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•  Chaotic dynamics is characterized by exponential sensitivity to initial conditions:
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•  Tangent evolution of linearized perturbations is ruled by the Jacobian:
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Lyapunov Exponents
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•  The existence of a complete set of N  LEs is granted by the Oseledec theorem:
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Lyapunov Exponents
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•  There exist a sequence of nested subspaces connected with these growth rates:
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•  LEs quantify the growth of volumes in tangent space

• Entropy production (Kolmogorov-Sinai entropy):
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• Attractor dimension (Kaplan Yorke Formula)

• There exist a thermodynamic limit for
  Lyapunov spectra in spatially ext. systems:



Lyapunov Vectors ?

•  After exponents (i.e. eigenvalues), people got interested in vectors (i.e.
   eigenvectors ?) to quantify stable and unstable directions in tangent space.

•  Hierarchical decomposition of spatiotemporal chaos

•  Optimal forecast in nonlinear models (e.g. in geophysics)

•  Study of “hydrodynamical modes” in near-zero exponents and vectors
   (access to transport properties ?)

But… which vectors ?



Gram Schmidt vectors
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Gram Schmidt vectors are obtained by GS
orthogonalization (Benettin et al. 1980)
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•  It can be shown that any orthonormal set of vectors eventually converge to a well
   defined basis (Ershov and Potapov, 1998)

•  For time-invertible systems they coincide with the eigenvectors of the backward
   Oseledec matrix:
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• Dynamical properties are “washed away” by orthonormalization, which is norm
  dependent, while LEs are not (for a wide class of norms).

But…

• They are not invariant under time reversal, while LEs are (sign-wise):
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• They are not covariant with dynamics and do not yield correct growth factors:
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• They are orthogonal, while stable and unstable manifolds are generally not.



Covariant Lyapunov vectors  v 

• Ruelle (1979) – Oseledec splitting
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• They are covariant with dynamics and do yield correct growth factors (LEs):
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• Politi et. al. (1998) – Covariant vectors satisfy a node theorem for periodic orbits

• Wolfe & Samelson (2007) – Intersection algorithm, more efficient for   j << N

Lack of a practical algorithm to compute them
No studies of ensemble properties in large systems

• Legras & Vautard; Trevisan & Pancotti (1996) – Covariant vectors in Lorenz 63

After Ruelle 

• Brown, Bryant & Abarbanel (1991) – Covariant vectors in time series data analysis



Computing covariant Lyapunov Vectors v
by forward-backward iterations
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 Upper triangular

Consider vectors which are linear combinations 
of the first j Gram-Schmidt vectors g
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1. R evolves the coefficients C according to tangent dynamics

(Expand CLV on GS basis)

Covariant evolution means:

one gets the
evolution rule
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2.  Moving backwards insures convergence to the “right” covariant vectors
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If we follow the reversed dynamics
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All random initial conditions converge to the same ones, apart a prefactor

Thus this reversed dynamics converges to covariant vectors  for almost any
initial condition



• They are invariant under time reversal.
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• They are covariant with dynamics and do yield correct growth factors (LEs):
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• They coincide with stable and unstable manifolds

• They are norm independent and, for time reversible systems, coincide with the
   Oseledec splitting (Ruelle 1979)

• They can be computed for non time reversible systems too by following backward
  a stored forward trajectory

Covariant Lyapunov Vectors properties



The stable algorithm for covariant Lyapunov Vectors
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 Upper triangular
Matrix R evolves the coefficients C 

according to tangent dynamics
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• Start from a random initial condition.

• Run a forward transient to obtain convergence of GS vectors

• Continue your phase space trajectory continuously storing the QR decomposition
of tangent space.

• Run a final backward transient only storing the R matrices from QR

• Generate a random upper triangular matrix C

• Evolve C backward by inverting R matrices along the backward transient

• Convergence to CLV coefficients is ruled by difference between nearest LEs

• Once backward transient has been done and CLV coefficients are converged,
continue to move backward along trajectories. CLV can be recovered as V=QC

• Some further tricks to ease memory storage in RAM are possible

A Simple recipe



On Wolfe & Samelson (2007):   vector n-th out of N

where

since

n - 1 forward and n backward GSV are needed to compute the kernel



• Angles between CLV or linear combinations of CLV: hyperbolicity.

• Localization properties

• Hydrodynamic modes …

• Data assimilation algorithms ?

Some applications
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• Localized: nonvanishing Y2
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1. Localization properties in spatially extended systems

•Localization properties of vector j can be characterized by the
  inverse participation ratio

where



Localization in spatially extended systems – Numerical results

CLV
GSV

a)  CML of Tent maps
b)  Simplectic maps
c)  Rotors
d)  FPU
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Localization length



Fourier analysis of “last positive” vector
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2. Density of Hyperbolicity “violations”
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• Hénon Map

• Lozi Map
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More then 2 dimensions, linear combinations between vectors should be considered
(Kuptsov & Kuznetsov ArXiv:0812.4823 (2009))
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• Symplectic Maps

• Continuous time Hamiltonian systems
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•  Localized, extensive covariant Lyapunov vectors
  corresponding to microscopic dynamics

• Delocalized, nonextensive covariant Lyapunov vectors
  corresponding to collective modes

CLV as a tool to characterize collective modes
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Conclusions
• Covariant Lyapunov Vectors are the right vectorial quantities to analyze
  spatiotemporal dynamics. Our dynamical algorithm is much more efficient then
  previous numerical methods.

• They are covariant with dynamics, invariant under time reversal, norm
   independent and allow to compute LEs by ensamble averages

• For time reversible systems they coincide with Oseledec splitting

• CLVs yield drastically different behavior with respect to GSV (where
  orthonormalization induced “noise” disrupt dynamical properties) for what
  concerns spatially extended systems.

• CLVs allow to numerically test (deviations from) hyperbolicity in dynamical
  systems.

• We would like to discuss possible applications to geophysical problems, like
  data assimilation

• More on applications to came on Thursday talks: see Takeuchi’s

Phys Rev Lett 99, 130601 (2007).



THANK YOU…

Phys Rev Lett 99, 130601 (2007).


