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Wall-Bounded12. Wall-Bounded Flows

Turbulent wall-bounded flows (i. e., bound-
ary layer, pipe and channel flows) present
additional measurement challenges rela-
tive to those in, say, free shear turbulent
flows or grid turbulence. The physical pres-
ence of the wall and the limitations and
influences it presents on the implementa-
tion of sensing technologies creates some
of these challenges. Other, often more-
subtle issues, however, relate to the effect
that the wall has on the inherent flow dy-
namics. Such effects are reflected in the
steep mean velocity gradient(s) in the vicin-
ity of the surface, as well as the length
and time scales of the turbulence local to
the near-wall region. Regarding the lat-
ter, primary challenges are associated with
the high frequencies and small scales of
near-wall turbulence relative to free shear
flows.

In previous Chaps. (5.2, 5.3 and 5.5.3),
relatively broad discussions were provided re-
garding the requirements and considerations
for accurate measurements of both mean and
fluctuating quantities in turbulent flows. The
present chapter constitutes an extension of
these more-generic considerations relative to
the specific case of wall-bounded turbulent
flows. For the purposes of providing a back-
ground context, the initial subsection below
presents a brief overview of concepts and con-
siderations specific to wall flows. Owing to
its central role in the study of the turbulent
wall flows, the next subsection addresses the
measurement of the wall shear stress for ca-
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nonical boundary layer, pipe and channel flows.
Considerations relative to transitional and non-
canonical wall flows are presented in subsequent
subsections.

12.1 Introductory Concepts

Prior to detailed discussions relative to specific measure-
ment objectives, it is useful to provide a brief overview
of background information relevant to the experimental
study of wall-bounded turbulence.

12.1.1 Governing Equations

This subsection provides a brief presentation and dis-
cussion of the governing equations for the canonical
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872 Part C Specific Experimental Environments and Techniques

turbulent boundary layer, pipe, channel flows. In each
case, the development will be for incompressible, con-
stant property flows, governed by the Reynolds averaged
Navier–Stokes (RANS) equations presented previously
in Sect. 10.1, and for convenience repeated here in Carte-
sian form for a statistically stationary flow without body
forces
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In the above equations U , V and W are the mean velocity
components in the x, y and z directions, u, v and w are
the corresponding fluctuating velocity components, an
overbar represents time averaging, ρ is the mass density
and µ is the dynamic viscosity. Further discussion of the
developments leading to (12.1), (12.2), (12.3) and (12.4)
is given in Sect. 10.1.1.

Flat-Plate Boundary Layer
Two-dimensional boundary layer flow in the (x, y) plane
is considered. The flow is generated by a constant
free stream velocity, U∞, flowing over a smooth flat
plate located in the y = 0 plane of semi-infinite extent
(x ≥ 0). As is conventional the boundary layer thick-
ness, δ = δ(x), is taken to be the y position where
U(y) = 0.99U∞. Under these constraints and to the lead-
ing order of boundary layer approximations [12.1–3] the
RANS equations reduce to,
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Equation (12.5) indicates that the time rate of change of
mean axial momentum is determined by the sum of the
viscous and Reynolds stress gradients. Unlike the lami-
nar case, (12.6) indicates that the wall normal pressure
gradient is nonzero, and is determined by the gradi-
ent of the Reynolds normal stress, v2. With regard to
(12.5), it is also relevant to note that additional stream-
wise gradient terms of the axial and wall normal velocity
variances can be significant, especially under adverse
pressure gradient conditions [12.2].

Fully Developed Channel and Pipe Flows
Fluid-dynamically fully developed flow in the (x, y)
plane between horizontal, effectively infinite, parallel
plates is considered. Flow in the x direction is gener-
ated by a constant pressure gradient, dP/dx < 0. The
lower plate is located at y = 0, and the spacing between
the plates is 2δ. Under these constraints, all of the terms
in (12.4) are identically zero and the mean differential
force balance equations for the axial and wall-normal
components reduce to (e.g., [12.1–3]),

ρ
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+µ

d2U
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, (12.8)
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Under transformation from a cylindrical to a Cartesian
coordinate system, (12.8) and (12.9) can also be shown
to hold for fully developed flow in a pipe [12.2]. (A par-
ticularly thorough derivation of this is also given in the
dissertation by Sahay [12.4].) In this case, the origin is
transferred from the pipe centerline to the wall, and the
pipe radius R corresponds to δ. Similar to the boundary
layer equations, the axial mean flow in pipes and chan-
nels is governed by a three term equation, with the mean
advection term being replaced by the mean pressure
gradient in the case of pipes and channels. In all cases,
the wall-normal pressure gradient is determined by the
wall-normal gradient of the vertical velocity variance.

12.1.2 Brief Overview of Wall Flow Structure

Physical models of the mean structure of turbulent wall
flows have emerged from the extensive body of re-
search conducted over the past century. In what follows,
two views of wall flow structure are briefly presented.
Broadly speaking, the first comes about from considera-
tion of the observed properties of the mean axial velocity
profile, in concert with interpretations derived from ob-
servations of the relative magnitudes of the Reynolds
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Fig. 12.1 Inner-normalized mean profiles in turbulent
boundary layers and the associated layer structure: (A) vis-
cous sublayer; (B) buffer layer; (C) logarithmic layer;
(D) wake layer (Data from [12.5])
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Fig. 12.2 Inner-normalized mean viscous and Reynolds
shear stress profiles in turbulent channel flow δ+ = 590.
(Data from [12.6])

and viscous stresses appearing in (12.5) and (12.8). The
second, more recently developed interpretation, comes
about by directly considering the relative magnitudes of
the terms in these equations.

The prevalent view of the mean structure of turbu-
lent wall flows [12.2, 3, 8] is largely derived from the
observed properties of the mean velocity profile, along
with the relative behaviors of the viscous and Reynolds
stresses. Regarding the former, Fig. 12.1 shows charac-
teristic turbulent boundary layer mean velocity profile
data. In this figure the profiles have been made non-
dimensional using the so-called inner variables, uτ and
ν, where uτ = √

τw/ρ is termed the friction veloc-
ity, and ν is the kinematic viscosity. The predominant
shorthand convention denotes inner variables with a su-
perscript plus. Thus, the inner normalized wall-normal
distance is denoted y+ = yuτ/ν. Regarding the latter,
Fig. 12.2 reveals the relative magnitudes of the viscous
and Reynolds stresses in turbulent channel flow. These

data reveal that the magnitude of uv+ is zero at the wall,
but rapidly rises to a value that is O(1) by y+ � 30. Con-
versely, dU+/dy+ equals 1.0 at y+ = 0, but diminishes
to a quantity much less than O(1) by y+ � 30. Behav-
iors such as these have led to the four-layer structure
depicted in Fig. 12.1 and are connected to the features
of the mean profile. As indicated, the viscous sublayer
(layer A) extends to about y+ = 5, the buffer layer (B)
nominally resides between 5 < y+ < 30, the logarith-
mic layer (C) extends from near y+ = 30 to y/δ � 0.2,
and the wake layer (D) extends from the outer edge of
the logarithmic layer to the outer edge of the boundary
layer, 0.2 ≤ y/δ ≤ 1.

An alternative layer structure [12.7] may be derived
through consideration of the relative magnitudes of the
terms in the mean momentum equation. In this case, the
layer structure directly reflects the dominant dynami-
cal effects according to the mean differential statement
of Newton’s second law. One way to reveal this layer
structure is by examining the ratio of the viscous stress
gradient to Reynolds stress gradient terms in (12.5) and
(12.8). Figure 12.3 schematically depicts the resulting
layer structure at a fixed Reynolds number. The layer
closest to the wall (layer I) is characterized by a nominal
balance between mean advection and the viscous stress
gradient (pressure gradient and viscous stress gradient
in a pipe or channel). To a very good approximation,
the adjacent layer (II) is represented by a balance be-
tween the Reynolds stress gradient (turbulent inertia)
and viscous stress gradient. Across layer III (except-
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Fig. 12.3 Schematic of the structure of the boundary layer
as derived from consideration of the mean momentum
balance: (I) viscous stress gradient/mean advection bal-
ance layer; (II) viscous/Reynolds stress gradient balance
layer; (III) Reynolds stress gradient/viscous stress gradi-
ent/mean advection balance layer; (IV) Reynolds stress
gradient/mean advection balance layer (after [12.7])
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874 Part C Specific Experimental Environments and Techniques

ing in the immediate vicinity of the peak position of
the Reynolds stress) all three terms in the mean mo-
mentum balance are of the same order, while in layer
IV the mean dynamics are well represented by a bal-
ance between the Reynolds stress gradient and mean
advection (or pressure gradient in a channel). The inner
normalized layer widths depicted in Fig. 12.3 scale dif-
ferently with Reynolds number, say δ+ = uτ δ/ν, than
those in Fig. 12.1. For example, from the layer structure
of Fig. 12.3 one surmises that the mean effect of viscous
forces remains of dominant order much farther from the
wall than indicated by the layer structure of Fig. 12.1.

12.1.3 Scaling Ideas and Parameters

Under either layer structure presented above, it is appar-
ent that the variation of turbulent wall flow behavior with
Reynolds number is characterized by a variety of scal-
ing parameters. Relative to the theory associated with
the layer structure depicted in Fig. 12.1 two indepen-
dent sets of scales are required: the so-called inner and
outer scales. Relative to the theory associated with the
layer structure depicted in Fig. 12.3, there are three in-
terdependent scales. In this case given any two the third
may be derived. As introduced above, inner scales (e.g.,
length, time, velocity) are dimensionally constructed
using the friction velocity and kinematic viscosity uτ

and ν, respectively. Similarly, outer scaled variables are
constructed using a measure of the overall layer thick-
ness, i. e., δ, δ∗ or θ (disturbance, displacement and
momentum-deficit thicknesses, respectively [12.9]), and
the free stream velocity U∞ or the deviation from the
free stream velocity, (U∞ −U). (Note that in a channel
flow, the maximum velocity replaces U∞.) Nominally,
the inner scales are appropriate for the characterization
of the flow physics near the surface. Alternatively, outer
parameters are appropriate for scaling the bulk or large
scale properties of the motion centered away from the
wall. In connection with this, a primary attribute of
any theory of wall turbulence involves describing, as
a function of Reynolds number, how the inner scaling
behaviors near the wall merge with the outer scalings ap-
propriate away from the wall. Under the theory relating
to the layer structure of Fig. 12.1, this occurs in the log-
arithmic (or overlap) layer, where there is hypothesized
to be joint validity of inner and outer scaling [12.2,3,8].
In the alternate view, the merging process occurs via
a hierarchy of self-similar layers whose wall-normal ex-
tent asymptotically scales with the distance from the
wall [12.10]. As elucidated further below, however, the
physical significance of the scaling parameters are not

only relevant to theoretical formulations, but are of cen-
tral importance when considering the rational design of
experiments.

12.1.4 Overview
of Measurement Considerations

A number of important factors are worthy of careful con-
sideration when planning for experiments of boundary
layer turbulence, and particularly those in the immedi-
ate vicinity of the wall. These relate to the dynamically
relevant length and time scales of the flow, the poten-
tial influences of the high mean shear near the wall on
the efficacy of the measurement technique, as well as
potentially detrimental effects of the wall itself on the
measurement technology being employed. In addition,
the convergence criteria for near-wall turbulence statis-
tics are generally much more stringent than those in free
shear flows.

Temporal and Spatial Resolution
Under general discussions of spatial and temporal res-
olution requirements for turbulent flow (Sect. 5.2) the
length and time scales associated with Kolmogoroff
scale (η = (ν3/ε)1/4, where ε is the mean turbulence dis-
sipation rate) provide useful criteria relative to the size
and frequency of smallest dynamical motions. That is, η
itself is a measure of the smallest eddy, and for such an
eddy advecting at mean velocity U an estimate of its as-
sociated circular frequency is given by fK = U/(2πη).
In wall turbulence, a similar set of notions holds, but
in this case the inner length scale, ν/uτ , is typically
employed as a measure of the smallest turbulent mo-
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Fig. 12.4 Inner normalized profiles of the turbulence dis-
sipation rate in zero-pressure-gradient turbulent boundary
layers. In these profiles ε was estimated using an approx-
imate formula based on the measurement of five velocity
gradient variances [12.5]
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Wall-Bounded Flows 12.2 Measurement of Wall Shear Stress 875

tions. As revealed by the estimates given in Fig. 12.4,
the Kolmogoroff scale is larger than the viscous scale,
and depending on the distance from the wall, it can be
considerably larger. Also note that u2

τ/ν does not pro-
vide a good estimate for the highest frequency in the
flow, say, for determining sampling rate. That is, while
it is an inner frequency (equalling ∂U/∂y|wall), and does
not account for the higher effective frequency associated
with the advection of O(ν/uτ )-scale eddies.

Sensor spatial resolution has proven to play a partic-
ularly important role in the study of wall turbulence,
since, for example, relatively subtle Reynolds num-
ber dependencies can be masked by the competing
counter-influence of decreasing spatial resolution with
increasing U∞. (Note that it is often most convenient to
increase U∞ to increase Rθ .) Important studies that have
specifically examined single wire sensor resolution is-
sues in wall-bounded flows include those by Johansson
and Alfredsson [12.11], Ligrani and Bradshaw [12.12]
and Klewicki and Falco [12.5]. In their study of turbu-
lent channel flow, Johansson and Alfredssson showed
considerable attenuation (� 15%) in the peak value of
the axial intensity for nondimensional sensor lengths
ranging from 4 ≤ 
+ ≤ 32. They also concluded that
the attenuation effect is large relative to Reynolds num-
ber dependence. In their sub-miniature hot-wire-based
study of viscous sublayer turbulence in boundary layers
Ligrani and Bradshaw showed very similar attenuation
as in the study of Johansson and Alfredsson, and con-
cluded that sensors having an 
+ less than about 20
should be sufficient for capturing wall layer axial ve-
locity statistics. From the analysis of a compilation
of existing high resolution data and their own high-
resolution boundary layer measurements, Klewicki and
Falco [12.5] conclude that the peak axial velocity inten-
sity begins to attenuate when the sensor length exceeds
about eight viscous units, and that the Reynolds num-
ber dependence is smaller, but not necessarily small, in
comparison with the attenuation effect. The more-recent
high-resolution laser-Doppler anemometer (LDA) mea-
surements of DeGraaff and Eaton [12.13] support these

findings. Overall, relative to axial velocity statistics
a common rule of thumb suggestion is that the char-
acteristic sensor dimension be less than about a fifth of
the distance from the wall. This is viewed as constituting
a reasonable, albeit rigorously unproven, criterion.

The situation becomes more complex when consid-
ering the spatial resolution requirements for the wall
normal velocity component or velocity gradients and
vorticity components. For x-array hot-wire probes, ef-
fects relating to both the wire length and wire spacing
must be considered, as well as whether there is a signifi-
cant shear across the array [12.14]. In the case of velocity
gradients and vorticity components, in principle, the ob-
jective is to attain a sensing dimension comparable to the
Kolmogoroff microscale (or equivalently a small num-
ber of viscous units). In practice, however, this objective
must be weighed against the effect of noise contained
in signals derived from sensors that are positioned very
close to each other [12.5, 15]. Regarding this issue, the
results by Folz [12.16] based upon experiments in the
atmospheric surface layer (a very high Reynolds num-
ber boundary layer) indicate that hot-wire spacings in
the range of 2πη are optimal with regard to resolving
the instantaneous gradients in the logarithmic layer.

Lastly, there are a number of measurement issues
that become significant for sensors positioned in the
immediate vicinity of the surface. For physical probes
(e.g., Pitot tubes and hot-wire sensors) aerodynamic
blockage and localized flow accelerations can become
significant as the probe nears the surface [12.17]. Con-
duction heat transfer from a hot-wire probe to the wall
is also a well-documented phenomenon, although this
can be mitigated to some extent by the choosing a non-
conductive surface and/or reducing the heating ratio of
the wire. For optical techniques (e.g., LDV and PIV)
maintaining sufficient particle seeding can pose signif-
icant challenges in the vicinity of the surface. These
techniques can be influenced by unwanted light reflec-
tions from the surface as well [12.18, 19]. For LDV, the
strong mean shear in and near the viscous sublayer can
also cause biased measurements (Sect. 5.3.1).

12.2 Measurement of Wall Shear Stress

The wall shear stress is of central importance for
both theoretical and practical reasons. When viewed as
a dynamical machine, the primary mechanism of the tur-
bulent boundary layer relates to its capacity to convert
free-stream momentum into a shear force acting over

the surface. Indeed, when viewed in this way the skin
friction coefficient,

Cf = τw
1
2ρU2∞

, (12.10)
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is a measure of this capacity (per unit surface area) as
it constitutes the ratio of the mean wall shear stress to
the axial free-stream momentum flux per unit area. Of
course, from the perspective of engineering applications
the accurate prediction of Cf , say as a function of Rθ ,
is required for the design of streamlined vehicles (e.g.,
aircraft and submarines) over their operating velocity
ranges. Similarly, the considerations briefly outlined in
Sect. 12.1.2 reveal that τw (often through uτ ) constitutes
a primary scaling parameter relative to theoretical treat-
ments of wall turbulence. Lastly, the fluctuating wall
shear stress has fundamental importance to the basic
physics of wall-bounded flows, having, for example, rel-
evance to improved methods for flow management and
control, as well as numerical predictive methods such as
large eddy simulation.

In what follows, a number of techniques for mea-
suring the wall shear stress are discussed, and some of
the key references are given for each technique. These
discussions will focus on the underlying measurement
principles along with the primary considerations relating
to the appropriateness and application of each technique
in the context of specific measurement objectives. As
mentioned at the beginning of this section, many of the
challenges in wall-bounded flows center on the rather
stringent spatial and temporal resolution requirements
for accurate near-wall measurements.

12.2.1 Methods for Determining
the Time-Averaged Wall Shear Stress

Wall-flow experimental designs should carefully con-
sider what type of wall shear stress information is
required to meet the experiment objectives. That is,
general techniques designed to give the spatially and
temporally resolved wall shear stress can certainly also
be used to obtain the time mean value. Such techniques,
however, must obtain estimates of the instantaneous
differential force acting over a differential area of the
surface (rather than an estimate of the average force
acting over a finite area), and thus their accuracy rel-
ative to estimating the mean is often diminished. It is
for this reason that in cases where only the mean is re-
quired, techniques designed for this specific objective
are generally preferred.

Methods Involving Measurements
at the Surface

Oil film interferometry (OFI) and two pressure-based
methods are considered. OFI relies on the measurement
of the optically produced fringe pattern associated with

light reflections from a thin film of oil on the surface
over which there is a wall flow. Thus, this technique
requires optical access to the facility test section. The
first of the pressure-based techniques relies on the rela-
tionship between the axial mean static surface pressure
variation in a duct, and its validity is restricted to the
condition of fully developed flow. The second pressure-
based technique, the Preston tube method, constructs
a correlation between the stagnation pressure produced
by the velocity profile near the surface, and thus im-
plicitly relies on the inner-normalized universality of
the mean profile over a region of the flow near the
wall.

Oil-Film Interferometry. Tanner and Blows [12.20]
were the first to utilize Fizeau interferometry to measure
the thinning rate of an oil film deposited on a surface and
subjected to a bounding flow. The basis of the technique
stems from the analytical solution for flows at very low
Reynolds number within the oil film. As fluid flows over
the test surface, the oil film begins to thin owing to the
action of the surface shear stress imparted by the bound-
ing flow. During this thinning processes, and through
the use of interferometry, the spatially and temporally
varying thickness of the oil film is determined. Once the
film thinning rate is known, the mean wall shear stress
can be evaluated using a form of the thin-oil-film equa-
tion (12.13). Since oil film thicknesses can be measured
using relatively inexpensive and simple equipment, this
is often an attractive method for measuring the mean
wall shear stress [12.21]. As apparent from its under-
lying principle, the oil-film interferometry method is
restricted to smooth wall flows. In this context it is rele-
vant to note that typical oil thicknesses are on the order
of a micron, and thus for a very large number of flow
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Fig. 12.5 Schematic of a typical oil-film interferometry set-
up (not to scale). Note that the observer viewing angle α is
the deviation from normal to the surface
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situations the distortion of the surface caused by the oil
itself is negligible.

As indicated by the schematic of Fig. 12.5 the nec-
essary equipment for the oil-film technique typically
includes a monochromatic light source, appropriate test
surface, oil film and detector (e.g., a CCD camera).
While the equipment utilized by this method is fairly
uncomplicated, some equipment selections will pro-
duce better images than others. Specifically, a non-laser
light source such as a sodium lamp is suitable for
these measurements and is actually preferable to laser
light [12.21]. Additionally, Zilliac [12.23] has tested
several surface materials and reports that polished alu-
minum produces poor fringes whereas polished stainless
steel, mylar film, and SF 11 glass (among others) all
produce satisfactory fringes. Finally, oil with a viscos-
ity that changes little with temperature is favored since
sensitivity to changes in temperature can be a source of
significant measurement error [12.23]. Silicone oils are
especially attractive in this regard.

In order to calculate the mean wall shear stress,
the thickness of the oil film is determined using Fizeau
interferometry. When a monochromatic light source il-
luminates the surface of a thin film, a portion of the
incident light is reflected off of the oil surface while
the residual portion travels through the thin film and re-
flects off of the surface of the test piece. As shown in
Fig. 12.6, when the reflected light is collected, a series
of light and dark bands appear as a result of construc-
tive or destructive interference, depending upon the oil
height at a particular position. The film thickness at the
k-th (dark) fringe is given as,

hk = h0 + k∆h , k = 0, 1, 2, . . . , (12.11)

where h0 is the oil height at the zeroth fringe and the
difference in height between successive fringes is given
by

∆h = λ

2(n2 − sin2 α)1/2
. (12.12)

Here, λ is the wavelength of the light source, n is the
refractive index of the oil and α is the observer viewing
angle. Minimizing the observer viewing angle, α, to the
smallest possible values generally produces the highest-
contrast fringe pattern. An example of a series of oil-film
fringes, taken at various times, is shown in Fig. 12.6.

According to Tanner and Blows [12.20], the motion
of the oil film is influenced by shear stress, pressure
gradients, gravity, oil surface curvature and surface ten-
sion. With the aid of dimensional analysis, however, it
has been shown [12.24] that for a sufficiently thin film,

Fig. 12.6 Example fringe patterns as derived from oil film
light reflections (after [12.22]). Flow is from the upper right

the motion of the oil is primarily due to the action of
shear stress on its surface. Therefore, in most cases,
the thin-oil-film equation for a two-dimensional flow
reduces to

∂h

∂t
= − 1

2µ

∂(τwh2)

∂x
. (12.13)

Under conditions where the shear stress is not the only
dominant force influencing the motion of the oil, or if
the flow is three dimensional, a more general form of
the thin-oil-film equation should be used [12.21, 24].

Several methods have been developed to calculate
the average wall shear stress using (12.13), and these are
reviewed by Naughton and Sheplak [12.21] and Fernholz
et al. [12.25]. Fernholz et al. derive two particularly
simple methods from (12.13) under the assumption that
the wall shear stress is constant. The first method is given
by,

τw = µx

ht
, (12.14)

while the second is expressed as,

τw = µuk
2(n2 − sin2 α)1/2

λ(k +h0/∆h)
, (12.15)

where

uk = ∂x

∂t
|hk=const . (12.16)

While the second method appears to be more difficult
to implement than the first because of the need to deter-
mine uk (the fringe velocity), the form of the first may be
deceptively simple since the height of the zeroth fringe
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(h0) must also be measured in order to calculate the
height of the oil at a given location [12.26]. In the sec-
ond method, however, measurements can be made that
allow h0 to be calculated from a single data set using
multiple fringes [12.25]. That is, in (12.15) n, µ, α and λ

are known, and uk can be calculated from (12.16) using
images of the fringe pattern taken at known times after
the uk = constant condition has been attained. Auto-
mated image-processing methodologies for determining
the fringe spacing are relatively easy to implement.
These generally involve finding either the leading or
trailing edge of the fringe (edge detection-based method)
or locating the fringe center (peak grayscale intensity-
based method). Multiple fringe spacing estimates from
each image can be used to construct statistically robust
measurements.

While both of the above methods are based on the
assumption of constant mean shear stress, errors should
not be large if these methods are applied to flows with
moderately varying τw provided that,

∆τw

τw
� ∂h

∂x
(12.17)

in the vicinity of the measurement location. It is im-
portant to check that this relation holds when using
these methods since large errors may otherwise re-
sult [12.24]. Although the cases considered here are for
time-invariant wall shear stress, several methods have
been developed for cases where the shear stress is time
dependent [12.25]. Additionally, solution methodolo-
gies exist for three-dimensional flows [12.21].

Some of the error sources and difficulties associated
with this method include dust, humidity, high-shear sit-
uations, oil property variations, oil evaporation, shear
stress variation, surface tension, pressure gradients
and gravity effects. Fringe pattern degradation due to
dust and humidity may be prevented by eliminating
both from the test environment. Undesirable surface
waves, that sometimes form under high-shear condi-
tions, may also be avoided if the oil film is initially
very thin [12.27]. Oil property variations may become
a significant source of error and should be monitored
throughout a test. Also, oil evaporation may cause the
film to appear to thin faster than it actually does – this
problem may be avoided by using oils having a low va-
por pressure, e.g., silicone oils [12.28]. Finally, effects
due to shear stress variation, surface tension, pres-
sure gradients and gravity may be accommodated via
selection of the appropriate form of the thin-oil-film
equation [12.21, 24].

Mean Pressure-Gradient Method. A simple, yet highly
accurate, method for measuring the average wall shear
stress is available for fully developed internal flows.
When the flow satisfies the conditions of being fully de-
veloped and two-dimensional (planar or axisymmetric)
the mean wall shear stress τw may be calculated from
the measured axial pressure gradient. As elucidated in
many undergraduate fluid-mechanics textbooks [12.9],
a control volume analysis of a fully developed pipe or
channel flow of constant cross-sectional area Ac reveals
that the mean pressure drop ∆P present over a length
L of the duct is related to the average wall shear stress
acting over the surface area A by

∆PAc =
∫
A

τw dA . (12.18)

For fully developed flow the surface shear stress per unit
length of the duct is constant. Thus for a circular pipe

τw = ∆P

2L
δ (12.19)

and in a two-dimensional channel,

τw = ∆P

L
δ , (12.20)

where δ is either the pipe radius or channel half-height,
respectively.

Harotinidis [12.29] asserts that this momentum-
balance-based method is perhaps the most reliable for
flows that satisfy the requisite flow conditions. Unfortu-
nately, the applicability of this method is operationally
quite limited since, in practice, it is not a trivial matter to
exactly attain both the fully developed and two dimen-
sional (axisymmetric) conditions. For example, recent
results by Lien et al. [12.30] reveal that even in chan-
nel flows of aspect ratio greater than 12, the apparent
effect of the side walls is felt in the core flow. Indeed,
one may construct a physically rational argument that
flow in a circular pipe is the only for which the fully
developed and axisymmetric (two-dimensional) condi-
tions can be attained to the same degree as prescribed
mathematically. That is, any real channel will be finite
in its span, and the side wall boundary layers will, in
all likelihood, continue to grow with downstream dis-
tance. Contrary to this physical argument, White [12.31]
provides an analysis supporting the notion that after suf-
ficient development length the growth of the side wall
boundary layers is, in fact, arrested. Interestingly, studies
exploring laminar to turbulent transition cite the need for
exceptionally long development lengths (� 400 channel
heights, 2δ) and especially wide channels (≥ 27 channel
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heights) [12.32], while high-quality turbulent flow stud-
ies are generally in the range of about 200δ and greater
than 20δ for the development length and channel width,
respectively. Overall, it is recommended that channel
flow studies carefully verify a fully developed condition
prior to utilizing the pressure drop for determining the
wall shear stress.

Of course, even for fully developed pipe flow, exper-
imental details relating to the accurate measurement of
static pressure must be carefully considered. Such effects
include the finite size of the pressure taps (which tends
to cause an overestimation of the true pressure), as well
as the quality of the tap hole relative to the internal sur-
face of the pipe. Particularly important references in this
regard include the studies of Shaw [12.33], Franklin and
Wallace [12.34], Ducruet and Dyment [12.35], McKeon
and Smits [12.36], as well as Sect. 5.1 in this handbook.
Careful consideration of these effects can minimize the
associated uncertainty in τw to a small fraction of a per-
cent [12.37]. Lastly, it is not advisable to use this method
for flows that do not satisfy the assumptions underlying
(12.19), since significant and difficult to characterize
errors are likely to result [12.38].

Preston Tube Method. Though not a measurement
acquired precisely at the wall, the method initially de-
veloped by Preston [12.39] utilizes stagnation pressure
information derived from a tube placed on the wall. In
some sense, this method can be considered a single point
variant of the Clauser plot technique described below.
This is because it relies on the correlation between τw
and the difference between the surface static pressure
and the stagnation pressure produced by the portion
of the mean velocity profile in the region of the flow
where the so-called law of the wall is valid. The dimen-
sional analysis underlying this arrives at the correlating
expression

∆P

τw
= f

(
d2τw

ρν2

)
, (12.21)

where ∆P is the mean difference between the pressure
sensed by the stagnation (Preston) tube and the static
pressure obtained from a nearby wall tap, and d is the
outside diameter of the tube.

In any given flow, the wall thickness of the tube de-
termines which portion of the mean profile contributes
to the stagnation pressure sensed at the tube opening.
For relatively thick turbulent wall flows and very small
tubes, the measurement could be fully immersed in the
viscous sublayer. In this case, the mean profile exist-
ing across the tube opening will be linear. Under most

measurement situations, however, the finite wall thick-
ness of a typical tube will result in the location of the
tube opening being primarily in the logarithmic por-
tion of the mean profile. It is for this situation that the
majority of Preston tube calibrations have been devel-
oped. Popular among these are the calibration equations
given by Patel [12.40], as well as the tabulated calibra-
tion given by Head and Ram [12.41] (also see Hanratty
and Campbell [12.42]). Owing to the accuracy by which
the mean wall shear stress can be independently de-
termined, fully developed pipe flows have traditionally
been the flow field of choice for calibrating Preston
tubes.

While the Preston tube method is a simple (albeit
correlation-based) technique for estimating τw, its lim-
itations should be understood and some care must be
taken in its implementation. Except under the condition
where the tube opening is fully contained in the viscous
sublayer, an important assumption implicit to the tech-
nique is that a logarithmic law-of-the-wall region exists
in the flow considered, and that the tube opening resides
in and/or below this portion of the profile. Thus, the tech-
nique is inappropriate for highly nonequilibrium wall
flows, or other situations where the logarithmic portion
of the mean profile has been significantly altered. This
said, Patel [12.40] does provide some recommendations
pertaining to the use of Preston tubes in boundary layer
flows with axial pressure gradients. Furthermore, exist-
ing smooth wall calibrations should not be applied under
rough wall situations. On the other hand, while Preston
indicated that the ratio of the inner to outer diameter of
the tube is important, the later study by Patel showed
little sensitivity to this parameter as long as the ratio is
greater than 0.2. Alignment of the Preston tube in the
flow direction can be a significant source of error, espe-
cially in three dimensional boundary layers where the
mean flow direction is not always easy to determine and
instantaneous nonlinear yaw effects affect the measured
mean value. Consistent with the behavior of Pitot tubes,
errors in τw of about 1% are realized for a misalign-
ment of about 3◦. Lastly, care must be taken to make
certain that the flow at the surface static pressure port
is not influenced by the presence of the Preston tube on
the wall.

Mean-Profile-Based Methods
Three different methods for determining the time-
averaged shear stress from mean velocity profile data
are considered. The von Karman integral method relies
on the computation of the displacement and momentum
deficit thicknesses, and thus requires measurements of
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the mean velocity profile. This technique is restricted to
two-dimensional flows, and under some circumstances
the accuracy is diminished without the measurement of
streamwise gradient terms of the velocity variances. The
so-called Clauser plot method is an indirect technique
that relies on the observed correlation between the wall
shear stress and the properties of the logarithmic mean
velocity profile characteristic of wall bounded flows
(Fig. 12.1). Implicit in this technique is the assumption
of a universal logarithmic mean velocity profile. The
mean wall gradient method involves accurately mea-
suring the linear portion of the mean velocity profile
in the immediate vicinity of the surface. This technique,
however, can only be utilized in flows over smooth walls.

von Karman Momentum Integral Method. For two-
dimensional developing flows, the surface stress is
related to the momentum and displacement thickness by
von Karman’s momentum integral equation. For flows
where the streamwise variation in the fluctuating ve-
locity variances are not large, the relationship between
shear stress and the properties of the mean profile is
given by [12.31]

τw

ρU2∞
= dθ

dx
+ (H +2)

θ

U∞
dU∞

dx
. (12.22)

Here, H = δ∗/θ is the shape factor. Equation (12.22)
includes the effects of axial pressure gradient, and thus
for flat-plate boundary layer flow the last term is zero.
When streamwise variations in the turbulence are non-
negligible a more-complicated equation is required, and
is given by [12.2]

τw

ρU2∞
= dθ

dx
+ (H +2)

θ

U∞
dU∞

dx

− 1

U2∞

δ∫
0

∂

∂x
(u2 −v2)dy

+higher-order terms . (12.23)

Unlike the mean pressure gradient method in ducts, the
momentum integral approach does not require that the
flow be fully developed. Similar to the pressure-gradient
method, however, its usefulness is often diminished by
the practical difficulties associated with employing it.
For example, under all cases considerable care must
be taken to ensure that the flow under investigation is
indeed adequately planar. Additional difficulties asso-
ciated with this method can also arise, in part, from
the need for accurate measurements of axial velocity
gradients and in some cases axial gradients of the ve-
locity variances. In specific reference to this last point,

recent experimental evidence [12.43, 44] indicates that
even under the condition of zero pressure gradient the
streamwise velocity variance gradients contribute about
5% to the overall integral momentum balance.

Clauser Plot Method. Clauser [12.45] observed that the
wall shear stress in turbulent boundary layers could,
under equilibrium conditions, be estimated with rea-
sonable accuracy through its correlation with the law
of the wall. Equilibrium flows are those whose statisti-
cal profiles can be represented (or nearly represented)
in a self-preserving form using locally determined in-
tegral parameters. Accordingly, Clauser’s observation
forms the basis for the method that bears his name.
Essentially, the Clauser plot is a graphical method for
determining wall shear stress using the properties of the
time-averaged velocity profile in the logarithmic por-
tion of the boundary layer. The attractive feature of this
method is that velocity measurements in the viscous
sublayer portion of the profile, that are often difficult
to obtain, are not required. Conversely, however, devia-
tions from canonical behavior may preclude the use of
this method. Indeed, recent experiments strongly support
the assertion that for the purposes of discerning detailed
mean profile scaling behaviors an independent means
of obtaining the wall shear stress is required [12.46].
Hence, this method can only be recommended for those
cases where a nominally accurate τw value is acceptable.

In inner normalized form, the logarithmic equation
for the mean profile is given by,

U

uτ

= 1

κ
ln

( yuτ

ν

)
+ B , (12.24)

where, as indicated previously, the friction velocity uτ

is given by

uτ =
√

τw

ρ
, (12.25)

and, according to the logarithmic law assumptions, κ

(the von Karman constant) and B are constants. Perhaps
the most often cited values for κ and B are 0.41 and
5.0, respectively [12.47], although other values are of-
ten used as well. Using equation (12.24) and the fact
that the skin friction coefficient can be expressed as
Cf = 2(uτ/U∞)2, allows the construction of the Clauser
plot. In particular, when U/U∞ is plotted versus U∞y/ν
a series logarithmically varying lines are generated, with
each line corresponding to a specific value of Cf . Thus,
as depicted in Fig. 12.7, when measured mean veloc-
ity profile data are overlayed on this graph, the wall
shear stress estimate is obtained according to the best
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Fig. 12.7 Clauser plot with data [12.48]. Note that in the
axis label Ue is used to denote the free-stream velocity

correspondence between the logarithmic portion of the
velocity data and one of the parametric Cf lines.

The Clauser method is capable of producing reason-
ably accurate results, say ±5%. It is worth emphasizing,
however, that the sole basis of this method relies on the
existence and validity of the logarithmic law. Given this,
the Clauser plot method should be viewed as a useful
means of approximating the value of the friction veloc-
ity, but it is neither a direct nor independent method. For
example, this method is clearly not appropriate for use
under conditions where a well-defined logarithmic re-
gion does not exist. Flow conditions such as those with
strong pressure gradients, low Reynolds numbers and
separation fall into this category. Additionally, the ac-
curacy of the method is dependent on the selection of κ

and B. For flow over a flat plate, existing data support
the general acceptability of the values cited. Under some
circumstances, however, the values of κ and B are vari-
able. For example, Wygnanski et al. [12.49] found that
B exhibits some dependence on the Reynolds number
while κ changes little. Additionally, Nagib et al. [12.44]
provide compelling evidence that κ varies with pres-
sure gradient. For these reasons, it is imperative that
κ and B be chosen judiciously in applications where
a Clauser plot methodology is implemented. As with
all other mean-profile-based methods, another common
source of uncertainty can be associated with the method
of measuring the velocity profile itself. For example, sig-
nificant error can be present in Pitot-tube measurements
due to their sensitivity to large-amplitude velocity fluctu-
ations, misalignment and low-Reynolds-number effects
at the tube opening.

Because the original Clauser plot method was devel-
oped for smooth walls, special treatment is necessary for

its use in rough wall flows. Specifically, roughness poses
a challenge since it generates an “error in the origin”
of the mean profile owing to the well-known downward
shift of the inner normalized mean profile, e.g., [12.1,2].
In order to compensate for these challenges, Perry and
Li [12.50] developed a relatively simple iterative method
based on Coles formula [12.51]

U

U∞
= 1+ 1

κ

uτ

U∞
ln

z

δ∗ + 1

κ

uτ

U∞
ln

uτ

U∞
+0.493

uτ

U∞
, (12.26)

where δ∗ is the displacement thickness and z is the dis-
tance from the crest of the roughness elements. The
procedure is then implemented as follows.

1. Using equation (12.26), generate the family of
curves relating U/U∞ to z/δ∗ using different values
of uτ /U∞, and overlay the experimental measure-
ments on this graph.

2. From the graph, select the value of uτ/U∞ that corre-
sponds to the parameterized line best approximating
the data near z/δ∗ = 1.

3. Determine an initial estimate for e, the error in origin,
from the portion of the data where z/δ∗ � 1.

4. Add this estimate for e to the distance from the crest
of the element and regenerate the graph.

5. Repeat the entire procedure until a converged value
of uτ /U∞ is returned.

Relative to the use of this procedure, it is significant
to note that (12.26) is based on a wake factor of 0.55. An
alternate equation could, however, be easily derived for
other values. Additionally, the method of Perry and Li
was developed to have the desirable trait of being fairly
insensitive to the wake factor.

Viscous Sublayer Profile Method. This method can be
considered direct in that it is based upon quantifying
the mean gradient of the axial velocity at the wall – or
more accurately, very near the wall. According to its
definition, the mean shear stress produced at a point on
a bounding solid surface by a flowing fluid is given by

τw = µ
∂U

∂y
, (12.27)

where y is the direction that is locally normal to the
surface. Thus, for a fluid with known dynamic viscosity
µ the requisite task is to experimentally determine the
slope of the axial velocity profile at the wall.

Attaining an accurate measure of τw from this
method first requires the reasonable existence of a lin-
ear region in the velocity profile, i. e., a region where
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U+ = y+ in the immediate vicinity of the wall.
Certainly, for canonical smooth wall-flows, this ap-
proximation is known to hold to a very good
approximation [12.2, 52]. In proximity of a point of
separation, for example, such a region can rationally
be expected to become diminishingly small or even
non-existent. Similarly, linear sublayers do not exist (in
any quantifiable way) for flows that are not hydrauli-
cally smooth. For a reasonably wide range of flows over
smooth walls, however, one can expect to find a region
within which the mean profile exhibits the linear depen-
dence on distance from the wall as depicted in Fig. 12.1.

Under the vast majority of flow conditions, the phys-
ical dimension of the region of linear dependence is
small; typically a fraction of a millimeter. Because of
this, the sensing dimension of the measurement probe
must be very small as well. Although optical sensors
such as laser Doppler velocimetry (LDV) and molecular
tagging velocimetry (MTV) can be used to measure the
sublayer profile, single element hot-wire probes are the
predominant sensor of choice owing to their inherently
small dimension in the plane parallel to the wall. (Recall
that the diameter of a hot wire is typically 5 µm or less.)
Given this, the present discussion will focus on the mea-
surement of the sublayer mean profile using a hot-wire
probe. Some of the considerations unique to the LDV
and MTV techniques are discussed at the end of the next
subsection.

Major challenges associated with determining τw
using (12.27) are (i) determining the region where the
mean profile is linear, (ii) accurately and appropriately
positioning the sensor in this region, and (iii) accu-
rately calibrating the sensor for the measurements. The
region of linear dependence extends from the wall to
a small distance above the wall. This region is typically
taken to be approximately y+ < 5, although some re-
sults suggest it is even smaller [12.53]. In the vicinity of
a solid surface, however, thermal anemometry is subject
to conduction heat transfer and aerodynamic blockage
effects (Sect. 5.2). Thus, for some portion of this region
near the wall the hot-wire will produce measurements
that overestimate the true velocity value. Hutchins and
Choi [12.54] provide an excellent discussion of this ef-
fect relative to accurately determining the mean wall
shear stress. They cite the region influenced by wall
effects to be approximately y+ < 3.5. For some experi-
mental situations, however, it may be possible to confine
this region even closer to the surface by reducing the
heating ratio of the sensor, or by using a highly non-
conductive surface material. Regarding the latter, Chew
et al. [12.55] provide a useful study of these wall effects.

In any case, the measurements of interest must then be
taken in a region above where wall effects are signifi-
cant and below the upper bound of the viscous sublayer.
For the numbers cited above (by Hutchins and Choi) this
region is given by 3.5 < y+ < 5.0.

A number of methods are available for positioning
the hot-wire probe at a prescribed distance away from
the surface. These include the use of mechanical stops
and optical displacement sensors. The present authors
have also found that locating the probe through the use
of a cathetometer (a traversing short-range telescope)
can also be effective. In this method, the position of the
surface in the immediate vicinity of the probe is located
by sighting (with the cross hair of the cathetometer)
the point of surface contact made with the tip of a ra-
zor blade. The Vernier scale on the traversing scope
then allows the sensor position to then be determined
and specified by subsequently sighting the probe tip.
A repeated set of such measurements, say nine or so, pro-
vides a statistically based estimate for the probe position
from the wall, as well as an estimate for the uncertainty in
this measurement. As noted and discussed by Hutchins
and Choi, misalignment of the wire from an orientation
parallel to the plane of the surface can also lead to wall-
normal positioning uncertainties. The close-up view of
the probe through the cathetometer is also useful in mini-
mizing this type of misalignment. Lastly, the probe body
should be tilted slightly toward the surface such that the
active wire element (tips of the prongs) are positioned to
make first contact as the sensor is traversed toward the
surface. This serves to minimize aerodynamic blockage
effects, and avoids the situation in which the probe body
runs into the surface and thus interferes with positioning
the sensing wire very close to the surface.

Depending on the details of the experiment, the flow
velocity within the viscous sublayer may be too small
to accurately calibrate the hot wire using a Pitot tube
and pressure transducer. Under such cases, special cali-
bration devices are needed. In this regard, a particularly
attractive methodology is to create a laminar flow for
which the analytical solution is known. Examples of
such devices include the Couette-flow-based calibrator
of Chew et al. [12.56] and the Poiseuille device of Yue
and Malmstrom [12.57].

12.2.2 Time-Resolved Methods

Relative to the number of techniques designed to mea-
sure the time-averaged wall shear stress, those capable
of producing time-resolved measurements of the in-
stantaneous wall shear stress are considerably fewer

Part
C

1
2
.2



Wall-Bounded Flows 12.2 Measurement of Wall Shear Stress 883

in number. Two primary reasons for this are that the
correlations constituting the basis of indirect tech-
niques are generally not instantaneously valid, and
accurately quantifying instantaneous shear stress values
requires sensing systems that have both a high-frequency
response and are sufficiently small in size. The time-
resolved methods discussed in this section are associated
with either the direct measurement of the shear force
acting over a small element of the surface, or are ef-
fectively instantaneous versions of the viscous sublayer
profile method discussed above.

Floating-Element Sensors
Perhaps the simplest device (in theory) for measur-
ing wall shear stress is the floating-element sensor.
Floating-element sensors directly measure the shear
force imparted on a movable, floating element portion of
the wall. When subjected to flow conditions, the sensor
functions either by measuring the amount of force re-
quired to keep the element in place or by correlating the
displacement of the element with the applied shear force.
A major positive attribute of floating-element sensors
relative to sensors that indirectly measure shear stress is
that no assumptions about the flow field, fluid properties
or surface need to be made. Thus, unlike sensors which
indirectly measure shear stress, floating-element sensors
are not dependent upon the veracity of the correlating
function, and therefore are not affected by the errors as-
sociated with using the simplifying assumptions needed
to develop the correlation.

While floating-element sensors are simple in theory,
they are, in practice, often difficult to use. Winter [12.59]
lists several common challenges associated with the use
of floating-element sensors, including:

1. The compromise between the need for an element
that is sufficiently large such that the force acting on
it has a magnitude that can be measured accurately,
and the need for an element small enough to measure
local conditions

2. The effect of gaps around the edges of the element
3. Effects due to misalignment of the element
4. Errors associated with pressure-gradient forces.

Other conditions that may influence the performance
of the sensor are heat transfer, temperature changes,
gravity and/or acceleration, boundary layer suction or in-
jection, leaks, and fluctuations of normal forces (which
may damage the sensor) during start-up and shutdown
[12.59]. Additionally, Harotinidis [12.29] notes that
larger sensors generally have a reduced temporal res-
olution, as well as, of course, reduced spatial resolution.
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Fig. 12.8 Schematic representation of detrimental floating element
misalignment errors (after [12.58])
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Fig. 12.9 Effects of nondimensional gap and step size on floating
element drag measurements (after [12.58])

The studies by Allen [12.58, 60] investigated the
magnitude of errors associated with gaps, misalignments
and element thickness. Errors result from gaps and mis-
alignments since these will cause additional forces under
flow conditions that were not present during calibration.
A summary of the types of misalignments considered by
Allen is shown schematically in Fig. 12.8, while Allen’s
experimental findings relative to these misalignments
are shown in Fig. 12.9. These findings indicate that the
ratio of the gap width to the element diameter has a crit-
ical effect on the accuracy of the method. Specifically,
relatively larger errors result from small gap sizes for
the same vertical misalignment, and the thickness of
the exposed edge of the floating element has a major
impact upon the accuracy of the method. Additionally,
Acharya [12.61] has shown that uneven pressure distri-
butions will amplify alignment errors by disproportion-
ately acting upon exposed edges of misaligned elements.

In an effort to circumvent the difficulties associated
with the presence of gaps, Frei and Thomann [12.62]
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proposed filling the gap around the element with
a liquid. Another solution to the gap problem, ini-
tially proposed by Schmidt et al. [12.63], reduces the
gap size using microfabrication techniques; the review
of Lofdahl and Gad-el-Hak [12.64] discusses sev-
eral micro-electromechanical systems (MEMS)-based
floating-element sensors that have since been produced.
While the use of MEMS-based floating-element sensors
is not yet widespread, Naughton and Sheplak [12.21]
indicate that the errors due to pressure gradients scale
favorably for MEMS sensors and that sensor misalign-
ment problems are reduced for microsensors since the
sensors are fabricated monolithically.

At its essence, the floating element sensor is a force
transducer. The principle of operation for such transduc-
ers can invoke (i) single or multiple load cells [12.59],
(ii) strain gauges [12.42], or (iii) displacement sen-
sors [12.65]. In all cases, however, the output from the
floating element sensor requires calibration relative to
known forces. Static calibration involves the applica-
tion of a series of known constant forces. Often this
is most easily accomplished through the use of hang-
ing weights. In this case, care should be taken to utilize
very low friction pulleys (e.g., made of teflon) and ca-
bles made of materials that do not stretch. Depending on
how easily the sensor can be removed from the test sec-
tion, gravity-based calibration techniques that involve
tilting the sensor have also been utilized [12.65]. For
time-resolved measurements, the frequency response of
the sensor must also be quantified. Under many, if not
most, circumstances the floating element sensor can
be treated as a one- or two-dimensional second-order
spring–mass–damper system. Thus, the frequency re-
sponse is estimated by applying a known impulsive force
and quantifying the time it takes the sensor to return to
equilibrium. In turbulent wall-bounded flows the spa-
tial dimension of the floating element is, of course, also
an important consideration. Although a comprehensive
study of the effects of spatial resolution on miniaturized
floating-element sensor measurements has yet to be con-
ducted, it is rational to expect that the criteria discussed
above relative to near-wall turbulence measurements are
relevant. Generally, fully resolved measurements will
require the characteristic dimension of the sensor to
be less than about 10 viscous units. Clearly, in most
flow situations MEMs sensors are required to satisfy
this criterion.

Although the floating-element technique is often dif-
ficult to employ, and its accuracy is often challenging
to quantify, researchers continue to make use of this
method since a priori knowledge of the nature of the

flow field is not necessary. Additional improvements in
the accuracy and frequency response of the method are
expected to follow with further development of MEMS
sensors.

Instantaneous Wall Gradient Methods
Under the condition of a smooth wall, single- or
multiple-point thermal anemometry based methods can
be used to quantify the velocity gradient at the surface.
Perhaps the most straightforward version of this involves
positioning a single hot wire or a closely spaced vertical
rake of wires in the viscous sublayer and acquiring time-
resolved measurements of the axial velocity in the region
where the velocity profile is linear. In the case where the
probe is traversed toward the surface from above, the
requirements for obtaining accurate measurements are
essentially the same as those discussed previously for
obtaining accurate mean shear stress measurements. In
one variant, the prongs supporting the hot wire are em-
bedded in a plug that can then be flush-mounted in the
surface. This is sometimes termed the hot wire on the
wall method [12.66]. In this case, while the operation of
the hot wire is standard, its calibration must be modi-
fied. Specifically, owing to the very close proximity of
the wire to the surface of the plug, it cannot be calibrated
for velocity, but rather to the shear stress directly, as are
flush-mounted hot-film shear stress sensors.

According to a heat transfer analysis, the static
calibration equation for a shear stress sensor is given
by [12.67]

τw
1/3 = AE2 + B , (12.28)

where E is the bridge voltage, and A and B are cali-
bration constants. The preferred method for calibration
of the sensor is in situ, since this avoids errors associ-
ated with having to reinstall and align the probe. On the
other hand, this also means that another method for mea-
suring the mean wall shear stress must be available for
calibration. Popular strategies in this regard are to use ei-
ther Preston tubes or the Clauser plot technique [12.68].
Owing to the fact that these techniques are correlation-
based, the resulting calibrated sensor can not be viewed
as an independent means for measuring τw. Given that
the primary goal of such a sensor is to measure the
τw fluctuations, this does not necessarily pose a major
problem. Of course, if the measurement facility is a fully
developed pipe or channel flow, then one may calibrate
against the mean pressure drop, and thus generate an
analytically well-founded calibration.

As expected, an important concern for flush-
mounted shear stress sensors is their spatial resolution,
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and the aforementioned desirability of the sensor di-
mension to be less than about 10 viscous units. Perhaps
an even greater concern is the loss of temporal reso-
lution at high frequencies resultant from the thermal
effects associated with the sensor substrate. Specifically,
the critical issue is the heat transfer to the fluid rela-
tive to the heat transfer to the substrate [12.69]. While
corrections for these effects have been developed, the
empirical evidence indicates that they generally do not
fully account for the attenuating effect. Thus, it is best
to use fluid/substrate contributions that result in most of
the heat transfer to the fluid [12.66]. For this reason,
measurements in water exhibit superior performance
to those in air. As with standard hot-wire anemome-
try, multiple wire configurations can be used to measure
more than one component of velocity. In this regard,
a v-array plug provides measurements of the fluctuating
axial and spanwise wall velocity gradients, ∂u/∂y and
∂w/∂y, respectively.

As a final note regarding flush-mounted sensors, it
is also worth mentioning that in liquid flows one may
also use electrochemical mass transfer probes to infer
the wall shear stress fluctuations. This method relies on
the correlation between the concentration gradient and
velocity gradient at the surface. The development and
implementation of these sensors is largely due to the
extensive body of work conducted by Hanratty and his
coworkers [12.42].

Of course, measurements of the instantaneous wall
gradient are possible as long as spatially and temporally
well-resolved axial velocity measurements can be accu-
rately acquired in the viscous sublayer. In this regard,
at least two optical techniques have been successfully
employed.

Continuing refinement of LDV techniques have
produced several systems capable of making sublayer
velocity measurements in flows beyond low Reynolds
number. Of course, a common characteristic of suitable
systems is an especially small measurement volume. For
example, in the study by DeGraff and Eaton [12.13],
the dimensions (major and minor axes) of the ellip-
soidal measurement volume were 65 µm × 35 µm. This
was achieved by special focusing optics and using side
scatter collection optics [12.70]. LDV measurements ac-
quired close to a surface are also susceptible to negative
influences associated with optical access and surface
interference, as well as velocity bias associated with
high shear across the measurement volume [12.18]. Re-
garding the latter, Durst et al. [12.71] have devised
correction methods for the various moments of the ve-
locity fluctuation probability density function. Owing

to the low-speed flow in the sublayer, adequate seeding
also requires careful attention.

Because it provides very closely spaced data instan-
taneously along a line, single- or multiple-line molecular
tagging velocimetry (MTV), is especially well suited for
wall gradient measurements. As discussed in Sect. 5.4,
the basic idea underlying MTV is that fluid velocity
data can be derived by tracking a pattern of excited,
long lifetime, phosphors that have been mixed within
the fluid and subsequently excited by laser light. Typical
hardware, data acquisition and data reduction meth-
ods employed in the line version of the technique in
wall-bounded flows are described in the studies by Hill
and Klewicki [12.72–74] and the references therein.
More-general applications of MTV and its extensions
to two-component measurements are given by Kooches-
fahani and coworkers [12.75–77]. In the MTV line
technique, a series of laser lines are used to excite
the dissolved phosphor, and a gated camera is used to
acquire the initial and time-delayed images of these
lines. If the fluid is moving, these lines of excited
phosphor are displaced according to the local flow ve-
locities. The essence of the MTV technique is that
velocity field data are found by tracking this displace-
ment over a sufficiently short time duration such that
a Lagrangian approximation (e.g., u = ∆x/∆t) becomes
valid.

With the line displacement and time delay between
images known, the velocity may be estimated. Uncer-
tainties are associated with the quantification of ∆x, and
to a lesser degree ∆t. Furthermore, root-mean-square
(RMS) and mean bias errors (relative to the true line
location) can be associated with the line position lo-
cating algorithms. Automated image-processing-based
methods do, however, allow the line displacement to be
determined to within a small fraction of a pixel. The line
technique is also susceptible to an error associated with
the effect of having a velocity component parallel to the
line. These errors result from the inability to identify and
subsequently track unique fluid elements on the line. As
a percentage of the instantaneous streamwise velocity
this error can be expressed as

∆u

u
= ∆t

v

u

∂u

∂y
, (12.29)

where u, v and ∂u/∂y are instantaneous quantities. For
the near-wall region of the boundary layer, Klewicki and
Hill [12.73] showed that this effect causes about a 1%
bias error.

For typical lens magnifications, one can obtain
well over 20 measurements per millimeter along the
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MTV line. This density of data is, of course, attrac-
tive when seeking to curve-fit to obtain the local slope
at the surface. Owing to light reflections, however, it
is often difficult to acquire data exactly at the sur-

face. Measurements to within about y+ = 1 have been
reported [12.73]. The temporal resolution of the tech-
nique is limited by the camera frame rate and the laser
repetition rate.

12.3 Boundary-Layer Stability and Transition

Stability and transition experimentation is no trivial
task and should be undertaken by only the most seri-
ous researcher. The basic idea of an instability is that
small disturbances in the flow can have large effects
on the basic state, leading in some instances to addi-
tional instabilities. Small changes in an experimental
set-up and measurement can introduce unanticipated
disturbances that can complicate the flow or skew the in-
terpretation of the results. When transition to turbulence
proceeds through loss of stability, the process critically
depends on these small effects. Thus, unlike many sit-
uations in turbulent boundary layers, measurements of
stability characteristics require a special sensitivity to
environmental conditions. The subsequent sections aim
to highlight some of the particular details required to suc-
cessfully complete a stability experiment and to advise
against common mistakes throughout the process.

12.3.1 The Process of Transition
for Boundary Layers in External Flows

In fluids, turbulent motion is usually observed rather than
laminar motion because the Reynolds-number range of
laminar motion is generally limited. The transition from
laminar to turbulent flow occurs because of an incip-
ient instability of the basic flow field. This instability
intimately depends on subtle, and sometimes obscure,
details of the flow. The process of transition for boundary
layers in external flows can be qualitatively described
using the following (albeit oversimplified) scenario.

Disturbances in the free stream, such as sound or
vorticity, enter the boundary layer as steady and/or un-
steady fluctuations of the basic state. This part of the
process is called receptivity [12.78] and although it is
still not completely understood, it provides the vital ini-
tial conditions of amplitude, frequency, and phase for the
breakdown of laminar flow. Initially these disturbances
may be too small to measure and they are observed
only after the onset of an instability. A variety of dif-
ferent instabilities can occur independently or together
and the appearance of any particular type of instability
depends on Reynolds number, wall curvature, sweep,

roughness, and initial conditions. The initial growth of
these disturbances is described by linear stability theory
(i. e., linearized, unsteady Navier–Stokes). This growth
is weak, occurs over a viscous length scale, and can
be modulated by pressure gradients, surface mass trans-
fer, temperature gradients, etc. As the amplitude grows,
three-dimensional and nonlinear interactions occur in
the form of secondary instabilities. Disturbance growth
is very rapid in this case (now over a convective length
scale) and breakdown to turbulence occurs.

Since the linear stability behavior can be calcu-
lated, transition prediction schemes are usually based
on linear theory. In the case of streamwise instabilities
and low-disturbance environments, linear theory does
very well in predicting the stability behavior. However,
since the initial conditions (receptivity) are not gener-
ally known, only correlations of transition location are
possible and, most importantly, these correlations must
be between two systems with similar environmental
conditions [12.79].

Thus, linear theory is the foundation of stream-
wise instabilities in low-disturbance flows. A brief
review of the nomenclature of linear theory precedes
the description of experimental methods. It is assumed
that the reader understands the fundamental ideas of
hydrodynamic stability found in [12.79–81]. Back-
ground material on transition can be found in [12.82]
and [12.83].

12.3.2 Nomenclature of Linear Theory

As a reference point, start with an incompressible,
isothermal flow over a flat plate with zero pressure
gradient. The basic state is assumed to be locally ap-
proximated by the parallel flow V = [U(y), 0, 0], where
(x̂, ŷ, ẑ) are the dimensional streamwise, wall-normal,
and spanwise directions, respectively. Dependent and
independent variables appearing as q̂ are dimensional,
otherwise they are dimensionless. Lengths and veloci-
ties are made dimensionless with the scales L and U∞,
respectively. Two-dimensional disturbances are super-
posed on the Navier–Stokes equations which are then
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linearized. Assuming a normal-mode disturbance of the
form

q′(x, y, t) = q(y) exp[i(αx −ωt)]+ c.c. , (12.30)

where q′ represents a real disturbance quantity such as
pressure or a velocity component. For spatially varying
disturbances, the use of (12.30) results in the Orr–
Sommerfeld equation (OSE) given by:

(D2 −α2)2φ− iR[(αU −ω)

× (D2 −α2)φ− (αD2U)φ] = 0 , (12.31)

where c.c. means complex conjugate, D = d/dy, φ is
complex and represents the disturbance stream function,
φ(0) = Dφ(0) = 0, φ(y → ∞) → 0, ω is real, α = αr +
iαi, −αi is the spatial growth rate, c = ω/αr is the phase
speed. Here the dimensional frequency is conserved and
the length scale is L = √

νx̂/U∞. These give rise to the
following definitions

R = U∞L

ν
=

√
U∞ x̂

ν
, (12.32a)

F = ω

R
= 2π f ν

U2∞
= constant . (12.32b)

The eigenvalue problem reduces then to finding α =
α(R, F). The locus of points for which αi(R, F) = 0
is called the neutral stability curve. For a given F in
Blasius flow, R is double-valued. The smallest value,
RI, occurs at branch I and the largest value, RII, occurs
at branch II. Between these two Reynolds numbers, the
flow is unstable. Transition depends on the measure of
growth between RI and RII. The Reynolds number below
which the flow is stable for all F is called the minimum
critical Reynolds number Recrit.

Some also have used the displacement thickness δ∗
or the momentum thickness θ as the normalizing length
with an attendant redefinition of the Reynolds number.
All of these choices are appropriate for boundary-layer
scaling. However, since no universal Reynolds num-
ber criterion appears with either Rδ∗ or Rθ for other
boundary-layer flows, the use of these scales just adds
a superfluous constant. On the other hand, the use of
L = √

νx̂/U∞ makes the dimensionless wall-normal
coordinate y = η (the Blasius similarity variable) and
makes the boundary-layer Reynolds number the root of
the x-Reynolds number.

In a Blasius boundary layer, R measures distance
along the plate and a disturbance at the reduced
frequency F is called a Tollmien–Schlichting (T–S)
wave. Under certain conditions this wave is amplified,
can interact with three-dimensional (3-D) disturbances,

secondary instabilities can occur, and breakdown to tur-
bulence can result. The generation and growth of these
waves as they relate to disturbances in the basic state
will be of particular interest during the experiment.

12.3.3 Basic Rules for Boundary-Layer
Stability Experiments

Regardless of whether the experimental objectives are
transition control, three dimensionality, secondary in-
stabilities, nonlinear breakdown, or receptivity, the
superseding rules of conducting a stability experiment
are: (1) the linear problem must be correct, and (2) initial
conditions must be provided for theory and computa-
tions. These rules can be considered prime directives.

Rule One
The first rule is to get the linear problem correct. Corre-
lation of the experimental data with linear theory (in the
appropriate range) ensures that the basic state is prob-
ably correct. Usually unintended weak pressure fields
change the stability behavior but are not detected in the
basic state measurements (Sect. 12.3.4).

Rule Two
Full documentation of physical properties, background
disturbances, initial amplitudes, and spatial variations
must be provided to the analyst. It is very important
to measure, whenever possible, the free-stream environ-
ment (a subsection of Sect. 12.3.4 covers the details of
measurements of the free-stream turbulence and sound).
Any worthwhile stability experiment is going to be
accompanied by a computational effort. The experimen-
talist needs to be able to give as many initial conditions
to the analyst running the computational simulations
so that an accurate comparison can be made between
both methods. This includes, of course, the specifi-
cation of coordinates since experiments are done in
test-section coordinates while computations are done in
body-oriented coordinates. The experimentalist should
also heed flow symmetry requirements that the compu-
tationalist readily assumes but requires some work to
achieve in the wind tunnel (see Sect. 12.3.4).

Although these seem like simple requirements, the
literature has many examples of experiments that ignore
these precepts. In the sections that follow, examples
are discussed that illustrate the difficulty of establish-
ing these two rules. However, all of the examples are
real, correctable effects. The more advanced practitioner
is referred to the transition study group guidelines for
transition experiments [12.84].
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12.3.4 Experimental Techniques

Use a Flat Plate that is Flat
For a Blasius boundary-layer experiment, a flat plate
is needed; however, not all methods of manufacturing
a flat plate are equally desirable. Plates originating from
rolled metal are generally not recommended since the
wavy-surface contour can produce a streamwise peri-
odic pressure distribution, as was found on the original
Schubauer and Skramstad plate [12.85] (now at Texas
A&M). The Klebanoff flat plate [12.86] used at NBS
was treated with a 1.8 m-diameter grinding disk. This
option can produce satisfactory results, but is often ex-
pensive. The Saric flat plate [12.87] used at Virginia
Tech and Arizona State, had a 20 mm paper honey-
comb sandwiched between two 1 mm aluminum sheets
in the manner that inexpensive billiard tables are fabri-
cated. A rule-of-thumb waviness criterion for any plate
intended for stability experiments is ε/λT−S < 10−3,
where ε is the waviness height and λT−S is the T–S wave-
length. Both the Klebanoff plate and the Saric plate had
a ratio of ε/λT−S < 10−4.

Provide a Means for a Leading Edge
The shape of the leading edge has a large effect on the
resulting flow field. Schubauer and Skramstad [12.85]
used a sharp leading edge, which was drooped at a neg-
ative angle of attack to avoid separation that can occur
with a sharp tip. Klebanoff [12.86] also chose this type
of leading edge, but instead addressed the problem of
separation at the tip by including a trailing-edge flap to
introduce circulation and thus place the stagnation line
on the test side of the plate. The difficulty with either
technique is that it is difficult to simulate computation-
ally. Another possible option is an elliptical leading edge
with a trailing-edge flap, as shown in Fig. 12.10.

An ellipse with a major/minor axes ratio greater than
6:1 avoids a separation bubble on the leading edge.
An ellipse has zero slope at the flat-plate intersection
but has a discontinuity in curvature at that point which
could be a receptivity location. The curvature disconti-
nuity can bias an acoustic receptivity experiment so Lin
et al. [12.88] proposed using a modified super ellipse
whose contour follows(

ŷ

b

)2

+
(

a − x̂

a

)m

=1 , m = 2+
(

x̂

a

)2

. (12.33)

Here, the origin is at the stagnation line and a and
b are the major and minor axes of the ellipse. With
this profile, the curvature goes continuously to zero as
x̂ → a. The aforementioned Klebanoff plate (now at

��$�2��%��"�#�$�����

Fig. 12.10 Flat plate with a trailing-edge flap

Texas A&M), was modified by the author for recep-
tivity experiments [12.89, 90] by machining directly on
the plate, a 20:1 super ellipse on one end of the plate
and a 40:1 super ellipse on the other end. Machining
the leading edge directly on the plate avoids junction
discontinuity issues that could also be a receptivity
site.

Global Pressure Gradient
Whether one uses a blunted flat plate or a sharp flat
plate at negative angle of attack, a leading-edge pres-
sure gradient will be present and a finite distance is
required for pressure recovery. Once a zero pressure
gradient is obtained, the boundary-layer flow is Bla-
sius, but referenced to a different chordwise location,
x̂ = x̂v. Thus, there is a virtual leading edge from which
the measurements and the Reynolds number must be
referenced. If this is unaccounted for, it is very easy
to have 20–30% errors in x̂ (and 10–15% errors in
R). For example, in order for theory to agree with the
linear part of the well-known nonlinear work of Kle-
banoff et al. [12.86], one must apply a correction to
x̂ [12.91].

To be ensured of the correct streamwise location,
measure the displacement thickness δ∗ and then cal-
culate the virtual location and Reynolds number with
respect to the Blasius boundary-layer profile

δ∗(measured) =
∞∫

0

(1− û/U∞)dŷ , (12.34)

where δ∗(Blasius) = 1.72
√

νx̂/U∞ �= δ∗(measured). The
virtual location is given by

x̂v =
(

δ∗(measured)

1.72

)2 U∞
ν

, (12.35)

R =
(

U∞ x̂v

ν

)1/2

. (12.36)

The effects of not differentiating between the virtual
and geometric locations are repeatedly demonstrated in
early stability literature. Present-day researchers must be
wary of which location, virtual or geometric was used
to obtain transition Reynolds numbers in past literature.
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Because of traverse effects and tunnel side-wall
blockage, x̂v may actually change with different chord-
wise measurements. Therefore, δ∗ should be measured
(and R calculated) at each location. With modern,
computer-controlled experiments this is not a problem.
On the other hand, it has been shown by Klingmann
et al. [12.92] that it is possible to design the leading-
edge pressure gradient on the flat plate to eliminate the
virtual leading edge. Figure 12.11 shows a series of ve-
locity profiles by the author that demonstrates a constant
x̂v when traverse effects are eliminated.

Local Pressure Gradient
It is difficult to measure small changes in the pressure
coefficient C p accurately. Thus, the flow may not be
locally Blasius and the stability characteristics may be
quite different. For example, a decrease in C p of approxi-
mately 1% over 100 mm corresponds to a Falkner–Skan
pressure gradient parameter, β, of approximately 0.1.
For β = +0.1, the minimum critical Reynolds number,
Recrit, [based on Sect. 12.3.7] is increased by a factor of
3. In other words, the streamwise location is increased
by a factor of 9.

The neutral stability curve, shown in Fig. 12.12 com-
pares OSE, the nonparallel theory (PSE), and DNS with
experiments. What is important is that OSE (dashed
line), PSE (solid line), and DNS (points on the solid
line) agree very well. The experiments only agree at low
frequencies and high Reynolds numbers. The measured
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Fig. 12.11 Five measured velocity profiles at x = 0.8, 1.0,
1.2, 1.5, and 1.8 m superposed on the Blasius flow calcula-
tion. Streamwise location corrected for the virtual leading
edge. The free-stream speed is 12 m/s

���
�

�

�7��

���

��

���

���

���

���

���

���

������ ��� ��� ��� �� 1��

Fig. 12.12 Blasius neutral stability curve. Comparison be-
tween experiment, DNS, PSE, and OSE [12.93]

Recrit is around 230 and the calculations all give a value
of 300. Saric [12.94] conjectured that this difference is
due to the extreme sensitivity to the smallest of pressure
gradients (in this case adverse) that exist near branch I.
This has been confirmed by Klingmann et al. [12.92]
who designed an experiment to avoid a pressure gradi-
ent at branch I and whose data fall on the theoretical
neutral stability curve. Thus, the historical discrepancy
between theory and experiment has been resolved. There
are other problems with the experiments and these are
discussed below.

A weak adverse pressure gradient can also explain
why instabilities are measured at dimensionless frequen-
cies, F > 250 × 10−6, contrary to theory. The range of
unstable frequencies could increase dramatically if the
measurements were made in the weak adverse pressure
gradient region of the recovery zone of the leading edge.
Because of the low Reynolds number needed, the mea-
surements of Recrit [12.95] were conducted too close
to the leading edge and too close to the disturbance
source.

With extreme care one may be able to measure
∆Cp ≈ 0.3%. This may not be enough. However, one
could measure U(y) and calculate the shape factor,
H = δ∗/θ. Here, β = +0.1 corresponds to ∆H = 7%
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Fig. 12.13 Plate vibrations change the stagnation line

compared to ∆Cp = 1%. Thus, measurement of changes
in the shape factor is more reliable than ∆Cp. One should
already have U(y) at each streamwise location and hence
the pressure gradient can be verified at no additional
work.

For Blasius flow, it is recommended that the plate
be adjusted so that H = 2.59±0.005. Moreover, plac-
ing a boundary layer trip on the backside of the model
helps avoid differential blockage problems by fixing the
transition location on the non-test side. Velcro is the rec-
ommended trip since a 6 mm-high strip can excite all of
the important scales.

This discussion concludes that whereas the zero-
pressure-gradient case is an accepted reference test case,
it is a rather sensitive and perverse test condition. The au-
thor’s experience with boundary layers on wings shows
that modest pressure gradients ameliorate the sensitivity
to small ∆Cp. At the same time, it needs to be recog-
nized that one should avoid measurements of Recrit. Not
only is this a very difficult measurement to interpret, but
changes in Recrit have very little to do with transition.
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Fig. 12.14 Schematic and data of ∆p measurement to achieve sym-
metric flow

Probe and/or Plate Vibration
If the probe support is vibrating in a direction transverse
to the shear layer, the hot wire will measure different
levels of the direct-current (DC) component, which in
turn appear as temporal fluctuations in the alternating-
current (AC) component. Carbon composites work well
to stiffen a particular direction of the probe support if
vibration is suspected.

Plate vibration is a very serious source of error that
should be avoided at all costs. These vibrations cause
oscillations in the stagnation line, as shown in Fig. 12.13,
that create the initial conditions for T–S waves.

The author has used a laser vibrometer to map the
vibrations of the leading edge. These studies showed vi-
bration amplitudes on the order of one micron. If a laser
vibrometer is not available, it is important to use a low-
mass accelerometer. In any case, some diagnostic tool is
needed to ensure that the oscillations are not in the T–S
pass band.

Symmetric Flow
When providing a data base for computations of the
leading-edge region, it is realistic to establish symmetric
flow as an appropriate reference point. The trailing-edge
flap is used to control the position of the stagnation line
(the shape factor and pressure measurements will deter-
mine the plate angle). The pressure difference between
the two sides of the leading edge is monitored while the
trailing-edge flap angle is changed. When ∆p = 0, the
flow is symmetric. It is important to measure ∆p in a re-
gion of large dp/dx to maximize the sensitivity of the
measurement. If differential blockage is minimized and
the non-test side boundary layer is tripped properly, it is
possible to have the same flap setting at different speeds.
Figure 12.14 shows the relationship between flap angle
∆p and free-stream speed (unit Reynolds number).

12.3.5 Wind Tunnel Environment

Model Location in the Test Section
Prior to mounting the plate in the test section, all of
the vortical modes must be determined. The contraction
cone has the tendency to amplify the corner vortices and
produce some large scale vortical motions in the test sec-
tion that may take the form of those shown in Fig. 12.15.
This is especially true of tunnels with contraction ratios
greater than 6. This weak secondary motion is difficult
to measure directly but can be observed by spanning the
tunnel with a heated wire. By doing wake scans with
a cold hot wire (no overheat) at different streamwise lo-
cations, the temperature nonuniformity can be tracked
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Fig. 12.15 Determination of tunnel nodes and plate place-
ment

and any in-plane rotation can be observed. The rotational
nodes can be determined and the plate placed away from
these nodes. Acoustic modes will also exist in the test
section and these nodes must be avoided as well.

A good rule of thumb is never to mount the plate on
an axis of symmetry or at locations 1/N of the tunnel
span where N = 2, 3, 4, etc. Generally, a good location
is somewhere between 0.38 and 0.45 unit span.

Free Stream Disturbances:
Turbulence and Sound

Ordinary wind tunnels have turbulence levels high
enough to mask the appearance and growth of
T–S waves. It was not until Schubauer and Skram-
stad [12.85], in a tunnel designed for low turbulence,
that a successful boundary-layer stability experiment
was conducted. It was also recognized at that time that
the flight environment also had low turbulence with re-
gard to influencing stability and transition. After the
initial success of these experiments, it was recognized
that something more than reducing u′ fluctuations was
needed to advance the knowledge base.

Unknown receptivity issues such as the roles of free-
stream turbulence and sound in creating T–S waves
and 3-D structures inhibit the understanding and con-
trol of transition. It is certainly clear that a naked
statement of RMS streamwise fluctuations,

∣∣u′∣∣ /U∞,
is not enough to describe a particular wind-tunnel en-
vironment. Free-stream disturbances are composed of
rotational disturbances (turbulence) and irrotational dis-

turbances (sound). Each plays a different role in the
transition process. Cross-flow waves are very sensitive
to free-stream turbulence level [12.96] while T–S waves
are very sensitive to free-stream sound [12.90]. Naguib
et al. [12.97] demonstrate a good second-order method
for separating sound from turbulence that is easy to
implement in real-time data acquisition.

Until we really understand the receptivity mech-
anisms, it is important to document the free-stream
disturbance environment as completely as possible.
In addition to

∣∣u′∣∣ /U∞, one should quote, in order
of importance: (1) pass band and spectrum for all
measurements, (2) spatial correlation measurements of
all components to separate turbulence from sound,
(3) flat-plate transition Reynolds number at different
unit Reynolds numbers, and (4)

∣∣u′∣∣ /U∞,
∣∣v′∣∣ /U∞,

and
∣∣w′∣∣ /U∞ at different positions. A general summary

of flow-quality issues is found in [12.98] and a typical
tunnel certification is given by [12.99].

It has been argued [12.92] that it is not necessary
to have free-stream turbulence levels down to 0.04%
U∞ in order to measure T–S waves. This is a naïve
statement that is only true when one knows where
one is looking and one knows what one is measuring.
For example, Kendall [12.100] has been measuring T–
S waves in high-disturbance environments for years.
There are two relevant points that need to be men-
tioned justifying a low-disturbance free stream: (1) one
can always systematically increase free-stream turbu-
lence [12.100] and study its effects and (2) different
(unknown) breakdown mechanisms that are character-
istic of the low-disturbance flight environment may be
missed in a high-disturbance free stream. The observa-
tions of the subharmonic mechanisms [12.101,102] fall
into this category.

Another argument for low-turbulence levels can be
made when streamwise vortical structures in the ba-
sic state produce a weak spanwise periodicity that is
strongly susceptible to secondary instabilities. These
spanwise variations were carefully documented by Kle-
banoff et al. [12.86], Nishioka et al. [12.103], and
Anders and Blackwelder [12.104]. They strongly in-
fluence the type of breakdown to transition that is
observed [12.101,105]. These spanwise variations were
not observed in the low-turbulence tunnels in Arizona,
Novosibirsk, Sendai, or Stockholm. It turns out that
these tunnels had slightly lower turbulence levels and
that the combination of higher turbulence levels and mi-
cro surface roughness caused transient modes to grow
and create the streamwise vorticity within the bound-
ary layer. This is a good example of why it is necessary
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to be able to do spanwise measurements in the tun-
nel and within the boundary layer. Finding a turbulence
level at one spanwise location does not guarantee the
same turbulence level at other spanwise locations. As
a general reminder, tape or junctions act similar to the
micro surface roughness in that they are receptivity lo-
cations and are to be avoided on the test surface of the
plate. Even though one may have a two-dimensional
(2-D) roughness with an Rek = O(0.1), this is still
a strong receptivity source [12.90,106]. Therefore, in or-
der to establish the initial conditions, one should provide
the measured three-dimensional amplitude modulation
within the boundary layer for comparisons with theory
and computation.

12.3.6 T–S Measurements

Controlled T–S Waves –
Internal Disturbance Sources

Knapp and Roache [12.107] tried to use the background
disturbances as the source of the T–S waves and observed
intermittent behavior that compromised their hot-wire
measurements. It becomes necessary to fix the wave in
the streamwise direction and do phase-correlated mea-
surements. The use of an artificial disturbance source
will fix the amplitude and phase at one location in order
to systematically track stability and transition events.
The use of a vibrating ribbon to create 2-D waves has
been around since Schubauer and Skramstad [12.85]
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Fig. 12.16 Schematic of a vibrating ribbon
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Fig. 12.17
Disturbance pro-
file close to the
ribbon

who used the idea of the Lorentz force generated by
an alternating current in the ribbon in the presence of
a stationary magnetic field. This is shown in Fig. 12.16.
Sreenivasan et al. [12.108] has used the same principle
on a wire in a slot. Corke and Mangano [12.102] have
successfully used segmented heated wires for producing
both 2-D and 3-D waves.

When the vibrating ribbon or wire is uniformly
loaded, the displacement is of the form of a cate-
nary. Therefore, a sufficiently long ribbon should be
used to avoid end effects. The ribbon placement in
the wall-normal direction is typically ideal (minimum
displacement) if located at or near the critical layer
[U(y) = c = ω/α].

Even though the 2-D wave is phase correlated when
using a vibrating ribbon, the interaction of this wave with
the background disturbances has a random character.
The Λ-vortices observed by Saric and Thomas [12.101]
for different types of breakdown meandered in the span
direction. Although not reported, the subharmonic mea-
surements of Kachanov and Levchenko [12.109] were
random and eyeball conditional sampling was used. The
only solution is to introduce the 3-D disturbance di-
rectly with segmented heating elements [12.102]. The
technique consists of using one continuous wire for the
2-D wave and a set of segmented wires, whose individual
phase is controlled, for the 3-D wave.

A disturbance source such as an air jet, or heated
wire, or vibrating ribbon, locally creates a disturbance
that is not just a T–S wave (Fig. 12.17) but has all of the
eigenmodes. A T–S wave is just one of the modes in the
distribution. A relaxation distance is required to attenu-
ate the more stable modes so that the least stable (the T–S
wave) remains. If measurements are made within this re-
laxation distance some strong stabilizing effects may be
measured. One should determine the relaxation distance
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Wall-Bounded Flows 12.3 Boundary-Layer Stability and Transition 893

downstream of the disturbance source. This would de-
pend on the type of source used, but it should be in the
range of about 10 boundary-layer thicknesses. This can
be verified by first comparing

∣∣u′(y)
∣∣ with linear theory.

Local growth rates should also be compared as a func-
tion of input amplitude. These comparisons should be
documented if it is required to measure close to the
disturbance source.

One would like to carry out stability measurements
over a wide range of Reynolds numbers while keeping
the disturbance source fixed. Unfortunately, a typical 2-
D disturbance source has a finite span and Mack [12.110]
showed that the domain of dependence of a finite span
disturbance source propagates from each end toward
center span at an angle of approximately 12◦ as shown
in Fig. 12.18.

Outside of this triangular domain, the disturbance
amplitude is different from linear theory. This is analo-
gous to the boundary-condition domain of dependence
in hyperbolic systems. If w is the span of the distur-
bance source and L is the distance in x from the source,
then the centerline measurements should be made such
that L/w < 2.3. Ross et al. [12.95] had a vibrating
ribbon span of only 250 mm and took measurements
1 m away. Just as one is limited in the useful chord
of the model due to sidewall contamination, the dis-
tance downstream of the disturbance is similarly limited.
For off-centerline measurements, this value is obviously
smaller.

When one attempts to study nonlinear wave in-
teractions, the nonlinearities of the disturbance source
impose different initial conditions on the nonlinear com-
ponents [12.87]. For example, if one wishes to study
the nonlinear interaction of waves with two frequen-
cies f1 and f2, when the disturbance source, such as
a vibrating ribbon, is oscillated at too high an ampli-
tude, the disturbance source inputs 2 f1, 2 f2, f1 − f2,
2 f1 − f2, etc. into the boundary layer. As part of an-
other difficulty, when one attempts to invoke active
wave cancelation into the boundary layer through a dis-
turbance source, a feedback signal is processed by the
computer and relayed to a disturbance source. However,
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Fig. 12.18 Triangle of acceptable measurement area

the digital-to-analog (D/A) converter is a low-pass filter,
the vibrating ribbon is a low-pass filter having a typi-
cal linear oscillator response, and the boundary layer is
a band-pass filter/amplifier having its unique response
curve. Thus the boundary-layer response is much differ-
ent from the original input signal. First, one must always
directly measure the disturbance-source response and
the boundary-layer response in order to establish the ini-
tial conditions [12.87]. In the case of a vibrating ribbon,
the disturbance source response can be measured with
an end-effect inductance probe. A tailored boundary-
layer response can be obtained using inverse Fourier
techniques [12.111].

Controlled T–S Waves –
External Disturbance Sources

If an external sound source is used as a source of distur-
bance energy, say in a receptivity experiment, then the
boundary-layer measurement at a particular frequency
will contain probe vibrations and a component of the
sound wave in addition to the T–S wave. It is easy for
external sound to force, at the oscillation frequency, the
mechanical system holding the hot wire. The external
sound field generates a Stokes layer imbedded inside
the boundary layer. All of these signals are at the same
frequency and if these signals are of comparable am-
plitude to the T–S amplitude, one cannot obtain the
usual T–S profile unless some special techniques are
used to extract the T–S wave. It is for this reason that
older publications with sound/stability interactions are
not reliable.

This author has tried: (1) taking advantage of the ex-
ponential growth of the T–S wave so that it is larger than
the background [12.106]; (2) the idea of using polar plots
to separate the long-wavelength Stokes wave from the
short-wavelength T–S wave [12.112]; (3) the idea of us-
ing a wavenumber spectrum using closely spaced points
in the x direction [12.98]; (4) the idea of using differen-
tial surface-pressure ports [12.100]. For one reason or
another, none of these techniques are satisfactory and
are not recommended. The details are given in [12.113].
The major problems lie in complicated duct acoustics
and reflected waves from the diffuser.

The only technique found to work is the pulsed-
sound technique [12.89, 90]. The technique uses pulsed
sound and is simple, effective, and lends itself to un-
derstanding the behavior of the T–S wave. From linear
theory, the maximum of the T–S wave propagates at ap-
proximately one third of the free-stream speed (about
1% of the speed of the downstream-traveling sound
wave). Using this fact, the traveling T–S wave can
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Fig. 12.19 Time traces of the free-stream wave and the
boundary-layer wave

be isolated from the acoustic disturbance and associ-
ated Stokes wave by sending bursts of sound into the
test section. The initial sound burst is first measured
and fractions of a second later, after the sound wave
has passed, the slower-traveling T–S wave is measured.
Figure 12.19 shows a time trace depicting the sound-
burst wave sensed by hot wires in the free stream and
boundary layer and the trailing T–S wave measured by
the boundary-layer wire for R = 1140, F = 56 × 10−6,
f = 80 Hz and x = 1.8 m. The T–S wave profile ob-
tained with this method compares very well with OSE
solutions.

There are three ways to implement this technique:
(1) use the RMS amplitude of the wave packet [12.89];
(2) use the magnitude of the complex Fourier coefficient
for each frequency present in the wave packet [12.90];
(3) analyze the signal in the frequency domain [12.114].
The frequency-domain approach [12.114] appears to be
the best means to correctly describe the receptivity and
linear amplification process of multiple-frequency sig-
nals. This is because as wave packets travel downstream,
high-frequency components of the spectra, which are
present initially due to the finite extent of the pulse, de-
cay. Meanwhile, the low-frequency components in the
amplified T–S pass band grow.

A feature of short sound bursts is that since they
are limited in the time domain, they are extended in the
frequency domain. Thus, a single sound pulse (a sin-
gle frequency sine wave within an amplitude envelope)
covers a wide frequency range. In many cases the
pulse spectrum covers the entire T–S wavelength band.
Therefore, using a pulsed-sound approach eliminates
the distinction between single-frequency and broadband
input.
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Fig. 12.20 Hot-wire measurements

Hot-Wire Measurements
The hot-wire anemometer is the accepted technique for
the measurement of fluctuating velocities O(10−3U∞)
within the boundary layer. Neither LDV nor PIV have the
low-level resolution required for these measurements.
Hot wires can accurately measure the streamwise and
spanwise velocities (u′, w′) with the use of straight-wire
and slant-wire pairs. Because laminar boundary layers
are so thin (δ ≈ 3–5 mm), it is not possible to measure
v′ due to the span of the wire.

If the temperature of the wind tunnel undergoes
changes of more than a few degrees between calibra-
tions, temperature compensation must be used. This can
be done with a simple computer solution that does both
velocity and temperature compensation [12.115].

To do this, one must understand how and what
data are retrieved from a hot wire. In a real boundary
layer, a hot wire measures the component of velocity
perpendicular to the wire as shown in Fig. 12.20.

Although the velocity is 2-D, the output signal is only
a combination of U and u′ because the vector sum of U +
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Fig. 12.21 Disturbance and basic-state profiles
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Fig. 12.22 Theory and experiment of Blasius velocity pro-
file and T–S amplitude (after [12.94])

V is approximately U since V = O(1/R). Similarly, the
AC component measures u′ and not v′ because u′ is su-
perposed on U . As a result, the measurement from a hot
wire is u′

rms, which is proportional to |Dφ| from the OSE.
It is straightforward to separate the DC and AC signals.

When attempting to compare with theory, one com-
monly sees solutions of the OSE displayed in terms of
the real and imaginary parts of φ(y). Since φ can be mul-
tiplied by any complex number, this is neither revealing
nor unique. It is more meaningful to show amplitude,
|φ|, and phase, ψ = arctan(φi/φr). Using the acquired
u′

rms data, a more-rigorous representation of results is to
then plot y as a function of |Dφ|, where |Dφ| is a posi-
tive real quantity. The resulting plot will look similar to
the disturbance state in Fig. 12.21.

Once measurements are processed, they should be
correlated with theory. An example with a reduced set
of experimental points is shown in Fig. 12.22 [12.94].

To achieve such accuracy, a precision lead screw with
anti-backlash bushings should be used in the wall normal
direction. One should have the capability to make 100
measurements within the boundary layer which means
step sizes on the order of 25 µm.

Wall Effects
In measuring U(y) and u′(y), one will need to find the
wall. As the hot wire gets closer to the wall, radiation
from the model removes heat from the hot wire, resulting
in readings of higher velocity than is actually present.
This is shown in Fig. 12.23. To compensate for this ef-
fect, stop measurements at u/U∞ ≈ 0.1 and for mean
flow, use linear extrapolation to the wall.
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Fig. 12.23 Hot-wire measurements near the wall

Traverse Blockage
The traverse mechanism may be too large or too close
to the hot wire. Moreover, a multi-wire rake may have
too much local blockage. What could happen in these
cases is that the weak pressure field around the probe
support, although unseen in a basic-state measurement,
can strongly influence T–S wave amplitude. This can
be diagnosed by fixing a very small hot wire to the
plate (Fig. 12.24) at a wall-normal location where say,
U/U∞ ≈ 0.3. Establish the amplitude of a controlled T–
S wave as measured by the fixed wire. Move a traverse
mounted hot wire to the same location very close to the
fixed wire and see if the T–S amplitude on the fixed
wire has changed. This is the most sensitive and the
only means for determining whether one has eliminated
traverse and probe-support interference problems. One
should be aware of the fact that traverses and probe
supports that are quite suitable for turbulent boundary
layers may not be suitable for laminar stability work.

Hot-Film Measurements
The development and application of microthin hot
films [12.116,117] have advanced their use for stability
and transition measurements. These films are in the form
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Fig. 12.24 Fixed and traverse hot-wire measurements of
T–S waves
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of vacuum deposited circuitry on a Kapton sheet. As
many as 50 sensors can be concentrated in a small area
and can be oriented in any direction. Although difficult to
obtain an absolute calibration (one could use a Preston
tube over the sensors), this technique is very valuable
for measuring wall shear stress fluctuations. Disturbance
spectra and transition location can be determined. With
the use of multiple hot films, phase and group velocity
directions can be determined [12.118]. The use of hot
film sheets are superior to individual hot film sensors in
that they provide a minimum of disturbance to the flow,
are robust, and are easy to apply. This is also a superior
technique for flight experiments where it may not be
possible to use hot wires. In their simplest, uncalibrated
use, an array of sensors would indicate an order of mag-
nitude increase in RMS fluctuations wherever transition
to turbulence occurred.

12.3.7 Visualization Methods

Visualization techniques are useful for qualitative in-
formation regarding scales and approximate transition
location. For stability and transition work, they must
always be supported by hot-wire or hot-film measure-
ments.

Smoke-Wire Technique
Most smoke wires used for flow visualization have diam-
eters in the range of 50–80 µm. This technique was
modernized by Corke et al. [12.119]. The oil coating
(toy train smoke) distributes itself periodically along the
span of the wire and when the wire is heated it generates
a short burst of smoke streaks. The computer initiates the
wire voltage and the time-delayed shutter release. When
used in stability experiments the smoke wire is placed
near the critical layer. Much of the interesting detail is
lost if the wire strays from the critical layer. The wake
of the smoke wire causes a kink in the basic-state profile
which alters its stability characteristics. As a result, if

one examined the amplitude growth of a T–S wave in the
stream direction, one would observe an almost step-like
increase in amplitude downstream of the smoke wire.
The amplitude could easily change by a factor of three
due to the smoke wire. Thus, in contrast to its universal
use in turbulent boundary layers, special care must be
exercised with laminar stability.

One should always be reminded that streaklines do
not correspond to streamlines in an unsteady flow. The
appearance of a 3-D structure in a streakline is a histori-
cal event that is a result of the integration of the history of
the smoke. A direct measurement at the location of an ap-
parent 3-D structure may reveal something different. In
the same way, visualization should always be accompa-
nied by direct measurements. This type of visualization
is good for giving scales over which you need to do the
other measurements. An example of the usefulness of
the smoke-wire technique is found in Saric [12.120].

Surface Coatings
Surface coatings have the ability to determine the
approximate location of transition and only rarely
something else. The author has tried them all. Shear-
sensitive liquid crystals are robust but seem more useful
for detecting separation than transition [12.121]. This
technique is difficult to apply and introduces a non-
trivial surface roughness which affects the stability
characteristics. Temperature-sensitive paint (TSP) and
pressure-sensitive paint (PSP) have been used for tran-
sition detection. PSP and TSP require some application
skills and perhaps are best used for complicated shapes.
Infrared thermography (IRT) is a non-obtrusive, suc-
cessful technique requiring a sizable investment in IR
cameras (see [12.122] and [12.123] for details). The au-
thor has had a great deal of success using naphthalene
coatings [12.116,124,125] but health physics issues have
arisen regarding the use of naphthalene, trichlorotrifluo-
roethane, trichloroethane, and other chemicals. For this
reason, the author is reluctant to suggest their use.

12.4 Measurements Considerations in Non-Canonical Flows

Wall-bounded turbulent flows are found in a vast num-
ber of practical applications, and accordingly have been
the focus of research for many years. Most studies have
been on the canonical case, that is, a flat-plate turbulent
boundary layer developing in a zero pressure gradi-
ent. However, most practical boundary layer flows are
non-canonical, involving an increased degree of com-

plexity. Some examples include, flow over a skewed or
non-axisymmetric geometry, a boundary layer flow en-
countering an obstacle, or flows involving corners and
junctions. In these cases, strong secondary flow and pres-
sure gradients are often present, as is flow separation.
Measurements in such flows pose particular challenges
compared to the canonical boundary layer flow case, and
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this is the topic of this section. The discussion is lim-
ited to incompressible boundary layers that may have
three-dimensionality in the mean, pressure gradients, or
flows that are undergoing mild or incipient separation.
In such flows the important feature of the measurement
technique is that it must be able to determine the primary
flow direction, as well as potentially deal with very high
levels of turbulence intensity and/or instantaneous flow
reversals. In these cases, perhaps more than others, the
measurements must not disturb the flow.

Figure 12.25 shows sketches of typical mean vel-
ocity profiles that are being considered. Figure 12.25a
corresponds to a boundary layer developing in the
presence of three-dimensional pressure gradients.
Pressure-driven flows are characterized by free-stream
streamlines that curve. The slower fluid near the sur-
face has less inertia than the free-stream fluid and so
is turned through a larger angle, as shown in the fig-
ure. Such flows may be caused by external geometry
changes in those directions or by streamline curvature
of the solid body. Three-dimensional turbulent bound-
ary layers may also be formed by shearing. An example
would be an initially two-dimensional boundary layer
that encounters a section of the wall that is moving at an
angle different with respect to that of the free-stream di-
rection. A review of a number of experiments describing
how three-dimensionality affects the turbulent boundary
layer structure is given by Eaton [12.126]. The second
type of non-canonical turbulent boundary layers being
considered, represented by Fig. 12.25b, are flows that
may remain two-dimensional in the mean but involve
strong streamwise pressure gradients. In the case of ad-
verse pressure gradients this may lead to flow separation.
A good review of turbulent boundary layer flows with
separation is given by Simpson [12.127].

12.4.1 Pressure Probe Measurements

The standard method for measuring mean or average
velocity is to use a Pitot static tube, as described in
Sect. 5.1. Accurate use of this probe relies on align-
ing the probe to a known primary flow direction.
Chue [12.128] and Bryer and Pankhurst [12.129] pro-
vide a good summary of the accuracy penalties incurred
for misalignment for different Pitot-static tube designs.
For complex flows, both the dynamic and static pres-
sures are required as well as flow direction. This is most
commonly achieved by using combination or multi-hole
pressure probes [12.128], which typically require cali-
bration in known flow conditions representative of those
in which they will be used.
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Fig. 12.25a,b Examples of non-canonical boundary layer mean
velocity profiles: (a) pressure-driven three-dimensional boundary
layer, (b) adverse-pressure-gradient flow with incipient separation

Many different types of probes have been proposed
in the past, either for measuring flow direction, flow
speed or both. Figure 12.26 shows sketches of two such
devices. Figure 12.26a shows a five-hole probe, which
is an example of a multi-hole probe where several small
diameter tubes are axisymmetrically arranged around
a central total-head tube. The outer tubes have faces
that are slanted at a fixed angle as shown in the figure.
Figure 12.26b shows a seven-hole probe consisting of
a hemispherical tip with one central hole with the re-
maining holes axisymmetrically distributed at one outer
radial distance from the centerline. The holes extend
over the length of the probe and connect internally or by
tubing to a manometer. Common alternate designs use
tips that are machined to a cone or with faceted faces
(cobra probe).

Multi-hole pressure probes require calibration, and
various schemes have been proposed. See for example
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Fig. 12.26 (a) Schematic of five-hole probe. (b) Seven-hole
probe with hemispherical tip
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Chue [12.128], Dominy and Hodson [12.130], Zil-
liac [12.131], Rediniotis and Vijayagopal [12.132], and
Wenger and Devenport [12.133]. Inaccuracies due to
Reynolds-number effects can be significant and need
to be considered for accurate measurements. Once cal-
ibrated, typical multi-probes have been used in flows
where the primary flow direction falls within a cone
with an apex angle of up to nominally 75 degrees.

Extended ranges of application, where the approxi-
mate primary flow is not known beforehand or where the
flow is reversed, have been proposed. However, these
usually rely on exhaustive calibrations. Pisasale and
Ahmed [12.134] describe a preprocessing scheme to deal
with reverse flows. Rediniotis and Kinser [12.135] de-
scribe an omnidirectional pressure probe that consists
of a spherical tip with 18 pressure ports. The calibration
database that they use is based on readings from 10 000
individual probe orientations in a steady state environ-
ment. The time average of the fluctuating pressures in
a turbulent flow, when processed with the time-steady
calibration information, may not accurately reflect the
time-averaged flow field.

For measurements in non-canonical turbulent
boundary layers, early studies (before the mid to the late
1970s) used pressure probes extensively, as reviewed
by Vagt [12.136, 137]. After which, hot wires and LDA
became the preferred methods. One of the main con-
cerns about multi-hole probes is their relative large size,
and hence their intrusive influence on the flow, partic-
ularly for near-wall measurements. This is especially
a concern in pressure-driven boundary layers where the
imposed pressure field drives the flow. If the pressure
probe and associated stems and holders are too large,
then the resulting deflected streamlines may manifest in
an altered pressure field and hence different flow. In an
attempt to overcome these problems, some efforts have
gone towards developing miniature probes, such as that
of Ligrani et al. [12.138]. Pompeo et al. [12.139] used
a series of pressure probes, including five-hole probes to
measure mean flow profiles in a laterally strained turbu-
lent boundary layer. Westphal et al. [12.140] developed
a single-hole probe in which a single tube cut at 45◦ is
rotated about its axis by a miniature stepper motor. This
allows velocity magnitude and angle measurements with
a significantly smaller probe, although the measurement
procedure is more time-consuming.

When using multi-hole probes, one issue which
should always be kept in mind is that the ultimate ac-
curacy of the pressure probe relies on the accuracy of
the calibration. Moreover, one uncertainty that remains
with most existing calibration techniques is that the cal-

ibrations are performed at steady pitch and yaw angles
in uniform flows, and no account of the nonlinear effects
of the turbulent flow are accounted for. The level of this
uncertainty remains unclear.

12.4.2 Turbulence Measurements

The hot-wire and laser Doppler anemometer (LDA)
remain the methods of choice for single-point measure-
ments of turbulence quantities, especially if time-series
data are required. Comprehensive descriptions of hot-
wires and LDA methods are considered in Sect. 5.2 and
Sect. 5.3.1 of this handbook, respectively. Here, discus-
sion is limited to considerations specific to the use of
these techniques in non-canonical boundary layer flows.

Laser Doppler Anemometry (LDA)
LDA is well suited for non-intrusive measurements of
complex flows. A three-component system with fre-
quency shifting can, with reasonable accuracy, measure
all three orthogonal components of velocity in complex
flows, including regions of separated reversed flow. Suc-
cessfully implementing a three component system can
be difficult, not to mention expensive. Optical access
issues quite often limit the type of measurement that
can be made. Very-near-wall measurements are particu-
larly challenging because of reflections and/or refraction
of the laser beams due to the close proximity of the
wall. Even so, successful three-component LDA mea-
surements in three-dimensional boundary layers have
been made, see for example the studies of Driver and
Hebbar [12.141], and Flack and Johnston [12.142,143].

Perhaps the most accurate LDA measurements to
date for the near-wall region of a turbulent bound-
ary layer were made by DeGraaff and Eaton [12.144].
For those experiments a high-resolution two-component
system, with side-scatter collection optics, was custom
built giving a measurement volume of 35 µm in diam-
eter, and 60 µm in length. Such small measurement
volumes are essential if one wishes to adequately re-
solve all the near-wall energy-containing motions in
most turbulent boundary layers. For example, accu-
rate measurement of Reynolds stresses requires the
measurement volume to have a characteristic length typ-
ically less than 20 viscous wall units. This is extremely
small for boundary layers in most laboratory-scale fa-
cilities at high Reynolds number. Figure 12.27, taken
from [12.144], illustrates this point well and shows in
physical terms the limitation of large measuring vol-
umes (such as for a regular X-wire, or standard LDA) as
Reynolds number increases in a laboratory wind tunnel.
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Song and Eaton [12.145] used the same high-resolution
LDA system to make measurements in a boundary layer
that experienced strong adverse pressure gradient, sep-
aration, reattachment, and downstream redevelopment.
A common problem of high-spatial-resolution LDA sys-
tems is the low data-sampling rate. Extremely high
seeding levels are needed to obtain a sufficient statistical
sample in a reasonable time, and it is virtually impossi-
ble to obtain high-resolution time-resolved LDA data in
air flows.

Lowe and Simpson [12.146] have recently re-
ported a three-color three-head optical arrangement and
a higher-order processing scheme that allows simulta-
neous measurement of the three component velocity
and the flow acceleration. Other notable studies of non-
canonical boundary layer flows include that of Simpson
et al. [12.127,147] who made accurate measurements us-
ing a two-component system in a separating boundary
layer, and made comparisons to hot-wire measurements.
LDA measurements have also been extensively used
for three-dimensional boundary layers. See for exam-
ple Olcmen and Simpson [12.148], Webster, DeGraaff
and Eaton [12.149], Compton and Eaton [12.150], and
others as reviewed by Eaton [12.126].

Hot-Wire Anemometry
The hot-wire, while needing special consideration in
non-canonical flows, still remains the most cost ef-
fective and simplest method for measuring turbulence
flow statistics. A single wire is especially preferred
for measurements in very thin boundary layers, or
for measurements very close to the wall. For two-
component measurements of velocity, X-wires are most
often used. Three-wire probes are also commonly avail-
able commercially, and allow the measurement of all
three components of velocity instantaneously. For these
probes the calibration schemes are more complex, and
the accuracy of the turbulence statistics are in gen-
eral not as good as can be obtained using X-wires
(normal and rotated at 90 degrees). Furthermore, sin-
gle wires and X-wires offer the best opportunity for
adequate spatial resolution. Details of three-component
hot-wire systems are discussed in Bruun [12.151] and
Sect. 5.2.

The key to successful use of the hot wire is under-
standing its limitations, and knowing when a reliable
measurement can be made. The biggest problem facing
conventional hot wires is flow ambiguity, and/or very
high levels of turbulence intensity, and these will be
discussed in the following.
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Fig. 12.27 Comparison of typical X-wire and required LDA mea-
surement volume for near-wall boundary-layer measurements (after
DeGraaff and Eaton [12.144])

High Turbulence Intensity Flows. For a single wire, the
limitations due to large incident velocity vector angles
can be understood by considering the response of the
wire to an instantaneous flow, as shown in Fig. 12.28a.
The long time-averaged velocity is U , and u, v and w

are the turbulent fluctuating components in the Carte-
sian coordinate system (x, y, z) shown in the figure. The
output voltage E from an anemometer may be modeled

�

��

��

�

�

������

��

��

�$

Fig. 12.28 (a) Single-normal hot-wire geometry. (b) Cone
angle θc for X-wire
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using a King’s law formulation

E2 = A + BUn
e , (12.37)

where Ue is referred to as the effective velocity.
A commonly used relationship for Ue is (Champagne
et al. [12.153, 154])

U2
e = U2

N + k2U2
L , (12.38)

where UN is the velocity normal to the wire, and UL is
the longitudinal component of velocity along the wire.
The constant k has a typical value of 0.2. Consider-
ing the velocity vector in Fig. 12.28a, and following
Perry [12.155], the Pythagoras and binomial theorems
are used to obtain the expression

Ue = (U +u)+ U

2

[(
u

U

)2

+
(

v

U

)2

+ k2
(

w

U

)2
]

+higher-order terms . (12.39)

Therefore, clearly u/U , v/U and w/U need to be small
in order to assume

Ue ≈ U +u . (12.40)

If the turbulence intensities are high, (12.39) may be
used to estimate the possible error. Bruun [12.151] pro-
vides a good list of references of studies documenting
uncertainties for flows with very high turbulence inten-
sities. In reverse flows or flows with excessively high
turbulence intensity, a way to successfully use a single
wire is to fly the wire. A flying hot wire is a hot-wire de-
vice that moves the probe into the primary flow direction
with a known bias velocity. The forward bias speed must
be sufficiently fast so that the relative U is high enough to
make the relative u/U , etc. sufficiently small. Cantwell
and Coles [12.156], Perry and Watmuff [12.157] and
others (Bruun [12.151]) have successfully used such an
approach in wake flows, and other flows with significant
flow reversal. Perry and Li [12.158] used a flying hot
wire in the study of rough-wall boundary layers where
high turbulence intensities can also be encountered.

In the case of X-wires, an effective way to qualify the
largest acceptable turbulence intensity is to define a cone
angle [12.159] as shown schematically in Fig. 12.28b.
The term cone angle, θc, refers to the included angle in
the plane of the X-wire of an imaginary cone (assumed
to be symmetric) in which the instantaneous velocity
vectors fall. Marusic and Perry [12.152] quantitatively
defined the cone angle as

θc = 2(|µc|+3σc) , (12.41)

where µc and σc are the mean and standard deviation, re-
spectively, of the probability distribution function of the
measured velocity vector angles. If θc exceeds a criti-
cal cone angle [12.152] then incorrect values of inferred
Reynolds stresses will result. Determining the critical
cone angle requires an independent method to accu-
rately measure the Reynolds stresses (u2, v2, −uv etc.).
Marusic and Perry [12.152] made measurements in a tur-
bulent boundary layer developing in a strong adverse
pressure gradient. They used a flying hot wire to reduce
the effective θc and compared the measured Reynolds
stresses between flying and stationary X-wires. From
this, it was determined that for their X-wires (90◦ in-
cluded angle) and calibration procedure, the critical cone
angle was 40−45◦. Therefore, if a stationary X-wire
recorded a θc in excess of this value, it was determined
to be unreliable. Figure 12.29 is taken from [12.152]
and shows the variation of θc for stationary and fly-
ing hot wires in an adverse-pressure-gradient boundary
layer.

The critical cone angle of a X-wire can be increased
by either using a special calibration scheme to account
for the large incident velocity vector angles, or by us-
ing large included angles between the wires. Skare and
Krogstad [12.160] used X-wires with an apex angle of
110◦, and made measurements in a very strong pressure
gradient boundary layer flow on the verge of separa-
tion. Elsberry et al. [12.161] conducted experiments in
a boundary layer with incipient separation. They adopted
a calibration scheme that extended their effective crit-
ical cone angle, and made comparative measurements
with LDA to confirm the accuracy of their hot-wire
measurements.
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Fig. 12.29 Comparison of cone angle for stationary and fly-
ing X-wire across a turbulent boundary with strong adverse
pressure gradient (after Marusic and Perry [12.152])
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Unsteady, Reverse Flows. As discussed above, a fly-
ing hot wire may be used in reverse flows to remove
the directional ambiguity involved. However, in many
non-canonical flow applications this is not possible
or convenient, due to the mechanical complexity in-
volved with a flying apparatus, and often a continuous
time series at a given point in the flow is required.
Various thermal anemometry techniques have been de-
veloped over the years to address this issue, and many
are reviewed by Bruun [12.151]. The most prominent
of these is the pulsed-wire anemometer originally de-
veloped by Bradbury and Castro [12.163]. A design
specific for near-wall flows was developed by West-
phal et al. [12.162], and is shown in Fig. 12.30. The
principal of operation relies on a central wire that
is heated in short pulses, and upstream and down-
stream hot wires that operate effectively as temperature
sensors. Typically the central wire is heated periodi-
cally, and the velocity is measured from the time of
flight of the hot tracer fluid from the central wire to
the downstream or upstream wires, giving the forward
or reverse velocities respectively. Other pulsed-wire
anemometer designs for near-wall flows have been pro-
posed by Castro and Dianat [12.164] and Devenport
et al. [12.165] and others. Limitations on the use of
these probes is dependent on thermal diffusion consid-
erations as discussed by Schober et al. [12.166], and
in general the frequency response is limited to tens of
Hz.
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Fig. 12.30 Pulsed wire probe, suitable for measurement of
near-wall velocity and wall-shear stress in reverse flows
(after Westphal et al. [12.162])

12.4.3 Wall Shear Stress

A comprehensive review of different methods for mea-
suring wall shear stress is given in Sect. 12.1. For
non-canonical boundary layer flows the number of
available techniques is greatly reduced, especially for
three-dimensional boundary layers and flows with sep-
arated flow regions. For three-dimensional boundary
layers, the skin friction measurement technique needs
to be able to determine the principal wall shear stress
magnitude and direction.

Of the direct methods, the floating element method
can in principle be used for complex flows. However,
its use is complicated in pressure gradients, where the
device needs to be able to account for the pressure gra-
dient contribution to the force balance across the sensor.
Also, in incipient separation flows where the wall shear
stress is very small, the signal-to-noise ratio is usually
prohibitively small. Oil-film interferometry is perhaps
the best of the direct methods for steady-state condi-
tions. Most systems now use video cameras to record
the interference fringe patterns as a function of time
from an oil drop being sheared by the flow. From the
two-dimensional images it is usually fairly straightfor-
ward to determine the direction of principal wall shear
stress.

Of the indirect methods, several methods are avail-
able but each has its disadvantages. For example, one
method is to use an equivalent of the Clauser chart,
where total mean velocity Q at a wall-normal position is
measured and assumed to follow a logarithmic law of the
wall, thus yielding Qτ , the total wall shear velocity. This
method was used by Compton and Eaton [12.150] in
their pressure-driven three-dimensional boundary layer
study. This technique is not regarded as ideal as there is
considerable debate as the validity of the law of the wall
in complex flows.

For time-resolved wall shear stress measurements in
attached flows the most common method is to use a hot
wire positioned very close to the wall in the viscous
sublayer. The wall shear stress, τ0, is then known from
the measured velocity U from the linear relationship

τ0 = µ

y
U , (12.42)

where y is the distance from the wall, and µ is the vis-
cosity of the fluid. For complex flows with flow reversal,
pulsed probes such as the one shown in Fig. 12.30 have
been used by adopting higher-order similarity formula-
tions ([12.162, 167]). That is, for y small

τ0 = f (U) . (12.43)
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Other techniques also based on thermal anemometry
but with higher-frequency response than pulsed probes
have recently been reported. These include the designs
by Spazzini et al. [12.168] who used two electrically
heated hot wires mounted above a cavity, and Li and
Naguib [12.169] who used an oscillating hot-wire tech-
nique with a reported frequency response of 1.4 kHz.

12.4.4 Planar
and Whole-Field Measurements

The majority of experimental studies on non-canonical
turbulent boundary layers to date have been done with
single-point measurements. This approach is perhaps
still the best if the aim is to measure accurate turbulence
statistics. However, often it is desirable to measure the
velocity field simultaneously in a plane or volume, and
using arrays of single-point probes is far from ideal.
Fortunately, over the past decade rapid advances in dig-
ital camera and laser technology have seen techniques
such as particle image velocimetry (PIV) become much
more prolific. Carefully applied, PIV can be an excellent
and very useful method for measuring complex bound-
ary layer flows. Some recent studies include: Kiesow
and Plesniak [12.170] who made PIV measurements
in a shear-driven three-dimensional turbulent boundary
layer, and Angele [12.171] who made measurements in
a separating adverse-pressure-gradient turbulent bound-
ary layer.

A thorough and detailed description of issues relat-
ing to PIV and its accurate use is presented in Sect. 5.3.2.
For non-canonical turbulent boundary layers, and highly
complex flows in general, a number of particular chal-
lenges to the accuracy of PIV are worth noting here. PIV
is a technique synonymous with compromises – at least
when it comes to the choice of parameters. For example,
the time delay between consecutive laser sheet pulses
needs to be large to minimize the error in the differenc-
ing algorithm, but not so large that the light scattering
particles have had time to leave the illuminated vol-
ume. In highly complex flows, the measurement field

may cover a wide range of velocities and cross-flows,
and therefore an optimal choice of measurement pa-
rameters, such as laser sheet thickness and time delay
between laser pulses, may only apply for a small part
of the measurement field. Typically, such errors will
show up prominently in measurements of the Reynolds
stresses. Another common practical difficulty of using
PIV in complex geometries is adequate optical access,
both from the standpoint of introducing a laser sheet
and taking camera images. One way to overcome this
problem is to construct the flow facility out of a trans-
parent material, and use a working fluid with the same
optical refractive index as the solid surfaces. Recently,
this was successfully achieved by Uzol et al. [12.172] in
a complex axial turbo-pump flow facility. The authors
constructed the rotor, stator and body completely out of
transparent acrylic, and used sodium iodide, mixed with
water to the right proportion, to match the refractive
index of the acrylic.

Several methods exist for the measurement of instan-
taneous velocity field measurements in a volume, such
as holographic techniques. A relatively new technique
that is showing promise for whole field measurements
in complex boundary layers is four-dimensional (4-D)
magnetic resonance velocimetry (4-D MRV) developed
by Elkins et al. [12.173]. The method is an adaptation of
a medical magnetic resonance imaging (MRI) system
and provides a non-invasive measurement of three-
component mean velocity fields. Elkins et al. [12.173]
demonstrated the technique in a complex geometry with
multiple 180 degree bends. For turbulence measure-
ments in complex geometries, several workers have also
proven the effectiveness of holographic PIV. See for ex-
ample, Tao, Katz and Meneveau [12.174] who made
measurements in a turbulent duct flow, and Konrad,
Schroder and Limberg [12.175] who made measure-
ments in an internal combustion engine cylinder. Further
advances in hologram imaging techniques will likely
see the increased use of this method in the future,
and possibly for non-canonical turbulent boundary-layer
studies.
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