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1. Introduction

Nonlinear dynamics, more grandly called “nonlin-
ear science” or “chaos theory,” is a rapidly-growing
but still ill-defined field, and in this article I can
only offer my own view of (a small) part of it. With
this in mind, I hope that the reader’s indulgence
will allow me to begin on a personal note.

When I was finishing my doctoral work at the
Institute of Sound and Vibration Research (ISVR)
of Southampton University in 1973 I chanced to
see a poster notifying that a course of lectures
on catastrophe theory would be offered by David
Chillingworth, then a recently-appointed Lecturer
in Mathematics. At that time, at least in the UK,
there were near-impenetrable walls between and
even within engineering, the sciences, and pure and
applied mathematics. It was therefore with some
trepidation that I crossed University road, found

the Maths Department, and sat down near the back
of the classroom, trying to appear as if I knew
where I was. I was soon asking my classmate, David
Rand, what on earth diffeomorphisms, k-jets, and
the implicit function theorem were. This led to our
first joint paper [Holmes & Rand, 1976], but more
critically the lecture course, and the two Davids,
changed my research life. The course would become
a book [Chillingworth, 1976] that was particularly
useful to those wishing to penetrate the arcana of
catastrophes, bifurcations, and chaos, and if the lan-
guage and methods of dynamical systems have now
entered almost every branch of the sciences, it is
largely due to such early propagators of these ideas
from within mathematics, including Jerry Marsden,
John Guckenheimer, Floris Takens and others.
(Contrary to some reports, nonlinear dynamics was
not solely invented by physicists.) I had the good
fortune to meet and begin collaborating with some

∗With apologies to Ludwig Mies van der Rohe and Philip Anderson.
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of these pioneers in the mid 1970’s and I am happy
to dedicate this article accordingly.

At about the same time that such (originally
pure) mathematicians began exporting dynamical
ideas to the sciences, physicists such as Harry
Swinney and Jerry Gollub began appealing to
bifurcation theory and dynamics in interpreting
experimental data [Swinney & Gollub, 1987], and
two remarkable multi-disciplinary meetings took
place at the New York Academy of Science in 1977
and 1979 [Gurel & Rössler, 1979; Helleman, 1980].
The time was ripe to tear down walls. Some thirty
years later we can claim partial success: many of
the walls are lower, and we have built new science
from their fragments. Certainly the EUROMECH
ENOC-05 meeting, to which this issue of IJBC is
devoted, is a local proof of the near (or asymptotic)
nonexistence of walls between nonlinear mechanics
and mathematics in 2005.

In this brief article I sketch key contributions to
the early (≈ 1885–1975) history of dynamical sys-
tems theory, and outline four central themes that
have emerged as it has spread throughout the sci-
ences and engineering since then. I focus on mathe-
matical developments (as noted in the next section,
I believe that the field has coherence only as a part
of mathematics), but emphasize the importance of
applications in motivating and even defining math-
ematical developments. I provide an idiosyncratic,
but perhaps representative, set of references, high-
lighting papers that were influential in determining
central themes (sometimes long after their publica-
tion) and that may be unfamiliar. At appropriate
points I note some more personal reminiscences by
contributors to the field.

This paper is not a tutorial: I shall largely
eschew technical detail and precise statements,
referring the reader to the many textbooks and
monographs. These range in level from introductory
[Hirsch et al., 2004] to advanced [Guckenheimer &
Holmes, 1983; Wiggins, 2003; Kuznetsov, 2003], and
from applied [Strogatz, 1997] to abstract [Arnold,
1983; Katok & Hasselblatt, 1995] in their approach.
This partial list has probably already offended the
authors of numerous other fine books: I apologise to
them, and to the many contributors to the research
literature whose work I am unable to note due to
lack of space. In the mid 1980’s a dynamical sys-
tems bibliography containing 4405 items was pro-
duced by K. Shiraiwa of Nagoya University. Since
then the output must have multiplied at least ten-
fold; indeed, I doubt that a single individual could

google and paste fast enough to keep abreast of the
current literature.

2. The Qualitative Theory of
Dynamical Systems

Before beginning the story I should declare a prej-
udice and in doing so explain the title chosen for
this central section. I do not believe that “chaos
theory” has the status of, say, the quantum or rela-
tivity theories, or that “nonlinear science” is a sci-
ence in the manner of physics, chemistry or biology.
Dynamical systems theory neither addresses spe-
cific phenomena nor proposes particular models of
(parts of) reality; it is, rather, a loosely-related set
of methods for analyzing a broad class of differential
equations and iterated mappings. These comprise
a mathematical theory largely built from natural
developments in analysis, geometry and topology:
areas of mathematics which in turn had their ori-
gins in Newtonian mechanics. With the goal of clas-
sifying dynamical models, the theory’s topological
viewpoint provides a unifying structure for a riot of
detail, but it does not help one formulate models
per se, although knowing the nature of the beasts
in the mathematical forest is certainly useful. More-
over, while it might allow one to prove that mod-
els of the solar system, planetary weather, or the
world economy are chaotic, any conclusions drawn
regarding asteroid impacts, hurricanes or stock-
market crashes will depend on the validity of the
models themselves. Thus, I am not persuaded by
hyperbolic claims of scientific revolution, although
I am delighted by the increasing reach of dynam-
ical systems beyond the mathematical sciences
themselves.

2.1. Some early history: Homoclinic
points and global behavior

The modern theory of dynamical systems derives
from the work of Poincaré on the three-body prob-
lem of celestial mechanics [Poincaré, 1892, 1893,
1899], and primarily from a single, massive and
initially-flawed paper [Poincaré, 1890] which, in
1889, won a prize offered by King Oscar II of
Sweden and Norway. In it Poincaré laid the foun-
dations for the local and global analysis of non-
linear differential equations, including the use of
first return (Poincaré) maps for the study of peri-
odic motions; he defined stable and unstable man-
ifolds, discussed stability issues at length, proved
the (Poincaré) recurrence theorem, and much more.
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Finally, in correcting proofs of the paper, and
without benefit of computer workstations or color
graphics, Poincaré realized that certain differen-
tial equations describing “simple” mechanical sys-
tems with two or more degrees of freedom were
not integrable in the classical sense, that obstruc-
tions to integrability were due to the presence
of “doubly-asymptotic” points, now called homo-
and heteroclinic orbits, and that this had pro-
found implications for the stability of motion. In
December 1889 and January 1890 he created the
perturbative and geometric theory to detect chaos,
and provided the first explicit example of it.
See [Barrow-Green, 1997; Holmes, 1990] for his-
torical and (some) technical details, and [Diacu &
Holmes, 1996] for a broader picture and sketches of
other key contributors to the theory.

Following Poincaré’s work, Hadamard consid-
ered the dynamics of certain geodesic flows, but
the next major thrust was due to G. D. Birkhoff
in the US, who had earlier proved Poincaré’s “last
theorem” [Birkhoff, 1913] regarding fixed points for
annulus maps. Among much else, in a notable book
on two degree-of-freedom Hamiltonian systems that
still bears reading [Birkhoff, 1927], he showed that,
close to any homoclinic point of a two-dimensional
mapping, there is an infinite sequence of periodic
points with periods approaching infinity. Birkhoff
would go on to prove that annulus maps having
points of two distinct periods also contain com-
plex limit sets separating their domains of attrac-
tion [Birkhoff, 1932], thus providing a key clue for
Cartwright and Littlewood in their attempts to
understand the van der Pol equation. But this is
getting ahead in the story of homoclinic points and
their implications, which would not be settled for a
further 33 years.

Before resuming that story I will move con-
tinents again to the Soviet Union, where the
“Andronov school” in Gorki (now again named
Nizhni-Novgorod) introduced the key idea of struc-
tural stability under the name “systèmes grossieres”
(coarse systems) [Andronov & Pontryagin, 1937].
This notion, now a central theme of the theory, asks
what properties are necessary and sufficient for the
qualitative behavior of the flow comprising all solu-
tions of a given ODE to survive a small perturbation
to the vectorfield defining it. Here “survive” implies
that the flows of the original and perturbed system

must be topologically equivalent (homeomorphic).
While subtle technical questions remain on function
space topologies and norms that define “small”
and “equivalent,” this approach launched a grand
project to describe not only structurally stable sys-
tems, but also degenerate or bifurcation points at
which arbitrarily small perturbations can produce
qualitatively different behaviors. The classification
and universal unfoldings of such points provided
for the first time lists of behaviors that one might
expect when studying families of ODEs or maps
depending on one or more (control) parameters. In
the special case of gradient systems (vectorfields
derived from a potential function), this culminated
in René Thom’s catastrophe theory [Thom, 1975],
which is where our story started. But we have got
ahead of ourselves again.

The Andronov work led to detailed studies of
specific nonlinear oscillators, mostly with radio and
electronic applications, summarized in a classic text
[Andronov, Vitt & Khaiken, 1966]. (Vitt’s name
was missing from the title page of the first (1937)
Russian edition, appearing only in the second with
the enigmatic prefatory note that it had been
omitted “by an unfortunate mistake.” In fact the
“mistake” was Vitt’s death in a prison camp in
Kolyma, Siberia in the winter of 1936-7.1) This
book focussed on planar ODEs, starting with con-
servative (Hamiltonian) systems, moving on to dis-
sipative systems and discussing bifurcations of fixed
points and limit cycles, including global (homo-
clinic) bifurcations, and, unlike most of the West-
ern mathematical literature, containing practical
examples.

A more abstract approach to dynamical sys-
tems developed from the mid 1930’s onward
at Moscow University, gaining attention out-
side the USSR via the translation of the 1946
book [Nemytskii & Stepanov, 1960] introduced by
Lefshetz, who had himself published a key text a few
years earlier [Lefschetz, 1957]. It was in [Nemytskii
& Stepanov, 1960] that a strange attractor, in
the form of the solenoid construction, made per-
haps its first textbook appearance. The work of
Anosov, Arnold and Sinai grew out of this “Moscow
school” in the 1950’s and simultaneously Peixoto
generalized the Andronov–Pontryagin results to
flows on two-dimensional manifolds [Peixoto, 1962].
His theorem states that a flow on a compact

1I am indebted to an article by C. Bissell in the Times Higher Educational Supplement of January 28th, 1994 for this
information.
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two-dimensional manifold is structurally stable if
and only if it has a finite number of fixed points and
periodic orbits, all of which are hyperbolic, there are
no orbits connecting saddle points, and the nonwan-
dering set consists of fixed points and periodic orbits
alone.

Stephen Smale brought topological ideas to
these problems in the late 1950’s and began to
generalize to n > 2 dimensions, defining gradient-
like Morse–Smale systems2 and seeking structural
stability results. Among other things he conjec-
tured that a system is structurally stable if and
only if it is Morse–Smale. On hearing of this,
Norman Levinson drew Smale’s attention to a brief,
very dense paper on the periodically-forced van der
Pol equation that had emerged from a remarkable
collaboration between two Cambridge mathemati-
cians motivated by the British effort to develop
radar in the second World War [Cartwright &
Littlewood, 1945]. Levinson had himself worked on
a simplified version [Levinson, 1949], and he sug-
gested that it might provide a counterexample in
the form of a structurally stable ODE with infinitely
many periodic orbits. This led to Smale’s discov-
ery of the horseshoe in 1960, on the Leme beach
of Rio de Janiero, while visiting Peixoto’s Insti-
tute of Pure and Applied Mathematics. The story
has now been told numerous times: in Smale’s own
words [Smale, 1980], in the biography [Batterson,
2000], and in [Diacu & Holmes, 1996]. The con-
tributions of Cartwright and Littlewood are, how-
ever, not as well known: see [Cartwright, 1972;
McMurran & Tattersall, 1996]. Mary Cartwright
gave her paper at a conference in Southampton dur-
ing my second year there; had I read the appropriate
notices, I would have learned of this in time to hear
it. Perhaps we should all take more time to explore
our environments,

Smale’s work appeared after a considerable
delay and in an obscure publication [Smale, 1965],
and became widely known only after a survey arti-
cle was published [Smale, 1967], but that article,
now a classic, would launch a thousand PhD the-
ses, including that of at least one of the dedicatees
of this paper. Jürgen Moser subsequently gave a
beautiful exposition of the horseshoe [Moser, 1973],
providing explicitly-testable criteria to prove its
presence in two-dimensional maps and explaining
clearly how the presence of dense orbits precludes

the existence of additional integrals of motion.
He thereby showed that the problem for which
King Oscar’s prize was awarded was in essence
insoluble. A nice pictorial account of the horseshoe
has recently appeared [Shub, 2005].

It is interesting to point out a footnote in
[Cartwright & Littlewood, 1945] which remarks
that the authors’ “faith in [their] results was at one
time sustained only by the experimental evidence
that stable subharmonics of two distinct orders
did occur,” referring to [van der Pol & van der
Mark, 1927] and (implicitly) to [Birkhoff, 1932].
Smale was almost certainly ignorant of this work
and of [Poincaré, 1890], but in proving that diffeo-
morphisms containing transverse homoclinic points
possess nearby hyperbolic invariant sets on which
the dynamics is conjugate to a shift on a finite
alphabet of symbols, he completed the story that
Poincaré had begun over seventy years earlier, con-
necting ODEs and deterministic maps with prob-
abilistic Markov processes and showing that, in a
deep sense, their orbits are indistinguishable. This
is now referred to as the Smale–Birkhoff homo-
clinic theorem [Guckenheimer & Holmes, 1983]. The
full story of the van der Pol equation remains to
be told, although significant progress was made on
the piecewise-linear Levinson version [Levi, 1981],
and the existence of strange attractors and invari-
ant measures has been proved for related prob-
lems [Wang & Young, 2002]. Also, new results
on the original cubic equation have recently been
obtained using multiple time scale analysis and
unfolding methods [Guckenheimer et al., 2002; Bold
et al., 2003].

A final trip back to the USSR will close this
partial early history. Most of the advances in
structural stability and bifurcation theory, includ-
ing those of Peixoto and Smale, were made from
a topological perspective. The classical analytical
tools of perturbation theory had not been used
extensively in dynamical systems, apart from the
averaging theory of Krylov and Bogoliubov, as
generalized by [Hale, 1969] and others. However,
in the early 1960’s in Moscow regular pertuba-
tion methods were used to prove the existence of
transverse homoclinic orbits to periodic motions in
periodically-forced oscillators [Melnikov, 1963] and
in two- and three degree-of-freedom Hamiltonian
systems [Arnold, 1964]. This provided the final link

2A Morse–Smale system has a finite set of fixed points and periodic orbits, all of which are hyperbolic and all of whose stable
and unstable manifolds intersect transversely, but no other nonwandering or recurrent points.
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in a chain of methods and results that allows one to
prove the existence of chaotic invariant sets in spe-
cific ODEs. Since then, “Melnikov’s method” has
been significantly extended, to multi- and even infi-
nite dimensional systems (PDEs) [Wiggins, 1988;
Holmes & Marsden, 1981], and related ideas have
been used to approximate Poincaré return maps
near homoclinic orbits to equilibria and find similar
chaotic sets [Silnikov, 1965]. In a pleasing return to
the origins of Poincaré’s work, it has been suggested
that heteroclinic connections among unstable n-
body orbits might provide routes for low energy
space missions [Koon et al., 2000].

Some readers may be wondering how the
famous discovery of chaos in a three-dimensional
ODE modeling Rayleigh–Bénard convection of
[Lorenz, 1963] fits into this story. In a strict sense,
it does not, although in presenting his remarkable
discovery of sensitive dependence on initial con-
ditions Lorenz appealed to Birkhoff’s work and,
thanks to a perceptive reviewer, that of [Nemytskii
& Stepanov, 1960]. But it was not until 1971,
when Lorenz heard Ruelle speak on the proposal
of [Ruelle & Takens, 1970] that structurally sta-
ble strange attractors and the solenoid in particular
might describe turbulence, that connections began
to be made. See [Lorenz, 1993] for the full story and
a nice introduction to chaos, and, for a view from
the mathematical side [Ruelle, 1991].

In the period between Smale’s construction
of the horseshoe and its publication, chaos was
independently discovered by a second scientist. In
1960–64 Yoshisuke Ueda was a graduate student in
Electrical Engineering at Kyoto University work-
ing on a periodically-forced mixture of the van der
Pol and Düffing equations. While using an analog
computer to compare perturbative approximations
of periodic solutions with exact ones, he discovered
motions that were neither periodic nor quasiperi-
odic. However, his advisor, C. Hayashi, was scep-
tical and, while these solutions were mentioned as
“complicated phenomena,” in Ueda’s PhD thesis,
they did not appear in journal form until consider-
ably later [Hayashi et al., 1970; Ueda et al., 1973].
These papers include the first rather accurate pic-
tures of homoclinic tangles in specific ODEs. I am
personally indebted to Professor Ueda for sending
me additional computations of stable and unsta-
ble manifolds for Düffing’s equation in the late
1970’s, while I was trying to check estimates for
the appearance of homoclinic tangencies derived
by Melnikov’s method; versions of these figures

subsequently found their way into [Guckenheimer
& Holmes, 1983]. For more on Ueda’s work, with
reprints of key papers including those cited above,
see [Ueda, 2001].

2.2. Some more recent history:
Unfolding local behavior

Poincaré’s recognition that stable and unstable
invariant manifolds could “organize” dynamical
behavior had important implications for the study
of local behavior, especially near degenerate equi-
librium points. The Hartman–Grobman theorem
justifies studying local solutions near hyperbolic
equilibria and periodic orbits via linearized flows
and return maps, but if one or more eigenvalues
have zero real part (for an ODE) or unit modulus
(for a map), simple examples such as

ẋ1 = αx3
1, ẋ2 = −x2 + O(|xj |2) (1)

show that the behavior of a nonlinear system can
differ qualitatively from that of its linearization
for arbitrarily small |xj|. The key idea that in
studying such equilibria one need only examine
higher order terms in the “degenerate” directions
by restricting to an invariant center manifold
tangent to the eigenspaces, was arrived at near-
simultaneously [Pliss, 1964; Kelley, 1967], and the
whole framework of invariant manifolds was there-
after generalized to include invariant sets other
than fixed points [Hirsch et al., 1977]. A related
theory was developed independently in [Fenichel,
1971], and this has now been extended and applied
to singularly-perturbed (fast-slow) systems [Jones,
1994; Guckenheimer, 2002]. I first learned of the
practical power of these ideas from the mono-
graph [Carr, 1981], which showed how to iteratively
compute Taylor series approximations to local cen-
ter manifolds. The finite (albeit often lengthy)
computation necessary to achieve this is essen-
tially a coordinate change that straightens the sta-
ble, unstable and center manifolds and decouples
the hyperbolic (exponentially stable and unstable)
modes.

Center manifold theory has also been extended
to stochastic ODEs [Boxler, 1991; Arnold, 1998]
and inertial manifolds have been shown to exist
for certain infinite-dimensional evolution equations
[Constantin et al., 1989; Temam, 1997]. These are
essentially global center-unstable manifolds with
a finite set of weakly stable modes. This exten-
sive body of invariant manifold theory provides a
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rigorous foundation for such physically-based
notions as the “slaving principle,” which posits that
a (possibly infinite) set of modes in an extended sys-
tem is driven, or determined, by a finite (and often
small) subset of them [Haken, 1983].

In determining the behavior near a degenerate
equilibrium, even after reduction to a d-dimensional
center manifold, one must ostensibly consider the
coefficients of every term in a vector-valued Taylor
series up to, say, the third order: a matter of 18 for
d = 2 and 54 for d = 3! However, just as center
manifolds reduce the number of state variables that
must be considered, normal form theory reduces the
number of coefficients. A normal form is a nonlin-
ear version of the similarity transformations that
put matrices into Jordan or diagonal form: it retains
key properties of the object in question (the spec-
trum of eigenvalues and their algebraic and geomet-
ric multiplicities, in the matrix case) while shedding
less important ones (the original coordinate repre-
sentation). Thus, in the n × n case one drops from
n2 matrix coefficients to n. The normal form theory
of dynamical systems provides a systematic frame-
work in which to perform near-identity nonlinear
coordinate changes that successively remove “non-
resonant” terms that do not influence the qualita-
tive behavior at each order. These ideas originally
arose in celestial mechanics: a field long-interested
in clever coordinate choices.

However, it soon became clear that normal
forms offer far more than simplification of the func-
tions defining degenerate vectorfields; they also
allow the introduction of “minimal” perturbations
that unfold the degeneracy, just as one might per-
turb a matrix to split a real eigenvalue of multiplic-
ity two into a pair of distinct real or complex ones
by adding a single new parameter. The notion of the
codimension of a degenerate singularity — roughly
the number of parameters required to reveal all
topologically-distinct phase portraits that pertur-
bations can elicit — had been used in [Sotomayor,
1973] and the generic codimension-one local bifur-
cations — the saddle-node and Hopf — were well
known. (The n-dimensional generalization of the
planar Hopf bifucation had been analyzed years
earlier [Hopf, 1942]: see [Marsden & McCracken,
1976], which contains a translation of and commen-
tary on Hopf’s paper.) At around the same time
Arnold made important contributions to unfolding
theory [Arnold, 1972].

Shortly thereafter the first unfoldings of a codi-
mension two singularity, the double-zero eigenvalue,

appeared [Takens, 1974; Bogdanov, 1975]. (In fact it
was the chance discovery of Takens’ duplicated set
of lecture notes from Utrecht in the ISVR library
that led to my second paper in dynamical sys-
tems [Holmes & Rand, 1978].) Actually Takens did
not only unfold the degenerate fixed point of the
vectorfield and find branches of Hopf, homoclinic
and saddle-node bifurcations emanating from it (as
Bogdanov did independently at around the same
time), he also showed that the time-1 flow maps of
these vectorfields approximated the Poincaré maps
for periodically-forced nonlinear oscillators having
fixed points with eigenvalue one and multiplicity
two, and he argued on generic grounds and by
reference to [Smale, 1967] that near the homo-
clinic bifurcation curve one would expect transverse
homoclinic points and chaos for the maps. He was
probably unaware that Ueda had already described
examples of this [Ueda et al., 1973].

In the past 30 years a rather complete analy-
sis of local bifurcations of codimension two has been
carried out (see e.g. [Guckenheimer & Holmes, 1983;
Kuznetsov, 2003]), and unfoldings in constrained
contexts including Hamiltonian vector fields [van
der Meer, 1985] and systems equivariant under
symmetry groups [Golubitsky & Schaeffer, 1985;
Golubitsky et al., 1988] have been studied.

2.3. Four central themes

A number of common themes have emerged in the
study on nonlinear dynamical systems. Here I note
four; readers can probably supply additional ones.

2.3.1. Dimension reduction

I start with an observation that explains my
choice of subtitle. I have already noted that the
reduction to center, center-unstable and inertial
manifolds affords a vast conceptual simplification,
and, coupled with effective computational meth-
ods (symbolic manipulation and computer algebra),
expansion of analytical and predictive power. More
globally, the topological equivalence between orbits
of chaotic hyperbolic sets and subshifts of finite
type effectively reduces the study of a continuum
of solutions to a combinatorial problem involving
sequences drawn from a finite alphabet of sym-
bols. Less is more! However, even for codimension
two bifurcations, unfolding theory remains incom-
plete due partly to the presence of homoclinic tan-
gles and persistent nontransverse intersections or
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wild hyperbolic sets [Palis & Takens, 1993]. More is
different!

2.3.2. Judicious linearization

Stability of fixed points and periodic orbits in non-
linear systems is typically proven or disproven by
studying a linearized system and appealing to the
Hartman–Grobman theorem. But the local theory,
in which one uses the fact that the linearized flow or
mapping dominates the dynamics near hyperbolic
invariant sets, extends to the study of global behav-
ior. Smale’s major insight in his construction of the
horseshoe (as clearly revealed by [Moser, 1973] was
that, restricted to the invariant set , the horseshoe
mapping is a perturbation of a linear map. This
allows the proof of stable and unstable manifolds
for the entire set at one fell swoop, not just for
fixed points or periodic orbits within it, and also
yields structural stability. In a related manner, in
studying homoclinic bifurcations, one uses the lin-
earized flow near a hyperbolic saddle to provide an
explicit estimate of a local flow map, combined with
an affine approximation to the finite-time flow map
that returns orbits to the saddle’s neighborhood,
to estimate the full return map [Silnikov, 1965;
Guckenheimer & Holmes, 1983].

2.3.3. Good coordinates

The normal form theorem provides a reduction in
complexity near a fixed point, but global coordi-
nate changes were introduced earlier, in the form
of action-angle variables and Hamilton–Jacobi (HJ)
theory in classical mechanics [Goldstein, 1980]. An
n degree-of-freedom Hamiltonian system possessing
n independent constants of motion is completely
integrable and the n configuration and conjugate
momentum variables can in general be transformed
into action-angle coordinates (Ij , θj) so that the
actions Ij are conserved and the Hamiltonian takes
the form H(I1, . . . , In). Hamilton’s equations are
then trivially integrable:

İj = 0 ⇒ Ij(t) ≡ Ij(0).

θ̇j =
∂H

∂Ij
(I1, . . . , In) ⇒ θj(t) = θj(0) + Ω(I)t.

(2)

These coordinates make the topological structure of
phase space clear: it is filled with an n-parameter
family of invariant tori, on each of which the flow is
quasiperiodic. However, finding the transformation
that puts the system in these coordinates is far from

simple, even if the required set of integrals can be
found, for the HJ equation is, in general, a nonlin-
ear PDE. (The transformation yielding the form (2)
may not apply globally — singular submanifolds,
the stable and unstable manifolds of saddle type
fixed points, periodic orbits and invariant tori —
may divide the phase space into open sets within
which different transformations are necessary. The
simple pendulum, with its distinct classes of libra-
tion (oscillation) and rotation solutions divided by
a saddle separatrix provides the simplest example.)

Since solutions of the HJ equation are hard to
come by, most textbooks restrict themselves to lin-
ear systems, but in the case of weakly-nonlinear
or otherwise near-integrable systems, perturbation
methods based on Hamilton–Jacobi theory, couched
in the language of Lie transforms, can be used
to generate approximate integrals [Lichtenberg &
Lieberman, 1983]. These provide formal approxi-
mations to solutions, and can usefully reveal global
solution structures. It was in essence this method
that Poincaré was following and extending in his
1890 memoir. As we have seen, he ended by exhibit-
ing a two degree-of-freedom system that is non-
integrable, and for which series solutions to the
HJ equation, or for coordinate transformations to
action-angle variables, diverge.

The opposite case, that series solutions con-
verge for certain initial conditions, is the subject
of the famous Kolmogorov–Arnold–Moser (KAM)
theorem, which proves that a metrically-large set
of invariant tori survive for sufficiently small per-
turbations of integrable systems [Arnold, 1978;
Gallavotti, 1983]. This was first announced at
the International Congress of Mathematicians in
1954 [Kolmogorov, 1957], but the full proof was
not published for some time, and improved ver-
sions and generalizations are still appearing. The
surviving tori occupy “thick” Cantor sets, and
are separated by chaotic zones in which (at least
generically) transverse heteroclinic cycles to lower-
dimensional hyperbolic (saddle type) tori exist. In
the three-dimensional constant energy manifolds of
two degree-of-freedom systems, the invariant tori
separate regions of phase space, preventing solu-
tions from traveling far from their initial action
values (it was such a result that Poincaré incor-
rectly claimed in the first version of [Poincaré,
1890]). However, for n ≥ 3-degrees-of-freedom, the
n-tori do not separate the 2n−1-dimensional energy
manifolds into disjoint sets, and solutions can dif-
fuse throughout phase space, as first realized by
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[Arnold, 1964]. Again, see [Diacu & Holmes, 1996]
for the history.

2.3.4. Structural stability and generic
properties

I end this section with a plea for appreciation
of the abstract viewpoint adopted by Smale and
his students. While applied scientists in general,
and applied mathematicians in particular, are
faced with specific families of differential equations
derived from the details of the phenomena they
study, the abstract questions of which classes of
systems are structurally stable, and which fam-
ilies exhibit generic bifurcations are nonetheless
relevant. Not only do answers to them provide a
unifying setting in which to observe and deduce
relationships among models derived in different
fields, or describing quite different phenomena, but
they provide classifications of typical properties and
behaviors, and thus are especially useful in model
building. Data is inevitably noisy and imprecise,
and if a model or family of models is not robust
under small perturbations, then its value is surely
questionable. Of course, in appealing to these ideas
one must first determine the appropriate spaces of
systems (conservative, dissipative, symmetric, etc.),
and whether the relevant notion of genericity is
topological (open dense sets) or metrical (sets of
full measure), since these do not coincide.

3. Some More Recent Applications
and Extensions of the Theory

I now remark briefly on some extensions of dynami-
cal systems methods, and on ideas from other areas
of mathematics and science that have influenced
and interacted with dynamical systems theory.

3.1. Infinite-dimensional evolution
equations

I have already mentioned the extension of invariant
manifold methods to PDEs [Constantin et al., 1989;
Temam, 1997]. Local bifurcations of other evolu-
tion equations, including differential delay equa-
tions, have also been studied by center manifold and
normal form methods [Faria & Magalhães, 1995].
Delay equations arise in numerous areas of mechan-
ics, including control theory (due to sensor, pro-
cessing and actuator delays), and in milling and
other machining processes in which a tool follows

its previous path cyclically. For a recent example
involving drilling, see [Campbell & Stone, 2004].
Machining models in which contacts between tool
and workpiece are intermittent also give rise to
hybrid dynamical systems [Szalai et al., 2004].

3.2. Completely integrable partial
differential equations

The idea of globally-defined transformations that
yield “good” coordinates was significantly extended
to nonlinear wave equations by the discovery of
completely integrable PDEs, starting in the West
with work on solitons in the Korteweg–deVries
(KdV) equation [Gardner et al., 1967]. The inverse
scattering transform provides a generalization of
action-angle variables in the form of the Lax opera-
tor, whose spectrum of eigenvalues, invariant under
the flow of the PDE, plays the role of the conserved
actions in the classical theory. One finds families of
invariant tori and a beautiful topological descrip-
tion of the infinite-dimensional phase space ensues.
For an introduction, see [Drazin & Johnson, 1989].

Kruskal’s work on the KdV equation was moti-
vated by earlier numerical studies of anharmonic
oscillator chains [Fermi et al., 1955] using the Los
Alamos computer MANIAC, which had indicated
close quasiperiodic returns to initial data rather
than an ergodic mixing of all the modes. In spite
of Truesdell’s (justified, albeit harsh) criticism of
the authors’ confusions regarding continuum lim-
its and their evident ignorance of earlier analyt-
ical work and of the importance of shock waves
[Truesdell, 1984], this work motivated at least part
of the integrable PDE movement. Good mathemat-
ics, and good science, can be stimulated by ques-
tionable or even flawed work.

3.3. Low dimensional models of
turbulence

I now turn to an opposite sort of limit from
integrable PDEs: highly dissipative systems whose
behavior is governed by (relatively) few modes.
In turbulence a lot of things happen, but not
everything: many fluid flows of practical and
technological importance organize themselves into
coherent structures: large scale concentrations of
vorticity or shear of which hurricane cloud patterns
in satellite weather maps are a well-known example.
In [Lumley, 1967] it was suggested that principal
components analysis (PCA) or the proper orthogo-
nal (Karhunen–Loève) decomposition (POD) might
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be used to provide unbiased descriptions of such
coherent structures. Briefly, one derives, from an
ensemble of spatial flow observations or CFD sim-
ulations, an ordered subset of mutually orthogonal
empirical eigenfunctions that are optimal in that
finite linear combinations of them capture a greater
fraction of kinetic energy (L2 norm) than any other
linear representation of the same order. PCA in var-
ious incarnations had been used extensively in the
compression, analysis and presentation of data, but
it was only in the mid 1980’s that it was combined
with Galerkin projection into subspaces spanned
by empirical eigenfunctions, to yield low dimen-
sional (ODE) truncations of PDEs [Sirovich, 1987;
Aubry et al., 1988]. For a (relatively) recent intro-
ductory survey see [Holmes et al., 1996], and for a
deeper approach to fluid mechanics from a dynam-
ical viewpoint, [Gallavotti, 2002].

The work of [Aubry et al., 1988] showed that
attracting heteroclinic cycles, rendered structurally
stable due to the translation and reflection symme-
tries of the Navier–Stokes equations over a flat plate
(or in a circular pipe), might play an important
role in describing the burst-sweep regeneration cycle
of boundary layer turbulence. Subsequent stud-
ies with John Guckenheimer (e.g. [Guckenheimer
& Holmes, 1988; Armbruster et al., 1988]) of
such O(2)-equivariant heteroclinic cycles, periodic-
and quasi-periodic orbits and their bifurcations
emphasized the importance of working in the group-
theoretic [Golubitsky & Schaeffer, 1985] frame-
work for both POD reduction [Aubry et al., 1988;
Smith et al., 2005b] and analysis of the resulting
dynamical systems [Holmes et al., 1996]. However,
even when fluid flows are energetically dominated
by as few as two or three modes, it has become
clear that many more modes must be included to
reproduce the correct dynamics and modal energy
budgets in general [Gibson, 2002]. Nonetheless,
careful modeling of energy transfer to neglected
modes, and inclusion of key modal interactions, can
yield O(10)-dimensional models of flows in small
domains that reproduce key behaviors, and help
explain them [Smith et al., 2005a].

3.4. Stochastic differential equations

The study of stochastic models originated in prob-
ability theory [Gardiner, 1985] and developed inde-
pendently of dynamical systems theory, which
focused on deterministic ODEs and mappings,
although, as noted earlier, the ergodic theory of

iterated maps has played an important role in
the abstract theory [Katok & Hasselblatt, 1995].
Indeed, the Sinai–Ruelle–Bowen (SRB) invariant
measure is a central characteristic of a strange
attractor [Ruelle, 1989]. But it was only with
the work of a group around Ludwig Arnold that
the ideas of invariant manifolds, bifurcations, and
unfolding theory began to impact the study of
stochastic ODEs (e.g. [Boxler, 1991]). The differ-
ence in viewpoint is nicely expressed in the two
books [Arnold, 1974, 1998]. Thus far, most of the
applications have been to low dimensional prob-
lems with one or two degrees-of-freedom (see [Sri
Namachchivaya & Ramakrishnan, 2003] for an
example that involves symmetry groups and a
Hamiltonian limit), but it will be important to
connect these with mean field and other analyses
of many degree-of-freedom systems done from the
viewpoint of statistical physics.

3.5. Numerically-assisted proofs
and integration algorithms

Shortly after he learned of the Lorenz equations in
the mid 1970’s R. F. (Bob) Williams proposed how
a numerically-assisted proof of the attractor might
be given. Although this did not come for almost
twenty years [Mischaikow & Mrozek, 1995; Hastings
& Troy, 1996; Tucker, 1998], the use of comput-
ers in rigorous argument, as well as illustration
and simulation, is becoming more common. Perhaps
the most famous example in dynamical systems is
Lanford’s proof of the deductions of [Feigenbaum,
1980] on period-doubling sequences [Lanford, 1982],
but now, for example, sophisticated algorithms are
being developed to implement C. Conley’s index
theory [Kaczynski et al., 2004].

The original algorithms of Doedel and Keller
for following branches of equilibria and detect-
ing local bifurcations have been significantly
extended [Doedel et al., 1997] and algorithms for the
computation of multidimensional invariant mani-
folds, including invariant tori, are being developed,
e.g. [Krauskopf & Osinga, 1999]. Guckenheimer and
his students have extended their DsTool software
to hybrid systems [Back et al., 1993], and more
recently have applied automatic differentiation and
computer algebra to revive classical power series
approximations to ODE solutions [Phipps, 2003].
Their algorithms are more economical and more
accurate than direct integrations, especially in the
case of stiff, singularly-perturbed systems.
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3.6. Nonlinear mechanics of
solids and structures

Much of the ENOC-05 conference concerns solid
and structural mechanics, and so I will mention
only one of the instances of many applica-
tions. Advances in both theory and numerical
methods to compute homoclinic and heteroclinic
orbits have been used to study buckled states
of long, slender rods, building on Kirchhoff’s
recognition that, in body coordinates, the equi-
librium equations for an inextensible rod are
identical to the dynamical equations of a rigid
body [Love, 1927]. There is a substantial literature
on “chaotic buckled states,” and a nice recent exam-
ple applies these ideas to “kinks” in the tendrils
that support climbing plants [McMillen & Goriely,
2002].

3.7. Nonlinear dynamics in biology

It is becoming a commonplace that, if the 20th
was the century of physics, the 21st will be the
century of biology, and, more specifically, mathe-
matical biology. In fact it is over 50 years since
Hodgkin and Huxley proposed their model for the
generation and propagation of an action potential:
the neural “spike” [Hodgkin & Huxley, 1952]. This
has led to a substantial literature in mathemati-
cal neuroscience, mostly focussing on the dynamics
and bifurcations of single cells subject to externally-
imposed currents and small networks such as those
of central pattern generators. All the methods of
dynamical systems theory, and singular and reg-
ular perturbation theory, have been brought to
bear on the nonlinear ionic current models of the
type introduced in [Hodgkin & Huxley, 1952], and
various simplifications to linear integrate, fire and
reset models, and phase models have been proposed
[Hoppensteadt & Izhikevich, 1997]. A recent appli-
cation of phase response curves to the study of the
response to stimuli of a brainstem area involved
in cortical neurotransmitter release suggests that
these methods may also assist in the development
of brain science [Brown et al., 2004], but a large gap
remains to be filled between the relatively fine scales
of single cells and small circuits, and models of
brain areas involved in decision-making and motor
planning. The recent work of [Cai et al., 2004a;
Cai et al., 2004b] on the visual cortex — a rather
well-characterized region — shows promise for the
development of general kinetic and averaging theo-
ries that might preserve sufficient low level detail in

reduced higher level models of brain functions such
as decision-making.

I will not comment on applications in genomics
and molecular biology (areas about which I know
very little), but will close by noting that dynamical
systems theory, with its natural relations to classi-
cal mechanics and control theory, might also play an
central role in another project in which one wants to
understand how neural spikes give rise to behavior:
animal locomotion [Dickinson et al., 2000]. Ending,
as I began, on a personal note, I draw the reader’s
attention to a substantial forthcoming review arti-
cle [Holmes et al., 2006].

4. Epilogue, and Part of What
Is Missing

This article surveys a large field, and I have been
able to include only a few topics and examples,
mentioning some of them, such as hybrid dynam-
ical systems, only in passing. Much of importance
is missing or slighted: nonlinear methods for time
series data analysis and phase space reconstruction;
experimental techniques informed by nonlinear
dynamics; control of chaos and more general rela-
tions to control theory; hybrid and nonsmooth
dynamical systems; numerical methods for bifur-
cation and computation of invariant manifolds;
asymptotic methods, and many areas of application.
Fortunately, the other plenary lectures and the min-
isymposia at ENOC-05 cover a substantial number
of these topics. I apologise to the other speakers and
organizers for not noting their work in areas that I
know, and thank them in advance for informing me
on much more of which I am ignorant.
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