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Fractal Stability Border in Plane Couette Flow
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We study the dynamics of localized perturbations in plane Couette flow with periodic lateral boundary
conditions. For small Reynolds numbers and small amplitude of the initial state the perturbation decays
on a viscous time scalet ~ Re. For Reynolds number larger than about 200, chaotic transients appear
with lifetimes longer than the viscous one. Depending on the type of the perturbation, isolated initial
conditions with infinite lifetime appear for Reynolds numbers larger than about 270–305. In this third
regime, the lifetime as a function of Reynolds number and amplitude is fractal. These results suggest
that in the transition region the turbulent dynamics is characterized by a chaotic repeller rather than an
attractor. [S0031-9007(97)04759-5]

PACS numbers: 47.20.Ft, 05.45.+b, 47.15.Fe, 47.53.+n
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For a variety of simple flows linear stability theory
predicts and experiments verify that the transition t
turbulence proceeds by a sequence of instabilities at w
defined critical values of the control parameter [1,2
Prominent examples include a layer of fluid heated fro
below, flow between rotating cylinders, liquid jets, and
stratified fluids. The transition to turbulence in pipe flow
[3] or plane Couette flow [4,5] and to spiral turbulence
in the flow between counter-rotating cylinders [6] doe
not fit this pattern. If the Reynolds number is sufficiently
large, turbulent dynamics can occur, although the lamin
profile is still stable. A formal linear stability analysis
predicts either no instability (as in plane Couette flow
[7]) or one for Reynolds numbers larger than the one
where experiments begin to show turbulent behavior (e.
plane Poiseuille flow [8]). The nature of the transition
is different from the cases with a linear instability. It
depends on the size of the perturbation [9], shows ve
strong intermittency [10,11], and has no sharply define
stability border [3].

Such observations can be explained, if the bifurcation
are subcritical, for then the new state extends to low
values of the Reynolds number and can be reached st
ing from finite amplitude perturbations [12,13]. Simple
models, based on interacting wave vector triads or trunc
tions of Galerkin systems, are compatible with this view
However, it has not been possible to follow these upp
branches all the way down to where they disappear and
identify a critical Reynolds number [14].

A different approach has recently focused on th
eigenvectors of the linearized problem [15–18]. Ver
often the linearized hydrodynamic eigenvalue problem
not Hermitian, so that the eigenvectors are not orthogon
As a consequence, small perturbations can be amplified
lot even if all eigenvalues are negative, and the negle
of nonlinear interactions can no longer be justified. Th
explains how in the absence of linear instability th
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stability region around the laminar profile becomes smal
perhaps irrelevantly small. One can imagine that becau
of this growth some of the turbulence seen in thes
systems is noise induced [18].

To shed some more light on the dynamics in these cas
we have studied the evolution of perturbations in a numer
cal model for plane Couette flow. The numerical metho
was designed specifically to allow accurate long integra
tion times. The lifetime of these perturbations was mappe
out in an amplitude–Reynolds number plane. This a
lowed us to identify three dynamical regimes and to stud
the transitions between them. The results indicate th
there is no sharp transition to turbulence: the landscape
lifetimes has fractal features, with some isolated lifetime
longer than the finite integration time. Thus, whether a
initial condition leads to an evolution identified as turbulen
depends in a sensitive way on initial amplitude, Reynold
number, and the experimental observation time. This is
qualitative agreement with experiments on plane Couet
flow [4,5] and consistent with observations on pipe flow
[3]. In addition, the numerical results suggest that the tu
bulent state belongs to a transient repeller rather than
turbulent attractor [19,20].

The numerical model (see [21] for more details) is
based on an expansion of the velocity field in Fourier an
Legendre polynomials,

usx, y, z, td ­
X
k,p

ũk,pstdeiskx x1kyydLpszd . (1)

The advantage of Legendre polynomials compared
Chebyshev polynomials is that they give rise to evolutio
equations which are energy conserving in the Euleria
undriven limit, which is important for the long time evo-
lution we want to study. For every velocity-component
we used a set of37 Fourier modes on a hexagonal grid
and 16 Legendre polynomials. The boundary conditions
usx, y, 6Hy2d ­ 0 and continuity equation are included
© 1997 The American Physical Society
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within the Lagrange formalism of the first kind [21].
These restrictions finally leave 962 dynamically active de
grees of freedom.

The basic flow is normalized to have velocity6U0 at
z ­ 6Hy2. The Reynolds number is defined as Re­
U0Hy2n, with n the kinematic viscosity. Lengths are
measured in units ofHy2 and time in units oft ­
Hy2U0. The Navier-Stokes equation for a perturbatio
u of the initial profileU0 ­ U0zex,

Ùu ­ 2su ? =dU0 2 sU0 ? =du

2 su ? =du 2
1
r

=p 1
1

Re
Du (2)

= ? u ­ 0 , (3)

are replaced by nonlinear ordinary differential equation
for the amplitudesũk,p . We verified that in the energy
conserving limit integration errors remained small fo
scaled times up to 10 000. ForH ­ 1 cm, the viscosity
of water, and a Reynolds number of Re­ 400, this
corresponds to about10 min. In experiments a localized
initial disturbance spreads and reaches the span w
walls within less than a minute [22,23]. The numerica
calculations thus extend to a time region where i
experiments the influence of the lateral walls is no long
negligible.

The initial state for our simulations was taken to be
poloidal vortex ring in they-z plane,

u ­ A curl curldsx, yde210z2

ex , (4)

with a variable amplitudeA. We approximate thed
function by setting all real Fourier modes equal to one
As shown schematically in Fig. 1, the axis of the ring
points in theex direction. To remove excess energy fo
large modes we integrated this state for five time uni
at Re­ 400 and used the resulting physically realistic
initial condition in the subsequent studies. By this tim
the vortex ring is rotated into thex-y plane and is similar
to the one induced by the vertical water jets in th
experiments [4,22,24].

FIG. 1. Sketch of the flow geometry and the initial condition
for the perturbation. The poloidal vortex ring [Eq. (4)] has
been enlarged for better visibility.
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Three different flow regimes are distinguishable b
their time series as shown in Fig. 2. For low Reynold
number, the energy of the perturbation decays smooth
with a bump related to the non-normality of the linearize
equations of motion. The time when this maximum i
reached is in agreement with the estimatetmax ~ 0.117Re
in [25]. This is the first regime, dominated by the
linearized equations.

Around Re­ 300 states show a qualitatively similar
decay but only after an intermediate period of irregula
dynamics. A lifetime can be defined by monitoring thez
component of the velocity until it decays below a certai
threshold. Below this threshold the perturbation deca
as described by the linearized equations. In this seco
flow regime the lifetimes for perturbations are longer tha
estimated from the linearized equations. But one not
from Fig. 2 that the lifetime of the disturbance is not a
monotonous function of Re: The evolution at Re­ 400
shows more fluctuations and violent bursts but its lifetim
is shorter than at Re­ 300. In this third region, char-
acterized by a nonmonotonic variation of lifetimes with
amplitude and Reynolds number, some initial condition
do not decay within the numerical integration time. Th
signals for the decaying and nondecaying states are d
namically similar in the fluctuating states, and there is n
precursor that indicates the decay of the perturbation.

The nonmonotonic variations of lifetime with Reynolds
number and amplitude occur for Re above about 35
and cover an increasing range in amplitude. On a glob
scale (Fig. 3), one notes a rather rugged landscape wit
few peaks reaching the maximal lifetimes followed in th
numerical calculations. Because of the finite observatio
times in experiments, states are classified as decaying
turbulent when their lifetimes are below or above a certa
threshold. A cut through the lifetime landscape show
isolated turbulent disturbances in the decaying region a
isolated decaying disturbances in the turbulent regio
Such a behavior has been seen in experiments on cons
mass flow through a pipe [3]. The nonmonotonicity

FIG. 2. Evolution of the energy in the perturbation vs time
for three values of the Reynolds number.
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FIG. 3. Lifetime of perturbations as a function of Reynold
number Re and amplitude of the initial state. The lifetimes
are grouped in intervals and shown by different symbols
indicated. The small dots with short lifetimes show the gr
of initial conditions tested. The full squares indicate lifetime
above 2500 in scaled units. The integration was stopped a
scaled time of 3000.

observed there may thus be of dynamical origin and n
due to experimental limitations.

The distribution of lifetimes as a function of amplitude
and Reynolds number has fractal features. Magnificati
of successive intervals in amplitude (Fig. 4) for fixe
Reynolds number or of intervals in Re for fixed amplitud
reveals a self-similar pattern of lifetimes, without an
obvious simplifications on smaller scales. The set of lo
lifetimes is reminiscent of the Cantor set one construc
by deleting subsets from intervals, where here the fracti
deleted varies from level to level. The magnification
are reminiscent of lifetime pictures obtained in chaot
scattering [26–28]. This analogy suggests that the lo

FIG. 4. Successive magnifications of cuts through the lifetim
landscape of Fig. 3, for Re­ 380 and varying amplitude (left
column) and for fixed amplitudeA ­ 10 and varying Reynolds
number (right column).
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lifetimes arise for initial perturbations which are close to
the stable manifold of a strange repeller in phase spac
Then arbitrarily large lifetimes should be possible and th
“turbulent” state would be supported by a repeller rathe
than an attractor.

As the Reynolds number increases the number of lon
lived disturbances increases and they cover an ever incre
ing region in phase space and extend to smaller amplitud
Phase space becomes more densely filled with the sta
and unstable manifolds of the saddles so that trajectori
trapped in this tangle need more and more time before th
can escape and relax to the laminar profile. This is in lin
with previous observations in large systems [19] and pip
flow [29] that long lived transients can imitate a perma
nent turbulent state. Clearly, a measure of the thickne
of the repeller or an estimate of the lifetime of transient
as a function of Reynolds number would be highly desir
able but is presently beyond our numerical or analytica
abilities.

Further support for these observations is derived from
low dimensional system of ordinary differential equation
for a shear flow where we can follow the dynamics mor
efficiently and can also study the nature of the repelle
in more detail [30]. In particular, we find that in a
saddle node bifurcation new stationary states are bo
which, however, are all unstable. The stable and unstab
manifolds of these saddles do not meet smoothly an
presumably create a strange repelling set. The dimensi
of this repelling set is rather high. A determination o
its dimension by the usual methods is made difficu
by the fact that the dimension is high and the time
typical trajectory spends on the repeller is much too sho
However, an indication of its dimension is given by the
number of unstable eigenvalues of the local linearizatio
In our simulation of plane Couette flow at Re­ 400 the
number of positive eigenvalues varied between 30 and 8
The maximum eigenvalue of the local linearization wa
about 0.35 in inverse time units.

As mentioned, the repeller presumably forms aroun
the hyperbolic tangle of the stable and unstable manifold
of stationary states. Candidates for such stationary sta
in plane Couette flow are the states found previous
by Nagata [31] and Clever and Busse [32,33]. Thes
states appear for Reynolds numbers above about 125. F
larger Reynolds numbers we have found further state
in accord with the observations on the model. But ther
remains a discrepancy between the Reynolds number
the occurrence of stationary states (about 125) and t
initiation of turbulence around Re, 300. This might be
connected to the dependence on the other parameters
the model, and to the choice of initial conditions. In ou
model, the saddle node bifurcation occurs for Reø 267,
rather close to the first long lived initial condition for rings
oriented along theey axis. However, for rings along the
ex axis, the transition occurs only for Re. 305. This
strong dependence on initial conditions points to a stron
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anisotropy of the distribution of stable manifolds in phas
space. Numerical experiments to analyze this further a
in progress.

This scenario may be relevant for other shear flow
without linear instability and, perhaps, for some system
with a subcritical transition.
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