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1. Introduction 

The purpose of this paper is to present, in a non-technical way, the main ideas which underlie 
the theory detailed in [1,2]. Essentially all the results we shall mention can be found in 
these papers; notice that some details have been solved since these papers were written, 
which has allowed us to improve the results to the point at which the most significant 
quantities have become essentially optimal. Regarding these technical improvements, we 
refer to [3] and [4]. Our intent here is rather to underscore the physical ideas which give 
rise to the mathematical developments and serve as a guide for intuition. It may be useful 
to notice that, although we provide no formal proof of the results we mention, the only 
result which does require some machinery is the one stated here as theorem 1; once this 
has been obtained, all further results require little more than a few lines of book-keeping 
type computations. 

The set-up of the problem is classical; start with a near integrable system: 

H ( p ,  4) = h ( p )  + q Y p ,  q )  with ( p ,  q )  E R" x I"", T = R/Z (1) 

where ( p ,  q )  are action-angle variables of the integrable Hamiltonian h.  We assume that H 
is analytic over some domain D = D(R,  p. (F), (p  > 0, U > 0) defined as follows: let BR 
be the ball of radius R around the origin, then 

2, = W R ,  p. U) = ( ( p ,  q )  E C'", dist(p, BR) < P ;  Re(q) E T"; IIm(q)I < U )  

with IIm(q)I = Sup,(IIm(qi)l). Note that the real part of D is nothing but B R + ~  x T". 
Assume further that h is convex. More precisely, denote o ( p )  = V h ( p )  E R" and 

A ( p )  = V'h(p) E M,(R) the frequency vector and the Hessian matrix. We assume that 
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A ( p )  is sign definite-say-positive. Let m be a lower bound of the spectrum of A over 
the real part of the domain, then 

VP E B R + ~  c W, vv E IhP" : A(P)U.V 3 mllu11' 

m z 0 and 11.u denotes the scalar product of two vectors U ,  U. We will denote M the 
operator norm of A on D (the complex domain): IIA(p)oll Q Mllull. 

Analyticity and convexity, which may be relaxed to quasi-convexity (see e.g. [I,& 8]), 
are the two essential conditions in what follows and are andytic and geometric in nature 
respectively. We refer once and for all to [5-7] for background infomation, and to [ I 4 1  
for detailed proofs, amplifications and comments. 

In [5], Nekhoroshev proved the following fundamental result: 

Theorem 0. For any initial condition (p(O),q(O)) with p ( 0 )  E BR,  one has 

IIp(t) - p(0)ll < R ( E )  = C E ~  €or It1 Q T(E) = exp(c/E") 

provided E is small enough, i.e. ( E I  d EO. 

This can be summarized by saying that action variables are stable over exponentially 
long times $the unperhirbedpart of the system is analytic and convex (this may be enlarged 
to the class of the so-called 'steep' functions; cf [5J and [Zl]). We call R(E) the radius of 
conjinement, T(E) the rime of stability, EO the threshold of stability; (U,  b)  are the stability 
exponents, and they satisfy 0 < a, b < 1. 

2. Global stability 

In theorem 0, c stands for some con.stant (not the same every time) depending on the various 
parameters. To make this a little more precise, we put 11 f 110 = E where 11 f 110 is simply 
the maximum of I f [  over D. We also let 00 = w(O), i2 = llwoll and collect the parameters 
which describe the system as P = (R, p ,  U, M, in, E ,  Q). In order to simplify the notation, 
we introduce the following symbol: if a and @ are any two scalar quantities, we write 
oc 5 @ if there is a constant c = c(P) such that 01 < cp; similarly, 01 2 @ means a cp 
and 01 x p means oc = c,9. In fact, the dimensional structure of the constants which appear 
(they are computed in [14]), i.e. their dependence w.r.t. the set of parameters P,  is easy 
to disentangle, but we shall not pursue this here. 

The main novelty introduced in [l] and [Z] consists in focusing attention on periodic 
orbits or rather periodic tori. Assuming a possible shift of the origin, restriction of the 
domain etc (we shall not mention these technical details any longer), suppose that WO 

is a rational vector with period T > 0; this amounts to requiring that Two E 2". 
The torus p = 0 is then filled with the closed linear orbits of the unperturbed system: 

In this context, the following result is the fundament2 building block, to which one 
needs only add simple arithmetical considerations, in'order to derive all the subsequent 
results. 

Theorem 1. 

q(t)  = d o )  +mot. 

Ilp(0)II < r Ilp(f)II i r if It1 5 e'' (c = c(P)) 
provided the following two conditions hold 

( i ) s r T S l  
(ii) r 2 ,E. 
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‘It is essential that here, the quantities r ,  i.e. the radius of the ‘influence zone’ of the 
periodic toms p = 0, s, which governs the time of stability, and the period T of the torus 
are viewed are free parameters, subject only to (i) and (ii). True, there are other mild 
conditions which are required in order for the above result to hold; they can be written as 

(iii) r 5 1 
(iv) E 5 1 
(v) s > 1. 

(iii) and (iv) take care of harmless and uninteresting things like the domains of definition 
of the various quantities, the radius of invertibility of the frequency map p + o ( p )  (which 
is indeed a local diffeomorphism) etc; if (v) does not hold, everything is empty since one 
is interested in estimates over long time intervals so that one wants s > 1. We shall not 
mention (iii), (iv) and (v) any more. 

Perturbation theory uses, roughly speaking, analysis, geometry and arithmetics, all three 
at a rather elementary level. Using the periodic orbit method which we put forward reduces 
all the analysis and geometry that is needed to the above result. Let us thus dwell a bit 
longer on its content. 

From the analytic viewpoint, this is nothing but one phase averaging . The simplest 
possible problem along this line is embodied in the following equation: 

i = ~ f ( x ,  t )  x E R” (2) 

where f is analytic w.r.t x (Lipschitz in t )  and periodic, say of period one, in t .  One seeks 
to ‘eliminate’ the time by a near identity change of variables x = y + & u ( y ,  t ,  E ) ,  where U is 
unknown and y satisfies the autonomous equation y = q ( y ,  E ) .  This is always possible at 
aformal level: there are formal power series T’and ?in E ,  whose coefficients are analytic 
functions in ( y .  r )  whichdo just that. But these series are generically divergent; in fact the 
coefficients increase like k !  (k labelling the coefficients), as was recently proven in [lo], 
and this is why we say they are of Gevrey order one (there. is no standard way of labelling 
Gevrey indices). This is~probably one of the simplest cases of divergence in the theory 
of normal forms, one which arises without the-explicit-urrence of ‘small divisors’. 
Notice that the whole problem has much in common with that of embedding a near identity 
analytic diffeomorphism into a flow. One can now use a least-term cut-off to truncate 2 
and z, and obtain functions U and g such that 

So, one has eliminated the time variable to within an exponentially small remainder and this 
is optimal in general (see also the discussion in [Z], appendix 2). That (3) can be obtained 
was proven in 191. There, Neistadt uses a recursion scheme, which i s ~ a  much simplified 
version of the analytic part of [5], and not majorizing series. In  fact, in perturbation theory, 
one often has the choice of using either an iterative procedure or a direct method, writing 
down the normalizing series (here T and 2 and controlling the growth of the coefficients. 
For instance, Siegel’s original proof of his famous halomorphic linearization theorem used 
majorizing series;and it foreshadowed Kolmogorov’s celebrated result in 1954, where the 
latter used an iterative procedure, as is almost always the case nowadays, in the framework 
of KAM theory. 

The scheme for proving theorem 1 is almost the same as that of 191. This is implemented 
in [3] without any explanation of the constants, which were given in [4]. For the sake of 
comparison, one should beware of the fact that the small parameter E in (2) corresponds 
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to f i  in the Hamiltonian problem.  this analytic part is not Hamiltonian in nature, as 
exemplified by Neistadt’s result on equation (2), although it is necessary to retain the 
symplectic nature of the problem for future use. Condition (i) in theorem 1 refers to this 
analytic part: s is the number of steps in the iterative procedure, and the remainder decreases 
geometrically; in fact, it decreases by afactor csrT (c = c(?J)) at each step, and this factor 
should be smaller than 1; hence (i). 

The analogue of Neistadt’s result for equation (2) follows from theorem 1 if one looks 
at a fixed torus so that T is fixed, too (in (2), T = 1); then one can choose r x fi  and 
s x &. We state the resulting estimate as 

Corollary 1. 

provided E is small enough. 

One thus finds stability of a +-neighbourhood of a T-periodic torus over a time interval 
on the order of exp(&). In other words, this domain of phase space admits the stability 
exponents (a. b) = ( h ,  1): Below, we shall meet many other such ‘local stability estimates’, 
but right now we would like to obtain a global result, i.e. one which is valid for any point 
in phase space. 

We notice that in [I] and [2], the analytic part was slightly less accurate so that we 
obtained E :  instead of E ;  in the above estimate, also resulting in a slight loss for the global 
stability exponent a(n) to be derived below. This was subsequently repaired, simply by 
inspecting the scheme in 191. Apart from this (changing 3’s into Ts)  all the-global and 
local stability-results are already contained in [l] (and afortiori [2]). 

At this point, one should stress a feature of theorem 1. which can hardly be 
overemphasized: it is essentially independent of the total number n of degrees of freedom, 
‘essentially’ referring to the fact that n in fact enters implicitly, through the Euclidean norm 
11. I( of the n vectors. As.it stands here, using Euclidean distance, it is thus not quite adapted 
to ‘passing to the thermodynamical limit’, i.e. somehow letting n tend to infinity. Again, 
this-near-indepedence on the total dimension (number of frequencies) is very important, 
from a physical viewpoint. It was really a major conzibution of Italian researchers to let this 
property emerge and understand its significance, in a slightly different context (see [ 11-15] 
and references therein); we shall comment more on this later, notably when we discuss the 
stability of resonances in section 3: Now ,this physical property is, so to speak, encapsulated 
in theorem I, and, at this level, the contribution of [l] and [2] was perhaps to recognize 
the period T as the important parameter, which should remain free, and with which one 
can subsequently play in many ways, using arithmetics or more precisely simultaneous 
approximation (see below). 

We have already mentioned that the ‘analytic’ part of the proof of theorem 1, which 
consists in one phase averaging, is not linked to the symplectic nature of the problem nor 
to the convexity requirement. Again, this is shown by the treatment of equation (2) and, 
for instance, the significant physical results obtained in [ll] and [I21 also have nothing 
to do with convexity; there, one is essentially concemed with perturbations of harmonic 
oscillators. What is important, is the requirement of analyticity, which cannot be dispensed 
with, if one wants to get exponentially small remainders (or exponentially long times). We 
dwell a little longer on these remarks because the analytic part of theorem 1, simple as it 
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may be, is the only place in the whole theory where non-optimal features can creep in. The 
geometrical and arithmetical parts are esentially optimal, even from a realistic, numerical 
viewpoint. Thc analytic part having been reduced to simple one-phase averaging is itself 
rather transparent. In fact, we believe that theorem 1 is optimal in some sense, including, 
e.g., the dimensional dependence (detailed in [3] and [4]) of the implied constants w.r.t. the 
set of parameters P. Of course, the numerical factors cannot be optimal, but they could be 
pushed to realistic values using a computer-assisted proof, for some specific Hamiltonian. 

Let us now say a word about the simple geometq involved in the proof of theorem 1. 
The stability of periodic tori, as stated in theorem 1, does require convexity and energy 
conservation, hence the canonical character of the motion. The idea of combining energy 
conservation with convexity in order to simplify Nekhoroshev's original trapping mechanism 
appeared in [7] and was subsequently used in many papers ([1-4,8], etc). This simple 
reasoning is the only place where the Hamiltonian character of the equations is really 
needed and it can be roughly summarized as follows. 

The perturbed Hamiltonian H ( p ,  q)  may be considered as the sum of a 'kinetic part' 
h ( p ) ~  and a perturbation. The convexity of h provides a quadratic potential well; indeed 
one is more or less reduced to the case when h ( p )  = imp2, considered near p = 0 (m is 
the quantity entering in P). Total energy is conserved, and the action p may vary until the 
kinetic energy impz is balanced by the O(&)-perturbation; hence p may experience O(&)- 
variations. This introduces condition (ii) in theorem 1, namely r 2 ,h in order to ensure 
stability, and this in turn forces the a priori inequality b Q f for the exponent of stability 
governing the radius of confinement. ,,"Z represents what physicists call the 'resonance 
width'; one should keep in mind the simple pendulum equation with Hamiltonian 

H = + P + ~ s i n x ( ~  +E&)) (4) 

p periodic with period 1. This example also demonstrates that~variations in the action 
(=mi)  of order & usually take place over short timescales (- '). 

Now that we have theorem I available, we can play with the various parameters, adding 
in only arithmetics. We have already mentioned the obvious case of a fixed given torus 
(corollary 1). In general, one may of course constrain s x $, keeping r a free parameter; 
this gives a measure of the way in which the influence of a periodic ~ O N S  decreases, as the 

fi. 

distance increases. We state this in corollary 2. .~ 

Corollary 2. 

provided r ? ,h and E is small enough. 

To obtain a global stability result, one which is valid uniformly over phase space, one 
needs yet another choice of the parameters. Indeed, one should force s x E-=; at this point 
a > 0 is still undefined, and we are looking around a period T torus. Set 

S X E-' rT v, E-".  

Condition (ii) in theorem 1 is satisfied provided T S , E - ~ + ~ ,  which is a bound on the 
period. This is very sensible since, as is intuitively clear (and confirmed by condition (i) of 
theorem 1). averaging deteriorates when the period of the motion increases. We ,thus obtain 
the following statement: 
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Corollary 3. 

Ea Ea 

T '  T IIP(O)II 5 - * IIp(r)II 5 - if I ~ I  5 e''# (c = c(P)) 

provided T 5 E - ~ + " ( O  < a < 1) and E is small enough. 
Although this statement may appear a little more contrived than corollaries 1 and 2, it 

has a simple interpretation. Let z( t ) '= (PO), q(f ) )  denote the trajectory in phase space, and 
let %(to, t )  = @(to), wo(t-ro)+q(to)); n(t0, t )  is thus the trajectory starting from z(r0) and 
following the unperturbed flow on the reference torus p = 0 (with frequency w(0)  = WO). 
The above statement implies that 

Ilz(t) - n(t0, t)ll 5 EO if to < t < fo + T and It01 5 e'@'. 

One can rephrase this by saying that the perturbed trajectory is almost periodic within 
O(E#), with almost period T ,  over exponentially long timescale. This is somewhat 
more precise than just stability of the action variables and reveals some of the nature of 
the periodic orbit method. In effect, one tries to approximate the true motion over an 
exponentially long time with periodic najectories having the shortest possible periods. This 
will become apparent when we add some arithmetics in order to obtain a global statement. 

Before going into this, let us again spell out the key ingredients of our approach. 
(i) One needs a good estimate for the stability of the neighbourhoods of periodic tori. 

This stability is a specific feature of convex systems, in which case it is shown by using 
onephase averaging (theorem 1). 

(ii) Results valid over the whole of phase space (global stability) or particular subsets 
thereof (see sections 3 and 4) are obtained by approximating corresponding points (initial 
conditions of the trajectories to be studied) by means of periodic points in action space. A 
periodic point is a point belonging to a periodic torus of the unperturbed system, that is 
it is a point p with rarional frequency w ( p )  (there is a T > 0 such that To@) E Z"). 
Approximating points in action space by periodic ones corresponds to using the theory of 
simultaneous approximation in frequency space. 

We stress that this approach is fundamentally different from the usual one (as 
implemented for the fmt time in [5] as far stability o v a  exponentially long times is 
concerned); roughly speaking, the latter focuses first on very non-resonant parts of phase 
space and uses linear approximation in order to control the so-called small divisors (that is, 
quantities of the form o ( p )  . k, k E Z"\(O)). 

We illustrate now the strategy described above by working out the global stability 
estimate, using theorem 1. and approximation. To this end we need only the most basic 
result of simultaneous approximation, namely the Dirichlet theorem, which we recall: 

Theorem [Dirichlet). 
1 4 q < Q, such that (qw) < Q-!. 

Let w E R" and Q > 1 be a real number. There exists an infeger q ,  

Here we have used the following notation, for a E R" 

(a) = inf [la - { 11- = inf ( sup [ai - {i[). 
tEZ" W" i=l. .... n 

{ = (ti) is thus the point of the integer lattice 2" closest to a = (ol i ) ,  using the norm I] . \Ico 
of the largest component for vectors of R". In particular 

(a) < dist(or, Z") < .&a) 
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where ‘dist’ denotes the Euclidean distance. 
Dirichlet’s theorem (or lemma) is an’ immediate consequence of the ‘box counting 

principle’ and is~fonnd in the first few pages of any book dealing with approximation 
theory (e.g., [ZZJ). Notice that if w = ( W I ,  wz) where 01 E Zm and wz E Rd, m + d = n, 
one has ( q w )  = ( s e ) ;  approximating w is the same thing as approximating 0; and n may 
accordingly be changed into d in the statement of the result. This simple remark will be 
crucial when dealing with ‘resonance surfaces’ in section 3. 

The reasoning leading to global stability now goes as follows. Let p* = p(0) be an 
arbitrary point in action space (the initial phase q(0) is arbirary as well and does not enter 
the discussion). We wish to apply corollary 3 around some rational point p .  having period 
T, and lying close to p* .  First rescale one of the components of w* = w ( p * ) ,  say the first, 
to an integer (the effect of this rescaling on the parameters P is obvious and detailed in 
[l, 21) and apply Dirichlet’s theorem, to the effect that 

” 

4Gi 
VQ > 1,3w T-periodic such that:[[@ - w*ll < - 1 < T < Q 

T Q X  

11 . 11 again denotes the Euclidean norm. For IIw - w*ll small enough,’ there exists a 
corresponding point p such that w = w ( p )  ( p  --L w ( p )  is locally invertible). In fact 

l < T < Q .  
- 1  

IIP - P*II < -- m TQ& (5) 

We want to apply corollary 3 around p (so the origin of the coordinates is p .  not 0 as in the 
statement of the corollary); p ( 0 )  = p* should be close,enough to p so as to lie in what we 
call the ‘influence zone’ of the periodic torus defined by p in phase space. More precisely, 
we need IIp - p*ll < r x $; by (4), it is enough to require 

~~ 

Ea 

so define Q through 

The constant - is rather uninteresting in this context, but we have to comply with the 
definition of the symbol %’. In order for corollary 3 to apply, we need T 5 E-f+n,  and 
since T < Q, this is satisfied provided 

Q 5 &-f+‘, (7) 

(6) and (7) together immediately yield the inequality a < &. So pick a = & and since 
r x $ 5 E’, one may set b = a.  This proves theorem 0 (Nekhoroshev’s theorem) with the 
values a = b = &. For the sake of further reference, we state this result as 

Theorem 2. For any initial condition (p(O), q(0)) (say with p(0) E BR so that the trajectory 
is defined), one has 

IIPW - P(0)II 5 E ’ for It1 5 exp(c/c‘) (c = c(P)) 

provided E is small enough; one has a = b = 1 ’ 

2n‘ 



892 P Lochuk 

The reader may wish to return to the interpretation of corollary 3 in terms of ‘almost 
almost periodic’ functions; now that T is not fixed anymore, Nekhoroshev’s result can 
be interpreted-and made somewhat more precise-by saying that the trajectory in phase 
space, including angle variables, is approximated over an exponentially long time by pieces 
of periodic trajectories, with an algebraically long period (T 5 E-$+‘). This point of view 
is characteristic of the method we use and will be made more accurate in section 4. 

The first stability exponent a, governing the time of stability, is probably the most 
important quantity (the value of b is discussed at length in section 4). Let us summarize 
the meaning of the value a = 5. One may figure this as a = 4 x 1 x i : simply 
refers to the fact that E ;  rather than E itself is the natural small parameter. 1 refers to the 
exponentially small remainder for one-phase averaging (see equations (2) and (3)); this is 
a Gevrey-1 result as we mentioned before, and we refer to I21 and [lo] for more details. 
Finally, the factor i is forced by Dirichlet’s theorem. In our opinion, it is important that the 
periodic orbit methods makes this almost crystal clear and shows why this value is likely 
to be-generically and for n > Z-optimal. This is discussed M e r  in [l] and [ZJ; there, 
a slight imperfection in the analytic scheme led essentially to the value a = & although 
it was clear that a = & was the ‘right’ value, as was found in [3,4,8]; in the latter paper, 
Poschel uses the ‘traditional‘ method (as in [7]), improving its geometrical part to reach the 
value a = z. 

In fact, Chirikov had predicted this same value a long time ago (see, in particular, 
[16]), starting so to speak, from the other side. Specifically, heuristic reasoning led him to 
predict that the ‘speed of Arnold diffusion’ (this quantity is somewhat difficult to define in 
a rigorous way) in a system with n independent phases can be of the order of exp(-cc-&). 
This reasoning was adapted and made more transparent in [l] and [2], where we also 
describe a heuristic picture of Arnold diffusion more in accordance with the periodic orbits 
method. Put slightly differently, Chirikov predicted that on a timescale of order exp(cs-k) 
the action variables can actually change by a quantity of order I, so that Stability does not 
prevail any longer. 

A11 this says that in a way we have really reached the limits of  canonical perturbation 
theory: over longer timescales, Arnold diffusion, which is poorly understood, at a rigorous 
or even ‘semi-rigorous’ level, should really be taken into account. So the main result 
of 111 and [2] was in fact to fill the gap between Chirikov’s long-standing prediction for 
the maximal possible speed of Arnold diffusion and the existing results for the maximal 
timescale over which stability prevails; indeed, in C5-71, a(n) was of the order of l/n2 and 
there was no clue as to what the ‘best’ value should be like. 

1 

1 

3. Local stability 

We shall now discuss local estimates, i.e. explore the phase space and find places where 
the value of a and/or b can be improved. This section is concerned with the local values 
of a;  the second exponent b is the subject of section 4. In some sense, we are moving in 
a circular way: indeed, we started from the periodic orbits-or tori-and we know already 
that in a O C A  of a given torus, or any set of tori with periods bounded from above, one 
has U = b = i: this is the content of corollary 1. These are the best possible values one can 
expect: a is bounded from above by because one-phase averaging generates Gevrey-1 
series and no better generically; b is also bounded from above by 4 because the geometric 
reasoning using convexity is optimal: the width of a resonance is indeed of the order of E+ 
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(recall the pendulum (4)). Also, the deformation of invariant KAM tori can be of the order 

In between the global estimatc of thcorem 2 and the estimate m u n d  periodic tori of 
corollary 1, we come across the hierarchy of resonances and the fascinating phenomenon of 
stabilization via resonance. We shall first show how it comes out easily using the periodic 
orbit method and then add some physical and historical comments. 

Let M E Z" be a sublattice of rank m, which means that the plane spanned by the 
vectors of M has dimension m. One defines the corresponding resonance plane PM in 
frequency space as 

OfEf. 

PM = [W E R" w . k  = o  vk E M )  

there corresponds to it a resonance surface in action space: 

SM = ( p  E R" ~ ( p )  .k = O  Vk E M ] .  

The resonance is said to be of multiplicity m; PM and SM have dimension d ,  d + m = n. 
Assume that p(0) = p* E S M ,  hence w* = w ( p * )  E PM. Then, by a linear symplectic 

change of coordinates, one may in fact assume that w* = (0, w'), 0 E Rm, w' d Rd.  Recall 
now what was said when stating Dirichlet's theorem: approximating w* is obviously the 
same as approximating w' and consequently, $ may be substituted for in the statement of 
Dirichlet's theorem. This substitution goes through, so that one finds ultimately the value 
a = b = & for a trajectory starting from (p(O), q(O)), with j (0)  = p". This is in fact 
readily extended to initial conditions lying close to the resonance suface; the final result 
reads 

Theorem3. Let the initial condition (p(O),q(O)) satisfy: dist(p(O), SMj 5 fi, rankM = 
m, dimSM = d ,  m +d = n; then 

provided E is small enough. 

The constant CM = CM(P)  now also depends on the lattice M through the linear 
transformation reducing o* to the standard form (0,w'). Incidentally, this allows the order 
of a resonance to be defined in an intrinsic way; details can be found in [2]. 

This result, which is obtained in a completely effortless way, should not be 
underestimated. It contains the 'global' result (theorem Z), because any point belongs 
to SM with M = 0 and d = n. Literally, theorem 3 asserts that resonant or even near- 
resonant points in the phase space of an analytic near-integrable Hamiltonian system are 
much more stable than 'generic' points, provided the integrable part is convex. Let us stress 
that this is a qualitative distinctive feature of convex (or quasi-convex) systems. Otherwise, 
,,in particular for steep non-convex Hamiltonians, it simply does not hold, because theorem 1 
is not valid. The result obviously stems from the fact that resonant-r nea-resonant- 
points can be approximated by rational points at a much faster rate than generic points. 
In particular, neighbourhoods of periodic points (in action space) or tori (in phase space), 
which need not be approximated at all, correspond to m = n - 1, d = 1. Theorem 3 then 
reduces to corollary 1, with CM v $. 

Because m = n - 1, neighbourhoods of periodic tori coincide with 'resonant zones of 
maximal multiplicity'. The peculiarity of these zones and their exceptional stability was 
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somehow anticipated long ago (cf in particular [5, section 11.51). but they appeared as 
an extreme in the hierarchy of resonances. In [l] and 121, the ideas contained in prior 
works (see below) were pushed to their logical consequences and things were, so to speak, 
turned inside out. So, instead of ‘resonant zones of maximal multiplicity’, one would speak 
of periodic orbits (or tori), described by one main parameter, namely the period T, and 
these are regarded as the fundamental primitive objects of the theory. This naturally leads 
to simultaneous instead of linear approximation, approximate recurrence times instead of 
resonances etc. 

One important ‘psychological’ difference is that resonances are usually felt as a 
hindrance when trying to carry out some perturbative scheme, whereas periodic orbits 
appear as an ‘opportunity’. Indeed, from this point of view, when the dimension increases, 
results deteriorate not because of the profusion of resonances and the corresponding ‘small 
divisors’, but rather due to the global scarcity of periodic orbits, measured-optimally-by 
the exponent in Dirichlet’s theorem. There always remain however, domains of phase 
space with ‘many’ periodic orbits, namely resonant zones of small dimension d (large 
multiplicity n), over which stability prevails essentially as in dimension d, irrespective of 
the global dimension n of phase space. The latter may eventually then ‘tend to infinity’, 
i.e. one can explore the so-called thermodynamical l i t  

In  this vein, since the end of the 1970s, a group of ItaIian physicists investigated the 
mechanical foundations of statistical thermodynamics, guided, among other things, by the 
deep physical intuitions of B o l t “  and Jeans (cf [ll-131 and references therein). By 
studying simple models like one-dimensional chains of oscillators and rotators ([ 14,15]), 
they understood the possibility of this phenomenon of stabilization via resonance. More 
precisely, they showed that nonlinear localization has to do with resonance and, that when 
only a finite number of degrees of freedom are excited (d in theorem 3), one can obtain 
results which are essentially independent of the total number n of frequencies in the problem, 
so that these results have a chance to survive at the thermodynamical limit, and thus be 
pertinent in the context of statistical mechanics. Of c o p e ,  there is more in their work than 
can be gathered in this terse summary, but this was really a breakthrough and the author is 
much indebted to them for letting him share some of their insights. 

Because we believe that long time stability of resonances is really an important new 
phenomenon with far-reaching physical consequences, it may be worth summarizing some 
historical facts and heuristic ideas. It was first recognized in celestial mechanics that 
resonances sometime-not always!-seem to be ‘more stable than expected‘. This was 
particularly forcefully advocated in the work of Molchanov [17,18] at a purely observational 
and arithmetical level. Molchanov essentially emphasized the existence of many ‘simple’ 
resonance relations between the planets of the solar system and inside satellite subsystems 
around Jupiter, Saturn and Uranus. He was immediately criticized on the grounds that these 
relations were not really ‘astonishing’ and would often occur among numbers or vectors 
picked ‘at random’. In any case, since then, much work has been devoted to the occurrence 
of resonances in celestial mechanics. Many of them are explained in a satisfactory way by 
non-Hamiltonian effects, something which leads to the idea that they can all be ascribed 
to such effects (see in  particular [SI, section 2.1.D and references therein). This is a very 
important point. In order to understand that resonances can be more stable within the 
framework of Hamiltonian mechanics, it seems that there are at least two strong prejudices 
to overcome: 

-the first one is the usual intuition and experience of physicists, engineers and applied 
mathematicians. All books stress the destabilizing effect of resonance, which is in fact 
basically a linear effect. The common opinion is that stability can be restored only by 
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non-conservative, i.e. dissipative, forces, which indeed can lead to various mechanisms of 
capture into resonance (see [20,21]). Theorem 3 precisely says that resonances can be 
stable in the absence of irrevrrsibility. 

-The second psychological obstacle is KAM theory, predicting the stability of ‘very 
non-resonant’ points in phase space. Theorem 3 introduces a kind of paradox: there is a 
set in phase space, namely the union of all surviving Kolmogorov tori for a given strength 
of the perturbation, which is stable ad aeternum, and this comprises only very non resonant 
initial conditions; but there is another set, comprising only very resonant points and, in 
particular, the neighbourhoods of periodic tori for the unperturbed system with not too large 
periods, which is stable over very long times, but-generically-unstable eventually. So 
there is a kind of incompatibility between long time stability and eternal stability. Things 
are not nearly so simple, however, and there are all sorts of pitfalls and caveats to be added. 
For instance, in the neighbourhood of a Kolmogorov torus, one should be able to develop 
a two-parameter perturbation theory (the strength of the perturbation and the distance from 
the torus) which describes the drift away from the invariant torus, so that the existence of 
the latter influences the long time stability of points in its vicinity. 

To summarize, one can say that there are four important possibilities for the integrable 
part h ( p )  of the near integrable Hamiltonian H ( p , q ) :  

(i) h is linear: h(p )  = w .  p. 
(ii) h is genuinely nonlinear: det VZh(p)  # 0. 
(iii) h is steep; this is a kind of weak transversality condition (see [1,5,21]). 
(iv) h is convex: V*h(p) is a positive-or negative-lefinite symmetric matrix (this 

can be relaxed into quasi-convexity; see, e.g., [1,2,8]). 
These cases do not exhaust the possibilities; in particular, many degeneracies can arise, 

and they are in fact more the rule than the exception in celestial mechanics. Nor are they 
mutually exclusive: (iv) is a subcase of (iii) which in turn is included in (ii). (ii) is enough 
for KAM theory to apply; (iii) is a sufficient (and almost‘necesss&y) condition to derive 
‘stability estimates over exponentially long times. But stability of resonances applies only if 
(iv) holds, emphasizing a distinctive feature .of ionvexity; One should notice however that 
resonance can lead to interesting and somewhat unexpected phenomena even in the linear 
case (i), like preventing the interaction between some subsystems of the whole system (see 
[11,121). 

4. Trapping and intermittency 

We have now more or less exhausted what we wanted to emphasize about the local value 
of the time of stability, as reflected by the first exponent a, and we now turn to a discussion 
of the size of the radius of confinement, through the value of the second exponent b. 
Theorem 2 states that a = b = & holds uniformly in phase space, and we have explained 
why the trapping mechanism provided by the convexity of the unperturbed part (‘kinetic 
energy’) implies that b < 4 (generically of course). The basic question is: does the pair 
(a ,  b) ~= (&, i) hold uniformly in phase space? 

Our guess is that this is not the case, and that the situation is somewhat more subtle, 
giving perhaps rise to a kind of intermittency phenomenon. Before we go into this matter, 
we should however mention a few facts. 

After [I] and [2]  had been completed, Poschel (in [SI) took up the ‘traditional’ method 
and essentially, by improving the geometric part of 171, he derived the results we have 
decribed above; in particular, he obtained the value a = b = & for the exponents (as we 
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mentioned, these results were not quite as neat in [I, 21). This is not surprising in itself: the 
usual approach to perturbation theory, which rests on Fourier series, linear approximation 
etc, allows one to derive the results that were obtained using the periodic orbits. The latter 
presents itself as an alternative approach, which allows one to guess, understand and explain 
some essential phenomena in a more transparent-and technically less cumbersome-way. 
We believe the duality between the two approaches to be very important in itself. It is 
already quite deep at the level of pure arithmetics, where it is embodied in the so-called 
Khinchin's transfer principles (see [2,22]) between simultaneous and linear diophantine 
approximations. We refer again to [2] for a more thorough discussion. 

There seem to be some differgces between the results which can be obtained using 
one method or the other. The periodic orbits method shows how the perturbed trajectory 
in phase space (i.e. including the motion of the angle variables) behaves over exponentially 
long times as some kind of almost periodic function, with well-defined almost periods. This 
was stressed in connection with corollary 3, which leads directly to theorem 2, and will 
be developed below. This description is in itself more precise than just the stability of the 
action variables, which it implies. In some sense, usual-modern-perturbation theory is 
based on a geometric analysis of phase space, whereas, by using periodic orbits, one focuses 
on a kind of time series analysis of the trajectory, which may be closer to physical intuition 
(and perhaps also the analysis of numerical experiments). 

The periodic orbit method does not yield the best possible control of the trajectory over 
shorter times; in this respect, the 'traditional' (since [5 ] )  partitioning of action space into 
a hierarchy of resonance zones remains useful. In particular, it was shown in 171 and [SI 
that one may take exponent b independent of the dimension n, over shorter timescales. 
Specifically, Poschel shows in 181 that the pair (a, b) = (8, 8 + i(1 -N)) holds uniformly 
in phase space for any p E (0,l). Such a result can probably not be obtained using 
periodic orbits. We stress that this is not a question of arithmetics: linear and simultaneous 
approximation do carry the same information, but it is encoded in very different ways. The 
encoding is more compact for simultaneous approximation but is is less detailed, if truncated 
at a finite order: the equivalence is asymptotic. 

We now describe the intermittency phenomenon which should prevent (a, b) = (k, 4) 
obtaining in the whole of phase space. This discussion relies heavily on the periodic 
orbits and the specificity of simultaneous approximation (the results appear in [l] and in an 
abridged form in [2]). We have to start with some definitions and pieces of notation, referring 
to standard textbooks for more details (e.g., [22]; see also [23, appendix 1 and references 
therein). First recall the notation (a), for a E R", which was used in the statement of 
Dirichlet's theorem. Diophantine sets of badly approximable vectors are defined as 

%(T, y )  = ( E  E R",vq E z+, (qa) > (y/q)+( '+ ' ) } .  

For any a E R", we also define its periods (qi)iao as the sequence of positive integers such 
that 

qo = 1 and Vq E Z+ 4 < qi+i * ( q 4  > (qiu). 

Let pi E Z" be such that (qicr) = ((qia - pillm and define ai = pi/qi, which is a rational 
point of period qi. The ai's are called the best Dirichlet approximations of a. Dirichlet 
theorem asserts that (qia) < qi;. On the other hand, one can show that for any a (with at 
least one irrational component), the sequence (qi) increases at least geometrically; in fact 

_ _  
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with a uniform estimate g, 2 1 +2-"-'. 
The above quantities are adequate for arithmetics, where one wants to work with integer 

qs. In particular, the sequence (q& constitutes a very compact way of encoding the 
arithmetical properties of a vector w E R"; it should be compared with the essentially 
( n  - 1)-dimensional set of values of the linear forms (small divisors) w . k ,  (k E Z") used 
in linear approximation theory. 

Simultaneous approximation in dimension n corresponds to non-homogeneous linear 
approximation of the same dimension, because it is equivalent to approximate a E R" or 
(1, a) E R"+', if one uses the sequence ((qw)), with q E Z'. When it comes to dynamics 
however, we want to use real-not necessarily integral-values for the period T and this 
unfortunately causes some minute notational and definitional minute problems which ~ are 
hFmless but may slightly obscure the situation. We briefly summarize these unpleasant 
details. 

Let h ( p )  be the convex unperturbed Hamiltonian we started with; the frequency map 
p + w ( p )  = V h ( p )  is a local diffeomorphism between action and frequency spaces. Let 
again p* be a given point in action space, w* = w(p*)  the corresponding frequency, and 
h* = h@') the unperturbed energy. One would like to look at the quantities (To'), T real, 
and define a sequence (Z) of periods and related best approximations (q). There are at 
least three natural ways of achieving this, which are equivalent, except for rather irrelevant 
differences which cause notational problems: 

(i) One may define the (I;)s via the best approximation property: 

(Tu*) > (Tim*) for T < I;+'. 
(ii) One may rescale one of the components of io* to unity (or any integer), i.e. put 

w* = w ( l , w ) ,  w > 0, w E R"-' and then set I; = qi/w, qj E Z+ corresponding to w 
as above. This underscores the fact that working with real T s  is essentially the same as 
working with integers in n - 1 dimensions. 

(iii) One may restrict attention to the energy surface h ( p )  = h*. Indeed, if w = w ( p ) ,  
h ( p )  = h*, the inverse image, in action space, of the line JAW, A E R) ,  is locally, for A 
close to 1, a curve which intersects the energy surface transversally at p .  One may then 
restrict attention to rational frequencies such that the corresponding action lies on the surface 
h(p)  = h*. This singles out a discrete sequence of values for the periods T from which 
one extracts the sequence (q) corresponding to the best approximations in this sense. All 
this amounts to viewing a frequency w as a vector in projective space PRY-' and this is 
indeed definitely to be used when h is only assumed to be quasi-convex, i.e. if one assumes 
that the energy surface h ( p )  = ha is-geometrically-strictly convex in action space. 

The reader will easily convince himself that (i), (ii) and (iii) are equivalent, more 
precisely that the corresponding quantities differ by factors close to 1 and tending to 1 as 
i -+ CO. So, one can essentially forget about all this and keep the following in mind: given 
p* and w* = o ( p * ) ,  one define sequences (Ti) ,  (wi), (pi) ,  (ri) as follows: 
(i) (I;) is the sequence of the periods of w*. 
(ii) (mi) is the corresponding sequence of best approximations; wi has period Ti and in 

fact,wi=<i/I;, Z ; E Z " , ( I ; ~ * ) = I I I ; O * - < ~ I ~ ~ .  
(iii) pi is defined by the identity mi = w(pi);  this is possible at least for i  large enough 

since p + w ( p )  is a local diffeomorphism. 
(iv) ri = llpi - pII is the Euclidean distance from p* to the rational point p i .  
Everything now happens as if the dimension were n - 1, not n. In particular, by 

Dirichlet: 
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One also has 

z /n-1 1 
ri = llpi - p*II < -- I :  

m T i q z  
This is valid in the convex case, to which we restrict ourselves here; treating the quasi- 
convex situation would necessitate some mild modifications. 

The four sequences ( T j ) ,  (U;), (pi) ,  ( T i ) ,  are intrisincally defined modulo inessential 
choices; we define yet an other sequence (q) as follows. Looking back at condition (ii) in 
theorem 1, namely r 2 A, we write it more explicitly as r 2 r o f i  with ro = ro(P) some 
number having the dimension of a length. &i is defined through the equality ri = r o f i ; .  
( ~ i )  is not really intrinsic (because ro is not) but the ratios ( E ~ / E ~ + I )  = (r;/ri+$ are, 

The five above defined sequences encode all the important properties of a given point 
p* .  We now return to dynamics and again consider trajectories of ,the perturbed system 
starting at (p(O), q(O), p(0 )  = p* .  To make things clearer, from now on we redefrne the 
symbols 5, = and ? so that they possibly include a dependence on the dimension n of the 
system; in other words, (Y 5 p now means a < c ( P ,  n)p  and similarly for 7 .and 2. This 
will take care of some simple algebraic factors involving n. For example, we shall now 
write 

We assume one of the components of W* has been rescaled to unity, U* = (1, (U), a E R"-'. 
The global stability estimate was obtained by applying corollary 3. For the radius of 
confinement,we have the estimate 

l < T c Q .  

The basic problem is that T may lie anywhere between 1 and Q .  If T x Q, and since 
Q &-("-1)U,  we find that $ = $ x ,h (a = G), and thus b = 4. More generally, if w* 
is badly approximated, T tends to be close to Q ;  assume specifically that o* E Q,-,(r, y ) ,  
by which we mean in fact (U E Q,,-,(7, y ) .  Then the following holds: 

1 

This yields 

4 T 2 y Q k  2 ye-'r+r 

Since a = 2, this implies 

this proves the following. 
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In particular, almost everywhere, the stability exponents (a, b) = (&, $ - q), Vq > 0 are 
valid. 

This is not a uniform estimate, because of the y dependence.. To restore uniformity, one 
can state the result on sets of large measure, e.g., of the type Qn-l(r, Y ( E ) )  with-say- 
y ( ~ )  = yo&-8, for some e > 0. 

Suppose now we tq to apply corollary 1 instead of corollary 3. We readily get a 
confinement on the order of A, since IIp(t) - p*II < r0& But this applies only if 

This inequality, unlike in the application of corollary 3, does not define Q, since T lies 
anywhere. between 1 and Q. Again, b = $ holds if T x Q. Let now pa, and thus U*, 

be arbitrary, but assume that E = si, (i large enough). By definition of the sequences (ri) 
and ( ~ i ) ,  one may apply corollary 1 around pi. as p* lies exactly on the boundary of the 
influence zone of this toms. The time of validity is on the order of exp(&). But 

which yields Tj& 5 $..This we express as the following. 

Corollary 5. 
that, for i large enoush, one has 

For any point p*, there exists a sequence &i -+ 0 (depending on p*)  such 

IIp(t) - p*ll 5 Ai when It1 5 exp(c&,?) c = c(P, n). 

So, the pair (a ,  b) = (k, $) prevails fat any point along a subsequence, when the 
perturbation goes to zero. This form of the intermittency phenomenon we alluded to can 
be simply described as follows: let &i 2 E 2 E{+,; then, if E = ~ i ,  corollary 1 may be 
applied around p i ;  but as soon as E crosses this value, so that E < si, one has to apply 
it around pi+1, and the time of validity drops discontinuously (w.r.t. E) from exp(&) to 

The above result is somewhat artificial, because the sequence ( E ~ )  is not really intrinsic. 
This is not the case for the sequence (ri) however, and one may wish to apply corollary 2 
rather than corollary 1, producing the following. 

Corollary 6.' Assume E < E ; ,  i large enough, p(0) = p* arbitrary; then one~has 

Ilp(t) -p*Il 5 ri c = c(P, n), 

exP (*). 

, ~~ 

when It] 5 exp(c?;:$) 

Indeed, one can apply corollary 2 around pi and use (8) to conclude 
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In order to extract from corollary 5 a statement which is valid for any small enough E but 
only over a certain part of phase space, one should introduce yet other types of diophantine 
sets. Define 

n ( r , y ) = ( o , ~ i > ~ ,  ~ i + l < y ~ / + ' ] .  

One thus imposes a bound on the rate of increase of the sequence of the periods. It is 
important to point out that the sets Q(r, y )  do not really describe the rate of approximation 
by rationals, but rather its regularity. In particular, if o = (O,w'),O E Rm,J E R d ,  
o E Q(t ,  y )  if and only if U' E Q(s, y);  this is why this set is essentially independent 
of n. In dynamical words, when a vector is resonant with mdtiplicity m and no more, a 
trajectory of the corresponding linear flow on the n torus is not dense; rather, the torus 
is foliated into ton of lower dimension d over which trajectories are dense. Belonging to 
Q (r ,  y )  depends only on the motion on these lower dimensional tori. It is conceivable that 
this kind of arithmetical conditions may turn out to be the most useful and natural under 
various circumstances. Notice the inclusion Qn(r, y )  c Q(r, y-('+')), which comes from 
the inequalities: 

valid when o E Qn(r, y);  here we use integer Z;s and the right-hand side inequality is 
equivalent to Dirichlet's theorem. 

E > &i and that 
o* E D(r ,  y).  Apply again corollary 1 around pi;  this yields a confinement on the order 
of fi, over a time interval on the order of exp (h). Ti can now be compared with 
thanks to the definition of Q(r, y )  and Dirichlet theorem produces 

Let us now return to the setting of corollary 5; assume that ~ i - 1  

which implies 5 z - 5 ;  hence 

Z.JG < y q y . J G  5 y E k ( ' 4 4 7 )  

yielding the following. 

Corollary 7. If U@*) E Q(r , y ) ,  T c A, local stability at p' holds with exponents 
(a ,  6) = (&(I - (n - I)r) ,  f). 

In particular, almost everywhere, the stability exponents (& - I]. 4) are valid Vq > 0. 

To conclude, we have seen that the stability exponents (a, b) = (f. $) hold uniformly 
in phase space, or indeed any pair (5, + E), p E (0,l) (cf [SI). Corollaries 4 to 7 
give a detailed description of some possible local refinements. They also serve to point out 
what the important quantities are, and that E,  r and T should somehow be treated on an 
equal footing. 

There are many other possibilities, if one combines the above statements with 
considerations on 'resonances as in section 3. For instance, one may replace n by d in 
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corollary 7 on a resonance surface SM, ‘almost everywhere’ referring to the superficial 
measure over SM (this comes from the definition of C2 (r ,  y)). Or one finds that over a 
‘slice’ defined by dist(SM, p ” )  5 &,the exponents ( & ~ - q ,  i) are valid almost everywhere 
(w.r.t. to n-dimensional Lebesgue measure) Vq > 0. We leave it to the reader to enrich the 
combinatorics of these results, which are proved in a straightforward way. 

This emphasizes the significance of the question which was already raised at the 
beginning of this section: is the pair ($, i) in fact valid everywhere-and uniformly so-in 
phase space? 

Whatever the answer, it would be interesting to know more about the geometry of the 
arithmetical sets Sin(?, y )  and Q(s, y ) ,  as well perhaps as ‘truncated‘ versions of these. 
Indeed, as a final remark, we notice that it is slightly paradoxical that one should introduce 
diophantine conditions, while studying the behaviour of a system overfinite times, because 
arithmetical conditions are of essentially asymptotic nature. In fact, there are two additional 
flexibilities which we have not fully used 

(i) We are interested in phenomena which occur over exponentially long times; on the 
other hand, the sequence of the periods (Ti) of any vector increases at least geometrically. 
We could therefore restrict attention to indices i such that i = O ( P ) ,  for some c z 0 this 
is the ‘simultaneous’ analogue of the usual ultraviolet cut-off. 

(ii) There is an additional freedom related to the initial condition. Given a point p*,  
it is only necessary to find a point whose frequency has nice arithmetical properties and 
which lies close to p*. This was in fact used when extending local estimates from initial 
conditions lying on a resonance surface to points which may be O(&) from the surface. 

.Combining these two possibilities could lead to an improvement in the results of this 
section. 

5. Prospects and problems 

In [I] and [2],  rather detailed comments were made about how the periodic orbit method 
goes along with a somewhat new viewpoint on perturbation theory. We shall not repeat them 
here, beyond the few hints which are scattered in the previous sections, but would rather 
like to indicate some specific problems which, it seems to us, deserve to be investigatd. 
Also, in this section, we shall refrain from giving detailed references, because.they would 
be too numerous and would only obscure the matter. Other directions and possibilities are 
mentioned in [Z].  

-The first ,direction has already been alluded to. Having broken the problem down 
into small parts, ‘analysis’ was essentially reduced to one-phase averaging, namely the 
investigation of equation (2). Notice that although our original problem is multi-dimensional, 
we never met with small divisors, Linstedt-Poincar6 series or the like. Now (2) embodies, 
as we mentioned, a simple case of divergence ‘without small divisors’. There are some 
natural questions which come to mind suggested by the results which appear in 191 and 
[ 101. Write the series 2 and gas 

where the U ~ S  and gks are analytic functions. The Bore1 transforms w.r.t. E of these series 
read as 
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where is the variable dual to E .  These new series are now analytic for 5 small enough; 
what do their singularities look like in the 5 plane? The best one can hope for is that there 
appear esseptially isolated singutarities, which,alIow for continuation to an-infinitely many 
sheeted-Riemann surface. Ecalle’s theory of ‘resurgent’ functions could then perhaps be 
applicable. This hope is fed by the fact that the time-1 map of (2) is e-close to identity 
and that germs of holomorphic maps from (C”, 0) to itself which are tangential to identity 
can indeed be analysed tbrough resurgence theory. This could lead to the following kind of 
dichotomy: either 2 and are in fact convergent for E small enough (this is the ‘integrable’ 
case) or they are of Gevrey ,order I and no less. In other words, they diverge in some sense 
ut leust as ‘& k!sk. Such assertion about a minimal order of divergence would also 
perhaps have a bearing on the estimates from beZow of some exponentially small quantities, 
as the splitting of the separatrices of the perturbed pendulum (4). 

-A second class of problems has to do with using simultaneous approximation in 
dynamical system theory. We shall be very sketchy and refer again to [2] for some 
more information. An obvious question is: can one use simultaneous approximation 
in KAM theory? The answer is essentially: yes, one can indeed.. . (Riissman, private 
communication). Any frequency vector o being described by the sequence (Ti)t>o of its 
periods, what we the natural diophantine conditions that ensure the conservation of a torus 
with frequency U? How, for instance, does Brjuno’s condition (multi-dimensional case) 
read in this language? Notice that a condition of the type o E Q ( T ,  y )  does not entail 
that o is non-resonant. So ,under some extra conditions, there may be tori attached to such 
frequencies, but not necessarily of maximal dimension. 

-Returning to long time perturbation theory, a natural task is to find the optimal 
exponents in Nekhoroshev’s theorem for steep non-convex Hamiltonians. There, the 
periodic orbit method does not apply and one has to revert to Nekhoroshev’s original method, 
as improved in [8], and rewrite some geometric lemmas (on, ‘almost plane curves’) described 
in [SI. It would be interesting-and probably difficult-to link the steepness indices and 
stability exponents that appear, with singularity theory, via the algebraic description of 
steep analytic functions given by lllyashenko (see references in [Z]). The latter provides a 
sufficient and almost necessary condition on the jet of  an analytic function for it to be steep. 
It thus somehow parallels Riissman’s non-degeneracy condition ensuring the applicability 
of KAM theory. 

-The periodic orbit methods is particularly well suited for the investigation of  systems 
with (possibly infinitely) many degrees of freedom. The discrete case of chains, crystals 
etc, has been under investigation for some years and we shall not report on this here. what 
about PDEs? Can one use a suitable modification of the method to attack some specific 
problems, as for instance particular cases of homogeneization phenomena? 

-In a different vein, notice that the principal symbols of (pseud0)differential operators 
are usually not of the form studied in classical mechanics. So a large part of the theory 
would have to be rewritten ab initio before it can be applied to study the charateristic flows 
of linear problems. One may think of media with slowly varying structure coefficients, 
say an optical medium with slowly varying refraction index. The corresponding classical 
system is then integrable in the adiabatic approximation, i.e. if one freezes the coefficients. 
Under suitable conditions, a form of Nekhoroshev’s theory should predict that light rays 
(‘characteristic strips’) look almost like straight lines, over a distance which is exponential 
w.r.t. the typical length of variation of the refraction.index. What does that say about the 
waves? 

-Finally and, somewhat connected to this type of questions, is the problem of the 
relevance of stability theory over exponential times to semi-cl+sical mechanics. The semi- 
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classical theory of near integrable systems is a two-parameter theory (e and 8) with highly~ 
non-commuting limits. Now geometric objects allow for the construction of quasimodes, as 
has been done for KAM tori (of maximal dimension) and stable periodic orbits. But finite- 
time results are obviously difficult to translate into spectral information. One of the only 
known ways of achieving this is by analytic continuation in the spectral plane, uncovering 
‘resonances’, in the sense of quantum theory, but this is restricted to a very special class of 
problems (Schrodinger equation with dilation analytic potentials in particular). ‘Classical’ 
perturbation theory, of which results over exponentially long times appear as a crowning 
achievement, is thus really difficult to use semi-classically, and in fact, to the author’s 
knowledge, only very simple results (essentially Birkhoffs normal form theory to a finite 
order) have been applied to date, at least in a rigorous mathematical setting. Perhaps the 
periodic orbit methods can be useful in that respect, although one should remember that we 
used unperturbed periodic orbits. Drawing a parallel with the chaotic (hyperbolic) case, in 
which the true periodic orbits seem to play a decisive role in analysing the spectrum (cf the 
Gutzwiller-Guillemin-Duistermaat trace formula) is tantalizing, but could be misleading. 
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