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Nonlinear traveling waves that are precursors to laminar-turbulent transition and capture the main
structures of the turbulent buffer layer have recently been found to exist in all the canonical parallel
flow geometries. The present work examines the effect of polymer additives on these “exact
coherent states” �ECS� in the plane Poiseuille geometry, using the FENE-P constitutive model for
polymer solutions. In experiments with a given fluid, Reynolds and Weissenberg numbers are
linearly related �i.e., Wi/Re=const�. In this situation, we study the effects of viscoelasticity on
velocity field and polymer stress field along some experimental paths, which represent different flow
behaviors as Re �and Wi� increases. The changes to the velocity field for the viscoelastic nonlinear
traveling waves qualitatively capture many of those experimentally observed in fully turbulent flows
of polymer solutions at low to moderate levels of drag reduction: drag is reduced, streamwise
velocity fluctuations increase, and wall-normal and spanwise velocity fluctuations decrease. The
mechanism underlying these observations is the suppression of streamwise vortices by the polymer
forces exerted on the fluid. Specifically, at sufficiently high wall shear rates, viscoelasticity
completely suppresses these streamwise vortices in the near-wall region, as is found in experiments
in the maximum drag reduction regime. The mean shear stress balance for the nonlinear traveling
waves shows that Reynolds shear stress decreases and polymer stress increases monotonically with
the increase of viscoelasticity, as is found in full turbulence. The study of the influence of the
viscoelasticity on the turbulent kinetic energy and Reynolds stress budgets shows that as Re �and
Wi� increases, there is a consistent decrease in the production, diffusion, and dissipation of turbulent
kinetic energy. The decrease in the velocity pressure gradient term leads to a redistribution of the
turbulent kinetic energy among the streamwise, wall-normal and spanwise directions. The influence
of the rheological parameters on the viscoelastic ECS is analyzed. It is found that the degree of drag
reduction is determined primarily by the extensional viscosity and Weissenberg number. The
optimum wavelength conditions under which the viscoelastic ECS first come into existence are also
investigated. The wavelengths in streamwise and spanwise directions and the wall-normal extent of
the ECS all increase monotonically with the increase of viscoelasticity, as is found in
experiments. © 2007 American Institute of Physics. �DOI: 10.1063/1.2748443�

I. INTRODUCTION

The reduction of turbulent drag by polymer additives has
received much attention since it was first observed experi-
mentally in 1940s that very small polymer concentrations, on
the order of ten parts per million by weight, can lead to drag
reduction of 50% or greater.1–4 After six decades of research,
the subject remains an active area of research, in part be-
cause of applications but also because it lies at the intersec-
tion of two complex and important fields: turbulence and
rheology. A better understanding of this phenomenon may in
turn yield insights into both the dynamics of drag-reducing
fluids and of turbulent flows. The goal of the present work is
to address turbulent drag reduction in the context of the
dominant structures in the turbulent buffer layer, an approach
that turns out to touch on many key aspects of the drag
reduction phenomenon.

Studies of drag-reducing fluids indicate that at least near
on onset Reynolds number for drag reduction, the effects of
the polymer are confined primarily to the buffer layer region
of the flow,1,5–8 where the production and dissipation of tur-
bulent kinetic energy peak.9 Experimental observations and
direct numerical simulation �DNS� studies show that the
dominant structures of the buffer layer are pairs of
streamwise-aligned, counter-rotating vortices.9–11 These vor-
tices pull slower moving fluid away from the wall, forming
low-speed, streamwise velocity streaks. In drag-reducing
flows, these structures are modified by polymers: the buffer
region thickens,1 the coherent structures in this region shift
to larger scales,5,12–14 and the bursting rate decreases.5 These
structural changes are accompanied by enhanced root-mean-
square �rms� streamwise velocity fluctuations �at least in the
moderate drag reduction region� and reduced rms wall-
normal and spanwise velocity fluctuations.15 Moreover,
streamwise vorticity fluctuations12 and Reynolds shear
stress12,16,17 are also decreased. These changes become more
pronounced as the extensional viscosity of the polymer solu-
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tion is increased.8,16,18,19 More recent experimental
results20,21 reveal that in the maximum drag reduction
�MDR� region the ejections from the wall are eliminated and
the wall vortices that sustain turbulence in a Newtonian fluid
are completely destroyed. Low-speed streamwise velocity
streaks are essentially absent. A recent DNS study22 also
shows that in this regime the streamwise-aligned vortices are
greatly or almost entirely suppressed, while the number of
hairpin type vortices is increased. These observations suggest
that the coherent structures in buffer layer region are crucial
in addressing rheological drag reduction in wall-bounded tur-
bulent flows.

To better understand the effect of polymer on the buffer
layer, we wish to study a model flow that has similar struc-
tures as seen in this region but without the full complexities
of time-dependent turbulent flow. A recent advance in this
direction has come with the recognition that the Navier-
Stokes equations support nonlinear traveling wave states, the
family of so-called “exact coherent states” �ECS�. These
states capture the dominant streamwise-aligned counter-
rotating vortex pairs that flank streaks in the streamwise ve-
locity. These states have been found in plane Couette
flow,23–26 plane Poiseuille flow27–29 and pipe flow.30,31

We focus here on the plane Poiseuille geometry
�pressure-driven channel flow� with average wall shear stress
�w, of a fluid with dynamic viscosity �, density �, and kine-
matic viscosity �=� /�. The centerline laminar velocity U
and half-channel height l define outer scales for the flow.
Inner scales are the friction velocity u�=��w /� and the near-
wall length scale lw=� /u�. As usual, quantities expressed in
terms of these so-called “wall units” are denoted with a su-
perscript “�.” The friction Reynolds number Re�=u� l /� is
simply the half-channel height expressed in wall units. The
Weissenberg number is denoted Wi=��̇w=�u�

2 /�, where � is
polymer relaxation time and �̇w is the average wall shear
rate. Experimental results for a given fluid and flow geom-
etry lie on curves of constant elasticity parameter El
=2�� / l2.

Figure 1 shows the streamwise velocity field and the
streamwise vortices for one of these states at the minimum
Reynolds number at which the ECS can exist for Newtonian
flow. Note that there is no turbulent core in the channel. The
channel is composed of two buffer layer regions with one
sitting on top of the other; reflection symmetry boundary
conditions �as discussed in Sec. II� are imposed at the chan-
nel centerline. The streamwise vortices are identified using
the Q-criterion as discussed in Refs. 32–34. The isosurfaces
of Q isolate areas where the strength of rotation overcomes
the strain. In our study, we use a two-dimensional �2D�
Q-criterion to eliminate the strong effect of the shear at the
wall: Q= 1

2 ���2D�2− �D2D�2�, where �2D= 1
2 ��v2D

− ��v2D�T� and D2D= 1
2 ��v2D+ ��v2D�T� are vorticity tensor

and rate of strain tensor, respectively; �v2D

= ��vy /�y , �vz /�y ; �vy /�z , �vz /�z�. The ECS are periodic
in the streamwise �x� and spanwise �z� directions; for a given
pair of wavelengths �Lx ,Lz�, they appear in pairs at finite
amplitude in saddle-node bifurcations as the Reynolds num-
ber Re increases. While both of these solutions are unstable,
one of these states, which we will call the “high drag” state

due to its lower mean velocity at a given Reynolds number,
has greater stability relative to the “low drag” ECS—the high
drag solutions have one more stable direction in phase space
than the low drag solutions. Recently, Waleffe and Wang
have shown that these states are unconnected with the lami-
nar state even as the Reynolds number tends to infinity.35 For
Couette flow with no-slip boundary conditions, the ECS first
appear at Re	128 �see Ref. 29� �i.e., this Reynolds number
is the lowest for which an ECS solution can be found for any
wavelength pair�, where the Reynolds number is based on
half the velocity difference between the walls and the half-
channel height. For pipe flow, they appear at Re	1300,30

where the Reynolds number is based on the laminar center-
line velocity and pipe radius, and in the case of interest here,
i.e., plane Poiseuille flow, they appear at Re=977, where the
Reynolds number is based on the laminar centerline velocity
and the half-channel height. The appearance of the ECS
presages the transition to turbulence in all these geometries.
In Couette flow, persistent turbulence is seen for Re�325,36

for pipe flow at Re�2100,37 and for channel flow at Re
�1000.38 Note that these experimental values for transition
are for the existence of persistent, fully developed turbu-
lence; intermittent turbulent spots can appear well below
these values.

The connection between ECS in plane Poiseuille flow
and near-wall turbulence can be further supported by a study
of length scales.29 The friction Reynolds number

Re� �=�2Re� at which the plane Poiseuille flow ECS appear
is 44.2. This is simply the wall-normal extent of the ECS,
expressed in wall units. The spanwise wavelength Lz

+

=105.6 of the ECS at onset closely captures the streak spac-
ing of 
100 wall-units widely observed in experiments over
a large range of Reynolds numbers.9 Minimal channel flow,
i.e., flow in the smallest computational domain that repro-
duces the velocity field statistics of near-wall turbulence,

FIG. 1. A nonlinear traveling wave state at Re=977 �Re�=44.2� in the plane
Poiseuille geometry. The full channel is shown, with the two walls located at
y+=0 and 88.4, respectively. The panels show contours of streamwise ve-
locity vx �white for the highest velocity, black for the lowest velocity�. The
constant isosurfaces are Q+=0.008 �black�.
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gives a range for the streamwise length Lx
+ of 250–350, com-

pared to Lx
+=273.7 for the ECS, and a spanwise length that is

again approximately 100 wall units.39 In the minimal channel
flow the statistics of the near-wall region are faithfully cap-
tured up to a wall-normal distance y+	40, while again we
note that the wall-normal size of the onset ECS is Ly

+=Re�

=44.2. It should be pointed out that this minimum channel
contains a single wavelength of a wavy streak and a pair of
quasi-streamwise vortices, which is the same structure seen
in the ECS. Another approximately Reynolds-number-
invariant length scale in near-wall turbulence is the peak in
the production of turbulent kinetic energy at y+	12;40 the
channel flow ECS also captures this length scale.41 The
length scales at which the ECS first appear are in close
agreement with the length scales of near-wall turbulence.

Beyond capturing the observed length scales of the
buffer region structures, recent research also indicates that
the ECS are saddle-points in phase space around which the
strange attractor42 of near-wall turbulence is built. Recent
studies by Kawahara and Kida43 and Toh and Itano44 find
periodic solutions in minimal channel flows that are bifurca-
tions of the ECS. The bursting trajectories in fully turbulent
flows seem to be built around these periodic solutions. A
further indication of this comes from a study by Jiménez and
Simens that applies a numerical filter to DNS of channel
flow to isolate the near-wall region from the mainstream
turbulence.45 The simplest �nontrivial� flow structure, found
when the numerical mask is at y+	50, is a traveling-wave
solution that has qualitatively the same structure as the ECS.
The length scales of this traveling wave �Lx

+	250, Ly
+	50,

and Lz
+	150� are similar to the optimum values for the chan-

nel flow ECS described above. As the mask moves further
away from the wall, these traveling-wave solutions bifurcate
into quasiperiodic solutions. These solutions then evolve into
bursts of full-scale turbulence with the flow being essentially
turbulent when the numerical filter reaches y+	70. These
results along with the existence of the ECS indicate that
staggered streamwise vortex traveling wave patterns are au-
tonomous in wall-bounded shear flows and provide, at least
in part, the foundation on which the near-wall turbulent fluc-
tuations are built.

The self-sustaining process that underlies the ECS con-
sists of three interacting, concurrent subprocesses: �1� a per-
turbation of the base flow in the form of weak streamwise
vorticities redistributes the streamwise momentum to create
large spanwise fluctuations in the streamwise velocity, i.e.,
the “streak”; �2� the spanwise inflections lead to three-
dimensional Kelvin-Helmholtz-like instability in which a
three-dimensional disturbance develops; �3� the concentrated
vorticity arising from the instability develops into almost
streamwise-staggered vortices that regenerate the
streaks.46–48

Because the first effects of the polymer arise in the
buffer region, whose structures the ECS evidently capture,
these flows provide a natural starting point for understanding
drag reduction. In prior work, we have studied the initial
effects of viscoelasticity on ECS in the plane Couette and
plane Poiseuille geometries.49–52 Those studies provided
some structural insight into the mechanism of drag reduction.

The polymer molecules become highly elongated as they
move through the streamwise streak. As they move out of the
streak and into one of the vortices, the polymer molecules
relax. This relaxation produces a polymer force that reduces
the strength of the vortices, which causes the self-sustaining
process to collapse and leads to drag reduction, as is found
by DNS studies.53 In our recent work, we have taken a
broader view, examining the region of parameter space
�Re,Wi� in which ECS exist and its connection to experi-
mental observations.54 A schematic is proposed, which cap-
tures many key aspects of turbulent drag reduction, including
the delay in transition to turbulence, drag reduction onset
thresholds, and diameter and concentration effects. At suffi-
ciently high wall shear rates, viscoelasticity is found to com-
pletely suppress these ECS, as is found in recent experimen-
tal and DNS studies in the MDR region.20–22

The present work addresses the effect of viscoelasticity
on exact coherent states in the plane Poiseuille geometry. We
illustrate the changes in the bifurcation diagram and the cor-
responding changes in the region of parameter space in
which these solutions exist. In particular, the changes in the
velocity field and polymer stress field along some experi-
mental paths are studied. These results are then related to the
physics of the interaction between the polymer dynamics and
the flow field, to illustrate the physical mechanism by which
viscoelasticity affects these states. These changes are further
investigated through budgets of turbulent kinetic energy,
Reynolds stress and mean shear stress. The influence of rheo-
logical parameters on viscoelastic ECS and the changes in
optimum wavelengths of viscoelastic ECS are also studied.

II. MATHEMATICAL FORMULATION
AND SIMULATION DETAILS

Denoting the streamwise direction as x, the wall-normal
direction as y, and the spanwise direction as z, we consider
pressure-driven flow with no-slip boundary conditions at the
wall

vx = vy = vz = 0 at y = − 1, �1�

where vx, vy, and vz are streamwise, wall-normal, and span-
wise components of the velocity v, respectively. We will only
simulate half of the channel and apply reflection symmetry
boundary conditions at the channel centerline y=0:

�vx

�y
= vy =

�vz

�y
= 0. �2�

The laminar centerline velocity U and the half-channel
height l are used to scale velocity and position, respectively.
Time t is scaled with l /U, and pressure p with �U2. The
stress due to the polymer, i.e., �p, is nondimensionalized with
the polymer elastic modulus G=�p /�, where �p is the poly-
mer contribution to the viscosity and � is the time constant
for the polymer—the polymer model is described below. The
momentum balance and the equation of continuity are

�v

�t
+ v · �v = − �p + 	

1

Re
�2v + �1 − 	�

2

Re Wi
�� · �p� ,

�3�
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� · v = 0, �4�

where �s is the solvent viscosity, Wi=��̇w is the Weissen-
berg number based on wall shear rate, �̇w=2U / l, and 	
=�s / ��s+�p� is the fraction of the total zero-shear viscosity
that is due to the solvent. The Reynolds number Re is based
on the total viscosity: Re=�Ul / ��s+�p�. This paper is con-
cerned with traveling wave solutions of the form
v�x ,y ,z , t�=v�x−Ct ,y ,z ,0�, where the traveling wave veloc-
ity C is part of the solution. Looking for such solutions is
equivalent to looking for a three-dimensional velocity field
v�x ,y ,z� that satisfies the above mentioned equations with �t

replaced by −C�x. We seek “sinuous” traveling wave solu-
tions that satisfy the shift-reflect symmetry

vx�x,y,z� = vx�x + Lx/2,y,− z� , �5�

vy�x,y,z� = vy�x + Lx/2,y,− z� , �6�

vz�x,y,z� = − vz�x + Lx/2,y,− z� . �7�

The polymer stress is computed with the FENE-P con-
stitutive model, in which each polymer molecule consists of
two beads, where the mass and drag of the molecule are
concentrated, connected by a FENE �finitely extensible non-
linearly elastic� spring. The governing equation for this
model is55

�

1 − �tr � � b� +
Wi

2
� ��

�t
+ �v · ��� − �� · �v�

− �� · �v�T = � b

b + 2
� , �8�

where � is a nondimensional conformation tensor and b is
proportional to the maximum extension of the dumbbell—
tr � cannot exceed b. The polymer contribution to the stress
is given by

�p =
b + 5

b � �

1 − �tr � � b� − �1 −
2

b + 2
�� . �9�

It is well recognized that extensional rheology plays a
key role in turbulent drag reduction. A simple measure of the
importance of extensional polymer stress is the relative mag-
nitude of the polymer and solvent contributions to the steady
state extensional stress in uniaxial extension. We define the
extensibility parameter

Ex �
�


+

3�s
, �10�

where �

+ is the polymer contribution to the steady state

uniaxial extensional viscosity of the fluid in the limit of high
extension rate. For the FENE-P model this expression
becomes

Ex =
2b�1 − 	�

3	
. �11�

We consider the situation 1−	�1, in which case shear-
thinning is negligible, as the polymer contributes only a very
small amount to the total shear viscosity of the solution. In

this situation, significant effects of the polymer on the flow
are expected only when Ex�1. Finally, note that experimen-
tal results for a given fluid and flow geometry lie on curves
of constant elasticity parameter El=2���s+�p� /�l2=Wi/Re.
For this reason, we will call lines with constant El “experi-
mental paths.”

The conservation and constitutive equations are solved
through a Picard iteration. A Newtonian ECS, as computed in
Ref. 27, is first used to calculate the polymer stress tensor �p

by inserting the velocity field in the evolution equation for �
and integrating for a short length of time, usually one time
unit �l /U�. For this �p, a steady state of the momentum and
continuity equations is found by Newton iteration. The re-
sulting velocity field v is used to compute the new �p, and
the process is repeated until the velocity and polymer field
converge to a steady state.

The momentum and continuity equations are discretized
using a Fourier-Chebyshev formulation with typically a 9
179 grid. The conformation tensor � is discretized with
a third-order, compact upwind difference scheme.56,57 In this,
as in most previous computational studies of polymers in
turbulent flows, we have found it necessary to add an artifi-
cial stress diffusivity ��1/ �Sc Re���2�, to Eq. �8� to achieve
numerical stability. The Schmidt number Sc, which is the
ratio of the momentum diffusivity to stress diffusivity, is set
to value of 1.0. This value of Sc, though artificially small, is
greater than or of the same order of magnitude as that used in
many DNS studies.12,17,58,59 In the range of Sc where solu-
tions can be obtained, the bifurcation diagrams shown in Fig.
2 are insensitive to its value. The stress diffusion term is
integrated implicitly by the Crank-Nicholson method with
the other terms of the equation integrated using the Adams-
Bashforth method. This equation is solved on a finer mesh
than the momentum, continuity pair—typically 484948.
Higher resolutions �101910 for the momentum, continu-
ity pair, and 646564 for the polymer stress� show less
than a 0.35% change in the centerline mean streamwise ve-
locity Umax at Re=1600 and Wi=32 compared to the lower
resolutions.

FIG. 2. Bifurcation diagram for Newtonian and viscoelastic ECS; Lx

=2� /1.0148 and Lz=2� /2.633 �Ref. 54�.
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III. RESULTS

A. Existence of the ECS

In the Newtonian limit, the minimum Reynolds number
at which ECS exist is Re=977 �Re�=44.2�, with Lx

=2� /1.0148 and Lz=2� /2.633. All results presented in this
section are with these “optimal” length scales. �The effects of
viscoelasticity on the optimal length scales will be discussed
in the later part of this paper.� In inner units, these lengths
correspond at Re�=44.2 to Lx

+=273.7 and Lz
+=105.5. These

states arise via a saddle-node bifurcation as shown in Fig. 2.
The solutions are plotted using the maximum in the root
mean square wall-normal velocity fluctuations for the solu-

tion �vy�
2�1/2. �Hereafter, an overbar indicates that the variable

is averaged over the streamwise and spanwise directions.�
The solutions with higher maximum wall-normal velocity at
a given Re are called “high drag” solutions due to their lower
mean velocity at the centerline of the channel compared to
the “low drag” solutions. All results in this paper are for the
high drag states. Although both solutions are unstable, their
status as precursors to transition and their structural similar-
ity to buffer layer turbulence suggest that they are saddle
points that underlie in part the strange attractor of turbulent
flow.

Figure 2 indicates that the addition of polymer changes
the Reynolds number Remin at which the ECS come into
existence �i.e., the position of the saddle-node bifurcation
points�. Curves of ECS existence boundaries Remin versus
Wi are given, for two parameter sets, by the thick solid
curves on Fig. 3. These separate the region where the ECS
can exist �above the curves� from the region where no ECS
exist, for the given values of Ex and 	. With our current
computational approach, the highest Re and Wi that are ac-
cessible for Ex=100 and 	=0.97 are about 2500 and 46,
respectively. However, higher Re and Wi may be accessible
with Newton iteration directly on the entire coupled system
of momentum and polymer conformation equations, along
with the wave speed parameter.

While at low Wi, there is a slight decrease in Remin from
the Newtonian value, once Wi exceeds about 45, Remin for

Ex=100 is more than doubled. This dramatic increase in
Remin after onset is consistent with the experimental obser-
vation that the transition to turbulence in a polymer solution
is delayed to higher Re than in the Newtonian case.8,60,61

Recall that the Reynolds number is simply related to the
wall-normal length scale of the structure measured in wall
units, i.e., Re= �Ly

+�2 /2 �and in the present situation, Ly
+

=Re��. In experiments the thickness of the buffer region �the
wall-normal extent of this region in wall units� is known to
increase as drag reduction increases.1 The results for the vis-
coelastic ECS closely mirror this increase in Ly

+. The curve
labeled “drag reduction onset” denotes where the centerline
mean velocity Umax of the viscoelastic upper branch ECS
first exceeds that of the Newtonian upper branch ECS at the
same Reynolds number. This onset Weissenberg number
Wionset decreases with increasing Reynolds number; it ap-
proaches Wionset	9 at Re	2400, which is slightly high
compared to the result Wionset	6 predicted by two recent

viscoelastic DNS studies,19,62 but in those studies El was
significantly smaller, and the onset Reynolds number corre-
spondingly larger, than the values considered here—and in
any case there is no reason to expect exact correspondence
between onset values from DNS results for fully turbulent
flow and the ECS, as the former is more complex than the
latter.

Figure 4 shows mean velocity profiles at six different
sets of parameter values, each corresponding to a point on
the existence boundary for the ECS �i.e., a bifurcation point�.
Remarkably, when plotted in outer units, they all fall on vir-
tually the same curve. Therefore, at least for the values of Re
and Wi that are currently accessible in our simulations, we
observe that mean velocity profiles at onset of the ECS have
a roughly universal form, which is insensitive to polymer
extensibility, concentration, Weissenberg number, or Rey-
nolds number.

We now turn to the study of the evolution of the ECS
along some experimental paths; i.e., lines of constant El. Two
such paths, denoted by the thin solid lines with hollow sym-
bols, are shown in Fig. 3. Consider first the case El=0.010;
as Re and Wi increase, the path intersects the ECS existence

FIG. 3. Existence boundaries and drag reduction regimes for viscoelastic
ECS; Lx=2� /1.0148 and Lz=2� /2.633 �Ref. 54�.

FIG. 4. Mean streamwise velocity for Newtonian and viscoelastic ECS on
the ECS existence curve; 	=0.97, Ex=100 �Ref. 54�.
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boundary at point A and the drag reduction onset threshold
curve at point B, where the transition to turbulence and the
onset of drag reduction occur, respectively. Turning to the
case El=0.019, mean velocity profiles expressed in wall
units are shown for various values of Re in Fig. 5. For this
parameter set, drag reduction is observed immediately upon
onset of the ECS. For Re=2200, Wi=41.8, the degree of
drag reduction, defined as the percentage decrease in the fric-
tion factor relative to that of the Newtonian ECS at the same
Re �i.e., wall shear rate�, is about 40%.

Continuing upward in Re and Wi at El=0.019, the path
re-intersects the ECS existence boundary at point C in Fig. 3.
�We suspect that this will also happen in the El=0.010 case,
but at higher Re and Wi than are accessible with our current
computational approach.� Above this point the flow can no
longer sustain these ECS; viscoelasticity completely sup-
presses the near-wall vortical structures. This result is con-
sistent with experimental observations and DNS results in
the MDR regime that, at least at relatively low friction Rey-
nolds number, the eruptions of low-momentum fluid from the
wall are eliminated and the near-wall streamwise vortices are
significantly or almost completely destroyed.20–22 Note, how-
ever, that in the MDR regime the flow does not relaminarize,
as would be suggested by a scenario based only on the ECS.
Thus, we conjecture that as the ECS are suppressed, other
structures are unmasked and in the MDR regime become
dominant.

The changes to the average rms streamwise, wall-
normal, and spanwise velocity fluctuations along the experi-
mental path of El=0.019, each scaled by the friction velocity
u�, are given in Fig. 6. The peak in �vx�

2�1/2 occurs at y+

	12 with peak value of about 2.5, both of which are very
close to 12 and 2.7 found in experiments and DNS of fully
turbulent flows.63,64 For the viscoelastic ECS, this peak shifts
away from the wall monotonically with the increase of vis-
coelasticity. Away from the wall, the rms streamwise velocity
fluctuations increase significantly with the increase of vis-
coelasticity while the rms wall-normal and spanwise velocity

fluctuations decrease. Note that the ECS have no turbulent
core, as shown in Fig. 1. By symmetry, vy =0 at the channel
centerline, so �vy�

2�1/2 vanishes there. Contrarily, DNS of
minimal channel flows39,45 and fully turbulent flows12,53,62

contain a homogeneous turbulent core at the center of the
channel, which produces uniform nonzero rms velocity fluc-
tuations in that region. However, the monotonic increase in
�vx�

2�1/2 and the monotonic decrease in �vy�
2�1/2 and �vz�

2�1/2

with the increase of viscoelasticity, as shown in Fig. 6, are
consistent with experimental observations and DNS
results.1,12 The viscoelastic effect can also be observed in the
reduced Reynolds shear stress −�vx�vy�, as shown in Fig. 7.
Near the wall, it can be shown �see, e.g., Ref. 40� that the
Reynolds shear stress scales as y+3. Near the channel center-
line, no such result holds; we do not have a specific expla-
nation as to why the Reynolds shear stress is so small there.
The Reynolds shear stress peaks in the buffer layer region
with its peak location at y+	30, which is in good agreement
with this peak location at y+	30 observed in fully turbulent
flows.12,62 For the viscoelastic ECS, this peak shifts away

FIG. 5. Mean streamwise velocity for Newtonian and viscoelastic ECS
along the experimental path of El=0.019, Ex=100, 	=0.97 �Ref. 54�. Note
that at Re=1050, 1600, and 2200, the channel centerlines are at y+=45.8,
56.6, and 66.3, respectively.

FIG. 6. Fluctuations in the streamwise, wall-normal, and spanwise velocities
along the experimental path of El=0.019, Ex=100, 	=0.97.

FIG. 7. Reynolds shear stress along the experimental path of El=0.019,
Ex=100, 	=0.97.
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from the wall monotonically with the increase of viscoelas-
ticity, as it does in experiments and DNS of fully turbulent
flows.12,62 The distance of this peak away from the channel
centerline is, however, determined by Reynolds number. The
ECS results here are at low Reynolds number relative to
DNS results. Since the Reynolds shear stress is the wall-
normal flux of streamwise momentum, this result provides a
further indication of drag reduction in the viscoelastic ECS.

Figure 8 shows the contributions to the mean shear stress
as a function of distance from the wall. The stress balance is
given by

− y =
	

Re

1

u�
2

dVx

dy
−

vx�vy�

u�
2 +

2�1 − 	�
Re Wi

�pxy

u�
2 , �12�

where the scaled Reynolds shear stress is −vx�vy� /u�
2, the

Newtonian viscous stress is �	 /Re��1/u�
2��dVx /dy�, and the

mean polymer stress is �2�1−	� / �Re Wi����pxy /u�
2�. Again

we observe qualitative agreement with DNS results.12,17 Rey-

nolds shear stress for viscoelastic ECS decreases monotoni-
cally with the increase of viscoelasticity throughout the
whole channel. The average polymer shear stress shows a
monotonic increase with the increase of viscoelasticity.

Figure 9 shows the product of velocity fluctuations and
the corresponding components of polymer force

f =
2�1 − 	�
Re Wi

� · �p

in wall-normal and spanwise directions, along with the isos-
urfaces of Q+ �which is used to identify the streamwise vor-
tices�. The black regions around the streamwise vortices in-
dicate the anti-correlation between velocity fluctuations and
polymer forces, i.e., the regions where the wall-normal ve-
locity is positive are matched by the negative regions of the
polymer force and likewise, negative regions of wall-normal
velocity correspond to positive polymer force; similar results
can also be observed in the spanwise velocity and polymer
force. This anti-correlation of polymer force with the fluc-
tuation velocity has also been found in DNS of drag reducing
solutions65 and more recently by Stone et al.51 in plane Cou-
ette flow ECS and by Li et al.52,54 in plane Poiseuille flow
ECS. Recalling the importance of these streamwise aligned
vortices in the self-sustaining process in the redistribution of
mean shear, these results indicate that the added polymer
stress is working to suppress the mechanism of the ECS.

Further insight into the influence of the polymers on the
ECS can be gained by studying the spatial distribution of the
polymer stress �p and the associated streamwise vortices.
Figure 10 shows the distribution of tr �p and isosurfaces of
Q+ in the channel for various values of Re �and Wi� along
the experimental path of El=0.019. At relatively low Re �and
Wi�, polymer molecules are only highly stretched in the
near-wall region due to the high shear rate at the wall. As Re
�and Wi� increases, the polymer stress is significantly in-
creased in both near the wall region and the upwellings be-
tween vortices. Furthermore, we see that highly stretched

FIG. 8. Stress balance for viscoelastic ECS along El=0.019, Ex=100,
	=0.97.

FIG. 9. Products of velocity fluctuations and polymer forces. The constant isosurfaces are Q+=0.005 75. Re=1600, Wi=30.4, Ex=100, and 	=0.97. �a� vyfy,
range −1.010−4 �black� to 5.910−6 �white�. �b� vzfz, range −5.310−4 �black� to 3.310−4 �white�.
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molecules are now getting “wrapped into” the streamwise
vortices, where they relax—this relaxation generates the
polymer forces that reduce the strength of the vortices, which
causes the self-sustaining process to collapse and leads to
drag reduction. This observation is more evident by looking
at the evolution of streamwise vortices along the same ex-
perimental path. As Re �and Wi� increases, the isosurfaces of
Q+ become smaller, indicating that the strength of the vorti-
ces is diminishing. In Fig. 10�c�, the streamwise vortices are
almost entirely suppressed by viscoelasticity, which is con-
sistent with the observation that this ECS solution at Re
=2200 and Wi=41.8 �the open circle just left of label “C” in
Fig. 3� is very close to the ECS existence boundary, below
which the streamwise vortices are too weak to sustain these
nonlinear traveling waves. Figure 10 shows a significant in-
crease of the trace of polymer stress �p at the centerline

region as Re �and Wi� increases. This result indicates that in
that region, the polymer molecules are highly stretched in the
spanwise direction.

Besides the distribution of polymer stress, polymer dy-
namics in the plane Poiseuille ECS can be understood by
looking at how polymer molecules move through the flow.
As stated earlier, the ECS appear as steady solutions in an
Eulerian reference frame that moves at the wave speed for
the solution. However in a Lagrangian reference frame, i.e., a
frame that describes the dynamical history of a selected fluid
element,66 the ECS are chaotic, as we now show. As a first
illustration of the qualitative dynamics of fluid trajectories in
the ECS flow, we examine a Poincaré map of the flow, con-
structed by following a fluid element through the flow and
marking where it intersects a plane x=const. Since the ECS
flow is periodic in the streamwise and spanwise directions, a

FIG. 10. Trace of the polymer stress along the experimental path of El=0.019, Ex=100, 	=0.97, range 0 �black� to 3300 �white�. The constant isosurfaces
are Q+=0.008. �a� Re=1050, Wi=19.95; �b� Re=1600, Wi=30.4; �c� Re=2200, Wi=41.8.

FIG. 11. Poincaré map; x+=43.8, Re=1600, Wi=30.4, Ex=100, 	=0.97. Contours are for trace of the polymer stress, tr �p. Range: 0 �black� to 1860 �gray�.
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given trajectory will cross a given plane x=const many
times. Figure 11 shows a Poincaré map obtained by marking
where the trajectory starting at position x+=43.8, y+=56.1,
z+=−53.6 �black “�” in Fig. 11�, with Re=1600 and Wi
=30.4, intersects the plane x+=43.8 �moving in the positive x
direction at the wave speed for the solution� for up to 106

time units. The color coding indicates the magnitude of tr �p
on the trajectory. The single trajectory ultimately samples
almost the entire plane, indicating that it is chaotic. We found
qualitatively identical results independent of the initial con-
dition or intersection plane chosen.

An important consequence of chaotic flow kinematics
for polymer dynamics is that in chaotic flows, material lines
stretch exponentially fast. The average line stretching rate,
measured along a trajectory, is equivalent to the largest Li-
apunov exponent, which we denote as �max �see Ref. 67 for
numerical computation of Liapunov exponents�. It is
straightforward to show �see, e.g., Refs. 50 and 68–71� that,
for a Hookean dumbbell model of a polymer �b→
�, if
Wi����max�1/2, the polymer molecule will stretch indefi-
nitely. Figure 12 shows Wi� versus Wi, and Fig. 13 shows

tr �p versus Wi� along several experimental paths, with 	

=0.97 and Ex=100. The double overbar denotes volume av-
eraging. Clearly the polymer stress becomes very large as
Wi� passes through 1/2, and we have found no ECS to exist
for which Wi��0.64. The point at El=0.019, Wi�=0.64
�rightmost point on the plot� is just before the ECS at that
value of El loses existence �see Fig. 3�.

B. Budgets of turbulent kinetic energy
and Reynolds stress

In the plane Poiseuille ECS, the polymer becomes highly
stretched in near-wall and channel centerline regions and re-
laxes as it moves into and around one of the streamwise
vortices flanking the streak. This relaxation works to “un-
wind” the vortex and to reduce its strength. Since the mecha-
nism that sustains the coherent structures depends on the
vortices to regenerate the streamwise streak, the suppression
of the streamwise vortices leads to a collapse of this mecha-
nism and ultimately to drag reduction. This section looks at
the budgets of turbulent kinetic energy and Reynolds stress
along the experimental path of El=0.019, to better under-
stand the changes in velocity statistics that accompany drag
reduction.

The Reynolds stresses are actually −�vi�v j�, but it is con-

venient and conventional to refer to vi�v j� as the Reynolds
stresses, which we will do henceforth. Scaling the velocity
fluctuations with u� and time with � /u�

2, the budget equation
for the Reynolds stresses for a polymer solution can be writ-
ten as51

�vi�v j�

�t
+ Vk

�

�xk
vi�v j� + Tij

t = Pij + Dij + Rij + Tij
p + �ij + Eij .

�13�

Here, the velocity, pressure, and force due to the polymer

f =
2�1 − 	�
Re Wi

� · �p

are written as sums of mean and fluctuating parts �v=V
+v�, p= P+ p�, and f=F+ f��. The first two terms of Eq. �13�
are zero for the ECS since they only include x-derivatives of

the averaged quantities ��� /�t�vi�v j�→−Cv�� /�x�vi�v j�=0 and

Vx�� /�x�vi�v j�=0�. The terms

Tij
t =

�

�xk
vi�v j�vk� �14�

and

Tij
p = −

�

�xk
�vi�p�� jk + v j�p��ik� �15�

are the transport of kinetic energy by the fluctuating veloci-
ties and the fluctuating pressure, respectively. The production
term

Pij = − vi�vk�
�Vj

�xk
− v j�vk�

�Vi

�xk
�16�

generates Reynolds stresses through interaction with the
mean velocity gradient. For shear flows, which have V

FIG. 12. Changes of Wi� as Wi increases; Ex=100, 	=0.97.

FIG. 13. Changes of polymer stress as Wi� increases; Ex=100, 	=0.97.
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= �Vx�y� ,0 ,0�, the terms P22 and P33 are zero. Thus, there is
no production of wall-normal or spanwise velocity fluctua-
tions due to the mean shear. The pressure-rate-of-strain term

Rij = p�� �vi�

�xj
+

�v j�

�xi
 , �17�

is traceless for an incompressible fluid and does not show up
in the equation for turbulent kinetic energy, which is found
by taking half the trace of Eq. �13�. Therefore, this term
simply redistributes energy from the streamwise velocity
fluctuations to the wall-normal and spanwise velocity fluc-
tuations. As stated earlier, there is no production of either
vy�vy� or vz�vz� by the term of Eq. �16�, so the terms of the
pressure-rate-of-strain act as a pseudo-production term for
wall-normal and spanwise velocity fluctuations. The
pressure-rate-of-strain term �Eq. �17�� and the pressure trans-
port term �Eq. �15�� are decomposition of the velocity-
pressure-gradient term

�ij = Rij + Tij
p = − vi�

�p�

�xj
+ v j�

�p�

�xi
. �18�

The diffusion and dissipation of Reynolds stresses are given
by

Dij =
	

Re

�2

�xk�xk
vi�v j� �19�

and

�ij = −
2	

Re

�vi�

�xk

�v j�

�xk
, �20�

respectively. The direct contribution of the polymer stresses
to the kinetic energy budgets is the velocity-polymer-force
term

Eij = vi�f j� + v j�f i�. �21�

As stated earlier, the equation for turbulent kinetic en-
ergy is found by taking half the trace of Eq. �13�. Figures
14–16 give the various terms in the budget of turbulent ki-
netic energy, KE= �vx

2+vy
2+vz

2� /2, for viscoelastic ECS along
the experimental path of El=0.019. The maxima and minima
associated with the various quantities display a pronounced
monotonic decrease in amplitude with the increase of vis-
coelasticity. The production, diffusion, and dissipation of the
turbulent kinetic energy in viscoelastic ECS are significantly
reduced as Re �and Wi� increases. The transport term for the
viscoelastic ECS is at a lower level in the near wall region.
We also observe that near the wall, the direct contribution of
the polymer increases with the increase of viscoelasticity,
where the polymer stretch �and stress� is highest in the
streamwise streaks. However, this polymer contribution be-
comes negative further away from the wall, where the
streamwise velocity fluctuations increase dramatically with
the increase of viscoelasticity. This observation is consistent
with DNS studies.18 It should also be noted that the scale for
turbulent transport �Fig. 15� and velocity-polymer-force �Fig.
16� terms is an order smaller than the production, diffusion,
and dissipation terms, while the changes in magnitude in

each term due to the increases of viscoelasticity are on the
same order as those changes in production, diffusion, and
dissipation. In addition, a monotonic shift of maxima and
minima further away from the wall is observed with the in-
crease of viscoelasticity for each term in the kinetic energy
budgets. This shift is consistent with the notion of the expan-
sion of the elastic sublayer as has been found
experimentally,1 and all these results for the ECS mirror
those found in DNS of full turbulence.17,18

Figures 17–19 show the contribution to the vx�vy� budgets
along the same experimental path. The production term,
which acts as a sink in this case, decreases in magnitude as
Re �and Wi� increases. However, the pressure-rate-of-strain
term for this budget, which acts to increase Reynolds shear
stress by redistributing energy from the streamwise fluctua-
tions, also decreases. This is again due to the polymer weak-
ening the vortices and reducing the pressure fluctuations. The
reduction in the pressure-rate-of-strain term �source� is
greater than the increase in production term, especially near

FIG. 14. The contribution to the turbulent kinetic energy budget of the
production and dissipation terms for viscoelastic ECS along El=0.019, 	
=0.97, Ex=100.

FIG. 15. The contribution to the turbulent kinetic energy budget of the
diffusion and transport terms for viscoelastic ECS along El=0.019, 	
=0.97, Ex=100.
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one quarter of the channel away from the wall, and the net
effect is a decrease in the Reynolds shear stress. The
velocity-pressure-gradient term �Fig. 19�, which is the sum
of the Rxy and Txy

p terms, decreases as Re �and Wi� increases.
This decrease leads to a redistribution of the turbulent kinetic
energy among the streamwise and wall-normal directions,
which gives rise to the enhanced rms streamwise velocity
fluctuations, reduced rms wall-normal velocity fluctuations
and reduced Reynolds shear stress. The velocity-polymer-
force term is small in this budget because the polymer are
stretched primarily in the streamwise direction �so fy� is
small� and stretching primarily occurs near the wall �so vy� is
smallest where fx� is largest�. These results closely match
those found in DNS of full turbulence.18 The agreement be-
tween our results of the vx�vx�, vy�vy� budgets, and those found
in DNS of fully turbulence is also very good.

It is noticed that the budgets of turbulent kinetic energy
and Reynolds stress for fully turbulent flows at relatively
high Reynolds number always produce a uniform region at
the channel centerline, which corresponds to a homogeneous

turbulent core.17,18 This uniform region is not captured in our
study due to the absence of a turbulent core, as shown in Fig.
1. However, the monotonic increase or decrease in each com-
ponent of turbulent kinetic energy and Reynolds stress with
the increase of viscoelasticity presented here qualitatively
match those of the DNS study.17,18 These effects of vis-
coelasticity on the production �and pseudo-production� terms
can be attributed to the suppression of the vortices by the
polymer. The effects of streamwise vortex suppression are
twofold: First, the redistribution of mean shear due to the
vortices is reduced, increasing the net production of stream-
wise velocity fluctuations by the mean shear.51 Second, the
pressure fluctuations are reduced, decreasing the transfer of
energy from the streamwise velocity fluctuations to the wall-
normal and spanwise directions. These results are consistent
with the structural mechanism for drag reduction proposed
previously.51,54

FIG. 16. The contribution to the turbulent kinetic energy budget of the
velocity-polymer-force term for viscoelastic ECS along El=0.019, 	=0.97,
Ex=100.

FIG. 17. The contribution to the vx�vy� budget of the production and dissipa-
tion terms for viscoelastic ECS along El=0.019, 	=0.97, Ex=100.

FIG. 18. The contribution to the vx�vy� budget of the pressure-rate-of-strain
and velocity-polymer-force terms for viscoelastic ECS along El=0.019, 	
=0.97, Ex=100.

FIG. 19. The contribution to the vx�vy� budget of the velocity-pressure-
gradient term for viscoelastic ECS along El=0.019, 	=0.97, Ex=100.
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C. Effect of variation of rheological parameters

To gain more insight into the influence of rheological
parameters on polymer induced drag reduction, we study the
effects for different contributions of molecular extensibility
b, solvent viscosity ratio 	, and the extensibility parameter
Ex. The comparison of our results with existing experimental
and DNS studies may help us better understand the effect of
polymer additives on these nonlinear traveling waves.

The extensibility parameter Ex measures the importance
of the extensional polymer stress in turbulent drag reduction.
Recall that for the FENE-P model, Ex=2b�1−	� /3	. By
varying 	 and b, it is possible to vary concentration and
chain length while keeping Ex constant. Figure 20 shows the
mean streamwise velocity profiles for various values of 	
and b, with Ex=100, Re=1600, and Wi=28. Clearly, at fixed
Ex, the mean velocity is insensitive to variations of 	 and b.
This observation indicates that the observed drag reduction
effect is determined almost exclusively by the extensional
viscosity and Weissenberg number for a given Re. Stream-
wise vorticity, rms velocity fluctuations, and Reynolds shear
stress also collapse for these various polymer solutions.

Figure 21 shows the relative polymer stretch for the
same conditions used for Fig. 20. With Ex=100, Re=1600,
and Wi=28, polymer chains are only significantly stretched
in the near-wall region due to the high wall shear rate. The
relative stretch for short chain polymers is more significant
than that for long chain polymers.

Since the extensibility parameter is so important, we
next look at the dependence of drag reduction on Ex �it is
possible to vary Ex and 	 while keeping b constant�. The
effect of Ex on the degree of drag reduction �percentage
decrease in the friction factor relative to that of the Newton-
ian ECS at the same Re� for various polymers at Re=1600
and Wi=28 is shown in Fig. 22. Also shown �dashed line� is
the maximum amount of drag reduction possible for the ECS
state under the assumption that the velocity profile at the
ECS existence boundary is “universal,” as implied by Fig. 4.
The upper limit of drag reduction within the ECS existence
region at Re=1600 is about 36%. However, other types of

coherent traveling wave states may be unmasked and be-
come dominant beyond this existence region �at higher Wi
for a given Re�. This suggests that the maximum drag reduc-
tion �MDR� ��36% at Re=1600� is determined by the effect
of viscoelasticity on these dominant structures in the MDR
region. For a given polymer solution �i.e., b=const�, the de-
gree of drag reduction increases monotonically with the in-
crease of Ex �and decrease of 	�, which agrees with the
well-known fact that more drag reduction is observed in
flows with higher extensional polymer stress. The degree of
drag reduction curves for various b eventually lose existence
after reaching the dashed line in Fig. 22, beyond which vis-
coelasticity completely suppress these nonlinear traveling
waves. Another observation about Fig. 22 is that the curves
for various polymers are very close in the range of Ex con-
sidered here, which again confirms our observation in Fig. 20
that the degree of drag reduction is determined almost exclu-
sively by Ex and Wi for a given Re.

FIG. 20. Mean streamwise velocity for viscoelastic ECS; Re=1600, Ex
=100, Wi=28.

FIG. 21. Polymer stretch for viscoelastic ECS; Re=1600, Ex=100,
Wi=28.

FIG. 22. Changes in drag reduction as Ex increases for viscoelastic ECS;
Re=1600, Wi=28, b=3600, 4850, 7350, 14 850.
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D. Study of optimum wavelength conditions

All results presented above are with the “optimal” length
scales of Newtonian ECS. In the Newtonian limit, the mini-
mum Reynolds number at which ECS exist is Re=977
�Re�=44.2�, with Lx=2� /1.0148 and Lz=2� /2.633. In inner
units, these lengths correspond at Re�=44.2 to Lx

+=273.7 and
Lz

+=105.5, which quantitatively capture the length scales of
streamwise vortices in the turbulent buffer layer.9,29,39 These
observations show that in Newtonian turbulence, buffer layer
structure is maintained at a size in wall units that approxi-
mately corresponds to the minimum size that will support a
plane Poiseuille flow ECS. We hypothesize that this principle
remains valid for viscoelastic ECS. In this section, we study
how the ECS existence boundary changes with these “opti-
mal” length scales of viscoelastic ECS �i.e., the values Lx

+

and Lz
+ that lead to the smallest Re for existence of viscoelas-

tic ECS�, and how the optimal length scales of viscoelastic
ECS change due to viscoelasticity.

The viscoelastic ECS solutions depend on six param-
eters: the streamwise wavelength Lx, the spanwise wave-
length Lz, half-channel height l, the extensibility parameter
Ex, the viscosity ratio 	, and the Weissenberg number Wi.
For a given set of Ex, 	, and Wi, the minimum Re �i.e., the
minimum half-channel height� at which the viscoelastic ECS
first come into existence can be computed by varying Lx and
Lz using the conjugate directions method, as has been used to
compute the minimum Reynolds number for existence of
Newtonian ECS.29

The ECS existence boundaries with the optimal length
scales of Newtonian and viscoelastic ECS for 	=0.97, and
Ex=100 are shown in Fig. 23. The existence boundary with
the optimal length scales of viscoelastic ECS is uniformly
but slightly �no more than 5%� lower than the one with the
optimal length scales of Newtonian ECS. This observation
confirms the results reported recently about the viscoelastic
ECS existence boundary in plane Poiseuille flow.54 Hereaf-
ter, all the results shown are at points on the ECS existence
boundary with the “optimal” length scales of viscoelastic
ECS �instead of along a given experimental path�.

We now turn to the study of how the streamwise, span-

wise wavelengths, and wall-normal extent of ECS change
with viscoelasticity. Figures 24 and 25 show the changes in
streamwise and spanwise wavelengths at different Wi on the
ECS existence boundary with the optimal length scales of
viscoelastic ECS for 	=0.97 and Ex=100. We observe that
both streamwise and spanwise wavelengths increase mono-
tonically with the increase of viscoelasticity. At Wi=32, the
increases in streamwise and spanwise wavelengths are about
22% and 18%, respectively, relative to the wavelengths of
Newtonian ECS at onset. These observations are consistent
with experimental observations.5,72,73 The changes in the
minimum friction Reynolds number �i.e., the wall-normal
extent of ECS� Re�, with viscoelasticity is shown in Fig. 26.
With the increase of viscoelasticity, the wall-normal extent of
viscoelastic ECS increases significantly. At Wi=32, the in-
crease in the wall-normal extent of ECS is about 18%. This
observation indicates that the buffer layer thickens with the
increase of viscoelasticity, which is also consistent with ex-
perimental observations.1

FIG. 23. Changes in the minimum Re as Wi increases with the “optimal”
length scales of Newtonian and viscoelastic ECS for 	=0.97, Ex=100.

FIG. 24. Changes in optimum streamwise wavelength as Wi increases; 	
=0.97, Ex=100.

FIG. 25. Changes in optimum spanwise wavelength as Wi increases; 	
=0.97, Ex=100.
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IV. CONCLUSIONS

The Navier-Stokes equations support nonlinear traveling
wave solutions, or exact coherent states �ECS� that capture
well the length scales and dominant flow structures of near-
wall �buffer layer� turbulence. In this work, we have studied
the effect of polymer additives on ECS in the plane Poi-
seuille geometry, focusing on Reynolds numbers slightly
above transition. Many observations about fully turbulent
flows of dilute polymer solutions at low to moderate levels
of drag reduction are captured qualitatively by the effect of
viscoelasticity on the channel flow ECS. Above a critical
Weissenberg number, there is a dramatic increase in the
minimum Reynolds number Remin at which the ECS can ex-
ist. As the Reynolds number is related to the wall-normal
scale of the flow structures, this result mirrors experimental
observations of buffer region “thickening” in drag reducing
flows. Furthermore, since evidence indicates that existence
of the ECS is a prerequisite for transition to turbulence, the
increase in minimum Reynolds number with increasing vis-
coelasticity is also consistent with the experimentally ob-
served delay in transition to turbulence in polymer solutions.
The effect of viscoelasticity on the ECS lies primarily in its
influence on the streamwise vortices that sustain the flow.
The polymer molecules stretch near the wall and in the up-
wellings between vortices, and at relatively high Wi, they
relax as they enter the vortices, resisting the vortex motion,
and thus reducing drag. Specifically, at sufficiently high wall
shear rates, viscoelasticity completely suppresses these
streamwise-aligned vortices in the near-wall region, as is
found in experiments in the MDR region. These effects can
also be seen in the budgets of turbulent kinetic energy, Rey-
nolds stress, and the mean shear stress. The investigation of
rheological parameters shows that the drag reduction effect is
determined almost exclusively by the extensional viscosity
and Weissenberg number. The study of optimum wave-
lengths for viscoelastic ECS shows that wavelengths in both
streamwise and spanwise directions increase monotonically
with the increase of drag reduction. Accompanying this ob-
servation is the thickening of ECS in wall-normal direction.

All these results show that the mechanism of polymer in-
duced drag reduction can be captured by the effect of vis-
coelasticity on these nonlinear traveling waves.
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