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Fractal Stability Border in Plane Couette Flow
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We study the dynamics of localized perturbations in plane Couette flow with periodic lateral boundary
conditions. For small Reynolds numbers and small amplitude of the initial state the perturbation decays
on a viscous time scale« Re. For Reynolds number larger than about 200, chaotic transients appear
with lifetimes longer than the viscous one. Depending on the type of the perturbation, isolated initial
conditions with infinite lifetime appear for Reynolds numbers larger than about 270-305. In this third
regime, the lifetime as a function of Reynolds number and amplitude is fractal. These results suggest
that in the transition region the turbulent dynamics is characterized by a chaotic repeller rather than an
attractor. [S0031-9007(97)04759-5]

PACS numbers: 47.20.Ft, 05.45.+b, 47.15.Fe, 47.53.+n

For a variety of simple flows linear stability theory stability region around the laminar profile becomes small,
predicts and experiments verify that the transition toperhaps irrelevantly small. One can imagine that because
turbulence proceeds by a sequence of instabilities at wetlf this growth some of the turbulence seen in these
defined critical values of the control parameter [1,2].systems is noise induced [18].

Prominent examples include a layer of fluid heated from To shed some more light on the dynamics in these cases
below, flow between rotating cylinders, liquid jets, andwe have studied the evolution of perturbations in a numeri-
stratified fluids. The transition to turbulence in pipe flow cal model for plane Couette flow. The numerical method
[3] or plane Couette flow [4,5] and to spiral turbulencewas designed specifically to allow accurate long integra-
in the flow between counter-rotating cylinders [6] doestiontimes. The lifetime of these perturbations was mapped
not fit this pattern. If the Reynolds number is sufficiently out in an amplitude—Reynolds number plane. This al-
large, turbulent dynamics can occur, although the laminalowed us to identify three dynamical regimes and to study
profile is still stable. A formal linear stability analysis the transitions between them. The results indicate that
predicts either no instability (as in plane Couette flowthere is no sharp transition to turbulence: the landscape of
[7]) or one for Reynolds numbers larger than the onedifetimes has fractal features, with some isolated lifetimes
where experiments begin to show turbulent behavior (e.glpnger than the finite integration time. Thus, whether an
plane Poiseuille flow [8]). The nature of the transition initial condition leads to an evolution identified as turbulent
is different from the cases with a linear instability. It depends in a sensitive way on initial amplitude, Reynolds
depends on the size of the perturbation [9], shows veryjwumber, and the experimental observation time. This is in
strong intermittency [10,11], and has no sharply definedjualitative agreement with experiments on plane Couette
stability border [3]. flow [4,5] and consistent with observations on pipe flow

Such observations can be explained, if the bifurcation§3]. In addition, the numerical results suggest that the tur-
are subcritical, for then the new state extends to lowebulent state belongs to a transient repeller rather than a
values of the Reynolds number and can be reached stattirbulent attractor [19,20].
ing from finite amplitude perturbations [12,13]. Simple The numerical model (see [21] for more details) is
models, based on interacting wave vector triads or truncadased on an expansion of the velocity field in Fourier and
tions of Galerkin systems, are compatible with this view.Legendre polynomials,

However, it has not been possible to follow these upper ‘
branches all the way down to where they disappear and to u(x,y,z,1) = » ik, (0)e’ &L (7). 1)
identify a critical Reynolds number [14]. k.p

A different approach has recently focused on theThe advantage of Legendre polynomials compared to
eigenvectors of the linearized problem [15-18]. VeryChebyshev polynomials is that they give rise to evolution
often the linearized hydrodynamic eigenvalue problem isquations which are energy conserving in the Eulerian,
not Hermitian, so that the eigenvectors are not orthogonalundriven limit, which is important for the long time evo-
As a consequence, small perturbations can be amplifiedlation we want to study. For every velocity-component,
lot even if all eigenvalues are negative, and the negleaive used a set o7 Fourier modes on a hexagonal grid
of nonlinear interactions can no longer be justified. Thisand 16 Legendre polynomials. The boundary conditions
explains how in the absence of linear instability theu(x,y, *H/2) = 0 and continuity equation are included
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within the Lagrange formalism of the first kind [21]. Three different flow regimes are distinguishable by
These restrictions finally leave 962 dynamically active detheir time series as shown in Fig. 2. For low Reynolds
grees of freedom. number, the energy of the perturbation decays smoothly,
The basic flow is normalized to have velocityU, at  with a bump related to the non-normality of the linearized
z = *H/2. The Reynolds number is defined as Re equations of motion. The time when this maximum is
UoH/2v, with v the kinematic viscosity. Lengths are reached is in agreement with the estimatg « 0.117Re

measured in units off/2 and time in units ofr = in [25]. This is the first regime, dominated by the
H/2U,. The Navier-Stokes equation for a perturbationlinearized equations.
u of the initial profileUy = Uyze,, Around Re= 300 states show a qualitatively similar

decay but only after an intermediate period of irregular
dynamics. A lifetime can be defined by monitoring the
component of the velocity until it decays below a certain
threshold. Below this threshold the perturbation decays
V-u=0 3) as desqribed by.thg linearized equat_ions. In this second
’ flow regime the lifetimes for perturbations are longer than
are replaced by nonlinear ordinary differential equationsstimated from the linearized equations. But one notes
for the amplitudesiy ,. We verified that in the energy from Fig. 2 that the lifetime of the disturbance is not a
conserving limit integration errors remained small formonotonous function of Re: The evolution at Re400
scaled times up to 10000. Féf = 1 cm, the viscosity shows more fluctuations and violent bursts but its lifetime
of water, and a Reynolds number of Re400, this is shorter than at Re= 300. In this third region, char-
corresponds to abod® min. In experiments a localized acterized by a nonmonotonic variation of lifetimes with
initial disturbance spreads and reaches the span wisemplitude and Reynolds number, some initial conditions
walls within less than a minute [22,23]. The numericaldo not decay within the numerical integration time. The
calculations thus extend to a time region where insignals for the decaying and nondecaying states are dy-
experiments the influence of the lateral walls is no longenamically similar in the fluctuating states, and there is no

u= _(ll . V)U() - (U() . V)ll

1 1
— B — — + _—
(u-Vu p Vp Re Au (2)

negligible. precursor that indicates the decay of the perturbation.
The initial state for our simulations was taken to be a The nonmonotonic variations of lifetime with Reynolds
poloidal vortex ring in they-z plane, number and amplitude occur for Re above about 350
u = Acurl curIB(x,y)e‘“’Zz e, . ) and cover an increasing range in amplitude. On a global

scale (Fig. 3), one notes a rather rugged landscape with a
with a variable amplitudeA. We approximate thed  few peaks reaching the maximal lifetimes followed in the
function by setting all real Fourier modes equal to onenumerical calculations. Because of the finite observation
As shown schematically in Fig. 1, the axis of the ringtimes in experiments, states are classified as decaying or
points in thee, direction. To remove excess energy for turbulent when their lifetimes are below or above a certain
large modes we integrated this state for five time unitghreshold. A cut through the lifetime landscape shows
at Re= 400 and used the resulting physically realistic isolated turbulent disturbances in the decaying region and
initial condition in the subsequent studies. By this timeisolated decaying disturbances in the turbulent region.
the vortex ring is rotated into the-y plane and is similar Such a behavior has been seen in experiments on constant
to the one induced by the vertical water jets in themass flow through a pipe [3]. The nonmonotonicity
experiments [4,22,24].

E(t)

v WY
(8]
- . )
400 600 800
t

FIG. 1. Sketch of the flow geometry and the initial conditions
for the perturbation. The poloidal vortex ring [Eq. (4)] has FIG. 2. Evolution of the energy in the perturbation vs time
been enlarged for better visibility. for three values of the Reynolds number.
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I S IO v o lifetimes arise for initial perturbations which are close to
Lo imme e | S 1500 <t<2500 the stable manifold of a strange repeller in phase space.
CorerreomoEEeomeemes Then arbitrarily large lifetimes should be possible and the
o 15 e aaimmene “turbulent” state would be supported by a repeller rather
3 LML than an attractor.
%10 ceriiiosre omEmEE. . As the Reynolds number increases the number of long
g Ll Tmmemee oo lived disturbances increases and they cover an ever increas-
< Do EEOEAE Wl e ing region in phase space and extend to smaller amplitudes.
5[ 0 oM 00y Phase space becomes more densely filled with the stable
T omEME-.00s-e0 and unstable manifolds of the saddles so that trajectories
oL trapped in this tangle need more and more time before they
250 300 Re 350 400 can escape and relax to the laminar profile. This is in line

with previous observations in large systems [19] and pipe
FIG. 3. Lifetime of perturbations as a function of Reynolds flow [29] that long lived transients can imitate a perma-
numberRe and amplitude of the initial state. The lifetimes nant turbulent state. Clearly, a measure of the thickness

are grouped in intervals and shown by different symbols a : e s :
indicated. The small dots with short lifetimes show the grid%f the repeller or an estimate of the lifetime of transients

of initial conditions tested. The full squares indicate lifetimes @S & func_tion of Reynolds number W0U|d' be highly desir—
above 2500 in scaled units. The integration was stopped at able but is presently beyond our numerical or analytical
scaled time of 3000. abilities.
Further support for these observations is derived from a
observed there may thus be of dynamical origin and no#ow dimensional system of ordinary differential equations
or a shear flow where we can follow the dynamics more

due to experimental limitations. ficientl q I twdv th f £ th "
The distribution of lifetimes as a function of amplitude.e iciently and can aiso study the nature of the repelier

and Reynolds number has fractal features. MagnificatiorLP more detall.[30]. . In pa”'cu'aT' we find that in a
of successive intervals in amplitude (Fig. 4) for fixed saddle node bifurcation new stationary states are born

Reynolds number or of intervals in Re for fixed amplitudeWh'C.?’ Ifgiowefvir], are aIIdudnlstadee. T?e stalile andtﬁTStabf
reveals a self-similar pattern of lifetimes, without anymanI 0 EIO etse S? €s do rIIIC.J mete _T_rr?og. y an
obvious simplifications on smaller scales. The set of lon resumably create a strange repetiing set. € dimension

lifetimes is reminiscent of the Cantor set one construct f tg!s repgllln% setthls rathelr h'gt?]' dA Qeterngnagpf? Ort
by deleting subsets from intervals, where here the fractioﬂg‘)S Imension by the usual methods 1S made ditticu

deleted varies from level to level. The magnifications,[y .th?tfa_ct :hat the 3lmenfr|10n IS Tl'gh. and tt?? t'mﬁ 6:
are reminiscent of lifetime pictures obtained in chaotic ypical trajectory Spends on Ihe repefier 1s much too short.

scattering [26—28]. This analogy suggests that the |0ng|owever, an |nd|cat|qn of its dimension is given t_)y t_he
umber of unstable eigenvalues of the local linearization.
In our simulation of plane Couette flow at Re 400 the
3000
2000
1000 NL about 0.35 in inverse time units.
ey g L o As mentioned, the repeller presumably forms around

number of positive eigenvalues varied between 30 and 80.

‘MLW The maximum eigenvalue of the local linearization was
3000 : 3000 , “ the hyperbolic tangle of the stable and unstable manifolds
of stationary states. Candidates for such stationary states

3000

1500 |

=

-
=)
B
o

g%

o ey in plane Couette flow are the states found previously
o Ll Lo o e by Nagata [31] and Clever and Busse [32,33]. These
3000 : : 3000 states appear for Reynolds numbers above about 125. For

larger Reynolds numbers we have found further states,
in accord with the observations on the model. But there
remains a discrepancy between the Reynolds number for
the occurrence of stationary states (about 125) and the
initiation of turbulence around Re- 300. This might be
connected to the dependence on the other parameters in
the model, and to the choice of initial conditions. In our
model, the saddle node bifurcation occurs for Re67,

FIG. 4. Successive magnifications of cuts through the Iifetimerather close to the first long lived initial condition for rings

landscape of Fig. 3, for Re- 380 and varying amplitude (left oriented along the, axis. However, for rings along the

column) and for fixed amplitudg = 10 and varying Reynolds €x axis, the transition occurs only for Re 305. This
number (right column). strong dependence on initial conditions points to a strong
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anisotropy of the distribution of stable manifolds in phas€/15] L. Boberg and U. Brosa, Z. Naturforsch. 43, 697—-726

space. Numerical experiments to analyze this further are

in progress.

This scenario may be relevant for other shear flows

(1988).
[16] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, and T.A.
Driscoll, Science261, 578—584 (1993).

without linear instability and, perhaps, for some systemd17] T- Gebhardt and S. Grossmann, Phys. Re\0E3705~

with a subcritical transition.
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