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Abstract

We present a formalism for comparing the asymptotic dynamics of dynamical sys-
tems with physical systems that they model based on the spectral properties of
the Koopman operator. We first compare invariant measures and discuss this in
terms of a ”statistical Takens” theorem proved here. We also identify the need to
go beyond comparing only invariant ergodic measures of systems and introduce an
ergodic-theoretic treatment of a class of spectral functionals that allow for this. The
formalism is extended for a class of stochastic systems: discrete Random Dynamical
Systems. The ideas introduced in this paper can be used for parameter identification
and model validation of driven nonlinear models with complicated behavior. As an
illustration we provide an example in which we compare the asymptotic behavior
of a combustion system measured experimentally with the asymptotic behavior of
a class of models that have the form of a random dynamical system.

1 Introduction

This paper is concerned with the issue of comparison of different dynamical
system models of a physical system or models of a physical system with the
system itself. There are various ways of comparing the behavior of two dynam-
ical systems. All of them involve defining a metric or convergence. Within the
dynamical systems community, this led the investigation of the above issue in
the direction of defining different topologies on spaces of dynamical systems.
The definitions of weak and strong topologies for automorphism groups are
given in [16, 30]. These are based on the comparison of the action of dynamical
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systems on open sets of the phase space, and are effectively requirements that
the two systems actions be close everywhere. For example, convergence of a
sequence of automorphisms {Ti} to T in the strong topology means that {Ti}
and T coincide on a larger and larger portion of the phase space as i increases.
In the context of modeling, the requirement that the action of two dynami-
cal systems be close everywhere is too strong. Consider, for example systems
treated in statistical mechanics. The relationship PV = RT is recovered by
employing a model consisting of noninteracting particles in a container. This
model is certainly not very close (in the sense that the dynamical action of
the model on the phase space is not close) to the real dynamics of molecules of
monatomic gases for some regimes. But, they possess the same time-averaged
properties. Another situation of interest occurs when systems with (formally)
infinite number of degrees of freedom are truncated using e.g. Galerkin method
to obtain a finite system of ordinary differential equations. In this case, only
a proper subset of the initial conditions available for the infinite-dimensional
system can be propagated in time by the finite-dimensional truncation, and
the comparison in the detailed sense of strong or weak topologies is not possi-
ble. These considerations naturally lead to the study of asymptotic dynamics
of selected trajectories and this approach was taken in [4], where the emphasis
is on comparing invariant measures. In the case when one of the two sys-
tems has a smaller space of initial conditions than the other (e.g. Galerkin
projections), projection of invariant measures is used. The approach that we
pursue here is related to the method of comparison of time series espoused by
Moeckel and Murray [29]. In fact the first part of this paper in which we deal
with invariant measures, connects directly to that paper and clarifies some
issues regarding ergodic-theoretic properties of the approach in [29] and its
relationship with Takens theorem. While in numerical experiments and ana-
lytical work the full state of a system is an observable, in experiments this
is typically not the case. Usually the value of one observable - a function on
the phase space - is measured. This observation lead to the development of
the Takens embedding theorem [38], that was followed by a large number of
works in which the theorem was used to illuminate topological properties of ex-
perimental data sets [1]. As far as statistical properties of data are concerned,
Takens embedding theorem has been used by Mischaikow et al. [28] to identify
symbolic dynamics from experimental time series. In the prior work of Froy-
land et al [13] a suggestion is made on getting invariant measures from data
(upon embedding the data using Takens theorem) using representation of the
dynamical system as a random system, triangulating the data and assigning
weight to each triangular section according to the properties of the associated
random system. The motivation in [13] is that there are many problems in
which the length of signal in time is not sufficient to perform averaging op-
erations and compute statistics. However, there are a variety of problems in
which long data traces are available, and we develop here a direct approach
using time averages of functions, which can be associated with eigenfuncions
of the Koopman operator [20, 30] of the dynamical system at hand. In order
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to pursue this, we need to prove (constructively) that ergodic partitions and
invariant measures of systems can be compared using a single observable.
This leads to what we call the statistical Takens theorem (Theorem 2). Using
this result, we develop pseudometrics on spaces of dynamical systems allowing
us to compare asymptotic dynamics of systems.

In some contexts though, comparing invariant measures is not enough. Con-
sider, for example two systems that have a (geometrically) identical globally
attracting limit cycle, but on the limit cycle of the first system the dynamics
is given by θ̇ = ω1 and on the limit cycle of the second system the dynamics
is given by θ̇ = ω2, where ω1 6= ω2. While these two systems have identical in-
variant measures supported on the same geometrical object, their asymptotic
speed is different. This is related to the description of the cycling behavior of
dynamical systems, the study of which was pursued by Dellnitz and Junge
[11]. In that work, the formalism is based on the Perron-Frobenius operator
of the associated stochastic systems. In their work, the concept of eigenmea-
sures, extending the idea of invariant measures, is introduced. In examples that
Dellnitz and Junge treat stochasticity is associated with the round-off trun-
cation in the computation of deterministic dynamical systems. In [8], Perron-
Frobenius operator is also analyzed from the spectral perspective. We propose
here an alternative formalism based on harmonic analysis of the Koopman
operator that extends the concept of comparing the invariant measures using
time-averages. The regularity results allowing us to do this in the context of
deterministic systems are contained in [41]. We show that information beyond
that obtained using time averages can be acquired by taking harmonic aver-
ages if the system has a factor that is a rotation on a circle. The relationship
between spectrum at eigenvalue 1 and invariant measures on the phase space
is extended by associating complex measures (constructed explicitly using the
Riesz representation theorem) with eigenvalues of the form e−i2πω for ω 6= 0.

As pointed out above, both the concepts of invariant measure and the har-
monic average formalism developed here are related to spectral properties (in
particular, the point spectrum) of the so-called Koopman operator U, a lin-
ear operator that acts on functions on the phase-space [20, 30]. We stress
that in this context questions of identification or validation of asymptotic
properties of nonlinear finite-dimensional systems with complex dynamics
is transferred to questions of identification or validation of a linear, albeit
infinite-dimensional Koopman operator. Our hope is that some of the methods
developed in control theory of linear systems can be used to study these issues
further (for a combination of linear system identification procedures with dy-
namical systems analysis, see [14]). In addition, there has been a substantial
interest recently in improving the Galerkin projection methods for obtaining
low-dimensional models of formally infinite-dimensional systems by introduc-
ing stochastic terms to account for neglected modes [15, 6, 39, 31, 3, 23, 7]. A
dynamical systems perspective on such modelling is provided in the work of
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Dellnitz and collaborators [11, 10] in the context of Perron-Frobenius operator
for stochastic systems. Here we develop a formalism for stochastic systems in
the context of Koopman operator akin to that of deterministic systems that
allows for a systematic comparison of different models or data with stochastic
elements. In this extension of the deterministic theory we study deterministic
factors of stochastic systems - a concept that might help in understanding
e.g. the abundance of oscillatory phenomena on various time-scales in cli-
mate dynamics (see e.g. [33]). The example of experimental data analysis and
comparison with models is given towards the end of the paper. The data -
experimental data from a combustion rig - has stochastic features and the
models are random dynamical systems. Our methods allow for model pa-
rameter identification in this context. They also allow for an easy distinction
between processes having a deterministic factor on a circle (deterministic limit
cycling) with additive noise, and lightly damped but stable (i.e. deterministic
factor has a fixed point) process - a question that received some interest in
the literature [22, 17].
The paper is organized as follows: In section 2 we discuss the relationship
between invariant measures and time averages of a certain set of functions on
the phase space. extending the ideas in [25, 27]. Based on this we discuss dif-
ferent pseudometrics on the space of dynamical systems that split that space
into equivalence sets of system having the same (according to the chosen pseu-
dometric) asymptotic dynamics and we present some examples showing both
the strength and the weaknesses of the method. To remedy the weaknesses,
in section 3 we turn to analyzing the spectral properties of observables of a
dynamical system, by introducing a class of functionals on trajectories (or
equivalently, a class of operators on functions induced by the dynamical sys-
tem) of which the time-averaging functional is a member. Spectral properties
are discussed and methods for comparing spectra introduced. In section 4 we
extend these ideas to a specific class of stochastic systems, discrete Random
Dynamical Systems. In section 5 an example of using the theory to model and
analyze an experimental combustion system is presented. Optimization of the
model parameters is attempted using the ideas on comparing asymptotic dy-
namics described in sections 2,3 and 4. Proofs of some of the main theoretical
results are provided in the Appendix.
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2 Comparison of long-term dynamics: ergodic partitions and in-
variant measures

2.1 Invariant measures from a single variable

We are going to consider a dynamical system in discrete time defined by

xi+1 = T (xi),

yi = f(xi), (1)

where i ∈ Z, xi ∈ M , T : M → M is measurable and f is a smooth real
function on a compact Riemannian manifold M endowed with the Borel sigma
algebra. Every continuous dynamical system on a compact manifold possesses
an invariant measure µ. We call the function f ∗ the time average of a function
f under T if

f ∗(x) = lim
n→∞

1

n

n−1∑

i=0

f(T ix)

almost everywhere (a.e.) with respect to the measure µ on M . The time av-
erage f ∗ is a function of the initial state x. The operator PT : L1 → L1 such
that PT (f) = f ∗ is called the time-averaging operator. Note that by Birkhoff’s
pointwise ergodic theorem [30], if T is measure-preserving, f ∗ exists for every
function f ∈ L1(M).

A partition ς of M is defined to be a collection of disjoint sets Dς
α, where α

is some indexing set, such that µ(∪
α
Dς

α) = µ(M) (see [32]). A product ς
∨

λ of

two partitions ς, λ is a partition into sets D
ς
∨

λ

(α,β) = Dς
α ∩Dλ

β i.e. sets that are
intersections of elements of the two partitions. For a finite or countable product
ζ of partitions ζi, we write ζ =

∨
i ζi. The key object in our considerations is

partition of the phase space into sets on which the time-averages are constant,
i.e. into level sets of f ∗. In particular, let f be a continuous function on
M . The family of sets Cα, α ∈ R such that Cα = (f ∗)−1(α) is a (measurable)
partition of M . We denote this partition by ζf and call it the partition induced
by f .

Every partition ζf splits the phase space into sets on which the time-average
of f is constant. It turns out that for continuous f the measure zero set on
which f ∗ is not defined is independent of f [24] when M is a compact metric
space. An important partition associated with a dynamical system T is its
ergodic partition: partition of the phase space into (invariant) sets on which
T is ergodic (for a precise definition, see the Appendix). Intuitively, if we pick
a set in the ergodic partition, the system will sample that set well on almost
every trajectory in the set.
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Fig. 1. The map considered in Example 1

Example 1 Let I = [−1, 1]. Consider the (non-invertible) map T : I → I,
defined by T (x) = 2x, ( mod [−1, 1]) (see figure 1) that preserves the Lebesgue
measure (line length) on the interval I. Clearly, D1 = (0, 1] and D2 = [−1, 0)
are invariant sets. The map restricted to each of these sets is ergodic. The
ergodic partition is ζ = {D1, D2}. Note that ergodic partition is defined up to
measure zero: thus we did not need to include the fixed point 0 in the ergodic
partition.

Our goal is to use time averages obtained from a single observable to construct
the ergodic partition and thus allow for reconstruction of the ergodic partition
from experiments (note however that if there is more than one set in the
ergodic partition, we will need to sample that observable from more than one
initial condition, as should be clear from example 1).

Theorem 2 Let M be a compact Riemannian manifold of dimension m. Let
l/2 > |f | and κi, i ∈ N+ a sequence of continuous periodic functions in
C([−l/2, l/2]) that is complete. Consider a countable set of functions fi1,...,i2m+1

=

κi1(f) · κi2(f ◦T ) · . . . · κi2m+1(f ◦T 2m) (where i1, i2, ..., i2m+1 ∈ N+). Then, for
Cr, r 1 1 pairs (f, T ) it is a generic property that the ergodic partition of a
dynamical system T on M is

ζe =
∨

i1,...,i2m+1

ζfi1,...,i2m+1
.

The proof is provided in the Appendix, and it relies on two lemmas. The
first one extends an argument in ergodic theory which says that the ergodic
partition is partition into joint level sets of time averages of a countable, dense
set of continuous functions (for the proof and applications see [25, 27]) to allow
for taking only joint level sets of time averages of a complete set of functions.
The second lemma tells us how to generate such a complete set of functions
using only one observable. The essence of the above result is the following.
By Takens theorem, we know that we can embed the signal f(T j), j ∈ Z+

of a continuous observable f of a system T into an 2m + 1 dimensional box
B of side l, where |f | < l/2. We prove (Appendix, Lemma 20) that to find
the ergodic partition we only need to exhibit a dense countable subset of
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continuous functions. Such a subset is going to be provided by products of
compositions of (2m + 1)−products of complete set of continuous periodic
functions on R of period l with a generic observable f , i.e. we only need to
compute the time-averages of functions

κi1(f(x)) · κi2(f ◦ T (x)) · ... · κi2m+1(f ◦ T 2m(x)).

Example 3 The set of products of functions sin(2π
l
ny), cos(2π

l
ky), 1

2
, y ∈ R, k, l ∈

N+ is a complete set in C(B). If m = 1 (i.e the embedding dimension is 3),
we should compute time averages of products

sin(
2π

l
nf(Tx)) cos(

2π

l
kf(x)),

sin(
2π

l
nf(T (x))) cos(

2π

l
kf(x)),

cos(
2π

l
nf(T (x))) cos(

2π

l
kf(x)),

sin(
2π

l
nf(T (x))) sin(

2π

l
kf(x)).

Example 4 Theorem 2 can be used to identify invariant sets (and ultimately
the ergodic partition) of a system without measuring all of its variables for all
time. All that is needed is knowledge of initial conditions and knowledge of a
single variable time trace. Consider the standard map on a torus, given by

I ′ = I + ε sin(2πθ), mod 1

θ′ = θ + I + ε sin(2πθ), mod 1

(2)

Physically, this can be derived as a Poincaré map of a plane pendulum kicked
periodically with an impulsive force. Assume that we know the initial condi-
tions: the action I and the angle θ, but we can only measure θ dynamically.
Theorem 2 suggests that we can find the ergodic partition from these measure-
ments. In figure 2a we show contour plot visualizing the level sets of finite time
average f ∗,N1 + f ∗,N2 + f ∗,N3 + f ∗,N4 , where
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f ∗,N1 =
1

N

N∑

j=1

sin(2πθj) sin(2πθj−1),

f ∗,N2 =
1

N

N∑

j=1

sin(2π3θj) cos(2π3θj−1),

f ∗,N3 =
1

N

N∑

j=1

sin(2π5θj) cos(2π5θj−1),

f ∗,N4 =
1

N

N∑

j=1

cos(2π8θj) sin(2π8θj−1),

Note that joint level sets of f ∗1 , f ∗2 , f ∗3 , f ∗4 are not equivalent to level sets of
f ∗1 + f ∗2 + f ∗3 + f ∗4 - in particular two different joint level sets of f ∗1 , f ∗2 , f ∗3 , f ∗4
might be subsumed into a single level set of the sum, but we get reasonable
results visualizing joint level sets this way. The problem of visually depicting
joint level sets of many functions is not a simple one (it goes under the name
of image segmentation in computer science). Simulation in figure 2a was per-
formed for N = 100 iterates, 10,000 initial conditions on a regular 100× 100
grid. Simulation in figure 2b shows the usual representation of the phase-space
trajectories and was performed for 100 iterates, 400 initial conditions on a
regular 20 × 20 grid. Both figures were obtained for ε = 0.03. The contour
plot, that was calculated by taking time averages of observables according to
prescription in Theorem 2 shows close resemblance to the phase portrait. For
our test functions f1, f2, f3, f4 we chose some of the products suggested in
the previous example. Note that we have embedded the time-traces into a box
[0, 1]× [0, 1] ⊂ R2 by observing that θ is defined mod 1. Also note that, since
we know the dimension m of the phase space in this example, we did not embed
the signal in R2m+1, but in Rm.

As the above example shows, the ideas in Theorem 2 allow for visualization
of structures in the phase space of a system even if only a single variable
can be measured dynamically (but we have knowledge of initial conditions).
This might be particularly important for conservative systems such as the one
treated in Example 4. Even if initial conditions are known only on a subset of
the phase space (such as in numerical simulation of partial differential equa-
tions, where, due to the vast phase space it is impossible to obtain results for a
large set of initial conditions), application of these ideas will lead to splitting
initial conditions into equivalence classes that possess the same asymptotic
dynamics (in the sense of invariant measures).

The same result as stated in Theorem 2 holds for systems not defined on
compact spaces, but whose attractors are compact sets that are not necessarily
manifolds. The extension of Takens theorem for this case can be found in [34].
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(a) (b)

Fig. 2. a) Contour plot showing the level sets of f∗,N1 + f∗,N2 + f∗,N3 + f∗,N4 . Simu-
lation for N = 100 iterates, 10,000 initial conditions on a regular 100 × 100 grid.
The parameter ε = 0.03. b) Phase space plot of the standard map for 400 initial
conditions on a regular 20× 20 grid. The parameter ε = 0.03.

2.2 Pseudometrics

According to the above description, the asymptotic dynamics partitions the
phase space into invariant sets. A sequence of numbers f ∗i1,...,i2m+1

is associated
with each set in the partition. We can base different pseudometrics on spaces
of dynamical systems by using the partition. Let µ be a Borel measure on the
compact metric space M . We are going to call systems for which f ∗ exists for
every f ∈ L1(M) B-regular [9]. We could use time averages to distinguish be-
tween systems: e.g. let T1 and T2 be two continuous, B-regular transformations
on M. Then, we could use

da(T1, T2) = max
f∈C(M)

|PT1(f)− PT2(f)|
|f | , (3)

an ”asymptotic pseudodistance” between T1 and T2, where |f | can be any
suitable function norm, e.g. L1 norm.

Example 5 Consider T1, T2 : R2 → R2 for which all trajectories tend to S1 ∈ R2

but the dynamics of T1,2 on S1 is given by θ → θ + α1,2 where both α1 and α2

are irrational and the map is mod 1. The pseudodistance da(T1, T2) = 0. On
the other hand, if α2 is rational, the pseudodistance is nonzero.

Thus even (3) might not be too useful for comparing the statistics: on one hand
it does not distinguish between the systems having very different dynamics but
equal statistics like in the example (5), and on the other hand it distinguishes
between the systems described in the following example:
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Example 6 Let T1 : xi+1
1 = λxi

1 and T2m : xi+1
2 = λxi

2 + εm where x1, x2 ∈
[−1, 1], |εm| < 1 and 0 < λ < 1. The first system has an asymptotically stable
fixed point at x1 = 0 and the second one at x2 = εm/(1−λ). The pseudodistance
da(T1, T2m) > a > 0 for εm = 1/m (i.e. a is a lower bound on the pseudodis-
tance) as there exists a continuous function f with arbitrarily small L1 norm on
[−1, 1] that is zero at zero and equal to any given value at ε/(1− λ).

As shown in the above example, two systems that have attractors that are
very close in space can be distant according to da. Thus we come to the point
where we define a very natural distance between two systems when we are
only interested in matching the asymptotic dynamics on some scale: choose
a finite number of functions (i.e. introduce a cut-off) on the phase space and
compare the statistics on those. The pseudodistance between T1, T2 relative
to a function f : M → R is defined as

da
f (T1, T2) =

|PT1(f)− PT2(f)|
|f | , (4)

The most important property of da
f that it renders systems that have ”close”

attractors ”close”. In Example 6, making εm smaller would make Tm
2 converge

to T1 in da
f for any smooth f . Obviously, the sum of any number of pseudomet-

rics is a pseudometric. In a specific problem, it is typically easy to identify the
important f ’s. In our thermodynamic example from the introduction it can
be the energy of the system. In the case of oscillators, it will be the amplitude
of oscillation, etc. In [29] various types of pseudometrics are discussed for a
particular choice of functions f that are compositions of indicator functions
on ”box” sets in indicator space with time-delay embedded observable. We
use such functions in our application section 5.

The pseudometrics of type (4) are still not entirely satisfactory, as they loose all
the ”timescale” information about the system. For example, all the irrational
rotations on the circle are again identified, as in Example 5. To treat this
problem, we need to extend our formalism to include spectral information.

3 Comparison of long-term dynamics: harmonic analysis

We pointed out in the introduction that two systems that have equal statistics
in the sense of invariant measures, can have very different asymptotic dynam-
ics. We provided the following example (here in discrete time): consider two
systems that have a (geometrically) identical global attractor which is a circle,
but on the attractor of the first system the dynamics is given by θ′ = θ + ω1

(mod 1) and on the attractor of the second system the dynamics is given
by θ′ = θ + ω2 (mod 1), where ω1 6= ω2 and both frequencies are irrational.
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While these two systems have identical invariant measures supported on the
same geometrical object, their asymptotic speed is different. Clearly, this has
to do with the spectral properties of the two systems, and in particular with
asymptotic spectral properties.

In the previous section we have introduced the operator PT : f → f ∗. Note
that f ∗ is an eigenfunction corresponding to eigenvalue 1 of the so-called
Koopman operator U : L1 → L1, which is defined by

Uf(x) = f ◦ T (x),

as f ∗ is constant on orbits i.e. Uf ∗(x) = f ∗(x). The operator PT can be
considered as a member of a family of operators P ω

T ,

[P ω
T (f)](x) = f ∗ω(x) = lim

n→∞
1

n

n−1∑

j=0

ei2πjωf(T j(x)),

where ω ∈ [−0.5, 0.5). Note that PT = P 0
T . Note that f(T j(x)) is the time

series of the observable f on the trajectory of the system T starting at the
point x at time 0. Thus, for fixed x, f ∗ω(x) is just the Fourier transform of
this time series, and it is simple to calculate using FFT. In this section, we
will discuss the dynamical meaning of the spatial dependence of these Fourier
transforms.

Example 7 Consider the maps T1, T2 : R2 → R2 for which all trajectories tend
to S1 ∈ R2 but the dynamics of T1,2 on S1 is given by θ′ = θ + α1,2 where both
α1 and α2 are irrational. The pseudodistance da

f (T1, T2) = 0 for any continuous
(or even L1) function f . In this case P ω

T1
(ei2πθ) = 0 for all ω ∈S1, ω 6= −α1, while

P ω
T2

(ei2πθ) = 0 for all ω ∈S1,ω 6= −α2.

Like the time-averages, the functions f ∗ω also play an important role in the
spectral analysis of U : they are the eigenfunctions associated with eigenvalues
e−i2πω [30]:

Uf ∗ω(x) = lim
n→∞

1

n

n−1∑

j=0

ei2πjωf(T j+1(x))

= e−i2πω lim
n→∞

1

n

n−1∑

j=0

ei2π(j+1)ωf(T j+1(x)) = e−i2πωf ∗ω(x).

That the averages required in the definition of P ω
T exist almost everywhere

was proven by Wiener and Wintner for measure-preserving systems [41]. It is
easy to deduce using methods in [41] that this is true for all B-regular T ’s, as
the existence of harmonic averages depends only on the existence of certain
autocorrelations which in turn depends on the existence of time-averages of
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functions. P ω
T is nonzero only on a countable set of ω’s (Lemma in section 4

of [41]). But, when it is non-zero, it can provide substantial new information
about the process that we are studying.

It is easy to show that eigenfunctions of U can only be of the form f ∗ω: in
fact a nonzero P ω

T is the orthogonal projection operator onto the eigenspace
of U associated with the eigenvalue e−i2πω (see the first remark on pg. 215
in [42]). In the case of P 0

T = PT the theory of invariant measures provides
a connection of objects defined on the phase space M with the properties
of PT . In the next section we provide such a connection for P ω

T by showing
that it is associated with certain complex measures on M . We characterize
these complex measures for an ergodic transformation in terms of its ergodic
measure and the eigenvalues of the associated Perron-Frobenius operator and
provide an example where the eigenvalues and eigenfunctions of a map which
has both point and continuous spectrum are numerically computed.

3.1 Harmonic analysis and factor maps

We turn to the case when there are eigenfunctions of U that are associated
with complex eigenvalues of an ergodic transformation T : A → A where
A ⊂ M . In the following we relate these eigenfunctions with rotating factors
of the map T . Recall that existence of a factor S : B → B of T on A ⊂ M
is established by proving that there is a measurable factor map F : A → B
such that F ◦T = S ◦F a.e. and µ(F−1(E)) = ν(E) for all measurable E, and
measures µ, ν, where T preserves µ and S preserves ν. We have the following

Proposition 8 Let hω : A → C be a non-constant eigenfunction of U associ-
ated with the eigenvalue e−i2πω. Then hω is a factor map and T has a factor
that is a rotation on a circle by angle 2πω. Conversely, if T admits a factor
map to rotation on the circle by angle 2πω then there is an eigenfunction of
U associated with eigenvalue e−i2πω.

Proof. First observe that the modulus of hω is constant on trajectories: |hω| ◦
T = |hω ◦ T | = | e−i2πωhω| = |hω|. Thus the modulus of hω is constant a.e. as
T is ergodic on A. Without loss of generality we assume that |hω| = 1. Define
θ(x) by hω(x) = e−i2πθ(x). We have

hω(Tx) = e−i2πθ(Tx) = e−i2πωhω(x) = e−i2πωe−i2πθ(x) = e−i2π(θ(x)+ω). (5)

Thus, it is clear that θ(Tx) = θ(x)+ω i.e. hω◦T = S◦hω where S the clockwise
rotation by angle 2πω on the circle of radius 1. Now define a measure ν on
the circle by ν(E) = µ(h−1

ω (E)) where µ is the ergodic measure for T, and E
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is a Borel set. We get

ν(S−1(E)) = µ(h−1
ω (S−1(E))) = µ((S ◦ hω)−1(E))

= µ((hω ◦ T )−1(E)) = µ(T−1(h−1
ω (E)))

= µ(h−1
ω (E)) = ν(E).

Thus ν is invariant under S and we are done with the first part of the claim.
The converse is clear by the following construction: let η : M → S1 be a factor
map of T such that

η(Tx)− η(x) = ω,

i.e. η maps T to a rotation on the circle by an angle 2πω. Then let

h(Tx) = e−i2πη(Tx) = e−i2π(η(x)+ω) = e−i2πωe−i2πη(x) = e−i2πωh(x)

and h is an eigenfunction associated with eigenvalue e−i2πω.

Corollary 9 Let A be a set in the ergodic partition of T . P ω
T (f) is not constant

(zero) on A for every f : M → C if and only if T has a factor that is a rotation
on the circle by an angle 2πω.

These results turn our attention to the more detailed study of eigenfunctions
associated with complex eigenvalues. Before we do that let us present an ex-
ample of a non-trivial map with a periodic factor.

Example 10 Consider a map T on the interval I = [−1, 1] such that T =
−(2x) mod [−1, 1] (see figure 3). At every step, every point in [0, 1] is mapped
into [−1, 0] and vice versa. Thus the map F from I to the circle of radius 1 in
the complex plane defined by F (x) = e−i2π = 1 for x ∈ [0, 1] and F (x) = e−iπ =
−1 for x ∈ [−1, 0) is a factor map. The factor is rotation on the circle by angle
π i.e. frequency 1/2. Clearly, if F (x) = e−iπ = −1 then F (Tx) = e−i2π = 1
and if F (x) = e−i2π = 1 then F (Tx) = e−iπ = −1. So F (Tx) = e−iπF (x)
and F is an eigenfunction associated with frequency ω = 1/2. Note that the
second iterate of the map T 2 = 2x mod 1 on (0, 1] and T 2 = 2x mod(−1)
on [−1, 0) so the map is ergodic on I with respect to the Lebesgue measure.
However, if we could only measure the observable Re(F ) : I → R the behavior
we would measure would be pure cycling from −1 to 1. Note that F can also
be considered as a rotation on S0 = {−1, 1} instead on S1.

3.2 Eigenmeasures

For almost all x with respect to µ, the time-average of any function f ∈ C(M)
endowed with the sup norm can be represented as

f ∗(x) =
∫

M
fdµx,

13



Fig. 3. The map considered in Example 10

where µx is an ergodic invariant measure for T [24]. The question that we
investigate next is: are there objects on the phase space that can be used
for a similar representation of the eigenfunctions f ∗ω? We have the following
definition [11]:

Definition 11 A complex-valued measure Φ that satisfies

Φ(T−1E) = e−i2πωΦ(E)

is called an eigenmeasure associated with eigenvalue e−i2πω.

There is a direct way of defining eigenmeasures using harmonic averages, akin
to the methods used in proving the ergodic decomposition theorem (as proved
e.g. in [24]). Let T : M → M be as above. Let Σω

0 be the set of points on
which the harmonic average f ∗ω exists for every continuous f : M → R. By
the strong results of Wiener and Wintner [41] this set of measure one can be
taken to be independent of ω. Let C(M) be endowed with the sup norm. Note
that Lω

x : C(M) → R defined by

Lω
xf(x) = P ω

T f(x) = lim
n→∞

1

n

n−1∑

j=0

ei2πjωf(T j(x))

is a bounded linear functional. Thus, there exists a complex measure µω
x such

that
Lω

xf(x) = P ω
T (f)(x) =

∫

M
fdµω

x ,

for any f ∈ C(M)[18]. Using continuity of T it can be shown that µω
x is an

eigenmeasure:
∫

M
f ◦ Tdµω

x(x) = Lω
xf ◦ T = P ω

T (f ◦ T )(x) = e−i2πωP ω
T f(x) = e−i2πω

∫

M
fdµω

x .

3.3 The Perron-Frobenius operator

Similar to the case of invariant measures ([20], Theorem 4.1.1) eigenmea-
sures can be discussed in terms of the point-spectral properties of the Perron-
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Frobenius operator. In its most general form, the Perron-Frobenius operator
is an operator on the space of Borel measures on M, defined by

Pµ = µ ◦ T−1,

and so ∫

A
dPµ =

∫

T−1A
dµ,

for any Borel set A. In the context of deterministic systems to avoid difficulties
of working with measures that are singular we can define the Perron-Frobenius
operator on the function space L1(M). Define the Perron-Frobenius operator
P :L1 → L1 adjoint to the Koopman operator U : L∞ → L∞ [20] by

∫

A
Pfdµ =

∫

T−1A
fdµ,

where µ is a Borel measure on M.

Proposition 12 Let Φ be a complex measure given by

Φ(A) =
∫

A
gdµ, (6)

where g ∈ L1(M), A measurable. Then Φ is an eigenmeasure associated with
the eigenvalue λ if and only if g is an eigenfunction of the Perron-Frobenius
operator associated with the eigenvalue λ.

Proof. Let gλ ∈ L1(M) be an eigenfunction associated with eigenvalue λ of
P. Let a complex measure Φ be defined as in (6) with g = gλ. Then

Φ(T−1A) =
∫

M
χA ◦ Tgλdµ =

∫

M
χAPgλdµ = λ

∫

M
χAgλdµ = λΦ(A).

Conversely, let Φ be an eigenmeasure given by (6) for some g ∈ L1(M). We
know that Φ(T−1A) = e−i2πωΦ(A) =

∫
A e−i2πωgdµ. But also Φ(T−1A) =∫

M χA ◦ Tgdµ =
∫
M χAPgdµ by the fact that P : L1 → L1 and U : L∞ → L∞

are adjoint, and so

∫

M
χAe−i2πωgdµ =

∫

M
χAPgdµ.

As this is valid for every Borel set A, we have that

Pg = e−i2πωg,

and thus g is an eigenfunction of P.

If T preserves µ, Pf = f ◦ T−1 for invertible T. It is easy to show that if
fλ is an eigenfunction of U associated with the eigenvalue λ, then it is also
an eigenfunction of P associated with eigenvalue 1/λ and vice versa. As P is
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unitary, it has the following property: if λ is an eigenvalue of P , then λ−1 is
an eigenvalue of P . The same is valid for U . Thus the point spectra of P and
U are exactly the same. For ergodic T each of the eigenvalues is simple (i.e.
the associated eigenspace is one-dimensional) [35]. Thus, the eigenvalues of P
are also simple for ergodic T.

Definition 13 Let T be a transformation on M . The partition of M into level
sets of an eigenfunction fλ of U is called the λ-phase partition.

Clearly, the 0-phase partition is trivial (the whole set M can be taken as the
only element of the partition) if T is ergodic. From the above analysis we get
a very simple description of the phase space partitioning when T is ergodic.
If there are no eigenvalues other than the simple eigenvalue at zero we can
speak of phase randomization.

A study of the Perron-Frobenius operator in the context of eigenmeasures
of stochastic systems that exhibit cycling behavior, was pursued in [11]. Ad-
ditionally, in [10] eigenmeasures of interval exchange transformations were
studied.

3.4 An example of harmonic analysis: the conservative case

Broer and Takens [5] studied the map (x′ = x + ω0, y
′ = y + x) on the unit

square that, as they show, has a mixed spectrum, i.e. the spectrum consists of a
point part with eigenvalues e−i2πnω0 , n ∈ Z and the associated eigenfunctions
e−i2πnx, n ∈ Z and a continuous part that is Lebesgue. The map is ergodic if
ω0 is irrational, but not mixing or even weakly mixing. It can be extended to
a family of area-preserving maps Ta parametrized by the amplitude a :

x′ = x + ω0 + a sin(2πy), mod 1

y′ = y + x + a sin(2πy), mod 1.

A trajectory of the map T0, with a = 0, starting from x = y = 0.3 is
shown in the figure 4. The orbit samples the phase space well, in accordance
with the fact that the map is ergodic for that parameter value. In figure 5
we show numerically computed spectral information for the above map with
a = 0, ω0 = 1/(2

√
2). As we mentioned, the properties of the spectrum are

known analytically, but this case gives us a good validation point for our com-
putations. In the top row of figure 5 we show on the left values of the function
f1 = 0.25 cos(2πx) + 0.25 sin(2πy) on the trajectory shown in figure 4, for the
first 100 iterates. This plot has a distinctly ”stochastic” look. In the middle
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of the top row of figure 4 we show values of the (complex valued) quantity

P ω
T f1(x0, y0) =

1

N

N−1∑

j=0

ei2πjωf1(T
j
0 (x0, y0)).

The rightmost dot, on the real axis, represents the time average of the function,
f ∗1 (x0, y0) = 0.5. The two complex conjugate values farthest from the origin,

at approximately 0.11 ± i0.05 correspond to ω = ±1/(2
√

(2)). On the right

of the top row of figure 4 we show |P ω
T f1(x0, y0)| as a function of ω. The

computation is done over N = 5, 000 iterates, but the only thing that changes
for larger N (we computed up to N = 100, 000), is that all the values of
P ω

T f1(x0, y0) shrink to zero, except for 0.5 and two complex conjugate values
described above. In the top row rightmost figure, there are peaks present at
ω0 and 1− ω0 since the projection of f1 to any eigenspace except for the ones
at e−i2πω0 , ei2πω0 is zero (note that we chose the horizontal axis in the top
right figure to be [0, 1) rather than [−1/2, 1/2)). Computation starting with
different initial conditions and smaller number of iterates (down to about
only 500) shows very similar features. Note the remarkable disparity between
the aperiodic ”appearance” of the signal and the spectrum that has a single
clear peak. It is true that for the map in question, we know the importance
of ω = 1/(2

√
2) and its harmonics. However, the reader should imagine an

unknown system with an observable producing the top left figure as its time
trace. Computing the harmonic averages would identify the relevant frequency
automatically.

In the second row, the same quantities are plotted for the function f2 =
tan(cos(2πx/7))−m, where m is the mean of tan(cos(2πx/7)) on [0, 1) (thus
f2 has mean zero on [0, 1) × [0, 1)). The function f2 does not depend on y
and thus its behavior in time is quasiperiodic. The eigenvalues are of the form
e−i2πnω0 , and, in contrast with the first row, there are peaks in the rightmost
plot of |P ω

T f2(x0, y0)| indicating several harmonics nω0. This means that the
function f2 has non-zero projection onto eigenspaces of the Koopman operator
that correspond to various n.

In the first and third plot of the third row we present iterates of the function y
and its power spectral density. The function y does not contain any ”rotation”
by angle ω0 and thus does not contain any distinguished peaks. More precisely,
the projection of y to the space spanned by the eigenfunctions is 0. Of course,
computationally, there is an error to this exact result and it is clear from
the figure that it is of the order 10−3 for 5, 000 iterates. In the figure 6 we

show the imaginary part of the harmonic average P ω0
T0

f1 for ω0 = 1/(2
√

(2)),
taken over 10000 iterates, on a grid of 40 × 40 initial conditions. We know
that this function is in the linear span of cos(2πx) and sin(2πx) and the
calculation confirms this. Note that despite the fact that the dynamical system
is ergodic for a = 0, we can (partially) tell where the trajectory came from
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Fig. 4. Orbit of T0, starting from x = y = 0.3; 50, 000 iterates.

Fig. 5. Spectral properties of T0. For description see the text.
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Fig. 6. Imaginary part of the harmonic average of f1 under T0 for ω = 1/(2
√

(2)),
taken over 10000 iterates, on a grid of 40× 40 initial conditions

by computing its phase. Of course, we can not tell the initial y but horizontal
initial conditions are distinguished.

Next we consider the case a = 0.01. A trajectory of the map T0.01 starting
from x = y = 0.3 is shown in the figure 7. Appearence of islands is clear from
this figure, but there is still a single large zone in the phase space that appears
to be ergodic. In this case, the spectrum of a trajectory starting in the ergodic
zone changes only slightly from the case a = 0, as shown in the figure 8. The
ordering of plots is the same as in the figure 5. In the figure 9 we show the

imaginary part of the harmonic average P ω0
T0

10f1 for ω0 = 1/(2
√

(2)), taken
over 50000 iterates, on a grid of 400 initial conditions. The computation is
much harder in this case, due to the coupling in the system, but features of
the eigenfunction are clearly close to the case a = 0, with the exception of
isolated zones corresponding to islands in the figure 7. We computed harmonic
averages for 10f1 instead of f1 just to get a better contrast in the plot - of
course, the resulting harmonic average is just a constant (10) multiple of the
one that would be obtained by computing harmonic average of f1. We also
performed some smoothing over frequencies ω, in the range [0.3535, 0.3545] -
one has to remember that we are computing highly non-smooth quantities. For
the case a = 0 this was not necessary due to the nice convergence properties.
In the figure 10 we show the plot equivalent to those in figures 5 and 8,

computed for 25, 000 iterates with a = 0.5. In this case P ω
T0.5

(f) evaluated at
the point (0.3, 0.3) becomes smaller and smaller in the range of the number
of iterates up to N = 25, 000. The phase seems to be randomized outside of
the island that is now visible in the phase-space plot at the upper left corner.

3.5 Examples of harmonic analysis: the dissipative case

In this subsection we present examples of the use of above harmonic analysis
ideas for dissipative maps on a torus. First we consider the following simple
map:
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Fig. 7. Orbit of T0.01, starting from x = y = 0.3; 100, 000 iterates.

Fig. 8. Spectral properties of T0.01. See the description in the text.
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Fig. 9. Imaginary part of the harmonic average of 10f1 under T0.01 for
ω = 1/(2

√
(2)), taken over 50000 iterates, on a grid of 400× 400 initial conditions

Fig. 10. Spectral properties of T0.5. See the description in the text.
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(a) (b)

Fig. 11. a) Angle of the harmonic average of g under map (7) for
ω = ω0 = 0.5613245623, taken over 1000 iterates, on a grid of 30 × 30 initial
conditions. b) Trajectory of the map (7) with ω = ω0 = 0.5613245623, starting at
x0 = 0.8, y0 = 0.2.

x′ = γ(x− ω0) + ω0, mod 1

y′ = y + x, mod 1.

(7)

Under assumption that ω0 is irrational and 0 < γ < 1, the above map
has an invariant circle at x = ω0, on which the dynamics is given by irra-
tional rotation y = y + ω0 (see figure 11b where a trajectory of the map (7)
with ω0 = 0.5613245623, starting at x0 = 0.8, y0 = 0.2 is shown). In figure
11a we show the contour plot of the argument of the complex eigenfunc-
tion obtained by taking the harmonic averages with ω = ω0 of the function
g = cos(2.5 cos(2πy) + 2.5 sin(2πx)) over the trajectories of the map. In par-
ticular, we know that the eigenfunction can be written as r exp(2πθ(x0, y0)),
where r is the (constant) modulus (note that the map is ergodic with respect
to the delta measure concentrated on the invariant circle at x = ω0, and thus
any eigenfunction has constant modulus). In figure 11a we plot contour plot
of θ(x0, y0). All the points of the same straight skewed line contour have the
same ”asymptotic phase”, i.e. their trajectory asymptotically approaches the
trajectory of the point that is on the intersection of that line and x = ω0. Note
that the eigenspace at λ = exp(2πω0) is two-dimensional, but the λ-partition
is accurately represented by θ(x0, y0).

Next, consider the following dissipative perturbation of an integrable twist
map:
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(a) (b)

Fig. 12. a) Angle of the harmonic average of g under map (8) for ω = 0.245, taken
over 1000 iterates, on a grid of 30× 30 initial conditions. b) Trajectory of the map
(8) with γ = 0.06123456756432, a = 0.03, starting at x0 = 0.8, y0 = 0.2.

Fig. 13. a) Imaginary part of the harmonic average of f1 + f2 + f3 + f4 under map
(8) for ω = 0.245, taken over 5000 iterates, on a grid of 50× 50 initial conditions.

x′ = (1− γ)x + a sin2(2πy), mod 1

y′ = y + x + a sin(2πy), mod 1.

(8)

where γ = 0.06123456756432, a = 0.03. It can be shown that there is an
invariant circle close to x = 0.25 (see figure 12b where a trajectory of the
map (8) starting at x0 = 0.8, y0 = 0.2 is shown). In figure 12a we show the
contour plot of the argument of the complex eigenfunction obtained by taking
the harmonic averages at ω = 0.245 of the function g = cos(2.5 cos(2πy) +
2.5 sin(2πx)) over the trajectories of the map. Clearly, the ”asymptotic phase”
for this map has much more complicated distribution than that in the previous
example. Harmonic partitions can be obtained from embedded data as well,
i.e. when we do not have ability to measure the full state of the system. In
figure 13 we show the imaginary part of the finite-time harmonic average of
f1+f2+f3+f4 from example 2. In particular, we show contour plot visualizing
the level sets of finite time average f ∗,N1,ω + f ∗,N2,ω + f ∗,N3,ω + f ∗,N4,ω , where
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f ∗,N1,ω =
1

N

N∑

j=1

exp(2πijω) sin(2πθj) sin(2πθj−1),

f ∗,N2,ω =
1

N

N∑

j=1

exp(2πijω) sin(2π3θj) cos(2π3θj−1),

f ∗,N3,ω =
1

N

N∑

j=1

exp(2πijω) sin(2π5θj) cos(2π5θj−1),

f ∗,N4,ω =
1

N

N∑

j=1

exp(2πijω) cos(2π8θj) sin(2π8θj−1),

4 Stochastic systems

The above theory can be extended to stochastic systems. We will present the
application of the above ideas to a stochastic system in the next section and
we provide the theoretical framework and relevant results here.

4.1 Introduction and set-up

For our purpose, the most convenient context in which to analyze stochastic
systems is that of Random Dynamical Systems (RDS) [2]. We will work with
the Discrete Random Dynamical System (DRDS)

xi+1 = T (xi, ξi),

ξi+1 = S(ξi), (9)

yi = f(xi)

where i ∈ Z, x ∈ M a compact Riemannian manifold, ξ = {..., ξ−1, ξ0, ξ1, ...} ∈
NZ, i.e. ξj ∈ N, where N is a compact Riemannian manifold endowed with
a probability measure p that is absolutely continuous with respect to the
Lebesgue measure on N . The product space NZ is endowed with the stan-
dard product measure Ω. S is the shift transformation S{..., ξ−1, ξ0, ξ1, ...} =
{..., ξ0, ξ1, ξ2, ...}. We consider observables f : M → R or C, f ∈ L1(M). We
denote T i

ξ(x) = Tξi−1 ◦ ... ◦ Tξ0 where Tξj(x) = T (x, ξj). We assume that Tξ(x)
is Cr, r ≥ 1 in x for every ξ ∈ N . With some abuse of notation, we will call
the above DRDS T (note that T denotes a family of transformations indexed
over ξ, rather than any particular superposition). A probabilistic measure µ
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on M endowed with the Borel sigma algebra is invariant for measurable T iff

E[µ(T−1(B, ξ))] = µ(B)

for every measurable B where E[µ(T−1(B, ξ))] =
∫
NZ µ(T−1(B, ξ))dΩ(ξ). The

analogue of the Koopman operator is the stochastic Koopman operator Us

defined by

Usf(x) = E[f ◦ T (x, ξ)],

where E[f ◦T (x, ξ)] =
∫
NZ f ◦T (x, ξ)dΩ(ξ). The expectation of the time-average

of f under T is given by

Ef ∗(x) = lim
n→∞

1

n

n−1∑

i=0

U i
sf(x). (10)

The partition of M into level sets of Ef ∗ is denoted by ζf . An ergodic measure
on M is an invariant measure µ such that Ef ∗(x) =

∫
M f(x)dµ(x) a.e. on M

for every f ∈ L1(M). The ergodic partition ζe of M under T is a partition
into sets Dα such that on each set Dα there exists an ergodic measure µDα

and its properties are equal to the situation described for the deterministic
case in the Appendix.

4.2 Ergodic partitions and invariant measures

To state results equivalent to Theorem 2 we need to use a stochastic version of
the Takens embedding theorem. This has recently been provided in [37] (see
e.g. Theorem 7 there). In particular, assume that N is a compact manifold
and p absolutely continuous with respect to the Lebesgue measure on N . For
generic, Cr, r 1 1 (f, T ) and almost every ξ ∈ NZ, the map e : M →
R2m+1 given componentwise by e(x) = (f(x), f(Tξx), f(T 2

ξ x), ..., f(T 2m
ξ x)) is

an embedding and thus e(M) is a compact submanifold of R2m+1. Again,
it is then necessarily contained in a sufficiently large box B of side length
lξ > 2 ·max

x
|f(x)| centered at the origin of R2m+1. We can regard B as a torus

T2m+1, i.e. the embedding e can be regarded as a map e : M → T2m+1.

Theorem 14 Let M be a compact Riemannian manifold of dimension m and
N a compact manifold of dimension n endowed with a measure p that is ab-
solutely continuous with respect to the Lebesgue measure on N . Let κi, i ∈ N
be a sequence of continuous periodic functions in C([−lξ/2, lξ/2]) that is com-
plete. Consider a countable set of functions fi1,...,i2m+1

= κi1(f) · κi2(f ◦ Tξ) ·
. . . · κi2m+1(f ◦ T 2m

ξ ) where i1, i2, ..., i2m+1 ∈ N. Then, for almost every ξ, for
Cr, r 1 1 pairs (f, T ) it is a generic property that the ergodic partition of a
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Cr, r 1 1 DRDS T on M is

ζe =
∨

i1,...,i2m+1

ζfi1,...,i2m+1
.

The proof of this theorem closely resembles the steps taken in the deterministic
case. The Markov property of the DRDS allows for the use of ergodic parti-
tion technique provided by Yosida [42]. The stochastic version of the Takens
embedding theorem proven as Theorem 7 in [37] is used.

4.3 Harmonic analysis

The family of operators EP ω
T ,

EP ω
T (f) ≡ Ef ∗ω = lim

n→∞
1

n

n−1∑

j=0

ei2πjωU i
sf,

plays the role analogous to the family P ω
T in the deterministic case. In partic-

ular, a nonzero EP ω
T is the orthogonal projection operator onto the eigenspace

of Us associated with the eigenvalue e−i2πω (see the first remark on pg. 215 in
[42]). It is interesting to discuss deterministic factors of random dynamical
systems. A deterministic factor of a DRDS T on A ⊂ M is a map S : B → B
such that there is a measurable factor map (or homomorphism) F : A → B,
E(F ◦ T ) = S ◦ F a.e. and µ(F−1(E)) = ν(E) for all measurable E and mea-
sures µ, ν, where T preserves µ and S preserves ν. Assume that T is ergodic
on A with an invariant ergodic measure µA. We have the following

Theorem 15 Let T be an invertible DRDS, hω : A → C be a non-constant
eigenfunction of Us associated with the eigenvalue e−i2πω. Then hω is a factor
map and T has a factor that is a rotation on a circle by an angle −2πω.
Conversely, if T admits a factor map to rotation on the circle by an angle
2πω then there is an eigenfunction of T associated with eigenvalue e−i2πω.

We provide the proof in the Appendix since it is in spirit the same as in the
deterministic case, but differs in a variety of technical issues.

Corollary 16 Let A be a set in the ergodic partition of T . EP ω
T (f) is not

constant on A for every f : M → C if and only if T has a factor that is a
rotation on the circle by an angle 2πω.

We can now define eigenmeasures by E(Φ(T (E, ξ0)) = e−i2πωΦ(E). The com-
plex measure defined by Φ(E) = EP ω

T (χE) is clearly an eigenmeasure. The
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stochastic Perron-Frobenius operator Ps : L1 → L1 can be defined by

∫

C
Psf(x)dµ(x) = E

∫

A
f · (χc ◦ T (x, ξ))dµ(x),

for f ∈ L1(A). It is easy to see that the operator Ps is adjoint to the stochastic
Koopman operator. The connection between the eigenvalues of Ps and eigen-
measures is the same as in the deterministic case:

Proposition 17 Let Φ be a complex measure given by

Φ(E) =
∫

E
gdµ, (11)

where g ∈ L1(M). Then Φ is an eigenmeasure associated with the eigenvalue λ
if and only if g is an eigenfunction of the stochastic Perron-Frobenius operator
associated with the eigenvalue λ. We call gλ the charge density.

The proof follows the lines of the deterministic case and we omit it.

Example 18 Consider a DRDS given by

xi+1 = −1 ·Θ(ξi),

ξi+1 = Sξi, (12)

where x ∈ [−1, 1], ξ ∈ [0, 1]N, Θ(ξi) = ξi
0, where ξi

0 is the value of the sequence
ξi = {..., ξi

−n, ..., ξi
−1, ξ

i
0, ξ

i
1, ..., ξ

i
n, ...} at index 0, and the probability measure

p is the Lebesgue measure on [0, 1]. The factor map for (12) is given by F :
[−1, 1] → {−1, 1}, F (x) = −1 if x ∈ [−1, 0], F (x) = 1 if x ∈ (0, 1]. The
deterministic factor is G(a) = −a, a ∈ {−1, 1}.

The above example is in some sense canonical: from the proof of Theorem
15 in the Appendix, it is clear that the random process moves points from a
level set of an eigenfunction with modulus 1 to another level set of the same
eigenfunction, with probability 1.

This completes our discussion of discrete random dynamical systems. The
system (9) can be also regarded as a control system (see e.g. [12, 40]). When we
consider ξ as a control input, the whole ergodic partition on M ×NZ becomes
an interesting object to study. For the discussion of invariant measures in this
direction, see e.g. [2].

Now we turn to practical considerations. The concepts defined above allow
us to propose procedures for identification of parameters of complex nonlinear
systems. We discuss these methods and apply them to experimental data from
a combustion experiment in the next section.
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5 Identification of parameters of nonlinear complex systems

We believe that the ideas introduced above can be turned into a practical tool
for analyzing and modeling the behavior of dynamical systems with complex
dynamics. The whole formalism is based on data from a single observable and,
in contrast to previous uses of Takens’ theorem recovers statistical information
linked to geometrical properties of the attractor instead of purely geometrical
information. In this section we use them to analyze and estimate parameters
for a model of an experimentally studied combustion process. In the next
subsection we review the methods that are usually used in such analysis and
connect them with the methods that we have developed here. We apply the
new procedures to the experimental data in subsection 5.2.

5.1 Probability histograms

The rigorous results proven above suggest that we should take time-averages
of a complete set of continuous functions to study properties of invariant mea-
sures. In applications such as analysis of experimental data, what is typically
available is probability histograms. Here we show that these involve a simi-
lar construction to the one provided above, a composition of (discontinuous!)
functions κj : R→ R with an observable g : M → R.

In the context of chaotic dynamical systems the probabilistic approach is often
taken and a system is described in terms of a histogram of a specific function g
on the phase space. Let b be the bin size for the histogram and zj ∈ R, j ∈ Z
a sequence of numbers such that zj+1 = zj + b. By the histogram we mean a
step function, constant on every interval Ij = (zj − b/2, zj + b/2]:

HT
g (Ij, x) = lim

n→∞
1

n

n−1∑

i=0

κj ◦ g(T i(x)) = κ∗j(x),

where x ∈ M . HT
g (Ij, x) tells us the proportion of time the time-series spends

in the interval Ij. The function κj is the characteristic function on the interval
Ij = (zj − b/2, zj + b/2], i.e. κj(u) = 1 if zj − b/2 < u ≤ zj + b/2 and zero
otherwise. If T is ergodic, H is the same function for almost every initial
condition x. A possible pseudometric for ergodic systems would be

d(T1, T2) =
∑

j

[HT 1

g (Ij)−HT 2

g (Ij)]
2,

where the sum is over some finite set of j’s.

The lesson learned from the rigorous study is that we should take time-
averages (i.e. histograms) of products of (κj ◦ g(T i(x)) where i = 0, ..., 2m−1,
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and include them into the pseudometric. The appropriate experimental pro-
cedure would be to 1) Get the data from observable g, 2) Determine the
dimensionality m of the system using the appropriate embedding theorem, 3)
Formulate the model of the same dimension 4) Form histograms of products
of κj ◦ g(T i(x)) for experiment and model 6) Compare these histograms in
some metric.

Example 19 Probability histograms for correlated processes. As mentioned above,
one of the common ways of comparing behavior of two systems with complex
behavior is taking histograms for a single observable. To show the dangers of
this approach when the dynamics of the system is not completely decorrelated
and usefulness of the Lemma 21 in this context, consider two systems having
limit cycle attractors in the delay phase space shown in figure 14. Both of the
limit cycles are elliptical, one of them having its major axis aligned with the
axis z1, the other with z2. The dynamics on both limit cycles is assumed to be
symmetric with respect to both z1 and z2 axis and thus the probability histogram
of f (denoted by p(f) in figure 14) is the same for both systems. However, let
κ+ be the indicator function on the interval (0, l). Then κ+ (f) · κ+ (f ◦ T ) is
the indicator function for the upper right quadrant of the box of side l shown
in the figure 14. Clearly the amount of time that these two systems spend in
the upper right quadrant is different and thus the time average of this product
function reveals the difference in the invariant measures supported on the limit
cycles.

We can also define spectral histograms by considering P ω
T (κj) = (κj)

∗
ω. His-

tograms in the case of stochastic processes are defined similarly.

5.2 An example: Identification of parameters of a combustion model with
noise

In this section we present an example of using the formalism developed above
to optimize parameters of a model describing a United Technologies Research
Center (UTRC) 4MW single-nozzle combustion rig operating close (in param-
eter space) to instability associated with a lean condition, i.e, with low value
of fuel to air ratio ([19]). This was done in a non-automatized manner, by trial-
and-error search for the best parameters due to computing-time limitations
induced by the number of parameters. Of course, an automatized procedure
could in principle be designed based on the above considerations on pseudo-
metrics. There are several points we wanted to make in this example. One
is that the method is quite sensitive to change of parameters of the model
and easily distinguishes, for example, between a limit cycling and a stable
noisy system. Another is that phase information is important even in noisy
processes. Namely, the data studied here exhibits harmonic averages consis-
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Fig. 14. Two different limit cycles give the same histogram of f.

tent with the existence of a deterministic factor of the underlying stochastic
process.

A simple model of a combustion process is an interconnection of a linear
acoustic model and nonlinear heat release model that consists of a delay and
a saturation function. The system is driven by broad-band stochastic dis-
turbance. More precisely, a discrete-time model equations used to simulate
pressure oscillations in the UTRC combustion rig were

x1
i+1 = (−α + cos(ω0Ts))x

1
i − sin(ω0Ts)x

2
i ,

x2
i+1 = sin(ω0Ts)x

1
i + (−α + cos(ω0Ts))x

2
i + K3h(K2x

1
i−N) + K1ni, (13)

where Ts = 0.0005, ω0 = 2πf0, K3 = 0.0525, and h is a saturation function
defined as h(u) = u for −s < u < s, h(u) = −s for u ≤ −s, and h(u) =
s for s ≤ u. Variables x1

i , x
2
i are unsteady components of pressure in the

combustor at two different times, while variable ni represents noise. The model
was implemented in Simulink. To simulate noise, a Simulink model of a band-
limited white noise with power 0.01 was used. Note that the model described

30



by (13) is a Discrete Random Dynamical System (DRDS) which were studied
in section 4. We choose a 2-dimensional embedding space for the system.

To obtain the harmonic averages 20, 000 samples (10 seconds sampled at
2 kHz) of experimentally obtained combustor pressure and pressure from
Simulink model simulations were used. The experimental data presents a spec-
trum with a single peak at about f = 207. We examined the results of har-
monic analysis results for a range of model parameters lead by this spectral
information. Values of f0, N , α, K2, s, and K1 were varied until a good agree-
ment between harmonic averages of results of simulations and experimental
data was found. A good fit to experimental data was obtained for parameters
f0 = 207, N = 10, α = 0.03, K2 = 2000, s = 5, K1 = 0.0788.

Let p(i) be the pressure at time i/2000 obtained from experimental data or
the model. In figures 15 and 16 we show the plot of time-averages

χ∗(i,j) =
1

20000

20000∑

i=1

χ(i,j)(p(i))

of indicator functions χ(i,j) on squares defined in the embedding space (an
indicator function is 1 if a point is inside the square of side length l and 0
elsewhere). A grid of 10×10 indicator functions was used with l = 2 psi, their
time-averages computed and assigned to nodes labelled (i, j) where i, j vary
from 1 to 10 (for this approach to experimental data analysis and discussion
of related distance functions, see [29]). The results shown in 15, for the experi-
mental data and 16 for the model that we found a good fit to the data are, for
the sake of better visualization, linearly interpolated shaded contour-plots of
the time-averages. To show the sensitivity of the model (in the sense that some
model parameters produce very poor approximation to experimental data) we
show in the figure 17 the time averages for the case of model parameters being
f0 = 207, N = 9, α = 0.03, K2 = 2000, s = 5, K1 = 0.0788.

In figure 18 we show the absolute value of the difference between the time
average of indicator functions obtained from experimental data and that ob-
tained from model that is deemed a good representation for the experimental
data. The values are an order of magnitude smaller than the values presented
in figures 15 and 16. Thus the approximation error is about 10%. In the figure
19 we show the absolute value of the difference between the time average of
indicator functions obtained from experimental data and that obtained from
model that is deemed a bad representation for the experimental data. The
model error in that case is of the same order of magnitude as the data itself.

Using the developed methods of data analysis it is relatively easy to distinguish
systems that exhibit noisy limit cycles from those exhibiting stable, lightly
damped behavior with noise ( in our case a system possessing a spiral-node
fixed point). In figure 20 we show (on top) both the spectrum of signals from
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Fig. 15. Time average plot for indicator functions from experimental data.

Fig. 16. Time averages for indicator functions for model with parameters that pro-
vide a good match with the experimental data.

experimental data (blue) and stable, lightly damped model (red) for model
parameters: f0 = 207, N = 10, α = 0.03, K2 = 9.52, s = 15, K1 = 0.0788. It is
clear that while the spectra are very similar, the probability density functions
shown in the bottom plot show a strong difference.

While the difference of the limit cycling and stable lightly damped system is
clear already from the probability density function, we investigate it in the
context of the tools developed in the theory part of the paper. In figure 21 we
show the plot of the time averages of indicator functions presented in the same
fashion as those in figures 15 and 16. The nature of the distribution of the
time-averages is clear: there is a peak centered at the box (5, 5); this is where
the stationary point of the underlying stable lightly damped deterministic
system (with K1 = 0 in (13)) is.

It is interesting to also examine the phase information provided by experimen-
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Fig. 17. Time averages for indicator functions for model with parameters that pro-
vide a poor match for the experimental data.

Fig. 18. Absolute value of the difference between the time averages for experimental
data and the model with parameters corresponding to good fit.

tal data and different models in the context of the theory provided above. In
figures 22, 23, 24 we present contour plots of the absolute value of harmonic
averages

χ∗ω(i,j) =
1

20000

20000h∑

i=1

ei2πjωχω(i,j)(p(i))

obtained at the frequency ω where the experimental data and models (”good
fit” limit cycling model and stable lightly damped model) have a peak. The
plots are colored to better indicate the structure. While both the plot from
the experimental data in figure 22 and from the ”good fit” model in figure
23 have well-defined features around the geometric location of the noisy limit
cycle, the plot obtained from the stable, lightly damped model at the same
frequency is comparatively featureless - as shown in figure 24. This is to be
expected, given that in limit cycling system with noise the factor analysis
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Fig. 19. Absolute value of the difference between the time averages for experimental
data and the model with parameters corresponding to poor fit.
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Fig. 20. Top: spectrum of experimental data (blue) and stable, lightly damped, noisy
model (red). Bottom: probability density functions of the signal for experimental
data (blue) and stable, lightly damped, noisy model (red).

provided in section 4 suggests existence of a non-uniform signed measure such
that the average of density of the measure over boxes (i, j) is approximated
by the harmonic averages. This density is concentrated at the location of the
limit cycle. In the stable lightly damped model, the phase is ”randomized” -
there is no factor and no ”true” cycling in the system.

It is also worth pointing out that by taking the ”wrong” model obtained by
setting x1 → −x1 (reflection across x2 axis) and using the parameters of
the ”good fit” limit cycling model we obtain a model whose 1− dimensional
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Fig. 21. Plot of the time averages of indicator functions for the stable, lightly damped
noisy model of the experimental data.

Fig. 22. Contour plot of the harmonic averages of indicator functions for frequency
corresponding to the peak obtained from the experimental data.

probability density plot matches that of the experimental data, shown in blue
in figure 20 while the two-dimensional plot of time averages shows figure 16
reflected across x2 axis, thus exhibiting behavior described in Example 19.

In [22] the question of characterization of limit cycling instability in jet engine
combustors was investigated. The classical method of PDF analysis was used
in conjunction with the Takens embedding theorem to provide such character-
ization. The methods we exhibited here, that use the new, statistical version
of the Takens theorem are suitable for taking such a study further, to the
realm of model parameter identification and model validation, the importance
of which in the context of combustion processes was indicated in [17].
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Fig. 23. Contour plot of the harmonic averages of indicator functions for frequency
corresponding to the peak obtained from the ”good fit” limit cycling model.

Fig. 24. Contour plot of the harmonic averages of indicator functions for frequency
corresponding to the peak obtained from the stable, lightly damped noisy model.

5.3 Effect of finite data sets and finite sets of functions

The data analysis method that we propose requires analysis of a basis of
functions on the phase space (our functions κi) whose statistical properties
are analyzed starting from a finite-time data set. If the trajectory of a system
is time-periodic or quasi-periodic, the harmonic averages will converge at a
rate 1/n where n is the number of data points (for discussion of this simple
fact and a specific application, see [26]). When the trajectory is in a chaotic
zone, and the system is strongly mixing, converegence will typically be of the
order 1/

√
n) and therefore quite slow.

The choice of different functions κi will determine the ”spatial” (i.e. phase
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space) scale of comparison of systems. For example, wavelet bases can be
employed to detect spatially localized features of a system such as high order
resonances in the standard map [21]. In the example presented in this section
it is the interplay between the time-scale of the data and spatial scale of the
feature in the phase space that determines the spatial scale of the functions
κi used.

6 Conclusions

In this paper we presented some ideas that serve as a framework within which
model validation and analysis of nonlinear and/or stochastically driven sys-
tems can be done.

Practitioners of experimental and numerical analysis of dynamical systems
have found great use of Takens embedding theorem type results. But, em-
bedding methods are often supplemented by statistical considerations such as
analysis of probability density functions and spectral analysis. This is espe-
cially the case when data is polluted by noise. Here we linked Takens embed-
ding type results with ergodic theory analysis to provide an ergodic-theoretic
understanding of probability density and spectral data, both for deterministic
and random dynamical systems.

Following the premise that time averages of certain functions on the phase
space of a system can be easily obtained experimentally, while complete in-
variant measures are hard to observe, we have studied the relationship between
the two. We have also argued that invariant measures do not describe (even in
the sense of statistics) everything we would like to know about the asymptotic
dynamics of systems. We introduced a family of operators on the space of
functions and discussed how the question about the difference of asymptotic
dynamics can be transformed into a question on the behavior of this family of
operators. Based on this, we introduced pseudometrics on the space of dynam-
ical systems that split this space into equivalence classes of systems having
the same (in the sense of the chosen pseudometric) asymptotic dynamics. We
presented an example in which this formalism is used to optimize parameters
of a model of a combustion experiment. As opposed to much of the previous
work in this direction, our interest lies not in getting the correct short-term
(relative to the time-scales of the problem) prediction but getting the correct
long-time trends - in terms of geophysics, we are not interested in weather
prediction but in the climate.

We stress that questions of identification or validation of asymptotic prop-
erties of nonlinear finite-dimensional systems with complex dynamics are in
this approach transferred to questions of identification or validation of a linear,
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albeit infinite-dimensional Koopman operator. Our hope is that some of the
methods developed in control theory of linear systems can be used to study
these issues further.

On the practical side, we provided a constructive method for obtaining relevant
statistics from experiments. This method depends on a choice of a particular
complete set of periodic functions on an interval. While this choice is irrelevant
from the perspective of the theory, as any choice of a complete set will give all
of the required statistical information, the practical issues arising from this are
numerous. For example: which complete set do we choose in order to obtain
approximate (finite data, finite set of functions) results that are optimal in
some sense? We hope to resolve some of these questions in future studies.
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Appendix

Ergodic partition of a dynamical system

Ergodic partition ζe of M under T is a partition into sets Dα such that on
each set Dα there exists an ergodic measure µDα such that
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(1) µDα(Dα) = 1,
(2) For every f ∈ L1(M), f ∗(x ∈ Dα) =

∫
Dα

fdµDα a.e. with respect to µDα

and
(3) For any invariant measure µ, and any measurable set B,

µ(B) =
∫

M
µDα(x)(B)dµ(x),

where Dα(x) is the element of the partition such that x ∈ Dα.

Proof of Theorem 2

The proof relies on two lemmas. The first one extends a standard argument
in ergodic theory which says that the ergodic partition is partition into joint
level sets of time averages of a countable, dense set of continuous functions
(for the proof and applications see [25, 27]) to allow for taking only joint level
sets of time averages of a complete set of functions. The second lemma tells us
how to generate such a complete set of functions using only one observable.

Lemma 20 Let M be a compact metric space and T : M → M a Cr, r 1 1,
diffeomorphism. Assume there exist a complete system of functions {fi}, fi ∈
C(M), i.e. finite linear combinations of fi are dense in C(M). The ergodic
partition of a Cr, r 1 1 diffeomorphism T : M → M on M is

ζe =
∨

i∈N
ζfi

. (14)

Proof. It can be shown (see [25, 27]) that ζe =
∨

f∈S ζf , where S is a countable
dense set in C(M). Now we observe that in the above product we can take
a complete set fi instead of all the functions in S. Note that finite linear
combinations over rationals of functions fi form a dense, countable set Sfi

in
C(M). Thus the partition induced by this set of functions,

ζ =
∨

f∈Sfi

ζf .

must be the same as ς, as suppose not: then there are x′, y′ ∈ A where A
is an element of ς such that f ∗(x′) 6= f ∗(y′) for some f in Sfi

. But, f =∑n
i=1 cifi for some constants ci and by the linearity of time averages we obtain

a contradiction.

The idea of the following lemma is that by composing products of complete
sets of functions on with e, we get a complete set of functions on C(M).
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Lemma 21 Let M be a compact Riemmanian manifold of dimension m, T :
M → M a Cr, r ≥ 1 diffeomorphism, f a real Cr function on M and κi, i ∈ N
a sequence of continuous periodic functions in C([−l/2, l/2]) that is complete.
Then, for pairs (f, T ) it is a generic property that finite linear combinations
over rationals of the sequence of functions κi1(f)·κi2(f ◦T )·. . .·κi2m+1(f ◦T 2m)
(where i1, i2, ..., i2m+1 ∈ N+ are dense in C(M).

Proof. By Takens embedding theorem [38, 37], for generic (f, T ) the map
e : M → R2m+1 given componentwise by

e(x) = (f(x), f(Tx), f(T 2x), ..., f(T 2mx))

is an embedding and thus e(M) is a compact submanifold of R2m+1. It is then
necessarily contained in a sufficiently large box B of side length l centered at
the origin of R2m+1. We can regard B as a torus T2m+1, i.e. the embedding e can
be regarded as a map e : M → T2m+1. The embedding e is a diffeomorphism
between M and e(M), and thus for any continuous h : M → R, g = h ◦
e−1 : e(M) → R is a continuous function. By Tietze extension theorem g
admits an extension to a continuous function g̃ defined on B. The functions
κi1(π1) · κi2(π2) · . . . · κi2m+1(π2m+1),where πi is the i− th coordinate function,
πi(x) = xi ∈ R, constitute a complete set in C(B) [36] and thus finite linear
combinations over rationals of these functions are dense in C(B). In particular,
for any ε we can find a finite number of rational ci1i2...i2m+1 such that

|g̃ −∑
ci1i2...i2m+1κi1 · κi2 · . . . · κi2m+1| =

max
y∈T2m+1

|g̃(y)−∑
ci1i2...i2m+1κi1 · κi2 · . . . · κi2m+1(y)| < ε.

But this implies

|g ◦ e−∑
ci1i2...i2m+1κi1(f) · κi2(f ◦ T ) · . . . · κi2m+1(f ◦ T 2m)|

≥ max
x∈M

|h(x)−∑
ci1i2...i2m+1κi1(f(x)) · κi2(f ◦ T (x)) · ... · κi2m+1(f ◦ T 2m(x))| < ε.

Because h is an arbitrary continuous function and ε is arbitrarily small, we
are done.

Theorem 2 is thus proven.

Proof of Theorem 15

First observe that the expectation of the modulus of hω is constant a.e. with
respect to an invariant measure as

∫

A
E(|hω| ◦ Tξ)dµA = E

∫

A
(|hω| ◦ Tξ)dµA =

∫

A
|hω|dµA.
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by invariance of µA. In addition E(|hω| ◦ Tξ) = E(|hω ◦ Tξ|) ≥ |E(hω ◦ Tξ)| =
|e−i2πωhω| = |hω|. It follows that |hω| = E(|hω| ◦Tξ) a.e. and thus the modulus
of hω is constant a.e. as T is ergodic on A.

Lemma 22 Let hω be an eigenfunction of Us. Then hω ◦ Tξ(x) = e−i2πωhω(x)
for almost every ξ ∈ N .

Proof. Assume not. Since hω is an eigenfunction of Us,

Ushω(x) = Ehω ◦ Tξ(x) = e−i2πωhω(x)

. Since |hω| is constant on A, without loss of generality, we assume |hω| = 1.
Thus

|Ehω ◦ Tξ(x)| = |
∫

N
hω ◦ Tξ(x)dΩ(ξ)| ≤

∫

N
|hω ◦ Tξ(x)|dΩ(ξ) = 1

. Equality holds iff hω ◦Tξ(x) is constant for almost every ξ. But since we know

|Ehω ◦ Tξ(x)| = |e−i2πωhω(x)| = 1,

we get a contradiction with the assumption that hω ◦Tξ(x) is not constant for
almost every ξ.

Corollary 23 For any measurable E ⊂ S1, for an eigenfunction hω of Us, we
have

µA{x ∈ A|Ehω ◦ Tξ(x) ∈ E} = µA{x ∈ A|hω ◦ Tξ(x) ∈ E}, (15)

for almost every ξ ∈ N .

Proof. Let C = {x ∈ A|hω ◦ Tξ(x) ∈ E}, Dξ = {x ∈ A|hω ◦ Tξ(x) ∈ E}.
Assume there is a set F ⊂ N, Ω(F ) > 0 such that µA(Dξ) 6= µA(C) for every
ξ ∈ F . Consider the set G = {(x, ξ) ∈ (A × N)|ξ ∈ F, x ∈ (C/Dξ)}. Clearly,
(µA×Ω)(G) > 0 and this contradicts the fact that for every x ∈ C, for almost
every ξ ∈ N , we have hω ◦ Tξ(x) ∈ E.

Proof of Theorem 15. Without loss of generality we assume that |hω| = 1.
Define the angle variable (see [42], pg. 392) θ(x) by hω(x) = e−i2πθ(x). We have

E(hω ◦ Tξ) = e−i2πωhω = e−i2πωe−i2πθ(x) = e−i2π(θ(x)+ω).

Thus, it is clear that E(hω ◦ Tξ) = S ◦ hω where S the rotation by an angle
−2πω on a circle of radius 1. Now define a measure ν on the circle by ν(E) =
µA(h−1

ω (E)) where µA is the ergodic measure for T . We get

ν(S−1(E)) = µA(h−1
ω ◦ S−1(E)) = µA((S ◦ hω)−1(E))

= µA((Ehω ◦ Tξ)
−1(E))
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Now by Corollary 15 we have

µA((Ehω ◦ Tξ)
−1(E)) = EµA((hω ◦ Tξ)

−1(E))

= EµA(T−1
ξ ◦ h−1

ω (E))

= µA(h−1
ω (E)) = ν(E).

The converse is clear by the following construction: let h : M → S1 be a factor
map such that the factor of T is a clockwise rotation by an angle 2πω. Then

E(h(Tξx)) · h−1(x) = ei2πω,

and h is an eigenfunction associated with eigenvalue e−i2πω.
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