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Uncovering the Lagrangian Skeleton of Turbulence
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We present a technique that uncovers the Lagrangian building blocks of turbulence, and apply this
technique to a quasi-two-dimensional turbulent flow experiment. Our analysis identifies an intricate
network of attracting and repelling material lines. This chaotic tangle, the Lagrangian skeleton of
turbulence, shows a level of complexity found previously only in theoretical and numerical examples
of strange attractors. We quantify the strength (hyperbolicity) of each material line in the skeleton and
demonstrate dramatically different mixing properties in different parts of the tangle.
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Turbulent transport underlies a vast range of environ-
mental and engineering phenomena, yet its detailed under-
standing remains elusive. Coherent structures play a
crucial role in turbulent transport, but an objective extrac-
tion of such structures from experimental or numerical data
has proven to be a challenging task. One difficulty is the
lack of an accepted definition for coherence in the Eulerian
(laboratory) frame: high or low values of vorticity, pres-
sure, strain, and energy have all been suggested as defining
quantities [1,2]. However, different definitions in the
Eulerian frame favor different structures partly because
of a lack of unambiguous threshold values over which a
flow region is to be considered coherent. More alarmingly,
Eulerian indicators of coherence are frame dependent
[1,3], and hence are often unsuccessful in capturing intrin-
sic flow properties in unsteady flows.

In contrast, coherent structures in the Lagrangian
(particle-based) frame can be defined as distinguished
sets of fluid particles. These Lagrangian coherent struc-
tures (LCS) have a decisive impact on fluid mixing by their
special stability properties [4—7]. For time-periodic lami-
nar flow models, LCS are straightforward to determine
using methods developed in studies of chaotic advection
[8]; however, it is quite another matter to identify LCS for
turbulent flow experiments where stability properties of
individual fluid particles are difficult to establish.

Recent experimental work [9] showed that LCS in a
time-periodic laminar fluid flow mimic the complicated
tangles predicted by numerical studies of chaotic advection
in time-periodic flow models. In the time-periodic case,
velocity measurements for a small number of tracer parti-
cles can provide a highly resolved velocity field; the same
particles yield more detail about velocity field as time
progresses [9]. However, the same approach is inapplicable
to turbulent flows for lack of a distinguished period.
Further challenges to locating LCS in turbulence are high
noise levels and increased spatial complexity, both of
which have been absent in LCS studies of time-aperiodic
low-Reynolds-number experimental flows [10]. Here we
extend LCS detection tools to obtain the analogs of laminar
chaotic tangles in a turbulent flow.
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Experiment and data processing.—Our experiments are
conducted on water in a tank 50 cm high and 40 cm in
diameter, rotating at 0.4 Hz [11]. Water is pumped through
sources and sinks in the bottom of the tank, thus producing
near the bottom of the tank a turbulent three-dimensional
(3D) flow with Reynolds number (Re) 6 X 10* and Rossby
number (Ro) 20. With increasing height in the tank, the 3D
flow evolves into quasi-2D turbulence due to the influence
of rotation and the decay of 3D turbulence. This Letter
concerns the nearly 2D turbulent flow near the top of the
tank, where Re = 1000 and Ro = 0.3.

Velocity measurements are made on fluid seeded with
neutrally buoyant tracer particles illuminated by a horizon-
tal laser light sheet [11]. A camera with resolution 1004 X
1004 pixels and speed 30 frames/s captures images of the
particles. The correlation image velocimetry algorithm
[12] is used to determine velocity field snapshots (300
for each run) separated in time by 1/15 s, on a 128 X
128 spatial grid with 0.3 cm resolution. An analysis of
errors is presented in [11].

To postprocess the experimental velocity field, we use
cubic interpolation in space and linear interpolation in time
to obtain a refined velocity field on a 1500 X 1500 grid
with time step At = 0.004 s. Using refined velocity does
not improve the detection of Eulerian coherent structures,
but it leads to LCS detection with resolution exceeding that
of the raw Eulerian data. By the mathematical properties of
hyperbolic sets, any LCS whose length scale is well sepa-
rated from the refined grid scale is guaranteed to exist in
the original flow [7].

Observations.—A snapshot of the vertical vorticity field
in a horizontal plane 4 cm below the tank lid is shown in
Fig. 1(a); an enlarged image including both vorticity and
velocity fields is shown in Fig. 1(b). The flow contains
long-lived coherent vortices and jets with a wide range of
sizes. Measurements with a vertical laser light sheet reveal
that the coherent structures are columnar, extending verti-
cally throughout most of the tank. The quasi-2D flow near
the top of the tank is well characterized by the vertical vor-
ticity field [11]. To quantify the two-dimensionality of
the flow, we define the integrated Lagrangian divergence,
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FIG. 1 (color online).

(a) A snapshot of the vertical vorticity field in flow in a rapidly rotating tank. The color (gray) scale is saturated

to bring out the weaker features. (b) A close-up of the boxed region in (a) with the velocity field indicated by arrows. The largest
velocity is 6.5 cm/s and the largest (smallest) value of vorticity is 12.3(—5.8) s~!. (c) Absolute value of the integrated divergence L,,
which is dimensionless, along particle paths for 8 s in forward time. Regions close to the wall are white because the estimates of the

divergence field in those regions are inaccurate.

L,(x9) = [1*T(V - ¥)|ps(x,)ds, where Fj(x,) is the position
of the fluid particle (whose initial position is X at time ¢) at
time s. The exponential of L, is the ratio of the deformed
area at t + T to the original area of an infinitesimal area
element around x at time ¢ [13]. We find that L, along
particle paths (zero for a purely 2D flow) is small through-
out most of our flow, taking large values only in small
regions [Fig. 1(c)]. Further, as expected for a 2D flow, the
spatial mean of the exponential of the integrated diver-
gence is close to unity.

Analysis.—To understand the Lagrangian structure of
turbulence, we extend the Lyapunov-exponent-based LCS
detection scheme [5] applied previously to laminar-flow
experiments with periodic [9] and aperiodic [10] time
dependence. Specifically, we solve numerically for particle
trajectories x(7, X)), starting from points X, on the refined
velocity grid at a fixed initial time 7. By numerical differ-
entiation, we compute the largest singular-value field
Amax (%, o, Xg) of the deformation-gradient tensor field
[ox(t, to, X)/ X0 ) [ 0x(t, to, X)/ X, ]. We then use the di-
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FIG. 2 (color online).

rect Lyapunov exponent (DLE) field o} (x() =
[InA i (8, 70, X0)1/(2(2 — 1)) plotted over initial positions
X( to visualize the LCS.

For t > t,, repelling LCS at 7, can be located as local
maximizing curves (i.e., ridges) of the o7} (x,) field [4-7].
Similarly, for r < 1, attracting LCS at 7, can be located as
ridges of the o} (x,). For large enough integration times T,
sharp evolving ridges of a'ingT(xO) and a’ing(xo) turn out
to be close to evolving material lines, i.e., the fluid flux
across them at any time ¢, is negligible [14]. The primary
topological features of the LCS extracted from the DLE
field is insensitive to the integration time 7T [5,15]. Ac-
cordingly, our analysis of the turbulent data reveals essen-
tially the same topology for T ranging from 1 to 16 s; the
ridges are weak at short times and more detailed at long
times. We use 7 = 8 s for the results presented here.

A direct Lyapunov exponent field snapshot is shown in
Fig. 2. Peaks and valleys on the scale of the grid size are
discernible in Fig. 2(a). This noise comes both from mea-
surement uncertainties and from the sensitive nature of

(a) A 3D plot of the backward-time DLE field at 7, = 9.89 s (for T = 8 s). Note the large amount of noise

present in the scalar field. (b) 2D plot of the DLE field shown in (a). (c) Ridges (black curves) of the scalar field in the boxed region in

(b), extracted by gradient climbing and filtering.
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fluid trajectories in a turbulent flow; consequently, nearby
particles end up at very different locations due to inevitable
errors in their numerical advection. Corresponding to these
different locations, significantly different DLE values arise
in our computations, and existing techniques encounter
difficulties. We therefore need new computational tools
to extract large-scale DLE ridges reliably from our turbu-
lent flow data.

To this end, we note that for any fixed time 7, and large
enough 7, a ridge of the DLE field 0'§3+T(X0) acts as an
attractor for the gradient dynamical system

dxo/ds = Vo' (x), (1)
where s denotes the arclength along the gradient lines of
0;3+T(x0) and V denotes the spatial gradient with respect
to the initial position xy. We exploit this attracting property
in ridge extraction as follows: (i) For any 7, and large
enough 7, fix a narrow region D around the ridges where
the magnitude of the gradient Vo-ﬁg”(xo) exceeds a pre-
defined threshold. This gives a set of points in a close
neighborhood of the ridges. (ii) Use these points as initial
conditions for computing numerically the solutions x(s)
to the gradient system (1). Following these solutions takes
us from their initial conditions towards the closest ridge
along the local gradient of the DLE field. (iii) For a given
initial condition, stop the computation of the correspond-
ing solution x(s) if the following two conditions hold:
(a) the Hessian matrix VzaﬁngT(xo(s)) has at least one neg-
ative eigenvalue (a prerequisite for a point to be on a ridge),
and (b) the angle between the eigenvector e§8+T[x0(s)]
corresponding to the smaller-in-norm eigenvalue of the
Hessian matrix V20§8+T(x0(s)) and Va'ingT(xO(s)) shows
no appreciable change (a sign of closeness to a nearby
ridge). For large enough T, the eigenvector e§8+T[x0(s)]
will be approximately tangent to a ridge, and the converged
solutions x,(s) will approximate ridges accurately. Ridges
of the backward-time DLE field extracted in a small region
by our algorithm are shown in Fig. 2(c). Similar detail and
accuracy have been obtained for the entire spatial domain
for a range of values of 7, and 7.

Hyperbolicity criterion.—While hyperbolic material
lines create DLE ridges, the converse is not true: a DLE
ridge may simply indicate a material line of high shear that
does not attract or repel nearby particles at an exponential
rate [7]. For a DLE ridge to be hyperbolic, it must contain a
hyperbolic core that plays a role analogous to that of saddle
points in steady flows. Namely, a truly repelling DLE ridge
will act as a stable manifold for a hyperbolic core, while a
truly attracting DLE ridge will act as an unstable manifold
for a hyperbolic core.

Previous studies of laminar flows did not differentiate
between hyperbolic material lines and lines of high shear.
However, the ubiquitous presence of shear in a turbulent
flow requires such a differentiation, i.e., identification of
hyperbolic cores along DLE ridges. Recent mathematical
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FIG. 3 (color online). (a) Ridges from the backward-time DLE
field (at 75 = 9.89 s) are blue (dark gray). Red (gray) spots
indicate hyperbolic cores. The boxes indicate the initial locations
of three fluid blobs. (b) The three fluid blobs advected with the
backward-time DLE field at 7, = 16.89 s. The identifying center
dots are not physical.

results [7] enable detection of hyperbolic cores using the
rate of strain tensor S(x, 7), the symmetric part of the
velocity gradient field Vv(x, 7). Specifically, if n(z, x,) is
a unit normal to a forward-time DLE ridge at the point X, at
time tf,, then X, is contained in a hyperbolic core of a
repelling material line if the inner product v, (x() =
(n(ty, X¢), S(to, Xo) (2, X)) is positive. Negative values
of the same inner product on a backward-time DLE ridge
reveal hyperbolic cores of attracting material lines [7].
Figure 3(a), first implementation of the hyperbolicity
criterion for a turbulent flow, shows that almost all DLE
ridges in our flow field have hyperbolic cores and hence
represent truly hyperbolic material lines. The location of
hyperbolic cores is verified by advecting a fluid blob start-
ing near a core, e.g., the black blob in Fig. 3, and then
comparing the blob’s deformation to that of other blobs
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FIG. 4 (color online). (a) Stable (red or gray) and unstable
(blue or dark gray) manifolds at #, = 9.89 s extracted from the
experimental flow data as ridges of the forward-time and
backward-time DLE fields, respectively. (b) A close-up of the
boxed region in (a); the integration time for evaluating the DLE
field is 9.8 s.

released away from hyperbolic cores, such as the blob with
a white center dot, which was released on an LCS ridge but
away from hyperbolic cores, or the blob with a pink (light
gray) center dot, which was released away from LCS
ridges; there is little stretching of the latter two blobs.
The results in Fig. 3 justify identification of hyperbolic
material lines with the set of forward-time and backward-
time DLE ridges. Red (gray) ridges in Figs. 4 are stable
manifolds for trajectories in the hyperbolic cores, while

blue (dark gray) ridges are unstable manifolds for the
hyperbolic cores. A fluid particle is subject to attraction
to nearby blue (dark gray) curves and simultaneous repul-
sion by nearby red (gray) curves. The complex tangle
formed by these two sets of curves is the underlying cause
of turbulent particle motion, the Lagrangian skeleton of
turbulence. Its complexity is beyond what has been seen
for laminar flows. Notably, the skeleton appears to fill the
whole flow domain densely with the exception of a single
vortical region whose 3-dimensionality cannot be ignored.
All hyperbolic cores appear to interact with themselves
through homoclinic tangles, as well as with any other core
through a chain of intersecting heteroclinic tangles. Such
behavior has been observed before only in numerical ex-
amples of strange attractors, such as the Lorenz attractor.

Conclusions.—Our analysis reveals an intricate tangle
of highly convoluted material lines, the Lagrangian skel-
eton of turbulence. The complexity of this tangle is unpar-
alleled by material tangles previously reported for laminar
flows. The methods developed here extend to 3D flows and
are expected to reveal structures of similar complexity.
Indeed, recent numerical studies of 3D turbulent channel
flows show highly complex LCS structures near hairpin
vortices [15].
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