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Three-dimensional traveling-wave solutions in plane Couette flow

M. Nagata
School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

~Received 12 August 1996; revised manuscript received 7 October 1996!

Nonlinear three-dimensional time-dependent solution branches are obtained in plane Couette flow modified
by plane Poiseuille flow component. It is found that as the Poiseuille component is added a branch oftime-
dependentsolutions is produced from thetime-independentsolution branch in plane Couette flow, and that
there exists a second branch of time-dependent solutions in the form of a closed loop inside the primary
time-dependent solution branch. The second branch intersects the line of zero plane Poiseuille flow component
at two points with nonvanishing phase velocity for higher Reynolds numbers, creating shape preserving
nonlinear traveling-wave solutions in plane Couette flow.@S1063-651X~97!00902-1#

PACS number~s!: 47.27.Te, 47.20.Ky
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In order to understand transition mechanisms from la
nar state to turbulence for the simplest form of shear mot
plane Couette flow has been studied a great deal both t
retically @1–3# and experimentally@4–9# in the last few
years. In experiments, turbulent spots are triggered by inj
ing a liquid jet into a stable laminar state and streamw
vortex structures are observed. On the theoretical s
mainly because of the lack of the linear instability mech
nism, this flow had been defying proper nonlinear investi
tions for decades, until Nagata@10# discovered a branch o
nonlinear time-independent three-dimensional solutio
known as the Nagata solution, numerically. The solut
originates from the Taylor vortex flow in a circular Couet
system. Although the accuracy of the Nagata solution
been improved a great deal@11#, the stability of the solution
is not yet conclusive due to the lack of sufficient compu
tional power@12#. However, the existence of the subcritic
solution itself is expected to play an important role in t
phase space dynamics. Recently, other types of finite am
tude steady solutions@2,3# in plane Couette flow are foun
numerically by extending a two-dimensional solution bran
bifurcating from a laminar plane Poiseuille flow to the pla
Couette flow region. None of the experimental counterpa
of the finite amplitude steady solutions has been detected

As for plane Poiseuille flow, the importance of strea
wise vortex structures has been recognized@13# in the tran-
sition process. Since the Nagata solution does not origin
from the spanwise vortex flow, it is quite natural to exte
the solution to a mixed flow situation with two Reynold
numbers:R5U0L/n based on the total translational boun
ary motionU0, andQ5(G/2r)L3/n2 based on the pressur
gradientG imposed along the channel. In the definitions
the two Reynolds numbers,r andn are the density and th
kinematic viscosity of the fluid, respectively, andL is the
whole width of the channel.

The basic flow with the appropriate boundary conditio
on the channel walls,z561

2, is given by the exact solution o
the Navier-Stokes equation for an incompressible fluid:

U~z!52Rz1Q~z22 1
4 !. ~1!

The equations for the velocity deviation,
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u5Ǔ~ t,z! î1“3“3~f k̂!1“3~c k̂!, ~2!

from Eq. ~1!, whereǓ(t,z) is the modification of the mean
flow through the action of the Reynolds stress, andî and k̂
are the unit vectors inx ~the streamwise direction! and z,
respectively, are solved by the Galerkin projection meth
@10#.

No-slip boundary conditions

f5f85c5Ǔ50 ~3!

are applied onz56 1
2.

Assuming a traveling-wave type of solution propagati
in the streamwise directionx and periodic in the spanwis
directiony, we expandf, c, andǓ in the form

f5 (
l 51

`

(
m52`

`

(
n52`

`

al mnexpi @ma~x2gt !1nby# f l ~z!,

~4!

c5 (
l 51

`

(
m5`

`

(
n52`

`

bl mnexpi @ma~x2gt !1nby#

3sinl p~z1 1
2 !, ~5!

Ǔ~z!5 (
k51

`

cksin2kpz1 (
k51

`

dksin~2k21!p~z1 1
2 !, ~6!

wherea and b are the wave numbers in thex and they
directions andg is the phase velocity. The Chandrasekh
function f l ~z! satisfies f l (61/2)5 f l8 (61/2)50. Because
of the contribution from the symmetric basic velocity profi
for QÞ0, the amplitudesal mn and bl mn are complex in
general, whereas the mean flow distortion componentsck
anddk are real.

For numerical purposes we truncate the expansions~4!,
~5!, and~6! so that only those terms satisfying

l 1umu1unu,N, k,N8 ~7!

are taken into account. In order to determine the phase
locity g, the real~or imaginary! part of one of the amplitudes
is set to zero without losing generality@14#. The resulting
2023 © 1997 The American Physical Society



ille
d

ot

s

2024 55BRIEF REPORTS
FIG. 1. The amplitudec1 of the time-
dependent solutions in plane Couette/Poiseu
flow atR5600. The primary branch is continue
from Nagata solution atA andB on Q50. The
second branch in the form of a loop inside is n
connected to the primary branch. The pointsC
andD correspond to the traveling-wave solution
in plane Couette flow.
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ce
finite system of nonlinear algebraic equations for the am
tudesal mn, bl mn, ck , anddk and the phase velocityg are
solved by the Newton-Raphson method.

In this paper, a rather low truncation level (N,N8)5~12,8!
is taken. Also, the wave number pair~a,b! is limited to
~1.3,2.6!, which is situated near the center of the existen
region for the steady three-dimensional solutions in theab
plane whenR5600 @see Fig. 3~b! in @11##.

We start with the Nagata solution atR5600. Both the
amplitudesdk and the phase velocityg depart from zero, as
Q is gradually added. The primary time-dependent solut
branch forQÞ0 is connected to the upper and the low
branches of the Nagata solution atQ50. It is found that
there exists a second branch of time-dependent solution
the form of a closed loop inside the primary branch as sho
in Fig. 1. ~The primary branch merges into the second
R5800. The loop atR5600 in Fig. 1 was actually continue
from the solution on the second branch atR5800 by keeping
Q constant.! Note that the loop atR5600 intersects the line
of Q50 at the two points,C andD in Fig. 1, where the
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phase velocities turn out to be nonzero, corresponding
three-dimensional traveling-wave solutions in plane Coue
flow.

Figure 2 shows the continuation of the time-depend
solutions at higher values ofR in plane Couette flow, to-
gether with the Nagata solution. The time-dependent so
tions appear suddenly atR slightly higher thanRc for the
abrupt bifurcation of the Nagata solution. The phase veloc
of the time-dependent solutions is plotted in Fig. 3.

Three-dimensional traveling-wave solutions in plane Co
ette flow are found in the process of extending the thr
dimensional steady solutions obtained previously to a reg
mixed with plane Poiseuille flow. This process is not simp
the inverse of those successfully used in finding other ty
of steady solutions@2,3# in plane Couette flow, where th
two-dimensional traveling-wave solution branch in pla
Poiseuille flow is extended to the mixed flow region until
attains either two-dimensional spatially localized stea
flows @2# or a three-dimensional equilibrium state@3# in the
plane Couette flow limit with vanishing phase velocity. Sin
w
e
in-
FIG. 2. The amplitudec1 of the nonlinear
three-dimensional solutions in plane Couette flo
~Q50!. Nagata solutions are indicated by th
crosses and new time-dependent solutions are
dicated by the diamonds.
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FIG. 3. The phase velocityg of the time-
dependent three-dimensional solutions in pla
Couette flow~Q50!.
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the three-dimensional steady solutions that have been
tended to the traveling-wave solution in the present anal
originate from the streamwise vortex flow and do not poss
the spanwise vortex structure responsible for the instab
of plane Poiseuille flow, they are structurally independen
those steady solutions originating from plane Poiseuille flo
This structural independence also holds between
traveling-wave solutions extended by the two processe
the mixed flow region. It would be interesting to see wheth
the present form of time-dependent solutions exists eve
the plane Poiseuille flow limit. Conventionally, only thos
solutions bifurcating primarily at the linear critical Reynold
numberQc have been considered in the nonlinear stabi
analysis of plane Poiseuille flow@14#, where the secondar
vortex flows are independent of the spanwise direction
duced from the Squire theorem.
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Because of the symmetry of the problem in the pla
Couette flow limit, the flow with the opposite phase veloc
is also a solution. Although the superposition of tw
traveling-wave solutions propagating in opposite directio
is not permitted in nonlinear analyses, some form of a sta
ing wave solution might be a possibility. Time periodic flow
with a small scale deviation from the Nagata solution ha
been reported in the numerical simulation@15#. In contrast to
the traveling wave solutions found in the current study, th
are not shape preserving. Calculations at higher trunca
levels are under way.
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