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Coherent structures (CS) near the wall (i.e. y+ 6 60) in a numerically simulated
turbulent channel flow are educed using a conditional sampling scheme which extracts
the entire extent of dominant vortical structures. Such structures are detected from
the instantaneous flow field using our newly developed vortex definition (Jeong &
Hussain 1995) – a region of negative λ2, the second largest eigenvalue of the tensor
SikSkj + ΩikΩkj – which accurately captures the structure details (unlike velocity-,
vorticity- or pressure-based eduction). Extensive testing has shown that λ2 correctly
captures vortical structures, even in the presence of the strong shear occurring near
the wall of a boundary layer. We have shown that the dominant near-wall educed (i.e.
ensemble averaged after proper alignment) CS are highly elongated quasi-streamwise
vortices; the CS are inclined 9◦ in the vertical (x, y)-plane and tilted ±4◦ in the
horizontal (x, z)-plane. The vortices of alternating sign overlap in x as a staggered
array; there is no indication near the wall of hairpin vortices, not only in the
educed data but also in instantaneous fields. Our model of the CS array reproduces
nearly all experimentally observed events reported in the literature, such as VITA,
Reynolds stress distribution, wall pressure variation, elongated low-speed streaks,
spanwise shear, etc. In particular, a phase difference (in space) between streamwise
and normal velocity fluctuations created by CS advection causes Q4 (‘sweep’) events
to dominate Q2 (‘ejection’) and also creates counter-gradient Reynolds stresses (such
as Q1 and Q3 events) above and below the CS. We also show that these effects are
adequately modelled by half of a Batchelor’s dipole embedded in (and decoupled
from) a background shear U(y). The CS tilting (in the (x, z)-plane) is found to be
responsible for sustaining CS through redistribution of streamwise turbulent kinetic
energy to normal and spanwise components via coherent pressure–strain effects.

1. Introduction
During the past three decades, numerous types of coherent structures (CS) have

been proposed to explain experimentally observed phenomena – notably, the cele-
brated ‘bursting’ process – in turbulent boundary layers. The so-called ‘bursting’ is
responsible for most turbulence production near the wall and thus increased turbulent
drag and mixing, making it the most dynamically significant event. Primarily because
of its pervasive technological relevance, the turbulent boundary layer has been studied
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exhaustively, employing experimental, theoretical and numerical tools; yet this pro-
totypical flow is far from being adequately understood. The review articles, let alone
research papers, on this topic are far too numerous to be cited; we mention only two
examples: Cantwell (1981) and Robinson (1991). Considering ‘bursting’ alone, there
is yet no consensus on the associated CS. The various boundary layer CS proposed
to date differ not only in their geometry, strength, and orientation, but also in their
dynamical roles; further, there is also no consensus on their evolutionary dynamics.
Why an adequate description of boundary layer CS is so difficult is captured well
by Fiedler (1988): “Thus, when studying the literature on boundary layers, one is
soon lost in a zoo of structures, e.g. horseshoe- and hairpin-eddies, pancake- and
surfboard-eddies, typical eddies, vortex rings, mushroom-eddies, arrowhead-eddies,
etc . . . ”. While several types of CS may in fact exist in the outer region of turbu-
lent boundary layers, it appears that the buffer region is dominated by elongated
quasi-streamwise structures. The primary objective of our study is to identify and
delineate the geometrical and dynamical details of dominant, near-wall CS as well
as to interpret, by using tractable vortex dynamics arguments, the significant events
recorded in previous conditional averaging studies. A salient feature of our study is
the eduction (i.e. by ensemble averaging after appropriate relative alignment) of the
three-dimensional field of the underlying CS from numerous realizations so that a
generic model (not necessarily identical to any instantaneous event which consists
of coherent and incoherent motions) is deduced to elucidate the dynamics in the
turbulent boundary layer (Jeong & Hussain 1992; Hussain 1986).

Flow visualization studies of turbulent boundary layers provide evidence that
observed bursting events are recurrent features near the wall (Kline et al. 1967;
Corino & Brodkey 1969). Willmarth & Lu (1972) showed experimentally that most
Reynolds stress production occurs during bursting, and a number of conditional
averaging techniques have been developed to capture this phenomenon. The Q2
(Quadrant 2), Q4 (Quadrant 4) (Willmarth & Lu 1972) and VITA (Variable Interval
Time Average; Blackwelder & Kaplan 1976) eduction schemes are the more popular
ones. From VITA and quadrant analysis of Reynolds stress, Blackwelder & Eckelman
(1979) suggested that counter-rotating streamwise vortices (separated in the spanwise
direction) with a streamwise length of 1000 wall units are dominant. It is important
to note that eduction based upon the velocity signal is unable to reveal the spatial
details of the underlying CS due to the inherent smearing, making accurate analysis of
CS kinematics and dynamics impossible. Studies by Townsend (1979) and Mumford
(1982) are notable for capturing qualitative features of two-dimensional cuts (in
the x, y-plane) of CS, leaving the three-dimensional geometry and the dynamics
rather obscure. Building on the approach used in these two studies, Stretch (1989)
used a template matching technique based on known trial patterns of velocity and
vorticity to educe CS in a turbulent channel flow; wall-attached vortices extending
to the outer region (channel centreline) were conjectured to be dominant. The above
conditional averaging studies are rather inconclusive regarding CS since they did
not directly extract vortical structures, shown in this paper to be crucial to the
near-wall dynamics. This study is consistent with our longstanding concepts of CS as
dynamically significant, large-scale flow regions of instantaneously correlated vorticity
fluctuations (Hussain 1980, 1983a). The goal here is to record the features of the
underlying (i.e. educed) CS which capture the dominant three-dimensional dynamical
events in the boundary layer by flow decomposition into coherent and incoherent
parts and thus to produce a conceptual model. This approach is a continuation of
our efforts in free shear flows (e.g. Hussain & Zaman 1980; Husain & Hussain 1993).
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Using instantaneous isopressure surfaces obtained from a numerically simulated
boundary layer (Spalart 1988), Robinson (1991) showed that quasi-streamwise struc-
tures are in fact prominent near the wall. Since his study focused on instantaneous
events, ensemble-averaged CS and their dynamics were not addressed. Although the
presence of streamwise vortices in near-wall turbulence is now commonly accepted,
their evolutionary dynamics remain an unresolved issue. A notable initiative in this
regard was that of Jimenez & Moin (1991), who studied channel flow in a minimal
domain size for sustained turbulence. In this way, the evolution of a minimal
periodic flow unit containing at most two near-wall streamwise vortices was tracked
in space and time. In a related study with an even simpler configuration – minimal
Couette flow – Hamilton, Kim & Waleffe (1995) identified an underlying quasi-cyclic
regeneration process.

In this paper, our primary objective is to study the spatial relation of near-wall
CS with experimentally observed events during the so-called ‘bursting’ process. We
are not interested in the details of individual events but in coherent (i.e. ensemble-
averaged), thus statistically significant, structural properties. Although the educed CS
cannot fully explain the evolutionary dynamics (in the absence of forcing), strong
dynamical inferences can be made, as shown here. Furthermore, all of the instan-
taneous kinematic features near the wall classified by Robinson (1991) are captured
in a single ensemble-averaged flow field, reported in our paper. Our general-purpose
eduction scheme (an extension of the algorithm developed by Hussain & Hayakawa
1987 for structure eduction in a turbulent cylinder wake) extracts three-dimensional
structures from the instantaneous near-wall flow – where vortical structures cannot
be detected simply by vorticity magnitude – by utilizing our new definition of a
vortex.

Experimental acquisition of instantaneous velocity and vorticity field data of three-
dimensional flows is currently impossible due to limitations of measurement tech-
nology (the reason why our generic eduction scheme was previously limited to
two-dimensional cuts of vorticity fields of three-dimensional structures; see Hussain
& Hayakawa 1987 and Hayakawa 1992). Thus, we use a well-resolved numerical sim-
ulation database of turbulent channel flow (Kim, Moin & Moser 1987) to educe fully
three-dimensional CS. Using this database, we previously educed spanwise structures
in the outer region (Hussain, Jeong & Kim 1987). Here, we study CS in the buffer
region since most turbulence production occurs here and, most importantly, because
these CS are the ones that matter in drag and heat and mass transfer.

Based on the ensemble-averaged vortical structure, we will associate its spatial
configuration with experimentally observed events such as VITA, quadrant Reynolds
stresses (Q1, Q2, Q3 and Q4), and spanwise inflection of streamwise velocity profiles
u(z). Using an inviscid model of CS, we will demonstrate how negative and positive
Reynolds stress events arise due to cross-stream advection and also explain why Q4
events dominate Q2 near the wall. In addition, an intercomponent (among different
physical directions) energy transfer scenario will be discussed, which is of particular
importance for near-wall turbulence modelling and for development of boundary
layer control techniques.

In the next section, we analyse instantaneous flow fields to evaluate characteristic
features of CS in the buffer region. In §3, our eduction scheme is described along
with its advantages compared with those of previous studies. From the educed data,
a conceptual model for CS showing its spatial relationship with VITA, Q2, and
Q4 events are discussed in §4. We also analyse the phase difference between u and
v fluctuations induced by near-wall CS and the resulting effect on the Reynolds
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stress. In addition, we consider the role of CS on the near-wall vortex line geometry,
intercomponent energy transfer, and the wall pressure distribution.

2. Instantaneous flow field
The numerical simulation database to be analysed consists of turbulent channel

flow at the Reynolds number, Re = Uch/ν ≈ 3300 (Kim et al. 1987), where Uc is
the centreline velocity and h is the channel half-width. Kim et al. have validated
this database by comparison with numerous independent experimental and numerical
studies. Throughout this paper, x(u), y(v) and z(w) denote the streamwise, wall-
normal, and spanwise directions (velocities) respectively. Velocity, length, and time
are normalized in wall units as u+ = u/u∗ ≡ u/(τw/ρ)1/2, l+ = lu∗/ν, t+ = tu∗2/ν,
where τw , ρ and ν denote wall-shear stress, density, and kinematic viscosity. Wall
units are used throughout the paper, unless mentioned otherwise. The grid sizes in
the streamwise and spanwise directions are 17.7 and 5.9 wall units, with variation in
the normal direction from 0.05 near the wall to 4.4 due to the use of cos mapping for
Chebyshev polynomial expansion.

To educe CS and study their dynamics, we must first develop a means to extract vor-
tex cores directly from the instantaneous velocity field. For this purpose, the vorticity
magnitude is a poor choice, since high vorticity magnitude is present everywhere near
the wall, due to the background shear. We have found that such vortices buried within
a vorticity layer are well-represented by connected regions where the second largest
eigenvalue (λ2) of the tensor SikSkj + ΩikΩkj is negative (see Jeong & Hussain 1995);
here Sij ≡ (ui,j + uj,i)/2 and Ωij ≡ (ui,j − uj,i)/2 are the symmetric and antisymmetric
parts of the velocity gradient tensor ui,j ≡ ∂ui/∂xj . This definition has been validated
for a variety of vortical flows, including both DNS data and analytical solutions, even
in situations when both intuitive and other recent definitions (e.g. Hunt, Wray & Moin
1988; Chong, Perry & Cantwell 1990) may not hold. Unlike |ω|, which works well in
free shear flows, this definition correctly identifies a streamwise vortex embedded in
a homogeneous shear flow – a model which qualitatively resembles quasi-streamwise
vortices near the wall. As will be seen, an important advantage of this identification
scheme is that it is not constrained to preferentially detect organized events with
a certain orientation, such as techniques based on velocity vectors in (y, z)-planes
(Bernard, Thomas & Handler 1993) or streamwise vorticity (Jimenez & Moin 1991).

Before considering instantaneous fields, we first show some statistics associated
with the new vortex definition to identify the preferred location and orientation of
vortical structures – information necessary for eduction. It is important to note that
λ2 is positive everywhere outside vortex cores, especially near stagnation regions,
where the positive λ2 magnitude is comparable to the −λ2 values within vortices.
For example, in figure 1(a), λ2 is positive for y+ < 10 and also comparable to λ′2,
reflecting that the viscous sublayer contains no vortices (primes denote root-mean-
square values). The fact that λ2 is much smaller than λ′2 in figure 1(a) for 10 < y+ < 30
indicates substantial cancellation of positive (stagnation) and negative (vortex core)
regions of λ2 in a spatial mean within the buffer region; the negative value of λ2

only suggests that vortices are slightly more common. Thus, λ′2 is more effective than

λ2 as a statistical indicator of vortical events. In figure 1(a), the peak of λ′2(y) is
located at y+ ≈ 23, suggesting the prominence of vortical structures in the buffer
region. The large values of λ′2 at higher y indicate the presence of outer-scale vortices,
which will not be considered here. For comparison, vorticity component and pressure
fluctuation statistics (non-dimensionalized by u∗2/ν and ρu∗2) are shown in figure 1(b).
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Figure 1. (a) Mean and r.m.s. profiles of −λ2; (b) profiles of r.m.s. vorticity components ω′x, ω
′
y , ω

′
z

and pressure p′; (c) cross-correlation of −λ2 with: •, |ωx|; ×, |ωy |; 4, |ωz |; and � pressure fluctuation.

From a structural standpoint, these statistics reflect some important features of both
instantaneous and our educed flow fields. In particular, ω′x has two peaks: one in
the buffer layer due to the streamwise vortices studied here and another at the wall
resulting from the opposite-signed ωx present underneath vortices, created by the
no-slip condition at the wall. Near the wall, ω′z is high due to the presence of low-
and high-speed streaks, which cause strong z-variation of u(y) and hence ωz . The
fact that ω′y peaks at lower y than the second peak of ω′x is consistent with the
ensemble-average CS data presented in §4.4.

To determine the dominant CS orientation, we computed cross-correlation coeffi-
cients (note that all correlations discussed in the following are normalized correlation
coefficients) of −λ2 with each component of vorticity (figure 1c). Near the wall
(10 < y+ < 40), the cross-correlation between −λ2 and |ωx| is much higher than that
between −λ2 and |ωy| or |ωz|; thus, the structures are nearly aligned in the streamwise
direction. The strong negative correlation of each vorticity component magnitude with
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Figure 2. Top view of the isosurfaces of λ2 = −0.03 in the range 0 < y+ < 60.

−λ2 in the viscous sublayer implies that large vorticity here is not associated with
vortices, as discussed above. The poor correlation between pressure fluctuations and
−λ2 in the viscous sublayer is presumably due to the fact that λ2 is predominantly
positive here while the pressure footprint from vortices everywhere contains both
positive and negative regions (discussed later), resulting in a small cross-correlation.
The correlations between −λ2 and each vorticity component become equal to one
another as y approaches the centreline of the channel, implying that the structures
in the outer region have no preferred direction (i.e. isotropic vorticity fluctuations),
unlike the streamwise orientation of near-wall vortices; the equality of ω′x, ω

′
y and

ω′z in the outer region shown in figure 1(b) is also consistent with isotropy. Above
the viscous sublayer, the cross-correlation between −λ2 and pressure is observed to
be as high as that between |ωx| and −λ2, suggesting that CS identified by −λ2 also
contain regions of low pressure; this is consistent with the definition of λ2, which is
based on the Hessian of pressure. However, as shown in the following, the inverse
is not true: i.e. not all regions of low pressure are included in the λ2-based vortex
definition.

The top view of an isosurface of λ2 = −0.03 in the range 0 < y+ < 60 of a
representative instantaneous field reveals a large collection of slender near-wall struc-
tures (figure 2). Clearly, the dominant vortices are in fact aligned predominantly with
x, with a streamwise extent of about 200 wall units. Note the absence, let alone
preponderance, of individual vortices having streamwise length of 1000 wall units
(comparable to the length of low-speed streaks) suggested by Blackwelder & Eck-
elman (1979). The observed quasi-streamwise vortices appear to overlap along their
streamwise extent, indicating the importance of their mutual interaction (addressed
in §4). The total length of a chain of these overlapping vortices can be as large as 800
wall units. In this range of y, no hairpin-type structures are apparent; our educed
data in §4 also indicate that hairpin vortical structures are very rare.

By comparing isosurfaces of positive and negative ωx (figure 3a, b) with those
of negative λ2 (figure 2), we observe that there exists a one-to-one correspondence
between regions of large −λ2 and |ωx|. It should be emphasized that ωx regions (with
an opposite sign to that of the structure) appear below each vortex immediately next
to the wall, as expected from the no-slip condition at the wall. Thus, ωx in the region
0 < y+ < 10 is not plotted in figure 3(a, b). Note that the regions with high positive
(negative) ωx tend to tilt at a positive (negative) angle with respect to the x-direction;
the ‘tilting’ and ‘inclination’ angles are defined in figure 4. This dependence of the tilt
angle on the sign of structure circulation appears to result from interactions between
neighbouring quasi-streamwise structures, as discussed in §4.1.
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Figure 3. Top views of isosurfaces of: (a) ωx = 0.3 and (b) ωx = −0.3 both in the range
10 < y+ < 60; (c) p = −0.2 in the range 0 < y+ < 60.
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Figure 4. Schematics for the definitions of inclination and tilting angles.

Comparison of figures 2 and 3(c) shows that most λ2 regions do in fact occur
within low-pressure regions. On the other hand, there are several regions with low
pressure (especially spanwise-aligned; see, for example (x+, z+)≈(780,350),(800,600)
and (1700,300)) which do not correspond to regions of negative λ2. This is due to the
fact that the spatial scale of pressure is much larger than that of λ2, i.e. pressure has
a long-range effect in space, determined by ∇2p = −ρ(SijSji +ΩijΩji) = ρ(λ1 +λ2 +λ3),
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where λ1 > λ2 > λ3 are the eigenvalues of SikSkj + ΩikΩkj . As a result, pressure
isosurfaces in the buffer region can reflect low-pressure contributions from large-
scale, outer-region structures (whose λ2 is localized within the vortex core and will
not show up in the buffer region), resulting in many false indications of near-wall
vortices by pressure isosurfaces, as illustrated above; this is also evidenced in §4.6
by the difference between the distributions of two-point correlation of wall pressure
and coherent wall pressure in the ensemble-averaged field. That is, while vortical
structures have low pressure, the inverse is not true. The joint p.d.f.s between pressure
and ωx also support this result (see Kim 1989).

3. Eduction scheme
Previous conditional-average studies employing VITA, Q2 and Q4 conditional sam-

plings used velocity signals for CS eduction. Since the induced velocity of CS decays
more slowly than vorticity with distance, the educed structures in those studies are
expected to be more smeared than CS obtained using λ2- or vorticity-based eduction.
For the same reason, identification of the entire extent of CS using the velocity signal
is difficult because a sharp structure boundary cannot be defined in the velocity field.
Hence, it is difficult (if not impossible) to decipher the detailed features of the un-
derlying vortical structure from conditional sampling (or eddy estimation) techniques
employing the velocity field. Furthermore, criteria based on local velocity information
may detect different parts of the same CS or even different CS types. Consequently,
the educed structure can be severely smeared due to averaging of different structure
types or false alignment of different features of the same structure. In fact, symmetric
VITA ensemble averages can be obtained even when asymmetric VITA events are
much more common in the instantaneous field (Johansson, Alfredsson & Kim 1991).
Clearly, a more appropriate indicator of near-wall vortical events is required for
effective CS eduction. For this purpose, we use a multi-point, λ2 field-based scheme
to educe the entire extent of vortical structures from the instantaneous flow field.
Our eduction is designed to eliminate ambiguities such as multiple detections of one
structure, detection of different parts of different structures, and detection of different
types of structures, in order to reveal the relative spatial locations of CS and their
underlying link to well-known events such as VITA, Q2 and Q4.

In this study, we educe only the quasi-streamwise structures near the wall (discussed
in §2). For this purpose, we extend the vorticity-based eduction scheme used by
Hussain (1986) and Hussain & Hayakawa (1987) in two ways. First, we use negative
λ2 to detect structures instead of vorticity magnitude |ω|, because, as mentioned
earlier, |ω| is high near the wall irrespective of the presence of structures. A second
difference is that we consider a fully three-dimensional ensemble average, rather than
planar slices of three-dimensional structures.

The basic steps in our eduction scheme are (i) to detect quasi-streamwise vortical
structures containing negative λ2 (either positive or negative ωx) directly from the
three-dimensional instantaneous flow field (note that negative λ2 is used to identify
vortical structures, while ωx is used to distinguish between structures with different
senses of rotation), (ii) to ensemble average the accepted structures of the same sense
of rotation by aligning the mid-point of their streamwise extent, and (iii) to shift
the alignment point to maximize cross-correlation between each realization and the
ensemble-averaged field.

To find the centres of quasi-streamwise structures with positive ωx in (y, z)-planes,
we first detected local maxima of −λ2 (|λ2| > λ′2 and positive ωx) over 0 < y+ < 40 in
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Figure 5. Schematic for the detection of the quasi-streamwise structure. The dots represent the
locations of local maximum of −λ2 and the solid lines denote cones at ±30◦; the thick dashed line
represents the vortex axis.

each (y, z)-plane. A line connecting local maxima of −λ2 in successive (y, z)-planes was
considered to be the vortex axis. Note that for all accepted realizations, regions with
|λ2| > λ′2 had only one peak in each (y, z)-plane (this peak defined as the vortex axis).
Each vortex was then required to satisfy the following additional two criteria: (a) a
streamwise length of at least 150 wall units in the range 10 < y+ < 40 (this condition
is designed to capture fully developed CS since the predominant x-lengthscale of
well-defined structures in the instantaneous λ2 field shown in figure 2 is about 200);
(b) inclination and tilting angles (defined in figure 4) of the vortex with respect to
the streamwise direction within ±30◦. Condition (b), shown in figure 2 to be quite
appropriate, is implemented by imposing cones at the structure centre in each (x, z)-
plane as shown in figure 5. If a local maximum in a (y, z)-plane is contained within
the cone starting at a local maximum in the adjacent upstream (y, z)-plane, the two
local maxima are considered to belong to the same quasi-streamwise structure. Thus,
the line containing local maxima (dashed in figure 5) represents the axis of a quasi-
streamwise structure. Since this vortex tracing algorithm marches with very small
steps in x (∆x+ ≈ 18), adjacent vortices would have to be virtually fused together to
show up within a single cone. Such a vortex geometry has not been observed and is
unlikely; thus, our technique is effective in capturing individual vortices. Note that we
did not preferentially choose structures tilted in one direction. The zeroth ensemble
average is obtained after aligning realizations at the x-centrepoint of the vortex axis.

The alignment points of the zeroth ensemble average were then shifted in both x
and z to the locations that gave maximum cross-correlation between each realization
and the ensemble-averaged field. The cross-correlations were computed over a three-
dimensional window of 150 × 60 × 40 wall units in x+, y+ and z+. The shifting of
alignment points was iterated until convergence in the ensemble average was reached.
Any realization requiring an excessive shift (more than two grid points in x+ or z+) or
having a small cross-correlation coefficient (below 0.4) were discarded. The ensemble
average after these iterations will be called E1 in the following. The detection point
(i.e. the x-centrepoint of the structure axis) is considered to be the origin (x = 0),
〈.〉 denotes the ensemble average, and the subscript r denotes an incoherent quantity,
i.e. the deviation of each realization from the ensemble average. In E1, we obtained
104 realizations with positive ωx using seven different instantaneous, fully developed
turbulent flow fields that were separated equally by 30 wall time units.

One measure of the educed CS’s frequency of occurrence in the instantaneous field
is the total area occupied by it. The realizations considered here cover about 15%
(number of realizations × CS area / total area) of the (x, z) projection; note that
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Figure 6. Contour plot for λ2(∂〈ui〉/∂xj) of SP and SN in (a) top view; (b) side view. The shaded
and wire frame surfaces represent SP and SN respectively. These structures are superimposed to
show their relative locations and orientations.

positive and negative ωx are equally probable. Since the educed CS and streamwise
vortical events in the instantaneous flow are of comparable size, this implies that the
CS is in fact a prominent feature of the instantaneous field as well (cf. flow area
occupied by instantaneous vortices in figure 2).

4. Results and discussion
Since quasi-streamwise structures with positive ωx (hereinafter called SP) are the

symmetric counterparts of structures with negative ωx (hereinafter called SN), we
focus our discussion on one only, SP, except when indicated otherwise. The isosurface
of −λ2(∂〈ui〉/∂xj) for SP, from the ensemble-averaged velocity gradient tensor, shows a
quasi-streamwise vortex with an inclination angle of about 9◦ in the vertical plane and
a tilting angle of 4◦ in the horizontal plane (figure 6a, b). Note that ∂〈ui〉/∂xj is denoted
as the argument of λ2 because it is obtained from the ensemble-averaged field, not
ensemble averaged after being obtained from the instantaneous field; this distinction
is important since 〈λ2(∂ui/∂xj)〉 6= λ2(∂〈ui〉/∂xj). The spatial relation between SP and
SN in figure 6 was inferred from 〈ωx〉 and two-point correlation data, discussed
below. The educed structure has a streamwise extent of 200 wall units and a diameter
of 25 wall units. The vortex Reynolds number (Γ/ν) of SP is approximately 200,
as compared with the average value of 140 for streamwise vortices identified by
spiral streamlines in (y, z)-planes in a higher-Re turbulent boundary layer (Kline &
Robinson 1989); Reθ = 280 for the channel flow but 1410 for the boundary layer.

The inclination angle of the educed CS agrees well with that obtained from the two-
point correlation R(∆x, y; yref = 20) of ωx (figure 7a). The correlation R(y,∆z; yref =
20) of ωx (figure 7b) does not show negative regions along the span; thus, vortices near
the wall do not appear in pairs along z, as would be the case if hairpin vortices were
prominent. Note that hairpin vortex line bundles do occur, but should not be confused
with hairpin vortices. The negative correlation near the wall seen in figure 7(a, b) is
due to opposite-signed ωx induced by the CS as a result of the no-slip condition at
the wall. The negative cross-correlation at y+ > 30 in figure 7(a, b) suggests that SP
and SN overlap each other in x, as depicted in figure 6.

In spite of the tilting shown in the ensemble-averaged structure, the two-point
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Figure 7. Two-point correlation coefficient of ωx: (a) Rωxωx (∆x, y; yref = 20); (b)
Rωxωx (y,∆z; yref = 20); (c) Rωxωx (∆x,∆z; yref = 20). Contour spacing = 0.1; in (c), dashed and
solid lines represent the unconditional and conditional correlations.

unconditional correlation of ωx in an (x, z)-plane (dashed lines in figure 7c) is
symmetric; however, this does not imply that the tilting angles of SN and SP are
individually zero, but that the contributions of SN and SP to the tilt angle of the
correlation contours are equal and opposite. To recover the tilting angle of the
structure from a two-point correlation of ωx, we reflect the ωx distribution about an
(x, y)-plane at the reference location whenever ωx at this location is negative; i.e. we
define an asymmetric correlation as

R(∆x,∆z; yref = 20) =

∫
ωx(x, z; yref)ωx(x+ ∆x, z + i∆z; yref)dxdz,

where

i =

{
1 for ωx(x, z; yref) > 0;
−1 for ωx(x, z; yref) < 0.

The solid contours in figure 7(c) show the asymmetric correlation of ωx, and the tilting
angle of these contours is consistent with that of the ensemble-averaged structure
(figure 6a). Even though the tilting and inclination angles of the educed CS are
small, it will be shown in §§4.1, 4.2 and 4.7 that this slightly skewed geometry is
crucial in generating the VITA events observed in various experiments and numerical
simulations, and also in sustaining of CS through pressure–strain effects.

Contours of −λ2(∂〈ui〉/∂xj) in the plane x = 0 (figure 8a) show a nearly circular
core geometry with negative λ2, surrounded by regions of non-negligible positive λ2

(not part of the vortex core) as shown in figure 8(b); the fact that positive λ2 survives
in the ensemble average justifies our earlier contention that λ′2 is more appropriate

than −λ2 as a statistical indicator of vortical events. In several contour plots which
follow, we draw thick lines at two significant levels of −λ2(∂〈ui〉/∂xj) to identify the
relative spatial location of the CS. To address the interaction of SP and SN, it is
necessary to first verify their spatial arrangement shown in figure 6. Unfortunately,
this is not possible in ensemble average E1 because alignment at the structure mid-
point causes substantial smearing of its upstream and downstream ends. Note that
the ‘ends’ of a given vortical event are precisely defined by our eduction procedure
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Figure 9. Contours of 〈ωx〉 showing the relative arrangement of SP and SN at various x locations
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levels = (9× 10−2, −0.312, 0.32); (e) x+ = 60, contour levels = (6× 10−2, −0.227, 0.247).

(§3). To see how SN is spatially related to SP, we define another ensemble average,
E2, with the alignment point located near the upstream end of SP, using the same
eduction procedure as for E1.

Contours of 〈ωx〉 obtained by E2 at various streamwise locations show that SN
is located to the left and above the upstream end of SP (figure 9a–e). In figure 9(a),
it might appear that this plane cuts through the legs of a possible hairpin structure.
However, the downstream end of SN is not alongside SP in the spanwise direction,
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as shown in figure 9(c–e); instead, the inclined SP and SN structures overlap in x,
as shown in figure 6. The contour strength of SN decreases in x while that of SP
increases. Thus, figure 9(a–e) indicates not only the relative tilting of SP and SN in
the (x, z)-plane, but also their relative shift in x. Note the near-wall vorticity layers
of opposite signs induced by SP and SN underneath each. The CS geometry in figure
6 is apparently representative of instantaneous vortex realizations as well (Brooke &
Hanratty 1993). The direction of tilting of SN is opposite to that of SP due to mutual
induction between SP and SN; this is discussed in detail in the following section.

4.1. Conceptual model of the dynamics of CS

From the spatial relationship between SP and SN discussed above, we have developed
a conceptual model to explain observed kinematic features, as shown schematically in
figure 10(a–d) for the educed CS details (see also Jeong & Hussain 1992). This near-
wall CS model consists of a train of quasi-streamwise structures with alternating signs
of ωx, which are inclined in the (x, y)-plane (figure 10b) and tilted in the (x, z)-plane
(figure 10a). These SP and SN structures, located in the buffer region, overlap in x.
In figure 10(a), we schematically show the spatial locations of internal shear layers
E and H, of a kinked low-speed streak, and of Q2 and Q4 events with respect to
structures SP and SN. An expanded view of an overlapping region between structures
SP and SN is given in figure 10(d), where the locations of Q1 and Q3 events are also
shown, along with the internal shear layers represented by typical points E and H
in figure 10(a). In this model, the observed bursting process is the passage of several
SP and SN past a fixed measurement location, in which the relative arrangement
of the tilted structures creates a series of several ejection/sweep events; the multiple
ejections found by Bogard & Tiederman (1986) during bursting are also consistent
with the scenario depicted in figure 10(a).

The observed tilting of SP and SN can be explained in terms of their mutual
induction, which, for instance, advects point A of an SN structure C in the negative
z-direction and its point B in the positive z-direction (figure 10a). Thus, the effect of
mutual induction is to precess SN in the clockwise direction and SP counterclockwise
in the (x, z)-plane; the mutual induction between the overlapping CS in the section
FG in figure 10(a) is implicit in figure 10(c). However, there is a countering effect due
to the background shear U(y) which acts to precess SN counterclockwise because the
right-hand side of SN is at a higher y and hence moves downstream with a higher
velocity than the left-hand side (i.e. the downstream end of SN advects in x faster
than its upstream end), as shown schematically in figure 10(e). The end result of these
counteracting precessions is a nearly constant tilting angle θ; thus, the CS does not
precess, but is stretched along its own axis at the same θ.

In our conceptual model, internal shear layers containing positive and negative
∂〈u〉/∂x are seen to result from the induction by SP and SN because of their tilting
and overlap in the normal (x, y)-plane facilitated by their inclination. In figure 10(a),
a VISA (Variable Interval Spatial Average – the spatial version of VITA) event with
negative ∂〈u〉/∂x occurs (at a typical point E) between structures C and D. The shear
layer is created as structure C induces motion toward the wall (hence higher 〈u〉)
upstream of E, while structure D induces velocity away from the wall (hence lower
〈u〉) downstream of E. The associated u-velocity fluctuations are positive and negative,
upstream and downstream of E respectively, resulting in negative ∂〈u〉/∂x; this event
is captured in ensemble average E2 and shown in figure 11(a) by an (x, y)-plane
located away from the nose of SP in negative z. We find that VISA events with
positive ∂〈u〉/∂x occur at the midpoint of SP’s streamwise extent (e.g. at point H in



198 J. Jeong, F. Hussain, W. Schoppa and J. Kim

(b)

(a)

(c)

Low-speed streak

Sections in figure 9 (a)–(e)

E
H

SN

G

SP

F

Q4

Q2 B

E

H
D

SPU

W

U

W

A

C

θ

θ

x

z

y

x

y

z

(d)

Q2

H

Q4

SP

E

x

z

Top view

y

E H
Q3

Q1
x

x

z

Time

t1

θ1

t2

θ2

t3

θ3

(e)

Figure 10. Conceptual model of an array of CS and their spatial relationship with experimentally
observed events discussed in the text: (a) top view; (b) side view; (c) structures at cross-section FG
in (a); (d) expanded views of structures C and D in (a,b), showing the relative locations of Q1, Q2,
Q3, Q4, E and H. A schematic demonstrating the counteracting precession of SN in the (x, z)-plane
due to background shear is shown in (e). The arrows in (b) denote the sections of figure 9(a–e).
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figure 10a), since ejection (negative 〈u〉) occurs upstream of SP and sweep (positive
〈u〉) occurs downstream of SP, as is also the case for SN; i.e. positive ∂〈u〉/∂x occurs
at the centres of SP and SN. This event is well captured at the alignment point (i.e.
H in figure 10a) of ensemble average E1, as shown in figure 11(b). The asymmetry
of u-fluctuations about z = 0 in the internal shear layer (VISA events at E and H)
is clearly seen in contours of 〈u−U(y)〉 from ensemble average E2 (figure 11c); here
U(y) is the space- and time-averaged streamwise velocity. Some regions of E and H
are qualitatively shown in figure 11(a–c). The figure shows a strong resemblance to the
results of Johansson et al. (1991), who used a conditional VISA sampling technique
to study internal shear layers such as E and H. Note that these events were not
used a priori in the ensemble averaging; thus, their presence in our ensemble average
triggered by λ2-based CS detection confirms the validity of the proposed conceptual
model.

The positive ∂〈u〉/∂x (which implies negative ∂〈u〉/∂t from Taylor’s hypothesis)
regions in figure 11(b) are weaker than the negative ∂〈u〉/∂x (i.e. positive ∂〈u〉/∂t)
events in figure 11(a) (cf. contour levels and contour slope with respect to x), an
observation which can be explained as follows. Once a VISA event with positive
∂〈u〉/∂x (i.e. negative ∂〈u〉/∂t – a negative VITA event) occurs, the magnitude of
positive ∂〈u〉/∂x weakens due to the underlying velocity field. Namely, a low-speed
fluid particle upstream moves slower than a high-speed fluid particle downstream,
causing the distance between them to increase in time, so that ∂〈u〉/∂x decreases. For
negative ∂〈u〉/∂x regions, the high-speed fluid upstream moves faster than the low-
speed fluid downstream, thereby creating a steeper gradient. This is consistent with
the negative skewness factor of ∂u/∂x observed in most turbulent flows. The stronger
negative ∂〈u〉/∂x in our educed fields is also consistent with the experimental result
that the frequency of occurrence of negative VISA events (positive VITA events)
is higher than that of positive VISA events (negative VITA events) for the same
|∂〈u〉/∂x| threshold.

4.2. Effect of phase difference between velocity components

In this section, we discuss the relative spatial locations of large u- and v-fluctuations,
hereinafter called their phase difference (for the lack of a better descriptor), with
regard to Reynolds stress generation.

The velocity fields 〈u − U〉 and 〈v〉 in the x = 0 plane through SP have similar
patterns (figure 12a,b). Since variations in 〈u−U〉 result from the advection of fluid
across the shear region induced by CS, negative u tends to accompany positive v and
vice versa. Thus, in figure 12, we can assign a Q2 event to the left of the CS and a
Q4 event on its right. Nevertheless, a phase difference between the locations of peak
u- and v-fluctuations is evident in figure 12, which has important implications for the
Reynolds stress distribution, as discussed below.

To explain this phase difference, we consider an inviscid streamwise vortex em-
bedded in a homogeneous shear flow U(y) with a shear rate dU/dy = S . This
simplification enables an analytical solution, because Du/Dt = 0 and the particle
pathline has a simple analytical form. The evolutions of the u-, v- and w-fluctuations
can be shown to be

u(r, θ, t) = Sr
[
sin(f(r)t/r + θ)− sin θ

]
= 2Sr cos

(
θ +

f(r)t

2r

)
sin
(f(r)t

2r

)
,

v(r, θ, t) = f(r) cos θ, and w(r, θ, t) = f(r) sin θ.

Here r is the distance from the centre of the vortex, θ is the angle with respect
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Figure 11. (a) 〈u − U〉 in E2 at z+ = −40, contour levels = (0.4, −1.25, 2.14); (b) 〈u − U〉 in E1
at z+ = 0, contour levels = (0.3, −0.947, 1.68). (c) 〈u − U〉 in E2 at y+ = 15, contour levels =
(0.4, −1.21, 1.71). Locations of internal shear layers E and H in figure 10(a,b) are also qualitatively
indicated.

to the x-axis, and f(r) is the initial azimuthal velocity profile. When t is small,
u ≈ Sf(r)t cos θ, so that the u and v velocities are in phase; however, as t increases,
a phase difference emerges. By comparing u and v above, the phase difference ∆θ
between u and v velocities (computed from the locations of maximum u and v) is seen
to be ∆θ = f(r)t/(2r), indicating linear growth in time (at fixed r). For a developed
quasi-streamwise vortex, this phase difference is expected to be non-negligible; hence
the non-negligible Q1 and Q3 events. This effect also causes the negative peak of
〈u−U〉 to occur at a larger y+ than the positive peak of 〈u−U〉, irrespective of the
sign of ωx (figure 12a). Thus, Q4 is observed more frequently than Q2 near the wall
and vice versa away from the wall.
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Figure 12. Coherent velocities at x = 0 in E1: (a) 〈u − U〉, contour levels = (0.7, −2.60, 2.96);
(b) 〈v〉, contour levels = (0.2, −1.10, 0.978); (c) profile of 〈u−U〉 along the line in (a). Thick contours
denote the educed CS centre for ensemble average E1.

Coherent normal velocity 〈v〉 contours at x = 0 in figure 12(b) show positive and
negative values on the left- and right-hand sides of SP respectively, as expected.
However, ∂〈v〉/∂y is negative at the centre of SP; in other words, the zero crossing of
〈v〉, which bounds regions of Q1 and Q3 events, is rotated through a counterclockwise
angle. This feature is seen to be a consequence of the CS tilting in the following
way. Since the tilting of SP and SN creates negative 〈u − U〉 upstream and positive
downstream of both SP and SN, ∂〈u〉/∂x is positive at the structure centre (e.g.
point H in figure 10a). In addition, examination of the educed flow field reveals that
∂〈w〉/∂z near the structure centre is small (since 〈w〉 is symmetric in z at H) compared
to ∂〈u〉/∂x. Thus, it follows from the continuity equation that ∂〈v〉/∂y is negative at
the structure centre (figure 12b).

The coherent Reynolds stress −〈u−U〉〈v〉 is positive nearly everywhere (figure 13a),
as would be expected from Prandtl’s mixing length theory. Nevertheless, a small region
of negative coherent Reynolds stress is present due to the (spatial) phase difference
between 〈u−U〉 and 〈v〉. For example, 〈v〉 is negative above the structure centre, where
〈u−U〉 is also negative; the latter follows from the fact that fluid above the structure
has been advected from near the wall and thus contains smaller x-momentum. Thus,
Q3 events occur above the structure centre, and, by the same token, Q1 events occur
below the structure centre. The observation that Q1 and Q3 events are much less
probable than Q2 and Q4 events (Willmarth & Lu 1972; Kim et al. 1987) is consistent
with the relatively small area of negative coherent Reynolds stress observed in our
educed fields.

It is interesting to note that the other components of coherent Reynolds stress have
a different symmetry. Contours of −〈v〉〈w〉 show a cloverleaf pattern with alternating
sign (figure 13b), so that the net (i.e. spatial-averaged) Reynolds stress, −〈v〉〈w〉, nearly
vanishes. In contrast, −〈u−U〉〈w〉 is predominantly positive for SP (figure 13c) due
to a phase difference between 〈u − U〉 and 〈w〉. However, this positive value is
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Figure 13. Coherent Reynolds stresses at x = 0 in E1: (a) −〈u − U〉〈v〉 for SP, contour levels =
(0.3, −0.534, 1.94); (b) −〈v〉〈w〉 for SP, contour levels = (0.2, −0.868, 1.22); (c) −〈u−U〉〈w〉 for SP,
contour levels = (0.7, −1.34, 4.23); (d) −〈u−U〉〈w〉 for SN. Relative locations of Q1, Q2, Q3 and
Q4 events with respect to the CS center are shown in (a).

compensated by the negative −〈u − U〉〈w〉 produced by SN (figure 13d). Since, as
expected, SP and SN are distributed in the buffer region with equal probability and
their contributions are equal and opposite, the time-averaged Reynolds stress −uw
vanishes.

Thus, analysis of induced velocities can explain the regions around a CS which
cause Q1, Q2, Q3 and Q4 events. In addition, instantaneous coherent Reynolds stress
patterns with respect to the CS centre are documented. Although they have clear
spatial distributions, only −〈u − U〉〈v〉 produces a non-zero spatial average. The
−〈u−U〉〈w〉 and −〈v〉〈w〉 distributions have spatial variations but have small spatial
averages when both SP and SN are accounted for.

4.3. Vortex lines near CS

To investigate the vortex line geometry in our ensemble-averaged field, vortex lines are
traced upstream and downstream of SP (figure 14a). We observe that hairpin vortex
lines occur upstream of the structure and that inverted hairpin vortex lines occur near
its downstream end, even though the structure is neither hairpin nor inverted hairpin
shaped.

The inclination angle tan−1(〈ωy〉/〈ωx〉) of the vorticity vector at the centre of
SP, i.e. the location of peak λ2, is about 17◦. This is significantly higher than the
inclination angle of SP indicated by isosurfaces of 〈λ2〉, which is 9◦. The difference in
the angle of the vorticity vector and that of the structure axis is a simple consequence
of the intrinsic difference between vorticity surfaces and vortex surfaces (Melander
& Hussain 1994) and can be explained by the following considerations. Consider a
vortical structure aligned with x in the presence of a background shear U(y) (with
ωz < 0). The evolution of the normal (to the vortex axis) component of the vorticity
vector is given by

Dωn
Dt

= ωz
∂un

∂z
+ ωn

∂un

∂n
+ ωs

∂un

∂s
. (4.1)
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For simplicity, suppose that ωn = 0 initially and note that ∂un/∂s is negligible for
a streamwise-aligned elongated vortex (identically zero for an infinite vortex tube).
For a vortex with positive ωs (i.e. SP), its induced velocity un is negative (positive)
at larger (smaller) z than the plane of figure 14(b); thus, ∂un/∂z is negative across
the CS. Since ωz is negative everywhere due to the background shear, positive ωn is
generated according to (4.1) even if ωn is not present initially. Therefore, the vorticity
vectors inside a vortical structure in the presence of mean shear generally deviate
from the axis of the vortical structure itself. This effect is clearly demonstrated in
the ensemble-averaged flow in figure 14(c) for SP by vortex lines (lines everywhere
tangent to the vorticity vector) passing through several locations along the CS axis.
These vortex lines immediately deviate from the CS axis, exit the CS core at an
angle to the λ2 = 0 surface, and align with the nearly orthogonal vortex lines of
the background shear outside the core. This behaviour of vortex lines has also been
observed in homogeneous shear flow turbulence (Kida & Tanaka 1994). Similarly,
this effect is responsible for the vortex line shape in a (y, z)-projection shown in
figure 14(d).

In an alternative, more physical approach, this difference between the vortex core
angle and vorticity vector angle can be interpreted in terms of the inviscid turning
of vortex lines. For instance, consider vortex lines La, Lb and Lc in figure 14(e,f),
which are initially straight in a (y, z)-projection. Due to the induced vortical motion,
these lines deform as shown schematically in figure 14(g,h), producing a vortex line
geometry which is consistent with the ensemble-averaged field (see the similarities
of the vortex lines in figure 14g,h with those in figure 14c,d). Note that no change
is observed in the (x, z)-projection since ωx cannot be created nor destroyed in this
idealized x-independent, inviscid flow.

In summary, vortex lines starting even on the axis of the vortex immediately deviate
from this axis and eventually cross the vortex core boundary, i.e. the λ2 = 0 surface
(figure 14c,d). Therefore, it is not possible to accurately characterize a streamwise
vortical structure subjected to a strong background shear by a vortex line tracing
technique.

4.4. Effect of the structure on the background vorticity field

Swearingen & Blackwelder (1987) pointed out that spanwise inflectional profiles of
u(z) are common and suggested that inviscid instability of u(z) is responsible for the
genesis of near-wall turbulence; Antonia & Bisset (1990) experimentally found that
such a u(z) profile does in fact exist during the bursting process. To address this issue,
we relate the locations of ∂〈u〉/∂z peaks (spanwise inflection points of u) and 〈ωz〉 to
SP.

Contours of 〈ωz〉 at x = 0 (figure 15a) show high-shear (M) and low-shear (N)
regions resulting from cross-stream advection by SP. The spanwise vorticity fluctuation
〈ωz − Ωz〉 changes its sign in z near the wall (figure 15b); this is consistent with
predominantly negative near-wall values of the correlation Rωzωz (y,∆z; yref = 20) of
ωz fluctuations and the weaker positive Rωzωz with −z separation (figure 15c).

We find that the maximum ∂〈u〉/∂z occurs at the bottom left of the structure centre
(figure 15d), and that 〈ωy〉 ≈ ∂〈u〉/∂z, as can be seen by comparing figure 15(d,e) (i.e.
∂〈w〉/∂x is negligible). As mentioned in §4.3, ωy is created from the reorientation of
ωz by the induced motion of the structure (see figure 14f,h), which results in a positive
peak of ωy at the bottom left of the structure, producing the inflection of u(z) shown
in figure 12(c); this effect will be demonstrated in more detail below using an inviscid
model. In figure 15(f), a conditional two-point correlation Rωyωy (y,∆z; yref = 20),
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Figure 15. (a) 〈ωz〉 at x = 0 in E1, contour levels = (0.1, −1.24, 9.85× 10−3). (b) 〈ωz〉 − dU/dy. (c)
Rωzωz (y,∆z; yref = 20). (d) ∂〈u〉/∂z at x = 0 in E1. (e) 〈ωy〉 at x = 0 in E1, contour levels = (0.05,
−9.79× 10−2, 0.285). (f) Conditional correlation Rωyωy (y,∆z; yref = 20).

defined as

Rωyωy (y,∆z; yref = 20) =

∫
ωy(x, z; yref)ωy(x, z + i∆z; yref)dxdz,

where

i =

{
1 for ωx(x, yref, z) > 0;
−1 for ωx(x, yref, z) < 0,

shows that negative peaks exist on both sides of the structure; this is consistent
with the ensemble average 〈ωy〉, providing additional evidence that the educed flow
captures instantaneous flow features related to the presence of streamwise vortices.

To obtain a clearer picture of the evolutions of u, ωy , and ωz produced by a
quasi-streamwise vortex subjected to shear, we now consider the top half of an
inviscid streamwise Batchelor dipole embedded in a shear flow, with the same mean
streamwise velocity profile U(y) as in the turbulent channel flow (see schematic in

Figure 14. (a) Vortex lines traced outside CS from (x+, y+, z+) = (−100, 20, 170), (−70, 24, 170) and
(100,45,170). (b) Notation for the explanation of different inclination angles of a vortex core and
vortex lines; solid arrows denote initial vorticity vectors; dotted arrows denote later-stage vorticity
vectors. (c) Vortex lines traced through the CS axis. (d) Front view of vortex lines passing through
the vortex centre and its top and bottom. (e–h) Schematic evolution of vortex lines (La, Lb, Lc) for
a streamwise vortex in a pure shear flow U(y): (e–f) initial instant; (g–h) later stage.
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Figure 16. Evolution of an inviscid streamwise vortex in a non-uniform shear U(y) at t = 20. (a)
Schematic of Batchelor’s vortex. (b) (u − U), contour levels = (0.8, −5.57, 5.58). (c) ωy , contour
levels = (0.06, −0.32, 0.39). (d) ωz , contour levels = (0.2, −3.24× 10−2, 3.30).

figure 16a). The Batchelor dipole exhibits steady v- and w-velocities in a reference
frame moving with the dipole propagation velocity.

The streamfunction for the dipole is given by ψ = −cJ1(kr) sin θ (Batchelor 1967,
p. 535), where ∂ψ/∂z = −v, ∂ψ/∂y = w, with r = (y2 + z2)1/2 and θ = tan−1(y/z).
We prescribe the vortex centre (defined as the point of minimum ψ) to be located
at y+ = 20 in the non-uniform shear profile U(y). The parameters c and k are
set as 7 and 0.5 wall units respectively, in order to centre the Batchelor dipole at
y+ = 20 and to produce the same circulation as the ensemble-averaged structure.
With these parameters, the spanwise velocity of the dipole is 0.28u∗. The assumption
of an inviscid flow is justified for short times since the viscous time scale is about 200
wall units. For this flow, the inviscid momentum equations become

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
= 0, (4.2)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
, (4.3)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
. (4.4)

Equations (4.3) and (4.4) are decoupled from (4.2), so that the flow in the (y, z)-plane
can be easily solved using the initial Batchelor dipole velocity field. From (4.2), the
u-velocity of a particle at time t is the same as its initial velocity, so that the u-velocity
for each point in the (y, z)-plane at time t is easily computed by integrating the
particle path backwards in time. Interestingly, the distributions of (u−U), ωy and ωz
at t = 20 in figure 16(b–d) resemble well those from the ensemble average educed from
the turbulent case (cf. figures 12a, 15e and 15a respectively), implying that the basic
mechanism responsible for their evolution is inviscid cross-stream vortical advection.
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Note that a non-zero spanwise slip velocity w at the wall in the inviscid model does
not produce significant differences from the ensemble-averaged data for u, ωy and
ωz; the slip velocity at the wall does not create u-fluctuations during advection since
no u-variation along the wall is present.

To summarize, we find that viscosity and CS three-dimensionality are not essen-
tial features influencing the background shear, ωy- and ωz-distributions. Instead,
these distributions are determined simply by inviscid, basically two-dimensional ad-
vection induced by SP and SN, and projected on the (y, z)-plane. Nevertheless,
three-dimensional effects (i.e. x-dependence) are crucial to the sustaining of CS, as
discussed in §4.7.

4.5. Turbulence production and intensity

To gain insight into near-wall incoherent (small-scale) turbulence production by CS,
we consider separately the turbulence production Pt (i.e. the production of incoherent
motion by coherent motion) and the production Pc of coherent motion due to the
mean flow, derived by Hussain (1983a) as

Pt = −
∑
i,j

〈uriurj〉〈Sij〉, Pc = −〈u−U〉〈v〉dU
dy

.

Since Pt, shown for the plane x = 0 of SP in figure 17(a), captures the creation of
incoherent motion (with smaller scales), peaks of Pt indicate probable locations of
secondary, irregularly appearing vortices. The peaks of incoherent turbulent kinetic
energy 〈q2

r 〉 = 〈u2
r + v2

r + w2
r 〉 (figure 17b) and those of Pt coincide, implying that

incoherent turbulence does not accumulate in the structure centre (unlike free shear
flows; see Hussain 1983b). Instead, incoherent turbulence, once produced, decays as
it is convected by the coherent motion. This is consistent with the scale dependence
of the propagation velocity of turbulence fluctuations near the wall found by Kim
& Hussain (1993). From two-point correlations of vorticity and velocity fluctuations
with time delay, they inferred that near-wall turbulence with large kz (small spanwise
scale) moves faster in z than that with small kz (large spanwise scale). For incoherent
turbulence to accumulate at the structure centre, the propagation velocity of the
small-scale turbulence would have to be comparable with that of the large-scale
structures, since both the large and small scales would be moving together in this
case. Thus, the fact that 〈q2

r 〉 has a local maximum outside the CS and closer to
the wall is consistent with this scale dependence of the propagation velocity. The CS
moves slower in the spanwise direction than the small scales advected by it along the
wall, because of the CS’s larger distance from the wall (and thus its image structure).

The location of peak Pt at y+ ≈ 30 does not match that of the time-averaged
turbulence production (i.e. production of fluctation kinetic energy, with Reynolds
averaging), which occurs at y+ ≈ 13 (Klebanoff 1954; Kline et al. 1967; Kim et al.
1987); this suggests that Pt is not a dominant contribution. On the other hand, peaks
of Pc in figure 17(c) occur on both sides of SP at y+ ≈ 13, implying that buffer-layer
CS are responsible for most of the mean turbulence production. Note that for triple
decomposition of the velocity field into mean, coherent, and incoherent components,
the mean turbulence production is equivalent to the sum of time-averaged coherent
and incoherent turbulence productions (Hussain 1983a). The negative Pc appearing
locally at the bottom of SP (figure 17c) is due to negative coherent Reynolds stress
Q1, which in turn results from the phase difference between 〈u〉 and 〈v〉, as discussed
in §4.2.
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Figure 17. Turbulence productions and incoherent turbulence intensity at x = 0 in E1. (a) Produc-
tion Pt of incoherent motion by coherent motion, contour levels = (0.05, −4.21 × 10−2, 0.313).
(b) Incoherent turbulence intensity 〈u2

r + v2
r + w2

r 〉 contour levels = (0.4, 2.89 × 10−5, 2.82).
(c) Production Pc of coherent motion due to the mean flow, contour levels = (0.1, −0.222, 0.557).

4.6. The effect of near-wall CS on wall pressure

The wall pressure distribution reflects the presence of streamwise vortices in the buffer
region and can conceivably be used to sense their locations for developing adaptive
control techniques. For SP, the coherent pressure fluctuation is negative below the CS
and positive on both sides of the structure (figure 18a), where fluid is pumped either
toward or away from the wall. Note that the symmetry (dotted) line of negative 〈p〉
contours on the wall deviates from the 4◦ tilt of SP shown in figure 18(a). However,
since the wall pressure is the combined influence of overlapping SP and SN structures
(see figure 10a,b), the deviations at the front and back ends of 〈p〉 contours are to
be expected. The cross-correlation Rpp(∆x,∆z; yref = 0) in figure 18(b) shows negative
values for sufficient x-separation, which is consistent with the variation of 〈p〉 in x.
However, in contrast to 〈p〉, Rpp does not show negative values with separation in
z (figure 18b). This difference can be explained in terms of the long-range influence
of outer-scale structure on the wall pressure. Consider an outer-scale structure above
inner-scale buffer region vortices as shown in figure 18(c). In this case, the wall
pressure contribution from the near-wall structures is negative immediately below the
CS and positive farther away. The outer-scale structure contributes negative pressure
with a larger spanwise scale; thus, the resultant wall-pressure is negative for a large
spanwise extent (with some fluctuations) and the two-point correlation (figure 18b) is
not negative in the spanwise direction.

For the ensemble-averaged pressure 〈p〉, uncorrelated outer-scale pressure contri-
butions from outer structures are cancelled by the ensemble averaging of near-wall
vortical events, so that only the inner-scale pressure remains. To confirm this, we
removed the large-scale component of the wall pressure by removing the three small-
est spanwise wavenumbers in Fourier space. The correlation of filtered wall pressure
clearly shows negative values with z-separation (figure 18d), which is consistent with
our ensemble-averaged wall pressure. This suggests that the wall pressure signal is
strongly affected not only by near-wall structures, but also by outer structures; thus,



Coherent structures near the wall in a turbulent channel flow 209

–60

–20

20

60
–200 –100 0 100 200

x+

(a)

z+

–60

60
–200 –100 0 100 200

x+

(b)

z+

–20

20

(c)
y Outer structure

Near-wall structure

z

zPW

–60

60
–200 –100 0 100

x+

(d )

z+

–20

20

200

0 100 200
x+

300

(e)

z+

40

80

120

Figure 18. CS pressure field. (a) 〈p〉 at the wall, contour levels = (0.2, −1.28, 0.752); the dotted
line denotes the locus of the local minima while the solid line represents the SP tilt angle of
4◦. (b) Rpp(∆x,∆z; yref = 0). (c) A schematic distinguishing the scale of pressure footprints from
outer-region and buffer-layer structures. (d) Rpp(∆x,∆z; yref = 0) of pressure after removing the
largest 3 modes in the z-direction. (e) Isosurface of 〈p〉 = −0.3 for SP.
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caution should be exercised in ascertaining the locations of near-wall vortices from
unconditioned wall pressure data alone. Away from the wall, a low-pressure region
in 〈p〉 coincides with the spatial extent of the structure, as shown in figure 18(e).
In addition, the low-pressure region near the downstream end of the CS shows a
‘hook’-type geometry, similar to that suggested by Kline & Robinson (1989).

4.7. Effect of CS on intercomponent energy transfer

Using our educed flow field data, we now consider an energy transfer scenario respon-
sible for CS formation and sustenance against dissipation. While vortex dynamics has
provided significant insight into the dynamics of turbulent boundary layers in this
and other studies, such an approach has not provided adequate information about
energy transfer. For this purpose, we consider the turbulent kinetic energy equation
to link the vortex dynamics discussed throughout this paper to the energy transfer
mechanisms intrinsic to near-wall CS.

The mean streamwise component of pressure-strain p∂u/∂x, responsible for the

transfer of u2 kinetic energy to v2 and w2 components, is usually negative in turbulent
shear flows (Tennekes & Lumley 1972). In near-wall turbulence, the tilting of SP and

SN in the (x, z)-plane produces negative p∂u/∂x in the following manner. The tilting
of SP and SN is responsible for positive ∂〈u〉/∂x within the structure, as shown in
§4.1. Since 〈p〉 is negative within the structure, 〈p〉∂〈u〉/∂x is also negative (figure 19a).
Note that if SP were tilted in the opposite direction, then positive 〈p〉∂〈u〉/∂x would
result.

Negative 〈p〉∂〈u〉/∂x also occurs in internal shear layers (e.g. point E in figure 10),
as can be seen from ensemble average E2. Within the internal shear layer (denoted E′

in figure 19b corresponding to E in figure 10a), ∂〈u〉/∂x is negative, and 〈p〉 is positive
since the flow is locally decelerating, so that 〈p〉∂〈u〉/∂x is negative (figure 19b).
Thus, redistribution of turbulent kinetic energy is active not only within the structure
core but also near internal shear layers. The other energy transfer terms, 〈p〉∂〈v〉/∂y
and 〈p〉∂〈w〉/∂z (figure 19c,d), show an interchange of v2 and w2 energies within the
structure due to the CS’s vortical motion.

The transfer of energy from the mean flow to each velocity fluctuation is schemat-
ically shown in figure 19(e). To illustrate, first consider fully developed streamwise
vortices in the ensemble-averaged picture developed in this study. These CS transfer
energy from the mean flow to u2 by normal advection across the mean velocity gradi-
ent (see §4.4), during streak formation. The turbulent kinetic energy in u2 is larger than
that in v2 and w2, as seen in the ensemble-averaged velocity fluctuations (figure 12);
this is also consistent with mean turbulent kinetic energy statistics. Simultaneously,
the large energy in u2 in the internal shear layer (E in figure 10; E′ in figure 19b) is
transferred to v2 and w2 (mostly to w2) through pressure–strain effects. Along with the
production of streamwise vorticity by the mean flow (due to CS three-dimensionality),
this feeds energy back into the streamwise vortices, to complete the process. Due to
its qualitative nature, this intercomponent energy exchange scenario needs to be fur-
ther explored via the underlying evolutionary vortex dynamics, which are beyond the
scope of this paper and the subject of a separate investigation (Schoppa 1997).

5. Concluding remarks
Our newly defined vortex definition, based on the second largest eigenvalue of

SikSkj + ΩikΩkj (developed to detect vortical structures in DNS data) has been suc-
cessfully implemented as a conditional sampling scheme to educe near-wall CS. It
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Figure 19. Coherent intercomponent energy transfer terms: (a) 〈p〉∂〈u〉/∂x at x = 0 in E1, contour
levels = (1 × 10−2, −9.51 × 10−2, 1.45 × 10−2); (b) 〈p〉∂〈u〉/∂x at x = 0 in E2, contour levels =
(8 × 10−3, −5.34 × 10−2; 7.85 × 10−3), (c) 〈p〉∂〈v〉/∂y at x = 0 in E1, contour levels = (3 × 10−2,
−9.32× 10−2, 1.61× 10−1); (d) 〈p〉∂〈w〉/∂z at x = 0 in E1, contour levels = (3× 10−2, −9.51× 10−2,
1.27× 10−1). (e) Schematic of the near-wall intercomponent energy transfer.

is noteworthy that this λ2-based CS eduction scheme is generally applicable to both
free- and wall-bounded turbulent shear flows and is seen to accurately extract fully
three-dimensional vortical structures with minimal smearing.

By sampling the entire extent of streamwise vortices, we have revealed a frequently
occurring pattern for near-wall CS: an overlapping array of alternating-signed stream-
wise vortices repeating in x, with individual structures inclined at 9◦ in the vertical
plane and tilted alternately at +4◦ and −4◦ in the horizontal plane. Note that hairpin-
type vortices are not present in the near-wall region (y+ 6 60) investigated here; this
is consistent with their absence in instantaneous λ2 data and with two-point corre-
lation data of ωx in (y, z) planes. Some of the instantaneous vortices in the buffer
layer are the elongated legs of asymmetric ‘arch’ or ‘horseshoe’ vortices extending into
the outer region (see, for example, Robinson 1991; Blackburn, Mansour & Cantwell
1996). Since our ensemble-averaged vortices (i.e. λ2) vanish at y+ ≈ 50, the outer por-
tions of these extended vortices are probably smeared out by the ensemble averaging,
which is aligned in the buffer layer. Nevertheless, the legs of extended vortices, along
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with all other near-wall vortices, are the most dynamically significant for skin friction
and heat transfer, and hence the focus of our study.

We find that CS tilting in (x, z)-planes due to mutual induction of overlapping

vortices is particularly important in generating negative p∂u/∂x, which enables transfer
of streamwise fluctuation energy to spanwise and normal components to sustain the
CS. This tilting is also responsible for kinked low-speed streaks and internal shear
layers with negative ∂u/∂x, both commonly observed but not previously linked to
near-wall CS.

We show that a spatial phase difference between u and v within the fully developed
structures leads to the dominance of Q4 events over Q2 events near the wall; negative
Reynolds stress events (Q1 and Q3 events) were also investigated in the context of
CS advection. These effects are readily understood in terms of the phase difference
created by the CS’s advection of u-fluctuations.

While the results here constitute a snapshot of near-wall CS, the current under-
standing of the vortex dynamics responsible for their formation and regeneration is far
from complete. In this regard, the model of overlapping, alternating-sign streamwise
CS presented in this paper as the dominant near-wall structure (figure 10a,b) serves
as a useful starting point, i.e. initial condition, for further studies of the evolutionary
dynamics of near-wall CS. By construction, our eduction technique selects streamwise
vortices which are in their active phase of evolution. By initializing DNS with the
CS pattern observed, we expect to obtain a ‘clean’ CS evolution which is amenable
to detailed analysis and interpretation (like the approach used by us to study mixing
layer transition (see Schoppa, Hussain & Metcalfe 1995)). In contrast to the multitude
of irregular structures in the instantaneous field, the flows thus obtained will contain
only a few (opposite-signed) vortices whose spatiotemporal evolution can be easily
tracked. Since these CS are directly extracted from fully developed turbulent flows,
their unconstrained evolution serves as a useful complement to recent results for
minimal flow domains.

This research was funded by ONR grant N00014-94-1-0510 and NASA/Ames
grant NCA2-317.
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