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Abstract

This thesis develops the theory of compact Lie groups in order to arrive at the celebrated

Weyl character formula. In order to attain this goal harmonic analysis on compact Lie

groups, maximal tori, the Weyl group and its realisation as a finite group of isometries of a

Euclidean space are studied in great detail. The treatment remains entirely in the realms

of real analysis, with no complexification taking place for the general results.

This thesis also introduces a complete orthonormal sequence of rational functions that

are related to the Jacobi polynomials. These are attained via the classical Cayley map.
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Introductory Material
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Chapter 1

Lie Theory

Lie theory is central to modern mathematics. It has applications in fields as diverse as

algebraic geometry, classical harmonic analysis and mathematical physics. The common

theme in mathematics today is geometry, the essence of Lie theory.

The origins of Lie theory were not so lofty, Sophus Lie had the vision to use the geo-

metric ideas that arose out of Klein’s Erlanger Programme to solve differential equations.

Consequently, the theory developed by Lie and his contemporaries was predominantly lo-

cal. That is, they studied structures known today as Lie algebras.

In the beginning of the twentieth century, Elie Cartan’s thesis classified the semisimple

complex Lie algebras. Within another two years, he had classified the real semisimple Lie

algebras. This marked a change in the direction of Lie theory research, it moved into global

analysis.

Hermann Weyl saw Lie theory as the key to Einstein’s General Relativity ([33] pp.

vii-viii) and contributed tremendously to the field, the majority of the work in this thesis

is due to Weyl. At the same time, Elie Cartan constructed the framework of differential

geometry that we use today, in order to understand the global properties of Lie Groups.
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Lie groups are the symmetries of continuous geometries. So, in the finite dimensional

case, Lie theory is naturally viewed as a generalisation of linear algebra. For this reason,

there are good examples of well known groups that are very illustrative of the general the-

ory. Consequently, we will endeavour to provide ample computations to demonstrate what

is really occuring. Let us get to work by outlining some of the elementary, but beautiful

properties of Lie groups.

1.1 Concepts

When dealing with finite groups, a Hausdorff topology that is compatible with the group

actions is given by the discrete topology, yielding little insight into the algebraic structure.

In the case of uncountable groups, a Hausdorff topology is what we require to make the

global, algebraic structure tractable by our theories of analysis. For example, consider

T = {z ∈ C : |z| = 1}.

This is clearly a group, and the topology that we would want to endow it with, is the rel-

ative topology inherited from C. Observing that eiθeiθ
′

= ei(θ+θ
′) and

(
eiθ
)−1

= e−iθ, then

multiplication and inversion, viewed as maps from T×T→ T and T→ T respectively, are

smooth operations.1 T is also naturally viewed as a one-dimensional, smooth manifold. It

is also worth remarking that since periodicity is a cyclic phenomenon, then the study of

periodic functions reduces to the study of functions on T.

The example above was abelian, which is an unrealistic example of a general group.

Now consider

SU(2) = {u ∈M2(C) : u∗u = 1, det u = 1},
1For an introduction to the differential geometry of manifolds, see [12] Ch. I.
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which is certainly non-abelian. Again, it is clear that multiplication and inversion are

smooth operations when given the (strong) operator topology induced from C2; it is also a

compact metric space in this topology. By remarking that any u ∈ SU(2) can be realised

as u =
(

α β

−β α

)
where |α|2 + |β|2 = 1 and α, β ∈ C then SU(2) is diffeomorphic to S3,

the unit sphere in R4. So, SU(2) is naturally a real 3-manifold. Note that SU(2) arises

naturally in the study of angular momenta of spin- 1
2

in particle physics. It would seem

worthwhile to make the following

Definition 1.1.1 (Lie Group). A Lie Group, G, is a group which is also an smooth

manifold, with multiplication and inversion smooth maps with respect to this structure.2

In the sequel, I will be considering real Lie groups only3. It is fairly clear that an

uncountable, closed group of matrices over R or C is a Lie group. We call such objects

matrix groups. What is interesting, is that there are very important Lie groups that are

not matrix groups. I cite the following paradigm example from [7].

Example 1.1.1 (Heisenberg Group). Let

N =
{(

1 a c
0 1 b
0 0 1

)
: a, b, c ∈ R

}
Z =

{(
1 0 n
0 1 0
0 0 1

)
: n ∈ Z.

}

Then N/Z is a Lie group, called the Heisenberg group, that is not a matrix group.

Our setting is now a smooth manifold, and it is useful to have a sensible method to

move points around. On a Lie group, there is a natural way of doing this.

Definition 1.1.2 (Translation Operators). Let G be a Lie group and g ∈ G.

1. Left Translation is achieved by the map Lg : G → G : h 7→ gh, from the differen-

tiable structure we know that this map is smooth.

2Hilbert’s 7th problem (Montgomery-Zippen Theorem) proved that for any topological group, there is
at most one differentiable structure on it that endows it with a Lie group structure. Consequently, one
may assume that a Lie group has C1 charts, and it will turn out that they are in fact real-analytic.

3Complex (and algbebraic groups over an algebraically closed field) Lie groups are now more commonly
dealt within the framework of algebraic geometry. For a brief introduction see [7] and for a more substantial
exposition see [4]
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2. Right Translation is achieved by the map Rg : G → G : h 7→ hg−1, again this is

smooth.

Notice that Lgh = Lg ◦ Lh and Rgh = RgRh for all g, h ∈ G. Denote conjugation by

cg = LgRg = RgLg.

Now since T1(G), the tangent space at the identity of G, is finite dimensional, then we

naturally can define inner products on T1(G). Fixing one, and using left translations we

arrive at a left-invariant Riemannian metric on G. We have just proven the

Theorem 1.1.1. Let G be a Lie group, then ∃ a right-invariant (resp. left-invariant)

Riemannian metric on G. In particular, it follows that G is Riemannian manifold.

We will now consider a Lie group G to be a Riemannian manifold endowed with a metric

g that is invariant under left translations. The connection will always be the Riemannian

connection and so a geodesic γ : (s1, s2) ⊂ R→ G minimises the (arc-length) functional

L(γ) =

∫ s2

s1

[
gγ(t)(γ̇(t), γ̇(t))

]1/2
dt.

For details, see [12] pp. 47-55.

Our metric is left-invariant and so inner products are preserved under left translations.

So, it would seem worthwhile trying to understand the vector space of left invariant vector

fields on G, g. This is characterised as all vector fields V on G such that

(Lg)?V1 = Vg ∀g ∈ G.

From which it is clear that g is clearly canonically isomorphic to T1(G).

Let exp : Mn(C) → GL(Cn) be the standard matrix exponential. Note that since t 7→
exp(tV ) defines a smooth curve in GL(Cn) with tangent vector V at t = 0; then to

compute g for G, a Lie group of matrices, it suffices to find the preimage G under exp.

Example 1.1.2 (SU(2)). su(2) = {X ∈M2(C) : X∗ = −X, trX = 0}.
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Example 1.1.3 (U(n)). u(n) = {X ∈Mn(C) : X∗ = −X}.

Now, fix g ∈ U(n) and consider cg : h 7→ ghg−1. Then define Ad as

Ad(g) := (cg)?(1) : u(n)→ u(n).

Let X ∈ u(n) then t 7→ exp(tX) is a smooth map at 1 and so

Ad(g)X =
d

dt

[
g exp(tX)g−1

]
t=0

= gXg−1.

So, Ad is conjugation of u(n); moreover, it is closed under this operation. We now differ-

entiate Ad(·)Y at 1 to get the adjoint,

ad(·)(Y ) := [Ad(·)Y ]? (1) : u(n)→ u(n).

Hence,

ad(X)Y =
d

dt
[exp(tX)Y exp(−tX)]t=0

= [X exp(tX)Y exp(−tX)− exp(tX)Y X exp(−tX)]t=0

= XY − Y X.

For the general case, we really need to construct some nice curves to differentiate along in

order to use the above maps. Once we do, it will turn out that g can be given the structure

of a non-associative algebra under the operation [X, Y ] := ad(X)(Y ).

In a purely geometrical approach, this corresponds to the Lie derivative of Y with respect to

X. For our purposes, this is not a particularly pleasant characterisation of this operation, as

we have an algebraic structure on the manifold. The notion that it is capturing conjugation

near the identity, is preferred.4 Let us set up a basic framework for doing such a thing.

4So do other authors, see Howe’s article [16] for example.
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Definition 1.1.3 (One-Parameter Group). A one-parameter group of a Lie group

G is a smooth homomorphism γ : R→ G.

Example 1.1.4. On SU(2) let Ht = ( it 0
0 −it ) then t 7→ exp(Ht) =

(
eit 0
0 e−it

)
is a one-

parameter group. If SU(2) is realised as S3 then the image of t 7→ exp(Ht) is a great circle

through ±1. It can be shown that conjugation by group elements rotates this great circle

about the line through ±1.

The following theorem is precisely the correspondence we are after, see [6] for the

complete proof.

Theorem 1.1.2. Let G be a Lie group and γ : R → G a one-parameter group. Then the

correspondence γ 7→ γ̇(0) ∈ g is a canonical bijection between the set of one parameter

groups of G and g.

Proof (Sketch). Fix X ∈ g, and let γX : (−ε, ε)→ G be the unique the geodesic such that

γ̇X(0) = X. The existence and uniqueness of such a curve is courtesy of Picard’s theorem

[21]. We can extend the geodesic to a one parameter group by picking for each t ∈ R an

N ∈ Z such that
 t
N

 < ε, from which we define

γX(t) = γX

(
t

N

)N
.

It is easy to check that this is a well-defined homomorphism.

We now have the theoretically convenient

Definition 1.1.4 (Exponential). Let exp : g→ G : X 7→ γX(1), where γX is the unique

one-parameter group tangent to X at 1. Observe, exp([t+ s]X) = exp(tX) exp(sX).

Example 1.1.5. For a matrix group the Lie exp is the standard exp of matrices since

d
dt

exp(tX) = X exp(tX).

Unfortunately, we have the following
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Example 1.1.6. Consider SL2(R), this is a noncompact Lie group; with sl(2,R) equal to

the vector space of trace zero, real matrices. With the usual exponential of matrices, it is

easy to see that −I /∈ exp(sl(2,R)).

However, in the case that G is compact, exp will turn out to be surjective. There is a

substantial amount of work to be done to prove this though.

So, we are now in a position to define Ad, ad on an arbitrary Lie group analogous to our

matrix example. Call [X, Y ] = ad(X)Y the Lie Bracket of X and Y ; an operation which

g is closed under. The Lie bracket is also

• bilinear,

• skewsymmetric, and

• satisfies the Jacobi identity : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Definition 1.1.5 (Lie Algebra). Given a Lie group G, the Lie algebra g of G is the

set of left invariant vector fields on G, equipped with the Lie bracket [·, ·] : g× g→ g.

Example 1.1.7 (su(2)-triple). If we give su(2) the basis

H = ( i 0
0 −i ) , X = ( 0 1

−1 0 ) , Y = ( 0 i
i 0 ) ,

then an easy computation shows that [H,X] = 2Y , [H, Y ] = −2X, [X, Y ] = H.

Remark 1.1.1. Rearranging the Jacobi identity we get

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]],

which is reminiscent of the product rule for differentiation of functions.

For a good introduction on the theory of Lie algebras constructed in this way, we recom-

mend [10]. We end with a quote from Howe[16].
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The basic object mediating between Lie groups and Lie algebras is the one-parameter

group. Just as an abstract group is a coherent system of cyclic groups, a Lie group

is a (very) coherent system of one-parameter groups.

1.2 Lie Subgroups and Homomorphisms

There is substantial theory required to deal with this concept in a rigorous manner, which

I will avoid as it would take us too far afield, and the techniques are not of use anywhere

else in the thesis. For a a comprehensive reference I would recommend [12] Ch. II §2. I will

cite some of the important results, but with no proof. This definition is due to Chevalléy,

and also appears in [12] p. 112.

Definition 1.2.1 (Lie Subgroups and Subalgebras). If G is a Lie group and H a

submanifold, then G is a Lie subgroup if H is a subgroup of G and a topological group

(in the relative topology). A Lie subalgebra h of g is vector subspace that is closed under

the Lie bracket.

Unless stated otherwise: a subgroup means a Lie subgroup

Unless stated otherwise: a subalgebra means a Lie subalgebra

This definition is chosen specifically to obtain the

Theorem 1.2.1 (Analytic Subgroups). Let G be a Lie group. If H is a Lie subgroup

of G, then the Lie algebra h is a subalgebra of g. Each subalgebra of g is the Lie algebra of

exactly one connected Lie subgroup.

Proof. See [12] pp.112-114.

The other notion fundamental to group theory is in the following
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Definition 1.2.2 (Homomorphism). A homomorphism of the Lie groups G and H is

a smooth group homomorphism of G onto H. A homomorphism of Lie algebras is a linear

map that preserves the Lie bracket i.e. φ([x, y]) = [φ(x), φ(y)].

The continuity is required so that the kernels and images of Lie group homomorphisms

are Lie groups; see [12] p. 116 for details.

1.3 Integration

Recalling Frobenius’ theory of finite group (over fields of characteristic 0) representation

theory we had the regular representation on the group algebra, CG, where the group

acted by left or right translations. The beauty of this object was that it was canonically

associated to G and, from the representation theory point of view, all the irreducibles

appeared in it. However, in the case that G is a Lie group, CG is rather unwieldy. So,

since G is a topological group too, it is more natural to consider the regular representation

to be on Cc(G), the space of continuous functions on G with compact support with the

action given by

G× Cc(G) 3 (g, f) 7→ Lgf := {h 7→ f(gh)}.

Unfortunately, Cc(G) is a fair way from being a Hilbert space, which is a place we nor-

mally like representations to occur.5 However, from the general theory of locally compact

Hausdorff spaces, if we had a Radon measure, µ, on G, we would have Cc(G) uniformly

dense in the Hilbert space L2
µ(G) (see [14] p. 140).

Therefore, our problem for the moment is constructing a Radon measure on G such

that if f ∈ L2(G), then Lgf ∈ L2(G). It would also be nice if this measure had some good

uniqueness properties. It turns out that we have the following

5It does have a good structure as a normed linear space under ‖f‖ = supx∈G |f(x)|. Moreover, if G is
compact, then Cc(G) = C(G) and, is a Banach space in this norm; see [21] p. 57 (the example generalises
easily) for details.
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Theorem 1.3.1 (Haar-Weil). Let G be a Lie group, then:

1. ∃ a Radon measure µ : B(G) → [0,∞] such that if E ∈ B(G) then µ(gE) = µ(E)

∀g ∈ G, called a left Haar measure on G. Similarly, there is a right Haar measure

on G; and

2. if ν, µ : B(G) → [0,∞] are two left (resp. right) Haar measures on G, then ∃c > 0

such that µ = cν.

Proof. It is routine but nevertheless quite involved to catch all the details in the contruction

of the measure, see [20] ch. VIII.

Remark 1.3.1. It is not hard to see that right Haar measures exist– we just pick a positive

definite tensor of type (0, 2) on T1(G) and then use translations to move it around the

manifold. Even so, there are some details in this construction that need to be checked.

Observe that if µ : B(G)→ [0,∞] is a left Haar measure, then µg := µ ◦Rg is another

left Haar measure. By Theorem 1.3.1, it follows that µg = ∆(g)µ. Also, if µg = µ for all

g, then µ would be a right Haar measure too. That is, every left Haar measure is a right

Haar measure. There is an important case where this always happens:

Proposition 1.3.1. If G is a compact Lie group, then ∆ ≡ 1.

Proof. Since G is compact and a Haar measure is a Radon measure, then 0 < µ(G) <∞;

this also implies ∆ is integrable since it is continuous. Hence, for h ∈ G

∫

G

dµ(g) =

∫

G

dµ(hg) =

∫

G

∆(h) dµ(g) = ∆(h)

∫

G

dµ(g).

This proves the result.

When discussing measures on Lie groups, we will always mean the left Haar measure.

If G is compact, we will always mean the left Haar measure (and so a right Haar measure)

normalised so that µ(G) = 1.
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Chapter 2

Representations

2.1 Introduction

It is fairly clear that all matrix groups are Lie groups, and are very well understood in

their own right. The question then arises, how similar are Lie groups to matrix groups?

The representation theory of Lie groups aims to answer this question. There are analytic

motivations for this too. Consider the following

Example 2.1.1 (T). For n ∈ Z, define χn : T → T : z 7→ zn. A classic result is that

T̂ = {χn}n∈Z is a complete orthonormal system in L2(T) (for the analytic details, see

[30] p. 119). It is also clear that T̂ is contained in the set of continuous homomorphisms

χ : T→ C×. We now show the reverse inclusion.

Suppose χ is as above, and set z0 = χ(ei). By the homomorphism property: χ(ei/2)χ(ei/2) =

χ(ei) = z0. This implies χ(ei/2) = z
1/2
0 and so χ(eis) = zs0 for all dyadic rationals s. Conti-

nuity implies χ(eiθ) = zθ0 for all θ and so since 1 = χ(e2πi) = z2π
0 and so z0 = ein for some

n ∈ Z; which proves the result. So we have a correspondence between homomorphisms

and a complete orthonormal system.
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Given f ∈ L2(T), we also have the Fourier transform {f̂(n)}n∈Z of f , where

f̂(n) =
1

2π

∫

T
f(z)χn(z)

dz

z
= 〈f, χn〉T .

Also,

f =
∑

n∈Z
f̂(n)χn a.e.

If we let Vn be the space

Vn = spanC(χn),

then we have the orthogonal direct sum

L2(T) =
⊕

n∈Z
Vn.

Note that T acts on Vn by z · f = znf , for z ∈ T and f ∈ Vn.

Unfortunately, we have the following

Example 2.1.2. Suppose that G is non-abelian, then there is a conjugacy class containing

at least two elements. So, let g 6= g′ be conjugate in G and so g = hg′h−1. If χ : G→ C×

is a continuous homomorphism then χ(g) = χ(hg′h−1) = χ(h)χ(g′)χ(h)−1 = χ(g′).

Hence, in a nonabelian group G the continuous homomorphisms χ : G → C× fail to

separate points, and so cannot be dense in L2(G). The appropriate generalisation turns

out to be the

Definition 2.1.1 (Representation). A representation of a Lie group G on the topo-

logical space vector space V is a Lie group homomorphism of G onto GL(V ).

Unless stated otherwise: all representations are assumed to be finite dimensional.

Example 2.1.3. U(n) has a natural representation on Cn given by inclusion.

Notation 2.1.1. If G admits a representation on V , we will write πV : G → GL(V ) to

mean the relevant continuous group homomorphism.
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Remark 2.1.1. We will often refer to a representation of G on V as the G-module V , with

the action given by the representation. That is, g · v = πV (g)v ∀v ∈ V . For some detailed

discussions on the general theory of modules we recommend [23].

Example 2.1.4 (Ad). Let G be a Lie group, then g 7→ Ad(g) ∈ GL(g) is a smooth

homomorphism. This representation is canonically associated to G, it is called the Ad

representation.

We have a corresponding notion occuring in the Lie algebra.

Definition 2.1.2 (Representation-Lie Algebra). A representation of Lie algebras is

a homomorphism of Lie algebras φ : g→ gl(V ).

Notice that if πV : G → GL(V ) is a representation, then (πV )∗(1G) : g → gl(V ) is a

homomorphism of Lie algebras. We refer to this as the representation induced from πV .

Example 2.1.5 (ad). g 3 X 7→ ad(X) ∈ gl(g) is a homomorphism of Lie algebras, called

the adjoint. Again, this is canonically associated to g.

Example 2.1.6 (Contragredient). Given a representation πV : G→ GL(V ), there is a

possibility of constructing another representation from it, namely a representation on V ∗

given by πV ∗(g)α(v) = α(πV (g)∗v).

Of interest too, is how we can construct new G-modules out of existing ones. The

standard constructions are through the tensor product and the direct sum. The new G-

module structure is given by

πV⊗W (g)(v ⊗ w) = (πV (g)v)⊗ (πW (g)w),

πV⊕W (g)(v ⊕ w) = (πV (g)v)⊕ (πW (g)w).
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For details on the above construction, we refer the reader to [23]. On the Lie algebra, the

representative structure above descends to

(πV⊗W )∗(1G)(v ⊗ w) = (πV (g)v)⊗ w + v ⊗ (πW (g)w),

(πV⊗W )∗(1G)(v ⊕ w) = (πV (g)v)⊕ (πW (g)w).

When examining two G-modules, it is of interest to know how similar they are. The

appropriate object of study is the set of G-equivariant homomorphisms between V and W ,

Hom G(V,W ). This is the set of maps Φ : V → W such that πW ◦ Φ = Φ ◦ πV .

Lemma 2.1.1 (Schur). Let V be an irreducible G-module, then Hom G(V ) is a division

algebra. Moreover, if V is over C, then dim Hom G(V ) = 1.

Proof. Straightforward, see [9] pp. 212-213 for example.

2.2 Complete Reducibility

When studying matrices, one often tries to examine its invariant subspaces, it would seem

natural to do the same with a representation; in fact, of most interest (in this branch of

the theory) are the smallest ones, and when we can build up other G-modules from these.

Definition 2.2.1. A G-module V is irreducible if the only invariant subspaces of V

under the action of G are (0) and V .

If every G-module V can be written as a direct sum of irreducible G-modules, then we say

G is completely reducible.

Suppose that V is a finite dimensional G-module, then clearly an inner product (resp.

hermitian form) exists on V . Suppose that G is compact and let µ be the normalised Haar

measure on G, then the map 〈·, ·〉V : V × V → k:

〈v, w〉V =

∫

G

(πV (g)v, πV (g)w) dµ(g)
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is clearly an inner product (resp. hermitian form) on V that is invariant under the action

of G, since G is compact. In fact we have just proven the

Lemma 2.2.1 (Weyl’s Trick). Let G be a compact Lie group and suppose that V is a

G-module. Then, there exists a G-invariant inner product (hermitian form if the space is

complex) on V .

Remark 2.2.1. This concept holds in greater generality, see [20] p. 382 for instance.

Notation 2.2.1. If G is compact, for a G-module V , we let 〈·, ·〉V denote a fixed G-

invariant inner product (resp. hermitian form) on V .

Corollary 2.2.1. Let V be the g-module induced from G, then 〈·, ·〉V is g-invariant. That

is, 〈g · v, w〉V = −〈v, g · w〉.

Proof. Notice that 〈πV (g)v, w〉V = 〈v, πV (g)−1w〉V for all g ∈ G and v, w ∈ V . Thus,

differentiating the above at the identity yields 〈(πV )?(1G)(X)v, w〉V = 〈v, (πV )?(1G)(X)w〉V
∀X ∈ g.

We now have the all important

Theorem 2.2.1. Let G be a compact Lie group, then G is completely reducible.

Proof. Let V be G-module, if V is irreducible then we are done. If not, pick V1 ≤ V such

that V1 is a G-submodule, it suffices to prove that V = V1 ⊕ V ⊥1 (as G-modules). Let

v ∈ V1, g ∈ G and w ∈ V ⊥1 , then

〈v, g · w〉V = 〈g∗ · v, w〉V =
〈
g−1 · v, w

〉
V

= 0.

2.3 Characters

As one would rightly assume, a general representation is a very complicated object. It

would now seem appropriate to introduce the following

16



Definition 2.3.1 (Character). Let πV : G → GL(V ) be a representation, then the

character of V is χV = tr πV .

The trace map used in the above definition is the standard one from linear algebra, in

particular it is indepedent of the choice of basis for V . The other important fact is that

characters are constant on conjugacy classes.

A better, coordinate free, definition for constructing the trace map was completed by

Bourbaki, we repeat [2] pp. 46-47. We start this definition by noticing that we have a

canonical isomorphism

φ : V ∗ ⊗ V → Hom k(V ) : λ⊗ v 7→ {ξ 7→ λ(ξ)v}.

We also have the evaluation map

ε : V ∗ ⊗ V → k : λ⊗ v 7→ λ(v).

So, for π ∈ Hom C(V ), we define trπ = ε ◦ φ−1(π).

Example 2.3.1. Pick some basis {ei}ni=1 of V and let {e∗i }ni=1 be the dual basis. Then

φ(e∗j⊗ei)(ek) = e∗j(ek)ei = δjkei and so φ(e∗j⊗ei) = Eij, where Eij is the matrix with zeroes

everywhere except for the (i, j)-th position with respect to the above basis. Moreover, since

ε(e∗j ⊗ ei) = δij, then if A =
∑n

i,j=1 aijEij ∈ Hom k(V ), then

ε ◦ φ−1(A) =
n∑

i,j=1

aijδij =
n∑

i=1

aii = trA.

So, the two versions agree.

Remark 2.3.1. tr idV = dimV , and so χV (1) = dimV .

Remark 2.3.2. Characters are continuous class functions.
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Bourbaki’s definition is significantly easier to work with in proofs. In fact, the next

proposition is essentially obvious from these definitions.

Proposition 2.3.1. Let V , W be G-modules, then we have the following properties.

1. χV⊕W = χV + χW ;

2. χV⊗W = χV χW ; and

3. χV ∗ = χV if V is over C.

We also have the

Proposition 2.3.2. Let V be a G-module, then

∫

G

χV (g) dg = dimV.

Proof(Sketch). Note that by the linearity of the trace we have:

∫

G

χV (g) dg =

∫

G

tr πV (g) dg = tr

∫

G

πV (g) dg.

But K :=
∫
G
πV (g) dg belongs to GL(V ) and

(∫

G

πV (g) dg

)2

=

∫

G

∫

G

πV (gh) dg dh =

∫

G

πV (g) dg.

So, trK is the dimension of the subspace that is G is invariant. If V is irreducible, then

trK = dimV . Otherwise we use the decomposition as a direct sum of irreducibles to

obtain the result.

Corollary 2.3.1. Let V , W be irreducible G-modules over C, then

∫

G

χV (g)χW (g) dg = dim Hom G(W,V ).

Proof. Just notice that X := W ∗⊗V ∼= HomG(W,V ) is a G-module and χX = χWχV .
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In the next chapter we finally do some serious computations which illustrate the theory

discussed in the previous chapters.
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Chapter 3

Representations of SU(2)

Employing relatively elementary methods, a complete set of irreducible representations of

SU(2) is constructed, realised on spaces of homogeneous polynomials. The treatment is

related to [15] pp. 127-142, but is really attributed to the infinitesimal methods employed

by Cartan ([5] p. 18). In particular, the characters and the matrix entries of the continuous,

irreducible, unitary representations are computed explicitly.

3.1 Homogeneous Polynomials

Since SU(2) acts naturally on C2, there is an induced representation on the space of

complex polynomials in two variables given by

SU(2)× C[z1, z2] 3 (g, p) 7→ {(z1, z2) 7→ p((z1, z2)g)}.

Explicitly, we can write for g =
(

α β

−β α

)
∈ SU(2):

(g · p)(z1, z2) = p(αz1 − βz2, βz1 + αz2).

So, for each non-negative half-integer ` we set

H` = C[z1, z2]2`,
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the complex vector space of homogeneous polynomials over C2.1 It is now convenient to

introduce the following basis for H`

ξk = z`+k1 z`−k2 k = −`, −`+ 1, . . . , 0, . . . , `− 1, `.

From the explicit characterisation of the representation it is clear that H` is stable under

the SU(2) action, we denote the restriction to H` by T` : SU(2)→ GL(H`).

What we aim to prove is that the H` are all of the continuous, irreducible representa-

tions of SU(2). First, let us construct the matrix coefficients of the representations. We

define an inner product as 〈ξµ, ξν〉 = δµν, and the matrix entries of the representation as

tij` (g) = 〈T`(g)ξj, ξi〉 , i, j ∈ {−`,−` + 1, . . . , `}.

Now,

T`

(
α β

−β α

)
ξj = (αz1 − βz2)`+j(βz1 + αz2)`−j

=

(
`+j∑

k=0

(−1)k
(
`+ j

k

)
αkβ

`+j−k
zk1z

`+j−k
2

)
×
(

`−j∑

m=0

(
`− j
m

)
βmα`−j−mzm1 z

`−j−m
2

)

=
∑̀

i=−`

(
i∑

s=−`
(−1)j−s

(
`+ j

`+ s

)(
`− j
i− s

)
α`+sβi−sβ

j−s
α`−j−i+s

)
ξi.

Hence, it is clear that

tij`

(
α β

−β α

)
=

i∑

s=−`
(−1)j−s

(
`+ j

`+ s

)(
`− j
i− s

)
α`+sβi−sβ

j−s
α`−j−i+s.

1This choice of indexation is classical, arising out of the indexing of spin numbers in quantum mechanics.
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Remark 3.1.1. The matrix entries are not holomorphic functions in the variables α, β.

This hints at the fact that the representation theory for SU(2) is very much a phenomenon

occurring in the category of smooth functions.

Now, let

T =
{(

eiθ 0
0 e−iθ

)
: θ ∈ R

}
⊂ SU(2)

and notice that every element of SU(2) is conjugate to an element of T . So, to compute the

character of H` we need only consider its restriction to T . Indeed, the action is explicitly

given by

T`
(
eiθ 0
0 e−iθ

)
ξk = e2kiθξk.

So, it follows now that the character χ` : SU(2)→ C of H` is:

χ`
(
eiθ 0
0 e−iθ

)
=
∑̀

n=−`
e2niθ =

e(2`+1)θ − e−(2`+1)θ

eiθ − e−iθ =
sin(2`+ 1)θ

sin θ
,

extended to be a class function on SU(2).

A remark worth making now is that we have just diagonalised the T -action of SU(2)

on H` and written H` as a direct sum of (complex) T -modules. For k ∈ {−`, . . . , `} we

have the induced t-module action:

(T`(1))∗ ( it 0
0 −it ) ξk = i(2kt)ξk.

Thus, ξk is a eigenvector for the t action with eigenvalue, iαk, where αk(·) = 2k·.

Definition 3.1.1 (Weight). A weight of SU(2) is an α ∈ t∗ such that α ( i 0
0 −i ) ∈ Z.

Consequently, we call span{ξk} a weight space of weight αk. Also, we have an action,

called the W -action, on T that swaps the eigenvalues. The induced W -action on the αk
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takes αk 7→ α−k.

There is also a unique, “highest” weight for H`, namely `, and the representations are

indexed by these highest weights. Another, more subtle remark is that both the numerator

and the denominator of the character computed above are W -antisymmetric. As will be

shown in this thesis, SU(2) is an inspiring and illustrative group for a great deal of the

theory on compact Lie groups.

We now introduce the operators {H`, X`, Y`} with the actions:

H`(ξk) =
d

dt
T`
(
eit 0
0 e−it

)
ξk


t=0

= 2kiξk,

X`(ξk) =
d

dt
T` ( cos t sin t

− sin t cos t ) ξk


t=0

= (`− k)ξk+1 − (`+ k)ξk−1,

Y`(ξk) =
d

dt
T` ( cos t i sin t

i sin t cos t ) ξk


t=0

= i(`− k)ξk+1 + i(`+ k)ξk−1.

Indeed, since

exp


it 0

0 −it


 =


e

it 0

0 e−it


 ,

exp


 0 t

−t 0


 =


 cos t sin t

− sin t cos t


 ,

exp


0 it

it 0


 =


 cos t i sin t

i sin t cos t


 ,

then {H`, X`, Y`} forms an su(2) triple and so is a representation for su(2)C := su(2)⊗ C,

since H` is a complex vector space. In fact, by its very construction it is the su(2)C-module

induced from the representation of SU(2) on H`.
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Remark 3.1.2. Note that by taking the exponential of the complex span of the operators

{H`, X`, Y`} we would have extended the smooth action of SU(2) on H` to a holomorphic

action of SL(2,C) on H`. Roughly speaking, this is because su(2)C = sl(2,C).

To prove the irreducibility of H` as an SU(2)-module, it suffices to prove that it is an

irreducible su(2)C-module, since (matrix) exponentiation and differentiation are mutually

inverse bijections between the su(2)-modules and SU(2)-modules. It is obvious that irre-

ducibility is preserved in this correspondence. In general, the following operators are more

convenient to work with.

Notation 3.1.1.

Ĥ` = −iH`;

X̂` =
1

2
(X` − iY`); and

Ŷ` = −1

2
(X` + iY`).

We now have an obvious

Lemma 3.1.1 (String Basis).

Ĥ`(ξk) = 2kξk;

X̂`(ξk) = (`− k)ξk+1; and

Ŷ`(ξk) = (`+ k)ξk−1.

Theorem 3.1.1. {H`}` is a complete list of the continuous, irreducible, finite dimensional

representations of SU(2).
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Proof. By Lemma 3.1.1 it is clear that ξ` generates H`. So, it suffices to prove that, given

any non-zero v ∈ H`, then there is a sequence of actions that take it to ξ`.

Notice that since {ξk} is a basis of H`, we can write v =
∑

i aiξi for some ai ∈ C. Let

j = min{i : ai 6= 0}, then

ξ` =
(`− j − 1)!

aj(2`)!
X̂`−j−1
` (v),

as required.

To prove that any irreducible SU(2)-module is isomorphic to one of the H` it suffices

to show that any complex su(2)C-module, V , arising from a real su(2)-module, exhibits a

string basis as in Lemma 3.1.1.

For a weight α write

Vα = {v ∈ V : H(v) = α(H)v ∀H ∈ tC}.

From linear algebra, V =
⊕

α Vα. Now, let k ∈ Z+, then

H
(
Xk(v)

)
= [H,X](Xk−1(v)) +XHXk−1(v).

But

HX(v) = [H,X](v) +XH(v) = 2X(v) +XH(v),

so if v ∈ Vα, then

HX(v) = (α(H) + 2)X(v) =⇒ H(Xk(v)) = (α(H) + 2k)Xk(v).
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In other words, Xk(v) is an eigenvector of H with eigenvalue α(H) + 2k. Indeed, since

dimV < ∞, then Xk(v) = 0 for some k ∈ Z+ with k ≤ dimV (which we choose to be

minimal). Set n′ = dimV
2

, and ζn′ = Xk−1(v) and define (inductively) for k = −n′,−n′ +
1, . . . , n′ − 1 the ζk by

ζk−1 =
1

n′ + k
Y (ζk).

Indeed, by irreducibility the su(2)C-module generated by the {ζk} is either (0) or V and,

since ζn′ 6= 0, it must be V . It is obvious the su(2)C-module isomorphism ζk 7→ ξk ∈ Hn′ is

well-defined, and we are done.

We call the vector ζn′ constructed above a highest weight vector for V . Note that

every SU(2)-module created by a highest weight vector is irreducible. The converse also

holds. The following (standard) argument appears courtesy of [6] p. 86.

Corollary 3.1.1. If V is a continuous, irreducible, unitary representation of SU(2), then

dimV <∞.

Proof. Suppose that dimV = ∞, the fundamental observation is that span{cosnθ}n∈N =

span{χk/2}k∈N (which is easy to check) and so, by the density of span{cosnθ}n∈N in the

even functions on L2(T ) ([30] p. 119 can be adapted to prove this), it follows from Corollary

2.3.1 that χV = 0 if dim V =∞–a contradiction.

Remark 3.1.3. Again, since {cosnθ}n∈N is dense in the space of even functions on [−π, π],

then span{χ`} = L2(T )W . This is the conclusion of the Peter-Weyl Theorem, which will

be discussed in the next chapter. A deeper conclusion of the Peter-Weyl Theorem is that

span{tij` } = L2(SU(2)). This fact can be seen directly at the moment by using the Stone-

Weierstraß theorem.
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3.2 Haar Measure

Note that since SU(2) can be viewed as S3, multiplication can be viewed as an orthogonal

transformation of S3. So, an invariant measure on SU(2) would be the normalised surface

measure on S3. In other words

∫

SU(2)

f(g) dg =
1

4π2

∫ π

−π

∫ π

0

∫ π

0

f(θ, ϕ1, ϕ2) sin2 ϕ1 sinϕ2 dϕ1 dϕ2 dθ.

3.3 Decomposition of the Tensor Product into Irreducibles

In the Standard Model of particle physics, fundamental particles are identified with an

irreducible representation of a certain symmetry group of the particle. For the case of a

spin 1
2

particle, for example, an electron, the symmetry group of the angular momenta

is SU(2). Moreover, the interaction between two particles is represented by their tensor

product; and the decomposition of the tensor product into irreducibles corresponds to the

fundamental particles emitted by the interaction. The case of SU(2) is classical, and will

be proven now. The more general case can be dealt with once the Weyl Character formula

has been proven.

Theorem 3.3.1.

H`′ ⊗H`
∼=

`+`′⊕

j=|`′−`|
Hj

Proof. Note first that for j ∈ {−`′, . . . , `′} and k ∈ {−`, . . . , `} we have

H(ξj ⊗ ξk) = (2j + 2k)(ξj ⊗ ξk).

Then without loss, `′ ≥ ` and define for each n ∈ {0, . . . , `′ + `− (`′ − `)}:

νn =

n∑

m=0

(−1)m
(
n

m

)
ξ`′−m ⊗ ξ`−n+m.
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Then,

H(νn) =

n∑

m=0

(−1)m
(
n

m

)
H (ξ`′−m ⊗ ξ`−n+m)

=

n∑

m=0

(−1)m
(
n

m

)
2([`′ −m] + [`− n+m])(ξ`′−m ⊗ ξ`−n+m)

∴ H(νn) = 2(`′ + `− n)νn.

X(νk) =

n∑

m=0

(−1)m
(
n

m

)
(X(ξ`′−m)⊗ ξ`−n+m + ξ`′−m ⊗X(ξ`−n+m))

=

n∑

m=1

(−1)m
(
n

m

)
m(ξ`′−m+1 ⊗ ξ`−n+m)

+
n−1∑

m=0

(−1)m
(
n

m

)
(n−m)(ξ`′−m ⊗ ξ`−n+m+1)

= n

n∑

m=1

(−1)m
(
n− 1

m− 1

)
(ξ`′−m+1 ⊗ ξ`−n+m)

+ n

n−1∑

m=0

(−1)m
(
n− 1

m

)
(ξ`′−m ⊗ ξ`−n+m+1)

= 0.

So, νn is a highest weight vector of weight `+`′−n. Note that the sum of the dimensions

of the highest weight submodules we have calculated is

2∑̀

n=0

[2(`+ `′ − n) + 1] = (4`+ 2)(`+ `′)− 2`(`+ 1) + 4`+ 2

= (2`+ 1)(2`′ + 1)

= dimH` ⊗H`′ .

We are done.

Trivially, the following trigonometric identity is obtained.
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Corollary 3.3.1. Let `, `′ be nonnegative half integers, then

sin(2`′ + 1)θ × sin(2`+ 1)θ = sin θ

`′+∑̀

j=|`′−`|
sin(2j + 1)θ.

In the proof above we only calculated the highest weight vectors, as this was all that

was required for the decomposition. However, if one would like to do computations on the

decomposed tensor product (as a physicist would) one would certainly be interested in the

rest of the vectors in the highest weight modules. More precisely, one would seek linear

combinations of the ξr ⊗ ξs that are orthonormal bases for H` ⊗ H`′ and for each of the

highest weight modules. The coefficients are generally called Clebsch-Gordan coefficients.

For some recent work on the matter see [1] pp. 25-89.
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Part II

Elementary Structure Theory
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Chapter 4

The Peter-Weyl Theorem

The Peter-Weyl Theorem opens the door to abstract harmonic analysis. It really tells us

that there are enough representations to separate points of the group and that C(G) can

be decomposed like the group algebra CG, in finite group representation theory. Moreover,

it tells us that every Lie group is a closed subgroup of U(n) for some n and that every

continuous, unitary, irreducible representation of a compact Lie group is finite dimensional.

In addition, it also informs us that the exponential is surjective. This is certainly a theorem

we would wish to understand in its entirety. Surprisingly, for the case of a compact group,

the result is not especially difficult to prove, with the bulk theory embedded in the well-

understood field of Fredholm operators1.

4.1 Representative Functions

If πV : G → GL(V ) is a finite dimensional, unitary representation and B = {ξ}dimV
i=1 is

an orthonormal basis for V , then 〈ξj, πV (g−1)ξi〉V corresponds to the (i, j)-th matrix entry

of πV (g) with respect to the basis B. In an attempt to be as canonical as possible, the

following definition is used to generalise the concept of a matrix coefficient.

Definition 4.1.1 (Representative Function). A representative function of G is any

function of the form g 7→ λ(πV (g−1)u), where V is some G-module, λ ∈ V ∗ and u ∈ V .

1The non-compact case, which we do not prove is significantly more complicated. The problems are
essentially because the L2 space associated to it is non-separable. See [31] for how this problem is dealt
with.
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Now, since g 7→ πV (g) is continuous, then clearly any representative function is continuous.

Call the linear span of all the matrix coefficients the space of matrix coefficients or

representative functions of G, M (G). This is a subspace of C(G).

The implication of the Peter-Weyl Theorem is that M (G) is uniformly dense in C(G),

and so there are enough representations to separate the points of G.2 This is the fact that

enables us to do harmonic analysis on compact Lie groups.3

Now, we let G act on C(G) by left translations and note that this is a continuous

representation on the infinite dimensional space C(G), we will call this the left regular

representation.4 Similarly, we have a right regular representation. Indeed, we now have

a natural representation of G×G on C(G) given by the left part acting by left translations

and the right part acting by right translations.

Remark 4.1.1. Note that this representation is somewhat more canonical since left and

right translations commute. Also, the diagonal of the G × G-action is conjugation, so

C(G)∆ corresponds to the continuous class functions on G, where ∆ := {(g, g) ∈ G×G}.

4.2 Decomposition of the Regular Representations

One of the many highlights of the Frobenius-Schur representation theory for finite groups

over C was the following decomposition ([10] p. 37) of algebras:

CG =
⊕

V ∈ bG

V ∗ ⊗ V,

where Ĝ was a set of representatives of the equivalence classes of irreducible representa-

tions of G on complex vector spaces. It will turn out that we will obtain an identical

2By Urysohn’s lemma, since G compact and Hausdorff, C(G) separates the points of G. By density,
M (G) has enough members to separate points of G as C(G).

3This section only relies on the compact Hausdorff property that G possesses, so we can do harmonic
analysis on compact topological groups too.

4In the sense of strong convergence.
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decomposition for our compact Lie group G with CG replaced by C(G). The following

remarks appear in [29] and are the fundamental correspondence we seek.

If V is a G-module, then V ∗⊗V ∼= HomV can be endowed with another two G-module

structures:

G× (V ∗ ⊗ V ) 3 (g, λ⊗ v) 7→ πRV (g)(λ⊗ v) := λ⊗ πV (g)v ∈ V ∗ ⊗ V ; and

G× (V ∗ ⊗ V ) 3 (g, λ⊗ v) 7→ πLV (g)(λ⊗ v) := πRV (g−1)(λ⊗ v) ∈ V ∗ ⊗ V.

There is also an induced (G×G)-action on V ∗ ⊗ V with the left and right copies of G

acting via the left and right representations above.

Proposition 4.2.1. If V is a complex G-module, then there is a homomorphism of G and

(G×G)-modules given by:

V ∗ ⊗ V 3 λ⊗ v 7→ {g 7→ πV (g)LV (λ⊗ v)} ∈ C(G); and

V ∗ ⊗ V 3 λ⊗ v 7→ {g 7→ πV (g)RV (λ⊗ v)} ∈ C(G).

With the (G × G)-module homomorphism induced from the above two. Moreover, if V is

irreducible the G-module homomorphisms are faithful.

Proof. We just have to check the left action, the proofs of the right action and the two-sided

action will be identical. Let g, h ∈ G, λ ∈ V ∗, v ∈ V . Then,

Lg{h 7→ λ(πV (h−1)v)} = {h 7→ λ(πV (g−1h−1)v)}

= {h 7→ λ(πV (g−1)πV (h−1)v)}

= πLV (g)(λ⊗ v).
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It suffices to show that the left action is faithful whenever V is irreducible. Note that

if v 6= 0 and λ(πV (h−1)v) = λ(v) for all h ∈ G, then by irreducibility, πV (G) spanC(v) = V

and so λ(w) = 0 for all w ∈ V and so λ = 0. It follows that the left action is faithful.

Vogan [29] adopts the following

Definition 4.2.1 (Matrix Coefficient Maps). The mappings in Proposition 4.2.1 are

called the matrix coefficient maps.

Following [7] p. 93 we make the following

Notation 4.2.1. For a G-module V , let

V fin = {v ∈ V : dim πG(span(v)) <∞}.

That is, all those vectors that belong to a finite dimensional, G-invariant subspace of V .

Clearly, V fin is a G-submodule of V .

Still following [7] p. 93 we obtain the following

Lemma 4.2.1.

C(G)fin = M (G).

Proof. Let V be a finite dimensional G-submodule of C(G), and let f ∈ V . Remarking

that f(g) = (Lgf)(1), since Lg has finite range on V , its action can be written as a matrix.

This certainly implies that f(g) can be written as a finite linear combination of matrix

coefficients. The reverse inclusion is clear from Lemma 4.2.1.

The following definition is made näıvely. for the case of compact Lie groups we shall

see later that this is not contentious.5

5It is undoubtedly the case that in considering non-compact Lie groups, we are forced into the theory
of Plancherel measures. In the semisimple case we resort to the Harish-Chandra theory to resolve our
conundrums, for a comprehensive introduction see [31] and [32]. For the nilpotent case, we make use of
Kirillov’s theory, see [19] for example. Plancherel theory is an active area of research.
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Definition 4.2.2 (Dual). Let Ĝ denote the set of equivalence classes of complex, contin-

uous, irreducible, unitary, finite dimensional representations of G. Ĝ is referred to as the

dual.

Example 4.2.1 (SU(2)). ŜU(2) = {Hk/2}k∈N.

Notation 4.2.2. If θ ∈ Rn it will be convenient to denote eiθ := (eiθ1 , . . . , eiθn) ∈ Tn.

Example 4.2.2 (Tn). Let Λ̂ = {α ∈ (Rn)∗ : α(Zn) ⊂ 2πZ} then note that if we define

χα : Tn → C× : eiθ 7→ eiα(θ) for α ∈ Λ̂, then an easy computation demonstrates that

T̂n = {χα}α∈bΛ (see [33] p. 198 for the computation).

In the last example we had T̂n ∼= (T̂)⊗n; this is precisely the content of the

Lemma 4.2.2. Let G, H be compact Lie groups, V ∈ Ĝ, W ∈ Ĥ, then V ⊗W ∈ Ĝ×H.

Moreover, any element of Ĝ×H arises in this way.

Proof. Observe:

HomG×H(V ⊗W ) ∼= [(V ⊗W )∗ ⊗ (V ⊗W )]G×H ∼= (V ∗ ⊗ V )G ⊗ (W ∗ ⊗W )H .

By Schur’s Lemma, V ⊗W is irreducible.

Suppose that V ′ is an irreducible (G×H)-module, let v ∈ V ′\{0}, then set V := (G, 1H ) spanC v,

W := (1G,H) spanC(v), and it is routine to verify the rest.

Example 4.2.3 (U(n)). Observe that U(n) ∼= SU(n)× T via g 7→ (g/ det g, det g). So, if

VU(n)
∼= VSU(n) ⊗ VT, then χVU(n)

= χVSU(n)
χVT .

Proposition 4.2.2.

M (G) ∼=
⊕

V ∈ bG

V ∗ ⊗ V,

as an orthogonal direct sum of (G×G)-modules. The isomorphism is given by the matrix

coefficient map.
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Proof. Everything is clear from Theorem 2.2.1 (complete reducibility), Proposition 4.2.1,

Lemma 4.2.2 and Lemma 4.2.1.

Let us examine what the inner product looks like on each summand in the above

decomposition of M (G) ≤ L2(G). Observe that irreducibility and Schur’s Lemma implies

that there is a unique hermitian form on V up to scalar multiple. So, there is some constant

KV such that

〈λ1 ⊗ v1, λ2 ⊗ v2〉V ∗⊗V = KV 〈v1, v2〉V 〈λ1, λ2〉V ∗ .

But we also have by a similar argument:

〈λ1 ⊗ v1, λ2 ⊗ v2〉V ∗⊗V = K ′V

∫

G

πLV (g)(λ1 ⊗ v1)πLV (g)(λ2 ⊗ v2) dµ(g).

By computing the ratio KV /K
′
V , we arrive at the (classical) result

Corollary 4.2.1 (Schur Orthogonality). Let V , W ∈ Ĝ, ξ, ν ∈ V and ξ′, ν ′ ∈ W .

Then

∫

G

〈πV (g)ξ, ν〉V 〈πW (g)ξ′, ν ′〉W dµ(g) =





〈ξ,ν〉V 〈ξ′,ν′〉W
dimV

if V ∼= W,

0 otherwise.

Proof. The proof is straightforward and identical to the case for finite groups, see [7] pp.

98-99 for the details.

Once we show the density of M (G) in C(G) (and so in L2(G)) we will be able to do

harmonic analysis on G because then the representative functions of irreducible representa-

tions, scaled by (dimV )−1/2, with respect to an orthonormal basis on each representation,

will be a complete orthonormal system on L2(G). A similar argument demonstrates that

the characters of the irreducible representations form a complete orthonormal system on

the set of L2(G) class functions. For a comprehensive account, see [14] and [15].
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4.3 Main Result

Consider the following

Example 4.3.1 (T). Let G = T, and consider Vn as defined in Example 2.1.1. Then, if

f ∈ L2(G),
∫
G
f(g)χn(g) dg generates the n-th Fourier coefficient of f .

What is really occuring in the above example is projection. Considering Proposition

4.2.2, the appropriate generalisation is the

Definition 4.3.1 (Fourier Transform). For a G-module V , and f ∈ C(G), define the

Fourier transform as the unique operator that satisfies Tf : V → V as

Tf (ξ) =

∫

G

πV (g)f(g)ξ dµ(g).6

We now endow C(G) with a ring structure, by using convolution of functions:

(f1 ∗ f2)(g) =

∫

G

f1(h)f2(h−1g) dµ(h).

Moreover, the Fourier transform makes V into a C(G)-module when we use convolution.

In particular, if we let V = C(G), then it becomes an algebra.7 Unfortunately we have the

following

Example 4.3.2. Let f2 ∈ C(G) and suppose that f1 ∗ f2 = f1 for all f1 ∈ C(G), then

0 =


∫

G

f1(h)f2(h−1g)− f1(g) dµ(h)

 ≥
∫

G

||f1(h)f2(h−1g)| − |f1(g)|| dµ(h) ≥ 0.

6To (rigorously) construct an operator out of the above definition we should make use of the Bochner
integral, see [31] pp. 378-379.

7It actually has the structure of a C∗-algebra, but this would take us too far afield. However, it is worth
remarking that M (G) = C0(G) is equivalent to the injectivity of the Fourier transform on C(G). These
results hold in the case that G is only a locally compact Hausdorff topological group, and are contained
in the Gel’fand-Râıkov Theorem ([14] p. 343).
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Hence, |f1(h)f2(h−1g)| = |f1(g)| for all h, g ∈ G and f1 ∈ C(G). If we set h = 1, then

|f1(1)||f2(g)| = |f1(g)| for all g ∈ G and f1 ∈ C(G); this is impossible, as C(G) separates

points.

Following from the above, C(G) is an algebra without identity. The following lemmata

intend to fix this dilemma analytically.

Lemma 4.3.1. For each neighbourhood U of 1 ∈ G with U = U−1, there is a function fU

with supp fU ⊂ U , fU(x) = fU(x−1) and has
∫
G
fU(g) dµ(g) = 1.

Proof. Use Urysohn’s lemma to construct fU ∈ Cc(G) = C(G) with 0 ≤ fU ≤ 1U . Then, let

fU(x) := fU(x)fU (x−1) and we can rescale as necessary to ensure that it integrates to 1.

Lemma 4.3.2. Let f ∈ C(G), then ∀ε > 0 ∃U ⊂ G, open, such that U = U−1, 1 ∈ U and

|f(y)− f(x)| < ε ∀x−1y ∈ U.

Proof. By continuity, ∃U ′ ⊂ G open such that |f(y) − f(x)| < ε ∀x, y ∈ U ′. So, since multipli-

cation is smooth and invertible, then for z ∈ U ′, Vz := z−1U ′ ∩U ′−1z is open, nonempty (since 1

is in both), and is a neighbourhood of the identity with V −1
z = Vz. Set U =

⋃
z∈U Vz, then U is

open, contains 1 and U = U−1. Moreover, if x−1y ∈ U , then y ∈ xU ⊂ U ′, x ∈ yU ⊂ U ′ and so

|f(y)− f(x)| < ε.

We now have the object we are after, this proof is close to [2] pp. 54-55.

Lemma 4.3.3. Let f ∈ C(G), then ∀ε > 0 ∃U ⊂ G open with U = U−1 such that

‖f ∗ fU − f‖ ≤ ε.
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Proof. Using Lemma 4.3.2, pick U such that |f(y)− f(x)| < ε whenever x−1y ∈ U . Then,

|fU (x−1y)f(y)− fU(x−1y)f(x)| < εfU (x−1y) ∀x, y ∈ G,

where fU is as in Lemma 4.3.1. Integrating over y yields

|f(x)− (f ∗ fU )(x)| < ε ∀x ∈ G.

Taking the supremum gives the desired result.

In fact, we are almost at our destination, and now follow the somewhat standard

treatment given in [2] pp. 55-56. For each neighbourhood U of 1 with U = U−1 define

KU : G×G→ R : (x, y) 7→ fU(x−1y).

Then KU(gx, gy) = fU(x−1g−1gy) = fU(x−1y) = KU(x, y) and KU(x, y) = fU(x−1y) =

fU(y−1x) = KU(y, x). Moreover, KU ∈ C(G×G) and so the operator

(f ∗ fU)(g) =

∫

G

f(h)KU(h, g) dµ(y)

is a Fredholm operator with a continuous, symmetric and G-invariant kernel. This implies

that it is self-adjoint and completely continuous on L2(G) (we extend by density) enabling

us to apply the Hilbert-Schmidt Theorem ([21] p. 248).

Now, if Vλ,U := Vλ,U ∩ C(G) (again, by density) is an eigenspace for (f ∗ fU) with

eigenvalue λ, and if f ∈ Vλ,U , then (f ∗ fU) = λf . In particular, since KU is G invariant,

then for g′, g ∈ G

Lg(f ∗ fU)(g′) =

∫

G

f(h)KU(h, gg′) dµ(h) =

∫

G

f(gh)KU(h, g′) dµ(h) = ((Lgf) ∗ fU)(g′).
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So, Vλ,U is Lg invariant and, since dimVλ,U < ∞ (Hilbert-Schmidt gives us this), then

by Lemma 4.2.1 we have proved that any f ∈ C(G) can be uniformly approximated by

elements of M (G). That is, we have the

Theorem 4.3.1 (Peter-Weyl).

M (G) = C(G)

4.4 Some Implications

The first breakthrough is contained in the

Corollary 4.4.1. If V is an irreducible representation of G, then dimV <∞.

Proof. Note that the characters of the finite dimensional representations are dense in the

space of L2 class functions on G. So, if W is not finite dimensional and is irreducible, then

∫

G

χV (g)χW (g) dµ(g) = 0,

for all finite dimensional G-modules, V . By density, χW = 0.

The second breakthrough comes by noticing that G satisfies the descending chain con-

dition. Namely, if U1 ⊃ U2 ⊃ · · · is a sequence of closed subgroups of G, then it must

eventually be constant, since each proper inclusion decreases the dimension by 1. Also,

Theorem 4.3.1 implies thatM (G) is a dense subalgebra of C(G), so it must separate points

of G. Hence, for each g ∈ G ∃f ∈ M (G) such that f(g) 6= f(1). It follows that since

M (G) is the linear span and product of matrix entries of representations, then there is

some finite-dimensional representation π with f as an entry. We have now almost proven

the
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Corollary 4.4.2. G admits a faithful, finite dimensional representation. In other words,

G is isomorphic to a closed subgroup of U(n) for some n.

Proof. Consider the representation Ad : G → Aut (g), if ker Ad = {1} then we are done.

Otherwise, set U0 := ker Ad and pick g0 ∈ U0 \ {1}. By the above remarks there exists a

representation π1 such that g0 /∈ ker π1. We can repeat this process until we arrive at a

representation with trivial kernel, and the process must stop after a finite number of steps

because of the descending chain condition.

It would now seem worthwhile to use U(n) as an example of the general compact Lie

group. There are, of course, a number of more examples, but most lack the easy description

and generality that U(n) possesses.8

Now, following [34] p. 291, we remark that since N : u(n)×u(n)→ R : (X, Y ) 7→ tr(XY ∗)

is an inner product such that if g ∈ U(n) and X, Y ∈ u(n), then

N(gX, gY ) = tr(gXY ∗g∗) = tr(gg∗XY ∗) = tr(XY ∗) = N(X, Y ).

Similarly, we obtain N(Xg−1, Y g−1) = N(X, Y ). So, N can be made into a left and right

invariant Riemmanian metric on U(n). In particular, this holds for any closed subgroup

of U(n) and hence any compact Lie group. It follows now that U(n) (and so any closed

subgroup) can be given the structure of a compact metric space with the metric given by

infimum’s of the lengths of the curves connecting points. In fact, we are now in a position

to prove:

Theorem 4.4.1. Let G be a compact, connected Lie group. If g ∈ G, then g belongs to a

one-parameter subgroup of G.

Proof. Let γ be a geodesic that connects g and 1, for the existence of such a curve see [12]

p. 56. Since γ is a geodesic, there is a curve g1 ⊂ γ such that g1 : [0, 1] → G, g1(0) = 1

8See [12] ch. X for a development of the classification theorem, and [6] ch. 6 for some computations.
The classical groups and their invariants are comprehensively computed in the classic [33].
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and g1 is the unique geodesic between 1 and g1(1) = g1.

Now, fix t0 ∈ (0, 1), then g′1 : [0, t0/2]→ G : t 7→ g1(t) is the unique geodesic connecting

1 and g1(t0/2) (by appealing to the principle of optimality). Moreover, g ′′1 : [0, t0/2]→ G :

t 7→ g1(t0/2)g1(t) is the unique geodesic connecting g1(t0/2) and g1(t0). Hence, again by

the principle of optimality g1(t0) = g1(t0/2)g1(t0/2) for all t ∈ [0, 1].

Indeed, arguing inductively, we now have that the identity g(s+ t) = g(s)g(t) holds for

all dyadic rationals in s, t ∈ [0, 1], which are dense in [0, 1]; by continuity of g1, it follows

that we now must have g1(s+ t) = g1(s)g1(t) for all t, s ∈ [0, 1] such that s+ t ∈ [0, 1].

We now extend g1 : [0, 1]→ G to g̃ : R→ G via

g̃(t) =





g1

(
t
dte

)dte
if t > 0,

g1

(
t
btc

)btc
if t < 0.

Note that g̃ clearly is a well-defined, one-parameter group of G (see [2] p. 10 for the com-

putation) and so it suffices to show that g ∈ g̃(R).

Now, choose T so large that the length of the geodesic g̃([0, T ]) is at least as long as

the length of γ. Let γ∗ = g̃([0, T ]) ∩ γ, then γ∗ is a closed set and so consequently the

segment of g̃ belonging to γ∗ containing 1 arises as a closed interval [0, t0].

Set g0 = g̃(t0), if g0 = g then we are done. Otherwise, since the metric is left-invariant

then h = g−1
0 γ is a geodesic through 1. Let h0 ∈ G be sufficiently close to 1 so that by

the previous arguments, h0 belongs to some part of a one-parameter subgroup. It now

follows that for τ sufficiently small, then g̃(t) = g0h(τ), in particular g̃(t0) = g0 and so

h(τ) = g̃(t−t0). Moreover, it is now clear that h agrees with g̃ up to an additive parameter,
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namely t0. However, this implies that t0 is not a boundary point; this is a contradiction.

So g̃(t0) = g.

So, if g ∈ G, then ∃X ∈ g such that g = γX(s) for some s ∈ R and so g = γsX(1) =

exp(sX) by Theorem 1.1.2. That is, we have the

Corollary 4.4.3. If G is a compact Lie group, then exp : g→ G is surjective. .

This corollary is very convenient for (theoretical) computations as we always have a

nice smooth curve to differentiate along. This will definitely be used a couple of times in

this thesis.
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Chapter 5

Maximal Tori and the Weyl Group

Recall that on SU(2) the character theory was understood by remarking that any g ∈
SU(2) was conjugate to an element of the form

(
eiθ 0
0 e−iθ

)
. Also note that the set of these

elements is naturally identified with T.

More generally, observe that since any u ∈ U(n) is a normal operator then it is unitarily

conjugate to an element of the form




eiθ1

.
.
.

eiθn .1


 .

The group of matrices above are naturally associated with an element of Tn. In partic-

ular, since characters are class functions, it would suffice to understand how it behaves on

diagonal matrices. It would seem that these compact, abelian Lie groups are deserving of

some special attention.

5.1 Tori

We now consider in detail a priviliged class of compact, abelian Lie groups called tori.

Consider T ⊂ C, defined as

T = {z ∈ C : |z| = 1}.
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It is obvious that T is a compact Lie group.

Definition 5.1.1 (Torus). A torus is a compact Lie group that is isomorphic to Tn for

some n ∈ Z+.

The following proposition appears in [6] p. 158.

Proposition 5.1.1. Aut (Tn) ∼= GL(Zn).

Proof. Consider Tn ∼= (R/Z)n, then for φ ∈ Aut (Tn) we have φ(1) = 1 and so φ(Zn) = Zn.

Hence, φ induces an automorphism of Zn; the correspondence is clearly a homomorphism.

To show the map is onto, we just observe that if φ ∈ GL(Zn), then φ̃(eiθ) := eiφ(θ) is

clearly an automorphism of Tn.

Unless stated otherwise: G is a compact, connected Lie Group.

When diagonalising a matrix, or at least attempting to, we are really trying to obtain the

simplest description of its action. Subsequently, the following definition is the appropriate

generalisation.2

Definition 5.1.2 (Maximal Torus). Let T be a torus of G. We say that T is a maximal

torus if T ′ ( T and T ′ is a torus, then dimT ′ < dimT .

Now, since G is compact and connected ,then it contains one-parameter groups, so

follows that G contains a torus. In fact, since dimG < ∞ and since each torus Tk is

compact, then dimTk < dimTk+1, and so any compact Lie group G contains a maximal

torus.

Unless stated otherwise: T denotes a fixed maximal torus in G.

Now, if T ′ is another diagonal subgroup in U(n), then the fact that it is conjugate to T

really relies on some (finite-dimensional) functional analysis. It turns out that there is a

Lie theoretic proof, which is one of the principal aims of this chapter. We cannot prove it

yet, but we will return after we have discussed maximality.

2The non-connected case is very hard, for an introduction see [6] pp. 176-182 for an introduction.
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Figure 5.1: T2 embedded in R3.
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5.2 Maximality

It is often important to know in mathematics, how “big” or “small” some structure is,

relative to some measure. So, we now look at how big the maximal tori are, relative to

other abelian Lie groups.

Definition 5.2.1 (Maximal Abelian). H ≤ G is maximal abelian if A is abelian and

H ( A ⊂ T , then A = G.

We now have the obvious

Lemma 5.2.1. If g is an abelian Lie algebra over k, then g ∼= kn, where n = dimk g.

Theorem 5.2.1 (Classification of Compact Abelian Lie groups). If H is a compact

abelian Lie group, then H ∼= Tn × C for some n and some abelian group C. In particular,

the maximal torus of a torus is itself.

Proof. Consider the Lie algebra of the identity component H1 of H, this is abelian since

H is and so it is isomorphic to Rn. Let {x1, . . . , xn} be a basis for this Lie algebra, then

by the surjectivity of exp onto H1 and the commutivity of the Lie algebra we must have

that if g ∈ H1, then g = exp(t1x1) · · · exp(tnxn) for some t1, . . . , tn ∈ R. By compactness

of H1, ker exp ∼= Zn and so H1
∼= Rn/Zn ∼= (R/Z)n ∼= Tn.

In particular, H/H1 is a finite (since it is compact and discrete) abelian group and H ∼=
H1 ×H/H1 (everything commutes).

The classification theorem provides the result we desire.

Corollary 5.2.1. A maximal torus is maximal abelian.

Proof. Let T be a maximal torus and A abelian such that T ⊂ A ⊂ G. If G is abelian,

then A = T = G (Theorem 5.2.1) and so we are done. If G is not abelian, then G 6= A,

and with A a compact abelian Lie group it must be a torus too (by the Lemma), but this

contradicts the maximality of the dimension of T .
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There is a counterexample worth mentioning for this theory.

Example 5.2.1. A maximal abelian subgroup is not necessarily a torus. Consider {I,−I} ≤
SO(2), this is maximal abelian but is definitely not a torus.

From these deliberations, we are now given the following

Corollary 5.2.2. If ntn−1 = t for all t ∈ T , then n ∈ T .

Proof. If G is abelian, then the result is clear from Theorem 5.2.1 . Otherwise, the closure

of the subgroup generated by n and T is abelian and so must be T by Corollary 5.2.1.

5.3 The Conjugation Theorem

We now have most of the mathematical machinery required to prove that all maximal

tori are conjugate. In fact, it suffices to remark briefly on the concept of a topological

generator. A topological generator in a Lie group is an element t ∈ G such that {tn}n∈N
is dense in G.

Example 5.3.1. ei
√

2 is a topological generator of T. Similarly (ei
√

2, ei
√

3, . . . , ei
√
pn),

where pn is the nth prime, is a topological generator for Tn.

So, for a torus we have that t is a topological generator if the arguments of the com-

ponents of t are algebraically independent over Q. We conclude that the set of topological

generators in Tn form a dense subset. The next theorem appears in [34] p. 293.

Theorem 5.3.1. Let g ∈ G, then g belongs to a conjugate of T .

Proof. By Corollary 4.4.3 we now know ∃X ∈ g such that g = exp(X). Set φ(h) =

〈X,Ad(h)Y 〉g, where Y ∈ g is arbitrary; and note that φ is a smooth map from G to R.

Pick v ∈ g, then ψ(s) = h exp(sv) is a smooth curve in a neighbourhood of h, with tangent

vector v at h. Hence,

(φ)?(h)v =
d

ds

[
〈X,Ad(exp(sv))Y 〉g

]
s=0

=
〈
Ad(h−1)X, ad(v)Y

〉
g

= −
〈
ad(Ad(h−1)X)Y, v

〉
g
.
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But φ is continuous and G is compact, so φ has a maximum, g0 ∈ G. Moreover, since φ is

differentiable, we also require that (φ)?(g0) = 0. In particular, 〈ad(Ad(h−1)X)Y, v〉g = 0

∀v ∈ g implies that ad(Ad(h−1(X))Y ≡ 0.

Observing that Y is still free, we can choose it so that y = exp Y is a topological

generator for T . In fact, ad(X)Y = 0 implies Ad(yh−1)X = X and so Ad(ykh−1)X = X

for all k ∈ N. By density and continuity we now have Ad(th−1)X = X for all t ∈ T .

Taking exponentials we find that h−1gh commutes with every element of T . By Corollary

5.2.2, g belongs to a conjugate of T .

Corollary 5.3.1. All maximal tori are conjugate. In particular, all maximal tori have the

same dimension.

Proof. Let T1, T2 be two maximal tori and u ∈ T1 a generator. Then ∃g ∈ G such that

u ∈ gT2g
−1. That is, u1 = g−1ug ∈ T2, which is clearly a generator for T2. Hence

T1 = gT2g
−1 as required.

The following definition is now justified.

Definition 5.3.1 (Rank). The rank of G is the dimension of T .

Corollary 5.3.2. If g ∈ G then g belongs to a maximal torus.

So, we have just proven that the general case is not that different from U(n); we have

a sensible notion of being able to “diagonalise” an element of a compact Lie group G. Its

eigenvalues corresponding to its coordinates in a maximal torus that it belongs to.

Remark 5.3.1. Further more, the abstraction of maximal tori and orbits can be used to

prove some interesting results relating to the eigenvalue decomposition of matrices, see for

example [8].

We are now given a characterisation of the center of G, in terms of the maximal tori.
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Corollary 5.3.3.

Z(G) =
⋂

g∈G
gTg−1.

We will see a characterisation of the center of G that is over a finite intersection in

Chapter 6. We have one final corollary from the conjugation theorem (the proof is related

to [2] p. 93).

Corollary 5.3.4. Suppose g, h ∈ G commute, then there is a maximal torus T , containing

g and h.

Proof. Consider a one parameter group H containing h and let X := 〈g,H〉, then this is a

compact abelian Lie group. Noting that gX1 generates X/X1 implies that X/X1
∼= Z/mZ

for some m and we make the observation that X/X1 can be realised as the m-th roots of

unity in some torus T ′. Since X1 is connected then it is torus too (c.f. Theorem 5.2.1).

Hence, X ∼= X1 × X/X1 ≤ X1 × T and so X is contained in a torus, thus in a maximal

torus of G.

5.4 Representations of Tori

By the previous section, to understand the characters of a compact Lie group G, then it

suffices to understand their restriction to some maximal torus T . Since g is really the only

representation canonically associated to G, then it would be worthwhile to understand

it better. Note that g is a real vector space, so we now desire to understand the real

representations of T , as g becomes a T -module by restriction of Ad.

Definition 5.4.1 (Integer and Weight Lattices). Let Λ = ker exp |t, we refer to Λ as

the integer lattice since it is naturally isomorphic to Zn where n = dim T .

Let Λ̂ = {α ∈ t∗ : α(Λ) ⊂ 2πZ}. We call Λ̂ the weight lattice.

Notation 5.4.1. For each α ∈ Λ̂ \ {0} let T Rα be the two dimensional real T -module

with the action of T on T Rα given by exp(t) 7→
(

cosα(t) sinα(t)
− sinα(t) cosα(t)

)
. Also, let TCα be the one

50



dimensional complex T -module with the action given by t→ tα := {eiθ 7→ eiα(θ)}. Let T k0

be the trivial T -module over k = R, or C.

Theorem 5.4.1. The irreducible T -modules over R are the T Rα and over C are the T Cα .

Proof. This is merely linear algebra, see [18] for example.

We now compute some instructive examples.

Example 5.4.1 (SU(2)). Consider the following basis for su(2).

h =


i 0

0 −i


 , v =


 0 1

−1 0


 , w =


0 i

i 0


 .

Then,

Ad
(
eiθ 0
0 e−iθ

)
v =


e

iθ 0

0 e−iθ




 0 1

−1 0




e
−iθ 0

0 eiθ




=


 0 e2iθ

−e−2iθ 0




∴ Ad
(
eiθ 0
0 e−iθ

)
v = cos 2θv + sin 2θw.

Similarly,

Ad
(
eiθ 0
0 e−iθ

)
w = − sin 2θv + cos 2θw

Ad
(
eiθ 0
0 e−iθ

)
h = h.

So, let α ∈ R∗ be such that α(x) = 2x, then su(2) = T0 ⊕ TRα .

Notation 5.4.2. Let Ers be the matrix with 1 in the (r, s)-th position and zeroes elsewhere.
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Example 5.4.2 (U(n)). For 1 ≤ r < s ≤ n let

vrs = Ers − Ers;

wrs = iErs + iEsr; and

hr = iErr.

Then {hr}nr=1 ∪ {vrs, wrs}1≤r<s≤n is a basis for u(n). Let αrs ∈ (Rn)∗ be defined as

αrs(θ) = θr − θs.

A similar computation to the previous example demonstrates that in this basis

Ad

(
eıθ1

...
eiθn

)
=

(
1

...
1

)

︸ ︷︷ ︸
n

⊕
⊕

1≤r<s≤n


 cosαrs(θ) sinαrs(θ)

− sinαrs(θ) cosαrs(θ)


 .

Hence,

u(n) = nTR0 ⊕
⊕

1≤r<s≤n
TRαrs .

Corollary 5.4.1. Let tkα denote the induced T kα-module. Then, the irreducible t-modules

over R are the tRα and over C are the tCα where α ∈ Λ̂.

Explicitly, the two dimensional real t-module has an action given by

t 3 t 7→
(

0 α(t)

−α(t) 0

)

Corollary 5.4.2. The induced t-module tRα has ad |t(ad |t(t)v) = −α(t)2v ∀v belonging to

a module equivlent to tRα.

Remark 5.4.1. Note that T Rα
∼= TR−α as T -modules (they are taken to one another by

conjugation with ( 1 0
0 −1 )). In particular, when indexing the real representations of T it will
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be customary to choose a sign of the weight. It is clear that up to isomorphism, the choice

of sign is immaterial; similarly, this is so when discussing representations of t.

5.5 The Weyl Group

In the previous sections we studied how maximal tori are related to each other and their

representation theory. It is would now seem natural to consider how they are related to

themselves. The processs of diagonalising some unitary matrix is unique up to permutation

of eigenvalues. This is the abstraction that is developed now. The appropriate notion is

that permuting eigenvalues preserves the conjugacy class.

We are moved to consider the normalizer of T in G. That is, the set

N(T ) = {g ∈ G : gTg−1 = T}.

Note that clearly N(T ) is a closed subgroup of G, hence it is a Lie subgroup of G. Moreover,

T is a normal subgroup of N(T ) so it is natural to consider the quotient.

Definition 5.5.1 (Weyl Group). The Weyl Group of G relative to T is the group

W (G, T ) = N(T )/T .

Example 5.5.1 (SU(2)). The Weyl group of SU(2) is Z2, which acts by changing the

sign of the eigenvalues.

Example 5.5.2 (U(n)). The Weyl group of U(n) is simply Sn, the symmetric group on

n-letters.

It is always important to know whether or not a structure possesses some uniqueness

properties. As one would hope, we have the following

Proposition 5.5.1. If W (G, T ), W (G, T ′) are two Weyl groups of G, then W (G, T ) ∼=
W (G, T ′).
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Proof. Note that, since all maximal tori are conjugate (c.f. Theorem 5.3.1), then T =

gT ′g−1 for some g ∈ G. Indeed, it follows that N(T ) = gN(T ′)g−1 ∼= N(T ′) and, since

T ∼= T ′, we have N(T )/T ∼= N(T ′)/T ′.

Since G, T are fixed we refer to W (G, T ) as W . A remark worth making now is

contained in the

Lemma 5.5.1. The representation W 3 nT → Ad(n) ∈ GL(t) is faithful.

Proof. Immediate from Corollary 5.2.2.

The following result (or one of its equivalent assertions) is normally proven using the

Lefshetz fixed point theorem ([2] p. 95); this is a very deep, topological result. The other,

standard method proves that (in this case) N(T )0 = Z(T ) = T ([6] p. 159). However, the

following theorem can be proven directly from our treatment.

Theorem 5.5.1. W is finite.

Proof. Consider the following commutative diagram.

N(T )/T

ψ

��

Ad // Aut (t)

Aut (T )
φ // GL(ZrankG)

ı

OO
,

where m = rankG, ψ : N(T )/T → Aut (T ) : nT 7→ n−1 · n, ı : GL(m,Z) ↪→ Aut (t) is

inclusion, and φ is the isomorphism in Proposition 5.1.1.

Lemma 5.5.1 implies ψ is a monomorphism and Proposition 5.1.1 informs us that φ is

an isomorphism; putting these together demonstrates N(T )/T is discrete.
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Also, the Ad representation is unitary with respect to 〈·, ·〉g and so N(T )/T has compact

image in Aut (t). Moreover, Ad = ı ◦ φ ◦ ψ is injective and continuous and so N(T )/T is

compact. Indeed, this implies that W = N(T )/T is compact and discrete, and so finite.

This theorem is far from obvious, and it is not surprising that it has some far reaching

consequences. The result has essentially reduced understanding the non-uniqueness of

conjugation of an element of G into a maximal torus into a very combinatorial problem.

We explore this idea in great depth in the next two chapters.
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Part III

The Weyl Character Formula

56



Chapter 6

Roots

In an earlier example we calculated that

u(n) ∼= Rn ⊕
⊕

1≤r<s≤n
TRαrs

as T -modules, where αrs(θ) = θr−θs. It would seem apparent that since u(n) is a real repre-

sentation of U(n), which is canonically associated to it, then the linear forms αrs : Rn → R

would be important to the character theory.

However, there is some arbitrariness in our choice, since T Rαrs
∼= TR−αrs as T -modules

(c.f. Remark 5.4.1), so it would seem that the canonical object of study should be

Φ := {αrs : 1 ≤ r, s ≤ n} for U(n).

The real reason for this is that they are capturing conjugation by an element of the

torus at an infinitesimal level; this concept now generalises easily.

6.1 Decomposition of Ad

Consider Ad : G → GL(g), this restricts to a real representation of T on g. By Theorem

2.2.1 and Theorem 5.4.1

g ∼= n0T
R
0 ⊕

⊕

α∈bΛ\{0}

nαT
R
α .
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To tidy this decomposition up a little, we adopt the following

Notation 6.1.1. For α ∈ Λ̂, let gα := (nα + n−α)TRα .

Then

g ∼= g0 ⊕
⊕

α∈Φ+

gα,

where Φ+ ⊂ Λ̂ is some choice (c.f. Remark 5.4.1) of weights so that the decomposition

works.

Lemma 6.1.1. g0 = t.

Proof. Clearly, t ⊂ g0, so it suffices to show the reverse inclusion. Let X ∈ g0 and consider

T ′ := 〈T, exp(X)〉, then T ′ is closed and abelian and so must be T by Corollary 5.2.1. This

is only possible if exp(X) ∈ T and so X ∈ t.

Example 6.1.1 (U(n)). Φ+ = {α12, α13, α23} would suffice for n = 3. In general, we could

have Φ+ = {αrs : 1 ≤ r < s ≤ n}.

Example 6.1.2 (SU(n)). Φ+ = {αrs : 1 ≤ r < s ≤ n}. An important remark is that

since su(n) consists of trace zero skew-hermitian matrices, then these are actually linear

functionals on Rn/R · (1, 1, . . . , 1) ([2] p. 265).

Following the line of argument in the beginning of this chapter we could conclude that

the following definition is fundamental.

Definition 6.1.1 (Roots). Let Φ := {α ∈ Λ̂ \ {0} : nα 6= 0}, we call these the roots of

g.

Remark 6.1.1. Φ = Φ+ ∪−Φ+ as a disjoint union. A systematic description of these types

of decomposition will be completed later.

For the moment, the remark is handy for computations. The following two examples

are now immediate.

Example 6.1.3 (U(3)). Φ = {α12, α13, α23, α21, α31, α32}.
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Now, observe that Sn acts on Rn(∼= t) via the permution of coordinates, it follows that

there is an induced action on (Rn)∗ given by w · α = α ◦ w−1.

Example 6.1.4 (U(3)). (12) · α12 = α21 = −α12.

In general, it is natural for W (G, T ) to act via conjugation on T so W (G, T ) can act

via Ad on t. This is summarised in the following

Lemma 6.1.2. For w ∈ W (G, T ) write w = nT where n ∈ N(T ).

1. W acts on T as w · t = ntn−1;

2. W acts on α ∈ t as w · α = Ad(n)α;

3. W acts on λ ∈ Λ as w · λ = Ad(n)λ; and

4. W acts on α ∈ Λ̂ as w?α = α ◦ Ad(n−1).

Proof. The first two are obviously well defined actions since T and t are abelian. Note too

that if λ ∈ Λ, then exp(Ad(n)λ) = n exp(λ)n−1 = 1; that is, Ad(n)λ ∈ Λ. This proves (3)

and (4).

Notation 6.1.2. We will be using the “·” notation for the standard actions of W on a

number of mathematical objects; the context of the action will always be clear. In fact,

these actions are really all the same since 〈Ad(w)X, Y 〉g = 〈X,Ad(w−1)Y 〉g for all X,

Y ∈ g and recalling that any element in t∗ arises as 〈X, ·〉g for some X ∈ g.

From this slight digression into generality, we return to remark that if w ∈ W , then

w · := Ad(w) ∈ GL(g). Consequently,

g = w−1 · g ∼=
⊕

α∈bΛ

nαw
−1 · TRα =

⊕

α

nαT
R
(w−1)∗α =

⊕

α′

nw·α′T
R
α .

Noting that each T Rα is irreducible over R, then we have proven the following
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Proposition 6.1.1.

nw·α = nα ∀w ∈ W ∀α ∈ Λ̂

An important corollary now follows immediately, once remarking that Φ must be finite.

Corollary 6.1.1. W (G, T ) acts via permutation on Φ.

The last two observations provide a deep connection between combinatorics, geometry

and Lie theory. In fact, the proof of the Weyl character formula essentially amounts to

exploiting these connections in a slightly more general context. For the case of U(n), we

almost would be adequately equipped with Lie theory to prove the Weyl character formula

(see [33] pp. 194-200); for the general case we are required to understand the Weyl group

in a more geometric and combinatorial fashion.

What has not been mentioned yet is the uniqueness, if any, that Φ possesses. Intuitively,

it should be unique up to some change of basis as it is are capturing conjugation, the

canonical inner automorphism of any group. The precise explanation for this is that if T ′

is another maximal torus in G, then T ′ = gTg−1 by Corollary 5.3.1 . So, if Φ′ is a set of

roots associated to T ′, then for any α ∈ Φ, α′ = α ◦Adg ∈ Φ′ and conversely. Hence, there

is an inner automorphism of G connecting Φ and Φ′.

6.2 Lie Triples

Let us start this section with a motivating example, consider the following elements of

u(3).

H =




i

i


 , X =




1

−1


 , Y =




i

i


 .

60



This is just su(2) ↪→ u(3), with real Lie algebra generated isomorphic to su(2). In general,

some index gymnastics demonstrates that for 1 ≤ r < s ≤ n,

[hr − hs, vrs] = 2wrs, [hr − hs, wrs] = −2vrs, [vrs, wrs] = hr − hs.

So, {hr − hs, vrs, wrs} generates a real Lie algebra isomorphic su(2). Consequently, this

binds u(n) to su(2). Taking the exponential of these produces copies of SU(2) in U(n).

We now proceed locate, and describe some rank 1 Lie groups in any compact, connected

Lie group G. The treatment here is non-standard, where the standard methodology is to

complexify g and then compute the eigenvalues (which is what the roots correspond to).

Whilst Lie algebraically, this technique is not problematic, it would essentially involve the

study of the theory of complex semisimple Lie algebras, a step we believe to be unnecessary.1

Geometrically, the group is complexified too and corresponds to a complex manifold

with the representations of interest holomorphic, instead of unitary. This means that from

our compact, real manifold we are pushed into the realms of algebraic geometry, with a

non-compact space. One would hope that we would not need this complex mathematical

machinery for understanding the character theory of compact Lie groups since we are only

concerned with torus elements.2 In fact, recovering a real Lie algebra from a complex

semisimple one is tedious at best; see [11] ch. 9 for the required computations.

1See [26] for a good treatment of this theory
2The tools of algebraic geometry do prove to be very fruitful. One of the most eloquent models of the

finite dimensional representation theory of complex, semisimple Lie groups is the Borel-Weil Theorem (see
[31] ch. 3); from which we obtain a model of the representation theory of compact Lie groups ([20] pp. 292-
298). When studying the actual representation spaces, it is very natural to consider the complexification
as G/T is naturally endowed with the structure of a complex manifold (it actually becomes a space of
flags, see [10] pp. 382-383.), which is necessary to understand when dealing with representations.
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Now, since t∗ has an inner product, then there is a canonical isomorphism between t

and t∗ given by t 3 α 7→ 〈α, ·〉g ∈ t∗.

Notation 6.2.1. For an element α ∈ t∗ let Hα be the unique element of t such that

α(·) = 〈Hα, ·〉g.

Example 6.2.1 (U(n)). Hα12 = (1,−1, 0, . . . , 0).

Definition 6.2.1 (Coroot). Let α ∈ Φ, then the coroot of α is the unique element

Hα ∈ span(Hα) such that α(Hα) = 2. The coroot lattice is the Z-span of the set of

coroots.

Example 6.2.2 (U(n)). Hα12 = (1,−1, 0, . . . , 0).

Trivially, we are now able to induce a non-degenerate, symmetric, bilinear form on t∗.

For λ, µ ∈ t∗ define

(λ, µ) = 〈Hλ, Hµ〉g .

Notation 6.2.2. For each α ∈ Φ define

α∨ =
2α

(α, α)
.

and so Hα = Hα∨.

Fix Xα ∈ gα with 〈Xα, Xα〉g = 1
α(Hα)

and let Y α = 1
2

ad(Hα)Xα. Some small obser-

vations are contained in the following lemmata, which is the author’s treatment of the

theory.

Lemma 6.2.1. Let α ∈ Φ, H ∈ kerα then ad(H)|gα = 0.

Proof. By remarking that if α(H) = 0, then for each t ∈ R, Ad(exp(tH)|gα = 1, by

considering the root space decomposition. Taking the derivative of both sides at t = 0

yields ad(H)|gα = 0.

Lemma 6.2.2.
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1. 〈Xα, Y α〉g = 0.

2. [Xα, Y α] ∈ span(Hα).

3. α([Xα, Y α]) = 2, so [Xα, Y α] = Hα.

Proof.

1.

〈Xα, Y α〉g =
1

2
〈Xα, ad(Hα)Xα〉g =

1

2
〈ad(Xα)Xα, Hα〉g = 0.

2. Write t = span(Hα)⊕ker α, then for Z = Z1 +Z2 ∈ t with Z1 ∈ span(Hα), Z2 ∈ kerα

we have by the Jacobi identity and Lemma 6.2.1

[Z, [Xα, Y α]] = [[Z,Xα], Y α] + [Xα, [Z, Y α]]

= [[Z1, X
α], Y α] + [Xα, [Z1, Y

α]].

Now, write Z1 = µHα, then

[[Z1, X
α], Y α] + [Xα, [Z1, Y

α]] = [2µY α, Y α]− [Xα, 2µXα] = 0.

Since Z ∈ t was arbitrary, from Lemma 6.1.1, we conclude that [Xα, Y α] ∈ t.

Now, pick Z2 ∈ kerα, then by Lemma 6.2.1

〈[Xα, Y α], Z2〉g = 〈Y α, [Z2, X
α]〉g = 0.

Hence, [Xα, Y α] ∈ span(Hα).
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3.

〈[Xα, Y α], Hα〉g = −〈[Hα, Y
α], Xα〉g

= −α(Hα)

2
〈[Hα, Y α], Xα〉g

= 2α(Hα) 〈Xα, Xα〉 = 2

Notation 6.2.3. Let sα be the real Lie subalgebra of g generated by {Hα, Xα, Y α}. Also,

let tα = (sα)0.

We finally have the result we were seeking.

Proposition 6.2.1.

sα ∼= su(2)

Proof. By Corollary 5.4.2, [Hα, [Hα, Xα]] = −α2(Hα)Xα and so we have the following

commutation relations

[Hα, Xα] = 2Y α,

[Y α, Hα] = 2Xα.

The last commutation relation is by virtue of Lemma 6.2.2.

Now, for U(n) we saw that dim gαrs = 2 and moreoever, dim gcαrs > 0 if and only if

c ∈ {−1, 0, 1}. In particular, the Lie algebra sαrs is unique.

For the general case, it is not clear that at all that the rank 1 Lie algebra constructed

above has any uniqueness properties. In the next theorem, we show that the same proof

holds in a the general context. The proof is modelled on [13] pp. 66-67, but is modified

for our treatment.
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Theorem 6.2.1. dim gα = 2 for all α ∈ Φ. Moreover, cα ∈ Φ if and only if c ∈ {−1, 0, 1}.

Proof. Now, let g′α = tα ⊕⊕c∈R× gcα, then clearly g′α is a sα-module (via ad |sα). So,

suppose that cα ∈ Φ, then it is easy to see that H cα = 1
c
Hα. Hence,

ad(Hα)Xcα = (2c)Y cα; and

ad(Hα)Y cα = −(2c)Xcα.

So, since sα ∼= su(2), then it necessarily follows that 2c ∈ Z. Note too that g′α/s
α is an

sα-module complementary to sα in g′α. However, by remarking that 0 is not a weight of

g′α/s
α and the actions of Xα, Y α raise and lower weights in multiples of 2, then the weights

of g′α must be odd.

Indeed, 4 is not a weight of g′α/s
α and so by the previous remarks it follows that 2α /∈ Φ.

It is now clear that α/2 /∈ Φ since otherwise we could deduce that α = 2(1/2α) /∈ Φ.

Hence, 1 is not a weight of g′α/sα. By reminding ourselves again that Xα, Y α raise and

lower weights by multiples of 2, it is now immediate that g′α/s
α = 0. The results are now

clear, since then sα = tα ⊕ gα ∼= tα ⊕ g−α.

Corollary 6.2.1.

dimG = rankG+ |Φ|.

So, we have the uniqueness we desired.

Notation 6.2.4. Let Sα = 〈exp(sα)〉 ≤ G.

On the group level we have the
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Proposition 6.2.2.

Sα ∼= SU(2) or SO(3).

In particular, the Weyl groups for both Z2.

Proof. Omitted. The standard proof of this is topological, see [2] pp. 107-108 for a good

exposition.

Again, we must remark how amazing this result actually is–starting from an arbitrary

compact Lie group we have managed to locate some canonical rank 1 groups contained in

it.

6.3 Regularity

For an element of U(n) with distinct eigenvalues, Sn acts particularly well on it. In partic-

ular, the action is proper and so the conjugacy class containing such an element intersects

the maximal torus |Sn| times. In fact, it is clear that the set of elements with a repeated

eigenvalue form a manifold of lower dimension than U(n). So since the character theory

revolves around understanding conjugation properly, and since they are also continuous, it

would suffice to understand conjugation on elements with distinct eigenvalues.

More generally, we regardG as a homogenous space by its action on itself as conjugation,

we then decompose G into a disjoint union of orbits. For U(n), observe that an element

has a repeated eigenvalue if and only if it belongs to more than one maximal tori. This is

the concept that we generalise.

Definition 6.3.1 (Regular Point). Let g ∈ G, then say g is regular if it belongs to

exactly one maximal torus, and say g is singular otherwise. Let Greg denote the set of all

regular points.

Remark 6.3.1. This definition is independent of T . For convenience, we now set Treg :=

T ∩Greg.

66



Regular points are related to conjugation so it would seem natural that they would be

connected to the roots. Let us take this idea a little further.

Now, if t ∈ T ⊂ U(n) has eigenvalues {t1, . . . , tn} (as a multiset) and t1 = t2 then the

action of t on gα12 is trivial. It would seem that it would be worthwhile understanding this

phenomenon more generally. So, for each α ∈ Φ set

Uα = ker ((Ad |T )|gα) ≤ G,

which is precisely the elements of T that act trivially on gα via Ad |T , so the union of

all such groups is the set of singular elements of T . Consequently, we have the following

lemma from [6] p. 189.

Lemma 6.3.1.

T \ Treg =
⋃

α∈Φ

Uα

By Schur’s lemma, Z(U(n)) is precisely the set of elements of the form λI for some

λ ∈ T. That is, Z(U(n)) consists of all elements with all eigenvalues equal. The Lie

theoretic context is contained in the

Proposition 6.3.1.

Z(G) =
⋂

α∈Φ

Uα.

Proof. The right hand side is the set of elements that conjugate trivially on g. Using the

surjectivity of exp : g → G (Corollary 4.4.3), we see that this is the set of elements that

conjugate trivially on G; i.e. Z(G).
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In general, it is fairly obvious that the set of singular elements forms a manifold of at

least codimension 1 in G. However, it is not obvious that the following holds.

Proposition 6.3.2.

dim(G \Greg) ≤ dimG− 3.

Proof. Observe that if t ∈ T \ Treg, then by Lemma 6.3.1 t belongs to Uα for some α ∈ Φ.

In fact, it follows now that dimZ(t) ≥ rankG+ dim gα = rankG+ 2.

Observe that since Uα is of codimension 1 in T , then Uα posseses a topological gener-

ator ([6] p. 190). For the remainder of the proof, we follow [2] pp. 99-100. Let t ∈ Uα be

such an element and consider ψα : G/Z(t)× Uα → G \Greg : (gZ(t), u) 7→ gug−1. This is

well-defined since Z(t) centres everything in Uα, it is smooth too.

Thus, since G \Greg =
⋃
α∈Φ imψα, then by the finiteness of the union, dimG \Greg =

dimψα ≤ dimG/Z(t) + dimUα = dimG− dimZ(t) + rank G− 1 = dimG− 3.

Let us relate these concepts to the Lie algebra. Given that it is a vector space, one

would hope that the computations would be less cumbersome.

Definition 6.3.2 (Regular Points-Lie Algebra). Say g ∈ g is regular if exp(g) ∈ G
is regular, and call g singular otherwise. Denote the set of regular points in g by greg.

The true reason why this definition is natural is that t ∈ treg = t ∩ greg if and only if t

lies in the Lie algebra of only one maximal torus.

We α ∈ Φ set

uα = T1(Uα),

We call uα the root hyperplane of α. We now have the corresponding results:
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Corollary 6.3.1.

t \ treg =
⋃

α∈Φ

uα.

Corollary 6.3.2.

Z(g) =
⋂

α∈Φ

uα.

By considering duality, the following is result is clear.

Corollary 6.3.3.

span Φ = (t/Z(g))∗.

Remark 6.3.2. It is because of this last corollary that we generally study semisimple Lie

groups. One of the (many) miracles of Lie theory is that the simplest part of the group (i.e.

its center) tends to complicate the representation theory substantially. For a comprehensive

treatment of the theory of real reductive Lie groups, consult Vogan’s tome [28].

Moreover, for each α ∈ Φ, since uα is a hyperplane in t (of codimension 1), then

⋃

α∈Φ

uα

partitions t into a finite number of connected, convex regions, called Weyl chambers.

Given a Weyl chamber C, it is often convenient to refer to C ∩ uα as the walls of C.

Example 6.3.1 (U(n)). The standard Weyl chamber for U(n) would be

C = {θ ∈ t : θ1 > θ2 > · · · > θn > 0}.

Note that the closure of this chamber is clearly

C = {θ ∈ t : θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0}.
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So that all of the walls of this chamber are now of the form

C ∩ uαr,r+1 = {θ ∈ t : θ1 ≥ · · · ≥ θr = θr+1 ≥ · · · ≥ θn ≥ 0}.

Unless stated otherwise: C is a fixed Weyl Chamber.

The Weyl chambers will be of central concern in the next chapter, where their relationships

to each other is described completely. Observe that while the actual Weyl chambers are

independent of T , their configuration is not. However, since there is an automorphism of

t relating two different sets of roots, then there is an automorphism of t relating two Weyl

chambers. The remarkable result is that this automorphism is actually an element of the

Weyl group.
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Figure 6.1: The Stiefel Diagram for U(3).
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Chapter 7

The Stiefel Diagram

The Weyl chambers discussed at the end of the previous chapter arose as convex regions

in t whose walls were the root hyperplanes. Let us connect these with the Weyl group; for

the moment we work in t∗. Consider (12) ∈ S3 then

(12)∗α12 = α21 = −α12;

(12)∗α23 = α13; and

(12)∗α13 = α23.

So, the transposition (12) is a reflection in kerα12 and leaves the remaining set of positive

roots invariant. We also know that transpositions generate S3. The geometric realisation

of this is that the Weyl group’s action can be generated from reflections. This argument

can clearly be extended to cover U(n).

The principal aim of this chapter is prove that the Weyl group of an arbitrary compact

Lie group can be generated by reflections in the root hyperplanes. A priori, it is far from

obvious that a general Weyl group would be generated in this way.
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7.1 Reflections

The example with U(3) showed that when studying the Weyl group it could be realised as

a finite group of isometries of a Euclidean space.1 The group was generated by reflections

in the root hyperplanes, precisely the Lie algebraic shadow of where conjugation is a

degenerate action in the group. It would now seem apparent that the object of study

should be the set of singular points, and the symmetries that it admits.2 We now consider

the general case.

Definition 7.1.1 (Stiefel Diagram). The Stiefel Diagram is the set of singular points

in t.

Since t and t∗ are canonically isomorphic via a W -invariant inner product then we will

refer to the Stiefel diagram in both spaces.3. Note too that W has a faithful, unitary

representation and so must be isomorphic to a finite group of isometries of the Euclidean

space t∗. The first step in describing this group is contained in the next proposition.

Proposition 7.1.1. Let α ∈ Φ, then ∃σα ∈ W such that σα · α = −α and σα · v = v for

all v ∈ kerα. We refer to σα as a reflection.

Proof. Consider Sα, then the Weyl group W α := W (Sα, T α) is Z2, generated by the invo-

lution σα : T α → T α : t 7→ t−1.

Now, notice that σα = nT α for some n ∈ N(T α) with ntn−1 = t−1 for all t ∈ T α.

Indeed, this implies that n · tα = t−α, but α is a (real) linear form on t and so it follows

that if u ∈ Uα, then n · uα = uα.

1This provides a good motivation for the study of Coxeter groups. See [17] for an excellent exposition
of the theory.

2This parallels the origins of Lie theory, the Erlanger Programme.
3If a distinction is required then we refer to it as the dual stiefel diagram.
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In fact, since (as a vector space) t = uα ⊕ t/uα, then using the exponential restricted

to t, we have that n ∈ N(T ). So, σα is a well-defined member of W (G, T ). In particular,

σα(α) = −α and σα(β) = β for all β ∈ uα, as required.

Now let α ∈ Φ, then since (·, ·) is W -invariant it follows that σα is an involutive isometry

of t∗, so it must be a reflection. Hence, we can write the action explicitly as

σα(θ) = θ − (α∨, θ)α ∀θ ∈ t∗.

For explicitness, we note that the corresponding formula on t is

σα(τ) = τ − α∨(τ)Hα ∀τ ∈ t.

By remarking that W acts via permutation on Φ, we now have an immediate corollary,

which was far from obvious.

Corollary 7.1.1. β − (α∨, β)α ∈ Φ ∀α, β ∈ Φ.

7.2 Cartan Integers

Now, for α, β ∈ Φ let

nαβ = (α∨, β).

Lemma 7.2.1.

nαβ ∈ Z ∀α, β ∈ Φ.

Consequently, we call the nαβ the Cartan Integers of the root system Φ.

Proof. We remark that β(Hα) ∈ Z for each α, β ∈ Φ since α is a weight of sα ∼= su(2) and

g is an sα-module by restriction of ad.
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From the observation:

nαβnβα =
2(α, β)

(α, α)

2(β, α)

(β, β)
= 4

(α, β)2

(α, α)(β, β)
∈ Z,

and the Cauchy-Schwarz inequality we have

nαβnβα ∈ {0, 1, 2, 3, 4}.

It is now apparent that sets of roots of compact Lie groups are very special objects, and that

there are not that many of them. However, central result for this section is the following

Lemma 7.2.2. Let α, β ∈ Φ be non-proportional and (α, β) > 0, then α− β ∈ Φ. Hence,

if (α, β) < 0, then α + β ∈ Φ.

Proof. Note that since α−β ∈ Φ iff β−α ∈ Φ, so we may as well assume that ‖α‖ ≥ ‖β‖. In

particular, it follows that 0 < nαβ = 2(α,β)
(α,α)

≤ 2(α,β)
(β,β)

≤ nβα. But then 0 < n2
αβ ≤ nαβnβα ≤ 4,

implying nαβ, nβα ∈ {1, 2}. However, if nβα = 2, then (α, β) = (β, β) and so (α−β, β) = 0,

which contradicts the non-portionality of the roots.

Hence, σβ(α) = α − β ∈ Φ. The last statement is done by replacing β with −β and

applying the first statement.

This lemma is really quite nice as it is so unexpected, without noticing the Cartan

integers it would have been very hard to prove directly.

7.3 Weyl Chambers and Simple Roots

For U(n) and r = 1, . . . , n−1 define ωr(θ) = θr− θr+1, then ωr ∈ Φ+ and {ωs}n−1
s=1 is a lin-

early independent set. Moreover, if r < s then αrs =
∑s−1

j=r ωj and so Φ+ ⊂ spanN{ωj}n−1
j=1 .

Observe that ωr cannot be written as a positive sum of positive roots. This situation

generalises, but we have to work reasonably hard.
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Pick a chamber, C and let

Φ+(C) = {α ∈ Φ : α(t) > 0, ∀t ∈ C}.

We call this the set of positive roots associated to C. The reason for this nomenclature

is that

g ∼= t⊕
⊕

α∈Φ+(C)

gα,

which will be obvious later. Now, given a root α ∈ Φ, say that α is decomposable if it can

be written as α = nβ + mγ where n, m ∈ Z+ and β, γ ∈ Φ+(C). If α is indecomposable,

then it will be referred to as simple.

It is obvious by the finiteness of Φ, and the previous results that we can arrive at a set

of simple roots A = {α1, . . . , αl}. It turns out that A is much better behaved than one

would expect, and has quite a remarkable geometric and combinatorial connection to the

Stiefel diagram.

Lemma 7.3.1.

1. Φ+(C) ⊂ spanN(A).

2. Let α, β ∈ A then (α, β) ≤ 0.

Proof.

1. Let α ∈ Φ+(C), if α is simple, then we are done. Otherwise, ∃β1, β2 ∈ Φ+(C) and

n1, n2 ∈ Z+ such that α = n1β1 + n2β2. Repeating the above procedure on β1, and

then on β2 yields the result by the finiteness of Φ.

2. If (α, β) > 0, then by Lemma 7.2.2 it follows that α − β ∈ Φ. Note that either

α− β ∈ Φ+(C) or β − α ∈ Φ+(C) and so one of β = α+ (β − α) or α = β + (α− β)

would lead to a decomposition of α or β that are contrary to the assumption of

simplicity.

76



For sake of convenience, we introduce a little more notation; namely let

Φ−(C) = −Φ+(C).

Equipped with Lemma 7.3.1, and our notation we arrive at the desired results.

Proposition 7.3.1.

1. Φ = Φ+(C) ∪ Φ−(C) as a disjoint union.

2. A is a linearly independent set. In particular, it is a basis for (t/Z(g))∗.

3. Given C, A is the unique set of simple roots with these properties. We refer to the

set of simple roots as A (C).

Proof.

1. Now, suppose that α ∈ Φ+(C) ∩ Φ−(C), then α(t) > 0 and α(t) < 0 on C for all

t ∈ C; which is clearly impossible.

Now, suppose that β ∈ Φ, it suffices to prove that either β ∈ Φ+(C) or β ∈ Φ−(C).

Hence, it suffices to prove that if t ∈ C and β(t) > 0, then β ∈ Φ+(C) or if β(t) ≤ 0,

then β ∈ Φ−(C). We can recast this again as β does not change sign on C.

It is convenient to remark now that β 6= 0 on C since otherwise there would be a

singular point in C, which is impossible. So, let u be another point in C then by

the connectedness of C there is a continuous curve connecting t and u. Indeed, if

β(t) and β(u) are of different sign then by continuity β it must have a zero in C,

contradicting the previous remark.

2. (I approximately follow [3] pp. 116-117) Suppose that λ1, . . . , λl ∈ R and

l∑

i=1

λiαi = 0.
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Let I+, I− ⊂ [1..l] be such that ∀i ∈ I+, λi ∈ R+ and ∀j ∈ I− we have λj ∈ −R+ (we

can obviously ignore the zero terms). Notice that Lemma 7.3.1 implies


∑

i∈I+
λiαi,

∑

j∈I−
(−λj)αj


 =

∑

i∈I+,j∈I−
λi(−λj)(αi, αj) ≤ 0.

If the above expression is 0, then since all terms are of the same sign then for the

sum to be zero, it follows that for all i ∈ I+ and j ∈ I− we have λiλj(αi, αj) = 0.

Indeed, since the λi are all non-zero we must have that (αi, αj) = 0. Hence, in this

case 
∑

i∈I+
λiαi,

∑

j∈I+
λjαj


 = 0.

So,
∑

i∈I+ λiαi = 0 and similarly for the sum over I−. Indeed, we must have for

ξ ∈ Φ+(C)

0 =


ξ,

∑

i∈I+
λiαi


 =

∑

i∈I+
λi(ξ, αi).

But (ξ, αi) > 0 and since the λi are all of the same sign they must all be zero. Simi-

larly for the case of I−.

Otherwise, it is stricly less than 0 and so by Lemma 7.2.2 it follows that 0 =
∑n

i=1 λiαi ∈ Φ, which is impossible. The final remark is now clear in light of Corollary

6.3.3.

3. (The author’s proof) Let B = {β1, . . . , βl} be a set of simple roots on Φ+(C). Note

that since A, B are Z bases for Φ, then there is an automorphism of (t/Z(g))∗, Y ,

that takes the basis A to B. Indeed, it follows that since A, B ⊂ Φ+(C) ⊂ spanZ+(A)

then the matrix for Y has entries in Z+. However, the elements of A, B are all simple

and so Y must be a permutation matrix. That is, A = B.

After a large result like the above, it is not surprising a few interesting corollaries follow.
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Corollary 7.3.1.

g ∼= t⊕
⊕

α∈Φ+(C)

gα.

So we finally have obtained a systematic decomposition of Ad |T .

Corollary 7.3.2.

Φ ⊂ spanZA (C).

Corollary 7.3.3. Let α ∈ A (C) then Φ+(C)− {α} is σα-stable.

Proof. Note that if β ∈ A (C)−{α}, then σα(β) = β−(α∨, β)α. But notice that (α, β) ≤ 0

so σα(β)(t) > 0 for all t ∈ C (since α, β ∈ Φ+(C)). That is, σα(β) ∈ Φ+(C).

There is a converse to the last proposition too. To make the statement precise, we need

to introduce another

Definition 7.3.1 (Fundamental Weyl Chamber). Let A be a system of simple roots,

define

C (A) = {t ∈ t : α(t) > 0, ∀α ∈ A}.

Call C (A) the fundamental Weyl chamber generated by A.

This really was the natural choice, we just have to check that our naming is proper.

Proposition 7.3.2. Let A be a set of simple roots, then C (A) is a Weyl chamber.

Proof. It suffices to prove that C (A) is a convex region containing only regular points

of t. To do this, we simply note that if t, t′ belong to C (A), then obviously for each

λ ∈ [0, 1] α(λt + [1 − λ]t′) = λα(t) + (1 − λ)α(t′) > 0 since α(t), α(t′) > 0 and so

λα(t) + (1− λ)α(t′) ∈ C (A), and so C (A) is convex.

This is certainly enough to obtain the

Corollary 7.3.4. There is a bijection between dominant Weyl chambers and simple root

systems. These maps are given explicitly by A and C .
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With the previous corollary in mind, it would seem worthwhile to explicitly characterise

all simple root systems, enabling us to explicitly describe the Weyl chambers. A preliminary

observation is the following

Lemma 7.3.2. Let w ∈ W , then w(C) is a Weyl chamber. Hence, w ·A (C) is a set of

simple roots.

Proof. It suffices to prove that w(C) is convex and contains only regular points. Let c ∈ C,

then α(c) 6= 0 for all α ∈ Φ. Since W permutes Φ it follows that 0 6= w−1 · α(c) = α(w · c),
and so w · c is regular. The convexity follows by the linearity of w.

Consider U(3) again, then the set of roots {ω1, ω2} is simple; and so corresponds to a

fundamental Weyl chamber. Since each of these simple roots is positive on this chamber,

and there are only two walls of the chamber, then all the walls arise as the kernels of the

simple roots associated to the chamber. In general we have the

Proposition 7.3.3. Let C be some Weyl chamber and consider some α ∈ A (C), then

uα ∩ C is a wall of C. Moreover, any wall of C arises in this way.

Proof. Now, σα(C) is another Weyl chamber with a simple root system containing −α.

That is, uα ∩ C is a wall of C since α must be of different sign in C and σα(C).

Conversely, given a wall K = uα∩C for some α ∈ Φ+(C), then since Φ+(C) ⊂ spanNA (C)

and the decomposition of α into simple roots implies that they are all zero on the wall K,

this implies that K arises as uβ ∩ C where β ∈ A (C).

We are now really starting to understand the Stiefel diagram geometrically, and its

connection the the simple root systems. The subsequent theorem is really telling us that

the Stiefel diagram is very well behaved. The lemma and notation are courtesy of [3], p.

124.

Notation 7.3.1. For Weyl chambers C, C ′ let `(C,C ′) = |Φ+(C) ∩ Φ−(C ′)|.
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Lemma 7.3.3. If C, C ′ are distinct Weyl chambers then, there exists another chamber

C ′′, adjacent to C such that `(C ′′, C ′) = `(C,C ′)− 1.

Proof. If `(C,C ′) = 1, then the result is trivial by Proposition 7.3.3. So, we assume

now `(C,C ′) > 1 and so A (C) − Φ+(C ′) is non-empty since otherwise A (C) ⊂ Φ+(C ′),

then since A (C) is a set of simple roots, A (C ′) = A (C), which is impossible. So, pick

α ∈ A (C)−Φ+(C ′) and set C ′′ = σα(C). Noting that C−{α} is σα-stable by Lemma 7.3.3

and σα(α) = −α, then Φ+(C ′′) = (Φ+(C)−{α})∪{−α} and so `(C ′′, C ′) = `(C,C ′)−1.

From which have the beautiful

Theorem 7.3.1. Let C, C ′ be Weyl chambers, then there exists a sequence of simple

reflections, of length `(C,C ′), belonging to A (C), that map C to C ′.

Proof. We do induction on s = `(C,C ′) = |Φ+(C) ∩ Φ−(C ′)|. If s = 0, then Φ+(C) ∩
Φ−(C ′) = ∅, this is clearly true if and only if C = C ′. Now, assume the result true for

s = k and so it suffices to prove the result true for s = k + 1. By applying Lemma

7.3.3, then there is a Weyl chamber, C ′′, adjacent to C such that `(C ′′, C ′) = `(C,C ′)− 1.

Applying the inductive hypothesis to the pair C ′′, C ′, then we have a sequence w :=

σαi1 · · ·σαik , where αij ∈ A (C ′′) and C ′ = w(C ′′). Also, since C ′′ is adjacent to C, then

Proposition 7.3.3 implies C ′′ = σα(C) for some unique α ∈ A (C). Note that this implies

βj := σα(αij ) ∈ A (C) and since σβj = σασαij σα, then w′ := σασβ1 · · ·σβk = wσα is such

that w′(C) = C ′ and has length `(C ′′, C ′) + 1 = `(C,C ′) and is a product of simple roots

belonging to A (C); as required.

Notation 7.3.2. Let C be a Weyl chamber, define WC = 〈σα : α ∈ A (C)〉.

Corollary 7.3.5. WC acts simply transitively on the set of Weyl chambers.

Corollary 7.3.6. Let C, C ′ be Weyl chambers, then WC
∼= WC′. So, we let WΦ := WC .

These last two results are really quite incredible, they connect the geometry of conju-

gation in G to the symmetries and combinatorics of a finite group of isometries of t.

81



7.4 Geometric Characterisation of the Weyl Group

The aim of this section is to prove the following theorem, giving us the geometric charac-

terisation of the Weyl group that we desire.

Theorem 7.4.1.

WΦ
∼= W.

From which we have the gracious

Corollary 7.4.1. The geometric structure of the Stiefel diagram is independent of T .

With all the work that we have done so far, it is not surprising that this result is now not

so difficult to prove. The method of proof is to show that W acts simply transitively on the

set of Weyl chambers, by the previous section this would imply that there exists a reduced

word s1 . . . sr, where the si are all simple reflections, which corresponds to each element of

W . The problem is now reduced to a a proposition and a corollary. The following proof is

related to [6] pp. 193-194.

Proposition 7.4.1. If w ∈ W and w(C) = C, then w = 1.

Proof. Note that since W is finite, then the order of w ∈ W is finite, call the order n. Fix

t ∈ C and define

t̂ =
n∑

k=1

wk · t.

Observe that since w(C) then w ·A (C) = A (C) and so if α ∈ A (C) then as α(t) > 0 we

must have α(t̂) > 0. Hence, t̂ ∈ C (A (C)) = C.

Write w = nT where n ∈ N(T ), and so n and H := exp(t̂) commute. By Corollary

5.3.4, this is is contained in some maximal torus T ′. However, since h /∈ Uα for any α ∈ Φ,

then T = T ′ and so n ∈ T . In particular, we must have w = 1.

Corollary 7.4.2. W acts simply transitively on the set of Weyl chambers.
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Proof of Theorem 7.4.1. Let w ∈ W \WΦ then consider the action of w on a Weyl chamber

C. Note that w(C) is another Weyl chamber, by Lemma 7.3.2 and so since WΦ acts simply

transitively on the set of Weyl chambers, by Corollary 7.4.2, then the only possibility is

w(C) = C. By Proposition 7.4.1 we must have w = 1, but since 1 ∈ WΦ then 1 /∈ W \WΦ.

Hence, we conclude that W \WΦ = ∅.

We now have a natural definition of the determinant of an element of W .

Corollary 7.4.3. Any w ∈ W can be written as a product of `(C,w(C)) simple reflections

in the walls of its Weyl chamber. Consequently, detw = (−1)`(C,w(C)).
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Chapter 8

Weyl’s Formulae

In this chapter we examine four formulae, due to Weyl. The first is the Weyl integra-

tion formula, this relates integration across the group to integration across G-orbits and

a maximal tori, an immediate corollary is an integration formula for class functions. This

leads into the celebrated Weyl character formula, which provides a method of calculating

irreducible characters for a compact Lie group G in terms of its highest weight; immediate

corollaries of this marvellous result are the denominator and dimension formulae. The

author adds that this chapter is by far the most computational, but this is by no means

surprising in consideration of the work that is being undertaken.

There are a number of different proofs of the Weyl character formula, with each dis-

playing another aspect of Lie theory. The path that is taken by the author is that of an

analytic nature, using the theory of Fourier series. It is worth remarking that this proof

is quite different from Weyl’s (and [6] ch. VI §1), predominantly because our characters

are computed as opposed to deduced. For a collection of results equivalent to the Weyl

character formula, with different proofs I would certainly recommend [10] p. 440-444.

8.1 The Integration Formula

Consider the process of diagonalising a matrix in U(n), if the eigenvalues are distinct then

there are precisely |Sn| = n! ways of doing this. This generalises to the following
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Lemma 8.1.1. The map Ψ : G/T × T → G : (gT, t) 7→ gtg−1 is a well-defined, W -fibred,

smooth mapping of manifolds.

Proof. Let gT , hT ∈ G/T be such that gT = hT and pick t′ ∈ Treg. Note that clearly

h−1g = t ∈ T and so

Ψ(gT, t′) = gt′g−1 = (ht)t′(ht)−1 = h(tt′t−1)h−1 = ht′h−1 = Ψ(hT, t′),

since T is abelian. Hence, Ψ is well-defined.

Note that T is a submanifold of G, and since G/T is a manifold it is now clear that G/T×T
is a manifold too. Indeed, since conjugation is smooth it is immediate that Ψ is a smooth

mapping of manifolds and by Sard’s Theorem ([20] p. 460), the set of singular points of

this transformation has Haar measure zero.

Now consider Ψreg := Ψ|G/T×Treg and let g ∈ Greg = im Ψreg. So, g belongs to precisely one

maximal torus T ′ and by Theorem 5.3.1 T ′ = hTh−1 for some h ∈ G. Hence, g = hth−1,

for some t ∈ T . However, let nT ∈ W , then since g = (hn)(n−1tn)(hn)−1 and n−1tn ∈ T
and since W acts transitively on regular elements of G then Ψ−1

reg(g) ∼= W .

Once noting that Greg is open and dense in G (c.f. Proposition 6.3.2) the result is now

proven in its entirety.

It is not surprising that this map has a pleasant Jacobian; this is computed in the

Lemma 8.1.2.

| det(Ψ)?(gT, t)| = | det(Ad(t−1)− I)g/t| µ− a.e.

Proof. Since Greg is open and dense in G we need only consider Ψreg. Note that since

(Ψreg)?(gT, t) is a linear map from TgT (G/T )× Tt(Treg) to Tgtg−1(G) ∼= g/t ⊕ t we may as

well consider the actions on each of the two tangent spaces in the above product.
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Following [24] pp. 6-7, s 7→ (g exp(sX)T, t) is a smooth map in a neighbourhood of (gT, t)

with tangent vector [X, 0] ∈ TgT (G/T )× Tt(Treg) when s = 0. Hence,

(Ψreg)?(gT, t)[X, 0](gT,t) =
d

ds
[Ψreg(g exp(sX)T, t)]s=0

=
d

ds

[
g(tg−1gt−1) exp(sX)t(g−1g) exp(−sX)g−1

]
s=0

=
d

ds

[
(gtg−1)g(t−1 exp(sX)t)g−1g exp(−sX)g−1

]
s=0

= Ad(g)(Ad(t−1)− I)[X, 0]gtg−1 .

Similarly, s 7→ (gT, t exp(sY )) is a smooth map in a neighbourhood of (gT, t) with tangent

vector [0, Y ] ∈ TgT (G/T )× Tt(Treg) when s = 0. Thus,

(Ψreg)?(gT, t)[X, 0](gT,t) =
d

ds
[Ψreg(gT, t exp(sY ))]s=0

=
d

ds

[
gt exp(sY )g−1

]
s=0

= Ad(g)[0, Y ]gtg−1 .

Indeed, it now follows that

(Ψreg)?(gT, t)[X, Y ](gT,t) = Ad(g)
(
(Ad(t−1)− I)[X, 0]gtg−1 + [0, Y ]gtg−1

)
.

Note that Ad(g) is a unitary representation, and so | det Ad(g)| = 1. Hence, | det(Ψreg)∗(gT, t)| =
| det(Ad(t−1)− I)g/t|.

We now introduce the following

Notation 8.1.1. For each Weyl chamber C, let

δC(t) =
∏

α∈Φ+(C)

(1− t−α).
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When the choice of Weyl chamber is unimportant, then it will not be specified.

For SU(2) note that there is only one positive root and so:

δ ( t t−1 ) = 1− t−2.

On U(3), we have

δ
(
t1
t2
t3

)
=

(
1− t2

t1

)(
1− t3

t2

)(
1− t3

t1

)
=

∆(t1, t2, t3)

t21t2
,

where ∆ is the Vandermonde determinant. For U(n), it is clear the computation generalises

to:

δ

( t1
...

tn

)
=

∆(t1, . . . , tn)

tn−1
1 tn−2

2 · · · tn−1

.

The next result was something that impressed Schur ([5] p. 35). Analysing the W -

symmetric functions functions on T in order to understand the character theory is almost

intractible, due to its directness. The next result alludes that studying W -antisymmetric

functions may be worthwhile, something that is completely unobvious, as they are not even

class functions.

Lemma 8.1.3.

| det(Ad(t−1)− I)g/t| = δC(t)δC(t).

Proof. Notice that

det
(

cosα(t)−1 − sinα(t)
sinα(t) cosα(t)−1

)
= 2− 2 cosα(t)

= 1− (eiα(t) + e−iα(t)) + eiα(t)e−iα(t)

= (1− eiα(t))(1− e−iα(t))

So, since g/t =
⊕

α∈Φ+(C) T
R
α as T -modules computation above implies the result.
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For U(n), it is clear:

δ
( t1

...
tn

) =
|∆(t1, . . . , tn)|

|t1|2n−2|t2|2n−4 · · · |tn−1|2
.

We now arrive at the first of Weyl’s many contributions to the theory of compact Lie

groups. It is also worth remarking that a theorem of Harish-Chandra generalises this

result to an arbitrary real reductive Lie group ([20] pp. 483-485).

Theorem 8.1.1 (Weyl Integration Formula). Let f ∈ L1(G) then

∫

G

f(g) dg =
1

|W |

∫∫

G/T×T
f(gtg−1)δ(t)δ(t) dt d(gT ),

where d(gT ) is the Haar measure on the homogeneous space G/T induced from G with

µ(G/T ) = 1, and dt is Haar measure on T .1

Proof. Now, using Theorem 5.19 in [6] p. 51, for a volume form ω ∈ ΩdimG(G)

∫

Greg

ω =
1

|W |

∫∫

G/T×Treg

Φ?ω.

Hence, applying the definitions and results already obtained

∫

Greg

f(g) dg =
1

|W |

∫∫

G/T×Treg

f(gtg−1)δ(t)δ(t) dt d(gT ).

Noting that µ(G \Greg), µ(T \ Treg) = 0, the result follows.

This formula is quite unpleasant computationally for a general f ∈ L1(G). This is due

to the fact that we would be required to explicitly understand the measure on G/T , which

is normally constructed out of partitions of unity. However in the case that f is an L1 class

function, then we have the all important

1For the existence and uniqueness of such a measure see [20] pp. 470-471.
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Corollary 8.1.1. If f is a (measurable) class function then

∫

G

f(g) dg =
1

|W |

∫

T

f(t)δ(t)δ(t) dt.

Corollary 8.1.2. The correspondence

{L2(G) class functions} 3 f → f |T δ√
|W |
∈ L2(T ),

is an isometry.

This last corollary is informing us how the L2(G) class functions are mangled (the loss

of conjugation) by the group when they are restricted to a maximal torus. The mangling

is captured by the Weyl factor δ, which summarises conjugation in the group; agreeing

with intuition.

8.2 The Weight Space Decomposition

Consider the natural action of U(n) on Cn. This restricts to a homomorphism of the

diagonal subgroup T on Cn. If for i = 1, . . . , b, βi ∈ (Rn)∗ is the map βi(θ) = θi, then

Cn =

n⊕

i=1

TCβi.

In general, let πV : G→ GL(V ) be a representation of G on the finite dimensional, complex

vector space V , then πV |T : T → GL(V ) is a representation of T . It follows from Theorem

2.2.1 that V is an orthogonal direct sum of irreducible T -modules.

Definition 8.2.1 (Weights, Weight Space). For α ∈ Λ̂ let nα(V ) denote the degree of

TCα in V . Define Φ(V, T ) := {α ∈ Λ̂ : nα(V ) 6= {0}}, called the weights of V .

Also, let Vα := nαT
C
α ⊂ V . We refer to Vα as the weight space corresponding to the

weight α.
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Note that since W acts on T and Λ̂, and so w · : πV (w) ∈ Aut (V ). Hence,

V = w−1 · V ∼=
⊕

α∈bΛ

nα(V )w−1 · T kα =
⊕

α

nα(V )T k(w−1)∗α =
⊕

α′

nw·α′(V )T kα .

Noting that each T Cα is irreducible, then we have proven the following

Proposition 8.2.1.

nw·α(V ) = nα(V ) ∀w ∈ W ∀α ∈ Λ̂

In particular, W permutes the weights of V .

8.3 The Character Formula

Before we can state this result we require another

Definition 8.3.1 (Highest Weight). Let V be a G-module, then a weight λ ∈ Λ̂ is said

to be of highest weight for V if λ+α is not a weight for any nonzero α ∈ spanN Φ+(C).

The existence of a highest weight is obvious by finite dimensionality of V . We are now

in a position to state the

Theorem 8.3.1 (Weyl’s Character Formula). Let G be a compact, connected Lie group

and V an irreducible, complex G-module. Then, for a choice of maximal torus, and a Weyl

Chamber C there is unique, highest weight λ with degree equal to one. Moreover, for any

t ∈ Treg:

χV (t) =

∑
w∈W (detw) tw

∗λ+(w∗ρC−ρC)

δC(t)
,

where ρC = 1
2

∑
α∈Φ+(C) α.

What is so remarkable about this result is it’s explicitness. It was the first such formula

for the characters of a compact Lie group, and is still regarded as being the most beautiful.

The proof contained in this section follows Duistermaat’s exposition in [9] pp. 252-256

quite closely.
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As in Section 8.2 we write V =
⊕

λ∈Λ̂ nλ(V )TCλ , then

χV (t) =
∑

λ∈Λ̂

nλ(V )tλ.

Also, since ψV := (χV |T )δC belongs to L2(T ) (by Corollary 8.1.2), then it also has ([30]

pp. 233-236) a Fourier expansion

ψV (t) =
∑

λ∈Λ̂

pλ(V )tλ,

with convergence in L2(T ).

Notation 8.3.1. When there is no cause for confusion, nλ(V ) = nλ and pλ(V ) = pλ.

The way in which we prove the formula is to examine how the W -action effects the

Fourier coefficients of ψV . This is a very elegant approach to the problem, as it really

captures the geometry of the situation. Namely, the interaction between the torus T and

the non-uniqueness of conjugating into the torus, the precise thing we need to understand

to prove a result related to class functions.

What the author really likes about this proof is that the highest weight theory is very

accessible, many expositions are hard to follow because the motivation is unclear; yet in

this proof it arises naturally. Let us now move into the proof, which is broken into a

sequence of lemmata.

Our first result is a bland expansion of the δ function.

Lemma 8.3.1.

δC(t) =
∑

P⊂Φ+(C)

(−1)|P | t
− P
α∈P

α

91



Proof (By Example). I provide a computation for U(3), the general computation is identi-

cal.

δ
(
t1
t2
t3

)
=

(
1− t2

t1

)(
1− t3

t1

)(
1− t3

t2

)

= 1−
(
t2
t1

+
t3
t1

+
t3
t2

)
+

(
t2
t1

t3
t1

+
t2
t1

t3
t2

+
t3
t2

t3
t1

)
− t2
t1

t3
t2

t3
t1
.

This formula is quite cumbersome, but it does turn out to be useful for the following

Lemma 8.3.2. 2

pλ =
∑

P⊂Φ+(C)

(−1)|P | nλ+
P
α∈P α ∈ Z ∀λ ∈ Λ̂.

In particular, the Fourier expansion of (χV |T )δ on T has at most |W | non-zero coefficients.

Proof. By direct expansion we have

∑

λ∈Λ̂

pλt
λ =

∑

λ∈Λ̂

∑

P⊂Φ+(C)

nλ(−1)|P | tλ−
P
α∈P α.

So equating Fourier coefficients yields

pλ =
∑

P⊂Φ+(C)

(−1)|P | nλ+
P
α∈P α.

In fact, since dimV <∞, then at most finitely many of the nµ 6= 0, and since nµ ∈ N then

mλ ∈ Z too.

2A better form of the above expansion is the Weyl denominator formula, which is proven later.
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Also, since V is irreducible Corollary 2.3.1 implies
∫
G
|χV (g)|2 dµ(g) = 1 and so Corol-

lary 8.1.2 informs us the norm of ψV in L2(T ) is |W |. By Parseval’s Theorem ([15] p. 226)

we obtain
∑

λ∈Λ̂

p2
λ = |W |.

But the pλ ∈ Z, so at most |W | of the Fourier coeffiecients of ψV can be non-zero.

From these two (trivial) lemmata, we have the somewhat surprising

Corollary 8.3.1. If λ is a highest weight:

nλ = pλ.

Proof. Let P ⊂ Φ+(C), then clearly
∑

α∈P α = 0 if and only if P = ∅ since P ⊂
spanNA (C) and A (C) is linearly independent. Also, since λ is highest weight, then

κ := λ +
∑

α∈P α is not a weight for any P 6= ∅ and so nκ = 0 for any P 6= ∅. Applying

the formula obtained in Lemma 8.3.2 now implies the result.

This is wonderful, we have just connected the two Fourier expansions in a concrete

fashion. Let us remove ourselves from the highest weight theory for a while and proceed

with the task of computing the Fourier coefficients of ψV combinatorially.

Since χV is W -invariant it would seem fair to imply that the W -symmetries of the mλ’s

are only dependent on δC . So, let us now investigate the symmetries of δC . Note that W ’s
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action on δC is given by (w∗δC)(t) = δC(w−1 · t) and so we have:

(w∗δC)(t) =
∏

α∈Φ+(C)

(1− (w−1 · t)−α)

=
∏

α∈Φ+(C)

(1− t−w∗α)

=
∏

α∈Φ+(w(C))

(1− t−α)

∴ (w∗δC)(t) = δw(C)(t).

From which we infer that the W -action on δ correponds to a W -action on the Stiefel

diagram.

Example 8.3.1 (U(3)).

[(12)∗δ]
(
t1
t2
t3

)
= δ

(
t2
t1
t3

)
=

∆(t2, t1, t3)

t22t1
= −

(
t1
t2

)
δ
(
t1
t2
t3

)
.

A further observation is that Φ+ ∩ (12) · Φ− = {α12}.

Since S3 is generated by transpositions it would appear that for U(3), δ is almost S3-

antisymmetric; with the factor out the front deserving of some special attention. We now

generalise this computation to an arbitrary compact Lie group. The following notation

would seem appropriate in light of our example.

Notation 8.3.2. For w ∈ W , let

η(w) :=
∑

α∈Φ+(C)\Φ+(w(C))

α.

The symmetry result we desire is now displayed in the
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Proposition 8.3.1. Let w ∈ W , then

(w∗δC)(t) = (detw)δC(t)tη(w)

Proof. The main observation is that since

Φ+(C) = (Φ+(C) ∩ Φ+(w(C))) ∪ (Φ+(C) \ Φ+(w(C))),

and

Φ+(w(C)) \ Φ+(C) = Φ+(w(C)) ∩ Φ−(C)

= −(Φ+(C) ∩ Φ−(w(C)))

= −(Φ+(C) \ Φ+(w(C))),

then we have:

Φ+(w(C)) = (Φ+(w(C)) ∩ Φ+(C)) ∪ −(Φ+(C) \ Φ+(w(C))).

Hence,

δw(C)(t) =


 ∏

α∈Φ+(w(C))∩Φ+(C)

(1− t−α)


×


 ∏

α∈−(Φ+(C)\Φ+(w(C))

(1− t−α)




=

( ∏
α∈Φ+(C)(1− t−α)

∏
α∈Φ+(C)\Φ+(w(C))(1− t−α)

)
×


 ∏

α∈Φ+(C)\Φ+(w(C))

−tα(1− t−α)




= δC(t)×


 ∏

α∈Φ+(w(C))∩Φ+(C)

−tα

 .

= (detw)δC (t)tη(w),

where the last equality makes use of Corollary 7.4.3.
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The η function not particularly unpleasant computationall, it would be nice to obtain

a more useful expression. So, we introduce the

Notation 8.3.3. Let ρC := 1
2

∑
α∈Φ+(C) α.

Let us compute an

Example 8.3.2 (U(n)). For n = 3 we clearly have

ρ

(
iθ1

iθ2
iθ3

)
=

1

2
(θ1 − θ2 + θ2 − θ3 + θ1 − θ3) = θ1 − θ3 = 2θ1 + θ2 − (θ1 + θ2 + θ3).

More generally,

ρ

( iθ1
...

iθn

)
=

1

2

∑

1≤r<s≤n
(θr − θs) =

n−1∑

r=1

(n− r)θr + β

(
n∑

r=1

θr

)
,

where β ∈ Q. This decomposition will be important when we compute the characters of

U(n).

One should be careful with this definition as the following example demonstrates.

Example 8.3.3. ρ is not a weight of SO(3) as the only positive root is α = id.

What this means is that we are not supposed to treat ρ like a weight, if we wanted

to we would have to pass to some bigger Lie group (i.e. the universal covering group),

analogous to passing to a field extension when trying to solve polynomials.3 Consider the

following

Example 8.3.4 (U(3)). Let (321) ∈ S3, then

[(321)∗ρ]
(
iθ1

iθ2
iθ3

)
= ρ

(
iθ3

iθ1
iθ2

)
= θ3 − θ2.

So,

ρ
(
iθ1

iθ2
iθ3

)
− [(321)∗ρ]

(
iθ1

iθ2
iθ3

)
= α13 + α23 = ω1 + 2ω2.

3Technically speaking, the computation would generally need to be carried out in the representation
ring Z

[
1
2Φ
]
. See [2] pp. 134-141 for the details.
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However, (321)∗Φ+ = {α32, α31, α12} and so Φ+ \ (321)∗Φ+ = {α13, α23}. Hence,

η(321) = α13 + α23 = ω1 + 2ω2.

Inspired by the previous example it would appear that a computational formula for η,

involving ρC may be possible. The proof is lifted from [9] p. 255 and merely provided for

completeness.

Lemma 8.3.3.

η(w) = ρ− w∗ρ ∈ Λ̂ ∀w ∈ W.

Proof.

w∗ρ =
1

2

∑

α∈Φ+(w(C))

α

=
1

2


 ∑

α∈Φ+(C)∩Φ+(w(C))

α +
∑

α∈−(Φ+(C)\Φ+(w(C)))

α




=
1

2


 ∑

α∈Φ+(C)

α− 2
∑

α∈Φ+(C)\Φ+(w(C))

α




= ρ− η(w).

So we arrive at the following symmetry relation for δ:

(w∗δ)(t) = (detw)δ(t)tρ−w
∗ρ ∀w ∈ W.

Example 8.3.5 (U(3)).

[(321)∗δ](t) = δ(t)tω1+2ω2 .
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Although δ is not quite W -antisymmetric we are now in a much better position to

explicitly describe how the Fourier coefficients of ψV behave under the W -action. This is

contained in the somewhat miraculous

Proposition 8.3.2.

pw∗λ+(w∗ρ−ρ) = (detw)pλ ∀λ ∈ Λ̂, ∀w ∈ W.

Proof. Since the Fourier expansion has only finitely many non-zero terms we have no

difficulties with convergence. Now,

ψV (t) =
∑

λ∈Λ̂

pλt
λ =⇒ (w∗ψV )(t) =

∑

λ∈Λ̂

pw∗λt
λ.

However,

(w∗ψV )(t) = χV |T (t)(w∗δ)(t)

= (detw)tρ−w
∗(ρ)χV |T (t)δ(t)

=
∑

λ∈Λ̂

(detw)pλt
λ+ρ−w∗(ρ).

The result is clear once we equate the Fourier coefficients for the two expressions of w∗ψV .

So, the Fourier coefficients of ψV are W -antisymmetric with respect to the shifted W

action:

w ? λ := w∗λ+ (w∗ρ− ρ).

This is very unexpected, there is really no reason for this symmetry to emerge, yet it is the

natural symmetry of the Fourier coefficients. From this shifted W action it now becomes
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clear where the highest weight theory fits in. These are formally digested in the subsequent

results.

Proposition 8.3.3. The shifted W -action is free and transitive on highest weights of V .

Proof. Let λ be a highest weight and suppose that w∗λ + w∗ρ − ρ = λ for some w ∈ W ,

then w∗λ = λ + ρ − w∗ρ = λ + η(w), by Lemma 8.3.3. Proposition 8.2.1 informs us

that nw∗λ = nλ > 0 and so that η(w) = 0, making use of Proposition 7.4.1 yields w = 1.

Moreover, the shifted W -orbit has at most |W | elements, by virtue of Lemma 8.3.2. Putting

these two facts together implies that the shifted W -orbit of a highest weight λ has precisely

|W | elements, so the action is free and transitive.

After all our work it would appear that we are very close to the end of this spectacular

theorem.

Corollary 8.3.2. If λ is a highest weight, then nλ = pλ = 1.

Proof. Let w ∈ W , then since the shifted W -orbit has |W | elements, we must have p2
λ = 1

and so pλ = ±1, by Lemma 8.3.2 and the transtivity of the action, by Proposition 8.3.3.

But Corollary 8.3.1 implies that pλ = nλ ∈ Z+, so pλ = 1.

We now have the Fourier coefficients in all their glory.

Corollary 8.3.3. For a highest weight λ and w ∈ W :

pw?λ = detw.

In fact, the proof of the character formula is complete except for the uniqueness of the

highest weight, which we prove now.

Proposition 8.3.4. V has a unique highest weight.

Proof. Existence of a highest weight is obvious by finite dimensionality. Suppose that λ′

were another highest weight, then the transitivity condition implies that w∗λ+w∗ρ−ρ = λ′
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for some w ∈ W and so w∗λ = ρ− w∗ρ + λ′ = η(w) + λ′, again by Lemma 8.3.3. Since λ′

is a highest weight and nw∗λ = nλ > 0 by Proposition 6.1.1 and so nη(w)+λ′ > 0. Again, we

have η(w) = 0 and so w = 1, hence λ = λ′.

So, to recapitulate we have proven that there is a unique highest weight λ such that

ψV (t) =
∑

λ∈bΛ

pλt
λ =

∑

w∈W
detw tw?λ

Let us look at a trivial example to tell us what the Weyl character formula says for

SU(2). For an irreducible representation V , there is a highest weight l. Note that l ∈ Z
and since W (SU(2)) = Z2 we have for θ /∈ πZ

χV
(
eiθ

e−iθ
)

=
−e(−k−2)iθ + eikθ

1− e−2iθ
=

sin(k + 1)θ

sin θ
.

In other words, the Weyl character formula trivialises the pages of computations for SU(2).

There is a converse to the Weyl character formula, namely Cartan’s theorem. It will

turn out that the weights that come out of the Weyl character formula are dominant, a

concept that will be defined when we prove Cartan’s theorem.

8.4 Miscellaneous Formulae

Let us get a nice formula for that δ function that has been so helpful.

Corollary 8.4.1 (Weyl Denominator).

δC(t) =
∑

w∈W
(detw)tw

∗(ρ)−ρ, t ∈ Treg.
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Proof. We note that if V is the trivial representation, then χV (t) = 1 and so since the

trivial representation has highest 0, applying the Weyl character formula from Theorem

8.3.1 implies

1 =

∑
w∈W (detw)tw

∗(ρ)−ρ

δC(t)
t ∈ Treg,

which is obviously equivalent to the result.

Observe for the SU(2) case, 1 /∈ Treg and so to calculate χV (1) = dimV we would have

to use L’Hopital’s rule. In fact, this is how the procedure is carried out in general.

Corollary 8.4.2 (Weyl’s Dimension Formula). If V is an irreducible represention of

highest weight λ then

dim V =
∏

α∈Φ+(C)

(α, λ+ ρ)

(α, ρ)
.

Proof. This proof is standard, one just carefully applies L’Hopital’s rule, see [9] p. 257 for

the details.

Let us make use of this formula in the following
Example 8.4.1 (U(3)). For a highest weight λ the dimension of the highest weight module
λ (if it exists) would be

(1, 0, 0) · (λ1 + 1, λ2 + 1, λ3)

(1, 0, 0) · (1, 1, 0)
×

(0, 1, 0) · (λ1 + 1, λ2 + 1, λ3)

(0, 1, 0) · (1, 1, 0)
×

(1, 1, 0) · (λ1 + 1, λ2 + 1, λ3)

(1, 1, 0) · (1, 1, 0)
=

1

2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2).

8.5 Cartan’s Theorem

As mentioned before, Cartan’s theorem is a converse to the Weyl character formula. The

proof that is provided is non-constructive and uses the Peter-Weyl theorem. Constructing

representation spaces is very difficult in general, as you are actually classifying all closed

subgroups of matrices isomorphic to a given Lie group. There are a number of models, the

standard ones being the Borel-Weil theorem (see [31] ch. 3) and the construction using

Verma modules ([20] ch. V). The former model is essentially a statement in algebraic
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geometry, a very eloquent result. The latter is an algebraic construction involving quo-

tients of the universal enveloping algebra. Another construction, worthy of mention is the

Gel’fand-Cetlin method; this model is combinatorial, the application to GL(n,C) can be

found in [34] ch. X.

From this slight digression let us return to looking at Cartan’s theorem.

Definition 8.5.1 (Dominant Weight). A weight λ ∈ Λ̂ is said to be dominant if

λ(C) ≥ 0. That is, Hλ ∈ C.

Example 8.5.1 (SU(2)). Since C = {θ ∈ R : θ ≥ 0} we conclude that a dominant

weight λ ∈ N.

Cartan’s theorem proves that for each dominant weight there is an irreducible repre-

sentation. I will follow [9] pp. 258-262 for this section. We are required to make the

following

Definition 8.5.2 (Ladder). Given λ ∈ Λ̂ and α ∈ Φ define the α-ladder from λ to σα(λ)

to be

{λ− kα : k ∈ [0, λ(α∨)] ∩ Z},

if λ(α∨) ≥ 0 and the same set if λ(α∨) ≤ 0 with α replaced by −α.

Lemma 8.5.1. Let λ ∈ Φ(V, T ), then for any α ∈ Φ, the α-ladder of λ to σα(λ) consists

of weights of V .

Proof. Omitted, see [9] p. 259.

The next proposition proves that the highest weights that are constructed in the Weyl

character formula are all dominant.

Proposition 8.5.1. Suppose that V ∈ Ĝ, then the highest weight of V is dominant.

Proof. Let α ∈ Φ+(C), then it suffices to prove that (λ, α) ≥ 0. For if not, then (λ, α) < 0

and so by Lemma 7.2.2, λ + α ∈ Φ. If λ + α ∈ Φ(V, T ), then since λ is a highest weight,
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α ∈ Φ−(C), which is a contradiction. If λ + α /∈ Φ(V, T ), then this contradicts Lemma

8.5.1.

Here is the result we have been waiting for.

Theorem 8.5.1 (Cartan). Let λ be a dominant weight, then there is an irreducible G-

module V with highest weight vector λ and the character χV as in Theorem 8.3.1.

Proof. Let χλ : Treg → C be the function

χλ(t) =

∑
w∈W (detw) tw

∗λ+(w∗ρC−ρC)

δC(t)
.

A straightforward computation proves that χλ is a W -invariant, continuous function on

Treg (see [9] p. 261 for the details). Using the map Ψreg constructed earlier in this chapter

we can uniquely extend χλ to a continuous class function on Greg and so G (c.f. Proposition

6.3.2). By Corollary 8.1.1 we also have (we are using the extension now)

∫

G

χλ(g)χλ(g) dµ(g) =
1

|W |

∫

T


∑

w∈W
(detw) tw

∗λ+(w∗ρC−ρC)



2

dµ(t) = 1,

by the orthonormality of the tµ’s.

Moreover, if V is some other irreducible G-module, by Proposition 8.3.4 it has a unique

highest weight ξ. If λ = ξ, then we are done, otherwise we note that if w∗(ξ + ρ)− ρ = λ

or the same with λ swapped with ξ, the calculation provided in Proposition 8.3.4 would

demonstrate that w = 1 and ξ = λ, a contradiction. By Proposition 8.3.3, the shifted

W -action is free and transitive on Φ(V, T ) and by definition of χλ the shifted W -action is

free on λ and so the shifted W -orbits are disjoint. So,

∫

G

χλ(g)χV (g) dµ(g) = 0
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By Theorem 4.3.1, this implies that χλ = 0 µ − a.e. which is impossible. So χλ is the

character of some representation of highest weight λ.

Corollary 8.5.1. There is a one-to-one correspondence:

{Dominant Weights} ←→ Ĝ
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Part IV

The Cayley Transform
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Chapter 9

The Cayley map z 7→ 1+z
1−z is well known to be a conformal mapping of the right half plane

into the unit disc. For this reason, it is really a perfect mapping of an infinite line about a

circle. Weyl was fascinated by this map and its appropriate generalisations to Lie theory,

making use of it a number of times in [33]. This is a good enough reason to want to

understand this map better, but it is a map that makes reappearances too.

Recent work by Kostant[22] introduced the notion of a generalised Cayley map for an

algebraic group, proving a raft of results analogous to properties that the classical map

possesses, and a great deal more. The work that we will be looking at is theoretically

related to [25], the derivations are very different and arose out of correspondences with the

author’s supervisor, Norman Wildberger.

9.1 Preliminaries

Following [33] p. 56 we make the following

Definition 9.1.1. The exceptional matrices is the set of matrices Vn

V = {A ∈Mn(C) : det(A + I) 6= 0}.

The computations for this chapter will be concerned with U(n) and SU(2). Conse-

quently, the following result is fundamental.

Lemma 9.1.1.

u(n) ⊂ V.
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Proof. We recall the fact from linear algebra: if A is skew-hermitian then A is diagonaliz-

able and has all imaginary eigenvalues. It is now a matter of remarking that since A has

all imaginary eigenvalues, then det(A + I) = det(iD + I) (where A ∼ iD and D is real

diagonal) and so will be non-zero.

So, we adopt some more

Notation 9.1.1. Let g = u(n) and G′ = U(n) ∩ V .

We are now in position to define the Cayley map for our purposes. The former results

were just to make sure that the map works properly.

Definition 9.1.2 (Cayley Map). The Cayley Map is the map Φn : g → G′ : A 7→
(A+ I)(−A + I)−1.

We need to prove that the map is well-defined and invertible.

Proposition 9.1.1. Φn is a bijection from g to G′.

Proof. Suppose that A ∈ g, then

Φn(A)∗ = [(A+ I)(A∗ + I)−1]∗

= (A+ I)−1(A∗ + I)

= [(A∗ + I)−1(A+ I)]−1

= Φn(A)−1.

Hence, Φn(A) ∈ U(n). Moreover, notice that

det(Φn(A) + I) = det([A + I][A∗ + I]−1 + I)

= det(A + I + A∗ + I) det(A∗ + I)−1

= det(2I) det(A∗ + I)−1.
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So, Φn(A) ∈ V too.

To show that Φn is a bijection we simply prove that the inverse map Φ−1
n : G′ → g′ : Z 7→

(Z − I)(Z + I)−1 has a well-defined image.

Φ−1
n (Z)∗ = ([Z − I][Z + I]−1)∗

= [Z∗ + I]−1[Z∗ − I]

= [Z∗ + I]−1(Z∗Z)[Z∗ − I]

= [Z∗ + I]−1Z−1[ZZ∗ − Z]

= [Z(Z∗ + I)]−1[I − Z]

= [Z + I]−1[I − Z]

= −Φ−1
n (Z).

So, Φn is a bijection.

Corollary 9.1.1. Let A ∈ g′ then AΦn(A) = Φn(A)A.

Proposition 9.1.2. Φn maps Ad(G)-orbits to G-orbits.

Proof. It suffices to prove that Φn(gAg−1) = gΦn(A)g−1, for all g ∈ U(n) and A ∈ g.

Φn(gAg−1) = (gAg−1 + I)(gA∗g−1 + I)−1

= g(A+ I)g−1g(A∗ + I)−1g−1

= gΦn(A)g−1.

Notation 9.1.2. For a1, . . . , an ∈ R we let [aj] =
⊕n

i=1(ai).

108



Lemma 9.1.2. Let d1, . . . , dn ∈ R then Φn([idj]) = [Φ1(idj)]. In particular, Φn maps the

Lie algebra of the maximal torus to the maximal torus of G.

Proof.

Φn([idj]) = ([idj] + [1]) (−[idj] + [1])−1

= [1 + idj][(1− idj)−1]

= [Φ1(idj)].

The next proposition is very cute. An equivalent result appears in [33] p. 62.

Proposition 9.1.3 (Weyl). Let A, B ∈ g commute, then

Φn(A)Φn(B) = Φn

(
A +B

I + AB

)
,

provided AB is exceptional.

Proof. Everything commutes, so we can deal with this like the scalar case.

Φn(A)Φn(B) =
A+ I

−A + I

B + I

−B + I

=
AB + I + A+B

AB + I − A− B

=

(
A+B
I+AB

)
+ I

−
(
A+B
I+AB

)
+ I

= Φn

(
A+B

I + AB

)
.

Remark 9.1.1. The proposition looks like the addition of velocity law in special relativity.

We now examine the restriction of the Cayley map to SU(2) in detail.
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9.2 Restriction to SU(2)

Note that, since su(2) ⊂ u(2) then all elements of su(2) are exceptional. Moreover, since

det Φ2(X) = det(X+I)det(X + I)
−1

then the above calculation proves that det Φ2(X) = 1

for all X ∈ su(2). Hence, the image of Φ2 restricted to su(2) is contained in SU(2).

It suffices to prove that the inverse of Φ2, Φ−1
2 , restricted to SU(2)′ := SU(2) ∩ V all have

trace 0. Note that (clearly) SU(2)′ = SU(2) \ {−I}. Also, for u ∈ SU(2)′ we can write

u =


 α β

−β α


 ,

where |α|2 + |β|2 = 1. Hence,

(u− I)(u+ I)−1 =


α− 1 β

−β α− 1




α + 1 β

−β α+ 1



−1

=
1

2(<α + 1)


α− 1 β

−β α− 1




α + 1 −β

β α + 1



−1

=
1

2(<α + 1)


α− α 2β

−2β α− α


 .

From which it is clear that tr Φ−1
2 (u) = 0.

For completeness, we now compute the image of X ∈ su(2) under Φ2. Some notation, we
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let ‖X‖ = t2 + v2 + w2.

Φ(X) =


 1 + it x+ iy

−x + iy 1− it




1− it −x− iy
x− iy 1 + it



−1

=
1

1 + ‖X‖2


 1 + it x+ iy

−x + iy 1− it




 1 + it x + iy

−x + iy 1− it




=




1−‖X‖2
1+‖X‖2 + 2it

1+‖X‖2
2(x+iy)
1+‖X‖2

2(−x+iy)
1+‖X‖2

1−‖X‖2
1+‖X‖2 − 2it

1+‖X‖2




9.3 Stereographic Projection

Let us try and realise the Cayley map for SU(2) in a more geometric sense. Observe

that since Φ2 takes Ad orbits to conjugation orbits then it suffices to work with diagonal

elements of su(2). So, let T = ( it −it ) and then notice that if λ = 1+t2

2
then

λ(Φ(T ) + I) =
1

2


(1 + it)2 + 1 + t2

(1− it)2 + 1 + t2




=
1

2


2 + 2it

2− 2it




= T + I.

So Φ(T ), T and −I are collinear. Since SU(2) naturally identified as S3 and g is a vector

space, then the Cayley map is stereographic projection from the “south pole”.

Remark 9.3.1. Unfortunately, this result does not seem to generalise that well. In fact,

for U(n) the result seems to be that Φ(X), X and −I are collinear if and only if X2 is a

diagonal matrix.
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9.4 An Integration formula

The aim of this section is to relate Haar measure on SU(2) with ordinary Lebesgue measure

on su(2) ∼= R3; via a rational transformation. This is a special case of a general result, that

appears in [25] (Lemma 3.11). The result is obvious once we observe that | det(1−X)|−3 =

(1 + ‖X‖2)3.

Proposition 9.4.1. Let f ∈ L1(SU(2)) then

∫

SU(2)

f(g) dg =
8

π

∫

R3

f ◦ Φ2(X)

(1 + ‖X‖2)3
dX

9.5 Lifted Characters

By remarking that the Cayley transform commutes with conjugation, and the characters

of SU(2) are class functions, then it is natural to ask what the characters look like under

a lift onto su(2)

This is quite interesting, since we would then have a complete orthonormal sequence

on the space of L2 functions, which only depend on the value that they take in t/W . Note

that for the one-dimensional case we have

Φ(it) =
1 + it

1− it = eiθ(t).

So, if X ∈ su(2) (with the parametrisation given earlier) then a trivial calculation shows

that the eigenvalues of X are ±i‖X‖. This has a two fold implication, the conjugacy

classes of su(2) (and so SU(2)) are parametrised by the spheres centred at the origin; the

other is that the lifted character χ̃` : su(2) 3 X 7→ χ ◦ Φ2(X) ∈ R is a radial function.
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Hence,

χ̃`(X) = χ̃`

(
i‖X‖ 0

0 −i‖X‖

)

=
Φ(i‖X‖)2`+1 − Φ(−i‖X‖)2`+1

Φ(i‖X‖)− Φ(−i‖X‖)

=

(
1+i‖X‖
1−i‖X‖

)2`+1

−
(

1−i‖X‖
1+i‖X‖

)2`+1

1+i‖X‖
1−i‖X‖ −

1−i‖X‖
1+i‖X‖

=

(1+i‖X‖)4`+2−(1−i‖X‖)4`+2

(1+‖X‖2)2`+1

(1+i‖X‖)2−(1−i‖X‖)2

1+‖X‖2

=
2i=(1 + i‖X‖)4`+2

4i‖X‖(1 + ‖X‖2)2`

=

∑2`+1
k=0 (−1)k

(
4`+2
2k+1

)
‖X‖2k

2(1 + ‖X‖2)2`
.

Note that we now have a complete orthonormal system of radial, rational functions on R3

with respect to the measure

8 dX

π(1 + ‖X‖2)3
.

9.6 Orthogonal Rational Functions

For j ∈ N let

κj : R+ → R : x 7→ χj/2(x, 0, 0).

Then,

κj(x) =

∑j+1
k=0(−1)k

(
2j+2
2k+1

)
x2k

2(1 + x2)j
.

In particular, {κj}j∈N is a complete orthonormal system on L2
ν(R+), where

dν =
16x2 dx

(1 + x2)3
,
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and dx is Lebesgue measure on R. These functions are clearly related to the Jacobi

polynomials, as the χ` are; but this sequence of rational functions has not been studied

before. A graph is provided in Figure 9.6 for the first few functions.

9.6.1 A Recurrence Relation

Note that Theorem 3.3.1 informs us that for ` ≥ 1/2

χ`χ1/2 = χ`−1/2 + χ`+1/2,

so we infer that

2κj(x)(1− x2) = (1 + x2)(κj−1(x) + κj+1(x)),

with the initial condition κ0(x) = 1.

9.6.2 A Differential Equation

Using the theory of Jacobi polynomials (see [27]), one can show

4κ′′j (x) + j(j + 2)(1 + x2)2κj(x) = 0.

This is just an exercise in patience using the chain rule.

9.7 Lifted Matrix Coefficients of SU(2)
This calculation is straightforward, but the simplification is brutal; it is omitted for the
reader’s pleasure. Using the matrix coefficient formulae developed earlier, one eventually
gets the lifted matrix coefficients π̃ij` : su(2)→ C where i, j ∈ {−`, . . . , `}.

π̃
ij
`

(X) =

Pi
s=−`(−1)j−s2i+j−2s

“
`+j
`+s

”“
`−j
i−s

”
([1− ‖X‖2]2 + 4t2)`+i+j(‖X‖2 − t2)j−s(1 − ‖X‖2 + 2it)i+/j(x+ iy)i−j

(1 + ‖X‖2)2`
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Chapter 10

Conclusion

The character theory of compact Lie groups is one of the most beautiful in mathematics,

as it is completely described by the Weyl character formula. The aim of this thesis was

to show that this theory could be completed within the realms of real analysis; something

that is not often done anymore.1

A Lie group is a very beautiful structure in its own right and that beauty truly captured

in the geometry of the Stiefel diagram. It is not surprising that this features prominently

in the Weyl character formula.

By far and way the most beautiful thing about Lie groups is that with all the structure

that they have, character theory is reduced to a purely combinatorial analysis of the roots.

Thank you for taking the time to read my thesis.

1Adams [2] does his study using algebraic topology, in a somewhat similar flavour to real analytic
methods.
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