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Symplectic maps are the discrete-time analog of Hamiltonian motion. They arise in many applications in
cluding accelerator, chemical, condensed-matter, plasma, and fluid physics. Twist maps correspond to 
Hamiltonians for which the velocity is a monotonic function of the canonical momentum. Twist maps 
have a Lagrangian variational formulation. One-parameter families of twist maps typically exhibit the full 
range of possible dynamics-from simple or integrable motion to complex or chaotic motion. One class of 
orbits, the minimizing orbits, can be found throughout this transition; the properties of the minimizing or
bits are discussed in detail. Among these orbits are the periodic and quasiperiodic orbits, which form a 
scaffold in the phase space and constrain the motion of the remaining orbits. The theory of transport 
deals with the motion of ensembles of trajectories. The variational principle provides an efficient tech
nique for computing the flux escaping from regions bounded by partial barriers formed from minimizing 
orbits. Unsolved problems in the theory of transport include the explanation for algebraic tails in correla
tion functions, and its extension to maps of more than two dimensions. 
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A dynamical system consists of a phase space describ
ing the allowed states of a system and a rule defining the 
temporal evolution of those states. The evolution can be 
continuous, as for differential equations, or discrete, as 
for a mapping. Virtually every model of physical phe
nomena is a dynamical system; furthermore, most of the 
fundamental models of physics are Hamiltonian dynami
cal systems. The latter give rise to symplectic mappings. 
For example, the mapping defined by a Hamiltonian flow 
taking an initial condition to a state some finite time later 
is a symplectic map .. Symplectic mappings are prominent 
in studies of charged-particle motion in particle accelera
tors, chemical reactions, or magnetic plasma 
confinement. Less appreciated is the fact that the motion 
of a fluid particle in an incompressible fluid is also Ham
iltonian, even when the fluid motion itself is viscous. 
Mappings are useful because for many purposes they are 
easier to study than differential equations-certainly any 
numerical solution of a differential equation involves 
iteration of a map (and if the system is Hamiltonian, care 
should be taken to ensure that the map is symplectic). 
Mappings are also more general than differential equa
tions. 

Typical questions of physical interest include the long
time stability of orbits and the determination of the re
gions accessible to the motion. For example, in a particle 
accelerator, one would like to confine trajectories within 
the tunnel for something like 1010 revolutions. Direct 
simulation of a dynamical system for such periods is 
often impossible and, even if possible, is suspect due to 
the numerical errors induced-thus the need for basic 
theoretical results on stability. Another class of prob
lems concerns transport, that is, the determination of the 
time for a group of trajectories to move from one region 

Rev. Mod. Phys., Vol. 64, No. 3, July 1992 

of phase space to another. Even if the system were not 
strictly stable, it could be stable in practice if the trans
port times were longer than the lifetime of the system
such is probably the case for the planetary motions in the 
solar system, though clearly not so for asteroids. Trans
port calculations enter as well into the theory of chemical 
reactions. For example, in the scattering problem 
AB + C-+ A + BC, transport connects the regions of 
phase space corresponding to reactants and products, 
and quantities of interest are the reaction probabilities 
and rates. These could be computed statistically based 
on the volume of accessible phase space, but such calcu
lations are often quantitatively incorrect due to dynami
cal obstructions to the motion-objects we call partial 
barriers. We discuss them in Secs. VIII and IX. 

In this article our primary concern is the theory of 
symplectic twist mappings. The twist property is com
mon in physical applications. It is fortuitous that the 
twist property also permits the use of powerful tools, 
both geometrical and analytical, resulting in a set of 
striking and fruitful theorems. The essence of the twist 
condition is that the canonical momentum variable 
represents a velocity on phase space-larger momentum 
implies that the configuration variable increases more 
rapidly. For example, for the free particle, the velocity is 
directly proportional to the momentum. We adopt the 
notation (x,y) for the phase-space coordinates, where y is 
this privileged momentum coordinate, and xis its conju
gate configuration. 

We review the theoretical results in Secs. III-VII. 
The first of these, the Kolmogorov-Arnol'd-Moser 
(KAM) theorem, is a perturbative result-it implies that 
most of the invariant tori of integrable twist mappings 
are preserved under perturbation. The rest of the results 
we discuss are nonperturbative-they hold for any twist 
mapping. The proof of Birkhofl"s theorem, Sec. IV, 
typifies the geometrical reasoning allowed by the twist 
condition. One consequence of this theorem is a nonex
istence criterion for invariant circles of 2D twist maps. 
We next discuss analytical results that are based on the 
variational principle for twist maps. 

The variational principle for twist maps is analogous to 
the Lagrangian-action formulation of analytical mechan
ics. Orbits are stationary points of the action function. 
What is most interesting about twist maps is that special 
extrema of the action, the minima and minimax points, 
lead to a class of orbits that are of great importance. 
These orbits each have a definite rotation frequency and 
satisfy ordering properties. For rational frequencies 
these orbits are the elliptic and hyperbolic orbits that 
form the island chains (see Sec. II). For irrational fre
quencies they are either invariant circles, when the sys
tem is weakly perturbed, or invariant Cantor sets-the 
cantori-when the system is strongly perturbed (see Sec. 
VII). Thus we obtain a general picture of the regular 
part of the phase space of these maps. 

Chaotic orbits must wend their way through the obsta
cle course formed by the minimizing and minimax orbits 
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and their stable and unstable manifolds. We use these 
manifolds to construct partial barriers, and in Secs. VIII 
and IX, develop a theory of transport based on the flux of 
trajectories through these barriers. This theory is in 
direct contrast with a more uniform statistical picture of 
chaos and shows that chaotic zones must be. partitioned 
into subsets that are often separated by effective barriers. 
One of the predictions of this theory is that any system 
with regular regions should exhibit slow, nonexponential 
decay of correlation functions. Another is a universal ex
ponent for the onset of transport when an invariant circle 
is destroyed by perturbation, becoming a cantorus. 

In the remainder of this section we review Hamiltonian 
dynamics, discuss the nature of symplectic flow, and pro
vide examples.1 We then define twist mappings, which 
will be our major concern. Those readers with little in
terest in the physical motivations for studying symplectic 
mappings can proceed directly to Sec. I.E, where twist 
maps are introduced. 

B. Hamiltonian flows 

A Hamiltonian flow is described by a function 
H ( p, q, t) and a set of differential equations 

!!!l!_=aH !!P.!_=_aH 
dt api' dt aqi · (1.1) 

Here the q; represent configuration coordinates and the 
pi represent canonical momenta, i = 1,2, .. . N, for a sys
tem with N degrees of freedom. For example, 
H =½p2+ V(q) represents the energy of a set of particles 
interacting through a potential V. More compactly (and 
more generally), these equations can be written as 

z={z,H}. (1.2) 

Here we use the symbol z to denote arbitrary coordinates 
on phase space regardless of its dimension-it is hoped 
that no confusion between scalars and vectors will arise. 
The coordinates are denoted by zm,m = 1,2, .. . 2N, and 
{, } represents the Poisson bracket. The latter is defined 
for any two functions f (z) and g (z) as 

{/ l = ~ a/ Jmn~ = ~ at ag - ag a/ 
,g - ~ a m a n ~ a k a k a k a k ' 

m,n = I Z Z k = I q 1JJ q 1JJ 

(1.3) 

where J, the Poisson matrix, is the 2N X 2N antisym
metric matrix 

1For a more complete discussion of some of the topics in this 
section, consult Lichtenberg and Lieberman (1982) or, for the 
mathematically inclined, Arnol'd (1978), MacKay and Meiss 
(1987), or Arrowsmith and Place (1990). 
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(1.4) 

in (q;,p;) coordinates. In fact, J transforms as a contra
variant tensor, and Hamilton's equations (1.2) are covari
ant. 

Hamiltonian flow can be obtained from a variational 
principle. Consider a trial trajectory or path 
{ q( t ), p( t ); t O < t < t 1 } in phase space connecting the point 
(q0,p0 ) to (q1,p1). The action is a functional on such a 
path, defined as 

f tl 
S= [p·q-H(p,q,t)]dt. 

'o 
(1.5) 

Hamilto~'s principle states that the true path between 
the fixed end points q(t0 )=q0 and q(t 1 )=q1 is one for 
which S is stationary: 

O=BS= f2dt [cSp·q+p·cSq- ~! ·cSp- ~! ·cSq] . (1.6) 

Since the path is arbitrary in the phase space, the varia
tions cSp and cSq are independent. Thus the coefficient of 
each must be zero. The coefficient of cSp yields directly 
the equation of motion for q. Integration by parts on cSq, 
and using the fixed end-point conditions on q, gives the 
equation of motion for p. 

The action (1.5) is covariant and thus can be written in 
arbitrary coordinate systems. 

The action principle is handy because it represents the 
equations of motion in a compact, scalar form; however, 
it also has more applications. In fact, a major theme of 
this paper is that the action can be used to compute 
quantities of physical importance. We shall first use the 
action principle to show that Hamiltonian flow is sym
plectic. 

C. Symplectic mappings 

A mapping is a transformation of each point in the 
phase space 

z'=T(z). (1.7) 

We shall consider only diffeomorphisms, that is, one-to
one mappings that are smooth and have smooth inverses. 
A function is of class en if it has n continuous deriva
tives. A c 0 diffeomorphism is also called a homeomor
phism. Some of the results discussed here are valid for 
homeomorphisms, but most require some degree of 
differentiability. 

An orbit is a sequence 

(1.8) 

such that z1 + 1 = T (z1 ). 

As we shall see below, mappings arise naturally from 
flows. An example is the transformation of phase space 
given by integrating every point forward one unit in time; 
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another is the "return map." We shall discuss next the 
mappings that come from Hamiltonian flows. Such maps 
are termed "symplectic." 

1. Integral invariant 

We show here that the action of a loop is an invariant 
for Hamiltonian flow-the Poincare integral invariant. 
The loops we consider are closed curves in the extended 
phase space (q,p,t). One could, for example, choose a 
loop at some fixed time-a loop in ordinary phase space; 
however, the loop could just as well depend on time. We 
denote by the symbol L a loop that is contractible to a 
point. In terms of some parameter A, the loop is given by 
{q(A),p(A),t(A);0:::::')..,:::; 1}. The action of Lis the loop 
integral 

S[L]=f 1 [p·!!.!J..-n.!!!_ ]d').., 
o dA d').., 

=g>_.cp·dq-ndt. (1.9) 

Here the second integral is a convenient notation for the 
first. A more compact notation for Eq. (1.9) is obtained 
by defining the vector A= (p, 0, - n), and a line element 
dl=(dq,dp,dt), to give 

S[L]= ~ L A·dl . (1.10) 

Every point on L constitutes an initial condition for 
Hamilton's equations, and we can evolve the loop by in
tegrating from each point. This gives a two-dimensional 
tube T, Fig. 1. Now consider any loop L' on T that is 
homotopically equivalent to L (i.e.,.£,\ must be obtained 
by sliding L along T in some continuous but otherwise 
arbitrary way; however, L' need not be a loop that is ob
tained by evolving.£, forward for a fixed time step). We 
wish to show that the action of L' is equal to S [L ]. The 
difference between S [ L ] and S [ L' ] is the difference be
tween the two loop integrals of the vector A. These two 
loops bound a piece of the tube T, and because L' is 
homotopic to L this piece of T is simply connected. 
Stokes's theorem2 implies that the difference between the 
actions is equal to the integral of V X A over this piece of 
T: 

S[L]-S[L']= f VX A·d 2s , 
T 

(1.11) 

where d 2s is the surface area element. A simple calcula
tion shows that V X A= ( - an ;ap, an ;aq, -1 ), which 
is in fact the negative of the velocity vector in extended 
phase space: V X A= - ( q, i>, 1 ). By construction the ve
locity vector lies along T, perpendicular to d 2s; so the in
tegrand in Eq. (1.11) is zero, and 

2Actually we are using the generalization of Stokes's theorem 
to many dimensions; the curl is generalized to the exterior 
derivative dA (Appendix A). The net result is the same as Eq. 
(1.11). 
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FIG. 1. Preservation of the loop action for Hamiltonian flows. 

S[L']=S[L]. (1.12) 

A map that preserves the loop action is symplectic. 
As an example, suppose n is independent of time; then 

it is constant along the motion given by (1.1). Consider 
any loop L contained within an energy surface n = E. 
Since n is constant on L, it can be removed from the 
loop integral, and !Pdt =0, therefore 

S[L]= ~ Lp·dq (on an energy surface). (1.13a) 

The integral (1.13a) is the symplectic area; its value is the 
sum of the N areas of the projections of L on the canoni
cal planes (qi,pi), shown in Fig. 2. Thus invariance of 
the action implies that the symplectic area is conserved 
along the flow of a time-independent Hamiltonian. It is 
important for applications that the loop .L' need not be a 
loop obtained from L by evolving for a fixed time step 
(see Sec. LC). 

As a second application consider loops on fixed time 

pl 

qi 

FIG. 2. Definition of the Poincare integral invariant. The 
value of each of the projected symplectic areas shown is nega
tive because the loops are traversed counterclockwise. 



J. D. Meiss: Symplectic maps, variational principles, and transport 799 

slices, t (')..)=constant. Then, even though H may depend 
upon time, g> .LH dt =O, and the action is 

S [L ]= g5 .Lp·dq (for t =constant) . (1.13b) 

Furthermore, Eq. (1.12) implies that the value of this ac
tion is the same for any loop L' that is on a constant t 
surface. Thus integrating Hamilton's equations forward 
by a fixed time step conserves the action (1.13b). 

Most of our applications will deal with the special 
cases represented by Eq. (1.13). 

2. Symplectic form 

Using Stokes's theorem in reverse provides an alterna
tive representation for (1.13)-it becomes the sum of in
tegrals over the two-dimensional disks bounded by the 
projection of .L onto each canonical plane (see Fig. 2): 

N 

S[.L]= f dpl\dq= ~ a;f ;dp;dq;. 
.A i=l .A 

(1.14) 

Here the wedge product represents an oriented area, so 
that a; is + 1 if the projection of .L is traversed clockwise 
or - 1 if traversed counterclockwise in the canonical 
plane.3 

For example, consider a loop that is a parallelogram 
with sides made from two vectors 6z and 6z, sketched in 
Fig. 3. Its symplectic area is the sum of each of the areas 
of its projections. We denote this w 

(1.15) 

The antisymmetric form w is called the symplectic form. 
In (q,p) coordinates, it is represented by the matrix 

[o -11 
w= I O ' (1.16) 

which is the inverse of the Poisson tensor J. 

3. Locally symplectic mappings 

We can use the symplectic form to obtain a differential 
statement of the symplectic condition. Suppose T is a 
symplectic mapping; by definition T preserves the loop 
action (1.12). Consider an infinitesimal parallelogram at 
the point z, which is made from two arbitrary vectors 6z 
and 6z. Under the mapping this parallelogram has an 
image at z'; each of the sides are given by the derivative 
of the mapping ( 1. 7) at z: 

3Unfortunately this is the reverse of a common convention; 
however, since we wish to have (q,p) represent horizontal and 
vertical coordinates, respectively, it seems that a minus sign 
must appear at some point. 
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FIG. 3. Interpretation of the symplectic two-form. 

6z' = DT(z) f,z = [ :z T(z)] 6z . (1.17) 

Thus the image is also a parallelogram. Equation (1.12) 
implies that the symplectic area of the image is equal to 
its initial value: 

w(6z',6z')=w(6z,6z) . (1.18) 

Using the definition ( 1.15), it is easy to see that this im
plies 

MwM =w, (1.19) 

where w denotes the matrix (1.16) and M denotes the 
Jacobian matrix 

( 1.20) 

Equation (1.20) is the local requirement on the mapping 
T imposed by the integral invariant. Any map whose 
derivative satisfies (1.19) everywhere is locally symplectic. 
If the phase space is not simply connected, then the con
servation of the integral invariant (1.13) for curves that 
cannot be deformed to a point is an additional require
ment (see Sec. V.B). Maps that are symplectic in this 
second sense are exactly symplectic. 

4. Reflexivity and volume preservation 

A simple consequence of Eq. ( 1.19) follows from taking 
its determinant: 

Det(MwM)=Det(w)=(DetM)2= 1 , 

since Det(w)':FO. This implies that Det(M) must be ei
ther ±1. In fact, we shall show that Det(M)= + 1, and 
that any symplectic map is therefore volume and orienta
tion preserving. In showing this we shall also obtain an 
important property of the eigenvalues of symplectic ma
trices. 

Consider the eigenvalue problem for M. The charac
teristic equation is the ( 2Nth)-order polynomial 

Det(M-U)=O. ( l.21) 
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Because the mapping is real, the characteristic polynomi
al is also real; 

'A is an eigenvalue of M ='A* is an eigenvalue of M . 

(1.22) 

More interestingly, using Eq. (1.19) we can rewrite (1.21) 
as 

0=Det(<u) Det(M-'AI)=Det(<uM-'A<u) 

= Det(M- 1<u- 'A<u )= Det(.M- 1 - 'AI) Det(<u) 

=Det(M- 1-'AI). 

Thus if 'A is an eigenvalue of M, it is also an eigenvalue of 
M- 1• Alternatively, 

'A is an eigenvalue of M='A- 1 is an eigenvalue of M. 

(1.23) 

Thus the characteristic polynomial is reflexive: it can be 
written in the form 

'AN+ A'AN-t+B'AN-2+ ... +B'A2-N 

+ A'AI-N+'A-N=O. 

Since Det(M) is the product of its eigenvalues, (1.22) 
and (1.23) imply directly that 

Det(M)=l. (1.24) 

Thus two-dimensional symplectic maps, for example, 
preserve the oriented area element dp 1 /\ dq 1• Converse
ly, any two-dimensional map that preserves area and 
orientation is locally symplectic. 

Equations (1.22) and (1.23) imply that eigenvalues ap
pear either in pairs or in quadruplets (Fig. 4). If 'A is real, 
then it has a partner 'A - t. If 'A is complex and has only 
one partner under (1.22) and (1.23), then 'A*='A- 1; so it is 
on the unit circle. Furthermore, if 'A= 1 is an eigenvalue, 
then it must have even multiplicity, since the phase space 
is even dimensional. Finally, if 'A is neither real nor of 
unit modulus, then there must be a quadruplet of eigen
values 

(1.25) 

FIG. 4. Possible eigenvalues for a symplectic matrix in the 
complex plane. The triangles are a unit modulus pair, the 
squares are a real pair, and the circles are a quadruplet. 
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Of course, this case can occur only for four or more di
mensions. 

D. Return mappings 

Consider a time-independent Hamiltonian. Since the 
energy is conserved, the flow occurs on a ( 2N - 1 )
dimensional energy surface 8 corresponding to a value 
E =H. Now suppose there is another (2N-1 )
dimensional surface (Q that is transverse (i.e., nowhere 
parallel) to the flow in some local region (see Fig. 5). The 
Poincare section S is the (2N - 2 )-dimensional intersec
tion of 8 with (Q. The return mapping, denoted z'= T(z), 
is the function that takes an initial condition z on S to 
the point z' at which it first returns on S. The Poincare 
recurrence theorem states that if the energy surface is 
bounded (compact), almost all trajectories (all but a set of 
zero volume) that begin on S will eventually return to S 
(Cornfeld et al., 1982). The return map. is symplectic 
with action (1.13). 

For example, let (Q be the surface qN =constant. It is 
transverse to the flow if 

dqN = aH c,t=Q on (Q • 
dt apN 

(1.26) 

The Poincare section S can be described by the coordi
nates (q 1,p 1, ••• ,qN-i,PN-i), since, with a choice of 
value for the energy, transversality (and the implicit 
function theorem) implies that H(q 1,p 1, ••• , qN,PN )=E 
can be inverted to obtain 

(1.27) 

The return mapping Tis parametrized by the choice of E 
and qN. In this coordinate system, the action (1.13) 
reduces to S =l:i"=,' f,pidqi. 

In the particular case of a two-degree-of-freedom 
Hamiltonian, N = 2, the mapping T acts on the two-

FIG. 5. Return mapping. 
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dimensional phase space (q 1,p1 ). In this paper we shall 
almost always consider this two-dimensional case. There 
are many examples of physical interest, and we give two 
below. 

1. Henon-Heiles Hamiltonian 

The Henon-Heiles model (Henon and Heiles, 1964) is a 
two-degree-of-freedom system with the Hamiltonian 

H =½(p;+p;+x2+y2+2x2y-fy3). 

It was chosen to model the motion of a star in a galaxy 
with an axisymmetric distribution of matter. The Hamil
tonian has a bounded energy surface when E ~ ¾- The 
original pictures of the flow of this system were obtained 
using the surface (IJ defined by x =O, which is transverse 
to the flow for Px =*0. Typically, one chooses Px > 0 to fix 
the branch of the function Px<Y,Py;E,x). Since p;?.O, 
the domain of the mapping is restricted to the region 
p;+y 2-fy3~2E, which looks like an oval for E small 
and has a corner when E = ¾-

Though this Poincare section is commonly used, any 
choice of a transverse surface (IJ will give a symplectic 
mapping; and since the Hamiltonian flow provides a 
smooth connection between various transverse surfaces, 
the structure of the mappings will be the same. 

2. Passive tracers and magnetic fields 

Volume-preserving flow in three dimensions also can 
be thought of as a Hamiltonian system and reduced to an 
area-preserving mapping, providing there are no null 
points of the flow. For example, consider an incompres
sible fluid with velocity field v(x), or a magnetic field 
B(x). The equations for the Lagrangian particle trajec
tories govern the motion of a passive tracer in the fluid. 
An understanding of the Hamiltonian nature of these 
equations is important for the study of mixing (Aref, 
1984; Khakhar et al., 1986; Ottino, 1989). Similarly, the 
equations for the magnetic-field lines are, to the lowest 
approximation, the equations of charged particles in 
small gyroradius orbits. This is especially applicable to 
magnetic confinement of plasmas. There are many appli
cations of the study of such equations (Rosenbluth et al., 
1966; Dragt and Finn, 1976; Rechester and Rosenbluth, 
1978; Chirikov, 1979a; Mynick and Krommes, 1980; 
Boozer and White, 1982). We shall use notation ap
propriate to the magnetic-field case. 

The relevant equations take the form 

dx 
-=B(x) 
dt ' 

where t is a parameter-measuring distance along the field 
lines (or streak lines). Whenever the magnetic field is 
nonvanishing, the system of equations (1.28) is 
Hamiltonian-in fact, it is equivalent to a one-degree
of-freedom, time-dependent Hamiltonian. Thus three-
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dimensional physical space is equivalent to the extended 
phase space (q,p,t) (Cary and Littlejohn, 1983). The ac
tion principle (1.5) can be shown to become 

Jxt 
S= A·dl, 

"o 
(1.28) 

where A(x) is the vector potential. In a general coordi
nate system, the equations of motion generated by Eq. 
(1.28) are noncanonical in form. There is an important 
special case that is naturally canonical-a toroidal sys
tem with coordinates (tf,,fJ,t), where fJ and tare the po
loidal and toroidal angle variables, and for which the 
toroidal component of B does not vanish. One can show 
that a suitable radial coordinate tf, and a suitable gauge 
can be found so that 

(1.29) 

The corresponding field is B=Vtf,XV0-Vxxvt. We 
have assumed that the contravariant component of B in 
the toroidal direction does not vanish: 

this is equivalent to (tf,,0,t) being a nonsingular coordi
nate system. Using Eq. (1.29), we see that the action 
(1.28) becomes 

S= f tf,d0-x(tf,,0,t)dt. 

Comparing this with Eq. (1.5) shows that (fJ,tf,) are a 
canonical pair of variables, and X acts as the Hamiltonian 
with t playing the role of time. Periodicity in t implies 
that we can use the Poincare section technique to con
struct an area-preserving mapping T:(tf,,fJ)-+(tf,',fJ'). 

In general, since the flow is Hamiltonian at any point 
for which B=*O, the two eigenvalues of the map satisfy 
A1A2 = 1, according to (1.22) and (1.23). The flow has a 
third eigenvalue that corresponds to the direction of B; it 
must be 1 because the flow is volume preserving. This 
need not hold at null points of the flow-there the only 
restriction is A1A2A3 = 1. 

E. Twist mappings 

We now restrict consideration to two-dimensional 
maps and assume that the phase space (x,y) is a cylinder, 
with x being the angle coordinate. Such a phase space 
arises naturally in many examples, where y represents a 
momentum and so is unbounded, but x represents the an
gle coordinate of, for example, an oscillator. Let 
T:(x,y)-+(x',y') be a symplectic map from the cylinder 
to itself, and suppose Tis differentiable. Then Tis a twist 
map (with twist to the right) if there is a K such that 

:· Ix ?.K >0, (1.30) 

which means that x' is a monotonically increasing func
tion of y. This is illustrated in Fig. 6-the.first iterate of 
a vertical line (x =constant) tilts to the right (is a graph 
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y 

y --------

X x' 

FIG. 6. Geometrical interpretation of the twist condition 
(1.30). 

over x ). The twist condition is natural physically, since y 
represents a momentum, and larger momentum usually 
implies larger velocity. Thus points with larger y should 
move farther in x. As noted in Fig. 6, this relation does 
not imply thaty'(x,y) is a function ofy. 

Since the map is differentiable, we can consider its ac
tion on a tangent vector (6x,6y), as in (1.17): 

[6x'] = 
6y' 

ax' ax' 
ax ay 
ay' ay' 
ax ay 

[6x] = [6x] 6y M 6y · (1.31) 

According to Eq. (1.24) the matrix M has unit deter
minant. The inverse of the linear map is represented by 
the derivative of r- 1 as well as the inverse of M; thus 

ax ax ~ ax' 
ax' ay' 

=M-'= 
ay ay 

ax ~ -~ ax' (1.32) 

ax' ay' ax ax 

Therefore the twist condition implies that 

~1 =-E£1 <-K. ay' x' ay X - > 
(1.33) 

so if Tis a twist map, then r- 1 is also a twist map, but 
one that twists to the left. Note that T 2 is not necessarily 
a twist map, and indeed typically is not, because the tilt
ed line can rotate enough on the second iterate to violate 
the twist condition ( T 2 is a member of a more general 
class of maps, called "tilt" maps, to which we shall refer 
in Sec. IV.C). 

This paper will almost entirely concentrate on the 
study of area-preserving twist maps. The theory behind 
these maps is well developed, and the twist condition per
mits the proof of several important theorems. Moreover, 
twist maps occur commonly in applications. 
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F. Examples of twist maps 

1 . The cyclotron 

Symplectic maps arise often in the study of particle ac
celerators (Carrigan et al., 1982; Evans, 1983; Jowett 
et al., 1986). The simplest accelerator is the cyclotron, 
which, though it is not a good example of modern design, 
provides a nice example of a twist map. Our model cy
clotron consists of a constant magnetic field B = B 0ez and 
a time-dependent voltage drop V sinwt across a narrow 
azimuthal gap (Fig. 7). 

Suppose there is an orbiting electron in the cyclotron. 
The time for an electron to go around one circuit of the 
cyclotron is 

T= 21r =21rmyc =21r__!i_' 
fie eB eBc 

(1.34) 

where Eis the particle energy mrc 2, and r is the relativ
istic factor. The change in energy upon traversing the 
gap is 1:J..E = -eV sinwt. Let (E,t) be the energy and time 
just before the electron reaches the gap; then after one 
circuit their new values are 

E'=E-eVsinwt, t'=t +(21r/ceB)E', (1.35) 

providing the kick is too small to reverse the velocity. 
Defining normalized variables y =wE/ceB =wlfic, 

x =wt /21r, and k =21rw V /cB, Eq. (1.35) becomes the 
"standard map" 

!
y' = y - ~sin( 21rx) , 

T: 21r 
x'=x+y'. (1.36) 

It depends on a single parameter, k, representing the 
strength of the nonlinear kick. It is important that 
y'(x,y) appears in the second equation, so that the map 
preserves area. In the case discussed here, y' represents 
the energy after the kick and is therefore the proper 
value to use for calculating the next period. Since the 
map is taken at a fixed value of the angular position, the 
action (1.9) reduces to -pH dt for this map; thus we 
should expect that (x,y) representing time and energy are 
appropriate canonical coordinates. The standard map 
has twist; in fact, ax, ;ay = 1. 

B 

V sin(cot) 

FIG. 7. Model cyclotron. 
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FIG. 8. Return mapping near an elliptic periodic orbit. 

2. Poincare section 

Nearby 
Orbit 

Consider a two-degree-of-freedom system H(p,q) with 
a periodic orbit. We construct a Poincare section using a 
surface transversely intersecting this orbit at some point 
(Fig. 8). The mapping T from S to itself is denned locally 
near the periodic orbit, because points near the periodic 
orbit must return to S, by continuity. The periodic orbit 
becomes a fixed point of T. 

Suppose that the periodic orbit is elliptic. By 
definition, an orbit is elliptic if the return map T has a 
linearization M with eigenvalues e±z..-i,,, (see Sec. 11.C). 
When m is irrational there is a formal perturbation ex
pansion for the map in terms of polarlike coordinates 
(r,8) near the fixed point (Amol'd, 1978, Appendix 7; 
Arrowsmith and Place, 1990, Chapter 6). In these coor
dinates the map is said to be in Birkhoff normal form: 

{
r'=r +h (r,8) , 

T: 8'=8+21rm+p2r2+ ... +P2mr2m+g(r,8) ' (1.37) 

where hand g are o (r 2m), and m can be made as large as 
one likes. The map preserves the area r dr d8. If any of 
the Pzn are not zero, then the map has twist, providing r 
is small enough (the twist is to the right or to the left de
pending upon the sign of the first nonzero p ). If we 
neglect h and g, then the radial coordinate is a constant, 
while 8 rotates with a frequency depending on r -this is 
in fact the meaning of the twist condition, Typically this 
frequency is irrational, so the orbits tend to fill out the 

.__ ____________ X 

circles r = constant. Extending this to the full phase 
space, we see that the orbit lies on a torus. To the extent 
we can neglect g and h, there is a family of nested tori. 
However, the formal power series (1.37) does not con
verge in general, and some of the nested tori do not exist 
(see the discussion of the KAM theorem in Sec. 111.B). 

3. Incommensurate states 

Symplectic maps also arise in condensed-matter phys
ics. The simplest model of interest is a one-dimensional 
chain of particles connected by harmonic springs (Fig. 9). 
For simplicity, we take the spring constants to be 1. We 
can imagine this chain to be deposited on the surface of a 
crystal, which is represented by a periodic potential 
V(x)=k/4~cos(21rx). The conflict between the poten
tial and the interatomic forces can result in an equilibri
um state if force balance is satisfied: 

(xi+ 1-xi)-(xi-xi_ 1 )+ 2~sin(21rxi)=O. (1.38) 

If we define y i =xi - xi_ 1, and reinterpret the particle in
dex j as "time," then this becomes the standard map 
( 1.36). This model is known as the Frenkel-Kontorova 
model (Aubry, 1983b). The energy ofa configuration is 

k W=l: ½(xi-xi+ 1)2+--2 cos(21rxj). 
j 41T 

(1.39) 

We shall learn much about this function and its extrema 
in Secs. V - VII. 

4. Convex billiards 

Consider a particle bouncing with elastic reflections in 
a bounded, two-dimensional domain (Berry, 1981). Since 
energy is conserved, the motion is completely determined 
by the sequence of boundary points at which the bounces 
occur. If the domain is convex, then the map from one 
bounce to the next is continuous. Convenient coordi
nates are Birkhoff coordinates (s,8) (Fig. 10), The bounce 
position is measured by the arc length s along the bound
ary from a given point. The direction of motion is mea-

eo•c5•c5•c5•c5•c5•c5•c5•o' 

FIG. 9. Frenkel-Kontorova model. 
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FIG. 10. Birkhoff coordinates for a billiard. 

sured by the angle 0 between a tangent to the boundary 
and the trajectory. It is easy to see that s'(s,0) is a mono
tone increasing function of 0 because of the convexity of 
the boundary (Fig. 11)-thus the map in Birkhoff coordi
nates has twist. 

In fact, s is an anglelike coordinate since the map is 
periodic with period equal to the length of the boundary. 
As we shall see in Sec. V .C, this map preserves the area 
element sin0 ds d0. · Thus canonical coordinates are given 
by (x,y)=(s,cos0). We could have anticipated this, since 
y is proportional to the component of the velocity along 
the boundary and is therefore the canonical conjugate of 
the arc length. The boundaries y = ± 1 are fixed points 
and the twist, dx' /dy, vanishes at these points. 

II. PHENOMENOLOGY 

In this section we discuss range of phenomena that 
occur in twist maps. We use the standard map (1.36) as 

FIG. 11. Twist condition for billiard map in Birkhoff coordi
nates. 
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an illustration. It is in many ways a typical example of a 
smooth · one-parameter family of area-preserving twist 
maps; however, it has two special aspects, which we dis
cuss briefly. 

First, the standard map is special because it is periodic 
in the momentum direction-if (x,y)----+(x',y'), then the 
point (x,y +m)----+(x'+m, y'+m), which is equivalent 
to (x',y'+m) on the .cylinder. So the orbits of two 
points separated by an integer in y are identical. We can 
use this to restrict our attention to the interval O::: y :::: 1. 

Second, the standard map is reversible-it has a time
reversal symmetry (DeVogelaere, 1950; Devaney, 1976; 
Sevryuk, 1986). Simple examples of reversible systems 
include Hamiltonians even in the momentum 
H( -p,q)=H(p,q). In this case the time reverse of an 
orbit can be obtained by reversing the momentum. There 
is a similar time.-:reversal operator for the standard map. 
Reversibility is often used to help find periodic orbits 
(Greene, 1Q79); however, we do not.discuss it further. 

The sections are organized by increasing levels of 
chaotic behavior. We begin at k =O. 

A. Integrable case 

When k =O, the standard map becomes 

y'=y' 

x'=x·+y'. 
(2.1) 

Thus y is a constant of the motion, and x grows at a con
stant rate, which, however, increases with y because of 
the twist condition. Since the solution can be obtained in 
closed form, 

Yr =yo, Xr =xo+Yot , 

the map is "integrable." 

1. Liouville integrability 

(2.2) 

In general, a symplectic map is integrablt! when the 
motion is "simple,,, in some way. To avoid philosophical 
issues (Zakharov, 1991) we shall consider only the notion 
of integrability in the sense of Liouville. 

An integral is a function on the 2N-dimensional phase 
space J (z), which is invariant under the map: 

J(T(z))=J(z). (2.3) 

We wish to exclude the constant function, which is trivi
ally invariant, so we assume 

VJ4'0 (2.4) 

everywhere. This implies that J =constant defines a 
(2N - 1 )-dimensional surface or set of surfaces in the 
phase space. Assume that these are compact. 

A set of n integrals { J 1,12, ... , I NJ is independent if 
their gradients span an N-dimensional vector space at 
each point in phase space. Furthermore, the set is in in-
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volution if all the mutual Poisson brackets vanish: 

(2.5) 

Using these ingredients, we can state the Arnol'd
Liouville theorem for maps, 

Theorem. If there are N independent int~grals in involu
tion, then the motion lies on a nested family of N
dimensional tori, and there exist angle coordinates 0 such 
that the map can be written in the form 

I'=I, 
(2.6) 

0'=8+.0(1) . 

Sketch of proof. Let Mc be a connected component of the 
set {z: Ji(z)=ci, i = 1, ... , NJ. Arnol'd has shown that 
if Mc is compact and connected, then it must be an N
torus (Arnol'd, 1978, Chapter 10). A construction of 
Darboux shows that, given a set of N independent func
tions I j in involution, one can locally obtain canonically 
conjugate variables, ~' that is, { 0\Ik) =f,jk· Because Mc 
is a torus, the ~ can be chosen as angle variables. Since 
the Poisson bracket is preserved by a symplectic map, we 
have 

{ e•j,I'k) = { 0j,1k) . 

Using the invariance of Ik we can write this as 

{ 9•1-~,Jk) =0 . 

Since this is true for each j and k, the difference 0' - 8 
can be a function only of the integrals. This function is 
.0(1) in (2.6).• 

Thus the standard map, with k =0, has a form that is 
typical of the integrable case, except that the frequency is 
linear in the momentum. 

There are many examples of integrable maps (McMil
lan, 1971; Veselov, 1988; Quispe} et al., 1989; Bruschi 
et al., 1991), though many of them have singularities in 
the phase space. In fact, the time t map of any one
degree-of-freedom, time-independent Hamiltonian is in
tegrable. From our perspective, particularly interesting 
examples were found by Suris (1989), who showed that a 
map of the standard form (1.36) has a holomorphic (i.e., 
analytic in some domain) integral of the form 

I (x,y) = F(x,y) + kG (x,y) 

only when the sin( ) function is replaced by one of three 
forms, each of which has a number of parameters. One 
of these is periodic in x, and a special case is 

, _ 1 [ k sin( 21Tx) ] 
y -y--:;arctan 2+k cos(21Tx) ' 

(2.7) 
x'=x +y'. 

This map has the integral 

I(x,y)=cos21ry +k{cos(21Tx)+cos[21T(x -y)]} (2.8) 
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For k > 0 there is an elliptic fixed point at (0,0) and a hy
perbolic point at <½,0). There is also a pair of period-2 
orbits; the orbit beginning at ( 0, ½) is hyperbolic, and the 
other, at cos(21Tx)=-k/2,cos(21Ty)=k2 /2-1, is ellip
tic. Since VJ =Oat these points, Eq. (2.7) is not strictly 
speaking Liouville integrable; however, all other invari
ant curves are topologically circles. For k small, (2. 7) ap
proaches the standard map. 

2. Frequency 

Since the standard map is defined on the cylinder, x 
should be taken mod 1 in Eq. (2.1). Thus y determines 
the rate of rotation around the cylinder. 

In general, to define the rotation rate, we "lift" the an
gle coordinates to the real line. For the standard map 
this corresponds to computing x'=x +y' without taking 
the fractional part. The frequency is defined as the limit 

. x, 
w= bm - , 

/->00 t 
(2.9) 

if it exists. For Eq. (2.2) we have, trivially, w=y, for any 
initial condition. 

The lift is not unique, because we could also use the 
equation 

x'=x +y'+m 

for any integer m to compute x '. Should we choose 
m =l=O, the frequency would shift by m; we fix the lift by 
choosing m =0. 

3. Periodic and quasiperiodic orbits 

There is an important distinction between rational and 
irrational values of w. For each rational w, the orbits of 
(2.1) are periodic on the cylinder. Generally an orbit is 
periodic with period n if n is the smallest integer such 
that 

(2.10) 

for some integer m. We shall denote such an orbit by 
(m,n). For an (m,n) orbit, the frequency always exists 
and is given by m In. 

Because of the twist condition, rational values of w 
occur at a dense set of values of y; for the integrable case, 
these are just the values y = m /n. 

On the other hand, almost all points have irrational w. 
When w is irrational the orbit never returns to its initial 
condition. An orbit is quasiperiodic if the frequency is ir
rational and the orbit is recurrent: it returns arbitrarily 
close to its initial condition. For the integrable map, 
when y is irrational, the x coordinate densely covers the 
circle y =constant on the cylinder. Thus these orbits are 
quasiperiodic. 

The phase space of the integrable map is thus foliated 
by rotational invariant circles. A circle is "rotational" if 
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it encircles the cylinder (i.e., it is topologically equivalent 
to the circle y =O). For rational y the circles consist of 
an infinite number of periodic orbits; for irrational y they 
consist of an infinite number of quasiperiodic orbits, each 
of which is dense. 

B. Nearly integrable case 

As k is increased from zero, how much of the structure 
of the integrable map persists? A computer experiment, 
such as that shown in Fig. 12, can give some indication. 
One sees that most orbits still seem to lie on rotational 
curves; these orbits march around the cylinder in an or
dered fashion and densely cover a circle. They seem to 
imply the existence of an integral I(x,y)=y -Y(x) and 
its corresponding conjugate angle variable. The 
Kolmogorov-Arnol'd-Moser (KAM) theorem, which will 
be discussed in Sec. III, does indeed predict that most of 
the invariant circles persist for k small. 

1 . Resonances 

However, there are orbits that no longer lie on invari
ant circles. To see these we have to focus closely on the 
points of rational frequency. For example, near y =0, 
where there was a circle of points of frequency 0/1, Fig. 
12 shows an "island." This consists of a family of curves 
that are circles, but that do not encircle the cylinder. 
These are librational, as opposed to rotational, circles. 
The island is bounded by a separatrix, which is a curve 
separating the librational and rotational circles. We call 
the region of phase space bounded by the separatrix a 
"resonance zone" or simply a resonance. 

This structure is analogous to the phase space of the 
pendulum. In fact, it is easy to see, if we consider the ap-

......................................... ········································· 

FIG. 12. Standard map phase space for k =0.2. Bounds are 
[-0.5,0.5] on both x andy. Shown are many rotational invari
ant circles and the (0,1) resonance. 
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propriate limit of the standard map, that the pendulum 
structure arises. Taking k and y both small implies that 
the differences in Eq. (1.36) can be replaced by deriva
tives 

l.Y = - _!_sin( 21rx) , r- 21r 
k,y---+0 

x=y. (2.11) 

Equations (2.11) are the differential equations for the pen
dulum. They have an invariant that is also the Hamil
tonian for the system: 

1 k 
H = 2y 2 - 4~ cos(21rx). (2.12) 

There are two fixed points for the pendulum, (0,0) and 
(½,0), corresponding to the pendulum at rest either in the 
stable, downward position or in the unstable, upward po
sition. The contours of H < k /41r2 are librational circles. 
H = k I 4~ is the separatrix, and H > k I 41r2 are rotation
al circles. Thus the pendulum has an island around 
y =0. This island has a full-width, its maximal extent in 
y,of 

2 -W=-Vk. 
'IT 

(2.13) 

Corresponding to this structure, the standard map also 
has only two fixed points (i.e., period-I orbits) for k=l=-0, 
also at the points (0,0) and (½,0), see Fig. 12. When k is 
small, the size of the island also grows in accord with Eq. 
(2.13) as Vk. Ask increases, the shape of the standard 
map island begins to distort (it is not reflection sym
metric about y axis) and its width grows more slowly 

FIG. 13. Standard map fork =0.5. The (1,2), (2,5), (1,3), (1,4), 
(0,1), (-1,3), and (-1,2) resonances are shown. The separatrix 
of the (0,1) resonance exhibits a small amount of "fuzziness," 
i.e., "chaos." 
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than predicted by the pendulum approximation. 
There are also resonances for other rational values of 

y, corresponding to the periodic orbits with frequencies 
m In. Each resonance consists of a chain of n islands, 
and each island has a structure similar to the pendulum; 
several of these are shown in Fig. 13. Perturbation 
theory implies that the width of the m In resonance 
grows as kn 12 for k small. At the center of the island, 
and at the cusp of the separatrix, are periodic orbits with 
frequency m In; typically there appear to be only two 
such periodic orbits. The existence of at least two orbits 
follows from the Poincare-Birkhotf theorem, which we 
shall discuss in Sec. VI. 

Orbits trapped in an island move successively from one 
island to another, following the periodic orbit (they skip 
m -1 islands each step). _Thus there is an entire region 
of phase space that has frequency m In. 

2. Stability 

To understand the structure of the orbits in the neigh
borhood of the periodic orbits, we consider their linear 
stability. Points in the neighborhood of an orbit (2.10) 
evolve according to the tangent map ( 1.17). After n itera
tions, in the linear approximation, 

6zn= [ d~o T(T( · · · T(z0 ))) ]6z0 

=M(zn_ 1 )M(zn_2 ) • • • M(z0 )6z0 

(2.14) 

Here M(z) is the Jacobian matrix given by the derivative 
of T(z). Since Mis symplectic, so is Mn; and (1.23) im
plies that if A is an eigenvalue, then so .is 1 IA. Here ')., is a 
solution of the characteristic polynomial 
}.._2 -Tr(Mn)+ 1 =0: 

(2.15) 

The possible stability properties are 

(a) hyperbolic: both eigenvalues are real and larger 
than 1; 

(b) elliptic: there is a pair of complex conjugate eigen
values with unit modulus; 

(c) reflection hyperbolic: both eigenvalues are real and 
less than 1; 

(d) parabolic: the eigenvalues are both 1 or both - 1. 

These are summarized in Table I. 
A stability classification is most conveniently given in 

terms of the residue (Greene, 1979); 

(2.16) 

The elliptic case, corresponding to ').,=e 21riw or 
0 < R = sin2( 1TW) < 1, is the only one that could possibly 
be called stable, although the stability is a neutral one. 
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TABLE I. Stability classification. 

Stability ').. R Tr(M) 

hyperbolic >0 <0 >2 
elliptic e21Tiru (0,1) (-2,2) 

reflection 
<0 >1 <-2 hyperbolic 

We have already mentioned that near an elliptic periodic 
orbit with w irrational, the mapping has a formal series 
representation (1.37), which has librational invariant cir
cles. The full apparatus of the KAM theorem can be 
used to show that the orbit is generically stable (that is, 
points initially close stay nearby; Amol'd, 1978), provid
ing w=l=m In with n < 4. 

Positive residue corresponds to either an elliptic or a 
reflection hyperbolic orbit. These two cases are properly· 
thought of as two manifestations of the same orbit. Neg
ative residue always corresponds to a hyperbolic orbit. 
Finally, the parabolic case, R = 1 or R =0, corresponds 
to points of bifurcation, where an orbit can cease to exist 
or lose stability. 

For the standard map, the matrix Mis 

_ [1-k cos(21rx) 1] 
M- -k cos(21rx) 1 ' 

which has the residue 

k R = 4 cos(21rx). 

(2.17) 

(2.18) 

Thus the fixed point (0,0) has positive residue for k > 0. 
It is elliptic for 0 < k < 4 and becomes reflection hyper
bolic for k > 4. The point ( ½, 0) is hyperbolic for k > 0. 

3. Stable manifolds 

For a hyperbolic period-n orbit, Mn has two eigenvec
tors corresponding to the unstable and stable directions 
(').,1 >1 and ').,2 =11A1 <1, respectively). Under Mn, 
points move on the branches of a hyperbola, with these 
eigenvectors as asymptotes. The stable manifold theorem 
(Lanford, 1973) implies that the eigenvectors of Mn can 
be extended to invariant manifolds wu and ws of Tn 
(Fig. 14). Each point on these accumulates on the hyper
bolic orbit in at least one direction of time: 

zEW3=T1nZ--+Zo asj--+OO' 

zE wu= T 1nZ--+Zo as j-- 00 , 
(2.19) 

where z0 is some point on the orbit. It is important to 
remember that the manifolds, while having the appear
ance of trajectories of a flow, are collections of orbits. A 
point on wu, for example, moves a discrete distance 
upon application of Tn to another point on wu. The 
stable manifold cannot intersect itself or the stable mani
fold of any other periodic orbit, since this would violate 
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FIG. 14. Stable and unstable manifolds for hyperbolic fixed 
point. The hyperbolas with asymptotes given by the eigenvec
tors of the orbit, shown inside the box, give the local behavior. 
A global extension of the stable and unstable eigenvectors yields 
the stable and unstable manifolds. 

uniqueness. Generically W" and w• are different mani
folds; one exception to this is an integrable system for 
which W" and w• join smoothly to form a separatrix. 

When W" and w• intersect transversely, the intersec
tions are called homoclinic points. A homoclinic point 
lies on both the stable and the unstable manifold; so it is 
asymptotic to the hyperbolic orbit in both directions of 
time. Thus each iterate of a homoclinic point is also 
homoclinic, and the set of such iterates is a homoclinic 
orbit. Heteroclinic points are the intersection points of 
the stable and unstable manifolds of different periodic or
bits. 

Let z be a homoclinic point, as shown in Fig. 15. In 
addition to z, we shall see that there must also be a 
second homoclinic point t on wu between z and its 
iterate T(z). Let .A be the closed region bounded by the 
curves W" from z0 to z and w• from z to z0 • Since z is on 
w•, T(z) must be on the segment of w• between z and z0 ; 

however, at the next crossing along this segment, W" 
must enter .A (Fig. 16). This cannot occur at T(z), since 
then orientation would be reversed. We label this cross
ing t; its orbit is homoclinic and distinct from that of z. 

In fact, if there is one homoclinic orbit, there are an 
infinity of them (Poincare, 1892). For example, some 
iterate of the segment of W" between t and T(z) must 
cross w•. Consider the lobe .L formed by the segments 

FIG. 15. Homoclinic intersection of the stable and unstable 
manifolds of z0 at the point z. 
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FIG. 16. Existence of a second homoclinic orbit defined by z. 

of W" and W' between t and T(z). By definition .L is 
contained in the region .A; if the segment of W" were 
never to cross w•, then all future iterates of .L must 
remain in .A. However, the area of .L is preserved under 
iteration, and since the area of .A is finite, Ti(.L) cannot 
remain in .A forever. Thus this segment of W" must 
eventually cross w•, giving rise to at least two new 
homoclinic points (see Fig. 17). We shall discuss this 
process in Secs. VIII and IX. 

C. Transition 

1. Destruction of invariant circles 

As k increases, the resonances grow in size, and the re
gion of phase space occupied by rotational invariant cir
cles necessarily shrinks. Invariant circles are destroyed 
when resonances engulf the region of phase space they 
once occupied. In Fig. 18 we show the standard map at a 
moderate parameter value for which most of the invari
ant circles are destroyed. 

The twist condition implies that the frequency is essen
tially a monotonic function of y (this will be made precise 
in Sec. VI). Thus a rotational invariant circle of frequen
cy m must lie between any pair of resonances whose fre
quencies surround it. Suppose there is a heteroclinic con
nection between this pair; that is, they overlap. There 
can then be no such invariant circle. The heteroclinic 

FIG. 17. Existence of infinitely many homoclinic intersections. 
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FIG. 18. Standard map for k =0.8. Bounds are 
xE[-0.5,0.5],yE[0.0,0.6]. There are still some visible rota
tional invariant circles. 

connection implies that there is a curve formed from a 
segment of unstable manifold of one resonance and stable 
manifold of the other, which crosses the region that was 
to have contained the invariant circle. Every point on 
this curve is either forward asymptotic to one resonance 
or backward asymptotic to the other and thus cannot be 
on an invariant circle. 

Chirikov has introduced a perturbative technique for 
computing the overlap of resonances and therefore the 
parameter for the destruction of invariant circles (Chiri
kov, 1979b). The method is to approximate the map by 
the pendulum Hamiltonian in the neighborhood of the 
resonance and to use this to estimate the resonance 
widths. For example, aside from the (0,1) resonance, the 
standard map also has a (1,1) resonance corresponding to 
the elliptic point (0, 1) and the hyperbolic point ( ½, 1 ). 
Setting y = 1 +6y and x =t +6x in Eq. (1.36), and ap
proximating for k and 6y small, we obtain the pendulum 
equations just as in (2.11). Thus the width of the (1,1) 
resonance Wo,o is equal to W(0,1), as given by Eq. (2.13). 
The distance between these resonances is 1; and so, as 
shown in Fig. 19, they overlap when 

(2.20) 

This rough estimate would predict that there are no in
variant circles in the range O <Cl.)< 1 when k > 2. 5. In 
fact, this is a considerable overestimate of the actual 
overlap value, since the pendulum approximation is valid 
only for small k. Considerable improvement can be ob
tained by higher-order perturbation theory (Chirikov, 
1979b; Lichtenberg and Lieberman, 1982). 
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FIG. 19. Resonance overlap. Pendulum approximation gives 
the dashed shapes for the (0, 1) and (1, 1) resonances. Actual 
stable and unstable manifolds are sketched as the solid curves. 
Intersection points of these are heteroclinic orbits. 

2. Last invariant circle 

As k increases, there are fewer invariant circles. In 
fact, as we shall see in Sec. IV, there is a simple analytic 
argument that shows when k is large enough there can be 
no invariant circles (the "converse KAM" theorem). A 
natural question to ask is, which invariant .circle is the 
last? 

Greene ( 1979) discovered that for the standard map, 
the last invariant circle has frequency (t)=r, where r is 
the golden mean 

r 
1+vs 

2 
(2.21) 

(special symmetries of the standard map imply that all 
the circles with frequencies m ±r are destroyed simul
taneously; we refer to this set of circles as the "golden 
circle"). Greene developed a method for determining the 
existence of an invariant circle by looking at the stability 
of nearby periodic orbits. He reasoned that if there is a 
set of periodic orbits whose frequencies limit on the in
variant circle. 

m-
lim -' -+(I) 

i~oo n; 
(2.22) 

and which have residues between zero and 1, then the in
variant circle will exist. This "residue conjecture," has 
been proved in some cases (MacKay, 1991). 

A natural set of frequencies to use is that given by the 
continued-fraction convergents of Cl.) (we shall discuss 
these in Sec. III). In this case the parameter values for 
which the ith convergent has R = 1 geometrically limits 
on a value kcr((t)), which is the parameter at which the 
invariant .eircle is destroyed. For the golden mean this 
value is 

kcr( r ):::::,0. 971635 406 . (2.23) 

We show the standard map phase space at kcr( r) in Fig. 
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FIG. 20. Standard map for k = 0. 971 635 4. The invariant cir
cle shown between the (1,3) and (2,5) resonances has frequency 
l/y2-it is equivalent by symmetry to the golden circle. Close 
examination fails to reveal any other rotational invariant cir
cles. 

20. There is a remarkable self-similarity associated with 
this parameter value, and the application of 
renormalization-group ideas has been very fruitful 
(MacKay, 1983). Since these methods have been re
viewed elsewhere, we shall not discuss them further 
(MacKay, 1986). 

Using the Greene method one can construct a "fractal 
diagram" of parameter values kc,( m In) such that R = 1 
for w=m/n (Schmidt and Bialek, 1982). On this dia
gram the golden circle has the largest kc,· An alternative 
method, estimating the radius of convergence of a 
Fourier series for the invariant circle, leads to a similar 
conclusion (Percival, 1982). 

3. Islands around islands 

The entire structure we have just discussed is also 
found in the neighborhood of any elliptic periodic orbit. 

An elliptic period-n orbit is a fixed point of the map 
rn. The linearization about this point has orbits rotating 
with the frequency w (recall Table I). Near the fixed 
point the map can be expanded and written in the form 
(1.37); if any of the Pzk are nonzero, the map has twist in 
some neighborhood of the point. Thus nearby orbits ro
tate about the fixed point, and the rotation frequencies 
vary with the distance away from the fixed point. 

Thus as one moves away from the fixed point the rota
tion frequency must go through rational values, and at 
each such point a resonance is formed. If the rational 
number is m 1 /n 1, then the resonance corresponds to a 
fixed point of ( rnt 1• We call these orbits of class 1 (rota-
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tional orbits have class zero). In the neighborhood of any 
class- I elliptic periodic orbit the same structure repeats. 
Thus we expect to see the structure of islands around is
lands, and it can even occur in a self-similar way (Meiss, 
1986; see also Fig. 21). This structure was already en
visioned by Birkhoff (1935), who said, 

It is clear that not only do general elliptic periodic 
solutions possess neighboring elliptic and hyperbolic 
periodic solutions, but also, beginning again with the 
neighboring elliptic solutions, who are, as it were, satel
lites of these solutions, one can obtain other elliptic and 
hyperbolic solutions which are secondary satellites. 

D. Chaos 

As of yet we have not discussed the most intriguing 
phenomena that occur when k is increased, that of chaos. 
There are three basic ingredients for chaos (Devaney, 
1986). First, one requires "sensitive dependence on ini
tial conditions;" that is, nearby orbits should separate ex
ponentially in time (positive Lyapunov exponents). 
Second, the motion should be bounded, so that the ex
ponential separation does not simply result in smooth ex
pansion to infinity. This means that separating orbits 
must eventually come close together again. Recurrent, 
but in practice unpredictable, behavior is a signature of 
chaos. Finally, there should be some large set of orbits 
(one of nonzero measure) that has this behavior. 

A similar concept is Birkhoff's irregular component, a 
connected set that is the complement of the elliptic 
periodic orbits and invariant circles; Hyperbolic periodic 
orbits and their stable and unstable manifolds are part of 
an irregular component. In fact, their transversal inter
section is a prime ingredient in chaos-giving rise to the 
famous Smale horseshoe structure (Moser, 1973). Ex
istence of a horseshoe implies that there is a zero
measure set of orbits that act chaotically: they can be 
equivalent to a coin toss (Bernouilli shift). To our 
knowledge there are no results that imply a nonzero mea
sure of orbits is chaotic for a typical system, and it is not 
known whether irregular components typically have 
nonzero measure. There are examples of completely er
godic systems, such as the Arnol'd cat map (which is a 
twist map; Arnol'd and Avez, 1968), and specially con
structed examples of systems with both invariant circles 
and irregular components (Wojtkowski, 1981). 

On the other hand, computer-generated pictures, e.g., 
Fig. 22, imply that the measure of a typical irregular 
component is nonzero; they seem to be "fat fractals" 
(Umberger and Farmer, 1985). Understanding the struc
ture of these regions, and the way in which typical orbits 
move through them, is a major goal of the study of 
chaos. 

1 . Transport 

The inherent loss of predictability for chaotic systems 
suggests that it is not especially efficient or useful to try 
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to follow individual trajectories. One alternative is to de
scribe the properties of ensembles of trajectories. Thus 
even though we study deterministic systems, statistical 
methods may be appropriate. 

Transport theory deals with the motion of ensembles of 
trajectories, asking how long it takes a set of orbits to 
move from one region of phase space to another. An un
derstanding of transport properties allows one to com
pute transition probabilities and correlation functions. 

Applications of transport include the calculation of 
chemical reaction rates. A chemical system can be 
modeled by a set of differential equations and the reac
tion itself by the transition between two regions of phase 
space. Such an approach was pioneered by Wigner 
(Wigner, 1937). Simple chemical reactions can be 
modeled by classical Hamiltonian systems, and an under-

standing of classical transport has been found to be useful 
(Davis, 1985; Skodje and Davis, 1988). 

Another application is to mixing in fluids (Aref, 1984; 
Ottino, 1989; Rom-Kedar et al., 1990). The motion of a 
passive scalar in a given velocity field can result in mix
ing, and the most efficient mixing occurs for chaotic ve
locity fields. 

An understanding of transport is also important in 
plasma and accelerator physics. The basic problem here 
is to confine a set of interacting particles to one region of 
phase space, corresponding to the configuration being in 
the interior of the reactor and the momenta being large 
enough so that significant nuclear reactions can occur. 
For magnetic confinement of plasmas, the simplest model 
of such a system, guiding-center particle motion, can be 
reduced to an area~preserving map (Rosenbluth et al., 

FIG. 21. Islands around islands for the standard map at k = 1.201413 33. The bottom-right figure has the bounds [-0. 5,0. 5] for x 
and [0.0,0.6] for y. One island of the (1,3) resonance at the bottom right is enlarged in the figure to the left, revealing, among other 
things, a class-1 (1,5) island chain around it. This island, when enlarged, has a class 2 (1,5) chain, which when enlarged, etc.· The pa
rameter value was chosen to observe this self-similar structure (Meiss, 1986). 

Rev. Mod. Phys., Vol. 64, No. 3, July 1992 
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FIG. 22. Standard map for k = 1.0. Shown are about HY' 
iterates of two chaotic orbits. These orbits appear to fill regions 
of nonzero area. 

1966; Rechester and Rosenbluth, 1978). Accelerators are 
naturally modeled by maps (Carrigan et al., 1982; Jowett 
et al., 1986). 

2. Flux 

The most elementary transport problem is to deter
mine the volume of trajectories that escape from some re
gion per unit time, or flux. In the case of volume
preserving motion, the net flux is always zero; so one 
would like to compute the one-way flux. 

Consider· a map and a region bounded by a curve @ 

(see Fig. 23). The flux ;J(@) is the area escaping from@: 
the area inside T@ that is also outside of @. If @ en
closes finite area, then area preservation implies that the 
escaping flux is the same as the entering flux. If @ is a 
rotational circle, the flux is the area above @ that is 
below T@. Of course when@ is an invariant circle, it has 
zero flux. 

FIG. 23. Flux definition. The area outside (!! that is inside Tf! 
is the flux through f!. 
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Upon each iteration of the mapping, an area ;J escapes 
from @ and the same amount enters. Thus the flux gives 
an estimate (sometimes a crude one) of a confinement 
time for @: If motion in @ is "random" in some sense, 
then a trajectory will be trapped within @ for a typical 
time 

A(@) 
t trapped = ;J( @) , (2.24) 

where A ( @) is the area enclosed by @. A better estimate 
of confinement time for the irregular trajectories would 
be obtained if A were replaced by the area of the con
nected irregular component inside @. However, this is 
difficult to determine. 

As an example, we compute the flux across the circle 
@= {y =y0 ) for the standard map. The iterate of@, by 
Eq. (1.36), is the curve 

(2.25) 

The upward flux is the area above @ and below T@, 

which is 

(2.26) 

This is also the downward flux. 

3. Diffusion 

When k is large, say of order 100, then the phase space 
of the standard map looks, to the resolution of a typical 
computer screen, completely chaotic. The rapid loss of 
phase coherence for large k makes it plausible that sta
tistical approximations should be valid. Because the 
jump in y is proportional to k sin(2'1Tx), an O(E) uncer
tainty in x gives rise to an error O(kE) iny. Using this in 
the x equation leads to an error O(kE) in that of x. The 
exponential escalation in error, by a factor of order k 
each step, makes the phase completely undetermined 
after a small number of steps. 

Since the step in y depends on the highly uncertain 
phase, x, we expect the motion of y to be diffusive in 
character. The diffusion coefficient is defined as the 
mean-square spread in y per step, 

. ((yt-Yo>2 ) 
D:::;;:lun 2 , 

t-+ 00 t 
(2.27) 

where the average ( ) can be thought of as an average 
over some ensemble of initial conditions. The factor of 2 
in (2.27) appears in the Fokker-Planck derivation 
(Lichtenberg and Lieberman, 1982). Using 
ay,=yt-Yt-l• we can write (2.27) as 

1 t 
D=Iim -2 .l:, (ay;ayi), 

t-.oo t i,j=I 

. l t t-i 
=hm-.l:, .l:, (ay;aYi+i) 

f-+00 2t i=ij=l-i 
(2.28) 

The average in (2.28) is the force correlation function 
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(2.29) 

Here we have noted that the average over initial condi
tions is time translation invariant, since the map is area 
preserving: dx 0 dy 0 =dxi dyi. Reversing the order of 
the sums in (2.28) yields 

. 1 t-1 
D=hm - ~ 

, __ ...,,, 2 j=l-t 

1 00 

=- ~ cj, 
2 j=-oo 

[1-l ]c-t J ' 

(2.30) 

where the last sum is valid providing the correlations de
cay at least as rapidly as t- 2• 

Formally, (2.30) can be applied to the standard map for 
any value of k. Whenever there are rotational invariant 
circles, then D must be zero, since, according to the 
definition (2.27), diffusion requires that the momentum 
reach arbitrarily large values. Thus for k < kcr( r) of 
(2.23), D =O. We shall discuss the form of D fork slight
ly larger than k 0r( y) in Sec. IX. 

When k is large, the correlations should decay rapidly; 
the simplest statistical approximation is to assume that x 
is an uncorrelated random variable-the random-phase 
approximation. Then only C0 is nonzero, and for the 
standard map C0 =k2( [sin(21Tx)]2 ) l4-ir2=k2 l8-ir2• 

Thus the diffusion becomes 

k2 
D =-

QL 16-ir2 ' 
(2.31) 

which goes by the name "quasilinear diffusion." It is 
indeed observed that when k is large, D approaches DQL· 

Corrections to DQL can be systematically computed by 
including correlations in (2.30) for j=l=O. This leads to a 
series in products of Bessel functions (Cary et al., 1981; 
Rechester et al., 1981). These results agree well with 
moderate time computations of the diffusion coefficient 
using either an ensemble of initial conditions or a single 
initial condition which is chosen to be in the chaotic re
gion (Meiss et al., 1983; Ichikawa et al., 1987). 

4. Long-time tails 

However, the series for D does not appear to converge 
at many parameter values, because the assumption 
C1 = 0 ( t -z) in Eq. (2.30) fails. 

The long-time behavior of correlation functions is a 
problem of continuing interest. Whenever there are reg
ular regions, such as those caused by an elliptic periodic 
orbit, the correlation function appears to decay algebrai
cally with time (Karney, 1983; Meiss et al., 1983; Chiri
kov and Shepelyanksy, 1984; Geisel and Thomae, 1984). 
This occurs even when the average is taken over only 
chaotic orbits. The reason seems to be the stickiness of 
the regular orbits. Whenever . a chaotic orbit wanders 
close to an invariant circle it stays close for a long time. 

A related problem for the standard map is the ex-
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istence of accelerator modes-orbits that satisfy 
Yn=Yo+j, xn=x0 +m for integers n, m, and j. These 
exist due to the periodicity in the y direction. Whenever 
there is an elliptic accelerator mode, the diffusion 
coefficient appears to be infinite (Karney et al., 1982; 
Meiss et al., 1983). 

We shall discuss the long-time tail problem in Sec. IX. 

Ill. NUMBER THEORY AND KOLMOGOROV
ARNOL'D-MOSER (KAM) THEORY 

A. Number theory 

The persistence of invariant circles for small perturba
tions from the integrable case depends on the fact that 
some irrational numbers are "far" from rationals. Here 
we discuss and quantify the degree ofirrationaHty. 

1. Diophantine numbers 

An irrational number can be approximated arbitrarily 
closely by rational numbers whose denominators are ar
bitrarily large. However, some irrationals are more 
difficult to approximate than others. To measure this we 
use the distance lnill-ml between a number and the ra
tional m In. We say ill is particularly hard to approxi
mate if it satisfies a Diophantine condition: there exists a 
C > 0 such that for all integers (m,n)=l=(0,0) 

lnw-ml > _s;__ (3.1) 
n" 

for some 'Tc:: 1. Let D -r( C) be the set of ill that satisfy 
(3.1). Equation (3.1) implies that ill is excluded from in
tervals surrounding each rational (Fig. 24). For C small 
enough, D-r( C) is not empty; in fact, for any T > 1 the 
measure of D "( C) approaches 1 as C approaches zero 
(Khinchin, 1964). Consider, for example, the numbers in 
the interval (0,1]. The complement of D"(C) has a mea
sure µ which is given by the sum of all the excluded in
tervals, each of which have a width C In "+ 1; thus 

n 
µ(15-r(C))= ~ ~ 

n=I m=I 

C 
n-r+I 

(m,n) coprime 

=Cf li!!:l=c t(r) 
n=I n-r+I t(r+ 1) ' 

(3.2) 

where ¢,( n ), the Euler function, is the number of integers 

1/2 4{1 315 5/8 2/3 

( • ) @ (•)•8 ( • ) 
ro 

FIG. 24. Excluded intervals about rationals implied by Eq. 
(3.1). 
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not exceeding and relatively prime to n, and t( r ), the 
Riemann zeta function, is finite when r > 1 (Abramowitz 
and Stegun, 1965, Sec. 24.3.2). Thus µ(15,.(C))-+0 as 
C-+0 for any r> 1. 

The set of Diophantine numbers D,. is the union of 
D ,.( C) for all C > 0. 

2. Continued fractions 

Another classification of the properties of real numbers 
arises from continued-fraction expansions (Khinchin, 
1964). The continued fraction of ro is the sequence 
[a 0 ,a 1, ••• ] of integers generated by the map 

an=[ron]' 

1 
(3.3) 

Ci) =---
n+I ron-an 

where the square brackets indicate the nearest integer 
less than ro (if ro is negative, a0 is negative and the 
remaining ai are positive), and ro0 =ro. An alternative 
representation for the continued fraction is 

1 ro=ao +-------1-----
a, +--------

a + ... +--1 __ 
2 an+ ... 

(3.4) 

The continued-fraction expansion of an irrational is 
infinite (since if ron is irrational, then ron + 1 is also irra
tional), while that for rationals always ends (one eventu
ally finds that ron +1 is an integer). Every rational has two 

equivalent continued-fraction representations: 

[a 0 ,a 1, ••• ,a;]=[a0 ,a 1, ••• ,aj-1,1], (3.5) 

where a;''Fl (unless i =O). Convergents of a continued 
fraction are the rationals obtained by truncating the ex
pansion at some stage: 

(3.6) 

where mi and n; are coprime. The continued-fraction ex
pansion is a strongly convergent expansion: for any € 

there is a j such that 

ln;ro-m;I <€ for all i ?.j 

Furthermore, the convergents are best approximants -if 
m In is a convergent of ro, then every m 'In' with n' ~ n 
is farther from ro: ln'ro-m'I < lnro-m I. 

Every convergent is close to the frequency that it ap
proximates in the sense that it satisfies 

lnro-ml < Cln (3.7) 

for C = 1; conversely, every rational that satisfies (3.7) for 
C =½ is a convergent. However, when C < llVS, there 
exist ro such that only finitely many convergents satisfy 
(3.7). 

Irrationals are more difficult to approximate if their 
continued-fraction elements are small. This is because a 
large element a;+i leads to a small correction to m;ln;. 
A prominent example of such behavior is the number 'TT", 

which has the continued-fraction expansion 

,,,.=[3,7, 15,1,292, 1, 1, 1,2, 1,3, 1, 14,2, 1, 1,2,2,2, 1,84,2, ... ] (3.8) 

so that ,,,. is well approximated by its second convergent, 
22/7, and its fourth convergent, 3S51113. This leads to 
the definition of the numbers of constant type: those 
numbers for which there is an a such that a; < a for all i. 
For such ro, and for sufficiently small C, there are no 
(m,n) satisfying the inequality (3.7). In fact, the numbers 
of constant type are precisely those that satisfy a 
Diophantine condition (3.1) for r= 1. The set of numbers 
of constant type has measure zero. 

A subset of the numbers of constant type are the quad
ratic irrationals: the solutions of a quadratic equation 
with integer coefficients. Lagrange showed that every 
quadratic irrational has an eventually periodic continued 
fraction, and conversely every eventually periodic contin
ued fraction corresponds to a quadratic irrational. Quad
ratic irrationals are a special case of the algebraic irra
tionals: solutions of a polynomial of degree n with in
teger coefficients. Roth has shown that every algebraic 
irrational is in D,+11 for any 6 > 0 (Cassels, 1965). 

A more special subset of the numbers of constant type 
are the noble numbers: these have a; = 1 for all i larger 
than some j. Noble numbers are dense in the reals, since 
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one can append a noble tail to a convergent of any ro to 
obtain an arbitrarily good approximation to ro. On the 
other hand, the nobles are a set ·of measure zero, since 
they can be put in one-to-one correspondence with the 
rationals. The noblest of numbers is the golden mean 
(2.21), 

r=[1,1,1, ... ] . (3.9) 

Since (3.9) is periodic, r is a quadratic irrational (in fact, 
it is the larger solution of y 2 = r + 1). Sometimes 
1 +V'2= [2,2,2, ... ] is referred to as the silver mean; it 
is quadratic, but not noble. 

We show the relation between these classifications in 
Fig. 2S. 

3. Farey tree 

The Farey tree (Hardy and Wright, 1979) is a tech
nique for organizing the rational numbers according to 
the length of their continued-fraction expansions. The 
tree is constructed beginning with a pair of rationals in 
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Irrationals 

FIG. 25. Venn diagram of the irrational numbers. 

lowest terms, m In and m 'In', which are neighboring: 
mn' - nm'= 1. Level one of the tree is generated from 
these by adding their numerators and denominators, 

m" 
n" 

m+m' 
n+m' · 

(3.10) 

This rational is the mediant of m In and m 'In'. It is not 
difficult to see that m" and n" are coprime and that 
m "In" is a neighbor to both its parents. To construct 
the second level, find the mediants of m "In" and each of 
its parents. This construction leads to a binary tree that 
gives every rational number in the interval 
[m' ln',mln]. The tree generated by the neighbors 1/0 
and 0/1, shown in Fig. 26, gives all the positive numbers. 

The Farey path for a number is the sequence of 
left/right steps leading to it from 1/1. Thus the Farey 
path for 2/7 is LLLR. Irrationals are represented by 
infinitely long Farey paths. The Farey path provides a 
binary code for the reals. 

The continued-fraction expansion is closely related to 
the Farey tree construction. The sum of the continued
fraction elements of m In= [a 0 ,a 1, ••• , a;] gives the lev
el on which it occurs: 

~ l. 
1 0 

l. 
1 

---------------1 2 
2 -
~ ~ 

i 2 i 3 
3 3 2 -
~ ~ 1 
l.233 ~ ~ 
4 s 5 4 

............... .....-.... ............... .....-... 
.1222..4 _J__J_A_ 
5 7 8 7 7 8 7 5 

FIG. 26. Farey tree construction. 
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Level 

1 

2 

3 

4 

\ 
[ao,a,, ···a;-1,2] 

FIG. 27. Relation of the continued fraction to the Farey tree. 

i 
Level([a 0 ,a 1, ••• ,a;])= l: aj (3.11) 

j=O 

The continued fraction for a given Farey path can be ob
tained recursively. The continued fraction for a daughter 
of m In is obtained by incrementing a; by 1. The two 
representations (3.5) give the two daughters; that with 
a;* 1 is used if the current step in the Farey path is in the 
same direction as the preceding step, and that with a;= 1 
if the direction changes (see Fig. 27). For example, the 
golden mean corresponds to the path 
RLRLR · · · = [ 1, 1, 1, 1, 1, 1, ... ]. In general, noble 
numbers have a Farey path that eventually alternates, 
···LRLR···. 

There are two different types of infinite Farey paths: 
those that eventually consist of all L's or all R's and 
those that continue to alternate. The former converge to 
rational numbers. For example, the sequence 

RLLLLLLLL · · · _1- I (3.12) 
1 + 

approaches 1/1 from above and 

LRRRRRRRR ... _ 1- I 
1 -

(3.13) 

from below. These two numbers should be thought of as 
distinct from 1/1 -they have a nice interpretation in 
terms of the orbits of a twist map, as we shall see in Sec. 
VIII. Farey paths that never settle down to either one 
direction or the other approach irrational numbers. 

B. KAM theory 

Consider an integrable area-preserving map, Eq. (2.6), 
satisfying the twist condition (1.30). Thus 

df!/dl?:. K > 0 . (3.14) 

The twist condition implies that there are quasiperiodic 
orbits for all irrational w; in fact, since I is a constant of 
motion, the frequency is just f!(J). 
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The KAM theorem, in this context, implies that rota
tional invariant circles with sufficiently irrational fre
quency persist under small area-preserving perturbations. 
A perturbation is small if it and its first j derivatives are 
small; to express this formally, define the j norm of a 
function f as 

I am+nf I lf(x,y)li= sup -~~ . 
m+n~j axmayn 

The perturbed map is written 

I'=I + f(I,0). 

0'=0+!l(I)+g(I,0) . 
(3.15) 

As we shall see in Sec. IV.B, in order that there be invari
ant circles it is necessary that the average of f (I, 0) be 
zero, 

f 1f(I,0)d0=0, 
0 

(3.16) 

since otherwise the perturbed map could simply shift all 
points vertically. For this case the KAM theorem is 

Theorem (Moser, 1973). If !l(y) satisfies (3.14) and is j 
times differentiable, then there is an E > 0 such that all 
area-preserving maps (3.15) and (3.16) with 
lfli + lgli < EKC2 have rotational invariant circles for all 
frequencies that satisfy a Diophantine condition (3.1) with 

1 < T < (j - 1) /2 . (3.17) 

The theorem implies that the more differentiable a sys
tem is, the more invariant circles it has, since r can be 
larger. The inequality (3.17) requires j > 3; however, 
Herman ( 1983, 1985) has shown that this theorem can be 
extended to the case j =3,r= 1, providing an additional 
Holder condition is imposed upon the third derivatives. 
Furthermore, he has given examples of perturbations 
which, being C 2 but not C 3 ( c 3-E), do not have invariant 
circles. 

One of the most important concepts arising from the 
KAM theorem is the labeling of orbits by frequency. In 
a sense the theorem says not to ask what happens to the 
orbit with a particular initial condition as a system is per
turbed, but rather to consider the properties of an orbit 
with the same frequency. 

Thus the KAM theorem says that most invariant cir
cles (labeled by their frequency) persist for sufficiently 
small perturbations; however, in the proof of the 
theorem, "small" is indeed very small. In order to obtain 
better estimates for the domain of existence of invariant 
circles, it is better to ask about the existence of one par
ticular circle instead of all smooth ones: the domain of 
existence of invariant circles in the space of smooth 
area-preserving maps is undoubtedly nothing like the 
simple ball assumed in the proof. For example, Herman 
(1985) has shown that there is at least one invariant circle 
(with w=y) of the standard map when k ::'S0.029. A 
computer-assisted version of this theorem, using interval 
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arithmetic, attains the bound k ::S 0. 91 (de la Llave and 
Rana, 1990). 

As we shall see in the next section, it is often easier to 
ask the converse question: when do rotational invariant 
circles not exist? 

IV. INVARIANT CIRCLES 

Though the KAM theorem gives us some insight into 
the existence and structure of invariant circles, its utility 
is limited because it is a perturbative result. There are, 
however, several important nonperturbative results about 
invariant circles for twist maps, i.e., maps of the cylinder 
that satisfy (1.30). In this section we prove Birkhoff's 
theorem, which implies that any rotational invariant cir
cle must be the graph of a function, y = Y(x). This 
theorem leads to techniques for proving the nonexistence 
of invariant circles-converse KAM theory; it implies 
that irregular components must be bounded by invariant 
circles; and it implies the existence of orbits that cross 
any region not containing invariant circles, thus showing 
that invariant circles are the only structures that prevent 
transport. 

A. Rotational invariant circles 

Let T be an area-preserving map on the cylinder. We 
suppose it is also end preserving: points with arbitrarily 
large positive y are mapped to similar points. This·is the 
only possible case if the map arises from a Poincare sec
tion of a flow, since the flow provides a smooth connec
tion of the map to the identity. 

An invariant circle is a curve@ such that T@=@. A 
rotational invariant circle (RIC) is a closed loop that 
encircles the cylinder (i.e., is homotopically nontrivial; 
see Fig. 28). An invariant circle divides the cylinder into 
two invariant regions. To see this, consider the iterate of 
the region below an RIC. Since the map is continuous 
this iterate is a connected region. Since the circle is in
variant, and the map is one to one, the iterate must have 
the circle as its boundary (otherwise it would have to 
"fold"). Finally, since the map is end preserving, points 
far below must retain below-thus the entire region must 
remain below. So a rotational invariant circle provides 
an absolute barrier to motion. Similarly, the region in
side any invariant circle that encloses a finite area must 
remain inside. 

FIG. 28. Rotational invariant circle. An invariant loop that 
cannot be contracted to a point is a RIC. 
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B. Net flux 

For a rotational circle@, let A<r be the "algebraic area 
below" @, that is, the value of the integral 

A<r= f<rydx . (4.1) 

If y is positive on @, then A <r is simply the geometric 
area between @ and the circle y = O; if, however, the cir
cle dips below y =O, then the contribution to Eq. (4.1) 
from this segment is negative, and the algebraic area 
differs from the geometric area. Moreover, in (4.1) we 
need not assume that the circle can be represented as a 
graph; so strictly speaking we should write the curve @ in 
parametrized form as (x (J..),y (J..)) and integrate over J... 

The net flux is the area contained between a rotational 
circle @ and its iterate T@: 

(4.2) 

When T@ is above (below) @ the contribution to (4.2) is 
positive (negative), as in Fig. 29. The net flux is indepen
dent of the choice of @. To see this, choose a second 
curve :JJ. Because T is area preserving, the area con
tained between @ and ::D is invariant; thus 

A@-A:n= Ar<r-Ar:n. 

Rearranging this gives 

Ar:n-A:n= Ar@-A<r ; 

so the net flux through ::D is the same as that through @. 

A map with zero net flux is exactly symplectic (recall 
Sec. 1.C). We have already seen thatthe sta~dard map 
has zero net flux in Eqs. (2.25) and (2.26). · 

A map that has an RIC must have zero net flux, since 
the net flux through the RIC is zero.. This is why the 
condition (3.16) was required for the KAM theorem. 

C. Birkhoff's theorem 

Birkhoff showed that any invariant set U that looks 
like "half a cylinder" has a boundary that is the graph of 
some function Y(x). In this section we sketch the proof 
of this theorem, and in the next section we discuss some 
of the practical consequences. Formally we have the 

Theorem (Birkhoff, 1920; Herman, 1983; Mather, 1984). 
Suppose T is a C I area-preserving, end-preserving twist 

FIG. 29. Net.flux through {j, shown by the difference between 
areas of the black region and the grey region. 
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map on the cylinder. Let U be an open invariant set 
homeomorphic to the cylinder such that there are a < b 
satisfying 

{ x,y :y < a ) C UC { x,y :y < b } . 

Then the boundary of U (aU) is the graph {x,Y(x)) of 
some continuous function Y. 

The region U includes all points below y = a, is contained 
in the region y < b, and can have no holes. The point of 
the theorem is that au cannot have any "whorls," for ex
ample, like those of a breaking wave. In particular, any 
continuous rotational invariant circle can be used as an 
upper boundary to form U; so the theorem implies that 
all RIC's are graphs. 

1. Accessible points 

The proof uses the concept of accessible points. Let 
r(t)=(x(t),y(t)) be a curve embedded in U (r cannot 
cross itself) and parametrized by t so that 
y ( - oo )-+ - oo. The deviation of r from the vertical is 
defined to be the angle 6 between a tangent to r and the 
vertical. For those points r( t) such that y ( t) > y ( t') for 
all t' < t, choose 6 in the range [ -'IT /2, 1T /2 ]; otherwise 
the branch of 6 is chosen to make the deviation a con
tinuous function (see Fig. 30). 

A curve rR is tilted to the right if 6 :::SO everywhere; 
i.e., its deviation from the vertical is everywhere to the 
right. Left-tilting curves are denoted rL. 

As sketched in Fig. 31, a point z0 EU is right accessible 
if there exists a rRE u such that rRUo )=zo. 

2. Proof 

A curve rR which . tilts to the right is mapped onto 
another such curve by T. For example, suppose the angle 
6 at z is in the range [ -1T,O]; see Fig. 32. A vector vat z 
is mapped to Mv, where M is the linearization ( 1.31) of T 
at z. In particular, the twist condition (1.30) implies that 
the vertical at z is mapped to a righMilting vector with 
tilt 0 in the range [-1T,O]. Since Tpreserves orientation, 
the angle 6' between Mv and the tangent to T(yR) at 
T(z) must be in the range [-1T,O]. The deviation of 

FIG. 30. Deviation from the vertical, 6. 
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FIG. 31. Right accessible point. 

T ( yR) from the vertical is the sum of these two angles 
and therefore must be to the right. 

Let WR and WL be the subsets of U that are right and 
left accessible, respectively. The boundary of WR con
sists of portions of a U together with vertical segments 
bounding those parts of U not right accessible (see Fig. 
33). Since every point in WR is on a curve that tilts to 
the right, WR is mapped into itself by T: 

T(WR)cwR. 

Similarly, r- 1( WL)c wL since r- 1 twists to the left. 
In fact, since Tis area preserving and has zero net flux, 

WR= U. If we suppose the contrary, then there is some 
portion of U that is not right accessible and is therefore a 
"lobe" bounded by a vertical on the right. Upon itera
tion any vertical tilts to the right, and therefore some 
portion of this lobe is mapped into WR (Fig. 34). Now 
consider a circle y =y0 far below au. Since au is con
tained between y =a and y =b, the area of U above Yo is 
finite. Furthermore, area preservation implies that the 
area of WR abovey =y0 is mapped into a region with the 
same area. However, since the net flux through y =y0 is 
zero, this gives a contradiction. Similarly, since r- 1 

twists to the left, wL= U. 
Thus every point of U is both right and left accessible, 

hence is vertically accessible. Therefore there exists a 
function y = Y (x) describing a U. 

V 

Ty 

FIG. 32. Tilt property. The iterate of a curve that tilts to the 
right also tilts to the right. 
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FIG. 33. Right accessible region, WR. 

D. Corollaries 

1. Lipschitz corollary 

A function Y(x) is Lipschitz if there are finite slopes 
S _ and S + such that 

Y(x 1 )- Y(xo) (4_3) 
S+::'.:------::'.:S_ 

x1-xo 

for all x I and x 0 • These constants give a Lipschitz cone, 
which contains the graph of the· function (see, e.g., Fig. 
35). A Lipschitz function is continuous and differentiable 
almost everywhere. 

A corollary of Birkhoff's theorem is that the function 
Y(x) is Lipschitz. In fact, we can obtain explicit bounds 
on the slopes of an RIC. Upon iteration a vertical vector 
6z =(0,6y) becomes 6z'=(6x',6y')=M6z, which has the 
slope 

s = .§L. I = EL. [ ax· 1-1 (4.4) 
6x' ;r; ay ay 

According to Eq. (1.30) the denominator of (4.4) is 
bounded below by the twist constant K; therefore there is 
a maximum slope, S + . Inverse iteration of the vertical, 
using Eq. (1.32), leads to a minimum slope S_: 

YO 

FIG. 34. Contradiction for the proof of Birkhoff's theorem. If 
WR,;,b U, then there are left-going lobes, and the iterate of WR is 
strictly contained in WR, violating area preservation. 
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FIG. 35. Lipschitz cone with slopes S + ands_. 

. ay ax [ [ ]-!] s_ =mm . ay' ay' 

. [ ax' [ax' 1-t] =min --- --ax ay (4.5) 

Since a rotational invariant circle intersects each vertical 
line exactly once, it must also intersect the iterate of each 
vertical exactly once. Thus the slopes S + and S _ bound 
the slope of the RIC. 

2. Confinement corollary 

Suppose the orbits of all points y < a stay below some 
point b. Then there exists a rotational invariant circle 
between a and b. 

To see this, we construct the set U for application of 
Birkhoff's theorem as follows. The iterates of all the 
points y < a form an invariant set, which by assumption 
is contained below y = b; we shall call this set of iterates 
V. However, V cannot be used for Birkhoff's theorem be
cause it is not necessarily homeomorphic to the cylinder 
(there will typically be lots of holes in the annulus 
a <y < b corresponding to elliptic island chains). How
ever, since Vis below y =b, its complement has a con
nected component that contains all points y > b. Thus 
the complement of this connected component is a set 
contained below y = b, which satisfies the hypothesis of 
Birkhoff's theorem; we shall call this set U. The bound
ary of U is the RIC. 

3. Converse KAM theory 

Birkhoff's theorem leads to several criteria for the 
nonexistence of invariant circles which have varying 
effectiveness in practice. 

(a) Climbing orbits. If there is an orbit that climbs ar
bitrarily far up the cylinder, then there are no rotational 
invariant circles. More precisely, consider an annulus 
a <y < b: If there is an orbit going from below this an
nulus to above it, then there are no RIC's contained in 
the annulus. Furthermore, since RIC's must be 
Lipschitz, for any point z there is an annulus, with height 

S++IS-1, 

inside of which any RIC containing z must lie. In prac
tice this criterion is not too useful, since even when RIC's 
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do not exist it may take many iterations for orbits to 
climb even a small distance. 

(b) Heteroclinic connections. Suppose the unstable 
manifold of some periodic orbit intersects the stable man
ifold of another. Then there can be no RIC'S contained 
between them; This could be a practical criterion be
cause the stable and unstable manifolds can be computed 
numerically. Furthermore, this is really what underlies 
the resonance overlap criterion, Sec. II.C. 

(c) Lipschitz criteria. Using the Lipschitz bounds on 
slopes, one can obtain restrictive criteria for the nonex
istence of RIC's. Consider the iteration of a small verti
cal vector 6z0 =(0, 1) at the point z0 =(x0 ,y0 ), using the 
linear map (1.30). Upon one iteration we obtain 

6z1 =(6x1,6Y1 )=Mz0 [~] = [ !;', t ] , 
which has positive 6x 1 by (1.30). However, a second 
iteration gives 

ax" ax' ax"½'... 
6z2 =Mz 6z 1 ===-6x 2 =-a , -a +-a, a . 

I X ~ ~ X 
(4.6) 

If 6x2 <0 there can be no RIC through z0 , because the 
orbit of z0 would have to be on the circle and it could not 
be a graph (see Fig. 36). For example, for the standard 
map, (1.36), (4.6) becomes 

6x2 =2-k cos(21rx') . (4.7) 

Now, since a RIC must intersect every vertical, if (4.7) is 
negative for any x;, there are no rotational invariant cir
cles. Thus when lkl >2, there are no RIC's for the stan
dard map. Mather (1984) refines this criterion using the 
explicit Lipschitz cone to obtain the bound lkl >4/3. 
MacKay and Percival (1985) use a further refinement of 
this criterion to obtain the bound lkl > 63/64. They uti
lize the computer to obtain this result: each floating
point calculation is given explicit bounds so that the re
sult is rigorous. Furthermore, Stark ( 1986) has shown 
that the criterion of MacKay and Percival is exhaustive: 
if there is no invariant circle, the method will eventually 
show nonexistence. These bounds compare favorably 
with the result (2.22) of Greene. 

FIG. 36. Converse KAM criterion. If the iterate of a vertical 
vector eventually turns around, there is no RIC. 
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V. VARIATIONAL PRINCIPLES 

In this section we show that any twist map has a La
grangian variational principle. This variational formula
tion turns out to be of great utility. In Secs. VI and VII 
we shall discuss the theory of Aubry and Mather, which 
uses this formulation to classify what one could call the 
"regular" orbits of a twist map. The variational principle 
also has a physical interpretation in terms of phase-space 
areas, and in Sec. VIII we show that it provides compact 
and computationally efficient formulas for the area of res
onances and esc,aping fluxes. 

A. Generating function 

Let T:(x,y)-+-(x';Y') be the lift (as discussed in Sec. 
II.A) of a twist mapping to the plane. We shall show 
there exists a generating function F(x,x') such that 

y=-F1(x,x'), 

or, alternatively, a "one-form" dF: 

dF(x,vr,')=y' dx'-y dx . 

(5.1) 

(5.2) 

Here the subscripts indicate derivatives with respect to 
the first and second arguments, respectively. Fis a gen
erating function for a canonical transformation (F1 in 
Goldstein's notation). 

To show the existence of F we must first invert the re
lation x '.(x,j) to obtain y (x,x '); we do this geometrical
ly. Consider the verticals x·=s and X =s' in the plane. 
The curveT(x =s) intersects s' exactly once by the twist 
condition. Define y '( s, s') to be this intersection (Fig. 
37).' Similarly; define y(s,s') to be the unique intersec
tion of T,,,- 1(x =s') with the vertical X =s-

Using these functions, we define the generating func
tion by integration, 

F(x,x')= px,x'>y'(s,s')ds'-y(s,s')ds; (5.3) 
r 

where y is a path (see, e.g., Fig. 38), which begins at some 
arbitrary point and en,ds at (x,x' ). In fact, Eq. (5.3) is in-

,,. l • ' 

y' 

y 

~ 
T 

~, 

FIG. 37. Definition ofy(x,x') andy'(x,x'). 
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(x,x') 

x' 

X 

FIG. 38. Curves rand fin (x,x') space. 

dependent of the choice of path. To see this consider a 
second path y that has the same end points as y. By 
Stokes's th~rem the integral py(x,x')dx .around the 
closed loop y-y is the integral of the area .enclosed: 
f dy I\ dx. Since (x ',y') is the iterate of (x,y ), area 
preservation implies that this is the same as 
f dy' I\ dx'= !fiy'(x,x') dx' over this same loop. Thus 
the integrals of dF along y and y are equal (we say that 
dF is an exact one-form in the plane). 

By construction, the derivative of F with respect to its 
first argument is -y (x,x') and with respect to its s~cond 
is y '(x,x.( ), as required. 

The twist condition ( 1.30) translates into a requirement 
upon the second derivative of F. Using (1.37) we obtain 

. . 1 ay [ ax 1 1- I 1 . 
_ F 12 (x,x )- ax' - ay ~ K <0, (5.4) 

so the mixed second partial derivative of F is negative
definite. · 

The mapping generated by Fis area preserving because 
dy'~F12dx +F2~dx' and dy =-F11dx-F12dx' imply 
that· th~ two area'. elements · 

dy I\ dx = -F12dx' I\ dx , 
(5.5) 

dy' I\ dx'=F12dx I\ dx'=-F12dx' I\ dx 

are the same. 
Finally, this construction provides a useful interpreta

tion of the generating function. Consider a curve @ and 
its iterate @' (see Fig. 39). The area under @ is the in
tegral f y dx along @, while that under @' is J y' dx'. 

A A' 

X x x' x' 

FIG. 39. Area under a curve and its iterate. 
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The difference between these areas is 

=F(x,x')-F(x,x'), (5.6) 

where we recall Eq. (5.2). We shall discuss and rederive 
this relationship in Sec. VIII. 

B. Net flux 

The net flux across a rotational circle @ is the 
difference between the area under @ and that under T<P 
(recall Sec. IV.B). A rotational circle is a curve that 
ranges from (x,y) to (x + 1,y). Since the mapping is 
periodic, T@ ranges from (x',y') to (x'+l,y'). Using 
these curves in Eq. (5.6) gives a formula for the net flux: 

';JN=F(x +1,x'+l)-F(x,x'). (5.7) 

The net flux is zero if the generating function is a period
ic function of ½(x +x'); it can depend arbitrarily on 
x' - x. Such a mapping is called exactly symplectic be
cause in this case the one0form y' dx' -y dx is exact on 
the cylinder: its integral is path independent even for 
paths that encircle the cylinder. 

C. Examples 

1 . Standard map 

A generating function for the standard map ( 1.36) is 

1 F(x,x')= 2 (x -x')2-V(x), 

k V(x)= - --2 cos(21rx) . 
41T 

(5.8) 

This is the same as the energy per site for the Frenkel
Kontorova model (1.39). 

From another point of view the generating function is 
a discrete version of the Lagrangian for a dynamical sys
tem. For the standard map, it has the familiar form of 
kinetic minus potential energies, where the "velocity" is 
x ' - x for the discrete-time system, and the potential is 
V(x). Thus we see that the standard map is a discrete 
approximation to the pendulum. 

Equation (5.8) confirms that the standard map has zero 
net flux, by Eq. (5.7). 

2. Billiards 

The generating function for a convex billiard is the 
function that gives the length between two boundary 
points. Let (X, Y) represent rectangular coordinates in 
the plane of the billiard. Using Birkhoff coordinates 
(s,cos0), Sec. I.F, we see that the generating function is 

F(s,s')= [ [X(s)-X(s')]2+[ Y(s)-Y(s')]2 j 112 , (5.9) 
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where (X(s), Y(s)) represents the billiard boundary. The 
derivatives of Fare 

a 1 [ ax asF(s,s')= F a;-[X(s)-X(s')] 

+ ~~[Y(s)-Y(s')] ]=-cos0, 

(5.10) 

a~' F(s,s')=cos0' , 

since the vector (aX ;as,aY ;as) is the unit tangent to the 
boundary (recall Fig. 10). This confirms again that the 
momentum coordinate is cos0. In these coordinates the 
billiard map is area preserving. 

The twist for the billiard is 

F ( ')= sin0sin0' 
12 s,s F . (5.11) 

Since, for a convex billiard, 0 < 0 < 1r, the mapping has 
twist; however, it twists to the left, since F 12 2::: 0. There
fore the sign convention for billiards is opposite to that 
which is used in this paper. To translate our discussion 
in Secs. VI-VIII for billiards, replace "minimizing" by 
"maximizing." 

The circle billiard has the generating function 

[ s'-s ] F = 2r sin ~ , (5.12) 

where r is the radius. Since Fis a function only of s' -s, 
the circle billiard is trivially integrable: the momentum 
is conserved. Obtaining a generating function for more 
general billiards, such as an ellipse (which is also 
integrable) or the stadium (Bunimovich, 1974), is left as 
an exercise! 

D. Action 

For a continuous-time Lagrangian system, the action is 
the integral of the Lagrangian L(q,q,t)=pq-H(p,q,t) 
along a path q (t) in configuration space [recall Eq. (1.5)]. 
Orbit segments q (t) of this dynamical system are station
ary points of the action with respect to variations with 
given end points q(t0 )=x, and q(t 1 )=x'. We shall show 
here that the value of this action on the orbit is the func
tion F(x,x'), which generates the mapping for this flow. 
Suppose the Lagrangian depends periodically on time, 
and without loss of generality suppose the period is 1. 
Let q ( t) be an orbit segment for one period, and define 

JI 
F(x,x')= L(q,q,t)dt. (5.13) 

0 
q ( t) stationary 

Now (5.13) is the value of the action of the exact orbit 
from q ( 0) = x to q ( 1) = x ', and the mapping generated by 
Fis the time 1 mapping of the Lagrangian flow. To ob
tain the action for several periods, we merely have to sum 
(5.13) over the intermediate steps: 
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n-1 

W{xm,Xm+l> ... ,xn) = l: F(Xr,Xt+l). 
t=m 

(5.14) 

This is the same as the action (1.5), restricted to a path 
that is an exact orbit for each period; it depends only on 
the configuration points at the discrete times t = n. 

An orbit segment is a configuration [ Xm, ... , Xn) that 
is a stationary point of the action holding Xm and xn 
fixed. Setting the variation of the action to zero gives the 
equations 

(5.15) 

for m < t < n, which implies that the two definitions of 
momentum (5.1) agree at each point on the orbit: 

(5.16) 

An ( m, n) periodic orbit, (2.10), is determined by the 
action 

n-1 

w(m,n){xo,X2, ... ,Xn-il = l: F(Xi,Xt+illxn=xo+m ' 
t=O 

(5.17) 

which is a function of the n - l distinct points on the or
bit. The ( m, n) periodic orbit is a stationary point of 
W<m,n> upon variation of all its arguments. This yields 
the same equations as before when O < t < n. Variation 
with respect to x 0 gives the equation 

F 1(x 0,x1 )+F2(xn-i,Xn )=O, 

which implies the periodicity condition Yn =y0 • 

An orbit is a bi-infinite sequence 
{ ... ,xt _ 1,xi,xt + 1, ••• ) such that every finite subse
quence is an orbit segment. Thus the action W[ x) is sta
tionary for each t. 

For example, for the standard map, stationary points 
of the action must satisfy Bq. (1.38), which is the La
grangian form of the equations (1.36). Similarly, for the 
billiard, Bq. (5.16) implies that the angle of incidence 
equals the angle of reflection for each bounce. 

VI. PERIODIC ORBITS 

In this section and the next we shall discuss the theory 
of Aubry and Mather, which shows the existence of 
minimizing and minimax orbits for each frequency w for 
an area-preserving twist mapping. In the process, many 
properties of these orbits will become clear. 

A. Minimizing orbits 

The action of an orbit was defined in Eq. (5.14). Its 
first variation on an orbit is zero according to Eq. (5.15). 
This implies that the action does not change under an 
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infinitesimal variation of the configuration to first order: 
6 W [ x ) = 0. The second variation of the action about an 
orbit is not generally zero. Consider first a finite segment 
of an orbit, {xm, ... ,xn ); let 62 W{xm, ... ,xn) be the 
quadratic form obtained from the second-order term in 
the expansion of W for fixed Xm and Xn: 

n-1 azw 
62 W[6x}= l: Bxj---Bxk 

j,k=m+I axjaxk 
(6.1) 

An orbit segment is locally minimizing if 62 W is non
negative for all vectors { Bxm + 1, ••• , Bxn _ 1 j. If 62 W is 
positive-definite, then the minimum is nondegenerate. 

The orbit corresponding to the infinite sequence 
{ ... ,xm, ... xn, ... ) is defined to be locally minimizing 
if every finite segment is locally minimizing. 

Consider now arbitrary variations {Sm, •.. , Sn} 
= {xm,Xm+1+Bxm+I• ... ,Xn-1+Bxn-1,Xn} about 
some orbit segment { x ) with fixed end points (here the 
6x;'s can be of arbitrary size). An orbit segment is 
defined to be minimizing if for every variation { s} 

W{s}-W{x}:::O. (6.2) 

If every finite segment of an orbit is minimizing, then the 
orbit is minimizing. In this definition it is important to 
allow only variations with compact support; otherwise 
the action difference W{s} - W{x) would not necessari
ly be finite (being an infinite sum), and the two orbits 
could not be compared. Furthermore, anchoring the 
asymptotic ( t - ± oo ) behavior of the orbit acts as a kind 
of boundary condition, and we shall find different mini
mizing orbits when different boundary conditions are im
posed. 

It is not obvious that minimizing orbits exist. We shall 
first show that there are (m,n) minimizing periodic orbits 
for any frequency. There are two steps in this demon
stration: first we consider orbits that minimize W(m,n>• 
and then we show that these also minimize W. In Sec. 
VII we shall consider irrational w. 

B. Existence of (m,n) orbits 

The Poincare-Birkhoff theorem implies that a twist 
mapping has at least two periodic orbits for each (m,n). 
Actually, this theorem applies to a more general class of 
maps: maps on an annulus that preserve the two 
boundaries, rotating them in opposite directions. Such 
maps need not satisfy the twist condition (the two ends of 
a vertical line must move in opposite directions, but the 
intermediate points are unconstrained). To prove his 
thedrem, Birkhoff used intricate geometric arguments 
(Birkhoff, 1913). For the twist case the existence of these 
orbits follows more simply from the variational principle. 
The first orbit appears as a minimum of W<m,n)• and the 
second will follow from the minimax principle. The 
proof of the existence of a minimum is based on the 
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Growth condition. For an area-preserving twist mapping 
with zero net flux the generating function is bounded by 

F(x,x')~ A -Blx -x'l+Clx -x'l 2 , (6.3) 

where B and Care positive. 

Proof. Let SJ.. =x +A(x'-x) represent the line connect
ing x to x' as A ranges from O to l. Then for any func
tion F(x,x') we have the identity 

f l . 
F(x,x')=F(x,x)+ dAF2 (x,sJ..)(x'-x) . 

0 

Repeating this construction on F 2 gives 

F(x,x')= F(x,x)+ f 1dAF2 (sJ..,SJ..)(x'-x) 
0 

(6.4) 

- f 1dA.fJ,.dµF12(sµ,SJ..)(x'-xl2. (6.5) 
0 0 

Define A =min[F(x,x)] and B =maxlF2(x,x)I >0. 
These exist by periodicity (5.7) when the net flux is zero. 
Finally, let C =½K > 0, where K is the twist constant 
(5.4). Substituting these into the integrands in (6.5) gives 
(6.3) directly.• 

This result can be generalized to 2N-dimensional sym
plectic twist maps. Here we assume that the mapping 
has uniformly positive-definite twist: there exists a 
positive-definite matrix C, such that for any vector 
v,v·F12(x,x')·v~ -v·C·v for all x,x'. For this case the 
above proof of the growth condition can be directly tran
scribed (MacKay et al., 1989). 

Using the growth condition in the action for a periodic 
orbit, we can prove the 

Poincare-Birkhoff theorem. For an area-preserving 
twist mapping with zero net flux there is a periodic orbit 
for each (m,n). 

Proof. We shall obtain the orbit as a global minimum of 
W<m,n> [see Eq. (5.17)]. W<m,n> is a function on the space 
of periodic configurations { x 0 ,x 1, ... , xn -d E Rn. Since 
the mapping is periodic, we can, without loss of generali
ty, choose x 0 to lie in the interval [0,1]; so the space of 
configurations reduces to [0,l]XRn-I. To guarantee 
that W<m,nl has a minimum, we must find a compact sub
set on which w,m,n> is bounded. By (6.3) w,m,n> satisfies 
the bound 

n-1 

w,m,nl~nA+ ~ (-Blxj+l-xjl+Clxj+l-xjl 2). 
j=O 

(6.6) 

In particular, w,m,n> ~ n ( A -¼B 2 /C) is bounded from 
below. 

Now consider the set of configurations for which 
w,m,nl ~nA +D, for some constant D. We can show 
that this is a compact set in the space of configurations. 
In particular, the bound on w,m,nl implies that the sum 
in (6.6) is smaller than D; therefore each term is bounded. 
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This implies that Ix j + 1 - x j I is bounded, and therefore, 
since x 0 E [O, 1 ], lx1 -x0 I is bounded. Thus each of the 
x 1 for O < t < n is bounded. 

Outside the compact set W<m,n) is large. On the other 
hand, since W<m,nl is bounded below on the compact set 
it must have a minimum. Thus there exists an (m,n) 
periodic orbit that minimizes W<m,n)·• 

The minimum is not unique. 
{x 0 ,x 1, ... ,xn-d is a minimum, 
translate: 

For example, if 
then so is any 

{xj+k,xj+i+k, ... ,xn_ 1+k,x0 +k, ... ,xj_1+k) 

(6.7) 

for any j where the integer k is chosen so that x j + k is in 
the unit interval [0,1]. Thus there are at least n minima 
in the domain [0,1] x:Rn-l. 

As an example, consider the (0, 1) orbit for the standard 
map (5.8). The action is 

(6.8) 

which is a periodic function and therefore has at least 
one minimum. For the standard map this occurs at 
x =½, corresponding to the hyperbolic fixed point. Note 
that minima of W correspond to maxima of V and there
fore to dynamically unstable orbits. 

In exceptional cases, such as the integrable twist map 
(2.1), there is an entire curve of minima, forming the ra
tional frequency invariant circle. In this case Eq. (5.8) 
yields the action 

1 n-1 
W(m,n)= 2 ~ lx1-X1+11 2 • (6.9) 

t=O 

The extrema that satisfy the constraint xn =x0 +m are 
the orbits x 1 =x0 + mt In for any choice of x 0 • For each 
x 0 , w,m,nl has the same value; since these are the only ex
trema, a variation about these orbits can never decrease 
the action. Thus these extrema are degenerate minima. 

C. Aubry's fundamental lemma 

We have obtained periodic orbits that minimize the 
periodic action. To show that these orbits are minimiz
ing, we need the "fundamental lemma" of Aubry (1983b). 
The point is that even though we have shown that the 
periodic configuration minimizes w,m,n>• it is possible 
that a variation which is not ( m, n) periodic will decrease 
the action of the infinite orbit, W. 

The fundamental lemma utilizes the twist condition 
and its concomitant distinction between the x and y coor
dinates as an essential hypothesis. First, we use the fact 
that an orbit is determined entirely by its configuration 
sequence, as in Eq. (5.14). Furthermore, we shall see that 
there is a frequency (or mean velocity) associated with 
each minimizing orbit, and that if one minimizing orbit is 
moving more rapidly through phase space than another, 
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then the paths of the orbits must diverge-one cannot 
oscillate about the other. The twist condition necessarily 
orders these orbits in y: larger momentum means larger 
frequency. 

Aubry's lemma is related to Morse's theorem (Morse, 
1924) for geodesics (two minimum length geodesics on a 
toroidal surface cross at most once) and is a global ver
sion of a theorem in the calculus of variations (locally 
minimizing orbits have no conjugate points; see Gelfand 
and Fomin, 1963). We prove only the simplest version of 
this lemma (MacKay and Stark, 1985): 

Aubry's fundamental lemma. Let { x ) and { s} be two 
distinct minimizing orbits. Then they cross at most once. 

To define the crossing of orbits, draw the orbits in the 
(t,x) plane and join successive points with straight lines 
to form the continuous curves 

(6.10) 

Similarly, construct the curve for s- The orbits {x] and 
{s] are said to cross if the function X (t)-s(t) has a zero. 

Proof of Aubry's fundamental lemma. Suppose the con
verse, that { x ) and { s] cross twice. We shall obtain a 
contradiction. There are three possible cases: (i) The 
crossing points both occur at noninteger values oft, as in 
Fig. 40; (ii) one of them occurs at integer t; or (iii) they 
both occur at integer values oft. 

Case (i). We construct deformations of {x] and {s] 
and show that at least one of these has smaller action, im
plying that not both { x ) and { s} can be minimizing. Let 
the two trajectories cross between times j and j + 1 and 
times k and k + l. Define the deformations 

{fl={.·· ,Sj-I•Sj,xj+l• · · · ,xk,Sk+1•Sk+2• · · -] 
(6.11) 

{x]={ ... ,xi_,,xi,Si+I• ... ,Sk,xk+1,xk+2• · · .] 

as sketched in Fig. 41. Note that it is necessary to have 
{ x ) and { s] cross twice to construct these deformations, 
because the definition of minimizing required that the 
variation occur only on finite segments. 

Consider the orbit segments running from time j to 
k + 1. Since { x ) and { sl were assumed to be minimiz
ing, the new segments must not have smaller action. 
Adding the actions of these two segments we obtain 

W{x) + W{fl =F(xj,Sj+1>+ W{sj+l• ... ,Sk l +F(sk,Xk+1>+F(sj,Xj+1>+ W{xj+I• ... ,xk l +F(xk,Sk+i). (6.12) 

Subtracting from this the sum W{x J + W{s} and regrouping terms gives 

W{x) + W{f)-W{x J-W{sl = F(xj,Sj+1>+F(sj,Xj+l>-F(xj,Xj+l)-F(sj,Sj+I) 

(6.13) 

Each of these sets of four terms can be shown to be negative. In general, consider two points (x, x') and ( s, s') and as
sume that there is a crossing so that (x -s)(f-x') is positive; then 

F(x,s')+F(s,x')-F(x,x')-F(s,s')= f 5xdJ.f :dµF 12 (}. .. ,µ):S - Jc (x -s)(s'-x'), 

where K is positive by the twist condition (5.4). (In the 
case of no crossing, the inequality must be reversed be
cause d Adµ is negative.) Therefore after a crossing 

F(x,g-')+F(s,x')-F(x,x')-F(s,s')<O; (6.15) 

X 

X 

FIG. 40. Crossing configurations. The configurations {x} and 
Isl cross twice. 
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so the difference between the actions of the modified or
bits and the original orbits satisfies 

W{x}+W{f}-W{x}-W{s}<O. (6.16) 

This contradicts the assumption that both {x} and {s} 
are minimal. 

X 

--------. 
j+l k 

I 
k+l 

FIG. 41. Deformed configurations that no longer cross. 
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Case (ii) is proved similarly. The difference between 
the actions has contributions only from the noninteger 
crossing, but it still is negative. 

Case (iii). Both crossing points are at integer times, 
say, t = j + 1 and k. Choose the new segments as in Eq. 
(6.11). Now the sum of the actions of the new segments 
from j to k + 1 is the same as for the old segments. How
ever, the new segments cannot be stationary points of the 
~ction because, although 'ti=Si and 'ti+ 1=si+I• 
Sj +2=l=si +2; and stationarity uniquely determines s. +2• 

Since the new segments are not even stationary they ~an
not be minimizing. This contradicts the assumption that 
the original orbits are minimizing, since the action is un
changed in value.• 

We shall apply Aubry's fundamental lemma to deter
mine various properties of minimizing configurations in 
the new few sections. One direct result is the 

Corollary. Two (m,n) minimizing orbits cannot cross. 

Proof. Suppose {x} and {s} are both minimizing (m,n) 
periodic orbits. Then they cannot cross, for if they cross 
once, then periodicity implies that they cross each 
period, and therefore infinitely often.• 

Furthermore, minimizing (m,n) orbits have a mo
notonicity property. An orbit is said to be monotone if 
for any integers t, t' ,j and j' 

Xr + j <xr,+ j'=x1+1+ j <xr'+I + j' · 
Corollary. Minimizing (m,n) orbits are monotone. 

(6.17) 

Proof. Let xt + j-+Xr and x; + r--st and apply the fun
damental lemma: s, cannot cross x,.• 

We shall see in Sec. VII that monotone orbits are or
dered in the same way as simple rotations on the circle. 

D. Minimizing (m,n) orbits 

We now are set up to prove the existence of minimiz
ing periodic orbits. We follow the discussion of Banget 
(1988) to prove the 

Theorem (Aubry and Le Daeron, 1983). For an area
preserving twist mapping there is a minimizing periodic or
bit for every (m,n), where m and n are coprime. 

Proof. Let { x } be the periodic extension of the 
configuration that minimizes W<m,nl· We must show that 
there is no infinite configuration that has smaller action. 
For example, we consider an orbit {s} of type (km,kn), 
which minimizes W(km,kn)· By the fundamental lemma, 
this orbit cannot cross any of its translates. Now suppose 
{sl is not also of type (m,n). Then St+n=l=s1+m. Since 
St+n -m does not cross Sr we must have either 
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sr+n-m >s, or si+n-m <sr. (6.18) 

Consider the first case. Shifting time by n steps 
implies that s1+ 2n -m >sr+n• and therefore 
St+2n -2m > St+n -m > Sr· Repeating this k times gives 
s r + kn - km > s,. This is a contradiction, since we as
sumed it was of type ( km, kn). So if an ( m, n) minimizing 
periodic orbit has a smallest period n, then m and n are 
coprime. 

We have just shown that if {x 0 ,x1, ... ,xn-il mini
mizes w(m,n)• then 

{x 0 ,x 1, ... ,xn_ 1,x0 +m,x 1 +m , 

... ,xn-1+(k-l)m) (6.19) 

minimizes W<km,knl for all k > 1. Since the segment (6.19) 
is minimal, its action must be less than that of any varia
tion with the same end points. Since k is arbitrary, this 
implies that any variation of the orbit { x ) with compact 
support must increase the action of { x ) . Thus { x ) is a 
minimal orbit.• 

This theorem apparently cannot be generalized to 
higher dimensions. For the case of geodesic flow on a 
torus, where an analogous theorem holds in two dimen
sions, Hedlund (1932) has given a counterexample on a 
three-torus. The difficulty in this case is that there is no 
natural generalization of the idea of crossing: curves do 
not separate regions in a space with- more than two di
mensions. Thus it seems that minimizing orbits may not 
be as important in higher-dimensional systems, though 
orbits that minimize the periodic action may still play an 
important role (Kook and Meiss, 1989; Gole, 1990). 

E. Minimax principle 

The existence of a minimizing ( m, n ) orbit immediately 
implies the existence of another orbit, the minimax orbit. 
This occurs because the translates St =x1+k + j of a 
minimizing orbit are also minimizing; thus the existence 
of one minimum for W<m,nl implies directly that there are 
many minima. Between these minima there must be oth
er critical points. The _Morse index of a critical point of a 
function [i.e., a point for which Df(x)=O] is defined to 
be the number of downward directions of the function at 
that point (Milnor, 1963). Thus a minimizing orbit has 
index zero. The minimax principle, originally due to Bir
khoff, implies that there is an orbit of index 1. To show 
this more formally we construct a new orbit by con
strained minimization. 

Theorem. For every (m,n) there exists an index-I, period
ic orbit-the minimax orbit. 

Proof. Any translate {St} of { x 1 } does not cross { x 1 ), 

since both orbits are minimizing. Choose the translate 
for which so is closest to x 0 • Now choose a path 
~'(),)={x0 (A), ... ,xn_,(}..)j for AE[0,l] connecting 
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X() 

~1 

FIG. 42. Minimax construction for n =2. The minimax orbit 
occurs at a saddle point of Wbetween neighboring minima. 

these two neighboring minima of w,m,n>· Since w,m,n> is 
continuous it must have a maximum along this path. In 
Fig. 42 we sketch the n = 2 case. Minima occur at the 
points [x0 ,xiJ and [x 1,x0 j. The maximum along the 
path t is shown in the figure as the open circle. Now 
vary the path t(A) to find the smallest of these maxima. 
This gives a critical point of Wcm,n) and therefore an 
( m, n) periodic orbit. This minimum over the maxima is 
the minimax orbit.• 

In addition, the minimax orbit is well ordered with 
respect to the minimizing orbit, in the sense of ( 6.17) 
(Mather, 1986). 

The minimizing and minimax orbits form the "island 
chain" structure seen in Sec. II. In fact, one can see that 
the residue (2.16) of a nondegenerate minimizing orbit 
must be negative (MacKay and Meiss, 1983), indicating 
that it is hyperbolic (the orbit is parabolic if the 
minimum is degenerate). On the other hand, the residue 
of a nondegenerate minimax orbit must be positive, so 
that it is either elliptic or hyperbolic with reflection. 

This is most easily seen for the fixed-point case. Here 
the action is W(0,1) =F(x,x)= - V(x). This is a periodic 
function, and so it necessarily has at least one minimum 
and one maximum. However, the minimum of W corre
sponds to the maximum of the· potential energy and 
therefore gives the unstable orbit [as we saw in Eq. 
(2.17)]! Similarly, the minimax orbit sits at the minimum 
of V and is therefore elliptic. Remarkably, this cir
cumstance generalizes to any ( m, n) orbits. 

When the minimax orbit is elliptic we have the familiar 
island-chain structure. If it is reflection hyperbolic, then 
this typically means that the elliptic orbit has undergone 
a period-doubling bifurcation (Greene et al., 1981), sig
naling the destruction of most of the invariant circles in 
the island chain. Even in this case the unstable manifolds 
of the hyperbolic, minimizing orbit can be used to form 
the "separatrix" of an island, as we shall see in Sec. VIII. 

Aside from the minimizing and minimax orbits, there 
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are of course many other periodic orbits in a typical map
ping. Some of these can be understood by techniques 
similar to the above. For example, the librating orbits 
within an island chain can be thought of as ordered or
bits of the mapping Tn with respect to rotation about the 
minimax fixed point in the center of the island. Since Tn 
typically has twist in the neighborhood of such a point 
(Sec. 1.F), the above theorems prove the existence of li
brating periodic orbits for all rational frequencies in some 
interval. Thus we obtain both minimizing and minimax 
class-I periodic orbits. If these minimax periodic orbits 
are elliptic, then oscillating orbits of class 2 and so forth 
can be obtained (recall Sec. II.C). 

VII. QUASIPERIODIC ORBITS 

In addition to the periodic orbits found in the previous 
section, there are also quasiperiodic orbits that minimize 
the action. In fact, we shall show that any rotational in
variant circle is minimizing. Remarkably, however, 
minimizing quasiperiodic orbits exist for any twist map 
and any rotation frequency-not just for maps close 
enough to the integrable case and for Diophantine fre
quencies, as one might expect from the KAM theorem. 
When an invariant circle with a given frequency is de
stroyed, the corresponding minimizing quasiperiodic or
bit can no longer densely cover a circle; in fact, it covers 
a Cantor set and is called a "cantorus." Cantori have an 
infinite set of gaps through which chaotic orbits can leak, 
and, as we shall see in Sec. IX, the leakage through can
tori can be extremely slow. 

We shall follow Aubry and Katok and obtain orbits 
with irrational w by considering the limit of a set of m In 
minimizing orbits as the period approaches infinity and 
the frequency approaches w. This approach follows the 
ideas used in the numerical experiments of Greene, dis
cussed in Sec. II.C. A more direct approach was 
developed by Mather (1982), who studied the action for 
curves introduced by Percival (1979a). 

The analysis in this section is somewhat more formal 
than the rest of this article, and some of the proofs are 
omitted. 

A. Circle maps 

A rotational invariant circle can be described by a 
function y = Y (x ), which is periodic in x (Fig. 43). When 
restricted to the invariant circle the map becomes 

(x',y')= T(x, Y(x)). (7.1) 

A projection onto the x axis is denoted by the symbol 1T; 
thus for a point z = (x,y) 

1T(z)=x . (7.2) 

Equation (7.1) defines a function a, a "circle map," 
through 

x'=a(x)=1T(T[x, Y(x)]) . (7.3) 
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y x' 

X X 

FIG. 43. Rotational invariant circle Y(x) and corresponding circle map a(x). Here a is shown wrapped onto the torus [O,l)X [0,1). 

Since the map is periodic with period one, we have 
x'(x +1,y)=x'(x,y)+l and therefore 

a(x + 1 )=a(x)+ 1 . 

Thus a is a degree one circle map (see Appendix B). In 
fact, since Tis a homeomorphism and Y is Lipschitz, the 
circle map a is a homeomorphism as well. A classic 
theorem of Poincare implies that any homeomorphism of 
the circle has a unique rotation number (Appendix B), 
and thus all invariant circles of twist maps have one as 
well. 

B. Invariant circles are minimizing 

In any discussion of rotational invariant circles of twist 
maps, the concept of minimizing orbits arises naturally, 
since 

Theorem. Every orbit on a rotational invariant circle is 
minimizing. 

Proof. By Birkhotrs theorem (Sec. IV.C), every RIC is 
the graph of a Lipschitz function Y (x ). Let 

S(x)= fx Y(5)d5, (7.4) 
XO 

integrating from some arbitrary point x 0 . Define the 
function 

H(x,x')=F(x,x')-S(x')+S(x). 

The derivatives of Hare 

H 1 =F1(x,x')+Y(x), 

H 2 =F2(x,x')-Y(x') . 

(7.5) 

(7.6) 

Following the discussion in Sec. V.A, each of these 
derivatives is zero exactly once, when x'=a(x). This im
plies that H(x,a(x))=H0 is constant and that all critical 
points of H occur on x'=a(x). Now Eq. (7.4) implies 
that S(x + 1 )=S(x)+C, where C is constant; so if Fhas 
zero net flux (5.7), then H(x + 1,x'+ l)=H(x,x'). Thus 
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H(x,x') satisfies the same growth condition (6.3) as 
F(x,x'), and His bounded from below. Therefore 

H(x,x')>H0 for x'=;t=a(x). (7.7) 

Finally, suppose [ xj, ... , xk) is an orbit segment on the 
RIC and {sj=xj,Sj+J, ... ,Sk-1,sk=xk) is a deforma-
tion. Then the action of the deformed segment is 

k-1 
W{s)=}: H(s;,S;+ 1HS(xk)-S(xj) 

i=j 

2::(k-j)H0 +S(xk)-S(xj) 

2::W[x). 

Therefore the segment [ x ) is minimizing.• 

(7.8) 

This theorem can be generalized in a limited sense to 
higher dimensions. The limitation is really the absence of 
a result comparable to Birkhotrs theorem: it is not 
known if every rotational invariant torus is a graph. 
However, upon assuming that the rotational tori are 
graphs and imposing the additional restriction that the 
torus must be a Lagrangian manifold (Herman, 1988), we 
have the 

Theorem (MacKay et al., 1989). For a symplectic map
ping with uniformly positive-definite twist on TNXRN and 
zero net flux, every orbit on an invariant Lagrangian 
graph is minimizing. 

Proof. On a Lagrangian graph, Y(x)=VS(x). Use this 
S to define H as before; since the growth condition ap
plies, we can follow Eqs. (7.4)-(7.8).• 

C. Monotone sets 

In order to show that the limit of a set of minimizing 
periodic orbits is a minimizing orbit, we need to use the 
fact that they are monotone [Eq. (6.17)). In this section 
we discuss general properties of monotone sets before us
ing these properties in the next section to prove- the ex-
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istence of quasiperiodic minimizing orbits. 
As invariant set Mis monotone if for all z, 6 EM, 

1r(z)<1r(t)=1r(T(z))<1r(T(t)), (7.9) 

where 1T is the projection (7.2). An orbit is monotone if 
the set formed from all its translates is monotone, i.e., 
(6.17). We showed in Sec. VI.C that Aubry's fundamen
tal lemma implies that minimizing periodic orbits are 
monotone. 

Monotone invariant sets for twist maps have nice 
properties: 

Lemma. A monotone invariant set M is a graph over x. 

Proof. Suppose not, then there are two points, z = (x,y) 
and t=(s,11) in M which have the same X value: 
X =1r(z)=s=1r(t), but different y values, say y >11. 
However, the twist condition then implies that 
1r(T-1z)<1r(T-1t), which violates (7.9). Thus if x =s, 
theny =11, and 1r(z)=1r(t)=1r( T(z))=1r( T(t))• 

Lemma. Any limit of monotone orbits is monotone. 

Proof. Suppose that for each k, { x < k)) is a monotone or
bit. Then points on the orbit must satisfy 
x!k> <x\k>=x!k> <x\k> and in the limit 

I J z+l J+l• ' 

(7.10) 

The only possible problem is equality in (7.10). Suppose 
this occurs; then the twist condition implies that 
xi+d >x]+i (Fig. 44). However, this implies there is a K 
such that for all k > K,xi~\ > x )~2, contradicting the as
sumption that {x<k>j is monotone for all k. Thus the lim
it must be monotone.• 

Lemma. The closure of a monotone invariant set is mono
tone. 

Proof. Let z0 =(x0 ,y0 ) and t0 =(s0,110 ) be points in the 
closure of a monotone set M. Continuity of T and mono
tonicity of M implies that 

(7.11) 

However, as in (7.10), equality is forbidden by the twist 
condition.• 

Monotone states have a rotation number. This can be 

~~- T .._ c-·+_1 _T_. .. -1 ~+> 

Xj+2 

FIG. 44. Disallowing equality in Eq. (7.10). The twist condi
tion implies that if two points are ever vertically aligned, then 
their order changes on the next iteration. 
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seen most easily by referring to well-known results on 
one-dimensional maps of the circle (Appendix B). First 
we show that the restriction of the twist mapping to a 
monotone set is equivalent to a mapping on the circle: 

Lemma (Katok, 1982). If Tis a twist mapping and Mis a 
monotone set, then the mapping from 1r(M) to 1r(T(M)) 
can be extended to a homeomorphism x'=a(x)forxER 
satisfying a(x + 1 )=a(x)+ 1. 

Proof. The closure of Mis monotone; so a can be extend
ed to this by continuity. The complement of this closure 
is a disjoint union of open intervals. Extend a-to these by 
linear interpolation for x E [ 0, 1] and then continue to R 
by periodicity. Thus a is continuous, and because Tis 
invertible, it has a continuous inverse.• 

In Fig. 45, we sketch the construction of a(x) for a 
(2,5) monotone orbit. For an (m,n) orbit there are min
equivalent translations in the (x,y) plane. For the (2,5) 
case they are {x}={ ... ,x0 ,x 1,x2 ,x3,x4 , •• • ) and 
{sl = [ ... ,x3-l,X4 -1,xa+ l,x1 + l,x2 +1, ... }. We 
show part of the real line (of length 2) in Fig. 45, and the 
five points Of each Of the orbits { X) and { s} which lie in 
this segment. Define the function a(x) on the orbit so 
that a(xt)=xt+t and similarly a(st)=st+i· Since the 
set of all translations is monotone, a(x) is a strictly in
creasing function. Thus defining a( x) by interpolation 
between the points xt and St and between Sr and x 1 + 1 

gives a homeomorphism of the circle. 
To see how this fails for a nonmonotone orbit, consider 

a configuration of type (2,4), Fig. 46. Recall from Sec. 
VI.D that if x 2=,t=x0 +1, then this orbit cannot be mini
mizing because it cannot be monotone. [Indeed we 
showed that only orbits with ( m, n) coprime can be 
monotone.] Though x 1 increases with t, monotonicity 
fails because the translation St =x1 +2-1 is not well or
dered with respect to x 1 • In the figure we see that al
though s 1 > x 1, s 2 < x 2. This is reflected by a nonmono
tonic segment in the induced a(x ), which is therefore not 
a homeomorphism. 

Theorem (B2) in Appendix B shows that every orbit of 
a homeomorphism of the circle has a rotation number, 
and the rotation number is the same for all orbits. So all 
monotone states have unique rotation numbers. Further
more, the rotation number is a continuous function on 
monotone states: 

Lemma. The rotation number of the limit of a sequence of 
monotone states is the limit of the rotation numbers of the 
sequence. 

Proof. First we show that nearby monotone states have 
nearby rotation numbers. Let { x ) and [ s} be two mono
tone orbits, and suppose there are 6 and T such that 
lx1 -s1 I <6 for all OS.tS.T. From Lemma (Bl) in Ap
pendix B it follows that there is a frequency m(x) such 
that lx1-x0 -tm(x)I < 1, and similarly for S· Thus 
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(2.5) orbit 

y 

X 

FIG. 45. Construction of the homeomorphism a for a (2,5) monotone orbit. 

lxt-s"t-(xo-so)-t[(r)(x)-(1)(5)]1 ::::2 

(1+6) = l(i)(x)-(i)(s)I ::::2-T- . (7.12) 

Now consider a sequence of monotone states {x<k>j, with 
periods n<kl-oo such that m<k>;n<k>-(i). If {x<klj ap
proach a limit { x < 00 l} , there are 6 and N such that 
lx:k>-x: 00 >1<6 for all O:::':t::::n<kl and k'?:.N. Since the 
periods go to infinity, (7.12) implies that the rotation 
number of { x < 00 l] is the same as the limit of the rotation 
numbers of the [x<k>J.a 

With these properties of monotone orbits, we can now 
prove the existence of monotone quasiperiodic orbits for 
every irrational (i). 

D. Existence of quasiperiodic orbits 

In Sec. VI.D we proved that there is a mm1m1zmg 
monotone state for every (m,n). We now show that this 
is true for all (i). 

Theorem (Mather, 1982; Aubry and Le Daeron, 1983). 
There exists a minimizing, monotone state for every (r). 

(2.4) orbit 

y 

Proof. Consider a sequence of periodic minimizing states 
{x<klj suchthatm<k>;n<k>-(r)ask-oo. By the lemmas 
in Sec. VII.C we conclude that { x <kl) - { x ) is a mono
tone state with frequency (i). 

To show the limiting state is minimizing, consider a 
segment {s(k)l which is a deformation of {x(k)l with 
s\kl=x?> and s?>=st>. Furthermore, {s<klJ-{sJ, Let 

(7.13) 

Since F(x,x') is differentiable, there is a constant K, in
dependent of k, such that 

lw{ <kl (k>J-W{ Jl<K("-") <kl X; , ••• ,xj X;,, •. ,xj - I ]€ ' 

k>N 

and similarly for { 5}. Hence the action of the deforma
tion { s} minus that of { x l obeys 

W{s;, ... ,Sj l -W{x;, ... ,xj) 

'?:. W{s\kl, ... 's?>J-W{x/kl, ... ,xjklj 

-2K(i-j)E<k>, k >N. 

Now because E(kl-o as k-oo, and each {x<k>j is 

FIG. 46. Circle map construction for the (2,4) orbit. The map a(x) is not a homeomorphism because the orbit is not monotone. 
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minimizing, we have 

W{si,···,Sj}-W{x;,,,.,xj}:::::O; 

and so the limit is minimizing.• 

(7.14) 

A minimizing state obtained as a limit of periodic 
states is always recurrent, because there are periodic 
states arbitrarily close; thus such states are quasiperiodic. 
There are other minimizing states that are not recurrent. 
We shall discuss these below when we consider hetero
clinic orbits. 

If { x 1 } is a quasi periodic orbit, then { x 1 + n - m } is 
another such state. These are never identical; otherwise 
the orbit would be periodic instead of quasiperiodic. 
Thus we have obtained a countable family of such states. 
This family is monotone, or totally ordered, by Aubry's 
fundamental lemma. In fact, the totality of minimizing 
states for a frequency cu is a closed monotone set (Aubry, 
1983b). 

The theorem showing that a limit of periodic states is 
quasiperiodic is of practical importance. For example, if 
one would like to study the properties of a particular 
quasiperiodic state, it is sufficient to study nearby period
ic states and consider the limiting behavior of these prop
erties. This was the approach pioneered by Greene in his 
studies of the breakup of invariant circles (Greene, 1979); 
recall Sec. II.C. 

E. Cantori 

We have seen that quasiperiodic minimizing orbits ex
ist for all cu, for any twist mapping. Of course, this is not 
surprising for the case in which the mapping differs only 
slightly from an integrable mapping and the frequency 
satisfies a Diophantine condition: these orbits lie on the 
invariant circles of the KAM theorem (Sec. III.B). How
ever, the KAM theorem applies only to this slightly per
turbed case, while the Aubry-Mather theorem applies to 
any twist mapping. Furthermore, we have seen from 
Birkhoff's theorem that invariant circles typically do not 
exist when the nonlinear potential energy is sufficiently 
strong (Sec. IV.D). What do the minimizing quasiperiod
ic orbits become when there are no invariant circles? 
The answer is provided by the following 

.. _ - -... . ... - -·· ...... -·- - .... 

Theorem. Let { x } be a quasiperiodic minimizing orbit 
with frequency cu. The closure of { x} ,M., { x} is either an 
invariant circle or an invariant Cantor set. 

Proof. Since the minimizing orbit is monotone, its clo
sure can be extended to a homeomorphism, a(x) of the 
circle. Theorem (B3) in Appendix B implies that if the 
rotation number is irrational, the set of limit points of the 
orbit of any point is unique, invariant, and is either the 
entire circle or a Cantor set. Since we have assumed that 
the minimizing orbit is recurrent, then its closure is in 
fact this set of limit points of a.• 

We remind the reader of the definition and some of the 
properties of Cantor sets in Appendix B. 

Percival called the invariant Cantor sets "cantori"; we 
show a cantorus for the standard map in Fig. 47. He sug
gested the existence of cantori based on a variational 
principle for quasiperiodic orbits (Percival, 1979b); Au
bry (1978) independently suggested their existence. 
Furthermore, Percival explicitly constructed cantori for 
a particular family: the sawtooth map (Percival, 1979b; 
Aubry, 1983a). 

A cantorus is an invariant set that is "trying" to be a 
rotational invariant circle; however, orbits on this set fail 
to cover the circle: they never fall in a countable set of 
open intervals, or gaps-in fact, any Cantor set is 
equivalent to an interval with a countable family of delet
ed gaps. The end points of these gaps are quasiperiodic 
minimizing orbits, but the cantorus has uncountably 
many more orbits on it than these end points. 

However, the structure of the cantorus is determined 
by the orbits of these end points, because the orbit of any 
point on the cantorus must densely cover the cantorus. 
We can "construct" a can torus by imagining first that an 
invariant circle develops a single gap (imagine, if you 
will, that nearby islands on either side of the invariant 
circle have grown and squeezed a hole in the circle). Let 
x b and x O be the left and right end points of this gap. By 
definition of a gap there can be points in the interval 
(x b,x O) that are on a minimizing orbit with frequency cu. 
The orbits of each of the end points are distinct and 
quasiperiodic. Furthermore, because minimizing orbits 
are ordered, the iterates of these end points do not cross 
upon iteration; thus xf <x(. Since there are no minimiz-

--

x1o x•o 

FIG. 47. Cantorus for w = 1/y2 and k = 1.0 for the standard map. The largest gap forms around x =O, the "potential minimum." 
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ing points in the interval (xb,xo ), there can be none in 
the intervals (x/,x[). Thus each interval (x/,x[) is also a 
gap and each of these is distinct because the orbit is 
quasiperiodic. The total length of the gaps (in x) is at 
most 1; so the length of the iterate of any gap must even
tually go to zero. 

Thus we can speak of "iterating" a gap; however, what 
we really mean is that we iterate the end points of the 
gap-these are points on the cantorus itself. The iterates 
of a gap form a family. Since any Cantor set has at most 
a countable set of gaps, there are at most a countable set 
of families of gaps in a cantorus; typically we observe just 
one: every gap is the iterate of a single gap [though the 
example of Greene et al. (1987) probably has two families 
for some parameter values; see Ketoja and MacKay 
(1989)]. 

Cantori are typically hyperbolic, though I do not know 
of any theorem that guarantees this in general [when k is 
large enough all cantori of the standard map are hyper
bolic; see Goroff (1985) and Veerman and Tangerman 
(1991)]. The hyperbolicity is measured by a Lyapunov 
multiplier, which is obtained from the linearized map
ping along a segment of length n of the orbit: 
1Tr(Mn)l 11n-A, as n-oo. In numerical studies the 
Lyapunov multiplier is observed to grow continuously 
from 1 when a cantorus is formed. 

When the Lyapunov multiplier is larger than 1, the 
iterate of any gap has a length that eventually must ap
proach zero as A-n. This implies that the Hausdorff di
mension of the cantorus is zero (Li and Bak, 1986; 
MacKay, 1987). This is remarkable, since it implies that 
when an invariant circle breaks, its length falls immedi
ately to zero; furthermore, its dimension discontinuously 
changes from 1 to zero (providing it becomes hyperbolic). 

F. Characterization of the set of minimizing orbits 

So far we have shown that there exist minimizing or
bits for each ro, and that these orbits are monotone. 
However, there could be other minimizing orbits that are 
not covered by these results. Here we mention some 
properties of the complete classification of the set of 
minimizing orbits (Aubry and Le Daeron, 1983; Mather, 
1982, 1985). 

Aubry's fundamental lemma implies that periodic 
minimizing orbits are monotone. This can be generalized 
to any minimizing orbit. Thus every minimizing orbit 
has a frequency ro, and for each ro the set M., of all 
minimizing orbits is monotone. Furthetmore, if there is 
a rotational invariant circle with irrational frequency ro, 
then every minimizing orbit of frequency ro is recurrent. 

We have seen that to every minimizing quasiperiodic 
orbit there corresponds a homeomorphism of the circle; 
however, it is not obvious that different minimizing orbits 
correspond to the same homeomorphism. One could 
imagine that the closures of different orbits might give 
rise to disjoint invariant circles, or disjoint Cantor sets. 
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However, when the twist is monotone this cannot hap
pen. 

In addition to the periodic and quasiperiodic minimiz
ing orbits, a new class, the nonrecurrent orbits, must be 
considered. Since the set of minimizing orbits of frequen
cy ro is monotone, the nonrecurrent minimizing orbits 
must lie in the gaps of the recurrent minimizing orbits. 

When ro = m In the nonrecurrent orbits are crossing 
points of the stable and unstable manifolds of the mini
mizing orbit: they are homoclinic to the minimizing 
( m, n) orbit. There are two such orbits that are minimiz
ing. One is the "advancing" homoclinic orbit. As 
t - - oo, this orbit is asymptotic to the left end point of a 
gap, while when t - oo, it is asymptotic to the right end 
point. The other orbit is the "retreating" homoclinic or
bit. These orbits lie on the upper and lower separatrix of 
the resonance, and we shall discuss them in more detail 
in Sec. VIII. 

When ro is irrational the nonrecurrent minimizing or
bit lies in the gaps of the cantorus; since the gap widths 
must shrink to zero, it is homoclinic to the cantorus. 

G. Mather's aw 

The nonexistence of an invariant circle is implied by 
the existence of a nonminimizing orbit with frequency ro. 
In particular, if the limit of the minimax periodic orbits 
as m In -ro is an orbit with larger action than the 
minimizing quasiperiodic orbit, then there is no invariant 
circle. 

Theorem (Mather, 1986). Let [x<k>J and [s<k>J be se
quences of minimizing and minimax (mk,nk) periodic 
states, respectively, such that mk Ink -w. Then the limit 
of action differences 

(7.15) 

exists and is non-negative. If!:,. W., > 0, there is no invari
ant circle with frequency ro. 

We shall see in Sec. VIII.C that the quantity aw., can 
be interpreted as the flux through the minimizing set. It 
is therefore natural that!:,. W., =O when there is an invari
ant circle. 

VIII. FLUX 

Flux is the area per unit time that crosses from one 
side of a surface in phase space to another; we defined it 
in Sec. II.D. A calculation of flux can be used to obtain 
estimates of transport rates, for example, the transition 
time for trajectories to move from one region of phase 
space to another. Suppose we consider trajectories start
ing in the region y <y0 and would like to estimate the 
time to enter the region y > y 1• If there is an invariant 
circle in the annulus y 0 <y <y 1, then of course this time 
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would be infinite. More generally, the transit time would 
be long if there were rotational circles with small flux; 
the minimum flux rotational circle would be most restric
tive. 

Wigner (1937) proposed that finding the minimum flux 
surface for a Hamiltonian representing a chemical system 
would yield good estimates of reaction rates. His formu
lation was variational. In this section we shall use a 
different variational principle, the one for twist maps, 
and present evidence that minimum flux curves are asso
ciated with noble cantori. First we discuss techniques for 
computing flux. 

A. Partial barriers and turnstiles 

We call a curve that has small flux a partial barrier: 
chaotic orbits leak through the barrier, but they do so 
slowly. In this section we discuss several ways of con
structing rotational partial barriers; each way uses 
minimizing orbits (MacKay et al., 1984). One reason for 
using these is that for the integrable case a minimizing 
orbit lies on a rotational invariant circle; and since 
minimizing orbits are monotone, one might expect them 
to approximate such a circle even for the case in which 
there are none. 

Furthermore, the monotonicity of these orbits allows a 
simple construction of a rotational (noninvariant) circle. 
To do this we use the notion of gaps. Let x 0 be a point 
on a monotone orbit; then the gap g 0 is the segment be
tween x 0 and the nearest neighbor to the right on the or
bit of x 0 or any of its translates (Fig. 48). Monotonicity 
implies that upon iteration g0 ---->-g 1 becomes a gap be
tween x 1 and its nearest neighbor on the right. We call 
the set of iterates of a gap a family of gaps; a monotone 
orbit can have more than one family of gaps, though 
there can be at most a countable number. 

1. Periodic orbits 

One way to construct a rotational partial barrier is to 
use the minimizing and minimax ( m, n) orbits. Choose 
any gap in the minimizing orbit, call it the principal gap, 

FIG. 48. Partial barrier for the (2,5) orbits. The orbit of gaps, 
g,, is shown along the x axis . .£_, are the preimages of an ini
tial segment .£0 of arbitrary shape in the principal gap of the 
minimizing orbit. 

Rev. Mod. Phys., Vol. 64, No. 3, July 1992 

and fill it with an arbitrary curve, .L0, which also goes 
through the minimax orbit (see Fig. 48). The remaining 
gaps are filled with the n -1 preimages of this curve, 
.L_1,.L-2, ... ,.L-n+I· The resulting curve is a rota
tional circle, a "partial barrier" connecting all the points 
on the two ( m, n) orbits. 

This curve defines a partial barrier that divides the 
cylinder. To move from one side of the partial barrier to 
the other, a trajectory must cross; it can do so because 
the partial barrier is typically not an invariant curve. In 
fact, when iterated, each .L 1 ---->-.L 1 +1, which is another 
segment of the partial barrier except that .L0 ---->-.L 1, which 
is not part of the barrier. To visualize the flux through 
the partial barrier, take the preimage of .L-n+I to obtain 
a second curve, .L _ n, in the principal gap, the dashed 
curve in Fig. 49. It must connect the end points of g 0 , 

because the end points lie on a periodic orbit. 
Using the partial barrier, i.e., the solid curve in Fig. 49, 

to provide a definition of "below" and "above," we see 
that the only region that crosses from below to above on 
one iteration of the mapping is the region below .L0 and 
above .L-n· Similarly, the region below .L_n but above 
.L0 crosses from above to below upon one iteration. 
These areas define the upward and downward fluxes 
through the barrier. Because the net flux is zero, the 
fluxes up and down are equal; therefore .L_n and .L0 

must cross at least once, giving the characteristic figure
eight structure shown in Fig. 49, which we call a turnstile 
(MacKay et al., 1984). This is because it acts as a "rotat
ing door," dumping all the area in its left lobe above, and 
all the area in its right lobe below the partial barrier each 
iteration. 

As we shall see below, the flux is independent of the 
construction of the partial barrier, providing it connects 
neighboring points on the minimizing orbit and goes 
through the minimax orbit. Thus the arbitrariness in the 
choice of .L0 is not important, and we can think of the 
minimizing-minimax pair of orbits themselves as defining 
a partial barrier. 

Turnstiles can be more complicated than we indicated 
in Fig. 49. For example, there is nothing that prevents 
the turnstile from looking like Fig. 50. In this case the 
flux is the shaded region shown. Though we have never 
seen a turnstile with this structure, it could occur in 
physical examples. 

FIG. 49. Turnstile for and area under periodic orbits. 
Turnstile in the gap g 0 gives the flux crossing the partial bar
rier. The areas A 0 and A _ 1 are used to obtain Eq. (8.4). 
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FIG. 50. Possible turnstile shape. 

2. Homoclinic orbits 

Probably the most familiar case of a turnstile occurs in 
the separatrix of. a hyperbolic orbit. · The hyperbolic 
minimizing· orbit has stable and unstable manifolds, w• 
and W", and, as discussed in Sec. VII.F, advancing and 
retreating m1mm1zmg homoclinic orbits. For 
definiteness, consider the (0, 1) orbits and the advancing 
homoclinic orbit; A partial barrier is formed by choosing 
a gap g 0 (the principal gap) in the homoclinic orbit and 
closing it with a segment U 0 of W". Preimages of U0 

converge to the minimizing (0,1) orbit. For positive t, Ut 
oscillates increasingly wildly; so in order to construct a 
well-behaved rotational circle we switch to segments of 
the stable manifold St. These converge to the (0,1) orbit 
as t- oo. In this way we construct a piecewise smooth 
rotational partial barrier, with a discontinuity in slope at 
the right end point of g 0 , shown as the solid curve in Fig. 
51. As before, the turnstile is obtained by taking the 
preimag·e of the partial barrier.. Each segment has a 
preimage on the partial barrier, except for S1, which be
comes SO i.n the principal gap, and gives the turnstile. 
Since the advancing minimax orbit lives in the gaps of 
the advancing minimizing orbit and is homoclinic to the 
(0, 1) orbit, a point on the µiinimax orbit must be on U0, 

as shown in Fig. 51; therefore the turnstile must have at 
least two lobes. Jqst as in the, periodic orbit construction, 
the two lobes of the turnstile correspond to areas . that 
cross the partiaLbarrier each iteration. 

The construction for the (m,n) case is similar. One 
gap in the ( m, n) orbit is closed with segments of unsta1"le 
and stable manifolds as before; the switch occurs ,at an 
arbitrary point on the !idvancing minimizing homoclinic 
orbit (labeled m 0 in Fig.' 52). Taking n -:, 1 preimages 
gives curves that fill in, ,the remaining gaps of the. ( m, n) 
orbit. Thus there is a discontinuity in the slope of the 

FIG. 51. Partial barrier for an advancing minimizing orbit 
homoclinic to the (0, 1) minimizing orbit. It consists of a seg
ment of unstable manifold from the left point on the (0,1) orbit 
to some arbitrarily chosen point on the advancing minimizing 
homoclinic orbit. From there we switch to stable manifold 
leading to the right point on the (0,1) orbit. 
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m.1 

I !kl I 

tn_2 ,,-; 
I 

FIG. 52. Upper partial barrier. for the (1,3) orbit. The turnstile, 
dashed and solid curves in the gap g0 , iterates to the curves in 
g 1 • Only the left lobe of the turnstile moves from below to 
above the partial barrier in one iteration. 

·partialbarrier at the points mt for --:-n <t~O. The flux 
through the partial barrier is localized to one turnstile, 

.;that contained in the gap g0 between m _n and m 0 • 

3. Resonances 

The construction of a partial barrier for the advancing 
and retreating homoclinic orbits of an (m,n) orbit leads 
to a precise definition of a resonance: it is the area con-· 
tained between these upper and lower partial barriers. 
The upper turnstile area of an ( m, n) resonance gives the 
area that makes a transition from inside the m In reso
nance to some resonance above (m,n). Similarly, the 
lower turnstile represents the area making· a transition to 
below (m,n). 

The shape of the resonance depends on the choice of 
homoclinic point at which we switch from unstable to 
stable segments ... However, the turnstile area is indepen
dent i:,f this choice, since any ite~ate of the turnstile must 
have the same area. as the original one. Similarly, the to
tal area of the resonance is independent of the choice of 
homoclinic point, because for a different choice the shape 
of the resonance ~hanges by the addition of one entering 

, and the deletion of one exiting turnstile area. These are 
equal since the net flux is zero. 

4. Cantori 

A similar partial barrier can be constructed for a can
torus. Choose a gap g 0 in the cantorus. Since the can
torus lies on a Lipschitz graph and is monotone, the 
length of any gap must go to zero far enough in the fu
ture and in the past The stable manifold theorem, Sec. 
ILB, implies that there are manifolds St and Ut that con
nect the end points of gt and that approach the cantorus 
as t- oo and t- - oo, respectively. A partial barrier is 
obtained by forming the curve from ut for t ~ 0 and st 
for t > 0 (see Fig. 53). If there is only one family of gaps, 
then the resulting curve will be a rotational circle and 
will form the partial barrier; otherwise, since there is a 
countable number of gaps, we can repeat the construc
tion for each family. The preimage of S 1 lies in g O but 
would coincide with U 0 only if the barrier we construct
ed had been an invariant circle, contrary to assumption. 
The segments S O and U 0 must cross at least once, since 
they necessarily go through the minimax orbit (which 
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FIG. 53. Partial barrier in a cantorus. 

lives in the gaps and is homoclinic to the cantorus). The 
combination · of of O and U0 forms a turnstile. The flux 
through the cantorus is the area in one lobe of the 
turnstile, as before. Note that even though there are an 
infinite number of gaps in the cantorus, the entire flux is 
localized to the principal gap by this construction. 

B. Areas and actions 

1. Fundamental formula 

Areas of resonances and of turnstiles are both needed 
for the theory of transport. An obvious way to calculate 
them is to approximate the boundaries by closely spaced 
points and then to use numerical integration; however, 
this is not the best way. In fact, these areas can be ob
tained solely from the action of the minimizing and 
minimax orbits making up the partial barriers (Bensimon 
and Kadanotf, 1984; MacKay et al., 1984). 

The basic formula relating area to action is given by 
Eq. (5.6). In fact, this is a relation between algebraic area 
and action. As in Sec. V.A, let@ be a directed curve in 
the phase plane; we parametrize it by >.E [O, 1 ], so that 

@(>.)={x(A),y(.>.)J. (8.1) 

Let A be the algebraic area "under" @, i.e., the value of 
Eq. (4.1). For the simple situation depicted in Fig. 39, A 
is merely the geometric area. If, however,@ intersects it
self or if y ( >.) is negative for some range of >., then the 
sign of the areas of these regions will change, and A will 
not be the geometric area between @ and the x axis. In 
any case we shall still refer to A as the area "under" @ 

though some regions may be included with negative sign'. 
The image of @ is denoted @' and has an area A'. 

Let F(x,x') be the generating function of the twist 
map T from the initial point with configuration x (A) to 
its image x'(A). By Eq. (5.1) 

_ ,dx'. dx 
-y d.>. -yd>. . 

Integrating both side with respect to A, we obtain 

AF=F[x ( 1 ),x'( 1) ]-F[x (0),x'(0)] 

=A'-A. 
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(8.2) 

(8.3) 

This is the basic formula from which all the others fol
low .4 

2. Periodic orbits 

The flux through the turnstile in a pair of ( m, n) 
periodic orbits is easily obtained from the fundamental 
formula. Let { m, j denote the minimizing orbit, and { s,] 
the minimax orbit. Let A 0 be the area under the portion 
of the .L0 connecting m 0 to s0 (Fig. 49). Similarly, A, 
represents the area under the portion of the iterate .L, 
connecting m1 to s,. The fundamental formula (8.3) im
plies that 

A 1 -A1 _ 1=F(s,_ 1,s,)-F(m1 _ 1,m1 ). (8.4) 

The area of turnstile, A O - A _ n, is obtained by adding 
successive iterates of (8.4): 

0 
~=A 0 -A-n= ~ [F(s,_ 1,s,)-F(m1 _ 1,m1 )] 

t=-n+I 

n-1 

= ~ [F(s,,s,+ 1)-F(m,,m,+ 1 )] 
t=O 

= Wcm,n> { s) - Wcm,nl { m] = t:,. Wcm,nl 

(8.5) 

Thus the flux is simply the difference in action between 
the minimax and minimizing orbits. It therefore does not 
depend on the choice of .L0, or indeed in which gap the 
turnstile is placed. 

3. Stable and unstable segments 

The formulas for the flux through homoclinic orbits 
and cantori also follow from Eq. (8.3), but we cannot rely 
on periodicity, as in Eq. (8.5). Instead we use the fact 
that in both cases the gaps shrink to zero in the past and 
in the future. 

Two points in phase space, z0 and w0 , are called future 
asymptotic if they are distinct, but their orbits approach 
each other asymptotically, so as to become indistinguish
able at sufficiently long times in the future: 

lim lz,-w,l=O (8.6) 
I--+ oo 

where 11 represents any norm. Similarly, they are past 
asymptotic if they are distinct and their orbits approach 
each other asymptotically in the past: 

lim lz1 -w1 l=O. (8.7) 
t-.- 00 

Points that are both future and past asymptotic are 

4This relation, and the others that follow, can be generalized 
not only to maps that do not satisfy the twist condition, but also 
to those that are not area preserving (Easton, 1991). 
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homoclinic (to each other). If v0 is past asymptotic to z0 

and future asymptotic to z0 , then it is heteroclinic from z0 

to w0 • 

If an orbit z1 is hyperbolic, then the set of points that 
are future or past asymptotic to z0 forms two smooth 
curves without self-intersection, crossing transversely at 
z0 , called the stable and unstable manifolds of z0 (recall 
Sec. II.B). All points on the same stable manifold ate fu
ture asymptotic, and all points on the same unstable 
manifold are past asymptotic. Given two such points, we 
call the piece of invariant manifold between them a stable 
or unstable segment. As we have seen, partial barriers 
for cantori and minimizing homoclinic orbits are made 
from such segments. 

We can find stable (unstable) segments numerically by 
taking the limit of backward (forward) iterates of straight 
lines joining corresponding points of two future (past) 
asymptotic orbits. Thus if z0 and w0 are future asymp
totic, let .L j,j > 0, be the directed straight-line segment 
from zj to wj (Fig. 54). Then the stable segment joining 
z0 to w0 is 

S0 = _lim r-j(.L j) . 
]-+CO 

(8.8) 

Similarly, a pair of past asymptotic points gives an unsta
ble segment 

U 0 = _lim Tj(.Lj). 
]-+CO 

(8.9) 

The images of a stable (unstable) segment are also stable 
(unstable) segments and are denoted S1(U1 ). 

Using the fundamental formula, the area below a stable 
or unstable segment can be expressed in terms of sums of 
action differences. Let { w, J and { z1 J be a future asymp
totic pair, and denote the action difference by 

(8.10) 

Suppose S1 is a stable segment connecting the tth points 
on these orbits. We can parametrize it with '}.,,, just as in 
Eq. (8.1), so that S1(0) is z1 and S1 ( 1) is w1• The area un
der Sr, denoted At in Fig. 55, is obtained by iterating the 
fundamental formula (8.3): 

At= At+ 1 -AF1 

k-1 

= At+k - 1: AFr+j 
j=O 

(8.11) 

Now because the action difference is taken between two 

L· 

~ ;! 

~ ~~-1-. 
T-1 T-1 

FIG. 54. Construction of the stable segment, following Eq. 
(8.8). 
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FIG. 55. Area under a future asymptotic pair. The stable seg
ment connecting z0 and w0 has area A 0. The unstable segments 
are dashed. The action difference ·I!. W = Ag - A O is the dark 
region, Eq. (8.13). 

future asymptotic orbits, At+ k -.O as k-. oo; so the sum 
in (8.11) can be extended to oo, yielding 

co 

At= - ~ AF,+j . (8.12) 
J=O 

Since Fis continuously differentiable, the convergence of 
the sum (8.12) is guaranteed if the union of the two orbits 
is monotone, since the sum of the gap widths is bounded 
by 1, or if the orbits are hyperbolic, since the points con
verge exponentially. 

If { w1 J and { z1 J are past asymptotic, and A 1" is the 
area under their unstable segment Ur, then a similar cal
culation gives 

-1 

At"= 1: AF,+j . (8.13) 
j=-co 

Note that the t = 0 term is not included here, and the 
sign is indeed different from the previous one. 

C. Flux formulas 

1. Homoclinic pair 

We can combine the future (8.12) and past (8.13) sums 
if { z1 J and { w1 J are homoclinic. The signed area be
tween the unstable and stable segments (positive where 
U 1 is above S1 ) is given by 

co 

At"- At= 1: AFj . (8.14) 
j=-c,:, 

By a slight abuse of notation, we can write (8.14) as a 
difference between the actions of the two orbits: 

At"-At=W{w,J-W{z1 J=AW. (8.15) 

This area, the dark region in Fig. 55, is the flux through a 
homoclinic pair of orbits. Thus we have shown that the 
flux is Mather's AW, (7.15). 

Note that (8.15) is independent of t by area 
preservation-the region contained between the stable 
and unstable segments has the same area for all time. 
For example, we can let { z1 J be a minimizing orbit { m1 J 
and { w1 } be the corresponding minimax orbit { s1 ), corre-
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sponding to a separatrix or a cantorus. In this case the 
upward flux flowing between { miJ and { st J is the 
difference in actions ofthese orbits, and (8.14) is the area 
of the left lobe of the turnstile in Fig. 52 or 53. 

A more general application of (8.12) and (8.13) is to 
find the area of a region bounded by a set of points con
nected by an alternating sequence of stable and unstable 
manifolds (Easton, 1991). For example, suppose there 
are four points u 0 , v0 , w0 , and z0 , and that the orbits 
{ ut J and { vt J, are future asymptotic, { vt J and { wt J are 
past asymptotic, and { wt J and { Zr J are future asymptot
ic. Finally, the region is closed with an unstable mani
fold connecting z 0 with u0 ; so { z1 J and { ut J are past 
asymptotic. The area of the region is obtained by apply
ing (8.12) or (8.13) to each segment to obtain 

-2 

-3 

-4 

-5 

-6 

-7 

A= W{u,J-W{viJ +W{w1 )-W{z1 J 

We shall find application of (8.16) in Sec. IX.C. 

2. Flux Farey tree 

(8.16) 

To actually compute the flux, one needs to use finite 
orbits, and it is often convenient to use periodic orbits 
(8.5). To be systematic we compute the flux for each ra
tional on the Farey tree (recall Fig. 26). In Fig. 56 we 
show eight levels of the ,Farey tree beginning with the 
neighboring rationals ½ and ½ for the standard map. The 
ordinate is the log .of the flux through the orbit for 
k =kcr(r), (2.23), and the abscissa is the frequency. This 
figure leads to several observations and conjectures about 

-8-----------------------------------~ 0.325 0.35 0. 375 0.4 0.425 o. 45 0. 475 0.5 

FIG. 56. Flux Farey tree for the standard map at k =k0 ,(y). Shown are eight levels of the tree beginning with the neighbors (1,3) 
and (1,2). 

Rev. Mod. Phys., Vol. 64, No. 3, July 1992 



J. D. Meiss: Symplectic maps, variational principles, and transport 837 

flux. 
Notice that the flux through a daughter rational is nev

er larger than the flux through either of its parents. We 
observe this to be true for any k, and indeed for any of 
the maps we have studied. For example, the flux through 
the (2,5) orbit is smaller than either of its parents (1,3) 
and (1,2). Though this property could be violated if the 
map had large Fourier coefficients at some frequencies, 
we conjecture that it is a general property of smooth 
maps for large enough levels on the tree. 

Since irrationals are limits of infinite Farey paths, the 
flux through a quasiperiodic orbit is smaller than that 
through any of the rationals above it on the Farey tree. 
In this sense then, the cantori provide curves of local 
minimum flux. They form the most important barriers in 
any frequency interval. 

A second observation from Fig. 56 is that, of the two 
daughters of a given rational, one always has smaller flux 
than the other. This rational corresponds to the Farey 
path that changes direction. Thus of the two daughters 
(3,8) and (3,7) of (2,5), the first has smaller flux. Recall 
from Fig. 27 that alternating directions on the tree corre
spond to a continued-fraction expansion whose elements 
are l's. Thus the cantorus with the smallest flux below a 
rational ( m, n) is the noble irrational corresponding to 
appending an infinite sequence of l's to the continued 
fraction of (m,n). Again we conjecture that this is a gen
eral property of smooth maps for large enough levels on 
the tree. 

For the special case of the standard map, this property 
appears to hold for all levels on the tree. For example, in 
the interval [ ½, ½] the most noble irrational is 1 / y 2• The 
corresponding Farey sequence, mi/ni, is 

1 1 2 3 5 8 13 21 34 55 
2' 3' 5' 8' 13' 21' 34' 55' 89' 144 ... 

(8.17) 

In Fig. 56 the lowest flux corresponds to the periodic or
bit (55,144). The flux through the golden cantorus itself 
would be zero in Fig. 56, since k =kc,(y)=kc,(lfy2 ). 

In general, for the standard map, the golden cantorus has 
the smallest flux of any cantorus. 

In fact, though it is difficult to see in_ Fig. 56, the flux 
through the orbits in the sequence (8.17) decreases 
geometrically with level (MacKay et al., 1984), 

aw(m.,n.)-cg-i, s~4.339. (8.18) 
J J 

The constant s can be computed using the renormaliza
tion analysis. This equation applies not just to the criti
cal golden circle, but to any critical noble. A slight gen
eralization applies to any "boundary circle" (Greene 
et al., 1986; we shall discuss boundary circles in Sec. 
IX.C). 

At k =kc,<r) there is only one invariant circle; so the 
flux through any sequence other than (8.17) converges to 
a nonzero constant. The convergence to a cantorus is 
faster than geometric. In fact, the convergence is related 
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to the Lyapunov multiplier, 'A., of the limiting orbit: 

(8.19) 

Equation (8.19) converges rapidly bec_ause n- grows 
geometrically with level for an alternating path. f:rhis im
plies that an accurate calculation of 6. W for a highly un
stable cantorus ('A,>> 1) can be made with a relatively 
short periodic orbit. Other properties of the cantori also 
converge with the same rapidity (MacKay et al., 1984). 

Every Farey path that eventually moves in one direc
tion (either L or R) converges to a rational [from above 
or below, respectively; recall (3.12) and (3.13)]. The cor
responding sequence of orbits converges either to the 
upper or lower homoclinic orbits. In Fig. 56 one can see 
that these sequences have well-defined nonzero limits for 
6. W. These correspond to the fluxes through the upper 
and lower separatrices of the resonance and have 
different values in general. The separatrix fluxes are al
ways larger than those through nearby cantori. 

D. Area formulas 

1. Cantorus area 

To find the area under the partial barrier formed from 
a cantorus, suppose the cantorus has a single family of 
gaps, and let { zt} = { x/J be the orbit of the left end points 
of a gap in the cantorus and {wt) = { x:J be the orbit of 
the right end points. Backward iterates of the unstable 
segment of a gap and forward iterates of the stable seg
ment form the cantorus partial barrier (recall Fig. 53). 
The area under a single segment of the partial barrier is 
given by either (8.12) or (8.13). To find the total area we 
simply sum over t. The area under all the segments St 
after time t is 

l: At +k = - l: l: 6.Ft+i+k = - l: kti.Ft+k 
k=I k=lj=O k=I 

(8.20) 

This converges for hyperbolic orbits, since aF1 ap
proaches zero exponentially. Similarly, Eq. (8.13) gives 
area under all the unstable segments for t or less as 

0 0 

l: A 1u+k = - l: kaFt+k . (8.21) 
k=-oo k=-oo 

The total area under all the stable and unstable segments 
in the sum of (8.20) and (8.21): 

co 

A.,=- l: t[F(x/,x/+ 1 )-F(x[,x!+i )] . (8.22) 
t=-oo 

Suppose that there is only one family of gaps; then (8.22) 
includes all the gaps. Furthermore, when the cantorus is 
hyperbolic, it has zero length (indeed, zero dimension; re
call Sec. VII.E). This implies that the area under the 
Cantor set itself is zero. Thus (8.22) is the area under the 
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cantorus partial barrier. Note that the area under a par
tial barrier is independent of the construction of the par
tial barrier itself, depending only on the orbits of the gap 
end points; thus we can refer to Eq. (8.22) as the area 
"under the cantorus." 

2. Resonance area 

Now we obtain the area under an upper partial separa
trix for the simplest case of the (0,1) resonance. Let xp 
denote the minimizing fixed point. Choose zt to be x F 

and wt to be any point m/ on the upper minimizing 
homoclinic orbit. The area under the unstable segment 
connecting Xp to m/ is given by (8.12), and the area un
der the stable segment connecting m/ to Xp is given by 
(8.13). Thus the total area under the upper separatrix is 

00 

Aili,o= l: [F(m/,m/+ 1 )-F(xp,xp)]. 
t=-co 

For the lower partial separatrix the unstable segment 
connects a point on the lower minimizing homoclinic or
bit to xp; so we define zi=m,- and w1 =xp and obtain 

Aio, 0 =- l: [F(m,-,m,+ 1 )-F(xp,Xp)]. 
t=-oo 

The change in sign · arises from the reversed ordering of 
the points. 

The analysis for an arbitrary ( m, n) resonance is simi
lar. Letting x 1 represent the minimizing (m,n) orbit, 
choose a point m/ on the upper homoclinic orbit in the 
gap to the right of x 1 • As in Fig. 52, the upper boundary 
of the resonance in this gap is formed from the unstable 
manifold connecting Xi to m/ and the stable manifold 
connecting m/ to the right neighbor of x 1 ; the area un
der these segments is given by adding (8.12) and (8.13) as 
usual. Since this area is independent of the choice of gap, 
and there are n gaps in the (m,n) orbit, the area under 
the complete upper partial separatrix is simply n times 
larger: 

00 n -I 

Ai~.n> =n l: l: [F(m,t+j,m,t+j+I )-F(xj,xj+ill 
t=-00 j=O 

Similarly, the area under the lower separatrix is 
00 n-1 

A~,n)=-n l: l: [F(mt;;-+j,mt;;-+j+tl 
t=-00 j=O 

(8.23) 

(8.24) 

The final result is that the area in the ( m, n) resonance 
is 

A (m,n) = A i~.n) - A ,-;,,,n) · (8.25) 

If we write (8.25) out explicitly, then it is similar to the 
general result (8.16) with u =m +, v =x, w =m -, and 
z =x. It may seem surprising that the contributions to 
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the area of the resonance from the action of the (m,n) 
minimizing orbit add together instead of canceling; but 
this is so and comes from the fact that the asymptotic 
motion approaches the periodic orbit from the left in the 
upper separatrix and from the right in the lower separa
trix. 

In the above analysis, it has been assumed that there is 
only one minimizing (m,n) orbit. If there is more than 
one such orbit, then each gives a family of gaps, and one 
has to sum the contributions from each family. 

3. Mean energy area formulas 

The area formulas can also be obtained from the 
"mean energy," defined as a function of w on the mini
mizing orbits as 

. 1 1-1 
L(w)= hm -2 l: F(xr,X1+1llx EM • 

f->00 t j=-t I 0) 

(8.26) 

Aubry (1982) shows that this is a convex function of w, 
which implies that it has left and right derivatives and 
that they are equal almost everywhere. However, these 
derivatives differ at each rational value of w. In fact, by 
considering limits of periodic orbits approaching homo
clinic orbits or cantori, Chen (1987) has shown that these 
derivatives give the area functions 

± - d±L I A(m,n) __ _ 
dw w=m/n 

A = dL I 
"' d W "' irrational • 

(8.27) 

Here the ± in the derivative indicates that the derivative 
is taken from the right or left, respectively. These formu
las are obtained by constructing the derivatives as limits 
of the difference L ( w') - L ( w) as w' approaches w on 
minimizing periodic orbits, and by showing that the re
sult is one of our previous area formulas. For irrational 
frequency, this formula gives the area under the cantorus 
partial barrier (providing the cantorus is hyperbolic), or, 
if one exists, under the invariant circle. We have no oth
er formula for the area under the invariant circle in terms 
of the action of a finite number of orbits. 

4. Resonances fill space 

The twist condition implies that the minimizing orbits 
are ordered according to frequency along the vertical 
direction. Thus the area under the partial barriers as a 
function of frequency, A.,, is a monotonically increasing 
function. One could think of it as the action for a nonin
tegrable system. Across every rational value, the area 
jumps by the amount (8.25), which is the area of the reso
nance. Thus A., is a devil's staircase [actually, the in
verse function w( A) is the devil's staircase]. 

Aubry (1982) has conjectured that this devil's staircase 
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is complete when there are no invariant circles and every 
cantorus is hyperbolic. Completeness means that the en
tire variation of the function is due to the jumps. Since 
the jumps each represent the area of a resonance, this im
plies that the resonances fill phase space. This can be nu
merically verified for the standard map when k > k er ( y ) 
(MacKay et al., 1987) and analytically verified for the 
sawtooth map (Aubry, 1983a; Chen and Meiss, 1989). 

Thus the resonances give a complete partition of irreg
ular components. In Fig. 57 we show the (1,4), (1,3), and 
(2,5) resonances for the standard map. The partition of 
phase space resembles a tessellation-a tiling into n is
lands for each resonance, though the shapes of the tiles 
vary. There is a rough self-similarity apparent in the 
figure; for example, between the (1,3) and (2,5) resonances 
are exactly eight empty regions, which is just the right 
number for the (3,8) resonance, the Farey daughter of 
(1,3) and (2,5). Between the (3,8) resonance and each of 
its parents are just the right number of spaces for the 
next rationals on the Farey tree, (4,9) and (5,13). This 
structure continues for all levels. The structure is even 
more apparent for the sawtooth map (Chen et al., 1990). 

We shall use the resonance partition to construct a 
transport theory in the next section. 

IX. TRANSPORT 

In this section we develop simple models of transport 
based on flux between regions that partition phase space 

-0.4 -0.2 

FIG. 57. Resonances for the standard map at k = l.283. 
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(recall the discussion of transport and flux in Sec; 11.D). 
The ultimate goal, only partially attained to date, is to 
produce models that predict transport rates and provide 
explanations for such phenomena as the long-time tails 
seen in correlation functions. 

We begin with an exact description of the transport 
process, based on the resonance partition. 

A. Partitions 

1 . Resonances 

Any annular irregular component is bounded by rota
tional invariant. circles (Birkhoff's theorem, Sec. IV.C) 
and can be partitioned completely into rotational reso
nances (Sec. VIII.D). A resonance is the region of phase 
space enclosed by the separatrices and, up to the choice 
of a homoclinic point at which to switch from unstable to 
stable manifolds, is uniquely defined. We denote the res
onance area by A(m,n)• Each resonance has turnstiles in 
its upper and lower separatrices; their areas are denoted 
llWfin,n> (see Fig. 58). 

Since the rationals are countable, the resonances give a 
countable partition of phase space. 

The transport process consists of the movement of tra
jectories among the resonances. Suppose that each reso
nance has an initial population of Ncm,n> points. The goal 
of our transport description is to determine the popula-

0.2 0.4 
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FIG. 58. Resonance partition of phase space. The upper 
turnstile of the (0,1) resonance overlaps the lower turnstile of 
the (1,2) resonance; so a direct transition is possible. 

tion of each resonance after t iterations (MacKay et al., 
1987; Dana et al., 1989). 

In order to leave the (m,n) resonance, a point must fall 
in the exit lobe of either the upper or lower turnstile. 
Since there is a turnstile in only one island of the chain of 
n, points must move in a regular fashion through each is
land in the chain before finding themselves in the "princi
pal" island with the turnstile (Fig. 58). Only when a 
point is in the turnstile in the principal island can a tran
sition occur. Thus when a point enters a resonance, it 
must remain in the resonance for some multiple of n 
iterations. 

A direct transition from a resonance ( m, n ) to ( m ', n ' ) 
is possible only if the exit lobe of an ( m, n) turnstile over
laps with the entry lobe of an ( m ', n ') turnstile. In gen
eral, since the turnstiles have some finite height and the 
twist condition implies that resonances are ordered verti
cally according to frequency, the (m,n) turnstiles overlap 
with all resonances in some frequency range 
CtJL < m In< CtJu (Chen et al., 1987). For example, in Fig. 
58, since the upper turnstile of the (0,1) resonance par
tially overlaps the lower turnstile of the (1,2) resonance, it 
must overlap (completely) the turnstiles of all the reso
nances between 0/1 and 1/2. 

2. Transport on a tree 

The resonance partition and its corresponding trans
port description may be sufficient for some purposes. 
However, because the motion within a resonance is not 
typically featureless chaos, it may be important to con
sider partitioning the resonance itself for transport calcu
lations. In fact, following the discussion of Sec. II.C, a 
rotational resonance can be partitioned into librational 
(class-I) resonances. Thus once a trajectory enters a 
class-zero resonance, it can get trapped in a sequence of 
class-I resonances. Each of these has within it class-2 
resonances. Thus the transport process occurs on a tree, 
whose branches correspond to the classes and whose 
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leaves correspond to the stable islands, which are ulti
mately inaccessible (MacKay et al., 1984; Meiss and Ott, 
1986). 

B. Markov models 

1. Transition probabilities 

The ultimate goal of a transport theory is to develop 
an approximate, statistical description of the motion (re
call Sec. II.D). Recognizing the extreme complication of 
chaotic motion, we abandon the hope for an exact 
description of each trajectory and consider ensembles of 
trajectories. The simplest statistical model is a Markov 
model. 

A Markov model consists of a partition of phase space 
into regions and a transition matrix, P;i, which is the 
probability of a transition from region j to region i in one 
step. The entire motion is described in terms of the se
quence of regions visited. When a trajectory is in one re
gion, it has a given, fixed probability of making a transi
tion to another region independent of its history. This is 
an essential assumption to the Markov model-that Pii 
is independent of the past of the trajectory; it is almost 
certainly not true unless the partition is chosen with ex
treme care. We would like to investigate to what extent a 
partition into resonances has the Markov property. 

Given that the population of the jth region at a given 
time is Ni, the Markov evolution states that upon one 
iteration the new distribution becomes 

N/=~PiiNi. (9.1) 
j 

It is known that a Markov partition exists for com
ponents on which the Lyapunov exponents are nonzero 
almost everywhere (Pesin, 1977). However, the construc
tion of such a partition is nontrivial. 

For the regions it is natural to choose resonances. 
Since the resonance partition is countable, the 
transition-probability matrix is discrete, but infinite in 
size. In the Markov approximation, the transition proba
bility between two resonances is 

- ;Jij 
Pii-A-, 

J 

(9.2) 

where ;Jii is the overlap area of the ith and jth resonance 
turnstiles. This transition probability is indeed exact for 
one iterate of the map; however, it is typically only quali
tatively correct for longer times. 

This kind of picture is in distinct contrast to the 
smoothed "diffusion" discussed in Sec. II.D. We would 
expect that the discrete model would be much more ap
propriate when there are partial barriers whose fluxes are 
small. This model should limit to the diffusive picture in 
the limit of large k. 

A detailed construction of such a transport model can 
be given for the sawtooth map, which is almost every-
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where hyperbolic {Dana et al., 1989; Chen et al., 1990). 
The Markov model works well for moderate values of k 
and does give the appropriate diffusive limit. In general 
we expect that if the system is chaotic enough-if the 
trapped set inside a resonance is a horseshoe-then the 
Markov model will work. However, in the typical case of 
a system with mixed regular and irregular components, 
the Markov model provides only a qualitative descrip
tion. 

2. Onset of transport near k 0,{r) 

The time for crossing an invariant circle is infinite. 
Above the critical value kcr(w) the flux through the can
torus grows smoothly from zero as the parameter is 
changed; thus we expect that the crossing time will have 
a singularity as the parameter limits to kc,(w) from 
above. Indeed, Chirikov observed in a numerical experi
ment for the transition from y -0 to y - ½ in the stan
dard map (Chirikov, 1979b) that the transition time 
obeyed a power law 

(9.3) 

For the case of noble frequency, AW, and hence the 
flux, grows as a power law (MacKay, 1982) 

(9.4) 

Since the area of the connected chaotic component does 
not vanish in the neighborhood of kc,. one would expect 
that the exponents in (9.3) and (9.4) should be identical. 
This has been numerically verified to a high degree for 
the standard map and the golden cantorus (Dana and 
Fishman, 1985) in the range 1 < k < 2. 5. 

C. Escape from a resonance 

In this section we consider the problem of escape from 
a single resonance with upper and lower turnstiles Aw+ 
and Aw- and area A. Suppose that at t =O the reso
nance is uniformly populated with NO particles, and the 
rest of phase space is empty. At the first step of the map 
a fraction of exactly 

escapes from the resonance. Thus there are 

N 1=(1-p)N0 

(9.5) 

{9.6) 

particles remaining. Computing the fraction that escapes 
at the next iteration is more difficult, because the popula
tion in the resonance is no longer uniform. In the Mar
kov approximation we assume that the N I particles have 
spread more or less uniformly throughout the resonance, 
so that a coarse graining would then view the resonance 
as uniformly populated with a lower density than at first. 
In this case, after t steps, we would have a population 
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Nt = { 1 - p l'N O remaining in the resonance, and at the tth 
step, 

Nt - I - N, = P ( 1 - p )'- 1 No (9.7) 

particles escape. Thus the population would decay ex
ponentially with time with escape rate 

r = -log(l-p) . 

Exponential decay is indeed often observed, especially 
when the interior of the resonance has no apparent ellip
tic regions. 

1. Transit-time decomposition 

To obtain an exact description it is necessary to follow 
the iterates of the incoming lobes of the turnstiles [i.e., 
lobe dynamics (Rom-Kedar and Wiggins, 1988)]. Let :J 
represent the collection of incoming lobes, 0 the exiting 
lobes, and :11 the tth iterate of :J. The areas of these re
gions are denotedµ( :11 ), etc. 

Since the area of the exiting and of the entering lobes is 
the area of the turnstiles, we have 

µ(:J)=µ<:J,J=µ(0J=Aw++Aw-. (9.8) 

The set that enters.·the resonance at t =O is in the re
gion :11 at t = 1 (see Fig. 59). The fraction of :11 that in
tersects 0 exits the resonance upon the next iterate; and 
so we say it has a transit time of 1. In general, the set 
that traverses the resonance is exactly t steps is 

(9.9) 

The sets T 1 are clearly disjoint. Furthermore, 
00 

µ(8)= ~ µ(Tj)' {9.10) 
j=O 

because any area that enters must eventually leave (recall 
Sec. 11.B). The transit-time decomposition of 0 is the 
decomposition into the sets T 1 • 

The transit-time decomposition of the exit set can be 
analyzed completely in terms of various homoclinic or
bits {Easton, 1991). Figure 60 sketches the decomposi-

FIG. 59. Transit time for a resonance. Only the upper turnstile 
is shown. 
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m+ 
0 

FIG. 60. Transit-time decomposition of an exit set. 

tion of the exit lobe of the upper turnstile. It is bounded 
by points on the upper minimizing and minimax homo
clinic orbits, mt and s ri · The area of the region 'T1 is 
the area contained between the segments of stable and 
unstable manifolds of the two homoclinic orbits h I and 
hi, shown in the figure. We recall that area contained 
between the stable and unstable manifolds of any homo
clinic pair is given by Eq. (8.15). For 'T2 there are four 
homoclinic orbits that must be computed, and the area is 
given by Eq. (8.16). In general, each 'Tj consists of a set 
of strips stretching across 0, and possibly of some lobes 
that do not traverse 0 entirely. However, all these re
gions can be computed by knowing the actions of various 
homoclinic points on the segment of stable manifold be
tween m 0 and s0 • 

2. Lobe dynamics 

The transit-time problem is closely related to the exit 
time problem, since the population escaping at time t is 
the occupied portion of the outgoing turnstile. To calcu
late this, one must subtract the total area of the transit
ing regions, 

t-1 
Area escaping at time t = µ( 0 )- ~ µ( 'Tj ) . 

j=O 

(9.11) 

This implies that the number of particles escaping at time 
tis 

(9.12) 

since the density in the occupied region, N 0 / A, is invari
ant under the map. Using Eqs. (9.5), (9.8), and (9.10), we 
can write this as 

00 µ( 'T-) 
N1-1-N1=PN0 ~ -(;) . 

1=t µ 
(9.13) 

Formulas similar to (9.13) and also applicable to more 
general cases can be given (Rom-Kedar and Wiggins, 
1988; Rom-Kedar, 1990; Beigie et al., 1991). Unfor
tunately, these formulas give no indication as to the size 
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of the µ( 'T, ), nor how to compute them. 
If the escape were a pure exponential, then the area of 

the transit sets would have to decrease exponentially with 
time: 

µ('Tt)~µ(T1)at-1; 

and using (9.10) in (9.13) would yield 

N1-Nt-1=pa1-1No. 

(9.14) 

(9.15) 

Comparing this with (9.7), we see that the Markov escape 
rate would be exact if a= 1 - p, or 

µ('T1) =1!:i§l 

µ(0) A 
(9.16) 

which is a kind of "mixing" assumption: the fraction of 
area that transits the resonance is the same as what we 
would expect if the incoming turnstile were completely 
mixed throughout the resonance area. 

When the parameter k of the standard map is large 
enough, we expect-and observe numerically
exponential decay. Even so, the rate a is often different 
from 1 - p. Furthermore, it often happens that it takes 
several iterations before the incoming turnstile intersects 
0, so thatµ( Tt )=O fort< tm. In this case the number of 
particles decreases linearly for t < tm, and then exponen
tially thereafter. In this case one need only compute tm 
and µ( 'T1 ) in order to calculate a. 

m 

For the sawtooth map, which can be analyzed com
pletely because it is piecewise linear (Percival and Vival
di, 1987a, 1987b), the rates can be computed analytically 
in some cases. For example, when k >-t, (9.16) is valid 
for the (0,1) resonance and the Markov model is exact 
(Chen et al., 1990). More generally, whenever the 
Lyapunov multiplier of the minimizing (m,n) orbit is 
larger than 3n, the Markov model is exact. 

3. Periodic orbit theory 

An alternative theory for escape rates for systems that 
are hyperbolic can be obtained by analyzing orbits that 
are trapped in the resonance forever (Kadanoff and Tang, 
1984; Grebogi et al., 1988). Consider a small box about 
a point on a hyperbolic period t trapped orbit. After t 
iterations the box returns to the neighborhood of the ini
tial point; but due to stretching along the unstable direc
tion by a factor A, the eigenvalue of the Jacobian matrix 
(2.15), only a fraction of 1 /'}._ of the iterate overlaps with 
the original box. The escape from the neighborhood of 
the orbit is exponential. 

In order for an orbit to remain trapped in the reso
nance for a long time, it must be close to the trapped or
bits; after t steps the trapped set is a small neighborhood 
of the trapped period t orbits. The fraction remaining in 
the resonance after t steps is proportional to the sum of 
the fractions remaining near each of these orbits: 
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(t) 1 
Nt - ~ , . 

j I\,] 

(9.17) 

Here 'A}s the eigenvalue of the jth trapped period t orbit, 
and the sum is over all trapped period t orbits. In the hy
perbolic case the escape should be exponential; so as 
t---+ oo, (9 .17) is proportional to e -rt, with the escape rate 
r. 

For the simplest case, all trapped orbits have the same 
Lyapunov multiplier 'A; so 'A,j = 'A1• Then the escape rate 
is 

r =log('A,)-ent(T), 

where ent( T) is the metric entropy of the map T, that is, 
the growth rate of the number of periodic orbits of period 
t. This formula works well for the sawtooth map, even 
when k <-}(Chenet al., 1990). 

More generally, the sum (9.17) must be evaluated by 
computing the periodic orbits. Considerable savings in 
computational effort can be obtained by reordering the 
sum to take advantage of the fact that long period orbits 
can be closely approximated by products of shorter orbits 
(Artuso et al., 1990a, 1990b). Often escape rates can be 
obtained with high accuracy using only short orbits. 

A similar analysis yields formulas for the diffusion 
coefficient in terms of periodic orbits (Dana, 1989; Cvi
tanovic and Eckmann, 1991). 

Unfortunately the periodic orbit formulation seems un
able to deal with systems that are not hyperbolic. In 
such cases the decay is not exponential-in fact, observa
tions imply it is algebraic. 

4. Algebraic decay 

Whenever there are elliptic islands within a region, the 
escape rates are not exponential, but rather appear to be 
algebraic (Chirikov, 1983; Karney, 1983; Chirikov and 
Shepelyanksy, 1984; Geisel et al., 1987; Petsche! and 
Geisel, 1991). 

One of the major outstanding questions in this field is 
how to explain this behavior from first principles. 

Numerical experiments (Karney, 1983) show that the 
longest orbits are those that get trapped arbitrarily close 
to the outermost invariant circles surrounding elliptic is
lands, the boundary circles. From our viewpoint, this is 
not unexpected, since the flux through orbits limiting on 
an invariant circle approaches zero [recall (8.18)); howev
er, this effect must compete with the concomitant de
crease in the area of the regions. 

In fact, the area of the turnstiles decreases more rapid
ly than that of the resonances. This is because there is 
only one turnstile in a chain of n islands. Moving closer 
to the boundary circle corresponds to the frequency 
becoming a better approximation to the frequency of the 
irrational boundary; thus the closer island chains have 
longer periods. Furthermore, as one moves closer to the 
boundary, there is an approximate geometric scaling of 
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the structures: an island of the closer chain is similar to 
an island of the farther one. Thus the turnstile area 
scales as the area of one island. The area of the entire 
resonance, however; scales as the period times the area of 
one island, and thus decreases more slowly. 

These qualitative statements can be made precise for 
the case of boundary circles (Greene et al., 1986). Sup
pose 

represents the Farey sequence of rationals on the chaotic 
side of the boundary circle. For example, if the chaotic 
component is an annulus below the boundary circle, then 
m;ln; < m. One observes that the turnstiles in the 
(m;,n;) resonances scale as 

aw0· 
liWu+ 1~--13-, {3=3.05. 

, n; 
(9.18) 

This reduces to (8.18) for the case of noble circles where 
n; -y2i. The area of a single island scales in the same 
way. However, the area of the resonance is n; times the 
area of one island; thus 

Ao 
A;~~

n; 
(9.19) 

Therefore the transition probabilities (9.2) have the scal
ing 

Po 
Pi+l,i~-;;:' 

I 

(9.20) 

and the ratio of the probability for a transition towards 
the boundary circle to one away from the boundary circle 
is 

P;+1,; liW;,;+ 1 n; [ ] 
/3 

Pi-1,; = liW;-1,; - n;+1 
(9.21) 

Ifwe assume that n; grows geometrically, as it does for 
noble numbers, then the transition probabilities have a 
geometrical scaling. Using these in the model (9.1) re
sults in an infinite, self-similar Markov chain with 
nearest-neighbor connections. This model can be solved 
exactly (Hanson et al., 1985). It predicts an algebraic de
cay of the number of trapped particles at the rate 

Nt-t-z, z=I+/3, (9.22) 

where f3 is given in (9.18). Numerically observed decays 
are much slower. 

The model can be improved by including the branches 
of the tree and developing a scaling for transitions from 
one branch of the tree to another (Meiss and Ott, 1986). 
Using this analysis and plausible values for the scaling 
coefficients, one finds that the decay exponent z becomes 
2.96-which still does not agree with numerical rates. 

One possible resolution of this discrepancy is that the 
use of the universal scaling relations (9.18) and (9.19) is 
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inappropriate in a comparison with numerical experi
ments (Murray, 1991). In particular, these are valid only 
in a tiny neighborhood of the critical circle-a neighbor
hood which would be reached by a typical orbit only 
after many iterations; Murray estimates 1010 for one case. 
Murray argues that farther from the critical circle the 
scalings become AW o:: n;-213, and A; ex: n;-2• This would 
give an exponent in (9.22) of z -1.45, which agrees more 
closely with the experiments. 

Given the assumptions that are required for the Mar
kov model, these results must be taken as incomplete. 
The numerical experiments are also not totally convinc
ing. Experiments require iterating the map at least 106 

steps to detect algebraic decay; the record number of 
iterates is 1012 (Karney, 1983). Great care must be used 
in interpreting these results, since the Lyapunov multi
pliers for the orbits involved imply that all accuracy in 
the computation is lost. Karney used an integer repre
sentation to ensure that his map was computationally one 
to one; however, recent number theoretic results imply 
that great care must be used in such discretizations, in 
order that the discrete map be a good representation of 
the continuous map (Percival and Vivaldi, 1987a). 
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APPENDIX A: DIFFERENTIAL FORMS 

A differential n form is an object that operates on n 
vectors to give a real number (Arnol'd, 1978). A one
form, a, is analogous to a covariant vector, it acts on an 
ordinary v_ector v with the dot product to give a real: 
a(v)=a;v' (we use the summation convention). For ex
ample, the form df is a covariant vector associated with 
the gradient of a function /; operating on a vector v with 
df gives the derivative off in the direction of v: 
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df(v)=vi a1 .. 
ax• 

(Al) 

Associated with the coordinate function xi is a one-form 
dxi. The action of dx; on a vector vis vi, the ith com
ponent ofv. 

A two-form, w, is an equivalent to an antisymmetric 
matrix, say, wij-its action on two vectors is 
w(u, v)=uiwijvj. Antisymmetry implies that 
w(u,v)= -w(v,u). The form with which we are most 
concerned is the symplectic form w = ~ dp i I\ dq ;_ The 
result of acting on two vectors with w is the number 

w(u,v)=~dp;(u)dq;(v)-dp;(v)dq;(u), (A2) 
j 

which can be interpreted as an area [recall Eq. (1.15) and 
Fig. 3]. 

The exterior derivative d converts an n form to an 
n + 1 form. Thus the exterior derivative of pdq is the 
two-form w. If the exterior derivative of a form vanishes, 
the form is said to be closed. If an n form can be written 
as the exterior derivative of an n - 1 form, it is said to be 
exact. The exterior derivative of an exact form is zero; so 
it is closed. 

Differential n forms can be integrated over n
dimensional surfaces. For example, choose an arbitrary 
two-dimensional surface S embedded in a 2N
dimensional manifold. Associate an orientation to S by 
choosing a direction to traverse the boundary of S. The 
integral 

N 
A = ~ f dpi I\ dqi (A3) 

i=l S 

is a sum over the projected areas of the surface S onto 
the canonical planes; the wedge product means that the 
areas are positive if the projection of the boundary is 
traversed clockwise, or negative if counterclockwise. The 
generalization of Stokes's theorem to n dimensions im
plies that since w=d(pdq), the integrai (A3) can be writ
ten as the integral of pdq over the boundary of S 

N 

A= ;.;1 fal';dqi. (A4) 

APPENDIX B: CIRCLE MAPS 

Here we review a few basic facts about homeomor
phisms of the circle (Cornfeld et al., 1982, pp. 73-95). 
Let a(x) be a continuous, monotonic increasing function 
of x satisfying a(x +l)=a(x)+l (see, for example, Fig. 
43). 

B 1 Lemma. There exists an w such that for all x E JR and 
integers (m,n) 

nw> m =an(x)-m >x , 

nw<m=an(x)-m <x 
(Bl) 
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The w that satisfies this lemma is the rotation number of 
a. An important consequence of this lemma is that the 
orbit cannot deviate too far from uniform rotation. To 
show this from the above two inequalities, in the first 
case let m be the greatest integer less than n w, and in the 
second let m be the smallest integer greater than nw; 
then we can bound the difference 

lan(x)-x -nwl:::: 1 

Equation (B2) implies 

B2 Theorem. The limit 

1. an(x) 
w= 1m --

n---+oo n 

(B2) 

(B3) 

exists and does not depend on the choice of x ER.. The ro
tation number Cu is rational only if some power of a has a 
fixed point. 

Choose an arbitrary point x 0 and consider its trajecto
ry under a. Let .n be the set of limit points of the orbit: 
x Ell if there is a sequence xi =ai(x0 ) such that Xr·~x 
as j- oo . By definition .n is closed. Then 

B3 Theorem (Poincare, 1885; Denjoy, 1932). If w is irra
tional, 

(a) .n is independent of the choice of x 0 ; 

(b) 0 is invariant; 
(c) .n is either the entire circle or is a Cantor set. 

A Cantor set C is a nonempty, perfect, totally disconnect
ed, compact set: 

Perfect = Every point in the set is a limit point of 
other points in the set: For all x EC, there is a sequence 
x(nlECsuch that x(n>*x and x(n>-x as n-oo. 

Totally disconnected = For any x,y EC, such that 
x,f,y, C can be written as the union of disjoint, closed 
sets A and B for which x EA andy EB. 

Compact = Every sequence x (jl in C has a convergent 
subsequence. 

This definition of the Cantor set is a purely topological 
one. It does not require the set to be embedded in any 
other space. The standard example of a Cantor set is a 
subset of the interval [0,1], Fig. 61. Remove the open in
terval ( ½, ½ ), leaving two closed intervals. Remove the 
middle third from each of these. Continue this procedure 
ad infinitum. This construction shows that the comple
ment of a Cantor set is a countable set of gaps. 

A Cantor set contains an uncountable number of 
points; in particular, there are points that are not the end 
point of any gap. To see this for the middle-thirds exam
ple, we code the points in the set in a base-three represen
tation. The geometrical construction of the middle
thirds set implies that it consists of points whose base
three representations have no l's, i.e., 0.2022202000 .... 
There are an uncountable number of such sequences. By 
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FIG. 61. Three levels in the construction of the middle-thirds 
Cantor set. 

contrast, points that lie on the end points of a gap have 
finite base-three expansions, since they are rationals with 
powers of 3 in the denominator. 

The Hausdorff dimension of a Cantor set embedded in 
some manifold can take any value. In the middle-thirds 
case, the Hausdorff dimension is log(2)/log(3). If the 
fraction removed at each level is increased then this di
mension decreases. The invariant Cantor sets arising in 
the twist map case (cantori) typically have zero Hausdorff 
dimension. 
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