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Lyapunov Exponents

- Chaotic dynamics is characterized by exponential sensitivity to initial conditions:
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« Tangent evolution of linearized perturbations is ruled by the Jacobian:
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Lyapunov Exponents

» The existence of a complete set of N LEs is granted by the Oseledec theorem:
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» There exist a sequence of nested subspaces connected with these growth rates:
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 LEs quantify the growth of volumes in tangent space

» Entropy production (Kolmogorov-Sinai entropy):
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 Attractor dimension (Kaplan Yorke Formula)
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« There exist a thermodynamic limit for
Lyapunov spectra in spatially ext. systems:
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Lyapunov Vectors ?

- After exponents (i.e. eigenvalues), people got interested in vectors (1.e.
eigenvectors ?) to quantify stable and unstable directions in tangent space.

« Hierarchical decomposition of spatiotemporal chaos

« Optimal forecast in nonlinear models (e.g. in geophysics)

- Study of “hydrodynamical modes™ in near-zero exponents and vectors
(access to transport properties ?)

But... which vectors ?



Gram Schmidt vectors
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Gram Schmidt vectors are obtained by GS
orthogonalization (Benettin ef al. 1980)
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- It can be shown that any orthonormal set of vectors eventually converge to a well
defined basis (Ershov and Potapov, 1998)

- For time-invertible systems they coincide with the eigenvectors of the backward
Oseledec matrix:

Pyl 4 é'_N—j+1 A_(XO) o 258 [M_I(XO,I)TM_I(XO,I)] 1/21

f——00

8




But...

 They are orthogonal, while stable and unstable manifolds are generally not.

- Dynamical properties are “washed away” by orthonormalization, which 1s norm
dependent, while LEs are not (for a wide class of norms).

» They are not invariant under time reversal, while LEs are (sign-wise):
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- They are not covariant with dynamics and do not yield correct growth factors:
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Covariant Lyapunov vectors v
* Ruelle (1979) — Oseledec splitting
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 They are covariant with dynamics and do yield correct growth factors (LEs):
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After Ruelle

* Brown, Bryant & Abarbanel (1991) — Covariant vectors in time series data analysis

» Legras & Vautard; Trevisan & Pancotti (1996) — Covariant vectors in Lorenz 63

* Politi et. al. (1998) — Covariant vectors satisfy a node theorem for periodic orbits

* Wolfe & Samelson (2007) — Intersection algorithm, more efficient for j<< N

Lack of a practical algorithm to compute them
No studies of ensemble properties in large systems



Computing covariant Lyapunov Vectors v
by forward-backward iterations
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1. R evolves the coefficients C according to tangent dynamics

Covariant evolution means: Wtk N o= VLY, (M, ,, =M(X,,7+Ar))
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2. Moving backwards insures convergence to the “right” covariant vectors

A. If C are upper triangular with non-zero diagonal, one can verify that
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(by matrix components)
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If we follow the reversed dynamics
(:j;l AI(NZ oy — O (diagonal matrix)

All random 1nitial conditions converge to the same ones, apart a prefactor

Thus this reversed dynamics converges to covariant vectors for almost any
initial condition



Covariant Lyapunov Vectors properties

- They coincide with stable and unstable manifolds

 They are invariant under time reversal.
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» They are covariant with dynamics and do yield correct growth factors (LEs):
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 They are norm independent and, for time reversible systems, coincide with the
Oseledec splitting (Ruelle 1979)

MtAt\Z’ =Y,V HAtj <lnHM

tAl‘t

« They can be computed for non time reversible systems too by following backward
a stored forward trajectory



The stable algorithm for covariant Lyapunov Vectors
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A Simple recipe

« Start from a random initial condition.
* Run a forward transient to obtain convergence of GS vectors

» Continue your phase space trajectory continuously storing the QR decomposition
of tangent space.

* Run a final backward transient only storing the R matrices from QR

» Generate a random upper triangular matrix C

» Evolve C backward by inverting R matrices along the backward transient

» Convergence to CLV coefficients is ruled by difference between nearest LEs

» Once backward transient has been done and CLV coefficients are converged,
continue to move backward along trajectories. CLV can be recovered as V=QC

« Some further tricks to ease memory storage in RAM are possible



On Wolfe & Samelson (2007): vector n-th out of N
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Some applications

» Angles between CLV or linear combinations of CLV: hyperbolicity.
* Localization properties
* Hydrodynamic modes ...

 Data assimilation algorithms ?



1. Localization properties in spatially extended systems

*Localization properties of vector j can be characterized by the
iverse participation ratio
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* Delocalized: vanishing Y,
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Localization in spatially extended systems — Numerical results
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CLV
GSV
a) CML of Tent maps
b) Simplectic maps
c) Rotors
d) FPU
h=i/L=02



Localization length
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Fourier analysis of “last positive” vector
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2. Density of Hyperbolicity “violations”

* Hénon Map P(d)
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More then 2 dimensions, linear combinations between vectors should be considered
(Kuptsov & Kuznetsov ArXiv:0812.4823 (2009))

Wff) largest singular value of Q(ns)TQEj)

b = arccos(w(l)) Minimum angle between stable
n n .
and unstable manifold



* CML of Tent maps
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» Symplectic Maps
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 Continuous time Hamiltonian systems
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« Rotators F(x) = sin(x)
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P(D)

— Coupled Tent Maps
—— Coupled Symplectic Maps

— Rotators Model
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CLYV as a tool to characterize collective modes

 Localized, extensive covariant Lyapunov vectors
corresponding to microscopic dynamics

- Delocalized, nonextensive covariant Lyapunov vectors
corresponding to collective modes



Conclusions

» Covariant Lyapunov Vectors are the right vectorial quantities to analyze
spatiotemporal dynamics. Our dynamical algorithm is much more efficient then
previous numerical methods.

» They are covariant with dynamics, invariant under time reversal, norm
independent and allow to compute LEs by ensamble averages

* For time reversible systems they coincide with Oseledec splitting
» CLVs yield drastically different behavior with respect to GSV (where
orthonormalization induced “noise” disrupt dynamical properties) for what

concerns spatially extended systems.

» CLVs allow to numerically test (deviations from) hyperbolicity in dynamical
systems.

» We would like to discuss possible applications to geophysical problems, like
data assimilation

* More on applications to came on Thursday talks: see Takeuchi’s

Phys Rev Lett 99, 130601 (2007).
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