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. A Wave Equation for Spin-1 Particles —
The Dirac Equation

e follow the historical approach of Dirac who, in 1928, searched for a relativistic
yvariant wave equation of the Schrodinger form

3_4’ = Ay @.1)

ith positive definite probability density. At that time there were doubts concerning the
lein-Gordon equation, which did not yield such probability density [see (1.29)]. The
\arge density interpretation was not known at that time and would have made little
1ysical sense, because 7+ and 7~ mesons as charged spin-0 particles had not yet been
scovered.

Since an equation in the form (2.1) is linear in the time derivative, it is natural to try
 construct a Hamiltonian that is also linear in the spatial derivatives (equality of spatial
id temporal coordinates). Hence, the desired equation (2.1) has to be of the form
i %’/’ - [hc( ai +a2662 +a35 0 )+,@m0.:2}¢ = App . 2.2)
he — yet unknown — coefficients &; cannot be simple numbers, otherwise (2.2) would
ot be form invariant with respect to simple spatial rotations. We suspect that the &; are

atrices and indicate this by the operator sign A . Then v cannot be a simple scalar, but
1s to be a column vector

Y1z, t)
, b
o= ?/}2(::!3 ) ’ (2.3)
'!JIN(SB, t)
om which a positive definite density of the form
P
i' * * * ¢2 N *
olx) =y lyp(z) = (Y1, ¥3, .. ) : =Y yipi(a) (2.4)
. i=1
YN

in be constructed immediately. We still have to show that o(z) is the temporal component
" a four-vector (current) for which a continuity equation must exist so that the spatial
tegral [ pd®z becomes constant in time. Only then is the probability interpretation of
z) ensured. It is clear that the wave function ¢ in (2.3) is a column vector analogous
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to the spin wave functions of the Pauli equation'. Hence, we shall call them spinors,
specifying this name later. The dimension N of the _spinor is not yet known, but we will
be able to decide this soon. The coefficients &; and 3 must obviously be quadratic N x N
matrices so that a column vector of dimension N stands on the lhs as well as on the rhs
(2.2). Thus the Schrodinger-like equation (2.1) and (2.2) represents a system of N coupled
first-order differential equations of the spinor components ;, 1 = 1, 2, ..., N. We also
indicate this point in the notation and write (2.2) in the form

%o he X ( 9 d 3
A = — 1+a2 +a3 3 z/)-,-+m0c Zﬂm-z/)-,-
Yoz Ox? oz or

ot 1% Z

= S Hertr @.5)

=1
Equation (2.2) is a short form of (2.5), in which the four N x N matrices (&,),,,- (t=1,23)
and ,3” are expressed in the usual abbreviated form for matrices by &; (: = 1, 2, 3) and
B respectively. To continue, we demand the following natural properties:

a) the correct energy — momentum relation for a relativistic free particle

E?= p C +m(“;c4 , (2;6)

b) the continuity equation for the density (2.4) and

c) the Lorentz covariance (i.e. Lorentz form-invariance) for (2.2) and (2.5), respectively.

To fulfill requirement a), every single component ), of the spinor 1 has to satisfy
the Klein-Gordon equation?, i.e.

6 "pa
R e
o2
On the other hand, from (2.2) it follows by iteration that
_hZQZi = — K22 i &b + ajd; a.2¢ -
ot? 2 8zi0zI

= (_ K2AV2 + m3c )¢,, . Q.7

i,j=1

h 3 3 s Al ;) .
+ mi"c S (&f+ ﬂai)b% +B*mdcty

=1

! See Vol.1 of this series, Quantum Mechanics — An Introduction (Springer, Berlin, Heidelberg 1989)
Chaps. 12,13,

2 Notice that the analogy to classical electrodynamics, where the six electromagnetic fields E;, Ey, E.,
H., Hy, H, satisfy the first-order differential equations (Maxwell equations)
OF 8H
VxH)y=—, (VxE)=-—, V-E=0, V-B=0
( H) v (Vx E)= ot

in a vacuum. Each single component E; and H; satisfies simultaneously the differential equation of the second
order (wave equation)

1 82 1 &
v - E;=0 and |[V2- Hi=0
( 2 6t2) ) ( 2 8t2) !
For further discussion of this analogy we refer to Exercise 2.1.
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Comparison with (2.7) shows the following requirements for the matrices &;, [§':
&i&j + &j&,‘ = 25,']'11 ,
a;f+Ba; =0,
&g - '32 =1 . 2.8)

These anticommutation relations define an algebra for the ¢ matrices. In order to establish
hermiticity of the Hamiltonian Hjs in (2.2), the matrices &;, ﬂ also have to be Hermitian;
thus,

al=a; , B1=p . 2.9)

Therefore, the eigenvalues of the matrices are real. Since, according to (2.8), one has
"2 =1 and ,32 = 1, it follows that the eigenvalues can only have the values + 1. Because
the eigenvalues are independent of the special representation® this can best be shown in the
diagonal representation of the single matrices. For example, &; in its eigenrepresentation
has the form

Ay 0 O 0
0 A O 0
& = 0 0 A 0 ,
0 0O 0 ... An
with the eigenvalues Ay, ..., Ay, and (2.8) now yields
1 0 0 A% 02 ......
) 0 1 0 0 A2 ......
ai=1=19 o =1 . N ;
. 02
AN
from which
A2=1 , ie Ap==+1 . (2.10)

Furthermore, from the anticommutation relations (2.8) it follows that the trace (i.e. the
sum of the diagonal elements of the matrix) of each &; and of A has to be zero. Namely,
according to (2.8) one has

&; = —paip
Because of the identity
3 This follows, because A, = o)y implies that

UAT " Uipo = Uy
and, therefore,

Al (wa) o (wc.)

The solutions of the rotated matrix A’ = [T AU~ are just the rotated vectors ¢/, = U, with the same
eigenvalues o.
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one concludes that
tré; = tr fPa; = fa;f=—ré; > wéi=0 . (2.11)

The trace of a matrix is always equal to the sum of its eigenvalues, which can be seen if
{7 transforms the matrix &; into its diagonal form,

Ay 0 e
0 A e
AN
Then
Ay 0 eeens
i 0 Ay -ooon =§:Ak —wla0! =wa; 00! =wéd
VAN =

which proves the above statement. Because the eigenvalues of &; and f) are equal to
+ 1, each matrix &; and # has to possess as many positive as negative eigenvalues, and
therefore has to be of even dimension. The smallest even dimension, N = 2, can not be
right, because only three anticommuting matrices exist, namely the three Pauli* matrices
&;. Therefore, the smallest dimension for which the requirements (2.8) can be fulfilled
is N = 4. We now study this case in more detail and indicate immediately one possible
explicit representation of the Dirac matrices, i.e.

&i'—-(gi ‘6’) , 3=(g .?11) , 2.12)

where &; are Pauli’s 2 x 2 matrices and 1 is the 2 x 2 unit matrix. With the explicit form
of the Pauli matrices of (1.65), we have, in detail,

0 0 0 1 0 0 0 -—i

a=°°1° a0 0 i O

1 0100)] " *"lo i 0 0} °
1 0 0 O i 0 0 O
0 01 0 1 0 0 O

. _{o o 0o -1 s {01 0 0

(13—1 00 O ’ﬂ"oo__l 0 (213)
0 -1 0 0 0 0 0 -1

Indeed, we can easily check the validity of the relations (2.8). For example,

4 See Vol.1 of this series, Quanium Mechanics - An Introduction (Springer, Beriin, Heidelberg 1989),
Chaps. 12, 13 and especially Exercise 13.1.
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holds. Here we have used the relation for the Pauli matrices’

G;6;+5j0; =261 . (2.14)
We also notlce that (2. 12) describes ]ust one possible choice of the Dirac matrices &;, A.
Each set &} = Ua;0-1, B’ = UBU !, which is obtained from the original &;, 3 of (2.13)
by a unitary transformation {7, can be used equally as well as the one introduced here [see
(2.21)]. In Example 3.1 it will be shown that all representations of the Dirac algebra are
unitarily equivalent to each other. Therefore, physical results do not depend on the special
choice of the Dirac matrices &; and ,B but the calculations can become particularly simple

in a certain representation.
Next we want to construct the four-current density and the equation of continuity.

For that we multiply (2.2) from the left by ¢T = (¥}, ¥3, ¥3, ¢}) and obtain

d ke 8 .
it =y = 25X S plar -2 v+ moowify . (2.152)
ot i lcz=; k ok 0

Furthermore, we form the Hermitian conjugate of (2.12), i.e.

and multiply this equation from the right by ¢, taking into consideration the hermicity of
the Dirac matrices (o/r = &;, ,Hf B), to give

t 3 A
_ma'/’ = _Ee Z _ak,/, +moctel fy (2.15b)

Then, subtraction of (2.15b) from (2.15a) yields
3

iy = 2 P 3 la) 2.16)
1
or
Bo
T +d1v1 0, 2.17)

5 This relation is covered in detail in Vol. 1 of this series, Quantum Mechanics - An Introduction (Springer,
Berlin, Heidelberg 1989).
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where

4
o=plp =" Iy | (2.182)

=1

is the positive definite density (2.4) and
k=cplaby or j=cytay (2.18b)
is the current density. Here we have symbolically introduced the three-vector
a={al, 8 &’} ={-a&1, —dp -3} (2.19)

and introduced the upper and lower indices according to our former convention [see (1.5)
and (1.6)]. From (2.17) the conservation law follows immediately in the usual way

%/d%wzp#—/divjd3m=-/j-df=0 (2.20)
v v F

where V denotes a certain volume and F its surface. Since g is positive definite and because
of the conservation law (2.17) we can accept the interpretation of g as a probability density
[in contrast to the density g obtained for the Klein-Gordon equation, see (1.29) which was
not positive definite]. Accordingly, we call j the probability current density. Here we
have presumed that j is a vector, i.e. that its components (2.18b) transform under spatial
rotations as the components of a three-vector. This still has to be shown. Furthermore,
{co, 7} should form a four-vector. Hence, it should transform from one inertial system into
another one by a Lorentz transformation. This point and, in addition, the form invariance
of the Dirac equation (2.2) with respect to Lorentz transformations (we also call the form
invariance covariance) have still to be shown, before we can regard the Dirac equation as
an acceptable relativistic wave equation.

We also notice that we have achieved a special representation with (2.12). The choice
of the matrices (2.12) is not unequivocal. One recognizes immediately that each unitary
transformation S yields the matrices

ah=8a&8"1 , B =835 (2.21)

which also satisfy the algebra (2.8). We check this for the first commutator (2.8), as an
example:

L&) =26;;1 (qe.d)

Maxwell Equations in the form analogous to the Dirac equation (spinor equa-
rac Equation tion):
11 equations 13...08 4

1 0E _4n NG~ ®
H—-~——=-—3 J=0
H--—=—j ., @



2.1 Free Motion of a Dirac Particle

We examine the solution of the free Dirac equation (2.2) (that is, the Dirac equation
without potentials) and again write it in the form

in%% =By = (ca-p+ moc?B)e - (2.22)
Its stationary states are found with the ansatz

P, t) = Y(e)exp — (/R)t] (2.23)
which transforms (2.2) into

ep(x) = App(x) (2.24)

Again the quantity ¢ describes the time evolution of the stationary state (). For many
applications it is useful to split up the four-component spinor into two two-component
spinors ¢ and y, i.e.

U3}

|2l (¥ -

v=|t2]- (X) with (2.250)
¥a

_(hn _(¥s

<p—(¢2) and x (¢4) . (2.25b)

Using the explicit form (2.12) for the & and ﬁ matrices (2.24) can be written as
eN_ (0 &Y\ (¥ 2(1 0 ®
€<X>_c<<" 0) p(X)+m°° (0 -“) (X)

ep =co-pxt m0c2<p ,
Ex =cO-pp — moczx . (2.26)

or

States with definite momentum p are

e\ _ (w0 ..
(x) = <X0> exp[(i/R)p-z] . (2.27)

The equations (2.26) are transformed into the same equations for ¢g and xo, but replacing
the operators p by the eigenvalues p. Ordering with respect to ¢g and xp results in the
system of equations

(e —moc?) o — e -px0 =0
—co «ppo + (6 + mocz) lxo=0 . (2.28)
This linear homogenous system of equations for ¢p and o has nontrivial solutions only
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in the case of a vanishing determinant of the coefficients, that is

e —moc? )1l —co -
( 0 ) P =0 . (2.29)
—cop (e + mocz) 1
Using the relation®
(6-A)o-B)=A-Bli+isg-(Ax B) , (2.30)

equation (2.29) transforms into
(62 - m%c“')ll - cz(&.p)(a—.p) =0 ,
e =mict+p*

from which follows

e=+E, , Ep=+c\/p?P+mid . (2.31)

The two signs of the time-evolution factor ¢ correspond to two types of solutions of the
Dirac equation. We call them positive and negative solutions, respectively. From (2.28),
for fixed e,

_co-p
X0

= —— . 232
mo +7° @32

Let us denote the two-spinor (g in the form

U
=U= , 233
) (Uz) (2.33)
with the normalization
vt =vtv, + 03t =1

where Uy, U are complex. Using (2.27) and (2.23) we obtain the complete set of positive
and negative free solutions of the Dirac equation as

€

U exp[i(p- = — AE, t)/h]
Tpa(, t)=N( & - p) U) - : (2.34)
moc + AE, V2rh

Here A\ = +1 characterizes the positive and negative solutions with the time evolution
factor ¢ = AEp. The normalization factor N is determined from the condition

/ W;A(“” Oy x(@, Dz = 636 - p)) . (2.35)

Hence,

$ Encountered previously m Vol. 1 of this series, Quantum Mechanics — An Introduction (Springer, Berlin,
Heidelberg 1989), Exercise 13.2.
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