0 ≡ D

∣∣∣
k2=−m2

= [1−x(1−x)]m2 . (14.42)

Now it is straightforward to differentiate eq. (14.41) with respect to k2, and
find that Π′(−m2) vanishes for

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/D0) − 1

12α(k2 +m2) +O(α2) . (14.43)

The integral over x can be done in closed form; the result is

Π(k2) = 1
12α

[
c1k

2 + c2m
2 + 2k2f(r)

]
+O(α2) , (14.44)
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Figure 14.5: The real and imaginary parts of Π(k2)/(k2 +m2) in units of
α.

where c1 = 3−π
√

3, c2 = 3−2π
√

3, and

f(r) = r3 tanh−1(1/r) , (14.45)

r = (1 + 4m2/k2)1/2 . (14.46)

There is a branch point at k2 = −4m2, and Π(k2) acquires an imaginary
part for k2 < −4m2; we will discuss this further in the next section.

We can write the exact propagator as

∆̃(k2) =

(
1

1 − Π(k2)/(k2 +m2)

)
1

k2 +m2 − iǫ
. (14.47)

In fig. (14.5), we plot the real and imaginary parts of Π(k2)/(k2 +m2) in
units of α. We see that its values are quite modest for the plotted range.
For much larger values of |k2|, we have

Π(k2)

k2 +m2
≃ 1

12α
[
ln(k2/m2) + c1

]
+O(α2) . (14.48)

If we had kept track of the iǫ’s, k2 would be k2 − iǫ; when k2 is negative,
we have ln(k2 − iǫ) = ln |k2| − iπ. The imaginary part of Π(k2)/(k2 +m2)
therefore approaches the asymptotic value of − 1

12πα + O(α2) when k2 is
large and negative. The real part of Π(k2)/(k2 +m2), however, continues
to increase logarithmically with |k2| when |k2| is large. We will begin to
address the meaning of this in section 26.
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Problems

14.1) Derive a generalization of Feynman’s formula,

1

Aα1
1 . . . Aαn

n

=
Γ(
∑
i αi)∏

i Γ(αi)

1

(n−1)!

∫
dFn

∏
i x

αi−1
i

(
∑
i xiAi)

∑
i
αi
. (14.49)

Hint: start with
Γ(α)

Aα
=

∫ ∞

0
dt tα−1 e−At , (14.50)

which defines the gamma function. Put an index on A, α, and t, and
take the product. Then multiply on the right-hand side by

1 =

∫ ∞

0
ds δ(s −∑iti) . (14.51)

Make the change of variable ti = sxi, and carry out the integral over
s.

14.2) Verify eq. (14.23).

14.3) a) Show that

∫
ddq qµf(q2) = 0 , (14.52)

∫
ddq qµqνf(q2) = C2 g

µν
∫
ddq q2f(q2) , (14.53)

and evaluate the constant C2 in terms of d. Hint: use Lorentz symme-
try to argue for the general structure, and evaluate C2 by contracting
with gµν .

b) Similarly evaluate
∫
ddq qµqνqρqσf(q2).

14.4) Compute the values of κA and κB .

14.5) Compute the O(λ) correction to the propagator in ϕ4 theory (see
problem 9.2) in d = 4 − ε spacetime dimensions, and compute the
O(λ) terms in A and B.

14.6) Repeat problem 14.5 for the theory of problem 9.3.

14.7) Renormalization of the anharmonic oscillator. Consider an anhar-
monic oscillator, specified by the lagrangian

L = 1
2Zq̇

2 − 1
2Zωω

2q2 − Zλλω
3q4 . (14.54)

We set h̄ = 1 and m = 1; λ is then dimensionless.



14: Loop Corrections to the Propagator 119

a) Find the hamiltonian H corresponding to L. Write it as H =
H0 +H1, where H0 = 1

2P
2 + 1

2ω
2Q2, and [Q,P ] = i.

b) Let |0〉 and |1〉 be the ground and first excited states of H0, and
let |Ω〉 and |I〉 be the ground and first excited states of H. (We
take all these eigenstates to have unit norm.) We define ω to be the
excitation energy of H, ω ≡ EI − EΩ. We normalize the position
operator Q by setting 〈I|Q|Ω〉 = 〈1|Q|0〉 = (2ω)−1/2. Finally, to
make things mathematically simpler, we set Zλ equal to one, rather
than using a more physically motivated definition. Write Z = 1 + A
and Zω = 1 + B, where A = κAλ + O(λ2) and B = κBλ + O(λ2).
Use Rayleigh–Schrödinger perturbation theory to compute the O(λ)
corrections to the unperturbed energy eigenvalues and eigenstates.

c) Find the numerical values of κA and κB that yield ω = EI − EΩ

and 〈I|Q|Ω〉 = (2ω)−1/2.

d) Now think of the lagrangian of eq. (14.54) as specifying a quantum
field theory in d = 1 dimensions. Compute the O(λ) correction to
the propagator. Fix κA and κB by requiring the propagator to have a
pole at k2 = −ω2 with residue one. Do your results agree with those
of part (c)? Should they?
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15 The One-Loop Correction in

Lehmann-Källén Form

Prerequisite: 14

In section 13, we found that the exact propagator could be written in
Lehmann-Källén form as

∆̃(k2) =
1

k2 +m2 − iǫ
+

∫ ∞

4m2
ds ρ(s)

1

k2 + s− iǫ
, (15.1)

where the spectral density ρ(s) is real and nonnegative. In section 14, on
the other hand, we found that the exact propagator could be written as

∆̃(k2) =
1

k2 +m2 − iǫ− Π(k2)
, (15.2)

and that, to O(g2) in ϕ3 theory in six dimensions,

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/D0) − 1

12α(k2 +m2) +O(α2) , (15.3)

where
α ≡ g2/(4π)3 , (15.4)

D = x(1−x)k2 +m2 − iǫ , (15.5)

D0 = [1−x(1−x)]m2 . (15.6)

In this section, we will attempt to reconcile eqs. (15.2) and (15.3) with
eq. (15.1).

Let us begin by considering the imaginary part of the propagator. We
will always take k2 and m2 to be real, and explicitly include the appropriate
factors of iǫ whenever they are needed.

We can use eq. (15.1) and the identity

1

x− iǫ
=

x

x2 + ǫ2
+

iǫ

x2 + ǫ2

= P
1

x
+ iπδ(x) , (15.7)

where P means the principal part, to write

Im ∆̃(k2) = πδ(k2 +m2) +

∫ ∞

4m2
ds ρ(s)πδ(k2 + s)

= πδ(k2 +m2) + πρ(−k2) , (15.8)
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where ρ(s) ≡ 0 for s < 4m2. Thus we have

πρ(s) = Im ∆̃(−s) for s ≥ 4m2 . (15.9)

Let us now suppose that Im Π(k2) = 0 for some range of k2. (In section
14, we saw that the O(α) contribution to Π(k2) is purely real for k2 >
−4m2.) Then, from eqs. (15.2) and (15.7), we get

Im ∆̃(k2) = πδ(k2 +m2 − Π(k2)) for ImΠ(k2) = 0 . (15.10)

From Π(−m2) = 0, we know that the argument of the delta function van-
ishes at k2 = −m2, and from Π′(−m2) = 0, we know that the derivative of
this argument with respect to k2 equals one at k2 = −m2. Therefore

Im ∆̃(k2) = πδ(k2 +m2) for ImΠ(k2) = 0 . (15.11)

Comparing this with eq. (15.8), we see that ρ(−k2) = 0 if Im Π(k2) = 0.
Now suppose Im Π(k2) is not zero for some range of k2. (In section 14,

we saw that the O(α) contribution to Π(k2) has a nonzero imaginary part
for k2 < −4m2.) Then we can ignore the iǫ in eq. (15.2), and

Im ∆̃(k2) =
Im Π(k2)

(k2 +m2 + ReΠ(k2))2 + (Im Π(k2))2
for ImΠ(k2) 6= 0 .

(15.12)
Comparing this with eq. (15.8) we see that

πρ(s) =
ImΠ(−s)

(−s+m2 + Re Π(−s))2 + (Im Π(−s))2 . (15.13)

Since we know ρ(s) = 0 for s < 4m2, this tells us that we must also have
Im Π(−s) = 0 for s < 4m2, or equivalently Im Π(k2) = 0 for k2 > −4m2.
This is just what we found for the O(α) contribution to Π(k2) in section
14.

We can also see this directly from eq. (15.3), without doing the integral
over x. The integrand in this formula is real as long as the argument of the
logarithm is real and positive. From eq. (15.5), we see that D is real and
positive if and only if x(1−x)k2 > −m2. The maximum value of x(1−x)
is 1/4, and so the argument of the logarithm is real and positive for the
whole integration range 0 ≤ x ≤ 1 if and only if k2 > −4m2. In this
regime, ImΠ(k2) = 0. On the other hand, for k2 < −4m2, the argument
of the logarithm becomes negative for some of the integration range, and
so ImΠ(k2) 6= 0 for k2 < −4m2. This is exactly what we need to reconcile
eqs. (15.2) and (15.3) with eq. (15.1).

Problems
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15.1) In this problem we will verify the result of problem 13.1 to O(α).

a) Let Πloop(k2) be given by the first line of eq. (14.32), with ε > 0.
Show that, up to O(α2) corrections,

A = Π′loop(−m2) . (15.14)

Then use Cauchy’s integral formula to write this as

A =

∮
dw

2πi

Πloop(w)

(w +m2)2
, (15.15)

where the contour of integration is a small counterclockwise circle
around −m2 in the complex w plane.

b) By examining eq. (14.32), show that the only singularity of Πloop(k2)
is a branch point at k2 = −4m2. Take the cut to run along the neg-
ative real axis.

c) Distort the contour in eq. (15.15) to a circle at infinity with a detour
around the branch cut. Examine eq. (14.32) to show that, for ε > 0,
the circle at infinity does not contribute. The contour around the
branch cut then yields

A =

∫ −4m2

−∞

dw

2πi

1

(w +m2)2

[
Πloop(w+iǫ) − Πloop(w−iǫ)

]
, (15.16)

where ǫ is infinitesimal (and is not to be confused with ε = 6−d).
d) Examine eq. (14.32) to show that the real part of Πloop(w) is con-
tinuous across the branch cut, and that the imaginary part changes
sign, so that

Πloop(w+iǫ) − Πloop(w−iǫ) = −2i Im Πloop(w−iǫ) . (15.17)

e) Let w = −s in eq. (15.16) and use eq. (15.17) to get

A = − 1

π

∫ ∞

4m2
ds

Im Πloop(−s−iǫ)
(s−m2)2

. (15.18)

Use this to verify the result of problem 13.1 to O(α).

15.2) Dispersion relations. Consider the exact Π(k2), with ε = 0. Assume
that its only singularity is a branch point at k2 = −4m2, that it obeys
eq. (15.17), and that Π(k2) grows more slowly than |k2|2 at large |k2|.
By recapitulating the analysis in the previous problem, show that

Π′′(k2) =
2

π

∫ ∞

4m2
ds

Im Π(−s−iε)
(k2 + s)3

. (15.19)
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This is a twice subtracted dispersion relation. It gives Π′′(k2) through-
out the complex k2 plane in terms of the values of the imaginary part
of Π(k2) along the branch cut.
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16 Loop Corrections to the Vertex

Prerequisite: 14

Consider the O(g3) diagram of fig. (16.1), which corrects the ϕ3 vertex. In
this section we will evaluate this diagram.

We can define an exact three-point vertex function iV3(k1, k2, k3) as the
sum of one-particle irreducible diagrams with three external lines carrying
momenta k1, k2, and k3, all incoming, with k1 + k2 + k3 = 0 by momentum
conservation. (In adopting this convention, we allow k0

i to have either sign;
if ki is the momentum of an external particle, then the sign of k0

i is positive
if the particle is incoming, and negative if it is outgoing.) The original
vertex iZgg is the first term in this sum, and the diagram of fig. (16.1) is
the second. Thus we have

iV3(k1, k2, k3) = iZgg + (ig)3
(

1
i

)3 ∫ ddℓ

(2π)d
∆̃((ℓ−k1)

2)∆̃((ℓ+k2)
2)∆̃(ℓ2)

+O(g5) . (16.1)

In the second term, we have set Zg = 1 +O(g2). We proceed immediately
to the evaluation of this integral, using the series of tricks from section 14.

First we use Feynman’s formula to write

∆̃((ℓ−k1)
2)∆̃((ℓ+k2)

2)∆̃(ℓ2)

=

∫
dF3

[
x1(ℓ−k1)

2 + x2(ℓ+k2)
2 + x3ℓ

2 +m2
]−3

, (16.2)

where ∫
dF3 = 2

∫ 1

0
dx1 dx2 dx3 δ(x1+x2+x3−1) . (16.3)

We manipulate the right-hand side of eq. (16.2) to get

∆̃((ℓ−k1)
2)∆̃((ℓ+k2)

2)∆̃(ℓ2)

=

∫
dF3

[
ℓ2 − 2ℓ·(x1k1 − x2k2) + x1k

2
1 + x2k

2
2 +m2

]−3

=

∫
dF3

[
(ℓ− x1k1 + x2k2)

2 + x1(1−x1)k
2
1 + x2(1−x2)k

2
2

+ 2x1x2k1 ·k2 +m2
]−3

=

∫
dF3

[
q2 +D

]−3
. (16.4)

In the last line, we have defined q ≡ ℓ− x1k1 + x2k2, and

D ≡ x1(1−x1)k
2
1 + x2(1−x2)k

2
2 + 2x1x2k1 ·k2 +m2

= x3x1k
2
1 + x3x2k

2
2 + x1x2k

2
3 +m2 , (16.5)
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Figure 16.1: The O(g3) correction to the vertex iV3(k1, k2, k3).

where we used k2
3 = (k1 + k2)

2 and x1 + x2 + x3 = 1 to simplify the second
line.

After making a Wick rotation of the q0 contour, we have

V3(k1, k2, k3)/g = Zg + g2
∫
dF3

∫
ddq̄

(2π)d
1

(q̄2 +D)3
+O(g4) , (16.6)

where q̄ is a euclidean vector. This integral diverges for d ≥ 6. We therefore
evaluate it for d < 6, using the general formula from section 14; the result
is ∫

ddq̄

(2π)d
1

(q̄2 +D)3
=

Γ(3− 1
2d)

2(4π)d/2
D−(3−d/2) . (16.7)

Now we set d = 6 − ε. To keep g dimensionless, we make the replacement
g → gµ̃ε/2. Then we have

V3(k1, k2, k3)/g = Zg + 1
2αΓ(ε2 )

∫
dF3

(
4πµ̃2

D

)ε/2
+O(α2) , (16.8)

where α = g2/(4π)3. Now we can take the ε→ 0 limit. The result is

V3(k1, k2, k3)/g = Zg + 1
2α

[
2

ε
+

∫
dF3 ln

(
4πµ̃2

eγD

)]
+O(α2) , (16.9)

where we have used
∫
dF3 = 1. We now let µ2 = 4πe−γ µ̃2, set

Zg = 1 + C , (16.10)

and rearrange to get

V3(k1, k2, k3)/g = 1 +
{
α
[

1
ε + ln(µ/m)

]
+ C

}

− 1
2α

∫
dF3 ln(D/m2)

+ O(α2) . (16.11)
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If we take C to have the form

C = −α
[

1
ε + ln(µ/m) + κC

]
+O(α2) , (16.12)

where κC is a purely numerical constant, we get

V3(k1, k2, k3)/g = 1 − 1
2α

∫
dF3 ln(D/m2) − κCα+O(α2) . (16.13)

Thus this choice of C renders V3(k1, k2, k3) finite and independent of µ, as
required.

We now need a condition, analogous to Π(−m2) = 0 and Π′(−m2) = 0,
to fix the value of κC . These conditions on Π(k2) were mandated by known
properties of the exact propagator, but there is nothing directly comparable
for the vertex. Different choices of κC correspond to different definitions of
the coupling g. This is because, in order to measure g, we would measure
a cross section that depends on g; these cross sections also depend on κC .
Thus we can use any value for κC that we might fancy, as long as we all
agree on that value when we compare our calculations with experimental
measurements. It is then most convenient to simply set κC = 0. This
corresponds to the condition

V3(0, 0, 0) = g . (16.14)

This condition can then also be used to fix the higher-order (in g) terms in
Zg.

The integrals over the Feynman parameters in eq. (16.13) cannot be
done in closed form, but it is easy to see that if (for example) |k2

1 | ≫ m2,
then

V3(k1, k2, k3)/g ≃ 1 − 1
2α
[
ln(k2

1/m
2) +O(1)

]
+O(α2) . (16.15)

Thus the magnitude of the one-loop correction to the vertex function in-
creases logarithmically with |k2

i | when |k2
i | ≫ m2. This is the same behavior

that we found for Π(k2)/(k2 +m2) in section 14.

Problems

16.1) Compute the O(λ2) correction to V4 in ϕ4 theory (see problem 9.2) in
d = 4−ε spacetime dimensions. Take V4 = −λ when all four external
momenta are on shell, and s = 4m2. What is the O(λ) contribution
to C?

16.2) Repeat problem 16.1 for the theory of problem 9.3. Take V4 = −λ
when all four external momenta are on shell, and s = 4m2 for the
process aa→ aa. What is the O(λ) contribution to C?
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17 Other 1PI Vertices

Prerequisite: 16

In section 16, we defined the three-point vertex function iV3(k1, k2, k3) as
the sum of all one-particle irreducible diagrams with three external lines,
with the external propagators removed. We can extend this definition to
the n-point vertex iVn(k1, . . . , kn).

There are two key differences between Vn>3 and V3 in ϕ3 theory. The
first is that there is no tree-level contribution to Vn>3. The second is that
the one-loop contribution to Vn>3 is finite for d < 2n. In particular, the
one-loop contribution to Vn>3 is finite for d = 6.

Let us see how this works for the case n = 4. We treat all the external
momenta as incoming, so that k1 + k2 + k3 + k4 = 0. One of the three
contributing one-loop diagrams is shown in fig. (17.1); in this diagram, the
k3 vertex is opposite to the k1 vertex. Two other inequivalent diagrams are
then obtained by swapping k3 ↔ k2 and k3 ↔ k4. We then have

iV4 = g4
∫

d6ℓ

(2π)6
∆̃((ℓ−k1)

2)∆̃((ℓ+k2)
2)∆̃((ℓ+k2+k3)

2)∆̃(ℓ2)

+ (k3 ↔ k2) + (k3 ↔ k4)

+O(g6) . (17.1)

Feynman’s formula gives

∆̃((ℓ−k1)
2)∆̃((ℓ+k2)

2)∆̃((ℓ+k2+k3)
2)∆̃(ℓ2)

=

∫
dF4

[
x1(ℓ−k1)

2 + x2(ℓ+k2)
2 + x3(ℓ+k2+k3)

2 + x4ℓ
2 +m2

]−4

=

∫
dF4

[
q2 +D1234

]−4
, (17.2)

where q = ℓ− x1k1 + x2k2 + x3(k2+k3) and, after making repeated use of
x1+x2+x3+x4 = 1 and k1+k2+k3+k4 = 0,

D1234 = x1x4k
2
1 + x2x4k

2
2 + x2x3k

2
3 + x1x3k

2
4

+ x1x2(k1+k2)
2 + x3x4(k2+k3)

2 +m2 . (17.3)

We see that the integral over q is finite for d < 8, and in particular for
d = 6. After a Wick rotation of the q0 contour and applying the general
formula of section 14, we find

∫
d6q

(2π)6
1

(q2 +D)4
=

i

6(4π)3D
. (17.4)
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Figure 17.1: One of the three one-loop Feynman diagrams contributing
to the four-point vertex iV4(k1, k2, k3, k4); the other two are obtained by
swapping k3 ↔ k2 and k3 ↔ k4.

Thus we get

V4 =
g4

6(4π)3

∫
dF4

(
1

D1234
+

1

D1324
+

1

D1243

)
+O(g6) . (17.5)

This expression is finite and well-defined; the same is true for the one-loop
contribution to Vn for all n > 3.

Problems

17.1) Verify eq. (17.3).
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18 Higher-Order Corrections and

Renormalizability

Prerequisite: 17

In sections 14–17, we computed the one-loop diagrams with two, three, and
four external lines for ϕ3 theory in six dimensions. We found that the first
two involved divergent momentum integrals, but that these divergences
could be absorbed into the coefficients of terms in the lagrangian. If this is
true for all higher-order (in g) contributions to the propagator and to the
one-particle irreducible vertex functions (with n ≥ 3 external lines), then
we say that the theory is renormalizable. If this is not the case, and further
divergences arise, it may be possible to absorb them by adding some new
terms to the lagrangian. If a finite number of such new terms is required,
the theory is still said to be renormalizable. However, if an infinite number
of new terms is required, then the theory is said to be nonrenormalizable.
Despite the infinite number of parameters needed to specify it, a nonrenor-
malizable theory is generally able to make useful predictions at energies
below some ultraviolet cutoff Λ; we will discuss this in section 29.

In this section, we will deduce the necessary conditions for renormaliz-
ability. As an example, we will analyze a scalar field theory in d spacetime
dimensions of the form

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 −
∞∑

n=3

1
n!Zngnϕ

n . (18.1)

Consider a Feynman diagram with E external lines, I internal lines, L
closed loops, and Vn vertices that connect n lines. (Here Vn is just a num-
ber, not to be confused with the vertex function Vn.) Do the momentum
integrals associated with this diagram diverge?

We begin by noting that each closed loop gives a factor of ddℓi, and each
internal propagator gives a factor of 1/(p2 + m2), where p is some linear
combination of external momenta ki and loop momenta ℓi. The diagram
would then appear to have an ultraviolet divergence at large ℓi if there are
more ℓ’s in the numerator than there are in the denominator. The number
of ℓ’s in the numerator minus the number of ℓ’s in the denominator is the
diagram’s superficial degree of divergence

D ≡ dL− 2I , (18.2)

and the diagram appears to be divergent if

D ≥ 0 . (18.3)
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Next we derive a more useful formula forD. The diagram has E external
lines, so another contributing diagram is the tree diagram where all the lines
are joined by a single vertex, with vertex factor −iZEgE ; this is, in fact,
the value of this entire diagram, which then has mass dimension [gE ]. (The
Z’s are all dimensionless, by definition.) Therefore, the original diagram
also has mass dimension [gE ], since both are contributions to the same
scattering amplitude:

[diagram] = [gE ] . (18.4)

On the other hand, the mass dimension of any diagram is given by the sum
of the mass dimensions of its components, namely

[diagram] = dL− 2I +
∞∑

n=3

Vn[gn] . (18.5)

From eqs. (18.2), (18.4), and (18.5), we get

D = [gE ] −
∞∑

n=3

Vn[gn] . (18.6)

This is the formula we need.
From eq. (18.6), it is immediately clear that if any [gn] < 0, we expect

uncontrollable divergences, since D increases with every added vertex of
this type. Therefore, a theory with any [gn] < 0 is nonrenormalizable.

According to our results in section 12, the coupling constants have mass
dimension

[gn] = d− 1
2n(d− 2) , (18.7)

and so we have

[gn] < 0 if n >
2d

d− 2
. (18.8)

Thus we are limited to powers no higher than ϕ4 in four dimensions, and
no higher than ϕ3 in six dimensions.

The same criterion applies to more complicated theories as well: a the-
ory is nonrenormalizable if any coefficient of any term in the lagrangian
has negative mass dimension.

What about theories with couplings with only positive or zero mass
dimension? We see from eq. (18.6) that the only dangerous diagrams (those
with D ≥ 0) are those for which [gE ] ≥ 0. But in this case, we can absorb
the divergence simply by adjusting the value of ZE . This discussion also
applies to the propagator; we can think of Π(k2) as representing the loop-
corrected counterterm vertex Ak2 + Bm2, with A and Bm2 playing the
roles of two couplings. We have [A] = 0 and [Bm2] = 2, so the contributing
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Figure 18.1: The one-loop contribution to V4.

Figure 18.2: A two-loop contribution to V4, and the corresponding coun-
terterm insertion.

diagrams are expected to be divergent (as we have already seen in detail),
and the divergences must be absorbed into A and Bm2.

D is called the superficial degree of divergence because a diagram might
diverge even if D < 0, or might be finite even if D ≥ 0. The latter can
happen if there are cancellations among ℓ’s in the numerator. Quantum
electrodynamics provides an example of this phenomenon that we will en-
counter in Part III; see problem 62.3. For now we turn our attention to the
case of diagrams with D < 0 that nevertheless diverge.

Consider, for example, the diagrams of figs. (18.1) and (18.2). The one-
loop diagram of fig. (18.1) with E = 4 is finite, but the two-loop correction
from the first diagram of fig. (18.2) is not: the bubble on the upper prop-
agator diverges. This is an example of a divergent subdiagram. However,
this is not a problem in this case, because this divergence is canceled by
the second diagram of fig. (18.2), which has a counterterm vertex in place
of the bubble.

This is the generic situation: divergent subdiagrams are diagrams that,
considered in isolation, have D ≥ 0. These are precisely the diagrams whose
divergences can be canceled by adjusting the Z factor of the corresponding
tree diagram (in theories where [gn] ≥ 0 for all nonzero gn).

Thus, we expect that theories with couplings whose mass dimensions
are all positive or zero will be renormalizable. A detailed study of the
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properties of the momentum integrals in Feynman diagrams is necessary
to give a complete proof of this. It turns out to be true without further
restrictions for theories that have spin-zero and spin-one-half fields only.

Theories with spin-one fields are renormalizable for d = 4 if and only if
these spin-one fields are associated with a gauge symmetry. We will study
this in Part III.

Theories of fields with spin greater than one are never renormalizable
for d ≥ 4.

Reference Notes

Explicit two-loop calculations in ϕ3 theory can be found in Collins, Muta,
and Sterman.

Problems

18.1) In any number d of spacetime dimensions, a Dirac field Ψα(x) car-
ries a spin index α, and has a kinetic term of the form iΨγµ∂µΨ,
where we have suppressed the spin indices; the gamma matrices γµ

are dimensionless, and Ψ = Ψ†γ0.

a) What is the mass dimension [Ψ] of the field Ψ?

b) Consider interactions of the form gn(ΨΨ)n, where n ≥ 2 is an
integer. What is the mass dimension [gn] of gn?

c) Consider interactions of the form gm,nϕ
m(ΨΨ)n, where ϕ is a scalar

field, and m ≥ 1 and n ≥ 1 are integers. What is the mass dimension
[gm,n] of gm,n?

d) In d = 4 spacetime dimensions, which of these interactions are
allowed in a renormalizable theory?
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19 Perturbation Theory to All Orders

Prerequisite: 18

In section 18, we found that, generally, a theory is renormalizable if all
of its lagrangian coefficients have positive or zero mass dimension. In this
section, using ϕ3 theory in six dimensions as our example, we will see how
to construct a finite expression for a scattering amplitude to arbitrarily
high order in the ϕ3 coupling g.

We begin by summing all one-particle irreducible diagrams with two
external lines; this gives us the self-energy Π(k2). We next sum all 1PI
diagrams with three external lines; this gives us the three-point vertex
function V3(k1, k2, k3). Order by order in g, we must adjust the value
of the lagrangian coefficients Zϕ, Zm, and Zg to maintain the conditions
Π(−m2) = 0, Π′(−m2) = 0, and V3(0, 0, 0) = g.

Next we will construct the n-point vertex functions Vn(k1, . . . , kn) with
4 ≤ n ≤ E, where E is the number of external lines in the process of
interest. We compute these using a skeleton expansion. This means that
we draw all the contributing 1PI diagrams, but omit diagrams that include
either propagator or three-point vertex corrections. That is, we include
only diagrams that are not only 1PI, but also 2PI and 3PI: they remain
connected when any one, two, or three lines are cut. (Cutting three lines
may isolate a single tree-level vertex, but nothing more complicated.) Then
we take the propagators and vertices in these diagrams to be given by the
exact propagator ∆̃(k2) = (k2 +m2 − Π(k2))−1 and vertex V3(k1, k2, k3),
rather than by the tree-level propagator ∆̃(k2) = (k2 +m2)−1 and vertex
g. We then sum these skeleton diagrams to get Vn for 4 ≤ n ≤ E. Order
by order in g, this procedure is equivalent to computing Vn by summing
the usual set of contributing 1PI diagrams.

Next we draw all tree-level diagrams that contribute to the process
of interest (which has E external lines), including not only three-point
vertices, but also n-point vertices for n = 3, 4, . . . , E. Then we evaluate
these diagrams using the exact propagator ∆̃(k2) for internal lines, and
the exact 1PI vertices Vn; external lines are assigned a factor of one.1 We
sum these tree diagrams to get the scattering amplitude; loop corrections
have all been accounted for already in ∆̃(k2) and Vn. Order by order in
g, this procedure is equivalent to computing the scattering amplitude by
summing the usual set of contributing diagrams.

Thus we now know how to compute an arbitrary scattering amplitude

1This is because, in the LSZ formula, each Klein-Gordon wave operator becomes (in
momentum space) a factor of k2

i + m2 that multiplies each external propagator, leaving
behind only the residue of the pole in that propagator at k2

i = −m2; by construction,
this residue is one.
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to arbitrarily high order. The procedure is the same in any quantum field
theory; only the form of the propagators and vertices change, depending
on the spins of the fields.

The tree-level diagrams of the final step can be thought of as the Feyn-
man diagrams of a quantum action (or effective action, or quantum effective
action) Γ(ϕ). There is a simple and interesting relationship between the ef-
fective action Γ(ϕ) and the sum of connected diagrams with sources iW (J).
We derive it in section 21.

Reference Notes

The detailed procedure for renormalization at higher orders is discussed in
Coleman, Collins, Muta, and Sterman.
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20 Two-Particle Elastic Scattering at One

Loop

Prerequisite: 19

We now illustrate the general rules of section 19 by computing the two-
particle elastic scattering amplitude, including all one-loop corrections, in
ϕ3 theory in six dimensions. Elastic means that the number of outgoing
particles (of each species, in more general contexts) is the same as the
number of incoming particles (of each species).

We computed the amplitude for this process at tree level in section 10,
with the result

iTtree = 1
i (ig)

2
[
∆̃(−s) + ∆̃(−t) + ∆̃(−u)

]
, (20.1)

where ∆̃(−s) = 1/(−s+m2 − iǫ) is the free-field propagator, and s, t, and
u are the Mandelstam variables. Later we will need to remember that s is
positive, that t and u are negative, and that s+ t+ u = 4m2.

The exact scattering amplitude is given by the diagrams of fig. (20.1),
with all propagators and vertices interpreted as exact propagators and ver-
tices. (Recall, however, that each external propagator contributes only the
residue of the pole at k2 = −m2, and that this residue is one; thus the fac-
tor associated with each external line is simply one.) We get the one-loop
approximation to the exact amplitude by using the one-loop expressions
for the internal propagators and vertices. We thus have

iT1−loop = 1
i

(
[iV3(s)]

2∆̃(−s) + [iV3(t)]
2∆̃(−t) + [iV3(u)]

2∆̃(−u)
)

+ iV4(s, t, u) , (20.2)

where, suppressing the iǫ’s,

∆̃(−s) =
1

−s+m2 − Π(−s) , (20.3)

Π(−s) = 1
2α

∫ 1

0
dxD2(s) ln

(
D2(s)/D0

)
− 1

12α(−s+m2) , (20.4)

V3(s)/g = 1 − 1
2α

∫
dF3 ln

(
D3(s)/m

2
)
, (20.5)

V4(s, t, u) = 1
6g

2α

∫
dF4

[
1

D4(s, t)
+

1

D4(t, u)
+

1

D4(u, s)

]
. (20.6)

Here α = g2/(4π)3, the Feynman integration measure is

∫
dFn f(x) = (n−1)!

∫ 1

0
dx1 . . . dxn δ(x1+ . . .+xn−1)f(x)
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= (n−1)!

∫ 1

0
dx1

∫ 1−x1

0
dx2 . . .

∫ 1−x1−...−xn−2

0
dxn−1

×f(x)
∣∣∣
xn=1−x1−...−xn−1

, (20.7)

and we have defined

D2(s) = −x(1−x)s+m2 , (20.8)

D0 = +[1−x(1−x)]m2 , (20.9)

D3(s) = −x1x2s+ [1−(x1+x2)x3]m
2 , (20.10)

D4(s, t) = −x1x2s− x3x4t+ [1−(x1+x2)(x3+x4)]m
2 . (20.11)

We obtain V3(s) from the general three-point function V3(k1, k2, k3) by set-
ting two of the three k2

i to −m2, and the third to −s. We obtain V4(s, t, u)
from the general four-point function V4(k1, . . . , k4) by setting all four k2

i

to −m2, (k1 + k2)
2 to −s, (k1 + k3)

2 to −t, and (k1 + k4)
2 to −u. (Recall

that the vertex functions are defined with all momenta treated as incoming;
here we have identified −k3 and −k4 as the outgoing momenta.)

Eqs. (20.2–20.11) are formidable expressions. To gain some intuition
about them, let us consider the limit of high-energy, fixed angle scattering,
where we take s, |t|, and |u| all much larger than m2. Equivalently, we are
considering the amplitude in the limit of zero particle mass.

We can then set m2 = 0 in D2(s), D3(s), and D4(s, t). For the self-
energy, we get

Π(−s) = −1
2α s

∫ 1

0
dxx(1−x)

[
ln

(−s
m2

)
+ ln

(
x(1−x)

1−x(1−x)

)]
+ 1

12αs

= − 1
12α s

[
ln(−s/m2) + 3 − π

√
3
]
. (20.12)

Thus,

∆̃(−s) =
1

−s− Π(−s)

= −1

s

(
1 + 1

12α
[
ln(−s/m2) + 3 − π

√
3
])

+O(α2) . (20.13)

The appropriate branch of the logarithm is found by replacing s by s+ iǫ.
For s real and positive, −s lies just below the negative real axis, and so

ln(−s) = ln s− iπ . (20.14)

For t (or u), which is negative, we have instead

ln(−t) = ln |t| ,

ln t = ln |t| + iπ . (20.15)
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Figure 20.1: The Feynman diagrams contributing to the two-particle elastic
scattering amplitude; a double line stands for the exact propagator 1

i ∆̃(k),
a circle for the exact three-point vertex V3(k1, k2, k3), and a square for the
exact four-point vertex V4(k1, k2, k3, k4). An external line stands for the
unit residue of the pole at k2 = −m2.
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For the three-point vertex, we get

V3(s)/g = 1 − 1
2α

∫
dF3

[
ln(−s/m2) + ln(x1x2)

]
,

= 1 − 1
2α
[
ln(−s/m2) − 3

]
, (20.16)

where the same comments about the appropriate branch apply.
For the four-point vertex, the integral over the Feynman parameters

can be done in closed form, with the result

∫
dF4

D4(s, t)
= − 3

s+ t

(
π2 +

[
ln(s/t)

]2)

= +
3

u

(
π2 +

[
ln(s/t)

]2)
, (20.17)

where the second line follows from s+ t+ u = 0.
Putting all of this together, we have

T1−loop = g2
[
F (s, t, u) + F (t, u, s) + F (u, s, t)

]
, (20.18)

where

F (s, t, u) ≡ − 1

s

(
1 − 11

12α
[
ln(−s/m2) + c

]
− 1

2α
[
ln(t/u)

]2)
, (20.19)

and c = (6π2 + π
√

3 − 39)/11 = 2.33. This is a typical result of a loop
calculation: the original tree-level amplitude is corrected by powers of log-
arithms of kinematic variables.

Problems

20.1) Verify eq. (20.17).

20.2) Compute the O(α) correction to the two-particle scattering amplitude
at threshold , that is, for s = 4m2 and t = u = 0, corresponding to
zero three-momentum for both the incoming and outgoing particles.
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21 The Quantum Action

Prerequisite: 19

In section 19, we saw how to compute (in ϕ3 theory in d = 6 dimensions) the
1PI vertex functions Vn(k1, . . . , kn) for n ≥ 4 via the skeleton expansion:
draw all Feynman diagrams with n external lines that are one-, two-, and
three-particle irreducible, and compute them using the exact propagator
∆̃(k2) and three-point vertex function V3(k1, k2, k3).

We now define the quantum action (or effective action, or quantum
effective action)

Γ(ϕ) ≡ 1

2

∫
ddk

(2π)dx
ϕ̃(−k)

(
k2 +m2 − Π(k2)

)
ϕ̃(k)

+
∞∑

n=3

1

n!

∫
ddk1

(2π)d
. . .

ddkn
(2π)d

(2π)dδd(k1+ . . .+kn)

×Vn(k1, . . . , kn) ϕ̃(k1) . . . ϕ̃(kn) , (21.1)

where ϕ̃(k) =
∫
ddx e−ikxϕ(x). The quantum action has the property that

the tree-level Feynman diagrams it generates give the complete scattering
amplitude of the original theory.

In this section, we will determine the relationship between Γ(ϕ) and the
sum of connected diagrams with sources, iW (J), introduced in section 9.
Recall that W (J) is related to the path integral

Z(J) =

∫
Dϕ exp

[
iS(ϕ) + i

∫
ddxJϕ

]
, (21.2)

where S =
∫
ddxL is the action, via

Z(J) = exp[iW (J)] . (21.3)

Consider now the path integral

ZΓ(J) ≡
∫

Dϕ exp

[
iΓ(ϕ) + i

∫
ddxJϕ

]
(21.4)

= exp[iWΓ(J)] . (21.5)

WΓ(J) is given by the sum of connected diagrams (with sources) in which
each line represents the exact propagator, and each n-point vertex rep-
resents the exact 1PI vertex Vn. WΓ(J) would be equal to W (J) if we
included only tree diagrams in WΓ(J).
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We can isolate the tree-level contribution to a path integral by means of
the following trick. Introduce a dimensionless parameter that we will call
h̄, and the path integral

ZΓ,h̄(J) ≡
∫

Dϕ exp

[
i

h̄

(
Γ(ϕ) +

∫
ddxJϕ

)]
(21.6)

= exp[iWΓ,h̄(J)] . (21.7)

In a given connected diagram with sources, every propagator (including
those that connect to sources) is multiplied by h̄, every source by 1/h̄, and
every vertex by 1/h̄. The overall factor of h̄ is then h̄P−E−V , where V is the
number of vertices, E is the number of sources (equivalently, the number of
external lines after we remove the sources), and P is the number of prop-
agators (external and internal). We next note that P−E−V is equal to
L−1, where L is the number of closed loops. This can be seen by counting
the number of internal momenta and the constraints among them. Specif-
ically, assign an unfixed momentum to each internal line; there are P−E
of these momenta. Then the V vertices provide V constraints. One lin-
ear combination of these constraints gives overall momentum conservation,
and so does not constrain the internal momenta. Therefore, the number of
internal momenta left unfixed by the vertex constraints is (P−E)−(V−1),
and the number of unfixed momenta is the same as the number of loops L.

So, WΓ,h̄(J) can be expressed as a power series in h̄ of the form

WΓ,h̄(J) =
∞∑

L=0

h̄L−1WΓ,L(J) . (21.8)

If we take the formal limit of h̄ → 0, the dominant term is the one with
L = 0, which is given by the sum of tree diagrams only. This is just what
we want. We conclude that

W (J) = WΓ,L=0(J) . (21.9)

Next we perform the path integral in eq. (21.6) by the method of station-
ary phase. We find the point (actually, the field configuration) at which
the exponent is stationary; this is given by the solution of the quantum
equation of motion

δ

δϕ(x)
Γ(ϕ) = −J(x) . (21.10)

Let ϕJ(x) denote the solution of eq. (21.10) with a specified source function
J(x). Then the stationary-phase approximation to ZΓ,h̄(J) is

ZΓ,h̄(J) = exp

[
i

h̄

(
Γ(ϕJ) +

∫
ddxJϕJ

)
+O(h̄0)

]
. (21.11)
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Combining the results of eqs. (21.7), (21.8), (21.9), and (21.11), we find

W (J) = Γ(ϕJ) +

∫
ddxJϕJ . (21.12)

This is the main result of this section.
Let us explore it further. Recall from section 9 that the vacuum expec-

tation value of the field operator ϕ(x) is given by

〈0|ϕ(x)|0〉 =
δ

δJ(x)
W (J)

∣∣∣∣
J=0

. (21.13)

Now consider what we get if we do not set J = 0 after taking the derivative:

〈0|ϕ(x)|0〉J ≡ δ

δJ(x)
W (J) . (21.14)

This is the vacuum expectation value of ϕ(x) in the presence of a nonzero
source function J(x). We can get some more information about it by using
eq. (21.12) for W (J). Making use of the product rule for derivatives, we
have

〈0|ϕ(x)|0〉J =
δ

δJ(x)
Γ(ϕJ) + ϕJ(x) +

∫
d6y J(y)

δϕJ (y)

δJ(x)
. (21.15)

We can evaluate the first term on the right-hand side by using the chain
rule,

δ

δJ(x)
Γ(ϕJ ) =

∫
d6y

δΓ(ϕJ )

δϕJ (y)

δϕJ (y)

δJ(x)
. (21.16)

Then we can combine the first and third terms on the right-hand side of
eq. (21.15) to get

〈0|ϕ(x)|0〉J =

∫
d6y

[
δΓ(ϕJ )

δϕJ (y)
+ J(y)

]
δϕJ (y)

δJ(x)
+ ϕJ(x) . (21.17)

Now we note from eq. (21.10) that the factor in large brackets on the right-
hand side of eq. (21.17) vanishes, and so

〈0|ϕ(x)|0〉J = ϕJ(x) . (21.18)

That is, the vacuum expectation value of the field operator ϕ(x) in the
presence of a nonzero source function is also the solution to the quantum
equation of motion, eq. (21.10).

We can also write the quantum action in terms of a derivative expansion,

Γ(ϕ) =

∫
ddx

[
− U(ϕ) − 1

2Z(ϕ)∂µϕ∂µϕ+ . . .
]
, (21.19)
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where the ellipses stand for an infinite number of terms with more and more
derivatives, and U(ϕ) and Z(ϕ) are ordinary functions (not functionals)
of ϕ(x). U(ϕ) is called the quantum potential (or effective potential, or
quantum effective potential), and it plays an important conceptual role in
theories with spontaneous symmetry breaking; see section 31. However, it
is rarely necessary to compute it explicitly, except in those cases where we
are unable to do so.

Reference Notes

Construction of the quantum action is discussed in Coleman, Itzykson &
Zuber, Peskin & Schroeder, and Weinberg II.

Problems

21.1) Show that

Γ(ϕ) = W (Jϕ) −
∫
ddxJϕϕ , (21.20)

where Jϕ(x) is the solution of

δ

δJ(x)
W (J) = ϕ(x) (21.21)

for a specified ϕ(x).

21.2) Symmetries of the quantum action. Suppose that we have a set of
fields ϕa(x), and that both the classical action S(ϕ) and the integra-
tion measure Dϕ are invariant under

ϕa(x) →
∫
ddy Rab(x, y)ϕb(y) (21.22)

for some particular function Rab(x, y). Typically Rab(x, y) is a con-
stant matrix times δd(x−y), or a finite number of derivatives of
δd(x−y); see sections 22, 23, and 24 for some examples.

a) Show that W (J) is invariant under

Ja(x) →
∫
ddy Jb(y)Rba(y, x) . (21.23)

b) Use eqs. (21.20) and (21.23) to show that the quantum action Γ(ϕ)
is invariant under eq. (21.22). This is an important result that we will
use frequently.
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21.3) Consider performing the path integral in the presence of a background
field ϕ̄(x); we define

exp[iW (J ; ϕ̄)] ≡
∫

Dϕ exp

[
iS(ϕ+ϕ̄) + i

∫
ddxJϕ

]
. (21.24)

Then W (J ; 0) is the original W (J) of eq. (21.3). We also define the
quantum action in the presence of the background field,

Γ(ϕ; ϕ̄) ≡W (Jϕ; ϕ̄) −
∫
ddxJϕϕ , (21.25)

where Jϕ(x) is the solution of

δ

δJ(x)
W (J ; ϕ̄) = ϕ(x) (21.26)

for a specified ϕ(x). Show that

Γ(ϕ; ϕ̄) = Γ(ϕ+ϕ̄; 0) , (21.27)

where Γ(ϕ, 0) is the original quantum action of eq. (21.1).
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22 Continuous Symmetries and Conserved

Currents

Prerequisite: 8

Suppose we have a set of scalar fields ϕa(x), and a lagrangian density
L(x) = L(ϕa(x), ∂µϕa(x)). Consider what happens to L(x) if we make
an infinitesimal change ϕa(x) → ϕa(x) + δϕa(x) in each field. We have
L(x) → L(x) + δL(x), where δL(x) is given by the chain rule,

δL(x) =
∂L

∂ϕa(x)
δϕa(x) +

∂L
∂(∂µϕa(x))

∂µδϕa(x) . (22.1)

Next consider the classical equations of motion (also known as the Euler-
Lagrange equations, or the field equations), given by the action principle

δS

δϕa(x)
= 0 , (22.2)

where S =
∫
d4yL(y) is the action, and δ/δϕa(x) is a functional derivative.

(For definiteness, we work in four spacetime dimensions, though our re-
sults will apply in any number.) We have (with repeated indices implicitly
summed)

δS

δϕa(x)
=

∫
d4y

δL(y)

δϕa(x)

=

∫
d4y

[
∂L(y)

∂ϕb(y)

δϕb(y)

δϕa(x)
+

∂L(y)

∂(∂µϕb(y))

δ(∂µϕb(y))

δϕa(x)

]

=

∫
d4y

[
∂L(y)

∂ϕb(y)
δbaδ

4(y−x) +
∂L(y)

∂(∂µϕb(y))
δba∂µδ

4(y−x)
]

=
∂L(x)

∂ϕa(x)
− ∂µ

∂L(x)

∂(∂µϕa(x))
. (22.3)

We can use this result to make the replacement

∂L(x)

∂ϕa(x)
→ ∂µ

∂L(x)

∂(∂µϕa(x))
+

δS

δϕa(x)
(22.4)

in eq. (22.1). Then, combining two of the terms, we get

δL(x) = ∂µ

(
∂L(x)

∂(∂µϕa(x))
δϕa(x)

)
+

δS

δϕa(x)
δϕa(x) . (22.5)
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Next we identify the object in large parentheses in eq. (22.5) as the Noether
current

jµ(x) ≡ ∂L(x)

∂(∂µϕa(x))
δϕa(x) . (22.6)

Eq. (22.5) then implies

∂µj
µ(x) = δL(x) − δS

δϕa(x)
δϕa(x) . (22.7)

If the classical field equations are satisfied, then the second term on the
right-hand side of eq. (22.7) vanishes.

The Noether current plays a special role if we can find a set of in-
finitesimal field transformations that leaves the lagrangian unchanged, or
invariant. In this case, we have δL = 0, and we say that the lagrangian has
a continuous symmetry. From eq. (22.7), we then have ∂µj

µ = 0 whenever
the field equations are satisfied, and we say that the Noether current is
conserved. In terms of its space and time components, this means that

∂

∂t
j0(x) + ∇ · j(x) = 0 . (22.8)

If we interpret j0(x) as a charge density , and j(x) as the corresponding cur-
rent density , then eq. (22.8) expresses the local conservation of this charge.

Let us see an example of this. Consider a theory of a complex scalar
field with lagrangian

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4λ(ϕ†ϕ)2 . (22.9)

We can also rewrite L in terms of two real scalar fields by setting ϕ =
(ϕ1 + iϕ2)/

√
2 to get

L = −1
2∂

µϕ1∂µϕ1 − 1
2∂

µϕ2∂µϕ2 − 1
2m

2(ϕ2
1 +ϕ2

2)− 1
16λ(ϕ2

1 +ϕ2
2)

2 . (22.10)

In the form of eq. (22.9), it is obvious that L is left invariant by the trans-
formation

ϕ(x) → e−iαϕ(x) , (22.11)

where α is a real number. This is called a U(1) transformation, a transfor-
mation by a unitary 1×1 matrix. In terms of ϕ1 and ϕ2, this transformation
reads (

ϕ1(x)

ϕ2(x)

)
→
(

cosα sinα

− sinα cosα

)(
ϕ1(x)

ϕ2(x)

)
. (22.12)

If we think of (ϕ1, ϕ2) as a two-component vector, then eq. (22.12) is just
a rotation of this vector in the plane by angle α. Eq. (22.12) is called an
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SO(2) transformation, a transformation by an orthogonal 2×2 matrix with
a special value of the determinant (namely +1, as opposed to −1, the only
other possibility for an orthogonal matrix). We have learned that a U(1)
transformation can be mapped into an SO(2) transformation.

The infinitesimal form of eq. (22.11) is

ϕ(x) → ϕ(x) − iαϕ(x) ,

ϕ†(x) → ϕ†(x) + iαϕ†(x) , (22.13)

where α is now infinitesimal. In eq. (22.6), we should treat ϕ and ϕ† as in-
dependent fields. It is also conventional to scale the infinitesimal parameter
out of the current, so that we have

α jµ =
∂L

∂(∂µϕ)
δϕ +

∂L
∂(∂µϕ†)

δϕ†

= (−∂µϕ†)(−iαϕ) + (−∂µϕ)(+iαϕ†)

= α Im(ϕ†
↔
∂µϕ) , (22.14)

where A
↔
∂µB ≡ A∂µB− (∂µA)B. Canceling out α, we find that the Noether

current is
jµ = Im(ϕ†

↔
∂µϕ) . (22.15)

We can also repeat this exercise using the SO(2) form of the trans-
formation. For infinitesimal α, eq. (22.12) becomes δϕ1 = +αϕ2 and
δϕ2 = −αϕ1. Then the Noether current is given by

α jµ =
∂L

∂(∂µϕ1)
δϕ1 +

∂L
∂(∂µϕ2)

δϕ2

= (−∂µϕ1)(+αϕ2) + (−∂µϕ2)(−αϕ1)

= α (ϕ1

↔
∂µϕ2) , (22.16)

which is (hearteningly) equivalent to eq. (22.14).
Let us define the Noether charge

Q ≡
∫
d3x j0(x) =

∫
d3x Im(ϕ†

↔
∂0ϕ) , (22.17)

and investigate its properties. If we integrate eq. (22.8) over d3x, use Gauss’s
law to write the volume integral of ∇·j as a surface integral, and assume
that the boundary conditions at infinity fix j(x) = 0 on that surface, then
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we find that Q is constant in time. To get a better idea of the physical
implications of this, let us rewrite Q using the free-field expansions

ϕ(x) =

∫
d̃k
[
a(k)eikx + b∗(k)e−ikx

]
,

ϕ†(x) =

∫
d̃k
[
b(k)eikx + a∗(k)e−ikx

]
. (22.18)

We have written a∗(k) and b∗(k) rather than a†(k) and b†(k) because so
far our discussion has been about the classical field theory. In a theory
with interactions, these formulae (and their first time derivatives) are valid
at any one particular time (say, t = −∞). Then, we can plug them into
eq. (22.17), and find (after some manipulation similar to what we did for
the hamiltonian in section 3)

Q =

∫
d̃k
[
a∗(k)a(k) − b(k)b∗(k)] . (22.19)

In the quantum theory, this becomes an operator that counts the number
of a particles minus the number of b particles. This number is then time-
independent, and so the scattering amplitude vanishes identically for any
process that changes the value of Q. This can be seen directly from the
Feynman rules, which conserve Q at every vertex.

To better understand the implications of the Noether current in the
quantum theory, we begin by considering the path integral,

Z(J) =

∫
Dϕei[S+

∫
d4y Jaϕa] . (22.20)

The value of Z(J) is unchanged if we make the change of variable ϕa(x) →
ϕa(x) + δϕa(x), with δϕa(x) an arbitrary infinitesimal shift that (we as-
sume) leaves the measure Dϕ invariant. Thus we have

0 = δZ(J)

= i

∫
Dϕei[S+

∫
d4y Jbϕb]

∫
d4x

(
δS

δϕa(x)
+ Ja(x)

)
δϕa(x) . (22.21)

We can now take n functional derivatives with respect to Jaj(xj), and then
set J = 0, to get

0 =

∫
DϕeiS

∫
d4x

[
i

δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)

+
n∑

j=1

ϕa1(x1) . . . δaaj δ
4(x−xj) . . . ϕan(xn)

]
δϕa(x) . (22.22)
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Since δϕa(x) is arbitrary, we can drop it (and the integral over d4x). Then,
since the path integral computes the vacuum expectation value of the time-
ordered product, we have

0 = i〈0|T δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)|0〉

+
n∑

j=1

〈0|Tϕa1(x1) . . . δaaj δ
4(x−xj) . . . ϕan(xn)|0〉 . (22.23)

These are the Schwinger-Dyson equations for the theory.
To get a feel for them, let us look at free-field theory for a single real

scalar field, for which δS/δϕ(x) = (∂2
x −m2)ϕ(x). For n = 1 we get

(−∂2
x +m2)i〈0|Tϕ(x)ϕ(x1)|0〉 = δ4(x−x1) . (22.24)

That the Klein-Gordon wave operator should sit outside the time-ordered
product (and hence act on the time-ordering step functions) is clear from
the path integral form of eq. (22.22). We see from eq. (22.24) that the free-
field propagator, ∆(x−x1) = i〈0|Tϕ(x)ϕ(x1)|0〉, is a Green’s function for
the Klein-Gordon wave operator, a fact we first learned in section 8.

More generally, we can write

〈0|T δS

δϕa(x)
ϕa1(x1) . . . ϕan(xn)|0〉 = 0 for x 6= x1,...,n . (22.25)

We see that the classical equation of motion is satisfied by a quantum field
inside a correlation function, as long as its spacetime argument differs from
those of all the other fields. When this is not the case, we get extra contact
terms.

Let us now consider a theory that has a continuous symmetry and a
corresponding Noether current. Take eq. (22.22), and set δϕa(x) to be the
infinitesimal change in ϕa(x) that results in δL(x) = 0. Now sum over the
index a, and use eq. (22.7). The result is the Ward (or Ward-Takahashi)
identity

0 = ∂µ〈0|Tjµ(x)ϕa1(x1) . . . ϕan(xn)|0〉

+ i
n∑

j=1

〈0|Tϕa1(x1) . . . δϕaj(x)δ
4(x−xj) . . . ϕan(xn)|0〉 . (22.26)

Thus, conservation of the Noether current holds in the quantum theory,
with the current inside a correlation function, up to contact terms with a
specific form that depends on the details of the infinitesimal transformation
that leaves L invariant.
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The Noether current is also useful in a slightly more general context.
Suppose we have a transformation of the fields such that δL(x) is not zero,
but instead is a total divergence: δL(x) = ∂µK

µ(x) for some Kµ(x). Then
there is still a conserved current, now given by

jµ(x) =
∂L(x)

∂(∂µϕa(x))
δϕa(x) −Kµ(x) . (22.27)

An example of this is provided by the symmetry of spacetime translations.
We transform the fields via ϕa(x) → ϕa(x+a), where aµ is a constant four-
vector. The infinitesimal version of this is ϕa(x) → ϕa(x)+aν∂νϕa(x), and
so we have δϕa(x) = aν∂νϕa(x). Under this transformation, we obviously
have L(x) → L(x + a), and so δL(x) = aν∂νL(x) = ∂ν(a

νL(x)). Thus in
this case Kν(x) = aνL(x), and the conserved current is

jµ(x) =
∂L(x)

∂(∂µϕa(x))
aν∂νϕa(x) − aµL(x)

= −aνT µν(x) , (22.28)

where we have defined the stress-energy or energy-momentum tensor

T µν(x) ≡ − ∂L(x)

∂(∂µϕa(x))
∂νϕa(x) + gµνL(x) . (22.29)

For a renormalizable theory of a set of real scalar fields ϕa(x), the
lagrangian takes the form

L = −1
2∂

µϕa∂µϕa − V (ϕ) , (22.30)

where V (ϕ) is a polynomial in the ϕa’s. In this case

T µν = ∂µϕa∂
νϕa + gµνL . (22.31)

In particular,
T 00 = 1

2Π2
a + 1

2(∇ϕa)2 + V (ϕ) , (22.32)

where Πa = ∂0ϕa is the canonical momentum conjugate to the field ϕa.
We recognize T 00 as the hamiltonian density H that corresponds to the
lagrangian density of eq. (22.30). Then, by Lorentz symmetry, T 0j must be
the corresponding momentum density. We have

T 0j = ∂0ϕa∂
jϕa = −Πa∇jϕa . (22.33)

To check that this is a sensible result, we use the free-field expansion for
a set of real scalar fields [the same as eq. (22.18) but with b(k) = a(k) for
each field]; then we find that the momentum operator is given by

P j =

∫
d3xT 0j(x) =

∫
d̃k kj a†a(k)aa(k) , (22.34)
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which is just what we would expect. We therefore identify the energy-
momentum four-vector as

Pµ =

∫
d3xT 0µ(x) . (22.35)

Recall that in section 2 we defined the spacetime translation operator
as

T (a) ≡ exp(−iPµaµ) , (22.36)

and announced that it had the property that

T (a)−1ϕa(x)T (a) = ϕa(x− a) . (22.37)

Now that we have an explicit formula for Pµ, we can check this. This is
easiest to do for infinitesimal aµ; then eq. (22.37) becomes

[ϕa(x), P
µ] = 1

i ∂
µϕa(x) . (22.38)

This can indeed be verified by using the canonical commutation relations
for ϕa(x) and Πa(x).

One more symmetry we can investigate is Lorentz symmetry. If we make
an infinitesimal Lorentz transformation, we have ϕa(x) → ϕa(x + δω ·x),
where δω ·x is shorthand for δωνρx

ρ. This case is very similar to that of
spacetime translations; the only difference is that the translation parameter
aν is now x dependent, aν → δωνρx

ρ. The resulting conserved current is

Mµνρ(x) = xνT µρ(x) − xρT µν(x) , (22.39)

and it obeys ∂µMµνρ = 0, with the derivative contracted with the first
index. Mµνρ is antisymmetric on its second two indices; this comes about
because δωνρ is antisymmetric. The conserved charges associated with this
current are

Mνρ =

∫
d3xM0νρ(x) , (22.40)

and these are the generators of the Lorentz group that were introduced
in section 2. Again, we can use the canonical commutation relations for
the fields to check that the Lorentz generators have the right commutation
relations, both with the fields and with each other.

Reference Notes

The path-integral approach to Ward identities is treated in more de-
tail in Peskin & Schroeder. An operator-based derivation can be found in
Weinberg I.
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Problems

22.1) For the Noether current of eq. (22.6), and assuming that δϕa does not
involve time derivatives, use the canonical commutation relations to
show that

[ϕa, Q] = iδϕa , (22.41)

where Q is the Noether charge.

22.2) Use the canonical commutation relations to verify eq. (22.38).

22.3) a) With T µν given by eq. (22.31), compute the equal-time (x0 = y0)
commutators [T 00(x), T 00(y)], [T 0i(x), T 00(y)], and [T 0i(x), T 0j(y)].

b) Use your results to verify eqs. (2.17), (2.19), and (2.20).
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23 Discrete Symmetries: P , T , C, and Z

Prerequisite: 22

In section 2, we studied the proper orthochronous Lorentz transformations,
which are continuously connected to the identity. In this section, we will
consider the effects of parity,

Pµ
ν = (P−1)µν =




+1
−1

−1
−1


 . (23.1)

and time reversal,

T µ
ν = (T −1)µν =




−1
+1

+1
+1


 . (23.2)

We will also consider certain other discrete transformations such as charge
conjugation.

Recall from section 2 that for every proper orthochronous Lorentz trans-
formation Λµν there is an associated unitary operator U(Λ) with the prop-
erty that

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (23.3)

Thus for parity and time-reversal, we expect that there are corresponding
unitary operators

P ≡ U(P) , (23.4)

T ≡ U(T ) , (23.5)

such that

P−1ϕ(x)P = ϕ(Px) , (23.6)

T−1ϕ(x)T = ϕ(T x) . (23.7)

There is, however, an extra possible complication. Since the P and
T matrices are their own inverses, a second parity or time-reversal trans-
formation should transform all observables back into themselves. Using
eqs. (23.6) and (23.7), along with P2 = 1 and T 2 = 1, we see that

P−2ϕ(x)P 2 = ϕ(x) , (23.8)

T−2ϕ(x)T 2 = ϕ(x) . (23.9)
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Since ϕ(x) is a hermitian operator, it is in principle an observable, and so
eqs. (23.8) and (23.9) are just what we expect. However, another possibility
for the parity transformation of the field, different from eqs. (23.6) and
(23.7) but nevertheless consistent with eqs. (23.8) and (23.9), is

P−1ϕ(x)P = −ϕ(Px) , (23.10)

T−1ϕ(x)T = −ϕ(T x) . (23.11)

This possible extra minus sign cannot arise for proper orthochronous Lorentz
transformations, because they are continuously connected to the identity,
and for the identity transformation (that is, no transformation at all), we
must obviously have the plus sign.

If the minus sign appears on the right-hand side, we say that the field
is odd under parity (or time reversal). If a scalar field is odd under parity,
we sometimes say that it is a pseudoscalar.1

So, how do we know which is right, eqs. (23.6) and (23.7), or eqs. (23.10)
and (23.11)? The general answer is that we get to choose, but there is a
key principle to guide our choice: if at all possible, we want to define P
and T so that the lagrangian density is even,

P−1L(x)P = +L(Px) , (23.12)

T−1L(x)T = +L(T x) . (23.13)

Then, after we integrate over d4x to get the action S, the action will be
invariant. This means that parity and time-reversal are conserved .

For theories with spin-zero fields only, it is clear that the choice of
eqs. (23.6) and (23.7) always leads to eqs. (23.12) and (23.13), and so there is
no reason to flirt with eqs. (23.10) and (23.11). For theories that also include
spin-one-half fields, certain scalar bilinears in these fields are necessarily odd
under parity and time reversal, as we will see in section 40. If a scalar field
couples to such a bilinear, then eqs. (23.12) and (23.13) will hold if and only
if we choose eqs. (23.10) and (23.11) for that scalar, and so that is what we
must do.

There is one more interesting fact about the time-reversal operator T :
it is antiunitary, rather than unitary. Antiunitary means that T−1iT = −i.

To see why this must be the case, consider a Lorentz transformation of
the energy-momentum four-vector,

U(Λ)−1PµU(Λ) = ΛµνP
ν . (23.14)

1It is still a scalar under proper orthochronous Lorentz transformations; that is,
eq. (23.3) still holds. Thus the appellation scalar often means eq. (23.3), and either

eq. (23.6) or eq. (23.10), and that is how we will use the term.
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For parity and time-reversal, we therefore expect

P−1PµP = Pµ
νP

ν , (23.15)

T−1PµT = T µ
νP

ν . (23.16)

In particular, for µ = 0, we expect P−1HP = +H and T−1HT = −H.
The first of these is fine; it says the hamiltonian is invariant under parity,
which is what we want.2 However, eq. (23.16) is a disaster: it says that the
hamiltonian is invariant under time-reversal if and only if H = −H, which
is possible only if H = 0.

Can we just put an extra minus sign on the right-hand side of eq. (23.16),
as we did for eq. (23.11)? The answer is no. We constructed Pµ explicitly
in terms of the fields in section 22, and it is easy to check that choosing
eq. (23.11) for the fields does not yield an extra minus sign in eq. (23.16)
for the energy-momentum four-vector.

Let us reconsider the origin of eq. (23.14). We first recall that the space-
time translation operator

T (a) = exp(−iP ·a) . (23.17)

(which should not be confused with the time-reversal operator T ) trans-
forms a scalar field according to

T (a)−1ϕ(x)T (a) = ϕ(x− a) . (23.18)

The spacetime translation operator is a scalar with a spacetime coordinate
as a label; by analogy with eq. (23.3), we should have

U(Λ)−1T (a)U(Λ) = T (Λ−1a) . (23.19)

Now, treat aµ as infinitesimal in eq. (23.19) to get

U(Λ)−1(I − iaµP
µ)U(Λ) = I − i(Λ−1)ν

µaµP
ν

= I − iΛµνaµP
ν . (23.20)

For time-reversal, this becomes

T−1(I − iaµP
µ)T = I − iT µ

νaµP
ν . (23.21)

If we now identify the coefficients of −iaµ on each side, we get eq. (23.16),
which is bad. In order to get the extra minus sign that we need, we must
impose the antiunitary condition

T−1iT = −i . (23.22)

2When spin-one-half fields are present, it may be that no operator exists that satisfies
either eq. (23.6) or eq. (23.10) and also eq. (23.15); in this case we say that parity is
explicitly broken.
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We then find
T−1PµT = −T µ

νP
ν (23.23)

instead of eq. (23.16). This yields T−1HT = +H, which is the correct
expression of time-reversal invariance.

We turn now to other unitary operators that change the signs of scalar
fields, but do nothing to their spacetime arguments. Suppose we have a
theory with real scalar fields ϕa(x), and a unitary operator Z that obeys

Z−1ϕa(x)Z = ηaϕa(x) , (23.24)

where ηa is either +1 or −1 for each field. We will call Z a Z2 operator, be-
cause Z2 is the additive group of the integers modulo 2, which is equivalent
to the multiplicative group of +1 and −1. This also implies that Z2 = 1,
and so Z−1 = Z. (For theories with spin-zero fields only, the same is also
true of P and T , but things are more subtle for higher spin, as we will see
in Part II.)

Consider the theory of a complex scalar field ϕ = (ϕ1 + iϕ2)/
√

2 that
was introduced in section 22, with lagrangian

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4λ(ϕ†ϕ)2 (23.25)

= −1
2∂

µϕ1∂µϕ1 − 1
2∂

µϕ2∂µϕ2 − 1
2m

2(ϕ2
1 + ϕ2

2) − 1
16λ(ϕ2

1 + ϕ2
2)

2. (23.26)

In the form of eq. (23.25), L is obviously invariant under the U(1) transfor-
mation

ϕ(x) → e−iαϕ(x) . (23.27)

In the form of eq. (23.26), L is obviously invariant under the equivalent
SO(2) transformation,

(
ϕ1(x)

ϕ2(x)

)
→
(

cosα sinα

− sinα cosα

)(
ϕ1(x)

ϕ2(x)

)
. (23.28)

However, it is also obvious that L has an additional discrete symmetry,

ϕ(x) ↔ ϕ†(x) (23.29)

in the form of eq. (23.25), or equivalently

(
ϕ1(x)

ϕ2(x)

)
→
(

+1 0

0 −1

)(
ϕ1(x)

ϕ2(x)

)
. (23.30)

in the form of eq. (23.26). This discrete symmetry is called charge conju-
gation. It always occurs as a companion to a continuous U(1) symmetry.
In terms of the two real fields, it enlarges the group from SO(2) (the group
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of 2 × 2 orthogonal matrices with determinant +1) to O(2) (the group of
2 × 2 orthogonal matrices).

We can implement charge conjugation by means of a particular Z2 op-
erator C that obeys

C−1ϕ(x)C = ϕ†(x) , (23.31)

or equivalently

C−1ϕ1(x)C = +ϕ1(x) , (23.32)

C−1ϕ2(x)C = −ϕ2(x) . (23.33)

We then have
C−1L(x)C = L(x) , (23.34)

and so charge conjugation is a symmetry of the theory. Physically, it implies
that the scattering amplitudes are unchanged if we exchange all the a-type
particles (which have charge +1) with all the b-type particles (which have
charge −1). This means, in particular, that the a and b particles must have
exactly the same mass. We say that b is a’s antiparticle.

More generally, we can also have Z2 symmetries that are not related
to antiparticles. Consider, for example, ϕ4 theory, where ϕ is a real scalar
field with lagrangian

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 − 1
24λϕ

4 . (23.35)

If we define the Z2 operator Z via

Z−1ϕ(x)Z = −ϕ(x) , (23.36)

then L is obviously invariant. We therefore have Z−1HZ = H, or equiva-
lently [Z,H] = 0, where H is the hamiltonian. If we assume that (as usual)
the ground state is unique, then, since Z commutes with H, the ground
state must also be an eigenstate of Z. We can fix the phase of Z [which is
undetermined by eq. (23.36)] via

Z|0〉 = Z−1|0〉 = +|0〉 . (23.37)

Then, using eqs. (23.36) and (23.37), we have

〈0|ϕ(x)|0〉 = 〈0|ZZ−1ϕ(x)ZZ−1|0〉
= −〈0|ϕ(x)|0〉 . (23.38)

Since 〈0|ϕ(x)|0〉 is equal to minus itself, it must be zero. Thus, as long as
the ground state is unique, the Z2 symmetry of ϕ4 theory guarantees that
the field has zero vacuum expectation value. We therefore do not need to
enforce this condition with a counterterm Y ϕ, as we did in ϕ3 theory. (The
assumption of a unique ground state does not necessarily hold, however, as
we will see in section 30.)
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24 Nonabelian Symmetries

Prerequisite: 22

Consider the theory (introduced in section 22) of a two real scalar fields ϕ1

and ϕ2 with

L = −1
2∂

µϕ1∂µϕ1 − 1
2∂

µϕ2∂µϕ2 − 1
2m

2(ϕ2
1 + ϕ2

2)− 1
16λ(ϕ2

1 + ϕ2
2)

2 . (24.1)

We can generalize this to the case of N real scalar fields ϕi with

L = −1
2∂

µϕi∂µϕi − 1
2m

2ϕiϕi − 1
16λ(ϕiϕi)

2 , (24.2)

where a repeated index is summed. This lagrangian is clearly invariant
under the SO(N) transformation

ϕi(x) → Rijϕj(x) , (24.3)

where R is an orthogonal matrix with a positive determinant: RT = R−1,
detR = +1. This largrangian is also clearly invariant under the Z2 trans-
formation ϕi(x) → −ϕi(x), which enlarges SO(N) to O(N); see section
23. However, in this section we will be concerned only with the continuous
SO(N) part of the symmetry.

Next we will need some results from group theory. Consider an infinites-
imal SO(N) transformation,

Rij = δij + θij +O(θ2) . (24.4)

Orthogonality of Rij implies that θij is real and antisymmetric. It is con-
venient to express θij in terms of a basis set of hermitian matrices (T a)ij .
The index a runs from 1 to 1

2N(N−1), the number of linearly independent,
hermitian, antisymmetric, N × N matrices. We can, for example, choose
each T a to have a single nonzero entry −i above the main diagonal, and
a corresponding +i below the main diagonal. These matrices obey the
normalization condition

Tr(T aT b) = 2δab . (24.5)

In terms of them, we can write

θjk = −iθa(T a)jk , (24.6)

where θa is a set of 1
2N(N−1) real, infinitesimal parameters.

The T a’s are the generator matrices of SO(N). The product of any two
SO(N) transformations is another SO(N) transformation; this implies (see
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problem 24.2) that the commutator of any two generator matrices must be
a linear combination of generator matrices,

[T a, T b] = ifabcT c . (24.7)

The numerical factors fabc are the structure coefficients of the group, and
eq. (24.7) specifies its Lie algebra. If fabc = 0, the group is abelian. Other-
wise, it is nonabelian. Thus, U(1) and SO(2) are abelian groups (since they
each have only one generator that obviously must commute with itself),
and SO(N) for N ≥ 3 is nonabelian.

If we multiply eq. (24.7) on the right by T d, take the trace, and use
eq. (24.5), we find

fabd = −1
2 iTr

(
[T a, T b]T d

)
. (24.8)

Using the cyclic property of the trace, we find that fabd must be completely
antisymmetric. Taking the complex conjugate of eq. (24.8) (and remember-
ing that the T a’s are hermitian matrices), we find that fabd must be real.

The simplest nonabelian group is SO(3). In this case, we can choose
(T a)ij = −iεaij , where εijk is the completely antisymmetric Levi-Civita
symbol, with ε123 = +1. The commutation relations become

[T a, T b] = iεabcT c . (24.9)

That is, the structure coefficients of SO(3) are given by fabc = εabc.
Consider now a theory with N complex scalar fields ϕi, and a lagrangian

L = −∂µϕ†i∂µϕi −m2ϕ†iϕi − 1
4λ(ϕ†iϕi)

2 , (24.10)

where a repeated index is summed. This lagrangian is clearly invariant
under the U(N) transformation

ϕi(x) → Uijϕj(x) , (24.11)

where U is a unitary matrix: U † = U−1. We can write Uij = e−iθŨij ,
where θ is a real parameter and det Ũij = +1; Ũij is called a special unitary
matrix. Clearly the product of two special unitary matrices is another
special unitary matrix; the N ×N special unitary matrices form the group
SU(N). The group U(N) is the direct product of the group U(1) and the
group SU(N); we write U(N) = U(1) × SU(N).

Consider an infinitesimal SU(N) transformation,

Ũij = δij − iθa(T a)ij +O(θ2) , (24.12)

where θa is a set of real, infinitesimal parameters. Unitarity of Ũ implies
that the generator matrices T a are hermitian, and det Ũ = +1 implies
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that each T a is traceless. (This follows from the general matrix formula
ln detA = Tr lnA.) The index a runs from 1 to N2−1, the number of lin-
early independent, hermitian, traceless, N × N matrices. We can choose
these matrices to obey the normalization condition of eq. (24.5). For SU(2),
the generators can be chosen to be the Pauli matrices; the structure coeffi-
cients of SU(2) then turn out to be fabc = 2εabc, the same as those of SO(3),
up to an irrelevant overall factor [which could be removed by changing the
numerical factor on right-hand side of eq. (24.5) from 2 to 1

2 ].
For SU(N), we can choose the T a’s in the following way. First, there

are the SO(N) generators, with one −i above the main diagonal a corre-
sponding +i below; there are 1

2N(N−1) of these. Next, we get another set
by putting one +1 above the main diagonal and a corresponding +1 below;
there are 1

2N(N−1) of these. Finally, there are diagonal matrices with n
1’s along the main diagonal, followed a single entry −n, followed by zeros
[times an overall normalization constant to enforce eq. (24.5)]; the are N−1
of these. The total is N2−1, as required.

However, if we examine the lagrangian of eq. (24.10) more closely, we
find that it is actually invariant under a larger symmetry group, namely
SO(2N). To see this, write each complex scalar field in terms of two real
scalar fields, ϕj = (ϕj1 + iϕj2)/

√
2. Then

ϕ†jϕj = 1
2 (ϕ2

11 + ϕ2
12 + . . . + ϕ2

N1 + ϕ2
N2) . (24.13)

Thus, we have 2N real scalar fields that enter L symmetrically, and so
the actual symmetry group of eq. (24.10) is SO(2N), rather than just the
obvious subgroup U(N).

We will, however, meet the SU(N) groups again in Parts II and III,
where they will play a more important role.

Problems

24.1) Show that θij in eq. (24.4) must be antisymmetric if R is orthogonal.

24.2) By considering the SO(N) transformation R′−1R−1R′R, where R
and R′ are independent infinitesimal SO(N) transformations, prove
eq. (24.7).

24.3) a) Find the Noether current jaµ for the transformation of eq. (24.6).

b) Show that [ϕi, Q
a] = (T a)ijϕj , where Qa is the Noether charge.

c) Use this result, eq. (24.7), and the Jacobi identity (see problem 2.8)
to show that [Qa, Qb] = ifabcQc.
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24.4) The elements of the group SO(N) can be defined as N ×N matrices
R that satisfy

Rii′Rjj′δi′j′ = δij . (24.14)

The elements of the symplectic group Sp(2N) can be defined as 2N ×
2N matrices S that satisfy

Sii′Sjj′ηi′j′ = ηij , (24.15)

where the symplectic metric ηij is antisymmetric, ηij = −ηji, and
squares to minus the identity: η2 = −I. One way to write η is

η =

(
0 I

−I 0

)
, (24.16)

where I is the N ×N identity matrix. Find the number of generators
of Sp(2N).
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25 Unstable Particles and Resonances

Prerequisite: 14

Consider a theory of two real scalar fields, ϕ and χ, with lagrangian

L = −1
2∂

µϕ∂µϕ− 1
2m

2
ϕϕ

2 − 1
2∂

µχ∂µχ− 1
2m

2
χχ

2 + 1
2gϕχ

2 + 1
6hϕ

3 . (25.1)

This theory is renormalizable in six dimensions, where g and h are dimen-
sionless coupling constants.

Let us assume that mϕ > 2mχ. Then it is kinematically possible for
the ϕ particle to decay into two χ particles. The amplitude for this process
is given at tree level by the Feynman diagram of fig. (25.1), and is simply
T = g. We can also choose to define g as the value of the exact ϕχ2 vertex
function V3(k, k

′
1, k
′
2) when all three particles are on shell: k2 = −m2

ϕ,
k′1

2 = k′2
2 = −m2

χ. This implies that

T = g (25.2)

exactly.
According to the formulae of section 11, the differential decay rate (in

the rest frame of the initial ϕ particle) is

dΓ =
1

2mϕ
dLIPS2 |T |2 , (25.3)

where dLIPS2 is the Lorentz invariant phase space differential for two out-
going particles, introduced in section 11. We must make a slight adaptation
for six dimensions:

dLIPS2 ≡ (2π)6δ6(k′1+k
′
2−k) d̃k′1 d̃k′2 . (25.4)

Here k = (mϕ,0) is the energy-momentum of the decaying particle, and

d̃k =
d5k

(2π)52ω
(25.5)

is the Lorentz-invariant phase-space differential for one particle. Recall that
we can also write it as

d̃k =
d6k

(2π)6
2πδ(k2 +m2

χ) θ(k
0) , (25.6)

where θ(x) is the unit step function. Performing the integral over k0 turns
eq. (25.6) into eq. (25.5).
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k
k1

k2

Figure 25.1: The tree-level Feynman diagram for the decay of a ϕ particle
(dashed line) into two χ particles (solid lines).

Repeating for six dimensions what we did in section 11 for four dimen-
sions, we find

dLIPS2 =
|k′1|3

4(2π)4mϕ
dΩ , (25.7)

where |k′1| = 1
2(m2

ϕ − 4m2
χ)

1/2 is the magnitude of the spatial momentum
of one of the outgoing particles. We can now plug this into eq. (25.3), and
use

∫
dΩ = Ω5 = 2π5/2/Γ(5

2) = 8
3π

2. We also need to divide by a symmetry
factor of two, due to the presence of two identical particles in the final state.
The result is

Γ =
1

2
· 1

2mϕ

∫
dLIPS2 |T |2 (25.8)

= 1
12πα(1 − 4m2

χ/m
2
ϕ)3/2 mϕ , (25.9)

where α = g2/(4π)3.
However, as we discussed in section 11, we have a conceptual problem.

According to our development of the LSZ formula in section 5, each incom-
ing and outgoing particle should correspond to a single-particle state that
is an exact eigenstate of the exact hamiltonian. This is clearly not the case
for a particle that can decay.

Let us, then, compute something else instead: the correction to the ϕ
propagator from a loop of χ particles, as shown in fig. (25.2). The diagram
is the same as the one we already analyzed in section 14, except that the
internal propagators contain mχ instead of mϕ. (There is also a contri-
bution from a loop of ϕ particles, but we can ignore it if we assume that
h≪ g.) We have

Π(k2) = 1
2α

∫ 1

0
dxD lnD −A′k2 −B′m2

ϕ , (25.10)

where
D = x(1−x)k2 +m2

χ − iǫ , (25.11)
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Figure 25.2: A loop of χ particles correcting the ϕ propagator.

and A′ and B′ are the finite counterterm coefficients that remain after the
infinities have been absorbed. We now try to fix A′ and B′ by imposing
the usual on-shell conditions Π(−m2

ϕ) = 0 and Π′(−m2
ϕ) = 0.

But, we have a problem. For k2 = −m2
ϕ and mϕ > 2mχ, D is negative

for part of the range of x. Therefore lnD has an imaginary part. This
imaginary part cannot be canceled by A′ and B′, since A′ and B′ must be
real: they are coefficients of hermitian operators in the lagrangian. The
best we can do is Re Π(−m2

ϕ) = 0 and Re Π′(−m2
ϕ) = 0. Imposing these

gives

Π(k2) = 1
2α

∫ 1

0
dxD ln(D/|D0|) − 1

12α(k2 +m2
ϕ) , (25.12)

where
D0 = −x(1−x)m2

ϕ +m2
χ . (25.13)

Now let us compute the imaginary part of Π(k2). This arises from the
integration range x− < x < x+, where x± = 1

2 ± 1
2 (1 + m2

χ/k
2)1/2 are

the roots of D = 0 when k2 < −4m2
χ. In this range, Im lnD = −iπ; the

minus sign arises because, according to eq. (25.11), D has a small negative
imaginary part. Now we have

Im Π(k2) = −1
2πα

∫ x+

x−
dxD

= − 1
12πα(1 + 4m2

χ/k
2)3/2 k2 (25.14)

when k2 < −4m2
χ. Evaluating eq. (25.14) at k2 = −m2

ϕ, we get

Im Π(−m2
ϕ) = 1

12πα(1 − 4m2
χ/m

2
ϕ)3/2 m2

ϕ . (25.15)

From this and eq. (25.9), we see that

Im Π(−m2
ϕ) = mϕΓ . (25.16)

This is not an accident. Instead, it is a general rule. We will argue
this in two ways: first, from the mathematics of Feynman diagrams, and
second, from the physics of resonant scattering in quantum mechanics.
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We begin with the mathematics of Feynman diagrams. Return to the
diagrammatic expression for Π(k2), before we evaluated any of the integrals:

Π(k2) = −1
2 ig

2
∫

d6ℓ1
(2π)6

d6ℓ2
(2π)6

(2π)6δ6(ℓ1+ℓ2−k)

× 1

ℓ21 +m2
χ − iǫ

1

ℓ22 +m2
χ − iǫ

− (Ak2 +Bm2
ϕ) . (25.17)

Here, for later convenience, we have assigned the internal lines momenta
ℓ1 and ℓ2, and explicitly included the momentum-conserving delta function
that fixes one of them. We can take the imaginary part of Π(k2) by using
the identity

1

x− iǫ
= P

1

x
+ iπδ(x) , (25.18)

where P means the principal part. We then get, in a shorthand notation,

Im Π(k2) = −1
2g

2
∫ (

P1P2 − π2δ1δ2
)
. (25.19)

Next, we notice that the integral in eq. (25.17) is the Fourier transform
of [∆(x−y)]2, where

∆(x−y) =

∫
d6k

(2π)6
eik(x−y)

k2 +m2
χ − iǫ

(25.20)

is the Feynman propagator. Recall (from problem 8.5) that we can get the
retarded or advanced propagator (rather than the Feynman propagator)
by replacing the ǫ in eq. (25.20) with, respectively, −sǫ or +sǫ, where s ≡
sign(k0). Therefore, in eq. (25.19), replacing δ1 with −s1δ1 and δ2 with
+s2δ2 yields an integral that is the real part of the Fourier transform of
∆ret(x−y)∆adv(x−y). But this product is zero, because the first factor
vanishes when x0 ≥ y0, and the second when x0 ≤ y0. So we can subtract
the modified integrand from the original without changing the value of the
integral. Thus we have

Im Π(k2) = 1
2g

2π2
∫

(1 + s1s2)δ1δ2 . (25.21)

The factor of 1+s1s2 vanishes if ℓ01 and ℓ02 have opposite signs, and equals 2
if they have the same sign. Because the delta function in eq. (25.17) enforces
ℓ01 + ℓ02 = k0, and k0 = mϕ is positive, both ℓ01 and ℓ02 must be positive.
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So we can replace the factor of 1 + s1s2 in eq. (25.21) with 2θ(ℓ01)θ(ℓ
0
2).

Rearranging the numerical factors, we have

ImΠ(k2) = 1
4g

2
∫

d6ℓ1
(2π)6

d6ℓ2
(2π)6

(2π)6δ6(ℓ1+ℓ2−k)

× 2πδ(ℓ21 +m2
χ)θ(ℓ

0
1) 2πδ(ℓ22 +m2

χ)θ(ℓ
0
2) . (25.22)

If we now set k2 = −m2
ϕ, use eqs. (25.4) and (25.6), and recall that T = g

is the decay amplitude, we can rewrite eq. (25.22) as

Im Π(−m2
ϕ) = 1

4

∫
dLIPS2 |T |2 . (25.23)

Comparing eqs. (25.8) and (25.23), we see that we indeed have

Im Π(−m2
ϕ) = mϕΓ . (25.24)

This relation persists at higher orders in perturbation theory. Our anal-
ysis can be generalized to give the Cutkosky rules for computing the imag-
inary part of any Feynman diagram, but this is beyond the scope of our
current interest.

To get a more physical understanding of this result, recall that in non-
relativistic quantum mechanics, a metastable state with energy E0 and
angular momentum quantum number ℓ shows up as a resonance in the
partial-wave scattering amplitude,

fℓ(E) ∼ 1

E − E0 + iΓ/2
. (25.25)

If we imagine convolving this amplitude with a wave packet ψ̃(E)e−iEt, we
will find a time dependence

ψ(t) ∼
∫
dE

1

E − E0 + iΓ/2
ψ̃(E)e−iEt

∼ e−iE0t−Γt/2 . (25.26)

Therefore |ψ(t)|2 ∼ e−Γt, and we identify Γ as the inverse lifetime of the
metastable state.

In the relativistic case, consider the scattering process χχ → χχ. The
contributing diagrams from the effective action are those of fig. (20.1),
where the exact internal propagator can be either ϕ or χ. Suppose that
the center-of-mass energy squared s is close to m2

ϕ. Since the ϕ progator
has a pole near s = m2

ϕ, s-channel ϕ exchange, shown in fig. (25.3), makes
the dominant contribution to the χχ scattering amplitude. We then have

T ≃ g2

−s+m2
ϕ − Π(−s) . (25.27)
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Figure 25.3: For s near m2
ϕ, the dominant contribution to χχ scattering is

s-channel ϕ exchange.

Here we have used the fact that the exact ϕχχ vertex has the value g when
all three particles are on-shell. Now let us write

s = (mϕ + ε)2 ≃ m2
ϕ + 2mϕε , (25.28)

where ε≪ mϕ is the amount of energy by which our incoming particles are
off resonance. We find

T ≃ −g2/2mϕ

ε+ Π(−m2
ϕ)/2mϕ

. (25.29)

Recalling that ReΠ(−m2
ϕ) = 0, and comparing with eq. (25.25), we see that

we should make the identification of eq. (25.24).

Reference Notes

The Cutkosky rules are discussed in more detail in Peskin & Schroeder.
More details on resonances can be found in Weinberg I.
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26 Infrared Divergences

Prerequisite: 20

In section 20, we computed the ϕϕ→ ϕϕ scattering amplitude in ϕ3 theory
in six dimensions in the high-energy limit (s, |t|, and |u| all much larger
than m2). We found that

T = T0

[
1 − 11

12α
(
ln(s/m2) +O(m0)

)
+O(α2)

]
, (26.1)

where T0 = −g2(s−1 + t−1 + u−1) is the tree-level result, and the O(m0)
term includes everything without a large logarithm that blows up in the
limit m→ 0.1

Suppose we are interested in the limit of massless particles. The large
log is then problematic, since it blows up in this limit. What does this
mean?

It means we have made a mistake. Actually, two mistakes. In this
section, we will remedy one of them.

Throughout the physical sciences, it is necessary to make various ide-
alizations in order to make progress. (Recall the “massless springs” and
“frictionless planes” of freshman mechanics.) Sometimes these idealiza-
tions can lead us into trouble, and that is one of the things that has gone
wrong here.

We have assumed that we can isolate individual particles. The reasoning
behind this was explained in section 5, and it depends on the existence of an
energy gap between the one-particle states and the multiparticle continuum.
However, this gap vanishes if the theory includes massless particles. In this
case, it is possible that the scattering process involved the creation of some
extra very low energy (or soft) particles that escaped detection. Or, there
may have been some extra soft particles hiding in the initial state that
discreetly participated in the scattering process. Or, what was seen as a
single high-energy particle may actually have been two or more particles
that were moving colinearly and sharing the energy.

Let us, then, correct our idealization of a perfect detector and account
for these possibilities. We will work with ϕ3 theory, initially in d spacetime
dimensions.

Let T be the amplitude for some scattering process in ϕ3 theory. Now
consider the possibility that one of the outgoing particles in this process
splits into two, as shown in fig. (26.1). The amplitude for this new process

1In writing T in this form, we have traded factors of ln t and ln u for ln s by first using
ln t = ln s + ln(t/s), and then hiding the ln(t/s) terms in the O(m0) catchall.
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k2

k1

k

Figure 26.1: An outgoing particle splits into two. The gray circle stands
for the sum of all diagrams contributing to the original amplitude iT .

is given in terms of T by

Tsplit = ig
−i

k2 +m2
T , (26.2)

where k = k1 + k2, and k1 and k2 are the on-shell four-momenta of the
two particles produced by the split. (For notational convenience, we drop
our usual primes on the outgoing momenta.) The key point is this: in the
massless limit, it is possible for 1/(k2 +m2) to diverge.

To understand the physical consequences of this possibility, we should
compute an appropriate cross-section. To get the cross section for the
original process (without the split), we multiply |T |2 by d̃k (as well as by
similar differentials for other outgoing particles, and by an overall energy-
momentum delta function). For the process with the split, we multiply
|Tsplit|2 by 1

2 d̃k1d̃k2 instead of d̃k. (The factor of one-half is for counting
of identical particles.) If we assume that (due to some imperfection) our
detector cannot tell whether or not the one particle actually split into two,
then we should (according to the usual rules of quantum mechanics) add
the probabilities for the two events, which are distinguishable in principle.
We can therefore define an effectively observable squared-amplitude via

|T |2obs d̃k = |T |2 d̃k + |Tsplit|2 1
2 d̃k1d̃k2 + . . . . (26.3)

Here the ellipses stand for all other similar processes involving emission of
one or more extra particles in the final state, or absorption of one or more
extra particles in the initial state.

We can simplify eq. (26.3) by including a factor of

1 = (2π)d−1 2ω δd−1(k1+k2−k) d̃k (26.4)
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in the second term. Now all terms in eq. (26.3) include a factor of d̃k, so
we can drop it. Then, using eq. (26.2), we get

|T |2obs ≡ |T |2
[
1 +

g2

(k2 +m2)2
(2π)d−1 2ω δd−1(k1+k2−k) 1

2 d̃k1d̃k2 + . . .

]
.

(26.5)
Now we come to the point: in the massless limit, the phase space integral
in the second term in eq. (26.5) can diverge. This is because, for m = 0,

k2 = (k1 + k2)
2 = −4ω1ω2 sin2(θ/2) , (26.6)

where θ is the angle between the spatial momenta k1 and k2, and ω1,2 =
|k1,2|. Also, for m = 0,

d̃k1d̃k2 ∼ (ωd−3
1 dω1) (ωd−3

2 dω2) (sind−3 θ dθ) . (26.7)

Therefore, for small θ,

d̃k1d̃k2

(k2)2
∼ dω1

ω5−d
1

dω2

ω5−d
2

dθ

θ7−d . (26.8)

Thus the integral over each ω diverges at the low end for d ≤ 4, and the
integral over θ diverges at the low end for d ≤ 6. These divergent integrals
would be cut off (and rendered finite) if we kept the mass m nonzero, as
we will see below.

Our discussion leads us to expect that the m → 0 divergence in the
second term of eq. (26.5) should cancel the m → 0 divergence in the loop
correction to |T |2. We will now see how this works (or fails to work) in detail
for the familiar case of two-particle scattering in six spacetime dimensions,
where T is given by eq. (26.1). For d = 6, there is no problem with soft
particles (corresponding to the small-ω divergence), but there is a problem
with collinear particles (corresponding to the small-θ divergence).

Let us assume that our imperfect detector cannot tell one particle from
two nearly collinear particles if the angle θ between their spatial momenta
is less than some small angle δ. Since we ultimately want to take the m→ 0
limit, we will evaluate eq. (26.5) with m2/k2 ≪ δ2 ≪ 1.

We can immediately integrate over d5k2 using the delta function, which
results in setting k2 = k−k1 everywhere. Let β then be the angle between
k1 (which is still to be integrated over) and k (which is fixed). For two-
particle scattering, |k| = 1

2

√
s in the limit m→ 0. We then have

(2π)5 2ω δ5(k1+k2−k) 1
2 d̃k1d̃k2 → Ω4

4(2π)5
ω

ω1ω2
|k1|4 d|k1| sin3β dβ ,

(26.9)
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where Ω4 = 2π2 is the area of the unit four-sphere. Now let γ be the angle
between k2 and k. The geometry of this trio of vectors implies θ = β + γ,
|k1| = (sin γ/sin θ)|k|, and |k2| = (sinβ/sin θ)|k|. All three of the angles are
small and positive, and it then is useful to write β = xθ and γ = (1−x)θ,
with 0 ≤ x ≤ 1 and θ ≤ δ ≪ 1.

In the low mass limit, we can safely set m = 0 everywhere in eq. (26.5)
except in the propagator, 1/(k2 +m2). Then, expanding to leading order
in both θ and m, we find (after some algebra)

k2 +m2 ≃ −x(1−x)k2
[
θ2 + (m2/k2)f(x)

]
, (26.10)

where f(x) = (1−x+x2)/(x−x2)2. Everywhere else in eq. (26.5), we can
safely set ω1 = |k1| = (1−x)|k| and ω2 = |k2| = x|k|. Then, changing the
integration variables in eq. (26.9) from |k1| and β to x and θ, we get

|T |2obs = |T |2
[
1 +

g2Ω4

4(2π)5

∫ 1

0
x(1−x)dx

∫ δ

0

θ3 dθ

[θ2 + (m2/k2)f(x)]2
+ . . .

]
.

(26.11)
Performing the integral over θ yields

1
2 ln(δ2k2/m2) − 1

2 ln f(x) − 1
2 . (26.12)

Then, performing the integral over x and using Ω4 = 2π2 and α = g2/(4π)3,
we get

|T |2obs = |T |2
[
1 + 1

12α
(
ln(δ2k2/m2) + c

)
+ . . .

]
, (26.13)

where c = (4 − 3
√

3π)/3 = −4.11.
The displayed correction term accounts for the possible splitting of one

of the two outgoing particles. Obviously, there is an identical correction
for the other outgoing particle. Less obviously (but still true), there is
an identical correction for each of the two incoming particles. (A glib
explanation is that we are computing an effective amplitude-squared, and
this is the same for the reverse process, with in and outgoing particles
switched. So in and out particles should be treated symmetrically.) Then,
since we have a total of four in and out particles (before accounting for any
splitting),

|T |2obs = |T |2
[
1 + 4

12α
(
ln(δ2k2/m2) + c

)
+O(α2)

]
. (26.14)

We have now accounted for the O(α) corrections due to the failure of
our detector to separate two particles whose spatial momenta are nearly
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parallel. Combining this with eq. (26.1), and recalling that k2 = 1
4s, we get

|T |2obs = |T0|2
[
1 − 11

6 α
(
ln(s/m2) +O(m0)

)
+O(α2)

]

×
[
1 + 1

3α
(
ln(δ2s/m2) +O(m0)

)
+O(α2)

]

= |T0|2
[
1 − α

(
3
2 ln(s/m2) + 1

3 ln(1/δ2) +O(m0)
)

+O(α2)
]
. (26.15)

We now have two kinds of large logs. One is ln(1/δ2); this factor depends
on the properties of our detector. If we build a very good detector, one
for which α ln(1/δ2) is not small, then we will have to do more work, and
calculate higher-order corrections to eq. (26.15).

The other large log is our original nemesis ln(s/m2). This factor blows
up in the massless limit. This means that there is still a mistake hidden
somewhere in our analysis.

Reference Notes

Infrared divergences in quantum electrodynamics are discussed in Brown
and Peskin & Schroeder. More general treatments can be found in Sterman
and Weinberg I.
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27 Other Renormalization Schemes

Prerequisite: 26

To find the remaining mistake in eq. (26.15), we must review our renor-
malization procedure. Recall our result from section 14 for the one-loop
correction to the propagator,

Π(k2) = −
[
A+ 1

6α
(

1
ε + 1

2

)]
k2 −

[
B + α

(
1
ε + 1

2

)]
m2

+ 1
2α

∫ 1

0
dxD ln(D/µ2) +O(α2) , (27.1)

where α = g2/(4π)3 and D = x(1−x)k2+m2. The derivative of Π(k2) with
respect to k2 is

Π′(k2) = −
[
A+ 1

6α
(

1
ε + 1

2

)]

+ 1
2α

∫ 1

0
dxx(1 − x)

[
ln(D/µ2) + 1

]
+O(α2) . (27.2)

We previously determined A and B via the requirements Π(−m2) = 0 and
Π′(−m2) = 0. The first condition ensures that the exact propagator ∆̃(k2)
has a pole at k2 = −m2, and the second ensures that the residue of this
pole is one. Recall that the field must be normalized in this way for the
validity of the LSZ formula.

We now consider the massless limit. We have D = x(1−x)k2, and we
should apparently try to impose Π(0) = Π′(0) = 0. However, Π(0) is now
automatically zero for any values of A and B, while Π′(0) is ill defined.

Physically, the problem is that the one-particle states are no longer sep-
arated from the multiparticle continuum by a finite gap in energy. Mathe-
matically, the pole in ∆̃(k2) at k2 = −m2 merges with the branch point at
k2 = −4m2, and is no longer a simple pole.

The only way out of this difficulty is to change the renormalization
scheme. Let us first see what this means in the case m 6= 0, where we know
what we are doing.

Let us try making a different choice of A and B. Specifically, let

A = −1
6α

1
ε +O(α2) ,

B = −α 1
ε +O(α2) . (27.3)

Here we have chosen A and B to cancel the infinities, and nothing more;
we say that A and B have no finite parts. This choice represents a different
renormalization scheme. Our original choice (which, up until now, we have
pretended was inescapable!) is called the on-shell or OS scheme. The choice
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of eq. (27.3) is called the modified minimal-subtraction or MS (pronounced
“emm-ess-bar”) scheme. [“Modified” because we introduced µ via g →
gµ̃ε/2, with µ2 = 4πe−γ µ̃2; had we set µ = µ̃ instead, the scheme would be
just plain minimal subtraction or MS.] Now we have

ΠMS(k
2) = − 1

12α(k2 + 6m2) + 1
2α

∫ 1

0
dxD ln(D/µ2) +O(α2) , (27.4)

as compared to our old result in the on-shell scheme,

ΠOS(k2) = − 1
12α(k2 +m2) + 1

2α

∫ 1

0
dxD ln(D/D0) +O(α2) , (27.5)

where again D = x(1−x)k2 +m2, and D0 = [−x(1−x)+1]m2. Notice that
ΠMS(k

2) has a well-defined m → 0 limit, whereas ΠOS(k
2) does not. On the

other hand, ΠMS(k
2) depends explicitly on the fake parameter µ, whereas

ΠOS(k
2) does not.

What does this all mean?
First, in the MS scheme, the propagator ∆MS(k

2) will no longer have a
pole at k2 = −m2. The pole will be somewhere else. However, by definition,
the actual physical mass mph of the particle is determined by the location
of this pole: k2 = −m2

ph. Thus, the lagrangian parameter m is no longer
the same as mph.

Furthermore, the residue of this pole is no longer one. Let us call the
residue R. The LSZ formula must now be corrected by multiplying its
right-hand side by a factor of R−1/2 for each external particle (incoming
or outgoing). This is because it is the field R−1/2ϕ(x) that now has unit
amplitude to create a one-particle state.

Note also that, in the LSZ formula, each Klein-Gordon wave operator
should be −∂2+m2

ph, and not −∂2+m2; also, each external four-momentum

should square to −m2
ph, and not −m2. A review of the derivation of the

LSZ formula clearly shows that each of these mass parameters must be the
actual particle mass, and not the parameter in the lagrangian.

Finally, in the LSZ formula, each external line will contribute a factor of
R when the associated Klein-Gordon wave operator hits the external prop-
agator and cancels its momentum-space pole, leaving behind the residue R.
Combined with the correction factor of R−1/2 for each field, we get a net
factor of R1/2 for each external line when using the MS scheme. Internal
lines each contribute a factor of (−i)/(k2 +m2), where m is the lagrangian-
parameter mass, and each vertex contributes a factor of iZgg, where g is
the lagrangian-parameter coupling.

Let us now compute the relation between m and mph, and then compute
R. We have

∆MS(k
2)−1 = k2 +m2 − ΠMS(k

2) , (27.6)
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and, by definition,
∆MS(−m2

ph)−1 = 0 . (27.7)

Setting k2 = −m2
ph in eq. (27.6), using eq. (27.7), and rearranging, we find

m2
ph = m2 − ΠMS(−m2

ph) . (27.8)

Since ΠMS(k
2) is O(α), we see that the difference between m2

ph and m2 is

O(α). Therefore, on the right-hand side, we can replace m2
ph with m2, and

only make an error of O(α2). Thus

m2
ph = m2 − ΠMS(−m2) +O(α2) . (27.9)

Working this out, we get

m2
ph = m2 − 1

2α

[
1
6m

2 −m2 +

∫ 1

0
dxD0 ln(D0/µ

2)

]
+O(α2) , (27.10)

where D0 = [1−x(1−x)]m2. Doing the integrals yields

m2
ph = m2

[
1 + 5

12α
(
ln(µ2/m2) + c′

)
+O(α2)

]
. (27.11)

where c′ = (34 − 3π
√

3)/15 = 1.18.
Now, physics should be independent of the fake parameter µ. However,

the right-hand side of eq. (27.11) depends explicitly on µ. It must, be, then,
that m and α take on different numerical values as µ is varied, in just the
right way to leave physical quantities (like mph) unchanged.

We can use this information to find differential equations that tell us
how m and α change with µ. For example, take the logarithm of eq. (27.11)
and divide by two to get

lnmph = lnm+ 5
12α

(
ln(µ/m) + 1

2c
′
)

+O(α2) . (27.12)

Now differentiate with respect to lnµ and require mph to remain fixed:

0 =
d

d lnµ
lnmph

=
1

m

dm

d lnµ
+ 5

12α+O(α2) . (27.13)

To get the second line, we had to assume that dα/d ln µ = O(α2), which
we will verify shortly. Then, rearranging eq. (27.13) gives

dm

d lnµ
=
(
− 5

12α+O(α2)
)
m . (27.14)
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The factor in large parentheses on the right is called the anomalous dimen-
sion of the mass parameter, and it is often given the name γm(α).

Turning now to the residue R, we have

R−1 =
d

dk2

[
∆MS(k

2)−1
]∣∣∣∣∣
k2=−m2

ph

. (27.15)

Using eq. (27.6), we get

R−1 = 1 − Π′
MS

(−m2
ph)

= 1 − Π′
MS

(−m2) +O(α2)

= 1 + 1
12α

(
ln(µ2/m2) + c′′

)
+O(α2) , (27.16)

where c′′ = (17 − 3π
√

3)/3 = 0.23.
We can also use MS to define the vertex function. We take

C = −α 1
ε +O(α2) , (27.17)

and so

V3,MS(k1, k2, k3) = g

[
1 − 1

2α

∫
dF3 ln(D/µ2) +O(α2)

]
(27.18)

where D = xyk2
1 + yzk2

2 + zxk2
3 +m2.

Let us now compute the ϕϕ → ϕϕ scattering amplitude in our fancy
new renormalization scheme. In the low-mass limit, repeating the steps
that led to eq. (26.1), and including the LSZ correction factor (R1/2)4, we
get

T = R2 T0

[
1 − 11

12α
(
ln(s/µ2) +O(m0)

)
+O(α2)

]
, (27.19)

where T0 = −g2(s−1 + t−1 +u−1) is the tree-level result. Now using R from
eq. (27.16), we find

T = T0

[
1 − α

(
11
12 ln(s/µ2) + 1

6 ln(µ2/m2) +O(m0)
)

+O(α2)
]
. (27.20)

To get an observable amplitude-squared with an imperfect detector, we
must square eq. (27.20) and multiply it by the correction factor we derived
in section 26,

|T |2obs = |T |2
[
1 + 1

3α
(
ln(δ2s/m2) +O(m0)

)
+O(α2)

]
, (27.21)

where δ is the angular resolution of the detector. Combining this with
eq. (27.20), we get

|T |2obs = |T0|2
[
1 − α

(
3
2 ln(s/µ2) + 1

3 ln(1/δ2) +O(m0)
)

+O(α2)
]
.

(27.22)
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All factors of lnm2 have disappeared! Finally, we have obtained an expres-
sion that has a well-defined m→ 0 limit.

Of course, µ is still a fake parameter, and so |T |2obs cannot depend on
it. It must be, then, that the explicit dependence on µ in eq. (27.22) is
canceled by the implicit µ dependence of α. We can use this information
to figure out how α must vary with µ. Noting that |T0|2 = O(g4) = O(α2),
we have

ln |T |2obs = C1 + 2 lnα+ 3α
(
lnµ+ C2

)
+O(α2) , (27.23)

where C1 and C2 are independent of µ and α (but depend on the Mandel-
stam variables). Differentiating with respect to lnµ then gives

0 =
d

d lnµ
ln |T |2obs

=
2

α

dα

d lnµ
+ 3α+O(α2) , (27.24)

or, after rearranging,

dα

d lnµ
= −3

2α
2 +O(α3) . (27.25)

The right-hand side of this equation is called the beta function.
Returning to eq. (27.22), we are free to choose any convenient value of µ

that we might like. To avoid introducing unnecessary large logs, we should
choose µ2 ∼ s.

To compare the results at different values of s, we need to solve eq. (27.25).
Keeping only the leading term in the beta function, the solution is

α(µ2) =
α(µ1)

1 + 3
2α(µ1) ln(µ2/µ1)

. (27.26)

Thus, as µ increases, α(µ) decreases. A theory with this property is said
to be asymptotically free. In this case, the tree-level approximation (in the
MS scheme with µ2 ∼ s) becomes better and better at higher and higher
energies.

Of course, the opposite is true as well: as µ decreases, α(µ) increases.
As we go to lower and lower energies, the theory becomes more and more
strongly coupled.

If the particle mass is nonzero, this process stops at µ ∼ m. This
is because the minimum value of s is 4m2, and so the factor of ln(s/µ2)
becomes an unwanted large log for µ ≪ m. We should therefore not use
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values of µ below m. Perturbation theory is still good at these low energies
if α(m) ≪ 1.

If the particle mass is zero, α(µ) continues to increase at lower and lower
energies, and eventually perturbation theory breaks down. This is a signal
that the low-energy physics may be quite different from what we expect on
the basis of a perturbative analysis.

In the case of ϕ3 theory, we know what the correct low-energy physics
is: the perturbative ground state is unstable against tunneling through the
potential barrier, and there is no true ground state. Asymptotic freedom
is, in this case, a signal of this impending disaster.

Much more interesting is asymptotic freedom in a theory that does have
a true ground state, such as quantum chromodynamics. In this example,
the particle excitations are colorless hadrons, rather than the quarks and
gluons we would expect from examining the lagrangian.

If the sign of the beta function is positive, then the theory is infrared
free. The coupling increases as µ increases, and, at sufficiently high en-
ergy, perturbation theory breaks down. On the other hand, the coupling
decreases as we go to lower energies. Once again, though, we should stop
this process at µ ∼ m if the particles have nonzero mass. Quantum elec-
trodynamics with massive electrons (but, of course, massless photons) is in
this category.

Still more complicated behaviors are possible if the beta function has
a zero at a nonzero value of α. We briefly consider this case in the next
section.

Reference Notes

Minimal subtraction is treated in more detail in Brown, Collins, and Ra-
mond I.

Problems

27.1) Suppose that we have a theory with

β(α) = b1α
2 +O(α3) , (27.27)

γm(α) = c1α+O(α2) . (27.28)

Neglecting the higher-order terms, show that

m(µ2) =

[
α(µ2)

α(µ1)

]c1/b1
m(µ1) . (27.29)



28: The Renormalization Group 178

28 The Renormalization Group

Prerequisite: 27

In section 27 we introduced the MS renormalization scheme, and used the
fact that physical observables must be independent of the fake parameter
µ to figure out how the lagrangian parameters m and g must change with
µ. In this section we re-derive these results from a much more formal (but
calculationally simpler) point of view, and see how they extend to all or-
ders of perturbation theory. Equations that tells us how the lagrangian
parameters (and other objects that are not directly measurable, like cor-
relation functions) vary with µ are collectively called the equations of the
renormalization group.

Let us recall the lagrangian of our theory, and write it in two different
ways. In d = 6 − ε dimensions, we have

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 + 1
6Zggµ̃

ε/2ϕ3 + Y ϕ (28.1)

and
L = −1

2∂
µϕ0∂µϕ0 − 1

2m
2
0ϕ

2
0 + 1

6g0ϕ
3
0 + Y0ϕ0 . (28.2)

The fields and parameters in eq. (28.1) are the renormalized fields and pa-
rameters. (And in particular, they are renormalized using the MS scheme,
with µ2 = 4πe−γ µ̃2.) The fields and parameters in eq. (28.2) are the bare
fields and parameters. Comparing eqs. (28.1) and (28.2) gives us the rela-
tionships between them:

ϕ0(x) = Z1/2
ϕ ϕ(x) , (28.3)

m0 = Z−1/2
ϕ Z1/2

m m , (28.4)

g0 = Z−3/2
ϕ Zggµ̃

ε/2 , (28.5)

Y0 = Z−1/2
ϕ Y . (28.6)

Recall that, after using dimensional regularization, the infinities coming
from loop integrals take the form of inverse powers of ε = 6 − d. In the
MS renormalization scheme, we choose the Z’s to cancel off these powers
of 1/ε, and nothing more. Therefore the Z’s can be written as

Zϕ = 1 +
∞∑

n=1

an(α)

εn
, (28.7)

Zm = 1 +
∞∑

n=1

bn(α)

εn
, (28.8)

Zg = 1 +
∞∑

n=1

cn(α)

εn
, (28.9)
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where α = g2/(4π)3. Computing Π(k2) and V3(k1, k2, k3) in perturbation
theory in the MS scheme gives us Taylor series in α for an(α), bn(α), and
cn(α). So far we have found

a1(α) = −1
6α+O(α2) , (28.10)

b1(α) = −α+O(α2) , (28.11)

c1(α) = −α+O(α2) , (28.12)

and that an(α), bn(α), and cn(α) are all at least O(α2) for n ≥ 2.
Next we turn to the trick that we will employ to compute the beta

function for α, the anomalous dimension of m, and other useful things.
This is the trick: bare fields and parameters must be independent of µ.

Why is this so? Recall that we introduced µ when we found that we had
to regularize the theory to avoid infinities in the loop integrals of Feynman
diagrams. We argued at the time (and ever since) that physical quantities
had to be independent of µ. Thus µ is not really a parameter of the theory,
but just a crutch that we had to introduce at an intermediate stage of the
calculation. In principle, the theory is completely specified by the values
of the bare parameters, and, if we were smart enough, we would be able
to compute the exact scattering amplitudes in terms of them, without ever
introducing µ. The point is this: since the exact scattering amplitudes are
independent of µ, the bare parameters must be as well.

Let us start with g0. It is convenient to define

α0 ≡ g2
0/(4π)3 = Z2

gZ
−3
ϕ µ̃εα , (28.13)

and also
G(α, ε) ≡ ln(Z2

gZ
−3
ϕ ) . (28.14)

From the general structure of eqs. (28.7) and (28.9), we have

G(α, ε) =
∞∑

n=1

Gn(α)

εn
, (28.15)

where, in particular,

G1(α) = 2c1(α) − 3a1(α)

= −3
2α+O(α2) . (28.16)

The logarithm of eq. (28.13) can now be written as

lnα0 = G(α, ε) + lnα+ ε ln µ̃ . (28.17)
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Next, differentiate eq. (28.17) with respect to lnµ, and require α0 to be
independent of it:

0 =
d

d lnµ
lnα0

=
∂G(α, ε)

∂α

dα

d lnµ
+

1

α

dα

d lnµ
+ ε . (28.18)

Now regroup the terms, multiply by α, and use eq. (28.15) to get

0 =

(
1 +

αG′1(α)

ε
+
αG′2(α)

ε2
+ . . .

)
dα

d lnµ
+ εα . (28.19)

Next we use some physical reasoning: dα/d lnµ is the rate at which α
must change to compensate for a small change in lnµ. If compensation is
possible at all, this rate should be finite in the ε→ 0 limit. Therefore, in a
renormalizable theory, we should have

dα

d lnµ
= −εα+ β(α) . (28.20)

The first term, −εα, is fixed by matching the O(ε) terms in eq. (28.19). The
second term, the beta function β(α), is similarly determined by matching
the O(ε0) terms; the result is

β(α) = α2G′1(α) . (28.21)

Terms that are higher-order in 1/ε must also cancel, and this determines
all the other G′n(α)’s in terms of G′1(α). Thus, for example, cancellation
of the O(ε−1) terms fixes G′2(α) = αG′1(α)2. These relations among the
G′n(α)’s can of course be checked order by order in perturbation theory.

From eq. (28.21) and eq. (28.16), we find that the beta function is

β(α) = −3
2α

2 +O(α3) . (28.22)

Hearteningly, this is the same result we found in section 27 by requiring the
observed scattering cross section |T |2obs to be independent of µ. However,
simply as a matter of practical calculation, it is much easier to compute
G1(α) than it is to compute |T |2obs.

Next consider the invariance of m0. We begin by defining

M(α, ε) ≡ ln(Z1/2
m Z−1/2

ϕ )

=
∞∑

n=1

Mn(α)

εn
. (28.23)
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From eqs. (28.10) and (28.12) we have

M1(α) = 1
2b1(α) − 1

2a1(α)

= − 5
12α+O(α2) . (28.24)

Then, from eq. (28.4), we have

lnm0 = M(α, ε) + lnm . (28.25)

Take the derivative with respect to lnµ and require m0 to be unchanged:

0 =
d

d lnµ
lnm0

=
∂M(α, ε)

∂α

dα

d lnµ
+

1

m

dm

d lnµ
.

=
∂M(α, ε)

∂α

(
−εα+ β(α)

)
+

1

m

dm

d lnµ
. (28.26)

Rearranging, we find

1

m

dm

d lnµ
=
(
εα− β(α)

) ∞∑

n=1

M ′n(α)

εn

= αM ′1(α) + . . . , (28.27)

where the ellipses stand for terms with powers of 1/ε. In a renormalizable
theory, dm/d lnµ should be finite in the ε → 0 limit, and so these terms
must actually all be zero. Therefore, the anomalous dimension of the mass,
defined via

γm(α) ≡ 1

m

dm

d lnµ
, (28.28)

is given by

γm(α) = αM ′1(α)

= − 5
12α+O(α2) . (28.29)

Comfortingly, this is just what we found in section 27.
Let us now consider the propagator in the MS renormalization scheme,

∆̃(k2) = i

∫
d6x eikx〈0|Tϕ(x)ϕ(0)|0〉 . (28.30)

The bare propagator,

∆̃0(k
2) = i

∫
d6x eikx〈0|Tϕ0(x)ϕ0(0)|0〉 , (28.31)
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should be (by the now-familiar argument) independent of µ. The bare and
renormalized propagators are related by

∆̃0(k
2) = Zϕ∆̃(k2) . (28.32)

Taking the logarithm and differentiating with respect to lnµ, we get

0 =
d

d lnµ
ln ∆̃0(k

2)

=
d lnZϕ
d lnµ

+
d

d lnµ
ln ∆̃(k2)

=
d lnZϕ
d lnµ

+
1

∆̃(k2)

(
∂

∂ lnµ
+

dα

d lnµ

∂

∂α
+

dm

d lnµ

∂

∂m

)
∆̃(k2). (28.33)

We can write

lnZϕ =
a1(α)

ε
+
a2(α) − 1

2a
2
1(α)

ε2
+ . . . . (28.34)

Then we have

d lnZϕ
d lnµ

=
∂ lnZϕ
∂α

dα

d lnµ

=

(
a′1(α)

ε
+ . . .

)(
−εα+ β(α)

)

= −αa′1(α) + . . . , (28.35)

where the ellipses in the last line stand for terms with powers of 1/ε. Since
∆̃(k2) should vary smoothly with µ in the ε → 0 limit, these must all be
zero. We then define the anomalous dimension of the field

γϕ(α) ≡ 1

2

d lnZϕ
d lnµ

. (28.36)

From eq. (28.35) we find

γϕ(α) = −1
2αa

′
1(α)

= + 1
12α+O(α2) . (28.37)

Eq. (28.33) can now be written as

(
∂

∂ lnµ
+ β(α)

∂

∂α
+ γm(α)m

∂

∂m
+ 2γϕ(α)

)
∆̃(k2) = 0 (28.38)
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in the ε→ 0 limit. This is the Callan-Symanzik equation for the propagator.
The Callan-Symanzik equation is most interesting in the massless limit,

and for a theory with a zero of the beta function at a nonzero value of α.
So, let us suppose that β(α∗) = 0 for some α∗ 6= 0. Then, for α = α∗ and
m = 0, the Callan-Symanzik equation becomes

(
∂

∂ lnµ
+ 2γϕ(α∗)

)
∆̃(k2) = 0 . (28.39)

The solution is

∆̃(k2) =
C(α∗)
k2

(
µ2

k2

)−γϕ(α∗)

, (28.40)

where C(α∗) is an integration constant. (We used the fact that ∆̃(k2)
has mass dimension −2 to get the k2 dependence in addition to the µ
dependence.) Thus the naive scaling law ∆̃(k2) ∼ k−2 is changed to
∆̃(k2) ∼ k−2[1−γϕ(α∗)]. This has applications in the theory of critical phe-
nomena, which is beyond the scope of this book.

Reference Notes

The formal development of the renormalization group is explored in more
detail in Brown, Collins, and Ramond I.

Problems

28.1) Consider ϕ4 theory,

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 − 1
24Zλλµ̃

εϕ4 , (28.41)

in d = 4 − ε dimensions. Compute the beta function to O(λ2), the
anomalous dimension of m to O(λ), and the anomalous dimension of
ϕ to O(λ).

28.2) Repeat problem 28.1 for the theory of problem 9.3.

28.3) Consider the lagrangian density

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 + Y ϕ

− 1
2Zχ∂

µχ∂µχ− 1
2ZMM

2χ2

+ 1
6Zggµ

ε/2ϕ3 + 1
2Zhhµ

ε/2ϕχ2 (28.42)

in d = 6 − ε dimensions, where ϕ and χ are real scalar fields, and Y
is adjusted to make 〈0|ϕ(x)|0〉 = 0. (Why is no such term needed for
χ?)
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a) Compute the one-loop contributions to each of the Z’s in the MS
renormalization scheme.

b) The bare couplings are related to the renormalized ones via

g0 = Z−3/2
ϕ Zggµ

ε/2 , (28.43)

h0 = Z−1
ϕ Z−1/2

χ Zhhµ
ε/2 . (28.44)

Define

G(g, h, ε) =
∑∞
n=1Gn(g, h)ε

−n ≡ ln(Z−3/2
ϕ Zg) , (28.45)

H(g, h, ε) =
∑∞
n=1Hn(g, h)ε

−n ≡ ln(Z−1
ϕ Z−1/2

χ Zh) . (28.46)

By requiring g0 and h0 to be independent of µ, and by assuming that
dg/dµ and dh/dµ are finite as ε→ 0, show that

µ
dg

dµ
= −1

2εg + 1
2g

(
g
∂G1

∂g
+ h

∂G1

∂h

)
, (28.47)

µ
dh

dµ
= −1

2εh+ 1
2h

(
g
∂H1

∂g
+ h

∂H1

∂h

)
. (28.48)

c) Use your results from part (a) to compute the beta functions
βg(g, h) ≡ limε→0 µdg/dµ and βh(g, h) ≡ limε→0 µdh/dµ. You should
find terms of order g3, gh2, and h3 in βg, and terms of order g2h, gh2,
and h3 in βh.

d) Without loss of generality, we can choose g to be positive; h can
then be positive or negative, and the difference is physically signifi-
cant. (You should understand why this is true.) For what numerical
range(s) of h/g are βg and βh/h both negative? Why is this an inter-
esting question?
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29 Effective Field Theory

Prerequisite: 28

So far we have been discussing only renormalizable theories. In this section,
we investigate what meaning can be assigned to nonrenormalizable theories,
following an approach pioneered by Ken Wilson.

We will begin by analyzing a renormalizable theory from a new point
of view. Consider, as an example, ϕ4 theory in four spacetime dimensions:

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2
phϕ

2 − 1
24Zλλphϕ

4 . (29.1)

(This example is actually problematic, because this theory is trivial, a tech-
nical term that we will exlain later. For now we proceed with a perturbative
analysis.) We take the renormalizing Z factors to be defined in an on-shell
scheme, and have emphasized this by writing the particle mass as mph and
the coupling constant as λph. We define λph as the value of the exact 1PI
four-point vertex with zero external four-momenta:

λph ≡ V4(0, 0, 0, 0) . (29.2)

The path integral is given by

Z(J) =

∫
Dϕ eiS+i

∫
Jϕ , (29.3)

where S =
∫
d4xL and

∫
Jϕ is short for

∫
d4xJϕ.

Our first step in analyzing this theory will be to perform the Wick
rotation (applied to loop integrals in section 14) directly on the action. We
define a euclidean time τ ≡ it. Then we have

Z(J) =

∫
Dϕ e−SE−

∫
Jϕ , (29.4)

where SE =
∫
d4xLE, d4x = d3x dτ ,

LE = 1
2Zϕ∂µϕ∂µϕ+ 1

2Zmm
2
phϕ

2 + 1
24Zλλphϕ

4 , (29.5)

and
∂µϕ∂µϕ = (∂ϕ/∂τ)2 + (∇ϕ)2 . (29.6)

Note that each term in SE is always positive (or zero) for any field configu-
ration ϕ(x). This is the advantage of working in euclidean space: eq. (29.4),
the euclidean path integral, is strongly damped (rather than rapidly oscil-
lating) at large values of the field and/or its derivatives, and this makes its
convergence properties more obvious.
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Next, we Fourier transform to (euclidean) momentum space via

ϕ(x) =

∫
d4k

(2π)4
eikx ϕ̃(k) . (29.7)

The euclidean action becomes

SE =
1

2

∫
d4k

(2π)4
ϕ̃(−k)

(
Zϕk

2 + Zmm
2
ph

)
ϕ̃(k)

+
1

24
Zλλph

∫
d4k1

(2π)4
. . .

d4k4

(2π)4
(2π)4δ4(k1+k2+k3+k4)

×ϕ̃(k1)ϕ̃(k2)ϕ̃(k3)ϕ̃(k4) . (29.8)

Note that k2 = k2 + k2
τ ≥ 0.

We now introduce an ultraviolet cutoff Λ. It should be much larger than
the particle mass mph, or any other energy scale of practical interest. Then
we perform the path integral over all ϕ̃(k) with |k| > Λ. We also take
J̃(k) = 0 for |k| > Λ. Then we find

Z(J) =

∫
Dϕ|k|<Λ e

−Seff (ϕ;Λ)−
∫
Jϕ , (29.9)

where

e−Seff (ϕ;Λ) =

∫
Dϕ|k|>Λ e

−SE(ϕ) . (29.10)

Seff(ϕ; Λ) is called the Wilsonian effective action. We can write the corre-
sponding lagrangian density as

Leff(ϕ; Λ) = 1
2Z(Λ)∂µϕ∂µϕ+ 1

2m
2(Λ)ϕ2 + 1

24λ(Λ)ϕ4

+
∑

d≥6

∑

i

cd,i(Λ)Od,i , (29.11)

where the Fourier components of ϕ(x) are now cut off at |k| > Λ:

ϕ(x) =

∫ Λ

0

d4k

(2π)4
eikx ϕ̃(k) . (29.12)

The operators Od,i in eq. (29.11) consist of all terms that have mass dimen-
sion d ≥ 6 and that are even under ϕ↔ −ϕ; i is an index that distinguishes
operators of the same dimension that are inequivalent after integrations by
parts of any derivatives that act on the fields. (The operators must be even
under ϕ ↔ −ϕ in order to respect the ϕ ↔ −ϕ symmetry of the original
lagrangian.)

The coefficients Z(Λ), m2(Λ), λ(Λ), and cd,i(Λ) in eq. (29.11) are all
finite functions of Λ. This is established by the following argument. We can
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...

Figure 29.1: A one-loop 1PI diagram with 2n external lines. Each external
line represents a field with |k| < Λ. The internal (dashed) line represents a
field with |k| > Λ.

differentiate eq. (29.9) with respect to J(x) to compute correlation functions
of the renormalized field ϕ(x), and correlation functions of renormalized
fields are finite. Using eq. (29.9), we can compute these correlation functions
as a series of Feynman diagrams, with Feynman rules based on Leff . These
rules include an ultraviolet cutoff Λ on the loop momenta, since the fields
with higher momenta have already been integrated out. Thus all of the
loop integrals in these diagrams are finite. Therefore the other parameters
that enter the diagrams—Z(Λ), m2(Λ), λ(Λ), and cd,i(Λ)—must be finite
as well, in order to end up with finite correlation functions.

To compute these parameters, we can think of eq. (29.8) as the action
for two kinds of fields, those with |k| < Λ and those with |k| > Λ. Then
we draw all 1PI diagrams with external lines for |k| < Λ fields only. For
λph ≪ 1, the dominant contribution to cd,i(Λ) for an operator Od,i with 2n
fields and d − 2n derivatives is then given by a one-loop diagram with 2n
external lines (representing |k| < Λ fields), n vertices, and a |k| > Λ field
circulating in the loop; see fig. (29.1).

The simplest case to consider is O2n,1 ≡ ϕ2n. With 2n external lines,
there are (2n)! ways of assigning the external momenta to the lines, but
2n×n×2 of these give the same diagram: 2n for exchanging the two external
lines that meet at any one vertex; n for rotations of the diagram; and 2
for reflection of the diagram. Since there are no derivatives on the external
fields, we can set all of the external momenta to zero; then all (2n)!/(2n2n)
diagrams have the same value. With a euclidean action, each internal line
contributes a factor of 1/(k2 +m2

ph), and each vertex contributes a factor
of −Zλλph = −λph +O(λ2

ph). The vertex factor associated with the term
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c2n,1(Λ)ϕ2n in Leff is −(2n)! c2n,1(Λ). Thus we have

−(2n)! c2n,1(Λ) =
(−λph)n(2n)!

2n2n

∫ ∞

Λ

d4k

(2π)4

(
1

k2 +m2
ph

)n

+O(λn+1
ph ) . (29.13)

For 2n ≥ 6, the integral converges, and we find

c2n,1(Λ) = − (−λph/2)
n

32π2n(n−2)

1

Λ2n−4
+O(λn+1

ph ) . (29.14)

We have taken Λ ≫ mph, and dropped terms down by powers of mph/Λ.
For 2n = 4, we have to include the tree-level vertex; in this case, we

have

−λ(Λ) = −Zλλph +
3

2
(−λph)2

∫ ∞

Λ

d4k

(2π)4

(
1

k2 +m2
ph

)2

+O(λ3
ph) . (29.15)

This integral diverges. To evaluate it, we note that the one-loop contribu-
tion to the exact four-point vertex is given by the same diagram, but with
fields of all momenta circulating in the loop. Thus we have

−V4(0, 0, 0, 0) = −Zλλph +
3

2
(−λph)2

∫ ∞

0

d4k

(2π)4

(
1

k2 +m2
ph

)2

+O(λ3
ph) . (29.16)

Then, using V4(0, 0, 0, 0) = λph and subtracting eq. (29.15) from eq. (29.16),
we get

−λph + λ(Λ) =
3

2
(−λph)

2
∫ Λ

0

d4k

(2π)4

(
1

k2 +m2
ph

)2
+O(λ3

ph) . (29.17)

Evaluating the (now finite!) integral and rearranging, we have

λ(Λ) = λph +
3

16π2
λ2

ph

[
ln(Λ/mph) − 1

2

]
+O(λ3

ph) . (29.18)

Note that this result has the problem of a large log ; the second term is
smaller than the first only if λph ln(Λ/mph) ≪ 1. To cure this problem, we
must change the renormalization scheme. We will take up this issue shortly,
but first let us examine the case of two external lines while continuing to
use the on-shell scheme.
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For the case of two external lines, the one-loop diagram has just one
vertex, and by momentum conservation, the loop integral is completely
indepedent of the external momentum. This implies that the one-loop
contribution to Z(Λ) vanishes, and so we have

Z(Λ) = 1 +O(λ2
ph) . (29.19)

The one-loop diagram does, however, give a nonzero contribution to m2(Λ);
after including the tree-level term, we find

−m2(Λ) = −Zmm2
ph +

1

2
(−λph)

∫ ∞

Λ

d4k

(2π)4
1

k2 +m2
ph

+O(λ2
ph) . (29.20)

This integral diverges. To evaluate it, recall that the one-loop contribution
to the exact particle mass-squared is given by the same diagram, but with
fields of all momenta circulating in the loop. Thus we have

−m2
ph = −Zmm2

ph +
1

2
(−λph)

∫ ∞

0

d4k

(2π)4
1

k2 +m2
ph

+O(λ2
ph) . (29.21)

Then, subtracting eq. (29.20) from eq. (29.21), we get

−m2
ph +m2(Λ) =

1

2
(−λph)

∫ Λ

0

d4k

(2π)4
1

k2 +m2
ph

+O(λ2
ph) . (29.22)

Evaluating the (now finite!) integral and rearranging, we have

m2(Λ) = m2
ph − λph

16π2

[
Λ2 −m2

ph ln(Λ2/m2
ph)
]
+O(λ2

ph) . (29.23)

We see that we now have an even worse situation than we did with the
large log in λ(Λ): the correction term is quadratically divergent.

As already noted, to fix these problems we must change the renormal-
ization scheme. In the context of an effective action with a specific value of
the cutoff Λ0, there is a simple way to do so: we simply treat this effective
action as the fundamental starting point, with Z(Λ0), m

2(Λ0), λ(Λ0), and
cd,i(Λ0) as input parameters. We then see what physics emerges at energy
scales well below Λ0. We can set Z(Λ0) = 1, with the understanding that
the field no longer has the LSZ normalization (and that we will have to
correct the LSZ formula to account for this). We will also assume that
the parameters λ(Λ0), m

2(Λ0), and cd,i(Λ0) are all small when measured in
units of the cutoff:

λ(Λ0) ≪ 1 , (29.24)

|m2(Λ0)| ≪ Λ2
0 , (29.25)

cd,i(Λ0) ≪ Λ
−(d−4)
0 . (29.26)
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The proposal to treat the effective action as the fundamental starting
point may not seem very appealing. For one thing, we now have an infinite
number of parameters to specify, rather than two! Also, we now have an
explicit cutoff in place, rather than trying to have a theory that works at
all energy scales.

On the other hand, it may well be that quantum field theory does not
work at arbitrarily high energies. For example, quantum fluctuations in
spacetime itself should become important above the Planck scale, which is
given by the inverse square root of Newton’s constant, and has a numerical
value of ∼1019 GeV (compared to, say, the proton mass, which is ∼1GeV).

So, let us leave the cutoff Λ0 in place for now. We will then make a two-
pronged analysis. First, we will see what happens at much lower energies.
Then, we will see what happens if we try to take the limit Λ0 → ∞.

We begin by examining lower energies. To make things more tractable,
we will set

cd,i(Λ0) = 0 ; (29.27)

later we will examine the effects of a more general choice.
A nice way to see what happens at lower energies is to integrate out some

more high-energy degrees of freedom. Let us, then, perform the functional
integral over Fourier modes ϕ̃(k) with Λ < |k| < Λ0; we have

e−Seff (ϕ;Λ) =

∫
DϕΛ<|k|<Λ0

e−Seff (ϕ;Λ0) . (29.28)

We can do this calculation in perturbation theory, mimicking the procedure
that we used earlier. We find

m2(Λ) = m2(Λ0) +
1

2
λ(Λ0)

∫ Λ0

Λ

d4k

(2π)4
1

k2 +m2(Λ0)
+ . . . , (29.29)

λ(Λ) = λ(Λ0) −
3

2
λ2(Λ0)

∫ Λ0

Λ

d4k

(2π)4

(
1

k2 +m2(Λ0)

)2
+ . . . , (29.30)

c2n,1(Λ) = −(−1)n

2n2n
λn(Λ0)

∫ Λ0

Λ

d4k

(2π)4

(
1

k2 +m2(Λ0)

)n
+ . . . , (29.31)

where the ellipses stand for higher-order corrections. For Λ not too much
less than Λ0 (and, in particular, for |m2(Λ0)| ≪ Λ2), we find

m2(Λ) = m2(Λ0) +
1

16π2
λ(Λ0)

(
Λ2

0 − Λ2
)

+ . . . , (29.32)

λ(Λ) = λ(Λ0) −
3

16π2
λ2(Λ0) ln

Λ0

Λ
+ . . . , (29.33)

c2n,1(Λ) = − (−1)n

32π22nn(n−2)
λn(Λ0)

(
1

Λ2n−4
− 1

Λ2n−4
0

)
+ . . . . (29.34)
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Figure 29.2: A one-loop contribution to the ϕ4 vertex for fields with |k| < Λ.
The internal (dashed) line represents a field with |k| > Λ.

We see from this that the corrections to m2(Λ), which is the only coefficient
with positive mass dimension, are dominated by contributions from the
high end of the integral. On the other hand, the corrections to cd,i(Λ),
coefficients with negative mass dimension, are dominated by contributions
from the low end of the integral. And the corrections to λ(Λ), which is
dimensionless, come equally from all portions of the range of integration.

For the cd,i(Λ), this means that their starting values at Λ0 were not
very important, as long as eq. (29.26) is obeyed. Nonzero starting values
would contribute another term of order 1/Λ2n−4

0 to c2n,1(Λ), but all such
terms are less important than the one of order 1/Λ2n−4 that comes from
doing the integral down to |k| = Λ.

Similarly, nonzero values of cd,i(Λ0) would make subdominant contri-
butions to λ(Λ). As an example, consider the contribution of the diagram
in fig. (29.2). Ignoring numerical factors, the vertex factor is c6,1(Λ0), and
the loop integral is the same as the one that enters into m2(Λ); it yields a
factor of Λ2

0 − Λ2 ∼ Λ2
0. Thus the contribution of this diagram to λ(Λ) is

of order c6,1(Λ0)Λ
2
0. This is a pure number that, according to eq. (29.26),

is small. This contribution is missing the logarithmic enhancement factor
ln(Λ0/Λ) that we see in eq. (29.33).

On the other hand, for m2(Λ), there are infinitely many contributions of
order Λ2

0 when cd,i(Λ0) 6= 0. These must add up to give m2(Λ) a value that
is much smaller. Indeed, we want to continue the process down to lower
and lower values of Λ, with m2(Λ) dropping until it becomes of order m2

ph

at Λ ∼ mph. For this to happen, there must be very precise cancellations
among all the terms of order Λ2

0 that contribute to m2(Λ). In some sense, it
is more “natural” to have m2

ph ∼ λ(Λ0)Λ
2
0, rather than to arrange for these

very precise cancellations. This philosophical issue is called the fine-tuning
problem, and it generically arises in theories with spin-zero fields.

In theories with higher-spin fields only, the action typically has more
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symmetry when these fields are massless, and this typically prevents diver-
gences that are worse than logarithmic. These theories are said to be tech-
nically natural, while theories with spin-zero fields (with physical masses
well below the cutoff) generally are not. (The only exceptions are theories
where supersymmetry relates spin-zero and spin-one-half fields; the spin-
zero fields then inherent the technical naturalness of their spin-one-half
partners.) For now, in ϕ4 theory, we will simply accept the necessity of
fine-tuning in order to have mph ≪ Λ.

Returning to eqs. (29.32–29.34), we can recast them as differential equa-
tions that tell us how these parameters change with the vaule of the cutoff
Λ. In particular, let us do this for λ(Λ). We take the derivative of eq. (29.33)
with respect to Λ, multiply by Λ, and then set Λ0 = Λ to get

d

d ln Λ
λ(Λ) =

3

16π2
λ2(Λ) + . . . . (29.35)

Notice that the right-hand side of eq. (29.33) is apparently the same as the
beta function β(λ) ≡ dλ/d lnµ that we calculated in problem 28.1, where
it represented the rate of change in the MS parameter λ that was need to
compensate for a change in the MS renormalization scale µ. Eq. (29.33)
gives us a new physical interpretation of the beta function: it is the rate of
change in the coefficient of the ϕ4 term in the effective action as we vary
the ultraviolet cutoff in that action.

Actually, though, there is a technical detail: it is really Z(Λ)−2λ(Λ)
that is most closely analogous to the MS parameter λ. This is because, if
we rescale ϕ so that it has a canonical kinetic term of 1

2∂µϕ∂µϕ, then the
coefficient of the ϕ4 term is Z(Λ)−2λ(Λ). Since Z(Λ) = 1 +O(λ2(Λ)), this
has no effect at the one-loop level, but it does matter at two loops. We
can account for the effect of this wave function renormalization (in all the
couplings) by writing, instead of eq. (29.11),

Leff(ϕ; Λ) = 1
2Z(Λ)∂µϕ∂µϕ+ 1

2Z(Λ)m2(Λ)ϕ2 + 1
24Z

2(Λ)λ(Λ)ϕ4

+
∑

d≥6

∑

i

Znd,i/2(Λ)cd,i(Λ)Od,i , (29.36)

where nd,i is the number of fields in the operator Od,i. Now the beta
function for λ is universal up through two loops; see problem 29.1. At
three and higher loops, differences with the MS beta function can arise,
due to the different underlying definitions of the coupling λ in the cutoff
scheme and the MS scheme.

We now have the overall picture of Wilson’s approach to quantum field
theory. First, define a quantum field theory via an action with an explicit
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momentum cutoff in place.1 Then, lower the cutoff by integrating out
higher-momentum degrees of freedom. As a result, the coefficients in the
effective action will change. If the field theory is weakly coupled—which in
practice means eqs. (29.24–29.26) are obeyed—then the coefficients of the
operators with negative mass dimension will start to take on the values
we would have computed for them in perturbation theory, regardless of
their precise initial values. If we continuously rescale the fields to have
canonical kinetic terms, then the dimensionless coupling constant(s) will
change according to their beta functions. The final results, at an energy
scale E well below the initial cutoff Λ0, are the same as we would predict
via renormalized perturbation theory, up to small corrections by powers of
E/Λ0.

The advantage of the Wilson scheme is that it gives a nonperturbative
definition of the theory which is applicable even if the theory is not weakly
coupled. With a spacetime lattice providing the cutoff, other techniques
(typically requiring large-scale computer calculations) can be brought to
bear on strongly-coupled theories.

The Wilson scheme also allows us to give physical meaning to nonrenor-
malizable theories. Given an action for a nonrenormalizable theory, we can
regard it as an effective action. We should then impose a momentum cutoff
Λ0, where Λ0 can be defined by saying that the coefficient of every operator
Oi with mass dimension Di > 4 is given by ci/Λ

Di−4
0 with ci ≤ 1. Then

we can use this theory for physics at energies below Λ0. At energies E far
below Λ0, the effective theory will look like a renormalizable one, up to
corrections by powers of E/Λ0. (This renormalizable theory might simply
be a free-field theory with no interactions, or no theory at all if there are
no particles with physical masses well below Λ0.)

We now turn to the final issue: can we remove the cutoff completely?
Returning to the example of ϕ4 theory, let us suppose that we are

somehow able to compute the exact beta function. Then we can integrate
the renormalization-group equation dλ/d ln Λ = β(λ) from Λ = mph to
Λ = Λ0 to get ∫ λ(Λ0)

λ(mph)

dλ

β(λ)
= ln

Λ0

mph
. (29.37)

We would like to take the limit Λ0 → ∞. Obviously, the right-hand side of
eq. (29.37) becomes infinite in this limit, and so the left-hand side must as
well.

However, it may not. Recall that, for small λ, β(λ) is positive, and it

1This can be done in various ways: for example, we could replace continuous spacetime
with a discrete lattice of points with lattice spacing a; then there is an effective largest
momentum of order 1/a.
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increases faster than λ. If this is true for all λ, then the left-hand side of
eq. (29.37) will approach a fixed, finite value as we take the upper limit of
integration to infinity. This yields a maximum possible value for the initial
cutoff, given by

ln
Λmax

mph
≡
∫ ∞

λ(mph)

dλ

β(λ)
. (29.38)

If we approximate the exact beta function with its leading term, 3λ2/16π2,
and use the leading term in eq. (29.18) to get λ(mph) = λph, then we find

Λmax ≃ mph e
16π2/3λph . (29.39)

The existence of a maximum possible value for the cutoff means that we
cannot take the limit as the cutoff goes to infinity; we must use an effective
action with a cutoff as our starting point. If we insist on taking the cutoff
to infinity, then the only possible value of λph is λph = 0. Thus, ϕ4 theory
is trivial in the limit of infinite cutoff: there are no interactions. (There is
much evidence for this, but as yet no rigorous proof. The same is true of
quantum electrodynamics, as was first conjectured by Landau; in this case,
Λmax is known as the location of the Landau pole.)

However, the cutoff can be removed if the beta function grows no faster
than λ at large λ; then the left-hand side of eq. (29.37) would diverge as we
take the upper limit of integration to infinity. Or, β(λ) could drop to zero
(and then become negative) at some finite value λ∗. Then, if λph < λ∗, the
left-hand side of eq. (29.37) would diverge as the upper limit of integration
approaches λ∗. In this case, the effective coupling at higher and higher
energies would remain fixed at λ∗, and λ = λ∗ is called an ultravioldet fixed
point of the renormalization group.

If the beta function is negative for λ = λ(mph), the theory is said to
be asymptotically free, and λ(Λ) decreases as the cutoff is increased. In
this case, there is no barrier to taking the limit Λ → ∞. In four space-
time dimensions, the only asymptotically free theories are nonabelian gauge
theories; see section 69.

Reference Notes

Effective field theory is discussed in Georgi, Peskin & Schroeder, and Wein-
berg I. An introduction to lattice theory can be found in Smit.

Problems

29.1) Consider a theory with a single dimensionless coupling g whose beta
function takes the form β(g) = b1g

2 +b2g
3 + . . . . Now consider a new

definition of the coupling g̃; in the regime where eq. (29.40) holds, it
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can be a function only of g. We assume that the couplings agree at
lowest order, so that we have g̃ = g + c2g

2 + . . . .

a) Show that β(g̃) = b1g̃
2 + b2g̃

3 + . . . .

b) Generalize this result to the case of multiple dimensionless cou-
plings.

29.2) Consider a nonrenormalizable theory that has a set of n dimensionless
couplings ga(Λ), a = 1, . . . , n, and a set of couplings cd,i(Λ) with
negative mass dimension. Assume that all couplings are small in the
sense of eqs. (29.24) and (29.26), and that all masses are small enough
to be neglected. Argue that, for Λ ≪ Λ0, the renormalization-group
equations take the functional form

d

d ln Λ
ga(Λ) = βa(g1(Λ), . . . , gn(Λ)) , (29.40)

d

d ln Λ
cd,i(Λ) =

∑

j

γd,ij(g1(Λ), . . . , gn(Λ))cd,j(Λ) , (29.41)

where γd,ij is the anomalous dimension matrix for the coefficients of
operators with mass dimension d.

29.3) Consider ϕ3 theory in six euclidean spacetime dimensions, with la-
grangian

L = 1
2Z(Λ0)∂µϕ∂µϕ+ 1

24Z
3/2(Λ0)g(Λ0)ϕ

3 . (29.42)

We assume that we have fine-tuned to keep m2(Λ) ≪ Λ2, and so we
neglect the mass term.

a) Show that

1

Z(Λ)
=

1

Z(Λ0)

(
1 +

1

2
g2(Λ0)

d

dk2

[∫ Λ0

Λ

d6ℓ

(2π)6
1

(k+ℓ)2ℓ2

]

k2=0

+ . . .

)
,

g(Λ) =
Z3/2(Λ0)

Z3/2(Λ)
g(Λ0)

(
1 + g2(Λ0)

∫ Λ0

Λ

d6ℓ

(2π)6
1

(ℓ2)3
+ . . .

)
.

Hint: note that the tree-level propagator is ∆̃(k) = [Z(Λ0)k
2]−1.

b) Use your results to compute the beta function

β(g(Λ)) ≡ d

d ln Λ
g(Λ) , (29.43)

and compare with your result in problem 28.1.
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30 Spontaneous Symmetry Breaking

Prerequisite: 21

Consider ϕ4 theory, where ϕ is a real scalar field with lagrangian

L = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 − 1
24λϕ

4 . (30.1)

As we discussed in section 23, this theory has a Z2 symmetry: L is invari-
ant under ϕ(x) → −ϕ(x), and we can define a unitary operator Z that
implements this:

Z−1ϕ(x)Z = −ϕ(x) . (30.2)

We also have Z2 = 1, and so Z−1 = Z. Since unitarity implies Z−1 = Z†,
this makes Z hermitian as well as unitary.

Now suppose that the parameter m2 is, in spite of its name, negative
rather than positive. We can write L in the form

L = −1
2∂

µϕ∂µϕ− V (ϕ) , (30.3)

where the potential is

V (ϕ) = 1
2m

2ϕ2 + 1
24λϕ

4

= 1
24λ(ϕ2 − v2)2 − 1

24λv
4 . (30.4)

In the second line, we have defined

v ≡ +(6|m2|/λ)1/2 . (30.5)

We can (and will) drop the last, constant, term in eq. (30.4).
From eq. (30.4) it is clear that there are two classical field configurations

that minimize the energy: ϕ(x) = +v and ϕ(x) = −v. This is in contrast
to the usual case of positive m2, for which the minimum-energy classical
field configuration is ϕ(x) = 0.

We can expect that the quantum theory will follow suit. For m2 < 0,
there will be two ground states, |0+〉 and |0−〉, with the property that

〈0+|ϕ(x)|0+〉 = +v ,

〈0−|ϕ(x)|0−〉 = −v , (30.6)

up to quantum corrections from loop diagrams that we will treat in detail
in section 30. These two ground states are exchanged by the operator Z,

Z|0+〉 = |0−〉 , (30.7)

and they are orthogonal: 〈0+|0−〉 = 0.
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This last claim requires some comment. Consider a similar problem in
quantum mechanics,

H = 1
2p

2 + 1
24λ(x2 − v2)2 . (30.8)

There are two approximate ground states in this case, specified by the
approximate wave functions

ψ±(x) = 〈x|0±〉 ∼ exp[−ω(x∓ v)2/2] , (30.9)

where ω = (λv2/3)1/2 is the frequency of small oscillations about the mini-
mum. However, the true ground state is a symmetric linear combination of
these. The antisymmetric linear combination has a slightly higher energy,
due to the effects of quantum tunneling.

We can regard a field theory as an infinite set of oscillators, one for each
point in space, each with a hamiltonian like eq. (30.8), and coupled together
by the (∇ϕ)2 term in the field-theory hamiltonian. There is a tunneling
amplitude for each oscillator, but to turn the field-theoretic state |0+〉 into
|0−〉, all the oscillators have to tunnel, and so the tunneling amplitude gets
raised to the power of the number of oscillators, that is, to the power of
infinity (more precisely, to a power that scales like the volume of space).
Therefore, in the limit of infinite volume, 〈0+|0−〉 vanishes.

Thus we can pick either |0+〉 or |0−〉 to use as the ground state. Let
us choose |0+〉. Then we can define a shifted field,

ρ(x) = ϕ(x) − v , (30.10)

which obeys 〈0+|ρ(x)|0+〉 = 0. (We must still worry about loop corrections,
which we will do at the end of this section.) The potential becomes

V (ϕ) = 1
24λ[(ρ+ v)2 − v2]2

= 1
6λv

2ρ2 + 1
6λvρ

3 + 1
24λρ

4 , (30.11)

and so the lagrangian is now

L = −1
2∂

µρ∂µρ− 1
6λv

2ρ2 − 1
6λvρ

3 − 1
24λρ

4 . (30.12)

We see that the coefficient of the ρ2 term is 1
6λv

2 = |m2|. This coefficient
should be identified as 1

2m
2
ρ, where mρ is the mass of the corresponding ρ

particle. Also, we see that the shifted field now has a cubic as well as a
quartic interaction.

Eq. (30.12) specifies a perfectly sensible, renormalizable quantum field
theory, but it no longer has an obvious Z2 symmetry. We say that the Z2

symmetry is spontaneously broken.



30: Spontaneous Symmetry Breaking 198

This leads to a question about renormalization. If we include renormal-
izing Z factors in the original lagrangian, we get

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 − 1
24Zλλϕ

4 . (30.13)

For positive m2, these three Z factors are sufficient to absorb infinities for
d ≤ 4, where the mass dimension of λ is positive or zero. On the other
hand, looking at the lagrangian for negative m2 after the shift, eq. (30.12),
we would seem to need an extra Z factor for the ρ3 term. Also, once we
have a ρ3 term, we would expect to need to add a ρ term to cancel tadpoles.
So, the question is, are the original three Z factors sufficient to absorb all
the divergences in the Feynman diagrams derived from eq. (30.13)?

The answer is yes. To see why, consider the quantum action (introduced
in section 21)

Γ(ϕ) =
1

2

∫
d4k

(2π)4
ϕ̃(−k)

(
k2 +m2 − Π(k2)

)
ϕ̃(k)

+
∞∑

n=3

1

n!

∫
d4k1

(2π)4
. . .

d4kn
(2π)4

(2π)4δ4(k1+ . . .+kn)

×Vn(k1, . . . , kn) ϕ̃(k1) . . . ϕ̃(kn) , (30.14)

computed with m2 > 0. The ingredients of Γ(ϕ)—the self-energy Π(k2)
and the exact 1PI vertices Vn—are all made finite and well-defined (in,
say, the MS renormalization scheme) by adjusting the three Z factors in
eq. (30.13). Furthermore, for m2 > 0, the quantum action inherits the Z2

symmetry of the classical action. To see this directly, we note that Vn

must zero for odd n, simply because there is no way to draw a 1PI diagram
with an odd number of external lines using only a four-point vertex. Thus
Γ(ϕ) also has the Z2 symmetry. This is a simple example of a more general
result that we proved in problem 21.2: the quantum action inherits any
linear symmetry of the classical action, provided that it is also a symmetry
of the integration measure Dϕ. (Linear means that the transformed fields
are linear functions of the original ones.) The integration measure is almost
always invariant; when it is not, the symmetry is said to be anomalous. We
will meet an anomalous symmetry in section 75.

Once we have computed the quantum action for m2 > 0, we can go
ahead and consider the case of m2 < 0. Recall from section 21 that the
quantum equation of motion in the presence of a source is δΓ/δϕ(x) =
−J(x), and that the solution of this equation is also the vacuum expectation
value of ϕ(x). Now set J(x) = 0, and look for a translationally invariant
(that is, constant) solution ϕ(x) = v. If there is more than one such
solution, we want the one(s) with the lowest energy. This is equivalent to
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minimizing the quantum potential U(ϕ), where

Γ(ϕ) =

∫
d4x

[
− U(ϕ) − 1

2Z(ϕ)∂µϕ∂µϕ+ . . .
]
, (30.15)

and the ellipses stand for terms with more derivatives. In a weakly coupled
theory, we can expect the loop-corrected potential U(ϕ) to be qualitatively
similar to the classical potential V (ϕ). Therefore, for m2 < 0, we expect
that there are two minima of U(ϕ) with equal energy, located at ϕ(x) = ±v,
where v = 〈0|ϕ(x)|0〉 is the exact vacuum expectation value of the field.

Thus we have a description of spontaneous symmetry breaking in the
quantum theory based on the quantum action, and the quantum action
is made finite by adjusting only the three Z factors that appear in the
original, symmetric form of the lagrangian.

In the next section, we will see how this works in explicit calculations.
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31 Broken Symmetry and Loop Corrections

Prerequisite: 30

Consider ϕ4 theory, where ϕ is a real scalar field with lagrangian

L = −1
2Zϕ∂

µϕ∂µϕ− 1
2Zmm

2ϕ2 − 1
24Zλλϕ

4 . (31.1)

In d = 4 spacetime dimensions, the coupling λ is dimensionless.
We begin by considering the case m2 > 0, where the Z2 symmetry of L

under ϕ → −ϕ is manifest. We wish to compute the three renormalizing
Z factors. We work in d = 4 − ε dimensions, and take λ → λµ̃ε (where µ̃
has dimensions of mass) so that λ remains dimensionless.

The propagator correction Π(k2) is given by the diagrams of fig. (31.1),
which yield

iΠ(k2) = 1
2 (−iλµ̃ε)1

i ∆̃(0) − i(Ak2 +Bm2) , (31.2)

where A = Zϕ − 1 and B = Zm − 1, and

∆̃(0) =

∫
ddℓ

(2π)d
1

ℓ2 +m2
. (31.3)

Using the usual bag of tricks from section 14, we find

µ̃ε∆̃(0) =
−i

(4π)2

[
2

ε
+ 1 + ln(µ2/m2)

]
m2 , (31.4)

where µ2 = 4πe−γ µ̃2. Thus

Π(k2) =
λ

2(4π)2

[
2

ε
+ 1 + ln(µ2/m2)

]
m2 −Ak2 −Bm2 . (31.5)

From eq. (31.5) we see that we must have

A = O(λ2) , (31.6)

B =
λ

16π2

(
1

ε
+ κB

)
+O(λ2) , (31.7)

where κB is a finite constant (that may depend on µ). In the MS renor-
malization scheme, we take κB = 0, but we will leave κB arbitrary for
now.

Next we turn to the vertex correction, given by the diagram of fig. (31.2),
plus two others with k2 ↔ k3 and k2 ↔ k4; all momenta are treated as
incoming. We have

iV4(k1, k2, k3, k4) = −iZλλ+ 1
2(−iλ)2

(
1
i

)2 [
iF (−s) + iF (−t) + iF (−u)

]

+O(λ3) . (31.8)
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Figure 31.1: O(λ) corrections to Π(k2).
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k4

l

  
1l + k  + k 2

1k

k2

3

Figure 31.2: The O(λ2) correction to V4(k1, k2, k3, k4). Two other dia-
grams, obtained from this one via k2 ↔ k3 and k2 ↔ k4, also contribute.

Here we have defined s = −(k1 + k2)
2, t = −(k1 + k3)

2, u = −(k1 + k4)
2,

and

iF (k2) ≡ µ̃ε
∫

ddℓ

(2π)d
1

((ℓ+k)2 +m2)(ℓ2 +m2)

=
i

16π2

[
2

ε
+

∫ 1

0
dx ln(µ2/D)

]
, (31.9)

where D = x(1−x)k2 +m2. Setting Zλ = 1 + C in eq. (31.8), we see that
we need

C =
3λ

16π2

(
1

ε
+ κC

)
+O(λ2) , (31.10)

where κC is a finite constant.
We may as well pause to compute the beta function, β(λ) = dλ/d lnµ,

where the derivative is taken with the bare coupling λ0 held fixed, and
the finite parts of the counterterms set to zero, in accord with the MS
prescription. We have

λ0 = ZλZ
−2
ϕ λµ̃ε , (31.11)

with

ln
(
ZλZ

−2
ϕ

)
=

3λ

16π2

1

ε
+O(λ2) . (31.12)

Let L1(λ) be the coefficient of 1/ε in eq. (31.12). Our analysis in section
28 shows that the beta function is then given by β(λ) = λ2L′1(λ). Thus we
find

β(λ) =
3λ2

16π2
+O(λ3) . (31.13)
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k k
l

Figure 31.3: The O(λ) correction to the vacuum expectation value of the
ρ field.

The beta function is positive, which means that the theory becomes more
and more strongly coupled at higher and higher energies.

Now we consider the more interesting case of m2 < 0, which results in
the spontaneous breakdown of the Z2 symmetry.

Following the procedure of section 30, we set ϕ(x) = ρ(x) + v, where
v = (6|m2|/λ)1/2 minimizes the potential (without Z factors). Then the
lagrangian becomes (with Z factors)

L = −1
2Zϕ∂

µρ∂µρ− 1
2(3

4Zλ−1
4Zm)m2

ρρ
2

+ 1
2(Zm−Zλ)(3/λµ̃ε)1/2m3

ρρ

− 1
6Zλ(3λµ̃

ε)1/2mρρ
3 − 1

24Zλλµ̃
ερ4 , (31.14)

where m2
ρ = 2|m2|. Now we can compute various one-loop corrections.

We begin with the vacuum expectation value of ρ. The O(λ) correction
is given by the diagrams of fig. (31.3). The three-point vertex factor is
−iZλg3, where g3 can be read off of eq. (31.14):

g3 = (3λµ̃ε)1/2mρ . (31.15)

The one-point vertex factor is iY , where Y can also be read off of eq. (31.14):

Y = 1
2(Zm−Zλ)(3/λµ̃ε)1/2m3

ρ . (31.16)

Following the discussion of section 9, we then find that

〈0|ρ(x)|0〉 =
(
iY + 1

2(−iZλg3)1
i ∆̃(0)

) ∫
d4y 1

i∆(x−y) , (31.17)

plus higher-order corrections. Using eqs. (31.15) and (31.16), and eq. (31.4)
with m2 → m2

ρ, the factor in large parentheses in eq. (31.17) becomes

i

2
(3/λ)1/2m3

ρ

(
Zm−Zλ +

λ

16π2

[
2

ε
+ 1 + ln(µ2/m2

ρ)

]
+O(λ2)

)
. (31.18)

Using Zm = 1 + B and Zλ = 1 + C, with B and C from eqs. (31.7) and
(31.10), the factor in large parentheses in eq. (31.18) becomes

λ

16π2

[
κB − κC + 1 + ln(µ2/m2

ρ)
]
. (31.19)
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All the 1/ε’s have canceled. The remaining finite vacuum expectation value
for ρ(x) can now be removed by choosing

κB − κC = −1 − ln(µ2/m2
ρ) . (31.20)

This will also cancel all diagrams with one-loop tadpoles.
Next we consider the ρ propagator. The diagrams contributing to the

O(λ) correction are shown in fig. (31.4). The counterterm insertion is −iX,
where, again reading off of eq. (31.14),

X = Ak2 + (3
4C − 1

4B)m2
ρ . (31.21)

Putting together the results of eq. (31.2) for the first diagram (with m2 →
m2
ρ), eq. (31.9) for the second (ditto), and eq. (31.21) for the third, we get

Π(k2) = −1
2(λµ̃ε)1

i ∆̃(0) + 1
2g

2
3F (k2) −X +O(λ2)

=
λ

32π2
m2
ρ

[
2

ε
+ 1 + ln(µ2/m2

ρ)

]

+
λ

32π2
m2
ρ

[
2

ε
+

∫ 1

0
dx ln(µ2/D)

]

−Ak2 − (3
4C − 1

4B)m2
ρ +O(λ2). (31.22)

Again using eqs. (31.7) and (31.10) for B and C, we see that all the 1/ε’s
cancel, and we’re left with

Π(k2) =
λ

32π2
m2
ρ

[
1 + ln(µ2/m2

ρ) +

∫ 1

0
dx ln(µ2/D) + 1

2(9κC − κB)

]

+O(λ2) . (31.23)

We can now choose to work in an OS scheme, where we require Π(−m2
ρ) = 0

and Π′(−m2
ρ) = 0. We see that, to this order in λ, Π(k2) is independent of

k2. Thus, we automatically have Π′(−m2
ρ) = 0, and we can choose 9κC−κB

to fix Π(−m2
ρ) = 0. Together with eq. (31.20), this completely determines

κB and κC to this order in λ.
Next we consider the one-loop correction to the three-point vertex, given

by the diagrams of fig. (31.5). We wish to show that the infinities are
canceled by the value of Zλ = 1+C that we have already determined. The
first diagram in fig. (31.5) is finite, and so for our purposes we can ignore
it. The remaining three, plus the original vertex, sum up to give

iV3(k1, k2, k3)div = −iZλg3 + 1
2(−iλ)(−ig3)

(
1
i

)2

×
[
iF (k2

1) + iF (k2
2) + iF (k2

3)
]

+O(λ5/2) , (31.24)
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Figure 31.4: O(λ) corrections to the ρ propagator.
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Figure 31.5: O(λ) corrections to the vertex for three ρ fields.

where the subscript div means that we are keeping only the divergent part.
Using eq. (31.9), we have

V3(k1, k2, k3)div = −g3
(

1 + C − 3λ

16π2

1

ε
+O(λ2)

)
. (31.25)

From eq. (31.10), we see that the divergent terms do indeed cancel to this
order in λ.

Finally, we have the correction to the four-point vertex. In this case,
the divergent diagrams are just those of fig. (31.1), and so the calculation
of the divergent part of V4 is exactly the same as it is when m2 > 0 (but
with mρ in place of m). Since we have already done that calculation (it
was how we determined C in the first place), we need not repeat it.

We have thus seen how we can compute the divergent parts of the coun-
terterms in the simpler case of m2 > 0, where the Z2 symmetry is unbroken,
and that these counterterms will also serve to cancel the divergences in the
more complicated case of m2 < 0, where the Z2 symmetry is spontaneously
broken. This a general rule for renormalizable theories with spontaneous
symmetry breaking, regardless of the nature of the symmetry group.

Reference Notes

Another example of renormalization of a spontaneously broken theory is
worked out in Peskin & Schroeder.
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32 Spontaneous Breaking of Continuous

Symmetries

Prerequisite: 22, 30

Consider the theory (introduced in section 22) of a complex scalar field ϕ
with

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4λ(ϕ†ϕ)2 . (32.1)

This lagrangian is obviously invariant under the U(1) transformation

ϕ(x) → e−iαϕ(x) , (32.2)

where α is a real number.
Now suppose that m2 is negative. The minimum of the potential of

eq. (32.1) is achieved for

ϕ(x) = 1√
2
ve−iθ , (32.3)

where
v = (4|m2|/λ)1/2 , (32.4)

and the phase θ is arbitrary; the factor of root-two in eq. (32.3) is con-
ventional. Thus we have a continuous family of minima of the potential,
parameterized by θ. Under the U(1) transformation of eq. (32.2), θ changes
to θ + α; thus the different minimum-energy field configurations are all
related to each other by the symmetry.

In the quantum theory, we therefore expect to find a continuous family
of ground states, labeled by θ, with the property that

〈θ|ϕ(x)|θ〉 = 1√
2
ve−iθ . (32.5)

Also, according to the discussion in section 30, we expect 〈θ′|θ〉 = 0 for
θ′ 6= θ.

Returning to classical language, there is a flat direction in field space
that we can move along without changing the energy. The physical con-
sequence of this is the existence of a massless particle called a Goldstone
boson.

Let us see how this works in more detail. We first choose the phase
θ = 0, and then write

ϕ(x) = 1√
2
[v + a(x) + ib(x)] , (32.6)

where a and b are real scalar fields. Substituting eq. (32.6) into eq. (32.1),
we find

L = −1
2∂

µa∂µa− 1
2∂

µb∂µb

− |m2|a2 − 1
2λ

1/2|m|a(a2 + b2) − 1
16λ(a2 + b2)2 . (32.7)
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We see from this that the a field has a mass given by 1
2m

2
a = |m2|. The b

field, on the other hand, is massless, and we identify it as the Goldstone
boson.

A different parameterization brings out the role of the massless field
more clearly. We write

ϕ(x) = 1√
2
(v + ρ(x))e−iχ(x)/v , (32.8)

where ρ and χ are real scalar fields. Substituting eq. (32.8) into eq. (32.1),
we get

L = −1
2∂

µρ∂µρ− 1
2

(
1 +

ρ

v

)2
∂µχ∂µχ

− |m2|ρ2 − 1
2λ

1/2|m|ρ3 − 1
16λρ

4 . (32.9)

We see from this that the ρ field has a mass given by 1
2m

2
ρ = |m2|, and that

the χ field is massless. These are the same particle masses we found using
the parameterization of eq. (32.6). This is not an accident: the particle
masses and scattering amplitudes are independent of field redefinitions.

Note that the χ field does not appear in the potential at all. Thus it
parameterizes the flat direction. In terms of the ρ and χ fields, the U(1)
transformation takes the simple form χ(x) → χ(x) + α.

Does the masslessness of the χ field survive loop corrections? It does.
To see this, we note that if the χ field remains massless, its exact propagator
∆̃χ(k

2) should have a pole at k2 = 0; equivalently, the self-energy Πχ(k
2),

related to the propagator by ∆̃χ(k
2) = 1/[k2 − Πχ(k

2)], should satisfy
Π(0) = 0.

We can evaluate Πχ(0) by summing all 1PI diagrams with two external
χ lines, each with four-momentum k = 0. We note from eq. (32.9) that the
derivatives acting on the χ fields imply that the vertex factors for the ρχχ
and ρρχχ vertices are each proportional to k1 ·k2, where k1 and k2 are the
momenta of the two χ lines that meet at that vertex. Since the external
lines have zero momentum, the attached vertices vanish; hence, Πχ(0) = 0,
and the χ particle remains massless.

The same conclusion can be reached by considering the quantum action
Γ(ϕ), which includes all loop corrections. According to our discussion in
section 29, the quantum action has the same symmetries as the classical
action. Therefore, in the case at hand,

Γ(ϕ) = Γ(e−iαϕ) . (32.10)

Spontaneous symmetry breaking occurs if the minimum of Γ(ϕ) is at a
constant, nonzero value of ϕ. Because of eq. (32.10), the phase of this
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constant is arbitrary. Therefore, there must be a flat direction in field
space, corresponding to the phase of ϕ(x). The physical consequence of
this flat direction is a massless particle, the Goldstone boson.

All of this has a straightforward extension to the nonabelian case. Con-
sider

L = −1
2∂

µϕi∂µϕi − 1
2m

2ϕiϕi − 1
16λ(ϕiϕi)

2 , (32.11)

where a repeated index is summed. This lagrangian is invariant under the
infinitesimal SO(N) transformation

δϕi = −iθa(T a)ijϕj , (32.12)

where runs from 1 to 1
2N(N−1), θa is a set of 1

2N(N−1) real, infinitesi-
mal parameters, and each antisymmetric generator matrix T a has a single
nonzero entry −i above the main diagonal, and a corresponding +i below
the main diagonal.

Now let us take m2 < 0 in eq. (32.11). The minimum of the potential
is achieved for ϕi(x) = vi, where v2 = vivi = 4|m2|/λ, and the direction
in which the N -component vector ~v points is arbitrary. In the quantum
theory, we interpret vi as the vacuum expectation value (VEV for short)
of the quantum field ϕi(x). We can choose our coordinate system so that
vi = vδiN ; that is, the VEV lies entirely in the last component.

Now consider making an infinitesimal SO(N) transformation. This
changes the VEV; we have

vi → vi − iθa(T a)ijvj

= vδiN − iθa(T a)iNv . (32.13)

For some choices of θa, the second term on the right-hand side of eq. (32.13)
vanishes. This happens if the corresponding T a has no nonzero entry in the
last column. There are N−1 T a’s with a nonzero entry in the last column:
those with the −i in the first row and last column, in the second row and
last column, etc, down to the N−1th row and last column. These T a’s are
said to be broken generators. A generator is broken if (T a)ijvj 6= 0, and
unbroken if (T a)ijvj = 0.

An infinitesimal SO(N) transformation that involves a broken genera-
tor changes the VEV of the field, but not the energy. Thus, each broken
generator corresponds to a flat direction in field space. Each flat direction
implies the existence of a corresponding massless particle. This is Gold-
stone’s theorem: there is one massless Goldstone boson for each broken
generator.

The unbroken generators, on the other hand, do not change the VEV
of the field. Therefore, after rewriting the lagrangian in terms of shifted
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fields (each with zero VEV), there should still be a manifest symmetry cor-
responding to the set of unbroken generators. In the present case, the num-
ber of unbroken generators is 1

2N(N−1) − (N−1) = 1
2(N−1)(N−2). This

is the number of generators of SO(N−1). Therefore, we expect SO(N−1)
to be an obvious symmetry of the lagrangian after it is written in terms of
shifted fields.

Let us see how this works in the present case. We can rewrite eq. (32.11)
as

L = −1
2∂

µϕi∂µϕi − V (ϕ) , (32.14)

with
V (ϕ) = 1

16λ(ϕiϕi − v2)2 , (32.15)

where v = (4|m2|/λ)1/2, and the repeated index i is implicitly summed
from 1 to N . Now let ϕN (x) = v + ρ(x), and plug this into eq. (32.14).
With the repeated index i now implicitly summed from 1 to N−1, we have

L = −1
2∂

µϕi∂µϕi − 1
2∂

µρ∂µρ− V (ρ, ϕ) , (32.16)

where

V (ρ, ϕ) = 1
16λ[(v+ρ)2 + ϕiϕi − v2]2

= 1
16λ(2vρ+ ρ2 + ϕiϕi)

2

= 1
4λv

2ρ2 + 1
4λvρ(ρ

2 + ϕiϕi) + 1
16λ(ρ2 + ϕiϕi)

2 . (32.17)

There is indeed a manifest SO(N−1) symmetry in eqs. (32.16) and (32.17).
Also, the N−1 ϕi fields are massless: they are the expected N−1 Goldstone
bosons.

Reference Notes

Further discussion of Goldstone’s theorem can be found in Georgi, Peskin
& Schroeder, and Weinberg I.

Problems

32.1) Consider the Noether current jµ for the U(1) symmetry of eq. (32.1),
and the corresponding charge Q.

a) Show that e−iαQ ϕe+iαQ = e+iαϕ.

b) Use eq. (32.5) to show that e−iαQ|θ〉 = |θ + α〉.
c) Show that Q|0〉 6= 0; that is, the charge does not annihilate the
θ = 0 vacuum. Contrast this with the case of an unbroken symmetry.
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32.2) In problem 24.3, we showed that [ϕi, Q
a] = (T a)ijϕj , where Qa is the

Noether charge in the SO(N) symmetric theory. Use this result to
show that Qa|0〉 6= 0 if and only if Qa is broken.

32.3) We define the decay constant f of the Goldstone boson via

〈k|jµ(x)|0〉 = fkµe−ikx , (32.18)

where |k〉 is the state of a single Goldstone boson with four-momentum
k, normalized in the usual way, |0〉 is the θ = 0 vacuum, and jµ(x) is
the Noether current.

a) Compute f at tree level. (That is, express jµ in terms of the ρ
and χ fields, and then use free field theory to compute the matrix
element.) A nonvanishing value of f indicates that the corresponding
current is spontaneously broken.

b) Discuss how your result would be modified by higher-order correc-
tions.



Part II

Spin One Half



33: Representations of the Lorentz Group 211

33 Representations of the Lorentz Group

Prerequisite: 2

In section 2, we saw that we could define a unitary operator U(Λ) that
implemented a Lorentz transformation on a scalar field ϕ(x) via

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (33.1)

As shown in section 2, this implies that the derivative of the field transforms
as

U(Λ)−1∂µϕ(x)U(Λ) = Λµρ∂̄
ρϕ(Λ−1x) , (33.2)

where the bar on he derivative means that it is with respect to the argument
x̄ = Λ−1x.

Eq. (33.2) suggests that we could define a vector field Aµ(x) that would
transform as

U(Λ)−1Aρ(x)U(Λ) = ΛµρA
ρ(Λ−1x) , (33.3)

or a tensor field Bµν(x) that would transform as

U(Λ)−1Bµν(x)U(Λ) = ΛµρΛ
ν
σB

ρσ(Λ−1x) . (33.4)

Note that if Bµν is either symmetric, Bµν(x) = Bνµ(x), or antisymmetric,
Bµν(x) = −Bνµ(x), then the symmetry is preserved by the Lorentz trans-
formation. Also, if we take the trace to get T (x) ≡ gµνB

µν(x), then, using
gµνΛ

µ
ρΛ

ν
σ = gρσ , we find that T (x) transforms like a scalar field,

U(Λ)−1T (x)U(Λ) = T (Λ−1x) . (33.5)

Thus, given a tensor field Bµν(x) with no particular symmetry, we can
write

Bµν(x) = Aµν(x) + Sµν(x) + 1
4g
µνT (x) , (33.6)

where Aµν is antisymmetric (Aµν = −Aνµ) and Sµν is symmetric (Sµν =
Sνµ) and traceless (gµνS

µν = 0). The key point is that the fields Aµν , Sµν ,
and T do not mix with each other under Lorentz transformations.

Is it possible to further break apart these fields into still smaller sets
that do not mix under Lorentz transformations? How do we make this
decomposition into irreducible representations of the Lorentz group for a
field carrying n vector indices? Are there any other kinds of indices we
could consistently assign to a field? If so, how do these behave under a
Lorentz transformation?

The answers to these questions are to be found in the theory of group
representations. Let us see how this works for the Lorentz group (in four
spacetime dimensions).
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Consider a field (not necessarily hermitian) that carries a generic Lorentz
index, ϕA(x). Under a Lorentz transformation, we have

U(Λ)−1ϕA(x)U(Λ) = LA
B(Λ)ϕB(Λ−1x) , (33.7)

where LA
B(Λ) is a matrix that depends on Λ. These finite-dimensional

matrices must obey the group composition rule

LA
B(Λ′)LB

C(Λ) = LA
C(Λ′Λ) . (33.8)

We say that the matrices LA
B(Λ) form a representation of the Lorentz

group.
For an infinitesimal transformation Λµν = δµν + δωµν , we can write

U(1+δω) = I + i
2δωµνM

µν , (33.9)

where the operators Mµν are the generators of the Lorentz group. As
shown in section 2, the generators obey the commutation relations

[Mµν ,Mρσ ] = i
(
gµρMνσ − (µ↔ν)

)
− (ρ↔σ) , (33.10)

which specify the Lie algebra of the Lorentz group.
We can identify the components of the angular momentum operator ~J as

Ji ≡ 1
2εijkM

jk and the components of the boost operator ~K as Ki ≡ M i0.
We then find from eq. (33.10) that

[Ji, Jj ] = +iεijkJk , (33.11)

[Ji,Kj ] = +iεijkKk , (33.12)

[Ki,Kj ] = −iεijkJk . (33.13)

For an infinitesimal transformation, we also have

LA
B(1+δω) = δA

B + i
2δωµν(S

µν)A
B , (33.14)

Eq. (33.7) then becomes

[ϕA(x),Mµν ] = LµνϕA(x) + (Sµν)A
BϕB(x) , (33.15)

where Lµν ≡ 1
i (x

µ∂ν − xν∂µ). Both the differential operators Lµν and the
representation matrices (Sµν)A

B must separately obey the same commuta-
tion relations as the generators themselves; see problems 2.8 and 2.9.

Our problem now is to find all possible sets of finite-dimensional matri-
ces that obey eq. (33.10), or equivalently eqs. (33.11–33.13). Although the
operators Mµν must be hermitian, the matrices (Sµν)A

B need not be.
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If we restrict our attention to eq. (33.11) alone, we know (from stan-
dard results in the quantum mechanics of angular momentum) that we
can find three (2j+1) × (2j+1) hermitian matrices J1, J2, and J3 that
obey eq. (33.11), and that the eigenvalues of (say) J3 are −j,−j+1, . . . ,+j,
where j has the possible values 0, 1

2 , 1, . . . . We further know that these ma-
trices constitute all of the inequivalent, irreducible representations of the
Lie algebra of SO(3), the rotation group in three dimensions. Inequivalent
means not related by a unitary transformation; irreducible means cannot be
made block-diagonal by a unitary transformation. (The standard deriva-
tion assumes that the matrices are hermitian, but allowing nonhermitian
matrices does not enlarge the set of solutions.) Also, when j is a half inte-
ger, a rotation by 2π results in an overall minus sign; these representations
of the Lie algebra of SO(3) are therefore actually not represenations of the
group SO(3), since a 2π rotation should be equivalent to no rotation. As
we saw in section 24, the Lie algebra of SO(3) is the same as the Lie algebra
of SU(2); the half-integer representations of this Lie algebra do qualify as
representations of the group SU(2).

We would like to extend these conclusions to encompass the full set of
eqs. (33.11–33.13). In order to do so, it is helpful to define some nonher-
mitian operators whose physical significance is obscure, but which simplify
the commutation relations. These are

Ni ≡ 1
2(Ji − iKi) , (33.16)

N †i ≡ 1
2(Ji + iKi) . (33.17)

In terms of Ni and N †i , eqs. (33.11–33.13) become

[Ni, Nj ] = iεijkNk , (33.18)

[N †i , N
†
j ] = iεijkN

†
k , (33.19)

[Ni, N
†
j ] = 0 . (33.20)

We see that we have two different SU(2) Lie algebras that are exchanged
by hermitian conjugation. As we just discussed, a representation of the
SU(2) Lie algebra is specified by an integer or half integer; we therefore
conclude that a representation of the Lie algebra of the Lorentz group in
four spacetime dimensions is specified by two integers or half-integers n
and n′.

We will label these representations as (2n+1, 2n′+1); the number of
components of a representation is then (2n+1)(2n′+1). Different compo-
nents within a representation can also be labeled by their angular mo-
mentum representations. To do this, we first note that, from eqs. (33.16)
and (33.17), we have Ji = Ni + N †i . Thus, deducing the allowed values
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of j given n and n′ becomes a standard problem in the addition of an-
gular momenta. The general result is that the allowed values of j are
|n−n′|, |n−n′|+1, . . . , n+n′, and each of these values appears exactly once.

The four simplest and most often encountered representations are (1, 1),
(2, 1), (1, 2), and (2, 2). These are given special names:

(1, 1) = Scalar or singlet

(2, 1) = Left-handed spinor

(1, 2) = Right-handed spinor

(2, 2) = Vector (33.21)

It may seem a little surprising that (2, 2) is to be identified as the vector
representation. To see that this must be the case, we first note that the
vector representation is irreducible: all the components of a four-vector
mix with each other under a general Lorentz transformation. Secondly, the
vector representation has four components. The only candidate irreducible
representations are (4, 1), (1, 4), and (2, 2). The first two of these contain
angular momenta j = 3

2 only, whereas (2, 2) contains j = 0 and j = 1.
This is just right for a four-vector, whose time component is a scalar under
spatial rotations, and whose space components are a three-vector.

In order to gain a better understanding of what it means for (2, 2) to
be the vector representation, we must first investigate the spinor represen-
tations (1, 2) and (2, 1), which contain angular momenta j = 1

2 only.

Reference Notes

An extended treatment of representations of the Lorentz group in four
dimensions can be found in Weinberg I.

Problems

33.1) Express Aµν(x), Sµν(x), and T (x) in terms of Bµν(x).

33.2) Verify that eqs. (33.18–33.20) follow from eqs. (33.11–33.13).
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34 Left- and Right-Handed Spinor Fields

Prerequisite: 3, 33

Consider a left-handed spinor field ψa(x), also known as a left-handed Weyl
field, which is in the (2, 1) representation of the Lie algebra of the Lorentz
group. Here the index a is a left-handed spinor index that takes on two
possible values. Under a Lorentz transformation, we have

U(Λ)−1ψa(x)U(Λ) = La
b(Λ)ψb(Λ

−1x) , (34.1)

where La
b(Λ) is a matrix in the (2, 1) representation. These matrices satisfy

the group composition rule

La
b(Λ′)Lb

c(Λ) = La
c(Λ′Λ) . (34.2)

For an infinitesimal transformation Λµν = δµν + δωµν , we can write

La
b(1+δω) = δa

b + i
2δωµν(S

µν
L )a

b , (34.3)

where (SµνL )a
b = −(SνµL )a

b is a set of 2 × 2 matrices that obey the same
commutation relations as the generators Mµν , namely

[SµνL , SρσL ] = i
(
gµρSνσL − (µ↔ν)

)
− (ρ↔σ) . (34.4)

Using
U(1+δω) = I + i

2δωµνM
µν , (34.5)

eq. (34.1) becomes

[ψa(x),M
µν ] = Lµνψa(x) + (SµνL )a

bψb(x) , (34.6)

where Lµν = 1
i (x

µ∂ν − xν∂µ). The Lµν term in eq. (34.6) would also be
present for a scalar field, and is not the focus of our current interest; we
will suppress it by evaluating the fields at the spacetime origin, xµ = 0.
Recalling that M ij = εijkJk, where Jk is the angular momentum operator,
we have

εijk[ψa(0), Jk ] = (SijL )a
bψb(0) . (34.7)

Recall that the (2, 1) representation of the Lorentz group includes an-
gular momentum j = 1

2 only. For a spin-one-half operator, the standard
convention is that the matrix on the right-hand side of eq. (34.7) is 1

2ε
ijkσk,

where we have suppressed the row index a and the column index b, and
where σk is a Pauli matrix:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (34.8)
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We therefore conclude that

(SijL )a
b = 1

2ε
ijkσk , (34.9)

Thus, for example, setting i=1 and j=2 yields (S12
L )a

b = 1
2ε

12kσk = 1
2σ3,

and so (S12
L )1

1 = +1
2 , (S12

L )2
2 = −1

2 , and (S12
L )1

2 = (S12
L )2

1 = 0.
Once we have the (2, 1) representation matrices for the angular momen-

tum operator Ji, we can easily get them for the boost operator Kk = Mk0.
This is because Jk = Nk + N †k and Kk = i(Nk − N †k), and, acting on a
field in the (2, 1) representation, N †k is zero. Therefore, the representation
matrices for Kk are simply i times those for Jk, and so

(Sk0L )a
b = 1

2 iσk . (34.10)

Now consider taking the hermitian conjugate of the left-handed spinor
field ψa(x). Recall that hermitian conjugation swaps the two SU(2) Lie
algebras that comprise the Lie algebra of the Lorentz group. Therefore,
the hermitian conjugate of a field in the (2, 1) representation should be a
field in the (1, 2) representation; such a field is called a right-handed spinor
field or a right-handed Weyl field. We will distinguish the indices of the
(1, 2) representation from those of the (2, 1) representation by putting dots
over them. Thus, we write

[ψa(x)]
† = ψ†ȧ(x) . (34.11)

Under a Lorentz transformation, we have

U(Λ)−1ψ†ȧ(x)U(Λ) = Rȧ
ḃ(Λ)ψ†

ḃ
(Λ−1x) , (34.12)

whereRȧ
ḃ(Λ) is a matrix in the (1, 2) representation. These matrices satisfy

the group composition rule

Rȧ
ḃ(Λ′)Rḃ

ċ(Λ) = Rȧ
ċ(Λ′Λ) . (34.13)

For an infinitesimal transformation Λµν = δµν + δωµν , we can write

Rȧ
ḃ(1+δω) = δȧ

ḃ + i
2δωµν(S

µν
R )ȧ

ḃ , (34.14)

where (SµνR )ȧ
ḃ = −(SνµR )ȧ

ḃ is a set of 2 × 2 matrices that obey the same
commutation relations as the generators Mµν . We then have

[ψ†ȧ(0),M
µν ] = (SµνR )ȧ

ḃψ†
ḃ
(0) . (34.15)

Taking the hermitian conjugate of this equation, we get

[Mµν , ψa(0)] = [(SµνR )ȧ
ḃ]∗ψb(0) . (34.16)
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Comparing this with eq. (34.6), we see that

(SµνR )ȧ
ḃ = −[(SµνL )a

b]∗ . (34.17)

In the previous section, we examined the Lorentz-transformation prop-
erties of a field carrying two vector indices. To help us get better acquainted
with the properties of spinor indices, let us now do the same for a field that
carries two (2, 1) indices. Call this field Cab(x). Under a Lorentz transfor-
mation, we have

U(Λ)−1Cab(x)U(Λ) = La
c(Λ)Lb

d(Λ)Ccd(Λ
−1x) . (34.18)

The question we wish to address is whether or not the four components of
Cab can be grouped into smaller sets that do not mix with each other under
Lorentz transformations.

To answer this question, recall from quantum mechanics that two spin-
one-half particles can be in a state of total spin zero, or total spin one.
Furthermore, the single spin-zero state is the unique antisymmetric com-
bination of the two spin-one-half states, and the three spin-one states are
the three symmetric combinations of the two spin-one-half states. We can
write this schematically as 2⊗ 2 = 1A ⊕ 3S, where we label the representa-
tion of SU(2) by the number of its components, and the subscripts S and
A indicate whether that representation appears in the symmetric or anti-
symmetric combination of the two 2’s. For the Lorentz group, the relevant
relation is (2, 1)⊗ (2, 1) = (1, 1)A ⊕ (3, 1)S. This implies that we should be
able to write

Cab(x) = εabD(x) +Gab(x) , (34.19)

whereD(x) is a scalar field, εab = −εba is an antisymmetric set of constants,
and Gab(x) = Gba(x). The symbol εab is uniquely determined by its sym-
metry properties up to an overall constant; we will choose ε21 = −ε12 = +1.

Since D(x) is a Lorentz scalar, eq. (34.19) is consistent with eq. (34.18)
only if

La
c(Λ)Lb

d(Λ)εcd = εab . (34.20)

This means that εab is an invariant symbol of the Lorentz group: it does
not change under a Lorentz transformation that acts on all of its indices.
In this way, εab is analogous to the metric gµν , which is also an invariant
symbol, since

Λµ
ρΛν

σgρσ = gµν . (34.21)

We use gµν and its inverse gµν to raise and lower vector indices, and
we can use εab and and its inverse εab to raise and lower left-handed spinor
indices. Here we define εab via

ε12 = ε21 = +1 , ε21 = ε12 = −1 . (34.22)
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With this definition, we have

εabε
bc = δa

c , εabεbc = δac . (34.23)

We can then define
ψa(x) ≡ εabψb(x) . (34.24)

We also have (suppressing the spacetime argument of the field)

ψa = εabψ
b = εabε

bcψc = δa
cψc , (34.25)

as we would expect. However, the antisymmetry of εab means that we
must be careful with minus signs; for example, eq. (34.24) can be written
in various ways, such as

ψa = εabψb = −εbaψb = −ψbεba = ψbε
ab . (34.26)

We must also be careful about signs when we contract indices, since

ψaχa = εabψbχa = −εbaψbχa = −ψbχb . (34.27)

In section 35, we will (mercifully) develop an index-free notation that au-
tomatically keeps track of these essential (but annoying) minus signs.

An exactly analogous discussion applies to the second SU(2) factor;
from the group-theoretic relation (1, 2) ⊗ (1, 2) = (1, 1)A ⊕ (1, 3)S, we can
deduce the existence of an invariant symbol εȧḃ = −εḃȧ. We will normalize
εȧḃ according to eq. (34.22). Then eqs. (34.23–34.27) hold if all the undotted
indices are replaced by dotted indices.

Now consider a field carrying one undotted and one dotted index, Aaȧ(x).
Such a field is in the (2, 2) representation, and in section 33 we concluded
that the (2, 2) representation was the vector representation. We would more
naturally write a field in the vector representation as Aµ(x). There must,
then, be a dictionary that gives us the components of Aaȧ(x) in terms of
the components of Aµ(x); we can write this as

Aaȧ(x) = σµaȧAµ(x) , (34.28)

where σµaȧ is another invariant symbol. That such a symbol must exist can
be deduced from the group-theoretic relation

(2, 1) ⊗ (1, 2) ⊗ (2, 2) = (1, 1) ⊕ . . . . (34.29)

As we will see in section 35, it turns out to be consistent with our already
established conventions for SµνL and SµνR to choose

σµaȧ = (I, ~σ) . (34.30)
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Thus, for example, σ3
11̇

= +1, σ3
22̇

= −1, σ3
12̇

= σ3
21̇

= 0.
In general, whenever the product of a set of representations includes

the singlet, there is a corresponding invariant symbol. For example, we can
deduce the existence of gµν = gνµ from

(2, 2) ⊗ (2, 2) = (1, 1)S ⊕ (1, 3)A ⊕ (3, 1)A ⊕ (3, 3)S . (34.31)

Another invariant symbol, the Levi-Civita symbol, follows from

(2, 2) ⊗ (2, 2) ⊗ (2, 2) ⊗ (2, 2) = (1, 1)A ⊕ . . . , (34.32)

where the subscript A denotes the completely antisymmetric part. The
Levi-Civita symbol is εµνρσ , which is antisymmetric on exchange of any
pair of its indices, and is normalized via ε0123 = +1. To see that εµνρσ is
invariant, we note that ΛµαΛ

ν
βΛ

ρ
γΛ

σ
δε
αβγδ is antisymmetric on exchange

of any two of its uncontracted indices, and therefore must be proportional
to εµνρσ. The constant of proportionality works out to be detΛ, which is
+1 for a proper Lorentz transformation.

We are finally ready to answer a question we posed at the beginning of
section 33. There we considered a field Bµν(x) carrying two vector indices,
and we decomposed it as

Bµν(x) = Aµν(x) + Sµν(x) + 1
4g
µνT (x) , (34.33)

where Aµν is antisymmetric (Aµν = −Aνµ) and Sµν is symmetric (Sµν =
Sνµ) and traceless (gµνS

µν = 0). We asked whether further decomposition
into still smaller irreducible representations was possible. The answer to
this question can be found in eq. (34.31). Obviously, T (x) corresponds to
(1, 1), and Sµν(x) to (3, 3).1 But, according to eq. (34.31), the antisymmet-
ric field Aµν(x) should correspond to (3, 1) ⊕ (1, 3). A field in the (3, 1)
representation carries a symmetric pair of left-handed (undotted) spinor
indices; its hermitian conjugate is a field in the (1, 3) representation that
carries a symmetric pair of right-handed (dotted) spinor indices. We should,
then, be able to find a mapping, analogous to eq. (34.28), that gives Aµν(x)

in terms of a field Gab(x) and its hermitian conjugate G†
ȧḃ

(x).

This mapping is provided by the generator matrices SµνL and SµνR . We
first note that the Pauli matrices are traceless, and so eqs. (34.9) and
(34.10) imply that (SµνL )a

a = 0. Using eq. (34.24), we can rewrite this
as εab(SµνL )ab = 0. Since εab is antisymmetric, (SµνL )ab must be symmetric
on exchange of its two spinor indices. An identical argument shows that

1Note that a symmetric traceless tensor has three independent diagonal components,
and six independent off-diagonal components, for a total of nine, the number of compo-
nents of the (3, 3) representation.
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(SµνR )ȧḃ must be symmetric on exchange of its two spinor indices. Further-
more, according to eqs. (34.9) and (34.10), we have

(S10
L )a

b = −i(S23
L )a

b . (34.34)

This can be written covariantly with the Levi-Civita symbol as

(SµνL )a
b = − i

2ε
µνρσ(SL ρσ)a

b . (34.35)

Similarly,

(SµνR )ȧ
ḃ = + i

2ε
µνρσ(SR ρσ)ȧ

ḃ . (34.36)

Eq. (34.36) follows from taking the complex conjugate of eq. (34.35) and
using eq. (34.17).

Now, given a field Gab(x) in the (3, 1) representation, we can map it
into a self-dual antisymmetric tensor Gµν(x) via

Gµν(x) ≡ (SµνL )abGab(x) . (34.37)

By self-dual, we mean that Gµν(x) obeys

Gµν(x) = − i
2ε
µνρσGρσ(x) . (34.38)

Taking the hermitian conjugate of eq. (34.37), and using eq. (34.17), we get

G†µν(x) = −(SµνR )ȧḃG†
ȧḃ

(x) , (34.39)

which is anti-self-dual,

G†µν(x) = + i
2ε
µνρσG†ρσ(x) . (34.40)

Given a hermitian antisymmetric tensor field Aµν(x), we can extract its
self-dual and anti-self-dual parts via

Gµν(x) = 1
2A

µν(x) − i
4ε
µνρσAρσ(x) , (34.41)

G†µν(x) = 1
2A

µν(x) + i
4ε
µνρσAρσ(x) . (34.42)

Then we have
Aµν(x) = Gµν(x) +G†µν(x) . (34.43)

The field Gµν(x) is in the (3, 1) representation, and the field G†µν(x) is in
the (1, 3) representation; these do not mix under Lorentz transformations.

Problems

34.1) Verify that eq. (34.6) follows from eq. (34.1).
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34.2) Verify that eqs. (34.9) and (34.10) obey eq. (34.4).

34.3) Show that the Levi-Civita symbol obeys

εµνρσεαβγσ = − δµαδ
ν
βδ
ρ
γ − δµβδ

ν
γδ
ρ
α − δµγδ

ν
αδ

ρ
β

+ δµβδ
ν
αδ

ρ
γ + δµαδ

ν
γδ
ρ
β + δµγδ

ν
βδ
ρ
α , (34.44)

εµνρσεαβρσ = −2(δµαδ
ν
β − δµβδ

ν
α) , (34.45)

εµνρσεανρσ = −6 δµα . (34.46)

34.4) Consider a field Ca...c ȧ...ċ(x), with N undotted indices and M dotted
indices, that is furthermore symmetric on exchange of any pair of un-
dotted indices, and also symmetric on exchange of any pair of dotted
indices. Show that this field corresponds to a single irreducible rep-
resentation (2n+1, 2n′+1) of the Lorentz group, and identify n and
n′.
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35 Manipulating Spinor Indices

Prerequisite: 34

In section 34 we introduced the invariant symbols εab, ε
ab, εȧḃ, and εȧḃ,

where

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = +1 , ε21 = ε2̇1̇ = ε12 = ε1̇2̇ = −1 . (35.1)

We use the ε symbols to raise and lower spinor indices, contracting the
second index on the ε. (If we contract the first index instead, then there is
an extra minus sign).

Another invariant symbol is

σµaȧ = (I, ~σ) , (35.2)

where I is the 2 × 2 identity matrix, and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(35.3)

are the Pauli matrices.
Now let us consider some combinations of invariant symbols with some

indices contracted, such as gµνσ
µ
aȧσ

ν
bḃ

. This object must also be invariant.
Then, since it carries two undotted and two dotted spinor indices, it must
be proportional to εabεȧḃ. Using eqs. (35.1) and (35.2), we can laboriously
check this; it turns out to be correct.1 The proportionality constant works
out to be minus two:

σµaȧσµbḃ = −2εabεȧḃ . (35.4)

Similarly, εabεȧḃσµaȧσ
ν
bḃ

must be proportional to gµν , and the proportionality
constant is again minus two:

εabεȧḃσµaȧσ
ν
bḃ

= −2gµν . (35.5)

Next, let’s see what we can learn about the generator matrices (SµνL )a
b

and (SµνR )ȧ
ḃ from the fact that εab, εȧḃ, and σµaȧ are all invariant symbols.

Begin with
εab = L(Λ)a

cL(Λ)b
dεcd , (35.6)

which expresses the Lorentz invariance of εab. For an infinitesimal trans-
formation Λµν = δµν + δωµν , we have

La
b(1+δω) = δa

b + i
2δωµν(S

µν
L )a

b , (35.7)

1If it did not turn out to be correct, then eq. (35.2) would not be a viable choice of
numerical values for this symbol.
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and eq. (35.6) becomes

εab = εab + i
2δωµν

[
(SµνL )a

cεcb + (SµνL )b
dεad

]
+O(δω2)

= εab + i
2δωµν

[
−(SµνL )ab + (SµνL )ba

]
+O(δω2) . (35.8)

Since eq. (35.8) holds for any choice of δωµν , it must be that the factor in
square brackets vanishes. Thus we conclude that (SµνL )ab = (SµνL )ba, which
we had already deduced in section 34 by a different method. Similarly,
starting from the Lorentz invariance of εȧḃ, we can show that (SµνR )ȧḃ =
(SµνR )ḃȧ.

Next, start from

σρaȧ = ΛρτL(Λ)a
bR(Λ)ȧ

ḃστ
bḃ
, (35.9)

which expresses the Lorentz invariance of σρaȧ. For an infinitesimal trans-
formation, we have

Λρτ = δρτ + i
2δωµν(S

µν
V )ρτ , (35.10)

La
b(1+δω) = δa

b + i
2δωµν(S

µν
L )a

b , (35.11)

Rȧ
ḃ(1+δω) = δȧ

ḃ + i
2δωµν(S

µν
R )ȧ

ḃ , (35.12)

where
(SµνV )ρτ ≡ 1

i (g
µρδντ − gνρδµτ ) . (35.13)

Substituting eqs. (35.10–35.13) into eq. (35.9) and isolating the coefficient
of δωµν yields

(gµρδντ − gνρδµτ )σ
τ
aȧ + i(SµνL )a

bσρbȧ + i(SµνR )ȧ
ḃσρaḃ = 0 . (35.14)

Now multiply by σρcċ to get

σµcċσ
ν
aȧ − σνcċσ

µ
aȧ + i(SµνL )a

bσρbȧσρcċ + i(SµνR )ȧ
ḃσρaḃσρcċ = 0 . (35.15)

Next use eq. (35.4) in each of the last two terms to get

σµcċσ
ν
aȧ − σνcċσ

µ
aȧ + 2i(SµνL )acεȧċ + 2i(SµνR )ȧċεac = 0 . (35.16)

If we multiply eq. (35.16) by εȧċ, and remember that εȧċ(SµνR )ȧċ = 0 and
that εȧċεȧċ = −2, we get a formula for (SµνL )ac, namely

(SµνL )ac = i
4ε
ȧċ(σµaȧσ

ν
cċ − σνaȧσ

µ
cċ) . (35.17)
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Similarly, if we multiply eq. (35.16) by εac, we get

(SµνR )ȧċ = i
4ε
ac(σµaȧσ

ν
cċ − σνaȧσ

µ
cċ) . (35.18)

These formulae can be made to look a little nicer if we define

σ̄µȧa ≡ εabεȧḃσµ
bḃ
. (35.19)

Numerically, it turns out that

σ̄µȧa = (I,−~σ) . (35.20)

Using σ̄µ, we can write eqs. (35.17) and (35.18) as

(SµνL )a
b = + i

4(σµσ̄ν − σν σ̄µ)a
b , (35.21)

(SµνR )ȧḃ = − i
4(σ̄µσν − σ̄νσµ)ȧḃ . (35.22)

In eq. (35.22), we have suppressed a contracted pair of undotted indices
arranged as c

c, and in eq. (35.21), we have suppressed a contracted pair of
dotted indices arranged as ċ

ċ.
We will adopt this as a general convention: a missing pair of contracted,

undotted indices is understood to be written as c
c, and a missing pair of

contracted, dotted indices is understood to be written as ċ
ċ. Thus, if χ and

ψ are two left-handed Weyl fields, we have

χψ = χaψa and χ†ψ† = χ†ȧψ
†ȧ . (35.23)

We expect Weyl fields to describe spin-one-half particles, and (by the spin-
statistics theorem) these particles must be fermions. Therefore the corre-
spoding fields must anticommute, rather than commute. That is, we should
have

χa(x)ψb(y) = −ψb(y)χa(x) . (35.24)

Thus we can rewrite eq. (35.23) as

χψ = χaψa = −ψaχa = ψaχa = ψχ . (35.25)

The second equality follows from anticommutation of the fields, and the
third from switching a

a to a
a (which introduces an extra minus sign).

Eq. (35.25) tells us that χψ = ψχ, which is a nice feature of this notation.
Furthermore, if we take the hermitian conjugate of χψ, we get

(χψ)† = (χaψa)
† = (ψa)

†(χa)† = ψ†ȧχ
†ȧ = ψ†χ† . (35.26)

That (χψ)† = ψ†χ† is just what we would expect if we ignored the indices
completely. Of course, by analogy with eq. (35.25), we also have ψ†χ† =
χ†ψ†.
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In order to tell whether a spinor field is left-handed or right-handed
when its spinor index is suppressed, we will adopt the convention that a
right-handed field is always written as the hermitian conjugate of a left-
handed field. Thus, a right-handed field is always written with a dagger,
and a left-handed field is always written without a dagger.

Let’s try computing the hermitian conjugate of something a little more
complicated:

ψ†σ̄µχ = ψ†ȧ σ̄
µȧcχc . (35.27)

This behaves like a vector field under Lorentz transformations,

U(Λ)−1[ψ†σ̄µχ]U(Λ) = Λµν [ψ
†σ̄νχ] . (35.28)

(To avoid clutter, we suppressed the spacetime argument of the fields; as
usual, it is x on the left-hand side and Λ−1x on the right.) The hermitian
conjugate of eq. (35.27) is

[ψ†σ̄µχ]† = [ψ†ȧ σ̄
µȧcχc]

†

= χ†ċ (σ̄
µaċ)∗ψa

= χ†ċ σ̄
µċaψa

= χ†σ̄µψ . (35.29)

In the third line, we used the hermiticity of the matrices σ̄µ = (I,−~σ).
We will get considerably more practice with this notation in the follow-

ing sections.

Problems

35.1) Verify that eq. (35.20) follows from eqs. (35.2) and (35.19).

35.2) Verify that eq. (35.21) is consistent with eqs. (34.9) and (34.10).

35.3) Verify that eq. (35.22) is consistent with eq. (34.17).

35.4) Verify eq. (35.5).

Hint for all problems: write everything in “matrix multiplication”
order, and note that, numerically, εab = −εab = iσ2. Then make use
of the properties of the Pauli matrices.
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36 Lagrangians for Spinor Fields

Prerequisite: 22, 35

Suppose we have a left-handed spinor field ψa. We would like to find a
suitable lagrangian for it. This lagrangian must be Lorentz invariant, and
it must be hermitian. We would also like it to be quadratic in ψ and
its hermitian conjugate ψ†ȧ, because this will lead to a linear equation of
motion, with plane-wave solutions. We want plane-wave solutions because
these describe free particles, the starting point for a theory of interacting
particles.

Let us begin with terms with no derivatives. The only possibility is
ψψ = ψaψa = εabψbψa, plus its hermitian conjugate. Because of anticom-
mutation of the fields (ψbψa = −ψaψb), this expression does not vanish (as
it would if the fields commuted), and so we can use it as a term in L.

Next we need a term with derivatives. The obvious choice is ∂µψ∂µψ,
plus its hermitian conjugate. This, however, yields a hamiltonian that is
unbounded below, which is unacceptable. To get a bounded hamiltonian,
the kinetic term must involve both ψ and ψ†. A candidate is iψ†σ̄µ∂µψ.
This not hermitian, but

(iψ†σ̄µ∂µψ)† = (iψ†ȧ σ̄
µȧc∂µψc)

†

= −i∂µψ†ċ (σ̄µaċ)∗ψa

= −i∂µψ†ċ σ̄µċaψa
= iψ†ċ σ̄

µċa∂µψa − i∂µ(ψ
†
ċ σ̄

µċaψa).

= iψ†σ̄µ∂µψ − i∂µ(ψ
†σ̄µψ) . (36.1)

In the third line, we used the hermiticity of the matrices σ̄µ = (I,−~σ). In
the fourth line, we used −(∂A)B = A∂B − ∂(AB). In the last line, the
second term is a total divergence, and vanishes (with suitable boundary
conditions on the fields at infinity) when we integrate it over d4x to get
the action S. Thus iψ†σ̄µ∂µψ has the hermiticity properties necessary for
a term in L.

Our complete lagrangian for ψ is then

L = iψ†σ̄µ∂µψ − 1
2mψψ − 1

2m
∗ψ†ψ† , (36.2)

where m is a complex parameter with dimensions of mass. The phase of m
is actually irrelevant: if m = |m|eiα, we can set ψ = e−iα/2 ψ̃ in eq. (36.2);
then we get a lagrangian for ψ̃ that is identical to eq. (36.2), but with m
replaced by |m|. So we can, without loss of generality, take m to be real
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and positive in the first place, and that is what we will do, setting m∗ = m
in eq. (36.2).

The equation of motion for ψ is then

0 = − δS

δψ†
= −iσ̄µ∂µψ +mψ† , (36.3)

Restoring the spinor indices, this reads

0 = −iσ̄µȧc∂µψc +mψ†ȧ . (36.4)

Taking the hermitian conjugate (or, equivalently, computing −δS/δψ), we
get

0 = +i(σ̄µaċ)∗ ∂µψ
†
ċ +mψa

= +iσ̄µċa∂µψ
†
ċ +mψa

= −iσµaċ ∂µψ†ċ +mψa . (36.5)

In the second line, we used the hermiticity of the matrices σ̄µ = (I,−~σ).
In the third, we lowered the undotted index, and switched ċ

ċ to ċ
ċ, which

gives an extra minus sign.
Eqs. (36.5) and (36.4) can be combined to read

(
mδa

c −iσµaċ ∂µ
−iσ̄µȧc ∂µ mδȧ ċ

)(
ψc

ψ†ċ

)
= 0 . (36.6)

We can write this more compactly by introducing the 4×4 gamma matrices

γµ ≡
(

0 σµaċ

σ̄µȧc 0

)
. (36.7)

Using the sigma-matrix relations,

(σµσ̄ν + σν σ̄µ)a
c = −2gµνδa

c ,

(σ̄µσν + σ̄νσµ)ȧċ = −2gµνδȧ ċ , (36.8)

which are most easily derived from the numerical formulae σµaȧ = (I, ~σ) and
σ̄µȧa = (I,−~σ), we see that the gamma matrices obey

{γµ, γν} = −2gµν , (36.9)

where {A,B} ≡ AB + BA denotes the anticommutator, and there is an
understood 4×4 identity matrix on the right-hand side. We also introduce
a four-component Majorana field

Ψ ≡
(
ψc

ψ†ċ

)
. (36.10)
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Then eq. (36.6) becomes

(−iγµ∂µ +m)Ψ = 0 . (36.11)

This is the Dirac equation. We first encountered it in section 1, where the
gamma matrices were given different names (β = γ0 and αk = γ0γk). Also,
in section 1 we were trying (and failing) to interpret Ψ as a wave function,
rather than as a quantum field.

Now consider a theory of two left-handed spinor fields with an SO(2)
symmetry,

L = iψ†i σ̄
µ∂µψi − 1

2mψiψi − 1
2mψ

†
iψ
†
i , (36.12)

where the spinor indices are suppressed and i = 1, 2 is implicitly summed.
As in the analogous case of two scalar fields discussed in sections 22 and
23, this lagrangian is invariant under the SO(2) transformation

(
ψ1

ψ2

)
→
(

cosα sinα

− sinα cosα

)(
ψ1

ψ2

)
. (36.13)

We can write the lagrangian so that the SO(2) symmetry appears as a U(1)
symmetry instead; let

χ = 1√
2
(ψ1 + iψ2) , (36.14)

ξ = 1√
2
(ψ1 − iψ2) . (36.15)

In terms of these fields, we have

L = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −mχξ −mξ†χ† . (36.16)

Eq. (36.16) is invariant under the U(1) version of eq. (36.13),

χ → e−iαχ ,

ξ → e+iαξ . (36.17)

Next, let us derive the equations of motion that we get from eq. (36.16),
following the same procedure that ultimately led to eq. (36.6). The result
is (

mδa
c −iσµaċ ∂µ

−iσ̄µȧc ∂µ mδȧċ

)(
χc

ξ†ċ

)
= 0 . (36.18)

We can now define a four-component Dirac field

Ψ ≡
(
χc

ξ†ċ

)
, (36.19)
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which obeys the Dirac equation, eq. (36.11). (We have annoyingly used the
same symbol Ψ to denote both a Majorana field and a Dirac field; these are
different objects, and so we must always announce which is meant when we
write Ψ.)

We can also write the lagrangian, eq. (36.16), in terms of the Dirac field
Ψ, eq. (36.19). First we take the hermitian conjugate of Ψ to get

Ψ† = (χ†ȧ , ξ
a) . (36.20)

Introduce the matrix

β ≡
(

0 δȧċ

δa
c 0

)
. (36.21)

Numerically, β = γ0. However, the spinor index structure of β and γ0 is
different, and so we will distinguish them. Given β, we define

Ψ ≡ Ψ†β = (ξa, χ†ȧ) . (36.22)

Then we have
ΨΨ = ξaχa + χ†ȧξ

†ȧ . (36.23)

Also,
Ψγµ∂µΨ = ξaσµaċ ∂µξ

†ċ + χ†ȧ σ̄
µȧc ∂µχc . (36.24)

Using A∂B = −(∂A)B + ∂(AB), the first term on the right-hand side of
eq. (36.24) can be rewritten as

ξaσµaċ ∂µξ
†ċ = −(∂µξ

a)σµaċ ξ
†ċ + ∂µ(ξ

aσµaċ ξ
†ċ) . (36.25)

Then the first term on the right-hand side of eq. (36.25) can be rewritten
as

−(∂µξ
a)σµaċ ξ

†ċ = +ξ†ċσµaċ ∂µξ
a = +ξ†ċ σ̄

µċa∂µξa . (36.26)

Here we used anticommutation of the fields to get the first equality, and
switched ċ

ċ to ċ
ċ and a

a to a
a (thus generating two minus signs) to get

the second. Combining eqs. (36.24–36.26), we get

Ψγµ∂µΨ = χ†σ̄µ∂µχ+ ξ†σ̄µ∂µξ + ∂µ(ξσ
µξ†) . (36.27)

Therefore, up to an irrelevant total divergence, we have

L = iΨγµ∂µΨ −mΨΨ . (36.28)

This form of the lagrangian is invariant under the U(1) transformation

Ψ → e−iα Ψ ,

Ψ → e+iα Ψ , (36.29)
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which, given eq. (36.19), is the same as eq. (36.17). The Noether current
associated with this symmetry is

jµ = ΨγµΨ = χ†σ̄µχ− ξ†σ̄µξ . (36.30)

In quantum electrodynamics, the electromagnetic current is eΨγµΨ, where
e is the charge of the electron.

As in the case of a complex scalar field with a U(1) symmetry, there is
an additional discrete symmetry, called charge conjugation, that enlarges
SO(2) to O(2). Charge conjugation simply exchanges χ and ξ. We can
define a unitary charge conjugation operator C that implements this,

C−1χa(x)C = ξa(x) ,

C−1ξa(x)C = χa(x) , (36.31)

where, for the sake of precision, we have restored the spinor index and
spacetime argument. We then have C−1L(x)C = L(x).

To express eq. (36.31) in terms of the Dirac field, eq. (36.19), we first
introduce the charge conjugation matrix

C ≡
(
εac 0

0 εȧċ

)
. (36.32)

Next we notice that, if we take the transpose of Ψ, eq. (36.22), we get

ΨT =

(
ξa

χ†ȧ

)
. (36.33)

Then, if we multiply by C, we get a field that we will call ΨC, the charge
conjugate of Ψ,

ΨC ≡ CΨT =

(
ξa

χ†ȧ

)
. (36.34)

We see that ΨC is the same as the original field Ψ, eq. (36.19), except that
the roles of χ and ξ have been switched. We therefore have

C−1Ψ(x)C = ΨC(x) (36.35)

for a Dirac field.
The charge conjugation matrix has a number of useful properties. As a

numerical matrix, it obeys

CT = C† = C−1 = −C , (36.36)
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and we can also write it as

C =

(−εac 0

0 −εȧċ

)
. (36.37)

A result that we will need later is

C−1γµC =

(
εab 0

0 εȧḃ

)(
0 σµbċ

σ̄µḃc 0

)(
εce 0

0 εċė

)

=

(
0 εabσµbċε

ċė

εȧḃσ̄
µḃcεce 0

)

=

(
0 −σ̄µaė

−σµȧe 0

)
. (36.38)

The minus signs in the last line come from raising or lowering an index by
contracting with the first (rather than the second) index of an ε symbol.
Comparing with

γµ =

(
0 σµeȧ

σ̄µėa 0

)
, (36.39)

we see that
C−1γµC = −(γµ)T . (36.40)

Now let us return to the Majorana field, eq. (36.10). It is obvious that a
Majorana field is its own charge conjugate, that is, ΨC = Ψ. This condition
is analogous to the condition ϕ† = ϕ that is satisfied by a real scalar field.
A Dirac field, with its U(1) symmetry, is analogous to a complex scalar
field, while a Majorana field, which has no U(1) symmetry, is analogous to
a real scalar field.

We can write our original lagrangian for a single left-handed spinor field,
eq. (36.2), in terms of a Majorana field, eq. (36.10), by retracing eqs. (36.20–
36.28) with χ→ ψ and ξ → ψ. The result is

L = i
2Ψγµ∂µΨ − 1

2mΨΨ . (36.41)

However, we cannot yet derive the equation of motion from eq. (36.41)
because it does not yet incorporate the Majorana condition ΨC = Ψ. To
remedy this, we use eq. (36.36) to write the Majorana condition Ψ = CΨT

as Ψ = ΨTC. Then we can replace Ψ in eq. (36.41) by ΨTC to get

L = i
2ΨTCγµ∂µΨ − 1

2mΨTCΨ . (36.42)

The equation of motion that follows from this lagrangian is once again the
Dirac equation.
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We can also recover the Weyl components of a Dirac or Majorana field
by means of a suitable projection matrix. Define

γ5 ≡
(−δac 0

0 +δȧċ

)
, (36.43)

where the subscript 5 is simply part of the traditional name of this matrix,
rather than the value of some index. Then we can define left and right
projection matrices

PL ≡ 1
2(1 − γ5) =

(
δa
c 0

0 0

)
,

PR ≡ 1
2(1 + γ5) =

(
0 0

0 δȧ ċ

)
. (36.44)

Thus we have, for a Dirac field,

PLΨ =

(
χc

0

)
,

PRΨ =

(
0

ξ†ċ

)
. (36.45)

The matrix γ5 can also be expressed as

γ5 = iγ0γ1γ2γ3

= − i
24εµνρσγ

µγνγργσ , (36.46)

where ε0123 = −1.
Finally, let us consider the behavior of a Dirac or Majorana field under

a Lorentz transformation. Recall that left- and right-handed spinor fields
transform according to

U(Λ)−1ψa(x)U(Λ) = L(Λ)a
c ψc(Λ

−1x) , (36.47)

U(Λ)−1ψ†ȧ(x)U(Λ) = R(Λ)ȧ
ċ ψ†ċ(Λ

−1x) , (36.48)

where, for an infinitesimal transformation Λµν = δµν + δωµν ,

L(1+δω)a
c = δa

c + i
2δωµν(S

µν
L )a

c , (36.49)

R(1+δω)ȧ
ċ = δȧ

ċ + i
2δωµν(S

µν
R )ȧ

ċ , (36.50)
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and where

(SµνL )a
c = + i

4(σµσ̄ν − σν σ̄µ)a
c , (36.51)

(SµνR )ȧċ = − i
4(σ̄µσν − σ̄νσµ)ȧċ . (36.52)

From these formulae, and the definition of γµ, eq. (36.7), we can see that

i
4 [γµ, γν ] =

(
+(SµνL )a

c 0

0 −(SµνR )ȧċ

)
≡ Sµν . (36.53)

Then, for either a Dirac or Majorana field Ψ, we can write

U(Λ)−1Ψ(x)U(Λ) = D(Λ)Ψ(Λ−1x) , (36.54)

where, for an infinitesimal transformation, the 4 × 4 matrix D(Λ) is

D(1+δω) = 1 + i
2δωµνS

µν , (36.55)

with Sµν given by eq. (36.53). The minus sign in front of SµνR in eq. (36.53)
is compensated by the switch from a ċ

ċ contraction in eq. (36.50) to a ċ
ċ

contraction in eq. (36.54).

Problems

36.1) Using the results of problem 2.9, show that, for a rotation by an angle
θ about the z axis, we have

D(Λ) = exp(−iθS12) , (36.56)

and that, for a boost by rapidity η in the z direction, we have

D(Λ) = exp(+iηS30) . (36.57)

36.2) Verify that eq. (36.46) is consistent with eq. (36.43).

36.3) a) Prove the Fierz identities

(χ†1σ̄
µχ2)(χ

†
3σ̄µχ4) = −2(χ†1χ

†
3)(χ2χ4) , (36.58)

(χ†1σ̄
µχ2)(χ

†
3σ̄µχ4) = (χ†1σ̄

µχ4)(χ
†
3σ̄µχ2) . (36.59)

b) Define the Dirac fields

Ψi ≡
(
χi

ξ†i

)
, ΨC

i ≡
(
ξi

χ†i

)
. (36.60)
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Use eqs. (36.58) and (36.59) to prove the Dirac form of the Fierz
identities,

(Ψ1γ
µPLΨ2)(Ψ3γµPLΨ4) = −2(Ψ1PRΨC

3 )(ΨC
4PLΨ2) , (36.61)

(Ψ1γ
µPLΨ2)(Ψ3γµPLΨ4) = (Ψ1γ

µPLΨ4)(Ψ3γµPLΨ2) . (36.62)

c) By writing both sides out in terms of Weyl fields, show that

Ψ1γ
µPRΨ2 = −ΨC

2γ
µPLΨ

C
1 , (36.63)

Ψ1PLΨ2 = +ΨC
2PLΨ

C
1 , (36.64)

Ψ1PRΨ2 = +ΨC
2PRΨC

1 . (36.65)

Combining eqs. (36.63–36.65) with eqs. (36.61–36.62) yields more use-
ful forms of the Fierz identities.

36.4) Consider a field ϕA(x) in an unspecified representation of the Lorentz
group, indexed by A, that obeys

U(Λ)−1ϕA(x)U(Λ) = LA
B(Λ)ϕB(Λ−1x) . (36.66)

For an infinitesimal transformation,

LA
B(1+δω) = δA

B + i
2δωµν(S

µν)A
B . (36.67)

a) Following the procedure of section 22, show that the energy-momentum
tensor is

T µν = gµνL − ∂L
∂(∂µϕA)

∂νϕA . (36.68)

b) Show that the Noether current corresponding to a Lorentz trans-
formation is

Mµνρ = xνT µρ − xρT µν +Bµνρ , (36.69)

where

Bµνρ ≡ −i ∂L
∂(∂µϕA)

(Sνρ)A
BϕB . (36.70)

c) Use the conservation laws ∂µT
µν = 0 and ∂µMµνρ = 0 to show

that
T νρ − T ρν + ∂µB

µνρ = 0 . (36.71)

e) Define the improved energy-momentum tensor or Belinfante tensor

Θµν ≡ T µν + 1
2∂ρ(B

ρµν −Bµρν −Bνρµ) . (36.72)
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Show that Θµν is symmetric: Θµν = Θνµ. Also show that Θµν is
conserved, ∂µΘ

µν = 0, and that
∫
d3xΘ0ν =

∫
d3xT 0ν = P ν , where

P ν is the energy-momentum four-vector. (In general relativity, it is
the Belinfante tensor that couples to gravity.)

f) Show that the improved tensor

Ξµνρ ≡ xνΘµρ − xρΘµν (36.73)

obeys ∂µΞ
µνρ = 0, and that

∫
d3x Ξ0νρ =

∫
d3x M0νρ = Mνρ, where

Mνρ are the Lorentz generators.

g) Compute Θµν for a left-handed Weyl field with L given by eq. (36.2),
and for a Dirac field with L given by eq. (36.28).

36.5) Symmetries of fermion fields. (Prerequisite: 24.) Consider a theory
with N massless Weyl fields ψj ,

L = iψ†jσ
µ∂µψj , (36.74)

where the repeated index j is summed. This lagrangian is clearly
invariant under the U(N) transformation,

ψj → Ujkψk , (36.75)

where U is a unitary matrix. State the invariance group for the
following cases:

a) N Weyl fields with a common mass m,

L = iψ†jσ
µ∂µψj − 1

2m(ψjψj + ψ†jψ
†
j) . (36.76)

b) N massless Majorana fields,

L = i
2ΨT

j Cγµ∂µΨj . (36.77)

c) N Majorana fields with a common mass m,

L = i
2ΨT

j Cγµ∂µΨj − 1
2mΨT

j CΨj . (36.78)

d) N massless Dirac fields,

L = iΨjγ
µ∂µΨj . (36.79)

e) N Dirac fields with a common mass m,

L = iΨjγ
µ∂µΨj −mΨjΨj . (36.80)
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37 Canonical Quantization of Spinor Fields I

Prerequisite: 36

Consider a left-handed Weyl field ψ with lagrangian

L = iψ†σ̄µ∂µψ − 1
2m(ψψ + ψ†ψ†) . (37.1)

The canonically conjugate momentum to the field ψa(x) is then1

πa(x) ≡ ∂L
∂(∂0ψa(x))

= iψ†ȧ(x)σ̄
0ȧa . (37.2)

The hamiltonian is

H = πa∂0ψa − L

= iψ†ȧσ̄
0ȧaψa − L

= −iψ†σ̄i∂iψ + 1
2m(ψψ + ψ†ψ†) . (37.3)

The appropriate canonical anticommutation relations are

{ψa(x, t), ψc(y, t)} = 0 , (37.4)

{ψa(x, t), πc(y, t)} = iδa
c δ3(x − y) . (37.5)

Substituting in eq. (37.2) for πc, we get

{ψa(x, t), ψ†ċ(y, t)}σ̄0ċc = δa
c δ3(x − y) . (37.6)

Then, using σ̄0 = σ0 = I, we have

{ψa(x, t), ψ†ċ(y, t)} = σ0
aċ δ

3(x − y) , (37.7)

or, equivalently,

{ψa(x, t), ψ†ċ(y, t)} = σ̄0ċa δ3(x − y) . (37.8)

We can also translate this into four-component notation for either a
Dirac or a Majorana field. A Dirac field is defined in terms of two left-
handed Weyl fields χ and ξ via

Ψ ≡
(
χc

ξ†ċ

)
. (37.9)

1Here we gloss over a subtlety about differentiating with respect to an anticommuting
object; we will take up this topic in section 44, and for now simply assume that eq. (37.2)
is correct.
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We also define
Ψ ≡ Ψ†β = (ξa, χ†ȧ) , (37.10)

where

β ≡
(

0 δȧċ

δa
c 0

)
. (37.11)

The lagrangian is

L = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −m(χξ + ξ†χ†)

= iΨγµ∂µΨ −mΨΨ . (37.12)

The fields χ and ξ each obey the canonical anticommutation relations of
eq. (37.5). This translates into

{Ψα(x, t),Ψβ(y, t)} = 0 , (37.13)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (37.14)

where α and β are four-component spinor indices, and

γµ ≡
(

0 σµaċ

σ̄µȧc 0

)
. (37.15)

Eqs. (37.13) and (37.14) can also be derived directly from the four-component
form of the lagrangian, eq. (37.12), by noting that the canonically conjugate
momentum to the field Ψ is ∂L/∂(∂0Ψ) = iΨγ0, and that (γ0)2 = 1.

A Majorana field is defined in terms of a single left-handed Weyl field
ψ via

Ψ ≡
(
ψc

ψ†ċ

)
. (37.16)

We also define
Ψ ≡ Ψ†β = (ψa, ψ†ȧ) . (37.17)

A Majorana field obeys the Majorana condition

Ψ = ΨTC , (37.18)

where

C ≡
(−εac 0

0 −εȧċ

)
(37.19)

is the charge conjugation matrix. The lagrangian is

L = iψ†σ̄µ∂µψ − 1
2m(ψψ + ψ†ψ†)

= i
2Ψγµ∂µΨ − 1

2mΨΨ

= i
2ΨTCγµ∂µΨ − 1

2mΨTCΨ . (37.20)
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The field ψ obeys the canonical anticommutation relations of eq. (37.5).
This translates into

{Ψα(x, t),Ψβ(y, t)} = (Cγ0)αβ δ
3(x − y) , (37.21)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (37.22)

where α and β are four-component spinor indices. To derive eqs. (37.21) and
(37.22) directly from the four-component form of the lagrangian, eq. (37.20),
requires new formalism for the quantization of constrained systems. This is
because the canonically conjugate momentum to the field Ψ is ∂L/∂(∂0Ψ) =
i
2ΨTCγ0, and this is linearly related to Ψ itself; this relation constitutes a
constraint that must be solved before imposition of the anticommutation
relations. In this case, solving the constraint simply returns us to the Weyl
formalism with which we began.

The equation of motion that follows from either eq. (37.12) or eq. (37.20)
is the Dirac equation,

(−i/∂ +m)Ψ = 0 . (37.23)

Here we have introduced the Feynman slash: given any four-vector aµ, we
define

/a ≡ aµγ
µ . (37.24)

To solve the Dirac equation, we first note that if we act on it with
i/∂ +m, we get

0 = (i/∂ +m)(−i/∂ +m)Ψ

= (/∂/∂ +m2)Ψ

= (−∂2 +m2)Ψ . (37.25)

Here we have used

/a/a = aµaνγ
µγν

= aµaν
(

1
2{γµ, γν} + 1

2 [γµ, γν ]
)

= aµaν
(
−gµν + 1

2 [γµ, γν ]
)

= −aµaνgµν + 0

= −a2 . (37.26)

From eq. (37.25), we see that Ψ obeys the Klein-Gordon equation. There-
fore, the Dirac equation has plane-wave solutions. Let us consider a specific
solution of the form

Ψ(x) = u(p)eipx + v(p)e−ipx . (37.27)
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where p0 = ω ≡ (p2 + m2)1/2, and u(p) and v(p) are four-component
constant spinors. Plugging eq. (37.27) into the eq. (37.23), we get

(/p+m)u(p)eipx + (−/p+m)v(p)e−ipx = 0 . (37.28)

Thus we require

(/p+m)u(p) = 0 ,

(−/p+m)v(p) = 0 . (37.29)

Each of these equations has two linearly independent solutions that we
will call u±(p) and v±(p); their detailed properties will be worked out in
the next section. The general solution of the Dirac equation can then be
written as

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (37.30)

where the integration measure is as usual

d̃p ≡ d3p

(2π)32ω
. (37.31)

Problems

37.1) Verify that eqs. (37.13) and (37.14) follow from eqs. (37.4) and (37.5).
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38 Spinor Technology

Prerequisite: 37

The four-component spinors us(p) and vs(p) obey the equations

(/p+m)us(p) = 0 ,

(−/p+m)vs(p) = 0 . (38.1)

Each of these equations has two solutions, which we label via s = + and
s = −. For m 6= 0, we can go to the rest frame, p = 0. We will then
distinguish the two solutions by the eigenvalue of the spin matrix

Sz = i
4 [γ1, γ2] = i

2γ
1γ2 =

( 1
2σ3 0

0 1
2σ3

)
. (38.2)

Specifically, we will require

Szu±(0) = ±1
2u±(0) ,

Szv±(0) = ∓1
2v±(0) . (38.3)

The reason for the opposite sign for the v spinor is that this choice results
in

[Jz, b
†
±(0)] = ±1

2b
†
±(0) ,

[Jz, d
†
±(0)] = ±1

2d
†
±(0) , (38.4)

where Jz is the z component of the angular momentum operator. Eq. (38.4)

implies that b†+(0) and d†+(0) each creates a particle with spin up along the
z axis. We will verify eq. (38.4) in problem 39.2.

For p = 0, we have /p = −mγ0, where

γ0 =

(
0 I

I 0

)
. (38.5)

Eqs. (38.1) and (38.3) are then easy to solve. Choosing (for later conve-
nience) a specific normalization and phase for each of u±(0) and v±(0), we
get

u+(0) =
√
m




1
0
1
0


 , u−(0) =

√
m




0
1
0
1


 ,

v+(0) =
√
m




0
1
0
−1


 , v−(0) =

√
m




−1
0
1
0


 . (38.6)
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For later use we also compute the barred spinors

us(p) ≡ u†s(p)β ,

vs(p) ≡ v†s(p)β , (38.7)

where

β =

(
0 I

I 0

)
(38.8)

satisfies
βT = β† = β−1 = β . (38.9)

We get

u+(0) =
√
m (1, 0, 1, 0) ,

u−(0) =
√
m (0, 1, 0, 1) ,

v+(0) =
√
m (0, −1, 0, 1) ,

v−(0) =
√
m (1, 0, −1, 0) . (38.10)

We can now find the spinors corresponding to an arbitrary three-momentum
p by applying to us(0) and vs(0) the matrix D(Λ) that corresponds to an
appropriate boost. This is given by

D(Λ) = exp(iη p̂·K) , (38.11)

where p̂ is a unit vector in the p direction, Kj = i
4 [γj , γ0] = i

2γ
jγ0 is

the boost matrix, and η ≡ sinh−1(|p|/m) is the rapidity (see problem 2.9).
Thus we have

us(p) = exp(iη p̂·K)us(0) ,

vs(p) = exp(iη p̂·K)vs(0) . (38.12)

We also have

us(p) = us(0) exp(−iη p̂·K) ,

vs(p) = vs(0) exp(−iη p̂·K) . (38.13)

This follows from Kj = Kj, where for any general combination of gamma
matrices,

A ≡ βA†β . (38.14)

In particular, it turns out that

γµ = γµ ,

Sµν = Sµν ,

iγ5 = iγ5 ,

γµγ5 = γµγ5 ,

iγ5S
µν = iγ5S

µν . (38.15)
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The barred spinors satisfy the equations

us(p)(/p +m) = 0 ,

vs(p)(−/p +m) = 0 . (38.16)

It is not very hard to work out us(p) and vs(p) from eq. (38.12), but
it is even easier to use various tricks that will sidestep any need for the
explicit formulae. Consider, for example, us′(p)us(p); from eqs. (38.12)
and (38.13), we see that us′(p)us(p) = us′(0)us(0), and this is easy to
compute from eqs. (38.6) and (38.10). We find

us′(p)us(p) = +2mδs′s ,

vs′(p)vs(p) = −2mδs′s ,

us′(p)vs(p) = 0 ,

vs′(p)us(p) = 0 . (38.17)

Also useful are the Gordon identities,

2mus′(p
′)γµus(p) = us′(p

′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
us(p) ,

−2mvs′(p
′)γµvs(p) = vs′(p

′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
vs(p) . (38.18)

To derive them, start with

γµ/p = 1
2{γµ, /p } + 1

2 [γµ, /p ] = −pµ − 2iSµνpν , (38.19)

/p ′γµ = 1
2{γµ, /p ′} − 1

2 [γµ, /p ′ ] = −p′µ + 2iSµνp′ν . (38.20)

Add eqs. (38.19) and (38.20), sandwich them between u ′ and u spinors (or
v ′ and v spinors), and use eqs. (38.1) and (38.16). An important special
case is p′ = p; then, using eq. (38.17), we find

us′(p)γµus(p) = 2pµδs′s ,

vs′(p)γµvs(p) = 2pµδs′s . (38.21)

With a little more effort, we can also show

us′(p)γ0vs(−p) = 0 ,

vs′(p)γ0us(−p) = 0 . (38.22)

We will need eqs. (38.21) and (38.22) in the next section.
Consider now the spin sums

∑
s=± us(p)us(p) and

∑
s=± vs(p)vs(p),

each of which is a 4 × 4 matrix. The sum over eigenstates of Sz should
remove any memory of the spin-quantization axis, and so the result should
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be expressible in terms of the four-vector pµ and various gamma matrices,
with all vector indices contracted. In the rest frame, /p = −mγ0, and it is
easy to check that

∑
s=± us(0)us(0) = mγ0 + m and

∑
s=± vs(0)vs(0) =

mγ0 −m. We therefore conclude that

∑

s=±
us(p)us(p) = −/p+m ,

∑

s=±
vs(p)vs(p) = −/p−m . (38.23)

We will make extensive use of eq. (38.23) when we calculate scattering cross
sections for spin-one-half particles.

From eq. (38.23), we can get u+(p)u+(p), etc, by applying appropriate
spin projection matrices. In the rest frame, we have

1
2(1 + 2sSz)us′(0) = δss′ us′(0) ,
1
2(1 − 2sSz)vs′(0) = δss′ vs′(0) . (38.24)

In order to boost these projection matrices to a more general frame, we
first recall that

γ5 ≡ iγ0γ1γ2γ3 =

(−I 0

0 I

)
. (38.25)

This allows us to write Sz = i
2γ

1γ2 as Sz = −1
2γ5γ

3γ0. In the rest frame,
we can write γ0 as −/p/m, and γ3 as /z, where zµ = (0, ẑ); thus we have

Sz = 1
2mγ5/z/p . (38.26)

Now we can boost Sz to any other frame simply by replacing /z and /p with
their values in that frame. (Note that, in any frame, zµ satisfies z2 = 1 and
z ·p = 0.) Boosting eq. (38.24) then yields

1
2 (1 − sγ5/z)us′(p) = δss′ us′(p) ,
1
2 (1 − sγ5/z)vs′(p) = δss′ vs′(p) , (38.27)

where we have used eq. (38.1) to eliminate /p. Combining eqs. (38.23) and
(38.27) we get

us(p)us(p) = 1
2(1 − sγ5/z)(−/p +m) ,

vs(p)vs(p) = 1
2(1 − sγ5/z)(−/p −m) . (38.28)

It is interesting to consider the extreme relativistic limit of this formula.
Let us take the three-momentum to be in the z direction, so that it is
parallel to the spin-quantization axis. The component of the spin in the
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direction of the three-momentum is called the helicity. A fermion with
helicity +1/2 is said to be right-handed, and a fermion with helicity −1/2
is said to be left-handed. For rapidity η, we have

1
mp

µ = (cosh η, 0, 0, sinh η) ,

zµ = (sinh η, 0, 0, cosh η) . (38.29)

The first equation is simply the definition of η, and the second follows from
z2 = 1 and p·z = 0 (along with the knowledge that a boost of a four-vector
in the z direction does not change its x and y components). In the limit of
large η, we see that

zµ = 1
mp

µ +O(e−η) . (38.30)

Hence, in eq. (38.28), we can replace /z with /p/m, and then use the matrix
relation (/p/m)(−/p ± m) = ∓(−/p ± m), which holds for p2 = −m2. For
consistency, we should then also drop the m relative to /p, since it is down
by a factor of O(e−η). We get

us(p)us(p) → 1
2 (1 + sγ5)(−/p) ,

vs(p)vs(p) → 1
2 (1 − sγ5)(−/p) . (38.31)

The spinor corresponding to a right-handed fermion (helicity +1/2) is
u+(p) for a b-type particle and v−(p) for a d-type particle. According
to eq. (38.31), either of these is projected by 1

2(1 + γ5) = diag(0, 0, 1, 1)
onto the lower two components only. In terms of the Dirac field Ψ(x), this
is the part that corresponds to the right-handed Weyl field. Similarly, left-
handed fermions are projected (in the extreme relativistic limit) onto the
upper two spinor components only, corresponding to the left-handed Weyl
field.

The case of a massless particle follows from the extreme relativistic limit
of a massive particle. In particular, eqs. (38.1), (38.16), (38.17), (38.21),
(38.22), and (38.23) are all valid with m = 0, and eq. (38.31) becomes
exact.

Finally, for our discussion of parity, time reversal, and charge conjuga-
tion in section 40, we will need a number of relationships among the u and
v spinors. First, note that βus(0) = +us(0) and βvs(0) = −vs(0). Also,
βKj = −Kjβ. We then have

us(−p) = +βus(p) ,

vs(−p) = −βvs(p) . (38.32)

Next, we need the charge conjugation matrix

C =




0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0


 . (38.33)
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which obeys
CT = C† = C−1 = −C , (38.34)

βC = −Cβ , (38.35)

C−1γµC = −(γµ)T . (38.36)

Using eqs. (38.6), (38.10), and (38.33), we can show that Cus(0)T = vs(0)
and Cvs(0)T = us(0). Also, eq. (38.36) implies C−1KjC = −(Kj)T. From
this we can conclude that

Cus(p)T = vs(p) ,

Cvs(p)T = us(p) . (38.37)

Taking the complex conjugate of eq. (38.37), and using uT∗ = u† = βu, we
get

u∗s(p) = Cβvs(p) ,

v∗s(p) = Cβus(p) . (38.38)

Next, note that γ5us(0) = +s v−s(0) and γ5vs(0) = −s u−s(0), and that
γ5K

j = Kjγ5. Therefore

γ5us(p) = +s v−s(p) ,

γ5vs(p) = −s u−s(p) . (38.39)

Combining eqs. (38.32), (38.38), and (38.39) results in

u∗−s(−p) = −s Cγ5us(p) ,

v∗−s(−p) = −s Cγ5vs(p) . (38.40)

We will need eq. (38.32) in our discussion of parity, eq. (38.37) in our dis-
cussion of charge conjugation, and eq. (38.40) in our discussion of time
reversal.

Problems

38.1) Use eq. (38.12) to compute us(p) and vs(p) explicity. Hint: show
that the matrix 2ip̂·K has eigenvalues ±1, and that, for any matrix
A with eigenvalues ±1, ecA = (cosh c) + (sinh c)A, where c is an
arbitrary complex number.

38.2) Verify eq. (38.15).

38.3) Verify eq. (38.22).

38.4) Derive the Gordon identities

us′(p
′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
γ5us(p) = 0 ,

vs′(p
′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
γ5vs(p) = 0 . (38.41)
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39 Canonical Quantization of Spinor Fields

II

Prerequisite: 38

A Dirac field Ψ with lagrangian

L = iΨ/∂Ψ −mΨΨ (39.1)

obeys the canonical anticommutation relations

{Ψα(x, t),Ψβ(y, t)} = 0 , (39.2)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (39.3)

and has the Dirac equation

(−i/∂ +m)Ψ = 0 (39.4)

as its equation of motion. The general solution is

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (39.5)

where bs(p) and d†s(p) are operators; the properties of the four-component
spinors us(p) and vs(p) were belabored in the previous section.

Let us express bs(p) and d†s(p) in terms of Ψ(x) and Ψ(x). We begin
with

∫
d3x e−ipxΨ(x) =

∑

s′=±

[
1
2ω bs′(p)us′(p) + 1

2ωe
2iωtd†s′(−p)vs′(−p)

]
.

(39.6)
Next, multiply on the left by us(p)γ0, and use us(p)γ0us′(p) = 2ωδss′ and
us(p)γ0vs′(−p) = 0 from section 38. The result is

bs(p) =

∫
d3x e−ipx us(p)γ0Ψ(x) . (39.7)

Note that bs(p) is time independent.
To get b†s(p), take the hermitian conjugate of eq. (39.7), using

[
us(p)γ0Ψ(x)

]†
= us(p)γ0Ψ(x)

= Ψ(x)γ0us(p)

= Ψ(x)γ0us(p) , (39.8)

where, for any general combination of gamma matrices A,

A ≡ βA†β . (39.9)
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Thus we find

b†s(p) =

∫
d3x eipx Ψ(x)γ0us(p) . (39.10)

To extract d†s(p) from Ψ(x), we start with
∫
d3x eipxΨ(x) =

∑

s′=±

[
1

2ω e
−2iωtbs′(−p)us′(−p) + 1

2ωd
†
s′(p)vs′(p)

]
.

(39.11)
Next, multiply on the left by vs(p)γ0, and use vs(p)γ0vs′(p) = 2ωδss′ and
vs(p)γ0us′(−p) = 0 from section 38. The result is

d†s(p) =

∫
d3x eipx vs(p)γ0Ψ(x) . (39.12)

To get ds(p), take the hermitian conjugate of eq. (39.12), which yields

ds(p) =

∫
d3x e−ipx Ψ(x)γ0vs(p) . (39.13)

Next, let us work out the anticommutation relations of the b and d op-
erators (and their hermitian conjugates). From eq. (39.2), it is immediately
clear that

{bs(p), bs′(p
′)} = 0 ,

{ds(p), ds′(p
′)} = 0 ,

{bs(p), d†s′(p
′)} = 0 , (39.14)

because these involve only the anticommutator of Ψ with itself, and this
vanishes. Of course, hermitian conjugation also yields

{b†s(p), b†s′(p
′)} = 0 ,

{d†s(p), d†s′(p
′)} = 0 ,

{b†s(p), ds′(p
′)} = 0 . (39.15)

Now consider

{bs(p), b†s′(p
′)} =

∫
d3x d3y e−ipx+ip

′y us(p)γ0{Ψ(x),Ψ(y)}γ0us′(p
′)

=

∫
d3x e−i(p−p

′)x us(p)γ0γ0γ0us′(p
′)

= (2π)3δ3(p − p′)us(p)γ0us′(p)

= (2π)3δ3(p − p′) 2ωδss′ . (39.16)

In the first line, we are free to set x0 = y0 because bs(p) and b†s′(p
′) are

actually time independent. In the third, we used (γ0)2 = 1, and in the
fourth, us(p)γ0us′(p) = 2ωδss′ .
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Similarly,

{d†s(p), ds′(p
′)} =

∫
d3x d3y eipx−ip

′y vs(p)γ0{Ψ(x),Ψ(y)}γ0vs′(p
′)

=

∫
d3x ei(p−p

′)x vs(p)γ0γ0γ0vs′(p
′)

= (2π)3δ3(p − p′) vs(p)γ0vs′(p)

= (2π)3δ3(p − p′) 2ωδss′ . (39.17)

And finally,

{bs(p), ds′(p
′)} =

∫
d3x d3y e−ipx−ip

′y us(p)γ0{Ψ(x),Ψ(y)}γ0vs′(p
′)

=

∫
d3x e−i(p+p

′)x us(p)γ0γ0γ0vs′(p
′)

= (2π)3δ3(p + p′)us(p)γ0vs′(−p)

= 0 . (39.18)

According to the discussion in section 3, eqs. (39.14–39.18) are exactly what
we need to describe the creation and annihilation of fermions. In this case,
we have two different kinds: b-type and d-type, each with two possible spin
states, s = + and s = −.

Next, let us evaluate the hamiltonian

H =

∫
d3x Ψ(−iγi∂i +m)Ψ (39.19)

in terms of the b and d operators. We have

(−iγi∂i +m)Ψ =
∑

s=±

∫
d̃p
(
−iγi∂i +m

)(
bs(p)us(p)eipx

+ d†s(p)vs(p)e−ipx
)

=
∑

s=±

∫
d̃p
[
bs(p)(+γipi +m)us(p)eipx

+ d†s(p)(−γipi +m)vs(p)e−ipx
]

=
∑

s=±

∫
d̃p
[
bs(p)(γ0ω)us(p)eipx

+ d†s(p)(−γ0ω)vs(p)e−ipx
]
. (39.20)

Therefore

H =
∑

s,s′

∫
d̃p d̃p ′ d3x

(
b†s′(p

′)us′(p
′)e−ip

′x + ds′(p
′)vs′(p

′)eip
′x
)
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× ω
(
bs(p)γ0us(p)eipx − d†s(p)γ0vs(p)e−ipx

)

=
∑

s,s′

∫
d̃p d̃p ′ d3x ω

[
b†s′(p

′)bs(p) us′(p
′)γ0us(p) e−i(p

′−p)x

− b†s′(p
′)d†s(p) us′(p

′)γ0vs(p) e−i(p
′+p)x

+ ds′(p
′)bs(p) vs′(p

′)γ0us(p) e+i(p
′+p)x

− ds′(p
′)d†s(p) vs′(p

′)γ0vs(p) e+i(p
′−p)x

]

=
∑

s,s′

∫
d̃p 1

2

[
b†s′(p)bs(p) us′(p)γ0us(p)

− b†s′(−p)d†s(p) us′(−p)γ0vs(p) e+2iωt

+ ds′(−p)bs(p) vs′(−p)γ0us(p) e−2iωt

− ds′(p)d†s(p) vs′(p)γ0vs(p)
]

=
∑

s

∫
d̃p ω

[
b†s(p)bs(p) − ds(p)d†s(p)

]
. (39.21)

Using eq. (39.17), we can rewrite this as

H =
∑

s=±

∫
d̃p ω

[
b†s(p)bs(p) + d†s(p)ds(p)

]
− 4E0V , (39.22)

where E0 = 1
2(2π)−3

∫
d3k ω is the zero-point energy per unit volume that

we found for a real scalar field in section 3, and V = (2π)3δ3(0) =
∫
d3x

is the volume of space. That the zero-point energy is negative rather than
positive is characteristic of fermions; that it is larger in magnitude by a
factor of four is due to the four types of particles that are associated with a
Dirac field. We can cancel off this constant energy by including a constant
term Ω0 = −4E0 in the original lagrangian density; from here on, we will
assume that this has been done.

The ground state of the hamiltonian (39.22) is the vacuum state |0〉
that is annihilated by every bs(p) and ds(p),

bs(p)|0〉 = ds(p)|0〉 = 0 . (39.23)

Then, we can interpret the b†s(p) operator as creating a b-type particle
with momentum p, energy ω = (p2 + m2)1/2, and spin Sz = 1

2s, and the
d†s(p) operator as creating a d-type particle with the same properties. The
b-type and d-type particles are distinguished by the value of the charge
Q =

∫
d3x j0, where jµ = ΨγµΨ is the Noether current associated with the

invariance of L under the U(1) transformation Ψ → e−iαΨ, Ψ → e+iαΨ.
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Following the same procedure that we used for the hamiltonian, we can
show that

Q =

∫
d3x Ψγ0Ψ

=
∑

s=±

∫
d̃p
[
b†s(p)bs(p) + ds(p)d†s(p)

]

=
∑

s=±

∫
d̃p
[
b†s(p)bs(p) − d†s(p)ds(p)

]
+ constant . (39.24)

Thus the conserved charge Q counts the total number of b-type particles
minus the total number of d-type particles. (We are free to shift the overall
value of Q to remove the constant term, and so we shall.) In quantum
electrodynamics, we will identify the b-type particles as electrons and the
d-type particles as positrons.

Now consider a Majorana field Ψ with lagrangian

L = i
2ΨTC/∂Ψ − 1

2mΨTCΨ . (39.25)

The equation of motion for Ψ is once again the Dirac equation, and so the
general solution is once again given by eq. (39.5). However, Ψ must also
obey the Majorana condition Ψ = CΨT. Starting from the barred form of
eq. (39.5),

Ψ(x) =
∑

s=±

∫
d̃p
[
b†s(p)us(p)e−ipx + ds(p)vs(p)eipx

]
, (39.26)

we have

CΨT(x) =
∑

s=±

∫
d̃p
[
b†s(p) CuT

s (p)e−ipx + ds(p) CvT
s (p)eipx

]
. (39.27)

From section 38, we have

Cus(p)T = vs(p) ,

Cvs(p)T = us(p) , (39.28)

and so

CΨT(x) =
∑

s=±

∫
d̃p
[
b†s(p)vs(p)e−ipx + ds(p)us(p)eipx

]
. (39.29)

Comparing eqs. (39.5) and (39.29), we see that we will have Ψ = CΨT if

ds(p) = bs(p) . (39.30)
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Thus a free Majorana field can be written as

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + b†s(p)vs(p)e−ipx

]
. (39.31)

The anticommutation relations for a Majorana field,

{Ψα(x, t),Ψβ(y, t)} = (Cγ0)αβ δ
3(x − y) , (39.32)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (39.33)

can be used to show that

{bs(p), bs′(p
′)} = 0 ,

{bs(p), b†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (39.34)

as we would expect.
The hamiltonian for the Majorana field Ψ is

H = 1
2

∫
d3x ΨTC(−iγi∂i +m)Ψ

= 1
2

∫
d3x Ψ(−iγi∂i +m)Ψ , (39.35)

and we can work through the same manipulations that led to eq. (39.21); the
only differences are an extra overall factor of one-half, and ds(p) = bs(p).
Thus we get

H = 1
2

∑

s=±

∫
d̃p ω

[
b†s(p)bs(p) − bs(p)b†s(p)

]
. (39.36)

Note that this would reduce to a constant if we tried to use commutators
rather than anticommutators in eq. (39.34), a reflection of the spin-statistics
theorem. Using eq. (39.34) as it is, we find

H =
∑

s=±

∫
d̃p ω b†s(p)bs(p) − 2E0V. (39.37)

Again, we can (and will) cancel off the zero-point energy by including a
term Ω0 = −2E0 in the original lagrangian density.

The Majorana lagrangian has no U(1) symmetry. Thus there is no
associated charge, and only one kind of particle (with two possible spin
states).

Problems
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39.1) Verify eq. (39.24).

39.2) Use [Ψ(x),Mµν ] = −i(xµ∂ν − xν∂µ)Ψ(x) + SµνΨ(x), plus whatever
spinor identities you need, to show that

Jz b
†
s(pẑ)|0〉 = 1

2s b
†
s(pẑ)|0〉 ,

Jz d
†
s(pẑ)|0〉 = 1

2s d
†
s(pẑ)|0〉 , (39.38)

where p = pẑ is the three-momentum, and ẑ is a unit vector in the z
direction.

39.3) Show that

U(Λ)−1b†s(p)U(Λ) = b†s(Λ
−1p) ,

U(Λ)−1d†s(p)U(Λ) = d†s(Λ
−1p) , (39.39)

and hence that
U(Λ)|p, s, q〉 = |Λp, s, q〉 , (39.40)

where

|p, s,+〉 ≡ b†s(p)|0〉 ,
|p, s,−〉 ≡ d†s(p)|0〉 (39.41)

are single-particle states.

39.4) The spin-statistics theorem for spin-one-half particles. We will follow
the proof for spin-zero particles in section 4. We start with bs(p)
and b†s(p) as the fundamental objects; we take them to have either
commutation (−) or anticommutation (+) relations of the form

[bs(p), bs′(p
′)]∓ = 0 ,

[b†s(p), b†s′(p
′)]∓ = 0 ,

[bs(p), b†s′(p
′)]∓ = (2π)32ωδ3(p− p′)δss′ . (39.42)

Define

Ψ+(x) ≡
∑

s=±

∫
d̃p bs(p)us(p)eipx ,

Ψ−(x) ≡
∑

s=±

∫
d̃p b†s(p)vs(p)e−ipx . (39.43)

a) Show that U(Λ)−1Ψ±(x)U(Λ) = D(Λ)Ψ±(Λ−1x).
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b) Show that [Ψ+(x)]† = [Ψ−(x)]TCβ. Thus a hermitian interaction
term in the lagrangian must involve both Ψ+(x) and Ψ−(x).

c) Show that [Ψ+
α (x),Ψ−β (y)]∓ 6= 0 for (x− y)2 > 0.

d) Show that [Ψ+
α (x),Ψ−β (y)]∓ = −[Ψ+

β (y),Ψ−α (x)]∓ for (x− y)2 > 0.

e) Consider Ψ(x) ≡ Ψ+(x)+λΨ−(x), where λ is an arbitrary complex
number, and evaluate both [Ψα(x),Ψβ(y)]∓ and [Ψα(x),Ψβ(y)]∓ for
(x − y)2 > 0. Show these can both vanish if and only if |λ| = 1 and
we use anticommutators.
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40 Parity, Time Reversal, and Charge

Conjugation

Prerequisite: 23, 39

Recall that, under a Lorentz transformation Λ implemented by the unitary
operator U(Λ), a Dirac (or Majorana) field transforms as

U(Λ)−1Ψ(x)U(Λ) = D(Λ)Ψ(Λ−1x) . (40.1)

For an infinitesimal transformation Λµν = δµν + δωµν , the matrix D(Λ) is
given by

D(1+δω) = I + i
2δωµνS

µν , (40.2)

where the Lorentz generator matrices are

Sµν = i
4 [γµ, γν ] . (40.3)

In this section, we will consider the two Lorentz transformations that cannot
be reached via a sequence of infinitesimal transformations away from the
identity: parity and time reversal. We begin with parity.

Define the parity transformation

Pµ
ν = (P−1)µν =




+1
−1

−1
−1


 (40.4)

and the corresponding unitary operator

P ≡ U(P) . (40.5)

Now we have
P−1Ψ(x)P = D(P)Ψ(Px) . (40.6)

The question we wish to answer is, what is the matrix D(P)?
First of all, if we make a second parity transformation, we get

P−2Ψ(x)P 2 = D(P)2Ψ(x) , (40.7)

and it is tempting to conclude that we should have D(P)2 = 1, so that we
return to the original field. This is correct for scalar fields, since they are
themselves observable. With fermions, however, it takes an even number
of fields to construct an observable. Therefore we need only require the
weaker condition D(P)2 = ±1.
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We will also require the particle creation and annihilation operators to
transform in a simple way. Because

P−1PP = −P , (40.8)

P−1JP = +J , (40.9)

where P is the total three-momentum operator and J is the total angu-
lar momentum operator, a parity transformation should reverse the three-
momentum while leaving the spin direction unchanged. We therefore re-
quire

P−1b†s(p)P = η b†s(−p) ,

P−1d†s(p)P = η d†s(−p) , (40.10)

where η is a possible phase factor that (by the previous argument about
observables) should satisfy η2 = ±1. We could in principle assign different
phase factors to the b and d operators, but we choose them to be the same so
that the parity transformation is compatible with the Majorana condition
ds(p) = bs(p). Writing the mode expansion of the free field

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (40.11)

the parity transformation reads

P−1Ψ(x)P

=
∑

s=±

∫
d̃p
[(
P−1bs(p)P

)
us(p)eipx +

(
P−1d†s(p)P

)
vs(p)e−ipx

]

=
∑

s=±

∫
d̃p
[
η∗bs(−p)us(p)eipx + ηd†s(−p)vs(p)e−ipx

]

=
∑

s=±

∫
d̃p
[
η∗bs(p)us(−p)eipPx + ηd†s(p)vs(−p)e−ipPx

]
. (40.12)

In the last line, we have changed the integration variable from p to −p.
We now use a result from section 38, namely that

us(−p) = +βus(p) ,

vs(−p) = −βvs(p) , (40.13)

where

β =

(
0 I

I 0

)
. (40.14)
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Then, if we choose η = −i, eq. (40.12) becomes

P−1Ψ(x)P =
∑

s=±

∫
d̃p
[
ibs(p)βus(p)eipPx + id†s(p)βvs(p)e−ipPx

]

= iβΨ(Px) . (40.15)

Thus we see that D(P) = iβ. (We could also have chosen η = i, resulting
in D(P) = −iβ; either choice is acceptable.)

The factor of i has an interesting physical consequence. Consider a
state of an electron and positron with zero center-of-mass momentum,

|φ〉 =

∫
d̃p φ(p)b†s(p)d†s′(−p)|0〉 ; (40.16)

here φ(p) is the momentum-space wave function. Let us assume that the
vacuum is parity invariant: P |0〉 = P−1|0〉 = |0〉. Let us also assume that
the wave function has definite parity: φ(−p) = (−)ℓφ(p). Then, applying
the inverse parity operator on |φ〉, we get

P−1|φ〉 =

∫
d̃p φ(p)

(
P−1b†s(p)P

)
(P−1d†s′(−p)P

)
P−1|0〉 .

= (−i)2
∫
d̃p φ(p)b†s(−p)d†s′(p)|0〉

= (−i)2
∫
d̃p φ(−p)b†s(p)d†s′(−p)|0〉

= −(−)ℓ|φ〉 . (40.17)

Thus, the parity of this state is opposite to that of its wave function; an
electron-positron pair has an intrinsic parity of −1. This also applies to a
pair of Majorana fermions. This influences the selection rules for fermion
pair annihilation in theories that conserve parity. (A pair of electrons also
has negative intrinsic parity, but this is less interesting because the electrons
are prevented from annihilating by charge conservation.)

Let us see what eq. (40.15) implies for the two Weyl fields that comprise
the Dirac field. Recalling that

Ψ =

(
χa

ξ†ȧ

)
, (40.18)

we see from eqs. (40.14) and (40.15) that

P−1χa(x)P = iξ†ȧ(Px) ,

P−1ξ†ȧ(x)P = iχa(Px) . (40.19)
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Thus a parity transformation exchanges a left-handed field for a right-
handed one.

If we take the hermitian conjugate of eq. (40.19), then raise the index on
one side while lowering it on the other (and remember that this introduces
a relative minus sign!), we get

P−1χ†ȧ(x)P = iξa(Px) ,

P−1ξa(x)P = iχ†ȧ(Px) . (40.20)

Comparing eqs. (40.19) and (40.20), we see that they are compatible with
the Majorana condition χa(x) = ξa(x).

Next we take up time reversal. Define the time-reversal transformation

T µ
ν = (T −1)µν =




−1
+1

+1
+1


 (40.21)

and the corresponding operator

T ≡ U(T ) . (40.22)

Now we have
T−1Ψ(x)T = D(T )Ψ(T x) . (40.23)

The question we wish to answer is, what is the matrix D(T )?
As with parity, we can conclude that D(T )2 = ±1, and we will require

the particle creation and annihilation operators to transform in a simple
way. Because

T−1PT = −P , (40.24)

T−1JT = −J , (40.25)

where P is the total three-momentum operator and J is the total angu-
lar momentum operator, a time-reversal transformation should reverse the
direction of both the three-momentum and the spin. We therefore require

T−1b†s(p)T = ζs b
†
−s(−p) ,

T−1d†s(p)T = ζs d
†
−s(−p) . (40.26)

This time we allow for possible s-dependence of the phase factor. Also,
we recall from section 23 that T must be an antiunitary operator, so that
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T−1iT = −i. Then we have

T−1Ψ(x)T

=
∑

s=±

∫
d̃p
[(
T−1bs(p)T

)
u∗s(p)e−ipx +

(
T−1d†s(p)T

)
v∗s(p)eipx

]

=
∑

s=±

∫
d̃p
[
ζ∗s b−s(−p)u∗s(p)e−ipx + ζsd

†
−s(−p)v∗s(p)eipx

]

=
∑

s=±

∫
d̃p
[
ζ∗−sbs(p)u∗−s(−p)eipT x + ζ−sd

†
s(p)v∗−s(−p)e−ipT x

]
.

(40.27)

In the last line, we have changed the integration variable from p to −p, and
the summation variable from s to −s. We now use a result from section
38, namely that

u∗−s(−p) = −s Cγ5us(p) ,

v∗−s(−p) = −s Cγ5vs(p) . (40.28)

Then, if we choose ζs = s, eq. (40.27) becomes

T−1Ψ(x)T = Cγ5Ψ(T x) . (40.29)

Thus we see that D(T ) = Cγ5. (We could also have chosen ζs = −s,
resulting in D(T ) = −Cγ5; either choice is acceptable.)

As with parity, we can consider the effect of time reversal on the Weyl
fields. Using eqs. (40.18), (40.29),

C =

(−εab 0

0 −εȧḃ

)
, (40.30)

and

γ5 =

(−δac 0

0 +δȧċ

)
, (40.31)

we see that

T−1χa(x)T = +χa(T x) ,

T−1ξ†ȧ(x)T = −ξ†ȧ(T x) . (40.32)

Thus left-handed Weyl fields transform into left-handed Weyl fields (and
right-handed into right-handed) under time reversal.
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If we take the hermitian conjugate of eq. (40.32), then raise the index on
one side while lowering it on the other (and remember that this introduces
a relative minus sign!), we get

T−1χ†ȧ(x)T = −χ†ȧ(T x) ,

T−1ξa(x)T = +ξa(T x) . (40.33)

Comparing eqs. (40.32) and (40.33), we see that they are compatible with
the Majorana condition χa(x) = ξa(x).

It is interesting and important to evaluate the transformation properties
of fermion bilinears of the form ΨAΨ, where A is some combination of
gamma matrices. We will consider A’s that satisfy A = A, where A ≡
βA†β; in this case, ΨAΨ is hermitian.

Let us begin with parity transformations. From Ψ = Ψ†β and eq. (40.15)
we get

P−1Ψ(x)P = −iΨ(Px)β , (40.34)

Combining eqs. (40.15) and (40.34) we find

P−1
(
ΨAΨ

)
P = Ψ

(
βAβ

)
Ψ , (40.35)

where we have suppressed the spacetime arguments (which transform in
the obvious way). For various particular choices of A we have

β1β = +1 ,

βiγ5β = −iγ5 ,

βγ0β = +γ0 ,

βγiβ = −γi ,
βγ0γ5β = −γ0γ5 ,

βγiγ5β = +γiγ5 . (40.36)

Therefore, the corresponding hermitian bilinears transform as

P−1
(
ΨΨ

)
P = + ΨΨ ,

P−1
(
Ψiγ5Ψ

)
P = −Ψiγ5Ψ ,

P−1
(
ΨγµΨ

)
P = +Pµ

νΨγ
νΨ ,

P−1
(
Ψγµγ5Ψ

)
P = −Pµ

νΨγ
νγ5Ψ , (40.37)

Thus we see that ΨΨ and ΨγµΨ are even under a parity transformation,
while Ψiγ5Ψ and Ψγµγ5Ψ are odd. We say that ΨΨ is a scalar, ΨγµΨ



40: Parity, Time Reversal, and Charge Conjugation 260

is a vector or polar vector, Ψiγ5Ψ is a pseudoscalar, and Ψγµγ5Ψ is a
pseudovector or axial vector.

Turning to time reversal, from eq. (40.29) we get

T−1Ψ(x)T = Ψ(T x)γ5C−1 . (40.38)

Combining eqs. (40.29) and (40.38), along with T−1AT = A∗, we find

T−1
(
ΨAΨ

)
T = Ψ

(
γ5C−1A∗Cγ5

)
Ψ , (40.39)

where we have suppressed the spacetime arguments (which transform in the
obvious way). Recall that C−1γµC = −(γµ)T and that C−1γ5C = γ5. Also,
γ0 and γ5 are real, hermitian, and square to one, while γi is antihermitian.
Finally, γ5 anticommutes with γµ. Using all of this info, we find

γ5C−11∗Cγ5 = +1 ,

γ5C−1(iγ5)
∗Cγ5 = −iγ5 ,

γ5C−1(γ0)∗Cγ5 = +γ0 ,

γ5C−1(γi)∗Cγ5 = −γi ,
γ5C−1(γ0γ5)

∗Cγ5 = +γ0γ5 ,

γ5C−1(γiγ5)
∗Cγ5 = −γiγ5 . (40.40)

Therefore,

T−1
(
ΨΨ

)
T = + ΨΨ ,

T−1
(
Ψiγ5Ψ

)
T = −Ψiγ5Ψ ,

T−1
(
ΨγµΨ

)
T = −T µ

νΨγ
νΨ ,

T−1
(
Ψγµγ5Ψ

)
T = −T µ

νΨγ
νγ5Ψ . (40.41)

Thus we see that ΨΨ is even under time reversal, while Ψiγ5Ψ, ΨγµΨ, and
Ψγµγ5Ψ are odd.

For completeness we will also consider the transformation properties of
bilinears under charge conjugation. Recall that

C−1Ψ(x)C = CΨT(x) ,

C−1Ψ(x)C = ΨT(x)C . (40.42)

The bilinear ΨAΨ therefore transforms as

C−1
(
ΨAΨ

)
C = ΨTCACΨT . (40.43)
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Since all indices are contracted, we can rewrite the right-hand side as its
transpose, with an extra minus sign for exchanging the order of the two
fermion fields. We get

C−1
(
ΨAΨ

)
C = −ΨCTATCTΨ . (40.44)

Recalling that CT = C−1 = −C, we have

C−1
(
ΨAΨ

)
C = Ψ

(
C−1ATC

)
Ψ . (40.45)

Once again we can go through the list:

C−11TC = +1 ,

C−1(iγ5)
TC = +iγ5 ,

C−1(γµ)TC = −γµ ,
C−1(γµγ5)

TC = +γµγ5 . (40.46)

Therefore,

C−1
(
ΨΨ

)
C = + ΨΨ ,

C−1
(
Ψiγ5Ψ

)
C = + Ψiγ5Ψ ,

C−1
(
ΨγµΨ

)
C = −ΨγµΨ ,

C−1
(
Ψγµγ5Ψ

)
C = + Ψγµγ5Ψ . (40.47)

Thus we see that ΨΨ, Ψiγ5Ψ, and Ψγµγ5Ψ are even under charge conju-
gation, while ΨγµΨ is odd.

For a Majorana field, we have C−1ΨC = Ψ and C−1ΨC = Ψ; this
implies C−1(ΨAΨ)C = ΨAΨ for any combination of gamma matrices A.
Since eq. (40.47) tells that C−1(ΨγµΨ)C = −ΨγµΨ for either a Dirac or
Majorana field, it must be that ΨγµΨ = 0 for a Majorana field.

Let us consider the combined effects of the three transformations (C,
P , and T ) on the bilinears. From eqs. (40.37), (40.41), and (40.47), we have

(CPT )−1
(
ΨΨ

)
CPT = + ΨΨ ,

(CPT )−1
(
Ψiγ5Ψ

)
CPT = + Ψiγ5Ψ ,

(CPT )−1
(
ΨγµΨ

)
CPT = −ΨγµΨ ,

(CPT )−1
(
Ψγµγ5Ψ

)
CPT = −Ψγµγ5Ψ , (40.48)

where we have used Pµ
νT ν

ρ = −δµρ. We see that ΨΨ and Ψiγ5Ψ are both
even under CPT , while ΨγµΨ and Ψγµγ5Ψ are both odd. These are (it
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turns out) examples of a more general rule: a fermion bilinear with n vector
indices (and no uncontracted spinor indices) is even (odd) under CPT if n
is even (odd). This also applies if we allow derivatives acting on the fields,
since each component of ∂µ is odd under the combination PT and even
under C.

For scalar and vector fields, it is always possible to choose the phase
factors in the C, P , and T transformations so that, overall, they obey the
same rule: a hermitian combination of fields and derivatives is even or odd
depending on the total number of uncontracted vector indices. Putting this
together with our result for fermion bilinears, we see that any hermitian
combination of any set of fields (scalar, vector, Dirac, Majorana) and their
derivatives that is a Lorentz scalar (and so carries no indices) is even under
CPT . Since the lagrangian must be formed out of such combinations, we
have L(x) → L(−x) under CPT , and so the action S =

∫
d4xL is invariant.

This is the CPT theorem.

Reference Notes

A detailed treatment of CPT for fields of any spin is given in Weinberg I.

Problems

40.1) Find the transformation properties of ΨSµνΨ and ΨiSµνγ5Ψ under
P , T , and C. Verify that they are both even under CPT , as claimed.
Do either or both vanish if Ψ is a Majorana field?
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41 LSZ Reduction for Spin-One-Half

Particles

Prerequisite: 5, 39

Let us now consider how to construct appropriate initial and final states
for scattering experiments. We will first consider the case of a Dirac field
Ψ, and assume that its interactions respect the U(1) symmetry that gives
rise to the conserved current jµ = ΨγµΨ and its associated charge Q.

In the free theory, we can create a state of one particle by acting on the
vacuum state with a creation operator:

|p, s,+〉 = b†s(p)|0〉 , (41.1)

|p, s,−〉 = d†s(p)|0〉 , (41.2)

where the label ± on the ket indicates the value of the U(1) charge Q, and

b†s(p) =

∫
d3x eipx Ψ(x)γ0us(p) , (41.3)

d†s(p) =

∫
d3x eipx vs(p)γ0Ψ(x) . (41.4)

Recall that b†s(p) and d†s(p) are time independent in the free theory. The
states |p, s,±〉 have the Lorentz-invariant normalization

〈p, s, q|p′, s′, q′〉 = (2π)3 2ω δ3(p − p′) δss′ δqq′ , (41.5)

where ω = (p2 +m2)1/2.
Let us consider an operator that (in the free theory) creates a particle

with definite spin and charge, localized in momentum space near p1, and
localized in position space near the origin:

b†1 ≡
∫
d3p f1(p)b†s1(p) , (41.6)

where
f1(p) ∝ exp[−(p − p1)

2/4σ2] (41.7)

is an appropriate wave packet, and σ is its width in momentum space. If
we time evolve (in the Schrödinger picture) the state created by this time-
independent operator, then the wave packet will propagate (and spread
out). The particle will thus be localized far from the origin as t→ ±∞. If

we consider instead an initial state of the form |i〉 = b†1b
†
2|0〉, where p1 6= p2,

then we have two particles that are widely separated in the far past.
Let us guess that this still works in the interacting theory. One compli-

cation is that b†s(p) will no longer be time independent, and so b†1, eq. (41.6),
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becomes time dependent as well. Our guess for a suitable initial state for
a scattering experiment is then

|i〉 = lim
t→−∞

b†1(t)b
†
2(t)|0〉 . (41.8)

By appropriately normalizing the wave packets, we can make 〈i|i〉 = 1, and
we will assume that this is the case. Similarly, we can consider a final state

|f〉 = lim
t→+∞

b†1′(t)b
†
2′(t)|0〉 , (41.9)

where p′1 6= p′2, and 〈f |f〉 = 1. This describes two widely separated par-
ticles in the far future. (We could also consider acting with more creation
operators, if we are interested in the production of some extra particles in
the collision of two, or using d† operators instead of b† operators for some
or all of the initial and final particles.) Now the scattering amplitude is
simply given by 〈f |i〉.

We need to find a more useful expression for 〈f |i〉. To this end, let us
note that

b†1(−∞) − b†1(+∞)

= −
∫ +∞

−∞
dt ∂0b

†
1(t)

= −
∫
d3p f1(p)

∫
d4x ∂0

(
eipx Ψ(x)γ0us1(p)

)
.

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − iγ0p0

)
us1(p)eipx

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − iγipi − im

)
us1(p)eipx

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − γi

→
∂ i − im

)
us1(p)eipx

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 + γi

←
∂ i − im

)
us1(p)eipx

= i

∫
d3p f1(p)

∫
d4x Ψ(x)(+i

←
/∂ +m)us1(p)eipx . (41.10)

The first equality is just the fundamental theorem of calculus. To get the
second, we substituted the definition of b†1(t), and combined the d3x from
this definition with the dt to get d4x. The third comes from straightforward
evaluation of the time derivatives. The fourth uses (/p+m)us(p) = 0. The
fifth writes ipi as ∂i acting on eipx. The sixth uses integration by parts to
move the ∂i onto the field Ψ(x); here the wave packet is needed to avoid a
surface term. The seventh simply identifies γ0∂0 + γi∂i as /∂.

In free-field theory, the right-hand side of eq. (41.10) is zero, since Ψ(x)
obeys the Dirac equation, which, after barring it, reads

Ψ(x)(+i
←
/∂ +m) = 0 . (41.11)
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In an interacting theory, however, the right-hand side of eq. (41.10) will not
be zero.

We will also need the hermitian conjugate of eq. (41.10), which (after
some slight rearranging) reads

b1(+∞) − b1(−∞)

= i

∫
d3p f1(p)

∫
d4x e−ipx us1(p)(−i/∂ +m)Ψ(x) , (41.12)

and the analogous formulae for the d operators,

d†1(−∞) − d†1(+∞)

= −i
∫
d3p f1(p)

∫
d4x eipx vs1(p)(−i/∂ +m)Ψ(x) , (41.13)

d1(+∞) − d1(−∞)

= −i
∫
d3p f1(p)

∫
d4x Ψ(x)(+i

←
/∂ +m)vs1(p)e−ipx . (41.14)

Let us now return to the scattering amplitude we were considering,

〈f |i〉 = 〈0|b2′(+∞)b1′(+∞)b†1(−∞)b†2(−∞)|0〉 . (41.15)

Note that the operators are in time order. Thus, if we feel like it, we can
put in a time-ordering symbol without changing anything:

〈f |i〉 = 〈0|T b2′(+∞)b1′(+∞)b†1(−∞)b†2(−∞)|0〉 . (41.16)

The symbol T means the product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at
earlier times. However, there is an extra minus sign if this rearrangement
involves an odd number of exchanges of these anticommuting operators.

Now let us use eqs. (41.10) and (41.12) in eq. (41.16). The time-ordering
symbol automatically moves all bi′(−∞)’s to the right, where they anni-

hilate |0〉. Similarly, all b†i (+∞)’s move to the left, where they annihilate
〈0|.

The wave packets no longer play a key role, and we can take the σ → 0
limit in eq. (41.7), so that f1(p) = δ3(p − p1). The initial and final states
now have a delta-function normalization, the multiparticle generalization of
eq. (41.5). We are left with the Lehmann-Symanzik-Zimmermann reduction
formula for spin-one-half particles,

〈f |i〉 = i4
∫
d4x1 d

4x2 d
4x1′ d

4x2′

× e−ip
′
1x

′
1 [us1′ (p1′)(−i/∂1′ +m)]α1′
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× e−ip
′
2x

′
2 [us2′ (p2′)(−i/∂2′ +m)]α2′

× 〈0|T Ψα2′
(x2′)Ψα1′

(x1′)Ψα1(x1)Ψα2(x2)|0〉

× [(+i
←
/∂ 1 +m)us1(p1)]α1 e

ip1x1

× [(+i
←
/∂ 2 +m)us2(p2)]α2 e

ip2x2 . (41.17)

The generalization of the LSZ formula to other processes should be clear;
insert a time-ordering symbol, and make the following replacements:

b†s(p)in → +i

∫
d4x Ψ(x)(+i

←
/∂ +m)us(p) e+ipx , (41.18)

bs(p)out → +i

∫
d4x e−ipx us(p)(−i/∂ +m)Ψ(x) , (41.19)

d†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) , (41.20)

ds(p)out → −i
∫
d4x Ψ(x)(+i

←
/∂ +m)vs(p) e−ipx , (41.21)

where we have used the subscripts “in” and “out” to denote t → −∞ and
t→ +∞, respectively.

All of this holds for a Majorana field as well. In that case, ds(p) = bs(p),
and we can use either eq. (41.18) or eq. (41.20) for the incoming particles,
and either eq. (41.19) or eq. (41.21) for the outgoing particles, whichever is
more convenient. The Majorana condition Ψ = ΨTC guarantees that the
results will be equivalent.

As in the case of a scalar field, we cheated a little in our derivation
of the LSZ formula, because we assumed that the creation operators of
free field theory would work comparably in the interacting theory. After
performing an analysis that is entirely analogous to what we did for the
scalar in section 5, we come to the same conclusion: the LSZ formula holds
provided the field is properly normalized. For a Dirac field, we must require

〈0|Ψ(x)|0〉 = 0 , (41.22)

〈p, s,+|Ψ(x)|0〉 = 0 , (41.23)

〈p, s,−|Ψ(x)|0〉 = vs(p)e
−ipx , (41.24)

〈p, s,+|Ψ(x)|0〉 = us(p)e
−ipx , (41.25)

〈p, s,−|Ψ(x)|0〉 = 0 , (41.26)

where 〈0|0〉 = 1, and the one-particle states are normalized according to
eq. (41.5).
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The zeros on the right-hand sides of eqs. (41.23) and (41.26) are required
by charge conservation. To see this, start with [Ψ(x), Q] = +Ψ(x), take the
matrix elements indicated, and use Q|0〉 = 0 and Q|p, s,±〉 = ±|p, s,±〉.

The zero on the right-hand side of eq. (41.22) is required by Lorentz
invariance. To see this, start with [Ψ(0),Mµν ] = SµνΨ(0), and take the
expectation value in the vacuum state |0〉. If |0〉 is Lorentz invariant (as we
will assume), then it is annihilated by the Lorentz generators Mµν , which
means that we must have Sµν〈0|Ψ(0)|0〉 = 0; this is possible for all µ and
ν only if 〈0|Ψ(0)|0〉 = 0, which (by translation invariance) is possible only
if 〈0|Ψ(x)|0〉 = 0.

The right-hand sides of eqs. (41.24) and (41.25) are similarly fixed by
Lorentz invariance: only the overall scale might be different in an interact-
ing theory. However, the LSZ formula is correctly normalized if and only if
eqs. (41.24) and (41.25) hold as written. We will enforce this by rescaling
(or, one might say, renormalizing) Ψ(x) by an overall constant. This is
just a change of the name of the operator of interest, and does not affect
the physics. However, the rescaled Ψ(x) will obey eqs. (41.24) and (41.25).
(These two equations are related by charge conjugation, and so actually
constitute only one condition on Ψ.)

For a Majorana field, there is no conserved charge, and we have

〈0|Ψ(x)|0〉 = 0 , (41.27)

〈p, s|Ψ(x)|0〉 = vs(p)e
−ipx , (41.28)

〈p, s|Ψ(x)|0〉 = us(p)e
−ipx , (41.29)

instead of eqs. (41.22–41.26).
The renormalization of Ψ necessitates including appropriate Z factors

in the lagrangian. Consider, for example,

L = iZΨ/∂Ψ − ZmmΨΨ − 1
4Zgg(ΨΨ)2 , (41.30)

where Ψ is a Dirac field, and g is a coupling constant. We choose the three
constants Z, Zm, and Zg so that the following three conditions are satisfied:
m is the mass of a single particle; g is fixed by some appropriate scattering
cross section; and eq. (41.24) and is obeyed. [Eq. (41.25) then follows by
charge conjugation.]

Next, we must develop the tools needed to compute the correlation
functions 〈0|TΨα1′

(x1′) . . .Ψα1(x1) . . . |0〉 in an interacting quantum field
theory.

Problems

41.1) Assuming that eq. (39.40) holds for the exact single-particle states,
verify eqs. (41.23) and (41.26), up to overall scale.
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42 The Free Fermion Propagator

Prerequisite: 39

Consider a free Dirac field

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (42.1)

Ψ(y) =
∑

s′=±

∫
d̃p ′

[
b†s′(p

′)us′(p
′)e−ip

′y + ds′(p
′)vs′(p

′)eip
′y
]
, (42.2)

where
bs(p)|0〉 = ds(p)|0〉 = 0 , (42.3)

and

{bs(p), b†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (42.4)

{ds(p), d†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (42.5)

and all the other possible anticommutators between b and d operators (and
their hermitian conjugates) vanish.

We wish to compute the Feynman propagator

S(x− y)αβ ≡ i〈0|TΨα(x)Ψβ(y)|0〉 , (42.6)

where T denotes the time-ordered product,

TΨα(x)Ψβ(y) ≡ θ(x0 − y0)Ψα(x)Ψβ(y) − θ(y0 − x0)Ψβ(y)Ψα(x) , (42.7)

and θ(t) is the unit step function. Note the minus sign in the second term;
this is needed because Ψα(x)Ψβ(y) = −Ψβ(y)Ψα(x) when x0 6= y0.

We can now compute 〈0|Ψα(x)Ψβ(y)|0〉 and 〈0|Ψβ(y)Ψα(x)|0〉 by in-
serting eqs. (42.1) and (42.2), and then using eqs. (42.3–42.5). We get

〈0|Ψα(x)Ψβ(y)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ eipx e−ip

′y us(p)αus′(p
′)β 〈0|bs(p)b†s′(p

′)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ eipx e−ip

′y us(p)αus′(p
′)β (2π)3δ3(p− p′) 2ωδss′

=
∑

s

∫
d̃p eip(x−y) us(p)αus(p)β

=

∫
d̃p eip(x−y) (−/p+m)αβ . (42.8)
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To get the last line, we used a result from section 38. Similarly,

〈0|Ψβ(y)Ψα(x)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ e−ipx eip

′y vs(p)αvs′(p
′)β 〈0|ds′(p′)d†s(p)|0〉

=
∑

s,s′

∫
d̃p d̃p′ e−ipx eip

′y vs(p)αvs′(p
′)β (2π)3δ3(p − p′) 2ωδss′

=
∑

s

∫
d̃p e−ip(x−y) vs(p)αvs(p)β

=

∫
d̃p e−ip(x−y) (−/p−m)αβ . (42.9)

We can combine eqs. (42.8) and (42.9) into a compact formula for the time-
ordered product by means of the identity

∫
d4p

(2π)4
eip(x−y)f(p)

p2 +m2 − iǫ
= iθ(x0−y0)

∫
d̃p eip(x−y) f(p)

+ iθ(y0−x0)

∫
d̃p e−ip(x−y) f(−p) , (42.10)

where f(p) is a polynomial in p; the derivation of eq. (42.10) was sketched
in section 8. We get

〈0|TΨα(x)Ψβ(y)|0〉 =
1

i

∫
d4p

(2π)4
eip(x−y)

(−/p+m)αβ
p2 +m2 − iǫ

, (42.11)

and so

S(x− y)αβ =

∫
d4p

(2π)4
eip(x−y)

(−/p+m)αβ
p2 +m2 − iǫ

. (42.12)

Note that S(x− y) is a Green’s function for the Dirac wave operator:

(−i/∂x +m)αβS(x− y)βγ =

∫
d4p

(2π)4
eip(x−y)

(/p +m)αβ(−/p+m)βγ
p2 +m2 − iǫ

=

∫
d4p

(2π)4
eip(x−y)

(p2 +m2)δαγ
p2 +m2 − iǫ

= δ4(x− y)δαγ . (42.13)

Similarly,

S(x− y)αβ(+i
←
/∂y +m)βγ =

∫
d4p

(2π)4
eip(x−y)

(−/p+m)αβ(/p+m)βγ
p2 +m2 − iǫ

=

∫
d4p

(2π)4
eip(x−y)

(p2 +m2)δαγ
p2 +m2 − iǫ

= δ4(x− y)δαγ . (42.14)
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We can also consider 〈0|TΨα(x)Ψβ(y)|0〉 and 〈0|TΨα(x)Ψβ(y)|0〉, but it is
easy to see that now there is no way to pair up a b with a b† or a d with a
d†, and so

〈0|TΨα(x)Ψβ(y)|0〉 = 0 , (42.15)

〈0|TΨα(x)Ψβ(y)|0〉 = 0 . (42.16)

Next, consider a Majorana field

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + b†s(p)vs(p)e−ipx

]
, (42.17)

Ψ(y) =
∑

s′=±

∫
d̃p ′

[
b†s′(p

′)us′(p
′)e−ip

′y + bs′(p
′)vs′(p

′)eip
′y
]
. (42.18)

It is easy to see that 〈0|TΨα(x)Ψβ(y)|0〉 is the same as it is in the Dirac
case; the only difference in the calculation is that we would have b and b† in
place of d and d† in the second line of eq. (42.9), and this does not change
the final result. Thus,

i〈0|TΨα(x)Ψβ(y)|0〉 = S(x− y)αβ , (42.19)

where S(x− y) is given by eq. (42.12).
However, eqs. (42.15) and (42.16) no longer hold for a Majorana field.

Instead, the Majorana condition Ψ = ΨTC, which can be rewritten as
ΨT = ΨC−1, implies

i〈0|TΨα(x)Ψβ(y)|0〉 = i〈0|TΨα(x)Ψγ(y)|0〉(C−1)γβ

= [S(x− y)C−1]αβ . (42.20)

Similarly, using CT = C−1, we can write the Majorana condition as ΨT =
C−1Ψ, and so

i〈0|TΨα(x)Ψβ(y)|0〉 = i(C−1)αγ〈0|TΨγ(x)Ψβ(y)|0〉

= [C−1S(x− y)]αβ . (42.21)

Of course, C−1 = −C, but it will prove more convenient to leave eqs. (42.20)
and (42.21) as they are.

We can also consider the vacuum expectation value of a time-ordered
product of more than two fields. In the Dirac case, we must have an equal
number of Ψ’s and Ψ’s to get a nonzero result; and then, the Ψ’s and Ψ’s
must pair up to form propagators. There is an extra minus sign if the
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ordering of the fields in their pairs is an odd permutation of the original
ordering. For example,

i2〈0|TΨα(x)Ψβ(y)Ψγ(z)Ψδ(w)|0〉 = + S(x− y)αβ S(z − w)γδ

− S(x− w)αδ S(z − y)γβ . (42.22)

In the Majorana case, we may as well let all the fields be Ψ’s (since we can
always replace a Ψ with ΨTC). Then we must pair them up in all possible
ways. There is an extra minus sign if the ordering of the fields in their pairs
is an odd permutation of the original ordering. For example,

i2〈0|TΨα(x)Ψβ(y)Ψγ(z)Ψδ(w)|0〉 = + [S(x− y)C−1]αβ [S(z − w)C−1]γδ

− [S(x− z)C−1]αγ [S(y − w)C−1]βδ

+ [S(x− w)C−1]αδ [S(y − z)C−1]βγ .

(42.23)

Note that the ordering within a pair does not matter, since

[S(x− y)C−1]αβ = −[S(y − x)C−1]βα . (42.24)

This follows from anticommutation of the fields and eq. (42.20).

Problems

42.1) Prove eq. (42.24) directly, using properties of the C matrix.
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43 The Path Integral for Fermion Fields

Prerequisite: 9, 42

We would like to write down a path integral formula for the vacuum-
expectation value of a time-ordered product of free Dirac or Majorana fields.
Recall that for a real scalar field with

L0 = −1
2∂

µϕ∂µϕ− 1
2m

2ϕ2

= −1
2ϕ(−∂2 +m2)ϕ− 1

2∂µ(ϕ∂
µϕ) , (43.1)

we have

〈0|Tϕ(x1) . . . |0〉 =
1

i

δ

δJ(x1)
. . . Z0(J)

∣∣∣
J=0

, (43.2)

where

Z0(J) =

∫
Dϕ exp

[
i

∫
d4x (L0 + Jϕ)

]
. (43.3)

In this formula, we use the epsilon trick (see section 6) of replacing m2 with
m2 − iǫ to construct the vacuum as the initial and final state. Then we get

Z0(J) = exp

[
i

2

∫
d4x d4y J(x)∆(x− y)J(y)

]
, (43.4)

where the Feynman propagator

∆(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 +m2 − iǫ
(43.5)

is the inverse of the Klein-Gordon wave operator:

(−∂2
x +m2)∆(x− y) = δ4(x− y) . (43.6)

For a complex scalar field with

L0 = −∂µϕ†∂µϕ−m2ϕ†ϕ

= −ϕ†(−∂2 +m2)ϕ− ∂µ(ϕ
†∂µϕ) , (43.7)

we have instead

〈0|Tϕ(x1) . . . ϕ
†(y1) . . . |0〉 =

1

i

δ

δJ†(x1)
. . .

1

i

δ

δJ(y1)
. . . Z0(J

†, J)
∣∣∣
J=J†=0

,

(43.8)
where

Z0(J
†, J) =

∫
Dϕ†Dϕ exp

[
i

∫
d4x (L0 + J†ϕ+ ϕ†J)

]

= exp

[
i

∫
d4x d4y J†(x)∆(x− y)J(y)

]
. (43.9)
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We treat J and J† as independent variables when evaluating eq. (43.8).
In the case of a fermion field, we should have something similar, except

that we need to account for the extra minus signs from anticommutation.
For this to work out, a functional derivative with respect to an anticom-
muting variable must itself be treated as anticommuting. Thus if we define
an anticommuting source η(x) for a Dirac field, we can write

δ

δη(x)

∫
d4y

[
η(y)Ψ(y) + Ψ(y)η(y)

]
= −Ψ(x) , (43.10)

δ

δη(x)

∫
d4y

[
η(y)Ψ(y) + Ψ(y)η(y)

]
= +Ψ(x) . (43.11)

The minus sign in eq. (43.10) arises because the δ/δη must pass through Ψ
before reaching η.

Thus, consider a free Dirac field with

L0 = iΨ/∂Ψ −mΨΨ

= −Ψ(−i/∂ +m)Ψ . (43.12)

A natural guess for the appropriate path-integral formula, based on analogy
with eq. (43.9), is

〈0|TΨα1(x1) . . .Ψβ1(y1) . . . |0〉

=
1

i

δ

δηα1
(x1)

. . . i
δ

δηβ1(y1)
. . . Z0(η, η)

∣∣∣
η=η=0

, (43.13)

where

Z0(η, η) =

∫
DΨDΨ exp

[
i

∫
d4x (L0 + ηΨ + Ψη)

]

= exp

[
i

∫
d4x d4y η(x)S(x − y)η(y)

]
, (43.14)

and the Feynman propagator

S(x− y) =

∫
d4p

(2π)4
(−/p+m)eip(x−y)

p2 +m2 − iǫ
(43.15)

is the inverse of the Dirac wave operator:

(−i/∂x +m)S(x− y) = δ4(x− y) . (43.16)

Note that each δ/δη in eq. (43.13) comes with a factor of i rather than the
usual 1/i; this reflects the extra minus sign of eq. (43.10). We treat η and η
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as independent variables when evaluating eq. (43.13). It is straightforward
to check (by working out a few examples) that eqs. (43.13–43.16) do indeed
reproduce the result of section 42 for the vacuum expectation value of a
time-ordered product of Dirac fields.

This is really all we need to know. Recall that, for a complex scalar
field with interactions specified by L1(ϕ

†, ϕ), we have

Z(J†, J) ∝ exp

[
i

∫
d4x L1

(
1

i

δ

δJ(x)
,
1

i

δ

δJ†(x)

)]
Z0(J

†, J) , (43.17)

where the overall normalization is fixed by Z(0, 0) = 1. Thus, for a Dirac
field with interactions specified by L1(Ψ,Ψ), we have

Z(η, η) ∝ exp

[
i

∫
d4x L1

(
i

δ

δη(x)
,
1

i

δ

δη(x)

)]
Z0(η, η) , (43.18)

where again the overall normalization is fixed by Z(0, 0) = 1. Vacuum
expectation values of time-ordered products of Dirac fields in an interact-
ing theory will now be given by eq. (43.13), but with Z0(η, η) replaced by
Z(η, η). Then, just as for a scalar field, this will lead to a Feynman-diagram
expansion for Z(η, η). There are two extra complications: we must keep
track of the spinor indices, and we must keep track of the extra minus signs
from anticommutation. Both tasks are straightforward; we will take them
up in section 45.

Next, let us consider a Majorana field with

L0 = i
2ΨTC/∂Ψ − 1

2mΨTCΨ

= −1
2ΨTC(−i/∂ +m)Ψ . (43.19)

A natural guess for the appropriate path-integral formula, based on analogy
with eq. (43.2), is

〈0|TΨα1(x1) . . . |0〉 =
1

i

δ

δηα1(x1)
. . . Z0(η)

∣∣∣
η=0

, (43.20)

where

Z0(η) =

∫
DΨ exp

[
i

∫
d4x (L0 + ηTΨ)

]

= exp

[
− i

2

∫
d4x d4y ηT(x)S(x − y)C−1η(y)

]
. (43.21)

The Feynman propagator S(x− y)C−1 is the inverse of the Majorana wave
operator C(−i/∂ +m):

C(−i/∂x +m)S(x− y)C−1 = δ4(x− y) . (43.22)
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The extra minus sign in eq. (43.21), as compared with eq. (43.14), arises
because all functional derivatives in eq. (43.20) are accompanied by 1/i,
rather than half by 1/i and half by i, as in eq. (43.13). It is now straight-
forward to check (by working out a few examples) that eqs. (43.20–43.22)
do indeed reproduce the result of section 42 for the vacuum expectation
value of a time-ordered product of Majorana fields.
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44 Formal Development of Fermionic Path

Integrals

Prerequisite: 43

In 43, we formally defined the fermionic path integral for a free Dirac field
Ψ via

Z0(η, η) =

∫
DΨDΨ exp

[
i

∫
d4xΨ(i/∂ −m)Ψ + ηΨ + Ψη

]

= exp

[
i

∫
d4x d4y η(x)S(x− y)η(y)

]
, (44.1)

where the Feynman propagator S(x − y) is the inverse of the Dirac wave
operator:

(−i/∂x +m)S(x− y) = δ4(x− y) . (44.2)

We would like to find a mathematical framework that allows us to derive
this formula, rather than postulating it by analogy.

Consider a set of anticommuting numbers or Grassmann variables ψi
that obey

{ψi, ψj} = 0 , (44.3)

where i = 1, . . . , n. Let us begin with the very simplest case of n = 1, and
thus a single anticommuting number ψ that obeys ψ2 = 0. We can define
a function f(ψ) of such an object via a Taylor expansion; because ψ2 = 0,
this expansion ends with the second term:

f(ψ) = a+ ψb . (44.4)

The reason for writing the coefficient b to the right of the variable ψ will
become clear in a moment.

Next we would like to define the derivative of f(ψ) with respect to ψ.
Before we can do so, we must decide if f(ψ) itself is to be commuting
or anticommuting; generally we will be interested in functions that are
themselves commuting. In this case, a in eq. (44.4) should be treated as an
ordinary commuting number, but b should be treated as an anticommuting
number: {b, b} = {b, ψ} = 0. In this case, f(ψ) = a+ ψb = a− bψ.

Now we can define two kinds of derivatives. The left derivative of f(ψ)
with respect to ψ is given by the coefficient of ψ when f(ψ) is written with
the ψ always on the far left:

∂ψf(ψ) = +b . (44.5)
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Similarly, the right derivative of f(ψ) with respect to ψ is given by the
coefficient of ψ when f(ψ) is written with the ψ always on the far right:

f(ψ)
←
∂ψ = −b . (44.6)

Generally, when we write a derivative with respect to a Grassmann vari-
able, we mean the left derivative. However, in section 37, when we wrote
the canonical momentum for a fermionic field ψ as π = ∂L/∂(∂0ψ), we
actually meant the right derivative. (This is a standard, though rarely
stated, convention.) Correspondingly, we wrote the hamiltonian density as
H = π∂0ψ − L, with ∂0ψ to the right of π.

Finally, we would like to define a definite integral, analogous to inte-
grating a real variable x from minus to plus infinity. The key features of
such an integral over x (when it converges) are linearity,

∫ +∞

−∞
dx cf(x) = c

∫ +∞

−∞
dx f(x) , (44.7)

and invariance under shifts of the dependent variable x by a constant:

∫ +∞

−∞
dx f(x+ a) =

∫ +∞

−∞
dx f(x) . (44.8)

Up to an overall numerical factor that is the same for every f(ψ), the
only possible nontrivial definition of

∫
dψ f(ψ) that is both linear and shift

invariant is ∫
dψ f(ψ) = b . (44.9)

Now let us generalize this to n > 1. We have

f(ψ) = a+ ψibi +
1
2ψi1ψi2ci1i2 + . . . + 1

n!ψi1 . . . ψindi1...in , (44.10)

where the indices are implicitly summed. Here we have written the coef-
ficients to the right of the variables to facilitate left-differentiation. These
coefficients are completely antisymmetric on exchange of any two indices.
The left derivative of f(ψ) with respect to ψj is

∂
∂ψj

f(ψ) = bj + ψicji + . . .+ 1
(n−1)!ψi2 . . . ψindji2...in . (44.11)

Next we would like to find a linear, shift-invariant definition of the
integral of f(ψ). Note that the antisymmetry of the coefficients implies
that

di1...in = d εi1...in . (44.12)

where d is a just a number (ordinary if f is commuting and n is even, Grass-
mann if f is commuting and n is odd, etc.), and εi1...in is the completely
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antisymmetric Levi-Civita symbol with ε1...n = +1. This number d is a
candidate (in fact, up to an overall numerical factor, the only candidate!)
for the integral of f(ψ): ∫

dnψ f(ψ) = d . (44.13)

Although eq. (44.13) really tells us everything we need to know about
∫
dnψ,

we can, if we like, write dnψ = dψn . . . dψ1 (note the backwards ordering),
and treat the individual differentials as anticommuting: {dψi, dψj} = 0,
{dψi, ψj} = 0. Then we take

∫
dψi = 0 and

∫
dψi ψj = δij as our basic

formulae, and use them to derive eq. (44.13).
Let us work out some consequences of eq. (44.13). Consider what hap-

pens if we make a linear change of variable,

ψi = Jijψ
′
j , (44.14)

where Jji is a matrix of commuting numbers (and therefore can be written
on either the left or right of ψ′j). We now have

f(ψ) = a+ . . .+ 1
n!(Ji1j1ψ

′
j1) . . . (Jinjnψ

′
jn)εi1...ind . (44.15)

Next we use
εi1...inJi1j1 . . . Jinjn = (det J)εj1...jn , (44.16)

which holds for any n× n matrix J , to get

f(ψ) = a+ . . .+ 1
n!ψ
′
i1 . . . ψ

′
inεi1...in(det J)d . (44.17)

If we now integrate f(ψ) over dnψ′, eq. (44.13) tells us that the result is
(det J)d. Thus,

∫
dnψ f(ψ) = (detJ)−1

∫
dnψ′ f(ψ) . (44.18)

Recall that, for integrals over commuting real numbers xi with xi = Jijx
′
j ,

we have instead
∫
dnx f(x) = (detJ)+1

∫
dnx′ f(x) . (44.19)

Note the opposite sign on the power of the determinant.
Now consider a quadratic form ψTMψ = ψiMijψj , where M is an anti-

symmetric matrix of commuting numbers (possibly complex). Let’s evalu-
ate the gaussian integral

∫
dnψ exp(1

2ψ
TMψ). For example, for n = 2, we

have

M =

(
0 +m

−m 0

)
, (44.20)
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and ψTMψ = 2mψ1ψ2. Thus exp(1
2ψ

TMψ) = 1 +mψ1ψ2, and so

∫
dnψ exp(1

2ψ
TMψ) = m . (44.21)

For larger n, we use the fact that a complex antisymmetric matrix can be
brought to a block-diagonal form via

UTMU =




0 +m1

−m1 0

. . .


 , (44.22)

where U is a unitary matrix, and each mI is real and positive. (If n is odd
there is a final row and column of all zeroes; from here on, we assume n is
even.) We can now let ψi = Uijψ

′
j ; then, we have

∫
dnψ exp(1

2ψ
TMψ) = (detU)−1

n/2∏

I=1

∫
d2ψI exp(1

2ψ
TMIψ) , (44.23)

where MI represents one of the 2 × 2 blocks in eq. (44.22). Each of these
two-dimensional integrals can be evaluated using eq. (44.21), and so

∫
dnψ exp(1

2ψ
TMψ) = (detU)−1

n/2∏

I=1

mI . (44.24)

Taking the determinant of eq. (44.22), we get

(detU)2(detM) =

n/2∏

I=1

m2
I . (44.25)

We can therefore rewrite the right-hand side of eq. (44.24) as

∫
dnψ exp(1

2ψ
TMψ) = (detM)1/2 . (44.26)

In this form, there is a sign ambiguity associated with the square root; it
is resolved by eq. (44.24). However, the overall sign (more generally, any
overall numerical factor) will never be of concern to us, so we can use
eq. (44.26) without worrying about the correct branch of the square root.

It is instructive to compare eq. (44.26) with the corresponding gaussian
integral for commuting real numbers,

∫
dnx exp(−1

2x
TMx) = (2π)n/2(detM)−1/2 . (44.27)
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Here M is a complex symmetric matrix. Again, note the opposite sign on
the power of the determinant.

Now let us introduce the notion of complex Grassmann variables via

χ ≡ 1√
2
(ψ1 + iψ2) ,

χ̄ ≡ 1√
2
(ψ1 − iψ2) . (44.28)

We can invert this to get

(
ψ1

ψ2

)
= 1√

2

(
1 1

i −i

)(
χ̄

χ

)
. (44.29)

The determinant of this transformation matrix is −i, and so

d2ψ = dψ2dψ1 = (−i)−1dχ dχ̄ . (44.30)

Also, ψ1ψ2 = −iχ̄χ. Thus we have
∫
dχ dχ̄ χ̄χ = (−i)(−i)−1

∫
dψ2dψ1 ψ1ψ2 = 1 . (44.31)

Thus, if we have a function

f(χ, χ̄) = a+ χb+ χ̄c+ χ̄χd , (44.32)

its integral is ∫
dχ dχ̄ f(χ, χ̄) = d . (44.33)

In particular, ∫
dχ dχ̄ exp(mχ̄χ) = m . (44.34)

Let us now consider n complex Grassmann variables χi and their com-
plex conjugates, χ̄i. We define

dnχdnχ̄ ≡ dχndχ̄n . . . dχ1dχ̄1 . (44.35)

Then under a change of variable, χi = Jijχ
′
j and χ̄i = Kijχ̄

′
j , we have

dnχdnχ̄ = (det J)−1(detK)−1 dnχ′ dnχ̄′ . (44.36)

Note that we need not require Kij = J∗ij , because, as far as the integral is
concerned, it is does not matter whether or not χ̄i is the complex conjugate
of χi.

We now have enough information to evaluate
∫
dnχdnχ̄ exp(χ†Mχ),

where M is a general complex matrix. We make the change of variable
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χ = Uχ′ and χ† = χ′†V , where U and V are unitary matrices with the
property that VMU is diagonal with positive real entries mi. Then we get

∫
dnχdnχ̄ exp(χ†Mχ) = (detU)−1(detV )−1

n∏

i=1

∫
dχidχ̄i exp(miχ̄iχi)

= (detU)−1(detV )−1
n∏

i=1

mi

= detM . (44.37)

This can be compared to the analogous integral for commuting complex
variables zi = (xi + iyi)/

√
2 and z̄ = (xi − iyi)/

√
2, with dnz dnz̄ = dnx dny,

namely ∫
dnz dnz̄ exp(−z†Mz) = (2π)n(detM)−1 . (44.38)

We can now generalize eqs. (44.26) and (44.37) by shifting the integra-
tion variables, and using shift invariance of the integrals. Thus, by making
the replacement ψ → ψ −M−1η in eq. (44.26), we get

∫
dnψ exp(1

2ψ
TMψ + ηTψ) = (detM)1/2 exp(1

2η
TM−1η) . (44.39)

(In verifying this, remember that M and its inverse are both antisym-
metric.) Similarly, by making the replacements χ → χ − M−1η and
χ† → χ† − η†M−1 in eq. (44.37), we get

∫
dnχdnχ̄ exp(χ†Mχ+ η†χ+ χ†η) = (detM) exp(−η†M−1η) . (44.40)

We can now see that eq. (44.1) is simply a particular case of eq. (44.40),
with the index on the complex Grassmann variable generalized to include
both the ordinary spin index α and the continuous spacetime argument x
of the field Ψα(x). Similarly, eq. (43.21) for the path integral for a free
Majorana field is simply a particular case of eq. (44.39). In both cases, the
determinant factors are constants (that is, independent of the fields and
sources) that we simply absorb into the overall normalization of the path
integral. We will meet determinants that cannot be so neatly absorbed in
sections 53 and 71.
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45 The Feynman Rules for Dirac Fields

Prerequisite: 10, 12, 41, 43

In this section we will derive the Feynman rules for Yukawa theory, a theory
with a Dirac field Ψ (with mass m) and a real scalar field ϕ (with mass
M), interacting via

L1 = gϕΨΨ , (45.1)

where g is a coupling constant. In this section, we will be concerned with
tree-level processes only, and so we omit renormalizing Z factors.

In four spacetime dimensions, ϕ has mass dimension [ϕ] = 1 and Ψ has
mass dimension [Ψ] = 3

2 ; thus the coupling constant g is dimensionless:
[g] = 0. As discussed in section 12, this is generally the most interesting
situation.

Note that L1 is invariant under the U(1) transformation Ψ → e−iαΨ,
as is the free Dirac lagrangian. Thus, the corresponding Noether current
ΨγµΨ is still conserved, and the associated charge Q (which counts the
number of b-type particles minus the number of d-type particles) is constant
in time.

We can think of Q as electric charge, and identify the b-type particle
as the electron e−, and the d-type particle as the positron e+. The scalar
particle is electrically neutral (and could, for example, be thought of as the
Higgs boson; see section 88).

We now use the general result of sections 9 and 43 to write

Z(η, η, J) ∝ exp

[
ig

∫
d4x

(
1

i

δ

δJ(x)

)(
i

δ

δηα(x)

)(
1

i

δ

δηα(x)

)]
Z0(η, η, J) ,

(45.2)
where

Z0(η, η, J) = exp

[
i

∫
d4x d4y η(x)S(x − y)η(y)

]

× exp

[
i

2

∫
d4x d4y J(x)∆(x− y)J(y)

]
, (45.3)

and

S(x− y) =

∫
d4p

(2π)4
(−/p+m)eip(x−y)

p2 +m2 − iǫ
, (45.4)

∆(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 +M2 − iǫ
(45.5)

are the appropriate Feynman propagators for the corresponding free fields.
We impose the normalization Z(0, 0, 0) = 1, and write

Z(η, η, J) = exp[iW (η, η, J)] . (45.6)



45: The Feynman Rules for Dirac Fields 283

(a)

(c) (d)

(b)

Figure 45.1: Tree contributions to iW (η, η, J) with four or fewer sources.

Then iW (η, η, J) can be expressed as a series of connected Feynman dia-
grams with sources.

We use a dashed line to stand for the scalar propagator 1
i∆(x − y),

and a solid line to stand for the fermion propagator 1
iS(x − y). The only

allowed vertex joins two solid lines and one dashed line; the associated
vertex factor is ig. The blob at the end of a dashed line stands for the ϕ
source i

∫
d4xJ(x), and the blob at the end of a solid line for either the Ψ

source i
∫
d4x η(x), or the Ψ source i

∫
d4x η(x). To tell which is which, we

adopt the “arrow rule” of problem 9.3: the blob stands for i
∫
d4x η(x) if the

arrow on the attached line points away from the blob, and the blob stands
for i

∫
d4x η(x) if the arrow on the attached line points towards the blob.

Because L1 involves one Ψ and one Ψ, we also have the rule that, at each
vertex, one arrow must point towards the vertex, and one away. The first
few tree diagrams that contribute to iW (η, η, J) are shown in fig. (45.1). We
omit tadpole diagrams; as in ϕ3 theory, these can be cancelled by shifting
the ϕ field, or, equivalently, adding a term linear in ϕ to L. The LSZ
formula is valid only after all tadpole diagrams have been cancelled in this
way.

The spin indices on the fermionic sources and propagators are all con-
tracted in the obvious way. For example, the complete expression corre-
sponding to fig. (45.1)(b) is

Fig. (45.1)(b) = i3
(

1
i

)3
(ig)

∫
d4x d4y d4z d4w

×
[
η(x)S(x − y)S(y − z)η(z)

]

× ∆(y −w)J(w) . (45.7)

Our main purpose in this section is to compute the tree-level amplitudes
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Figure 45.2: Diagrams corresponding to eq. (45.8).

for various two-body elastic scattering processes, such as e−ϕ → e−ϕ and
e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions
to connected correlation functions of the form 〈0|TΨΨϕϕ|0〉C. Other pro-
cesses of interest include e−e− → e−e− and e+e− → e+e−; for these, we
will need to evaluate the tree-level contributions to connected correlation
functions of the form 〈0|TΨΨΨΨ|0〉C.

For 〈0|TΨΨϕϕ|0〉C, the relevant tree-level contribution to iW (η, η, J)
is given by fig. (45.1)(c). We have

〈0|TΨα(x)Ψβ(y)ϕ(z1)ϕ(z2)|0〉C

=
1

i

δ

δηα(x)
i

δ

δηβ(y)

1

i

δ

δJ(z1)

1

i

δ

δJ(z2)
iW (η, η, J)

∣∣∣
η=η=J=0

=
(

1
i

)5
(ig)2

∫
d4w1 d

4w2

× [S(x−w1)S(w1−w2)S(w2−y)]αβ
× ∆(z1−w1)∆(z2−w2)

+
(
z1 ↔ z2

)
+O(g4) . (45.8)

The corresponding diagrams, with sources removed, are shown in fig. (45.2).
For 〈0|TΨΨΨΨ|0〉C, the relevant tree-level contribution to iW (η, η, J)

is given by fig. (45.1)(d), which has a symmetry factor S = 2. We have

〈0|TΨα1(x1)Ψβ1(y1)Ψα2(x2)Ψβ2(y2)|0〉C

=
1

i

δ

δηα1
(x1)

i
δ

δηβ1(y1)

1

i

δ

δηα2
(x2)

i
δ

δηβ2(y2)
iW (η, η, J)

∣∣∣
η=η=J=0

.

(45.9)

The two η derivatives can act on the two η’s in the diagram in two different
ways; ditto for the two η derivatives. This results in four different terms,
but two of them are algebraic duplicates of the other two; this duplication
cancels the symmetry factor (which is a general result for tree diagrams).
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Figure 45.3: Diagrams corresponding to eq. (45.10).

We get

〈0|TΨα1(x1)Ψβ1(y1)Ψα2(x2)Ψβ2(y2)|0〉C

=
(

1
i

)5
(ig)2

∫
d4w1 d

4w2

× [S(x1−w1)S(w1−y1)]α1β1

× ∆(w1−w2)

× [S(x2−w2)S(w2−y2)]α2β2

−
(
(y1, β1) ↔ (y2, β2)

)
+O(g4) . (45.10)

The corresponding diagrams, with sources removed, are shown in fig. (45.3).
Note that we now have a relative minus sign between the two diagrams,
due to the anticommutation of the derivatives with respect to η.

In general, the overall sign for a diagram can be determined by the
following procedure. First, draw each diagram with all the fermion lines
horizontal, with their arrows pointing from left to right, and with the left
endpoints labeled in the same fixed order (from top to bottom). Next, in
each diagram, note the ordering (from top to bottom) of the labels on the
right endpoints of the fermion lines. If this ordering is an even permutation
of an arbitrarily chosen fixed ordering, then the sign of that diagram is
positive, and if it is an odd permutation, the sign is negative. (This rule
arises because endpoints with arrows pointing away from the vertex come
from derivatives with respect to η that anticommute. Of course, we could
equally well put the right endpoints in a fixed order, and get the sign from
the permutation of the left endpoints, which come from derivatives with
respect to η that anticommute.) Also, in loop diagrams, a closed fermion
loop yields an extra minus sign; we will discuss this rule in section 51.

Let us now consider a particular scattering process: e−ϕ → e−ϕ. The
scattering amplitude is

〈f |i〉 = 〈0|T a(k′)outbs′(p
′)outb

†
s(p)ina

†(k)in |0〉 . (45.11)

Next we make the replacements

b†s(p)in → i

∫
d4y Ψ(y)(+i

←
/∂ +m)us(p) e+ipy , (45.12)
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Figure 45.4: Diagrams for e−ϕ→ e−ϕ, corresponding to eq. (45.16).

bs′(p
′)out → i

∫
d4x e−ip

′x us′(p
′)(−i/∂ +m)Ψ(x) , (45.13)

a†(k)in → i

∫
d4z1 e

+ikz1(−∂2 +m2)ϕ(z1) , (45.14)

a(k′)out → i

∫
d4z2 e

−ik′z2(−∂2 +m2)ϕ(z2) (45.15)

in eq. (45.11), and then use eq. (45.8). The wave operators (either Klein-
Gordon or Dirac) act on the external propagators, and convert them to
delta functions. After using eqs. (45.4) and (45.5) for the internal propa-
gators, all dependence on the various spacetime coordinates is in the form
of plane-wave factors, as in section 10. Integrating over the internal co-
ordinates then generates delta functions that conserve four-momentum at
each vertex. The only new feature arises from the spinor factors us(p) and
us′(p

′). We find that us(p) is associated with the external fermion line
whose arrow points towards the vertex, and that us′(p

′) is associated with
the external fermion line whose arrow points away from the vertex. We can
therefore draw the momentum-space diagrams of fig. (45.4). Since there is
only one fermion line in each diagram, the relative sign is positive. The
tree-level e−ϕ→ e−ϕ scattering amplitude is then given by

iTe−ϕ→e−ϕ = 1
i (ig)

2 us′(p
′)

[
−/p− /k +m

−s+m2
+

−/p+ /k′ +m

−u+m2

]
us(p) , (45.16)

where s = −(p+k)2 and u = −(p−k′)2. (We can safely ignore the iǫ’s in the
propagators, because their denominators cannot vanish for any physically
allowed values of s and u.)

Next consider the process e+ϕ→ e+ϕ. We now have

〈f |i〉 = 〈0|T a(k′)outds′(p
′)outd

†
s(p)ina

†(k)in |0〉 . (45.17)

The relevant replacements are

d†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) , (45.18)



45: The Feynman Rules for Dirac Fields 287

p  k

k k

p+kp p

k k

p p

Figure 45.5: Diagrams for e+ϕ→ e+ϕ, corresponding to eq. (45.22).

ds′(p
′)out → −i

∫
d4y Ψ(y)(+i

←
/∂ +m)vs′(p

′) e−ipy , (45.19)

a†(k)in → i

∫
d4z1 e

+ikz1(−∂2 +m2)ϕ(z1) , (45.20)

a(k′)out → i

∫
d4z2 e

−ikz2(−∂2 +m2)ϕ(z2) . (45.21)

We substitute these into eq. (45.17), and then use eq. (45.8). This ulti-
mately leads to the momentum-space Feynman diagrams of fig. (45.5). Note
that we must now label the external fermion lines with minus their four-
momenta; this is characteristic of d-type particles. (The same phenomenon
occurs for a complex scalar field; see problem 10.2.) Regarding the spinor
factors, we find that −vs(p) is associated with the external fermion line
whose arrow points away from the vertex, and −vs′(p′) with the external
fermion line whose arrow points towards the vertex. The minus signs at-
tached to each v and v can be consistently dropped, however, as they only
affect the overall sign of the amplitude (and not the relative signs among
contributing diagrams). The tree-level expression for the e+ϕ → e+ϕ am-
plitude is then

iTe+ϕ→e+ϕ = 1
i (ig)

2 vs(p)

[
/p− /k′ +m

−u+m2
+

/p+ /k +m

−s+m2

]
vs′(p

′) , (45.22)

where again s = −(p+ k)2 and u = −(p− k′)2.
After working out a few more of these (you might try your hand at

some of them before reading ahead), we can abstract the following set of
Feynman rules.

1. For each incoming electron, draw a solid line with an arrow pointed
towards the vertex, and label it with the electron’s four-momentum,
pi.

2. For each outgoing electron, draw a solid line with an arrow pointed
away from the vertex, and label it with the electron’s four-momentum,
p′i.
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3. For each incoming positron, draw a solid line with an arrow pointed
away from the vertex, and label it with minus the positron’s four-
momentum, −pi.

4. For each outgoing positron, draw a solid line with an arrow pointed
towards the vertex, and label it with minus the positron’s four-momentum,
−p′i.

5. For each incoming scalar, draw a dashed line with an arrow pointed
towards the vertex, and label it with the scalar’s four-momentum, ki.

6. For each outgoing scalar, draw a dashed line with an arrow pointed
away from the vertex, and label it with the scalar’s four-momentum,
k′i.

7. The only allowed vertex joins two solid lines, one with an arrow point-
ing towards it and one with an arrow pointing away from it, and one
dashed line (whose arrow can point in either direction). Using this
vertex, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
inequivalent.

8. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

9. The value of a diagram consists of the following factors:

for each incoming or outgoing scalar, 1;

for each incoming electron, usi(pi);

for each outgoing electron, us′i(p
′
i);

for each incoming positron, vsi(pi);

for each outgoing positron, vs′i(p
′
i);

for each vertex, ig;

for each internal scalar, −i/(k2 +M2 − iǫ);

for each internal fermion, −i(−/p+m)/(p2 +m2 − iǫ).

10. Spinor indices are contracted by starting at one end of a fermion line:
specifically, the end that has the arrow pointing away from the vertex.
The factor associated with the external line is either u or v. Go along
the complete fermion line, following the arrows backwards, and write
down (in order from left to right) the factors associated with the
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Figure 45.6: Diagrams for e+e− → ϕϕ, corresponding to eq. (45.23).

vertices and propagators that you encounter. The last factor is either
a u or v. Repeat this procedure for the other fermion lines, if any.

11. The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative).

12. The value of iT (at tree level) is given by a sum over the values of
the contributing diagrams.

There are additional rules for counterterms and loops; in particular, each
closed fermion loop contributes an extra minus sign. We will postpone
discussion of loop corrections to section 51.

Let us apply these rules to e+e− → ϕϕ. Let the initial electron and
positron have four-momenta p1 and p2, respectively, and the two final
scalars have four-momenta k′1 and k′2. The relevant diagrams are shown
in fig. (45.6); there is only one fermion line, and so the relative sign is
positive. The result is

iTe+e−→ϕϕ = 1
i (ig)

2 vss(p2)

[
−/p1 + /k′1 +m

−t+m2
+

−/p1 + /k′2 +m

−u+m2

]
us1(p1) ,

(45.23)
where t = −(p1 − k′1)

2 and u = −(p1 − k′2)
2.

Next, consider e−e− → e−e−. Let the initial electrons have four-
momenta p1 and p2, and the final electrons have four-momenta p′1 and
p′2. The relevant diagrams are shown in fig. (45.7), and according to rule
#11 the relative sign is negative. Thus the result is

iTe−e−→e−e− = 1
i (ig)

2
[
(u ′1u1)(u

′
2u2)

−t+M2
− (u ′2u1)(u

′
1u2)

−u+M2

]
, (45.24)
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Figure 45.7: Diagrams for e−e− → e−e−, corresponding to eq. (45.24).

p1

p1 p1

p2 p2

p1 p1

p2

p1

p2

p1 p2+

Figure 45.8: Diagrams for e+e− → e+e−, corresponding to eq. (45.25).

where u1 is short for us1(p1), etc., and t = −(p1 − p′1)
2, u = −(p1 − p′2)

2.
One more: e+e− → e+e−. Let the initial electron and positron have

four-momenta p1 and p2, respectively, and the final electron and positron
have four-momenta p′1 and p′2, respectively. The relevant diagrams are
shown in fig. (45.8). If we redraw them in the the standard form of rule
#11, as shown in fig. (45.9), we see that the relative sign is negative. Thus
the result is

iTe+e−→e+e− = 1
i (ig)

2
[
(u ′1u1)(v2v

′
2)

−t+M2
− (v2u1)(u

′
1v
′
2)

−u+M2

]
, (45.25)

p2p1

p1 p1

p2 p2 p2 p1

p1

p1 p2

p1

Figure 45.9: Same as fig. (45.8), but with the diagrams redrawn in the
standard form given in rule #11.
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where s = −(p1 + p2)
2 and t = −(p1 − p′1)

2.

Problems

45.1) a) Determine how ϕ(x) must transform under parity, time reversal,
and charge conjugation in order for these to all be symmetries of the
theory. (Prerequisite: 39)

b) Same question, but with the interaction given by L1 = igϕΨγ5Ψ
instead of eq. (45.1).

45.2) Use the Feynman rules to write down (at tree level) iT for the pro-
cesses e+e+ → e+e+ and ϕϕ → e+e−.
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46 Spin Sums

Prerequisite: 45

In the last section, we calculated various tree-level scattering amplitudes in
Yukawa theory. For example, for e−ϕ→ e−ϕ we found

T = g2 us′(p
′)

[
−/p− /k +m

−s+m2
+

−/p+ /k′ +m

−u+m2

]
us(p) , (46.1)

where s = −(p + k)2 and u = −(p − k′)2. In order to compute the cor-
responding cross section, we must evaluate |T |2 = T T ∗. We begin by
simplifying eq. (46.1) a little; we use (/p+m)us(p) = 0 to replace the −/p in
each numerator with m. We then abbreviate eq. (46.1) as

T = u ′Au , (46.2)

where

A ≡ g2

[
−/k + 2m

m2 − s
+

/k′ + 2m

m2 − u

]
. (46.3)

Then we have
T ∗ = T = u ′Au = uAu′ , (46.4)

where in general A ≡ βA†β, and, for the particular A of eq. (46.3), A = A.
Thus we have

|T |2 = (u ′Au)(uAu′)

=
∑

αβγδ

u ′αAαβuβuγAγδu
′
δ

=
∑

αβγδ

u′δu
′
αAαβuβuγAγδ

= Tr
[
(u′u ′)A(uu)A

]
. (46.5)

Next, we use a result from section 38:

us(p)us(p) = 1
2(1−sγ5/z)(−/p+m) , (46.6)

where s = ± tells us whether the spin is up or down along the spin quan-
tization axis z. We then have

|T |2 = 1
4Tr

[
(1−s′γ5/z

′)(−/p ′ +m)A(1−sγ5/z)(−/p +m)A
]
. (46.7)

We now simply need to take traces of products of gamma matrices; we will
work out the technology for this in the next section.
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However, in practice, we are often not interested in (or are unable to
easily measure or prepare) the spin states of the scattering particles. Thus,
if we know that an electron with momentum p′ landed in our detector, but
know nothing about its spin, we should sum |T |2 over the two possible spin
states of this outgoing electron. Similarly, if the spin state of the initial
electron is not specially prepared for each scattering event, then we should
average |T |2 over the two possible spin states of this initial electron. Then
we can use ∑

s=±
us(p)us(p) = −/p+m (46.8)

in place of eq. (46.6).
Let us, then, take |T |2, sum over all final spins, and average over all

initial spins, and call the result 〈|T |2〉. In the present case, we have

〈|T |2〉 ≡ 1
2

∑

s,s′

|T |2

= 1
2Tr

[
(−/p ′ +m)A(−/p +m)A

]
, (46.9)

which is much less cumbersome than eq. (46.7).
Next let’s try something a little harder, namely e+e− → e+e−. We

found in section 45 that

T = g2
[
(u ′1u1)(v2v

′
2)

M2 − t
− (v2u1)(u

′
1v
′
2)

M2 − s

]
. (46.10)

We then have

T = g2

[
(u1u

′
1)(v

′
2v2)

M2 − t
− (u1v2)(v

′
2u
′
1)

M2 − s

]
. (46.11)

When we multiply T by T , we will get four terms. We want to arrange the
factors in each of them so that every u and every v stands just to the left
of the corresponding u and v. In this way, we get

|T |2 = +
g4

(M2−t)2 Tr
[
u1u1u

′
1u
′
1

]
Tr
[
v′2v
′
2v2v2

]

+
g4

(M2−s)2 Tr
[
u1u1v2v2

]
Tr
[
v′2v
′
2u
′
1u
′
1

]

− g4

(M2−t)(M2−s) Tr
[
u1u1v2v2v

′
2v
′
2u
′
1u
′
1

]

− g4

(M2−s)(M2−t) Tr
[
u1u1u

′
1u
′
1v
′
2v
′
2v2v2

]
. (46.12)
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Then we average over initial spins and sum over final spins, and use eq. (46.8)
and ∑

s=±
vs(p)vs(p) = −/p−m . (46.13)

We then must evaluate traces of products of up to four gamma matrices.

Problems

46.1) Compute 〈|T |2〉 for e+ϕ→ e+ϕ.

46.2) Compute 〈|T |2〉 for e−e−ϕ→ e−e−.
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47 Gamma Matrix Technology

Prerequisite: 36

In this section, we will learn some tricks for handling gamma matrices. We
need the following information as a starting point:

{γµ, γν} = −2gµν , (47.1)

γ2
5 = 1 , (47.2)

{γµ, γ5} = 0 , (47.3)

Tr 1 = 4 . (47.4)

Now consider the trace of the product of n gamma matrices. We have

Tr[γµ1 . . . γµn ] = Tr[γ2
5γ

µ1γ2
5 . . . γ

2
5γ

µn ]

= Tr[(γ5γ
µ1γ5) . . . (γ5γ

µnγ5)]

= Tr[(−γ2
5γ

µ1) . . . (−γ2
5γ

µn)]

= (−1)n Tr[γµ1 . . . γµn ] . (47.5)

We used eq. (47.2) to get the first equality, the cyclic property of the trace
for the second, eq. (47.3) for the third, and eq. (47.2) again for the fourth.
If n is odd, eq. (47.5) tells us that this trace is equal to minus itself, and
must therefore be zero:

Tr[ odd # of γµ’s ] = 0 . (47.6)

Similarly,
Tr[ γ5 ( odd # of γµ’s ) ] = 0 . (47.7)

Next, consider Tr[γµγν ]. We have

Tr[γµγν ] = Tr[γνγµ]

= 1
2Tr[γµγν + γνγµ]

= −gµν Tr 1

= −4gµν . (47.8)

The first equality follows from the cyclic property of the trace, the second
averages the left- and right-hand sides of the first, the third uses eq. (47.1),
and the fourth uses eq. (47.4).

A slightly nicer way of expressing eq. (47.8) is to introduce two arbitrary
four-vectors aµ and bµ, and write

Tr[/a/b] = −4(ab) , (47.9)
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where /a = aµγ
µ, /b = bµγ

µ, and (ab) = aµbµ.
Next consider Tr[/a/b/c/d]. We evaluate this by moving /a to the right, using

eq. (47.1), which is now more usefully written as

/a/b = −/b/a− 2(ab) . (47.10)

Using this repeatedly, we have

Tr[/a/b/c/d] = −Tr[/b/a/c/d] − 2(ab)Tr[/c/d]

= +Tr[/b/c/a/d] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d]

= −Tr[/b/c/d/a] − 2(ad)Tr[/b/c] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d] . (47.11)

Now we note that the first term on the right-hand side of the last line is,
by the cyclic property of the trace, equal to minus the left-hand side. We
can then move this term to the left-hand side to get

2Tr[/a/b/c/d] = − 2(ad)Tr[/b/c] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d] . (47.12)

Finally, we evaluate each Tr[/a/b] with eq. (47.9), and divide by two:

Tr[/a/b/c/d] = 4
[
(ad)(bc) − (ac)(bd) + (ab)(cd)

]
. (47.13)

This is our final result for this trace.
Clearly, we can use the same technique to evaluate the trace of the

product of any even number of gamma matrices.
Next, let’s consider traces that involve γ5’s and γµ’s. Since {γ5, γ

µ} = 0,
we can always bring all the γ5’s together by moving them through the γµ’s
(generating minus signs as we go). Then, since γ2

5 = 1, we end up with
either one γ5 or none. So we need only consider Tr[γ5γ

µ1 . . . γµn ]. And,
according to eq. (47.7), we need only be concerned with even n.

Recall that an explicit formula for γ5 is

γ5 = iγ0γ1γ2γ3 . (47.14)

Eq. (47.13) then implies
Tr γ5 = 0 . (47.15)

Similarly, we can show that

Tr[γ5γ
µγν ] = 0 . (47.16)

Finally, consider Tr[γ5γ
µγνγργσ]. The only way to get a nonzero result is to

have the four vector indices take on four different values. If we consider the
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special case Tr[γ5γ
3γ2γ1γ0], plug in eq. (47.14), and then use (γi)2 = −1

and (γ0)2 = 1, we get i(−1)3 Tr 1 = −4i, or equivalently

Tr[γ5γ
µγνγργσ] = −4iεµνρσ , (47.17)

where ε0123 = ε3210 = +1.
Another category of gamma matrix combinations that we will eventually

encounter is γµ/a . . . γµ. The simplest of these is

γµγµ = gµνγ
µγν

= 1
2gµν{γµ, γν}

= −gµνgµν

= −d . (47.18)

To get the second equality, we used the fact that gµν is symmetric, and
so only the symmetric part of γµγν contributes. In the last line, d is the
number of spacetime dimensions. Of course, our entire spinor formalism
has been built around d = 4, but we will need formal results for d = 4−ε
when we dimensionally regulate loop diagrams involving fermions.

We move on to evaluate

γµ/aγµ = γµ(−γµ/a− 2aµ)

= −γµγµ/a− 2/a

= (d−2)/a . (47.19)

We continue with
γµ/a/bγµ = 4(ab) − (d−4)/a/b (47.20)

and
γµ/a/b/cγµ = 2/c/b/a+ (d−4)/a/b/c ; (47.21)

the derivations are left as an exercise.

Problems

47.1) Verify eq. (47.16).

47.2) Verify eqs. (47.20) and (47.21).

47.3) Show that the most general 4 × 4 matrix can be written as a linear
combination (with complex coefficients) of 1, γµ, Sµν , Sµνγ5, γ

µγ5,
and γ5, where 1 is the identity matrix and Sµν = i

4 [γµ, γν ]. Hint: if A
and B are two different members of this set, prove linear independence
by showing that TrA†B = 0 vanishes. Then count.
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48 Spin-Averaged Cross Sections

Prerequisite: 46, 47

In section 46, we computed |T |2 for (among other processes) e+e− → e+e−.
We take the incoming and outgoing electrons to have momenta p1 and p′1,
respectively, and the incoming and outgoing positrons to have momenta p2

and p′2, respectively. We have p2
i = p′2i = −m2, where m is the electron

(and positron) mass. The Mandelstam variables are

s = −(p1 + p2)
2 = −(p′1 + p′2)

2 ,

t = −(p1 − p′1)
2 = −(p2 − p′2)

2 ,

u = −(p1 − p′2)
2 = −(p2 − p′1)

2 , (48.1)

and they obey s+ t+ u = 4m2. Our result was

|T |2 = g4
[

Φss

(M2 − s)2
− Φst + Φts

(M2 − s)(M2 − t)
+

Φtt

(M2 − t)2

]
, (48.2)

where M is the scalar mass, and

Φss = Tr
[
u1u1v2v2

]
Tr
[
v′2v
′
2u
′
1u
′
1

]
,

Φtt = Tr
[
u1u1u

′
1u
′
1

]
Tr
[
v′2v
′
2v2v2

]
,

Φst = Tr
[
u1u1u

′
1u
′
1v
′
2v
′
2v2v2

]
,

Φts = Tr
[
u1u1v2v2v

′
2v
′
2u
′
1u
′
1

]
. (48.3)

Next, we average over the two initial spins and sum over the two final
spins to get

〈|T |2〉 = 1
4

∑
s1,s2,s′1,s

′
2

|T |2 . (48.4)

Then we use
∑

s=±
us(p)us(p) = −/p+m ,

∑

s=±
vs(p)vs(p) = −/p−m , (48.5)

to get

〈Φss〉 = 1
4Tr

[
(−/p1+m)(−/p2−m)

]
Tr
[
(−/p ′2−m)(−/p ′1+m)

]
, (48.6)

〈Φtt〉 = 1
4Tr

[
(−/p1+m)(−/p ′1+m)

]
Tr
[
(−/p ′2−m)(−/p2−m)

]
, (48.7)

〈Φst〉 = 1
4Tr

[
(−/p1+m)(−/p ′1+m)(−/p ′2−m)(−/p2−m)

]
, (48.8)

〈Φts〉 = 1
4Tr

[
(−/p1+m)(−/p2−m)(−/p ′2−m)(−/p ′1+m)

]
. (48.9)



48: Spin-Averaged Cross Sections 299

It is now merely tedious to evaluate these traces with the technology of
section 47.

For example,

Tr
[
(−/p1+m)(−/p2−m)

]
= Tr[/p1/p2] −m2 Tr 1

= −4(p1p2) − 4m2 , (48.10)

It is convenient to write four-vector products in terms of the Mandelstam
variables. We have

p1p2 = p′1p
′
2 = −1

2(s − 2m2) ,

p1p
′
1 = p2p

′
2 = +1

2(t− 2m2) ,

p1p
′
2 = p′1p2 = +1

2(u− 2m2) , (48.11)

and so
Tr
[
(−/p1+m)(−/p2−m)

]
= 2s− 8m2 . (48.12)

Thus, we can easily work out eqs. (48.6) and (48.7):

〈Φss〉 = (s− 4m2)2 , (48.13)

〈Φtt〉 = (t− 4m2)2 . (48.14)

Obviously, if we start with 〈Φss〉 and make the swap s ↔ t, we get 〈Φtt〉.
We could have anticipated this from eqs. (48.6) and (48.7): if we start with
the right-hand side of eq. (48.6) and make the swap p2 ↔ −p′1, we get
the right-hand side of eq. (48.7). But from eq. (48.11), we see that this
momentum swap is equivalent to s↔ t.

Let’s move on to 〈Φst〉 and 〈Φts〉. These two are also related by p2 ↔
−p′1, and so we only need to compute one of them. We have

〈Φst〉 = 1
4Tr[/p1/p ′1/p ′2/p2]

+ 1
4m

2 Tr[/p1/p ′1 − /p1/p ′2 − /p1/p2 − /p ′1/p ′2 − /p ′1/p2 + /p ′2/p2] + 1
4m

4 Tr 1

= (p1p
′
1)(p2p

′
2) − (p1p

′
2)(p2p

′
1) + (p1p2)(p

′
1p
′
2)

−m2[p1p
′
1 − p1p

′
2 − p1p2 − p′1p

′
2 − p′1p2 + p2p

′
2] +m4

= −1
2st+ 2m2u . (48.15)

To get the last line, we used eq. (48.11), and then simplified it as much as
possible via s + t + u = 4m2. Since our result is symmetric on s ↔ t, we
have 〈Φts〉 = 〈Φst〉.

Putting all of this together, we get

〈|T |2〉 = g4

[
(s− 4m2)2

(M2 − s)2
+

st− 4m2u

(M2 − s)(M2 − t)
+

(t− 4m2)2

(M2 − t)2

]
. (48.16)
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This can then be converted to a differential cross section (in any frame) via
the formulae of section 11.

Let’s do one more: e−ϕ → e−ϕ. We take the incoming and outgoing
electrons to have momenta p and p′, respectively, and the incoming and
outgoing scalars to have momenta k and k′, respectively. We then have
p2 = p′2 = −m2 and k2 = k′2 = −M2. The Mandelstam variables are

s = −(p+ k)2 = −(p′ + k′)2 ,

t = −(p− p′)2 = −(k − k′)2 ,

u = −(p− k′)2 = −(k − p′)2 , (48.17)

and they obey s+ t+ u = 2m2 + 2M2. Our result in section 46 was

〈|T |2〉 = 1
2Tr

[
A(−/p+m)A(−/p ′ +m)

]
, (48.18)

where

A = g2

[
−/k + 2m

m2 − s
+

/k′ + 2m

m2 − u

]
. (48.19)

Thus we have

〈|T |2〉 = g4
[ 〈Φss〉

(m2 − s)2
+

〈Φsu〉 + 〈Φus〉
(m2 − s)(m2 − u)

+
〈Φuu〉

(m2 − u)2

]
, (48.20)

where now

〈Φss〉 = 1
2Tr

[
(−/p ′+m)(−/k+2m)(−/p+m)(−/k+2m)

]
, (48.21)

〈Φuu〉 = 1
2Tr

[
(−/p ′+m)(+/k′+2m)(−/p+m)(+/k′+2m)

]
, (48.22)

〈Φsu〉 = 1
2Tr

[
(−/p ′+m)(−/k+2m)(−/p+m)(+/k′+2m)

]
, (48.23)

〈Φus〉 = 1
2Tr

[
(−/p ′+m)(+/k′+2m)(−/p+m)(−/k+2m)

]
. (48.24)

We can evaluate these in terms of the Mandelstam variables by using our
trace technology, along with

pk = p′k′ = −1
2(s−m2 −M2) ,

pp′ = +1
2(t− 2m2) ,

kk′ = +1
2(t− 2M2) ,

pk′ = p′k = +1
2(u−m2 −M2) . (48.25)

Examining eqs. (48.21) and (48.22), we see that 〈Φss〉 and 〈Φuu〉 are trans-
formed into each other by k ↔ −k′. Examining eqs. (48.23) and (48.24), we
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see that 〈Φsu〉 and 〈Φus〉 are also transformed into each other by k ↔ −k′.
From eq. (48.25), we see that this is equivalent to s ↔ u. Thus we need
only compute 〈Φss〉 and 〈Φsu〉, and then take s↔ u to get 〈Φuu〉 and 〈Φus〉.
This is, again, merely tedious, and the results are

〈Φss〉 = −su+m2(9s + u) + 7m4 − 8m2M2 +M4 , (48.26)

〈Φuu〉 = −su+m2(9u+ s) + 7m4 − 8m2M2 +M4 , (48.27)

〈Φsu〉 = +su+ 3m2(s+ u) + 9m4 − 8m2M2 −M4 , (48.28)

〈Φus〉 = +su+ 3m2(s+ u) + 9m4 − 8m2M2 −M4 . (48.29)

Problems

48.1) The tedium of these calculations is greatly alleviated by making use of
a symbolic manipulation program like Mathematica or Maple. One
approach is brute force: compute 4 × 4 matrices like /p in the CM
frame, and take their products and traces. If you are familiar with a
symbolic-manipulation program, write one that does this. See if you
can verify eqs. (48.26–48.29).

48.2) Compute 〈|T |2〉 for e+e− → ϕϕ. You should find that your result
is the same as that for e−ϕ → e−ϕ, but with s ↔ t, and an extra
overall minus sign. This relationship is known as crossing symmetry.
There is an overall minus sign for each fermion that is moved from
the initial to the final state.

48.3) Compute 〈|T |2〉 for e−e− → e−e−. You should find that your result is
the same as that for e+e− → e+e−, but with s ↔ u. This is another
example of crossing symmetry.

48.4) Suppose that M > 2m, so that the scalar can decay to an electron-
positron pair.

a) Compute the decay rate, summed over final spins.

b) Compute |T |2 for decay into an electron with spin s1 and a positron
with spin s2. Take the fermion three-momenta to be along the z axis,
and let the x-axis be the spin-quantization axis. You should find
that |T |2 = 0 if s1 = −s2, or if M = 2m (so that the outgoing
three-momentum of each fermion is zero). Discuss this in light of
conservation of angular momentum and of parity. (Prerequisite: 40.)

c) Compute |T |2 for decay into an electron with helicity s1 and a
positron with helicity s2. (See section 38 for the definition of helicity.)
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You should find that the decay rate is zero if s1 = −s2. Discuss this
in light of conservation of angular momentum and of parity.

d) Now consider changing the interaction to L1 = igϕΨγ5Ψ, and com-
pute the spin-summed decay rate. Explain (in light of conservation of
angular momentum and of parity) why the decay rate is larger than
it was without the iγ5 in the interaction.

e) Repeat parts (b) and (c) for the new form of the interaction, and
explain any differences in the results.

48.5) The charged pion π− is represented by a complex scalar field ϕ, the
muon µ− by a Dirac field M, and the muon neutrino νµ by a spin-
projected Dirac field PLN , where PL = 1

2 (1−γ5). The charged pion
can decay to a muon and a muon antineutrino via the interaction

L1 = 2c1GFfπ∂µϕMγµPLN + h.c. , (48.30)

where c1 is the cosine of the Cabibbo angle, GF is the Fermi constant,
and fπ is the pion decay constant.

a) Compute the charged pion decay rate Γ.

b) The charged pion mass is mπ = 139.6MeV, the muon mass is
mµ = 105.7MeV, and the muon neutrino is massless. The Fermi
constant is measured in muon decay to be GF = 1.166×10−5 GeV−2,
and the cosine of the Cabibbo angle is measured in nuclear beta decays
to be c1 = 0.974. The measured value of the charged pion lifetime is
2.603 × 10−8 s. Determine the value of fπ in MeV.
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49 The Feynman Rules for Majorana Fields

Prerequisite: 45

In this section we will deduce the Feynman rules for Yukawa theory, but
with a Majorana field instead of a Dirac field. We can think of the particles
associated with the Majorana field as massive neutrinos.

We have

L1 = 1
2gϕΨΨ

= 1
2gϕΨTCΨ , (49.1)

where Ψ be a Majorana field (with mass m), ϕ is a real scalar field (with
mass M), and g is a coupling constant. In this section, we will be concerned
with tree-level processes only, and so we omit renormalizing Z factors.

From section 41, we have the LSZ rules appropriate for a Majorana
field,

b†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) (49.2)

= +i

∫
d4x ΨT(x)C(+i

←
/∂ +m)us(p)e+ipx , (49.3)

bs′(p
′)out → +i

∫
d4x e−ip

′x us′(p
′)(−i/∂ +m)Ψ(x) , (49.4)

= −i
∫
d4x e−ip

′x ΨT(x)C(+i
←
/∂ +m)vs′(p

′)e−ip
′x . (49.5)

Eq. (49.3) follows from eq. (49.2) by taking the transpose of the right-hand
side, and using vs′(p

′)T = −Cus′(p′) and (−i/∂ + m)T = C(+i/∂ + m)C−1;
similarly, eq. (49.5) follows from eq. (49.4). Which form we use depends on
convenience, and is best chosen on a diagram-by-diagram basis, as we will
see shortly.

Eqs. (49.2–49.5) lead us to compute correlation functions containing Ψ’s,
but not Ψ’s. In position space, this leads to Feynman rules where the
fermion propagator is 1

iS(x− y)C−1, and the ϕΨΨ vertex is igC; the factor
of 1

2 in L1 is canceled by a symmetry factor of 2! that arises from having
two identical Ψ fields in L1. In a particular diagram, as we move along
a fermion line, the C−1 in the propagator will cancel against the C in the
vertex, leaving over a final C−1 at one end. This C−1 can be canceled by
a C from eq. (49.3) (for an incoming particle) or eq. (49.5) (for an outgoing
particle). On the other hand, for the other end of the same line, we should
use either eq. (49.2) (for an incoming particle) or eq. (49.4) (for an outgoing
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particle) to avoid introducing an extra C at that end. In this way, we can
avoid ever having explicit factors of C in our Feynman rules.1

Using this approach, the Feynman rules for this theory are as follows.

1. The total number of incoming and outgoing neutrinos is always even;
call this number 2n. Draw n solid lines. Connect them with internal
dashed lines, using a vertex that joins one dashed and two solid lines.
Also, attach an external dashed line for each incoming or outgoing
scalar. In this way, draw all possible diagrams that are topologically
inequivalent.

2. Draw arrows on each segment of each solid line; keep the arrow di-
rection continuous along each line.

3. Label each external dashed line with the momentum of an incoming
or outgoing scalar. If the particle is incoming, draw an arrow on the
dashed line that points towards the vertex; If the particle is outgoing,
draw an arrow on the dashed line that points away from the vertex.

4. Label each external solid line with the momentum of an incoming or
outgoing neutrino, but include a minus sign with the momentum if (a)
the particle is incoming and the arrow points away from the vertex, or
(b) the particle is outgoing and the arrow points towards the vertex.
Do this labeling of external lines in all possible inequivalent ways.
Two diagrams are considered equivalent if they can be transformed
into each other by reversing all the arrows on one or more fermion
lines, and correspondingly changing the signs of the external momenta
on each arrow-reversed line.

5. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

6. The value of a diagram consists of the following factors:

for each incoming or outgoing scalar, 1;

for each incoming neutrino labeled with +pi, usi(pi);

for each incoming neutrino labeled with −pi, vsi(pi);

for each outgoing neutrino labeled with +p′i, us′i(p
′
i);

for each outgoing neutrino labeled with −p′i, vs′i(p
′
i);

1This is not always possible if the Majorana fields interact with Dirac fields, and we
use the usual rules for the Dirac fields; see problems 49.2 and 91.3.
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p1
k

p1

p2

k

Figure 49.1: Two equivalent diagrams for ϕ→ νν.

for each vertex, ig;

for each internal scalar, −i/(k2 +M2 − iǫ);

for each internal fermion, −i(−/p+m)/(p2 +m2 − iǫ).

7. Spinor indices are contracted by starting at one end of a fermion
line: specifically, the end that has the arrow pointing away from the
vertex. The factor associated with the external line is either u or v.
Go along the complete fermion line, following the arrows backwards,
and writing down (in order from left to right) the factors associated
with the vertices and propagators that you encounter. The last factor
is either a u or v. Repeat this procedure for the other fermion lines,
if any.

8. The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative). To
compare two diagrams, it may be necessary to use the arrow-reversing
equivalence relation of rule #4; there is then an extra minus sign for
each arrow-reversed line.

9. The value of iT is given by a sum over the values of all these diagrams.

There are additional rules for counterterms and loops, but we will postpone
those to section 51.

Let’s look at the simplest process, ϕ → νν. There are two possible
diagrams for this, shown in fig. (49.1). However, according to rule #4,
these two diagrams are equivalent, and we should keep only one of them.
The first diagram yields iT1 = ig v ′2u

′
1 and the second iT2 = ig v ′1u

′
2. Rule

#8 then implies that we should have T1 = −T2. To check this, we note that
(after dropping primes to simplify the notation)

v1u2 = [v1u2]
T
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Figure 49.2: Diagrams for νν → νν, corresponding to eq. (49.7).

= uT
2 v

T
1

= v2C−1C−1u1

= −v2u1 , (49.6)

as required.
In general, for processes with a total of just two incoming and outgo-

ing neutrinos, such as νϕ → νϕ or νν → ϕϕ, these rules give (up to an
irrelevant overall sign) the same result for iT as we would get for the cor-
responding process in the Dirac case, e−ϕ → e−ϕ or e+e− → ϕϕ. (Note,
however, that in the Dirac case, we have L1 = gϕΨΨ, as compared with
L1 = 1

2gϕΨΨ in the Majorana case.)
The differences between Dirac and Majorana fermions become more

pronounced for νν → νν. Now there are three inequivalent contributing
diagrams, shown in fig. (49.2). The corresponding amplitude can be written
as

iT = 1
i (ig)

2
[
(u ′1u1)(u

′
2u2)

−t+M2
− (u ′2u1)(u

′
1u2)

−u+M2
+

(v2u1)(u
′
1v
′
2)

−s+M2

]
, (49.7)

where s = −(p1+p2)
2, t = −(p1−p′1)2 and u = −(p1−p′2)2. After arbitrarily

assigning the first diagram a plus sign, the minus sign of the second diagram
follows from rule #8. To get the sign of the third diagram, we compare it
with the first. To do so, we reverse the arrow direction on the lower line
of the first diagram (which yields an extra minus sign), and then redraw
it in standard form. Comparing this modified first diagram with the third
diagram (and invoking rule #8) reveals a relative minus sign. Since the
modified first diagram has a minus sign from the arrow reversal, we conclude
that the third diagram has an overall plus sign.

After taking the absolute square of eq. (49.7), we can use relations like
eq. (49.6) on a term-by-term basis to put everything into a form that allows
the spin sums to be performed in the standard way. In fact, we have already
done all the necessary work in the Dirac case. The s-s, s-t, and t-t terms in
〈|T |2〉 for νν → νν are the same as those for e+e− → e+e−, while the t-t,
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t-u, and u-u terms are the same as those for the crossing-related process
e−e− → e−e−. Finally, the s-u terms can be obtained from the s-t terms
via t↔ u, or equivalently from the t-u terms via t ↔ s. Thus the result is

〈|T |2〉 = g4

[
(s− 4m2)2

(M2 − s)2
+

st− 4m2u

(M2 − s)(M2 − t)

+
(t− 4m2)2

(M2 − t)2
+

tu− 4m2s

(M2 − t)(M2 − u)

+
(u− 4m2)2

(M2 − u)2
+

us− 4m2t

(M2 − u)(M2 − s)

]
, (49.8)

which is neatly symmetric on permutations of s, t, and u.

Problems

49.1) Let Ψ be a Dirac field (representing the electron and positron), X
be a Majorana field (represeting the photino, the hypothetical super-
symmetric partner of the photon, with mass mγ̃), and EL and ER be
two different complex scalar fields (representing the two selectrons,
the hypothetical supersymmetric partners of the left-handed electron
and the right-handed electron, with masses ML, and MR; note that
the subscripts L and R are just part of their names, and do not sig-
nify anything about their Lorentz transformation properties). They
interact via

L1 =
√

2eE†LXPLΨ +
√

2eE†RXPRΨ + h.c. , (49.9)

where α = e2/4π ≃ 1/137 is the fine-structure constant, and PL,R =
1
2(1 ∓ γ5).

a) Write down the hermitian conjugate term explicitly.

b) Find the tree-level scattering amplitude for e+e− → γ̃γ̃. Hint:
there are four contributing diagrams, two each in the t and u channels,
with exchange of either EL or ER.

c) Compute the spin-averaged differential cross section for this process
in the case that me (the electron mass) can be neglected, and |t|, |u| ≪
ML = MR. Express it as a function of s and the center-of-mass
scattering angle θ.

49.2) Consider the theory specified in the previous problem.

a) Find the tree-level scattering amplitude for e−e− → ELEL. Use
suitable identities to eliminate factors of the charge-conjugation ma-
trix C.
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b) Compute the spin-averaged differential cross section for this pro-
cess. Neglect the electron mass.
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50 Massless Particles and Spinor Helicity

Prerequisite: 48

Scattering amplitudes often simplify greatly if the particles are massless
(or can be approximated as massless because the Mandelstam variables all
have magnitudes much larger than the particle masses squared). In this
section we will explore this phenomenon for spin-one-half (and spin-zero)
particles. We will begin developing the technology of spinor helicity, which
will prove to be of indispensible utility in Part III.

Recall from section 38 that the u spinors for a massless spin-one-half
particle obey

us(p)us(p) = 1
2(1 + sγ5)(−/p) , (50.1)

where s = ± specifies the helicity, the component of the particle’s spin
measured along the axis specified by its three-momentum; in this notation
the helicity is 1

2s. The v spinors obey a similar relation,

vs(p)vs(p) = 1
2(1 − sγ5)(−/p) . (50.2)

In fact, in the massless case, with the phase conventions of section 38,
we have vs(p) = u−s(p). Thus we can confine our discussion to u-type
spinors only, since we need merely change the sign of s to accomodate
v-type spinors.

Consider a u spinor for a particle of negative helicity. We have

u−(p)u−(p) = 1
2 (1 − γ5)(−/p) . (50.3)

Let us define
paȧ ≡ pµσ

µ
aȧ . (50.4)

Then we also have
pȧa = εacεȧċpcċ = pµσ̄

µȧa . (50.5)

Then, using

γµ =

(
0 σµ

σ̄µ 0

)
, 1

2 (1 − γ5) =

(
1 0

0 0

)
(50.6)

in eq. (50.3), we find

u−(p)u−(p) =

(
0 −paȧ
0 0

)
. (50.7)

On the other hand, we know that the lower two components of u−(p)
vanish, and so we can write

u−(p) =

(
φa

0

)
. (50.8)
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Here φa is a two-component numerical spinor; it is not an anticommuting
object. Such a commuting spinor is sometimes called a twistor. An explicit
numerical formula for it (verified in problem 50.2) is

φa =
√

2ω

(− sin(1
2θ)e

−iφ

+ cos(1
2θ)

)
, (50.9)

where θ and φ are the polar and azimuthal angles that specify the direction
of the three-momentum p, and ω = |p|. Barring eq. (50.8) yields

u−(p) = ( 0, φ∗ȧ ) , (50.10)

where φ∗ȧ = (φa)
∗. Now, combining eqs. (50.8) and (50.10), we get

u−(p)u−(p) =

(
0 φaφ

∗
ȧ

0 0

)
. (50.11)

Comparing with eq. (50.7), we see that

paȧ = −φaφ∗ȧ . (50.12)

This expresses the four-momentum of the particle neatly in terms of the
twistor that describes its spin state. The essence of the spinor helicity
method is to treat φa as the fundamental object, and to express the parti-
cle’s four-momentum in terms of it, via eq. (50.12).

Given eq. (50.8), and the phase conventions of section 38, the positive-
helicity spinor is

u+(p) =

(
0

φ∗ȧ

)
, (50.13)

where φ∗ȧ = εȧċφ∗ċ . Barring eq. (50.13) yields

u+(p) = (φa, 0 ) . (50.14)

Computation of u+(p)u+(p) via eqs. (50.13) and (50.14), followed by com-
parison with eq. (50.1) with s = +, then reproduces eq. (50.12), but with
the indices raised.

In fact, the decomposition of paȧ into the direct product of a twistor
and its complex conjugate is unique (up to an overall phase for the twistor).
To see this, use σµ = (I, ~σ) to write

paȧ =

(−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
. (50.15)

The determinant of this matrix is −(p0)2 + p2, and this vanishes because
the particle is (by assumption) massless. Thus paȧ has a zero eigenvalue.
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Therefore, it can be written as a projection onto the eigenvector correspond-
ing to the nonzero eigenvalue. That is what eq. (50.12) represents, with the
nonzero eigenvalue absorbed into the normalization of the eigenvector φa.

Let us now introduce some useful notation. Let p and k be two four-
momenta, and φa and κa the corresponding twistors. We define the twistor
product

[p k] ≡ φaκa . (50.16)

Because φaκa = εacφcκa, and the twistors commute, we have

[k p] = −[p k] . (50.17)

From eqs. (50.8) and (50.14), we can see that

u+(p)u−(k) = [p k] . (50.18)

Similarly, let us define
〈p k〉 ≡ φ∗ȧκ

∗ȧ . (50.19)

Comparing with eq. (50.16) we see that

〈p k〉 = [k p]∗ , (50.20)

which implies that this product is also antisymmetric,

〈k p〉 = −〈p k〉 . (50.21)

Also, from eqs. (50.10) and (50.13), we have

u−(p)u+(k) = 〈p k〉 . (50.22)

Note that the other two possible spinor products vanish:

u+(p)u+(k) = u−(p)u−(k) = 0 . (50.23)

The twistor products 〈p k〉 and [p k] satisfy another important relation,

〈p k〉[k p] = (φ∗ȧκ
∗ȧ)(κaφa)

= (φ∗ȧφa)(κ
aκ∗ȧ)

= pȧak
aȧ

= −2pµkµ , (50.24)

where the last line follows from σ̄µȧaσνaȧ = −2gµν .
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Let us apply this notation to the tree-level scattering amplitude for
e−ϕ→ e−ϕ in Yukawa theory, which we first computed in Section 44, and
which reads

Ts′s = g2 us′(p
′)
[
S̃(p+k) + S̃(p−k′)

]
us(p) . (50.25)

For a massless fermion, S̃(p) = −/p/p2. If the scalar is also massless, then
(p+k)2 = 2p ·k and (p−k′)2 = −2p ·k′. Also, we can remove the /p’s in the
propagator numerators in eq. (50.25), because /pus(p) = 0. Thus we have

Ts′s = g2 us′(p
′)

[
−/k

2p·k +
−/k′

2p·k′

]
us(p) . (50.26)

Now consider the case s′ = s = +. From eqs. (50.13), (50.14), and

−/k =

(
0 κaκ

∗
ȧ

κ∗ȧκa 0

)
, (50.27)

we get

u+(p′)(−/k)u+(p) = φ′aκaκ
∗
ȧφ
∗ȧ

= [p′ k] 〈k p〉 . (50.28)

Similarly, for s′ = s = −, we find

u−(p′)(−/k)u−(p) = φ′∗ȧ κ
∗ȧκaφa

= 〈p′ k〉 [k p] , (50.29)

while for s′ 6= s, the amplitude vanishes:

u−(p′)(−/k)u+(p) = u+(p′)(−/k)u−(p) = 0 . (50.30)

Then, using eq. (50.24) on the denominators in eq. (50.26), we find

T++ = −g2
(

[p′ k]
[p k]

+
[p′ k′]
[p k′]

)
,

T−− = −g2
(〈p′ k〉
〈p k〉 +

〈p′ k′〉
〈p k′〉

)
, (50.31)

while
T+− = T−+ = 0 . (50.32)

Thus we have rather simple expressions for the fixed-helicity scattering
amplitudes in terms of twistor products.
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Reference Notes

Spinor-helicity methods are discussed by Siegel.

Problems

50.1) Consider a bra-ket notation for twistors,

|p] = u−(p) = v+(p) ,

|p〉 = u+(p) = v−(p) ,

[p| = u+(p) = v−(p) ,

〈p| = u−(p) = v+(p) . (50.33)

We then have

〈k| |p〉 = 〈k p〉 ,

[k| |p] = [k p] ,

〈k| |p] = 0 ,

[k| |p〉 = 0 . (50.34)

a) Show that
−/p = |p〉[p| + |p]〈p| , (50.35)

where p is any massless four-momentum.

b) Use this notation to rederive eqs. (50.28–50.30).

50.2) a) Use eqs. (50.9) and (50.15) to verify eq. (50.12).

b) Let the three-momentum p be in the +ẑ direction. Use eq. (38.12)
to compute u±(p) explicitly in the massless limit (corresponding to
the limit η → ∞, where sinh η = |p|/m). Verify that, when θ = 0,
your results agree with eqs. (50.8), (50.9), and (50.13).

50.3) Prove the Schouten identity,

〈p q〉〈r s〉 + 〈p r〉〈s q〉 + 〈p s〉〈q r〉 = 0 . (50.36)

Hint: note that the left-hand side is completely antisymmetric in the
three labels q, r, and s, and that each corresponding twistor has only
two components.
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50.4) Show that
〈p q〉 [q r] 〈r s〉 [s p] = Tr 1

2(1−γ5)/p/q/r/s , (50.37)

and evaluate the right-hand side.

50.5) a) Prove the useful identities

〈p|γµ|k] = [k|γµ|p〉 , (50.38)

〈p|γµ|k]∗ = 〈k|γµ|p] , (50.39)

〈p|γµ|p] = 2pµ , (50.40)

〈p|γµ|k〉 = 0 , (50.41)

[p|γµ|k] = 0 . (50.42)

b) Extend the last two identies of part (a): show that the product
of an odd number of gamma matrices sandwiched between either 〈p|
and |k〉 or [p| and |k] vanishes. Also show that the product of an even
number of gamma matrices between either 〈p| and |k] or [p| and |k〉
vanishes.

c) Prove the Fierz identities,

−1
2〈p|γµ|q]γµ = |q]〈p| + |p〉[q| , (50.43)

−1
2 [p|γµ|q〉γµ = |q〉[p| + |p]〈q| . (50.44)

Now take the matrix element of eq. (50.44) between 〈r| and |s] to get
another useful form of the Fierz identity,

[p|γµ|q〉 〈r|γµ|s] = 2 [p s] 〈q r〉 . (50.45)
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51 Loop Corrections in Yukawa Theory

Prerequisite: 19, 40, 48

In this section we will compute the one-loop corrections in Yukawa theory
with a Dirac field. The basic concepts are all the same as for a scalar field,
and so we will mainly be concerned with the extra technicalities arising
from spin indices and anticommutation.

First let us note that the general discussion of sections 18 and 29 leads
us to expect that we will need to add to the lagrangian all possible terms
whose coefficients have positive or zero mass dimension, and that respect
the symmetries of the original lagrangian. These include Lorentz symmetry,
the U(1) phase symmetry of the Dirac field, and the discrete symmetries
of parity, time reversal, and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are
[ϕ] = 1 and [Ψ] = 3

2 . Thus any power of ϕ up to ϕ4 is allowed. But there
are no additional required terms involving Ψ: the only candidates contain
either γ5 (e.g., iΨγ5Ψ) and are forbidden by parity, or C (e.g, ΨTCΨ) and
are forbidden by the U(1) symmetry.

Nevertheless, having to deal with the addition of three new terms (ϕ,
ϕ3, ϕ4) is annoying enough to prompt us to look for a simpler example.
Consider, then, a modified form of the Yukawa interaction,

LYuk = igϕΨγ5Ψ . (51.1)

This interaction will conserve parity if and only if ϕ is a pseudoscalar:

P−1ϕ(x, t)P = −ϕ(−x, t) . (51.2)

Then, ϕ and ϕ3 are odd under parity, and so we will not need to add them
to L. The one term we will need to add is ϕ4.

Therefore, the theory we will consider is

L = L0 + L1 , (51.3)

L0 = iΨ/∂Ψ −mΨΨ − 1
2∂

µϕ∂µϕ− 1
2M

2ϕ2 , (51.4)

L1 = iZggϕΨγ5Ψ − 1
24Zλλϕ

4 + Lct , (51.5)

Lct = i(ZΨ−1)Ψ/∂Ψ − (Zm−1)mΨΨ

− 1
2(Zϕ−1)∂µϕ∂µϕ− 1

2(ZM−1)M2ϕ2 (51.6)

where λ is a new coupling constant. We will use an on-shell renormaliza-
tion scheme. The lagrangian parameter m is then the actual mass of the
electron. We will define the couplings g and λ as the values of appropri-
ate vertex functions when the external four-momenta vanish. Finally, the
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fields are normalized according to the requirements of the LSZ formula. In
practice, this means that the scalar and fermion propagators must have
appropriate poles with unit residue.

We will assume that M < 2m, so that the scalar is stable against decay
into an electron-positron pair. The exact scalar propagator (in momentum
space) can be then written in Lehmann-Källén form as

∆̃(k2) =
1

k2 +M2 − iǫ
+

∫ ∞

M2
th

ds
ρ(s)

k2 + s− iǫ
, (51.7)

where the spectral density ρ(s) is real and nonnegative. The threshold mass
Mth is either 2m (corresponding to the contribution of an electron-positron
pair) or 3M (corresponding to the contribution of three scalars; by parity,
there is no contribution from two scalars), whichever is less.

We can also write

∆̃(k2)−1 = k2 +M2 − iǫ− Π(k2) , (51.8)

where iΠ(k2) is given by the sum of one-particle irreducible (1PI for short;
see section 14) diagrams with two external scalar lines, and the external
propagators removed. The fact that ∆̃(k2) has a pole at k2 = −M2 with
residue one implies that Π(−M2) = 0 and Π′(−M2) = 0; this fixes the
coefficients Zϕ and ZM .

All of this is mimicked for the Dirac field. When parity is conserved, the
exact propagator (in momentum space) can be written in Lehmann-Källén
form as

S̃(/p) =
−/p+m

p2 +m2 − iǫ
+

∫ ∞

m2
th

ds
−/pρ1(s) +

√
sρ2(s)

p2 + s− iǫ
, (51.9)

where the spectral densities ρ1(s) and ρ2(s) are both real, and ρ1(s) is non-
negative and greater than ρ2(s). The threshold mass mth is m+M (corre-
sponding to the contribution of a fermion and a scalar), which, by assump-
tion, is less than 3m (corresponding to the contribution of three fermions;
by Lorentz invariance, there is no contribution from two fermions).

Since p2 = −/p/p, we can rewrite eq. (51.9) as

S̃(/p) =
1

/p+m− iǫ
+

∫ ∞

m2
th

ds
−/pρ1(s) +

√
sρ2(s)

(−/p+
√
s− iǫ)(/p +

√
s− iǫ)

, (51.10)

with the understanding that 1/(. . .) refers to the matrix inverse. However,
since /p is the only matrix involved, we can think of S̃(/p) as an analytic
function of the single variable /p. With this idea in mind, we see that S̃(/p)
has an isolated pole at /p = −m with residue one. This residue corresponds
to the field normalization that is needed for the validity of the LSZ formula.
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Figure 51.1: The one-loop and counterterm corrections to the scalar prop-
agator in Yukawa theory.

We can also write the exact fermion propagator in the form

S̃(/p)−1 = /p+m− iǫ− Σ(/p) , (51.11)

where iΣ(/p) is given by the sum of 1PI diagrams with two external fermion
lines, and the external propagators removed. The fact that S̃(/p) has a pole
at /p = −m with residue one implies that Σ(−m) = 0 and Σ′(−m) = 0; this
fixes the coefficients ZΨ and Zm.

We proceed to the diagrams. The Yukawa vertex carries a factor of
i(iZgg)γ5 = −Zggγ5. Since Zg = 1 + O(g2), we can set Zg = 1 in the
one-loop diagrams.

Consider first Π(k2), which receives the one-loop (and counterterm)
corrections shown in fig. (51.1). The first diagram has a closed fermion loop.
As we will see in problem 51.1 (and section 53), anticommutation of the
fermion fields results in an extra factor of minus one for each closed fermion
loop. The spin indices on the propagators and vertices are contracted in
the usual way, following the arrows backwards. Since the loop closes on
itself, we end up with a trace over the spin indices. Thus we have

iΠΨ loop(k2) = (−1)(−g)2
(

1
i

)2 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ+/k)γ5S̃(/ℓ)γ5

]
, (51.12)

where

S̃(/p) =
−/p+m

p2 +m2 − iǫ
(51.13)

is the free fermion propagator in momentum space.
We now proceed to evaluate eq. (51.12). We have

Tr[(−/ℓ− /k +m)γ5(−/ℓ+m)γ5] = Tr[(−/ℓ− /k +m)(+/ℓ+m)]

= 4[(ℓ + k)ℓ+m2]

≡ 4N . (51.14)
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The first equality follows from γ2
5 = 1 and γ5/pγ5 = −/p.

Next we combine the denominators with Feynman’s formula. Suppress-
ing the iǫ’s, we have

1

(ℓ+k)2 +m2

1

ℓ2 +m2
=

∫ 1

0
dx

1

(q2 +D)2
, (51.15)

where q = ℓ+ xk and D = x(1−x)k2 +m2.
We then change the integration variable in eq. (51.12) from ℓ to q; the

result is

iΠΨ loop(k2) = 4g2
∫ 1

0
dx

∫
d4q

(2π)4
N

(q2 +D)2
, (51.16)

where now N = (q+(1−x)k)(q−xk)+m2. The integral diverges, and so we
analytically continue it to d = 4−ε spacetime dimensions. (Here we ignore a
subtlety with the definition of γ5 in d dimensions, and assume that γ2

5 = 1
and γ5/pγ5 = −/p continue to hold.) We also make the replacement g →
gµ̃ε/2, where µ̃ has dimensions of mass, so that g remains dimensionless.

Expanding out the numerator, we have

N = q2 − x(1−x)k2 +m2 + (1−2x)kq . (51.17)

The term linear in q integrates to zero. For the rest, we use the general
result of section 14 to get

µ̃ε
∫

ddq

(2π)d
1

(q2 +D)2
=

i

16π2

[
2

ε
− ln(D/µ2)

]
, (51.18)

µ̃ε
∫

ddq

(2π)d
q2

(q2 +D)2
=

i

16π2

[
2

ε
+ 1

2 − ln(D/µ2)

]
(−2D) , (51.19)

where µ2 = 4πe−γ µ̃2, and we have dropped terms of order ε. Plugging
eqs. (51.18) and (51.19) into eq. (51.16) yields

ΠΨloop(k2) = − g2

4π2

[
1

ε
(k2 + 2m2) + 1

6k
2 +m2

−
∫ 1

0
dx
(
3x(1−x)k2 +m2

)
ln(D/µ2)

]
. (51.20)

We see that the divergent term has (as expected) a form that permits
cancellation by the counterterms.

We evaluated the second diagram of fig. (51.1) in section 31, with the
result

Πϕ loop(k2) =
λ

(4π)2

[
1

ε
+ 1

2 − 1
2 ln(M2/µ2)

]
M2 . (51.21)
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Figure 51.2: The one-loop and counterterm corrections to the fermion prop-
agator in Yukawa theory.

The third diagram gives the contribution of the counterterms,

Πct(k
2) = −(Zϕ−1)k2 − (ZM−1)M2 . (51.22)

Adding up eqs. (51.20–51.22), we see that finiteness of Π(k2) requires

Zϕ = 1 − g2

4π2

(
1

ε
+ finite

)
, (51.23)

ZM = 1 +

(
λ

16π2
− g2

2π2

m2

M2

)(
1

ε
+ finite

)
, (51.24)

plus higher-order (in g and/or λ) corrections. Note that, although there is
an O(λ) correction to ZM , there is not an O(λ) correction to Zϕ.

We can impose Π(−M2) = 0 by writing

Π(k2) =
g2

4π2

[ ∫ 1

0
dx
(
3x(1−x)k2 +m2

)
ln(D/D0) + κϕ(k2 +M2)

]
,

(51.25)
where D0 = −x(1−x)M2 +m2, and κϕ is a constant to be determined. We
fix κϕ by imposing Π′(−M2) = 0, which yields

κϕ =

∫ 1

0
dx x(1−x)[3x(1−x)M2 −m2]/D0 . (51.26)

Note that, in this on-shell renormalization scheme, there is no O(λ) correc-
tion to Π(k2).

Next we turn to the Ψ propagator, which receives the one-loop (and
counterterm) corrections shown in fig. (51.2). The spin indices are con-
tracted in the usual way, following the arrows backwards. We have

iΣ1 loop(/p) = (−g)2
(

1
i

)2 ∫ d4ℓ

(2π)4

[
γ5S̃(/p+ /ℓ)γ5

]
∆̃(ℓ2) , (51.27)

where S̃(/p) is given by eq. (51.13), and

∆̃(ℓ2) =
1

ℓ2 +M2 − iǫ
(51.28)
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is the free scalar propagator in momentum space.
We evaluate eq. (51.27) with the usual bag of tricks. The result is

iΣ1 loop(/p) = −g2
∫ 1

0
dx

∫
d4q

(2π)4
N

(q2 +D)2
, (51.29)

where q = ℓ+ xp and

N = /q + (1−x)/p+m , (51.30)

D = x(1−x)p2 + xm2 + (1−x)M2 . (51.31)

The integral diverges, and so we analytically continue it to d = 4 − ε
spacetime dimensions, make the replacement g → gµ̃ε/2, and take the limit
as ε → 0. The term linear in q in eq. (51.30) integrates to zero. Using
eq. (51.18), we get

Σ1 loop(/p) = − g2

16π2

[
1

ε
(/p+ 2m)−

∫ 1

0
dx
(
(1−x)/p+m

)
ln(D/µ2)

]
. (51.32)

We see that the divergent term has (as expected) a form that permits
cancellation by the counterterms, which give

Σct(/p) = −(ZΨ−1)/p− (Zm−1)m . (51.33)

Adding up eqs. (51.32) and (51.33), we see that finiteness of Σ(/p) requires

ZΨ = 1 − g2

16π2

(
1

ε
+ finite

)
, (51.34)

Zm = 1 − g2

8π2

(
1

ε
+ finite

)
, (51.35)

plus higher-order corrections.
We can impose Σ(−m) = 0 by writing

Σ(/p) =
g2

16π2

[∫ 1

0
dx
(
(1−x)/p+m

)
ln(D/D0) + κΨ(/p +m)

]
, (51.36)

where D0 is D evaluated at p2 = −m2, and κΨ is a constant to be deter-
mined. We fix κΨ by imposing Σ′(−m) = 0. In differentiating with respect
to /p, we take the p2 in D, eq. (51.31), to be −/p2; we find

κΨ = −2

∫ 1

0
dx x2(1−x)m2/D0 . (51.37)
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Figure 51.3: The one-loop correction to the scalar-fermion-fermion vertex
in Yukawa theory.

Next we turn to the correction to the Yukawa vertex. We define the
vertex function iVY (p′, p) as the sum of one-particle irreducible diagrams
with one incoming fermion with momentum p, one outgoing fermion with
momentum p′, and one incoming scalar with momentum k = p′ − p. The
original vertex −Zggγ5 is the first term in this sum, and the diagram of
fig. (51.3) is the second. Thus we have

iVY (p′, p) = −Zggγ5 + iVY, 1 loop(p′, p) +O(g5) , (51.38)

where

iVY, 1 loop(p′, p) = (−g)3
(

1
i

)3 ∫ ddℓ

(2π)d

[
γ5S̃(/p ′+/ℓ)γ5S̃(/p+/ℓ)γ5

]
∆̃(ℓ2) .

(51.39)
The numerator can be written as

N = (/p ′ + /ℓ+m)(−/p− /ℓ+m)γ5 , (51.40)

and the denominators combined in the usual way. We then get

iVY, 1 loop(p
′, p) = −ig3

∫
dF3

∫
d4q

(2π)4
N

(q2 +D)3
, (51.41)

where the integral over Feynman parameters was defined in section 16, and
now

q = ℓ+ x1p+ x2p
′ , (51.42)

N = [/q − x1/p+ (1−x2)/p
′ +m][−/q − (1−x1)/p+ x2/p ′ +m]γ5 , (51.43)

D = x1(1−x1)p
2 + x2(1−x2)p

′2 − 2x1x2p·p′
+ (x1+x2)m

2 + x3M
2 . (51.44)

Using /q/q = −q2, we can write N as

N = q2γ5 + Ñ + (linear in q) , (51.45)
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Figure 51.4: One of six diagrams with a closed fermion loop and four
external scalar lines; the other five are obtained by permuting the external
momenta in all possible inequivalent ways.

where

Ñ = [−x1/p+ (1−x2)/p
′ +m][−(1−x1)/p+ x2/p ′ +m]γ5 . (51.46)

The terms linear in q in eq. (51.45) integrate to zero, and only the first term
is divergent. Performing the usual manipulations, we find

iVY, 1 loop(p′, p) = − g3

8π2

[(
1

ε
− 1

4 − 1
2

∫
dF3 ln(D/µ2)

)
γ5 + 1

4

∫
dF3

Ñ

D

]
.

(51.47)
From eq. (51.38), we see that finiteness of VY (p′, p) requires

Zg = 1 +
g2

8π2

(
1

ε
+ finite

)
, (51.48)

plus higher-order corrections.
To fix the finite part of Zg, we need a condition to impose on VY (p′, p).

We will mimic what we did in ϕ3 theory in section 16, and require VY (0, 0)
to have the tree-level value igγ5. We leave the details to problem 51.2.

Next we turn to the corrections to the ϕ4 vertex iV4(k1, k2, k3, k4); the
tree-level contribution is −iZλλ. There are diagrams with a closed fermion
loop, as shown in fig. (51.4), plus one-loop diagrams with ϕ particles only
that we evaluated in section 31. We have

iV4,Ψ loop = (−1)(−g)4
(

1
i

)4 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ)γ5S̃(/ℓ−/k1)γ5

× S̃(/ℓ+/k2+/k3)γ5S̃(/ℓ+/k2)γ5

]

+ 5 permutations of (k2, k3, k4) . (51.49)

Again we can employ the standard methods; there are no unfamiliar as-
pects. This being the case, let us concentrate on obtaining the divergent
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part; this will give us enough information to calculate the one-loop contri-
butions to the beta functions for g and λ.

To obtain the divergent part of eq. (51.49), it is sufficient to set ki = 0.
Then the numerator in eq. (51.49) becomes simply Tr (/ℓγ5)

4 = 4(ℓ2)2, and
the denominator is (ℓ2 +m2)4. Then we find, after including the identical
contributions from the other five permutations of the external momenta,

V4,Ψ loop = −3g4

π2

(
1

ε
+ finite

)
. (51.50)

From section 31, we have

V4, ϕ loop =
3λ

16π2

(
1

ε
+ finite

)
. (51.51)

Then, using

V4 = −Zλλ+ V4,Ψloop + V4, ϕ loop + . . . , (51.52)

we see that finiteness of V4 requires

Zλ = 1 +

(
3λ

16π2
− 3g4

π2λ

)(
1

ε
+ finite

)
, (51.53)

plus higher-order corrections.

Reference Notes

A detailed derivation of the Lehmann-Källén form of the fermion propaga-
tor can be found in Itzykson & Zuber.

Problems

51.1) Derive the fermion-loop correction to the scalar propagator by work-
ing through eq. (45.2), and show that it has an extra minus sign rel-
ative to the case of a scalar loop.

51.2) Finish the computation of VY (p′, p), imposing the condition

VY (0, 0) = igγ5 . (51.54)

51.3) Consider making ϕ a scalar rather than a pseudoscalar, so that the
Yukawa interaction is LYuk = gϕΨΨ. In this case, renormalizability
requires us to add a term Lϕ3 = 1

6Zκκϕ
3, as well as term linear in ϕ to

cancel tadpoles. Find the one-loop contributions to the renormalizing
Z factors for this theory in the MS scheme.
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52 Beta Functions in Yukawa Theory

Prerequisite: 28, 51

In this section we will compute the beta functions for the Yukawa coupling
g and the ϕ4 coupling λ in Yukawa theory, using the methods of section 28.

The relations between the bare and renormalized couplings are

g0 = Z−1/2
ϕ Z−1

Ψ Zgµ̃
ε/2g , (52.1)

λ0 = Z−2
ϕ Zλµ̃

ελ . (52.2)

Let us define

ln
(
Z−1/2
ϕ Z−1

Ψ Zg
)

=
∞∑

n=1

Gn(g, λ)

εn
, (52.3)

ln
(
Z−2
ϕ Zλ

)
=
∞∑

n=1

Ln(g, λ)

εn
. (52.4)

From our results in section 51, we have

G1(g, λ) =
5g2

16π2
+ . . . , (52.5)

L1(g, λ) =
3λ

16π2
+

g2

2π2
− 3g4

π2λ
+ . . . , (52.6)

where the ellipses stand for higher-order (in g2 and/or λ) corrections.
Taking the logarithm of eqs. (52.1) and (52.2), and using eqs. (52.3) and

(52.4), we get

ln g0 =
∞∑

n=1

Gn(g, λ)

εn
+ ln g + 1

2ε ln µ̃ , (52.7)

lnλ0 =
∞∑

n=1

Ln(g, λ)

εn
+ lnλ+ ε ln µ̃ . (52.8)

We now use the fact that g0 and λ0 must be independent of µ. We differen-
tiate eqs. (52.7) and (52.8) with respect to lnµ; the left-hand sides vanish,
and we multiply the right-hand sides by g and λ, respectively. The result
is

0 =
∞∑

n=1

(
g
∂Gn
∂g

dg

d lnµ
+ g

∂Gn
∂λ

dλ

d lnµ

)
1

εn
+

dg

d lnµ
+ 1

2εg , (52.9)

0 =
∞∑

n=1

(
λ
∂Ln
∂g

dg

d lnµ
+ λ

∂Ln
∂λ

dλ

d lnµ

)
1

εn
+

dλ

d lnµ
+ ελ . (52.10)
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In a renormalizable theory, dg/d lnµ and dλ/d lnµ must be finite in the
ε→ 0 limit. Thus we can write

dg

d lnµ
= −1

2εg + βg(g, λ) , (52.11)

dλ

d lnµ
= −ελ+ βλ(g, λ) . (52.12)

Substituting these into eqs. (52.9) and (52.10), and matching powers of ε,
we find

βg(g, λ) = g

(
1
2g

∂

∂g
+ λ

∂

∂λ

)
G1 , (52.13)

βλ(g, λ) = λ

(
1
2g

∂

∂g
+ λ

∂

∂λ

)
L1 . (52.14)

The coefficients of all higher powers of 1/ε must also vanish, but this gives
us no more information about the beta functions.

Using eqs. (52.5) and (52.6) in eqs. (52.13) and (52.14), we get

βg(g, λ) =
5g3

16π2
+ . . . , (52.15)

βλ(g, λ) =
1

16π2

(
3λ2 + 8λg2 − 48g4

)
+ . . . . (52.16)

The higher-order corrections have extra factors of g2 and/or λ.

Problems

52.1) Compute the one-loop contributions to the anomalous dimensions of
m, M , Ψ, and ϕ.

52.2) Consider the theory of problem 51.3. Compute the one-loop con-
tributions to the beta functions for g and λ, and to the anomalous
dimensions of m, M , κ, Ψ, and ϕ.

52.3) Consider the beta functions of eqs. (52.15) and (52.16).

a) Let ρ ≡ λ/g2, and compute dρ/d lnµ. Express your answer in
terms of g and ρ. Explain why it is better to work with g and ρ
rather than g and λ. Hint: the answer is mathematical, not physical.

b) Show that there are two fixed points, ρ∗+ and ρ∗−, where dρ/d lnµ =
0, and find their values.

c) Suppose that, for some particular value of the renormalization scale
µ, we have ρ = 0 and g ≪≪ 1. What happens to ρ at much higher
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values of µ (but still low enough to keep g ≪ 1)? At much lower
values of µ?

d) Same question, but with an initial value of ρ = 5.

e) Same question, but with an initial value of ρ = −5.

f) Find the trajectory in the (ρ, g) plane that is followed for each
of the three starting points as µ is varied up and down. Hint: you
should find that the trajectories take the form

g = g0

∣∣∣∣∣
ρ− ρ∗+
ρ− ρ∗−

∣∣∣∣∣

ν

for some particular exponent ν. Put arrows on the trajectories that
point in the direction of increasing µ.

g) Explain why ρ∗− is called an ultraviolet stable fixed point, and why
ρ∗+ is called an infrared stable fixed point.
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53 Functional Determinants

Prerequisite: 44, 45

In the section we will explore the meaning of the functional determinants
that arise when doing gaussian path integrals, either bosonic or fermionic.
We will be interested in situations where the path integral over one partic-
ular field is gaussian, but generates a functional determinant that depends
on some other field. We will see how to relate this functional determinant
to a certain infinite set of Feynman diagrams. We will need the technology
we develop here to compute the path integral for nonabelian gauge theory
in section 70.

We begin by considering a theory of a complex scalar field χ with

L = −∂µχ†∂µχ−m2χ†χ+ gϕχ†χ , (53.1)

where ϕ is a real scalar background field. That is, ϕ(x) is treated as a fixed
function of spacetime. Next we define the path integral

Z(ϕ) =

∫
Dχ†Dχ ei

∫
d4xL , (53.2)

where we use the ǫ trick of section 6 to impose vacuum boundary conditions,
and the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex variables zi, then we
can evaluate gaussian integrals by the general formula

∫
dnz dnz̄ exp (−iz̄iMijzj) ∝ (detM)−1 . (53.3)

In the case of the functional integral in eq. (53.2), the index i on the inte-
gration variable is replaced by the continuous spacetime label x, and the
“matrix” M becomes

M(x, y) = [−∂2
x +m2 − gϕ(x)]δ4(x− y) . (53.4)

In order to apply eq. (53.3), we have to understand what it means to com-
pute the determinant of this expression.

To this end, let us first note that we can write M = M0M̃ , which is
shorthand for

M(x, z) =

∫
d4yM0(x, y)M̃ (y, z) , (53.5)

where

M0(x, y) = (−∂2
x +m2)δ4(x− y) , (53.6)

M̃(y, z) = δ4(y − z) − g∆(y − z)ϕ(z) . (53.7)
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Here ∆(y − z) is the Feynman propagator, which obeys

(−∂2
y +m2)∆(y − z) = δ4(y − z) . (53.8)

After various integrations by parts, it is easy to see that eqs. (53.5–53.7)
reproduce eq. (53.4).

Now we can use the general matrix relation detAB = detA detB to
conclude that

detM = detM0 det M̃ . (53.9)

The advantage of this decomposition is that M0 is independent of the
background field ϕ, and so the resulting factor of (detM0)

−1 in Z(ϕ) can
simply be absorbed into the overall normalization. Furthermore, we have
M̃ = I −G, where

I(x, y) = δ4(x− y) (53.10)

is the identity matrix, and

G(x, y) = g∆(x− y)ϕ(y) . (53.11)

Thus, for ϕ(x) = 0, we have M̃ = I and so det M̃ = 1. Then, using
eq. (53.3) and the normalization condition Z(0) = 1, we see that for nonzero
ϕ(x) we must have simply

Z(ϕ) = (det M̃)−1 . (53.12)

Next, we need the general matrix relation detA = exp Tr lnA, which is
most easily proved by working in a basis where A is in Jordan form (that
is, all entries below the main diagonal are zero). Thus we can write

det M̃ = exp Tr ln M̃

= exp Tr ln(I −G)

= exp Tr

[
−
∞∑

n=1

1

n
Gn
]
. (53.13)

Combining eqs. (53.12) and (53.13) we get

Z(ϕ) = exp
∞∑

n=1

1

n
TrGn , (53.14)

where

TrGn = gn
∫
d4x1 . . . d

4xn ∆(x1−x2)ϕ(x2) . . .∆(xn−x1)ϕ(x1) . (53.15)
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..
.

Figure 53.1: All connected diagrams with ϕ(x) treated as an external field.
Each of the n dots represents a factor of igϕ(x), and each solid line is a χ
or Ψ propagator.

This is our final result for Z(ϕ).
To better understand what it means, we will rederive it in a different

way. Consider treating the gϕχ†χ term in L as an interaction. This leads
to a vertex that connects two χ propagators; the associated vertex factor
is igϕ(x). According to the general analysis of section 9, we have Z(ϕ) =
exp iΓ(ϕ), where iΓ(ϕ) is given by a sum of connected diagrams. (We have
called the exponent Γ rather than W because it is naturally interpreted as a
quantum action for ϕ after χ has been integrated out.) The only connected
diagrams we can draw with these Feynman rules are those of fig. (53.1),
with n insertions of the vertex, where n ≥ 1. The diagram with n vertices
has an n-fold cyclic symmetry, leading to a symmetry factor of S = n.
The factor of i associated with each vertex is canceled by the factor of 1/i
associated with each propagator. Thus the value of the n-vertex diagram
is

1

n
gn
∫
d4x1 . . . d

4xn ∆(x1−x2)ϕ(x2) . . .∆(xn−x1)ϕ(x1) . (53.16)

Summing up these diagrams, and using eq. (53.15), we find

iΓ(ϕ) =
∞∑

n=1

1

n
TrGn . (53.17)

This neatly reproduces eq. (53.14). Thus we see that a functional determi-
nant can be represented as an infinite sum of Feynman diagrams.

Next we consider a theory of a Dirac fermion Ψ with

L = iΨ/∂Ψ −mΨΨ + gϕΨΨ , (53.18)

where ϕ is again a real scalar background field. We define the path integral

Z(ϕ) =

∫
DΨDΨ ei

∫
d4xL , (53.19)
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where we again use the ǫ trick to impose vacuum boundary conditions, and
the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex Grassmann variables
ψi, then we can evaluate gaussian integrals by the general formula

∫
dnψ̄ dnψ exp

(−iψ̄iMijψj
) ∝ detM . (53.20)

In the case of the functional integral in eq. (53.19), the index i on the
integration variable is replaced by the continuous spacetime label x plus
the spinor index α, and the “matrix” M becomes

Mαβ(x, y) = [−i/∂x +m− gϕ(x)]αβδ
4(x− y) . (53.21)

In order to apply eq. (53.20), we have to understand what it means to
compute the determinant of this expression.

To this end, let us first note that we can write M = M0M̃ , which is
shorthand for

Mαγ(x, z) =

∫
d4yM0αβ(x, y)M̃βγ(y, z) , (53.22)

where

M0αβ(x, y) = (−i/∂x +m)αβδ
4(x− y) , (53.23)

M̃βγ(y, z) = δβγδ
4(y − z) − gSβγ(y − z)ϕ(z) . (53.24)

Here Sβγ(y − z) is the Feynman propagator, which obeys

(−i/∂y +m)αβSβγ(y − z) = δαγδ
4(y − z) . (53.25)

After various integrations by parts, it is easy to see that eqs. (53.22–53.24)
reproduce eq. (53.21).

Now we can use eq. (53.9). The advantage of this decomposition is that
M0 is independent of the background field ϕ, and so the resulting factor
of detM0 in Z(ϕ) can simply be absorbed into the overall normalization.
Furthermore, we have M̃ = I −G, where

Iαβ(x, y) = δαβδ
4(x− y) (53.26)

is the identity matrix, and

Gαβ(x, y) = gSαβ(x− y)ϕ(y) . (53.27)

Thus, for ϕ(x) = 0, we have M̃ = I and so det M̃ = 1. Then, using
eq. (53.20) and the normalization condition Z(0) = 1, we see that for
nonzero ϕ(x) we must have simply

Z(ϕ) = det M̃ . (53.28)
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Next, we use eqs. (53.13) and (53.28) to get

Z(ϕ) = exp −
∞∑

n=1

1

n
TrGn , (53.29)

where now

TrGn = gn
∫
d4x1 . . . d

4xn trS(x1−x2)ϕ(x2) . . . S(xn−x1)ϕ(x1) , (53.30)

and “tr” denotes a trace over spinor indices. This is our final result for
Z(ϕ).

To better understand what it means, we will rederive it in a different
way. Consider treating the gϕΨΨ term in L as an interaction. This leads
to a vertex that connects two Ψ propagators; the associated vertex factor
is igϕ(x). According to the general analysis of section 9, we have Z(ϕ) =
exp iΓ(ϕ), where iΓ(ϕ) is given by a sum of connected diagrams. (We have
called the exponent Γ rather than W because it is naturally interpreted
as a quantum action for ϕ after Ψ has been integrated out.) The only
connected diagrams we can draw with these Feynman rules are those of
fig. (53.1), with n insertions of the vertex, where n ≥ 1. The diagram with
n vertices has an n-fold cyclic symmetry, leading to a symmetry factor of
S = n. The factor of i associated with each vertex is canceled by the factor
of 1/i associated with each propagator. The closed fermion loop implies a
trace over the spinor indices. Thus the value of the n-vertex diagram is

1

n
gn
∫
d4x1 . . . d

4xn trS(x1−x2)ϕ(x2) . . . S(xn−x1)ϕ(x1) . (53.31)

Summing up these diagrams, we find that we are missing the overall minus
sign in eq. (53.29). The appropriate conclusion is that we must associate
an extra minus sign with each closed fermion loop.



Part III

Spin One
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54 Maxwell’s Equations

Prerequisite: 3

The most common (and important) spin-one particle is the photon. Emis-
sion and absorption of photons by matter is an important phenomenon in
many areas of physics, and so that is the context in which most physicists
first encounter a serious treatment of photons. We will use a brief review
of this subject (in this section and the next) as our entry point into the
theory of quantum electrodynamics.

Let us begin with classical electrodynamics. Maxwell’s equations are

∇·E = ρ , (54.1)

∇× B − Ė = J , (54.2)

∇× E + Ḃ = 0 , (54.3)

∇·B = 0 , (54.4)

where E is the electric field, B is the magnetic field, ρ is the charge density,
and J is the current density. We have written Maxwell’s equations in
Heaviside-Lorentz units, and also set c = 1. In these units, the magnitude
of the force between two charges of magnitude Q is Q2/4πr2.

Maxwell’s equations must be supplemented by formulae that give us
the dynamics of the charges and currents (such as the Lorentz force law for
point particles). For now, however, we will treat the charges and currents as
specified sources, and focus on the dynamics of the electromagnetic fields.

The last two of Maxwell’s equations, the ones with no sources on the
right-hand side, can be solved by writing the E and B fields in terms of a
scalar potential ϕ and a vector potential A,

E = −∇ϕ− Ȧ , (54.5)

B = ∇× A . (54.6)

The potentials uniquely determine the fields, but the fields do not uniquely
determine the potentials. Given a particular ϕ and A that result in a
particular E and B, we will get the same E and B from any other potentials
ϕ′ and A′ that are related by

ϕ′ = ϕ+ Γ̇ , (54.7)

A′ = A −∇Γ , (54.8)

where Γ is an arbitrary function of spacetime. A change of potentials that
does not change the fields is called a gauge transformation. The E and B
fields are gauge invariant.
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All this becomes more compact and elegant in a relativistic notation.
We define the four-vector potential or gauge field

Aµ ≡ (ϕ,A) . (54.9)

We also define the field strength

Fµν ≡ ∂µAν − ∂νAµ . (54.10)

Obviously, Fµν is antisymmetric: Fµν = −F νµ. Comparing eqs. (54.5) and
(54.6) with eqs. (54.9) and (54.10), we see that

F 0i = Ei , (54.11)

F ij = εijkBk . (54.12)

The first two of Maxwell’s equations can now be written as

∂νF
µν = Jµ , (54.13)

where
Jµ ≡ (ρ,J) (54.14)

is the charge-current density four-vector.
If we take the four-divergence of eq. (54.13), we get ∂µ∂νF

µν = ∂µJ
µ.

The left-hand side of this equation vanishes, because ∂µ∂ν is symmetric on
exchange of µ and ν, while Fµν is antisymmetric. We conclude that we
must have

∂µJ
µ = 0 , (54.15)

or equivalently
ρ̇+ ∇·J = 0 ; (54.16)

that is, the electromagnetic current must be conserved.
The last two of Maxwell’s equations can be written as

εµνρσ∂
ρFµν = 0 , (54.17)

where εµνρσ is the completely antisymmetric Levi-Civita tensor; see section
34. Plugging in eq. (54.10), we see that eq. (54.17) is automatically satisfied,
since the antisymmetric combination of two derivatives vanishes.

Eqs. (54.7) and (54.8) can be combined into

A′µ = Aµ − ∂µΓ . (54.18)

Setting F ′µν = ∂µA′ν − ∂νA′µ and using eq. (54.18), we get

F ′µν = Fµν − (∂µ∂ν − ∂ν∂µ)Γ . (54.19)



54: Maxwell’s Equations 335

The last term vanishes because derivatives commute; thus the field strength
is gauge invariant,

F ′µν = Fµν . (54.20)

Next we will find an action that results in Maxwell’s equations as the
equations of motion. We will treat the current as an external source. The
action we seek should be Lorentz invariant, gauge invariant, parity and
time-reversal invariant, and no more than second order in derivatives. The
only candidate is S =

∫
d4xL, where

L = −1
4F

µνFµν + JµAµ . (54.21)

The first term is obviously gauge invariant, because Fµν is. After a gauge
transformation, eq. (54.18), the second term becomes JµA′µ, and the differ-
ence is

Jµ(A′µ −Aµ) = −Jµ∂µΓ
= −(∂µJ

µ)Γ − ∂µ(J
µΓ) . (54.22)

The first term in eq. (54.22) vanishes because the current is conserved. The
second term is a total divergence, and its integral over d4x vanishes (assum-
ing suitable boundary conditions at infinity). Thus the action specified by
eq. (54.21) is gauge invariant.

Setting Fµν = ∂µAν − ∂νAµ and multiplying out the terms, eq. (54.21)
becomes

L = −1
2∂

µAν∂µAν + 1
2∂

µAν∂νAµ + JµAµ (54.23)

= +1
2Aµ(g

µν∂2 − ∂µ∂ν)Aν + JµAµ − ∂µKµ , (54.24)

whereKµ = 1
2A

ν(∂µAν−∂νAµ). The last term is a total divergence, and can
be dropped. From eq. (54.24), we can see that varying Aµ while requiring
S to be unchanged yields the equation of motion

(gµν∂2 − ∂µ∂ν)Aν + Jµ = 0 . (54.25)

Noting that ∂νF
µν = ∂ν(∂

µAν − ∂νAµ) = (∂µ∂ν − gµν∂2)Aν , we see that
eq. (54.25) is equivalent to eq. (54.13), and hence to Maxwell’s equations.
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55 Electrodynamics in Coulomb Gauge

Prerequisite: 54

Next we would like to construct the hamiltonian, and quantize the electro-
magnetic field.

There is an immediate difficulty, caused by the gauge invariance: we
have too many degrees of freedom. This problem manifests itself in several
ways. For example, the lagrangian

L = −1
4F

µνFµν + JµAµ (55.1)

= −1
2∂

µAν∂µAν + 1
2∂

µAν∂νAµ + JµAµ (55.2)

does not contain the time derivative of A0. Thus, this field has no canoni-
cally conjugate momentum and no dynamics.

To deal with this problem, we must eliminate the gauge freedom. We
do this by choosing a gauge. We choose a gauge by imposing a gauge
condition. This is a condition that we require Aµ(x) to satisfy. The idea
is that there should be only one Aµ(x) that results in a given Fµν(x) and
that also satisfies the gauge condition.

One possible class of gauge conditions is nµAµ(x) = 0, where nµ is a
constant four-vector. If n is spacelike (n2 > 0), then we have chosen axial
gauge; if n is lightlike, (n2 = 0), it is lightcone gauge; and if n is timelike,
(n2 < 0), it is temporal gauge.

Another gauge is Lorenz gauge, where the condition is ∂µAµ = 0. We
will meet a family of closely related gauges in section 62.

In this section, we will work in Coulomb gauge, also known as radiation
gauge or transverse gauge. The condition for Coulomb gauge is

∇·A(x) = 0 . (55.3)

We can impose eq. (55.3) by acting on Ai(x) with a projection operator,

Ai(x) →
(
δij −

∇i∇j

∇2

)
Aj(x) . (55.4)

We construct the right-hand side of eq. (55.4) by Fourier-transforming Ai(x)
to Ãi(k), multiplying Ãi(k) by the matrix δij − kikj/k

2, and then Fourier-
transforming back to position space. From now on, whenever we write Ai,
we will implicitly mean the right-hand side of eq. (55.4).

Now let us write out the lagrangian in terms of the scalar and vector
potentials, ϕ = A0 and Ai, with Ai obeying the Coulomb gauge condition.
Starting from eq. (55.2), we get

L = 1
2 ȦiȦi − 1

2∇jAi∇jAi + JiAi
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+ 1
2∇iAj∇jAi + Ȧi∇iϕ

+ 1
2∇iϕ∇iϕ− ρϕ . (55.5)

In the second line of eq. (55.5), the ∇i in each term can be integrated by
parts; in the first term, we will then get a factor of ∇j(∇iAi), and in the
second term, we will get a factor of ∇iȦi. Both of these vanish by virtue
of the gauge condition ∇iAi = 0, and so both of these terms can simply be
dropped.

If we now vary ϕ (and require S =
∫
d4xL to be stationary), we find

that ϕ obeys Poisson’s equation,

−∇2ϕ = ρ . (55.6)

The solution is

ϕ(x, t) =

∫
d3y

ρ(y, t)

4π|x−y| . (55.7)

This solution is unique if we impose the boundary conditions that ϕ and ρ
both vanish at spatial infinity.

Eq. (55.7) tells us that ϕ(x, t) is given entirely in terms of the charge
density at the same time, and so has no dynamics of its own. It is therefore
legitimate to plug eq. (55.7) back into the lagrangian. After an integration
by parts to turn ∇iϕ∇iϕ into −ϕ∇2ϕ = ϕρ, the result is

L = 1
2ȦiȦi − 1

2∇jAi∇jAi + JiAi + Lcoul , (55.8)

where

Lcoul = −1

2

∫
d3y

ρ(x, t)ρ(y, t)

4π|x−y| . (55.9)

We can now vary Ai; keeping proper track of the implicit projection opera-
tor in eq. (55.4), we find that Ai obeys the massless Klein-Gordon equation
with the projected current as a source,

−∂2Ai(x) =

(
δij −

∇i∇j

∇2

)
Jj(x) . (55.10)

For a free field (Ji = 0), the general solution is

A(x) =
∑

λ=±

∫
d̃k
[
ε
∗
λ(k)aλ(k)eikx + ελ(k)a†λ(k)e−ikx

]
, (55.11)

where k0 = ω = |k|, d̃k = d3k/(2π)32ω, and ε+(k) and ε−(k) are po-
larization vectors. In order to satisfy the Coulomb gauge condition, the
polarization vectors must be orthogonal to the wave vector k. We will
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choose them to correspond to right- and left-handed circular polarizations;
for k = (0, 0, k), we then have

ε+(k) = 1√
2
(1,−i, 0) ,

ε−(k) = 1√
2
(1,+i, 0) . (55.12)

More generally, the two polarization vectors along with the unit vector in
the k direction form an orthonormal and complete set,

k·ελ(k) = 0 , (55.13)

ελ′(k)·ε∗λ(k) = δλ′λ , (55.14)

∑

λ=±
ε∗iλ(k)εjλ(k) = δij −

kikj
k2

. (55.15)

The coefficients aλ(k) and a†λ(k) will become operators after quantization,
which is why we have used the dagger symbol for conjugation.

In complete analogy with the procedure used for a scalar field in section
3, we can invert eq. (55.11) and its time derivative to get

aλ(k) = +i ελ(k)·
∫
d3x e−ikx

↔
∂0 A(x) , (55.16)

a†λ(k) = −i ε∗λ(k)·
∫
d3x e+ikx

↔
∂0 A(x) , (55.17)

where f
↔
∂µg = f(∂µg) − (∂µf)g.

Now we can proceed to the hamiltonian formalism. First, we compute
the canonically conjugate momentum to Ai,

Πi =
∂L
∂Ȧi

= Ȧi . (55.18)

Note that ∇iAi = 0 implies ∇iΠi = 0. The hamiltonian density is then

H = ΠiȦi − L
= 1

2ΠiΠi +
1
2∇jAi∇jAi − JiAi + Hcoul , (55.19)

where Hcoul = −Lcoul.
To quantize the field, we impose the canonical commutation relations.

Keeping proper track of the implicit projection operator in eq. (55.4), we
have

[Ai(x, t),Πj(y, t)] = i

(
δij −

∇i∇j

∇2

)
δ3(x − y)

= i

∫
d3k

(2π)3
eik·(x−y)

(
δij −

kikj
k2

)
. (55.20)
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The commutation relations of the aλ(k) and a†λ(k) operators follow from
eq. (55.20) and [Ai, Aj ] = [Πi,Πj ] = 0 (at equal times). The result is

[aλ(k), aλ′(k
′)] = 0 , (55.21)

[a†λ(k), a†λ′(k
′)] = 0 , (55.22)

[aλ(k), a†λ′(k
′)] = (2π)32ω δ3(k′ − k)δλλ′ . (55.23)

We interpret a†λ(k) and aλ(k) as creation and annihilation operators for
photons of definite helicity, with helicity +1 corresponding to right-circular
polarization and helicity −1 to left-circular polarization.

It is now straightfoward to write the hamiltonian explicitly in terms of
these operators. We find

H =
∑

λ=±

∫
d̃k ω a†λ(k)aλ(k) + 2E0V −

∫
d3x J(x)·A(x) +Hcoul , (55.24)

where E0 = 1
2(2π)−3

∫
d3k ω is the zero-point energy per unit volume that

we found for a real scalar field in section 3, V is the volume of space, the
Coulomb hamiltonian is

Hcoul =
1

2

∫
d3x d3y

ρ(x, t)ρ(y, t)

4π|x−y| , (55.25)

and we use eq. (55.11) to express Ai(x) in terms of aλ(k) and a†λ(k) at any
one particular time (say, t = 0). This is sufficient, because H itself is time
independent.

This form of the hamiltonian of electrodynamics is often used as the
starting point for calculations of atomic transition rates, with the charges
and currents treated via the nonrelativistic Schrödinger equation. The
Coulomb interaction appears explicitly, and the J·A term allows for the
creation and annihilation of photons of definite polarization.

Reference Notes

A more rigorous treatment of quantization in Coulomb gauge can be found
in Weinberg I.

Problems

55.1) Use eqs. (55.16), (55.17), (55.20) and [Ai, Aj ] = [Πi,Πj ] = 0 (at equal
times) to verify eqs. (55.21–55.23).

55.2) Use eqs. (55.11), (55.19), and (55.21–55.23) to verify eq. (55.24).
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56 LSZ Reduction for Photons

Prerequisite: 5, 55

In section 55, we found that the creation and annihilation operators for free
photons could be written as

a†λ(k) = −i ε∗λ(k)·
∫
d3x e+ikx

↔
∂0 A(x) , (56.1)

aλ(k) = +i ελ(k)·
∫
d3x e−ikx

↔
∂0 A(x) , (56.2)

where ελ(k) is a polarization vector. From here, we can follow the analysis
of section 5 line by line to deduce the LSZ reduction formula for photons.
The result is that the creation operator for each incoming photon should
be replaced by

a†λ(k)in → i εµ∗λ (k)

∫
d4x e+ikx(−∂2)Aµ(x) , (56.3)

and the destruction operator for each outgoing photon should be replaced
by

aλ(k)out → i εµλ(k)

∫
d4x e−ikx(−∂2)Aµ(x) , (56.4)

and then we should take the vacuum expectation value of the time-ordered
product. Note that, in writing eqs. (56.3) and (56.4), we have made them
look nicer by introducing ε0λ(k) ≡ 0, and then using four-vector dot prod-
ucts rather than three-vector dot products.

The LSZ formula is valid provided the field is normalized according to
the free-field formulae

〈0|Ai(x)|0〉 = 0 , (56.5)

〈k, λ|Ai(x)|0〉 = εiλ(k)eikx , (56.6)

where |k, λ〉 is a single photon state, normalized according to

〈k′, λ′|k, λ〉 = (2π)32ω δ3(k′ − k)δλλ′ . (56.7)

The zero on the right-hand side of eq. (56.5) is required by rotation invari-
ance, and only the overall scale of the right-hand side of eq. (56.6) might
be different in an interacting theory.

The renormalization of Ai necessitates including appropriate Z factors
in the lagrangian,

L = −1
4Z3F

µνFµν + Z1J
µAµ . (56.8)
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Here Z3 and Z1 are the traditional names; we will meet Z2 in section 62.
We must choose Z3 so that eq. (56.6) holds. We will fix Z1 by requiring the
corresponding vertex function to take on a certain value for a particular set
of external momenta.

Next we must compute the correlation functions 〈0|TAi(x) . . . |0〉. As
usual, we begin by working with free field theory. The analysis is again
almost identical to the case of a scalar field; see problem 8.4. We find that,
in free field theory,

〈0|TAi(x)Aj(y)|0〉 = 1
i∆

ij(x− y) , (56.9)

where the propagator is

∆ij(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 − iǫ

∑
λ=±ε

i∗
λ (k)εjλ(k) . (56.10)

As with a free scalar field, correlations of an odd number of fields van-
ish, and correlations of an even number of fields are given in terms of the
propagator by Wick’s theorem; see section 8.

We would now like to evaluate the path integral for the free electromag-
netic field

Z0(J) ≡ 〈0|0〉J =

∫
DA ei

∫
d4x [− 1

4
FµνFµν+JµAµ] . (56.11)

Here we treat the current Jµ(x) as an external source.
We will evaluate Z0(J) in Coulomb gauge. This means that we will

integrate over only those field configurations that satisfy ∇·A = 0.
We begin by integrating over A0. Because the action is quadratic in

Aµ, this is equivalent to solving the variational equation for A0, and then
substituting the solution back into the lagrangian. The result is that we
have the Coulomb term in the action,

Scoul = −1

2

∫
d4x d4y δ(x0−y0)

J0(x)J0(y)

4π|x−y| . (56.12)

Since this term does not depend on the vector potential, we simply get a
factor of exp(iScoul) in front of the remaining path integral over Ai. We wll
perform this integral formally (as we did for fermion fields in section 43)
by requiring it to yield the correct results for the correlation functions of
Ai when we take functional derivatives with respect to Ji. In this way we
find that

Z0(J) = exp

[
iScoul +

i

2

∫
d4x d4y Ji(x)∆

ij(x− y)Jj(y)

]
. (56.13)
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We can make Z0(J) look prettier by writing it as

Z0(J) = exp

[
i

2

∫
d4x d4y Jµ(x)∆

µν(x− y)Jν(y)

]
, (56.14)

where we have defined

∆µν(x− y) ≡
∫

d4k

(2π)4
eik(x−y) ∆̃µν(k) , (56.15)

∆̃µν(k) ≡ − 1

k2
δµ0δν0 +

1

k2 − iǫ

∑
λ=±ε

µ∗
λ (k)ενλ(k) . (56.16)

The first term on the right-hand side of eq. (56.16) reproduces the Coulomb
term in eq. (56.13) by virtue of the facts that

∫ +∞

−∞

dk0

2π
e−ik

0(x0−y0) = δ(x0 − y0) , (56.17)

∫
d3k

(2π)3
eik·(x−y)

k2
=

1

4π|x − y| . (56.18)

The second term on the right-hand side of eq. (56.16) reproduces the second
term in eq. (56.13) by virtue of the fact that ε0λ(k) = 0.

Next we will simplify eq. (56.16). We begin by introducing a unit vector
in the time direction,

t̂µ = (1,0) . (56.19)

Next we need a unit vector in the k direction, which we will call ẑµ. We
first note that t̂·k = −k0, and so we can write

(0,k) = kµ + (t̂·k)t̂µ . (56.20)

The square of this four-vector is

k2 = k2 + (t̂·k)2 , (56.21)

where we have used t̂2 = −1. Thus the unit vector that we want is

ẑµ =
kµ + (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2 . (56.22)

Now we recall from section 55 that

∑

λ=±
εi∗λ (k)εjλ(k) = δij −

kikj
k2

. (56.23)
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This can be extended to i→ µ and j → ν by writing
∑

λ=±
εµ∗λ (k)ενλ(k) = gµν + t̂µt̂ν − ẑµẑν . (56.24)

It is not hard to check that the right-hand side of eq. (56.24) vanishes if
µ = 0 or ν = 0, and agrees with eq. (56.23) for µ = i and ν = j. Putting
all this together, we can now write eq. (56.16) as

∆̃µν(k) = − t̂µt̂ν

k2 + (t̂·k)2 +
gµν + t̂µt̂ν − ẑµẑν

k2 − iǫ
. (56.25)

The next step is to consider the terms in this expression that contain
factors of kµ or kν ; from eq. (56.22), we see that these will arise from the
ẑµẑν term. In eq. (56.15), a factor of kµ can be written as a derivative with
respect to xµ acting on eik(x−y). This derivative can then be integrated
by parts in eq. (56.14) to give a factor of ∂µJµ(x). But ∂µJµ(x) vanishes,
because the current must be conserved. Similarly, a factor of kν can be
turned into ∂νJν(y), and also leads to a vanishing contribution. Therefore,
we can ignore any terms in ∆̃µν(k) that contain factors of kµ or kν .

From eq. (56.22), we see that this means we can make the substitution

ẑµ → (t̂·k)t̂µ
[k2 + (t̂·k)2]1/2 . (56.26)

Then eq. (56.25) becomes

∆̃µν(k) =
1

k2 − iǫ

[
gµν +

(
− k2

k2 + (t̂·k)2 + 1 − (t̂·k)2
k2 + (t̂·k)2

)
t̂µt̂ν

]
,

(56.27)
where the three coefficients of t̂µt̂ν come from the Coulomb term, the t̂µt̂ν

term in the polarization sum, and the ẑµẑν term, respectively. A bit of
algebra now reveals that the net coefficient of t̂µt̂ν vanishes, leaving us
with the elegant expression

∆̃µν(k) =
gµν

k2 − iǫ
. (56.28)

Written in this way, the photon propagator is said to be in Feynman gauge.
(It would still be in Coulomb gauge if we had retained the kµ and kν terms
that we previously dropped.)

In the next section, we will rederive eq. (56.28) from a more explicit
path-integral point of view.

Problems

56.1) Use eqs. (55.11) and (55.21–55.23) to verify eqs. (56.9–56.10).
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57 The Path Integral for Photons

Prerequisite: 8, 56

In this section, in order to get a better understanding of the photon path
integral, we will evaluate it directly, using the methods of section 8. We
begin with

Z0(J) =

∫
DA eiS0 , (57.1)

S0 =

∫
d4x

[
−1

4F
µνFµν + JµAµ

]
. (57.2)

Following section 8, we Fourier-transform to momentum space, where we
find

S0 =
1

2

∫
d4k

(2π)4

[
−Ãµ(k)

(
k2gµν − kµkν

)
Ãν(−k)

+ J̃µ(k)Ãµ(−k) + J̃µ(−k)Ãµ(k)
]
. (57.3)

The next step is to shift the integration variable Ã so as to “complete the
square”. This involves inverting the 4 × 4 matrix k2gµν − kµkν . However,
this matrix has a zero eigenvalue, and cannot be inverted.

To see this, let us write

k2gµν − kµkν = k2Pµν(k) , (57.4)

where we have defined

Pµν(k) ≡ gµν − kµkν/k2 . (57.5)

This is a projection matrix because, as is easily checked,

Pµν(k)Pν
λ(k) = Pµλ(k) . (57.6)

Thus the only allowed eigenvalues of P are zero and one. There is at least
one zero eigenvalue, because

Pµν(k)kν = 0 . (57.7)

On the other hand, the sum of the eigenvalues is given by the trace

gµνP
µν(k) = 3 . (57.8)

Thus the remaining three eigenvalues must all be one.
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Now let us imagine carrying out the path integral of eq. (57.1), with
S0 given by eq. (57.3). Let us decompose the field Ãµ(k) into components
aligned along a set of linearly independent four-vectors, one of which is kµ.
(It will not matter whether or not this basis set is orthonormal.) Because
the term quadratic in Ãµ involves the matrix k2Pµν(k), and Pµν(k)kν = 0,
the component of Ãµ(k) that lies along kµ does not contribute to this
quadratic term. Furthermore, it does not contribute to the linear term
either, because ∂µJµ(x) = 0 implies kµJ̃µ(k) = 0. Thus this component
does not appear in the path integal at all! It then makes no sense to
integrate over it. We therefore define

∫ DA to mean integration over only
those components that are spanned by the remaining three basis vectors,
and therefore satisfy kµÃµ(k) = 0. This is equivalent to imposing Lorenz
gauge, ∂µAµ(x) = 0.

The matrix Pµν(k) is simply the matrix that projects a four-vector into
the subspace orthogonal to kµ. Within the subspace, Pµν(k) is equiva-
lent to the identity matrix. Therefore, within the subspace, the inverse
of k2Pµν(k) is (1/k2)Pµν(k). Employing the ǫ trick to pick out vacuum
boundary conditions replaces k2 with k2 − iǫ.

We can now continue following the procedure of section 8, with the
result that

Z0(J) = exp

[
i

2

∫
d4k

(2π)4
J̃µ(k)

Pµν(k)

k2 − iǫ
J̃ν(−k)

]

= exp

[
i

2

∫
d4x d4y Jµ(x)∆

µν(x− y)Jν(y)

]
, (57.9)

where

∆µν(x− y) =

∫
d4k

(2π)4
eik(x−y)

Pµν(k)

k2 − iǫ
(57.10)

is the photon propagator in Lorenz gauge (also known as Landau gauge).
Of course, because the current is conserved, the kµkν term in Pµν(k) does
not contribute, and so the result is equivalent to that of Feynman gauge,
where Pµν(k) is replaced by gµν .
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58 Spinor Electrodynamics

Prerequisite: 45, 57

In the section, we will study spinor electrodynamics: the theory of photons
interacting with the electrons and positrons of a Dirac field. (We will
use the term quantum electrodynamics to denote any theory of photons,
irrespective of the kinds of particles with which they interact.)

We construct spinor electrodynamics by taking the electromagnetic cur-
rent jµ(x) to be proportional to the Noether current corresponding to the
U(1) symmetry of a Dirac field; see section 36. Specifically,

jµ(x) = eΨ(x)γµΨ(x) . (58.1)

Here e = −0.302822 is the charge of the electron in Heaviside-Lorentz
units, with h̄ = c = 1. (We will rely on context to distinguish this e
from the base of natural logarithms.) In these units, the fine-structure
constant is α = e2/4π = 1/137.036. With the normalization of eq. (58.1),
Q =

∫
d3x j0(x) is the electric charge operator.

Of course, when we specify a number in quantum field theory, we must
always have a renormalization scheme in mind; e = −0.302822 corresponds
to a specific version of on-shell renormalization that we will explore in
sections 62 and 63. The value of e is different in other renormalization
schemes, such as MS, as we will see in section 66.

The complete lagrangian of our theory is thus

L = −1
4F

µνFµν + iΨ/∂Ψ −mΨΨ + eΨγµΨAµ . (58.2)

In this section, we will be concerned with tree-level processes only, and so
we omit renormalizing Z factors.

We have a problem, though. A Noether current is conserved only when
the fields obey the equations of motion, or, equivalently, only at points
in field space where the action is stationary. On the other hand, in our
development of photon path integrals in sections 56 and 57, we assumed
that the current was always conserved.

This issue is resolved by enlarging the definition of a gauge transfor-
mation to include a transformation on the Dirac field as well as the elec-
tromagnetic field. Specifically, we define a gauge transformation to consist
of

Aµ(x) → Aµ(x) − ∂µΓ(x) , (58.3)

Ψ(x) → exp[−ieΓ(x)]Ψ(x) , (58.4)

Ψ(x) → exp[+ieΓ(x)]Ψ(x) . (58.5)
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It is not hard to check that L(x) is invariant under this transformation,
whether or not the fields obey their equations of motion. To perform this
check most easily, we first rewrite L as

L = −1
4F

µνFµν + iΨ /DΨ −mΨΨ , (58.6)

where we have defined the gauge covariant derivative (or just covariant
derivative for short)

Dµ ≡ ∂µ − ieAµ . (58.7)

In the last section, we found that Fµν is invariant under eq. (58.3), and
so the FF term in L is obviously invariant as well. It is also obvious
that the mΨΨ term in L is invariant under eqs. (58.4) and (58.5). This
leaves the Ψ /DΨ term. This term will also be invariant if, under the gauge
transformation, the covariant derivative of Ψ transforms as

DµΨ(x) → exp[−ieΓ(x)]DµΨ(x) . (58.8)

To see if this is true, we note that

DµΨ →
(
∂µ − ie[Aµ − ∂µΓ]

)(
exp[−ieΓ]Ψ

)

= exp[−ieΓ]
(
∂µΨ − ie(∂µΓ)Ψ − ie[Aµ − ∂µΓ]Ψ

)

= exp[−ieΓ]
(
∂µ − ieAµ

)
Ψ

= exp[−ieΓ]DµΨ . (58.9)

So eq. (58.8) holds, and Ψ /DΨ is gauge invariant.
We can also write the transformation rule forDµ a little more abstractly

as
Dµ → e−ieΓDµ e

+ieΓ , (58.10)

where the ordinary derivative in Dµ is defined to act on anything to its
right, including any fields that are left unwritten in eq. (58.10). Thus we
have

DµΨ →
(
e−ieΓDµe

+ieΓ
)(
e−ieΓΨ

)

= e−ieΓDµΨ , (58.11)

which is, of course, the same as eq. (58.9). We can also express the field
strength in terms of the covariant derivative by noting that

[Dµ,Dν ]Ψ(x) = −ieFµν(x)Ψ(x) . (58.12)
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We can write this more abstractly as

Fµν = i
e [D

µ,Dν ] , (58.13)

where, again, the ordinary derivative in each covariant derivative acts on
anything to its right. From eqs. (58.10) and (58.13), we see that, under a
gauge transformation,

Fµν → i
e

[
e−ieΓDµ e+ieΓ, e−ieΓDν e+ieΓ

]

= e−ieΓ
(
i
e [Dµ,Dν ]

)
e+ieΓ

= e−ieΓFµνe+ieΓ

= Fµν . (58.14)

In the last line, we are able to cancel the e±ieΓ factors against each other
because no derivatives act on them. Eq. (58.14) shows us that (as we already
knew) Fµν is gauge invariant.

It is interesting to note that the gauge transformation on the fermion
fields, eqs. (58.4–58.5), is a generalization of the U(1) transformation

Ψ → e−iαΨ , (58.15)

Ψ → e+iαΨ , (58.16)

that is a symmetry of the free Dirac lagrangian. The difference is that,
in the gauge transformation, the phase factor is allowed to be a function
of spacetime, rather than a constant that is the same everywhere. Thus,
the gauge transformation is also called a local U(1) transformation, while
eqs. (58.15–58.16) correspond to a global U(1) transformation. We say that,
in a gauge theory, the global U(1) symmetry is promoted to a local U(1)
symmetry, or that we have gauged the U(1) symmetry.

In section 57, we argued that the path integral over Aµ should be re-
stricted to those components of Ãµ(k) that are orthogonal to kµ, because
the component parallel to kµ did not appear in the integrand. Now we must
make a slightly more subtle argument. We argue that the path integral over
the parallel component is redundant, because the fermionic path integral
over Ψ and Ψ already includes all possible values of Γ(x). Therefore, as in
section 57, we should not integrate over the parallel component. (We will
make a more precise and careful version of this argument when we discuss
the quantization of nonabelian gauge theories in section 71.)
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By the standard procedure, this leads us to the following form of the
path integral for spinor electrodynamics:

Z(η, η, J) ∝ exp

[
ie

∫
d4x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1

i

δ

δηβ(x)

)]

× Z0(η, η, J) , (58.17)

where

Z0(η, η, J) = exp

[
i

∫
d4x d4y η(x)S(x− y)η(y)

]

× exp

[
i

2

∫
d4x d4y Jµ(x)∆µν(x− y)Jν(y)

]
, (58.18)

and

S(x− y) =

∫
d4p

(2π)4
(−/p+m)

p2 +m2 − iǫ
eip(x−y) , (58.19)

∆µν(x− y) =

∫
d4k

(2π)4
gµν

k2 − iǫ
eik(x−y) (58.20)

are the appropriate Feynman propagators for the corresponding free fields,
with the photon propagator in Feynman gauge. We impose the normaliza-
tion Z(0, 0, 0) = 1, and write

Z(η, η, J) = exp[iW (η, η, J)] . (58.21)

Then iW (η, η, J) can be expressed as a series of connected Feynman dia-
grams with sources.

The rules for internal and external Dirac fermions were worked out in
the context of Yukawa theory in section 45, and they follow here with no
change. For external photons, the LSZ analysis of section 56 implies that
each external photon line carries a factor of the polarization vector εµ(k).

Putting everything together, we get the following set of Feynman rules
for tree-level processes in spinor electrodynamics.

1. For each incoming electron, draw a solid line with an arrow pointed
towards the vertex, and label it with the electron’s four-momentum,
pi.

2. For each outgoing electron, draw a solid line with an arrow pointed
away from the vertex, and label it with the electron’s four-momentum,
p′i.
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3. For each incoming positron, draw a solid line with an arrow pointed
away from the vertex, and label it with minus the positron’s four-
momentum, −pi.

4. For each outgoing positron, draw a solid line with an arrow pointed
towards the vertex, and label it with minus the positron’s four-momentum,
−p′i.

5. For each incoming photon, draw a wavy line with an arrow pointed
towards the vertex, and label it with the photon’s four-momentum,
ki. (Wavy lines for photons is a standard convention.)

6. For each outgoing photon, draw a wavy line with an arrow pointed
away from the vertex, and label it with the photon’s four-momentum,
k′i.

7. The only allowed vertex joins two solid lines, one with an arrow point-
ing towards it and one with an arrow pointing away from it, and one
wavy line (whose arrow can point in either direction). Using this
vertex, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
inequivalent.

8. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

9. The value of a diagram consists of the following factors:

for each incoming photon, εµ∗λi
(ki);

for each outgoing photon, εµλ′i(k
′
i);

for each incoming electron, usi(pi);

for each outgoing electron, us′i(p
′
i);

for each incoming positron, vsi(pi);

for each outgoing positron, vs′i(p
′
i);

for each vertex, ieγµ;

for each internal photon, −igµν/(k2 − iǫ);

for each internal fermion, −i(−/p+m)/(p2 +m2 − iǫ).

10. Spinor indices are contracted by starting at one end of a fermion
line: specifically, the end that has the arrow pointing away from the
vertex. The factor associated with the external line is either u or v.
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Go along the complete fermion line, following the arrows backwards,
and write down (in order from left to right) the factors associated with
the vertices and propagators that you encounter. The last factor is
either a u or v. Repeat this procedure for the other fermion lines, if
any. The vector index on each vertex is contracted with the vector
index on either the photon propagator (if the attached photon line
is internal) or the photon polarization vector (if the attached photon
line is external).

11. The overall sign of a tree diagram is determined by drawing all con-
tributing diagrams in a standard form: all fermion lines horizontal,
with their arrows pointing from left to right, and with the left end-
points labeled in the same fixed order (from top to bottom); if the
ordering of the labels on the right endpoints of the fermion lines in a
given diagram is an even (odd) permutation of an arbitrarily chosen
fixed ordering, then the sign of that diagram is positive (negative).

12. The value of iT (at tree level) is given by a sum over the values of all
the contributing diagrams.

In the next section, we will do a sample calculation.

Problems

58.1) Compute P−1Aµ(x, t)P , T−1Aµ(x, t)T , and C−1Aµ(x, t)C, assuming
that P , T , and C are symmetries of the lagrangian. (Prerequisite:
40.)

58.2) Furry’s theorem. Show that any scattering amplitude with no exter-
nal fermions, and an odd number of external photons, is zero.



59: Scattering in Spinor Electrodynamics 352

59 Scattering in Spinor Electrodynamics

Prerequisite: 48, 58

In the last section, we wrote down the Feynman rules for spinor electro-
dynamics. In this section, we will compute the scattering amplitude (and
its spin-averaged square) at tree level for the process of electron-positron
annihilation into a pair of photons, e+e− → γγ.

The contributing diagrams are shown in fig. (59.1), and the associated
expression for the scattering amplitude is

T = e2 εµ1′ε
ν
2′ v2

[
γν

(−/p1 + /k′1 +m

−t+m2

)
γµ + γµ

(−/p1 + /k′2 +m

−u+m2

)
γν

]
u1 ,

(59.1)
where εµ1′ is shorthand for εµλ′1(k

′
1), v2 is shorthand for vs2(p2), and so on.

The Mandelstam variables are

s = −(p1 + p2)
2 = −(k′1 + k′2)

2 ,

t = −(p1 − k′1)
2 = −(p2 − k′2)

2 ,

u = −(p1 − k′2)
2 = −(p2 − k′1)

2 , (59.2)

and they obey s+ t+ u = 2m2.
Following the procedure of section 46, we write eq. (59.1) as

T = εµ1′ε
ν
2′ v2Aµνu1 , (59.3)

where

Aµν ≡ e2
[
γν

(−/p1 + /k′1 +m

−t+m2

)
γµ + γµ

(−/p1 + /k′2 +m

−u+m2

)
γν

]
. (59.4)

We also have
T ∗ = T = ερ∗1′ ε

σ∗
2′ u1Aρσ v2 . (59.5)

Using /a/b . . . = . . . /b/a, we see from eq. (59.4) that

Aρσ = Aσρ . (59.6)

Thus we have

|T |2 = εµ1′ε
ν
2′ ε

ρ∗
1′ ε

σ∗
2′ (v2Aµνu1)(u1Aσρv2) . (59.7)

Next, we will average over the initial electron and positron spins, using
the technology of section 46; the result is

1
4

∑

s1,s2

|T |2 = 1
4ε
µ
1′ε

ν
2′ε

ρ∗
1′ ε

σ∗
2′ Tr

[
Aµν(−/p1+m)Aσρ(−/p2−m)

]
. (59.8)
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Figure 59.1: Diagrams for e+e− → γγ, corresponding to eq. (59.1).

We would also like to sum over the final photon polarizations. From
eq. (59.8), we see that we must evaluate

∑

λ=±
εµλ(k)ερ∗λ (k) . (59.9)

We did this polarization sum in Coulomb gauge in section 56, with the
result that ∑

λ=±
εµλ(k)ερ∗λ (k) = gµρ + t̂µt̂ρ − ẑµẑρ , (59.10)

where t̂µ is a unit vector in the time direction, and ẑµ is a unit vector in
the k direction that can be expressed as

ẑµ =
kµ + (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2 . (59.11)

It is tempting to drop the kµ and kρ terms in eq. (59.10), on the grounds
that the photons couple to a conserved current, and so these terms should
not contribute. (We indeed used this argument to drop the analogous
terms in the photon propagator.) This also follows from the notion that
the scattering amplitude should be invariant under a gauge transformation,
as represented by a transformation of the external polarization vectors of
the form

εµλ(k) → εµλ(k) − iΓ̃(k)kµ . (59.12)

Thus, if we write a scattering amplitude T for a process that includes a
particular outgoing photon with four-momentum kµ as

T = εµλ(k)Mµ , (59.13)

or a particular incoming photon with four-momentum kµ as

T = εµ∗λ (k)Mµ , (59.14)
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then in either case we should have

kµMµ = 0 . (59.15)

Eq. (59.15) is in fact valid; we will give a proof of it, based on the Ward
identity for the electromagnetic current, in section 67. For now, we will
take eq. (59.15) as given, and so drop the kµ and kρ terms in eq. (59.10).

This leaves us with

∑

λ=±
εµλ(k)ερ∗λ (k) → gµρ + t̂µt̂ρ − (t̂·k)2

k2 + (t̂·k)2 t̂
µt̂ρ . (59.16)

But, for an external photon, k2 = 0. Thus the second and third terms in
eq. (59.16) cancel, leaving us with the beautifully simple substitution rule

∑

λ=±
εµλ(k)ερ∗λ (k) → gµρ . (59.17)

Using eq. (59.17), we can sum |T |2 over the polarizations of the outgoing
photons, in addition to averaging over the spins of the incoming fermions;
the result is

〈|T |2〉 ≡ 1
4

∑

λ′1,λ
′
2

∑

s1,s2

|T |2

= 1
4Tr

[
Aµν(−/p1+m)Aνµ(−/p2−m)

]

= e4
[ 〈Φtt〉

(m2 − t)2
+

〈Φtu〉 + 〈Φut〉
(m2 − t)(m2 − u)

+
〈Φuu〉

(m2 − u)2

]
, (59.18)

where

〈Φtt〉 = 1
4Tr

[
γν(−/p1+/k′1+m)γµ(−/p1+m)γµ(−/p1+/k′1+m)γν(−/p2−m)

]
,

〈Φuu〉 = 1
4Tr

[
γµ(−/p1+/k′2+m)γν(−/p1+m)γν(−/p1+/k′2+m)γµ(−/p2−m)

]
,

〈Φtu〉 = 1
4Tr

[
γν(−/p1+/k′1+m)γµ(−/p1+m)γν(−/p1+/k′2+m)γµ(−/p2−m)

]
,

〈Φut〉 = 1
4Tr

[
γµ(−/p1+/k′2+m)γν(−/p1+m)γµ(−/p1+/k′1+m)γν(−/p2−m)

]
.

(59.19)

Examinging 〈Φtt〉 and 〈Φuu〉, we see that they are transformed into each
other by k′1 ↔ k′2, which is equivalent to t ↔ u. The same is true of 〈Φtu〉
and 〈Φut〉. Thus we need only compute 〈Φtt〉 and 〈Φtu〉, and then take
t↔ u to get 〈Φuu〉 and 〈Φut〉.
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Now we can apply the gamma-matrix technology of section 47. In
particular, we will need the d = 4 relations

γµγµ = −4 ,

γµ/aγµ = 2/a ,

γµ/a/bγµ = 4(ab) ,

γµ/a/b/cγµ = 2/c/b/a , (59.20)

in addition to the trace formulae. We also need

p1p2 = −1
2(s− 2m2) ,

k′1k
′
2 = −1

2s ,

p1k
′
1 = p2k

′
2 = +1

2(t−m2) ,

p1k
′
2 = p2k

′
1 = +1

2(u−m2) . (59.21)

which follow from eq. (59.2) plus the mass-shell conditions p2
1 = p2

2 = −m2

and k′21 = k′22 = 0. After a lengthy and tedious calculation, we find

〈Φtt〉 = 2[tu−m2(3t+ u) −m4] , (59.22)

〈Φtu〉 = 2m2(s − 4m2) , (59.23)

which then implies

〈Φuu〉 = 2[tu−m2(3u+ t) −m4] , (59.24)

〈Φut〉 = 2m2(s− 4m2) . (59.25)

This completes our calculation.
Other tree-level scattering processes in spinor electrodynamics pose no

new calculational difficulties, and are left to the problems.
In the high-energy limit, where the electron can be treated as massless,

we can reduce our labor with the method of spinor helicity, which was
introduced in section 50. We take this up in the next section.

Problems

59.1) Compute 〈|T |2〉 for Compton scattering, e−γ → e−γ. You should
find that your result is the same as that for e+e− → γγ, but with
s↔ t, and an extra overall minus sign. This is an example of crossing
symmetry ; there is an overall minus sign for each fermion that is
moved from the initial to the final state.



59: Scattering in Spinor Electrodynamics 356

59.2) Compute 〈|T |2〉 for Bhabha scattering, e+e− → e+e−.

59.3) Compute 〈|T |2〉 for Møller scattering, e−e− → e−e−. You should
find that your result is the same as that for e+e− → e+e−, but with
s↔ u. This is another example of crossing symmetry.
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60 Spinor Helicity for Spinor

Electrodynamics

Prerequisite: 50, 59

In section 50, we introduced a special notation for u and v spinors of definite
helicity for massless electrons and positrons. This notation greatly simpli-
fies calculations in the high-energy limit (s, |t|, and |u| all much greater
than m2).

We define the twistors

|p] ≡ u−(p) = v+(p) ,

|p〉 ≡ u+(p) = v−(p) ,

[p| ≡ u+(p) = v−(p) ,

〈p| ≡ u−(p) = v+(p) . (60.1)

We then have

[k| |p] = [k p] ,

〈k| |p〉 = 〈k p〉 ,

[k| |p〉 = 0 ,

〈k| |p] = 0 , (60.2)

where the twistor products [k p] and 〈k p〉 are antisymmetric,

[k p] = −[p k] ,

〈k p〉 = −〈p k〉 , (60.3)

and related by complex conjugation, 〈p k〉∗ = [k p]. They can be expressed
explicitly in terms of the components of the massless four-momenta k and
p. However, more useful are the relations

〈k p〉 [p k] = Tr 1
2 (1−γ5)/k/p

= −2k ·p

= −(k + p)2 (60.4)

and

〈p q〉 [q r] 〈r s〉 [s p] = Tr 1
2 (1−γ5)/p/q/r/s

= 2[(p·q)(r ·s) − (p·r)(q ·s) + (p·s)(q ·r)
+ iεµνρσpµqνrρsσ] . (60.5)
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Finally, for any massless four-momentum p we can write

−/p = |p〉[p| + |p]〈p| . (60.6)

We will quote other results from section 50 as we need them.
To apply this formalism to spinor electrodynamics, we need to write

photon polarization vectors in terms of twistors. The formulae we need are

εµ+(k) = − 〈q|γµ|k]√
2 〈q k〉

, (60.7)

εµ−(k) = − [q|γµ|k〉√
2 [q k]

, (60.8)

where q is an arbitrary massless reference momentum.
We will verify eqs. (60.7) and (60.8) for a specific choice of k, and then

rely on the Lorentz transformation properties of twistors to conclude that
the result must hold in any frame (and therefore for any massless four-
momentum k).

We will choose kµ = (ω, ωẑ) = ω(1, 0, 0, 1). Then, the most general
form of εµ+(k) is

εµ+(k) = eiφ 1√
2
(0, 1,−i, 0) + Ckµ . (60.9)

Here eiφ is an arbitrary phase factor, and C is an arbitrary complex num-
ber; the freedom to add a multiple of k comes from the underlying gauge
invariance.

To verify that eq. (60.7) reproduces eq. (60.9), we need the explicit form
of the twistors |k] and |k〉 when the three-momentum is in the z direction.
Using results in section 50 we find

|k] =
√

2ω




0
1
0
0


 , |k〉 =

√
2ω




0
0
1
0


 . (60.10)

For any value of q, the twistor 〈q| takes the form

〈q| = (0, 0, α, β) , (60.11)

where α and β are complex numbers. Plugging eqs. (60.10) and (60.11) into
eq. (60.7), and using

γµ =

(
0 σµ

σ̄µ 0

)
(60.12)
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along with σµ = (I, ~σ) and σ̄µ = (I,−~σ), we find that we reproduce
eq. (60.9) with eiφ = 1 and C = −β/(

√
2αω). There is now no need to check

eq. (60.8), because εµ−(k) = −[εµ+(k)]∗, as can be seen by using 〈q k〉∗ =
−[q k] along with another result from section 50, 〈q|γµ|k]∗ = 〈k|γµ|q].

In spinor electodynamics, the vector index on a photon polarization
vector is always contracted with the vector index on a gamma matrix. We
can get a convenient formula for /ε±(k) by using the Fierz identities

−1
2γ

µ〈q|γµ|k] = |k]〈q| + |q〉[k| , (60.13)

−1
2γ

µ[q|γµ|k〉 = |k〉[q| + |q]〈k| . (60.14)

We then have

/ε+(k;q) =

√
2

〈q k〉
(
|k]〈q| + |q〉[k|

)
, (60.15)

/ε−(k;q) =

√
2

[q k]

(
|k〉[q| + |q]〈k|

)
, (60.16)

where we have added the reference momentum as an explicit argument on
the left-hand sides.

Now we have all the tools we need for doing calculations. However,
we can simplify things even further by making maximal use of crossing
symmetry.

Note from eq. (60.1) that u− (which is the factor associated with an in-
coming electron) and v+ (an outgoing positron) are both represented by the
twistor |p], while u+ (an outgoing electron) and v− (an incoming positron)
are both represented by [p|. Thus the square-bracket twistors correspond
to outgoing fermions with positive helicity, and incoming fermions with
negative helicity. Similarly, the angle-bracket twistors correspond to out-
going fermions with negative helicity, and incoming fermions with positive
helicity.

Let us adopt a convention in which all particles are assigned four-
momenta that are treated as outgoing. A particle that has an assigned four-
momentum p then has physical four-momentum ǫpp, where ǫp = sign(p0) =
+1 if the particle is physically outgoing, and ǫp = sign(p0) = −1 if the
particle is physically incoming.

Since the physical three-momentum of an incoming particle is opposite
to its assigned three-momentum, a particle with negative helicity relative
to its physical three-momentum has positive helicity relative to its assigned
three-momentum. From now on, we will refer to the helicity of a particle
relative to its assigned momentum. Thus a particle that we say has “pos-
itive helicity” actually has negative physical helicity if it is incoming, and
positive physical helicity if it is outgoing.
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Figure 60.1: Diagrams for fermion-fermion scattering, with all momenta
treated as outgoing.

With this convention, the square-bracket twistors |p] and [p| represent
positive-helicity fermions, and the angle-bracket twistors |p〉 and 〈p| repre-
sent negative-helicity fermions. When ǫp = sign(p0) = −1, we analytically
continue the twistors by replacing each ω1/2 in eq. (60.10) with i|ω|1/2. Then
all of our formulae for twistors and polarizations hold without change, with
the exception of the rule for complex conjugation of a twistor product,
which becomes

〈p k〉∗ = ǫpǫk[k p] . (60.17)

Now we are ready to calculate some amplitudes. Consider first the
process of fermion-fermion scattering. The contributing tree-level diagrams
are shown in fig. (60.1).

The first thing to notice is that a diagram is zero if two external fermion
lines that meet at a vertex have the same helicity. This is because (as shown
in section 50) we get zero if we sandwich the product of an odd number of
gamma matrices between two twistors of the same helicity. In particular,
we have 〈p|γµ|k〉 = 0 and [p|γµ|k] = 0. Thus, we will get a nonzero result
for the tree-level amplitude only if two of the helicities are positive, and
two are negative. This means that, of the 24 = 16 possible combinations
of helicities, only six give a nonzero tree-level amplitude: T++−−, T+−+−,
T+−−+, T−−++, T−+−+, and T−++−, where the notation is Ts1s2s3s4. Fur-
thermore, the last three of these are related to the first three by complex
conjugation, so we only have three amplitudes to compute.

Let us begin with T+−−+. Only the first diagram of fig. (60.1) con-
tributes, because the second has two postive-helicity lines meeting at a
vertex. To evaluate the first diagram, we note that the two vertices con-
tribute a factor of (ie)2 = −e2, and the internal photon line contributes a
factor of igµν/s13, where we have defined the Mandelstam variable

sij ≡ −(pi + pj)
2 . (60.18)

Following the charge arrows backwards on each fermion line, and dividing
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by i to get T (rather than iT ), we find

T+−−+ = −e2 〈3|γµ|1] [4|γµ|2〉 /s13
= +2e2 [1 4] 〈2 3〉 /s13 , (60.19)

where 〈3| is short for 〈p3|, etc, and we have used yet another form of the
Fierz identity to get the second line.

The computation of T+−+− is exactly analogous, except that now it is
only the second diagram of fig. (60.1) that contributes. According to the
Feynman rules, this diagram comes with a relative minus sign, and so we
have

T+−+− = −2e2 [1 3] 〈2 4〉 /s14 . (60.20)

Finally, we turn to T++−−. Now both diagrams contribute, and we have

T++−− = −e2
(〈3|γµ|1] 〈4|γµ|2]

s13
− 〈4|γµ|1] 〈3|γµ|2]

s14

)

= −2e2 [1 2] 〈3 4〉
(

1

s13
+

1

s14

)

= +2e2 [1 2] 〈3 4〉
(

s12
s13s14

)
, (60.21)

where we used the Mandelstam relation s12 + s13 + s14 = 0 to get the last
line.

To get the cross section for a particular set of helicities, we must take the
absolute squares of the amplitudes. These follow from eqs. (60.4), (60.17),
and (60.18) :

|〈1 2〉|2 = |[1 2]|2 = ǫ1ǫ2s12 = |s12| . (60.22)

We can then compute the spin-averaged cross section by summing the ab-
solute squares of eqs. (60.19–60.21), multiplying by two to account for the
processes in which all helicities are opposite (and which have amplitudes
that are related by complex conjugation), and then dividing by four to aver-
age over the initial helicities. Making use of s34 = s12 and its permutations,
we find

〈|T |2〉 = 2e4
(
s214
s213

+
s213
s214

+
s412
s213s

2
14

)

= 2e4
(
s412 + s413 + s414

s213s
2
14

)
. (60.23)

For the processes of e−e− → e−e− and e+e+ → e+e+, we have s12 = s,
s13 = t, and s14 = u; for e+e− → e+e−, we have s13 = s, s14 = t, and
s12 = u.
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Figure 60.2: Diagrams for fermion-photon scattering, with all momenta
treated as outgoing.

Now we turn to processes with two external fermions and two external
photons, as shown in fig. (60.2). The first thing to notice is that a diagram is
zero if the two external fermion lines have the same helicity. This is because
the corresponding twistors sandwich an odd number of gamma matrices:
one from each vertex, and one from the massless fermion propagator S̃(p) =
−/p/p2. Thus we need only compute T+−λ3λ4 since T−+λ3λ4 is related by
complex conjugation.

Next we use eqs. (60.15–60.16) and (60.2–60.3) to get

/ε−(k;p)|p] = 0 , (60.24)

[p|/ε−(k;p) = 0 . (60.25)

/ε+(k;p)|p〉 = 0 , (60.26)

〈p|/ε+(k;p) = 0 , (60.27)

Thus we can get some amplitudes to vanish with appropriate choices of the
reference momenta in the photon polarizations.

So, let us consider

T+−λ3λ4 = −e2 〈2|/ελ4
(k4;q4)(/p1 + /k3)/ελ3

(k3;q3)|1] /s13

−e2 〈2|/ελ3
(k3;q3)(/p1 + /k4)/ελ4

(k4;q4)|1] /s14 . (60.28)

If we take λ3 = λ4 = −, then we can get both terms in eq. (60.28) to vanish
by choosing q3 = q4 = p1, and using eq. (60.24). If we take λ3 = λ4 = +,
then we can get both terms in eq. (60.28) to vanish by choosing q3 = q4 = p2,
and using eq. (60.27).

Thus, we need only compute T+−−+ and T+−+−. For T+−+−, we can
get the second term in eq. (60.28) to vanish by choosing q3 = p2, and using
eq. (60.27). Then we have

T+−+− = −e2 〈2|/ε−(k4;q4)(/p1 + /k3)/ε+(k3;p2)|1] /s13
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= −e2
√

2

[q44]
〈2 4〉 [q4|(/p1 + /k3)|2〉 [3 1]

√
2

〈2 3〉
1

s13
. (60.29)

Next we note that [p|/p = 0, and so it is useful to choose either q4 = p1

or q4 = k3. There is no obvious advantage in one choice over the other,
and they must give equivalent results, so let us take q4 = k3. Then, using
eq. (60.6) for /k3, we get

T+−+− = 2e2
〈2 4〉 [3 1] 〈1 2〉 [3 1]

[3 4] 〈2 3〉 s13
(60.30)

Now we use [3 1] 〈1 2〉 = −[3 4] 〈4 2〉 in the numerator (see problem 60.2),
and set s13 = 〈1 3〉 [3 1] in the denominator. Canceling common factors and
using antisymmetry of the twistor product then yields

T+−+− = 2e2
〈2 4〉2

〈1 3〉〈2 3〉 . (60.31)

We can now get T+−−+ simply by exchanging the labels 3 and 4,

T+−−+ = 2e2
〈2 3〉2

〈1 4〉〈2 4〉 . (60.32)

We can compute the spin-averaged cross section by summing the abso-
lute squares of eqs. (60.31) and (60.32), multiplying by two to account for
the processes in which all helicities are opposite (and which have ampli-
tudes that are related by complex conjugation), and then dividing by four
to average over the initial helicities. The result is

〈|T |2〉 = 2e4
(∣∣∣∣
s13
s14

∣∣∣∣+
∣∣∣∣
s14
s13

∣∣∣∣
)
. (60.33)

For the processes of e−γ → e−γ and e+γ → e+γ, we have s13 = s, s12 = t,
and s14 = u; for e+e− → γγ and γγ → e+e− we have s12 = s, s13 = t, and
s14 = u.

Problems

60.1) a) Show that

p·ε+(k;q) =
〈q p〉 [p k]√

2 〈q k〉
, (60.34)

p·ε−(k;q) =
[q p] 〈p k〉√

2 [q k]
. (60.35)
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Use this result to show that

k ·ε±(k;q) = 0 , (60.36)

which is required by gauge invariance, and also that

q ·ε±(k;q) = 0 . (60.37)

b) Show that

ε+(k;q)·ε+(k′;q′) =
〈q q′〉 [k k′]
〈q k〉 〈q′ k′〉 , (60.38)

ε−(k;q)·ε−(k′;q′) =
[q q′] 〈k k′〉
[q k] [q′ k′]

, (60.39)

ε+(k;q)·ε−(k′;q′) =
〈q k′〉 [k q′]
〈q k〉 [q′ k′]

. (60.40)

Note that the right-hand sides of eqs. (60.38) and (60.39) vanish if
q′ = q, and that the right-hand side of eq. (60.40) vanishes if q = k′

or q′ = k.

60.2) a) For a process with n external particles, and all momenta treated
as outgoing, show that

n∑

j=1

〈i j〉 [j k] = 0 and
n∑

j=1

[i j] 〈j k〉 = 0 . (60.41)

Hint: make use of eq. (60.6).

b) For n = 4, show that [3 1] 〈1 2〉 = − [3 4] 〈4 2〉.

60.3) Use various identities to show that eq. (60.31) can also be written as

T+−+− = −2e2
[1 3]2

[1 4] [2 4]
. (60.42)

60.4) a) Show explicitly that you would get the same result as eq. (60.31)
if you set q4 = p1 in eq. (60.29).

b) Show explicitly that you would get the same result as eq. (60.31)
if you set q4 = p2 in eq. (60.29).

60.5) Show that the tree-level scattering amplitude for two or more photons
that all have the same helicity, plus any number of fermions with
arbitrary helicities, vanishes.
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61 Scalar Electrodynamics

Prerequisite: 58

In this section, we will consider how charged spin-zero particles interact
with photons. We begin with the lagrangian for a complex scalar field with
a quartic interaction,

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4λ(ϕ†ϕ)2 . (61.1)

This lagrangian is obviously invariant under the global U(1) symmetry

ϕ(x) → e−iαϕ(x) ,

ϕ†(x) → e+iαϕ†(x) . (61.2)

We would like to promote this global symmetry to a local symmetry,

ϕ(x) → exp[−ieΓ(x)]ϕ(x) , (61.3)

ϕ†(x) → exp[+ieΓ(x)]ϕ†(x) . (61.4)

To do so, we must replace each ordinary derivative in eq. (61.1) with a
covariant derivative

Dµ ≡ ∂µ − ieAµ , (61.5)

where Aµ transforms as

Aµ(x) → Aµ(x) − ∂µΓ(x) , (61.6)

which implies that Dµ transforms as

Dµ → exp[−ieΓ(x)]Dµ exp[+ieΓ(x)] . (61.7)

Our complete lagrangian for scalar electrodynamics is then

L = −(Dµϕ)†Dµϕ−m2ϕ†ϕ− 1
4λ(ϕ†ϕ)2 − 1

4F
µνFµν . (61.8)

We have added the usual gauge-invariant kinetic term for the gauge field.
The quartic interaction term has a dimensionless coefficient, and so is nec-
essary for renormalizability. For now, we omit the renormalizing Z factors.

Of course, eq. (61.8) is invariant under a global U(1) transformation as
well as a local U(1) transformation: we simply set Γ(x) to a constant. Then
we can find the conserved Noether current corresponding to this symmetry,
following the procedure of section 22. In the case of spinor electrodynamics,
this current is same as it is for a free Dirac field, jµ = ΨγµΨ. In the case
of a complex scalar field, we find

jµ = −i[ϕ†Dµϕ− (Dµϕ)†ϕ] . (61.9)
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kk

Figure 61.1: The three vertices of scalar electrodynamics; the corresponding
vertex factors are ie(k + k′)µ, −2ie2gµν , and −iλ.

With a factor of e, this current should be identified as the electromag-
netic current. Because the covariant derivative appears in eq. (61.9), the
electromagnetic current depends explicitly on the gauge field. We had not
previously contemplated this possibility, but in scalar electrodynamics it
arises naturally, and is essential for gauge invariance.

It also poses no special problem in the quantum theory. We will make
the same assumption that we did for spinor electrodynamics: namely, that
the correct procedure is to omit integration over the component of Ãµ(k)
that is parallel to kµ, on the grounds that this integration is redundant.
This leads to the same Feynman rules for internal and external photons
as in section 58. The Feyman rules for internal and external scalars are
the same as those of problem 10.2. We will call the spin-zero particle with
electric charge +e a scalar electron or selectron (recall that our convention
is that e is negative), and the spin-zero particle with electric charge −e
a scalar positron or spositron. Scalar lines (traditionally drawn as dashed
in scalar electrodynamics) carry a charge arrow whose direction must be
preserved when lines are joined by vertices.

To determine the kinds of vertices we have, we first write out the inter-
action terms in the lagrangian of eq. (61.8):

L1 = ieAµ[(∂µϕ
†)ϕ− ϕ†∂µϕ] − e2AµAµϕ

†ϕ− 1
4λ(ϕ†ϕ)2 . (61.10)

This leads to the vertices shown in fig. (61.1). The vertex factors associated
with the last two terms are −2ie2gµν and −iλ. To get the vertex factor
for the first term, we note that if |k〉 is an incoming selectron state, then
〈0|ϕ(x)|k〉 = eikx and 〈0|ϕ†(x)|k〉 = 0; and if 〈k′| is an outgoing selectron
state, then 〈k′|ϕ†(x)|0〉 = e−ik

′x and 〈0|ϕ(x)|k〉 = 0. Therefore, in free field
theory,

〈k′|(∂µϕ†)ϕ|k〉 = −ik′µe−i(k
′−k)x , (61.11)

〈k′|ϕ†∂µϕ|k〉 = +ikµe
−i(k′−k)x . (61.12)
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This implies that the vertex factor for the first term in eq. (61.10) is given
by i(ie)[(−ik′µ) − (ikµ)] = ie(k + k′)µ.

Putting everything together, we get the following set of Feynman rules
for tree-level processes in scalar electrodynamics.

1. For each incoming selectron, draw a dashed line with an arrow pointed
towards the vertex, and label it with the selectron’s four-momentum,
ki.

2. For each outgoing selectron, draw a dashed line with an arrow pointed
away from the vertex, and label it with the selectron’s four-momentum,
k′i.

3. For each incoming spositron, draw a dashed line with an arrow pointed
away from the vertex, and label it with minus the spositron’s four-
momentum, −ki.

4. For each outgoing spositron, draw a dashed line with an arrow pointed
towards the vertex, and label it with minus the spositron’s four-
momentum, −k′i.

5. For each incoming photon, draw a wavy line with an arrow pointed
towards the vertex, and label it with the photon’s four-momentum,
ki.

6. For each outgoing photon, draw a wavy line with an arrow pointed
away from the vertex, and label it with the photon’s four-momentum,
k′i.

7. There are three allowed vertices, shown in fig. (61.1). Using these
vertices, join up all the external lines, including extra internal lines as
needed. In this way, draw all possible diagrams that are topologically
inequivalent.

8. Assign each internal line its own four-momentum. Think of the four-
momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree diagram, this fixes the momenta on all the
internal lines.

9. The value of a diagram consists of the following factors:

for each incoming photon, εµ∗λi
(ki);

for each outgoing photon, εµλi
(ki);

for each incoming or outgoing selectron or spositron, 1;

for each scalar-scalar-photon vertex, ie(k + k′)µ;



61: Scalar Electrodynamics 368

2

2k2k

1k 1k
1k

2k

k

k

1

2

1 k 1 k

k

k k

1

k 2

1

k 2

k2

Figure 61.2: Diagrams for ẽ+ẽ− → γγ.

for each scalar-scalar-photon-photon vertex, −2ie2gµν ;

for each four-scalar vertex, −iλ;

for each internal photon, −igµν/(k2 − iǫ);

for each internal scalar, −i/(k2 +m2 − iǫ).

10. The vector index on each vertex is contracted with the vector index
on either the photon propagator (if the attached photon line is inter-
nal) or the photon polarization vector (if the attached photon line is
external).

11. The value of iT (at tree level) is given by a sum over the values of all
the contributing diagrams.

Let us compute the scattering amplitude for a particular process, ẽ+ẽ− →
γγ, where ẽ− denotes a selectron. We have the diagrams of fig. (61.2). The
amplitude is

iT = (ie)2
1

i

(2k1−k′1)µεµ1′(k1−k′1−k2)νε
ν
2′

m2 − t
+ (1′ ↔ 2′)

− 2ie2gµνε
µ
1′ε

ν
2′ , (61.13)

where t = −(k1 − k′1)
2 and u = −(k1 − k′2)

2. This expression can be
simplified by noting that k1 − k′1 − k2 = k′2 − 2k2, and that ki·εi = 0. Then
we have

T = −e2
[
4(k1 ·ε1′)(k2 ·ε2′)

m2 − t
+

4(k1 ·ε2′)(k2 ·ε1′)
m2 − u

+ 2(ε1′ ·ε2′)
]
. (61.14)

To get the polarization-summed cross section, we take the absolute square
of eq. (61.14), and use the substitution rule

∑

λ=±
εµλ(k)ερ∗λ (k) → gµρ . (61.15)

This is a straightforward calculation, which we leave to the problems.
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Problems

61.1) Compute 〈|T |2〉 for ẽ+ẽ− → γγ, and express your answer in terms of
the Mandelstam variables.

61.2) Compute 〈|T |2〉 for the process ẽ−γ → ẽ−γ. You should find that
your result is the same as that for ẽ+ẽ− → γγ, but with s ↔ t, an
example of crossing symmetry.
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62 Loop Corrections in Spinor

Electrodynamics

Prerequisite: 51, 59

In this section we will compute the one-loop corrections in spinor electro-
dynamics.

First let us note that the general discussion of sections 18 and 29 leads
us to expect that we will need to add to the free lagrangian

L0 = iΨ/∂Ψ −mΨΨ − 1
4F

µνFµν (62.1)

all possible terms whose coefficients have positive or zero mass dimension,
and that respect the symmetries of the original lagrangian. These include
Lorentz symmetry, the U(1) gauge symmetry, and the discrete symmetries
of parity, time reversal, and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are
[Aµ] = 1 and [Ψ] = 3

2 . Gauge invariance requires that Aµ appear only in
the form of a covariant derivative Dµ. (Recall that the field strength Fµν

can be expressed as the commutator of two covariant derivatives.) Thus,
the only possible term we could add to L0 that does not involve the Ψ
field, and that has mass dimension four or less, is εµνρσF

µνF ρσ. This term,
however, is odd under parity and time reversal. Similarly, there are no terms
meeting all the requirements that involve Ψ: the only candidates contain
either γ5 (e.g., iΨγ5Ψ) and are forbidden by parity, or C (e.g, ΨTCΨ) and
are forbidden by the U(1) symmetry.

Therefore, the theory we will consider is specified by L = L0+L1, where
L0 is given by eq. (62.1), and

L1 = Z1eΨ /AΨ + Lct , (62.2)

Lct = i(Z2−1)Ψ/∂Ψ − (Zm−1)mΨΨ − 1
4(Z3−1)FµνFµν . (62.3)

We will use an on-shell renormalization scheme.
We can write the exact photon propagator (in momentum space) as a

geometric series of the form

∆̃µν(k) = ∆̃µν(k) + ∆̃µρ(k)Π
ρσ(k)∆̃σν(k) + . . . , (62.4)

where iΠµν(k) is given by a sum of one-particle irreducible (1PI for short;
see section 14) diagrams with two external photon lines (and the external
propagators removed), and ∆̃µν(k) is the free photon propagator,

∆̃µν(k) =
1

k2 − iǫ

(
gµν − (1−ξ)kµkν

k2

)
. (62.5)
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Here we have used the freedom to add kµ or kν terms to put the propa-
gator into generalized Feynman gauge or Rξ gauge. (The name Rξ gauge
has historically been used only in the context of spontaneous symmetry
breaking—see section 85—but we will use it here as well. R stands for
renormalizable and ξ stands for ξ.) Setting ξ = 1 gives Feynman gauge,
and setting ξ = 0 gives Lorenz gauge (also known as Landau gauge).

Observable squared amplitudes should not depend on the value of ξ.
This suggests that Πµν(k) should be transverse,

kµΠ
µν(k) = kνΠ

µν(k) = 0 , (62.6)

so that the ξ dependent term in ∆̃µν(k) vanishes when an internal photon
line is attached to Πµν(k). Eq. (62.6) is in fact valid; we will give a proof of
it, based on the Ward identity for the electromagnetic current, in problem
68.1. For now, we will take eq. (62.6) as given. This implies that we can
write

Πµν(k) = Π(k2)
(
k2gµν − kµkν

)
(62.7)

= k2 Π(k2)Pµν(k) , (62.8)

where Π(k2) is a scalar function, and Pµν(k) = gµν − kµkν/k2 is the pro-
jection matrix introduced in section 57.

Note that we can also write

∆̃µν(k) =
1

k2 − iǫ

(
Pµν(k) + ξ

kµkν
k2

)
. (62.9)

Then, using eqs. (62.8) and (62.9) in eq. (62.4), and summing the geometric
series, we find

∆̃µν(k) =
Pµν(k)

k2[1 − Π(k2)] − iǫ
+ ξ

kµkν/k
2

k2 − iǫ
. (62.10)

The ξ dependent term should be physically irrelevant (and can be set to
zero by the gauge choice ξ = 0, corresponding to Lorenz gauge). The
remaining term has a pole at k2 = 0 with residue Pµν(k)/[1−Π(0)]. In our
on-shell renormalization scheme, we should have

Π(0) = 0 . (62.11)

This corresponds to the field normalization that is needed for validity of
the LSZ formula.
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Figure 62.1: The one-loop and counterterm corrections to the photon prop-
agator in spinor electrodynamics.

Let us now turn to the calculation of Πµν(k). The one-loop and coun-
terterm contributions are shown in fig. (62.1). We have

iΠµν(k) = (−1)(iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ+/k)γµS̃(/ℓ)γν

]

− i(Z3−1)(k2gµν − kµkν) +O(e4) , (62.12)

where the factor of minus one is for the closed fermion loop, and S̃(/p) =
(−/p+m)/(p2+m2−iǫ) is the free fermion propagator in momentum space.
Anticipating that Z1 = 1 +O(e2), we set Z1 = 1 in the first term.

We can write

Tr
[
S̃(/ℓ+/k)γµS̃(/ℓ)γν

]
=

∫ 1

0
dx

4Nµν

(q2 +D)2
, (62.13)

where we have combined denominators in the usual way: q = ℓ+ xk and

D = x(1−x)k2 +m2 − iǫ . (62.14)

The numerator is

4Nµν = Tr
[
(−/ℓ−/k+m)γµ(−/ℓ+m)γν

]
(62.15)

Completing the trace, we get

Nµν = (ℓ+k)µℓν + ℓµ(ℓ+k)ν − [ℓ(ℓ+k) +m2]gµν . (62.16)

Setting ℓ = q − xk and and dropping terms linear in q (because they inte-
grate to zero), we find

Nµν → 2qµqν − 2x(1−x)kµkν − [q2 − x(1−x)k2 +m2]gµν . (62.17)

The integrals diverge, and so we analytically continue to d = 4 − ε dimen-
sions, and replace e with eµ̃ε/2 (so that e remains dimensionless for any
d).



62: Loop Corrections in Spinor Electrodynamics 373

Next we recall a result from problem 14.3,
∫
ddq qµqνf(q2) =

1

d
gµν

∫
ddq q2f(q2) . (62.18)

This allows the replacement

Nµν → −2x(1−x)kµkν +
[(

2
d − 1

)
q2 + x(1−x)k2 −m2

]
gµν . (62.19)

Using the results of section 14, along with a little manipulation of gamma
functions, we can show that

(
2
d − 1

) ∫ ddq

(2π)d
q2

(q2 +D)2
= D

∫
ddq

(2π)d
1

(q2 +D)2
. (62.20)

Thus we can make the replacement (2
d − 1)q2 → D in eq. (62.19), and we

find
Nµν → 2x(1−x)(k2gµν − kµkν) . (62.21)

This guarantees that the one-loop contribution to Πµν(k) is transverse (as
we expected) in any number of spacetime dimensions.

Now we evaluate the integral over q, using

µ̃ε
∫

ddq

(2π)d
1

(q2 +D)2
=

i

16π2
Γ(ε2 )

(
4πµ̃2/D

)ε/2

=
i

8π2

[
1

ε
− 1

2 ln(D/µ2)

]
, (62.22)

where µ2 = 4πe−γ µ̃2, and we have dropped terms of order ε in the last line.
Combining eqs. (62.7), (62.12), (62.13), (62.21), and (62.22), we get

Π(k2) = − e2

π2

∫ 1

0
dxx(1−x)

[
1

ε
− 1

2 ln(D/µ2)

]
− (Z3−1)+O(e4) . (62.23)

Imposing Π(0) = 0 fixes

Z3 = 1 − e2

6π2

[
1

ε
− ln(m/µ)

]
+O(e4) (62.24)

and

Π(k2) =
e2

2π2

∫ 1

0
dxx(1−x) ln(D/m2) +O(e4) . (62.25)

Next we turn to the fermion propagator. The exact propagator can be
written in Lehmann-Källén form as

S̃(/p) =
1

/p+m− iǫ
+

∫ ∞

m2
th

ds
ρΨ(s)

/p+
√
s− iǫ

. (62.26)
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We see that the first term has a pole at /p = −m with residue one. This
residue corresponds to the field normalization that is needed for the validity
of the LSZ formula.

There is a problem, however: in quantum electrodynamics, the thresh-
old mass mth is m, corresponding to the contribution of a fermion and a
zero-energy photon. Thus the second term has a branch point at /p = −m.
The pole in the first term is therefore not isolated, and its residue is ill
defined.

This is a reflection of an underlying infrared divergence, associated with
the massless photon. To deal with it, we must impose an infrared cutoff
that moves the branch point away from the pole. The most direct method
is to change the denominator of the photon propagator from k2 to k2 +m2

γ ,
where mγ is a fictitious photon mass. Ultimately, as in section 26, we must
deal with this issue by computing cross-sections that take into account
detector inefficiencies. In quantum electrodynamics, we must specify the
lowest photon energy ωmin that can be detected. Only after computing cross
sections with extra undectable photons, and then summing over them, is
it safe to take the limit mγ → 0. It turns out that it is not also necessary
to abandon the on-shell shell renormalization scheme (as we were forced to
do in massless ϕ3 theory in section 27), as long as the electron is massive.

An alternative is to use dimensional regularization for the infrared di-
vergences as well as the ultraviolet ones. As discussed in section 25, there
are no soft-particle infrared divergences for d > 4 (and no colinear diver-
gences at all in quantum electrodynamics with massive charged particles).
In practice, infrared-divergent integrals are finite away from even-integer
dimensions, just like ultraviolet-divergent integrals. Thus we simply keep
d = 4 − ε all the way through to the very end, taking the ε → 0 limit
only after summing over cross sections with extra undetectable photons, all
computed in 4− ε dimensions. This method is calculationally the simplest,
but requires careful bookkeeping to segregate the infrared and ultraviolet
singularities. For that reason, we will not pursue it further.

We can write the exact fermion propagator in the form

S̃(/p)−1 = /p+m− iǫ− Σ(/p) , (62.27)

where iΣ(/p) is given by the sum of 1PI diagrams with two external fermion
lines (and the external propagators removed). The fact that S̃(/p) has a pole
at /p = −m with residue one implies that Σ(−m) = 0 and Σ′(−m) = 0; this
fixes the coefficients Z2 and Zm. As we will see, we must have an infrared
cutoff in place in order to have a finite value for Σ′(−m).

Let us now turn to the calculation of Σ(/p). The one-loop and counter-
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Figure 62.2: The one-loop and counterterm corrections to the fermion prop-
agator in spinor electrodynamics.

term contributions are shown in fig. (62.2). We have

iΣ(/p) = (iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4

[
γνS̃(/p+ /ℓ)γµ

]
∆̃µν(ℓ)

− i(Z2−1)/p − i(Zm−1)m+O(e4) . (62.28)

It is simplest to work in Feynman gauge, where we take

∆̃µν(ℓ) =
gµν

ℓ2 +m2
γ − iǫ

; (62.29)

here we have included the fictitious photon mass mγ as an infrared cutoff.
We now apply the usual bag of tricks to get

iΣ(/p) = e2µ̃ε
∫ 1

0
dx

∫
ddq

(2π)d
N

(q2 +D)2

− i(Z2−1)/p− i(Zm−1)m+O(e4) , (62.30)

where q = ℓ+ xp and

D = x(1−x)p2 + xm2 + (1−x)m2
γ , (62.31)

N = γµ(−/p− /ℓ+m)γµ

= −(d−2)(/p + /ℓ) − dm

= −(d−2)[/q + (1−x)/p] − dm , (62.32)

where we have used (from section 47) γµγ
µ = −d and γµ/pγµ = (d−2)/p.

The term linear in q integrates to zero, and then, using eq. (62.22), we get

Σ(/p) = − e2

8π2

∫ 1

0
dx
(
(2−ε)(1−x)/p+ (4−ε)m

)[ 1

ε
− 1

2 ln(D/µ2)

]

− (Z2−1)/p − (Zm−1)m+O(e4) . (62.33)
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Figure 62.3: The one-loop correction to the photon-fermion-fermion vertex
in spinor electrodynamics.

We see that finiteness of Σ(/p) requires

Z2 = 1 − e2

8π2

(
1

ε
+ finite

)
+O(e4) , (62.34)

Zm = 1 − e2

2π2

(
1

ε
+ finite

)
+O(e4) . (62.35)

We can impose Σ(−m) = 0 by writing

Σ(/p) =
e2

8π2

[∫ 1

0
dx
(
(1−x)/p + 2m

)
ln(D/D0) + κ2(/p+m)

]
+O(e4) ,

(62.36)
where D0 is D evaluated at p2 = −m2,

D0 = x2m2 + (1−x)m2
γ , (62.37)

and κ2 is a constant to be determined. We fix κ2 by imposing Σ′(−m) = 0.
In differentiating with respect to /p, we take the p2 in D, eq. (62.31), to be
−/p2; we find

κ2 = −2

∫ 1

0
dxx(1−x2)m2/D0

= −2 ln(m/mγ) + 1 , (62.38)

where we have dropped terms that go to zero with the infrared cutoff mγ .
Next we turn to the loop correction to the vertex. We define the vertex

function iVµ(p′, p) as the sum of one-particle irreducible diagrams with one
incoming fermion with momentum p, one outgoing fermion with momentum
p′, and one incoming photon with momentum k = p′−p. The original vertex
iZ1eγ

µ is the first term in this sum, and the diagram of fig. (62.3) is the
second. Thus we have

iVµ(p′, p) = iZ1eγ
µ + iVµ

1 loop(p
′, p) +O(e5) , (62.39)
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where

iVµ
1 loop(p′, p) = (ie)3

(
1
i

)3 ∫ ddℓ

(2π)d

[
γρS̃(/p ′+/ℓ)γµS̃(/p+/ℓ)γν

]
∆̃νρ(ℓ) .

(62.40)
We again use eq. (62.29) for the photon propagator, and combine denomi-
nators in the usual way. We then get

iVµ
1 loop(p

′, p) = e3
∫
dF3

∫
d4q

(2π)4
Nµ

(q2 +D)3
, (62.41)

where the integral over Feynman parameters is

∫
dF3 ≡ 2

∫ 1

0
dx1dx2dx3 δ(x1+x2+x3−1) , (62.42)

and

q = ℓ+ x1p+ x2p
′ , (62.43)

D = x1(1−x1)p
2 + x2(1−x2)p

′2 − 2x1x2p·p′
+ (x1+x2)m

2 + x3m
2
γ , (62.44)

Nµ = γν(−/p ′ − /ℓ+m)γµ(−/p− /ℓ+m)γν

= γν [−/q + x1/p− (1−x2)/p
′ +m]γµ[−/q − (1−x1)/p + x2/p ′ +m]γν

= γν/qγ
µ/qγν + Ñµ + (linear in q) , (62.45)

where

Ñµ = γν [x1/p− (1−x2)/p
′ +m]γµ[−(1−x1)/p+ x2/p ′ +m]γν . (62.46)

The terms linear in q in eq. (62.45) integrate to zero, and only the first term
is divergent. After continuing to d dimensions, we can use eq. (62.18) to
make the replacement

γν/qγ
µ/qγν → 1

d
q2 γνγργ

µγργν . (62.47)

Then we use γργ
µγρ = (d−2)γµ twice to get

γν/qγ
µ/qγν → (d−2)2

d
q2 γµ . (62.48)

Performing the usual manipulations, we find

Vµ
1 loop(p′, p) =

e3

8π2

[(
1

ε
− 1 − 1

2

∫
dF3 ln(D/µ2)

)
γµ + 1

4

∫
dF3

Ñµ

D

]
.

(62.49)
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From eq. (62.39), we see that finiteness of Vµ(p′, p) requires

Z1 = 1 − e2

8π2

(
1

ε
+ finite

)
+O(e4) . (62.50)

To completely fix Vµ(p′, p), we need a suitable condition to impose on it.
We take this up in the next section.

Problems

62.1) Show that adding a gauge fixing term −1
2ξ
−1(∂µAµ)

2 to L results in
eq. (62.9) as the photon propagator. Explain why ξ = 0 corresponds
to Lorenz gauge, ∂µAµ = 0.

62.2) Find the coefficients of e2/ε in Z1,2,3,m in Rξ gauge. In particular,
show that Z1 = Z2 = 1 +O(e4) in Lorenz gauge.

62.3) Consider the six one-loop diagrams with four external photons (and
no external fermions). Show that, even though each diagram is log-
arithmically divergent, their sum is finite. Use gauge invariance to
explain why this must be the case.
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63 The Vertex Function in Spinor

Electrodynamics

Prerequisite: 62

In the last section, we computed the one-loop contribution to the vertex
function Vµ(p′, p) in spinor electrodynamics, where p is the four-momentum
of an incoming electron (or outgoing positron), and p′ is the four-momentum
of an outgoing electron (or incoming positron). We left open the issue of
the renormalization condition we wish to impose on Vµ(p′, p).

For the theories we have studied previously, we have usually made the
mathematically convenient (but physically obscure) choice to define the
coupling constant as the value of the vertex function when all external four-
momenta are set to zero. However, in the case of spinor electrodynamics,
the masslessness of the photon gives us the opportunity to do something
more physically meaningful: we can define the coupling constant as the
value of the vertex function when all three particles are on shell: p2 = p′2 =
−m2, and q2 = 0, where q ≡ p′− p is the photon four-momentum. Because
the photon is massless, these three on-shell conditions are compatible with
momentum conservation.

To be more precise, let us sandwich Vµ(p′, p) between the spinor factors
that are appropriate for an incoming electron with momentum p and an
outgoing electron with momentum p′, impose the on-shell conditions, and
define the electron charge e via

us′(p
′)Vµ(p′, p)us(p)

∣∣∣∣ p2=p′2=−m2

(p′−p)2=0

= e us′(p
′)γµus(p)

∣∣∣∣ p2=p′2=−m2

(p′−p)2=0

. (63.1)

This definition is in accord with the usual one provided by Coulomb’s
law. To see why, consider the process of electron-electron scattering. Ac-
cording to the general discussion in section 19, we compute the exact ampli-
tude for this process by using tree diagrams with exact internal propagators
and vertices, as shown in fig. (63.1). In the last section, we renormalized
the photon propagator so that it approaches its tree-level value ∆̃µν(q)
when q2 → 0. And we have just chosen to renormalize the electron-photon
vertex function by requiring it to approach its tree-level value eγµ when
q2 → 0, and when sandwiched between external spinors for on-shell incom-
ing and outgoing electrons. Therefore, as q2 → 0, the first two diagrams
in fig. (63.1) approach the tree-level scattering amplitude, with the electron
charge equal to e. Furthermore, the third diagram does not have a pole at
q2 = 0, and so can be neglected in this limit. Physically, q2 → 0 means
that the electron’s momentum changes very little during the scattering.
Measuring a slight deflection in the trajectory of one charged particle (due
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Figure 63.1: Diagrams for the exact electron-electron scattering amplitude.
The vertices and photon propagator are exact; external lines stand for the
usual u and u spinor factors, times the unit residue of the pole at p2 = −m2.

to the presence of another) is how we measure the coefficient in Coulomb’s
law. Thus, eq. (63.1) corresponds to this traditional definition of the charge
of the electron.

We can simplify eq. (63.1) by noting that the on-shell conditions actually
enforce p′ = p. So we can rewrite eq. (63.1) as

us(p)Vµ(p, p)us(p) = e us(p)γµus(p)

= 2epµ , (63.2)

where p2 = −m2 is implicit. We have taken s′ = s, because otherwise the
right-hand side vanishes (and hence does not specify a value for e).

Now we can use eq. (63.2) to completely determine Vµ(p′, p). Using the
freedom to choose the finite part of Z1, we write

Vµ(p′, p) = eγµ− e3

16π2

∫
dF3

[(
ln(D/D0)+2κ1

)
γµ−N

µ

2D

]
+O(e5) , (63.3)

where

D = x1(1−x1)p
2 + x2(1−x2)p

′2 − 2x1x2p·p′
+ (x1+x2)m

2 + x3m
2
γ , (63.4)

D0 is D evaluated at p′ = p and p2 = −m2,

D0 = (x1+x2)
2m2 + x3m

2
γ

= (1−x3)
2m2 + x3m

2
γ , (63.5)

and

Nµ = γν [x1/p− (1−x2)/p
′ +m]γµ[−(1−x1)/p + x2/p ′m]γν ; (63.6)
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Nµ was called Ñµ in section 62, but we have dropped the tilde for notational
convenience.

We fix the constant κ1 in eq. (63.3) by imposing eq. (63.2). This yields

4κ1p
µ =

∫
dF3

us(p)Nµ
0 us(p)

2D0
, (63.7)

where Nµ
0 is Nµ with p′ = p and p2 = p′2 = −m2.

So now we must evaluate uNµ
0 u. To do so, we first write

Nµ = γν(/a1+m)γµ(/a2+m)γν , (63.8)

where

a1 = x1p− (1−x2)p
′ ,

a2 = x2p
′ − (1−x1)p . (63.9)

Now we use the gamma matrix contraction identities to get

Nµ = 2/a2γ
µ/a1 + 4m(a1+a2)

µ + 2m2γµ . (63.10)

Here we have set d = 4, because we have already removed the divergence
and taken the limit ε → 0. Setting p′ = p, and using /pu = −mu and
u/p = −mu, along with uγµu = 2pµ and uu = 2m, and recalling that
x1+x2+x3 = 1, we find

uNµ
0 u = 4(1−4x3+x

2
3)m

2pµ . (63.11)

Using eqs. (63.5), (63.7), and (63.11), we get

κ1 =
1

2

∫
dF3

1−4x3+x
2
3

(1−x3)2 + x3m2
γ/m

2

=

∫ 1

0
dx3 (1−x3)

1−4x3+x
2
3

(1−x3)2 + x3m2
γ/m

2

= −2 ln(m/mγ) + 5
2 (63.12)

in the limit of mγ → 0. We see that an infrared regulator is necessary for
the vertex function as well as the fermion propagator.

Now that we have Vµ(p′, p), we can extract some physics from it. Con-
sider again the process of electron-electron scattering, shown in fig. (63.1).
In order to compute the contributions of these diagrams, we must evalu-
ate us′(p

′)Vµ(p′, p)us(p) with p2 = −p′2 = −m2, but with q2 = (p′ − p)2

arbitrary.
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To evaluate u ′Nµu, we start with eq. (63.10), and use the anticommu-
tation relations of the gamma matrices to move all the /p’s in Nµ to the far
right (where we can use /pu = −mu) and all the /p ′’s to the far left (where
we can use u ′/p ′ = −mu ′). This results in

Nµ → [4(1−x1−x2+x1x2)p·p′ + 2(2x1−x2
1+2x2−x2

2)m
2]γµ

+ 4m(x2
1−x2+x1x2)p

µ + 4m(x2
2−x1+x1x2)p

′µ . (63.13)

Next, replace p·p′ with −1
2q

2−m2, group the pµ and p′µ terms into p′ + p
and p′ − p combinations, and make use of x1+x2+x3 = 1 to simplify some
coefficients. The result is

Nµ → 2[(1−2x3−x2
3)m

2 − (x3+x1x2)q
2]γµ

− 2m(x3−x2
3)(p

′ + p)µ

− 2m[(x1+x
2
1) − (x2+x

2
2)](p

′ − p)µ . (63.14)

In the denominator, set p2 = p′2 = −m2 and p·p′ = −1
2q

2−m2 to get

D → x1x2q
2 + (1−x3)

2m2 + x3m
2
γ . (63.15)

Note that the right-hand side of eq. (63.15) is symmetric under x1 ↔ x2.
Thus the last line of eq. (63.14) will vanish when we integrate u ′Nµu/D
over the Feynman parameters. Finally, we use the Gordon identity from
section 38,

u ′(p′ + p)µu = u ′[2mγµ + 2iSµνqν ]u , (63.16)

where Sµν = i
4 [γµ, γν ], to get

Nµ → 2[(1−4x3+x
2
3)m

2 − (x3+x1x2)q
2]γµ

− 4im(x3−x2
3)S

µνqν . (63.17)

So now we have

us′(p
′)Vµ(p′, p)us(p) = eu ′

[
F1(q

2)γµ − i
mF2(q

2)Sµνqν
]
u , (63.18)

where we have defined the form factors

F1(q
2) = 1 − e2

16π2

∫
dF3

[
ln

(
1 +

x1x2q
2/m2

(1−x3)2

)
+

1−4x3+x
2
3

(1−x3)2 + x3m2
γ/m

2

+
(x3+x1x2)q

2/m2 − (1−4x3+x
2
3)

x1x2q2/m2 + (1−x3)2 + x3m2
γ/m

2

]
+O(e4) , (63.19)

F2(q
2) =

e2

8π2

∫
dF3

x3−x2
3

x1x2q2/m2 + (1−x3)2
+O(e4) . (63.20)
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We have set mγ = 0 in eq. (63.20), and in the logarithm term in eq. (63.19),
because these terms do not suffer from infrared divergences.

We can simplify F2(q
2) by using the delta function in dF3 to do the

integral over x2 (which replaces x2 with 1−x3−x1), making the change of
variable x1 = (1−x3)y, and performing the integral over x3 from zero to
one; the result is

F2(q
2) =

e2

8π2

∫ 1

0

dy

1 − y(1−y)q2/m2
+O(e4) . (63.21)

This last integral can also be done in closed form, but we will be mostly
interested in its value at q2 = 0, corresponding to an on-shell photon:

F2(0) = α
2π

+O(α2) , (63.22)

where α = e2/4π = 1/137.036 is the fine-structure constant. We will explore
the physical consequences of eq. (63.22) in the next section.

Problems

63.1) The most general possible form of u ′V µ(p′, p)u is a linear combination
of γµ, pµ, and p′µ sandwiched between u ′ and u, with coefficients that
depend on q2. (The only other possibility is to include terms with γ5,
but γ5 does not appear in the tree-level propagators or vertex, and so
it cannot be generated in any Feynman diagram; this is a consequence
of parity conservation.) Thus we can write

us′(p
′)Vµ(p′, p)us(p) = eu ′[A(q2)γµ +B(q2)(p′ + p)µ

+C(q2)(p′ − p)µ]u . (63.23)

a) Use gauge invariance to show that qµu
′V µ(p′, p)u = 0, and deter-

mine the consequences for A, B, and C.

b) Express F1 and F2 in terms of A, B, and C.
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64 The Magnetic Moment of the Electron

Prerequisite: 63

In the last section, we computed the one-loop contribution to the vertex
function Vµ(p′, p) in spinor electrodynamics, where p is the four-momentum
of an incoming electron, and p′ is the four-momentum of an outgoing elec-
tron. We found

us′(p
′)Vµ(p′, p)us(p) = eu ′

[
F1(q

2)γµ − i
mF2(q

2)Sµνqν
]
u , (64.1)

where q = p′−p is the four-momentum of the photon (treated as incoming),
and with complicated expressions for the form factors F1(q

2) and F2(q
2).

For our purposes in this section, all we will need to know is that

F1(0) = 1 exactly,

F2(0) = α
2π

+O(α2) . (64.2)

Eq. (64.1) follows from a quantum action of the form

Γ =

∫
d4x

[
eF1(0)Ψ /AΨ + e

2m
F2(0)FµνΨS

µνΨ + . . .
]
, (64.3)

where the ellipses stand for terms with more derivatives. The displayed
terms yield the vertex factor of eq. (64.1) with q2 = 0. To see this, recall
that an incoming photon translates into a factor of Aµ ∼ ε∗µe

iqx, and there-
fore of Fµν ∼ i(qµε

∗
ν−qνε∗µ)eiqx; the two terms in Fµν cancel the extra factor

of one half in the second term in eq. (64.3).
Now we will see what eq. (64.3) predicts for the magnetic moment of

the electron. We define the magnetic moment by the following procedure.
We take the photon field Aµ to be a classical field that corresponds to a
constant magnetic field in the z direction: A0 = 0 and A = (0, Bx, 0). This
yields F12 = −F21 = B, with all other components of Fµν vanishing. Then
we define a normalized state of an electron at rest, with spin up along the
z axis:

|e〉 ≡
∫
d̃p f(p)b†+(p)|0〉 , (64.4)

where the wave packet is rotationally invariant (so that there is no orbital
angular momentum) and sharply peaked at p = 0, something like

f(p) ∼ exp(−a2p2/2) (64.5)

with a≪ 1/m. We normalize the wave packet by
∫
d̃p |f(p)|2 = 1; then we

have 〈e|e〉 = 1.
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Now we define the interaction hamiltonian as what we get from the
two displayed terms in eq. (64.3), using our specified field Aµ, and with the
form-factor values of eq. (64.2):

H1 ≡ −eB
∫
d3xΨ

[
xγ2 + α

2πm
S12

]
Ψ . (64.6)

Then the electron’s magnetic moment µ is specified by

µB ≡ −〈e|H1|e〉 . (64.7)

In quantum mechanics in general, if we identify H1 as the piece of the
hamiltonian that is linear in the external magnetic field, then eq. (64.7)
defines the magnetic moment of a normalized quantum state with definite
angular momentum in the B direction.

Now we turn to the computation. We need to evaluate 〈e|Ψα(x)Ψβ(x)|e〉.
Using the usual plane-wave expansions, we have

〈0|b+(p′)Ψα(x)Ψβ(x)b
†
+(p)|0〉 = u+(p′)αu+(p)β e

i(p−p′)x . (64.8)

Thus we get

〈e|H1|e〉 = −eB
∫
d̃p d̃p′ d3x ei(p−p

′)x

× f∗(p′)u+(p′)
[
xγ2 + α

2πm
S12

]
u+(p)f(p) . (64.9)

We can write the factor of x as −i∂p1 acting on ei(p−p
′)x, and integrate

by parts to put this derivative onto u+(p)f(p); the wave packets kill any
surface terms. Then we can complete the integral over d3x to get a factor
of (2π)3δ3(p′ − p), and do the integral over d̃p′. The result is

〈e|H1|e〉 = −eB
∫
d̃p

2ω
f∗(p)u+(p)

[
iγ2∂p1 + α

2πm
S12

]
u+(p)f(p) .

(64.10)
Suppose the ∂p1 acts on f(p). Since f(p) is rotationally invariant, the
result is odd in p1. We then use u+(p)γiu+(p) = 2pi to conclude that this
term is odd in both p1 and p2, and hence integrates to zero.

The remaining contribution from the first term has the ∂p1 acting on
u+(p). Recall from section 38 that

us(p) = exp(iη p̂·K)us(0) , (64.11)

where Kj = Sj0 = i
2γ

jγ0 is the boost matrix, p̂ is a unit vector in the p
direction, and η = sinh−1(|p|/m) is the rapidity. Since the wave packet is
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sharply peaked at p = 0, we can expand eq. (64.11) to linear order in p,
take the derivative with respect to p1, and then set p = 0; the result is

∂p1u+(p)
∣∣∣
p=0

= i
mK1u+(0)

= − 1
2m

γ1γ0u+(0)

= − 1
2m

γ1u+(0) , (64.12)

where we used γ0us(0) = us(0) to get the last line. Then we have

u+(p)iγ2∂p1u+(p)
∣∣∣
p=0

= u+(0) −i
2m

γ2γ1u+(0)

= 1
m u+(0)S12u+(0) (64.13)

Plugging this into eq. (64.10) yields

〈e|H1|e〉 = −eB
∫
d̃p

2ω
|f(p)|2

(
1 + α

2π

)
1
m u+(0)S12u+(0)

= − eB

2m2

(
1 + α

2π

)
u+(0)S12u+(0) . (64.14)

Next we use S12u±(0) = ±1
2u±(0) and u±(0)u±(0) = 2m to get

〈e|H1|e〉 = − eB

2m

(
1 + α

2π

)
. (64.15)

Comparing with eq. (64.7), we see that the magnetic moment of the electron
is

µ = g
1

2

e

2m
, (64.16)

where e/2m is the Bohr magneton, the extra factor of one-half is for the
electron’s spin (a classical spinning ball of charge would have a magnetic
moment equal to the Bohr magneton times its angular momemtum), and
g is the Landé g factor, given by

g = 2
(
1 + α

2π
+O(α2)

)
. (64.17)

Since g can be measured to high precision, calculations of µ provide a
stringent test of spinor electrodynamics. Corrections up through the α4

term have been computed; the result is currently in good agreement with
experiment.

Problems

64.1) Let the wave packet be f(p) ∼ exp(−a2p2/2)Yℓm(p̂), where Yℓm(p̂)
is a spherical harmonic. Find the contribution of the orbital angular
momentum to the magnetic moment.
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65 Loop Corrections in Scalar

Electrodynamics

Prerequisite: 61, 62

In this section we will compute the one-loop corrections in scalar electro-
dynamics. We will concentrate on the divergent parts of the diagrams,
enabling us to compute the renormalizing Z factors in the MS scheme, and
hence the beta functions. This gives us the most important qualitative in-
formation about the theory: whether it becomes strongly coupled at high
or low energies.

Our lagrangian for scalar electrodynamics in section 61 already includes
all possible terms whose coefficients have positive or zero mass dimension,
and that respect Lorentz symmetry, the U(1) gauge symmetry, parity, time
reversal, and charge conjugation. Therefore, the theory we will consider is

L = L0 + L1 , (65.1)

L0 = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1
4F

µνFµν , (65.2)

L1 = iZ1e[ϕ
†∂µϕ− (∂µϕ†)ϕ]Aµ − Z4e

2ϕ†ϕAµAµ

− 1
4Zλλ(ϕ†ϕ)2 + Lct , (65.3)

Lct = −(Z2−1)∂µϕ†∂µϕ− (Zm−1)m2ϕ†ϕ− 1
4(Z3−1)FµνFµν . (65.4)

We will use the MS renormalization scheme to fix the values of the Z’s.
We begin with the photon self-energy, Πµν(k). The one-loop and coun-

terterm contributions are shown in fig. (65.1). We have

iΠµν(k) = (iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4
(2ℓ+ k)µ(2ℓ+ k)ν

((ℓ+k)2 +m2)(ℓ2 +m2)

+ (−2iZ4)e
2gµν

∫
d4ℓ

(2π)4
1

ℓ2 +m2

− i(Z3−1)(k2gµν − kµkµ) + . . . , (65.5)

where the ellipses stand for higher-order (in e2 and/or λ) terms. We can
set Zi = 1 +O(e2,λ) in the first two terms.

It will prove convenient to combine these first two terms into

iΠµν(k) = e2
∫

d4ℓ

(2π)4
Nµν

((ℓ+k)2 +m2)(ℓ2 +m2)

− i(Z3−1)(k2gµν − kµkµ) + . . . , (65.6)
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where
Nµν = (2ℓ+ k)µ(2ℓ+ k)ν − 2[(ℓ+k)2 +m2]gµν . (65.7)

Then we continue to d dimensions, replace e with eµ̃ε/2, and combine the
denominators with Feynman’s formula; the result is

iΠµν(k) = e2µ̃ε
∫ 1

0
dx

∫
ddq

(2π)d
Nµν

(q2 +D)2

− i(Z3−1)(k2gµν − kµkµ) + . . . , (65.8)

where q = ℓ+ xk and D = x(1−x)k2 +m2. The numerator is

Nµν = (2q + (1−2x)k)µ(2q + (1−2x)k)ν − 2[(q + (1−x)k)2 +m2]gµν

= 4qµqν + (1−2x)2kµkν − 2[q2 + (1−x)2k2 +m2]gµν

+ (linear in q)

→ 4d−1gµνq2 + (1−2x)2kµkν − 2[q2 + (1−x)2k2 +m2]gµν , (65.9)

where we used the symmetric-integration identity from problem 14.3 to get
the last line. We can rearrange eq. (65.9) into

Nµν = 2
(

2
d − 1

)
gµνq2 + (1−2x)2kµkν − 2[(1−x)2k2 +m2]gµν . (65.10)

Now we recall from section 62 that, when q2 is integrated against (q2+D)−2,
we can make the replacement (2

d − 1)q2 → D; thus we have

Nµν → 2Dgµν + (1−2x)2kµkν − 2[(1−x)2k2 +m2]gµν

= (1−2x)2kµkν − 2(1−2x)(1−x)k2gµν . (65.11)

Next we note that if we make the change of variable x = y + 1
2 , then we

have D = (1− 1
4y

2)k2 +m2, and y is integrated from −1
2 to +1

2 . Therefore,
any term in Nµν that is even in y will integrate to zero. We then get

Nµν = 4y2kµkν − 2(2y2−y)k2gµν

→ −4y2(k2gµν − kµkν) . (65.12)

Thus we see that Πµν(k) is transverse, as expected.
Performing the integral over q in eq. (65.8), and focusing on the diver-

gent part, we get

µ̃ε
∫

ddq

(2π)d
1

(q2 +D)2
=

i

8π2

1

ε
+O(ε0) . (65.13)
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Figure 65.1: The one-loop and counterterm corrections to the photon prop-
agator in scalar electrodynamics.
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Figure 65.2: The one-loop and counterterm corrections to the scalar prop-
agator in scalar electrodynamics.

Then performing the integral over y yields

∫ 1/2

−1/2
dy Nµν = −1

3(k2gµν − kµkν) . (65.14)

Combining eqs. (65.8), (65.13), and (65.14), we get

Πµν(k) = Π(k2)(k2gµν − kµkν) , (65.15)

where

Π(k2) = − e2

24π2

1

ε
+ finite − (Z3 − 1) + . . . . (65.16)

Thus we find, in the MS scheme,

Z3 = 1 − e2

24π2

1

ε
+ . . . . (65.17)

Now we turn to the one-loop corrections to the scalar propagator, shown
in fig. (65.2). It will prove very convenient to work in Lorenz gauge, where
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the photon propagator is

∆̃µν(ℓ) =
Pµν(ℓ)

ℓ2 − iǫ
, (65.18)

with Pµν(ℓ) = gµν − ℓµℓν/ℓ
2. The diagrams in fig. (65.2) then yield

iΠϕ(k2) = (iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4
Pµν(ℓ)(ℓ+ 2k)µ(ℓ+ 2k)ν

ℓ2((ℓ+k)2 +m2)

+ (−2iZ4e
2gµν)

(
1
i

) ∫ d4ℓ

(2π)4
Pµν(ℓ)

ℓ2 +m2
γ

+ (−iλ)
(

1
i

) ∫ d4ℓ

(2π)4
1

ℓ2 +m2

− i(Z2−1)k2 − i(Zm−1)m2 + . . . . (65.19)

In the second line, mγ is a fictitious photon mass; it appears here as an
infrared regulator.

We can set Zi = 1 + O(e2,λ) in the first three lines. Continuing to d
dimensions, making the replacements e → eµ̃ε/2 and λ → λµ̃ε, and using
the relations ℓµPµν(ℓ) = ℓνPµν(ℓ) = 0 and gµνPµν(ℓ) = d− 1, we get

iΠϕ(k2) = 4e2µ̃ε
∫

ddℓ

(2π)d
Pµν(ℓ)k

µkν

ℓ2((ℓ+k)2 +m2)

− 2(d−1)e2µ̃ε
∫

ddℓ

(2π)d
1

ℓ2 +m2
γ

− λµ̃ε
∫

d4ℓ

(2π)4
1

ℓ2 +m2

− i(Z2−1)k2 − i(Zm−1)m2 + . . . . (65.20)

We evaluate the second and third lines via

µ̃ε
∫

ddℓ

(2π)d
1

ℓ2 +m2
= − i

8π2

1

ε
m2 +O(ε0) . (65.21)

Then, taking the limit m2 → 0 (with ε fixed) in eq. (65.21) shows that the
second line of eq. (65.20) vanishes when the infrared regulator is removed.

To evaluate the first line of eq. (65.20), we multiply the numerator and
denominator by ℓ2 and use Feynman’s formula to get

∫
ddℓ

(2π)d
ℓ2Pµν(ℓ)k

µkν

ℓ2ℓ2((ℓ+k)2 +m2)
=

∫
dF3

∫
ddq

(2π)d
N

(q2 +D)3
, (65.22)
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Figure 65.3: The one-loop corrections to the three-point vertex in scalar
electrodynamics.

where q = ℓ+ x3k, D = x3(1−x3)k
2 + x3m

2, and

N = ℓ2k2 − (ℓ·k)2

= (q − x3k)
2k2 − (q ·k − x3k

2)2

= q2k2 − (q ·k)2 + (linear in q)

→ q2k2 − d−1q2k2 . (65.23)

Now we use

µ̃ε
∫

ddq

(2π)d
q2

(q2 +D)3
=

i

8π2

1

ε
+O(ε0) . (65.24)

Combining eqs. (65.20–65.24), and requiring Πϕ(k2) to be finite, we find

Z2 = 1 +
3e2

8π2

1

ε
+ . . . , (65.25)

Zm = 1 +
λ

8π2

1

ε
+ . . . (65.26)

in the MS scheme.
Now we turn to the one-loop corrections to the three-point (scalar–

scalar–photon) vertex, shown in fig. (65.3). In order to simplify the calcu-
lation of the divergent terms as much as possible, we have chosen a special
set of external momenta. (If we wanted the complete vertex function, in-
cluding the finite terms, we would need to use a general set of external
momenta.) We take the incoming scalar to have zero four-momentum, and



65: Loop Corrections in Scalar Electrodynamics 392

the photon (treated as incoming) to have four-momentum k; then, by mo-
mentum conservation, the outgoing scalar also has four-momentum k. We
take the internal photon to have four-momentum ℓ.

Now comes the magic of Lorenz gauge: in the second and third diagrams
of fig. (65.3), the vertex factor for the leftmost vertex is ieℓµ, and this is
zero when contracted with the Pµν(ℓ) of the internal photon propagator.
Thus the second and third diagrams vanish.

Alas, we will have to do some more work to evaluate the first and fourth
diagrams. We have

iVµ
3 (k, 0) = ieZ1k

µ

+ (iZ1e)(−2iZ4e
2gµν)

(
1
i

)2 ∫ d4ℓ

(2π)4
Pνρ(ℓ)(ℓ+ 2k)ρ

ℓ2((ℓ+k)2 +m2)

+ (−iZλλ)(iZ1e)
(

1
i

)2 ∫ d4ℓ

(2π)4
(2ℓ+ k)µ

(ℓ2 +m2)((ℓ+k)2 +m2)

+ . . . . (65.27)

We can set Zi = 1 +O(e2,λ) in the second and third lines. We then do the
usual manipulations; the integral in the third line becomes

∫ 1

0
dx

∫
ddq

(2π)d
2qµ + (1−2x)kµ

(q2 +D)2
, (65.28)

where q = ℓ+ xk and D = x(1−x)k2 +m2. The term linear in q vanishes
upon integration over q, and the term linear in k vanishes upon integration
over x. Thus the third line of eq. (65.27) evaluates to zero.

To evaluate the second line of eq. (65.27), we note that, since Pνρ(ℓ)ℓ
ρ =

0, it already has an overall factor of k. We can then treat k as infinitesi-
mal, and set k = 0 in the denominator. We can then use the symmetric-
integration identity to make the replacement ℓνℓρ/ℓ

2 → d−1gνρ in the nu-
merator. Putting all of this together, and using eq. (65.13), we find

Vµ
3 (k, 0)/e = Z1k

µ − 3e2

8π2

1

ε
kµ +O(ε0) + . . . , (65.29)

and so

Z1 = 1 +
3e2

8π2

1

ε
+ . . . , (65.30)

in the MS scheme.
Next up is the four-point, scalar–scalar–photon–photon vertex. Because

the tree-level vertex factor, −2iZ4e
2gµν , does not depend on the external

four-momenta, we can simply set them all to zero. Then, whenever an
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Figure 65.4: The nonvanishing one-loop corrections to the scalar–scalar–
photon–photon vertex in scalar electrodynamics (in Lorenz gauge with van-
ishing external momenta).

internal photon line attaches to an external scalar with a three-point vertex,
the diagram is zero, for the same reason that the second and third diagrams
of fig. (65.3) were zero. This kills a lot of diagrams; the survivors are shown
in fig. (65.4). We have

iVµν
4 (0, 0, 0) = −2iZ4e

2gµν

+ (−2iZ4e
2)2
(

1
i

)2 ∫ d4ℓ

(2π)4
gµρPρσ(ℓ)g

σν

ℓ2(ℓ2 +m2)
+ (µ↔ν)

+ (iZ1e)
2(−iZλλ)

(
1
i

)3 ∫ d4ℓ

(2π)4
(2ℓ)µ(2ℓ)ν

(ℓ2 +m2)3
+ (µ↔ν)

+ (−iZλλ)(−2iZ4e
2gµν)

(
1
i

)2 ∫ d4ℓ

(2π)4
1

(ℓ2 +m2)2

+ . . . . (65.31)

The notation +(µ↔ν) in the second and third lines means that we must
add the same expression with these indices swapped; this is because the
original and swapped versions of each diagram are topologically distinct,
and contribute separately to the vertex function.

As usual, we set Zi = 1 + O(e2,λ) in the second through fourth lines.
After using the symmetric-integration identity, along with eqs. (65.13) and
(65.24), we can see that the divergent parts of the third and fourth lines
cancel each other. The first line is easily evaluated with symmetric inte-
gration and eq. (65.13). Then we have

Vµν
4 (0, 0, 0)/e2 = −2Z4g

µν +
3e2

4π2

1

ε
gµν +O(ε0) + . . . , (65.32)

and so

Z4 = 1 +
3e2

8π2

1

ε
+ . . . (65.33)
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Figure 65.5: The nonvanishing one-loop corrections to the four-scalar ver-
tex in scalar electrodynamics (in Lorenz gauge with vanishing external mo-
menta).

in the MS scheme.
Finally, we have the one-loop corrections to the four-scalar vertex. Once

again, because the tree-level vertex factor, −iZλλ, does not depend on the
external four-momenta, we can set them all to zero. Then, whenever an
internal photon line attaches to an external scalar with a three-point vertex,
the diagram is zero. The remaining diagrams are shown in fig. (65.5).

Even though we have set the external momenta to zero, we still have
to keep track of which particle is which, in order to count the diagrams
correctly; thus the external lines are labelled 1 through 4. Lines 1 and 2 have
arrows pointing towards their vertices, and 3 and 4 have arrows pointing
away from their vertices. The symmetry factor for each of the first three
diagrams is S = 2; for each of the last two, it is S = 1. The difference arises
because the last two diagrams have the charge arrows pointing in opposite
directions on the two internal propagators, and so these propagators cannot
be exchanged.

It is clear that the first two diagrams will yield identical contributions
to the vertex function (when the external momenta are all zero). Similarly,
except for symmetry factors, the contributions of the last three diagrams
are also identical. Thus we have

iV4ϕ(0, 0, 0) = −iZλλ

+
(

1
2 + 1

2

)
(−2iZ4e

2)2
(

1
i

)2 ∫ d4ℓ

(2π)4
gµνPνρ(ℓ)g

ρσPρµ(ℓ)

(ℓ2 +m2
γ)

2
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+
(

1
2 + 1 + 1

)
(−iZλλ)2

(
1
i

)2 ∫ d4ℓ

(2π)4
1

(ℓ2 +m2)2

+ . . . . (65.34)

Using the familiar techniques, we find

V4ϕ(0, 0, 0) = −iZλλ+
3e4

2π2

1

ε
+

5λ2

16π2

1

ε
+O(ε0) + . . . , (65.35)

and so

Zλ = 1 +

(
3e4

2π2λ
+

5λ

16π2

)
1

ε
+ . . . (65.36)

in the MS scheme.

Problems

65.1) What conditions should be imposed on Vµ
3 (p′, p) and Vµν

4 (k, p′, p)
in the OS scheme? (Here k is the incoming four-momentum of the
photon at the µ vertex, and p′ and p are the four-momenta of the
outgoing and incoming scalars, respectively.)

65.2) Consider a gauge transformaton Aµ → Aµ − ∂µΓ. Show that there
is a transformation of ϕ that leaves the lagrangian of eqs. (65.1–65.4)
invariant if and only if Z4 = Z2

1/Z2.
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66 Beta Functions in Quantum

Electrodynamics

Prerequisite: 52, 62

In this section we will compute the beta function for the electromagnetic
coupling e in spinor electrodynamics and scalar electrodynamics. We will
also compute the beta function for the ϕ4 coupling λ in scalar electrody-
namics.

In spinor electrodynamics, the relation between the bare and renormal-
ized couplings is

e0 = Z
−1/2
3 Z−1

2 Z1 µ̃
ε/2e . (66.1)

It is convenient to recast this formula in terms of the fine-structure constant
α = e2/4π and its bare counterpart α0 = e20/4π,

α0 = Z−1
3 Z−2

2 Z2
1 µ̃
εα . (66.2)

From section 62, we have

Z1 = 1 − α

2π

1

ε
+O(α2) , (66.3)

Z2 = 1 − α

2π

1

ε
+O(α2) , (66.4)

Z3 = 1 − 2α

3π

1

ε
+O(α2) , (66.5)

in the MS scheme. Let us write

ln
(
Z−1

3 Z−2
2 Z2

1

)
=
∞∑

n=1

En(α)

εn
. (66.6)

Then we have

lnα0 =
∞∑

n=1

En(α)

εn
+ lnα+ ε ln µ̃ . (66.7)

From eqs. (66.3–66.5), we get

E1(α) =
2α

3π
+O(α2) . (66.8)

Then, the general analysis of section 28 yields

β(α) = α2E′1(α) , (66.9)

where the prime denotes differentiation with respect to α. Thus we find

β(α) =
2α2

3π
+O(α3) (66.10)
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in spinor electrodynamics, We can, if we like, restate this in terms of e as

β(e) =
e3

12π2
+O(e5) . (66.11)

To go from eq. (66.10) to eq. (66.11), we use α = e2/4π and α̇ = eė/2π,
where the dot denotes d/d lnµ.

The most important feature of either eq. (66.10) or eq. (66.11) is that
the beta function is positive: the electromagnetic coupling in spinor elec-
trodynamics gets stronger at high energies, and weaker at low energies.

It is easy to generalize eqs. (66.10) and (66.11) to the case of N Dirac
fields with electric charges Qie. There is now a factor of Z2i for each field,
and of Z1i for each interaction. These are found by replacing α in eqs. (66.3)
and (66.4) with Q2

iα. Then we find Z1i/Z2i = 1 +O(α2), so that this ratio
is universal, at least through O(α). In fact, as we will see in section 67,
Z1i/Z2i is always exactly equal to one, and so it always cancels in eq. (66.6).
As for Z3, now each Dirac field contributes separately to the fermion loop
in the photon self-energy, and so we should replace α in eq. (66.5) with∑
iQ

2
iα. Thus we find that the generalization of eq. (66.11) is

β(e) =

∑N
i=1Q

2
i

12π2
e3 +O(e5) . (66.12)

Now we turn to scalar electrodynamics. (Prerequisite: 65.) The rela-
tions between the bare and renormalized couplings are

e0 = Z
−1/2
3 Z−1

ϕ Z1 µ̃
ε/2e . (66.13)

e20 = Z−2
3 Z−2

ϕ Z4 µ̃
εe2 . (66.14)

λ0 = Z−2
ϕ Zλµ̃

ελ . (66.15)

We have two different relations between e and e0, coming from the two
types of vertices. We can guess (and will demonstrate in section 67) that
these two renormalizations must work out to give the same answer. Indeed,
from section 65, we have

Z1 = 1 +
3e2

8π2

1

ε
+ . . . , (66.16)

Z2 = 1 +
3e2

8π2

1

ε
+ . . . , (66.17)

Z3 = 1 − e2

24π2

1

ε
+ . . . , (66.18)
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Z4 = 1 +
3e2

8π2

1

ε
+ . . . , (66.19)

Zλ = 1 +

(
3e4

2π2λ
+

5λ

16π2

)
1

ε
+ . . . , (66.20)

in the MS scheme; the ellipses stand for higher powers of e2 and/or λ. We
see that Z1 = Z2 = Z4, at least through O(e2,λ). The correct guess is
that this is true exactly. Thus eqs. (66.13) and (66.14) both collapse to
e0 = Z

−1/2
3 e, just as in spinor electrodynamics.

Thus we can write

ln
(
Z
−1/2
3

)
=
∞∑

n=1

En(e, λ)

εn
, (66.21)

ln
(
Z−2

2 Zλ
)

=
∞∑

n=1

Ln(e, λ)

εn
. (66.22)

Then we have

ln e0 =
∞∑

n=1

En(e, λ)

εn
+ ln e+ 1

2e ln µ̃ , (66.23)

lnλ0 =
∞∑

n=1

Ln(e, λ)

εn
+ lnλ+ e ln µ̃ . (66.24)

Using eqs. (66.17), (66.18) and (66.20), we have

E1(e, λ) =
e2

24π2
+ . . . , (66.25)

L1(e, λ) =
1

16π2

(
5λ+ 24e4/λ− 12e2

)
+ . . . , (66.26)

Now applying the general analysis of section 52 yields

βe(e, λ) =
e3

48π2
+ . . . , (66.27)

βλ(e, λ) =
1

16π2

(
5λ2 − 6λe2 + 24e4

)
+ . . . . (66.28)

Both right-hand sides are strictly positive, and so both e and λ become
large at high energies, and small at low energies.

Generalizing eq. (66.25) to the case of several complex scalar fields with
charges Qie works in the same way as it does in spinor electrodynamics.
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For a theory with both Dirac fields and complex scalar fields, the one-loop
contributions to Z3 simply add, and so the beta function for e is

βe(e, λ) =
1

12π2

(∑
ΨQ

2
Ψ + 1

4

∑
ϕQ

2
ϕ

)
e3 + . . . . (66.29)

Problems

66.1) Compute the one-loop contributions to the anomalous dimensions of
m, Ψ, and Aµ in spinor electrodynamics.

66.2) Compute the one-loop contributions to the anomalous dimensions of
m, ϕ, and Aµ in scalar electrodynamics.

66.3) Use the results of problem 62.2 to compute the anomalous dimension
of m and the beta function for e in spinor electrodynamics in Rξ
gauge. You should find that the results are independent of ξ.

66.4) The value of α(MW). The solution of eq. (66.12) is

1

α(MW)
=

1

α(µ)
− 2

3π

∑

i

Q2
i ln(MW/µ) , (66.30)

where the sum is over all quarks and leptons (each color of quark
counts separately), and we have chosen the W± boson mass MW as
a reference scale. We can define a different renormalization scheme,
modified decoupling subtraction or DS, where we imagine integrating
out a field when µ is below its mass. In this scheme, eq. (66.30)
becomes

1

α(MW)
=

1

α(µ)
− 2

3π

∑

i

Q2
i ln[MW/min(mi, µ)] , (66.31)

where the sum is now over all quarks and leptons with mass less than
MW. For µ < me, the DS scheme coincides with the OS scheme, and
we have

1

α(MW)
=

1

α
− 2

3π

∑

i

Q2
i ln(MW/mi) , (66.32)

where α = 1/137.036 is the fine-structure constant in the OS scheme.
Using mu = md = ms ∼ 300MeV for the light quark masses (because
quarks should be replaced by hadrons at lower energies), and other
quark and lepton masses from sections 83 and 88, compute α(MW).
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67 Ward Identities in Quantum

Electrodynamics I

Prerequisite: 22, 59

In section 59, we assumed that scattering amplitudes would be gauge in-
variant, in the sense that they would be unchanged if we replaced any
photon polarization vector εµ with εµ + ckµ, where kµ is the photon’s
four-momentum and c is an arbitrary constant. Thus, if we write a scat-
tering amplitude T for a process that includes an external photon with
four-momentum kµ as

T = εµMµ , (67.1)

then we should have
kµMµ = 0 . (67.2)

In this section, we will use the Ward identity for the electromagnetic current
to prove eq. (67.2).

We begin by recalling the LSZ formula for scalar fields,

〈f |i〉 = i

∫
d4x1 e

−ik1x1(−∂2
1 +m2) . . . 〈0|Tϕ(x1) . . . |0〉 . (67.3)

We have treated all external particles as outgoing; an incoming particle has
k0
i < 0. We can rewrite eq. (67.3) as

〈f |i〉 = lim
k2

i→−m2
(k2

1 +m2) . . . 〈0|Tϕ̃(k1) . . . |0〉 . (67.4)

Here ϕ̃(k) = i
∫
d4x e−ikxϕ(x) is the field in momentum space (with an

extra factor of i), and we do not fix k2 = −m2.
We know that the right-hand side of eq. (67.4) must include an overall

energy-momentum delta function, so let us write

〈0|Tϕ̃(k1) . . . |0〉 = (2π)4δ4(
∑
i ki)F(k2

i , ki ·kj) , (67.5)

where F(k2
i , ki ·kj) is a function of the Lorentz scalars k2

i and ki ·kj . Then,
since

〈f |i〉 = i(2π)4δ4(
∑
i ki)T , (67.6)

eq. (67.4) tells us that F should have a multivariable pole as each k2
i ap-

proaches −m2, and that iT is the residue of this pole. That is, near
k2
i = −m2, F takes the form

F(k2
i , ki ·kj) =

iT
(k2

1 +m2) . . . (k2
n +m2)

+ nonsingular . (67.7)
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The key point is this: contributions to F that do not have this multivariable
pole do not contribute to T .

We have framed this discussion in terms of scalar fields in order to keep
the notation as simple as possible, but the general point holds for fields of
any spin.

In section 22, we analyzed how various classical field equations apply
to quantum correlation functions. For example, we derived the Schwinger-
Dyson equations

〈0|T δS

δφa(x)
φa1(x1) . . . φan(xn)|0〉

= i
n∑

j=1

〈0|Tφa1(x1) . . . δaaj δ
4(x−xj) . . . φan(xn)|0〉 . (67.8)

Here we have used φa(x) to denote any kind of field, not necessarily a
scalar field, carrying any kind of index or indices. The classical equation
of motion for the field φa(x) is δS/δφa(x) = 0. Thus, eq. (67.8) tells us
that the classical equation of motion holds for a field inside a quantum
correlation function, as long as its spacetime argument and indices do not
match up exactly with those of any other field in the correlation function.
These matches, which constitute the right-hand side of eq. (67.8), are called
contact terms.

Suppose we have a correlation function that, for whatever reason, in-
cludes a contact term with a factor of, say, δ4(x1−x2). After Fourier-
transforming to momentum space, this contact term is a function of k1+k2,
but is independent of k1 − k2; hence it cannot take the form of the singular
term in eq. (67.7). Therefore, contact terms in a correlation function F do
not contribute to the scattering amplitude T .

Now let us consider a scattering process in quantum electrodyamics that
involves an external photon with four-momentum k. In Lorenz gauge (the
simplest for this analysis), the LSZ formula reads

〈f |i〉 = iεµ
∫
d4x e−ikx(−∂2) . . . 〈0|TAµ(x) . . . |0〉 , (67.9)

and the classical equation of motion for Aµ is

−Z3 ∂
2Aµ =

∂L
∂Aµ

. (67.10)

In spinor electrodynamics, the right-hand side of eq. (67.10) is Z1j
µ, where

jµ is the electromagnetic current. (This is also true for scalar electrodynam-
ics if Z4 = Z2

1/Z2; we saw in problem 65.2 that this condition is necessary
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for gauge invariance.) We therefore have

〈f |i〉 = iZ−1
3 Z1ε

µ
∫
d4x e−ikx . . .

[
〈0|Tjµ(x) . . . |0〉 + contact terms

]
.

(67.11)
The contact terms arise because, as we saw in eq. (67.8), the classical equa-
tions of motion hold inside quantum correlation functions only up to contact
terms. However, the contact terms cannot generate singularities in the k2’s
of the other particles, and so they do not contribute to the left-hand side.
(Remember that, for each of the other particles, there is still an appropriate
wave operator, such as the Klein-Gordon wave operator for a scalar, acting
on the correlation function. These wave operators kill any term that does
not have an appropriate singularity.)

Now let us try replacing εµ in eq. (67.11) with kµ. We are attempting
to prove that the result is zero, and we are almost there. We can write the
factor of ikµ as −∂µ acting on the e−ikx, and then we can integrate by parts
to get ∂µ acting on the correlation function. (Strictly speaking, we need a
wave packet for the external photon to kill surface terms.) Then we have
∂µ〈0|Tjµ(x) . . . |0〉 on the right-hand side. Now we use another result from
section 22, namely that a Noether current for an exact symmetry obeys
∂µjµ = 0 classically, and

∂µ〈0|Tjµ(x) . . . |0〉 = contact terms (67.12)

quantum mechanically; this is the Ward (or Ward-Takahashi) identity.
But once again, the contact terms do not have the right singularities to
contribute to 〈f |i〉. Thus we conclude that 〈f |i〉 vanishes if we replace an
external photon’s polarization vector εµ with its four-momentum kµ, quo
erat demonstratum.

Reference Notes

Diagrammatic proofs of the Ward identity in spinor electrodynamics can
be found in Peskin & Schroeder and Zee.

Problems

67.1) Show explicitly that the tree-level ẽ+ẽ− → γγ scattering amplitude
in scalar electrodynamics,

T = −e2
[
4(k1 ·ε1′)(k2 ·ε2′)

m2 − t
+

4(k1 ·ε2′)(k2 ·ε1′)
m2 − u

+ 2(ε1′ ·ε2′)
]
,

vanishes if εµ1′ is replaced with k′µ1 .
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67.2) Show explicitly that the tree-level e+e− → γγ scattering amplitude
in spinor electrodynamics,

T = e2 v2

[
/ε1′

(−/p1 + /k′1 +m

m2 − t

)
/ε2′ + /ε2′

(−/p1 + /k′2 +m

m2 − u

)
/ε1′

]
u1 ,

vanishes if εµ1′ is replaced with k′µ1 .
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68 Ward Identities in Quantum

Electrodynamics II

Prerequisite: 63, 67

In this section, we will show that Z1 = Z2 in spinor electrodynamics, and
that Z1 = Z2 = Z4 in scalar electrodyanimcs (in the OS and MS renormal-
ization schemes).

Let us specialize to the case of spinor electrodynamics with a single
Dirac field, and consider the correlation function

Cµαβ(k, p
′, p) ≡ iZ1

∫
d4x d4y d4z eikx−ip

′y+ipz 〈0|Tjµ(x)Ψα(y)Ψβ(z)|0〉 ,
(68.1)

where jµ = eΨγµΨ is the electromagnetic current. As we saw in section
67, including Z1j

µ(x) inside a correlation function adds a vertex for an
external photon; the factor of Z1 provides the necessary renormalization of
this vertex. The explicit fermion fields on the right-hand side of eq. (68.1)
combine with the fermion fields in the current to generate propagators.
Thus we have

Cµαβ(k, p
′, p) = (2π)4δ4(k+p−p′)

[
1
i S̃(p′)iVµ(p′, p)1

i S̃(p)
]
αβ
, (68.2)

where S̃(p) is the exact fermion propagator, and Vµ(p′, p) is the exact 1PI
photon–fermion–fermion vertex function.

Now let us consider kµC
µ
αβ(k, p

′, p). Using eq. (68.1), we can write the
factor of ikµ on the right-hand side as ∂µ acting on eikx, and then integrate
by parts to get −∂µ acting on jµ(x). (Strictly speaking, we need a wave
packet for the external photon to kill surface terms.) Thus we have

kµC
µ
αβ(k, p

′, p) = −
∫
d4x d4y d4z eikx−ip

′y+ipz ∂µ〈0|Tjµ(x)Ψα(y)Ψβ(z)|0〉 .
(68.3)

Now we use the Ward identity from section 22, which in general reads

−∂µ〈0|TJµ(x)φa1(x1) . . . φan(xn)|0〉

= i
n∑

j=1

〈0|Tφa1(x1) . . . δφaj (x)δ
4(x−xj) . . . φan(xn)|0〉 . (68.4)

Here δφa(x) is the change in a field φa(x) under an infinitesimal transfor-
mation that leaves the action invariant, and

Jµ =
∂L

∂(∂µφa)
δφa (68.5)
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is the corresponding Noether current. In the case of spinor electrodynamics,

δΨ(x) = −ieΨ(x) ,

δΨ(x) = +ieΨ(x) , (68.6)

where we have dropped an infinitesimal parameter on the right-hand sides,
but included a factor of the electron charge e. Using ∂L/∂(∂µΨ) = iZ2Ψγ

µ

and ∂L/∂(∂µΨ) = 0 we find that, with these conventions, the Noether
current is Jµ = Z2eΨγ

µΨ = Z2j
µ. Thus the Ward identity becomes

−Z2∂µ〈0|Tjµ(x)Ψα(y)Ψβ(z)|0〉 = +e δ4(x−y)〈0|TΨα(y)Ψβ(z)|0〉
−e δ4(x−z)〈0|TΨα(y)Ψβ(z)|0〉 . (68.7)

Recall that

〈0|TΨα(y)Ψβ(z)|0〉 =
1

i

∫
d4q

(2π)4
eiq(y−z) S̃(q)αβ . (68.8)

Using eqs. (68.7) and (68.8) in eq. (68.3), and carrying out the coordinate
integrals, we get

kµC
µ
αβ(k, p

′, p) = −iZ−1
2 Z1(2π)4δ4(k+p−p′)

[
eS̃(p) − eS̃(p′)

]
αβ
. (68.9)

On the other hand, from eq. (68.2) we have

kµC
µ
αβ(k, p

′, p) = −i(2π)4δ4(k+p−p′)
[
S̃(p′)kµV

µ(p′, p)S̃(p)
]
αβ
. (68.10)

Comparing eqs. (68.9) and (68.10) shows that

(p′−p)µS̃(p′)Vµ(p′, p)S̃(p) = Z−1
2 Z1e

[
S̃(p) − S̃(p′)

]
, (68.11)

where we have dropped the spin indices. We can simplify eq. (68.11) by
multiplying on the left by S̃(p′)−1, and on the right by S̃(p)−1, to get

(p′−p)µVµ(p′, p) = Z−1
2 Z1e

[
S̃(p′)−1 − S̃(p)−1

]
. (68.12)

Thus we find a relation between the exact photon–fermion–fermion vertex
function Vµ(p′, p) and the exact fermion propagator S̃(p).

Since both S̃(p) and Vµ(p′, p) are finite, eq. (68.12) implies that Z1/Z2

must be finite as well. In the MS scheme (where all corrections to Zi = 1
are divergent), this immediately implies that

Z1 = Z2 . (68.13)
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In the OS scheme, we recall that near the on-shell point p2 = p′2 = −m2

and (p′ − p)2 = 0 we have S̃(p) = /p + m and Vµ(p′, p) = eγµ. Plugging
these expressions into eq. (68.12) then yields Z1 = Z2 for the OS scheme.

To better understand this result, we note that when Z1 = Z2, we
can combine the fermion kinetic term iZ2Ψ/∂Ψ and the interaction term
Z1eΨ /AΨ into iZ2Ψ /DΨ, where Dµ = ∂µ − ieAµ is the covariant derivative.
Recall that it is Dµ that has a simple gauge transformation, and so we
might expect the lagrangian, written in terms of renormalized fields, to
include ∂µ and Aµ only in the combination Dµ. It is still necessary to go
through the analysis that led to eq. (68.12), however, because quantization
requires fixing a gauge, and this renders suspect any naive arguments based
on gauge invariance. Still, in this case, those arguments yield the correct
result.

We can make a similar analysis in scalar electrodynamics. We leave the
details to the problems.

Reference Notes

BRST symmetry (see section 74) can be used to derive the Ward identities;
see Ramond I.

Problems

68.1) Consider the current correlation function 〈0|Tjµ(x)jν(y)|0〉 in spinor
electrodynamics.

a) Show that its Fourier transform is proportional to

Πµν(k) + Πµρ(k)∆̃ρσ(k)Π
σν(k) + . . . . (68.14)

b) Use this to prove that Πµν(k) is transverse: kµΠ
µν(k) = 0.

68.2) Verify that eq. (68.12) holds at the one-loop level in

a) the OS scheme.

b) the MS scheme.

68.3) Scalar electrodynamics. (Prerequisite: 65.)

a) Consider the Fourier transform of 〈0|TJµ(x)ϕ(y)ϕ†(z)|0〉, where

Jµ = −ieZ2[ϕ
†∂µϕ− (∂µϕ†)ϕ] − 2Z1e

2Aµϕ†ϕ (68.15)

is the Noether current. You may assume that Z4 = Z2
1/Z2 (which is

necessary for gauge invariance). Show that

(p′−p)µVµ
3 (p′, p) = Z−1

2 Z1e
[
∆̃(p′)−1 − ∆̃(p)−1

]
, (68.16)
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where Vµ
3 (p′, p) is the exact scalar-scalar-photon vertex function, and

∆̃(p) is the exact scalar propagator.

b) Use this result to show that Z1 = Z2 in both the MS and OS
renormalization schemes.

c) Consider the Fourier transform of 〈0|TJµ(x)Aν(w)ϕ(y)ϕ†(z)|0〉.
Show that

kµV
µν
4 (k, p′, p) = Z−1

1 Z4e
[
Vν

3(p′−k, p) − Vν
3(p′, p+k)

]
, (68.17)

where Vµν
4 (k, p′, p) is the exact scalar-scalar-photon-photon vertex

function, with k the incoming momentum of the photon at the µ
vertex.

68.4) Repeat problem 68.1 for scalar electrodynamics.
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69 Nonabelian Gauge Theory

Prerequisite: 24, 58

Consider a lagrangian with N scalar or spinor fields φi(x) that is invariant
under a continuous SU(N) or SO(N) symmetry,

φi(x) → Uijφj(x) , (69.1)

where Uij is an N ×N special unitary matrix in the case of SU(N), or an
N ×N special orthogonal matrix in the case of SO(N). (Special means
that the determinant of U is one.) Eq. (69.1) is called a global symmetry
transformation, because the matrix U does not depend on the spacetime
label x.

In section 58, we saw that quantum electrodynamics could be under-
stood as having a local U(1) symmetry,

φ(x) → U(x)φ(x) , (69.2)

where U(x) = exp[−ieΓ(x)] can be thought of as a 1 × 1 unitary matrix
that does depend on the spacetime label x. Eq. (69.2) can be a symmetry
of the lagrangian only if we include a U(1) gauge field Aµ(x), and promote
ordinary derivatives ∂µ of φ(x) to covariant derivatives Dµ = ∂µ − ieAµ.
Under the transformation of eq. (69.2), we have

Dµ → U(x)DµU
†(x) . (69.3)

With this transformation rule, a scalar kinetic term like −(Dµϕ)†Dµϕ, or a
fermion kinetic term like iΨ /DΨ, is invariant, as are mass terms like m2ϕ†ϕ
and mΨΨ. We call eq. (69.3) a gauge transformation, and say that the
lagrangian is gauge invariant.

Eq. (69.3) implies that the gauge field transforms as

Aµ(x) → U(x)Aµ(x)U
†(x) + i

eU(x)∂µU
†(x) . (69.4)

If we use U(x) = exp[−ieΓ(x)], then eq. (69.4) simplifies to

Aµ(x) → Aµ(x) − ∂µΓ(x) , (69.5)

which is what we originally had in section 54.
We can now easily generalize this construction of U(1) gauge theory

to SU(N) or SO(N). (We will consider other possibilities later.) To be
concrete, let us consider SU(N). Recall from section 24 that we can write
an infinitesimal SU(N) transformation as

Ujk(x) = δjk − igθa(x)(T a)jk +O(θ2) , (69.6)
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where we have inserted a coupling constant g for later convenience. The
indices j and k run from 1 to N , the index a runs from 1 to N2−1 (and
is implicitly summed), and the generator matrices T a are hermitian and
traceless. (These properties of T a follow immediately from the special uni-
tarity of U .) The generator matrices obey commutation relations of the
form

[T a, T b] = ifabcT c , (69.7)

where the real numerical factors fabc are called the structure coefficients of
the group. If fabc does not vanish, the group is nonabelian.

We can choose the generator matrices so that they obey the normaliza-
tion condition

Tr(T aT b) = 1
2δ
ab ; (69.8)

then eqs. (69.7) and (69.8) can be used to show that fabc is completely
antisymmetric. For SU(2), we have T a = 1

2σ
a, where σa is a Pauli matrix,

and fabc = εabc, where εabc is the completely antisymmetric Levi-Civita
symbol.

Now we define an SU(N) gauge field Aµ(x) as a traceless hermitian
N ×N matrix of fields with the gauge transformation property

Aµ(x) → U(x)Aµ(x)U
†(x) + i

gU(x)∂µU
†(x) . (69.9)

Note that this is identical to eq. (69.4), except that now U(x) is a spe-
cial unitary matrix (rather than a phase factor), and Aµ(x) is a traceless
hermitian matrix (rather than a real number). (Also, the electromagnetic
coupling e has been replaced by g.) We can write U(x) in terms of the
generator matrices as

U(x) = exp[−igΓa(x)T a] , (69.10)

where the real parameters Γa(x) are no longer infinitesimal.
The covariant derivative is

Dµ = ∂µ − igAµ(x) , (69.11)

where there is an understood N×N identity matrix multiplying ∂µ. Acting
on the set of N fields φi(x) that transform according to eq. (69.2), the
covariant derivative can be written more explicitly as

(Dµφ)j(x) = ∂µφj(x) − igAµ(x)jkφk(x) , (69.12)

with an understood sum over k. The covariant derivative transforms ac-
cording to eq. (69.3). Replacing all ordinary derivatives in L with covariant



69: Nonabelian Gauge Theory 410

derivatives renders L gauge invariant (assuming, of course, that L originally
had a global SU(N) symmetry).

We still need a kinetic term for Aµ(x). Let us define the field strength

Fµν(x) ≡ i
g [Dµ,Dν ] (69.13)

= ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (69.14)

Because Aµ is a matrix, the final term in eq. (69.14) does not vanish, as
it does in U(1) gauge theory. Eqs. (69.3) and (69.13) imply that, under a
gauge transformation,

Fµν(x) → U(x)Fµν(x)U
†(x) . (69.15)

Therefore,
Lkin = −1

2Tr(FµνFµν) (69.16)

is gauge invariant, and can serve as a kinetic term for the SU(N) gauge
field. (Note, however, that the field strength itself is not gauge invariant,
in contrast to the situation in U(1) gauge theory.)

Since we have taken Aµ(x) to be hermitian and traceless, we can expand
it in terms of the generator matrices:

Aµ(x) = Aaµ(x)T
a . (69.17)

Then we can use eq. (69.8) to invert eq. (69.17):

Aaµ(x) = 2TrAµ(x)T
a . (69.18)

Similarly, we have

Fµν(x) = F aµνT
a , (69.19)

F aµν(x) = 2TrFµνT
a . (69.20)

Using eq. (69.19) in eq. (69.14), we get

F cµνT
c = (∂µA

c
ν − ∂νA

c
µ)T

c − igAaµA
b
ν [T

a, T b]

= (∂µA
c
ν − ∂νA

c
µ + gfabcAaµA

b
ν)T

c . (69.21)

Then using eqs. (69.20) and (69.8) yields

F cµν = ∂µA
c
ν − ∂νA

c
µ + gfabcAaµA

b
ν . (69.22)

Also, using eqs. (69.19) and (69.8) in eq. (69.16), we get

Lkin = −1
4F

cµνF cµν . (69.23)
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From eq. (69.22), we see that Lkin includes interactions among the gauge
fields. A theory of this type, with nonzero fabc, is called nonabelian gauge
theory or Yang–Mills theory.

Everything we have just said about SU(N) also goes through for SO(N),
with unitary replaced by orthogonal, and traceless replaced by antisym-
metric. There is also another class of compact nonabelian groups called
Sp(2N), and five exceptional compact groups: G(2), F(4), E(6), E(7), and
E(8). Compact means that Tr(T aT b) is a positive definite matrix. Non-
abelian gauge theory must be based on a compact group, because otherwise
some of the terms in Lkin would have the wrong sign, leading to a hamil-
tonian that is unbounded below.

As a specific example, let us consider quantum chromodynimcs, or QCD,
which is based on the gauge group SU(3). There are several Dirac fields
corresponding to quarks. Each quark comes in three colors; these are the
values of the SU(3) index. (These colors have nothing to do with ordinary
color.) There are also six flavors: up, down, strange, charm, bottom (or
beauty) and top (or truth). Thus we consider the Dirac field ΨiI(x), where
i is the color index and I is the flavor index. The lagrangian is

L = iΨiI /DijΨjI −mIΨIΨI − 1
2Tr(FµνFµν) , (69.24)

where all indices are summed. The different quark flavors have different
masses, ranging from a few MeV for the up and down quarks to 175GeV
for the top quark. (The quarks also have electric charges: +2

3 |e| for the u,
c, and t quarks, and −1

3 |e| for the d, s, and b quarks. For now, however, we
omit the appropriate coupling to the electromagnetic field.) The covariant
derivative in eq. (69.24) is

(Dµ)ij = δij∂µ − igAaµT
a
ij . (69.25)

The index a on Aaµ runs from 1 to 8, and the corresponding massless spin-
one particles are the eight gluons.

In a nonabelian gauge theory in general, we can consider scalar or spinor
fields in different representations of the group. A representation of a com-
pact nonabelian group is a set of finite-dimensional hermitian matrices T aR
(the R is part of the name, not an index) that obey that same commuta-
tion relations as the original generator matrices T a. Given such a set of
D(R) × D(R) matrices (where D(R) is the dimension of the representa-
tion), and a field φ(x) with D(R) components, we can write its covariant
derivative as Dµ = ∂µ− igAaµT aR , with an understood D(R)×D(R) identity
matrix multiplying ∂µ. Under a gauge transformation, φ(x) → UR(x)φ(x),
where UR(x) is given by eq. (69.10) with T a replaced by T aR . The theory
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will be gauge invariant provided that the transformation rule for Aaµ is in-
depedent of the representation used in eq. (69.9); we show in problem 69.1
that it is.

We will not need to know a lot of representation theory, but we collect
some useful facts in the next section.

Problems

69.1) Show that eq. (69.9) implies a transformation rule for Aaµ that is in-
dependent of the representation used in eq. (69.9). Hint: consider an
infinitesimal transformation.

69.2) Show that [T aT a, T b] = 0.
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70 Group Representations

Prerequisite: 69

Given the structure coefficients fabc of a compact nonabelian group, a rep-
resentation of that group is specified by a set of D(R) × D(R) traceless
hermitian matrices T aR (the R is part of the name, not an index) that obey
that same commutation relations as the original generators matrices T a,
namely

[T aR , T
b
R] = ifabcT cR . (70.1)

The number D(R) is the dimension of the representation. The original
T a’s correspond to the fundamental or defining representation.

Consider taking the complex conjugate of the commutation relations,
eq. (70.1). Since the structure coefficients are real, we see that the matrices
−(T aR)∗ also obey these commutation relations. If −(T aR)∗ = T aR , or if we can
find a unitary transformation T aR → U−1T aRU that makes −(T aR)∗ = T aR for
every a, then the representation R is real. If such a unitary transformation
does not exist, but we can find a unitary matrix V 6= I such that −(T aR)∗ =
V −1T aRV for every a, then the representation R is pseudoreal. If such a
unitary matrix also does not exist, then the representation R is complex.
In this case, the complex conjugate representation R is specified by

T a
R

= −(T aR )∗ . (70.2)

One way to prove that a representation is complex is to show that
at least one generator matrix T aR (or a real linear combination of them)
has eigenvalues that do not come in plus-minus pairs. This is the case
for the fundamental representation of SU(N) with N ≥ 3. For SU(2),
the fundamental representation is pseudoreal, because −(1

2σ
a)∗ 6= 1

2σ
a,

but −(1
2σ

a)∗ = V −1(1
2σ

a)V with V = σ2. For SO(N), the fundamental
representation is real, because the generator matrices are antisymmetric,
and every antisymmetric hermitian matrix is equal to minus its complex
conjugate.

An important representation for any compact nonabelian group is the
adjoint representation A. This is given by

(T aA)bc = −ifabc . (70.3)

Because fabc is real and completely antisymmetric, T aA is manifestly her-
mitian, and also satisfies eq. (70.2); thus the adjoint representation is real.
The dimension of the adjoint representation D(A) is equal to the number
of generators of the group; this number is also called the dimension of the
group.
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To see that the T aA ’s satisfy the commutation relations, we use the Jacobi
identity

fabdfdce + f bcdfdae + f cadfdbe = 0 , (70.4)

which holds for the structure coefficients of any group. To prove the Jacobi
identity, we note that

TrT e
(
[[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b]

)
= 0 , (70.5)

where the T a’s are the original generator matrices. That the left-hand
side of eq. (70.5) vanishes can be seen by writing out all the commutators
as matrix products, and noting that they cancel in pairs. Employing the
commutation relations twice in each term, followed by

Tr(T aT b) = 1
2δ
ab , (70.6)

ultimately yields eq. (70.4). Then, using the antisymmetry of the structure
coefficients, inserting some judicious factors of i, and moving the last term
of eq. (70.4) to the right-hand side, we can rewrite it as

(−ifabd)(−if cde) − (−if cbd)(−ifade) = ifacd(−ifdbe) . (70.7)

Now we use eq. (70.3) in eq. (70.7) to get

(T aA)bd(T cA)de − (T cA)bd(T aA)de = ifacd(T dA)be , (70.8)

or equivalently [T aA , T
c
A] = ifacdT dA . Thus the T aA ’s satisfy the appropriate

commutation relations.
Two related numbers usefully characterize a representation: the index

T (R) and the quadratic Casimir C(R). The index is defined via

Tr(T aRT
b
R) = T (R)δab . (70.9)

Next we recall from 69.2) that the matrix T aRT
a
R commutes with every gen-

erator, and so must be a number times the identity matrix; this number is
the quadratic Casimir C(R). It is easy to show that

T (R)D(A) = C(R)D(R) . (70.10)

With the standard normalization conventions for the generators, we have
T (N) = 1

2 for the fundamental representation of SU(N) and T (N) = 2 for
the fundamental representation of SO(N). We show in problem 70.2 that
T (A) = N for the adjoint representation of SU(N), and in problem 70.3
that T (A) = 2N − 4 for the adjoint representation of SO(N).

A representation R is reducible if there is a unitary transformation T aR →
U−1T aRU that puts all the nonzero entries into the same diagonal blocks for
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each a; otherwise it is irreducible. Consider a reducible representation R
whose generators can be put into (for example) two blocks, with the blocks
forming the generators of the irreducible representations R1 and R2. Then
R is the direct sum representation R = R1 ⊕ R2, and we have

D(R1⊕R2) = D(R1) +D(R2) , (70.11)

T (R1⊕R2) = T (R1) + T (R2) . (70.12)

Suppose we have a field ϕiI(x) that carries two group indices, one for
the representation R1 and one for the representation R2, denoted by i and
I respectively. This field is in the direct product representation R1 ⊗ R2.
The corresponding generator matrix is

(T aR1⊗R2
)iI,jJ = (T aR1

)ijδIJ + δij(T
a
R2

)IJ , (70.13)

where i and I together constitute the row index, and j and J together
constitute the column index. We then have

D(R1⊗R2) = D(R1)D(R2) , (70.14)

T (R1⊗R2) = T (R1)D(R2) +D(R1)T (R2) . (70.15)

To get eq. (70.15), we need to use the fact that the generator matrices are
traceless, (T aR )ii = 0.

At this point it is helpful to introduce a slightly more refined notation for
the indices of a complex representation. Consider a field ϕ in the complex
representation R. We will adopt the convention that such a field carries
a “down” index: ϕi, where i = 1, 2, . . . ,D(R). Hermitian conjugation
changes the representation from R to R, and we will adopt the convention
that this also raises the index on the field,

(ϕi)
† = ϕ† i . (70.16)

Thus a down index corresponds to the representation R, and an up index to
R. Indices can be contracted only if one is up and one is down. Generator
matrices for R are then written with the first index down and the second
index up: (T aR )i

j . An infinitesimal group transformation of ϕi takes the
form

ϕi → (1 − iθaT aR)i
jϕj

= ϕi − iθa(T aR)i
jϕj . (70.17)

The generator matrices for R are then given by

(T a
R
)ij = −(T aR )j

i , (70.18)
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where we have used the hermiticity to trade complex conjugation for trans-
position of the indices. An infinitesimal group transformation of ϕ†i takes
the form

ϕ†i → (1 − iθaT a
R
)ijϕ

†j

= ϕ†i − iθa(T a
R
)ijϕ

†j

= ϕ†i + iθa(T aR )j
iϕ†j , (70.19)

where we used eq. (70.18) to get the last line. Note that eqs. (70.17) and
(70.19) together imply that ϕ†iϕi is invariant, as expected.

Consider the Kronecker delta symbol with one index down and one up:
δi
j. Under a group transformation, we have

δi
j → (1 + iθaT aR)i

k(1 + iθaT a
R
)j lδk

l

= (1 + iθaT aR)i
kδk

l(1 − iθaT aR )l
j

= δi
j +O(θ2) . (70.20)

Eq. (70.20) shows that δi
j is an invariant symbol of the group. This exis-

tence of this invariant symbol, which carries one index for R and one for
R, tells us that the product of the representations R and R must contain
the singlet representation 1, specified by T a1 = 0. We therefore can write

R ⊗ R = 1 ⊕ . . . . (70.21)

The generator matrix (T aR)i
j , which carries one index for R, one for R,

and one for the adjoint representation A, is also an invariant symbol. To see
this, we make a simultaneous infinitesimal group transformation on each of
these indices,

(T bR)i
j → (1 − iθaT aR)i

k(1 − iθaT a
R
)j l(1 − iθaT aA)bc(T cR)k

l

= (T bR)i
j − iθa[(T aR )i

k(T bR)k
j + (T a

R
)j l(T

b
R)i

l + (T aA)bc(T cR)i
j ]

+O(θ2) . (70.22)

The factor in square brackets should vanish if (as we claim) the generator
matrix is an invariant symbol. Using eqs. (70.3) and (70.18), we have

[ . . . ] = (T aR)i
k(T bR)k

j − (T aR )l
j(T bR)i

l − ifabc(T cR)i
j

= (T aRT
b
R)i

j − (T bRT
a
R )i

j − ifabc(T cR)i
j

= 0 , (70.23)
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where the last line follows from the commutation relations. The fact that
(T aR )i

j is an invariant symbol implies that

R ⊗ R ⊗ A = 1 ⊕ . . . . (70.24)

If we now multiply both sides of eq. (70.24) by A, and use A⊗A = 1⊕ . . .
[which follows from eq. (70.21) and the reality of A], we find R⊗R = A⊕. . . .
Combining this with eq. (70.21), we have

R ⊗ R = 1 ⊕ A ⊕ . . . . (70.25)

That is, the product of a representation with its complex conjugate is al-
ways reducible into a sum that includes (at least) the singlet and adjoint
representations.

For the fundamental representation N of SU(N), we have

N ⊗ N = 1 ⊕ A , (70.26)

with no other representations on the right-hand side. To see this, recall that
D(1) = 1, D(N) = D(N) = N , and, as shown in section 24, D(A) = N2−1.
From eq. (70.14), we see that there is no room for anything else on the
right-hand side of eq. (70.26).

Consider now a real representation R. From eq. (70.25), with R = R,
we have

R ⊗ R = 1 ⊕ A ⊕ . . . . (70.27)

The singlet on the right-hand side implies the existence of an invariant
symbol with two R indices; this symbol is the Kronecker delta δij . It is
invariant because

δij → (1 − iθaT aR)i
k(1 − iθaT aR )j

lδkl

= δij − iθa[(T aR )ij + (T aR )ji] +O(θ2) . (70.28)

The term in square brackets vanishes by hermiticity and eq. (70.18). The
fact that δij = δji implies that the singlet on the right-hand side of eq. (70.28)
appears in the symmetric part of this product of two identical representa-
tions.

The fundamental representation N of SO(N) is real, and we have

N ⊗ N = 1S ⊕ AA ⊕ SS . (70.29)

The subscripts tell whether the representation appears in the symmetric or
antisymmetric part of the product. The representation S corresponds to
a field with a symmetric traceless pair of fundamental indices: ϕij = ϕji,
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ϕii = 0, where the repeated index is summed. We have D(1) = 1, D(N) =
N , and, as shown in section 24, D(A) = 1

2N(N−1). Also, a traceless
symmetric tensor has D(S) = 1

2N(N+1)−1 independent components; thus
eq. (70.14) is fulfilled.

Consider now a pseudoreal representation R. Since R is equivalent to its
complex conjugate, up to a change of basis, eq. (70.27) still holds. However,
we cannot identify δij as the corresponding invariant symbol, because then
eq. (70.28) shows that R would have to be real, rather than pseudoreal.
From the perspective of the direct product, the only alternative is to have
the singlet appear in the antisymmetric part of the product, rather than
the symmetric part. The corresponding invariant symbol must then be
antisymmetric on exchange of its two R indices.

An example (the only one that will be of interest to us) is the funda-
mental representation of SU(2). For SU(N) in general, another invariant
symbol is the Levi-Civita tensor εi1...iN , which carries N fundamental in-
dices and is completely antisymmetric. It is invariant because, under an
SU(N) transformation,

εi1...iN → Ui1
j1 . . . UiN

jN εj1...jN

= (detU)εi1...iN . (70.30)

Since detU = 1 for SU(N), we see that the Levi-Civita symbol is invariant.
We can similarly consider εi1...iN , which carriesN completely antisymmetric
antifundamental indices. For SU(2), the Levi-Civita symbol is εij = −εji;
this is the two-index invariant symbol that corresponds to the singlet in the
product

2 ⊗ 2 = 1A ⊕ 3S , (70.31)

where 3 is the adjoint representation.
We can use εij and εij to raise and lower SU(2) indices. This is another

way to see that there is no distinction between the fundamental represen-
tation 2 and its complex conjugate 2. That is, if we have a field ϕi in the
representation 2, we can get a field in the representation 2 by raising the
index: ϕi = εijϕj .

The structure constants fabc are another invariant symbol. This follows
from (T aA)bc = −ifabc, since we have seen that generator matrices (in any
representation) are invariant. Alternatively, given the generator matrices
in a representation R, we can write

T (R)fabc = −iTr(T aR [T bR, T
c
R]) . (70.32)

Since the right-hand side is invariant, the left-hand side must be as well.
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If we use an anticommutator in place of the commutator in eq. (70.32),
we get another invariant symbol,

A(R)dabc ≡ 1
2Tr(T aR{T bR, T cR}) , (70.33)

where A(R) is the anomaly coefficient of the representation. The cyclic
property of the trace implies that A(R)dabc is symmetric on exchange of
any pair of indices. Using eq. (70.18), we can see that

A(R) = −A(R) . (70.34)

Thus, if R is real or pseudoreal, A(R) = 0. We also have

A(R1⊕R2) = A(R1) +A(R2) , (70.35)

A(R1⊗R2) = A(R1)D(R2) +D(R1)A(R2) . (70.36)

We normalize the anomaly coefficient so that it equals one for the smallest
complex representation. In particular, for SU(N) with N ≥ 3, the smallest
complex representation is the fundamental, and A(N) = 1. For SU(2), all
representations are real or pseudoreal, and A(R) = 0 for all of them.

Reference Notes

More group and representation theory can be found in Ramond II.

Problems

70.1) Verify eq. (70.10).

70.2) a) Use eqs. (70.12) and (70.26) to compute T (A) for SU(N).

b) For SU(2), the adjoint representation is specified by (T aA)bc =
−iεabc. Use this to compute T (A) explicitly for SU(2). Does your
result agree with part (a)?

c) Consider the SU(2) subgroup of SU(N) that acts on the first two
components of the fundamental representation of SU(N). Under this
SU(2) subgroup, the N of SU(N) transforms as 2 ⊕ (N−2)1’s. Us-
ing eq. (70.26), figure out how the adjoint representation of SU(N)
transforms under this SU(2) subgroup.

d) Use your results from parts (b) and (c) to compute T (A) for SU(N).
Does your result agree with part (a)?
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70.3) a) Consider the SO(3) subgroup of SO(N) that acts on the first three
components of the fundamental representation of SO(N). Under this
SO(3) subgroup, the N of SO(N) transforms as 3 ⊕ (N−3)1’s. Us-
ing eq. (70.29), figure out how the adjoint representation of SO(N)
transforms under this SO(3) subgroup.

b) Use your results from part (a) and from problem 70.2 to compute
T (A) for SO(N).

70.4) a) For SU(N), we have

N ⊗ N = AA ⊕ SS , (70.37)

where A corresponds to a field with two antisymmetric fundamental
SU(N) indices, ϕij = −ϕji, and S corresponds to a field with two
symmetric fundamental SU(N) indices, ϕij = +ϕji. Compute D(A)
and D(S).

b) By considering an SU(2) subgroup of SU(N), compute T (A) and
T (S).

c) For SU(3), show that A = 3.

d) By considering an SU(3) subgroup of SU(N), compute A(A) and
A(S).

70.5) Consider a field ϕi in the representation R1 and a field χI in the
representation R2. Their product ϕiχI is then in the direct product
representation R1 ⊗R2, with generator matrices given by eq. (70.13).

a) Prove the distribution rule for the covariant derivative,

[Dµ(ϕχ)]iI = (Dµϕ)iχI + ϕi(Dµχ)I . (70.38)

b) Consider a field ϕi in the complex representation R. Show that

∂µ(ϕ
†iϕi) = (Dµϕ

†)iϕi + ϕ†i(Dµϕ)i . (70.39)

Explain why this is a special case of eq. (70.38).

70.6) The field strength in Yang-Mills theory is in the adjoint representa-
tion, and so its covariant derivative is

(DρFµν)
a = ∂ρF

a
µν − igAcρ(T

c
A)abF bµν . (70.40)

Prove the Bianchi identity,

(DµFνρ)
a + (DνFρµ)

a + (DρFµν)
a = 0 . (70.41)
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71 The Path Integral for Nonabelian Gauge

Theory

Prerequisite: 53, 69

We wish to evaluate the path integral for nonabelian gauge theory (also
known as Yang–Mills theory),

Z(J) ∝
∫

DA eiSYM(A,J) , (71.1)

SYM(A, J) =

∫
d4x

[
−1

4F
aµνF aµν + JaµAaµ

]
. (71.2)

In section 57, we evaluated the path integral for U(1) gauge theory by
arguing that, in momentum space, the component of the U(1) gauge field
parallel to the four-momentum kµ did not appear in the action, and hence
should not be integrated over. This argument relied on the form of the
U(1) gauge transformation,

Aµ(x) → Aµ(x) − ∂µΓ(x) . (71.3)

In the nonabelian case, however, the gauge transformation is nonlinear,

Aµ(x) → U(x)Aµ(x)U
†(x) + i

gU(x)∂µU
†(x) , (71.4)

where Aµ(x) = Aaµ(x)T
a. For an infinitesimal transformation,

U(x) = I − igθ(x) +O(θ2)

= I − igθa(x)T a +O(θ2) , (71.5)

we have
Aµ(x) → Aµ(x) + ig[Aµ(x), θ(x)] − ∂µθ(x) , (71.6)

or equivalently

Aaµ(x) → Aaµ(x) − gfabcAbµ(x)θ
c(x) − ∂µθ

a(x)

= Aaµ(x) − [δac∂µ + gfabcAbµ(x)]θ
c(x)

= Aaµ(x) − [δac∂µ − igAbµ(−if bac)]θc(x)

= Aaµ(x) − [δac∂µ − igAbµ(T
b
A)ac]θc(x)

= Aaµ(x) −Dac
µ θ

c(x) , (71.7)

where Dac
µ is the covariant derviative in the adjoint representation. We

see the similarity with the abelian case, eq. (71.3). However, the fact that
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it is Dµ that appears in eq. (71.7), rather than ∂µ, means that we cannot
account for gauge redundancy in the path integral by simply excluding the
components of Aaµ that are parallel to kµ. We will have to do something
more clever.

Consider an ordinary integral of the form

Z ∝
∫
dx dy eiS(x) , (71.8)

where both x and y are integrated from minus to plus infinity. Because y
does not appear in S(x), the integral over y is redundant. We can then
define Z by simply dropping the integral over y,

Z ≡
∫
dx eiS(x) . (71.9)

This is how we dealt with gauge redundancy in the abelian case.
We could get the same answer by inserting a delta function, rather than

by dropping the y integral:

Z =

∫
dx dy δ(y) eiS(x) . (71.10)

Furthermore, the argument of the delta function can be shifted by an ar-
bitrary function of x, without changing the result:

Z =

∫
dx dy δ(y − f(x)) eiS(x) . (71.11)

Suppose we are not given f(x) explicitly, but rather are told that y = f(x)
is the unique solution, for fixed x, of G(x, y) = 0. Then we can write

δ(G(x, y)) =
δ(y − f(x))

|∂G/∂y| , (71.12)

where we have used a standard rule for delta functions. We can drop the
absoute-value signs if we assume that ∂G/∂y is positive when evaluated at
y = f(x). Then we have

Z =

∫
dx dy

∂G

∂y
δ(G) eiS . (71.13)

Now let us generalize this result to an integral over dnx dny. We will need
n functions Gi(x, y) to fix all n components of y. The generalization of
eq. (71.13) is

Z =

∫
dnx dny det

(
∂Gi
∂yj

)
∏
iδ(Gi) e

iS . (71.14)
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Now we are ready to translate these results to path integrals over non-
abelian gauge fields. The role of the redundant integration variable y is
played by the set of all gauge transformations θa(x). The role of the inte-
gration variables x and y together is played by the gauge field Aaµ(x). The
role of G is played by a gauge-fixing function. We will use the gauge-fixing
function appropriate for Rξ gauge, which is

Ga(x) ≡ ∂µAaµ(x) − ωa(x) , (71.15)

where ωa(x) is a fixed, arbitrarily chosen function of x. (We will see how
the parameter ξ enters later.) In eq. (71.15), the spacetime argument x and
the index a play the role of the index i in eq. (71.14). Our path integral
becomes

Z(J) ∝
∫

DA det

(
δG

δθ

)∏
x,aδ(G) eiSYM , (71.16)

where SYM is given by eq. (71.2).
Now we have to evaluate the functional derivative δGa(x)/δθb(y), and

then its functional determinant. From eqs. (71.7) and (71.15), we find that,
under an infinitesimal gauge transformation,

Ga(x) → Ga(x) − ∂µDab
µ θ

b(x) . (71.17)

Thus we have
δGa(x)

δθb(y)
= −∂µDab

µ δ
4(x− y) , (71.18)

where the derivatives are with respect to x.
Now we need to compute the functional determinant of eq. (71.18).

Luckily, we learned how to do this in section 53. A functional determi-
nant can be written as a path integral over complex Grassmann variables.
So let us introduce the complex Grassmann field ca(x), and its hermitian
conjugate c̄a(x). (We use a bar rather than a dagger to keep the notation
a little less cluttered.) These fields are called Faddeev-Popov ghosts. Then
we can write

det
δGa(x)

δθb(y)
∝
∫

DcDc̄ eiSgh , (71.19)

where the ghost action is Sgh =
∫
d4xLgh, and the ghost lagrangian is

Lgh = c̄a∂µDab
µ c

b

= −∂µc̄aDab
µ c

b

= −∂µc̄a∂µca + ig∂µc̄aAcµ(T
c
A)abcb

= −∂µc̄a∂µca + gfabcAcµ∂
µc̄acb . (71.20)
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We dropped a total divergence in the second line. We see that ca(x) has
the standard kinetic term for a complex scalar field. (We need the factor of
i in front of Sgh in eq. (71.19) for this to work out; this factor affects only
the overall phase of Z(J), and so we can choose it at will.) The ghost field
is also a Grassmann field, and so a closed loop of ghost lines in a Feynman
diagram carries an extra factor of minus one. We see from eq. (71.20) that
the ghost field interacts with the gauge field, and so we will have such loops.

Since the particles associated with the ghost field do not in fact exist
(and would violate the spin-statistics theorem if they did), it must be that
the amplitude to produce them in any scattering process is zero. This is
indeed the case, as we will discuss in section 74.

We note that in abelian gauge theory, where fabc = 0, there is no
interaction term for the ghost field. In that case, it is simply an extra free
field, and we can absorb its path integral into the overall normalization.

We have one final trick to perform. Our gauge-fixing function, Ga(x)
contains an arbitrary function ωa(x). The path integral Z(J) is, however,
independent of ωa(x). So, we can multiply Z(J) by an arbitrary functional
of ω, and then perform a path integral over ω; the result can change only
the overall normalization of Z(J). In particular, let us multiply Z(J) by

exp

[
− i

2ξ

∫
d4xωaωa

]
. (71.21)

Because of the delta-functional in eq. (71.16), it is easy to integrate over ω.
The final result for Z(J) is

Z(J) ∝
∫

DADc̄Dc exp
(
iSYM + iSgh + iSgf

)
, (71.22)

where SYM is given by eq. (71.2), Sgh is given by the integral over d4x of
eq. (71.20), and Sgf (gf stands for gauge fixing) is given by the integral over
d4x of

Lgf = −1
2ξ
−1∂µAaµ∂

νAaν . (71.23)

In the next section, we will derive the Feynman rules that follow from
this path integral.
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72 The Feynman Rules for Nonabelian Gauge

Theory

Prerequisite: 71

Let us begin by considering nonabelian gauge theory without any scalar or
spinor fields. The lagrangian is

LYM = −1
4F

eµνF eµν

= −1
4(∂µAeν − ∂νAeµ + gfabeAaµAbν)(∂µA

e
ν − ∂νA

e
µ + gf cdeAcµA

d
ν)

= −1
2∂

µAeν∂µA
e
ν + 1

2∂
µAeν∂νA

e
µ

− gfabeAaµAbν∂µA
e
ν − 1

4g
2fabef cdeAaµAbνAcµA

d
ν . (72.1)

To this we should add the gauge-fixing term for Rξ gauge,

Lgf = −1
2ξ
−1∂µAeµ∂

νAeν . (72.2)

Adding eqs. (72.1) and (72.2), and doing some integrations-by-parts in the
quadratic terms, we find

LYM + Lgf = 1
2A

eµ(gµν∂
2 − ∂µ∂ν)A

eν + 1
2ξ
−1Aeµ∂µ∂νA

eν

− gfabcAaµAbν∂µA
c
ν − 1

4g
2fabef cdeAaµAbνAcµA

d
ν . (72.3)

The first line of eq. (72.3) yields the gluon propagator in Rξ gauge,

∆̃ab
µν(k) =

δab

k2 − iǫ

(
gµν −

kµkν
k2

+ ξ
kµkν
k2

)
. (72.4)

The second line of eq. (72.3) yields three- and four-gluon vertices, shown in
fig. (72.1). The three-gluon vertex factor is

iVabc
µνρ(p, q, r) = i(−gfabc)(−irµgνρ)

+ [ 5 permutations of (a,µ,p), (b,ν,q), (c,ρ,r) ]

= gfabc[(q−r)µgνρ + (r−p)νgρµ + (p−q)ρgµν ] . (72.5)

The four-gluon vertex factor is

iVabcd
µνρσ = −ig2fabef cdegµρgνσ

+ [ 5 permutations of (b,ν), (c,ρ), (d,σ) ]

= −ig2 [ fabef cde(gµρgνσ − gµσgνρ)

+ facefdbe(gµσgρν − gµνgρσ)

+ fadef bce(gµνgσρ − gµρgσν) ] . (72.6)
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Figure 72.1: The three-gluon and four-gluon vertices in nonabelian gauge
theory.

These vertex factors are quite a bit more complicated that the ones we
are used to, and they lead to rather involved formulae for scattering cross
sections. For example, the tree-level gg → gg cross section (where g is a
gluon), averaged over initial spins and colors and summed over final spins
and colors, has 12,996 terms! Of course, many are identical and the final
result can be expressed much more simply, but this is no help to us at the
initial stages of computation. For this reason, we postpone any attempt
at tree-level calculations until section 81, where we will make use of some
techniques (color ordering and Gervais-Neveu gauge) that, combined with
spinor-helicity methods, greatly reduce the necessary labor.

For loop calculations, we need to include the ghosts. The ghost la-
grangian is

Lgh = −∂µc̄bDbc
µ c

c

= −∂µc̄c∂µcc + ig∂µc̄bAaµ(T
a
A)bccc

= −∂µc̄c∂µcc + gfabcAaµ∂
µc̄bcc . (72.7)

The ghost propagator is

∆̃ab(k2) =
δab

k2 − iǫ
. (72.8)

Because the ghosts are complex scalars, their propagators carry a charge
arrow. The ghost-ghost-gluon vertex shown in fig. (72.2); the associated
vertex factor is

iVabc
µ (q, r) = i(gfabc)(−iqµ)

= gfabcqµ . (72.9)
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Figure 72.2: The ghost-ghost-gluon vertex in nonabelian gauge theory.
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Figure 72.3: The quark-quark-gluon vertex in nonabelian gauge theory.

If we include a quark coupled to the gluons, we have the quark la-
grangian

Lq = iΨi /DijΨj −mΨiΨi

= iΨi/∂Ψi −mΨiΨi + gAaµΨiγ
µT aijΨj . (72.10)

The quark propagator is

S̃ij(p) =
(−/p+m)δij
p2 +m2 − iǫ

. (72.11)

The quark-quark-gluon vertex shown in fig. (72.3); the associated vertex
factor is

iVµa
ij = igγµT aij . (72.12)

If the quark is in a representation R other than the fundamental, then T aij
becomes (T aR)ij .

Problems

72.1) Consider a complex scalar field ϕi in a representation R of the gauge
group. Find the vertices that involve this field, and the associated
vertex factors.
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73 The Beta Function in Nonabelian Gauge

Theory

Prerequisite: 70, 72

In this section, we will do enough loop calculations to compute the beta
function for the Yang–Mills coupling g.

We can write the complete lagrangian, including Z factors, as

L = 1
2Z3A

aµ(gµν∂
2 − ∂µ∂ν)A

aν + 1
2ξ
−1Aaµ∂µ∂νA

aν

− Z3ggf
abcAaµAbν∂µA

c
ν − 1

4Z4gg
2fabef cdeAaµAbνAcµA

d
ν

− Z2′∂
µC̄a∂µC

a + Z1′gf
abcAcµ∂

µC̄aCb

+ iZ2Ψi/∂Ψi − ZmmΨiΨi + Z1gA
a
µΨiγ

µT aijΨj . (73.1)

Note that the gauge-fixing term in the first line does not need a Z factor;
we saw in section 62 that the ξ-dependent term in the propagator is not
renormalized.

We see that g appears in several places in L, and gauge invariance leads
us to expect that it will renormalize in the same way in each place. If
we rewrite L in terms of bare fields and parameters, and compare with
eq. (73.1), we find that

g2
0 =

Z2
1

Z2
2Z3

g2µ̃ε =
Z2

1′

Z2
2′Z3

g2µ̃ε =
Z2

3g

Z3
3

g2µ̃ε =
Z4g

Z2
3

g2µ̃ε , (73.2)

where d = 4−ε is the number of spacetime dimensions. To prove eq. (73.2),
we have to derive the nonabelian analogs of the Ward identities, known as
Slavnov-Taylor identities. For now, we simply assume that eq. (73.2) holds;
we will return to this issue in section 74.

The simplest computation to perform is the renormalization of the
quark-quark-gluon vertex. This is partly because much of the calculation
is the same as it is in spinor electrodynamics, and so we can make use of
our results in section 62. We then must compute Z1, Z2, and Z3. We will
work in Feynman gauge, and use the MS renormalization scheme.

We begin with Z2. The O(g2) corrections to the fermion propagator
are shown in fig. (73.1). These diagrams are the same as in spinor elec-
trodynamics, except for the factors related to the color indices. The loop
diagram has a color-factor of (T aT a)ij = C(R)δij . (Here we have allowed
the quark to be in an arbitrary representation R; for notational simplicity,
we will continue to omit the label R on the generator matrices.) In section
62, we found that, in spinor electrodynamics, the divergent part of this
diagram contributes −(e2/8π2ε)/p to the electron self-energy Σ(/p). Thus
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Figure 73.1: The one-loop and counterterm corrections to the quark prop-
agator in quantum chromodynamics.
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Figure 73.2: The one-loop corrections to the quark–quark–gluon vertex in
in quantum chromodynamics.

in Yang–Mills gauge theory, the divergent part of this diagram contributes
−(g2/8π2ε)C(R)δij /p to the quark self-energy Σij(/p). This divergent term
must be cancelled by the counterterm contribution of −(Z2−1)δij /p. There-
fore, in Yang–Mills theory, with a quark in the representation R, using
Feynman gauge and the MS renormalization scheme, we have

Z2 = 1 − C(R)
g2

8π2

1

ε
+O(g4) . (73.3)

Moving on to the quark-quark-gluon vertex, we the contributing one-
loop diagrams are shown in fig. (73.2). The first diagram is again the same
as it is in spinor electrodynamics, except for the color factor of (T bT aT b)ij .
We can simplify this via

T bT aT b = T b
(
T bT a + ifabcT c

)

= C(R)T a + 1
2 if

abc[T b, T c]

= C(R)T a + 1
2(ifabc)(if bcd)T d

= C(R)T a − 1
2(T aA)bc(T dA)cbT d

=
[
C(R) − 1

2T (A)
]
T a . (73.4)

In the second line, we used the complete antisymmetry of fabc to replace
T bT c with 1

2 [T b, T c]. To get the last line, we used Tr(T aAT
d
A) = T (A)δad. In
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section 62, we found that, in spinor electrodynamics, the divergent part of
this diagram contributes (e2/8π2ε)ieγµ to the vertex function iVµ(p′, p).
Thus in Yang–Mills theory, the divergent part of this diagram contributes

[
C(R) − 1

2T (A)
] g2

8π2ε
igT aijγ

µ (73.5)

to the quark-quark-gluon vertex function iVaµ
ij (p′, p). This divergent term,

along with any divergent term from the second diagram of fig. (73.2), must
be cancelled by the tree-level vertex iZ1gγ

µT aij .
Now we must evaluate the second diagram of fig. (73.2). The divergent

part is independent of the external momenta, and so we can set them to
zero. Then we get a contribution to iVaµ

ij (0, 0) of

(ig)2gfabc(T cT b)ij
(

1
i

)3∫ d4ℓ

(2π)4
γρ(−/ℓ+m)γν
ℓ2ℓ2(ℓ2+m2)

× [(ℓ−(−ℓ))µgνρ + (−ℓ−0)νgρµ + (0−ℓ)ρgµν ] . (73.6)

We can simplify the color factor with the manipulations of eq. (73.4),

fabcT cT b = 1
2f

abc[T c, T b]

= 1
2 if

abcf cbdT d

= −1
2 iT (A)T a . (73.7)

The numerator in eq. (73.6) is

Nµ = γρ(−γσℓσ +m)γν(2ℓ
µgνρ − ℓνgρµ − ℓρgµν) . (73.8)

We can drop the terms linear in ℓ, and make the replacement ℓσℓµ →
d−1ℓ2gσµ. Thus we have

Nµ → −d−1ℓ2 (γργσγν)(2g
σµgνρ − gσνgρµ − gσρgµν)

→ −d−1ℓ2 (2γνγµγν − γµγνγν − γργ
ργµ)

→ −d−1ℓ2 (2(d−2) + d+ d)γµ . (73.9)

Because we are only keeping track of the divergent term, we are free to set
d = 4, which yields

Nµ → −3ℓ2γµ . (73.10)

Using eqs. (73.7) and (73.10) in eq. (73.6), we get

3
2T (A) g3 T aijγ

µ
∫

d4ℓ

(2π)4
1

ℓ2(ℓ2+m2)
. (73.11)
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Figure 73.3: The one-loop and counterterm corrections to the gluon prop-
agator in quantum chromodynamics.

After continuing to d dimensions, the integral becomes i/8π2ε + O(ε0).
Combining eqs. (73.5) and (73.6), we find that the divergent part of the
quark-quark-gluon vertex function is

Vaµ
ij (0, 0)div =

(
Z1 +

[
C(R)−1

2T (A)
] g2

8π2ε
+ 3

2T (A)
g2

8π2ε

)
gT aijγ

µ .

(73.12)
Requiring Vaµ

ij (0, 0) to be finite yields

Z1 = 1 −
[
C(R) + T (A)

] g2

8π2

1

ε
+O(g4) (73.13)

in Feynman gauge and the MS renormalization scheme.
Note that we have found that Z1 does not equal Z2. In electrodynamics,

we argued that gauge invariance requires all derivatives in the lagrangian
to be covariant derivatives, and that both pieces of Dµ = ∂µ− ieAµ should
therefore be renormalized by the same factor; this then implies that Z1

must equal Z2. In Yang–Mills theory, however, this argument fails. This
failure is due to the introduction of the ordinary derivative in the gauge-
fixing function for Rξ gauge: once we have added Lgf and Lgh to LYM, we
find that both ordinary and covariant derivatives appear. (This is especially
obvious for Lgh.) Therefore, to be certain of what gauge invariance does and
does not imply, we must derive the appropriate Slavnov-Taylor identities,
a subject we will take up in section 74.

Next we turn to the calculation of Z3. The O(g2) corrections to the
gluon propagator are shown in fig. (73.3). The first diagram is proportional
to
∫
d4ℓ/ℓ2; as we saw in section 65, this integral vanishes after dimensional

regularization.
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The second diagram yields a contribution to iΠµνab(k) of

1
2g

2facdf bcd
(

1
i

)2∫ d4ℓ

(2π)4
Nµν

ℓ2(ℓ+k)2
, (73.14)

where the one-half is a symmetry factor, and

Nµν = [(k+ℓ)−(−ℓ))µgρσ + (−ℓ−(−k))ρgσµ + ((−k)−(k+ℓ))σgµρ]

×[(−k−ℓ)−ℓ)νgρσ + (ℓ−k)ρδσν + (k−(−k−ℓ))σδνρ]

= −[(2ℓ+k)µgρσ − (ℓ−k)ρgσµ − (ℓ+2k)σgµρ]

×[(2ℓ+k)νgρσ − (ℓ−k)ρδσν − (ℓ+2k)σδ
ν
ρ] (73.15)

The color factor can be simplified via facdf bcd = T (A)δab. We combine de-
nominators with Feynman’s formula, and continue to d = 4−ε dimensions;
we now have

−1
2g

2 T (A)δab µ̃ε
∫ 1

0
dx

∫
ddq

(2π)d
Nµν

(q2 +D)2
, (73.16)

where D = x(1−x)k2 and q = ℓ+ xk. The numerator is

Nµν = −[(2q+(1−2x)k)µgρσ − (q−(1+x)k)ρgσµ − (q+(2−x)k)σgµρ]
×[(2q+(1−2x)k)νgρσ − (q−(1+x)k)ρδσ

ν − (q+(2−x)k)σδνρ] .
(73.17)

Terms linear in q will integrate to zero, and so we have

Nµν → − 2q2gµν − (4d−6)qµqν

− [(1+x)2 + (2−x)2]k2gµν

− [d(1−2x)2 + 2(1−2x)(1+x)

− 2(2−x)(1+x) − 2(2−x)(1−2x)]kµkν . (73.18)

Since we are only interested in the divergent part, we can go ahead and set
d = 4 in the numerator. We can also make the replacement qµqν → 1

4q
2gµν .

Then we find

Nµν → − 9
2q

2gµν − (5−2x+2x2)k2gµν + (2+10x−10x2)kµkν . (73.19)

We saw in section 62 that, when integrated against (q2 +D)−2, q2 can be
replaced with (2

d−1)−1D; in our case this is −2x(1−x)k2. This yields

Nµν → − (5−11x+11x2)k2gµν + (2+10x−10x2)kµkν . (73.20)
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We now use

µ̃ε
∫

ddq

(2π)d
1

(q2 +D)2
=

i

8π2ε
+O(ε0) (73.21)

in eq. (73.16) to get

− ig2

16π2
T (A)δab

1

ε

∫ 1

0
dxNµν +O(ε0) . (73.22)

Performing the integral over x yields

− ig2

16π2
T (A)δab

1

ε

(
−19

6 k
2gµν + 11

3 k
µkν

)
(73.23)

as the divergent contribution of the second diagram to iΠµνab(k).
Next we have the third diagram of fig. (73.3), which makes a contribu-

tion to iΠµνab(k) of

(−1)g2facdf bdc
(

1
i

)2∫ d4ℓ

(2π)4
(ℓ+k)µℓν

ℓ2(ℓ+k)2
, (73.24)

where the factor of minus one is from the closed ghost loop. The color factor
is facdf bdc = −T (A)δab. After combining denominators, the numerator
becomes

(ℓ+k)µℓν = (q + (1−x)k)µ(q − xk)ν

→ 1
4q

2gµν − x(1−x)kµkν

→ −1
2x(1−x)k2gµν − x(1−x)kµkν . (73.25)

We then use eq. (73.21) in eq. (73.24); performing the integral over x yields

− ig2

8π2
T (A)δab

1

ε

(
− 1

12k
2gµν − 1

6k
µkν

)
(73.26)

as the divergent contribution of the third diagram to iΠµνab(k).
Finally, we have the fourth diagram. This is the same as it is in spinor

electrodynamics, except for the color factor of Tr(T aT b) = T (R)δab. If
there is more than one flavor of quark, each contributes separately, leading
to a factor of the number of flavors nF. Then, using our results in section
62, we find

− ig2

6π2
nFT (R)δab

1

ε

(
k2gµν − kµkν

)
(73.27)

as the divergent contribution of the fourth diagram to iΠµνab(k).
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Adding up eqs. (73.23), (73.26), and (73.27), as well as the counterterm
contriubtion, we find that the gluon self-energy is transverse,

Πµνab(k) = Π(k2)(k2gµν − kµkν)δab , (73.28)

and that

Π(k2)div = − (Z3−1) +
[

5
3T (A) − 4

3nFT (R)
] g2

8π2

1

ε
+O(g4) . (73.29)

Thus we find

Z3 = 1 +
[

5
3T (A) − 4

3nFT (R)
] g2

8π2

1

ε
+O(g4) (73.30)

in Feynman gauge and the MS renormalization scheme.
Let us collect our results:

Z1 = 1 −
[
C(R) + T (A)

] g2

8π2

1

ε
+O(g4) , (73.31)

Z2 = 1 − C(R)
g2

8π2

1

ε
+O(g4) , (73.32)

Z3 = 1 +
[

5
3T (A) − 4

3nFT (R)
] g2

8π2

1

ε
+O(g4) , (73.33)

in Feynman gauge and the MS renormalization scheme. We define

α ≡ g2

4π
. (73.34)

Then we have

α0 =
Z2

1

Z2
2Z3

αµ̃ε . (73.35)

Let us write

ln
(
Z−1

3 Z−2
2 Z2

1

)
=
∞∑

n=1

Gn(α)

εn
. (73.36)

Then we have

lnα0 =
∞∑

n=1

Gn(α)

εn
+ lnα+ ε ln µ̃ . (73.37)

From eqs. (73.31–73.33), we get

G1(α) = −
[

11
3 T (A) − 4

3nFT (R)
] α
2π

+O(α2) . (73.38)

Then, the general analysis of section 28 yields

β(α) = α2G′1(α) , (73.39)
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where the prime denotes differentiation with respect to α. Thus we find

β(α) = −
[

11
3 T (A) − 4

3nFT (R)
]α2

2π
+O(α3) . (73.40)

in nonabelian gauge theory with nF Dirac fermions in the representation R
of the gauge group.

We can, if we like, restate eq. (73.40) in terms of g as

β(g) = −
[

11
3 T (A) − 4

3nFT (R)
] g3

16π2
+O(g5) . (73.41)

To go from eq. (73.40) to eq. (73.41), we use α = g2/4π and α̇ = gġ/2π,
where the dot denotes d/d lnµ.

In quantum chromodynamics, the gauge group is SU(3), and the quarks
are in the fundamental representation. Thus T (A) = 3 and T (R) = 1

2 , and
the factor in square brackets in eq. (73.41) is 11− 2

3nF. So for nF ≤ 16, the
beta function is negative: the gauge coupling in quantum chromodynamics
gets weaker at high energies, and stronger at low energies.

This has dramatic physical consequences. Perturbation theory cannot
serve as a reliable guide to the low-energy physics. And indeed, in nature we
do not see isolated quarks or gluons. (Quarks, in particular, have fractional
electric charges and would be easy to discover.) The appropriate conclusion
is that color is confined : all finite-energy states are invariant under a global
SU(3) transformation. This has not yet been rigorously proven, but it is
the only hypothesis that is consistent with all of the available theoretical
and experimental information.

Problems

73.1) Compute the beta function for Yang–Mills theory with a complex
scalar field in the representation R of the gauge group. Hint: all the
real work has been done already in this section, problem 72.1, and
section 66.

73.2) Write down the beta function for the gauge coupling in Yang–Mills
theory with several Dirac fermions in the representations Ri, and
several complex scalars in the representations R′j .

73.3) Compute the one-loop contributions to the anomalous dimensions of
m, Ψ, and Aµ.
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74 BRST Symmetry

Prerequisite: 70, 71

In this section we will rederive the gauge-fixed path integral for nonabelian
gauge theory from a different point of view. We will discover that the
complete gauge-fixed lagrangian, L ≡ LYM + Lgf + Lgh, still has a residual
form of the gauge symmetry, known as Becchi-Rouet-Stora-Tyutin symme-
try, or BRST symmetry for short. BRST symmetry can be used to derive
the Slavnov-Taylor identities that, among other useful things, show that
the coupling constant is renormalized by the same factor at each of its ap-
pearances in L. Also, we can use BRST symmetry to show that gluons
whose polarizations are not both spacelike and transverse (perpendicular
to the four-momentum) decouple from physical scattering amplitudes (as
do particles that are created by the ghost field).

Consider a nonabelian gauge theory with a gauge field Aaµ(x), and a
scalar or spinor field φi(x) in the representation R. Then, under an in-
finitesimal gauge transformation parameterized by θa(x), we have

δAaµ(x) = −Dabθb(x) , (74.1)

δφi(x) = −igθa(x)(T aR )ijφj(x) . (74.2)

We now introduce a scalar Grassmann field ca(x) in the adjoint represen-
tation; this field will turn out to be the ghost field that we introduced in
section 71. We define an infinitesimal BRST transformation via

δBA
a
µ(x) ≡ Dab

µ c
b(x) (74.3)

= ∂µc
a(x) − gfabcAcµ(x)c

b(x) , (74.4)

δBφi(x) ≡ igca(x)(T aR )ijφj(x) . (74.5)

This is simply an infinitesimal gauge transformation, with the ghost field
ca(x) in place of the infinitesimal parameter −θa(x). Therefore, any combi-
nation of fields that is gauge invariant is also BRST invariant. In particular,
the Yang–Mills lagrangian LYM (including the appropriate lagrangian for
the scalar or spinor field φi) is BRST invariant,

δBLYM = 0 . (74.6)

We now place a further restriction on the BRST transformation: we
require a BRST variation of a BRST variation to be zero. This requirement
will determine the BRST transformation of the ghost field. Consider

δB(δBφi) = ig(δBc
a)(T aR )ijφj − igca(T aR )ijδBφj . (74.7)
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There is a minus sign in front of the second term because δB acts as an
anticommuting object, and it generates a minus sign when it passes through
another anticommuting object, in this case ca. Using eq. (74.5), we have

δB(δBφi) = ig(δBc
a)(T aR )ijφj − g2cacb(T aRT

b
R)ikφk . (74.8)

We now use cbca = −cacb in the second term to replace T aRT
b
R with its anti-

symmetric part, 1
2 [T aR , T

b
R] = i

2f
abcT cR. Then, after relabeling some dummy

indices, we have

δB(δBφi) = ig(δBc
c + 1

2gf
abccacb)(T cR)ijφj . (74.9)

The right-hand side of eq. (74.9) will vanish for all φj(x) if and only if

δBc
c(x) = −1

2gf
abcca(x)cb(x) . (74.10)

We therefore adopt eq. (74.10) as the BRST variation of the ghost field.
Let us now check to see that the BRST variation of the BRST variation

of the gauge field also vanishes. From eq. (74.4) we have

δB(δBA
a
µ) = (δab∂µ − gfabcAcµ)(δBc

b) − gfabc(δBA
c
µ)c

b

= Dab
µ (δBc

b) − gfabc(Dcd
µ c

d)cb

= Dab
µ (δBc

b) − gfabc(∂µc
c)cb + g2fabcf cdeAeµc

dcb . (74.11)

We now use the antisymmetry of fabc in the second term to replace (∂µc
c)cb

with its antisymmetric part,

(∂µc
[c)cb] ≡ 1

2(∂µc
c)cb − 1

2(∂µc
b)cc

= 1
2(∂µc

c)cb + 1
2c
c(∂µc

b)

= 1
2∂µ(c

ccb) . (74.12)

Similarly, we use the antisymmetry of cdcb in the third term to replace
fabcf cde with its antisymmetric part,

1
2(fabcf cde − fadcf cbe) = −1

2 [(T bA)ac(T dA)ce − (T dA)ac(T bA)ce]

= −1
2 if

bdh(T hA )ae

= −1
2f

bdhfhae , (74.13)

which is just the Jacobi identity. Now we have

δB(δBA
a
µ) = Dab

µ (δBc
b) − 1

2gf
abc(∂µc

ccb) − 1
2g

2f bdhfhaeAeµc
dcb

= Dah
µ (δBc

h) − (δah∂µ − gfaheAeµ)
1
2gf

bchcccb

= Dah
µ (δBc

h + 1
2gf

bchcbcc) . (74.14)
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We see that this vanishes if the BRST variation of the ghost field is given
by eq. (74.10).

Now we introduce the antighost field c̄a(x). We take its BRST trans-
formation to be

δBc̄
a(x) = Ba(x) , (74.15)

where Ba(x) is a commuting (as opposed to Grassmann) scalar field, the
Lautrup-Nakanishi auxiliary field. Because Ba(x) is itself a BRST variation,
we have

δBB
a(x) = 0 . (74.16)

Note that eq. (74.15) is in apparent contradiction with eq. (74.10). How-
ever, there is actually no need to identify c̄a(x) as the hermitian conjugate
of ca(x). The role of these fields (in producing the functional determinant
that must accompany the gauge-fixing delta functional) is fulfilled as long
as ca(x) and c̄a(x) are treated as independent when we integrate them;
whether or not they are hermitian conjugates of each other is irrelevant.
We identified them as hermitian conjugates in section 71 only for the sake
of familiarity in deriving the associated Feynman rules. Now, however, we
must abandon this notion. In fact, it will be most convenient to treat ca(x)
and c̄a(x) as two real Grassmann fields.

Now that we have introduced a collection of new fields—ca(x), c̄a(x),
and Ba(x)—what are we to do with them?

Consider adding to LYM a new term that is the BRST variation of some
object O,

L = LYM + δBO . (74.17)

Clearly L is BRST invariant, because LYM is, and because δB(δBO) = 0.
We will see that adding δBO corresponds to fixing a gauge; which gauge we
get depends on O.

We will choose

O(x) = c̄a(x)
[

1
2ξB

a(x) −Ga(x)
]
, (74.18)

where Ga(x) is a gauge-fixing function, and ξ is a parameter. If we further
choose

Ga(x) = ∂µAaµ(x) , (74.19)

then we end up with Rξ gauge.
Let us see how this works. We have

δBO = (δBc̄
a)
[

1
2ξB

a − ∂µAaµ

]
− c̄a

[
1
2ξ(δBB

a) − ∂µ(δBA
a
µ)
]
. (74.20)

There is a minus sign in front of the second set of terms because δB acts
as an anticommuting object, and so it generates a minus sign when it
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passes through another anticommuting object, in this case c̄a. Now using
eqs. (74.3), (74.15), and (74.16), we get

δBO = 1
2ξB

aBa −Ba∂µAaµ + c̄a∂µDab
µ c

b . (74.21)

We see that the last term is the ghost lagrangian Lgh that we found in
section 71. If we like, we can integrate the ordinary derivative by parts, so
that it acts on the antighost field,

δBO → 1
2ξB

aBa −Ba∂µAaµ − ∂µc̄aDab
µ c

b . (74.22)

Examining the first two terms in eq. (74.22), we see that no derivatives
act on the auxiliary field Ba(x). Furthermore, it appears only quadratically
and linearly in δBO. We can, therefore, perform the path integral over it;
the result is equivalent to solving the classical equation of motion

∂(δBO)

∂Ba(x)
= ξBa(x) − ∂µAaµ(x) = 0 , (74.23)

and substituting the result back into δBO. This yields

δBO → −1
2ξ
−1∂µAaµ∂

νAaν − ∂µc̄aDab
µ c

b . (74.24)

We see that the first term is the gauge-fixing lagrangian Lgf that we found
in section 71.

We now take note of all the symmetries of the action S =
∫
d4xL, where

L = LYM+δBO. With our choice of O, they are: (1) Lorentz invariance; (2)
the discrete symmetries of parity, time reversal, and charge conjugation; (3)
global gauge invariance (that is, invariance under a gauge transformation
with a spacetime-independent parameter θa); (4) BRST invariance; (5)
ghost number conservation; and (6) antighost translation invariance.

Global gauge invariance simply requires every term in L to have all
the group indices contracted in a group-invariant manner. Ghost number
conservation corresponds to assigning ghost number +1 to ca, −1 to c̄a, and
zero to all other fields, and requiring every term in L to have ghost number
zero. Antighost translation invariance corresponds to c̄a(x) → c̄a(x) + χ,
where χ is a Grassmann constant. This leaves L invariant because, in the
form of eq. (74.22), L contains only a derivative of c̄b(x).

We now claim that L already includes all terms consistent with these
symmetries that have coefficients with positive or zero mass dimension.
This means that we will not encounter any divergences in perturbation
theory that cannot be absorbed by including a Z factor for each term
in L. Furthermore, loop corrections should respect the symmetries, and
BRST symmetry requires that g renormalize in the same way at each of
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its appearances. (Filling in the mathematical details of these claims is a
lengthy project that we will not undertake.)

We can regard a BRST transformation as infinitesimal, and hence con-
struct the associated Noether current via the standard formula

jµB(x) =
∑

I

∂L
∂(∂µΦI(x))

δBΦI(x) , (74.25)

where ΦI(x) stands for all the fields, including the matter (scalar and/or
spinor), gauge, ghost, antighost, and auxiliary fields. We can then define
the BRST charge

QB =

∫
d3x j0B(x) . (74.26)

If we think of ca(x) and c̄a(x) as independent hermitian fields, then QB is
hermitian. The BRST charge generates a BRST transformation,

i[QB, A
a
µ(x)] = Dab

µ c
b(x) , (74.27)

i{QB, c
a(x)} = −1

2gf
abccb(x)cc(x) , (74.28)

i{QB, c̄
a(x)} = Ba(x) , (74.29)

i[QB, B
a(x)] = 0 , (74.30)

i[QB, φi(x)]± = igca(x)(T aR )ijφj(x) . (74.31)

where {A,B} = AB+BA is the anticommutator, and [ , ]± is the commu-
tator if φi is a scalar field, and the anticommutator if φi is a spinor field.
Also, since the BRST transformation of a BRST transformation is zero, QB

must be nilpotent,
Q2

B = 0 . (74.32)

Eq. (74.32) has far-reaching consequences. In order for it to be satisfied,
many states must be annihilated by QB; such states are said to be in the
kernel of QB. A state |ψ〉 which is annihilated by QB may take the form
of QB acting on some other state; such states are said to be in the image
of QB. There may be some states in the kernel of QB that are not in the
image; such states are said to be in the cohomology of QB. Two states in
the cohomology of QB are identified if their difference is in the image; that
is, if QB|ψ〉 = 0 but |ψ〉 6= QB|χ〉 for any state |χ〉, and if |ψ′〉 = |ψ〉+QB|ζ〉
for some state |ζ〉, then we identify |ψ〉 and |ψ′〉 as a single element of the
cohomology of QB.

Note any state in the image of QB has zero norm, since if |ψ〉 = QB|χ〉,
then 〈ψ|ψ〉 = 〈ψ|QB|χ〉 = 0. (Here we have used the hermiticity of QB to
conclude that QB|ψ〉 = 0 implies 〈ψ|QB = 0.)
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Now consider starting at some initial time with a normalized state |ψ〉
in the cohomology: 〈ψ|ψ〉 = 1, QB|ψ〉 = 0, |ψ〉 6= QB|χ〉. (This last equation
is actually redundant, because if |ψ〉 = QB|χ〉 for some state |χ〉, then |ψ〉
has zero norm.) Since L is BRST invariant, the hamiltonian that we derive
from it must commute with the BRST charge: [H,QB] = 0. Thus, an
initial state |ψ〉 that is annihilated by QB must still be annihilated by it at
later times, since QBe

−iHt|ψ〉 = e−iHtQB|ψ〉 = 0. Also, since unitary time
evolution does not change the norm of a state, the time-evolved state must
still be in the cohomology.

We now claim that the physical states of the theory correspond to the
cohomology of QB. We have already shown that if we start with a state
in the cohomology, it remains in the cohomology under time evolution.
Consider, then, an initial state of widely separated wave packets of incoming
particles. According to our discussion in section 5, we can treat these states
as being created by the appropriate Fourier modes of the fields, and ignore
interactions. We will suppress the group index (because it plays no essential
role when interactions can be neglected) and write the mode expansions

Aµ(x) =
∑

λ=>,<,
+,−

∫
d̃k
[
εµ∗λ (k)aλ(k)eikx + εµλ(k)a†λ(k)e−ikx

]
, (74.33)

c(x) =

∫
d̃k
[
c(k)eikx + c†(k)e−ikx

]
, (74.34)

c̄(x) =

∫
d̃k
[
b(k)eikx + b†(k)e−ikx

]
, (74.35)

φ(x) =

∫
d̃k
[
aφ(k)eikx + a†φ(k)e−ikx

]
, (74.36)

Here, for maximum simplicity, we have taken φ(x) to be a real scalar field.
(This is possible if R is a real representation.) In eq. (74.33), we have
included four polarization vectors that span four-dimensional spacetime.
For kµ = (ω,k) = ω(1, 0, 0, 1), we choose these four polarization vectors to
be

εµ>(k) = 1√
2
(1, 0, 0, 1) ,

εµ<(k) = 1√
2
(1, 0, 0,−1) ,

εµ+(k) = 1√
2
(0, 1,−i, 0) ,

εµ−(k) = 1√
2
(0, 1,+i, 0) . (74.37)

The first two of these, > and <, are lightlike vectors; εµ>(k) is parallel to
kµ, and εµ<(k) is spatially opposite. The latter two, + and −, are spacelike
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and transverse: they correspond to physical photon polarizations of definite
helicity.

We set g = 0, plug eqs. (74.33–74.36) into eqs. (74.27–74.31), and use
eq. (74.23) to eliminate the auxiliary field. Matching coefficients of e−ikx,
we find

[QB, a
†
λ(k)] =

√
2ω δλ> c

†(k) , (74.38)

{QB, c
†(k)} = 0 , (74.39)

{QB, b
†(k)} = ξ−1

√
2ω a†<(k) , (74.40)

[QB, a
†
φ(k)] = 0 . (74.41)

Consider a normalized state |ψ〉 in the cohomology: 〈ψ|ψ〉 = 1, QB|ψ〉 = 0.
Eq. (74.38) tells us that if we add a photon with the unphysical polarization

> by acting on |ψ〉 with a†>(k), then this state is not annihilated by QB;

hence the state a†>(k)|ψ〉 is not in the cohomology. Eq. (74.40) tells us that

the state a†<(k)|ψ〉 is proportional to QBb
†(k)|ψ〉; hence the state a†<(k)|ψ〉

is also not in the cohomology. On the other hand, the states a†+(k)|ψ〉 and
a†−(k)|ψ〉 are annihilated by QB, but they cannot be written as QB acting
on some other state; hence these states are in the cohomology. Also, by
similar reasoning, the state with one extra φ particle, a†φ(k)|ψ〉, is in the
cohomology.

Eq. (74.38) tells us that if we add a ghost particle by acting on |ψ〉
with c†(k), then this state is proportional to QBa

†
>(k)|ψ〉; hence the state

c†(k)|ψ〉 is not in the cohomology. Eq. (74.40) tells us that if we add an
antighost particle by acting on |ψ〉 with b†(k), then this state is not anni-
hilated by QB; hence the state b†(k)|ψ〉 is also not in the cohomology.

We conclude that the only particle creation operators that do not take
a state out of the cohomology are a†φ(k), a†+(k), and a†−(k). Of course, it
is precisely these operators that create the expected physical particles.

Finally, we note that the vacuum |0〉 must be in the cohomology, because
it is the unique state with zero energy and positive norm.

Thus we can conclude that we can build an initial state of widely sep-
arated particles that is in the cohomology only if we do not include any
ghost or antighost particles, or photons with polarizations other than +
and −. Since a state in the cohomology must evolve to another state in the
cohomology, no ghosts, antighosts, or unphysically polarized photons can
be produced in the scattering process.

Reference Notes

A detailed treatment of BRST symmetry can be found in Weinberg II.
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Problems

74.1) The creation operator for a photon of positive helicity can be written
as

a†+(k) = −i εµ∗+ (k)

∫
d3x e+ikx

↔
∂0Aµ(x) . (74.42)

Consider the state a†+(k)|ψ〉, where |ψ〉 is in the BRST cohomology.
Define a gauge-transformed polarization vector

ε̃µ+(k) = εµ+(k) + ckµ , (74.43)

where c is a constant, and a corresponding creation operator ã†+(k).
Show that

ã†+(k)|ψ〉 = a†+(k)|ψ〉 +QB|χ〉 , (74.44)

which implies that ã†+(k)|ψ〉 and a†+(k)|ψ〉 represent the same element
of the cohomology, and hence are physically equivalent. Find the state
|χ〉.
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75 Chiral Gauge Theories and Anomalies

Prerequisite: 70, 72

So far, we have only discussed gauge theories with Dirac fermion fields.
Recall that a Dirac field Ψ can be written in terms of two left-handed Weyl
fields χ and ξ as

Ψ =

(
χ

ξ†

)
. (75.1)

If Ψ is in a representation R of the gauge group, then χ and ξ† must be as
well. Equivalently, χ must be in the representation R, and ξ must be in the
complex conjugate representation R. (For an abelian theory, this means
that if Ψ has charge +Q, then χ has charge +Q and ξ has charge −Q.)
Thus a Dirac field in a representation R is equivalent to two left-handed
Weyl fields, one in R and one in R.

If the representation R is real, then we can have a Majorana field

Ψ =

(
ψ

ψ†

)
(75.2)

instead of a Dirac field; the left-handed Weyl field ψ and and its hermitian
conjugate ψ† are both in the representation R. Thus a Majorana field in a
real representation R is equivalent to a single left-handed Weyl field in R.

Now suppose that we have a single left-handed Weyl field ψ in a complex
representation R. Such a gauge theory is automatically parity violating
(because the right-handed hermitian conjugate of the left-handed Weyl field
is in an inequivalent represetnation of the gauge group), and is said to be
chiral . The lagrangian is

L = iψ†σ̄µDµψ − 1
4F

aµνF aµν , (75.3)

where Dµ = ∂µ − igAaµT
a
R . Since T aR is a hermitian matrix (even when R

is a complex representation), iψ†σ̄µDµψ is hermitian (up to a total diver-
gence, as usual). We cannot include a mass term for ψ, though, because
ψψ transforms as R ⊗ R, and R ⊗ R does not contain a singlet if R is
complex. Thus, ψψ is not gauge invariant. But without a mass term, this
lagrangian would appear to possess all the required properties: Lorentz
invariance, gauge invariance, and no terms with coefficients with negative
mass dimension.

However, it turns out that most chiral gauge theories do not exist as
quantum field theories; they are anomalous. The problem can ultimately
be traced back to the functional measure for the fermion field; it turns out
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that this measure is, in general, not gauge invariant. We will explore this
surprising fact in section 77.

For now we will content ourselves with analyzing Feynman diagrams.
We will find an insuperable problem with gauge invariance at the one-loop
level that afflicts most chiral gauge theories.

We will work with the simplest possible example: a U(1) theory with a
single Weyl field ψ with charge +1. The lagrangian is

L = iψ†σ̄µ(∂µ − igAµ)ψ − 1
4F

µνFµν . (75.4)

We can use the following trick to write this theory in terms of a Dirac field
Ψ. We note that

PLΨ =

(
ψ

0

)
, (75.5)

where PL = 1
2(1−γ5) is the left-handed projection matrix, does not involve

the right-handed components of Ψ. Then we can write eq. (75.4) as

L = iΨγµ(∂µ − igAµ)PLΨ − 1
4F

µνFµν , (75.6)

and treat Ψ as a Dirac field when we derive the Feynman rules.
To better understand the physical consequences of eq. (75.5), consider

the case of a free field. The mode expansion is

PLΨ(x) =
∑

s=±

∫
d̃p
[
bs(p)PLus(p)eipx + d†s(p)PLvs(p)e−ipx

]
. (75.7)

For a massless field, we learned in section 38 that PLu+(p) = 0 and
PLv−(p) = 0. Thus we can write eq. (75.7) as

PLΨ(x) =

∫
d̃p
[
b−(p)u−(p)eipx + d†+(p)v+(p)e−ipx

]
. (75.8)

Eq. (75.8) shows us that there are only two kinds of particles associated with

this field (as opposed to four with a Dirac field): b†−(p) creates a particle
with charge +1 and helicity −1/2, and d†+(p) creates a particle with charge
−1 and helicity +1/2. In this theory, charge and spin are correlated.

We can easily read the Feynman rules off of eq. (75.6). In particular,
the fermion propagator in momentum space is −PL /p/p2, and the fermion–
fermion–photon vertex is igγµPL.

When we go to evaluate loop diagrams, we need a method of regulat-
ing the divergent integrals. However, our usual choice, dimensional reg-
ularization, is problematic, due to the close connection between γ5 and
four-dimensional spacetime. In particular, in four dimensions we have

Tr[γ5γ
µγνγργσ] = −4iεµνρσ , (75.9)
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Figure 75.1: The one-loop and counterterm corrections to the photon prop-
agator.

where ε0123 = +1. It is not obvious what should be done with this formula
in d dimensions. One possibility is to take d > 4 and define γ5 ≡ iγ0γ1γ2γ3.
Then eq. (75.9) holds, but with each of the four vector indices restricted to
span 0, 1, 2, 3. We also have {γµ, γ5} = 0 for µ = 0, 1, 2, 3, but [γµ, γ5] = 0
for µ > 3. This approach is workable, but cumbersome in practice.

It is therefore tempting to abandon dimensional regularization in favor
of, say, Pauli–Villars regularization, which involves the replacement

PL

/p

p2
→ PL

(−/p

p2
− −/p+ Λ

p2 + Λ2

)
. (75.10)

Pauli–Villars regularization is equivalent to adding an extra fermion field
with mass Λ, and a propagator with the wrong sign (corresponding to
changing the signs of the kinetic and mass terms in the lagrangian). But,
a Dirac field with a chiral coupling to the gauge field cannot have a mass,
since the mass term would not be gauge invariant. So, in a chiral gauge
theory, Pauli–Villars regularization violates gauge invariance, and hence is
unacceptable.

Given the difficulty with regulating chiral gauge theories (which is a
hint that they may not make sense), we will sidestep the issue for now, and
see what we can deduce about loop diagrams without a regulator in place.

Consider the correction to the photon propagator, shown in fig. (75.1).
We have

iΠµν(k) = (−1)(ig)2
(

1
i

)2 ∫ d4ℓ

(2π)4
Nµν

(ℓ+k)2ℓ2

− i(Z3−1)(k2gµν − kµkν) +O(g4) , (75.11)

where the numerator is

Nµν = Tr[PL(/ℓ+/k)γµPLPL/ℓγ
νPL] . (75.12)

We have P 2
L = PL and PLγ

µ = γµPR (and hence PLγ
µγν = γµγνPL), and so

all the PL’s in eq. (75.12) can be collapsed into just one; this is generically
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true along any fermion line. Thus we have

Nµν = Tr[(/ℓ+/k)γµ/ℓγνPL] . (75.13)

The term in eq. (75.13) with PL → 1
2 simply yields half the result that we

get in spinor electrodynamics with a Dirac field.
The term in eq. (75.13) with PL → −1

2γ5, on the other hand, yields a
vanishing contribution to Πµν(k). To see this, first note that

Nµν → −1
2Tr[(/ℓ+/k)γµ/ℓγνγ5]

= 2iεαµβν(ℓ+k)αℓβ

= 2iεαµβνkαℓβ . (75.14)

Thus we have

Πµν(k) = 1
2 Πµν(k)Dirac − 2g2εαµβνkα

∫
d4ℓ

(2π)4
ℓβ

(ℓ+k)2ℓ2

− (Z3−1)(k2gµν − kµkν) +O(g4) . (75.15)

The integral is logarithmically divergent. But, it carries a single vector
index β, and the only vector it depends on is k. Therefore, any Lorentz-
invariant regularization must yield a result that is proportional to kβ. This
then vanishes when contracted with εαµβνkα. We therefore conclude that,
at the one-loop level, the contribution to Πµν(k) of a single charged Weyl
field is half that of a Dirac field. This is physically reasonable, since a Dirac
field is equivalent to two charged Weyl fields.

Nothing interesting happens in the one-loop corrections to the fermion
propagator, or the fermion–fermion–photon vertex. There is simply an
extra factor of PL along the fermion line, which can be moved to the far
right. Except for this factor, the results exactly duplicate those of spinor
electrodynamics.

All of this implies that a single Weyl field makes half the contribution of
a Dirac field to the leading term in the beta function for the gauge coupling.

Next we turn to diagrams with three external photons, and no external
fermions, shown in fig. (75.2). In spinor electrodynamics, the fact that the
vector potential is odd under charge conjugation implies that the sum of
these diagrams must vanish; see problem 58.2. For the present case of a
single Weyl field, there is no charge-conjugation symmetry, and so we must
evaluate these diagrams.

The second diagram in fig. (75.2) is the same as the first, with p ↔ q
and µ↔ ν. Thus we have

iVµνρ(p, q, r) = (−1)(ig)3
(

1
i

)3 ∫ d4ℓ

(2π)4
Nµνρ

(ℓ−p)2ℓ2(ℓ+q)2
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Figure 75.2: One-loop contributions to the three-photon vertex.

+ (p, µ↔ q, ν) +O(g5) , (75.16)

where
Nµνρ = Tr[(−/ℓ+/p)γµ(−/ℓ)γν(−/ℓ−/q)γρPL] . (75.17)

The term in eq. (75.17) with PL → 1
2 simply yields half the result that we

get in spinor electrodynamics with a Dirac field, which gives a vanishing
contribution to Vµνρ(p, q, r). Hence, we can make the replacement PL →
−1

2γ5 in eq. (75.17). Then, after cancelling some minus signs, we have

Nµνρ → 1
2Tr[(/ℓ−/p)γµ/ℓγν(/ℓ+/q)γργ5] . (75.18)

We would now like to verify that Vµνρ(p, q, r) is gauge invariant. We
should have

pµV
µνρ(p, q, r) = 0 , (75.19)

qνV
µνρ(p, q, r) = 0 , (75.20)

rρV
µνρ(p, q, r) = 0 . (75.21)

Let us first check the last of these. From eq. (75.16) we find

rρV
µνρ(p, q, r) = ig3

∫
d4ℓ

(2π)4
rρN

µνρ

(ℓ−p)2ℓ2(ℓ+q)2

+ (p, µ ↔ q, ν) +O(g5) , (75.22)

where
rρN

µνρ = 1
2Tr[(/ℓ−/p)γµ/ℓγν(/ℓ+/q)rργ

ργ5] . (75.23)

It will be convenient to use the cyclic property of the trace to rewrite
eq. (75.23) as

rρN
µνρ = 1

2Tr[/ℓγν(/ℓ+/q)rργ
ρ(/ℓ−/p)γµγ5] . (75.24)
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To simplify eq. (75.24), we write rργ
ρ = /r = −(/q+/p) = −(/ℓ+/q) + (/ℓ−/p).

Then

(/ℓ+/q)rργ
ρ(/ℓ−/p) = (/ℓ+/q)[−(/ℓ+/q) + (/ℓ−/p)](/ℓ−/p)

= (ℓ+q)2(/ℓ−/p) − (ℓ−p)2(/ℓ+/q) . (75.25)

Now we have

rρN
µνρ = 1

2(ℓ+q)2 Tr[/ℓγν(/ℓ−/p)γµγ5] − 1
2 (ℓ−p)2 Tr[/ℓγν(/ℓ+/q)γµγ5]

= −2iεανβµ
[
(ℓ+q)2ℓα(ℓ−p)β − (ℓ−p)2ℓα(ℓ+q)β

]

= +2iεανβµ
[
(ℓ+q)2ℓαpβ + (ℓ−p)2ℓαqβ

]
(75.26)

Putting eq. (75.26) into eq. (75.22), we get

rρV
µνρ(p, q, r) = −2g3 εανβµ

∫
d4ℓ

(2π)4

[
ℓαpβ

ℓ2(ℓ−p)2 +
ℓαqβ

ℓ2(ℓ+q)2

]

+ (p, µ ↔ q, ν) +O(g5) , (75.27)

Consider the first term in the integrand. Because the only four-vector
that it depends on is p, any Lorentz-invariant regularization of its integral
must yield a result proportional to pαpβ. Similarly, any Lorentz-invariant
regularization of the integral of the second term must yield a result pro-
portional to qαqβ. Both pαpβ and qαqβ vanish when contracted with εµανβ .
Therefore, we have shown that

rρV
µνρ(p, q, r) = 0 , (75.28)

as required by gauge invariance.
It might seem that now we are done: we can invoke symmetry among

the external lines to conclude that we must also have pµV
µνρ(p, q, r) = 0

and qνV
µνρ(p, q, r) = 0. However, eq. (75.16) is not manifestly symmetric

on the exchanges (p, µ ↔ r, ρ) and (q, ν ↔ r, ρ). So it still behooves us to
compute either pµV

µνρ(p, q, r) or qνV
µνρ(p, q, r).

From eq. (75.16) we find

pµV
µνρ(p, q, r) = ig3

∫
d4ℓ

(2π)4
pµN

µνρ

(ℓ−p)2ℓ2(ℓ+q)2

+ (p, µ↔ q, ν) +O(g5) , (75.29)

where
pµN

µνρ = 1
2Tr[(/ℓ−/p)pµγ

µ/ℓγν(/ℓ+/q)γργ5] . (75.30)
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To simplify eq. (75.30), we write pµγ
µ = /p = −(/ℓ−/p) + /ℓ. Then

(/ℓ−/p)pµγ
µ/ℓ = (/ℓ−/p)[−(/ℓ−/p) + /ℓ]/ℓ

= (ℓ−p)2/ℓ− ℓ2(/ℓ−/p) . (75.31)

Now we have

pµN
µνρ = 1

2(ℓ−p)2 Tr[/ℓγν(/ℓ+/q)γργ5] − 1
2ℓ

2 Tr[(/ℓ−/p)γν(/ℓ+/q)γργ5]

= −2iεανβρ
[
(ℓ−p)2ℓαqβ − ℓ2(ℓ−p)α(ℓ+q)β

]

= −2iεανβρ
[
(ℓ−p)2ℓαqβ − ℓ2(ℓ−p)α(ℓ−p+ p+q)β

]

= −2iεανβρ
[
(ℓ−p)2ℓαqβ − ℓ2(ℓ−p)α(p+q)β

]
. (75.32)

Putting eq. (75.32) into eq. (75.29), we get

pµV
µνρ(p, q, r) = 2g3 εανβρ

∫
d4ℓ

(2π)4

[
ℓαqβ

ℓ2(ℓ+q)2
− (ℓ−p)α(p+q)β

(ℓ−p)2(ℓ+q)2
]

+ (p, µ↔ q, ν) +O(g5) , (75.33)

The first term on the right-hand side of eq. (75.33) must vanish, because
any Lorentz-invariant regularization of the integral must yield a result pro-
portional to qαqβ, and this vanishes when contracted with εανβρ.

As for the second term, we can shift the loop momentum from ℓ to ℓ+p,
which results in

(ℓ−p)α(p+q)β
(ℓ−p)2(ℓ+q)2 → ℓα(p+q)β

ℓ2(ℓ+p+q)2
. (75.34)

We can now use Lorentz invariance to argue that the integral of the right-
hand side of eq. (75.34) must yield something proportional to (p+q)α(p+q)β;
this vanishes when contracted with with εανβρ. Thus, we have shown that
pµV

µνρ(p, q, r) = 0, as required by gauge invariance, provided that the
shift of the loop momentum did not change the value of the integral. This
would of course be true if the integral was convergent. Instead, however,
the integral is linearly divergent, and so we must be more careful.

Consider a one-dimensional example of a linearly divergent integral: let

I(a) ≡
∫ +∞

−∞
dx f(x+a) , (75.35)

where f(±∞) = c±, with c+ and c− two finite constants. If the integral con-
verged, then I(a) would be independent of a. In the present case, however,
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we can Taylor expand f(x+a) in powers of a, and note that f(±∞) = c±
implies that every derivative of f(x) vanishes at x = ±∞. Thus we have

I(a) =

∫ +∞

−∞
dx
[
f(x) + af ′(x) + 1

2a
2f ′′(x) + . . .

]

= I(0) + a(c+ − c−) . (75.36)

We see that I(a) is not independent of a. Furthermore, even if we cannot
assign a definite value to I(0) (because the integral is divergent), we can
assign a definite value to the difference

I(a) − I(0) = a(c+ − c−) . (75.37)

Now let us return to eqs. (75.33) and (75.34). Define

fα(ℓ) ≡
ℓα

ℓ2(ℓ+p+q)2
. (75.38)

Using Lorentz invariance, we can argue that

∫
d4ℓ

(2π)4
fα(ℓ) = A(p+q)α , (75.39)

where A is a scalar that will depend on the regularization scheme. Now
consider

fα(ℓ−p) = fα(ℓ) − pβ
∂

∂ℓβ
fα(ℓ) + . . . . (75.40)

The integral of the first term on the right-hand side of eq. (75.40) is given
by eq. (75.39). The integrals of the remaining terms can be converted to
surface integrals at infinity. Only the second term in eq. (75.40) falls off
slowly enough to contribute. To determine the value of its integral, we
make a Wick rotation to euclidean space, which yields a factor of i as
usual; then we have

∫
d4ℓ

(2π)4
∂

∂ℓβ
fα(ℓ) = i lim

ℓ→∞

∫
dSβ
(2π)4

fα(ℓ) , (75.41)

where dSβ = ℓ2ℓβdΩ is a surface-area element, and dΩ is the differential
solid angle in four dimensions. We thus find

∫
d4ℓ

(2π)4
∂

∂ℓβ
fα(ℓ) = i lim

ℓ→∞

∫
dΩ

(2π)4
ℓβℓα

(ℓ+p+q)2

= i
Ω4

(2π)4
1

4
gαβ

=
i

32π2
gαβ , (75.42)
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where we used Ω4 = 2π2. Combining eqs. (75.38–75.42), we find

∫
d4ℓ

(2π)4
(ℓ−p)α

(ℓ−p)2(ℓ+q)2 = A(p+q)α − i

32π2
pα . (75.43)

Using this in eq. (75.33), we find

pµV
µνρ(p, q, r) =

ig3

16π2
εανβρpα(p+q)β + (p, µ ↔ q, ν) +O(g5)

=
ig3

8π2
εανβρpαqβ +O(g5) . (75.44)

An exactly analogous calculation results in

qνV
µνρ(p, q, r) =

ig3

8π2
εαρβµqαpβ +O(g5) . (75.45)

Eqs. (75.44) and (75.45) show that the three-photon vertex is not gauge
invariant. Since rρV

µνρ(p, q, r) = 0, eqs. (75.44) and (75.45) also show that
the three-photon vertex does not exhibit the expected symmetry among
the external lines.

This is a puzzle, because the only asymmetric aspects of the diagrams in
fig. (75.2) are the momentum labels on the internal lines. The resolution of
the puzzle lies in the fact that the integral in eq. (75.16) is linearly divergent,
and so shifting the loop momentum changes its value. To account for this,
let us write Vµνρ(p, q, r) with ℓ replaced with ℓ+a, where a is an arbitrary
linear combination of p and q. We define

Vµνρ(p, q, r; a) ≡ 1
2 ig

3
∫

d4ℓ

(2π)4
Tr[(/ℓ+a−/p)γµ(/ℓ+a)γν(/ℓ+a+/q)γργ5]

(ℓ+a−p)2(ℓ+a)2(ℓ+a+q)2

+ (p, µ↔ q, ν) +O(g5) . (75.46)

Our previous expression, eq. (75.16), corresponds to a = 0. The integral
in eq. (75.46) is linearly divergent, and so we can express the difference
between Vµνρ(p, q, r; a) and Vµνρ(p, q, r; 0) as a surface integral. Let us
write

Vµνρ(p, q, r; a) = 1
2 ig

3Iαβγ(a)Tr[γαγµγβγνγγγργ5]

+ (p, µ↔ q, ν) +O(g5) , (75.47)

where

Iαβγ(a) ≡
∫

d4ℓ

(2π)4
(ℓ+a−p)α(ℓ+a)β(ℓ+a−q)γ
(ℓ+a−p)2(ℓ+a)2(ℓ+a+q)2 . (75.48)
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Then we have

Iαβγ(a) − Iαβγ(0) = aδ
∫

d4ℓ

(2π)4
∂

∂ℓδ

[
(ℓ−p)αℓβ(ℓ−q)γ
(ℓ−p)2ℓ2(ℓ+q)2

]

= iaδ lim
ℓ→∞

∫
dΩ

(2π)4
ℓδ(ℓ−p)αℓβ(ℓ−q)γ

(ℓ−p)2(ℓ+q)2

= iaδ
Ω4

(2π)4
1

24

(
gδαgβγ + gδβgγα + gδγgαβ

)

=
i

192π2

(
aαgβγ + aβgγα + aγgαβ

)
. (75.49)

Using this in eq. (75.47), we get contractions of the form gαβγ
αγµγβ = 2γµ.

The three terms in eq. (75.49) all end up contributing equally, and after
using eq. (75.9) to compute the trace, we find

Vµνρ(p, q, r; a) − Vµνρ(p, q, r; 0) = − ig3

16π2
εµνρβaβ

+ (p, µ ↔ q, ν) +O(g5) . (75.50)

Since the Levi-Civita symbol is antisymmetric on µ ↔ ν, only the part of
a that is antisymmetric on p↔ q contributes to Vµνρ(p, q, r; a). Therefore
we will set a = c(p− q), where c is a numerical constant. Then we have

Vµνρ(p, q, r; a) − Vµνρ(p, q, r; 0) = − ig3

8π2
c εµνρβ(p−q)β +O(g5) . (75.51)

Using this, along with eqs. (75.28), (75.44), and (75.45), and making some
simplifying rearrangements of the indices and momenta on the right-hand
sides (using p+q+r = 0), we find

pµV
µνρ(p, q, r; a) = − ig3

8π2
(1−c)ενραβqαrβ +O(g5) , (75.52)

qνV
µνρ(p, q, r; a) = − ig3

8π2
(1−c)ερµαβrαpβ +O(g5) , (75.53)

rρV
µνρ(p, q, r; a) = − ig3

8π2
(2c)εµναβpαqβ +O(g5) . (75.54)

We see that choosing c = 1 removes the anomalous right-hand side from
eqs. (75.52) and (75.53), but it then necessarily appears in eq. (75.54). Chos-
ing c = 1

3 restores symmetry among the external lines, but now all three
right-hand sides are anomalous. (This is what results from dimensional reg-
ularization of this theory with γ5 = iγ0γ1γ2γ3.) We have therefore failed to
construct a gauge-invariant U(1) theory with a single charged Weyl field.
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Consider now a U(1) gauge theory with several left-handed Weyl fields
ψi, with charges Qi, so that the covariant derivative of ψi is (∂µ−igQiAµ)ψi.
Then each of these fields circulates in the loop in fig. (75.2), and each vertex
has an extra factor of Qi. The right-hand sides of eqs. (75.52–75.54) are
now multiplied by

∑
iQ

3
i . And if

∑
iQ

3
i happens to be zero, then gauge

invariance is restored! The simplest possibility is to have the ψ’s come in
pairs with equal and opposite charges. (In this case, they can be assembled
into Dirac fields.) But there are other possibilities as well: for example,
one field with charge +2 and eight with charge −1. Such a gauge theory
is still chiral, but it is anomaly free. (It could be that further obstacles to
gauge invariance arise with more external photons and/or more loops, but
this turns out not to be the case. We will discuss this in section 77.)

All of this has a straightforward generalization to nonabelian gauge
theories. Suppose we have a single Weyl field in a (possibly reducible)
representation R of the gauge group. Then we must attach an extra factor
of Tr(T aRT

b
RT

c
R) to the first diagram in fig. (75.2), and a factor of Tr(T aRT

c
RT

b
R)

to the second; here the group indicies a, b, c go along with the momenta
p, q, r, respectively. Repeating our analysis shows that the diagrams with
PL → 1

2 come with an extra factor of 1
2Tr([T aR , T

b
R]T cR) = i

2T (R)fabcT cR;
these contribute to the renormalization of the tree-level three-gluon vertex.
Diagrams with PL → −1

2γ5 come with an extra factor of

1
2Tr({T aR , T bR}T cR) = A(R)dabcT cR . (75.55)

Here dabc is a completely symmetric tensor that is independent of the rep-
resentation, and A(R) is the anomaly coefficient of R, introduced in sec-
tion 70. In order for this theory to exist, we must have A(R) = 0. As
shown in section 70, A(R) = −A(R); thus a theory whose left-handed Weyl
fields come in R ⊕ R pairs is automatically anomaly free (as is one whose
Weyl fields are all in real representations). Otherwise, we must arrange
the cancellation by hand. For SU(2) and SO(N), all representations have
A(R) = 0. For SU(N) with N > 3, the fundamental representation has
A(N) = 1, and most complex SU(N) representations R have A(R) 6= 0. So
the cancellation is nontrivial.

We mention in passing two other kinds of anomalies: if we couple our
theory to gravity, we can draw a triangle diagram with two gravitons and
one gauge boson. This diagram violates general coordinate invariance (the
gauge symmetry of gravity). If the gauge boson is from a nonabelian group,
the diagram is accompanied by a factor of TrT aR = 0, and so there is no
anomaly. If the gauge boson is from a U(1) group, the diagram is accom-
panied by a factor of

∑
iQi, and this must vanish to cancel the anomaly.

There is also a global anomaly that afflicts theories with an odd number
of Weyl fermions in a pseudoreal representation, such as the fundamental
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representation of SU(2). The global anomaly cannot be seen in perturba-
tion theory; we will discuss it briefly in section 77.

Reference Notes

Discussions of anomalies emphasizing different aspects can be found in
Georgi, Peskin & Schroeder, and Weinberg I.

Problems

75.1) Consider a theory with a nonabelian gauge symmetry, and also a
U(1) gauge symmetry. The theory contains left-handed Weyl fields
in the representations (Ri, Qi), where Ri is the representation of the
nonabelian group, and Qi is the U(1) charge. Find the conditions for
this theory to be anomaly free.
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76 Anomalies in Global Symmetries

Prerequisite: 75

In this section we will study anomalies in global symmetries that can arise
in gauge theories that are free of anomalies in the local symmetries (and
are therefore consistent quantum field theories). A phenomenological ap-
plication will be discussed in section 90.

The simplest example is electrodynamics with a massless Dirac field Ψ
with charge Q = +1. The lagrangian is

L = iΨ /DΨ − 1
4F

aµνF aµν , (76.1)

where /D = γµDµ and Dµ = ∂µ − igAµ. (We call the coupling constant g
rather than e because we are using this theory as a formal example rather
than a physical model.) We can write Ψ in terms of two left-handed Weyl
fields χ and ξ via

Ψ =

(
χ

ξ†

)
, (76.2)

where χ has charge Q = +1 and ξ has charge Q = −1. In terms of χ and
ξ, the lagrangian is

L = iχ†σ̄µ(∂µ − igAµ)χ+ iξ†σ̄µ(∂µ + igAµ)ξ − 1
4F

aµνF aµν . (76.3)

The lagrangian is invariant under a U(1) gauge transformation

Ψ(x) → e−igΓ(x)Ψ(x) , (76.4)

Ψ(x) → e+igΓ(x)Ψ(x) , (76.5)

Aµ(x) → Aµ(x) − ∂µΓ(x) . (76.6)

In terms of the Weyl fields, eqs. (76.4) and (76.5) become

χ(x) → e−igΓ(x)χ(x) , (76.7)

ξ(x) → e+igΓ(x)ξ(x) . (76.8)

Because the fermion field is massless, the lagrangian is also invariant under
a global symmetry in which χ and ξ transform with the same phase,

χ(x) → e+iαχ(x) , (76.9)

ξ(x) → e+iαξ(x) . (76.10)
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In terms of Ψ, this is

Ψ(x) → e−iαγ5Ψ(x) , (76.11)

Ψ(x) → Ψ(x)e−iαγ5 . (76.12)

This is called axial U(1) symmetry, because the associated Noether current

jµA(x) ≡ Ψ(x)γµγ5Ψ(x) (76.13)

is an axial vector (that is, its spatial part is odd under parity). Noether’s
theorem leads us to expect that this current is conserved: ∂µj

µ
A = 0. How-

ever, in this section we will show that the axial current actually has an
anomalous divergence,

∂µj
µ
A = − g2

16π2
εµνρσFµνFρσ . (76.14)

We will see in section 77 that eq. (76.14) is exact; there are no higher-order
corrections.

We will demonstrate eq. (76.14) by making use of our results in section
75. Consider the matrix element 〈p,q|jρA(z)|0〉, where 〈p,q| is a state of two
outgoing photons with four-momenta p and q, and polarization vectors εµ
and ε′ν , respectively. (We omit the helicity label, which will play no essential
role.) Using the LSZ formula for photons (see section 67), we have

〈p,q|jρA(z)|0〉 = (ig)2 εµε
′
ν

∫
d4x d4y e−i(px+qy)〈0|Tjµ(x)jν(y)jρA(z)|0〉 ,

(76.15)
where

jµ(x) ≡ Ψ(x)γµΨ(x) (76.16)

is the Noether current corresponding to the U(1) gauge symmetry. Since
both jµ(x) and jµA(x) are Noether currents, we expect the Ward identities

∂

∂xµ
〈0|Tjµ(x)jν(y)jρA(z)|0〉 = 0 , (76.17)

∂

∂yν
〈0|Tjµ(x)jν(y)jρA(z)|0〉 = 0 , (76.18)

∂

∂zρ
〈0|Tjµ(x)jν(y)jρA(z)|0〉 = 0 , (76.19)

to be satisfied. Note that there are no contact terms in eqs. (76.17–76.19),
because both jµ(x) and jµA(x) are invariant under both U(1) transforma-
tions. If we use eq. (76.19) in eq. (76.15), we see that we expect

∂

∂zρ
〈p,q|jρA(z)|0〉 = 0 . (76.20)
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However, our experience in section 75 leads us to proceed more cautiously.
Let us define Cµνρ(p, q, r) via

(2π)4δ4(p+q+r)Cµνρ(p, q, r)

≡
∫
d4x d4y d4z e−i(px+qy+rz)〈0|Tjµ(x)jµ(y)jρA(z)|0〉 . (76.21)

Then we can rewrite eq. (76.15) as

〈p,q|jρA(z)|0〉 = −g2εµε
′
νC

µνρ(p, q, r)eirz
∣∣∣
r=−p−q

. (76.22)

Taking the divergence of the current yields

〈p,q|∂ρjρA(z)|0〉 = −ig2εµε
′
νrρC

µνρ(p, q, r)eirz
∣∣∣
r=−p−q

. (76.23)

The expected Ward identities become

pµC
µνρ(p, q, r) = 0 , (76.24)

qνC
µνρ(p, q, r) = 0 , (76.25)

rρC
µνρ(p, q, r) = 0 . (76.26)

To check eqs. (76.24–76.26), we compute Cµνρ(p, q, r) with Feynman dia-
grams. At the one-loop level, the contributing diagrams are exactly those
we computed in section 75, except that the three vertex factors are now
γµ, γν , and γργ5, instead of igγµPL, igγ

νPL, and igγρPL. But, as we saw,
the three PL’s can be combined into just one at the last vertex, and then
this one can be replaced by −1

2γ5. Thus, the vertex function iVµνρ(p, q, r)
of section 75 is related to Cµνρ(p, q, r) by

iVµνρ(p, q, r) = −1
2(ig)3Cµνρ(p, q, r) +O(g5) . (76.27)

In section 75, we saw that we could choose a regularization scheme that
preserved eqs. (76.24) and (76.25), but not also (76.26). For the theory of
this section, we definitely want to preserve eqs. (76.24) and (76.25), because
these imply conservation of the current coupled to the gauge field, which is
necessary for gauge invariance. On the other hand, we are less enamored of
eq. (76.26), because it implies conservation of the current for a mere global
symmetry.

Using eq. (76.27) and our results from section 75, we find that preserving
eqs. (76.24) and (76.25) results in

rρC
µνρ(p, q, r) = − i

2π2
εµναβpαqβ +O(g2) (76.28)
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in place of eq. (76.26). Using this in eq. (76.23), we find

〈p,q|∂ρjρA(z)|0〉 = − g2

2π2
εµναβpαqβεµε

′
νe
−i(p+q)z +O(g4) . (76.29)

Now we come to the point. The right-hand side of eq. (76.29) is exactly
what we get in free-field theory for the matrix element of the right-hand
side of eq. (76.14). We conclude that eq. (76.14) is correct, up to possible
higher-order corrections.

In the next section, we will see that eq. (76.14) is exact.

Problems

76.1) Verify that the right-hand side of eq. (76.29) is exactly what we get
in free-field theory for the matrix element of the right-hand side of
eq. (76.14).
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77 Anomalies and the Path Integral for

Fermions

Prerequisite: 76

In the last section, we saw that in a U(1) gauge theory with a massless
Dirac field Ψ with charge Q = +1, the axial vector current

jµA = Ψγµγ5Ψ , (77.1)

which should (according to Noether’s theorem) be conserved, actually has
an anomalous divergence,

∂µj
µ
A = − g2

16π2
εµνρσFµνFρσ . (77.2)

In this section, we will derive eq. (77.2) directly from the path integral,
using the Fujikawa method. We will see that eq. (77.2) is exact; there are
no higher-order corrections.

We can also consider a nonabelian gauge theory with a massless Dirac
field Ψ in a (possibly reducible) representation R of the gauge group. In
this case, the triangle diagrams that we analyzed in the last section carry
an extra factor of Tr(T aRT

b
R) = T (R)δab, and we have

∂µj
µ
A = − g2

16π2
T (R)εµνρσ∂[µA

a
ν]∂[ρA

a
σ] +O(g3) , (77.3)

where ∂[µA
a
ν] ≡ ∂µA

a
ν − ∂νA

a
µ. We expect the right-hand side of eq. (77.3)

to be gauge invariant (since this theory is free of anomalies in the currents
coupled to the gauge fields); this suggests that we should have

∂µj
µ
A = − g2

16π2
T (R)εµνρσF aµνF

a
ρσ , (77.4)

where F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the nonabelian field strength.

We will see that eq. (77.4) is correct, and that there are no higher-order
corrections.

We can write eq. (77.4) more compactly by using the matrix-valued
gauge field

Aµ ≡ T aRA
a
µ (77.5)

and field strength

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (77.6)

Then eq. (77.4) can be written as

∂µj
µ
A = − g2

16π2
εµνρσ TrFµνFρσ . (77.7)
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We now turn to the derivation of eqs. (77.2) and (77.7). We begin with
the path integral over the Dirac field, with the gauge field treated as a fixed
background, to be integrated later. We have

Z(A) ≡
∫

DΨDΨ eiS(A) , (77.8)

where

S(A) ≡
∫
d4x Ψi /DΨ (77.9)

is the Dirac action, i /D = iγµDµ is the Dirac wave operator, and

Dµ = ∂µ − igAµ (77.10)

is the covariant derivative. Here Aµ is either the U(1) gauge field, or the
matrix-valued nonabelian gauge field of eq. (77.5), depending on the theory
under consideration. Our notation allows us to treat both cases simultane-
ously.

We can formally evaluate eq. (77.8) as a functional determinant,

Z(A) = det(i /D) . (77.11)

However, this expression is not useful without some form of regularization.
We will take up this issue shortly.

Now consider an axial U(1) transformation of the Dirac field, but with
a spacetime dependent parameter α(x):

Ψ(x) → e−iα(x)γ5Ψ(x) , (77.12)

Ψ(x) → Ψ(x)e−iα(x)γ5 . (77.13)

We can think of eqs. (77.12) and (77.13) as a change of integration variable
in eq. (77.8); then Z(A) should be independent of α(x). The corresponding
change in the action is

S(A) → S(A) +

∫
d4x jµA(x)∂µα(x) . (77.14)

We can integrate by parts to write this as

S(A) → S(A) −
∫
d4x α(x)∂µj

µ
A(x) . (77.15)

If we assume that the measure DΨDΨ is invariant under the axial U(1)
transformation, then we have

Z(A) →
∫

DΨDΨ eiS(A)e−i
∫
d4x α(x)∂µj

µ
A

(x) . (77.16)



77: Anomalies and the Path Integral for Fermions 462

This must be equal to the original expression for Z(A), eq. (77.8). This
implies that ∂µj

µ
A(x) = 0 holds inside quantum correlation functions, up to

contact terms, as discussed in section 22.
However, the assumption that the measure DΨDΨ is invariant under

the axial U(1) transformation must be examined more closely. The change
of variable in eqs. (77.12) and (77.13) is implemented by the functional
matrix

J(x, y) = δ4(x−y)e−iα(x)γ5 . (77.17)

Because the path integral is over fermionic variables (rather than bosonic),
we get a jacobian factor of (det J)−1 (rather than det J) for each of the
transformations in eqs. (77.12) and (77.13), so that we have

DΨDΨ → (det J)−2 DΨDΨ . (77.18)

Using log det J = Tr log J , we can write

(det J)−2 = exp

[
2i

∫
d4xα(x)Tr δ4(x−x)γ5

]
, (77.19)

where the explicit trace is over spin and group indices. Like eq. (77.11),
this expression is not useful without some form of regularization.

We could try to replace the delta-function with a gaussian; this is equiv-
alent to

δ4(x−y) → e∂
2
x/M

2
δ4(x−y) , (77.20)

where M is a regulator mass that we would take to infinity at the end of the
calculation. However, the appearance of the ordinary derivative ∂, rather
than the covariant derivative D, implies that eq. (77.20) is not properly
gauge invariant. So, another possibility is

δ4(x−y) → eD
2
x/M

2
δ4(x−y) . (77.21)

However, eq. (77.21) presents us with a more subtle problem. Our regular-
ization scheme for eq. (77.19) should be compatible with our regularization
scheme for eq. (77.11). It is not obvious whether or not eq. (77.21) meets
this criterion, because D2 has no simple relation to i /D. To resolve this
issue, we use

δ4(x−y) → e(i /Dx)2/M2
δ4(x−y) (77.22)

to regulate the delta function in eq. (77.19).
To evaluate eq. (77.22), we write the delta function on the right-hand

side of eq. (77.22) as a Fourier integral,

δ4(x−y) →
∫

d4k

(2π)4
e(i /Dx)2/M2

eik(x−y) . (77.23)
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Then we use f(∂)eikx = eikxf(∂ + ik); eq. (77.23) becomes

δ4(x−y) →
∫

d4k

(2π)4
eik(x−y) e(i /D−/k)

2/M2
, (77.24)

where a derivative acting on the far right now yields zero. We have

(i /D − /k)2 = /k2 − i{/k, /D} − /D2

= −k2 − i{γµ, γν}kµDν − γµγνDµDν . (77.25)

Next we use γµγν = 1
2 ({γµ, γν} + [γµ, γν ]) = −gµν − 2iSµν to get

(i /D − /k)2 = −k2 + 2ik ·D +D2 + 2iSµνDµDν . (77.26)

In the last term, we can use the antisymmetry of Sµν to replace DµDν with
1
2 [Dµ,Dν ] = −1

2 igFµν , which yields

(i /D − /k)2 = −k2 + 2ik ·D +D2 + gSµνFµν . (77.27)

We use eq. (77.27) in eq. (77.24), and then rescale k by M ; the result is

δ4(x−y) →M4
∫

d4k

(2π)4
eiMk(x−y) e−k

2
e2ik·D/M+D2/M2+gSµνFµν/M2

.

(77.28)
Thus we have

Tr δ4(x−x)γ5 →M4
∫

d4k

(2π)4
e−k

2
Tr e2ik·D/M+D2/M2+gSµνFµν/M2

γ5 .

(77.29)
We can now expand the exponential in inverse powers of M ; only terms up
to M−4 will survive the M → ∞ limit. Furthermore, the trace over spin
indices will vanish unless there are four or more gamma matrices multiply-
ing γ5. Together, these considerations imply that the only term that can
make a nonzero contribution is 1

2(gSµνFµν)
2/M4. Thus we find

Tr δ4(x−x)γ5 → 1
2g

2
∫

d4k

(2π)4
e−k

2
(TrFµνFρσ)(TrSµνSρσγ5) , (77.30)

where the first trace is over group indices (in the nonabelian case), and the
second trace is over spin indices. The spin trace is

TrSµνSρσγ5 = Tr ( i2γ
µγν)( i2γ

ργσ)γ5

= −1
4Tr γµγνγργσγ5

= iεµνρσ . (77.31)
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To evaluate the integral over k in eq. (77.30), we analytically continue
to euclidean spacetime; this results in an overall factor of i, as usual. Then
each of the four gaussian integrals gives a factor of π1/2. So we find

Tr δ4(x−x)γ5 → − g2

32π2
εµνρσ TrFµνFρσ . (77.32)

Using this in eq. (77.19), we get

(det J)−2 = exp

[
− ig2

16π2

∫
d4xα(x) εµνρσ TrFµν(x)Fρσ(x)

]
. (77.33)

Including the transformation of the measure, eq. (77.18), in the transfor-
mation of the path integral, eq. (77.16), then yields

Z(A) →
∫

DΨDΨ eiS(A)e−i
∫
d4x α(x)[(g2/16π2)εµνρσTrFµν(x)Fρσ(x)+∂µj

µ
A

(x)]

(77.34)
in place of eq. (77.16). This must be equal to the original expression for
Z(A), eq. (77.8). This implies that eq. (77.7) holds inside quantum correla-
tion functions, up to possible contact terms.

Note that this derivation of eq. (77.7) did not rely on an expansion in
powers of g, and so eq. (77.7) is exact; there are no higher-order corrections.
This result is known as the Adler-Bardeen theorem. It can also be (and
originally was) established by a careful study of Feynman diagrams.

The Fujikawa method can be used to find the anomaly in the chiral
gauge theories that we studied in section 75, but the analysis is more in-
volved. Here we will quote only the final result.

Consider a left-handed Weyl field in a (possibly reducible) represen-
tation R of the gauge group. We define the chiral gauge current jaµ ≡
ΨT aRγ

µPLΨ. Its covariant divergence (which should be zero, according to
Noether’s theorem) is given by

Dab
µ j

bµ =
g2

24π2
εµνρσ∂µTr

[
T aR (Aν∂ρAσ − 1

2 igAνAρAσ)
]
. (77.35)

Note that the right-hand side of eq. (77.35) is not gauge invariant. The
anomaly spoils gauge invariance in chiral gauge theories, unless this right-
hand side happens to vanish for group-theoretic reasons. We show in prob-
lem 77.1 that this occurs if and only if A(R) = 0, where A(R) is the anomaly
coefficient of the representation R.

For comparison, note that eq. (77.7) can be written as

∂µj
µ
A = − g2

4π2
εµνρσ∂µTr

[
Aν∂ρAσ − 2

3 igAνAρAσ
]
. (77.36)
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The relative value of the overall numerical prefactor in eqs. (77.35) and
(77.36) is easy to understand: there is a minus one-half in eq. (77.35) from
PL → −1

2γ5, and a one-third from regularizing to preserve symmetry among
the three external lines in the triangle diagram. (The relative coefficients
of the second terms have no comparably simple explanation.)

Finally, a related but more subtle problem, known as a global anomaly,
arises for theories with an odd number of Weyl fields in a pseudoreal rep-
resentation, such as the fundamental representation of SU(2). In this
case, every gauge field configuration Aµ can be smoothly deformed into
another gauge field configuration A′µ that has the same action, but has
Z(A′) = −Z(A). Thus, when we integrate over A, the contribution from
A′ cancels the contribution from A, and the result is zero. Since its path
integral is trivial, this theory does not exist.

Problems

77.1) Show that the right-hand side of eq. (77.35) vanishes if and only if
A(R) = 0.

77.2) Show that the right-hand side of eq. (77.36) equals the right-hand side
of eq. (77.7).
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78 Background Field Gauge

Prerequisite: 73

In the section, we will introduce a clever choice of gauge, background field
gauge, that greatly simplifies the calculation of the beta function for Yang–
Mills theory, especially at the one-loop level.

We begin with the lagrangian for Yang–Mills theory,

LYM = −1
4F

aµνF aµν , (78.1)

where the field strength is

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (78.2)

To evaluate the path integral, we must choose a gauge. As we saw in section
71, one large class of gauges corresponds to choosing a gauge-fixing function
Ga(x), and adding Lgf + Lgh to LYM, where

Lgf = −1
2ξ
−1GaGa , (78.3)

Lgh = c̄a
∂Ga

∂Abµ
Dbc
µ c

c . (78.4)

Here Dbc
µ = δbc∂µ− ig(T aA)bcAaµ = δbc∂µ+gf bacAaµ is the covariant derivative

in the adjoint representation, and c and c̄ are the ghost and antighost fields.
The notation ∂Ga/∂Abµ means that any derivatives that act on Abµ in Ga

now act to the right in eq. (78.4).
We get Rξ gauge by choosing Ga = ∂µAaµ. To get background field

gauge, we first introduce a fixed, classical background field Āaµ(x), and the
corresponding background covariant derivative,

D̄µ ≡ ∂µ − igT aA Ā
a
µ . (78.5)

Then we choose
Ga = (D̄µ)ab(A−Ā)bµ . (78.6)

The ghost lagrangian becomes Lgh = c̄aD̄µabDbc
µ c

c, or, after an integration
by parts,

Lgh = −(D̄µc̄)a(Dµc)
a , (78.7)

where (D̄µc̄)a = D̄µabc̄b and (Dµc)
a = Dac

µ c
c.

Under an infinitesimal gauge transformation, the change in the fields is

δGA
a
µ(x) = −Dac

µ θ
c(x) , (78.8)

δGc
b(x) = −igθa(x)(T aA )bccc(x) , (78.9)

δGĀ
a
µ(x) = 0 . (78.10)
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The antighost c̄ transforms in the same way as c (since the adjoint repre-
sentation is real). The background field Ā is fixed, and so does not change
under a gauge transformation. Of course, this means that Lgf and Lgh are
not gauge invariant; their role is to fix the gauge.

We can, however, define a background field gauge transformation, under
which only the background field transforms,

δBGĀ
a
µ(x) = −D̄ac

µ θ
c(x) , (78.11)

δBGA
a
µ(x) = 0 , (78.12)

δBGc
b(x) = 0 . (78.13)

Obviously, LYM is invariant under this transformation (since it does not
involve the background field at all), but Lgf and Lgh are not. However,
Lgf and Lgh are invariant under the combined transformation δG+BG. For
Lgh, as given by eq. (78.7), this follows immediately from the fact that
Dµ and D̄µ have the same transformation property under the combined
transformation, and that using covariant derivatives with all group indices
contracted always yields a gauge-invariant expression.

To use this argument on Lgf , as given by eqs. (78.3) and (78.6), we need
to show that (A − Ā)aµ transforms under the combined transformation in
the same way as does an ordinary field in the adjoint representation, such
as the ghost field in eq. (78.9). To show this, we write

δG+BG(A− Ā)bµ = −(D − D̄)baµ θ
a

= +ig(A − Ā)cµ(T
c
A)baθa

= −igθa(T aA)bc(A− Ā)cµ . (78.14)

We used the complete antisymmetry of (T cA)ba = −if cba to get the last line.
We see that (A − Ā)aµ transforms like an ordinary field in the adjoint rep-
resentation, and so any expression that involves only covariant derivatives
(either D̄µ or Dµ) acting on this field, with all group indices contracted, is
invariant under the combined transformation.

Therefore, the complete lagrangian, L = LYM + Lgf + Lgh, is invariant
under the combined transformation.

Now consider constructing the quantum action Γ(A, c, c̄; Ā). Recall from
section 21 that the quantum action can be expressed as the sum of all
1PI diagrams, with the external propagators replaced by the corresponding
fields. In a gauge theory, the quantum action is in general not gauge
invariant, because we had to fix a gauge in order to carry out the path
integral. The quantum action thus depends on the choice of gauge, and
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hence (in the case of background field gauge) on the background field Ā.
This is why we have written Ā as an argument of Γ, but separated by a
semicolon to indicate its special role.

An important property of the quantum action is that it inherits all lin-
ear symmetries of the classical action; see problem 21.2. In the present
case, these symmetries include the combined gauge transformation δG+BG.
Therefore, the quantum action is also invariant under the combined trans-
formation. The quantum action takes its simplest form if we set the exter-
nal field A equal to the background field Ā. Then, Γ(Ā, c, c̄; Ā) is invariant
under a gauge transformation of the form

δG+BGĀ
a
µ(x) = −D̄ac

µ θ
c(x) , (78.15)

δG+BGc
b(x) = −igθa(x)(T aA)bccc(x) . (78.16)

This is now simply an ordinary gauge transformation, with Ā as the gauge
field.

The quantum action can be expressed as the classical action, plus loop
corrections. For A = Ā, we have

Γ(Ā, c, c̄; Ā) =

∫
d4x

[
−1

4 F̄
aµνF̄ aµν − (D̄µc̄)a(D̄µc)

a
]
+ . . . , (78.17)

where the ellipses stand for the loop corrections. Note that Lgf has dis-
appeared [because we set A = Ā in eq. (78.6)], and Lgh has the form of a
kinetic term for a complex scalar field in the adjoint representation. This
term is therefore manifestly gauge invariant, as is the F̄ F̄ term.

The gauge invariance of the quantum action has an important conse-
quence for the loop corrections. In background field gauge, the renormal-
izing Z factors must respect the gauge invariance of the quantum action.
Therefore, using the notation of section 73, we must have

Z1 = Z2 , (78.18)

Z1′ = Z2′ , (78.19)

Z3 = Z3g = Z4g . (78.20)

Thus the relation between the bare and renormalized gauge couplings be-
comes

g2
0 = Z−1

3 g2µ̃ε . (78.21)

This relation now involves only Z3. We can therefore compute the beta
function from Z3 alone. This is the major advantage of background field
gauge.
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To compute the loop corrections, we need to evaluate 1PI diagrams in
background-field gauge with the external propagators removed and replaced
with external fields; the external gauge field should be set equal to the
background field. The easiest way to do this is to set

A = Ā+ A (78.22)

at the beginning, and to write the path integral in terms of A. Then the A
field appears only on internal lines, and the Ā field only on external lines.
The gauge-fixing term now reads

Lgf = −1
2ξ
−1(D̄µAµ)

a(D̄νAν)
a , (78.23)

and the ghost term is given by eq. (78.7).
The Feynman rules that follow from LYM +Lgf +Lgh are closely related

to those we found in Rξ gauge in section 72. The ghost and gluon prop-
agators are the same, and vertices involving all internal lines are also the
same. But if one or more gluon lines are external, then there are additional
contributions to the vertices from Lgf and Lgh. We leave the details to
problem 78.1.

Further simplifications arise at the one-loop level. Using eq. (78.22) in
eq. (78.2), we find

F aµν = ∂µĀ
a
ν − ∂νĀ

a
µ + gfabcĀbµĀ

c
ν

+ ∂µAa
ν − ∂νAa

µ + gfabc(ĀbµAc
ν + Ab

µĀ
c
ν) + gfabcAb

µAc
ν

= F̄ aµν + (D̄µAν)
a − (D̄νAµ)

a + gfabcAb
µAc

ν . (78.24)

We then have

LYM = −1
4 F̄

aµνF̄ aµν − 1
2(D̄µAν)a(D̄µAν)

a + 1
2 (D̄µAν)a(D̄νAµ)

a

− 1
2gf

abcF̄ aµνAb
µAc

ν + . . . , (78.25)

where the ellipses stand for terms that are linear, cubic, or quartic in A.
Vertices arising from terms linear in A cannot appear in a 1PI diagram, and
the cubic and quartic vertices do not appear in the one-loop contribution
to the Ā propagator.

The last term on the first line of eq. (78.25) can be usefully manipulated
with some dummy-index relabelings and integrations by parts; we have

(D̄µAν)a(D̄νAµ)
a = (D̄νAµ)

c(D̄µAν)
c

= −Ab
µ(D̄

νD̄µ)bcAc
ν

= −Ab
µ(D̄

µD̄ν − [D̄µ, D̄ν ])bcAc
ν

= −Ab
µ(D̄

µD̄ν)bcAc
ν − ig(T aA )bcF̄ aµνAb

µAc
ν

= +(D̄µAµ)
c(D̄νAν)

c − gfabcF̄ aµνAb
µAc

ν . (78.26)
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Figure 78.1: The one-loop contributions to the Ā propagator in background
field gauge; the dashed lines can be either ghosts or internal A gauge fields.
The dot denotes the F̄AA vertex.

Now the first term on the right-hand side of eq. (78.26) has the same form
as the gauge-fixing term. If we choose ξ = 1, these two terms will cancel.

Setting ξ = 1, and including a renormalizing factor of Z3, the terms of
interest in the complete lagrangian become

L = −1
4Z3F̄

aµνF̄ aµν − 1
2Z3(D̄

µAν)a(D̄µAν)
a − (D̄µc̄)a(D̄µc)

a

− Z3gf
abcF̄ aµνAb

µAc
ν . (78.27)

In the ghost term, we have replaced Dµ with D̄µ; the vertex corresponding
to the dropped A term does not appear in the one-loop contribution to
the Ā propagator. Also, we can rescale A to absorb Z3 in all terms except
the first; since A never appears on an external line, its normalization is
irrelevant, and always cancels among propagators and vertices. (The same
is true of the ghost field.)

The one-loop diagrams that contribute to the Ā propagator are shown in
fig. (78.1). The dashed lines in the first two diagrams represent either the A
field or the ghost fields. In either case, the second diagram vanishes, because
it is proportional to

∫
d4ℓ/ℓ2, which is zero after dimensional regularization.

Note that the ghost term in eq. (78.27) has the form of a kinetic term
for a complex scalar field in the adjoint representation. In problem 73.1,
we found the contribution of a complex scalar field in a representation RCS

to Π(k2) is

ΠCS(k
2) = − g2

24π2
T (RCS)

1

ε
+ finite . (78.28)

The ghost contribution is minus this, with RCS → A. (The minus sign is
from the closed ghost loop.) Thus we have

Πgh(k2) = +
g2

24π2
T (A)

1

ε
+ finite +O(g4) . (78.29)

For reference we recall that the counterterm contribution is

Πct(k
2) = −(Z3−1) . (78.30)
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Next we consider the diagrams with A fields in the loop. If the F̄AA
interaction term was absent, the calculation would again be a familiar one;
the D̄AD̄A term in eq. (78.27) has the form of a kinetic term for a real
scalar field that carries an extra index ν. That this index is a Lorentz
vector index is immaterial for the diagrammatic calculation; the index is
simply summed around the loop, yielding an extra factor of d = 4. There
is also an extra factor of one-half (relative to the case of a complex scalar)
because A is real rather than complex. (Equivalently, the diagram has a
symmetry factor of S = 2 from exchange of the top and bottom internal
propagators when they do not carry charge arrows.) We thus have

ΠD̄AD̄A(k2) = − g2

12π2
T (A)

1

ε
+ finite +O(g4) . (78.31)

If we now include the F̄AA interaction, we can think of F̄ aµν as a constant
external field. We can then draw the third diagram of fig. (78.1), where and
each dot denotes a vertex factor of −2igfabcF̄ aµν . This vacuum diagram has
a symmetry factor of S = 2 × 2: one factor of two for exchanging the top
and bottom propagators, and one for exchanging the left and right sources.
Its contribution to the quantum action is

iΓF̄AA/V T =
1

4
(−2igfacdF̄ aµν)(−2igf begF̄ bρσ)

(
1
i

)2
µ̃ε
∫

ddℓ

(2π)d
gµρδce
ℓ2

gνσδdg
ℓ2

= g2 T (A)F̄ aµνF̄ aµν

(
i

8π2ε
+ finite

)
, (78.32)

where V T is the volume of spacetime. Comparing this with the tree-level
lagrangian −1

4Z3F̄ F̄ , and recalling eq. (78.30), we see that eq. (78.32) is
equivalent to a contribution to Π(k2) of

ΠF̄AA(k2) = +
g2

2π2
T (A)

1

ε
+ finite . (78.33)

There is also a one-loop diagram with one D̄AD̄A vertex and one F̄AA
vertex; however, contracting the vector indices on the A fields around the
loop leads to a factor of F̄µνgµν = 0. Similarly, a one-loop diagram with a
single F̄AA vertex vanishes.

We could also couple the gauge field to a Dirac fermion in the rep-
resentation RDF, and a complex scalar in the representation RCS. The
corresponding contributions to Π(k2) were computed in section 73, and are
given by eq. (78.28) and

ΠDF(k
2) = − g2

6π2
T (RDF)

1

ε
+ finite , (78.34)
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Adding up eqs. (78.28), (78.29), (78.30), (78.31), (78.33), and (78.34), we
find that finiteness of Π(k2) requires

Z3 = 1+
g2

24π2

[(
+1−2+12

)
T (A)−4T (RDF)−T (RCS)

]1
ε

+O(g4) (78.35)

in the MS renormalization scheme.
The analysis of section 28 now results in a beta function of

β(g) = − g3

48π2

[
11T (A) − 4T (RDF) − T (RCS)

]
+O(g5) . (78.36)

A Majorana fermion or a Weyl fermion makes half the contribution of a
Dirac fermion in the same representation; a real scalar field makes half the
contribution of a complex scalar field. (Majorana fermions and real scalars
must be in real representations of the gauge group.)

In quantum chromodynamics, the gauge group is SU(3), and there are
nF = 6 flavors of quarks (which are Dirac fermions) in the fundamental
representation. We therefore have T (A) = 3, T (RDF) = 1

2nF, and T (RCS) =
0; therefore

β(g) = − g3

16π2

(
11 − 2

3nF

)
+O(g5) . (78.37)

We see that the beta function is negative for nF ≤ 16, and so QCD is
asymptotically free.

Problems

78.1) Compute the tree-level vertex factors in background field gauge for all
vertices that connect one or more external gluons with two or more
internal lines (ghost or gluon).

78.2) Our one-loop corrections can be interpreted as functional determi-
nants. Define

R,(a,b) ≡ D̄2 + gT aR F̄
a
µνS

µν
(a,b) , (78.38)

where D̄µ = ∂µ − ig(T aR )Āaµ is the background-covariant derivative in
the representation R, implicitly multiplied by the indentity matrix
for the (a, b) representation of the Lorentz group, and Sµν(a,b) are the
Lorentz generators for that representation; in particular,

Sµν(1,1) = 0 , (78.39)

Sµν(2,1)⊕(1,2) = i
4 [γµ, γν ] , (78.40)

(Sµν(2,2))αβ = −i(δµαδνβ − δναδ
µ
β) . (78.41)
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Show that the one-loop contribution to the terms in the quantum
action that do not depend on the ghost fields is given by

exp iΓ1−loop(Ā, 0, 0; Ā) ∝ (det A,(1,1))
+1

×(det A,(2,2))
−1/2

×(det RDF,(2,1)⊕(1,2))
+1/2

×(det RCS,(1,1))
−1 . (78.42)

Verify that this expression agrees with the diagrammatic analysis in
this section.
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79 Gervais–Neveu Gauge

Prerequisite: 78

In section 78, we used background field gauge to set up the computation
of a quantum action that is gauge invariant. Given this quantum action,
we can use it to compute scattering amplitudes via the corresponding tree
diagrams, as discussed in section 19. Since the ghost fields in the quantum
action do not contribute to tree diagrams, we can simply drop all the ghost
terms in the quantum action.

Because the quantum action computed in background field gauge is
itself gauge invariant, it requires further gauge fixing to specify the gluon
propagator and vertices. We can choose whatever gauge is most convenient;
for example, Rξ gauge. In principle, this gauge fixing involves introducing
new ghost fields, but, once again, these do not contribute to tree diagrams,
and so we can ignore them.

If we start with the tree-level approximation to the quantum action,
then, in Rξ gauge, we simply get the gluon propagator and vertices of
section 72. As we noted there, the complexity of the three- and four-gluon
vertices in Rξ gauge leads to long, involved computations of even simple
processes like gluon-gluon scattering.

In this section, we will introduce another gauge, Gervais–Neveu gauge,
that simplifies these tree-level computations.

We begin by specializing to the gauge group SU(N), and working with
the matrix-valued field Aµ = AaµT

a. For later convenience, we will normal-
ize the generators via

TrT aT b = δab . (79.1)

With this choice, their commutation relations become

[T a, T b] = i
√

2fabcT c . (79.2)

The tree-level action is specified by the Yang–Mills lagrangian,

LYM = −1
4TrFµνFµν , (79.3)

where the matrix-valued field strength is

Fµν = ∂µAν − ∂νAµ − ig√
2
[Aµ,Aν ] . (79.4)

Let us introduce the matrix-valued complex tensor

Hµν ≡ ∂µAν − ig√
2
AµAν . (79.5)

Then Fµν is the antisymmetric part of Hµν ,

Fµν = Hµν −Hνµ . (79.6)
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The Yang–Mills lagrangian can now be written as

LYM = −1
2Tr

(
HµνHµν −HµνHνµ

)
. (79.7)

To fix the gauge, we choose a matrix-valued gauge-fixing function G(x),
and add

Lgf = −1
2TrGG (79.8)

to LYM. Here we have set the gauge parameter ξ to one, and ignored the
ghost lagrangian (since, as we have already discussed, it does not affect tree
diagrams). The choice of G that yields Gervais–Neveu gauge is

G = Hµ
µ . (79.9)

At first glance, this choice seems untenable, because we see from eq. (79.5)
that this G (and hence Lgf) is not hermitian. However, because the role of
Lgf is merely to fix the gauge, it is acceptable for Lgf to be nonhermitian.

Combining eqs. (79.7) and (79.8), we get a total, gauge-fixed lagrangian

L = −1
2Tr

(
HµνHµν −HµνHνµ +Hµ

µH
ν
ν

)
. (79.10)

Consider the terms in L with two derivatives. After some integrations by
parts, those from the third term in eq. (79.10) cancel those from the second,
leading to

L2∂ = −1
2Tr ∂µAν∂µAν , (79.11)

just as in Rξ gauge with ξ = 1. Now consider the terms with no derivatives.
Once again, those from the third term in eq. (79.10) cancel those from the
second (after using the cyclic property of the trace), leading to

L0∂ = +1
4g

2 TrAµAνAµAν . (79.12)

Finally, we have the terms with one derivative,

L1∂ = +
ig√

2
Tr
(
∂µAνAµAν − ∂µAνAνAµ + ∂µAµA

νAν
)
. (79.13)

Each derivative acts only on the field to its immediate right. If we integrate
by parts in the last term in eq. (79.13), we generate two terms; one of these
cancels the first term in eq. (79.13), and the other duplicates the second.
Thus we have

L1∂ = −i
√

2gTr ∂µAνAνAµ . (79.14)

Combining eqs. (79.11), (79.12), and (79.14), we find

L = Tr
(
−1

2∂
µAν∂µAν − i

√
2g ∂µAνAνAµ + 1

4g
2AµAνAµAν

)
. (79.15)
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Because this lagrangian has a rather simple structure in terms of the matrix-
valued field Aµ, it is helpful to stick with this notation, rather than trying
to reexpress L in terms of Aaµ = Tr(T aAµ). In the next section, we explore
the Feynman rules for a matrix-valued field in a simplified context.

Reference Notes

Gervais–Neveu gauge and some interesting variations are discussed in Siegel.
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80 The Feynman Rules for N × N Matrix

Fields

Prerequisite: 10

In section 79, we found that the lagrangian for SU(N) Yang–Mills theory
in Gervais–Neveu gauge is

L = Tr
(
−1

2∂
µAν∂µAν − i

√
2g ∂µAνAνAµ + 1

4g
2AµAνAµAν

)
, (80.1)

where Aµ(x) is a traceless hermitian N ×N matrix. In this section, we will
work out the Feynman rules for a simplified model of a scalar field that
keeps the essence of the matrix structure.

Let B(x) be a hermitian N ×N matrix that is not traceless. Let T a be
a complete set of N2 hermitian N ×N matrices normalized according to

TrT aT b = δab . (80.2)

We will take one of these matrices, TN
2
, to be proportional to the identity

matrix; then eq. (80.2) requires the rest of the T a’s to be traceless. We can
expand B(x) in the T a’s, with coefficient fields Ba(x),

B(x) = Ba(x)T a , (80.3)

Ba(x) = TrT aB(x) , (80.4)

where the repeated index in eq. (80.3) is implicitly summed over a = 1 to
N2.

Consider a lagrangian for B(x) of the form

L = Tr
(
−1

2∂
µB∂µB + 1

3gB
3 − 1

4λB
4
)
. (80.5)

Using eqs. (80.2) and (80.3), we find an expression for L in terms of the
coefficient fields,

L = −1
2∂

µBa∂µB
a + 1

3gTr(T aT bT c)BaBbBc

−1
4λTr(T aT bT cT d)BaBbBcBd . (80.6)

It is easy to read off the Feynman rules from this form of L. The propagator
for the coefficient field Ba is

∆̃ab(k2) =
δab

k2 − iǫ
. (80.7)

There is a three-point vertex with vertex factor 2igTr(T aT bT c), and a four-
point vertex with vertex factor −6iλTr(T aT bT cT d). This clearly leads to
messy and complicated formulae for scattering amplitudes.
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k

i l

j

Figure 80.1: The double-line notation for the propagator of a hermitian
matrix field.

Figure 80.2: 3- and 4-point vertices in the double-line notation.

Instead, let us work with L in the form of eq. (80.5). Writing the matrix
indices explicitly, with one up and one down (and employing the rule that
two indices can be contracted only if one is up and one is down), we have
B(x)i

j = Ba(x)(T a)i
j . This implies that the propagator for Bi

j is

∆̃i
j
k
l(k2) =

(T a)i
j(T a)k

l

k2 − iǫ
. (80.8)

Since the T a matrices form a complete set, there is a completeness relation
of the form (T a)i

j(T a)k
l ∝ δi

lδk
j. To get the constant of proportionality, set

j=k and l=i to turn the left-hand side into (T a)i
k(T a)k

i = Tr(T aT a), and
the right-hand side into δi

iδk
k = N2. From eq. (80.2) we have Tr(T aT a) =

δaa = N2. So the constant of proportionality is one, and

(T a)i
j(T a)k

l = δi
lδk

j . (80.9)

We can represent the B propagator with a double-line notation, as
shown in fig. (80.1). The arrow on each line points from an up index to
a down index. Since the interactions are simple matrix products, with an
up index from one field contracted with a down index from an adjacent
field, the vertices follow the pattern shown in fig. (80.2). Since an n-point
vertex of this type has only an n-fold cyclic symmetry (rather than an n!-
fold permutation symmetry), the vertex factor is i times the coefficient of
Tr(Bn) in L times n (rather than n!). Thus, for the lagrangian of eq. (80.5),
the 3- and 4-point vertex factors are ig and −iλ.

Now consider a scattering process. Particles corresponding to the coef-
ficient fields labeled by the indices a1 and a2 (and with four-momenta k1
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4
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2 3
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1
1

2
2
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4

Figure 80.3: Tree diagrams with four external lines. Five more diagrams
of each of these three types, with the external labels 2, 3, and 4 permuted,
also contribute.

and k2) scatter into particles corresponding to the coefficient fields labeled
by the indices a3 and a4 (and with four-momenta k3 and k4). We wish to
compute the scattering amplitude for this process, at tree level.

There are 18 contributing Feynman diagrams. Three are shown in
fig. (80.3); the remaining 15 are obtained by making noncylic permutations
of the labels 1, 2, 3, 4 (equivalent to making unrestricted permutations of
2, 3, 4). For simplicity, we will treat all external momenta as outgoing;
then k0

1 and k0
2 are negative, and k1 + k2 + k3 + k4 = 0. Each external

line carries a factor of T ai , with its matrix indices contracted by following
the arrows backward through the diagrams. Omitting the iǫ’s in the prop-
agators (which are not relevant for tree diagrams), the resulting tree-level
amplitude is

iT = Tr(T a1T a2T a3T a4)

(
(ig)2(−i)
(k1+k2)2

+
(ig)2(−i)
(k1+k4)2

− iλ

)

+
(
(234) → (342), (423), (243), (432), (324)

)
. (80.10)

More generally, we can see that the value of any tree-level diagram with
n external lines is proportional to Tr(T ai1 . . . T ain ). If the diagram is drawn
in planar fashion (that is, with no crossed lines), then the ordering of the
ai indices in the trace is determined by the cyclic ordering of the labels
on the external lines (which we take to be couterclockwise). Then, each
internal line contributes a factor of −i/k2, each 3-point vertex a factor of
ig, and each four-point vertex a factor of −iλ. These are the color-ordered
Feynman rules for this theory.

Return now to iT as given by eq. (80.10). Suppose that we wish to
square this amplitude, and sum over all possible particle types for each
incoming or outgoing particle. We then have to evaluate expressions like

Tr(T a1T a2T a3T a4)[Tr(T a1T a2T a4T a3)]∗ , (80.11)



80: The Feynman Rules for N ×N Matrix Fields 480

3

4

1

2

3

4

1

2

Figure 80.4: Evaluation of Tr(T a1T a2T a3T a4)[Tr(T a1T a2T a4T a3)]∗, with all
repeated indices summed. Each of the two closed single-line loops yields a
factor of δi

i = N .

with all repeated indices summed. Using the hermiticity of the T a matrices,
we have

[Tr(T a1 . . . T an)]∗ = Tr(T an . . . T a1) , (80.12)

It is then easiest to evaluate eq. (80.11) diagrammatically, as shown in
fig. (80.4). Each closed single-line loop yields a factor of δi

i = N . The
result is that the absolute square of any particular trace yields a factor of
N4, and the product of any trace times the complex conjugate of any other
different trace yields a factor of N2.

The coefficient of both Tr(T a1T a2T a3T a4) and Tr(T a1T a4T a3T a2) in
eq. (80.10) is

A3 ≡ g2

(k1+k2)2
+

g2

(k1+k4)2
− λ . (80.13)

Similarly, the coefficient of both Tr(T a1T a3T a4T a2) and Tr(T a1T a2T a4T a3)
is

A4 ≡ g2

(k1+k3)2
+

g2

(k1+k2)2
− λ , (80.14)

and of both Tr(T a1T a4T a2T a3) and Tr(T a1T a3T a2T a4) is

A2 ≡ g2

(k1+k4)2
+

g2

(k1+k3)2
− λ . (80.15)

Thus we have

∑

a1,a2,a3,a4

|T |2 = (2N4 + 2N2)
∑

j

|Aj |2 + 4N2
∑

j 6=k
A∗jAk

= (2N4 − 2N2)
∑

j

|Aj |2 + 4N2(
∑

j

A∗j)(
∑

k

Ak) , (80.16)

where j and k are summed over 2, 3, 4.
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Figure 80.5: The propagator for a traceless hermitian field.

Now suppose we wish to impose the condition that the matrix field B
is traceless: TrB = 0. This means that we eliminate the component field
with a=N2, corresponding to the matrix TN

2
= N−1/2I. We must also

eliminate TN
2

from the sum in eq. (80.9), leading to

(T a)i
j(T a)k

l = δi
lδk

j − 1
N δi

jδk
l . (80.17)

This can all be done diagrammatically by replacing the propagator in
fig. (80.1) with the one in fig. (80.5). (The kinematic factor, −i/k2, is un-
changed.) Fig. (80.5) must now be used as the internal propagator in the
diagrams of fig. (80.3). Also, when we multiply one diagram by the complex
conjugate of another in the computation of

∑
a1...an

|T |2, we must use the
propagator of fig. (80.5) to connect the external line of one diagram with
the matching external line of the complex conjugate diagram. Although
these computations are still straightforward, they can become considerably
more involved.

Problems

80.1) Show that the color-ordered Feynman rules, and the rules for compo-
nent fields given after eq. (80.6), agree in the case N = 1.

80.2) Verify the results quoted after eq. (80.12).

80.3) Compute
∑
a1,a2,a3,a4 |Tr(T a1T a2T a3T a4)|2 for the case of traceless

T a’s.

80.4) The large-N limit. Let λ = cg2, where c is a number of order one. Now
consider evaluating the path integral, without sources, as a function
of g and N ,

Z(g,N) = eiW (g,N) =

∫
DB ei

∫
ddxL , (80.18)

where W (g,N) is normalized by W (0,N) = 0. As usual, W can be
expressed as a sum of connected vacuum diagrams, which we draw
in the double-line notation. Consider a diagram with V3 three-point
vertices, V4 four-point vertices, E propagators or edges, and F closed
single-line loops or faces.
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a) Find the dependence on g and N of a diagram specified by the
values of V3, V4, E, and F .

b) Express E for a vacuum diagram in terms of V3 and V4.

c) Recall, derive, or look up the formula for the Euler character χ of
the two-dimensional surface of a polyhedron in terms of the values of
V ≡ V3 + V4, E, and F . The Euler character is related to the genus
G of the surface by χ = 2 − 2G; G counts the number of handles, so
that a sphere has genus zero, a torus has genus one, etc.

d) Consider the limit g → 0 and N → ∞ with the ’t Hooft coupling
λ̄ = g2N held fixed (and not necessarily small). Show that W (λ̄,N)
has a topological expansion of the form

W (λ̄,N) =
∞∑

G=0

N2−2GWG(λ̄) , (80.19)

where WG(λ̄) is given by a sum over diagrams that form polyhedra
with genus G. In particular, the leading term, W0(λ̄), is given by
a sum over diagrams with spherical topology, also known as planar
diagrams.
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81 Scattering in Quantum Chromodynamics

Prerequisite: 60, 79, 80

In section 79, we found that the lagrangian for SU(N) Yang–Mills theory
in Gervais–Neveu gauge is

L = Tr
(
−1

2∂
µAν∂µAν − i

√
2g ∂µAνAνAµ + 1

4g
2AµAνAµAν

)
, (81.1)

where Aµ(x) is a traceless hermitian N ×N matrix. For quantum chromo-
dynamics, N = 3, but we will leave N unspecified in our calculations. In
section 80, we worked out the color-ordered Feynman rules for a scalar ma-
trix field; the same technology applies here as well. In particular, we draw
each tree diagram in planar fashion (that is, with no crossed lines). Then
the cyclic, counterclockwise ordering i1 . . . in of the external lines fixes the
color factor as Tr(T ai1 . . . T ain), where the generator matrices are normal-
ized via Tr(T aT b) = δab. The tree-level n-gluon scattering amplitude is
then written as

T = gn−2
∑

noncyclic
perms

Tr(T a1 . . . T an)A(1, . . . , n) , (81.2)

where we have pulled out the coupling constant dependence, andA(1, . . . , n)
is a partial amplitude that we compute with the color-ordered Feynman
rules. The partial amplitudes are cyclically symmetric,

A(2, . . . , n, 1) = A(1, 2, . . . , n) . (81.3)

The sum in eq. (81.2) is over all noncyclic permutations of 1 . . . n, which is
equivalent to a sum over all permutations of 2 . . . n.

From the first term in eq. (81.1), we see that the gluon propagator is
simply

∆̃µν(k) =
gµν

k2 − iǫ
. (81.4)

Here we have left out the matrix indices since we have already accounted
for them with the color factor in eq. (81.2). The second and third terms
in eq. (81.1) yield three- and four-gluon vertices. The three-gluon vertex
factor (again without the matrix indices) is

iVµνρ(p, q, r) = i(−i
√

2g)(−ipρgµν)
+ [ 2 cyclic permutations of (µ,p), (ν,q), (ρ,r) ]

= −i
√

2g(pρgµν + qµgνρ + rνgρµ) , (81.5)
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where the four-momenta p, q, and r are all taken to be outgoing. The
four-gluon vertex factor is simply

iVµνρσ = ig2gµρgνσ . (81.6)

However, in the context of the color-ordered rules, it is simpler to designate
the outgoing four-momentum on each external line as ki, and contract the
vector index with the corresponding polarization vector εi. (For now we
suppress the helicity label λ = ±.) In this notation, the vertex factors
become

iV123 = −i
√

2g
[
(ε1ε2)(k1ε3) + (ε2ε3)(k2ε1) + (ε3ε1)(k3ε2)

]
, (81.7)

iV1234 = +ig2(ε1ε3)(ε2ε4) , (81.8)

where the external lines are numbered sequentially, counterclockwise around
the vertex. (Of course, if an attached line is internal, the corresponding
polarization vector is simply a placeholder for an internal propagator.)

The color-ordered three-point vertex, eq. (81.7), is antisymmetric on the
reversal 123 ↔ 321, while the four-point vertex, eq. (81.8), is symmetric on
the reversal 1234 ↔ 4321. This implies the reflection identity,

A(n, . . . , 2, 1) = (−1)nA(1, 2, . . . , n) , (81.9)

which will be useful later.
It is clear from eqs. (81.7) and (81.8) that every term in any tree-level

scattering amplitude is proportional to products of polarization vectors
with each other, or with external momenta. (Actually, this follows directly
from Lorentz invariance, and the fact that the scattering amplitude is linear
in each polarization.) We get one momentum factor from each three-point
vertex. Since every tree diagram with n external lines has no more than
n−2 vertices, there are no more than n−2 momenta to contract with the
n polarizations. Therefore, every term in every tree-level amplitude must
include at least one product of two polarization vectors. Then, if the prod-
uct of every possible pair of polarization vectors vanishes, the tree-level
amplitude for that process is zero.

We will now show that this is indeed the case if all, or all but one, of
the external gluons have the same helicity. (Here we are using the seman-
tic convention of section 60: the helicity of an external gluon is specified
relative to the outgoing four-momentum ki that labels the corresponding
external line. If that gluon is actually incoming—as indicated by a negative
value of k0

i—then its physical helicity is opposite to its labeled helicity.)
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To proceed, we recall from section 60 some formulae for products of
polarization vectors in the spinor-helicity formalism,

ε+(k;q)·ε+(k′;q′) =
〈q q′〉 [k k′]
〈q k〉 〈q′ k′〉 , (81.10)

ε−(k;q)·ε−(k′;q′) =
[q q′] 〈k k′〉
[q k] [q′ k′]

, (81.11)

ε+(k;q)·ε−(k′;q′) =
〈q k′〉 [k q′]
〈q k〉 [q′ k′]

. (81.12)

The first argument of each ε is the momentum of the corresponding line;
the second argument is an arbitrary reference momentum. Recall that the
twistor producs 〈q k〉 and [q k] are antisymmetric, and hence 〈q q〉 = [q q] =
0. Using this fact in eq. (81.10), we see that choosing the same reference
momentum q for all positive-helicity polarizations results in a vanishing
product for any pair of them. Furthermore, if we choose this q equal to
the momentum k′ of a negative-helicity gluon, eq. (81.12) tells us that the
product of its polarization with that of any positive-helicity gluon also
vanishes. Thus, if all, or all but one, of the external gluons have positive
helicity, all possible polarization products are zero, and hence the tree-level
scattering amplitude is also zero. Thus we have shown that

A(1±, 2+, . . . , n+) = 0 , (81.13)

where the superscripts are the helicities. Of course, the same is true if all,
or all but one, of the helicities are negative,

A(1±, 2−, . . . , n−) = 0 . (81.14)

Now we turn to the calculation of some nonzero tree-level partial am-
plitudes, beginning with A(1−, 2−, 3+, 4+). The contributing color-ordered
Feynman diagrams are shown in fig. (81.1). We choose the reference mo-
menta to be q1 = q2 = k3 and q3 = q4 = k2. Then all polarization products
vanish, with the exception of

ε1 ·ε4 = ε−(k1, q1)·ε+(k4, q4)

= ε−(k1, k3)·ε+(k4, k2)

=
〈2 1〉 [4 3]

〈2 4〉 [3 1]
. (81.15)

With this choice of the reference momenta, the third diagram in fig. (81.1)
obviously vanishes, because it has a factor of ε1 ·ε3 = 0 (and also, for good
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Figure 81.1: Diagrams for the partial amplitude A(1, 2, 3, 4).

measure, ε2 ·ε4 = 0). Now consider the 235 vertex in the second diagram;
we have

V235 ∝ (ε2ε3)(k2ε5) + (ε3ε5)(k3ε2) + (ε5ε2)(k5ε3) , (81.16)

where ε5 is a placeholder for an internal propagator. The first term in
eq. (81.16) vanishes because ε2 ·ε3 = 0. The second term vanishes because
k3 = q2 and q2 ·ε2 = 0. Finally, the third term vanishes because k5 =
−k2−k3 = −q3−k3, and q3 ·ε3 = k3 ·ε3 = 0. Hence the 235 vertex vanishes,
and therefore so does the second diagram.

That leaves only the first diagram. We then have

ig2A(1−, 2−, 3+, 4+) = (iV125)(iV345′ )
∣∣∣
εµ5ε

ν
5 → igµν/s12

, (81.17)

where 5′ means the momentum is −k5 rather than k5, and

s12 ≡ −(k1 + k2)
2 = 〈1 2〉 [2 1] . (81.18)

We have

iV125 = −i
√

2g
[
(ε1ε2)(k1ε5) + (ε2ε5)(k2ε1) + (ε5ε1)(k5ε2)

]
, (81.19)

but the first term vanishes because ε1 ·ε2 = 0. Similarly, the first term of

iV345′ = −i
√

2g
[
(ε3ε4)(k3ε5) + (ε4ε5)(k4ε3) + (ε5ε3)(−k5ε4)

]
(81.20)

also vanishes. When we take the product of these two vertices, and replace
the internal polarizations with the propagator, as indicated in eq. (81.17),
only the product of the third term of eq. (81.19) with the second term
of eq. (81.20) is nonzero; all other terms include a vanishing product of
polarizations. We get

ig2A(1−, 2−, 3+, 4+) = (−i
√

2g)2(i/s12)(ε1ε4)(k5ε2)(k4ε3) . (81.21)
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Since k5 = −k1−k2, and k2 ·ε2 = 0, we have k5 ·ε2 = −k1 ·ε2. We evaluate
k1 ·ε2 and k4 ·ε3 via the general formulae

p·ε+(k;q) =
〈q p〉 [p k]√

2 〈q k〉
, (81.22)

p·ε−(k;q) =
[q p] 〈p k〉√

2 [q k]
. (81.23)

Setting q2 = k3 and q3 = k2, we get

k1 ·ε2 =
[3 1] 〈1 2〉√

2 [3 2]
, (81.24)

k4 ·ε3 =
〈2 4〉 [4 3]√

2 〈2 3〉
. (81.25)

Using eqs. (81.15), (81.18), (81.24), and (81.25) in eq. (81.21), and using
antisymmetry of the twistor products to cancel common factors, we get

A(1−, 2−, 3+, 4+) =
〈2 1〉 [4 3]2

[2 1] [3 2] 〈2 3〉 . (81.26)

We can make our result look nicer by multiplying the numerator and
denominator by 〈3 4〉. In the numerator, we use

〈3 4〉 [4 3] = s34 = s12 = 〈1 2〉 [2 1] , (81.27)

and cancel the [2 1] with the one in the denominator. Now multiply the nu-
merator and denominator by 〈4 1〉, and use the momentum-conservation
identity (see problem 60.2) to replace 〈4 1〉 [4 3] in the numerator with
−〈2 1〉 [2 3], and cancel the [2 3] with the [3 2] in the denominator (which
yields a minus sign). Finally, multiply the numerator and denominator by
〈1 2〉 to get

A(1−, 2−, 3+, 4+) =
〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 . (81.28)

This is our final result for A(1−, 2−, 3+, 4+).
Now, using cyclic symmetry, we can get any partial amplitude where

the two negative helicities are adjacent; for example,

A(1+, 2−, 3−, 4+) =
〈2 3〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 . (81.29)

We must still calculate one partial amplitude where the negative helicities
are not adjacent, such as A(1−, 2+, 3−, 4+). Once we have it, we can use
cyclic symmetry to get all the remaining partial amplitudes.
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Before turning to this calculation, let us consider the problem of squar-
ing the total amplitude and summing over colors. Because the generator
matrices are traceless, we should (as we discussed in section 80) use the
completeness relation

(T a)i
j(T a)k

l = δi
lδk

j − 1
N δi

jδk
l . (81.30)

However, recall that the Yang–Mills field strength is

Fµν = ∂µAν − ∂νAµ − ig√
2
[Aµ,Aν ] . (81.31)

If we allow a generator matrix proportional to the identity, which corre-
sponds to a gauge group of U(N) rather than SU(N), then this extra U(1)
generator commutes with every other generator. Thus the U(1) field does
not appear in the commutator term in eq. (81.31). Since it is this commuta-
tor term that is responsible for the interaction of the gluons, the U(1) field
is a free field. Therefore, any scattering amplitude involving the associated
particle (which we will call the fictitious photon) must be zero. Thus, if we
write a scattering amplitude in the form of eq. (81.2), and replace one of
the T a’s with the identity matrix, the result must be zero.

This decoupling of the fictitious photon allows us to use the much simpler
completeness relation

(T a)i
j(T a)k

l = δi
lδk

j (81.32)

in place of eq. (81.30). There is no need to subtract the U(1) generator
from the sum over the generators, as we did in eq. (81.30), because the
terms involving it vanish anyway.

The decoupling of the fictitious photon is useful in another way. Let us
apply it to the case of n = 4, and set T a4 ∝ I in eq. (81.2). Then we have

0 = Tr(T a1T a2T a3)
[
A(1, 2, 3, 4) +A(1, 2, 4, 3) +A(1, 4, 2, 3)

]

+ Tr(T a1T a3T a2)
[
A(1, 3, 2, 4) +A(1, 3, 4, 2) +A(1, 4, 3, 2)

]
. (81.33)

The contents of each square bracket must vanish. Requiring this of the first
term yields

A(1, 2, 3, 4) = −A(1, 2, 4, 3) −A(1, 4, 2, 3) . (81.34)

Assigning some helicities, this reads

A(1−, 2+, 3−, 4+) = −A(1−, 2+, 4+, 3−) −A(1−, 4+, 2+, 3−) . (81.35)

Note that we have now expressed a partial amplitude with nonadjacent
negative helicities in terms of partial amplitudes with adjacent negative
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helicities, which we have already calculated. Thus we have

A(1−, 2+, 3−, 4+) = −
[

〈3 1〉4
〈3 1〉〈1 2〉〈2 4〉〈4 3〉 +

〈3 1〉4
〈3 1〉〈1 4〉〈4 2〉〈2 3〉

]

= − 〈1 3〉3
〈2 4〉

[
1

〈1 2〉〈3 4〉 +
1

〈1 4〉〈2 3〉

]

= − 〈1 3〉3
〈2 4〉

[〈1 4〉〈2 3〉 + 〈1 2〉〈3 4〉
〈1 2〉〈3 4〉〈1 4〉〈2 3〉

]

= − 〈1 3〉3
〈2 4〉

[ − 〈1 3〉〈4 2〉
〈1 2〉〈3 4〉〈1 4〉〈2 3〉

]
, (81.36)

where the last line follows from the Schouten identity (see problem 50.3).
A final clean-up yields

A(1−, 2+, 3−, 4+) =
〈1 3〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 . (81.37)

Now that we have all the partial amplitudes, we can compute the color-
summed |T |2. There are only three partial amplitudes that are not related
by either cyclic permutations, eq. (81.3), or reflections, eq. (81.9); we can
take these to be

A3 ≡ A(1, 2, 3, 4) , (81.38)

A4 ≡ A(1, 3, 4, 2) , (81.39)

A2 ≡ A(1, 4, 2, 3) , (81.40)

where the subscript on the left-hand side is the third argument on the
right-hand side. (Switching the second and fourth arguments is equivalent
to a reflection and a cyclic permutation, and so leaves the partial amplitude
unchanged.) This mimics the notation we used at the end of section 80,
and we can apply our result from there to the color sum,

∑

colors

|T |2 = 2N2(N2−1)g4
∑

j

|Aj |2 + 4N2g4(
∑

j

A∗j )(
∑

k

Ak) , (81.41)

where j and k are summed over 2, 3, 4. In the present case, however,
eq. (81.34) is equivalent to

∑
jAj = 0, so the second term in eq. (81.41)

vanishes. Our result for the color-summed squared amplitude is then

∑

colors

|T |2 = 2N2(N2−1)g4
(
|A2|2 + |A3|2 + |A4|2

)
. (81.42)
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Figure 81.2: Color-ordered diagrams for q̄qgg scattering.
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Figure 81.3: The double-line version of fig. (81.2); the associated color factor
is (T a3T a4)i2

i1 .

For the case where 1 and 2 are the incoming gluons, and 3 and 4 are
the outgoing gluons, we can write this in terms of the usual Mandelstam
variables s = s12 = s34, t = s13 = s24, and u = s14 = s23 by recalling that
|〈1 2〉|2 = |[1 2]|2 = |s12|, etc. Let us take the case where gluons 1 and 2
have negative helicity, and 3 and 4 have positive helicity. In this case, we
see from eqs. (81.28) and (81.37) that the numerator in every nonvanishing
partial amplitude is 〈1 2〉4. Then we get

∑

colors

|T |21−2−3+4+ = 2N2(N2−1)g4s4
(

1

s2t2
+

1

t2u2
+

1

u2s2

)
. (81.43)

We can also sum over helicities. There are six patterns of two positive
and two negative helicities; −−++ and ++−− yield a factor of s4, −+−+
and +−+− yield t4, and −++− and +−−+ yield u4. The helicity sum is
therefore

∑

colors
helicities

|T |2 = 4N2(N2−1)g4(s4 + t4 + u4)

(
1

s2t2
+

1

t2u2
+

1

u2s2

)
. (81.44)

Of course, we really want to average (rather than sum) over the initial
colors and helicities; to do so we must divide eq. (81.44) by 4(N2−1)2.

Next we turn to scattering of quarks and gluons. We consider a single
type of massless quark: a Dirac field in the N representation of SU(N).
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The lagrangian for this field is L = iΨ /DΨ, where the covariant derivative
is Dµ = ∂µ − (ig/

√
2)Aµ. Thus the color-ordered vertex factor is

iVµ = (ig/
√

2)γµ . (81.45)

To get the color factor, we use the double-line notation, with a single line
for the quark. As an example, consider the process of q̄q → gg (and its
crossing-related cousins). The contributing color-ordered tree diagrams are
shown in fig. (81.2). The corresponding double-line diagrams are shown in
fig. (81.3); the quark is represented by a single line, with an arrow direction
that matches its charge arrow. To get the color factor, we start with line 2,
and follow the arrows backwards; the result is (T a3T a4)i2

i1 . The complete
amplitude can then be written as

T = g2
[
(T a3T a4)i2

i1A(1q̄, 2q, 3, 4) + (T a4T a3)i2
i1A(1q̄, 2q, 4, 3)

]
, (81.46)

where A(1q̄, 2q, 3, 4) is the appropriate partial amplitude. The subscripts q
and q̄ indicate the labels that correspond to an outgoing quark and outgoing
antiquark, respectively.

From our results for spinor electrodynamics in section 60, we know that
a nonzero amplitude requires opposite helicities on the two ends of any
fermion line. Consider, then, the case of T−+λ3λ4 . The partial amplitude
corresponding to the diagrams of fig. (81.2) is

ig2A(1−q̄ , 2
+
q , 3, 4) = (ig/

√
2)2(1/i)[2|/ε3(−/p5/p

2
5)/ε4|1〉

+ (ig/
√

2)[2|/ε5|1〉iV345

∣∣∣
εµ5ε

ν
5 → igµν/s12

. (81.47)

Suppose both gluons have positive helicity. Then using

/ε+(k;q) =

√
2

〈q k〉
(
|k]〈q| + |q〉[k|

)
, (81.48)

we can get both lines of eq. (81.47) to vanish by choosing q3 = q4 = p1.
Similarly, if both gluons have negative helicity, then using

/ε−(k;q) =

√
2

[q k]

(
|k〉[q| + |q]〈k|

)
, (81.49)

we can get both lines of eq. (81.47) to vanish by choosing q3 = q4 = p2. So
the gluons must have opposite helicities to get a nonzero amplitude.

Consider, then, the case of λ3 = + and λ4 = −. We can get V345 to
vanish by choosing q3 = k4 and q4 = k3. The partial amplitude is then
given by just the first line of eq. (81.47),

A(1−q̄ , 2
+
q , 3

+, 4−) = 1
2 [2|/ε3+(/p1+/k4)/ε4− |1〉/(−s14) . (81.50)
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With q3 = k4 and q4 = k3, we have

/ε3+ =

√
2

〈4 3〉
(
|4〉[3| + |3]〈4|

)
, (81.51)

/ε4− =

√
2

[3 4]

(
|4〉[3| + |3]〈4|

)
. (81.52)

Using the identity
/p = − |p〉[p| − |p]〈p| , (81.53)

eq. (81.50) becomes

A(1−q̄ , 2
+
q , 3

+, 4−) =
[2 3] 〈4 1〉 [1 3] 〈4 1〉

〈4 3〉 [3 4] s14
. (81.54)

In the numerator, we use [1 3] 〈4 1〉 = −[2 3] 〈4 2〉. In the denominator, we
set s14 = s23 = 〈2 3〉 [3 2]. Then we multiply the numerator and denomina-
tor by 〈1 2〉, and use [2 3] 〈1 2〉 = −[4 3] 〈1 4〉 in the numerator. Finally we
multiply both by 〈1 4〉, and rearrange to get

A(1−q̄ , 2
+
q , 3

+, 4−) =
〈1 4〉3 〈2 4〉

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 . (81.55)

An analogous calculation yields

A(1−q̄ , 2
+
q , 3

−, 4+) =
〈1 3〉3 〈2 3〉

〈1 2〉〈2 3〉〈3 4〉〈4 1〉 . (81.56)

The remaining nonzero amplitudes are related by complex conjugation.
Now that we have all the partial amplitudes, we can compute the color-

summed |T |2. To do so, we multiply eq. (81.46) by its complex conjugate,
and use hermiticity of the generator matrices to get

∑

colors

|T |2 = g4
[
Tr(T aT bT bT a)

(
|A3|2 + |A4|2

)

+ Tr(T aT bT aT b)
(
A∗3A4 +A∗4A3

)]
, (81.57)

where A3 ≡ A(1q̄, 2q, 3, 4) and A4 ≡ A(1q̄, 2q, 4, 3). The traces are easily
evaluated with the double-line technique of section 80; because the ficti-
tious photon couples to the quark, we must use eq. (81.30) to project it
out. The traces in eq. (81.57) are also easily evaluated with the group-
theoretic methods of section 70, with the normalization that the index of
the fundamental representation is one: T (N) = 1. Either way, the results
are

Tr(T aT bT bT a) = +(N2−1)2/N , (81.58)

Tr(T aT bT aT b) = −(N2−1)/N . (81.59)
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The sum over the four possible helicity patterns (−++−, −+−+, +−−+,
+−+−) is left as an exercise.

Now that we have calculated these scattering amplitudes for quarks
and gluons, an important questions arises: why did we bother to do it?
Quarks and gluons are confined inside colorless bound states, the hadrons,
and so apparently cannot appear as incoming and outgoing particles in a
scattering event.

To answer this question, suppose we collide two hadrons with a center-
of-mass energy E =

√
s large enough so that the QCD coupling g is small

when renormalized in the MS scheme with µ = E. (In the real world, we
have α ≡ g2/4π = 0.12 for µ = MZ = 91GeV.) Then we can think of
each hadron as being made up of a loose collection of quarks and gluons,
and these parts of a hadron, or partons, can be treated as independent
participants in scattering processes. In order to extract quantitative results
for hadron scattering (a project beyond the scope of this book), we need
to know how each hadron’s energy and momentum is shared among its
partons. This is described by parton distribution functions. At present,
these cannot be calculated from first principles, but they have to satisfy
a variety of consistency conditions that can be derived from perturbation
theory, and that relate their values at different energies. These conditions
are well satisfied by current experimental data.

Reference Notes

More detail on how hadron scattering experiments can be compared with
parton scaterring amplitudes can be found in Peskin & Schroeder, Muta,
Quigg, and Sterman.

Problems

81.1) Compute the four-gluon partial amplitude A(1−, 2+, 3−, 4+) directly
from the Feynman diagrams, and verify eq. (81.37).

81.2) Compute the q̄qgg partial amplitude A(1−q̄ , 2
+
q , 3

−, 4+) with q4 = p1

and q3 = k4. Show that, with this choice of the reference momenta,
the first line of eq. (81.47) vanishes. Evaluate the second line, and
verifiy eq. (81.55).

81.3) Compute A(1−q̄ , 2
+
q , 3

−, 4+), and verify eq. (81.56).

81.4) a) Verify eqs. (81.58) and (81.59) using the double-line notation of
section 80.

b) Compute Tr(T aRT
b
RT

b
RT

a
R) and Tr(T aRT

b
RT

a
RT

b
R) in terms of the index

T (R) and dimension D(R) of the representation R, and the index
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T (A) and dimension D(A) of the adjoint representation. Verify that
your results reproduce eqs. (81.58) and (81.59).

81.5) Compute the sum over helicities of eq. (81.57). Express your answer
in terms of s, t, and u for the process q̄q → gg.

81.6) Consider the partial amplitudeA(1−q̄ , 2
+
q , 3

−, 4+, 5+). Show that, with
the choice q3 = k2 and q4 = q5 = k1, there are just two contributing
diagrams. Evaluate them. After some manipulations, you should be
able to put your result in the form

A(1−q̄ , 2
+
q , 3

−, 4+, 5+) =
〈1 3〉3 〈2 3〉

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 1〉 . (81.60)
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82 Wilson Loops, Lattice Theory, and

Confinement

Prerequisite: 29, 73

In this section, we will contruct a gauge-invariant operator, the Wilson loop,
whose vacuum expectation value (VEV for short) can diagnose whether
or not a gauge theory exhibits confinement. A theory is confining if all
finite-energy states are invariant under a global gauge transformation. U(1)
gauge theory—quantum electrodynamics—is not confining, because there
are finite-energy states (such as the state of a single electron) that have
nonzero electric charge, and hence change by a phase under a global gauge
transformation.

Confinement is a nonperturbative phenomenon; it cannot be seen at any
finite order in the kind of weak-coupling perturbation theory that we have
been doing. (This is why we had no trouble calculating quark and gluon
scattering amplitudes.) In this section, we will introduce lattice gauge the-
ory, in which spacetime is replaced by a discrete set of points; the inverse
lattice spacing 1/a then acts as an ultraviolet cutoff (see section 29). This
cutoff theory can be analyzed at strong coupling, and, as we will see, in
this regime the VEV of the Wilson loop is indicative of confinement. The
outstanding question is whether this phenomenon persists as we simul-
taneously lower the coupling and increase the ultraviolet cutoff (with the
relationship between the two governed by the beta function), or whether we
encounter a phase transition, signalled by a sudden change in the behavior
of the Wilson loop VEV.

We take the gauge group to be SU(N). Consider two spacetime points
xµ and xµ + εµ, where εµ is infinitesimal. Define the Wilson link

W (x+ε, x) ≡ exp[igεµAµ(x)] , (82.1)

where Aµ(x) is an N × N matrix-valued traceless hermitian gauge field.
Since ε is infinitesimal, we also have

W (x+ε, x) = I + igεµAµ(x) +O(ε2) . (82.2)

Let us determine the behavior of the Wilson link under a gauge trans-
formation. Using the gauge transformation of Aµ(x) from section 69, we
find

W (x+ε, x) → 1 + igεµU(x)Aµ(x)U
†(x) − εµU(x)∂µU

†(x) , (82.3)

where U(x) is a spacetime-dependent special unitary matrix. Since UU † =
1, we have −U∂µU † = +(∂µU)U †; thus we can rewrite eq. (82.3) as

W (x+ε, x) →
(
(1 + εµ∂µ)U(x)

)
U †(x) + igεµU(x)Aµ(x)U

†(x) . (82.4)
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In the first term, we can use (1 + εµ∂µ)U(x) = U(x+ε) + O(ε2). In the
second term, which already contains an explicit factor of εµ, we can replace
U(x) with U(x+ε) at the cost of an O(ε2) error. Then we get

W (x+ε, x) → U(x+ε)
(
1 + igεµAµ(x)

)
U †(x) , (82.5)

which is equivalent to

W (x+ε, x) → U(x+ε)W (x+ε, x)U †(x) . (82.6)

Note also that eq. (82.1) implies W †(x+ε, x) = W (x−ε, x). We can
shift x to x+ ε at the cost of an O(ε2) error, and so

W †(x+ε, x) = W (x, x+ε) , (82.7)

which is consistent with eq. (82.6).
Now consider mutiplying together a string of Wilson links, specified by

a starting point x and n sequential infinitesimal displacement vectors εj .
The ordered set of ε’s defines a path P through spacetime that starts at x
and ends at y = x+ ε1 + . . .+ εn. The Wilson line for this path is

WP (y, x) ≡W (y, y−εn) . . . W (x+ε1+ε2, x+ε1)W (x+ε1, x) . (82.8)

Using eq. (82.6) and the unitarity of U(x), we see that, under a gauge
transformation, the Wilson line transforms as

WP (y, x) → U(y)WP (y, x)U †(x) . (82.9)

Also, since hermitian conjugation reverses the order of the product in
eq. (82.8), using eq. (82.7) yields

W †P (y, x) = W−P (x, y) , (82.10)

where −P denotes the reverse of the path P .
Now consider a path that returns to its starting point, forming a closed,

oriented curve C in spacetime. The Wilson loop is the trace of the Wilson
line for this path,

WC ≡ TrWC(x, x) . (82.11)

Using eq. (82.9), we see that the Wilson loop is gauge invariant,

WC →WC . (82.12)

Also, eq. (82.10) implies

W †C = W−C , (82.13)
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where −C denotes the curve C traversed in the opposite direction.
To gain some intuition, we will calculate 〈0|WC |0〉 for U(1) gauge theory,

without charged fields. This is simply a free-field theory, and the calculation
can be done exactly.

In order to avoid dealing with iǫ issues, it is convenient to make a Wick
rotation to euclidean spacetime (see section 29). The action is then

S =

∫
d4x 1

4FµνFµν , (82.14)

where Fµν = ∂µAν − ∂νAµ. The VEV of the Wilson loop is now given by
the path integral

〈0|WC |0〉 =

∫
DA eig

∮
C
dxµAµe−S . (82.15)

If we formally identify g
∮
C dxµ as a current Jµ(x), we can apply our results

for the path integral from section 57. After including a factor of i from the
Wick rotation, we get

〈0|WC |0〉 = exp

[
−1

2g
2
∮

C
dxµ

∮

C
dyν ∆µν(x−y)

]
, (82.16)

where ∆µν(x−y) is the photon propagator in euclidean spacetime. In Feyn-
man gauge, we have

∆µν(x−y) = δµν

∫
d4k

(2π)4
eik·(x−y)

k2

= δµν
4π

(2π)4

∫ ∞

0

k3 dk

k2

∫ π

0
dθ sin2θ eik|x−y| cos θ

= δµν
4π

(2π)4

∫ ∞

0

k3 dk

k2

πJ1(k|x−y|)
k|x−y|

=
δµν

4π2(x− y)2

∫ ∞

0
duJ1(u)

=
δµν

4π2(x− y)2
, (82.17)

where J1(u) is a Bessel function. Since ∆µν(x−y) depends only on x−y,
the double line integral in eq. (82.16) will yield a factor of the perimeter P
of the curve C. There is also an ultraviolet divergence as x approaches y;
we will cut this off at a length scale a. The result is then

〈0|WC |0〉 = exp[−(c̃g2/a)P ] , (82.18)
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where c̃ is a numerical constant that depends on the shape of C and the de-
tails of the cutoff procedure. This behavior of the Wilson loop in euclidean
spacetime—exponential decay with the length of the perimeter—is called
the perimeter law. It is indicative of unconfined charges.

We can gain more insight into the meaning of 〈0|WC |0〉 by taking C
to be a rectangle, with length T in the time direction and R in a space
direction, where a ≪ R ≪ T . (Of course, in euclidean spacetime, the
choice of the time direction is an arbitrary convention.) The reason for
this particular shape is that the current g

∮
C dxµ corresponds to a point

charge moving along the curve C. When the particle is moving backwards
in time, the associated minus sign is equivalent to a change in the sign of
its charge. So when we compute 〈0|WC |0〉, we are doing the path integral
in the presence of a pair of point charges with opposite sign, separated by
a distance R, that exists for a time T . On general principles (see section
6), this path integral is proportional to exp(−EpairT ), where Epair is the
ground-state energy of the quantum electrodynamic field in the presence of
the charged particle pair.

We now turn to the calculation. If both x and y are on the same side
of the rectangle, we find

∫ L

0

∫ L

0

dx dy

(x− y)2
= 2L/a− 2 ln(L/a) +O(1) , (82.19)

where L is the length of the side (either R or T ), and the O(1) term is a
numerical constant that depends on the details of the short-distance cutoff.
If x and y are on perpendicular sides, the double line integral is zero,
because then dx · dy = 0. If x is on one short side and y on the other, the
integral evaluates to R2/T 2, and this we can neglect. Finally, if x is on one
long side and y is on the other, we have

∫ T

0

∫ T

0

dx dy

(x− y)2 +R2
= πT/R − 2 ln(T/R) − 2 +O(R2/T 2) . (82.20)

Adding up all these contributions, we find in the limit of large T that

∮

C

∮

C

dx · dy
(x− y)2

=
(
4/a− 2π/R

)
T +O(lnT ) . (82.21)

Combining this with eqs. (82.16) and (82.17), and setting α = g2/4π, we
find

〈0|WC |0〉 = exp

[
−
(

2α

πa
− α

R

)
T

]
. (82.22)

Comparing this with the general expectation 〈0|WC |0〉 ∝ exp(−EpairT ),
we find a cutoff dependent contribution to Epair that represents a divergent
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2

x
1

Figure 82.1: The minimal Wilson loop on a hypercubic lattice goes around
an elementary plaquette; this one lies in the 1-2 plane.

self-energy for each point particle, plus the Coulomb potential energy for
the pair, V (R) = −α/R.

In the nonabelian case, where there are interactions among the gluons,
we must expand everything in powers of g. Then we find

〈0|WC |0〉 = Tr

[
1 − 1

2g
2T aT a

∮

C
dxµ

∮

C
dyν ∆µν(x−y) +O(g4)

]
. (82.23)

Since T aT a equals the quadratic Casimir C(N) for the fundamental repre-
sentation (times an identity matrix), we see that to leading order in g2 we
simply reproduce the results of the abelian case, but with g2 → g2C(N).
We can also consider a Wilson loop in a different representation by setting
Aµ(x) = Aaµ(x)T

a
R . Then, at leading order, we get a factor of C(R) instead

of C(N). Perturbative corrections can be computed via standard Feynman
diagrams with gluon lines that, in position space, have at least one end on
the curve C.

Next we turn to a strong coupling analysis. We begin by constructing
a lattice action for nonabelian gauge theory. Consider a hypercubic lattice
of points in four-dimensional euclidean spacetime, with a lattice spacing a
between nearest-neighbor points. The smallest Wilson loop we can make
on this lattice goes around an elementary square or plaquette, as shown in
fig. (82.1). Let ε1 and ε2 be vectors of length a in the 1 and 2 directions,
and let x be the point at the center of the plaquette. Using the center of
each link as the argument of the gauge field, and using the lower-left corner
as the starting point, we have (multiplying the Wilson links from right to
left along the path)

Wplaq = Tr e−igaA2(x−ε1/2)e−igaA1(x+ε2/2)e+igaA2(x+ε1/2)e+igaA1(x−ε2/2) .
(82.24)

If we now treat the gauge field as smooth and expand in a, we get

Wplaq = Tr e−igaA2(x)+iga2∂1A2(x)/2+... e−igaA1(x)−iga2∂2A1(x)/2+...

× e+igaA2(x)+iga2∂1A2(x)/2+... e+igaA1(x)−iga2∂2A1(x)/2+... . (82.25)
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Next we use eAeB = eA+B+[A,B]/2+... to combine the two exponential factors
on the first line of eq. (82.25), and also the two exponential factors on the
second line. Then we use this formula once again to combine the two results.
We get

Wplaq = Tr e+iga
2(∂1A2−∂2A1−ig[A1,A2])+... , (82.26)

where all fields are evaluated at x. If we now take Wplaq + W−plaq and
expand the exponentials, we find

Wplaq +W−plaq = 2N − g2a4 TrF 2
12 + . . . , (82.27)

where F12 = ∂1A2−∂2A1−ig[A1, A2] is the Yang–Mills field strength. From
eq. (82.27), we conclude that an appropriate action for Yang–Mills theory
on a euclidean spacetime lattice is

S = − 1

2g2

∑

plaq

Wplaq , (82.28)

where the sum includes both orientations of all plaquettes. Each Wplaq is
expressed as the trace of the product of four special unitaryN×N matrices,
one for each oriented link in the plaquette. If U is the matrix associated
with one orientation of a particular link, then U † is the matrix associated
with the opposite orientation of that link. The path integral for this lattice
gauge theory is

Z =

∫
DU e−S , (82.29)

where
DU =

∏

links

dUlink , (82.30)

and dU is the Haar measure for a special unitary matrix. The Haar measure
is invariant under the transformation U → V U , where V is a constant spe-
cial unitary matrix, and is normalized via

∫
dU = 1; this fixes it uniquely.

For N ≥ 3, it obeys
∫
dU Uij = 0 , (82.31)

∫
dU UijUkl = 0 , (82.32)

∫
dU UijU

∗
kl = 1

N δilδjk , (82.33)

which is all we will need to know.
Now consider a Wilson loop, expressed as the trace of the product of

the U ’s associated with the oriented links that form a closed curve C. For
simplicity, we take this curve to lie in a plane. We have

〈0|WC |0〉 = Z−1
∫

DU WC e
−S . (82.34)
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We will evaluate eq. (82.34) in the strong coupling limit by expanding e−S

in powers of 1/g2. At zeroth order, e−S → 1; then eq. (82.31) tells us that
the integral over every link in C vanishes. To get a nonzero result, we need
to have a corresponding U † from the expansion of e−S . This can only come
from a plaquette containing that link. But then the integral over the other
links of this plaquette will vanish, unless there is a compensating U † for
each of them. We conclude that a nonzero result for 〈0|WC |0〉 requires us
to fill the interior of C with plaquettes from the expansion of e−S . Since
each plaquette is accompanied by a factor of 1/g2, we have

〈0|WC |0〉 ∼ (1/g2)A/a
2
, (82.35)

where A is the area of the surface bounded by C, and A/a2 is the number
of plaquettes in this surface. Eq. (82.35) yields the area law for a Wilson
loop,

〈0|WC |0〉 ∝ e−τA , (82.36)

where
τ = c(g)/a2 (82.37)

is the string tension. In the strong coupling limit, c(g) = ln(g2) +O(1).
The area law for the Wilson loop implies confinement. To see why,

let us again consider a rectangular loop with area A = RT . Comparing
eq. (82.36) with the general expectation 〈0|WC |0〉 ∝ exp(−EpairT ), we see
that Epair = V (R) = τR. This corresponds to a linear potential between
nonabelian point charges in the fundamental representation. It takes an
infinite amount of energy to separate these charges by an infinite distance;
the charges are therefore confined. The coefficient τ of R in V (R) is called
the string tension because a linear potential is what we get from two points
joined by a string with a fixed energy per unit length; the energy per unit
length of a string is its tension.

The string tension τ is a physical quantity that should remain fixed
as we remove the cutoff by lowering a. Thus lowering a requires us to
lower g. The outstanding question is whether c(g) reaches zero at a finite,
nonzero value of g. If so, at this point there is a phase transition to an
unconfined phase with zero string tension. This has been proven to be the
case for abelian gauge theory (which also exhibits an area law at strong
coupling, by the identical argument). In nonabelian gauge theory, on the
other hand, analytic and numerical evidence strongly suggests that c(g)
remains nonzero for all nonzero values of g.

At small a and small g, the behavior of g as a function of a is governed
by the beta function, β(g) = −a dg/da. (The minus sign arises because the
ultraviolet cutoff is a−1.) Requiring τ to be independent of a yields

c′(g) = −1
2β(g)c(g) . (82.38)
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At small g, we have
β(g) = −b1g3 +O(g5) , (82.39)

where b1 = 11N/48π2 for SU(N) gauge theory without quarks. Solving for
c(g) yields

c(g) = C exp(1/b1g
2) , (82.40)

where C is an integration constant, which is nonzero if there is no phase
transition. In this case, at small g, the string tension has the form

τ = C exp(1/b1g
2)/a2 . (82.41)

We then want to take the continuum limit of a→ 0 and g → 0 with τ held
fixed.

Note that eq. (82.41) shows that the string tension, at weak coupling,
is not analytic in g, and so cannot be computed via the Taylor expansion
in g that is provided by conventional weak-coupling perturbation theory.
Instead, the path integrals of eqs. (82.29) and (82.34) can be performed on
a finite-size lattice via numerical integration. The limiting factor in such a
calculation is computer resources.

Reference Notes

An introduction to lattice theory is given in Smit.

Problems

82.1) Let C be a circle of radius R. Evaluate the constant c in eq. (82.18),
where P = 2πR is the circumference of the circle. Replace 1/(x−y)2
with zero when |x−y| < a. Assume a≪ R.
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83 Chiral Symmetry Breaking

Prerequisite: 76, 82

In the previous section, we discussed confinement in Yang–Mills theory
without quarks. In the real world, there are six different flavors of quark;
see Table 1. Each flavor has a different mass, and is represented by a Dirac
field in the fundamental or 3 representation of the color group SU(3). Such
a Dirac field is equivalent to two left-handed Weyl fields, one in the funda-
mental representation, and one in the antifundamental or 3 representation.

The lightest quarks are the up and down quarks, with masses of a few
MeV. These masses are small, in the following sense. The gauge coupling
g of QCD becomes large at low energies. If we truncate the beta function
after some number of terms (in practice, four or fewer), and integrate it,
we find that g becomes infinite at some finite, nonzero value of the MS
parameter µ; this value is called ΛQCD. Measurements of the strength of
the gauge coupling at high energies imply ΛQCD ∼ 0.2GeV. The up and
down quark masses are much less than ΛQCD. We can therefore begin with
the approximation that the up and down quarks are massless. The mass of
the strange quark is also somewhat less than ΛQCD. It is sometimes useful
(though clearly less justified) to treat the strange quark as massless as well.

If we are interested in hadron physics at energies below ∼1GeV, we can
ignore the charm, bottom, and top quarks entirely; we will also ignore the
strange quark for now. Let us, then, consider QCD with nF = 2 flavors
of massless quarks. We then have left-handed Weyl fields χαi, where α =
1, 2, 3 is a color index for the 3 representation, and i = 1, 2 is a flavor index,
and left-handed Weyl fields ξαı̄, where α = 1, 2, 3 is a color index for the
3 representation, and ı̄ = 1, 2 is a flavor index; we distinguish this flavor
index from the one for the χ’s by putting a bar over it, and we write it as
a superscript for later notational convenience. We suppress the undotted
spinor index carried by both χ and ξ. The lagrangian is

L = iχ†αi σ̄µ(Dµ)α
β χβi + iξ†ı̄α σ̄

µ(D̄µ)
α
β ξ

βı̄ − 1
4F

aµνF aµν , (83.1)

where Dµ = ∂µ− igT a3Aaµ and D̄µ = ∂µ− igT a3A
a
µ, with (T a

3
)αβ = −(T a3 )β

α.
In addition to the SU(3) color gauge symmetry, this lagrangian has a global
U(2) × U(2) flavor symmetry: L is invariant under

χαi → Li
jχαj , (83.2)

ξαı̄ → (R∗)ı̄ ̄ ξ
ᾱ , (83.3)

where L and R∗ are independent 2 × 2 constant unitary matrices. (The
complex conjugation of R is a notational convention that turns out to be
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name symbol mass Q
(GeV)

up u 0.0017 +2/3
down d 0.0039 −1/3

strange s 0.076 −1/3
charm c 1.3 +2/3
bottom b 4.3 −1/3

top t 178 +2/3

Table 1: The six flavors of quark. Each flavor is represented by a Dirac
field in the 3 representation of the color group SU(3). Q is the electric
charge in units of the proton charge. Masses are approximate, and are MS
parameters. For the u, d, and s quarks, the MS scale µ is taken to be 2GeV.
For the c, b, and t quarks, µ is taken to be equal to the corresponding mass;
e.g., the bottom quark mass is 4.3GeV when µ = 4.3GeV.

convenient.) In terms of the Dirac field

Ψαi =

(
χαi

ξ†αı̄

)
, (83.4)

eqs. (83.2) and (83.3) read

PLΨαi → Li
jPLΨαi , (83.5)

PRΨαı̄ → Rı̄
̄PRΨᾱ , (83.6)

where PL,R = 1
2(1 ∓ γ5). Thus the global flavor symmetry is often called

U(2)L ×U(2)R. A symmetry that treats the left- and right-handed parts of
a Dirac field differently is said to be chiral.

However, there is an anomaly in the axial U(1) symmetry corresponding
to L = R∗ = eiαI (which is equivalent to Ψ → e−iαγ5Ψ for the Dirac field).
Thus the nonanomalous global flavor symmetry is SU(2)L×SU(2)R×U(1)V,
where V stands for vector. The U(1)V transformation corresponds to
L = R = e−iαI, or equivalently Ψ → e−iαΨ. The corresponding con-
served charge is quark number , the number of quarks minus the number of
antiquarks; this is one third of the baryon number, the number of baryons
minus the number of antibaryons. (Baryons are color-singlet bound states
of three quarks; the proton and neuton are baryons. Mesons are color-
singlet bound states of a quark and an antiquark; pions are mesons.)

Thus, U(1)V results in classification of hadrons by their baryon num-
ber. How is the SU(2)L ×SU(2)R symmetry realized in nature? The vector
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subgroup SU(2)V, obtained by setting R = L in eq. (83.3), is known as iso-
topic spin or isospin symmetry. Hadrons clearly come in representations
of SU(2)V: the lightest spin-one-half hadrons (the proton, mass 0.938GeV,
and the neutron, mass 0.940GeV) form a doublet or 2 representation, while
the lightest spin-zero hadrons (the π0, mass 0.135GeV, and the π±, mass
0.140GeV) form a triplet or 3 representation. Isospin is not an exact sym-
metry; it is violated by the small mass difference between the up and down
quarks, and by electromagnetism. Thus we see small differences in the
masses of the hadrons assigned to a particular isotopic multiplet.

The role of the axial part of the SU(2)L × SU(2)R symmetry, obtained
by setting R = L† in eq. (83.3), is harder to identify. The hadrons do not
appear to be classified into multiplets by a second SU(2) symmetry group.
In particular, there is no evidence for a classification that distinguishes the
left- and right-handed components of spin-one-half hadrons like the proton
and neutron.

Reconciliation of these observations with the SU(2)L×SU(2)R symmetry
of the underlying lagrangian is only possible if the axial generators are
spontaneously broken. The three pions (which have spin zero, odd parity,
and are by far the lightest hadrons) are then identified as the corresponding
Goldstone bosons. They are not exactly massless (and hence are sometimes
called pseudogoldstone bosons) because the SU(2)L × SU(2)R symmetry is,
as we just discussed, not exact.

To spontaneously break the axial part of the SU(2)L×SU(2)R, some op-
erator that transforms nontrivially under it must acquire a nonzero vacuum
expectation value, or VEV for short. To avoid spontaneous breakdown of
Lorentz invariance, this operator must be a Lorentz scalar, and to avoid
spontaneous breakdown of the SU(3) gauge symmetry, it must be a color
singlet. Since we have no fundamental scalar fields that could acquire a
nonzero VEV, we must turn to composite fields instead. The simplest can-
didate is χaαiξ

ᾱ
a = ΨᾱPLΨαi, where a is an undotted spinor index. (The

product of two fields is generically singular, and a renormalization scheme
must be specified to define it.) We assume that

〈0|χaαiξᾱa |0〉 = −v3δi
̄ , (83.7)

where v is a parameter with dimensions of mass. Its numerical value
depends on the renormalization scheme; for MS with µ = 2GeV, v ≃
0.23GeV.

To see that this fermion condensate does the job of breaking the axial
generators of SU(2)L × SU(2)R while preserving the vector generators, we
note that, under the transformation of eqs. (83.2) and (83.3),

〈0|χaαiξᾱa |0〉 → Li
k(R∗)̄n̄〈0|χaαkξαn̄a |0〉



83: Chiral Symmetry Breaking 506

→ −v3(LR†)i
̄ , (83.8)

where we used eq. (83.7) to get the second line. If we take R = L, cor-
responding to an SU(2)V transformation, the right-hand side of eq. (83.8)
is unchanged from its value in eq. (83.7). This signifies that SU(2)V [and
also U(1)V] is unbroken. However, for a more general transformation with
R 6= L, the right-hand side of eq. (83.8) does not match that of eq. (83.7),
signifying the spontaneous breakdown of the axial generators.

Eq. (83.7) is nonperturbative: 〈0|χaαiξᾱa |0〉 vanishes at tree level. Pertur-
bative corrections then also vanish, because of the chiral flavor symmetry
of the lagrangian. Thus the value of v is not accessible in perturbation the-
ory. On general grounds, we expect v ∼ ΛQCD, since ΛQCD is the only mass
scale in the theory when the quarks are massless. Similarly, ΛQCD sets the
scale for the masses of all the hadrons that are not pseudogoldstone bosons,
including the proton and neutron.

We can construct a low-energy effective lagrangian for the three pseu-
dogoldstone bosons (to be identified as the pions) in the following way. We
allow the orientation in flavor space of the VEV of χaαiξ

ᾱ
a to vary slowly as

a function of spacetime. That is, in place of eq. (83.7), we write

〈0|χaαi(x)ξᾱa (x)|0〉 = −v3Ui
̄(x) , (83.9)

where U(x) is a spacetime dependent unitary matrix. We can write it as

U(x) = exp[2iπa(x)T a/fπ] , (83.10)

where T a = 1
2σ

a with a = 1, 2, 3 are the generator matrices of SU(2),
πa(x) are three real scalar fields to be identified with the pions, and fπ is
a parameter with dimensions of mass, the pion decay constant. We do not
include a fourth generator matrix proportional to the identity, since the
corresponding field would be the Goldstone boson for the U(1)A symmetry
that is eliminated by the anomaly. Equivalently, we require detU(x) = 1.

We will think of U(x) as an effective, low energy field. Its lagrangian
should be the most general one that is consistent with the underlying
SU(2)L × SU(2)R symmetry.1 Under a general SU(2)L × SU(2)R trans-
formation, we have

U(x) → LU(x)R† , (83.11)

where L and R are independent special unitary matrices. We can organize
the terms in the effective lagrangian for U(x) (also known as the chiral
lagrangian) by the number of derivatives they contain. Because U †U = 1,

1U(1)V acts trivially on U(x), and so we need not be concerned with it.



83: Chiral Symmetry Breaking 507

there are no terms with no derivatives. There is one term with two (all
others being equivalent after integrations by parts),

L = −1
4f

2
π Tr ∂µU †∂µU . (83.12)

If we substitute in eq. (83.10) for U , and expand in inverse powers of fπ,
we find

L = −1
2∂

µπa∂µπ
a + 1

6f
−2
π (πaπa∂µπb∂µπ

b− πaπb∂µπb∂µπ
a) + . . . . (83.13)

Thus the pion fields are conventionally normalized, and they have interac-
tions that are dictated by the general form of eq. (83.12). These interactions
lead to Feynman vertices that contain factors of momenta p divided by fπ.
Therefore, we can think of p/fπ as an expansion parameter. Of course,
we should also add to L all possible inequivalent terms with four or more
derivatives, with coefficients that include inverse powers of fπ. These will
lead to more vertices, but their effects will be suppressed by additional
powers of p/fπ. Comparison with experiment then yields fπ = 92.4MeV.
(In practice, the value of fπ is more readily determined from the decay rate
of the pion via the weak interaction; see section 90 and problem 48.5.)

This value for fπ may seem low; it is, for example, less than the mass
of the “almost masless” pions. However, it turns out that tree and loop
diagrams contribute roughly equally to any particular process if each extra
derivative in L is accompanied by a factor of (4πfπ)

−1 rather that f−1
π , and

each loop momentum is cut off at 4πfπ. Thus it is 4πfπ ∼ 1GeV that sets
the scale of the interactions, rather than fπ ∼ 100MeV.

Now let us consider the effect of including the small masses for the up
and down quarks. The most general mass term we can add to the lagrangian
is

Lmass = −ξᾱM̄
iχαi + h.c.

= −M̄
iχαiξ

ᾱ + h.c.

= −TrMχαξ
α + h.c. , (83.14)

where M is a complex 2 × 2 matrix. By making an SU(2)L × SU(2)R
transformation, we can bring M to the form

M =

(
mu 0

0 md

)
e−iθ/2 , (83.15)

where mu and md are real and positive. We cannot remove the overall
phase θ, however, without making a forbidden U(1)A transformation. A
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nonzero value of θ has physical consequences, as we will discuss in section
94. For now, we note that experimental observations fix |θ| < 10−9, and so
we will set θ = 0 on this phenomenological basis.

Next, we replace χαξ
α in eq. (83.14) with its spacetime dependent VEV,

eq. (83.7). The result is a term in the chiral lagrangian that incorporates
the leading effect of the quark masses,

Lmass = v3 Tr(MU +M †U †) . (83.16)

Here we continue to distinguish M and M †, even though, with θ = 0, they
are the same matrix. If we think of M as transforming as M → R†ML,
while U transforms as U → LUR†, then TrMU is formally invariant. We
then require all terms in the chiral lagrangian to exhibit this formal invari-
ance.

If we expand Lmass in inverse powers of fπ, and use M † = M , we find

Lmass = −4(v3/f2
π)Tr(MT aT b)πaπb + . . .

= −2(v3/f2
π)Tr(M{T a, T b})πaπb + . . .

= −(v3/f2
π)(TrM)πaπa + . . . . (83.17)

We used the SU(2) relation {T a, T b} = 1
2δ
ab to get the last line. From

eq. (83.17), we see that all three pions have the same mass, given by the
Gell-Mann–Oakes–Renner relation,

m2
π = 2(mu +md)v

3/f2
π . (83.18)

On the right-hand side, the quark masses and v3 depend on the renormaliza-
tion scheme, but their product does not. In the real world, electromagnetic
interactions raise the mass of the π± slightly above that of the π0.

This framework is easily expanded to include the strange quark. The
three pions (π+, π−, mass 0.140GeV; π0, mass 0.135GeV), the four kaons
(K+, K−, mass 0.494GeV; K0, K0, mass 0.498GeV), and the eta (η, mass
0.548GeV) are identified as the eight expected Goldstone bosons. We can
assemble them into the hermitian matrix

Π ≡ πaT a/fπ =
1

2fπ




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K−

√
2K0 − 2√

3
η


 . (83.19)

The second line of eq. (83.17) still applies, but now the T a’s are the genera-
tors of SU(3), and M includes a third diagonal entry for the strange quark
mass. We leave the details to the problems.
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Next we turn to the coupling of the pions to the nucleons (the proton
and neutron). We define a Dirac field Ni, where N1 = p (the proton)
and N2 = n (the neutron). We assume that, under an SU(2)L × SU(2)R
transformation,

PLNi → Li
jPLNj , (83.20)

PRNı̄ → Rı̄
̄PRN̄ . (83.21)

The standard Dirac kinetic term iN /∂N is then SU(2)L ×SU(2)R invariant,
but the standard mass term mNNN is not. (Here mN is the value of the
nucleon mass in the limit of zero up and down quark masses.) However,
we can construct an invariant mass term by including appropriate factors
of U and U †,

Lmass = −mNN(U †PL + UPR)N . (83.22)

There is one other parity, time-reversal, and SU(2)L × SU(2)R invariant
term with one derivative. Including this term, we have

L = iN /∂N −mNN(U †PL + UPR)N

− 1
2(gA−1)iNγµ(U∂µU

†PL + U †∂µUPR)N , (83.23)

where gA = 1.27 is the axial vector coupling. Its value is determined from
the decay rate of the neutron via the weak interaction; see section 90.

The form of the lagrangian in eq. (83.23) is somewhat awkward. It can
be simplified by first defining

u(x) ≡ exp[ iπa(x)T a/fπ] , (83.24)

so that U(x) ≡ u2(x). Then we define a new nucleon field

N ≡ (u†PL + uPR)N . (83.25)

(This is a field redefinition in the sense of problem 11.5.) Equivalently,
using the unitarity of u, we have

N = (uPL + u†PR)N . (83.26)

Using eq. (83.26) in eq. (83.23), along with the identities ∂µU = (∂µu)u +
u(∂µu), (∂µu

†)u = −u†(∂µu), etc., we ultimately find

L = iN /∂N −mNNN + N/vN − gAN/aγ5N , (83.27)

where we have defined the hermitian vector fields

vµ ≡ 1
2 i[u

†(∂µu) + u(∂µu
†)] , (83.28)

aµ ≡ 1
2 i[u

†(∂µu) − u(∂µu
†)] . (83.29)
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If we now expand u and u† in inverse powers of fπ, we get

L = iN /∂N −mNNN + (gA/fπ)∂µπ
aN T aγµγ5N + . . . . (83.30)

We can integrate by parts in the interaction term to put the derivative on
the N and N fields. Then, if we consider a process where an off-shell pion
is scattered by an on-shell nucleon, we can use the Dirac equation to replace
the derivatives of N and N with factors of mN . We then find a coupling
of the pion to an on-shell nucleon of the form

LπNN = −igπNNπaNσaγ5N , (83.31)

where we have set T a = 1
2σ

a, and identified the pion-nucleon coupling
constant,

gπNN = gAmN/fπ . (83.32)

The value of gπNN can be determined from measurements of the neutron-
proton scattering cross section, assuming that it is dominated by pion ex-
change; the result is gπNN = 13.5. Eq. (83.32), known as the Goldberger–
Treiman relation, is then satisfied to within about 5%.

Reference Notes

The chiral lagrangian is treated in Georgi, Ramond II, and Weinberg II.
Light quark masses are taken from MILC.

Problems

83.1) Suppose that the color group is SO(3) rather than SU(3), and that
each quark flavor is represented by a Dirac field in the 3 representation
of SO(3).

a) With nF flavors of massless quarks, what is the nonanomalous
flavor symmetry group?

b) Assume the formation of a color-singlet, Lorentz scalar, fermion
condensate. Assume that it preserves the largest possible unbroken
subgroup of the flavor symmetry. What is this unbroken subgroup?

c) For the case nF = 2, how many massless Goldstone bosons are
there?

d) Now suppose that the color group is SU(2) rather than SU(3),
and that each quark flavor is represented by a Dirac field in the 2
representation of SU(2). Repeat parts (a), (b), and (c) for this case.
Hint: at least one of the answers is different!
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83.2) Why is there a minus sign on the right-hand side of eq. (83.7)?

83.3) Verify that eq. (83.13) follows from eq. (83.12).

83.4) Use eqs. (83.12) and (83.16) to compute the tree-level contribution to
the scattering amplitude for πaπb → πcπd. Work in the isospin limit,
mu = md ≡ m. Express your answer in terms of the Mandelstam
variables and the pion mass mπ.

83.5) Verify that eq. (83.27) follows from eqs. (83.26) and eq. (83.23).

83.6) Consider the case of three light quark flavors, with masses mu, md,
and ms.

a) Find the masses-squared of the eight pseudogoldstone bosons. Take
the limit mu,d ≪ ms, and drop terms that are of order m2

u,d/ms.

b) Assume that m2
π± and m2

K± each receive an electromagnetic con-
tribution; to zeroth order in the quark masses, this contribution is the
same for both, but the comparatively large strange quark mass results
in an electromagnetic contribution to m2

K± that is roughly twice as
large as the electromagnetic contribution ∆m2

EM to m2
π± . Use the

observed masses of the π±, π0, K±, and K0 to compute muv
3/f2

π ,
mdv

3/f2
π , msv

3/f2
π , and ∆m2

EM.

c) Compute the quark mass ratios mu/md and ms/md.

d) Use your results from part (b) to predict the η mass. How good is
your prediction?

83.7) Suppose that the U(1)A symmetry is not anomalous, so that we must
include a ninth Goldstone boson. We can write

U(x) = exp[ 2iπa(x)T a/fπ + iπ9(x)/f9] . (83.33)

The ninth Goldstone boson is given its own decay constant f9, since
there is no symmetry that forces it to be equal to fπ. We write the
two-derivative terms in the lagrangian as

L = −1
4f

2
π Tr ∂µU †∂µU − 1

4F
2∂µ(detU †)∂µ(detU) . (83.34)

a) By requiring all nine Goldstone fields to have canonical kinetic
terms, determine F in terms of fπ and f9.

b) To simplify the analysis, let mu = md ≡ m≪ ms. Find the masses
of the nine pseudogoldstone bosons. Identify the three lightest as the
pions, and call their mass mπ. Show that another one of the nine
has a mass less than or equal to

√
3mπ. (The nonexistence of such a
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particle in nature is the U(1) problem; the axial anomaly solves this
problem.)

83.8) a) Write down all possible parity and time-reversal invariant terms
with no derviatives that are bilinear in the nucleon field N and that
have one factor of the quark mass matrix M .

b) Reexpress your result in terms of the nucleon field N .

c) Use the observed neutron-proton mass difference, mn − mp =
1.293MeV, and the mu/md ratio you found in problem 83.6, to de-
temine as much as you can about the coefficients of the terms wrote
down. (Ignore the mass difference due to electromagnetism.)
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84 Spontaneous Breaking of Gauge

Symmetries

Prerequisite: 32, 70

Consider scalar electrodynamics, specified by the lagrangian

L = −(Dµϕ)†Dµϕ− V (ϕ) − 1
4F

µνFµν , (84.1)

where ϕ is a complex scalar field, Dµ = ∂µ − igAµ, and

V (ϕ) = m2ϕ†ϕ+ 1
4λ(ϕ†ϕ)2 . (84.2)

(We call the gauge coupling constant g rather than e because we are using
this theory as a formal example rather than a physical model.) So far we
have always taken m2 > 0, but now let us consider m2 < 0. We analyzed
this model in the absence of the gauge field in section 32. Classically, the
field has a nonzero vacuum expectation value (VEV for short), given by

〈0|ϕ(x)|0〉 = 1√
2
v , (84.3)

where we have made a global U(1) transformation to set the phase of the
VEV to zero, and

v = (4|m2|/λ)1/2 . (84.4)

We therefore write

ϕ(x) = 1√
2
(v + ρ(x))e−iχ(x)/v , (84.5)

where ρ(x) and χ(x) are real scalar fields. The scalar potential depends
only on ρ, and is given by

V (ϕ) = 1
4λv

2ρ2 + 1
4λvρ

3 + 1
16λρ

4 . (84.6)

Since χ does not appear in the potential, it is massless; it is the Goldstone
boson for the spontaneously broken U(1) symmetry.

The big difference in the gauge theory is that we can make a gauge
transformation that shifts the phase of ϕ(x) by an arbitrary spacetime
function. We can use this gauge freedom to set χ(x) = 0; this choice is
called unitary gauge. Using eq. (84.5) with χ(x) = 0 in eq. (84.1), we have

−(Dµϕ)†Dµϕ = −1
2(∂µρ+ ig(v + ρ)Aµ)(∂µρ− ig(v + ρ)Aµ)

= −1
2∂

µρ∂µρ− 1
2g

2(v + ρ)2AµAµ . (84.7)

Expanding out the last term, we see that the gauge field now has a mass

M = gv . (84.8)
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This is the Higgs mechanism: the Goldstone boson disappears, and the
gauge field acquires a mass. Note that this leaves the counting of particle
spin states unchanged: a massless spin-one particle has two spin states,
but a massive one has three. The Goldstone boson has become the third
or longitudinal state of the now-massive gauge field. A scalar field whose
VEV breaks a gauge symmetry is generically called a Higgs field.

This generalizes in a straightforward way to a nonabelian gauge theory.
Consider a complex scalar field ϕ in a representation R of the gauge group.
The kinetic term for ϕ is −(Dµϕ)†Dµϕ, where the covariant derivative is
(Dµϕ)i = ∂µϕi−igaAaµ(T aR )i

jϕj , and the indices i and j run from 1 to d(R).
We assume that ϕ acquires a VEV

〈0|ϕi(x)|0〉 = 1√
2
vi , (84.9)

where the value of vi is determined (up to a global gauge transformation)
by minimizing the potential. If we replace ϕ by its VEV in −(Dµϕ)†Dµϕ,
we find a mass term for the gauge fields,

Lmass = −1
2(M2)abAaµAbµ , (84.10)

where the mass-squared matrix is

(M2)ab = 1
2g

2v∗i {T aR , T bR}ijvj . (84.11)

The anticommutator appears because AaµAbµ is symmetric on a ↔ b, and

so we replaced T aRT
b
R with 1

2{T aR , T bR}.
If the field ϕ is real rather than complex (which is possible only if R

is a real representation), then we remove the factor of root-two from the
right-hand side of eq. (84.9), but this is compensated by an extra factor of
one-half from the kinetic term for a real scalar field; thus eq. (84.11) holds
as written. If there is more than one gauge group, then the g2 in eq. (84.11)
is replaced by gagb, where ga is the coupling constant that goes along with
the generator T a, and all generators of all gauge groups are included in the
mass-squared matrix.

Recall from section 32 that a generator T a is spontaneously broken if
(T aR )ijvj 6= 0. From eq. (84.11), we see that gauge fields corresponding
to broken generators get a mass, while those corresponding to unbroken
generators do not. The unbroken generators (if any) form a gauge group
with massless gauge fields. The massive gauge fields (and all other fields)
form representations of this unbroken group.

Let us work out some simple examples.
Consider the gauge group SU(N), with a complex scalar field ϕ in the

fundamental representation. We can make a global SU(N) transforma-
tion to bring the VEV entirely into the last component, and furthermore
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make it real. Any generator (T a)i
j that does not have a nonzero entry in

the last column will remain unbroken. These generators form an unbro-
ken SU(N−1) gauge group. There are three classes of broken generators:
those with (T a)i

N = 1
2 for i 6= N (there are N−1 of these); those with

(T a)i
N = −1

2 i for i 6= N (there are also N−1 of these), and finally the sin-
gle generator TN

2−1 = [2N(N−1)]−1/2 diag(1, . . . , 1,−(N−1)). The gauge
fields corresponding to the generators in the first two classes get a mass
M = 1

2gv; we can group them into a complex vector field that transforms in
the fundamental representation of the unbroken SU(N−1) subgroup. The
gauge field corresponding to TN

2−1 gets a mass M = [(N−1)/2N ]1/2gv; it
is a singlet of SU(N−1).

Consider the gauge group SO(N), with a real scalar field in the fun-
damental representation. We can make a global SO(N) transformation to
bring the VEV entirely into the last component. Any generator (T a)i

j that
does not have a nonzero entry in the last column will remain unbroken.
These generators form an unbroken SO(N−1) subgroup. There are N−1
broken generators, those with (T a)i

N = −i for i 6= N . The corresponding
gauge fields get a mass M = gv; they form a fundamental representation
of the unbroken SO(N−1) subgroup. In the case N = 3, this subgroup is
SO(2), which is equivalent to U(1).

Consider the gauge group SU(N), with a real scalar field Φa in the
adjoint representation. It will prove more convenient to work with the
matrix-valued field Φ = ϕaT a; the covariant derivative of Φ is DµΦ =
∂µΦ − igAaµ[T

a,Φ], and the VEV of ϕ is a traceless hermitian N × N

matrix V . Thus the mass-squared matrix for the gauge fields is (M2)ab =
−1

2g
2 Tr{[T a, V ], [T b, V ]}. We can make a global SU(N) transformation to

bring V into diagonal form. Suppose the diagonal entries consist of N1 v1’s,
followed by N2 v2’s, etc., where v1 < v2 < . . . , and

∑
iNivi = 0. Then all

generators whose nonzero entries lie entirely within the ith block commute
with V , and hence form an unbroken SU(Ni) subgroup. Furthermore, the
linear combination of diagonal generators that is proportional to V also
commutes with V , and forms a U(1) subgroup. Thus the unbroken gauge
group is SU(N1)× SU(N2)× . . .×U(1). The gauge coupling constants for
the different groups are all the same, and equal to the original SU(N) gauge
coupling constant.

As a specific example, consider the case of SU(5), which has 24 gener-
ators. Let the diagonal entries of V be given by (−1

3 ,−1
3 ,−1

3 ,+
1
2 ,+

1
2)v.

The unbroken subgroup is then SU(3) × SU(2) × U(1). The number of
broken generators is 24 − 8 − 3 − 1 = 12. The generator of the U(1) sub-
group is T 24 = diag(−1

3c,−1
3c,−1

3c,+
1
2c,+

1
2c), where c2 = 3/5. Under the

unbroken SU(3) × SU(2) × U(1) subgroup, the 5 representation of SU(5)
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transforms as
5 → (3, 1,−1

3 ) ⊕ (1, 2,+1
2 ) . (84.12)

Here the last entry is the value of T 24/c. The 5 of SU(5) then transforms
as

5 → (3̄, 1,+1
3 ) ⊕ (1, 2,−1

2 ) . (84.13)

To find out how the adjoint or 24 representation of SU(5) transforms under
the SU(3) × SU(2) × U(1) subgroup, we use the SU(5) relation

5 ⊗ 5 = 24 ⊕ 1 . (84.14)

From eqs. (84.12) and (84.13), we have

5 ⊗ 5 → [(3, 1,−1
3 ) ⊕ (1, 2,+1

2 )] ⊗ [(3̄, 1,+1
3 ) ⊕ (1, 2,−1

2 )] . (84.15)

If we expand this out, and compare with eq. (84.14), we see that

24 → (8, 1, 0) ⊕ (1, 3, 0) ⊕ (1, 1, 0)

⊕ (3, 2,−5
6 ) ⊕ (3̄, 2,+5

6 ) . (84.16)

The first line on the right-hand side of eq. (84.16) is the adjoint repre-
sentation of SU(3) × SU(2) × U(1); the corresponding gauge fields remain
massless. The second line shows us that the gauge fields corresponding to
the twelve broken generators can be grouped into a complex vector field
in the representation (3, 2,−5

6 ). Since it is an irreducible representation of
the unbroken subgroup, all twelve vectors fields must have the same mass.
This mass is most easily computed from (M2)44 = −g2 Tr([T 4, V ][T 4, V ]),
where we have defined (T 4)i

j = 1
2(δi

1δj4+δi
4δj1); the result is M = 5

6
√

2
gv.

Problems

84.1) Conside a theory with gauge group SU(N), with a real scalar field Φ
in the adjoint representation, and potential

V (Φ) = 1
2m

2 Tr Φ2 + 1
4λ1 Tr Φ4 + 1

4λ2 (Tr Φ2)2 . (84.17)

This is the most general potential consistent with SU(N) symmetry
and a Z2 symmetry Φ ↔ −Φ, which we impose to keep things sim-
ple. We assume m2 < 0. We can work in a basis in which Φ =
v diag(α1, . . . , αN ), with the constraints

∑
i αi = 0 and

∑
i α

2
i = 1.

a) Extremize V (Φ) with respect to v. Solve for v, and plug your result
back into V (Φ). You should find

V (Φ) =
−1

4(m2)2

λ1A(α) + λ2B(α)
, (84.18)
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where A(α) and B(α) are functions of αi.

b) Show that λ1A(α) + λ2B(α) must be everywhere positive in order
for the potential to be bounded below.

c) Show that the absolute mimimum of the potential (assuming that
it is bounded below) occurs at the absolute minimum of λ1A(α) +
λ2B(α).

d) Show that, at any extremum of the potential, the αi take on at most
three different values. Hint: impose the constraints with Lagrange
multipliers.

e) Show that, for λ1 > 0 and λ2 > 0, at the absolute minimum of
V (Φ) the unbroken symmetry group is SU(N+) × SU(N−) × U(1),
where N+ = N− = 1

2N if N is even, and N± = 1
2(N±1) if N is odd.
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85 Spontaneously Broken Abelian Gauge

Theory

Prerequisite: 61, 84

Consider scalar electrodynamics, specified by the lagrangian

L = −(Dµϕ)†Dµϕ− V (ϕ) − 1
4F

µνFµν , (85.1)

where ϕ is a complex scalar field and Dµ = ∂µ − igAµ. We choose

V (ϕ) = 1
4λ(ϕ†ϕ− 1

2v
2)2 , (85.2)

which yields a nonzero VEV for ϕ. We therefore write

ϕ(x) = 1√
2
(v + ρ(x))e−iχ(x)/v , (85.3)

where ρ(x) and χ(x) are real scalar fields. The scalar potential depends
only on ρ, and is given by

V (ϕ) = 1
4λv

2ρ2 + 1
4λvρ

3 + 1
16λρ

4 . (85.4)

We can now make a gauge transformation to set

χ(x) = 0 . (85.5)

This is unitary gauge. The kinetic term for ϕ becomes

−(Dµϕ)†Dµϕ = −1
2∂

µρ∂µρ− 1
2g

2(v + ρ)2AµAµ . (85.6)

We see that the gauge field has acquired a mass

M = gv . (85.7)

The terms in L that are quadratic in Aµ are

L0 = −1
4F

µνFµν − 1
2M

2AµAµ . (85.8)

The equation of motion that follows from eq. (85.8) is

[(−∂2 +M2)gµν + ∂µ∂ν ]Aν = 0 . (85.9)

If we act with ∂µ on this equation, we get

M2∂νAν = 0 . (85.10)



85: Spontaneously Broken Abelian Gauge Theory 519

If we now use eq. (85.10) in eq. (85.9), we find that each component of Aν
obeys the Klein-Gordon equation,

(−∂2 +M2)Aν = 0 . (85.11)

The general solution of eqs. (85.9) and (85.10) is

Aµ(x) =
∑

λ=−,0,+

∫
d̃k
[
εµ∗λ (k)aλ(k)e

ikx + εµλ(k)a
†
λ(k)e

−ikx
]
, (85.12)

where the polarization vectors must satisfy kµε
µ
λ(k) = 0. In the rest frame,

where k = (M, 0, 0, 0), we choose the polarization vectors to correspond to
definite spin along the ẑ axis,

ε+(0) = 1√
2
(0, 1,−i, 0) ,

ε−(0) = 1√
2
(0, 1,+i, 0) ,

ε0(0) = (0, 0, 0, 1) . (85.13)

More generally, the three polarization vectors along with the timelike unit
vector kµ/M form an orthonormal and complete set,

k ·εµλ(k) = 0 , (85.14)

ελ′(k)·ε∗λ(k) = δλ′λ , (85.15)

∑

λ=−,0,+
εµ∗λ (k)ενλ(k) = gµν +

kµkν

M2
. (85.16)

Since the lagrangian of eq. (85.8) has no manifest gauge invariance,

quantization is straightforward. The coefficients a†λ(k) and aλ(k) become
particle creation and annihilation operators in the usual way, and the prop-
agator of the Aµ field is given by

i〈0|TAµ(x)Aν(y)|0〉 =

∫
d4k

(2π)4
eik(x−y)

k2 +M2 − iǫ

∑
λ
εµ∗λ (k)ενλ(k)

=

∫
d4k

(2π)4
eik(x−y)

k2 +M2 − iǫ

(
gµν +

kµkν

M2

)
. (85.17)

The interactions of the massive vector field Aµ with the real scalar field ρ
can be read off of eq. (85.6). The self-interactions of the ρ field can be read
off of eq. (85.4). The resulting Feynman rules can be used for tree-level
calculations.

Loop calculations are more subtle. We have imposed the gauge condi-
tion χ(x) = 0, which corresponds to inserting a functional delta function
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∏
x δ(χ(x)) into the path integral. In order to integrate over χ, we must

make a change of integration variables from Reϕ and Imϕ to ρ and χ; this
is simply a transformation from cartesian to polar coordinates, analogous
to dx dy = r dr dφ. So we must include a factor analogous to r in the
functional measure; this factor is

∏

x

(
v + ρ(x)

)
= det(v + ρ)

∝ det(1 + v−1ρ)

∝
∫

Dc̄Dc e−im2
gh

∫
d4x c̄(1+v−1ρ)c . (85.18)

In the last line, we have written the functional determinant as an integral
over ghost fields. We see that they have no kinetic term, and we have
chosen the overall nomalization of their action so that their mass is mgh,
where mgh is an arbitrary mass parameter. Thus the momentum-space
propagator for the ghosts is simply ∆̃(k2) = 1/m2

gh. We also see that there

is a ghost-ghost-scalar vertex, with vertex factor −im2
ghv
−1, but there is no

interaction between the ghosts and the vector field.
This seems like a fairly convenient gauge for loop calculations, but there

is a complication. The fact that the ghost propagator is independent of the
momentum means that additional internal ghost propagators do not help
the convergence of loop-momentum integrals. The same is true of vector-
field propagators; from eq. (85.17) we see that, in momentum space, the
propagator scales like 1/M2 in the limit that all components of k become
large. Thus, in unitary gauge, loop diagrams with arbitrarily many external
lines diverge. This makes it difficult to establish renormalizability.

A gauge that does not suffer from this problem is a generalization of
Rξ gauge (and in fact this name has traditionally been applied only to this
generalization). We begin by using a cartesian basis for ϕ,

ϕ = 1√
2
(v + h+ ib) , (85.19)

where h and b are real scalar fields. In terms of h and b, the potential is

V (ϕ) = 1
4λv

2h2 + 1
4λvh(h

2 + b2) + 1
16λ(h2 + b2)2 , (85.20)

and the covariant derivative of ϕ is

Dµϕ = 1√
2

[
(∂µh+ gbAµ) + i(∂µb− g(v+h)Aµ)

]
. (85.21)

Thus the kinetic term for ϕ becomes

−(Dµϕ)†Dµϕ = −1
2(∂µh+ gbAµ)

2 − 1
2 (∂µb− g(v+h)Aµ)

2 . (85.22)
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Expanding this out, and rearranging, we get

−(Dµϕ)†Dµϕ = −1
2∂µh∂µh− 1

2∂µb∂µb− 1
2g

2v2AµAµ + gvAµ∂µb

+ gAµ(h∂µb− b∂µh)

− gvhAµAµ − 1
2g

2(h2 + b2)AµAµ . (85.23)

The first line on the right-hand side of eq. (85.23) contains all the terms
that are quadratic in the fields. The first two are the kinetic terms for the
h and b fields. The third is the mass term for the vector field. The fourth
is an annoying cross term between the vector field and the derivative of b.

In abelian gauge theory, in the absence of spontaneous symmetry break-
ing, we fix Rξ gauge by adding to L the gauge-fixing and ghost terms

Lgf + Lgh = −1
2ξ
−1G2 − c̄

δG

δθ
c , (85.24)

where G = ∂µAµ, and θ(x) parameterizes an infinitesimal gauge transfor-
mation,

Aµ → Aµ − ∂µθ , (85.25)

ϕ → ϕ− igθϕ . (85.26)

With G = ∂µAµ, we have δG/δθ = −∂2. Thus the ghost fields have no
interactions, and can be ignored.

In the presence of spontaneous symmetry breaking, we choose instead

G = ∂µAµ − ξgvb , (85.27)

which reduces to ∂µAµ when v = 0. Multiplying out G2, we have

Lgf = −1
2ξ
−1∂µAµ∂

νAν + gvb∂µAµ − 1
2ξg

2v2b2

= −1
2ξ
−1∂µAν∂

νAµ − gvAµ∂
µb− 1

2ξg
2v2b2 , (85.28)

where we integrated by parts in the first two terms to get the second line.
Note that the second term on the second line of eq. (85.28) cancels the
annoying last term on the first line of eq. (85.23). Also, the last term on
the second line of eq. (85.28) gives a mass ξ1/2M to the b field.

We must still evaluate Lgh. To do so, we first translate eq. (85.26) into

h → h+ gθb , (85.29)

b → b− gθ(v + h) . (85.30)

Then we have
δG

δθ
= −∂2 + ξg2v(v + h) . (85.31)
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From eq. (85.24) we see that the ghost lagrangian is

Lgh = −c̄
[
−∂2 + ξg2v(v + h)

]
c

= −∂µc̄∂µc− ξg2v2c̄c− ξg2vhc̄c . (85.32)

We see from the second term that the ghost has acquired the same mass
as the b field, ξ1/2M .

Now let us examine the vector field. Including Lgf , the terms in L that
are quadratic in the vector field can be written as

L0 = −1
2Aµ

[
gµν(−∂2 +M2) + (1−ξ−1)∂µ∂ν

]
Aν . (85.33)

In momentum space, this reads

L̃0 = −1
2Ãµ(−k)

[
(k2 +M2)gµν + (1−ξ−1)kµkν

]
Ãν(k) . (85.34)

The kinematic matrix is
[
. . .
]

= (k2 +M2)gµν + (1−ξ−1)kµkν

= (k2 +M2)
(
Pµν(k) + kµkν/k2

)
+ (1−ξ−1)kµkν

= (k2 +M2)Pµν(k) + ξ−1(k2 + ξM2)kµkν/k2 , (85.35)

where Pµν(k) = gµν − kµkν/k2 projects onto the transverse subspace;
Pµν(k) and kµkν/k2 are orthogonal projection matrices. Using this fact,
it is easy to invert eq. (85.35) to get the propagator for the massive vector
field in Rξ gauge,

∆̃µν(k) =
Pµν(k)

k2 +M2 − iǫ
+

ξ kµkν/k2

k2 + ξM2 − iǫ
. (85.36)

We see that the transverse components of the vector field propagate with
mass M , while the longitudinal component propagates with the same mass
as the b and ghost fields, ξ1/2M .

Eq. (85.36) simplifies greatly if we choose ξ = 1; then we have

∆̃µν(k) =
gµν

k2 +M2 − iǫ
(ξ = 1) . (85.37)

On the other hand, leaving ξ as a free parameter allows us to check that all
ξ dependence cancels out of any physical scattering amplitude. Since their
masses depend on ξ, the ghosts, the b field, and the longitudinal component
of the vector field must all represent unphysical particles that do not appear
in incoming or outgoing states.
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To summarize, in Rξ gauge we have the physical h field with mass-
squared m2

h = 1
2λv

2 and propagator 1/(k2 + m2
h), the unphysical b field

with propagator 1/(k2 + ξM2), the ghost fields c̄ and c with propagator
1/(k2 + ξM2), and the vector field with the propagator of eq. (85.36). For
external vectors, the polarizations are still given by eq. (85.13), and obey
the sum rules of eq. (85.16). The mass parameter M is given by M = gv.
The interactions of these fields are governed by

L1 = −1
4λvh(h

2 + b2) − 1
16λ(h2 + b2)2

+ gAµ(h∂µb− b∂µh) − gvhAµAµ − 1
2g

2(h2 + b2)AµAµ

− ξg2vhc̄c . (85.38)

It is interesting to consider the limit ξ → ∞. In this limit, the vector
propagator in Rξ gauge, eq. (85.36), turns into the massive vector propa-
gator of eq. (85.17),

∆̃µν(k) =
gµν + kµkν/M2

k2 +M2 − iǫ
(ξ = ∞) . (85.39)

The b field becomes infinitely heavy, and we can drop it. (Equivalently,
its propagator goes to zero.) The ghost fields also become infinitely heavy,
but we must be more careful with them because their interaction term, the
last line of eq. (85.38), also contains a factor of ξ. The vertex factor for this
interaction is −iξg2v = −i(ξM2)v−1. Note that this is the same vertex
factor that we found in unitary gauge for the ineraction between the ρ field
and the ghost fields; see eq. (85.18) and take m2

gh = ξM2. Thus we cannot

drop the ghost fields, but we can take their propagator to be 1/m2
gh rather

than 1/(k2 + m2
gh), since k2 ≪ m2

gh = ξM2 in the limit ξ → ∞. This is
the ghost propagator that we found in unitary gauge. We conclude that
Rξ gauge in the limit ξ → ∞ is equivalent to unitary gauge. Of course, in
this limit, we reencounter the problems with divergent diagrams that led us
to consider alternative gauge choices in the first place. For practical loop
calculations, Rξ gauge with ξ = 1 is typically the most convenient.

In the next section, we consider Rξ gauge for nonabelian theories.
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86 Spontaneously Broken Nonabelian Gauge

Theory

Prerequisite: 85

In the previous section, we worked out the lagrangian for a U(1) gauge
theory with spontaneous symmetry breaking in Rξ gauge. In this section,
we extend this analysis to a general nonabelian gauge theory.

As in section 85, it will be convenient to work with real scalar fields.
We therefore decompose any complex scalar fields into pairs of real ones,
and organize all the real scalar fields into a big list φi, i = 1, . . . ,N . These
real scalar fields form a (possibly reducible) representation R of the gauge
group. Let T a be the gauge-group generator matrices that act on φ; they
are linear combinations of the generators of the SO(N) group that rotates
all components of φi into each other. Because these SO(N) generators
are hermitian and antisymmetric, so are the T a’s. Thus i(T a)ij is a real,
antisymmetric matrix.

The lagrangian for our theory can now be written as

L = −1
2D

µφDµφ− V (φ) − 1
4F

aµνF aµν , (86.1)

where
(Dµφ)i = ∂µφi − igaA

a
µ(T a)ijφj (86.2)

is the covariant derivative, and the adjoint index a runs over all generators
of all gauge groups. Because φi and Aaµ are real fields, and i(T a)ij is a real
matrix, (Dµφ)i is real.

Now we suppose that the potential V (φ) is minimized when φ has a
VEV

〈0|φi(x)|0〉 = vi . (86.3)

A generator T a is unbroken if (T a)ijvj = 0, and broken if (T a)ijvj 6= 0.
Each broken generator results in a massless Goldstone boson. To see

this, we note that the potential must be invariant under a global gauge
transformation,

V ((1−iθaT a)φ) = V (φ) . (86.4)

Expanding to linear order in the infinitesimal parameter θ, we find

∂V

∂φj
(T a)jkφk = 0 . (86.5)

We differentiate eq. (86.5) with respect to φk to get

∂2V

∂φi∂φj
(T a)jkφk +

∂V

∂φj
(T a)jk = 0 . (86.6)
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Now set φi = vi; then ∂V/∂φi vanishes, because φi = vi minimizes V (φ).
Also, we can identify

(m2)ij =
1

2

∂2V

∂φi∂φj

∣∣∣∣∣
φi=vi

(86.7)

as the mass-squared matrix for the scalars (after spontaneous symmetry
breaking). Thus eq. (86.6) becomes

(m2)ij(T av)j = 0 . (86.8)

We see that if T av 6= 0, then T av is an eigenvector of the mass-squared
matrix with eigenvalue zero. So there is a zero eigenvalue for every linearly
independent broken generator.

Let us write
φi(x) = vi + χi(x) , (86.9)

where χi is a real scalar field. The covariant derivative of φ becomes

(Dµφ)i = ∂µχi − igaA
a
µ(T a)ij(v + χ)j (86.10)

It is now convenient to define a set of real antisymmetric matrices

(τa)ij ≡ iga(T a)ij , (86.11)

and the real rectangular matrix

F ai ≡ (τa)ijvj . (86.12)

We can now write

(Dµφ)i = ∂µχi −Aaµ(F
a + τaχ)i . (86.13)

The kinetic term for φ becomes

−1
2D

µφDµφ = −1
2∂

µχi∂µχi − 1
2(F aiF

b
i)A

aµAbµ + F aiA
a
µ∂

µχi

+Aaµχi(τ
a)ij∂

µχj −AaµAbµF
a
i(τ

b)ijχj

− 1
2A

aµAbµχi(τ
aτ b)ijχj . (86.14)

We see (from the second term on the right-hand side) that the mass-squared
matrix for the vector fields is

(M2)ab = F aiF
b
i = (FFT)ab . (86.15)
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A theorem of linear algebra states that every real rectangular matrix can
be written as

F ai = Sab(M bδbj)Rji , (86.16)

where S and R are orthogonal matrices, and the diagonal entries Ma are
real and nonnegative. From eq. (86.15) we see that these diagonal entries
are the masses of the vector fields. The vector fields of definite mass are
then given by Ãaµ = SbaAbµ.

Now we are ready to fix Rξ gauge. To do so, we add to L the gauge-
fixing and ghost terms

Lgf + Lgh = −1
2ξ
−1GaGa − c̄a

δGa

δθb
cb , (86.17)

where we choose
Ga = ∂µAaµ − ξF aiχi . (86.18)

Then we have

Lgf = −1
2ξ
−1∂µAaµ∂

νAaν + F aiχi∂
µAaµ − 1

2ξ(F
a
iF

a
j)χiχj

= −1
2ξ
−1∂µAaν∂

νAaµ − F aiA
a
µ∂

µχi − 1
2ξ(F

a
iF

a
j)χiχj . (86.19)

We integrated by parts in the first two terms to get the second line. Note
that the second term on the second line of eq. (86.19) cancels the annoying
last term on the first line of eq. (86.14). Also, the last term on the second
line of eq. (86.19) makes a contribution to the mass-squared matrix for the
χ fields,

ξ(M2)ij = ξF aiF
a
j = ξ(FTF )ij . (86.20)

Eq. (86.16) tells us that the eigenvalues of this matrix are ξ1/2Ma, where
Ma are the vector-boson masses. The mass-squared matrix ξM2 should
be added to the mass-squared matrix m2 that we get from the potential,
eq. (86.7). Note that eqs. (86.8) and (86.12) imply that (m2)ijF

a
j = 0;

eq. (86.20) then yields (m2)ij(ξM
2)jk = 0. Thus these two contributions to

the mass-squared matrix of the scalar fields live in orthogonal subspaces.
The scalar fields of definite mass are χ̃i = Rijχj , where the block of R in the
m2 subspace is chosen to diagonalize m2. The m2 subspace consists of the
physical, massive scalars, and the ξM2 subspace consists of the unphysical
Goldstone bosons; these are the fields that would be set to zero in unitary
gauge.

We must still evaluate Lgh. To do so, we recall that θa(x) parameterizes
an infinitesimal gauge transformation,

Aaµ → Aaµ −Dab
µ θ

b , (86.21)

χi → −θa(τa)ij(v + χ)j . (86.22)
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Thus we have

δGa

δθb
= −∂µDab

µ + ξF aj(τ
b)jk(v + χ)k

= −∂µDab
µ + ξF ajF

b
j + ξF aj(τ

b)jkχk

= −∂µDab
µ + ξ(M2)ab + ξF aj(τ

b)jkχk , (86.23)

and so the ghost lagrangian is

Lgh = −∂µc̄aDab
µ c

b − ξ(M2)abc̄acb − ξF aj(τ
b)jkχk c̄

acb . (86.24)

The ghost fields of definite mass are c̃a = Sbacb and ˜̄ca = Sbac̄b.
The complete gauge-fixed lagrangian is now given by eqs. (86.1), (86.14)

(86.19), and (86.24). We can rewrite it in terms of the fields of definite mass.
This results in the replacements

F ai → Maδai , (86.25)

(τa)ij → Sab(RTτ bR)ij , (86.26)

fabc → SadSbeScgfdeg (86.27)

throughout L. The Feynman rules then follow in the usual way.

Problems

86.1) Let ϕi be a complex scalar field in a complex representation R of the
gauge group. Under an infinitesimal gauge transformation, we have
δϕi = −iθa(T aR )i

jϕj . Let us write ϕi = 1√
2
(φi+iφi+d(R)), where φi is a

real scalar field with the index i running from 1 to 2d(R). Then, under
an infinitesimal gauge transformation, we have δφi = −iθa(T a)ijϕj .

a) Express T a
R in terms of the real and imaginary parts of T a.

b) Show that the T a matrices satisfy the appropriate commutation
relations.
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87 The Standard Model: Gauge and Higgs

Sector

Prerequisite: 84

We now turn to the construction of the Standard Model of elementary
particles, also called the Glashow–Weinberg–Salam model. This is the com-
plete (except for gravity) quantum field theory that appears to describe our
world. It can be succinctly specified as a gauge theory with gauge group
SU(3) × SU(2) × U(1), with left-handed Weyl fields in three copies of the
representation (1, 2,−1

2 )⊕(1, 1,+1)⊕(3, 2,+1
6 )⊕(3̄, 1,−2

3 )⊕(3̄, 1,+1
3 ), and

a complex scalar field in the representation (1, 2,−1
2 ). Here the last entry

of each triplet gives the value of the U(1) charge, known as hypercharge.
The lagrangian includes all terms of mass dimension four or less that are
allowed by the gauge symmetries and Lorentz invariance.

We will construct the Standard Model over several sections. We begin
with the electroweak part of the gauge group, SU(2)×U(1), and the complex
scalar field ϕ, known as the Higgs field, in the representation (2,−1

2 ). The
Higgs field acquires a nonzero VEV that spontaneously breaks SU(2)×U(1)
to U(1); the unbroken U(1) is identified as electromagnetism.

We begin with the covariant derivative of the Higgs field ϕ,

(Dµϕ)i = ∂µϕi − i[g2A
a
µT

a + g1BµY ]i
jϕj , (87.1)

where T a = 1
2σ

a and Y = −1
2I; Y is the hypercharge generator. It will

prove useful to write out g2A
a
µT

a + g1BµY in matrix form,

g2A
a
µT

a + g1BµY =
1

2

(
g2A

3
µ − g1Bµ g2(A

1
µ − iA2

µ)

g2(A
1
µ + iA2

µ) −g2A3
µ − g1Bµ

)
. (87.2)

Now suppose that ϕ has a potential

V (ϕ) = 1
4λ(ϕ†ϕ− 1

2v
2)2 . (87.3)

This potential gives ϕ a nonzero VEV. We can make a global gauge trans-
formation to bring this VEV entirely into the first component, and further-
more make it real, so that

〈0|ϕ(x)|0〉 =
1√
2

(
v

0

)
. (87.4)

The kinetic term for ϕ is −(Dµϕ)†Dµϕ. After replacing ϕ by its VEV, we
find a mass term for the gauge fields,

Lmass = −1
8v

2 ( 1 , 0 )

(
g2A

3
µ − g1Bµ g2(A

1
µ − iA2

µ)

g2(A
1
µ + iA2

µ) −g2A3
µ − g1Bµ

)2 ( 1

0

)
. (87.5)
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To diagonalize this mass-squared matrix, we first define the weak mixing
angle

θW ≡ tan−1(g1/g2) , (87.6)

and the fields

W±µ ≡ 1√
2
(A1

µ ∓ iA2
µ) , (87.7)

Zµ ≡ cWA
3
µ − sWBµ , (87.8)

Aµ ≡ sWA
3
µ + cWBµ , (87.9)

where sW ≡ sin θW, cW ≡ cos θW. In terms of these fields, eq. (87.5) becomes

Lmass = −1
8g

2
2v

2 ( 1 , 0 )




1
cWZµ

√
2W+

µ

√
2W−µ − 1

sW
Aµ




2


1

0




= −(g2v/2)
2 W+µW−µ − 1

2(g2v/2cW)2 ZµZµ

= −M2
WW

+µW−µ − 1
2M

2
ZZ

µZµ , (87.10)

where we have identified

MW = g2v/2 , (87.11)

MZ = MW/cos θW . (87.12)

The observed masses of the W± and Z0 particles are MW = 80.4GeV and
MZ = 91.2GeV. Eq. (87.12) then implies cos θW = 0.882, or, as it is more
usually expressed, sin2θW = 0.223.1

Note that the Aµ field remains massless; this signifies that there is an
unbroken U(1) subgroup. We will identify this unbroken U(1) with the
gauge group of electromagnetism.

Before introducing leptons and quarks (which we do in sections 87 and
88), let us work out the complete lagrangian for the gauge and Higgs fields,
in unitary gauge. This is sufficient for tree-level calculations.

The two complex components of the ϕ field yield four real scalar fields;
three of these become the longitudinal components of the W± and Z0. The

1Of course, this number is only meaningful once a renormalization scheme has been
specified. We are implicitly using an on-shell scheme in which θW is defined by the
relation cos θW = MW/MZ, where MW and MZ are the actual particle masses. The
relation g1 = g2 tan θW is then subject to loop corrections that depend on the precise
definitions adopted for g1 and g2. In the MS scheme, on the other hand, θW is defined
by eq. (87.6), and for µ = MZ, we have sin2 θW = 0.231.
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remaining scalar field must be able to account for shifts in the overall scale
of ϕ. Thus we can write, in unitary gauge,

ϕ(x) =
1√
2

(
v +H(x)

0

)
, (87.13)

where H is a real scalar field; the corresponding particle is the Higgs boson.
The potential now reads

V (ϕ) = 1
4λv

2H2 + 1
4λvH

3 + 1
16λH

4 . (87.14)

We see that the mass of the Higgs boson is given by m2
H = 1

2λv
2. (As of

this writing, the Higgs boson has not been observed; the lower limit on its
mass is mH > 115GeV.) The kinetic term for H comes from the kinetic
term for ϕ, and is the usual one for a real scalar field, −1

2∂
µH∂µH. Finally,

recall that the mass term for the gauge fields, eq. (87.10), is proportional
to v2. Hence it should be multiplied by a factor of (1 + v−1H)2.

Now we have to work out the kinetic terms for the gauge fields. We
have

L = −1
4F

aµνF aµν − 1
4B

µνBµν , (87.15)

where

F 1
µν = ∂µA

1
ν − ∂νA

1
µ + g2(A

2
µA

3
ν −A2

νA
3
µ) , (87.16)

F 2
µν = ∂µA

2
ν − ∂νA

2
µ + g2(A

3
µA

1
ν −A3

νA
1
µ) , (87.17)

F 3
µν = ∂µA

3
ν − ∂νA

3
µ + g2(A

1
µA

2
ν −A1

νA
2
µ) , (87.18)

Bµν ≡ ∂µBν − ∂νBµ . (87.19)

Next, form the combinations F 1
µν ± iF 2

µν . Using eq. (87.7), we find

1√
2
(F 1

µν − iF 2
µν) = DµW

+
ν −DνW

+
µ , (87.20)

1√
2
(F 1

µν + iF 2
µν) = D†µW

−
ν −D†νW

−
µ , (87.21)

where we have defined a covariant derivative that acts on W+
µ ,

Dµ ≡ ∂µ − ig2A
3
µ

= ∂µ − ig2(sWAµ + cWZµ) . (87.22)

If we identify Aµ as the electromagnetic vector potential, and assign electric
charge Q = +1 (in units of the proton charge) to the W+, then we see from
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eq. (87.22) that we must identify the electromagnetic coupling constant e
as

e = g2 sin θW . (87.23)

Here we are adopting the convention that e is positive. (In our treatment
of quantum electrodynamics, we used the convention that e is negative, but
that is less convenient in the present context.)

We also have

F 3
µν = ∂µA

3
ν − ∂νA

3
µ − ig2(W

+
µ W

−
ν −W+

ν W
−
µ )

= sWFµν + cWZµν − ig2(W
+
µ W

−
ν −W+

ν W
−
µ ) , (87.24)

Bµν = cWFµν − sWZµν , (87.25)

where Fµν = ∂µAν − ∂νAµ is the usual electromagnetic field strength, and

Zµν ≡ ∂µZν − ∂νZµ (87.26)

is the abelian field strength associated with the Zµ field.
Now we can assemble all of this into the complete lagrangian for the

electroweak gauge fields and the Higgs boson in unitary gauge. We will
express g2 in terms of e and θW via g2 = e/sin θW, and λ in terms of mH

and v via λ = 2m2
H/v

2. We ultimately get

L = −1
4F

µνFµν − 1
4Z

µνZµν −D†µW−νDµW
+
ν +D†µW−νDνW

+
µ

+ ie(Fµν + cot θWZ
µν)W+

µ W
−
ν

− 1
2(e2/sin2θW)(W+µW−µ W

+νW−ν −W+µW+
µ W

−νW−ν )

− (M2
WW

+µW−µ + 1
2M

2
ZZ

µZµ)(1 + v−1H)2

− 1
2∂

µH∂µH − 1
2m

2
HH

2 − 1
2m

2
Hv
−1H3 − 1

8m
2
Hv
−2H4 , (87.27)

where
Dµ = ∂µ − ie(Aµ + cot θWZµ) . (87.28)

With theW+
µ field assigned electric charge Q = +1, this lagrangian exhibits

manifest electromagnetic gauge invariance. The full underlying SU(2) ×
U(1) gauge invariance is not manifest, however, because we have fixed uni-
tary gauge.

Reference Notes

Discussions of the Standard Model in Rξ gauge can be found in Cheng &
Li and Ramond II.

Problems
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87.1) Find the generator Q of the unbroken U(1) subroup as a linear com-
bination of the T a’s and Y .

87.2) a) Ignoring loop corrections, find the numerical values of v, g1, and
g2. Take e2/4π = α = 1/137.036.

b) The Fermi constant is defined (at tree level) as

GF ≡ e2

4
√

2 sin2θWM2
W

. (87.29)

Find its numerical value in GeV−2. Because of loop corrections to
eq. (87.29), your answer is about 3% lower than the actual value of
GF, which is determined by the muon decay rate; see section 88.

c) Express GF in terms of v.

87.3) In this problem we will work out the generator matrices introduced
in section 86 for the case of the Standard Model.

a) Write the Higgs field as

ϕ =
1√
2

(
φ1 + iφ3

φ2 + iφ4

)
. (87.30)

where φi is a real scalar field. Express the SU(2) generators T a and
the hypercharge generator Y as 4× 4 matrices T a and Y that act on
φi. Hint: see problem 86.1.

b) Compute the matrix F ai, defined in eq. (86.12).

c) Compute the mass-squared matrix for the vector fields, (M2)ab =
F aiF

b
i, and find its eigenvalues.

87.4) Work out the Feynman rules for the lagrangian of eq. (87.27). Hint:
the three-gauge-boson vertices are more easily derived from eqs. (87.7–
87.9), (87.15–87.18), and our result in section 72 for the three-gluon
vertex.

87.5) Assume that mH > 2MZ, and compute (at tree level) the decay rate of
the Higgs boson into W+W− and Z0Z0 pairs. Express your answer
in GeV for mH = 200GeV.
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88 The Standard Model: Lepton Sector

Prerequisite: 75, 87

Leptons are spin-one-half particles that are singlets of the color group.
There are six different flavors of lepton; see Table 2. The six flavors are
naturally grouped into three families or generations: e and νe, µ and νµ,
τ and ντ .

Let us begin by describing a single lepton family, the electron and its
neutrino. We introduce left-handed Weyl fields ℓ and ē in the representa-
tions (2,−1

2 ) and (1,+1) of SU(2) × U(1). Here the bar over the e in the
field ē is part of the name of the field, and does not denote any sort of
conjugation. The covariant derivatives of these fields are

(Dµℓ)i = ∂µℓi − ig2A
a
µ(T

a)i
jℓj − ig1(−1

2)Bµℓi , (88.1)

Dµē = ∂µē− ig1(+1)Bµē , (88.2)

and their kinetic terms are

Lkin = iℓ†iσ̄µ(Dµℓ)i + iē†σ̄µDµē . (88.3)

The representation (2,−1
2 )⊕ (1,+1) for the left-handed Weyl fields is com-

plex; hence the gauge theory is chiral, and therefore parity violating.
We cannot write down a mass term involving ℓ and/or ē because there

is no gauge-group singlet contained in any of the products

(2,−1
2 ) ⊗ (2,−1

2 ) ,

(2,−1
2 ) ⊗ (1,+1) ,

(1,+1) ⊗ (1,+1) . (88.4)

However, we are able to write down a Yukawa coupling of the form

LYuk = −yεijϕiℓj ē+ h.c. , (88.5)

where ϕ is the Higgs field in the (2,−1
2 ) representation that we introduced in

the last section, and y is the Yukawa coupling constant. A gauge-invariant
Yukawa coupling is possible because there is a singlet on the right-hand
side of

(2,−1
2 ) ⊗ (2,−1

2 ) ⊗ (1,+1) = (1, 0) ⊕ (3, 0) . (88.6)

There are no other gauge-invariant terms involving ℓ or ē that have mass
dimension four or less. Hence there are no other terms that we could add
to L while preserving renormalizability.

We add eqs. (88.3) and (88.5) to the lagrangian for ϕ and the gauge
fields that we worked out in the last section. In unitary gauge, we replace
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name symbol mass Q
(MeV)

electron e 0.511 −1
electron neutrino νe 0 0

muon µ 105.7 −1
muon neutrino νµ 0 0

tau τ 1777 −1
tau neutrino ντ 0 0

Table 2: The six flavors of lepton. Q is the electric charge in units of
the proton charge. Each charged flavor is represented by a Dirac field, each
neutral flavor by a Majorana field (or, equivalently, a left-haned Weyl field).
Neutrino masses are exactly zero in the Standard Model.

ϕ1 with 1√
2
(v+H), where H is the real scalar field representing the physical

Higgs boson, and ϕ2 with zero. The Yukawa term becomes

LYuk = − 1√
2
y(v +H)(ℓ2ē+ h.c.) . (88.7)

It is now convenient to assign new names to the SU(2) components of ℓ,

ℓ =

(
ν

e

)
. (88.8)

(We will rely on context to distinguish the field e from the electromagnetic
coupling constant e.) Then eq. (88.7) becomes

LYuk = − 1√
2
y(v +H)(eē + ē†e†)

= − 1√
2
y(v +H)EE (88.9)

where we have defined a Dirac field for the electron,

E ≡
(
e

ē†

)
. (88.10)

We see that the electron has acquired a mass

me =
yv√

2
. (88.11)

The neutrino has remained massless.
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We can describe the neutrino with a Majorana field

N ≡
(
ν

ν†

)
. (88.12)

However, it is often more convenient to work with

NL ≡ PL N =

(
ν

0

)
, (88.13)

where PL = 1
2(1−γ5). We can think of NL as a Dirac field; for example, the

neutrino kinetic term iν†σ̄µ∂µν can be written as iNL/∂NL.
Now we return to eqs. (88.1) and (88.2), and express the covariant

derivatives in the terms of the W±µ , Zµ, and Aµ fields. From our results in
section 87, we have

g2A
1
µT

1 + g2A
2
µT

2 =
g2√
2

(
0 W+

µ

W−µ 0

)
(88.14)

and

g2A
3
µT

3 + g1BµY = e
sW

(sWAµ + cWZµ)T
3 + e

cW (cWAµ − sWZµ)Y

= e(Aµ + cot θWZµ)T
3 + e(Aµ − tan θWZµ)Y

= e(T 3 + Y )Aµ + e(cot θWT
3 − tan θWY )Zµ . (88.15)

Since we identify Aµ as the electromagnetic field and e as the electromag-
netic coupling constant (with the convention that e is positive), we identify

Q = T 3 + Y (88.16)

as the generator of electric charge. Then, since

T 3ν = +1
2ν , T 3e = −1

2e , T 3ē = 0 , (88.17)

Y ν = −1
2ν , Y e = −1

2e , Y ē = +ē , (88.18)

we see from eq. (88.16) that

Qν = 0 , Qe = −e , Qē = +ē . (88.19)

This is just the set of electric charge assignments that we expect for the
electron and the neutrino. Then (since the action of Q on the fields is more
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familiar than the action of Y ) it is convenient to replace Y in eq. (88.15)
with Q− T 3. We find

g2A
3
µT

3 + g1BµY = eQAµ + e[(cot θW + tan θW)T 3 − tan θWQ]Zµ

= eQAµ + e
sWcW

(T 3 − s2WQ)Zµ . (88.20)

In terms of the four-component fields, we have

(g2A
3
µT

3 + g1BµY )E =
[
−eAµ + e

sWcW (−1
2PL + s2W)Zµ

]
E , (88.21)

(g2A
3
µT

3 + g1BµY )NL = e
sWcW (+1

2)ZµNL . (88.22)

Using eqs. (88.14) and (88.21–88.22) in eqs. (88.1–88.3), we find the coup-
ings of the gauge fields to the leptons,

Lint = 1√
2
g2W

+
µJ
−µ + 1√

2
g2W

−
µJ

+µ + e
sWcWZµJ

µ
Z + eAµJ

µ
EM , (88.23)

where we have defined the currents

J+µ ≡ ELγ
µNL , (88.24)

J−µ ≡ NLγ
µEL , (88.25)

JµZ ≡ Jµ3 − s2WJ
µ
EM , (88.26)

Jµ3 ≡ 1
2NLγ

µNL − 1
2ELγ

µEL , (88.27)

JµEM ≡ −EγµE . (88.28)

In many cases, we are interested in scattering amplitudes for leptons
whose momenta are all well below the W± and Z0 masses. In this case, we
can integrate the W±µ and Zµ fields out of the path integral, as discussed
in section 29. We get the leading term (in a double expansion in powers
of the gauge couplings and inverse powers of MW and MZ) by ignoring the
kinetic energy and other interactions of the W±µ and Zµ fields, solving the
equations of motion for them that follow from Lmass + Lint, where Lint is
given by eq. (88.23) and

Lmass = −M2
WW

+µW−µ − 1
2M

2
ZZ

µZµ , (88.29)

and finally substituting the solutions back into Lmass +Lint. This is equiv-
alent to evaluating tree-level Feynman diagrams with a single W± or Z0

exchanged, with the propagator gµν/M2
W,Z. The result is

Leff =
g2
2

2M2
W

J+µJ−µ +
e2

2s2Wc
2
WM

2
Z

JµZ JZµ

=
e2

2s2WM
2
W

(J+µJ−µ + JµZ JZµ)

= 2
√

2GF(J+µJ−µ + JµZ JZµ) . (88.30)
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e

νµ
p1 p 1

p 3

p 2 νe

µ

Figure 88.1: Feynman diagram for muon decay. The wavy line is a W
propagator.

We used e = g2 sin θW and MW = MZ cos θW to get the second line, and we
defined the Fermi constant

GF ≡ e2

4
√

2 sin2θWM2
W

(88.31)

in the third line. We can use Leff to compute the tree-level scattering
amplitude for processes like νee

− → νee
−; we leave this to the problems.

Having worked out the interactions of a single lepton generation, we
now examine what happens when there is more than one of them. Let us
consider the fields ℓiI and ēI , where I = 1, 2, 3 is a generation index. The
kinetic term for all these fields is

Lkin = iℓ†iI σ̄
µ(Dµ)i

jℓjI + iē†I σ̄
µDµēI , (88.32)

where the repeated generation index is summed. The most general Yukawa
term we can write down now reads

LYuk = −εijϕiℓjIyIJ ēJ + h.c. , (88.33)

where yIJ is a complex 3×3 matrix, and the generation indices are summed.
We can make unitary transformations in generation space on the fields:
ℓI → LIJℓJ and ēI → ĒIJ ēJ , where L and Ē are independent unitary
matrices. The kinetic terms are unchanged, and the Yukawa matrix y is
replaced with LTyĒ. We can choose L and Ē so that LTyĒ is diagonal with
positive real entries yI. The charged leptons EI then have masses meI

=
yIv/

√
2, and the neutrinos remain massless. In the currents, eqs. (88.24–

88.28), we simply add a generation index I to each field, and sum over
it.

Let us work out the details for one process of particular importance:
muon decay, µ− → e−νeνµ. Let the four-component fields be E for the
electron, M for the muon, Ne for the electron neutrino, and Nm for the
muon neutrino. Only the charged currents J±µ are relevant; the neutral
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current JµZ and the electromagnetic current JµEM do not contribute. Ignoring
the τ terms in the charged currents, we have

J+µ = ELγ
µNeL + MLγ

µNmL , (88.34)

J−µ = NeLγ
µEL + NmLγ

µML . (88.35)

The relevant term in the effective interaction is

Leff = 2
√

2GF(ELγ
µNeL)(NmLγµML) . (88.36)

This can be simplified by means of a Fierz identity (see problem 36.3),

Leff = −4
√

2GF(MCPL Ne)(EPR N C
m) . (88.37)

Assigning momenta as shown in fig. (88.1), and using the usual Feynman
rules for incoming and outgoing particles and antiparticles, the scattering
amplitude is

T = −4
√

2GF(uT
1CPLv

′
2)(u

′
3PRCu ′T1 )

= −4
√

2GF(v1PLv
′
2)(u

′
3PRv

′
1) . (88.38)

Taking the complex conjugate, and using PL = PR, we find

T ∗ = −4
√

2GF(v ′2PRv1)(v
′
1PLu

′
3) . (88.39)

Multiplying eqs. (88.38) and (88.39), summing over final spins and averag-
ing over the initial spin, we get

〈|T |2〉 = 1
2(4

√
2)2G2

F Tr[(−/p1−mµ)PL(−/p ′2)PR]

× Tr[(−/p ′3+me)PR(−/p ′1)PL] . (88.40)

The traces are easily evaluated, with the result

〈|T |2〉 = 64G2
F(p1p

′
2)(p

′
1p
′
3) . (88.41)

We get the decay rate Γ by multiplying 〈|T |2〉 by dLIPS3(p1) and integrat-
ing over p′1,2,3. We worked out the result (in the limit me ≪ mµ) in problem
11.3,

Γ =
G2

Fm
5
µ

192π3
. (88.42)

After including one-loop corrections from electromagnetism, and account-
ing for the nonzero electron mass, the measured muon decay rate is used
to determine the value of GF, with the result GF = 1.166 × 10−5 GeV−2.
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Reference Notes

Lepton phenomonology is covered in more detail in in Cheng & Li, Georgi,
Peskin & Schroeder, Quigg, and Ramond II.

Problems

88.1) Verify the claim made immediately after eq. (88.6).

88.2) Show that a neutrino always has negative helicity, and that an an-
tineutrino always has positive helicity. Hint: see section 75.

88.3) Show that the sum of eqs. (88.32) and (88.33), when rewritten in terms
of fields of definite mass, has a global symmetry U(1) ×U(1)×U(1).
The corresponding charges are called electron number, muon number,
and tau number; the sum of the charges is the lepton number. List
the value of each charge for each Dirac field EI and NLI .

88.4) Compute 〈|T |2〉 for muon decay using eq. (88.36), without making the
Fierz transformation to eq. (88.37), and verify eq. (88.41).

88.5) a) Write down the term in Leff that is relevant for and νµe
− → νµe

−.
Express your answer in the form

Leff = 1√
2
GF Nγµ(1−γ5)N Eγµ(CV−CAγ5)E , (88.43)

where N is the muon neutrino field, and determine the values of CV

and CA.

b) Repeat part (a) for νee
− → νee

−.

c) Compute 〈|T |2〉 as a function of the Mandelstam variables and CV

and CA.

88.6) Compute the rates for the decay processes W+ → e+νe, Z
0 → e+e−,

and Z0 → νeνe. Neglect the electron mass. Express your results in
GeV.

88.7) Anomalous dimension of the Fermi constant. The coefficient of the
effective interaction for muon decay, eq. (88.36), is subject to renor-
malization by quantum electrodynamic processes. In particular, we
can compute its anomalous dimension γG, defined via

µ
d

dµ
GF(µ) = γG(α)GF(µ) , (88.44)

where α = e2/4π is the fine-structure constant in the MS scheme with
renormalization scale µ.
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a) Argue that it is GF(MW) that is given by eq. (88.31).

b) Multiply eq. (88.36) by a renormalzing factor ZG, and define

ln(ZG/Z2) =
∞∑

n=1

Gn(α)

εn
, (88.45)

where Z2 is the renormalizing factor for a field of unit charge in spinor
electrodynamics. Show that

γG(α) = αG′1(α) . (88.46)

c) If γG(α) = c1α+O(α2) and β(α) = b1α
2 +O(α3), show that

GF(µ) =

[
α(µ)

α(MW)

]c1/b1
GF(MW) (88.47)

for µ < MW. (For µ > MW, we should not be using an effective
interaction.)

d) If α(µ) ln(MW/µ) ≪ 1, show that eq. (88.47) becomes

GF(µ) =
[
1 − c1α(µ) ln(MW/µ)

]
GF(MW) . (88.48)

e) Use a Fierz identity to rewrite eq. (88.36) in charge retention form,

Leff = 2
√

2ZGGF(ELγ
µML)(NmLγµNeL) . (88.49)

f) Consider the process of muon decay with an extra photon con-
necting the µ and e lines. Work in Lorenz gauge, and with the four-
fermion vertex provided by eq. (88.49). Use your results from problem
62.2 to show that, in this gauge, there is no O(α) contribution to ZG
in the MS scheme.

g) Use your result from part (d), and your result for Z2 in Lorenz
gauge from problem 62.2, to show that c1 = 0, and hence that
GF(µ) = GF(MW) at the one-loop level.
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89 The Standard Model: Quark Sector

Prerequisite: 88

Quarks are spin-one-half particles that are triplets of the color group. There
are six different flavors of quark; see Table 1 in section 83. The six flavors
are naturally grouped into three families or generations: u and d, c and s,
t and b.

Let us begin by describing a single quark family, the up and down
quarks. We introduce left-handed Weyl fields q, ū, and d̄ in the represen-
tations (3, 2,+1

6 ), (3̄, 1,−2
3 ), and (3̄, 1,+1

3 ) of SU(3) × SU(2) × U(1). Here
the bar over the letter in the fields ū and d̄ is part of the name of the field,
and does not denote any sort of conjugation. The covariant derivatives of
these fields are

(Dµq)αi = ∂µqαi − ig3A
a
µ(T

a
3 )α

βqβi − ig2A
a
µ(T

a
2 )i

jqβj

− ig1(+
1
6)Bµqαi , (89.1)

(Dµū)
α = ∂µū

α − ig3A
a
µ(T

a
3̄ )αβū

β − ig1(−2
3)Bµū

α , (89.2)

(Dµd̄)
α = ∂µd̄

α − ig3A
a
µ(T

a
3
)αβ d̄

β − ig1(+
1
3)Bµd̄

α . (89.3)

We rely on context to distinguish the SU(3) gauge fields from the SU(2)
gauge fields. The kinetic terms for q, ū, and d̄ are

Lkin = iq†αiσ̄µ(Dµq)αi + iū†ασ̄
µ(Dµū)

α + id̄†ασ̄
µ(Dµd̄)

α . (89.4)

The representation (3, 2,+1
6 ) ⊕ (3̄, 1,−2

3 ) ⊕ (3̄, 1,+1
3 ) for the left-handed

Weyl fields is complex; hence the gauge theory is chiral, and therefore
parity violating.

We cannot write down a mass term involving q, ū, and/or d̄ because
there is no gauge-group singlet contained in any of the products of their
representations. But we are able to write down Yukawa couplings of the
form

LYuk = −y′εijϕiqαj d̄α − y′′ϕ†iqαiū
α + h.c. , (89.5)

where ϕ is the Higgs field in the (1, 2,−1
2 ) representation that we introduced

in section 87, and y′ and y′′ are the Yukawa coupling constants. These
gauge-invariant Yukawa couplings are possible because there are singlets
on the right-hand sides of

(1, 2,−1
2 ) ⊗ (3, 2,+1

6 ) ⊗ (3̄, 1,+1
3 ) = (1, 1, 0) ⊕ . . . , (89.6)

(1, 2,+1
2 ) ⊗ (3, 2,+1

6 ) ⊗ (3̄, 1,−2
3 ) = (1, 1, 0) ⊕ . . . . (89.7)
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There are no other gauge-invariant terms involving q, ū, or d̄ that have
mass dimension four or less. Hence there are no other terms that we could
add to L while preserving renormalizability.

In unitary gauge, we replace ϕ1 with 1√
2
(v + H), where H is the real

scalar field representing the physical Higgs boson, and ϕ2 with zero. The
Yukawa term becomes

LYuk = − 1√
2
y′(v +H)qα2d̄

α − 1√
2
y′′(v +H)qα1ū

α + h.c. . (89.8)

It is now convenient to assign new names to the SU(2) components of q,

q =

(
u

d

)
. (89.9)

Then eq. (89.8) becomes

LYuk = − 1√
2
y′(v +H)(dαd̄

α + d̄†αd
†α) − 1√

2
y′′(v +H)(uαū

α + ū†αu
†α)

= − 1√
2
y′(v +H)DαDα − 1√

2
y′′(v +H)UαUα , (89.10)

where we have defined Dirac fields for the down and up quarks,

Dα ≡
(
dα

d̄†α

)
, Uα ≡

(
uα

ū†α

)
. (89.11)

We see from eq. (89.10) that the up and down quarks have acquired masses

md =
y′v√

2
, mu =

y′′v√
2
. (89.12)

Now we return to eqs. (89.1–89.3), and express the covariant derivatives
in the terms of the W±µ , Zµ, and Aµ fields. From our results in section 88,
we have

g2A
1
µT

1 + g2A
2
µT

2 =
g2√
2

(
0 W+

µ

W−µ 0

)
, (89.13)

g2A
3
µT

3 + g1BµY = eQAµ + e
sWcW

(T 3 − s2WQ)Zµ , (89.14)

where
Q = T 3 + Y (89.15)

is the generator of electric charge. Then, since

T 3u = +1
2u , T 3d = −1

2d , T 3ū = 0 , T 3d̄ = 0 , (89.16)

Y u = +1
6u , Y d = +1

6d , Y ū = −2
3 ū , Y d̄ = +1

3 d̄ , (89.17)

we see from eq. (89.15) that
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Qu = +2
3u Qd = −1

3d , Qū = −2
3 ū , Qd̄ = +1

3 d̄ . (89.18)

This is just the set of electric charge assignments that we expect for the up
and down quarks. In terms of the four-component fields, we have

(g2A
3
µT

3 + g1BµY )U =
[
+2

3eAµ + e
sWcW

(+1
2PL − 2

3s
2
W)Zµ

]
U , (89.19)

(g2A
3
µT

3 + g1BµY )D =
[
−1

3eAµ + e
sWcW (−1

2PL + 1
3s

2
W)Zµ

]
D , (89.20)

Using eqs. (89.13) and (89.19–89.20) in eqs. (89.1–89.4), we find the coup-
ings of the electroweak gauge fields to the quarks,

Lint = 1√
2
g2W

+
µJ
−µ + 1√

2
g2W

−
µJ

+µ + e
sWcWZµJ

µ
Z + eAµJ

µ
EM , (89.21)

where we have defined the currents

J+µ ≡ DLγ
µUL , (89.22)

J−µ ≡ ULγ
µDL , (89.23)

JµZ ≡ Jµ3 − s2WJ
µ
EM , (89.24)

Jµ3 ≡ 1
2 ULγ

µUL − 1
2DLγ

µDL , (89.25)

JµEM ≡ +2
3 UγµU − 1

3DγµD . (89.26)

Having worked out the interactions of a single quark generation, we
now examine what happens when there is more than one of them. Let us
consider the fields qαiI , ūI , and d̄I , where I = 1, 2, 3 is a generation index.
The kinetic term for all these fields is

Lkin = iq†αiI σ̄µ(Dµ)αi
βjqβjI + iū†αI σ̄

µ(Dµ)
α
β ū

β
I + id̄†αI σ̄

µ(Dµ)
α
β d̄

β
I ,

(89.27)
where the repeated generation index is summed. The most general Yukawa
term we can write down now reads

LYuk = −εijϕiqαjIy
′
IJ d̄

α
J − ϕ†iqαiIy

′′
IJ ū

α
J + h.c. , (89.28)

where y′IJ and y′′IJ are complex 3 × 3 matrices, and the generation indices
are summed. In unitary gauge, this becomes

LYuk = − 1√
2
(v +H)dαIy

′
IJ d̄

α
J − 1√

2
(v +H)uαIy

′′
IJ ū

α
J + h.c. . (89.29)

We can make unitary transformations in generation space on the fields:
dI → DIJdJ , d̄I → D̄IJ d̄J , uI → UIJuJ , and ūI → ŪIJ ūJ , where U , D, Ū
and D̄ are independent unitary matrices. The kinetic terms are unchanged
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(except for the couplings to the W±, as we will discuss momentarily), and
the Yukawa matrices y′ and y′′ are replaced with DTy′D̄ and UTy′′Ū . We
can choose D, D̄, U , and Ū so that DTy′D̄ and UTy′′Ū are diagonal with
positive real entries y′I and y′′I . The down quarks DI then have masses
mdI

= y′Iv/
√

2, and the up quarks UI have masses muI
= y′′I v/

√
2. In

the neutral currents Jµ3 and JµEM, we simply add a generation index I to
each field, and sum over it. The charged currents are more complicated,
however; they become

J+µ = DLI(V
†)IJγ

µULJ , (89.30)

J−µ = ULIVIJγ
µDLK , (89.31)

where V ≡ U †D is the Cabibbo–Kobayashi–Maskawa matrix (or CKM ma-
trix for short). Note that we did not have this complication in the lepton
sector, because there we had only one Yukawa term.

A 3×3 unitary matrix has 9 real parameters. However, we are still free
to make the independent phase rotations DI → eiαIDI and UI → eiβI UI ,
as these leave the kinetic and mass terms invariant. These phase changes
allow us to make the first row and column of VIJ real, eliminating 5 of the
9 parameters. The remaining four can be chosen as θ1 (the Cabibbo angle),
θ2, θ3, and δ, where

V =




c1 +s1c3 +s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ


 , (89.32)

and ci = cos θi and si = sin θi. The measured values of these angles are
s1 = 0.224, s2 = 0.041, s3 = 0.016, and δ = 40◦. Note that the charged
currents now have some terms with a phase factor eiδ, and some without.
Since the time-reversal operator T is antiunitary (T−1iT = −i), the charged
currents do not transform in a simple way under time reversal. This implies
that the charged current terms in Lint are is not time-reversal invariant;
hence the electroweak interactions violate time-reversal symmetry. Since
CPT is always a good symmetry, time-reversal violation is equivalent to
CP violation; δ is therefore sometimes called the CP violating phase.

At high energies, we can use our results to compute electroweak con-
tributions to scattering amplitudes involving quarks. This is because, at
high energies, the SU(3) coupling g3 is weak; we can, for example, re-
liably compute the decay rates of the W± and Z0 into quarks, because
α3(MZ) ≡ g2

3(MZ)/4π = 0.12 is small enough to make QCD loop correc-
tions a few-percent effect.
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To understand low-energy processes such as neutron decay, we must first
write the currents in terms of hadron fields. We take this up in the next
section. For now, we simply note that the terms in the charged currents
that involve only up and down quarks are

J+µ = c1DLγ
µUL , (89.33)

J−µ = c1ULγ
µDL , (89.34)

where c1 is the cosine of the Cabibbo angle.

Reference Notes

Electroweak interactions of quarks are discussed in more detail in Cheng &
Li, Georgi, Peskin & Schroeder, Quigg, and Ramond II.

Problems

89.1) Verify the claims made immediately after eqs. (89.4) and (89.7).

89.2) Compute the rates for the decay processes W+ → ud̄, Z0 → ūu,
and Z0 → d̄d. Neglect the quark masses. Express your results in
GeV. Combine your answers with those of problem 88.6, and sum
over generations to get the total decay rates for the W± and Z0. You
can neglect the masses of all quarks and leptons except the top quark,
and take θ2 = θ3 = 0.

89.3) Show that the Standard Model is anomaly free. Hint: you must
consider 3–3–3, 2–2–2, 3–3–1, 2–2–1, and 1–1–1 anomalies, where the
number denotes the gauge group of one of the external gauge fields
in the triangle diagram. Why do we not need to worry about the
unlisted combinations?

89.4) Compute the leading term in the beta function for each of the three
gauge couplings of the Standard Model.

89.5) After integrating out the W± fields, we get an effective interaction
between the hadron and lepton currents that includes

Leff = 2
√

2ZCC(ELγ
µNeL)(ULγ

µDL) , (89.35)

where we have defined C ≡ c1GF at a renormalization scale µ = MW,
and ZC is a renormalizing factor. This interaction contributes to
neutron decay; see section 90. In this problem, following the analysis
of problem 88.7, we will compute the anomalous dimension γC of C
due to one-loop photon and gluon exchange.
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a) Use Fierz identities to show that eq. (89.35) can be rewritten as

Leff = 2
√

2ZCC(ELγ
µDL)(ULγ

µNeL) , (89.36)

and also as

Leff = −4
√

2ZCC(DCPL Ne)(EPRUC) . (89.37)

b) Working in Lorenz gauge and using the results of problem 88.7,
show that gluon exchange does not make a one-loop contribution to
ZC .

c) Show that only a photon connecting the e and u lines makes a
one-loop contribution to ZC .

d) Note that EPRUC = e†u†, and compare this with EE = e†ē† +
h.c.. Argue that the photon-exchange contribution to ZC is given by
the one-loop contribution to Zm in spinor electrodynamics in Lorenz
gauge, with the replacement (−1)(+1)e2 → (−1)(+2

3 )e2.

e) Let γC(α) = c1α + . . . , where α = e2/4π, and find c1. (This c1
should not be confused with the cosine of the Cabibbo angle.)
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90 Electroweak Interactions of Hadrons

Prerequisite: 83, 89

Now that we know how quarks couple to the electroweak gauge fields, we
can use this information to obtain amplitudes for various processes in-
volving hadrons. We will focus on three of the most important: neutron
decay, n→ pe−ν̄; charged pion decay, π− → µ−ν̄µ; and neutral pion decay,
π0 → γγ.

Recall from section 83 the chiral lagrangian for pions and nucleons,

L = −1
4f

2
π Tr∂µU †∂µU + v3 Tr(MU +M †U †)

+ iN /∂N −mNN(U †PL + UPR)N

− 1
2(gA−1)iNγµ(U∂µU

†PL + U †∂µUPR)N , (90.1)

where U(x) = exp[2iπa(x)T a/fπ], π
a is the pion field, N is the nucleon field,

fπ is the pion decay constant, M is the quark mass matrix, v3 is the value
of the quark condensate, mN is the nucleon mass, and gA is the axial vector
coupling. The electroweak gauge group SU(2) × U(1) is a subgroup of the
SU(2)L × SU(2)R × U(1)V flavor group that we have in the limit of zero
quark mass. It will prove convenient to go through the formal procedure
of gauging the full flavor group, and only later identifying the electroweak
subgroup. We therefore define matrix-valued gauge fields lµ(x) and rµ(x)
that transform as

lµ → LlµL
† + iL∂µL

† , (90.2)

rµ → RrµR
† + iR∂µR

† . (90.3)

Here L(x) and R(x) are 2×2 unitary matrices that correspond to a general
SU(2)L × SU(2)R × U(1)V gauge transformation; we restrict the U(1) part
of the transformation to the vector subgroup by requiring detL = detR
and Tr lµ = Tr rµ. The transformation rules for the pion and nucleon fields
are

U → LUR† , (90.4)

NL → LNL , (90.5)

NR → RNR , (90.6)

where NL ≡ PLN and NR ≡ PRN are the left- and right-handed parts of
the nucleon field.

We can make the chiral lagrangian gauge invariant (except for terms
involving the quark masses) by replacing ordinary derivatives with appro-
priate covariant derivatives. We determine the covariant derivative of each
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field by requiring it to transform in the same way as the field itself; for
example, DµU → L(DµU)R†. We thus find

DµU = ∂µU − ilµU + iUrµ , (90.7)

DµU
† = ∂µU

† + iU †lµ − irµU
† , (90.8)

DµNL = (∂µ − ilµ)NL , (90.9)

DµNR = (∂µ − irµ)NR . (90.10)

Making the substitution ∂ → D in L, we learn how the pions and nucleons
couple to these gauge fields.

As in section 83, it is more convenient to work with the nucleon field
N , defined via

N = (uPL + u†PR)N , (90.11)

where u2 = U . Making this transformation, we ultimately find

L = −1
4f

2
π Tr(∂µU †∂µU − ilµU

↔
∂µU

† − irµU †
↔
∂µU

+ lµlµ + rµrµ − 2lµUrµU
†)

+ v3 Tr(MU +M †U †) + iN /∂N −mNNN
+ N (/v + 1

2/̃ℓ+ 1
2 /̃r )N − gAN (/a+ 1

2/̃ℓ− 1
2 /̃r )γ5N , (90.12)

where

vµ ≡ 1
2 i[u

†(∂µu) + u(∂µu
†)] , (90.13)

aµ ≡ 1
2 i[u

†(∂µu) − u(∂µu
†)] , (90.14)

l̃µ ≡ u†lµu , (90.15)

r̃µ ≡ urµu
† . (90.16)

It is now convenient to set

lµ = laµT
a + bµ , (90.17)

rµ = raµT
a + bµ . (90.18)

We have normalized bµ so that the corresponding charge is baryon number.
The SU(2) gauge fields of the Standard Model can now be identified as

g2A
a
µ = laµ , (90.19)

and the electromagnetic gauge field as

eAµ = l3µ + r3µ + 1
2bµ . (90.20)
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Eq. (90.20) follows from reconciling eqs. (90.9) and (90.10) with the re-
quirement that the electromagnetic covariant derivatives of the proton field
p = N1 and the neutron field n = N2 be given by (∂µ − ieAµ)p and ∂µn.

We can now find the hadronic parts of the currents that couple to the
gauge fields by differentiating L with respect to them, and then setting
them to zero. We find

JaµL = (∂L/∂laµ)
∣∣∣
l=r=0

= 1
4 if

2
π TrT aU

↔
∂µU † + 1

2Nu†T aγµ(1−gAγ5)uN

= +1
2fπ∂

µπa − 1
2ε
abcπb∂µπc + 1

2NT aγµ(1−gAγ5)N + . . . , (90.21)

JaµR = (∂L/∂raµ)
∣∣∣
l=r=0

= 1
4 if

2
π TrT aU †

↔
∂µU + 1

2NuT aγµ(1+gAγ5)u
†N

= −1
2fπ∂

µπa − 1
2ε
abcπb∂µπc + 1

2NT aγµ(1+gAγ5)N + . . . , (90.22)

JµB = (∂L/∂bµ)
∣∣∣
l=r=0

= NγµN . (90.23)

In the third lines of eqs. (90.21) and (90.22), we have expanded in inverse
powers of fπ. We can now identify the currents that couple to the physical
W±µ , Zµ, and Aµ fields as

J+µ = c1(J
1µ
L − iJ2µ

L )

= 1√
2
c1(fπ∂

µπ+ + iπ0
↔
∂µπ

+) + 1
2c1nγ

µ(1−gAγ5)p+ . . . , (90.24)

J−µ = c1(J
1µ
L + iJ2µ

L )

= 1√
2
c1(fπ∂

µπ− − iπ0
↔
∂µπ−) + 1

2c1 pγ
µ(1−gAγ5)n+ . . . , (90.25)

JµZ = Jµ3 − s2WJ
µ
EM , (90.26)

Jµ3 = J3µ
L

= 1
2(fπ∂

µπ0 + iπ+
↔
∂µπ−)

+ 1
4 pγ

µ(1−gAγ5)p− 1
4 nγ

µ(1−gAγ5)n+ . . . , (90.27)

JµEM = J3µ
L + J3µ

R + 1
2J

µ
B

= iπ+
↔
∂µπ− + pγµp+ . . . , (90.28)
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where c1 is the cosine of the Cabibbo angle, and the interactions are spec-
ified by

Lint = 1√
2
g2W

+
µJ
−µ + 1√

2
g2W

−
µJ

+µ + e
sWcWZµJ

µ
Z + eAµJ

µ
EM . (90.29)

For low-energy processes involving W± or Z0 exchange, we can use the
effective current-current interaction that we derived in section 88,

Leff = 2
√

2GF(J+µJ−µ + JµZ JZµ) . (90.30)

We should include both hadronic and leptonic contributions to the currents.
Consider charged pion decay, π− → µ−νµ. The relevant terms in the

charged currents (neutral currents do not contribute) are

J−µ = 1√
2
c1fπ∂

µπ− , (90.31)

J+µ = 1
2 Mγµ(1−γ5)Nm , (90.32)

where M is the muon field and Nm is the muon neutrino field. The relevant
term in the effective interaction is then

Leff = GFc1fπ∂
µπ−Mγµ(1−γ5)Nm . (90.33)

The corresponding decay amplitude is

T = GFc1fπk
µ u1γµ(1−γ5)v2 , (90.34)

where the four-momenta of the pion, muon, and antineutrino are k, p1,
and p2. Eq. (90.34) can be simplified by using /k = /p1 + /p2 along with
u1/p1 = −mµu1 and /p2v2 = 0; we get

T = −GFc1fπmµu1(1−γ5)v2 . (90.35)

We see that T is proportional to the muon mass; since mµ ≫ me, decay to
µ−ν̄µ is preferred over decay to e−ν̄e.

Squaring T and summing over final spins, we find

〈|T |2〉 = (GFc1fπmµ)
2(−8p1 ·p2) .

= 4(GFc1fπmµ)
2(m2

π −m2
µ) . (90.36)

We used −2p1 ·p2 = p2
1 + p2

2 − (p1+p2)
2 = −m2

µ + 0 +m2
π to get the second

line. We now have

Γ =
1

2mπ

∫
dLIPS2(k)〈|T |2〉

=
|p1|

8πm2
π

〈|T |2〉

=
G2

Fc
2
1f

2
πm

2
µmπ

4π

(
1 − m2

µ

m2
π

)2
, (90.37)
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where we used |p1| = (m2
π −m2

µ)/2mπ to get the last line. Since we deter-
mine the value of GF from the decay rate of the muon (see section 88), the
charged pion decay rate allows us to fix the value of c1fπ.

The value of c1 can be determined from the rate for the decay pro-
cess π− → π0e−ν̄e, which we will calculate in problem 90.6. The relevant
hadronic term in the charged current is

J−µ = − 1√
2
ic1π

0
↔
∂µπ− , (90.38)

which depends on c1 but not fπ. Comparison with experiment then yields
c1 = 0.974. We note that the key feature of eq. (90.38) is that it involves
spin-zero hadrons that are members of an isospin triplet; eq. (90.38) applies
to any such hadrons, including nuclei. Thus c1 can also be measured in
superallowed Fermi decays, which take a nucleus from one spin-zero state to
another spin-zero state with the same parity in the same isospin multiplet.

Next we consider neutron decay, n→ pe−ν̄e. The relevant terms in the
charged currents (neutral currents do not contribute) are

J−µ = 1
2c1pγ

µ(1−gAγ5)n , (90.39)

J+µ = 1
2 Eγµ(1−γ5)Ne , (90.40)

where E is the electron field and Ne is the electron neutrino field. The
relevant term in the effective interaction is then

Leff = 1√
2
GFc1pγ

µ(1−gAγ5)nEγµ(1−γ5)Ne . (90.41)

Consider a neutron with four-momentum pn = (mn,0), and spin up along
the z axis; the decay amplitude is

T = 1√
2
GFc1[upγ

µ(1−gAγ5)un][ueγµ(1−γ5)vν̄ ] , (90.42)

where unun = 1
2(1−γ5/z)(−/pn+mn). We take the absolute square of T and

sum over the final spins. Since the maximum available kinetic energy is
mn −mp −me = 0.782MeV ≪ mp, the proton is nonrelativistic, and we
can use the approximations pp·pe ≃ −mpEe and pp·pν̄ ≃ −mpEν̄ in addition
to the exact formulae pn·pe = −mnEe and pn·pν̄ = −mnEν̄ . After a tedious
but straightforward calculation, we find

〈|T |2〉 = 16G2
Fc

2
1 (1 + 3g2

A)mnmpEeEν̄

×
[
1 + a

pe ·pν̄
EeEν̄

+A
ẑ·pe
Ee

+B
ẑ·pν̄
Eν̄

]
, (90.43)

where the correlation coefficients are given by

a =
1 − g2

A

1 + 3g2
A

, A =
2gA(1 − gA)

1 + 3g2
A

, B =
2gA(1 + gA)

1 + 3g2
A

. (90.44)
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Figure 90.1: One-loop diagrams contributing to π0 → γγ. The solid line is
a proton.

When we integrate over the final momenta to get the total decay rate, the
correlation terms vanish, and so the rate is proportional to G2

Fc
2
1(1 + 3g2

A).
Since we get the value of G2

Fc
2
1 from the rate for π− → π0e−ν̄e. the neutron

decay rate allows us to determine 1 + 3g2
A. To get the sign of gA, we need

a measurement of either A or B. (The antineutrino three-momentum can
be determined from the electron and proton three-momenta.) The result is
that gA = +1.27. The measured values of the three correlation coefficients
are all consistent with eq. (90.44).

Finally, we consider the decay of the neutral pion into two photons,
π0 → γγ. None of the terms in our chiral lagrangian, eq. (90.12), couple
a single π0 to two photons. Therefore, without adding more terms, this
process does not occur at tree level. However, at the one-loop level, we
have the diagrams of fig. (90.1); a proton circulates in the loop. Let us
evaluate these diagrams. In section 83, we found that the coupling of the
π0 to the nucleons is given by

Lπ0NN = −1
2(gA/fπ)∂µπ

0(pγµγ5p− nγµγ5n) . (90.45)

This leads to a π0pp vertex factor of 1
2(gA/fπ)kργ

ργ5. The diagrams in
fig. (90.1) are then identical to the diagrams we evaluated in section 76,
and so the one-loop decay amplitude is

iT1−loop = 1
2(gA/fπ)(ie)

2ε1µε2νkρC
µνρ(k1, k2, k) , (90.46)

where

kρC
µνρ(k1, k2, k) = − i

2π2
εµναβk1αk2β . (90.47)

Here we have chosen to renormalize so as to have k1µC
µνρ(k1, k2, k) = 0 and

k2νC
µνρ(k1, k2, k) = 0; this is required by electromagnetic gauge invariance.

Combining eqs. (90.46) and (90.47), we get

T1−loop = − gAe
2

4π2fπ
εαµβνk1αε1µk2βε2ν . (90.48)
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This result is subject to higher-loop corrections. Note that diagrams with
extra internal pion lines attached to the nucleon loop are not suppressed by
any small expansion parameter. Thus we cannot trust the overall coefficient
in eq. (90.48).

Note that this amplitude would arise at tree level from an interaction
of the form Lπ0γγ ∝ π0εαµβνFµαFνβ . If we integrate out the nucleon fields
to get an effective lagrangian for the pions and photons alone, such a term
should appear.

There is a problem, however. The SU(2)L × SU(2)R ×U(1)V symmetry
of the effective lagrangian implies that a pion field that has no derivatives
acting on it must be accompanied by at least one factor of a quark mass.
For example, we could have Lπ0γγ ∝ iTr(MU−M †U †)εαµβνFµαFνβ. The
problem is that there are no quark-mass factors in eq. (90.48). So we have an
apparent contradiction between our explicit one-loop result, and a general
argument based on symmetry.

This contradiction is resolved by noting that the electromagnetic gauge
field results in an anomaly in the axial current J3µ

A ≡ J3µ
L − J3µ

R . In terms
of the quark doublet

Q =

( U
D

)
, (90.49)

this current is

J3µ
A = QT 3γµγ5Q

= 1
2 Uγµγ5U − 1

2Dγµγ5D , (90.50)

where we have suppressed the color indices. Using our results in sections
76 and 77, the anomalous divergence of this current is given by

∂µJ
3µ
A = − e2

16π2
Tr(T 3Q2)εµνρσFµνFρσ , (90.51)

where

Q =

(
+2

3 0

0 −1
3

)
(90.52)

is the electric charge matrix acting on the quark fields, and the trace in-
cludes a factor of three for color; we thus have

Tr(T 3Q2) = 3
(

1
2 (+2

3)2 − 1
2(−1

3)2
)

= +1
2 , (90.53)

and so

∂µJ
3µ
A = − e2

32π2
εµνρσFµνFρσ . (90.54)
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This formula is exact in the limit of zero quark mass.
Now using eqs. (90.21) and (90.22), we can write the axial current in

terms of the pion fields as

J3µ
A ≡ J3µ

L − J3µ
R

= fπ∂
µπ0 + . . . . (90.55)

(We do not include the nucleon contribution because we are considering
the effective lagrangian for pions and photons after integrating out the
nucleons.) From eq. (90.55) we have ∂µJ

3µ
A = fπ∂

2π0 + . . . ; Combining this
with eq. (90.54), we get

−∂2π0 =
e2

32π2fπ
εµνρσFµνFρσ +O(f−2

π ) . (90.56)

This equation of motion would follow from an effective lagrangian that
included an interaction term of the form

Lπ0γγ =
e2

32π2fπ
π0εµνρσFµνFρσ . (90.57)

This interaction leads to a π0 → γγ decay amplitude of

T = − e2

4π2fπ
εµνρσk1µε1νk2ρε2σ . (90.58)

This amplitude receives no higher-order corrections in e2, but is subject
to quark-mass corrections; these are suppressed by powers of m2

π/(4πfπ)
2.

Comparing eq. (90.58) with eq. (90.48), we see the one-loop result (which
receives unsuppressed corrections) is too large by a factor of gA = 1.27.

Squaring T , summing over final spins, integrating over dLIPS2(k), and
multiplying by a symmetry factor of one half (because there are two iden-
tical particles in the final state), we ultimately find that the decay rate
is

Γ =
α2m3

π

64π3f2
π

. (90.59)

This prediction is in agreement with the experimental result, which has an
uncertainty of about 7%.

Reference Notes

Electoweak interactions of hadrons are treated in Georgi and Ramond II.

Problems
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90.1) Verify that the covariant derivatives in eqs. (90.7–90.10) transform
appropriately.

90.2) Verify that substituting eq. (90.11) into eq. (90.1) yields eq. (90.12).

90.3) Compute the rate for the decay process τ− → π−ντ . Look up the
measured value and compare with your result.

90.4) a) Verify eq. (90.43).

b) Compute the total neutron decay rate. Given the measured neu-
tron lifetime τ = 886 s, and using GF = 1.166 × 10−5 GeV−2 and
c1 = 0.974, compute gA. Your answer is about 4% too high, because
we neglected loop corrections, and the Coulomb interaction between
the outgoing electron and proton.

90.5) Use your results from problems 88.7 and 89.5 to show that the neutron
decay rate is enhanced by a factor of 1 + 2

πα ln(MW/mp). How much
of the 4% discrepancy is accounted for by this effect?

90.6) Compute the rate for the decay process π− → π0e−ν̄e. Note that,
since mπ+ − mπ0 = 4.594MeV ≪ mπ0 , the outgoing π0 is nonrela-
tivistic. Compare your calculated rate with the measured value of
0.397 s−1 to determine c1. Your answer is about 1% too low, due to
neglect of loop corrections.

90.7) Verify eq. (90.59). Express Γ in eV.
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91 Neutrino Masses

Prerequisite: 89

Recall from sections 88 and 89 that a single generation of quarks and leptons
consists of left-handed Weyl fields qαi, ū

α, d̄α, ℓi, and ē in the representa-
tions (3, 2,+1

6 ), (3̄, 1,−2
3 ), (3̄, 1,+1

3 ), (1, 2,−1
2 ), and (1, 1,+1) of the gauge

group SU(3) × SU(2) ×U(1). The Higgs field is a complex scalar ϕi in the
representation (1, 2,−1

2 ). The Yukawa couplings among these fields that
are allowed by the gauge symmetry are

LYuk = −yεijϕiℓj ē− y′εijϕiqαj d̄
α − y′′ϕ†iqαiū

α + h.c. . (91.1)

After the Higgs field acquires its VEV, these three terms give masses to the
electron, down quark, and up quark, respectively. The neutrino remains
massless. Thus, massless neutrinos are a prediction of the Standard Model.

However, there is now good experimental evidence that the three neutri-
nos actually have small masses. The data implies that mass of the heaviest
neutrino is in the range from 0.04 eV to 0.5 eV. To account for this, we must
extend the Standard Model.

Let us continue to consider a single generation. We introduce a new
left-handed Weyl field ν̄ in the representation (1, 1, 0); this field does not
couple to the gauge fields at all, and its kinetic term is simply iν̄†σ̄µ∂µν̄.
(The bar over the ν in the field ν̄ is part of the name of the field, and does
not denote any sort of conjugation.) With this new field, we can introduce
a new Yukawa coupling of the form

Lν Yuk = −ỹϕ†iℓiν̄ + h.c. . (91.2)

In unitary gauge, this becomes

LνYuk = − 1√
2
ỹ(v +H)(νν̄ + ν̄†ν†) . (91.3)

We see that the neutrino mass is m̃ = ỹv/
√

2.
If this was the end of the story, we would have no understanding of why

the neutrino mass is so much less than the other first-generation quark and
lepton masses; we would simply have to take ỹ much less than y, y′, and
y′′.

However, because ν̄ is in a real representation of the gauge group, we
are allowed by the gauge symmetry to add a mass term of the form

Lν̄mass = −1
2M(ν̄ν̄ + ν̄†ν̄†) . (91.4)

Here M is an arbitrary mass parameter. In particular, it could be quite
large.
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Adding eqs. (91.3) and (91.4), we find a mass matrix of the form

Lν ν̄mass = −1
2 ( ν ν̄ )

(
0 m̃

m̃ M

)(
ν

ν̄

)
+ h.c. . (91.5)

If we take M ≫ m̃, then the eigenvalues of this mass matrix are M and
−m̃2/M . (The sign of the smaller eigenvalue can be absorbed into the
phase of the corresponding eigenfield.) Thus, if m̃ is of the order of the
electron mass, then m̃2/M is less than 1 eV if M is greater than 103 GeV.
So ỹ can be of the same order as the other Yukawa couplings, provided M
is large. This is called the seesaw mechanism for getting small neutrino
masses. The eigenfield corresponding to the smaller eigenvalue is mostly ν,
and the eigenfield corresponding to the larger eigenvalue is mostly ν̄.

Another way to get this result is to integrate out the heavy ν̄ field at
the beginning of our analysis. We get the leading term (in an expansion in
inverse powers of M) by ignoring the kinetic energy of the ν̄ field, solving
the equation of motion for it that follows from Lν̄mass +Lν Yuk, and finally
substituting the solution back into Lν̄mass + LνYuk. The result is

LνYuk+mass =
ỹ 2

2M

[
(ϕ†iℓi)(ϕ

†jℓj) + h.c.
]

= −1
2mν(νν + ν†ν†)(1 +H/v)2 , (91.6)

where

mν ≡ −m̃
2

M
= − ỹ

2v2

2M
. (91.7)

Again, we can absorb the minus sign in eq. (91.7) by making the field re-
definition ν → iν.

The seesaw mechanism has a straightforward extension to three gen-
erations. Let us consider the fields ℓiI , ēI , and ν̄I , where I = 1, 2, 3 is a
generation index. The most general Yukawa and mass terms we can write
down now read

LYuk+mass = −εijϕiℓjIyIJ ēJ − ϕ†iℓiI ỹIJ ν̄J − 1
2MIJ ν̄I ν̄J + h.c. , (91.8)

where yIJ and ỹIJ are complex 3× 3 matrices, MIJ is a complex symmetric
3 × 3 matrix, and the generation indices are summed. In unitary gauge,
this becomes

LYuk+mass = − 1√
2
(v+H)eIyIJ ēJ − 1√

2
(v+H)νI ỹIJ ν̄J − 1

2MIJ ν̄I ν̄J + h.c. .

(91.9)
We can now integrate out the ν̄I fields; eq. (91.9) is then replaced with

LYuk+mass = − 1√
2
(v+H)eIyIJ ēJ− 1

2(mν)IJ(νIνJ+ν†I ν
†
J)(1+H/v)2 , (91.10)
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where we have defined the complex symmetric neutrino mass matrix

(mν)IJ ≡ −1
2v

2(ỹTM−1ỹ)IJ . (91.11)

We can make unitary transformations in generation space on the fields:
eI → EIJeJ , ēI → ĒIJ ēJ , and νI → NIJνJ , where E, Ē, and N are inde-
pendent unitary matrices. The kinetic terms are unchanged (except for the
couplings to the W±, as we will discuss momentarily), and the matrices y
and mν are replaced with ETyĒ and NTmνN . We can choose the unitary
matrices E, Ē, and N so that ETyĒ and NTmνN are diagonal with posi-
tive real entries yI and mνI

. The neutrinos NI then have masses mνI
, and

the charged leptons EI have masses meI
= yIv/

√
2. In the neutral currents

Jµ3 and JµEM, we simply add a generation index I to each field, and sum
over it. The charged currents are more complicated, however; they become

J+µ = ELI(X
†)IJγ

µNLJ , (91.12)

J−µ = N LIXIJγ
µELK , (91.13)

where X ≡ N †E is the analog in the lepton sector of the CKM matrix V
in the quark sector.

One difference, though, between X and V is that the phases of the
Majorana NI fields are fixed by the requirement that the neutrino masses
are real and positive. Thus we cannot change these phases to make the first
column of X real, as we did with V . We are allowed to change the phases
of the Dirac EI fields, so we can make the first row of X real. Thus X has
9 − 3 = 6 parameters, two more than the CKM matrix V .

The presence of X in the charged currents leads to the phenomenon of
neutrino oscillations. A neutrino that is produced by scattering an electron
off a target will be a linear combination XIJνJ of the neutrinos of definite
mass. The different mass eigenstates propagate at different speeds, and
then (in a subsequent scattering) may become (if there is enough energy)
muons or taus rather than electrons. It is the observation of neutrino
oscillations that leads us to believe that neutrinos do, in fact, have mass.

Reference Notes

Neutrino masses are discussed in detail in Ramond II.

Problems

91.1) Show that introducing neutrino masses via the seesaw mechanism
results in lepton number no longer being conserved.
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91.2) Estimate the rate for the muon-number and electron-number violating
process µ− → e−γ.

91.3) Consider neutrinoless double-beta decay, in which a nucleus with charge
Z decays to a nucleus with charge Z + 2 and two electrons.

a) Compute the amplitude for nn→ ppe−e−.

b) Compute the rate. Take the two neutrons to be at rest, and treat
the two protons as a single nonrelativistic particle when doing the
phase-space integral. Take the neutrino mass to be much less than
the electron mass.
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92 Solitons and Monopoles

Prerequisite: 84

Consider a real scalar field ϕ with lagrangian

L = −1
2∂

µϕ∂µϕ− V (ϕ) , (92.1)

with
V (ϕ) = 1

8λ(ϕ2 − v2)2 . (92.2)

As we discussed in section 30, this potential yields two ground states or
vacua, corresponding to the classical field configurations ϕ(x) = +v and
ϕ(x) = −v. After shifting the field by its VEV (either +v or −v), we find
that the particle mass is m = λ1/2v.

Let us consider this theory in two spacetime dimensions (one space
dimension x and time t). In this case, ϕ and v are dimensionless, and λ has
dimensions of mass squared. In the quantum theory, the coupling is weak
if λ≪ m2.

The case of one space dimension is interesting for the following reason.
The boundary of one-dimensional space consists of two points, x = −∞
and x = +∞. This topology of the spatial boundary is mirrored by the
topology of the space of vacuum field configurations, which also consists
of two points, ϕ(x) = −v and ϕ(x) = +v. In each vacuum, both spatial
boundary points (x = −∞ and x = +∞) are mapped to the same field
value (either −v or +v). This is a trivial map. More interesting is the
identity map, where x = −∞ is mapped to ϕ = −v, and x = +∞ is
mapped to ϕ = +v. This map does not correspond to a vacuum; the field
must smoothly interpolate between ϕ = −v at x = −∞ and ϕ = +v at
x = +∞, and this requires energy. The interesting question is whether it
can be done at the cost of a finite amount of energy.

To make these notions more precise, we will look for a minimum en-
ergy, time-independent solution of the classical field equations, with the
boundary conditions

lim
x→±∞

ϕ(x) = ±v . (92.3)

The total energy is given by

E =

∫ +∞

−∞
dx
[

1
2 ϕ̇

2 + 1
2ϕ
′2 + V (ϕ)

]
. (92.4)

The solution of interest is time independent, so we can set ϕ̇ = 0. We can
also rewrite the remaining terms in E as

E =

∫ +∞

−∞
dx
[

1
2

(
ϕ′ −

√
2V (ϕ)

)2
+

√
2V (ϕ)ϕ′

]
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=

∫ +∞

−∞
dx 1

2

(
ϕ′ −

√
2V (ϕ)

)2
+

∫ +v

−v

√
2V (ϕ) dϕ

=

∫ +∞

−∞
dx 1

2

(
ϕ′ −

√
2V (ϕ)

)2
+ 2

3 (m2/λ)m . (92.5)

Since the first term in eq. (92.5) is positive, the minimum possible energy is
M ≡ 2

3 (m2/λ)m; this is much larger than the particle mass m if the theory
is weakly coupled (λ≪ m2). Requiring the first term in eq. (92.5) to vanish
yields ϕ′ =

√
2V (ϕ), which is easily integrated to get

ϕ(x) = v tanh
(

1
2m(x− x0)

)
, (92.6)

where x0 is a constant of integration. The energy density is localized near
x = x0, and goes to zero exponentially fast for |x− x0| > 1/m.

This solution is a soliton, a solution of the classical field equations with
an energy density that is localized in space, and that does not dissipate or
change its shape with time. In this case (and in all cases of interest to us),
its existence is related to the topology of the boundary of space and the
topology of the set of vacua, and the existence of a nontrivial map from the
boundary of space to the set of vacua.

Given eq. (92.6), we can get other soliton solutions by making a Lorentz
boost; these solutions take the form

ϕ(x, t) = v tanh
(

1
2γm(x− x0 − βt)

)
, (92.7)

where γ = (1 − β2)−1/2; their energy is E = γM = (p2 + M2)1/2, where
M = 2

3 (m2/λ)m is the energy of the soliton at rest, and p = γβM is
the momentum of the soliton, found by integrating the momentum density
T 01 = ϕ′∂0ϕ.

We see that the soliton behaves very much like a particle. We may
expect that, in the quantum theory, the soliton will correspond to a new
species of particle with mass M , in addition to the elementary field excita-
tion with mass m.

The soliton solution is still interesting if there is more than one spatial
dimension. In that case, eq. (92.6) describes a domain wall , a structure that
is localized in one particular spatial direction, but extended in the others.
The wall has a surface tension (energy per unit transverse area) given by
σ = 2

3m
3/λ.

Having found a theory that has a soliton that is localized in one spatial
direction, let us try to find a theory that has a soliton that is localized in
two spatial directions. In two space dimensions, the spatial boundary has
the topology of a circle, denoted by the symbol S1. There is no smooth
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nontrivial map from a circle to two points; continuity of the map requires
the entire circle to be mapped into one of the two points. But there do
exist smooth nontrivial maps from one circle to another circle, as we will
discuss momentarily.

So, we would like to find a theory whose vacua have the topology of
a circle. To this end, let us consider a complex scalar field ϕ(x), with
lagrangian

L = −∂µϕ†∂µϕ− V (ϕ) , (92.8)

where
V (ϕ) = 1

4λ(ϕ†ϕ− v2)2 . (92.9)

The vacuum field configurations are

ϕ(x) = veiα , (92.10)

where α is an arbitrary angle. This angle specifies a point on a circle, and
so the space of vacua does indeed have the topology of S1.

Let us write x = r(cosφ, sinφ); then the angle φ specifies a point on
the spatial circle at infinity. We can specify a map from the spatial circle
to the vacuum circle by giving α as a function of φ. In order for ϕ(x) to be
single valued, this function must obey α(φ+ 2π) = α(φ) + 2πn, where the
integer n is the winding number of the map: we wind around the vacuum
circle n times for every one time that we wind around the spatial circle.
(If n is negative, the vacuum winding is opposite in direction to the spatial
winding.) An example of a map with winding number n is U(φ) = einφ.
Setting n = 0 then yields the trival map, n = 1 the identity map, and
n = −1 the inverse of the identity map.

Given a smooth map U(φ), its winding number can be written as

n =
i

2π

∫ 2π

0
dφ U∂φU

† , (92.11)

where U † is the complex conjugate of U . To verify that eq. (92.11) agrees
with our previous definition, we first check that plugging in our example
map indeed yields the correct value of the winding number. We then show
that the right-hand side of eq. (92.11) is invariant under smooth deforma-
tions of U(φ); see problem 92.2. Thus any U(φ) that can be smoothly
deformed to einφ has winding number n.

Next, we want to look for a finite-energy solution of the classical field
equations for the theory specified by eqs. (92.8) and (92.9), with the bound-
ary condition

lim
r→∞

ϕ(r, φ) = vU(φ) , (92.12)
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with U(φ) corresponding to a map with nonzero winding number. We
therefore make the ansatz

ϕ(r, φ) = vf(r)einφ , (92.13)

where f(r) is a real function that obeys f(∞) = 1. We must also have
f(0) = 0 so that ∇ϕ(r, φ) is well defined at r = 0.

Alas, it is easy to see that there is no finite-energy solution of this form.
The gradient of the field is

∇ϕ = v
[
f ′(r)r̂ + inr−1f(r)φ̂

]
einφ , (92.14)

and the gradient energy density is

|∇ϕ|2 = v2
[
f ′(r)2 + n2r−2f(r)2

]
. (92.15)

At large r, f(r) must approach one; then the integral over the second term
in eq. (92.15) diverges logarithmically,

∫
d2x |∇ϕ|2 ∼ 2πn2v2

∫ ∞ dr

r
. (92.16)

So the energy is infinite. This is, in fact, a very general result, known as
Derrick’s theorem: with scalar fields only, there are no finite-energy, time-
independent solitons that are localized in more than one dimension. The
problem is that the gradient energy always diverges at large distances from
the putative soliton’s core.

To get solitons that are localized in more than one dimension, we must
introduce gauge fields. Note that the lagrangian of eq. (92.8) has a global
U(1) symmetry. Let us gauge this U(1) symmetry, so that the lagrangian
becomes

L = −(Dµϕ)†Dµϕ− V (ϕ) − 1
4F

µνFµν , (92.17)

where
Dµϕ = ∂µϕ− ieAµϕ , (92.18)

and V (ϕ) still given by eq. (92.9). The gauge symmetry is therefore sponta-
neously broken, and the mass of the vector particle is mV = ev. The mass
of the scalar particle is mS = λ1/2v.

The gradient energy density of the scalar field is now

| ~Dϕ|2 = |(∇− ieA)ϕ|2 . (92.19)

Thus we have the opportunity to choose A so as to partially cancel the
badly behaved second term in eq. (92.14). To see how to do this, recall that
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a gauge transformation in this theory takes the form

ϕ → Uϕ , (92.20)

Aµ → UAµU
† + i

eU∂µU
† , (92.21)

where U is a 1×1 unitary matrix that is a function of spacetime. As r → ∞,
our ansatz for ϕ, eq. (92.13), corresponds to a gauge transformation of a
vacuum, ϕ = v, by U = einφ. The corresponding transformation of Aµ = 0
is

lim
r→∞

A(r, φ) = i
eU∇U †

=
n

er
φ̂ . (92.22)

Before making the gauge transformation, we have ϕ = v and Aµ = 0, and
so Dµϕ = 0; by gauge invariance, this must be true after the transformation
as well. Indeed, it is easy to check that, with A given by eq. (92.22), we
have (∇− ieA)veiφ = 0.

For n 6= 0, the gauge transformation U = einφ is large: it cannot be
smoothly deformed to U = 1. This implies that we cannot extend it from
r = ∞ into the interior of space without meeting an obstruction, a point
where U(r, φ) is ill defined. For example, the simplest attempt at such an
extension, U(r, φ) = einφ, is ill defined at r = 0. Near the obstruction,
the fields ϕ and A must deviate from a gauge transformation of a vacuum.
This deviation costs energy, and results in a soliton.

Our ansatz for a soliton in the theory specified by eq. (92.17) is then

ϕ(r, φ) = vf(r)U(φ) , (92.23)

A(r, φ) = i
ea(r)U(φ)∇U †(φ) , (92.24)

where U(φ) = einφ, and we require f(∞) = a(∞) = 1 (so that the solution
approaches a large gauge transformation of a vacuum as r → ∞) and
f(0) = a(0) = 0 (so that A and ∇ϕ are well defined at r = 0). For n = 1,
this soliton is a Nielsen–Olesen vortex.

The nonzero vector potential results in a perpendicular magnetic field

B = ∇× A

=
1

r

(
∂

∂r
(rAφ) −

∂

∂φ
Ar

)
ẑ

=
n

e

a′(r)
r

ẑ . (92.25)
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The corresponding magnetic flux is

Φ =

∫
dS ·B

= lim
r→∞

∫
dℓ ·A

=
i

e
lim
r→∞

a(r)

∫ 2π

0
dφ U∂φU

†

=
2πn

e
. (92.26)

Here the second line follows from Stokes’ theorem, the third from eq. (92.24),
and the fourth from eq. (92.11).

The energy of the soliton is

E =

∫
d2x

[
|(∇− ieA)ϕ|2 + V (ϕ) + 1

2B
2
]
. (92.27)

Substituting in our ansatz, eqs. (92.23) and (92.24), we get

E = 2πv2
∫ ∞

0
dr r

[
f ′2+

n2

r2
(a−1)2f2+ 1

4λv
2(f2−1)2+

n2

e2v2r2
a′2
]
. (92.28)

It is convenient to define a dimensionless radial coordinate ρ ≡ evr = mVr.
Let us also define β2 ≡ λ/e2 = m2

S/m
2
V. Then eq. (92.28) becomes

E = 2πv2
∫ ∞

0
dρ ρ

[
f ′2 +

n2

ρ2
(a− 1)2f2 + 1

4β
2(f2 − 1)2 +

n2

ρ2
a′2
]
, (92.29)

where a prime now denotes a derivative with respect to ρ. We can find the
equations obeyed by f(ρ) and a(ρ) either by substituting the ansatz into
the equations of motion, or by applying the variational principle directly
to eq. (92.29). Either way, the result is

f ′′ +
f ′

ρ
− n2f

ρ2
(1 − a)2 + 1

2β
2(1 − f2)f = 0 , (92.30)

a′′ − a′

ρ
+ (1 − a)f2 = 0 , (92.31)

with the boundary conditions a(0) = f(0) = 0 and a(∞) = f(∞) = 1.
Eqs. (92.30) and (92.31) have no closed-form solution. However, for

ρ ≪ 1, we can show that a(ρ) ∼ ρ2 and f(ρ) ∼ ρn; and for ρ ≫ 1, that
1 − a(ρ) ∼ e−ρ and 1 − f(ρ) ∼ e−cρ, where c = min(β, 2); see problem
92.4. For n and β of order one, the integral in eq. (92.29) also results in a
number of order one, and so we have E ∼ 2πv2. For β > 1, it is possible
to prove a Bogomolny bound, E > 2πv2|n|. In this case, a soliton with
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winding number n is unstable against breaking up into |n| solitons, each
with winding number one (or minus one, if n is negative).

Once we have our soliton solution, we can translate and/or boost it; thus
we expect the soliton to behave like a particle in two space dimensions. In
three space dimensions, the soliton becomes a Nielsen-Olesen string (also
called a gauge string), a structure that is localized in two directions, but
extended in the third. Such strings can bend, and even form closed loops.
In certain unified theories (see section 97), gauge strings may have formed
in the early universe; they are then called cosmic strings.

Now let us try to find a soliton that is localized in three spatial direc-
tions. In three space dimensions, the spatial boundary has the topology of
a two-dimensional sphere S2. There are smooth nontrivial maps from S2 to
S2, as we will discuss momentarily, so let us look for a theory whose vacua
have the topology of S2.

Consider three real scalar fields ϕa, a = 1, 2, 3, with lagrangian

L = −1
2∂

µϕa∂µϕ
a − V (ϕ) , (92.32)

where
V (ϕ) = 1

8λ(ϕaϕa − v2)2 . (92.33)

The vacuum field configurations are

ϕa(x) = vϕ̂a , (92.34)

where ϕ̂ is an arbitrary unit vector. This unit vector specifies a point on a
two-sphere, and so the space of vacua does indeed have the topology of S2.

Let us write x = r(sin θ cosφ, sin θ sinφ, cos θ); then the polar and az-
imuthal angles θ and φ specify a point on the spatial two-sphere at infinity.
We can specify a map from the spatial two-sphere to the vacuum two-
sphere by giving ϕ̂ as an (appropriately periodic) function of θ and φ. We
can define a winding number n that counts the number of times the vacuum
two-sphere covers the spatial two-sphere, with n negative if the orientation
is reversed. An example of a map with winding number n can be con-
structed by taking the polar angle of ϕ̂ to be θ, and the azimuthal angle to
be nφ. Setting n = 1 then yields the identity map, and n = −1 the inverse
of the identity map.

Given a smooth map ϕ̂a(θ, φ), its winding number can be written as

n =
1

8π

∫
d2θ εabcεijϕ̂a∂iϕ̂

b∂jϕ̂
c , (92.35)

where d2θ = dθ dφ, ∂1 = ∂/∂θ, ∂2 = ∂/∂φ, and ε12 = −ε21 = +1. To
verify that eq. (92.35) agrees with our previous definition, we first check
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that plugging in our example map indeed yields the correct value of the
winding number; see problem 92.5. We then show that the right-hand
side of eq. (92.35) is invariant under smooth deformations of ϕ̂a(θ, φ); see
problem 92.6. It is also worthwhile to note that the right-hand side of
eq. (92.35) is invariant under a change of coordinates, because the jacobian
for d2θ is cancelled by the jacobian for ∂1∂2. This is of course closely related
to the invariance under smooth deformations, since one way to make such
a deformation is via a coordinate change.

Next, we want to look for a finite-energy solution of the classical field
equations with nonzero winding number, but we already know that these
will not exist unless we introduce gauge fields. We therefore take ϕa to be
in the adjoint representation of an SU(2) gauge group. The lagrangian is
now

L = −1
2(Dµϕ)a(Dµϕ)a − V (ϕ) − 1

4F
aµνF aµν , (92.36)

where

(Dµϕ)a = ∂µϕ
a + eεabcAbµϕ

c , (92.37)

F aµν = ∂µA
a
ν − ∂νA

a
µ + eεabcAbµA

c
ν , (92.38)

and V (ϕ) is given by eq. (92.33). We have called the gauge coupling e for
reasons that will become clear in a moment.

The gauge symmetry is spontaneously broken to U(1). If we take the
vacuum field configuration to be ϕa = vδa3, then the A3

µ field remains
massless; we will think of it as the electromagnetic field. The complex
vector fields W±µ = (A1

µ ∓ iA2
µ)/

√
2 get a mass mW = ev, and have electric

charge ±e. (This is the reason for calling the gauge coupling e.) This
theory, known as the Georgi-Glashow model , was once considered as an
alternative to the Standard Model of electroweak interactions (but is now
ruled out, because it does not have a Z0 boson).

When the vacuum field configuration is ϕa = vδa3, the electromagnetic
field strength is Fµν = ∂µA

3
ν − ∂νA

3
µ. We can write down a gauge-invariant

expression that reduces to Fµν when we set ϕa = vδa3; this expression is

Fµν = ϕ̂aF aµν − e−1εabcϕ̂a(Dµϕ̂)b(Dν ϕ̂)c . (92.39)

Here ϕ̂a = ϕa/|ϕ|, where |ϕ| = (ϕaϕa)1/2. We can, in fact, use eq. (92.39) as
the definition of the electromagnetic field strength at any spacetime point
where |ϕ| 6= 0. (If |ϕ| = 0, the SU(2) symmetry is unbroken, and there is no
gauge-invariant way to pick out a particular component of the nonabelian
field strength F aµν .) If we substitute in eqs. (92.37) and (92.38), and make

repeated use of ϕ̂aϕ̂a = 1 and the identity εabcεade = δbdδce − δbeδcd, it is
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possible to rewrite eq. (92.39) as

Fµν = ∂µ(ϕ̂
aAaν) − ∂ν(ϕ̂

aAaµ) − e−1εabcϕ̂a∂µϕ̂
b∂νϕ̂

c . (92.40)

In particular, the magnetic field is

Bk = 1
2ε
ijkFjk

= εijk∂i(ϕ̂
aAaj ) − (2e)−1εijkεabcϕ̂a∂jϕ̂

b∂kϕ̂
c . (92.41)

Let us consider the magnetic flux through a sphere at spatial infinity;
this is given by Φ =

∫
dS·B, where dSk = r2 sin θ dθ dφ x̂k, and x̂ = x/r

is a radially outward unit vector. The first term in eq. (92.41) for B is
∇ × (ϕ̂aAa); since this is a curl, it has zero divergence, and therefore zero
surface integral. From eq. (92.35), we see that the second term in eq. (92.41)
results in

Φ = − 4πn

e
. (92.42)

This flux implies that any soliton with nonzero winding number is a mag-
netic monopole with magnetic charge QM = Φ. (In Heaviside-Lorentz units,
the Coulomb field of an electric point charge QE is Ei = QEx̂i/4πr

2, and
so the total electric flux is QE. We adopt the same convention for magnetic
charge.)

If we add a field in the fundamental representation of SU(2), then the
component fields have electric charges ±1

2e. This is the smallest electric
charge we can get, and all possible electric charges are integer multiples
of it. Eq. (92.42) tells us that all possible magnetic charges are integer
multiples of 4π/e. Thus the possible electric and magnetic charges obey
the Dirac charge quantization condition, which is

QEQM = 2πk , (92.43)

where k is an integer. This condition can be derived from general consid-
erations of the quantum properties of monopoles.

Now let us turn to the explicit construction of a soliton solution. This
simplest case to consider is provided by the identity map (which has winding
number n = 1); the soliton we will find is the ’t Hooft-Polyakov monopole.

The boundary condition on the scalar field is

lim
r→∞ϕ

a(x) = vxa/r . (92.44)

We can find the appropriate boundary condition on the gauge field by
requiring (Dµϕ)a = 0 in the limit of large r. This condition yields

∂i(x
a/r) + eεabcAbix

c/r = 0 . (92.45)
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We have ∂i(x
a/r) = (r2δai − xaxi)/r

3. Next we multiply by rxjε
jda, and

use the identity εjdaεabc = δjbδdc − δjcδdb to get

εdijxj + e(xdxjA
j
i − r2Adi ) = 0 . (92.46)

If we ingore the first term in the parentheses, we find Adi = εdijxj/er
2. But

then xdA
d
i = 0, and so the first term in the parentheses vanishes. Thus we

have found the needed asymptotic behavior of Aai . Our ansatz is therefore

ϕa(x) = vf(r)xa/r , (92.47)

Aai (x) = a(r)εaijxj/er
2 . (92.48)

We require f(∞) = a(∞) = 1 (so that Aai and ϕa have the desired asymp-
totic limits) and f(0) = a(0) = 0 (so that Aai and ϕa are well defined at
r = 0).

The total energy of the soliton (which we will call M , because it is the
mass of the monopole) is given by

M =

∫
d3x

[
1
2B

a
i B

a
i + 1

2(Diϕ)a(Diϕ)a + V (ϕ)
]
. (92.49)

The nonabelian magnetic field is

Ba
i = 1

2εijkF
a
jk

= εijk∂jA
a
k + 1

2eεijkε
abcAbjA

c
k . (92.50)

If we write eq. (92.48) as Aai = εaijKj , then after some manipulation we
find that eq. (92.50) becomes Ba

i = ∂aKi − δai∂jK
j + KaKi. Plugging in

Ki = a(r)xi/er
2 then yields

Ba
i = − 1

e

[
a′

r

(
δai − x̂ax̂i

)
+

2a− a2

r2
x̂ax̂i

]
. (92.51)

The magnetic field energy then becomes

1
2B

a
i B

a
i =

1

2e2r4

[
2r2a′2 + (2a− a2)2

]
. (92.52)

The covariant derivative of the scalar field is

(Diϕ)a = v

[
(1 − a)f

r

(
δai − x̂ax̂i

)
+ f ′ x̂ax̂i

]
. (92.53)

The scalar gradient energy density then becomes

1
2(Diϕ)a(Diϕ)a =

v2

2r2

[
2(1 − a)2f2 + r2f ′2

]
. (92.54)
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The scalar potential energy density is

V (ϕ) = 1
8λv

4(f2 − 1)2 . (92.55)

We can plug eqs. (92.52), (92.54), and (92.55) into eq. (92.49), and then
use the variational principle to get the second-order differential equations
obeyed by f(r) and a(r).

We can get a lower bound on M by performing a trick analogous to the
one we used in eq. (92.5). We write

1
2B

a
i B

a
i + 1

2(Diϕ)a(Diϕ)a = 1
2 [Ba

i + (Diϕ)a]2 −Ba
i (Diϕ)a . (92.56)

We can apply the distribution rule for covariant derivatives (see problem
70.5) to rewrite the last term as Ba

i (Diϕ)a = ∂i(B
a
i ϕ

a)− (DiBi)
aϕa. Then

we note that the Bianchi identity (see problem 70.6) implies (DiBi)
a = 0.

Thus Ba
i (Diϕ)a = ∂i(B

a
i ϕ

a), and this is a total divergence. Then Gauss’s
theorem yields ∫

d3x∂i(B
a
i ϕ

a) =

∫
dSiB

a
i ϕ

a , (92.57)

where the integral is over the surface at spatial infinity. On this surface,
we have ϕa = vx̂a.

Next we use eq. (92.39). At spatial infinity, the covariant derivatives
of ϕ vanish; thus we have Ba

i ϕ
a = vBi, where Bi is the magnetic field of

electromagnetism. We can now see that the right-hand side of eq. (92.57)
evaluates to vΦ, where Φ = QM = −4πn/e is the magnetic charge of the
monopole.

In our case, n = 1 and QM is negative; thus the last term in eq. (92.56)
integrates to v|QM|. (For the case of positive QM, we can swap the plus
and minus signs in eq. (92.56) to get the same result.) Thus the mass of
the monopole, eq. (92.49), can be written as

M =
4π|n|v
e

+

∫
d3x

[
1
2 [Ba

i + (sign n)(Diϕ)a]2 + V (ϕ)
]
, (92.58)

Both terms in the integrand of eq. (92.58) are positive, and so we have a
Bogomolny bound on the mass of the monopole. For λ > 0, a monopole
with winding number n is unstable against breaking up into |n| monopoles,
each with winding number one (or minus one, if n is negative).

Using mW = ev and α = e2/4π, we can write the Bogomolny bound as

M ≥ mW

α
|n| . (92.59)

Since α≪ 1, the monopole is much heavier than the W boson.
Alas, the Georgi-Glashow model, which has monopole solutions, is not

in accord with nature, while the Standard Model, which is in accord with
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nature, does not have monopole solutions. This is because, in the Standard
Model, electric charge is a linear combination of an SU(2) generator and
the U(1) hypercharge generator. Nothing prevents us from introducing
an SU(2) singlet field with an arbitrarily small hypercharge. Such a field
would have an arbitrarily small electric charge (in units of e), and then
the Dirac charge quantization condition would preclude the existence of
magnetic monopoles.

This disappointing situation is remedied in unified theories (see section
97), where the gauge group has a single nonabelian factor like SU(5). In
unified theories, the monopole mass is of order mX/α, where mX is the mass
of a superheavy vector boson; typically mX ∼ 1015 GeV.

Returning to the Georgi-Glashow model, we can saturate the Bogo-
molny bound if we consider the formal limit of λ→ 0; then V (ϕ) vanishes.
(This limit is formal because we need a nonzero potential to fix the magni-
tude of ϕ at infinity.) Then we saturate the bound if Ba

i = −(signn)(Diϕ)a.
In the case of the ’tHooft-Polyakov monopole, we have n = 1, and Ba

i

and (Diϕ)a are given by eqs. (92.51) and (92.53). Matching the coeffi-
cients of δai − x̂ax̂i and x̂ax̂i yields a pair of first-order differential equa-
tions. These look nicer if we introduce the dimensionless radial coordinate
ρ ≡ evr = mWr; then we find

a′ = (1 − a)f , (92.60)

f ′ = (2a− a2)/ρ2 , (92.61)

where a prime now denotes a derivative with respect to ρ. These equations
have a closed-form solution,

a(ρ) = 1 − ρ

sinh ρ
, (92.62)

f(ρ) = coth ρ− 1
ρ . (92.63)

This is the Bogomolny-Prasad-Sommerfeld (or BPS for short) solution.
A soliton that saturates a Bogomolny bound is generically called a BPS
soliton.

Reference Notes

Discussions of solitons, and their relation to the theory of homotopy groups,
can be found in Coleman and Weinberg II.

Problems
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92.1) Derrick’s theorem says that, in a theory with scalar fields only, there
are no solitons localized in more than one dimension. To prove this,
consider a theory in D space dimensions with a set of real scalar fields
ϕi; any complex scalar fields are written as a pair of real ones. The
lagrangian is L = −1

2∂
µϕi∂µϕi − V (ϕi), with V (ϕi) ≥ 0. Suppose

we have a soliton solution ϕi(x); its energy is E = T + U , where
T = 1

2

∫
dDx (∇ϕi)2 and U =

∫
dDxV (ϕi).

a) Now consider ϕi(x/α), where α is a positive real number. Show
that, for this field configuration, the energy is E(α) = αD−2T +αDU .

b) Argue that we must have E′(1) = 0.

c) Use this to prove the theorem.

92.2) The winding number n for a map from S1 → S1 is given by eq. (92.11),
where U †U = 1. We will prove that n is invariant under an infinites-
imal deformation of U . Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of U , U → U + δU . Show
that δU † = −U †2δU .

b) Use this result to show that δ(U∂φU
†) = −∂φ(U †δU).

c) Use this to show that δn = 0.

92.3) Show that if Un(φ) and Uk(φ) are maps from S1 → S1 with winding
numbers n and k, then Un(φ)Uk(φ) is a map with winding number
n + k. Hint: consider smoothly deforming Un(φ) to equal one for
0 ≤ φ ≤ π. How should Uk(φ) be deformed?

92.4) Verify the statements made about the solutions to eqs. (92.30) and
(92.31) in the limit of large and small ρ.

92.5) Use eq. (92.35) to compute the winding number for the map specified
by ϕ̂ = (sin θ cosnφ, sin θ sinnφ, cos θ).

92.6) The winding number n for a map from S2 → S2 is given by eq. (92.35),
where ϕ̂aϕ̂a = 1. We will prove that n is invariant under an infinites-
imal deformation of ϕ̂. Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of ϕ̂, ϕ̂ → ϕ̂ + δϕ̂. Show
that ϕ̂·δϕ̂ = 0 and that ϕ̂·∂iϕ̂ = 0.

b) Use these results to show that εabcδϕ̂a∂iϕ̂
b∂jϕ̂

c = 0.

c) Use this to show that δn = 0.
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93 Instantons and Theta Vacua

Prerequisite: 92

Consider SU(2) gauge theory, with gauge fields only. The classical field con-
figuration corresponding to the ground state is F aµν = 0. This implies that
the vector potential Aaµ is a gauge transformation of zero, Aµ = AaµT

a =
i
gU∂µU

†.
Let us restrict our attention to gauge transformations that are time

independent, U = U(x). This fixes temporal gauge, A0 = 0. We will also
impose the boundary condition that U(x) approaches a particular constant
matrix as |x| → ∞, independent of direction. This is equivalent to adding
a spatial “point at infinity” where U has a definite value; space then has
the topology of a three-dimensional sphere S3.

Can every U(x) be smoothly deformed into every other U(x)? If the
answer is yes, then all these field configurations are gauge equivalent, and
they correspond to a single quantum vacuum state. If the answer is no, then
there must be more than one quantum vacuum state. To see why, suppose
that U(x) and Ũ(x) cannot be smoothly deformed into each other. The
associated vector potentials, Aµ = i

gU∂µU
† and Ãµ = i

g Ũ∂µŨ
†, are both

gauge transformations of zero, and so both Fµν and F̃µν vanish. However, if
we try to smoothly deform Aµ into Ãµ, we must pass through vector poten-
tials that are not gauge transformations of zero, and whose field strengths
therefore do not vanish. These nonzero field strengths imply nonzero en-
ergy: there is an energy barrier between the field configurations Aµ and
Ãµ. Therefore, they represent two different minima of the hamiltonian in
the space of classical field configurations. Different minima in the space of
classical field configurations correspond to different vacuum states in the
quantum theory.

It turns out that every U(x) can not be smoothly deformed into every
other U(x); the field configurations specified by U(x) are classified by a
winding number. To see this, we first note that any 2 × 2 special unitary
matrix U can be written in the form

U = a4 + i~a·~σ , (93.1)

where a4 and the three-vector ~a are real, and

~a2 + a2
4 = 1 ; (93.2)

see problem 93.1. Thus aµ ≡ (~a, a4) specifies a euclidean four-vector of unit
length, aµaµ = 1, and hence a point on a three-sphere. We will call this
the vacuum three-sphere. Since our boundary conditions give space the
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topology of a three-sphere, U(x) provides a map from the spatial three-
sphere to the vacuum three-sphere. We can define a winding number n
that counts the number of times the vacuum three-sphere covers the spatial
three-sphere, with n negative if the orientation is reversed.

It is convenient to specify the spatial three-sphere by a euclidean four-
vector zµ ≡ (~z, z4) of unit length, zµzµ = 1. An explicit relation between
zµ and x can be constructed by (for example) stereographic projection:
we take ẑ = ~z/|~z | = x̂, and |~z | = 2r/(1+r2), z4 = (1−r2)/(1+r2), where
r = |x|. Then we can construct an example of a map from the spatial S3

to the vacuum S3 with winding number n by taking the two polar angles
of aµ to be equal to the two polar angles of zµ, and the azimuthal angle of
aµ to be equal to n times the azimuthal angle of zµ. (The polar angles run
from 0 to π, and the azimuthal angle from 0 to 2π.)

Given a smooth map U(x), its winding number can be written as

n =
−1

24π2

∫
d3x εijk Tr[(U∂iU

†)(U∂jU
†)(U∂kU

†)] . (93.3)

Here we have used the original x coordinates, but we could also use the
angles that specify zµ: the integral in eq. (93.3) is invariant under a change
of coordinates, because the jacobian for d3x is cancelled by the jacobian
for ∂1∂2∂3. To verify that eq. (93.3) agrees with our previous definition, we
first check that plugging in our example map indeed yields the correct value
of the winding number; see problem 93.5. We then show that the right-
hand side of eq. (93.3) is invariant under smooth deformations of U(x); see
problem 93.3.

So, we have concluded that SU(2) gauge theory has an infinite number
of classical field configurations of zero energy, distinguished by an integer
n, and separated by energy barriers. This is analogous to a scalar field
theory with a potential

V (ϕ) = λv4[1 − cos(2πϕ/v)] . (93.4)

This potential has minima at ϕ = nv, where n is an integer. Let |n〉 be
the quantum state corresponding to the minimum at ϕ = nv. Generically,
between two quantum states |n〉 and |n′〉 that are separated by an energy
barrier, there is a tunneling amplitude of the form

〈n′|H|n〉 ∼ e−S , (93.5)

where H is the hamltonian, and S is the euclidean action for a classical
solution of the euclidean field equations that mediates between the field
configuration corresponding to n at t = −∞, and the field configuration
corresponding to n′ at t = +∞. In the scalar field theory, this solution
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is independent of x. Thus, S scales like the volume of space V , and so
〈n′|H|n〉 vanishes in the infinite volume limit. The minima of eq. (93.4)
therefore remain exactly degenerate in the quantum theory.

Things are different in the SU(2) gauge theory. In this case, there is
a classical solution of the euclidean field equations that mediates between
states with winding numbers n and n′, and that has an action that stays
fixed and finite in the infinite-volume limit. The value of this action is
S = |n′−n|S1, where S1 = 8π2/g2, and g is the Yang-Mills coupling con-
stant. For n′ = n + 1, this solution is the instanton. The instanton is
localized in all four euclidean directions. For n′ = n − 1, the solution is
the antiinstanton. For |n′ − n| > 1, the solution is a dilute gas of |n′ − n|
instantons (or antiinstantons, if n′ − n is negative) distributed throughout
euclidean spacetime.

We will shortly construct the instanton and examine its properties, but
first we study the consequences of its existence. For SU(2) gauge theory,
eq. (93.5) reads

〈n′|H|n〉 ∼ e−|n
′−n|S1 . (93.6)

These matrix elements depend only on n′−n, and so H can be diagonalized
by theta vacua of the form

|θ〉 =
+∞∑

n=−∞
e−inθ|n〉 ; (93.7)

see problem 93.2. For weak coupling, S1 ≫ 1, and so we can neglect all
matrix elements of H except those with n′ = n± 1. Then we find that the
energy of a theta vacuum is proportional to − cos θ. (We are of course free
to add a constant to H so that the lowest lying state, the theta vacuum
with θ = 0, has energy zero.)

We have derived these results in the weak-coupling regime. However,
we are discussing properties of low-energy states, and the gauge coupling
becomes large at low energies. Therefore we must consider the theory to
be in the strong-coupling regime. How does this affect our conclusions?

The topological properties of the gauge fields are independent of the
value of the coupling constant, so we still expect vacuum states labeled by
the winding number n to exist. We also expect that 〈n′|H|n〉 will depend
only on |n′ − n|. To see this, consider making a gauge transformation by
Uk(x), where Uk(x) has winding number k. The product of two maps
with winding numbers n and k is a map with winding number n + k; see
problem 93.4. Thus, making a gauge transformation by Uk(x) converts a
field configuration with winding number n to one with winding number
n+k. In the quantum theory, the gauge transformation is implemented by
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a unitary operator Uk, and we should have

Uk|n〉 = |n+k〉 . (93.8)

On the other hand, the hamiltonian, which is built out of field strengths,
must be invariant under time-independent gauge transformations:

UkHU†k = H . (93.9)

Inserting factors of I = U†kUk on either side of H in 〈n′|H|n〉, and using
eqs. (93.8) and (93.9), we find

〈n′|H|n〉 = 〈n′+k|H|n+k〉 . (93.10)

We conclude that 〈n′|H|n〉 depends only on n′ − n. We can also note that
winding number is reversed by parity, P |n〉 = |−n〉, and that the Yang-
Mills hamiltonian is parity invariant, PHP−1 = H, to conclude similarly
that 〈n′|H|n〉 = 〈−n′|H|−n〉. Thus 〈n′|H|n〉 depends only on |n′ − n|.

The fact that 〈n′|H|n〉 depends only on |n′ − n| tells us that the theta
vacua are still eigenstates of H. Furthermore, their energies must be a
periodic, even function of θ. Of course, the eigenvalues of H should scale
with the volume of space V . Then, on dimensional grounds, we have

H|θ〉 = V Λ4
QCDf(θ)|θ〉 , (93.11)

where ΛQCD is the scale where the gauge coupling becomes strong. The
function f(θ) must obey f(θ + 2π) = f(θ) and f(−θ) = f(θ). We expect
the minimum of f(θ) to be at θ = 0.

We turn now to the solutions of the euclidean field equations. At eu-
clidean time x4 = −T , we set Aµ(x) = i

gU−(x)∂µU
†
−(x), where U−(x)

has winding number n−. Similarly, at euclidean time x4 = +T , we set
Aµ(x) = i

gU+(x)∂µU
†
+(x), where U+(x) has winding number n+. At

|x| = R, for −T ≤ x4 ≤ T , we set the boundary condition Aµ = 0. This
is equivalent to Aµ = i

gU∂µU
† with ∂µU

† = 0; we therefore set U(x) to a
constant matrix at |x| = R. We want to take T and R to infinity at the
end of the calculation.

We have now specified U(x, x4) on the cylindrical boundary of four-
dimensional spacetime shown in fig. (93.1). This boundary is topologically
a three-sphere. The winding number of the map on this three-sphere is
n+−n−. We see this by using eq. (93.3), and noting that the cylindrical wall
makes no contribution (because ∂µU

† = 0 there), the upper cap contributes
n+, and the lower cap contributes −n−; the sign is negative because the
orientation of the cap as part of the boundary is reversed from its original
orientation.
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R

4

−T

+T

x

Figure 93.1: The boundary in euclidean spacetime. We have a field con-
figuration with winding number n− on the cap at x4 = −T , and one with
winding number n+ on the cap at x4 = +T . On the cylindrical surface at
|x| = R, the field vanishes.

Since we are interested in large R and T , and since the shape of the
boundary should not matter in this limit, we instead consider the boundary
to be a three-sphere at ρ ≡ (xµxµ)

1/2 = ∞. On this boundary, we have a
map U(x̂), where x̂µ = xµ/ρ; this map has winding number n ≡ n+ − n−.

Our first task will be to construct a Bogomolny bound on the euclidean
action

S = 1
2

∫
d4xTr(FµνFµν) (93.12)

of a field that obeys the boundary condition

lim
ρ→∞

Aµ(x) = i
gU(x̂)∂µU

†(x̂) , (93.13)

where U(x̂) is a map with winding number n. The field strength is given
in terms of the vector potential by

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (93.14)

We begin by defining the polar angles χ and ψ, and the azimuthal angle
φ, via

x̂µ = (sinχ sinψ cosφ, sinχ sinψ sinφ, sinχ cosψ, cosχ) . (93.15)

(We use ψ rather than θ in order to avoid any possible confusion with the
vaccum angle.) Next we write the winding number in terms of these angles,

n =
−1

24π2

∫ π

0
dχ

∫ π

0
dψ

∫ 2π

0
dφ εαβγ Tr[(U∂αU

†)(U∂βU
†)(U∂γU

†)] , (93.16)
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where α, β, γ run over χ,ψ, φ; ∂φ = ∂/∂φ, etc.; and εχψφ = +1. Now
we write eq. (93.16) as a surface integral over a surface at infinity in four-
dimensional euclidean space,

n =
1

24π2

∫
dSµ ε

µνστ Tr[(U∂νU
†)(U∂σU

†)(U∂τU
†)] , (93.17)

where ∂µ = ∂/∂xµ, and ε1234 = +1. (This implies that ερχψφ = −1, as can
be checked by computing the jacobian for this change of coordinates; that
is why the overall minus sign disappeared.) Now we use eq. (93.13) to write
the winding number in terms of the vector potential,

n =
ig3

24π2

∫
dSµ ε

µνστ Tr(AνAσAτ ) . (93.18)

Next, we will write this surface integral as a volume integral.
To do so, we first define the Chern-Simons current,

JµCS ≡ 2 εµνστ Tr(AνFστ + 2
3 igAνAσAτ ) . (93.19)

This current is not gauge invariant, but the relative coefficient of its two
terms has been chosen so that its divergence is gauge invariant,

∂µJ
µ
CS = εµνστ Tr(FµνFστ )

= 2Tr(F̃µνFµν) , (93.20)

where
F̃µν ≡ 1

2ε
µνστFστ (93.21)

is the dual field strength.
On the surface at infinity, the vector potential is a gauge transformation

of zero, and so the field strength Fµν vanishes there. Thus we can use
eq. (93.19) to write eq. (93.18) as

n =
g2

32π2

∫
dSµ J

µ
CS . (93.22)

Using Gauss’s theorem, this becomes

n =
g2

32π2

∫
d4x ∂µJ

µ
CS . (93.23)

Finally, we use eq. (93.20) to get

n =
g2

16π2

∫
d4x Tr(F̃µνFµν) . (93.24)
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Thus we have expressed the winding number as a (four-dimensional) volume
integral of a gauge-invariant expression.

Now it is easy to construct a Bogomolny bound. We first note that
F̃µνF̃µν = FµνFµν , and hence

1
2Tr(F̃µν ± Fµν)

2 = Tr(FµνFµν) ± Tr(F̃µνFµν) . (93.25)

The left-hand side of eq. (93.25) is nonnegative, and so we have

∫
d4xTr(FµνFµν) ≥

∣∣∣∣
∫
d4xTr(F̃µνFµν)

∣∣∣∣ . (93.26)

The left-hand side of eq. (93.26) is twice the euclidean action, while the
right-hand side is, according to eq. (93.24), 16π2|n|/g2. Thus we have

S ≥ 8π2|n|/g2 . (93.27)

Eq. (93.27) gives us the minimum value of the euclidean action for a solution
of the euclidean field equations that mediates between a vacuum configu-
ration with winding number n− at x4 = −∞ and a vacuum configuration
with winding number n+ = n− + n at x4 = +∞.

From eq. (93.25) we see that we can saturate the bound in eq. (93.27) if
and only if

F̃µν = (sign n)Fµν . (93.28)

We can find an explicit solution of eq. (93.28) for a map with winding
number n = 1; this solution is the instanton.

We take the map on the boundary to be the identity map,

U(x̂) =
x4 + i~x·~σ

ρ

=

(
cosχ+ i sinχ cosψ i sinχ sinψ e−iφ

i sinχ sinψ e+iφ cosχ− i sinχ cosψ

)
, (93.29)

which has n = 1. We then make the ansatz

Aµ(x) = i
g f(ρ)U(x̂)∂µU

†(x̂) , (93.30)

where f(∞) = 1 (so that the solution obeys the boundary condition) and
f(0) = 0 (so that Aµ is well defined at ρ = 0). Using eq. (93.14), we find
that the field strength is

Fµν = i
g

[
(∂µf)U∂νU

† + f∂µU∂νU
† + f2(U∂µU

†)(U∂νU
†)

− (µ↔ν)
]
. (93.31)
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Using (∂µU
†)U = −U †∂µU in the third term, eq. (93.31) can be simplified

to
Fµν = i

g

[
(∂µf)U∂νU

† + f(1−f)∂µU∂νU
† − (µ↔ν)

]
. (93.32)

In three-spherical coordinates, we have

∂ = ρ̂ ∂ρ + χ̂ ρ−1∂χ + ψ̂ (ρ sinχ)−1∂ψ + φ̂ (ρ sinχ sinψ)−1∂φ , (93.33)

where ∂φ = ∂/∂φ, etc., and ρ̂ is the same radial unit vector as x̂. Note
that f is a function of ρ only, while U is a function of the angles only. We
therefore have

Fρχ = i
g f
′ρ−1U∂χU

† , (93.34)

Fψφ = i
g f(1−f)(ρ2 sin2χ sinψ)−1(∂ψU∂φU

† − ∂φU∂ψU
†) . (93.35)

Next we note that that eq. (93.21) implies F̃ρχ = −Fψφ (since ερχψφ = −1),
and since F̃µν = Fµν for the instanton solution, we have Fρχ = −Fψφ.
Thus the right-hand side of eq. (93.34) equals minus the right-hand side of
eq. (93.35). We then use separation of variables to conclude that

ρf ′ = cf(1−f) , (93.36)

U∂χU
† = −c−1(sin2χ sinψ)−1(∂ψU∂φU

† − ∂φU∂ψU
†) , (93.37)

where c is the separation constant. If we plug eq. (93.29) into eq. (93.37),
we find that it is satisfied if c = 2. The solution of eq. (93.36) is then

f(ρ) =
ρ2

ρ2 + a2
, (93.38)

where a, the size of the instanton, is a constant of integration. The instan-
ton solution is also parameterized by the location of its center; we have
used the spacetime origin, but translation invariance allows us to displace
it.

If we consider initial and final states whose winding numbers differ by
more than one, we can construct a mediating solution by patching together
instantons (or antiinstantons) whose centers are widely separated on the
scale set by their sizes. Each instanton (or antiinstanton) contributes S1 =
8π2/g2 to the action, and so the minimum total action is |n+−n−|S1.

To better understand the role of the θ parameter, let us consider the
euclidean path integral, with the boundary condition that we start with a
state of winding number n− at x4 = −∞, and end with a state with winding
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number n+ at x4 = +∞. The only field configurations that contribute are
those with winding number n+ − n−. We can therefore write

Zn+←n−(J) =

∫
DAn+−n− e

−S+JA , (93.39)

where JA is short for
∫
d4xTr(JµAµ), and the subscript on the field differ-

ential means that we integrate only over fields with that winding number.
We see that Zn+←n−(J) depends only on n+ − n−, and not separately on
n+ and n−. This in accord with our previous conclusion that 〈n′|H|n〉
depends only on n′ − n.

Suppose now that we are interested in starting with a particular theta
vacuum |θ〉, and ending with a (possibly different) theta vacuum |θ′〉. Then,
we see from eq. (93.7) that the corresponding path integral is

Zθ′←θ(J) =
∑

n−,n+

ei(n+θ′−in−θ)Zn+←n−(J) . (93.40)

Let n+ = n−+n, so that n+θ
′−n−θ = n−(θ′− θ)+nθ′. Since Zn+←n−(J)

depends only on n, n− appears in eq. (93.40) only through a factor of
ein−(θ′−θ). Summing over n− then generates δ(θ′ − θ), which implies that
the value of θ is time indpendent. (Of course, we already knew this, because
θ labels energy eigenstates.) We now have

Zθ′←θ(J) = δ(θ′ − θ)
∑

n

einθ
∫

DAn e−S+JA . (93.41)

We can drop the delta function, and just define

Zθ(J) ≡
∑

n

einθ
∫

DAn e−S+JA . (93.42)

Next, we combine the sum over n and the integral over An into an integral
over all A. To account for the factor of einθ, we use eq. (93.24); we get

Zθ(J) =

∫
DA exp

∫
d4xTr

[
−1

2
FµνFµν +

ig2θ

16π2
F̃µνFµν + JµAµ

]
. (93.43)

The vacuum angle θ now appears as the coefficient of an extra term in the
Yang-Mills lagrangian.

We can write the path integral in Minkowski space by setting x4 = it.
The extra term contains one derivative with respect to x4, and thus picks
up a factor of −i. Also, ε1234 = +1 but ε1230 = −1. Putting all this
together, we get

Zθ(J) =

∫
DA exp i

∫
d4xTr

[
−1

2
FµνFµν −

g2θ

16π2
F̃µνFµν + JµAµ

]
(93.44)
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in Minkowski space. We see that the extra term is gauge invariant, Lorentz
invariant, hermitian, and has a dimensionless coefficient. We therefore
could have included it when we first considered Yang-Mills theory. We did
not do so because this term is a total divergence; see eq. (93.20). We have
always dropped total divergences from the lagrangian, because they do not
affect the equations of motion or the Feynman rules. In this case, however,
the new term does change the quantum physics, as we have seen. We will
explore this in more detail in the next section.

So far, we have only discussed SU(2) gauge theory, without scalar or
fermion fields. What can we say more generally?

Adding scalar fields has no effect on our analysis. Changing from SU(2)
to another simple nonabelian group also has no effect; instanton solutions
always reside in an SU(2) subgroup. If the gauge group is U(1), there are no
instantons, and hence no vacuum angle. If the gauge group includes more
than one nonabelian factor, then there is an independent vacuum angle for
each of these factors.

On the other hand, adding fermions can significantly change the physics.
We take this up in the next section.

Reference Notes

Instantons are treated in more detail in Coleman and Weinberg II.

Problems

93.1) Show that any 2 × 2 special unitary matrix U can be written in the
form U = a4 + i~a·~σ, where a4 and the three-vector ~a are real, and
~a2 + a2

4 = 1.

93.2) Verify that a state of the form of eq. (93.7) is an eigenstate of any
hamiltonian with matrix elements of the form 〈n′|H|n〉 = f(n′ − n).

93.3) The winding number n for a map from S3 → S3 is given by eq. (93.3),
where U †U = 1. We will prove that n is invariant under an infinites-
imal deformation of U . Since any smooth deformation can be made
by compounding infinitesimal ones, this will prove that n is invariant
under any smooth deformation.

a) Consider an infinitesimal deformation of U , U → U + δU . Show
that δU † = −U †δUU †, and hence that δ(U∂kU

†) = −U∂k(U †δU)U †.

b) Show that

δn =
−3

24π2

∫
d3x εijk Tr[(U∂iU

†)(U∂jU
†)δ(U∂kU

†)] . (93.45)
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Plug in your result from part (a), and integrate ∂k by parts. Show
that the resulting integrand vanishes. Hint: make repeated use of
U∂iU

† = −∂iUU †, and the antisymmetry of εijk.

93.4) Show that if Un(x) and Uk(x) are maps from S3 → S3 with winding
numbers n and k, then Un(x)Uk(x) is a map with winding number
n + k. Hint: consider smoothly deforming Un(x) to equal one for
x3 < 0. How should Uk(x) be deformed?

93.5) Use eq. (93.16) to compute the winding number for the map given in
eq. (93.29), and for a generalization where φ is replaced by nφ.

93.6) Use eq. (93.16) to compute the winding number for Un, where U is
the map given in eq. (93.29). Hint: first show that U can be written
in the form U = exp[i~χ·~σ], where ~χ is a three-vector that you should
specify. Is your result in accord with the theorem of problem 93.4?
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94 Quarks and Theta Vacua

Prerequisite: 77, 83, 93

Consider quantum chromodynamics with one flavor of massless quark, rep-
resented by a Dirac field Ψ in the fundamental representation of the gauge
group SU(3). The path integral is

Z =

∫
DADΨDΨ exp i

∫
d4x

[
iΨ /DΨ− 1

4
F aµνF aµν−

g2θ

32π2
F̃ aµνF aµν

]
; (94.1)

for the sake of brevity, we have not written the source terms explicitly.
In addition to the SU(3) gauge symmetry, there is a U(1)V × U(1)A

global symmetry of the quark action. However, the U(1)A symmetry is
anomalous. As we saw in section 77, under a U(1)A transformation

Ψ → e−iαγ5Ψ , (94.2)

Ψ → Ψe−iαγ5 , (94.3)

the integration measure picks up a phase factor,

DΨDΨ → exp

[
−i
∫
d4x

g2α

16π2
F̃ aµνF aµν

]
DΨDΨ . (94.4)

Using this in eq. (94.1), we see that the effect of a U(1)A transformation is to
change the value of the theta angle from θ to θ+2α. Since the value of θ can
be changed by making a U(1)A transformation (which is simply a change of
the dummy integration variable in the path integral), we must conclude that
Z does not depend on θ. Apparently (and surprisingly), adding a massless
quark has turned the theta angle into a physically irrelevant, unobservable
parameter.

How do we reconcile this with our analysis in the previous section,
where we concluded that instanton-mediated tunneling amplitudes make
the vacuum energy density depend on θ? The answer is that when we
perform the integral over the quark field in eq. (94.1), we get a functional
determinant; the path integral becomes

Z =

∫
DA det(i /D)eiSeinθ , (94.5)

where S is the Yang-Mills action and n is the winding number. We see from
eq. (94.5) that Z would be independent of θ if gauge fields with nonzero
winding number did not contribute. This will be the case if det(i /D) van-
ishes for gauge fields with n 6= 0. We conclude that i /D must have a zero
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eigenvalue or zero mode whenever the gauge field has nonzero winding num-
ber. This renders Z independent of θ.

Now consider adding a mass term for the quark. If we write the Dirac
field Ψ in terms of two left-handed Weyl fields χ and ξ,

Ψ =

(
χ

ξ†

)
, (94.6)

the mass term reads

Lmass = −mχξ −m∗ξ†χ† . (94.7)

We have allowed m to be complex: m = |m|eiφ. In terms of Ψ, eq. (94.7)
can be written as

Lmass = −|m|Ψe−iφγ5Ψ . (94.8)

A U(1)A transformation changes φ to φ + 2α. Since θ simultaneously
changes to θ + 2α, we see that φ− θ, or equivalently me−iθ, is unchanged.
Thus, the path integral can (and does) depend on me−iθ, but not on m and
θ separately.

With more quark fields, the mass term is L = −Mijχiξj +h.c.; a U(1)A
transformation changes the phase of every χi and ξi by eiα, and so every
matrix element of M picks up a factor of e2iα. Simultaneously, θ changes
to θ + 2Nα, where N is the number of quark fields. Thus (detM)e−iθ is
invariant under a U(1)A transformation.

To understand the effects of the theta angle on hadronic physics, we
turn to the effective lagranagian (for the case of two light flavors) that we
developed in section 83,

L = −1
4f

2
π Tr ∂µU †∂µU + v3 Tr(MU +M †U †)

+ iN /∂N −mNN(U †PL + UPR)N

− 1
2(gA−1)iNγµ(U∂µU

†PL + U †∂µUPR)N

− c1N(MPL +M †PR)N − c2N(U †M †U †PL + UMUPR)N

− c3Tr(MU +M †U †)N (U †PL + UPR)N

− c4Tr(MU −M †U †)N (U †PL − UPR)N , (94.9)

where U is a 2× 2 special unitary matrix field representing the pions, N is
the field for the nucleon doublet,

M =

(
mu 0

0 md

)
e−iθ/2 (94.10)

is the quark mass matrix, v3 is the value of the quark condensate, and gA

and ci are numerical constants. (The terms in the last three lines were
introduced in problem 83.8.)
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For the case of θ = 0, the potential

V (U) = −v3 TrMU + h.c. (94.11)

is minimized by U = I, and we can expand about this point in powers of the
pion fields, as we did in section 83. However, for nonzero θ, the minimum
of V (U) occurs at U = U0, where U0 is diagonal (because M is) and has
unit determinant (because U is required to have unit determinant). We
can therefore write

U0 =

(
e+iφ 0

0 e−iφ

)
. (94.12)

We determine φ by minimizing

V (U0) = −2v3
[
mu cos(φ− 1

2θ) +md cos(φ+ 1
2θ)
]

; (94.13)

the result is

tanφ =
mu −md

mu +md
tan(1

2θ) . (94.14)

As we will see shortly, experimental results require the value of |θ| to be less
than 10−9; therefore, we can work to first order in an expansion in powers
of θ. For θ ≪ 1, eqs. (94.12) and (94.14) can be written in the elegant form

MU0 = M0 − iθm̃I +O(θ2) , (94.15)

where

M0 =

(
mu 0

0 md

)
(94.16)

is the quark mass matrix with θ set to zero, I is the identity matrix, and

m̃ =
mumd

mu +md
(94.17)

is the reduced mass of the up and down quarks.
We can now expand in powers of the pion fields. Though it is not at all

obvious, it turns out that the most convenient way to define the pion fields
is by writing

U(x) = u0u
2(x)u0 , (94.18)

where u2
0 = U0 and u(x) = exp[iπa(x)T a/fπ]. We also define Ũ(x) = u2(x),

and a new nucleon field N via

N = (u0uPL + u†0u
†PR)N . (94.19)
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Substituting eqs. (94.18) and (94.19) into eq. (94.9), and using u0Mu0 =
MU0 (which follows because u0 and M are both diagonal, and hence com-
mute), we ultimately get

L = −1
4f

2
π Tr ∂µŨ †∂µŨ + v3 Tr[(MU0)Ũ + (MU0)

†Ũ †]

+ iN /∂N −mNNN + N/vN − gAN/aγ5N
− 1

2c+N [u(MU0)u+ u†(MU0)
†u†]N

+ 1
2c−N [u(MU0)u− u†(MU0)

†u†]γ5N
− c3 Tr[(MU0)Ũ + (MU0)

†Ũ †]NN
+ c4 Tr[(MU0)Ũ − (MU0)

†Ũ †]Nγ5N , (94.20)

where vµ = 1
2 i[u

†(∂µu) + u(∂µu
†)], aµ = 1

2 i[u
†(∂µu) − u(∂µu

†)], and c± =
c1 ± c2. Eq. (94.20) is exactly what we found in section 83, except that the
quark mass matrix M has been replaced everywhere by MU0.

We can now use eq. (94.15) to get the O(θ) contributions to L. Using
the fact that Tr(Ũ − Ũ †) vanishes in the case of two light flavors, we find

Lθ = −iθm̃
[
−1

2c+N (Ũ − Ũ †)N + 1
2c−N(Ũ + Ũ †)γ5N

+ c4Tr(Ũ + Ũ †)Nγ5N
]
. (94.21)

Expanding in powers of the pion fields yields

Lθ = −iθm̃(c−+4c4)Nγ5N − (θc+m̃/fπ)π
aNσaN + . . . , (94.22)

where we used T a = 1
2σ

a. We can eliminate the first term with a field
redefinition of the form N → e−iαγ5N . This generates some new terms
in eq. (94.20), but all have at least two factors of quark masses, and hence
can be neglected. The second term in eq. (94.22) provides a pion-nucleon
coupling that violates both parity P and time-reversal T (equivalently,
CP ).

The value of c+ can be fixed by baryon mass differences. The c+
term in eq. (94.20) makes a contribution of c+(mu − md) to the proton-
neutron mass difference, mp − mn = −1.3MeV. Using mu = 1.7MeV
and md = 3.9MeV yields c+ = 0.6. However, there is a comparable
electromagnetic contribution to the proton-neutron mass difference. We
get a better estimate from the masses of baryons with strange quarks,
c+(ms − 1

2mu− 1
2md) = mΞ0 −mΣ0 = 122MeV; using ms = 76MeV yields

c+ = 1.7. (All these values assume the MS renormalization scheme with
µ = 2GeV.)

For comparison with the interaction of eq. (94.22), the dominant (P and
CP conserving) pion-nucleon interaction comes from the last term in the
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Figure 94.1: Diagrams contributing to the electric dipole moment of the
neutron that are enhanced by a chiral log. The CP violating vertex is
denoted with a cross.

second line of eq. (94.20), and is

LπNN = (gA/fπ)∂µπ
aN T aγµγ5N , (94.23)

where gA = 1.27. As we did in section 83, we can integrate by parts to put
the derivative on the nucleon fields, and then (for on-shell nucleons) use
the Dirac equation to get

LπNN = −i(gAmN/fπ)π
aNσaγ5N . (94.24)

The strongest limit on a CP violating pion-nucleon coupling comes from
measurements of the electric dipole moment of the neutron. The Feynman
diagrams of fig. (94.1) contribute to an ampitude of the form

T = −2iD(q2)ε∗µ(q)us′(p
′)Sµνqνiγ5us(p) , (94.25)

where q = p′ − p. In the q → 0 limit, this corresponds to a term in the
effective lagrangian of

L = D(0)Fµν nS
µνiγ5n , (94.26)

where n is the neutron field; see section 64. If the factor of iγ5 was absent,
this would represent a contribution of D(0) to the magnetic dipole moment
of the neutron. To account for the factor of iγ5, we use

Sµνiγ5 = −1
2ε
µνρσSρσ (94.27)

to see that eq. (94.26) is equivalent to

L = −D(0)F̃µν nS
µνn , (94.28)

where F̃µν = 1
2ε
µνρσFρσ is the dual field strength. Since B̃ = −E, eq. (94.26)

represents a contribution of D(0) to the electric dipole moment of the
neutron dn.
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Figure 94.2: Momentum flow in the diagrams of fig. (94.1).

The salient feature of the diagrams shown in fig. (94.1) is that the pho-
ton line attaches to the pion line. These diagrams are enhanced by a chiral
log ln(Λ2/m2

π) ∼ 4.2, where Λ ∼ 4πfπ is the ultraviolet cutoff in the effec-
tive theory. No other contributing diagrams have this enhancement; it is an
infrared effect, due to the light pion. Of course, 4.2 is not an impressively
large number, and so we cannot be certain that the remaining contribu-
tions are not significant. These contributions depend on coefficients in the
effective lagrangian that are not well determined by other experimental
results.

Using

πaσa =

(
π0

√
2π+

√
2π− −π0

)
, (94.29)

we can write the charged-pion terms in eqs. (94.24) and (94.21) as

LπNN = −i
√

2(gAmN/fπ)(π
+pγ5n+ π−nγ5p) , (94.30)

LθπNN = −
√

2(θc+m̃/fπ)(π
+pn+ π−np) . (94.31)

From these we read off the pion-nucleon vertex factors. We label the in-
ternal momenta as shown in fig. (94.2); for small q, ℓ is a pion momentum
that should be cut off at Λ ∼ 4πfπ. Because the terms of interest have a
chiral log produced by an infrared divergence at small ℓ, we can treat ℓ as
much less than p and p′. Thus the internal proton is nearly on-shell, which
justifies the use of eq. (94.24) for the CP conserving interaction.

The diagrams of fig. (94.1) yield an amplitude of

iT =
(

1
i

)3
(ie)(

√
2gAmN/fπ)(−i

√
2θc+m̃/fπ)ε

∗
µ

∫ Λ

0

d4ℓ

(2π)4

× (2ℓµ) u ′[(−/ℓ− /̄p+mN )γ5 + γ5(−/ℓ− /̄p+mN )]u

((ℓ+p̄)2 +m2
N )((ℓ+ 1

2q)
2 +m2

π)((ℓ−1
2q)

2 +m2
π)
, (94.32)
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where p̄ = 1
2 (p′+p). Using {γµ, γ5} = 0, the spinor factors in the numerator

simplify to
u ′[. . .]u = 2mN u

′γ5u . (94.33)

From the spinor properties established in section 38, it is easy to check that
u ′γ5u vanishes when p′ = p; thus u ′γ5u must be O(q), and so we can set
q = 0 everywhere else. Also, taking ℓ≪ p, we can set (ℓ+p̄)2 +m2

N = 2p·ℓ
in the denominator of eq. (94.32). We now have

T = 4(eθgAc+m̃m
2
N/f

2
π)ε
∗
µ

∫ Λ

0

d4ℓ

(2π)4
(2ℓµ) u ′γ5u

(2p·ℓ)(ℓ2 +m2
π)

2
. (94.34)

Integrating over the direction of ℓ results in

ℓµ

p·ℓ → pµ

p2
= − pµ

m2
N

. (94.35)

Next we use the Gordon identity (see problem 38.4)

pµ u ′γ5u = u ′Sµνqνiγ5u+O(q2) , (94.36)

which verifies that u ′γ5u is linear in q. We now have

T = −4(eθgAc+m̃/f
2
π)ε
∗
µ u
′Sµνqνiγ5u

∫ Λ

0

d4ℓ

(2π)4
1

(ℓ2 +m2
π)

2
. (94.37)

In the limit mπ → 0, the integral diverges at small ℓ, generating a chiral
log. This infrared divergence can only arise from diagrams with two pion
propagators, which is why it appears only if the photon is attached to the
pion.

After a Wick rotation, the integral evaluates to (i/16π2) ln(Λ2/m2
π).

Comparing with eq. (94.25), we see that the electric dipole moment of the
neutron is

dn =
eθgAc+m̃

8π2f2
π

[
ln(Λ2/m2

π) +O(1)
]
. (94.38)

Putting in numbers (gA = 1.27, c+ = 1.7, m̃ = 1.2MeV), we find

dn = 3.2 × 10−16 θ e cm . (94.39)

The experimental upper limit is |dn| < 6.3 × 10−26 e cm, and so we must
have |θ| < 2 × 10−10.

Such a small value for a fundamental parameter cries out for an ex-
planation; this is the strong CP problem. Several solutions have been pro-
posed. (1) The up quark mass may actually be zero, since a massless quark
renders θ unobservable (and effectively zero). This requires higher-order
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corrections in the quark masses to account for the masses of the pseudo-
goldstone bosons. (2) The fundamental lagrangian may be CP invariant,
and the observed CP violation in weak interactions due to spontaneous
breaking of CP symmetry. (3) The theta parameter may be promoted to
a field, the axion, which would minimize its energy by rolling to θ = 0; see
problem 94.2. All of these solutions have interesting physical consequences.

Reference Notes

Quarks and theta vacua are discussed in Coleman, Ramond II, and Wein-
berg II.

Problems

94.1) Carry out the field redefinition discussed after eq. (94.22), and verify
that all new terms generated in the lagrangian are suppressed by at
least two powers of quark masses.

94.2) Consider adding to the Standard Model a massless quark, represented
by a pair of Weyl fermions χ and ξ in the 3 and 3 representations
of SU(3). Also add a complex scalar Φ in the singlet representa-
tion. Assume that these fields have a Yukawa interaction of the form
LYuk = yΦχξ + h.c., where y is the Yukawa coupling constant. As-
sume that the scalar potential V (Φ) depends only on Φ†Φ.

a) Show that the lagrangian is invariant under a Peccei-Quinn trans-
formation χ → eiαχ, ξ → eiαξ, Φ → e−2iαΦ, all other fields un-
changed.

b) Show that this global U(1)PQ symmetry is anomalous, and that
θ → θ + 2α under a U(1)PQ transformation.

c) Suppose that V (Φ) has its minimum at |Φ| = v/
√

2, with v 6= 0.
Show that this gives a mass to the quark we introduced.

d) Write Φ = 2−1/2(v+ ρ)eia/v , where ρ and a are fields. Argue that,
in eq. (94.10), we should replace θ with θ+ a/v, and add to eq. (94.9)
a kinetic term −1

2∂
µa∂µa for the a field.

d) Show that the minimum of V (U), defined in eq. (94.11), is at U = I
and a = −vθ. Show that P and CP are conserved at this minimum.

e) The particle corresponding to the a field is the axion; compute its
mass, assuming v ≫ fπ.

f) Note that if v is large, the extra quark becomes very heavy, and
the axion becomes very light. Show that couplings of the axion to
the hadrons are all suppressed by a factor of 1/v.
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95 Supersymmetry

Prerequisite: 69

Supersymmetry is a continuous symmetry that mixes up bosonic and fer-
mionic degrees of freedom. A supersymmetric theory (in four spacetime
dimensions) has a set of supercharges QaA, where a is a left-handed spinor
index, and A is an internal index that runs from 1 to N , where the al-
lowed values of N are 1, 2, and 4. The supercharges can be obtained as
integrals over d3x of the time component of a supercurrent. The supercur-
rent is found via the Noether procedure, once we have identified the set of
supersymmetry transformations that leaves the action invariant.

The supercharges QaA and their hermitian conjugates Q†ȧA, together
with the generators of the Poincare group Pµ and Mµν , obey a supersym-
metry algebra

[QaA, P
µ] = 0 , (95.1)

[Q†ȧA, P
µ] = 0 , (95.2)

[QaA,M
µν ] = (SµνL )a

cQcA , (95.3)

[Q†ȧA,M
µν ] = (SµνR )ȧ

ċQ†ċA , (95.4)

{QaA, QbB} = ZABεab , (95.5)

{QaA, Q†ȧB} = −2δABσ
µ
aȧPµ . (95.6)

Eqs. (95.1) and (95.2) simply say that the supercharges are conserved, and
eqs. (95.3) and (95.4) simply say that their spinor indices are indeed spinor
indices. In eq. (95.5), ZAB = −ZBA must commute with QaA, Pµ, and Mµν ,
and so represents a central charge in the supersymmetry algebra. We will
be concerned only with the case of N = 1 supersymmetry: the index A
then takes on only one value (and so can be dropped), and ZAB = 0.

N = 1 supersymmetric theories are most easily formulated in super-
space, where we augment the usual spacetime coordinate xµ with an anti-
commuting left-handed spinor coordinate θa and its right-handed complex
conjugate θ∗ȧ. We define superfields Φ(x, θ, θ∗) that are functions of all these
coordinates.

The energy-momentum vector generates translations of the usual space-
time coordinate xµ in the usual way,

[Φ(x, θ, θ∗), Pµ] = −i∂µΦ(x, θ, θ∗) . (95.7)

By analogy, we would expect

[Φ(x, θ, θ∗), Qa] = −iQaΦ(x, θ, θ∗) , (95.8)
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[Φ(x, θ, θ∗), Q†ȧ] = −iQ∗ȧΦ(x, θ, θ∗) , (95.9)

where Qa and Q∗ȧ are appropriate differential operators. To figure out
what they should be, we first introduce the anticommuting derivatives ∂a ≡
∂/∂θa and ∂∗ȧ ≡ ∂/∂θ∗ȧ, which obey ∂aθ

c = δa
c and ∂∗ȧθ

∗ċ = δȧ
ċ. Note,

however, that complex conjugation should reverse the order of a product
of Grassmann variables, in order to maintain consistency with hermitian
conjugation. Then we have δa

c = (∂aθ
c)∗ = θ∗ċ(∂a)∗ = −(∂a)

∗θ∗ċ, which
implies

(∂a)
∗ = −∂∗ȧ . (95.10)

Thus, our first guess for the differential operators in eqs. (95.8) and (95.9)
is Qa = ∂a and Q∗ȧ = −∂∗ȧ. However, this choice is inconsistent with

{Qa, Q†ȧ} = −2σµaȧPµ.
An alternative that avoids this pitfall is

Qa = +∂a + iσµaċθ
∗ċ∂µ , (95.11)

Q∗ȧ = −∂∗ȧ − iθcσµcȧ∂µ . (95.12)

These obey the anticommutation relations

{Qa,Qb} = {Q∗ȧ,Q∗ḃ} = 0 , (95.13)

{Qa,Q∗ȧ} = −2iσµaȧ∂µ . (95.14)

It is straightforward to check that eqs. (95.5–95.12) are now mutually com-
patible. In particular, the Jacobi identity

{[Φ, Q], Q†} + {[Φ, Q†], Q} − [Φ, {Q,Q†}] = 0 (95.15)

is satisfied.
Next we introduce the supercovariant derivatives

Da = +∂a − iσµaċθ
∗ċ∂µ , (95.16)

D∗ȧ = −∂∗ȧ + iθcσµcȧ∂µ . (95.17)

These obey
{Da,Db} = {D∗ȧ,D∗ḃ} = 0 , (95.18)

{Da,D∗ȧ} = 2iσµaȧ∂µ , (95.19)

{Da,Qb} = {Da,Q∗ḃ} = {D∗ȧ,Qb} = {D∗ȧ,Q∗ḃ} = 0 . (95.20)

Because of eq. (95.20), we could impose the condition DaΦ = 0 or D∗ȧΦ = 0
on a superfield, and this condition would be preserved by the supersymme-
try transformations of eqs. (95.8) and (95.9). A superfield that obeys

D∗ȧΦ(x, θ, θ∗) = 0 (95.21)
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is a left-handed chiral superfield. Its hermitian conjugate Φ†(x, θ, θ∗) obeys

DaΦ
†(x, θ, θ∗) = 0 , (95.22)

and is a right-handed chiral superfield.
We can solve eq. (95.21) by introducing

yµ = xµ − iθcσµcċθ
∗ċ , (95.23)

and noting that
D∗ȧθa = 0 and D∗ȧyµ = 0 . (95.24)

(When verifying D∗ȧyµ = 0, remember that there is a minus sign from
pulling the ∂∗ȧ through θc.) Thus, any superfield Φ(y, θ) that is a function
of y and θ only is a left-handed chiral superfield.

We can expand Φ(y, θ) in powers of θ; because θ is an anticommuting
variable with a two-valued index, we have θaθbθc = 0, and so the expansion
terminates after the quadratic term. We thus have

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y) , (95.25)

where A(y) and F (y) are complex scalar fields, ψa(y) is a left-handed Weyl
field, and we have used our standard index-suppression conventions: θψ =
θaψa and θθ = θaθa. The factor of root-two is conventional.

We can now substitute in eq. (95.23), and continue to expand in powers
of θ and θ∗. Making use of the spinor identities

θaθb = +1
2θθεab , θaθb = −1

2θθε
ab , (95.26)

θ∗ȧθ
∗
ḃ

= −1
2θ
∗θ∗εȧḃ , θ∗ȧθ∗ḃ = +1

2θ
∗θ∗εȧḃ , (95.27)

where θθ = θaθa and θ∗θ∗ = (θθ)∗ = θ∗ȧθ
∗ȧ, along with the Fierz identity

(θσµθ∗)(θσνθ∗) = −1
2θθθ

∗θ∗gµν , (95.28)

we find

Φ(x, θ, θ∗) = A(x) +
√

2θψ(x) + θθF (x) − i(θσµθ∗)∂µA(x)

− 1√
2
iθθθ∗σ̄µ∂µψ(x) + 1

4θθθ
∗θ∗∂2A(x) . (95.29)

Let us investigate the properties of a left-handed chiral superfield under
a supersymmetry transformation, given by eqs. (95.8) and (95.9). It is
easiest to use the y and θ coordinates, since

Qaθ
b = δa

b , Qay
µ = 0 ,

Q∗ȧθb = 0 , Q∗ȧyµ = −2iθcσµcȧ . (95.30)
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We thus have

QaΦ(y, θ) = ∂aΦ(y, θ)

=
√

2ψa(y) + 2θaF (y) , (95.31)

Q∗ȧΦ(y, θ) = −2iθcσµcȧ∂µΦ(y, θ)

= −2iθcσµcȧ∂µA(y) + i
√

2θθ∂µψ
c(y)σµcȧ , (95.32)

where ∂µ is with respect to y; we used eq. (95.26) to get the last line. We
can now find the supersymmetry transformations of the component fields
A, ψ, and F by matching powers of θ on each side of eqs. (95.8) and (95.9).
Remembering that the Q and Q† operators anticommute with θ and θ∗, we
get

[A,Qa] = −i
√

2ψa , [A,Q†ȧ] = 0 , (95.33)

{ψc, Qa} = −i
√

2εacF , {ψc, Q†ȧ} = −
√

2σµcȧ∂µA , (95.34)

[F,Qa] = 0 , [F,Q†ȧ] =
√

2∂µψ
cσµcȧ , (95.35)

where all component fields have spacetime argument y. However, y is
arbitrary, and so we are free to replace it with x.

Eq. (95.35) is the most important: it tells us that the supersymmetry
transformation of the F field is a total derivative. Therefore,

∫
d4xF (x)

is invariant under a supersymmetry transformation, and hence could be a
term in the action of a supersymmetric theory.

The product of two left-handed chiral superfields is another left-handed
chiral superfield; this is obvious from eq. (95.25), and the fact that the
θ expansion always terminates with the quadratic term. For two chiral
superfields Φ1(y, θ) and Φ2(y, θ), we have

Φ1Φ2 = A1A2 +
√

2θ(A1ψ2 +A2ψ1) + θθ(A1F2 +A2F1 − ψ1ψ2) . (95.36)

More generally, given a set of left-handed chiral superfields Φi, we can
consider a function of them W (Φ); this function is itself a left-handed chiral
superfield. Its F term (the coefficient of θθ) is

W (Φ)
∣∣∣
F

=
∂W (A)

∂Ai
Fi −

1

2

∂2W (A)

∂Ai∂Aj
ψiψj , (95.37)

where repeated indices are summed. The spacetime integral of this term
(like the spacetime integral of any F term) is invariant under supersymme-
try, and hence could be a term in the action of a supersymmetric theory.
In this case, the function W (Φ) is called the superpotential.
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We still need kinetic terms. To get them, we first investigate the prop-
erties of a vector superfield. A vector superfield V (x, θ, θ∗) is hermitian,

[V (x, θ, θ∗)]† = V (x, θ, θ∗) , (95.38)

but is not subject to any other constraint. Its component expansion is

V (x, θ, θ∗) = C(x) + θχ(x) + θ∗χ†(x) + θθM(x) + θ∗θ∗M †(x)

+ θσµθ∗vµ(x) + θθθ∗λ†(x) + θ∗θ∗θλ(x)

+ 1
2θθθ

∗θ∗D(x) , (95.39)

where C and D are real scalar fields, M is a complex scalar field, χ and λ
are left-handed Weyl fields, and vµ is a real vector field.

Following the analysis that led to eq. (95.35), we find

[D,Qa] = −σµaċ∂µλ†ċ , [D,Q†ȧ] = +∂µλ
cσµcȧ . (95.40)

We see that the supersymmetry transformation of the D component of a
vector superfield is a total derivative. Therefore,

∫
d4xD(x) is invariant

under a supersymmetry transformation, and hence could be a term in the
action of a supersymmetric theory.

Consider the product of a left-handed chiral superfield Φ(x, θ, θ∗), as
given by eq. (95.29), and its hermitian conjugate

Φ†(x, θ, θ∗) = A(x) +
√

2θ∗ψ†(x) + θ∗θ∗F †(x) + i(θσµθ∗)∂µA
†(x)

+ 1√
2
iθ∗θ∗∂µψ

†(x)σ̄µθ + 1
4θθθ

∗θ∗∂2A†(x) . (95.41)

The product Φ†Φ is obviously hermitian, and so is a vector superfield.
After considerable use of eqs. (95.26–95.28), we find that the D term (the
coefficient of θθθ∗θ∗) of this vector superfield is

Φ†Φ
∣∣∣
D

= − 1
2∂

µA†∂µA+ 1
4A∂

2A† + 1
4A
†∂2A

+ 1
2 iψ
†σ̄µ∂µψ − 1

2 i∂µψ
†σ̄µψ

+ F †F . (95.42)

The spacetime integral of this term (like the spacetime integral of any D
term) is invariant under supersymmetry, and hence could be a term in the
action of a supersymmetric theory. After some integrations by parts, and
dropping total divergences, we find

Φ†Φ
∣∣∣
D

= −∂µA†∂µA+ iψ†σ̄µ∂µψ + F †F . (95.43)

We see that we have standard kinetic terms for the complex scalar field A
and the left-handed Weyl field ψ. We also have a term with no derivatives
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for the complex scalar field F . The F field is therefore called an auxiliary
field.

If we consider a set of left-handed chiral superfields Φi, we get a hermi-
tian, supersymmetric action if we take as the lagrangian

L = Φ†iΦi

∣∣∣
D

+
(
W (Φ)

∣∣∣
F

+ h.c.
)
, (95.44)

where the index in the first term is summed. Since Fi appears only quadrat-
ically and without derivatives, we can easily perform the path integral over
it. The result is equivalent to solving the classical equation of motion for
Fi,

∂L
∂Fi

= F †i +
∂W (A)

∂Ai
= 0 , (95.45)

and substituting the solution back into the lagrangian; the result is

L = −∂µA†i∂µAi + iψ†i σ̄
µ∂µψi

−
∣∣∣∣
∂W (A)

∂Ai

∣∣∣∣
2

− 1

2

[
∂2W (A)

∂Ai∂Aj
ψiψj + h.c.

]
, (95.46)

where the indices are summed in each term.
As an example, let us consider a single left-handed chiral superfield,

with superpotential
W (A) = 1

2mA
2 + 1

6gA
3 . (95.47)

This is the Wess-Zumino model. The scalar potential is

V (A) = |∂W/∂A|2

= m2A†A+ 1
2gm(A†A2 +A†2A) + 1

4g
2(A†A)2 . (95.48)

We see that the scalar has mass m. The last term in eq. (95.46) becomes

Lmass+Yuk = −1
2mψψ − 1

2gAψψ + h.c. . (95.49)

We see that the fermion also has mass m, and a Yukawa interaction with
the scalar. The Yukawa couping is related (by supersymmetry) to the cubic
and quartic self-interactions of the scalar.

Next we would like to introduce gauge fields. Recall that the vector
superfield V (x, θ, θ∗) has among its components a real vector field vµ(x)
that could be identified as an abelian gauge field. (Later we will add an
adjoint index to the superfield in order to get a nonabelian gauge field.)

We need to generalize the notion of a gauge transformation to super-
fields. We begin by noting that if Ξ is a left-handed chiral superfield, then
i(Ξ†−Ξ) is a vector superfield. We then define a supergauge transformation

V → V + i(Ξ† − Ξ) . (95.50)
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We will attempt to construct actions that are invariant under eq. (95.50).
Following the pattern of eqs. (95.29) and (95.41), we write

Ξ(x, θ, θ∗) = B(x) + θξ(x) + θθG(x)

−i(θσµθ∗)∂µB(x) + . . . , (95.51)

Ξ†(x, θ, θ∗) = B†(x) + θ∗ξ†(x) + θ∗θ∗G†(x)

+i(θσµθ∗)∂µB
†(x) + . . . . (95.52)

If we set B = 1
2 (b+ ia), where a and b are real scalar fields, we find

i(Ξ† −Ξ) = a− iθξ+ iθ∗ξ† − iθθG+ iθ∗θ∗G† − (θσµθ∗)∂µb+ . . . . (95.53)

From eq. (95.39), we see that the supergauge transformation of eq. (95.50)
results in

C → C + a ,

χ → χ− iξ ,

M → M − iG ,

vµ → vµ − ∂µb . (95.54)

The last of these is the usual abelian gauge transformation. The first three
allow us to gauge away the C, χ, and M components of a vector superfield.
That is, we can make a supergauge transformation with a = −C, ξ = −iχ
and G = −iM ; in this gauge, known as Wess-Zumino gauge, the vector
superfield becomes

V = (θσµθ∗)vµ + θθθ∗λ† + θ∗θ∗θλ+ 1
2θθθ

∗θ∗D . (95.55)

Note that we still have the freedom to make the supergauge transformation
of eq. (95.50) with B(x) = 1

2b(x), and that this still implements the ordinary
abelian gauge transformation of eq. (95.54).

Now consider a left-handed chiral superfield Φ that has charge +1 under
a U(1) gauge group. We take the kinetic term for Φ to be

Lkin = Φ†e−2gV Φ
∣∣∣
D
, (95.56)

where g is the gauge coupling. The vector superfield Φ†e−2gV Φ is clearly
invariant under the supergauge transformation

Φ → e−2igΞ Φ , (95.57)

Φ† → Φ†e+2igΞ†

, (95.58)

V → V + i(Ξ† − Ξ) . (95.59)
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Let us evaluate eq. (95.56) in Wess-Zumino gauge, where we have

V 2 = −1
2θθθ

∗θ∗vµvµ , (95.60)

V 3 = 0 . (95.61)

The exponential factor in eq. (95.56) becomes

e−2gV = 1 − 2g(θσµθ∗)vµ − 2gθθθ∗λ† − 2gθ∗θ∗θλ

− θθθ∗θ∗(gD + g2vµvµ) . (95.62)

The relevant terms in Φ†Φ are

Φ†Φ = A†A+
√

2θ∗ψ†A+
√

2θψA†

+ (θσµθ∗)(ψ†σ̄µψ − iA†∂µA+ iA∂µA
†)

+ . . .+ θθθ∗θ∗(Φ†Φ)D , (95.63)

where we used 2(θ∗ψ†)(θψ) = (θσµθ∗)(ψ†σ̄µψ) to get the first term in the
second line, and (Φ†Φ)D is given by eq. (95.42).

Combining eqs. (95.62) and (95.63), taking the D term, and performing
the same integrations by parts that led to eq. (95.43), we find

Φ†e−2gV Φ
∣∣∣
D

= −(DµA)†DµA+ iψ†σ̄µDµψ + F †F

+
√

2gψ†λ†A+
√

2gA†λψ − gA†DA , (95.64)

where Dµ = ∂µ−igvµ is the usual gauge covariant derivative acting on field
of charge +1.

We still need a kinetic term for the vector superfield. To get it, we first
introduce a superfield that carries a left-handed spinor index,

Wa ≡ 1
4D∗ȧD∗ȧDaV . (95.65)

Since the two components of D∗ anticommute, we have D∗ȧD∗ḃD
∗
ċ = 0.

Thus Wa obeys D∗ȧWa = 0, and is therefore a left-handed chiral super-
field. Furthermore, Wa is invariant under the supergauge transformation
of eq. (95.50). To see this, we first note that D∗ȧD∗ȧDa annihilates Ξ† (be-
cause Da does). Then, we use eq. (95.19) to write

D∗ȧD∗ȧDa = −(D∗ȧDa + 2iσµaȧ∂µ)D∗ȧ . (95.66)

Thus, D∗ȧD∗ȧDa also annihilates Ξ (because D∗ȧ does). Therefore, Wa is
invariant under eq. (95.50).

Since Wa is a left-handed chiral superfield, it has an expansion in the
form of eq. (95.25). To find the component fields of Wa, we set x = y +
iθσµθ∗ in eq. (95.55), and expand in θ and θ∗. The result is

V = (θσµθ∗)vµ + θθθ∗λ† + θ∗θ∗θλ+ 1
2θθθ

∗θ∗(D − i∂µvµ) , (95.67)
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where all component fields have spacetime argument y. From eq. (95.24),
we see that D∗ȧ = −∂∗ȧ when it acts on a function of y, θ, and θ∗. We also
have

Da = (Daθ
c)∂c + (Daθ

∗ċ)∂∗ċ + (Day
µ)∂µ = ∂a + 0 − 2iσµaȧθ

∗ȧ∂µ , (95.68)

where ∂µ is with respect to y. Using eq. (95.68), we find

DaV = θ∗θ∗
[
λa + θa(D − i∂ ·v) − i(σµσ̄νθ)a∂µvν + iθθ(σµ∂µλ

†)a
]

+ . . . . (95.69)

When we act on DaV with D∗ȧD∗ȧ = ∂∗ȧ∂
∗ȧ to get Wa, only the coefficient

of θ∗θ∗ survives. Since ∂∗ȧ∂
∗ȧ(θ∗θ∗) = 4, we find

Wa = λa + θa(D − i∂ ·v) − i(σµσ̄νθ)a∂µvν + iθθ(σµ∂µλ
†)a . (95.70)

We can simplify eq. (95.70) by using the identity

(σµσ̄ν)a
b = −gµνδac − 2i(SµνL )a

b . (95.71)

Remembering that SµνL is antisymmetric on µ ↔ ν, and defining the field
strength

Fµν ≡ ∂µvν − ∂νvµ , (95.72)

we get

Wa = λa + θaD − (SµνL )a
cθcFµν + iθθσµaȧ∂µλ

†ȧ . (95.73)

We see that Wa involves the vector field vµ only through its gauge-invariant
field strength Fµν . Since Wa is supergauge invariant, this is to be expected.

Next, consider the F term of W aWa. This term is Lorentz invariant,
and its spacetime integral (like the spacetime integral of any F term) is
invariant under supersymmetry, and hence could be a term in the action of
a supersymmetric theory. Working out the components, we find

W aWa

∣∣∣
F

= 2iλaσµaȧ∂µλ
†ȧ − 1

2Tr(SµνL S
ρσ
L )FµνFρσ +D2 , (95.74)

where Tr(SµνL S
ρσ
L ) = (SµνL )a

c(SρσL )c
a. To get the spin matrices into this

form, we used the fact that (SµνL )ac is symmetric on a ↔ c. Now we use
the identity

Tr(SµνL S
ρσ
L ) = 1

2(gµρgνσ − gµσgνρ) − 1
2 iε

µνρσ (95.75)

to get

W aWa

∣∣∣
F

= 2iλaσµaȧ∂µλ
†ȧ − 1

2F
µνFµν − 1

2 iF̃
µνFµν +D2 , (95.76)
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where F̃µν = 1
2ε
µνρσFρσ. We can now identify the kinetic term for the

vector superfield as

Lkin = 1
4W

aWa

∣∣∣
F

+ h.c.

= iλ†σ̄µ∂µλ− 1
4F

µνFµν + 1
2D

2 . (95.77)

We integrated by parts and dropped total divergences to get the second
line. We see that we have the standard kinetic terms for the gauge field vµ
and the gaugino field λ, while D is an auxiliary field.

All of this generalizes in a straightforward way to the nonabelian case.
We define a matrix-valued vector superfield V = V aT aR , and a matrix-
valued chiral superfield Ξ = ΞaT aR , where a is an adjoint group index. A
chiral superfield Φ in the representation R still transforms according to
eqs. (95.57) and (95.58), but for the vector field we have

e−2gV → e−2igΞ†

e−2gV e+2igΞ ; (95.78)

this reduces to eq. (95.59) in the abelian case.
The field-strength superfield is now

Wa = − 1
8gD∗ȧD∗ȧe+2gVDae

−2gV . (95.79)

Under a supergauge transformation,

Wa → e−2igΞWa e
+2igΞ . (95.80)

Eq. (95.73) still holds, but the derivative that acts on λ† is now the gauge co-
variant derivative for the adjoint representation, and Fµν now includes the
usual nonabelian commutator term. These changes also apply to eq. (95.77),
where we must also trace over the group indices and (for proper normal-
ization) divide by the index T (R).

Reference Notes

Introductions to supersymmetry can be found in Martin, Siegel, Weinberg
III, and Wess & Bagger.

Problems

95.1) Use eq. (95.6) to show that the hamiltonian is positive semidefinite,
and that a state with zero energy must be annihilated by all the
supercharges.
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95.2) Supersymmetry is spontaneously broken if the ground state |0〉 is not
annihilated by all the supercharges.

a) Use the first of eqs. (95.34) to show that supersymmetry is spon-
taneously broken if 〈0|F |0〉 6= 0.

b) Compute {λa, Qb}. Use the result to show that supersymmetry is
spontaneously broken if 〈0|D|0〉 6= 0.

95.3) Consider a supersymmetric theory with three chiral superfields A, B,
and C, and a superpotential W = mBC+κA(C2−v2), where m and
v are parameters with dimensions of mass, and κ is a dimensionless
coupling constant. This is the O’Raifeartaigh model.

a) Show that one or more F components is nonzero at the minimum
of the potential, and hence that supersymmetry is spontaneously bro-
ken.

b) Show that the potential is minimized along a line in field space,
and find the masses of the particles at an arbitrary point on this
line. You should find that there is a massless Goldstone fermion or
goldstino that is related by supersymmetry to the linear combination
of F fields that gets a nonzero vacuum expectation value.

95.4) Supersymmetric Quantum Electrodynamics. Consider a supersym-
metric U(1) gauge theory with chiral superfields Φ and Φ with charges
+1 and −1, respectively. Here the bar over the Φ in the field Φ is part
of the name of the field, and does not denote any sort of conjugation.
We include a gauge invariant superpotential W = mΦΦ.

a) Work out the lagrangian in terms of the component fields.

b) Eliminate the auxilliary fields F , F , and D.

c) Work out the Feynman rules.

95.5) In a supersymmetric gauge theory with a U(1) factor, we can add a
Fayet-Illiopoulos term LFI = ξD to the lagrangian, where D is the
auxilliary field for the U(1) gauge field, and ξ is a parameter with
dimensions of mass-squared.

a) Explain why adding this term preserves supersymmetry. Explain
why the corresponding gauge field cannot be nonabelian.

b) Add this term to the SQED lagrangian that you found in problem
94.4, and eliminate the auxilliary fields.

c) Minimize the resulting potential. Show that supersymmetry is
spontaneously broken if ξ is in a certain range.
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95.6) R symmetry. Given a supersymmetric gauge theory (abelian or non-
abelian), consider a global U(1) transformation that changes the
phase of the gaugino fields, λa → e−iαλa; we say that the gauginos
have R charge +1.

a) If R symmetry is to be a good symmetry of the lagrangian, what
relation must hold between the R charges of the scalar and fermion
components of a chiral superfield that couples to the gauge fields?

b) In additon, what conditions must be placed on the superpotential?
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96 The Minimal Supersymmetric Standard

Model

Prerequisite: 89, 95

Having seen how to construct a general supersymmetric gauge theory in
section 95, we can now write down a supersymmetric version of the Stan-
dard Model.

To do so, we introduce vector superfields for the gauge group SU(3) ×
SU(2) × U(1), which include the usual gauge bosons along with their fer-
mionic partners, the gauginos; chiral superfields LiI , ĒI , QαiI , Ū

α
I , and D̄α

I

that include three generations of quarks and leptons along with their scalar
partners, the squarks and sleptons; and chiral superfields Hi and H̄i in the
representations (1, 2,−1

2 ) and (1, 2,+1
2 ), which include two copies of the

usual Higgs field along with their fermionic partners, the higgsinos. We
give all these fields supersymmetric, gauge invariant kinetic terms, and a
superpotential

W = −yIJ ε
ijHiLjIĒJ −y′IJHiQαjID̄

α
J −y′′IJH̄

iQαiIŪ
α
J −µεijH̄iHj , (96.1)

where µ is a mass parameter. This superpotential generates the usual
Yukawa couplings, among others, and gives a positive mass-squared to both
Higgs fields. We forbid terms of the form H̄ iLiI (which are allowed by
the gauge symmetry) by invoking a discrete symmetry, R parity . Under R
parity, all Standard Model fields (including both Higgs scalars) are taken to
be even, and all superpartner fields (gauginos, higgsinos, squarks, sleptons)
are taken to be odd.

Supersymmetry is clearly not an exact symmetry of the real world,
and so if present must be spontaneously broken. Correct phenomenology
requires supersymmetry breaking to be triggered by fields other than those
listed above. There are many possibilities for the dynamics of the fields
in this hidden sector, and an exploration of them is beyond our scope.
However, we can parameterize the effects of the hidden sector via a spurion
field. This is a constant chiral superfield of the form

S = m2
S θθ , (96.2)

where mS is the supersymmetry breaking scale. We couple S to the quark,
lepton, and Higgs superfields via D terms of the form

Lspur,D = m−2
M S†S

{
C(H)H†H + C(H̄)H̄†H̄

+
∑

IJ

[
C

(L)
IJ L†ILJ + C

(Ē)
IJ Ē†I ĒJ +C

(Q)
IJ Q†IQJ

+ C
(Ū)
IJ Ū †I ŪJ + C

(D̄)
IJ D̄†ID̄J

]}∣∣∣∣
D
. (96.3)
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Here we have suppressed all but generation indices; each C
(Φ)
IJ is a dimen-

sionless hermitian matrix in generation space. The parameter mM is the
messenger scale. Eq. (96.3) gives masses of order m2

S/mM to the scalars.

We also couple S to the chiral gauge superfields W
(i)
a via F terms of

the form

Lspur,gauge = m−1
M S

∑

i=1,2,3

C(i)W (i)aW (i)
a

∣∣∣∣
F

+ h.c. , (96.4)

where the sum is over the three gauge-group factors; a is a spinor index.
Eq. (96.4) gives masses of order m2

S/mM to the gauginos.
Finally, we couple S to the chiral superfields via F terms of the form

Lspur, F = m−1
M S

28∑

A=1

CAWA

∣∣∣∣
F

+ h.c. , (96.5)

where WA is one of the 28 gauge-invariant terms in the superpotential. In
particular, eq. (96.5) includes a mass term of the form H̄H + h.c. for the
Higgs scalars.

Eqs. (96.1) and (96.3–96.5) specify the Minimal Supersymmetric Stan-
dard Model, or MSSM for short. Obviously, it has a complicated phe-
nomenology that is beyond our scope to explore in detail. One point worth
noting is that R parity implies that the lightest superpartner, or LSP, is
absolutely stable.

Reference Notes

Supersymmetric versions of the Standard Model are discussed in Martin,
Ramond II, and Weinberg III.

Problems

96.1) Explain why we need two Higgs doublets.

96.2) a) Write the mass terms for the Higgs scalars as

LHiggsmass = −m2
1H
†H −m2

2H̄
†H̄ −m2

3ε
ij(H̄iHj + h.c.) , (96.6)

and compute the quartic terms inH and H̄ that arise from eliminating
the auxilliary SU(2) and U(1) D fields.

b) Find the conditions on the mass parameters in eq. (96.6) in order
for the potential to be bounded below.

c) Find the conditions on the mass parameters in eq. (96.6) in order
to have spontaneous breaking of the SU(2) × U(1) symmetry.
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d) Show that there are five physical Higgs particles, two charged and
three neutral.

e) Let tan β ≡ v̄/v be the ratio of the two Higgs VEVs. Show that

tan β =
m2

1 −m2
3

m2
3 −m2

2

. (96.7)
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97 Grand Unification

Prerequisite: 89

The Standard Model is based on the gauge group SU(3) × SU(2) × U(1),
with left-handed Weyl fields in three copies of the representation (1, 2,−1

2 )⊕
(1, 1,+1) ⊕ (3, 2,+1

6 ) ⊕ (3̄, 1,−2
3 ) ⊕ (3̄, 1,+1

3 ), and a complex scalar field
in the representation (1, 2,−1

2 ). The lagrangian includes all terms of mass
dimension four or less that are allowed by the gauge symmetries and Lorentz
invariance.

To complete the specification of the Standard Model, we need twenty
real numbers: the three gauge couplings; the three diagonal entries of each
of the three diagonalized Yukawa coupling matrices (for the up quarks, the
down quarks, and the charged leptons); the four angles in the CKM mixing
matrix for the quarks; the vacuum angles for the SU(3) and SU(2) gauge
groups; the scalar quartic coupling; and the scalar mass-squared.

The goal of grand unification is to construct a more compact model
with fewer parameters by supposing that the Standard Model is the result
of the spontaneous breaking of a larger gauge symmetry. The simplest
model along these lines is the Georgi–Glashow SU(5) model. Its start-
ing point is the grand unified gauge group SU(5). We include a scalar
field Φ = ΦaT a in the adjoint or 24 representation, and assume that
the scalar potential for this field results in a vacuum expectation value
(VEV) of the form 〈0|Φ|0〉 = diag(−1

3 ,−1
3 ,−1

3 ,+
1
2 ,+

1
2)V . As we saw in

section 84, this VEV spontaneously breaks the gauge symmetry down to
SU(3) × SU(2) × U(1). The generator of the unbroken U(1) subgroup is
T 24 = cdiag(−1

3 ,−1
3 ,−1

3 ,+
1
2 ,+

1
2)c, where c2 = 3/5. It will prove conve-

nient to write
T 24 =

√
3
5 Y , (97.1)

and express the U(1) charge as the value of Y rather than the value of T 24.
We also note that the SU(5) breaking scale V must be considerably larger
than the SU(2)×U(1) breaking scale v ∼ 250GeV in order to suppress the
observable effects of the extra gauge fields.

Under the SU(3) × SU(2) × U(1) subgroup, the fundamental and anti-
fundamental representations of SU(5) transform as

5 → (3, 1,−1
3 ) ⊕ (1, 2,+1

2 ) . (97.2)

5 → (3̄, 1,+1
3 ) ⊕ (1, 2,−1

2 ) . (97.3)

Next we use eq. (97.2) to find that the product 5 ⊗ 5 transforms as

5 ⊗ 5 → (6, 1,−2
3 )S ⊕ (3, 2,+1

6 )S ⊕ (3̄, 1,−2
3 )S

⊕ (3̄, 1,−2
3 )A ⊕ (3, 2,+1

6 )A ⊕ (1, 3,+1)A , (97.4)
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where the subscripts indicate the symmetric and antisymmetric parts of
the product. In terms of SU(5), we have

5 ⊗ 5 = 15S ⊕ 10A . (97.5)

Comparing eqs. (97.4) and (97.5), we find

10 → (3̄, 1,−2
3 ) ⊕ (3, 2,+1

6 ) ⊕ (1, 3,+1) . (97.6)

From eqs. (97.2) and (97.6), we see that one generation of quark and lepton
fields fits exactly into the representation 5 ⊕ 10 of SU(5).

We therefore define a left-handed Weyl field ψi in the 5 representation
of SU(5), and a left-handed Weyl field χij = −χji in the 10 representation.
The gauge covariant derivatives of these fields are

(Dµψ)i = ∂µψ
i − ig5A

a
µ(T

a
5
)ijψ

j

= ∂µψ
i + ig5A

a
µ(T

a)j
iψj , (97.7)

(Dµχ)ij = ∂µχij − ig5A
a
µ(T

a
10)ij

klχkl

= ∂µχij − ig5A
a
µ[(T

a)i
kχkj + (T a)j

lχil] , (97.8)

where g5 is the SU(5) gauge coupling and T a is the generator matrix in the
fundamental representation. The kinetic terms for these fields are

Lkin = iψ†i σ̄
µ(Dµψ)i + 1

2 iχ
†ij σ̄µ(Dµχ)ij , (97.9)

where the implicit sum over i and j is unrestricted; this necessitates the
prefactor of one-half in the second term to avoid double counting. The
interaction terms with the gauge fields then work out to be

Lint = −g5
[
ψ†i (A

T
µ)
i
jσ̄
µψj + χ†ji(Aµ)i

kσ̄µχkj
]
, (97.10)

where Aµ = AaµT
a is the matrix-valued gauge field, and AT

µ is its transpose.
Note that we have written the factors in matrix-multiplication order (with
a trace for the second term).

We can identify the components of ψi and χij as

ψi = ( d̄r d̄b d̄g e −ν ) , (97.11)

χij =




0 ūg −ūb ur dr

−ūg 0 ūr ub db

ūb −ur 0 ug dg

−ur −ub −ug 0 ē

−dr −db −dg −ē 0




, (97.12)
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where r, b, and g stand for the three colors (red, blue, and green). We can
also write the gauge fields as

AaT a =




Gr
r−1

3cB Gr
b Gr

g 1√
2
X1
r

1√
2
X2
r

Gb
r Gb

b−1
3cB Gb

g 1√
2
X1
b

1√
2
X2
b

Gg
r Gg

b Gg
g−1

3cB
1√
2
X1
g

1√
2
X2
g

1√
2
X†r1

1√
2
X†b1

1√
2
X†g1

1
2W

3+1
2cB

1√
2
W+

1√
2
X†r2

1√
2
X†b2

1√
2
X†g2

1√
2
W− −1

2W
3+1

2cB




,

(97.13)
where the Lorentz index has been omitted. Here B is the hypercharge
gauge field, and W 3 and

√
2W± = W 1 ± iW 2 are the SU(2) gauge fields.

The gluon fields Gi
j are subject to the constraint Gr

r+Gb
b+Gg

g = 0. The
Xi
α fields correspond to the broken generators of SU(5), and hence become

massive; here i is an SU(2) index and α is an SU(3) index. As we saw in
section 84, the Xi

α fields transform as (3, 2,−5
6 ) under SU(3)×SU(2)×U(1),

and their mass is MX = 5
6
√

2
g5V .

If we substitute eqs. (97.11–97.13) into eq. (97.10), we find the usual
interactions of the SU(3) × SU(2) × U(1) gauge fields with the quarks and
leptons, but with √

5
3 g1 = g2 = g3 = g5 . (97.14)

These relations among the gauge couplings hold in the MS renormalization
scheme; later we will discuss a modified scheme that is more appropriate
at energies well below MX.

We also find the couplings of the X field to quarks and leptons; these
work out to be

LX,int = − 1√
2
g5
[
X†α1µ(d̄ †ασ̄

µe− ē†σ̄µdα + u†β σ̄µūγεαβγ)

+X†α2µ(−d̄ †ασ̄µν + ē†σ̄µuα + d†β σ̄µūγεαβγ)
]
+ h.c.

= − 1√
2
g5X

†α
iµ (εij d̄ †ασ̄

µℓj − εij ē†σ̄µqjα + q†βiσ̄µūγεαβγ) + h.c.

≡ − 1√
2
g5X

†α
iµ J

iµ
α + h.c. , (97.15)

where the last line defines the current Jµ that couples to the Xµ field. (To
include more than one generation, we add a generation index I to each
quark and lepton field, and sum over it.) The most interesting feature of
eq. (97.15) is that the first two terms in the current have baryon number
B = +1

3 and lepton number L = +1, while the third term has B = −2
3

and L = 0. Thus exchange of an X boson can violate baryon and lepton
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number conservation, leading to phenomena such as proton decay. Proton
decay has not been observed; the limit on the rate 1/τ for p → e+π0 is
τ > 1033 yr. A rough estimate of 1/τ from eq. (97.15) is g4

5m
5
p/8πM

4
X.

Taking g5 ∼ g2 ∼ 0.6, we find that we must have MX > 3 × 1015 GeV.
We still need a scalar field in the representation (1, 2,−1

2 ). The smallest
complete representation of SU(5) that includes this piece is the 5. Call the
corresponding field H i; we can identify its components as

H i = (φr φb φg ϕ− −ϕ0 ) . (97.16)

The possible gauge-invariant Yukawa couplings with the ψi and χij fields
are

LYuk = − yH iψjχij − 1
8y
′′εijklmH†i χjkχlm + h.c. ; (97.17)

with three generations, y and y′′ become matrices in generation space. We
can write out LYuk using eqs. (97.11), (97.12), and (97.16); the result is

LYuk = − yεijϕiℓj ē− yεijϕiqαj d̄
α − y′′ϕ†iqαiū

α

− yεαβγφαd̄βūγ − yεijφαqαiℓj − y′′φ†αū
αē+ h.c. . (97.18)

The terms on the first line are those of the Standard Model, except that
the down-quark Yukawa coupling matrix (called y′ in section 89) is the
same as the charged-lepton Yukawa coupling matrix (called y in section
88). Since the quark and lepton masses are directly proportional to the
Yukawa couplings, eq. (97.18) predicts

mb = mτ , ms = mµ , md = me . (97.19)

These relations hold in the MS renormalization scheme; later we will discuss
a modified scheme that is more appropriate at energies well below MX. The
terms on the second line of eq. (97.18) are the couplings of the colored scalar
field φ to the quarks and leptons; we see that these couplings, like those of
the Xµ field, violate baryon and lepton number conservation. Since first-
generation Yukawa couplings are smaller than gauge couplings by a factor
of 105, the limit on Mφ from proton decay is roughly Mφ > 1010 GeV.

To compute Mφ, we need the complete scalar potential. For simplic-
ity, we assume a Z2 symmetry under Φ ↔ −Φ. Then the most general
renormalizable potential is

V (Φ,H) = − 1
2m

2
Φ TrΦ2 + 1

4λ1Tr Φ4 + 1
4λ2(Tr Φ2)2

+m2
HH

†H + 1
4κ1(H

†H)2 − 1
2κ2H

†Φ2H . (97.20)

We take all the parameters (m2
Φ, m2

H , λ1, λ2, κ1, κ2) to be positive. We
found in problem 84.1 that in this case the first line of eq. (97.20) is mini-
mized by Φ = diag(−1

3 ,−1
3 ,−1

3 ,+
1
2 ,+

1
2 )V , with V 2 = 36m2

Φ/(7λ1 +30λ2).
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From the first and third terms on the second line of eq. (97.20), we find that
the masses-squared of the ϕ ∼ (1, 2,−1

2 ) and φ ∼ (3̄, 1,+1
3 ) scalar fields are

m2
ϕ = m2

H − 1
8κ2V

2 , (97.21)

M2
φ = m2

H − 1
18κ2V

2 . (97.22)

We want m2
ϕ ∼ −(100GeV)2 and M2

φ > +(1010 GeV)2. This requires
m2
H to be equal to 1

8κ2V
2 to at least sixteen significant digits (but not

exactly). There is no obvious reason for the parameters in eq. (97.20) to
satisfy this odd relation; we would more naturally expect m2

ϕ and M2
φ to

have the same order of magnitude (and furthermore to have κ2 ∼ g2
5 and

hence Mφ ∼ MX > 1015 GeV). This is the fine tuning problem of grand
unified theories. More generally, we can ask why the breaking scale of
the grand unified group is so much larger than the breaking scale of the
electroweak subgroup; this is gauge hierarchy problem.

Since the Xµ and φ fields are so heavy, we can integrate them out,
generating effective interactions among the quarks and leptons.1 For the
Xµ field, we get the leading term (in a double expansion in powers of g5 and
inverse powers of MX) by ignoring the kinetic energy and other interactions
of the Xµ field, solving the equations of motion for Xµ that follow from
LX,mass + LX,int, where LX,int is given by eq. (97.15) and

LX,mass = −M2
XX
†α
iµX

iµ
α , (97.23)

and finally substituting the solutions back into LX,mass + LX,int. This is
equivalent to evaluating tree-level Feynman diagrams with a single X ex-
changed. The result is

LX,eff =
1

2M2
X

J†αiµ J
iµ
α . (97.24)

Keeping only fields from the first generation, we find that the baryon- and
lepton-number violating terms in LX,eff are

L|∆B|=1
X,eff =

g2
5

2M2
X

εijεαβγ(d̄ †ασ̄
µℓi − ē†σ̄µqiα)ū

†
β σ̄µqjγ + h.c.

= − g2
5

M2
X

εijεαβγ
[
(ℓiqjγ)(d̄

†
αū
†
β) + (ē†ū†γ)(qiαqjβ)

]
+ h.c. , (97.25)

where the second line follows from a Fierz identity and a relabeling of
the color indices in the second term. We can treat the φ field similarly;

1We should also integrate out the heavy components of Φ, which transform as (8, 1, 0)⊕
(1, 3, 0)⊕ (1, 1, 0) under SU(3)×SU(2)×U(1), but these do not couple directly to quarks
and leptons.
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see problem 97.2. We will compute the decay rate for p → e+π0 from
eq. (97.25) in problem 97.4.

Once the heavy fields have been integrated out, we can apply the MS
renormalization scheme to the theory with the remaining light fields. This
is not the same as MS for the original theory, because now only light fields
circulate in loops. (Loops of heavy fields contribute to corrections to the
effective interactions.) With the usual fields of the Standard Model, we
find from our results in sections 66 and 73 that the one-loop beta functions
for the three gauge couplings are given by

µ
d

dµ
gi =

bi
16π2

g3
i +O(g5

i ) , (97.26)

with

b3 = −11 + 4
3n , (97.27)

b2 = −22
3 + 4

3n+ 1
6 , (97.28)

b1 = +20
9 n+ 1

6 , (97.29)

where n = 3 in the number of generations; the +1
6 contributions to b2

and b1 are from the ϕ field. These formulae apply for µ < MX. (We
are assuming that the heavy scalars do not have masses much less than
MX.) For µ ≥ MX, we must restore the heavy fields, and then eq. (97.14)
applies. If we now neglect the higher-loop corrections, integrate eq. (97.26)
for each coupling, impose eq. (97.14) at µ = MX, and set g2 = e/ sin θW and
g1 = e/ cos θW, we find for µ < MX that

1

α3(µ)
=

1

α5(MX)
+
b3
2π

ln(MX/µ) , (97.30)

sin2 θW(µ)

α(µ)
=

1

α5(MX)
+
b2
2π

ln(MX/µ) , (97.31)

cos2 θW(µ)

α(µ)
=

5/3

α5(MX)
+
b1
2π

ln(MX/µ) . (97.32)

The quantities on the left-hand sides are measured at µ = MZ to be

α3(MZ) = 0.1187 ± 0.0020 . (97.33)

1/α(MZ) = 127.91 ± 0.02 , (97.34)

sin2 θW(MZ) = 0.23120 ± 0.00015 . (97.35)
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We can use eqs. (97.30–97.32) to solve for 1/α5(MX) and ln(MX/MZ) in
terms of the known parameters α(MZ) and α3(MZ); the result is

1

α5(MX)
=

1

b1+b2−8
3b3

( −b3
α(MZ)

+
b1+b2
α3(MZ)

)
, (97.36)

ln(MX/MZ) =
2π

b1+b2−8
3b3

(
1

α(MZ)
− 8/3

α3(MZ)

)
. (97.37)

Plugging in eqs. (97.27–97.29) and eqs. (97.33–97.34), we find 1/α5(MX) =
41.5 and MX = 7×1014 GeV; two-loop corrections lower MX to 4×1014 GeV.
This value of MX is about an order of magnitude below the lower limit
imposed by proton decay.

We can also use eqs. (97.30–97.32) to express sin2 θW(MZ) in terms of
α(MZ) and α3(MZ); the result is

sin2 θW(MZ) =
1

b1+b2−8
3b3

(
b2−b3 + (b1−5

3b2)
α(MZ)

α3(MZ)

)
. (97.38)

This is a prediction of the SU(5) model that we can test. Plugging in
eqs. (97.27–97.29) and eqs. (97.33–97.34), we find sin2 θW(MZ) = 0.207.
Two-loop corrections raise this to 0.210±0.001. Comparing with eq. (97.35),
we see that the SU(5) prediction is too low by about 10%.

The situation improves considerably if we consider the Minimal Su-
persymmetric Standard Model, discussed in section 96. In this case the
beta-function coefficients become

b3 = −9 + 2n , (97.39)

b2 = −6 + 2n+ 1 , (97.40)

b1 = +10
3 n+ 1 . (97.41)

Now we find sin2 θW(MZ) = 0.231, with two-loop corrections raising it to
0.234; there are, however, numerous sources of uncertainty related to the
masses of the supersymmetric particles. We also find MX = 2 × 1016 GeV;
this result (which is not changed significantly by two-loop corrections) is
high enough to avoid too-rapid proton decay.

Next, let us consider the predicted equality of the down quark and
charged lepton masses, eq. (97.19). These relations are subject to renormal-
ization; see problem 97.5. However, the one-loop corrections from gauge-
boson exchange cancel in the predicted ratios

me

mµ
=
md

ms
,

mµ

mτ
=
ms

mb
. (97.42)
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Alas, these predictions are not satisfied, in the first case by an order of
magnitude. Resolving this problem requires either a more complicated
set of Higgs fields, and/or including higher-dimension, nonrenormalizable
terms in the lagrangian that are suppressed by inverse powers of the some
mass scale larger than MX, such as the Planck mass MP = 1.2× 1019 GeV.
To get neutrino masses in the SU(5) model (see section 91), we must add
left-handed Weyl fields ν̄I that are singlets of SU(5), and couple them to
the neutrinos via LYuk = −ỹIJH

†
i ψ

i
I ν̄J .

A more elegant scheme starts with SO(10) as the grand unified gauge
group. SO(10) has a complex sixteen dimensional spinor representation
that transforms as 1 ⊕ 5̄ ⊕ 10 under the SU(5) subgroup; thus, each gen-
eration of fermions (including ν̄) fits into a single Weyl field in this 16
representation. A scalar field in the 10 representation is needed for the
Standard Model Higgs field, and additional scalars in higher dimensional
representations (such as the 45 dimesional adjoint representation and the
16) are needed to break SO(10) down to SU(3) × SU(2) × U(1).

A great variety of grand unified models can be constructed, with and
without supersymmetry. Which, if any, are relevant to the natural world is
a question yet to be answered.

Problems

97.1) Is the gauge symmetry of the SU(5) model anomalous? If it is, modify
the model to turn it into a consistent quantum field theory. Prereq-
uisite: section 75. Hint: see problem 70.4.

97.2) Compute the ∆B = ±1 terms in the effective lagrangian that arise
from φ exchange.

97.3) Let us write eq. (97.25) as

Leff = − ZC1C1O1 − ZC2C2O2 + h.c. , (97.43)

where O1 ≡ εijεαβγ(ℓiqjγ)(d̄
†
αū
†
β) and O2 ≡ εijεαβγ(ē†ū†γ)(qiαqjβ),

ZC1 and ZC2 are renormalizing factors, and C1 and C2 are coefficients
that depend on the MS renormalization scale µ. At µ = MX, we have
C1(MX) = C2(MX) = 4πα5(MX)/M2

X.

a) Working in Lorenz gauge, and using the results of problems 88.7
and 89.5, show that the one-loop contribution to ZC1 from gauge-
boson exchange is given by Zm in spinor electrodynamics in Lorenz
gauge, with

(−1)(+1)e2 →
[
0 + εα

′β′γ(T a3 )α′
α(T a3 )β′

β/εαβγ
]
g2
3
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+
[
εi

′j′(T a2 )i′
i(T a2 )j′

j/εij + 0
]
g2
2

+
[
(−1

2)(+1
6 ) + (+1

3 )(−2
3)
]
g2
1 . (97.44)

Evaluate these coefficients.

b) Similarly, compute the one-loop contribution to ZC2 from gauge-
boson exchange.

c) Compute the corresponding anomalous dimensions γ1 and γ2 of C1

and C2.

d) Compute the numerical values of C1(µ) and C2(µ) at µ = 2GeV.
For simplicity, take the top quark mass equal to MZ, and all other
quark masses less than 2GeV.

97.4) Consider the proton decay mode with the most stringent experimental
bound, p→ e+π0. The terms in eq. (97.43) relevant for this mode are

Leff = C1ε
αβγ(euγ)(d̄

†
αū
†
β) + 2C2ε

αβγ(ē†ū†γ)(dαuβ) + h.c. . (97.45)

Note that, under the SU(2)L ×SU(2)R global symmetry of QCD that
we discussed in section 83, the operator u(d̄ †ū†) transforms as the
first component of a (2, 1) representation, while the operator ū†(du)
is related by parity, and transforms as the first component of a (1, 2)
representation. At low energies, we can replace these operators (up to
an overall constant factor) with hadron fields with the same properties
under Lorentz and SU(2)L × SU(2)R × U(1)V transformations.

a) Show that PL(uN )1 and PR(u†N )1 transform appropriately. Here
u = exp[ iπaT a/fπ], where πa is the triplet of pion fields, and Ni is
the Dirac field for the proton-neutron doublet.

b) Show that the low-energy version of eq. (97.45) is then

Leff = C1A ECPL(uN )1 + 2C2A ECPR(u†N )1 + h.c. , (97.46)

where EC is the charge conjugate of the Dirac field for the electron
(in other words, EC is the Dirac field for the positron), and A is a
constant with dimensions of mass-cubed. Lattice calculations have
yielded a value of A = 0.0090GeV3 for µ = 2GeV.

c) Write out the terms in eq. (97.45) that contain the proton field and
either zero or one π0 fields.

d) Compute the amplitude for p → e+π0. Note that there are two
contributing Feynman diagrams: one where eq. (97.46) supplies the
proton-positron-pion vertex, and one where the proton emits a pion
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via the interaction in eq. (83.30), and then converts to a positron via
the no-pion terms in eq. (97.46). Neglect the positron mass. Hint:
your result should be proportional to 1 + gA.

e) Compute the spin-averaged decay rate for p → e+π0. Use the
values of C1 and C2 for µ = 2GeV that you computed in problem
97.3. How does your answer compare with the naive estimate we
made earlier? Hint: your result should be proportional to C2

1 + 4C2
2 .

97.5) Consider the Yukawa couplings for the the down quark and charged
lepton of one generation,

LYuk = − Zyyε
ijϕiℓj ē− Zy′y

′εijϕiqαj d̄
α , (97.47)

where we have included renormalizing factors.

a) Consider one-loop contributions from gauge-boson exchange to
Zy′/Zy. Show that the only contributions of this type that do not
cancel in the ratio are those where the gauge boson connects the two
fermion lines.

b) Show that, in Lorenz gauge, these contributions to Zy′ and Zy
are given by Zm in spinor electrodynamics in Lorenz gauge, with a
replacement analogous to eq. (97.44) that you should specify.

c) Let r ≡ y′/y, and compute the anomalous dimension of r.

d) Take r(MX) = 1, and evaluate r(MZ). For simplicity, take the top
quark mass equal to MZ.

e) Below MZ, treat the top quark as heavy, and neglect the small elec-
tromagnetic contribution to the anomalous dimension of r. Compute
r(mb), where mb = mb(mb) = 4.3GeV is the bottom quark mass pa-
rameter. Use your results to predict the tau lepton mass. How does
your prediction compare with its observed value, mτ = 1.8GeV?
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