
Onsager and the Theory of Hydrodynamic Turbulence

Gregory L. Eyink
Department of Applied Mathematics & Statistics
The Johns Hopkins University
Baltimore, MD 21218
and
Katepalli R. Sreenivasan
International Center for Theoretical Physics
Trieste, Italy
and
Institute for Physical Science and Technology
University of Maryland
College Park, MD 20742

(Dated: )

Lars Onsager, a giant of twentieth-century science and the 1968 Nobel-Laureate in Chemistry,
made deep contributions to several areas of physics and chemistry. Perhaps less well-known is
his ground-breaking work and life-long interest in the subject of hydrodynamic turbulence. He
wrote two papers on the subject in the 1940’s, one of them just a short abstract. Unbeknownst
to Onsager, one of his major results was derived a few years earlier by A.N. Kolmogorov, but On-
sager’s work contains many gems and shows characteristic originality and deep understanding. His
only full-length article on the subject in 1949 introduced two novel ideas—“negative temperature”
equilibria for 2D ideal fluids and an “energy-dissipation anomaly” for singular Euler solutions—
that have stimulated much later work. However, a study of Onsager’s letters to his peers around
that time, as well as his private papers of that period and the early 1970’s, shows that he had
much more to say about the problem than he published. Remarkably, his private notes of the
1940’s contain the essential elements of at least four major results that appeared decades later in
the literature: (1) a mean-field Poisson-Boltzmann equation and other thermodynamic relations
for point-vortices; (2) a relation similar to Kolmogorov’s 4/5-law, connecting singularities and
dissipation; (3) the modern physical picture of spatial intermittency of velocity increments, ex-
plaining anomalous scaling of the spectrum; and (4) a spectral turbulence closure quite similar to
modern EDQNM. This paper is a summary of Onsager’s published and unpublished contributions
to hydrodynamic turbulence and an account of their place in the field as the subject has evolved
through the years. A discussion is also given of the historical context of the work, especially of
Onsager’s interactions with his contemporaries who were acknowledged experts in the subject at
the time. Finally, we speculate briefly on why Onsager may have chosen not to publish several of
his significant results.
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I. INTRODUCTION

Lars Onsager is recognized as a giant of twentieth-
century science. His deep contributions to many areas
of physics and chemistry are widely appreciated. His
founding work on the thermodynamics of irreversible pro-
cesses and a key result, the reciprocal relations for linear
transport coefficients (Onsager, 1931a,b), won him the
Nobel Prize in Chemistry in 1968. His exact solution
for the partition function of the two-dimensional Ising
model (Onsager, 1944) is recognized as a tour de force
of mathematical physics, which ushered in the modern
era of research in critical phenomena. Among the other
celebrated contributions are his work on liquid helium,
including quantization of circulation (Onsager, 1949a,d)
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FIG. 1 Lars Onsager (1903-1976), circa 1945. Courtesy of
Theoretical Physics Group, NTH

and off-diagonal long-range order (Penrose and Onsager,
1956), his semiclassical theory of the De Haas-van Alphen
effect in metals (Onsager, 1952), his entropic theory of
transition to nematic order for rod-shaped colloids (On-
sager, 1949c), and the reaction field in his theory of di-
electrics (Onsager, 1936). Of course, his largest body of
research was on corrections and extensions of the Debye-
Hückel theory of electrolytes, from his first scientific pa-
per at age twenty-three (Onsager, 1926) to those in the
last year of his life (Onsager and Chen, 1977; Onsager
and Hubbard, 1997; Onsager et al., 1977; Onsager and
Kim, 1977).

Perhaps less well-known among physicists is Onsager’s
ground-breaking work and life-long interest in the sub-
ject of hydrodynamic turbulence. In fact, classical fluid
mechanics was a part of much of his research, including
the work on electrolyte solutions (Onsager, 1926), vis-
cosity of colloidal solutions (Onsager, 1932), and theory
of liquid diffusion (Onsager, 1945d). Onsager’s earliest
recorded encounter with fluid turbulence was a paper in
1939 on convection in gases between concentric vertical
cylinders (Onsager and Watson, 1939). This was an out-
growth of his theoretical work on isotope separation by
thermal diffusion (Onsager, 1939b; Onsager et al., 1939).
Experiments on isotope separation in an apparatus with
this geometry had revealed the onset of turbulence at
unexpectedly low Reynolds numbers, thus reducing the
efficiency of the separation method. Onsager and Wat-
son (1939) gave a simple theory for the scaling of the
critical Reynolds number to explain this early onset of
turbulence.

In the following decade Onsager published two semi-

nal works on the subject of fully-developed turbulence.
The first in 1945 was just a short abstract (Onsager,
1945c) of a contributed talk which he gave at a meet-
ing of the Metropolitan Section of the American Physi-
cal Society, held on November 9-10, 1945, at Columbia
University. Here, Onsager predicted for velocity fluc-
tuations an energy spectrum that rolls off as the −5/3
power of the wavenumber. The published abstract ap-
peared a few years after, but entirely independently
of, the now-famous trilogy of papers by Kolmogorov
(1941a,b,c) proposing the same theory. Therefore, On-
sager is often credited as a co-discoverer of the Kol-
mogorov theory, along also with Kolmogorov’s student,
Obukhov (1941a,b), and with Heisenberg (1948) and von
Weizsäcker (1948). The 1945 abstract was followed a
few years later by Onsager’s only full-length article on
the subject of fluid turbulence (Onsager, 1949d). The
paper is based on his address at the first IUPAP con-
ference on statistical mechanics in Florence, Italy, held
May 17-20, 1949. This conference is famous for On-
sager’s announcement—as discussion remarks—of two
other spectacular results: the quantization of circulation
in superfluid helium and the critical exponent for spon-
taneous magnetization in the two-dimensional (2D) Ising
model. The first result was independently rediscovered
by Feynman (1955), while a proof of the second was later
published by Yang (1952). These events have passed into
the folklore of statistical physics.

It may be less widely appreciated that Onsager’s talk
on “statistical hydrodynamics” at the Florence confer-
ence introduced two highly innovative ideas in the sub-
ject of fluid turbulence, in addition to lucidly reviewing
the Kolmogorov theory. The first idea was a theory on
the spontaneous formation of large-scale, long-lived vor-
tices in 2D flows, explaining them as a consequence of
equilibrium statistical mechanics at “negative absolute
temperature.” The second was a theory on the anoma-
lous rate of energy dissipation in three-dimensional (3D)
turbulence, based upon conjectured singularities of the
incompressible Euler equation. These ideas did not seem
to excite much attention during the conference, perhaps
because turbulence was not foremost in the minds of most
participants. Furthermore, Onsager’s presentation had a
typical spare elegance, dense with deep insights, and de-
cidedly cryptic. Only over a period of several decades
have his ideas been pursued, extended and refined by
various researchers. Onsager never published again on
the subject.

However, Onsager had made greater inroads into the
theory of turbulence than he ever fully made public. Our
studies of the historical sources, presented here, show
that he obtained at least four results, new in the 1940’s,
which could have been made the basis of major publi-
cations. The documents containing these remarkable re-
sults are Onsager’s typewritten letters to contemporaries
and his own private, handwritten notes. For whatever
reasons, the results in these documents were never pub-
lished and were only rediscovered decades later by others.
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In addition, there are several rather mysterious and in-
completely understood ideas sketched in Onsager’s notes
that may still bear some fruit.

It is the purpose of this article to review Onsager’s
work on turbulence. We shall discuss the contents of his
two published articles, and describe some of the later de-
velopments of his seminal ideas expounded there. Our
main focus, however, will be the unpublished sources.
These give a fascinating view into the mind of a scien-
tific genius at work and still have a pedagogical value
in the subject, even after decades of subsequent devel-
opment in the field. Our study should therefore be of
interest not only to turbulence experts and to historians
of science, but also to working physicists who are curious
to learn some of the basic facts of this intriguing sub-
ject of classical physics. Readers interested in Onsager’s
broader scientific contributions will benefit from perus-
ing the Collected Works of Lars Onsager (Hemmer et al.,
1996). Papers on the varied topics in this collection are
introduced by different working scientists, those on tur-
bulence by Chorin (1996). Attention must also be drawn
to the special issue of Journal of Statistical Physics (J.
L. Lebowitz, ed., 1995) dedicated to Onsager’s life and
work—in particular to the delightful biographical essay
by Longuet-Higgins and Fisher (1995).

II. THE SOURCE MATERIALS

Before we begin, we must remark briefly on the histor-
ical sources. They are the letters that Onsager sent to
his professional colleagues in 1945, and his own private,
handwritten notes.

The letters that Onsager exchanged with L. Pauling,
C.-C. Lin, and T. von Kármán have been preserved in the
Caltech archive, “Theodore von Kármán Papers, 1871-
1963,” under Personal Correspondence. In particular,
Box 18, Folders 22-23 of that collection contains letters
between von Kármán and his former Ph.D. student Lin,
in the period 1942-1947, along with other related cor-
respondence. Also, Folder 8 of Box 22 contains direct
correspondence of Onsager with von Kármán in 1945.
Relevant for our purposes are two remarkable documents
that Onsager wrote, the first a two-page note to Pauling
(Onsager (1945a); the “Pauling note”, reproduced here
as Appendix A) on March 15, 1945, and the second an
eleven-page account he sent to Lin (Onsager (1945b); the
“Lin note”, reproduced as Appendix B) in June 1945.
Both notes were forwarded to von Kármán by the pri-
mary recipients and later were sent to him directly by
Onsager on July 25, 1945. Both are organized along
the lines of Onsager’s later 1949 paper (Onsager, 1949d),
discussing first two-dimensional point-vortex equilibria
and then dissipative, three-dimensional turbulence. The
Pauling note reveals a whimsical side to Onsager, who
entitled the section on point-vortices as “The little vor-
tices who wanted to play” and whose presentation, while
technically sound, is in the humorous style of a nursery

(a) Geoffrey Ingram
Taylor (1886-1975)

(b) Theodore von
Kármán (1881-1963)

(c) Johannes
Martinus Burgers

(1895-1981)

(d) Chia-Chiao Lin
(1916- )

FIG. 2 Onsager’s famous contemporaries who influenced his
theories of turbulence

story. The Lin note, by contrast, is serious in tone.
The hand-written notes are preserved in the “Lars On-

sager Archive” maintained at the Norwegian University
of Science and Technology in Trondheim, Norway. Upon
Onsager’s death of heart failure in 1976, his widow, Mar-
garethe, deposited most of his unpublished papers and
research notes at the Stirling Memorial Library of Yale
University. Several researchers (S. Machlup, P.A. Lyons,
W.W. Watson, R.M. Fuoss, A. Patterson, Jr. and D.
Leaist) helped to classify the material. The original col-
lection was retrieved by the family in 1981 but a substan-
tial part of it was stored on microfilm at Yale. The origi-
nal documents were stored at the Onsager farm at Tilton,
New Hampshire, until they were deposited in 1997 in
Trondheim.

Among the extensive materials stored there are three
folders, numbered as 11:129, 11:132 and 11:135. These
folders contain Onsager’s private research notes on hy-
drodynamic turbulence. The material in the first folder
11:129 can be reliably dated to the period 1940-1945.
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First, as internal evidence, the opening page of the folder
contains a list of references to various papers on turbu-
lence, including those of Taylor (1935, 1937, 1938); Tay-
lor and Green (1937), von Kármán (1937); von Kármán
and Howarth (1938), MacPhail (1940), Trubridge (1934),
Tollmien (1933a,b) and Burgers (1929a,b,c, 1933a,b,c,d),
and an unpublished 1931 reference of C.W. Oseen. The
latest paper in the list is that of D.C. MacPhail in 1940,
which sets a lower bound for the date of the folder. Sec-
ondly, almost the entire contents of the folder are either
mentioned explicitly in the Lin note of June 1945, or
at least alluded to therein. Thus, 1940-1945 seems to be
the likely period for Folder 11:129, and it is probably safe
to say that all the material was worked out by Onsager
before he published his full-length paper in 1949. On
the other hand, several pages in Folder 11:132 are writ-
ten on stationary from the 10th Coral Gables Conference
on Fundamental Interactions, held during January 22-26,
1973, in Coral Gables, Florida. Thus, Folder 11:132 is as-
suredly from after 1973. This is presumably one reason
why it was labelled by S. Machlup, one of the compilers
of the archives, with the notation “1975?”, indicating his
estimate of the date. The contents of Folder 11:135 build
upon the results of 11:132 and likely follow it chrono-
logically. Thus, Folders 11:132 and 11:135 can be dated
with some certainty to 1973-1975, a couple of years be-
fore Onsager’s death. It is interesting that Onsager had
returned to fluid turbulence at a time when, as is widely
known (Longuet-Higgins and Fisher, 1995), most of his
attention was on biology.

The entire contents of the three folders are listed briefly
in our Appendix C. In the following discussion, we shall
reproduce several pages of these handwritten notes, those
that bear on our discussion most directly. Copies of the
folder contents may be obtained at request from the Lars
Onsager archive in Trondheim. Onsager’s notes on the
wide range of topics that exercised his attention during
his lifetime, in mathematics, physics, chemistry, and biol-
ogy, are archived there and summarized on-line 1. There
are doubtless many surprises for scientists and for histo-
rians of science hidden in those folders and still waiting
to be discovered.

III. STATISTICAL EQUILIBRIUM OF
TWO-DIMENSIONAL FLUIDS

A. Onsager’s Theory of Point-Vortex Equilibria

The first half of the Pauling and Lin notes discuss the
same subject as the first half of the published paper (On-
sager, 1949d), entitled “Ergodic Motion of Parallel Vor-
tices”. In all these writings Onsager discussed a simple
Hamiltonian particle model of 2D ideal fluid flow, the

1 http://www.ub.ntnu.no/spessaml/tekhist/tek5/eindex.htm.

point-vortex model of Helmholtz (1867) and Kirchhoff
(1883), describing this motion for a system of N vor-
tices in a plane, or of straight and parallel line vortices
in three dimensions. If the planar coordinates of the i-th
vortex are ri = (xi, yi) and if that vortex carries a net
circulation κi, then the equations of motion are

κi
dxi

dt
=

∂H

∂yi
, κi

dyi

dt
= −∂H

∂xi
, (1)

where H is the fluid kinetic energy. When there are no
boundaries, H has the form

H = − 1
2π

∑
i<j

κiκj ln(rij/L), (2)

where rij is the distance between the i-th and j-th vor-
tex and L is an (arbitrary) length-scale. For confined flow
the logarithm is replaced by a more general Green’s func-
tion of the Laplacian G(ri, rj) with appropriate boundary
conditions, and single-vortex terms are added to repre-
sent the interactions of each vortex with its own image
charges and, possibly, with an external stream function.
Onsager cited as his source for these equations the works
of Lin (1941, 1943), who extensively studied their math-
ematical properties. In a letter of September 4, 1945, Lin
wrote to von Kármán (Lin, 1945a):

“I was asking him [Onsager] for some reprints
of his paper on the statistical mechanics of
crystal lattices on behalf of a friend of mine.
He sent me the reprints, and asked, perhaps
out of courtesy, for reprints of my papers. I
sent him some, including my earlier work at
Toronto on the motion of vortices. He was
apparently struck by the Hamiltonian form
of the differential equations satisfied by the
coordinates of the vortices, and tried to de-
velop a statistical mechanics for them.”

A good modern source for the point-vortex model is Mar-
chioro and Pulvirenti (1994), where it is proved that the
model describes the motion of concentrated blobs of vor-
ticity, evolving according to the 2D incompressible Eu-
ler equations, as long as the distance between the blobs
is much greater than their diameters (Theorem 4.4.2).2
Another result in the opposite direction (Theorem 5.3.1)
states that a smooth solution of the 2D Euler equations
ω(r, t) can be approximated as N → ∞, over any finite

2 Onsager remarked in a footnote to Onsager (1949d) that the
model should work better for superfluids because “vortices in a
suprafluid are presumably quantized; the quantum of circulation
is h/m, where m is the mass of a single molecule.” In fact, these
equations of motion have been formally derived from quantum
many-body equations for parallel line-vortices in superfluids (Fet-
ter, 1966) and rigorously derived within the 2D Gross-Pitaevskii
model in a limit where radiation into sound waves is negligible
(Lin and Xin, 1999).
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FIG. 3 The Great Red Spot, an anti-cyclonic vortex in the
upper atmosphere of Jupiter. It has existed at least since it
was observed in 1610 by Galileo Galilei with one of the first
telescopes and measures 14,000 km north-south and 40,000
km east-west. Similar large-scale, long-lived vortices exist in
the atmospheres of the other gas giant planets of our solar
system. Features of “small-scale” turbulence can be clearly
seen in the picture.

time-interval, by a sum ωN (r, t) =
∑N

i=1 κiδ(r − ri(t)),
where κi = ±1/N and ri(t), i = 1, .., N are the solutions
of equations (1).

With this model, Onsager proposed a theoretical ex-
planation for a commonly observed feature of nearly two-
dimensional flows: the spontaneous appearance of large-
scale, long-lived vortices. A spectacular example are the
large, lingering storms in the atmospheres of the gas gi-
ants of the outer solar system, such as the Great Red
Spot of Jupiter. See Figure 3. Large vortices are also
readily seen downstream of flow obstacles (von Kármán,
1911, 1912), often evolving out of the turbulent wake.
The common appearance of such vortices had been noted
by other scientists, for example, H. Poincaré, who gave a
theory based on stability considerations (Poincaré, 1893).

Onsager suggested a probabilistic treatment. In his
own words from Onsager (1949d):

“The formation of large, isolated vortices is
an extremely common, yet spectacular phe-
nomenon in unsteady flow. Its ubiquity sug-
gests an explanation on statistical grounds.”

Onsager proposed to explain the phenomenon by an ap-
plication of Gibbsian equilibrium statistical mechanics to
the point-vortex model. His theory assumes that the gen-
eration of the large-scale vortices is a consequence of the
inviscid Euler equations, which are a Hamiltonian sys-
tem conserving the total kinetic energy. This is rigorously
true in two dimensions, as noted in Onsager (1949d), due
to the conservation of enstrophy. In particular, no sus-
tained forcing is required to maintain the vortex in this
theory, as long as the dissipation by viscosity is weak.
Onsager also assumes the validity of the point-vortex ap-
proximation, though with reservations. In the Lin note,
he wrote:

“When we come to volume distributions of
vorticity (still parallel), the approximate de-
scription by line vortices introduces fictitious

possibilities because it makes us forget the re-
strictions imposed by the incompressibility of
the fluid. More or less equivalent artificial re-
strictions might serve as a crude substitute.”

Likewise, he wrote thus in Onsager (1949d):

“When we compare our idealised model with
reality, we have to admit one profound dif-
ference: the distributions of vorticity which
occur in the actual flow of normal liquids
are continuous...As a statistical model in two-
dimensions it is ambiguous: what set of dis-
crete vortices will best approximate a contin-
uous distribution of vorticity?”

Finally, Onsager assumes also that the point-vortex dy-
namics is ergodic in phase space over the surface of con-
stant energy, so that a microcanonical distribution is
achieved at long times. “We inquire about the ergodic
motion of the system,” Onsager wrote to Lin.

It is worth a remark that Onsager may have gotten the
idea for this statistical treatment from a series of papers
of Burgers (1929a,b,c, 1933a,b,c,d) which are cited on the
first page of Folder 11:129. In these articles Burgers at-
tempts to apply statistical-mechanical maximum entropy
ideas to turbulent flows. There is the following footnote
in the first paper (Burgers, 1929a):

“In the case of the motion of an ideal fluid of
parallel rectilinear vortices, the diameters of
which are small compared to their distances,
canonical variables can be introduced accord-
ing to a method developed by KIRCHHOFF
and by LAGALLY [comp. M. LAGALLY,
Sitz. Ber. Münch. Akad. p. 377, 1914]. For
these coordinates LIOUVILLE’s theorem can
be proved. In applying statistical methods
now the kinetic energy of the motion has to
be given.”

Thus, the essential ingredients of Onsager’s theory were
already stated by Burgers, without, however, any sug-
gestion of their relevance to the problem of large-vortex
formation. It is interesting to observe that Onsager wrote
in the Lin note:

“That Liouville’s theorem holds in
configuration-space has no doubt been
observed before, but it appears that certain
possible effects of the conservation laws have
been overlooked.”

The really ingenious step in Onsager’s theory was his re-
alization that point-vortices would yield states of negative
absolute temperature, at sufficiently high energy, and that
this result could explain the spontaneous appearance of
large-scale vortices in two-dimensional flows.

The crucial feature of the point-vortex system which
permits this conclusion is the fact that the total phase-
space volume is finite. Since the x- and y-components of
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the vortices are canonically conjugate variables, the total
phase-space volume is Φ(∞) = AN where A is the area
of the flow domain and

Φ(E) =
∫ N∏

i=1

d2ri θ(E − H(r1, ..., rN )). (3)

Here the Heaviside step function θ(x) = 1 for x > 0 and
= 0 for x < 0. Thus, one can see that Φ(E) is a nonnega-
tive increasing function of energy E, with constant limits
Φ(−∞) = 0 and Φ(∞) = AN . Therefore, its derivative

Ω(E) = Φ′(E) =
∫ N∏

i=1

d2ri δ(E − H(r1, ..., rN )) (4)

is a nonnegative function going to zero at both extremes,
Ω(±∞) = 0. Thus, it must achieve a maximum value at
some finite Em, where Ω′(Em) = 0. For E > Em, Ω′(E)
will be negative. On the other hand, by Boltzmann’s
principle, the thermodynamic entropy is

S(E) = kB log Ω(E) (5)

and the inverse temperature 1/Θ = dS/dE is thus nega-
tive for E > Em. This argument for existence of “nega-
tive absolute temperatures” is the same as that published
by Onsager (1949d), some two years prior to their intro-
duction by Purcell and Pound (1951) for nuclear spin
systems. Onsager further pointed out that negative tem-
peratures will lead to the formation of large-scale vortices
by clustering of smaller ones. In his own words from On-
sager (1949d), we have:

“In the former case [when 1/Θ > 0], vortices
of opposite sign will tend to approach each
other. However, if 1/Θ < 0, then vortices of
the same sign will tend to cluster—preferably
the strongest ones—so as to use up excess en-
ergy at the least possible cost in terms of de-
grees of freedom. It stands to reason that
the large compound vortices formed in this
manner will remain as the only conspicuous
features of the motion; because the weaker
vortices, free to roam practically at random,
will yield rather erratic and disorganized con-
tributions to the flow.”

The statistical tendency of vortices of the same sign
to cluster in the negative-temperature regime is intu-
itively clear from a description by a canonical distribu-
tion ∝ e−βH , with β = 1/kBΘ. Negative β corresponds
formally to reversing the sign of the interaction, making
like charges attract and opposite charges repel.

B. Subsequent Research on the Point-Vortex Model

Onsager carried these considerations no further in his
1949 paper nor in any subsequent published work 3 After
his talk in the Florence meeting, there was no comment
on the new theory of large-vortex formation from any
conference participant. However, Onsager’s work was
not totally ignored. In a masterful review of theories
of turbulence written in the same year, 1949, von Neu-
mann (1963) took note of the point-vortex model and
Onsager’s statistical-mechanical theory. It led von Neu-
mann to speculate about the limits of Kolmogorov’s rea-
soning in 3D and to recognize the profound consequences
of enstrophy conservation in 2D. These considerations
were carried further by Lee (1951), who also extended
the Gibbsian statistical-mechanical approach to Fourier-
truncated Euler dynamics (Lee, 1952).

However, after this initial flurry of work, there was
a comparatively long period in which Onsager’s statis-
tical theory was not further explored. In due course,
however, it played a role in stimulating the development
by Kraichnan (1967) of the concept of the “inverse en-
ergy cascade”, which describes the irreversible, dynami-
cal process by which energy injected through an external
force accumulates at large scales in 2D. And the situation
changed further in the early 1970’s when a connection
was made to the two-dimensional electrostatic guiding-
center plasma. This system is one in which long filaments
of charge are aligned parallel to a uniform magnetic field
B and move under their mutual electric field E with the
“guiding center” velocity E × B/B2. The mathematical
description of this system is identical to that of a set of
point vortices in two-dimensional, incompressible Euler
equations, as described above, where the charge of a fil-
ament corresponds to the circulation of a vortex. In a
pair of seminal papers on this subject, Joyce and Mont-
gomery (1973); Montgomery and Joyce (1974) returned
to Onsager’s theory and, for the first time, worked out
a predictive equation for the large-scale vortex solutions
conjectured by Onsager.

A brief review of the Joyce-Montgomery considera-
tions, in the language of the 2D point-vortex system,
is worthwhile here. These authors considered a neutral
system, which we may describe for our purposes as con-
sisting of N vortices of circulation +1/N and N vortices
of circulation −1/N . For this system, there are two den-

3 In fact, by modern standards, referees might not have permitted
the publication of these remarks, objecting that the author had
not worked out sufficient details or derived concrete, testable
consequences of the theory. This would not necessarily have
been bad had such objections stimulated Onsager to expound the
theory further. As we see below, he could indeed have said more
on the subject. However, such an objection might also have had
the undesirable consequence of causing Onsager to remove the
discussion from his paper completely, with the loss to posterity
of a creative idea.
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sities

ρ±(r) =
1
N

N∑
i=1

δ(r − r±i ), (6)

where r±i , i = 1, ..., N are the positions of the N vortices
of circulation ±1/N, respectively. Note that the vorticity
field is represented by

ω(r) = ρ+(r) − ρ−(r). (7)

Then, by state-counting arguments similar to those used
by Boltzmann in deriving his entropy function for kinetic
theory, Joyce and Montgomery (1973) derived the follow-
ing formula for the entropy (per particle) of a given field
of vortex densities:

S = −
∫

d2r ρ+(r) log ρ+(r) −
∫

d2r ρ−(r) log ρ−(r).

(8)
They next reasoned that the equilibrium distributions
should be those which maximized the entropy subject to
the constraints of fixed energy

E =
1
2

∫
d2r

∫
d2r′ G(r, r′)ω(r)ω(r′), (9)

with the unit normalization given by∫
d2r ρ±(r) = 1. (10)

From here, it is straightforward to work out the varia-
tional equation

ρ±(r) = exp[∓β

∫
d2r′G(r, r′)ω(r′) − βµ±], (11)

where β, µ± are Lagrange multipliers to enforce the con-
straints, having the interpretation of inverse temperature
and chemical potentials, respectively. A closed equation
is obtained by introducing the stream function

ψ(r) =
∫

d2r′ G(r, r′)ω(r′) (12)

and writing, via the inverse relation −� ψ = ω, that

−�ψ(r) = exp[−β(ψ(r)−µ+)]−exp[β(ψ(r)+µ+)]. (13)

This is the final equation derived by Joyce and Mont-
gomery. Its solutions give exact stable, stationary so-
lutions of the 2D Euler equations, and should describe
the macroscopic vortices proposed by Onsager when β <
0. Montgomery and Joyce (1974) gave another inde-
pendent derivation of the same equation by consider-
ing the BBGKY hierarchy for the n-point correlation
functions ρn(r1, κ1, .., rn, κn), with κi = ±1, and using
the mean-field approximation that ρn(r1, κ1, .., rn, κn) =∏n

i=1 ρ1(ri, κi).

C. Onsager’s Unpublished Work on Vortex Statistics

As Joyce and Montgomery themselves observed, their
final mean-field equation for β > 0 is similar to the
Poisson-Boltzmann equation in the Debye-Hückel the-
ory of plasmas and electrolytes. Considering that On-
sager was a world-expert in the Debye-Hückel theory of
electrolytes, and had written extensively on the Poisson-
Boltzmann equation in that context, e.g. Onsager (1964),
it might be considered surprising if he had failed to rec-
ognize this connection. In fact, the Lin note discusses
this explicitly. We quote Onsager in full:

“Let us consider n parallel vor-
tices of circulations K1, ....,Kn confined
by a non-circular4 boundary to a region
of area S. There exists a path-function
W (X1, Y1, ...,Xn, Yn) and no other important
integral of the motion. We inquire about the
ergodic motion of the system.

The effect of the restriction
W (X1 .. Yn) = const. depends on whether
the prescribed value is less than the average

W = S−n

∫
W dX1...dYn

over configuration-space, or greater. In the
critical case W = W we get on the average a
random distribution of the vortices.

For the case W < W we may ap-
proximate the micro-canonical distribution
by a canonical distribution with a positive
temperature. For small values of W − W
we can develop a theory analogous to the
Debye-Hückel theory of electrolytes. When
W −W is not small, we get a pronounced ten-
dency toward mutual association of vortices
of opposite sign, and strong vortices will be
squeezed against the boundary. These phe-
nomena could be discussed by methods anal-
ogous to Bjerrum’s treatment of weak elec-
trolytes.5 The process of neutralization and
trapping by the boundary will release energy
until the vortices which are still ‘free’ can
move almost at random.

4 For circular domains, there is a second conserved quantity, the
so-called “fluid angular momentum”. For example, see Lund-
gren and Pointin (1977). This quantity must be considered for
equilibrium statistical mechanics of fluids in circular enclosures,
and it plays a crucial role in justifying the existence of negative
temperatures for free flows in infinite two-dimensional domains.

5 Many years later, J. McCauley, Jr., Onsager’s last Ph. D. student
at Yale, used such methods to study the kinetics of the Kosterlitz-
Thouless vortex-unbinding transition in low-temperature helium
films. See J. L. McCauley (1977) and the entertaining account
in J. L. McCauley (1995).
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The case W > W is quite different.
We now need a negative temperature to get
the required energy. The appropriate statisti-
cal methods have analogues not in the theory
of electrolytes, but in the statistics of stars.
In a general way we can foresee what will hap-
pen. Vortices of the same sign will tend to
move together, more so the stronger the re-
pulsion6 between them. After this aggrega-
tion of the stronger vortices has disposed of
the excess energy, the weaker vortices are free
to roam at will.”

These remarkable passages require a thorough discussion.
First, we find here a rather different argument than in

Onsager (1949d) for the existence of a critical energy Em

at which negative temperatures appear. Furthermore,
Onsager in this passage provides a concrete formula for
the critical energy as a volume average of the Hamilto-
nian. This result was not mentioned four years later in
Onsager (1949d) and, in fact, was never published by On-
sager. The simple idea underlying it is that the maximum
of the Gibbs entropy S[f ] = −kB

∫
dX1 · · · dYnf log f is

obtained for the constant n-particle distribution function
f(X1, ..., Yn) = 1/Sn, with S the area of the flow do-
main. Therefore, assuming an equivalence of ensembles,
the value W = W at which the microcanonical entropy
log Ω(W ) is maximized is just the average of W with re-
spect to the uniform distribution over the flow domain.
In this maximum-entropy state, the n vortices are all
uniformly and independently distributed over the area.
Much later, the problem of obtaining the critical energy
of the point-vortex system was considered in the pub-
lished literature. It was shown by Taylor (1972) and by
Joyce and Montgomery (1973) that the critical energy
Em = 0 for the neutral vortex system with N vortices
of circulation +κ and N of −κ. It was not until 1993
that the more general formula of Onsager above was re-
discovered and rigorously justified by Eyink and Spohn
(1993).

The second factor to emerge is that Onsager did real-
ize the connection with Debye-Hückel theory, as would
be expected. There is more: When Onsager wrote that
“we can develop a theory analogous to the Debye-Hückel
theory,” he was not just speaking rhetorically. There is,
in fact, a remarkable set of six pages in Folder 11:129 of
Onsager’s unpublished notes, pages 8-13, which exactly
develops such a theory. These are the only pages in the
folder which deal with the point-vortex model. Two of
them (p. 8 and p. 11) are reproduced here. The notations
follow those of Lin (1941, 1943). On the first page (p. 8),
Onsager sketches a derivation of the following mean-field

6 In the manuscript from the von Kármán archive, there is a hand-
written question mark at this point, written presumably by either
von Kármán or Lin. The writer may have been perplexed as to
why repulsion should lead to clustering.

Poisson-Boltzmann equation

∇2ψi +
1
A

∑
j

κje
βκj(ψi−χ) = 0.

using a maximum-entropy argument. It is interesting
that he refers to the Lagrange multiplier for the en-
ergy constraint as the “hydrodynamic temperature” (in
fact, its negative). Note that − ∫

f log f in Onsager’s
argument corresponds to the microscopic Gibbs entropy,
not the macroscopic Boltzmann entropy (8) used later
by Joyce and Montgomery. Onsager’s mean-field equa-
tion is actually more general than theirs because he al-
lows for arbitrary circulations κi of the vortices. On
the next page (p. 11), Onsager works out the 2D ana-
logue of standard calculations in Debye-Hückel theory
for small |β| or for energies close to Em, e.g. see Lan-
dau and Lifschitz (1980), §78-79, pp. 239-245. Onsager
considers only positive temperatures (β < 0) and in-
troduces the analogue of the Debye screening length
−ξ2 = β

A

∑
i κ2

i . His final result on this page is the ther-
modynamic relation between temperature and mean en-
ergy, γ + log(1

2ξ) = 4πW/
∑

i κ2
i . Considering the defini-

tion of ξ in terms of inverse temperature 1/T = −kBβ,
this formula can be rewritten as

1
T

= (const.)
A∑
i κ2

i

exp
[

8πW∑
i κ2

i

]
. (14)

Taking into account that W is the negative of the en-
ergy and differences in normalization, this expression is
closely similar to one obtained later by Edwards and Tay-
lor (1974) from a microscopic calculation: see their equa-
tion (29). Of course, Onsager’s relation (14) was worked
out for the subcritical regime and admits no negative
temperature solutions.

Thus, these pages of Onsager’s private notes substan-
tially carry out the program suggested to Lin for studying
the regime of “small [positive] values of W − W .”7 The
remaining pages fill in some additional details. On p.
10, Onsager derives the formula for the critical energy as
we did above, writing that “Ω(W ) = max for W = W.”
On p. 13 he attempts to evaluate space-integrals of the
Green’s function, apparently in order to develop more
concrete expressions for the critical energy.

It is unclear from available evidence if Onsager realized
the validity of the mean-field Poisson-Boltzmann equa-
tion also for the negative-temperature regime above the
critical energy. However, there is his tantalizing refer-
ence in the Lin note to “the statistics of stars.” The
equilibrium statistical mechanics of gravitating systems,
with its many peculiarities and anomalies, was indeed
extensively investigated already in the 19th century, by

7 Incidentally, p. 11 contains Onsager’s sketches of what appear to
be coherent vortices, including a cat’s-eye vortex and a hexatic
vortex.
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FIG. 4 Page 8 of Folder 11:129 (Onsager, circa 1945). The first two lines, l.1-2, give the Routh-Kirchhoff function W , which is
−H, the negative of the Hamiltonian. l.3 is the net stream function ψ(x, y; x1, y1; ...; xn, yn) of the system of n point-vortices.
l.4 is the average of the stream function over the distribution function f(x1, y1; ...; xn, yn) of the vortices, conditioned on the
location of a distinguished vortex, the ith. l.5 is the Poisson equation for ψi, whose source is the conditionally-averaged
vorticity. l.6 is the condition of maximum entropy at fixed energy. l.7 is the Gibbs canonical distribution, but where �/β is the
negative of the usual temperature. l.8 is the mean vorticity from the average over the Gibbs distribution. l.9 is the mean-field
Poisson-Boltzmann equation and l.10 is its linearization for small |β|.

scientists such as J.K.F. Zöllner (1834-1882), Lord Kelvin
(1824-1907), G.A.D. Ritter (1826-1908), J.H. Lane (1819-
1880), and R.J. Emden (1862-1940). A good review of
all that work was available in Onsager’s time through the
German monograph of Emden (1907), while a more mod-
ern source is Chandrasekhar (1958). Among other results
discussed in Emden’s book is the so-called “Lane-Emden
equation,” which governs the temperature or density pro-
files of polytropic gas spheres in isothermal equilibrium
under gravitational attraction. This equation is the exact
analogue of the Joyce-Montgomery mean-field equation
for point-vortices, if one assumes, as is appropriate for
gravitation, that there is only one sign of the “charge”
(e.g. see Messer and Spohn (1982)). It may well be

that Onsager was aware of the validity of the mean-field
equation for equilibrium vorticity distributions at nega-
tive temperature. If so, then it is somewhat surprising
that he never expanded the material in Folder 11:129 on
statistical mechanics of point-vortices into a full publica-
tion. On the other hand, as we shall see below, Onsager’s
private notes contain other remarkable results that he did
not publish or expand.

D. Recent Advances and Applications

One issue that Onsager never addressed was the appro-
priate thermodynamic limit for the validity of his statis-
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FIG. 5 Page 11 of Folder 11:129 (Onsager, circa 1945). l.1 is the condition of positive temperature (β < 0) and of zero net
circulation or neutrality

∑
i
κi = 0. l.2 is the definition of the “screening length” ξ. l.3 is the Helmholtz equation for ψi. l.4

is the solution by a modified Bessel function of the second kind. l.5-9 is the asymptotic expansion of the Bessel function for

small argument. l.10 defines ψ
+

i , the remainder of the conditional mean stream function at the origin after subtracting the

contribution of the ith vortex. l.11 is the mean energy W i = κiψ
+

i in the “atmosphere” of the ith vortex. l.12 is the total

mean energy from the formula W = 1
2

∑
i
W

+
i of electrostatics and l.13 is the mean energy-temperature relation.

tical theory of large-scale 2D vortices. The Debye-Hückel
theory is valid in the standard thermodynamic limit in
2D, for which area A → ∞ with the number of vor-
tices N → ∞ and energy E → ∞ in such a way that
n = N/A, e = E/A tend to a finite limit. Further, the
circulations κi are held fixed, independent of N , e.g.,
κi = ±1. These points are particularly clear from the
derivation of (14) by Edwards and Taylor (1974). Note
that the inverse temperature 1/T in (14) scales as A/N ,
since

∑
i κ2

i ∼ O(N), and approaches a finite limit in the
thermodynamic limit. As E/N varies over all real val-
ues the temperature T stays positive. In fact, it has
been rigorously proved by Fröhlich and Ruelle (1982)
that the standard thermodynamic limit exists for the

point-vortex model, but yields only positive tempera-
tures. To obtain the negative temperatures states pro-
posed by Onsager, one must consider energies that are
considerably higher, greater than the critical energy. It
is an immediate consequence of Onsager’s integral for-
mula for the critical energy that, if κi ∼ O(1) for all
i, then Em ∼ O(N2), because of the sum over all vor-
tex pairs. In other words, a nontrivial limit with energy
E ∼ O(1) can only be obtained if one takes κi ∼ O(1/N),
as in our discussion of the Joyce-Montgomery theory
above. It has been rigorously proved that, for the scaling
κi ∼ O(1/N) in a fixed flow domain of finite volume, the
Joyce-Montgomery mean-field theory is valid. This was
proved originally for the canonical ensemble by Caglioti
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et al. (1992) and Kiessling (1993) (see also Messer and
Spohn (1982)) and later for the microcanonical ensemble
by Eyink and Spohn (1993), Caglioti et al. (1995), and
Kiessling and Lebowitz (1997). It is important to note
that the equivalence of ensembles assumed by Onsager
can break down in the system if the specific heats become
negative (Caglioti et al., 1995; Eyink and Spohn, 1993;
Kiessling and Lebowitz, 1997), as has in fact been ob-
served in numerical studies and some experiments (Smith
and O’Neil, 1990). In that case, it is the microcanonical
ensemble which is physically correct and justified by the
ergodicity assumption. The above results have put the
Onsager theory and the Joyce-Montgomery mean-field
equation on firm mathematical footing.

Nevertheless, as Onsager himself described the theory
in the Lin note, “the simplifying hypothesis is rather
bold.” Onsager was very modest about what had been
achieved, and was clear about the tentative character of
his two major assumptions: the point-vortex approxima-
tion and the ergodicity hypothesis. We would like to close
this section with a short report on the current status of
Onsager’s theory, vis à vis the status of its founding as-
sumptions and a comparison with later simulations and
experiments.

Taking the point-vortex approximation first, we have
already mentioned that there are rigorous results which
show that any smooth 2D Euler solution ω(r, t) may be
approximated arbitrarily well over a finite time-interval
0 < t < T by a sum of point-vortices

∑N
i=1 κiδ(r− ri(t))

with κi ∼ O(1/N), as N → ∞ (Marchioro and Pul-
virenti (1994), Theorem 5.3.1). However, this is not suf-
ficient to justify equilibrium statistical-mechanics at long
times, because the limits T → ∞ and N → ∞ need need
not commute. We mentioned earlier some of Onsager’s
own reservations about the point-vortex approximation,
but he made an even more explicit criticism in Onsager
(1949d):

“...in two-dimensional convection the vortic-
ity of every volume element of the liquid is
conserved, so that convective processes can
build vortices only in the sense of bringing to-
gether volume elements of great initial vortic-
ity... This digression will make clear that the
present theory for the formation of large vor-
tices does not apply to all cases of unsteady
flow. As a matter of fact, the phenomenon
is common but not universal. It is typically
associated with separating boundary layers,
whereby the initial conditions are not so very
different from those contemplated in the the-
ory: the vorticity is mostly concentrated in
small regions, and the initial energy is rela-
tively high.”

These are the same issues that Onsager raised with Lin
when he spoke about “the restrictions imposed by the
incompressibility of the fluid.” Onsager’s concerns can
be clearly understood by considering the initial condi-

tion of an ideal vortex patch, with a constant level of
vorticity on a finite area. Because that area is conserved
by incompressibility under the 2D Euler dynamics, it is
not possible for the vorticity to concentrate or to inten-
sify locally for this initial condition. However, this is not
true if one were to approximate the patch by a distri-
bution of point-vortices at high energies. In that case,
the mean-square distance between point-vortices could
decrease over time and the effective area covered could
similarly decrease, leading to a more intense, localized
vortex structure. Thus, one expects discrepancies here
between the continuum 2D Euler and the point-vortex
model for long times.

A great step forward to eliminate these defects
was taken independently by Miller (1990) and Robert
(1990). They both elaborated an equilibrium statistical-
mechanical theory directly for the continuum 2D Euler
equations, without making the point-vortex approxima-
tion. See Miller et al. (1992); Robert (1991); Robert and
Sommeria (1991) for further development and discussion.
The basic object of both of these theories was a local dis-
tribution function n(r, σ), the probability density that
the microscopic vorticity ω(r) lies between σ and σ + dσ
at the space point r. The picture here is that the vortic-
ity field in its evolution mixes to very fine scales, so that
a small neighborhood of the point r will contain many
values of the vorticity with levels distributed according
to n(r, σ). Thus, n satisfies∫

dσ n(r, σ) = 1 (15)

at each point r in the flow domain. Note that the micro-
scopic vorticity ω(r) differs from the macroscopic vortic-
ity obtained by averaging:

ω(r) =
∫

dσ σn(r, σ). (16)

The latter is the vorticity that will be observed on a
coarse-grained scale. Furthermore, the function n(r, σ)
records an infinite set of conserved quantities of the 2D
incompressible Euler equations, namely, the area occu-
pied by each level set of the initial vorticity. If g(σ)dσ is
the fraction of the total area A on which occur vorticities
between σ and σ + dσ, then

1
A

∫
d2r n(r, σ) = g(σ). (17)

By a Boltzmann counting argument, one can show that
the entropy associated with a given distribution function
n(r, σ) is

S = −
∫

d2r
∫

dσ n(r, σ) log n(r, σ). (18)

Maximizing this entropy subject to the constraints
(15),(17), as well as fixed energy

E =
1
2

∫
d2r

∫
d2r′

∫
dσ

∫
dσ′ σσ′G(r, r′)n(r, σ)n(r, σ),

(19)
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gives

n(r, σ) =
1

Z(r)
exp[−β(σψ(r) − µ(σ))], (20)

where Z(r), µ(σ), β are Lagrange multipliers to enforce
constraints (15),(17),(19), respectively. The stream func-
tion satisfies the generalized mean-field equation

−� ψ(r) =
1

Z(r)

∫
dσ σ exp[−β(σψ(r) − µ(σ))], (21)

see Miller (1990); Robert (1990). This theory is an appli-
cation to 2D Euler of the method worked out by Lynden-
Bell (1967) to describe gravitational equilibrium after
“violent relaxation” in stellar systems.

The Robert-Miller theory solves the problems dis-
cussed by Onsager, in the passage quoted above, with
respect to the point-vortex assumption. The new the-
ory incorporates infinitely many conservation laws of 2D
Euler, although, in our opinion, that is not the critical
difference. In fact, the point-vortex model, in the gen-
erality considered by Onsager, also has infinitely many
conserved quantities, i.e. the total number of vortices
of a given circulation.8 More importantly, the Robert-
Miller theory includes information about the area of the
vorticity level-sets, which is lacking in the point vortex

8 Expanding upon this remark, we note that the Joyce-
Montgomery mean-field theory for point-vortices can be gener-
alized to allow for any finite number of circulation values, and
the resulting theory bears a striking resemblance to the Robert-
Miller theory. For each of the possible circulations κ, one can
introduce a density

ρκ(r) =
1

N

N∑
i=1

δκi,κδ(r − ri), (22)

which satisfies ∫
d2r ρκ(r) = pκ (23)

where pκ is the fraction of the N vortices with circulation
strength κ. Thus, also,∑

κ

∫
d2r ρκ(r) = 1. (24)

The Joyce-Montgomery theory can easily be generalized to this
case, with the result that the equilibrium densities become

ρκ(r) =
1

Z
exp[−β(κψ(r) − µκ)], (25)

where

−� ψ(r) =
1

Z

∑
κ

κ exp[−β(κψ(r) − µκ)] = ω(r). (26)

Except for the normalization, this equation is identical in form to
the Robert-Miller equation for an initial condition consisting of a
finite number of vortex patches with vorticity levels σκ and areas
Aκ. It can be formally derived from that equation in a “dilute-
vorticity limit” in which σκ = κ/∆ and Aκ = pκ∆, while ∆ → 0.

model. As remarked by Miller et al. (1992), the Joyce-
Montgomery mean-field equation is formally recovered in
a “dilute-vorticity limit” in which the area of the level
sets shrinks to zero keeping the net circulation fixed.
This corresponds well with the conditions suggested by
Onsager for the validity of the point-vortex model, that
“vorticity is mostly concentrated in small regions.”

The second main assumption invoked in Onsager’s the-
ory is the ergodicity of the point-vortex dynamics. This
is a standard assumption invoked in justifying Gibbsian
statistical theory. It has, in fact, proved to be false!
Khanin (1982) has shown that the phase space of the
system of N point-vortices in the infinite plane contains
integrable tori. His proof uses the fact that the 3-vortex
system is exactly integrable (Novikov, 1975). By adding
additional vortices successively at further and further dis-
tances and using the fact that these additional vortices
only weakly perturb the previous system, one can ap-
ply KAM theory iteratively to establish integrability of
the N -vortex system. Of course, statistical mechanics
does not require strict ergodicity because “macroscopic
observables” are nearly constant over the energy surface.
Thus, any reasonable mixing over the energy surface will
suffice to justify the use of a microcanonical ensemble.
Of more serious concern are the possible slow time-scales
of this mixing. Onsager also worried about this point,
when he wrote to Lin that:

“I still have to find out whether the processes
anticipated by these considerations are rapid
enough to play a dominant role in the evolu-
tion of vortex sheets, and just how the con-
servation of momentum will modify the con-
clusions.”

Lundgren and Pointin (1977) have performed numerical
simulations of the point-vortex model with initial condi-
tions corresponding to several local clusters of vortices at
some distance from each other. The equilibrium theory
predicts their final coalescence into a single large super-
vortex. Instead, it was found that the clusters individu-
ally reach a “local equilibrium”, not coalescing over the
time-scale of the simulation. Lundgren and Pointin ar-
gue theoretically that the vortices will eventually reach
the equilibrium, single-vortex state. Similar metastable
states of several large vortices have been seen in experi-
ments with magnetically confined, pure electron columns,
and dubbed “vortex crystals” by Fine et al. (1995); Jin
and Dubin (2000). These states have been explained by
a “regional maximum entropy theory”, in which entropy
is maximized assuming a fixed number of the strong vor-
tices (Jin and Dubin, 1998, 2000). Clearly, Onsager’s
ergodicity hypothesis is nontrivial and open to question.

Despite these caveats, equilibrium theories of large-
scale vortices have had some notable successes. Onsager
himself considered decaying wake turbulence in an “infi-
nite vortex trail”, as he wrote to Lin. Indeed pp. 28-31
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of Folder 11:129 contains detailed calculations 9, simi-
lar to those in Lamb (1932), §156, pp. 224-5. Analytical
solutions of the mean-field Poisson-Boltzmann equation
for vortex street geometries have later been discovered
(Chow et al., 1998; Kuvshinov and Shep, 2000). Fi-
nal states of freely-decaying, 2D Navier-Stokes simula-
tions at high Reynolds number, started from fully tur-
bulent initial conditions, have also been found to be
in remarkable agreement with the predictions of the
Joyce-Montgomery or “sinh-Poisson” mean-field equa-
tion (Montgomery et al., 1992, 1993). Similar simula-
tions started from a single band of vorticity, periodically
modulated to induce Kelvin-Helmholtz instability, show
good agreement with the generalized Robert-Miller the-
ory (Sommeria et al., 1991). In the limit of a thin initial
band, the original Joyce-Montgomery mean-field theory
is found to give identical results and agrees well with the
simulations. Furthermore, the process is much as On-
sager anticipated when he wrote to Lin:

“the sheet will roll up and possibly contract
into concentrated vortices in some places, and
at the same time the remaining sections of
the sheet will be stretched into feeble, more
or less haphazard distributed discontinuities
of velocity.”

For further comparisons of the mean-field equations with
results of numerical simulations, see Yin et al. (2003). A
number of natural phenomena have been tentatively de-
scribed by equilibrium vortex models of the sort proposed
by Onsager. A fascinating example that was mentioned
earlier is the Great Red Spot of Jupiter. For some recent
work on this topic, see Bouchet and Sommeria (2002);
Turkington et al. (2001).

IV. THREE-DIMENSIONAL TURBULENCE

A. Onsager’s Cascade Theory

The second half of Onsager (1949d), titled “Turbu-
lence”, deals with three-dimensional and fully-developed
turbulence. The Pauling and Lin notes also discuss 3D
turbulence in their second halves. The Gibbsian statisti-
cal theory discussed in the first half of these documents
does not describe a turbulent cascade process. As On-
sager wrote at the end of the first section of Onsager
(1949d) on 2D,

9 Onsager’s main object seems to have been to obtain analytical
formulae for Lagrangian particle paths in the velocity field of
a Kármán vortex street. He did this by introducing a suitable
velocity at infinity, −u0, to render the street stationary. He
then used the constancy of the modified stream function χ =
ψ − u0y along particle paths and the known formula for the
stream function ψ of the Kármán street to deduce the equation
of the particle curves

“How soon will the vortices discover that
there are three dimensions rather than two?
The latter question is important because in
three dimensions a mechanism for complete
dissipation of all kinetic energy, even without
the aid of viscosity, is available.”

Of course, it is no surprise that equilibrium statistical me-
chanics is inapplicable to a dissipative, irreversible pro-
cess such as turbulence. More startling is Onsager’s con-
clusion that turbulent motion remains dissipative even
in the limit as molecular viscosity tends to zero. In the
Pauling note of March 1945, he had already made a sim-
ilar assertion:

“The energy is gradually divided up among ∞
degrees of freedom, only for sufficiently large
k the viscosity disposes of it for good; but it
does not seem to matter much just how large
this k is.”

This remark was repeated at greater length in the Lin
note of June 1945 as well:

We anticipate a mechanism of dissipation in
which the role of the viscosity is altogether
secondary, as suggested by G. I. Taylor: a
smaller viscosity is automatically compen-
sated by a reduced micro-scale of the motion,
in such a way that most of the vorticity will
belong to the micro-motion, but only a small
fraction of the energy.

Again, in the abstract of his APS talk in November, he
wrote that:

“In actual liquids this subdivision of energy is
intercepted by the action of viscosity, which
destroys the energy more rapidly the greater
the wave number. However, various experi-
ments indicate that the viscosity has a neg-
ligible effect on the primary process; hence
one may inquire about the laws of turbulent
dissipation in an ideal fluid.”

For good measure, similar remarks were made no less
than four times in the published paper (Onsager, 1949d).
Considering the economy Onsager routinely prized in
stating his results, it would appear that explaining the in-
viscid mechanism of energy dissipation in 3D turbulence
was a chief preoccupation of Onsager’s work on statistical
hydrodynamics.

We can ask what evidence may have pushed Onsager
in that direction. One reference in the 1949 paper was
Dryden’s review article (Dryden, 1943) on the statisti-
cal theory of turbulence. At the time, Dryden was a re-
searcher in aerodynamics at the National Bureau of Stan-
dards in Washington, D.C. Starting in 1929, he published
a series of papers on the measurement of turbulence in
wind tunnels. A problem he had studied was the decay
of nearly homogeneous and isotropic turbulence behind
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(a) Hugh Latimer
Dryden (1898-1965)

(b) Grid
turbulence

FIG. 6 The wind tunnel experiments of H.L. Dryden, the
distinguished American aerodynamicist whose portrait is re-
produced in panel (a), were a critical influence on Onsager’s
theories of 3D turbulence. A smoke visualization of turbulent
flow in a wind tunnel is shown in panel (b), where the grid is
at the top and the mean flow is downward.

a wire-mesh screen. Dryden used hot-wire anemometry
techniques to take accurate measurements of turbulence
levels v in the tunnel, where v denotes the velocity fluc-
tuation away from the mean. This permitted him to de-
termine the rate of decay of the turbulent kinetic energy,
Q10, as Q = − 1

2
d
dtv

2, where d/dt denotes the convec-
tive derivative. Let V = (v2)1/2 be the root-mean-square
velocity fluctuation and L the spatial correlation length
of the velocity, usually called the “integral length-scale”.
By simple dimensional analysis,

Q = A
V 3

L
. (27)

where A = A(Re) is a function only of the Reynolds num-
ber Re = V L/ν, with ν = η/ρ the kinematic viscosity
of the fluid. Dryden found that A(Re) tends to a con-
stant at high Re. These and other data were collected by
Batchelor (1953) several years later. The quality of the
data in Batchelor’s figure, certainly the data available in
Onsager’s day, was not compelling. In fact, several years
later, Saffman (1968) was led to remark: “The exper-
imental evidence is far from convincing and would not
rule out” weak dependencies on the Reynolds number.

However, modern experiments (Sreenivasan, 1984)
have convincingly demonstrated that the turbulent en-
ergy dissipation in homogeneous and isotropic turbulence
is independent of the molecular viscosity when the vis-
cosity is small, or the Reynolds number large. Numeri-
cal solutions of the Navier-Stokes equations, these days

10 Properly speaking, this quantity is the kinetic energy dissipa-
tion per unit mass of fluid. It is now denoted in the turbulence
literature, almost universally, by ε. We shall violate this sacred
convention in order to stay close to Onsager’s notation in his
papers and notes.

an important tool, have confirmed this behavior (Sreeni-
vasan, 1998). The recent numerical study of Kaneda
et al. (2003) on a 40963 spatial grid has found that A(Re)
indeed asymptotes to a constant at high Reynolds num-
bers. The situation in shear flows is more complex and
has been summarized in Sreenivasan (1995). This com-
plexity may perhaps be illustrated by citing the results
of Cadot et al. (1997) in the Taylor-Couette flow. For
smooth walls, distinctly different behaviors are observed
in the bulk of the flow and at the boundary. Most of the
dissipation is found to occur in a boundary-layer at the
walls of the apparatus, but this dissipation is a weakly de-
creasing function of the Reynolds number. On the other
hand, the dissipation in the bulk obeys (27) with a co-
efficient that asymptotes to a constant at high Reynolds
number.

Despite the inconclusive experimental evidence of the
1930’s and 1940’s, G. I. Taylor had also been struck
by the dramatic enhancement of dissipation in three-
dimensional turbulence and proposed a dynamical ex-
planation in terms of vortex-stretching (Taylor, 1938).
Onsager was well aware of Taylor’s ideas, as he stated to
Lin:

“In terms of the Lagrangian description, the
dissipation of energy in turbulent motion
must be attributed to stretching of the vortex
fibers, which generates vorticity more rapidly
the more vigorous the motion and thus accel-
erates the final dissipation by viscosity (Tay-
lor).”

Taylor’s idea was again summarized in Onsager (1949d).
The essential ingredients of G.I. Taylor’s proposal are
three facts of inviscid, incompressible fluid flow: (1) vor-
tex lines are material lines, (2) the volume of any ma-
terial body is conserved, and (3) the Kelvin-Helmholtz
theorem, coupled with the reasonable assumption that
lines materially advected by a turbulent fluid will tend
to lengthen (as well as become quite tangled and folded).
Consider, then, a solid tube composed of a bundle of vor-
tex lines. Because the lines are materially advected in a
random way, they must, by the assumption, lengthen dra-
matically. Because the volume of the tube is conserved,
its cross-sectional area dA must correspondingly shrink.
Since the flux of vorticity along the tube, ωdA, is con-
served in time, by the Helmholtz theorem, therefore the
vorticity ω must be greatly magnified. Note that the en-
ergy dissipation itself may be related to the mean-square
vorticity, or enstrophy, by the relation

d

dt

∫
1
2
v2 d3r = −ν

∫
ω2 d3r. (28)

Thus, the vortex-stretching process by which ω grows is a
powerful engine of turbulence manufacturing prodigious
amounts of energy dissipation (Taylor, 1938).

These considerations may have played some role in
a mysterious discussion on pp. 2-6 at the beginning of
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Folder 11:129 of Onsager’s unpublished notes. There he
introduces the following expression:

I =
∫

vortex

d�

|ω| , (29)

where the integral is along a vortex line. On p. 4 Onsager
gives a simple argument that this quantity is a material
invariant. Indeed, d�

|ω| = d�dA
|ω|dA , where the numerator is a

material invariant by incompressibility and the denomi-
nator by the Helmholtz theorem. Onsager then considers
using this quantity for a phenomenology of turbulence.
For example, on p. 2 he writes down a dimensionally-
correct expression for an “eddy-viscosity” ν∗:

ν∗ = I1/2V 3/2. (30)

This is not a standard formula in the literature. In-
deed, eddy-viscosity can be defined by the formula Q =
ν∗(V/L)2, which assumes that it accounts for the dissi-
pation based on velocity-gradients ∼ V/L at the large
length-scale L. In that case, using the earlier formula
(27), one gets ν∗ ∼ V L, which is the customary esti-
mate. One only gets agreement with Onsager’s formula
(30) if one assumes that I ∼ L2/V. In fact, on pp. 5-6
Onsager uses such a formula to define a length-scale L as
a “Prandtl mixing-length” for inhomogenous turbulence:

L2 = IV. (31)

But this leaves open several questions. First, how exactly
is I defined? For example, is the integral along vortex
lines attached to the boundary or along closed lines, like
vortex rings? If it is along an infinite line, what is the
range of integration? Second, if one takes the formula
as defining a length-scale L, then does it coincide (to a
factor) with the standard integral length-scale? And, if
the formula is correct, what is its special merit? Why is
it important that I should be a material invariant? Some
light may be shed by a remark in the Lin note:

“The distribution law (19) [the -5/3 spec-
trum] is compatible with the hypothesis that
the mean rate of stretching of vortex lines is
given by the average rate of deformation in
the liquid.”

Onsager seems to have been searching for a phenomeno-
logical formulation of Taylor’s view. Nevertheless, these
pages of his notes are not intuitively clear.

In any case, Onsager had developed his own view of the
process of turbulent energy dissipation. In the Pauling
note he wrote:

“Finally, the subdivision of the energy is a
stepwise process (mostly) such that the wave-
number increases typically by a factor be-
tween, say, 1 and 3, in each step, and the
terms in which k, k′ and (k − k′) are of the
same order of magnitude have to do most of
it.”

Again in the note to Lin:

“The selection rule for the ‘modulation’ fac-
tor in each term of (8) suggests a ‘cascade’
mechanism for the process of dissipation, and
also furnishes a dynamical basis for an as-
sumption which is usually made on dimen-
sional grounds only.”

On an interesting historical note, this passage seems to
contain the first use of the word “cascade” in the theory
of turbulence. The same uniquely suggestive term was
used again by Onsager in his 1945 abstract and in the
1949 article. For example, in Onsager (1949d) he wrote:

“In order to understand the law of dissipation
described by (11) [our (27)], which does not
involve viscosity at all, we have to visualize
the redistribution of energy as an accelerated
cascade process.”

Thus, Onsager claims that this cascade is local, or be-
tween scales of the “same order of magnitude,” and ac-
celerated. Both of these claims require some explanation.

Most of Onsager’s considerations on the cascade are in
wavenumber space. Therefore, we must say a bit about
the Fourier transform of the Navier-Stokes equation:

d

dt
a(k) = −2πi

∑
k′

(a(k − k′)·k′){a(k′) − 1
k2

(a(k′)·k)k}

−ν|2πk|2a(k). (32)

Here a(k) are the Fourier coefficients of the velocity v(r)
in a periodic box. Energy transfer between wavenumbers
is described by

d

dt
|a(k)|2 = −2ν|2πk|2|a(k)|2 +

∑
k′

Q(k,k′), (33)

where

Q(k,k′) = πi {(a(k + k′)·k′)(a(−k)·a(−k′))
+(a(−k + k′)·k′)(a(k)·a(−k′))} + c.c. (34)

The symbol c.c. denotes complex conjugate. The pre-
cise formula for Q is not that important at the moment,
but what is important is the following easily established
identity

Q(k,k′) + Q(k′,k) = 0. (35)

The quantity Q represents the instantaneous transfer of
energy out of wavenumber k and into wavenumber k′,
mediated by a third wavenumber k′′ = ±k±k′. The three
wavenumbers k,k′,k′′ are usually called a “triad”. The
relation (35) expresses the fact that any energy leaving
wavenumber k by the triadic interaction must appear
in the wavenumber k′. Note that the third, convective
wavenumber k′′ plays a purely passive or “catalytic” role
in the process, and does not give or receive energy itself.
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The identity (35) is called “detailed energy conservation”
for the triad, and was observed by Onsager in the Lin
note and published in the 1949 paper.

The concept of “cascade” can now be made more ex-
plicit, in Onsager’s own words from Onsager (1949d):

‘...we note that according to (16a) [our (34)]
the exchange of energy between wavenumbers
±k and ±k′ depends only on the amplitudes
a which belong to the these wave-numbers
and to their differences (±k± k′). If the lat-
ter, as well as k itself, are of the order 1/L,
then k′ is at most of the order 2/L. Simi-
lar reasoning may be applied to subsequent
steps in the redistribution process, and we are
led to expect a cascade such that the wave-
numbers increase typically in a geometric se-
ries, by a factor of the order of 2 per step.”

This is the key statement of locality: the essential in-
teractions in the cascade are between wavenumbers of
similar magnitude. Therefore, very distant scales are not
involved in the transfer and the energy is passed in each
successive step to a wavenumber higher by a factor of
about 2. If this transfer process is also chaotic, the infor-
mation about the low wavenumbers will tend to be lost
after many random steps, except for the constraints im-
posed by total conservation laws. This motivates the idea
that the small scales of turbulence, or the high wavenum-
bers, will have their statistical properties completely de-
termined by the energy flux Q from the large scales.11
This was the basis for Onsager’s announcement in 1945
of the energy spectrum E(k) ∼ βQ2/3k−5/3, with a uni-
versal dimensionless constant β. Of course, Kolmogorov
was led by similar considerations to the same conclusion,
somewhat earlier (Kolmogorov, 1941a,b,c).

These ideas can also be used to make an estimate of the
time required for each successive cascade step. A similar
dimensional reasoning implies that the “turnover time”
required for processing of energy through wavenumber k
should be of the order

τ(k) ∼ Q−1/3k−2/3. (36)

As one can see, the time becomes shorter as the
wavenumber increases: this is why the cascade is called
accelerated. The estimate (36) was already given in equa-
tion (24) of the Lin note, in Onsager’s private notes (on

11 In fact, the small scales seem to remember the large length-scale
L, in addition to the number of cascade steps due to a build-up
of fluctuations in the course of the cascade. We shall discuss this
so-called “small-scale intermittency” below. Since Q ∼ V 3/L in
homogeneous and isotropic turbulence, which occupied most of
Onsager’s attention, remembering L is the same as remembering
V . In shear flows, the memory of V persists independently of
L and can corrupt scaling (Sreenivasan and Dhruva, 1998). The
principal effect of the shear appears often as a subleading term
in scaling, and can be taken into account with modest ingenuity
(Arad et al., 1998).

p. 22 of Folder 11:129), and in Onsager (1949d). In all
places, Onsager shows that the total time to go from
wavenumber k = 1/L to wavenumber k = ∞ is finite:∫ ∞

1/L

dk

k
τ(k) < ∞. (37)

Essentially, the steps in the cascade accelerate so quickly
that—if not interrupted earlier by viscosity—it would re-
quire only a finite amount of time for energy to be passed
via nonlinear interactions from a low wavenumber to in-
finitely high wavenumber! This calculation of Onsager’s
has sometimes been used to argue for the idea that 3D
incompressible Euler equations, started from smooth ini-
tial conditions, will develop singularities in finite time.
As noted by Frisch (1995), however, this argument is not
so clear because the validity of the formula (36) for the
turnover time for any arbitrarily high wavenumber k pre-
sumes pre-existing singularities.

B. Euler Singularities and Dissipative Anomaly

Onsager did make a remarkable statement about 3D
Euler singularities, at the very end of the 1949 paper
(Onsager, 1949d), relating them to the observed proper-
ties of turbulent energy dissipation:

“It is of some interest to note that in princi-
ple, turbulent dissipation as described could
take place just as readily without the final
assistance by viscosity. In the absence of vis-
cosity, the standard proof of the conservation
of energy does not apply, because the veloc-
ity field does not remain differentiable! In
fact it is possible to show that the velocity
field in such “ideal” turbulence cannot obey
any LIPSCHITZ condition of the form

(26) |v(r′ + r) − v(r′)| < (const.)rn

for any order n greater than 1/3; otherwise
the energy is conserved. Of course, under
the circumstances, the ordinary formulation
of the laws of motion in terms of differential
equations becomes inadequate and must be
replaced by a more general description; for
example, the formulation (15) [our (32)] in
terms of Fourier series will do. The detailed
conservation of energy (17) [our (35)] does not
imply conservation of the total energy if the
number of steps in the cascade is infinite, as
expected, and the double sum of Q(k,k′) con-
verges only conditionally.”

These are the closing words of Onsager’s paper, and also
his last published thoughts on the subject of singularities
and dissipation for Euler equations.

What did Onsager mean? Clearly he proposed that
there would be singularities of Euler equations, whether
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finite-time or otherwise, since he states that “the velocity
field does not remain differentiable” in the inviscid limit
as ν → 0. This is to be expected if, in that limit, a k−5/3

spectrum develops all the way up to k = ∞, because such
a slow decay in wavenumber implies that |∇v|2 = +∞,
and that classical derivatives of the velocity can no longer
exist. More remarkably, Onsager proposes that even for
such a singular limit, the velocity field will still satisfy the
incompressible Euler equations in a suitable sense, e.g.
the equations (32) for the Fourier coefficients will hold
with ν = 0. Equivalently, the Euler equations will hold if
the derivatives are taken in the sense of distributions. In
that case, Onsager notes that there is a precise, minimal
degree of singularity required to lead to dissipation in the
ideal fluid. If the velocity satisfies a Lipschitz or Hölder
condition with exponent > 1/3, then energy is conserved.
Therefore, to account for the observed dissipation in the
inviscid limit, a Hölder singularity of exponent ≤ 1/3
must appear at least at some points in the flow. In this
picture, the turbulent velocity fields in the inviscid limit
are continuous, nowhere differentiable functions, similar
to ideal Brownian paths. What is especially remarkable
about Onsager’s claim is that Kolmogorov’s scaling expo-
nent of 1/3 comes out of a dimensional argument for all
statistical moments of velocity differences, but without
direct use of the equations of motion. Here the exponent
1/3 is shown to have dynamical significance.

After Onsager’s talk at the Florence meeting, there
was no comment regarding the 1/3 Hölder singularity
claim. In fact, very little note seems to have been taken
of Onsager’s remark for quite a long time. Even J. von
Neumann in his 1949 review article (von Neumann, 1963)
does not mention it. There was related but apparently
completely independent work at about the same time by
Burgers (1948), who proposed a simple model equation
for turbulence which illustrated the possibility of singu-
larity formation and its relation to energy dissipation.
(See also the earlier work of Wiener (1938).) Burgers
equation describes a 1D compressible fluid for which the
singularities are simple shock discontinuities in the ve-
locity profile. This work subsequently attracted a great
deal of attention of both mathematicians and physicists
(Frisch and Bec, 2001; Lax, 1972). However, Onsager’s
remark seems to have been nearly forgotten, except by
a few experts in turbulence theory. Sulem and Frisch
(1975) proved a related result for the 3D Euler equations,
in Sobolev rather than Hölder spaces. Their result states
that energy is conserved for 3D Euler equations if the en-
ergy spectrum of the solution is steeper than k−8/3. This
theorem neither implies nor is implied by the Onsager
result. For example, a velocity field with Hölder regu-
larity slightly greater than 1/3 everywhere would have a
spectrum just a little steeper than Kolmogorov’s k−5/3

and would conserve energy by Onsager’s result, but not
by that of Sulem and Frisch.

A result close to the one claimed by Onsager was first
proved by Eyink (1994). The proof was based on the brief
argument that Onsager had sketched in Onsager (1949d),

using Fourier series. Total energy conservation for Euler
equations naively follows from the calculation

d

dt

∑
k

|a(k)|2 =
∑
k

∑
k′

Q(k,k′)

=
1
2

∑
k

∑
k′

{Q(k,k′) + Q(k′,k)} = 0, (38)

using the detailed conservation (35). However, this ar-
gument requires reordering the infinite summations over
k,k′, and that is inadmissable if the series are only con-
ditionally convergent. In that case, the series can give
results that depend on the order of summation. On the
other hand, Onsager’s claim seems to be that the series
are absolutely convergent if the Hölder condition with ex-
ponent n > 1/3 is valid. In terms of Fourier coefficients,
the Hölder condition can be expressed as∑

k

|k|n|a(k)| < ∞. (39)

See Zygmund (2002). If absolute convergence follows
from this bound with n > 1/3, then the formal calcu-
lation is correct and energy is conserved.

It is not hard to show that conservation of energy is
also implied by a weaker condition on the spectral energy
flux

Π(K) = −
∑

|k|<K

∑
k′

Q(k,k′), (40)

a quantity which measures the flow of energy under the
nonlinear interactions out of a sphere in Fourier space
of radius K. If the double series in (38) is absolutely
convergent (and equals zero), then

lim
K→∞

Π(K) = 0. (41)

This by itself is enough to conclude energy is conserved,
but the asymptotic energy flux may be zero even if the
series converges only conditionally. In fact, Sulem and
Frisch (1975) analyzed energy flux to prove their theo-
rem. Now it is not hard to check that if condition (39)
holds and, furthermore, if the local triads dominate in
the sum (40) defining the flux, then

Π(K) = O(K1−3n). (42)

Therefore, Onsager’s conservation claim will be true if
the local interactions indeed dominate in the energy flux.
However, the matter is delicate. In Eyink (1994) a model
velocity field was constructed as a counterexample which
showed that, in some cases at least, Π(K) ∼ K1−2n

as K → ∞. Thus, the absolute convergence suggested
by Onsager’s 1949 remarks, literally speaking, does not
hold true. The mechanism involved in this counterexam-
ple is the transfer by a small distance in Fourier space,
via highly nonlocal triads with one wavenumber slightly
< K, one slightly > K and a convective mode with very
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small wavenumber. Similar interactions have been seen
to dominate in Π(K) in numerical simulations of the
Navier-Stokes equations (Domaradzki and Rogallo, 1990;
Yeung and Brasseur, 1991).

Nonetheless, despite these factors, the essence of On-
sager’s claim is correct. For example, if one averages the
spectral flux over an octave band, then local triads do
dominate and

Π(K) =
1
K

∫ 2K

K

dK ′ Π(K ′) = O(K1−3n). (43)

This observation yielded the proof in Eyink (1994) of
Onsager’s conservation claim. It was also shown there
by an example that estimate (43) is sharp and cannot
be improved. In particular, constant energy flux is pos-
sible for n = 1/3. As a side-product of this analysis, it
was also shown in Eyink (1994) that Onsager’s assertion
of locality holds for the averaged flux (43) whenever the
velocity field satisfies (39) with 0 < n < 1. This is ex-
actly in agreement with Onsager’s remark to Lin: “With
a hypothesis slightly stronger than (14) the motion which
belongs to wave-numbers of the same order of magnitude
as k itself will furnish the greater part of the effective
rate of shear.” Onsager’s equation (14) in the 1949 pa-
per is just the condition that v2 < ∞, (∇× v)2 = ∞;
indeed, velocity fields satisfying (39) with 0 < n < 1 are
continuous but generally non-differentiable.

The argument in Eyink (1994) still did not quite es-
tablish Onsager’s claim because, technically, the Fourier
condition (39) is sufficient but not necessary for Hölder
continuity of index n (Zygmund, 2002). However, shortly
later, Constantin, E and Titi (Constantin et al., 1994)
found a proof of Onsager’s precise statement and, in fact,
proved even a sharper result. We shall discuss their im-
portant theorem below. Here let us just note that their
argument was given entirely in physical space, and did
not use Fourier methods. More recently, another simi-
lar proof was given by Duchon and Robert (2000). Of
primary interest is the beautiful connection that they
established between Onsager’s theorem and another fa-
mous result of turbulence theory, the Kolmogorov 4/5-
law (Kolmogorov, 1941a). This connection will also be
discussed below.

It is remarkable that Onsager’s claim is exactly correct,
although the hints he gave using Fourier series do not
yield quite the claimed result. It does not seem that On-
sager ever worked through the details of a Fourier space
proof. If so, then what was the basis of his accurate
claim? The surprising answer seems to be that he had
a valid proof in physical space and that it was virtually
identical to that of Duchon and Robert (2000) fifty years
later! The crucial result which bears directly on this
question is equation (26) in the Lin note, which appears
again on p. 14 of Folder 11:129, and whose derivation
from the incompressible Euler equations is contained in
pp. 15-20 of the Folder. The derivation is straightforward
and need not concern us in detail (e.g., see Duchon and
Robert (2000)). If ∆rv(r′) = v(r′ + r) − v(r′) is the ve-

locity increment, then the crucial identity that Onsager
derived is:

∂

∂t

∫
d3r F (r)v(r′)·v(r′ + r)

=
1
2

∫
d3r F ′(r)(r̂·∆rv)|∆rv|2. (44)

Here F (r) is a spatial smoothing function, assumed to be
spherically symmetric. We have made a few other minor
simplifications of Onsager’s notations for the sake of clar-
ity. The motivation for this formula is made more clear
by p. 19 and 20 of Folder 11:129, reproduced here. On p.
20 Onsager derives a formula expressing

∑
k′<k |a(k′)|2

in terms of an integral of the spatial velocity correlation.
The time-derivative of this quantity under the Euler dy-
namics is just (minus) what we called the energy flux
Π(k). However, because of the sharp cutoff in Fourier
space, this results in a highly oscillatory integral, which
is hard to control. Onsager solves that problem by using a
smooth spectral cutoff function f(k) with inverse Fourier
transform F (r). Thus, the sum over low-wavenumber
Fourier modes is written on p. 19 (Figure 8) as

∑
k

f(k)|a(k)|2 =
∫

d3r F (r)v(r′)·v(r′ + r), (45)

where the bar () may be taken to be a spatial average
over r′ in the periodic box.12 Notice that the oscillatory
integral is now replaced by an integral with respect to
the spatial smoothing function F (r). The minus time-
derivative of (45) defines a scale-averaged energy flux
similar to (43), and it is exactly this time-derivative that
appears on the left hand side of Onsager’s fundamental
relation (44). Now, if one assumes that ∆rv = O(rn)
and if F filters out scales < �, then the overall scaling
of the right hand side of (44) is O(�3n−1) (where the −1
comes from the derivative on F ), which vanishes as � → 0
if n > 1/3. This is exactly a space-integrated form of the
argument used by Duchon and Robert (2000) to prove
Onsager’s stated result about n = 1/3. As we shall dis-
cuss later, virtually the same argument appears at the
end of the note to Lin. It is hard to avoid the inference
that this was the basis for the claim in Onsager (1949d).

The basic identity (44) is closely related to an ex-
pression derived by von Kármán and Howarth (1938),
which is one of the references cited at the beginning of
Folder 11:129. Moreover, Onsager’s identity is an exact
analogue of the 4/5-law derived by Kolmogorov in the
third of his 1941 papers (Kolmogorov, 1941a), making
use of the earlier calculation of von Kármán and Howarth
(1938). Kolmogorov assumed homogeneity and isotropy
of turbulence, and also, crucially, that energy dissipation

12 Onsager’s calculations start off with the assumption that this is
an ensemble average. However, in the course of his proof of (44)
he drops this bar and replaces it with a spatial average only.
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FIG. 7 Page 20 of Folder 11:129 (Onsager, circa 1945). Onsager divided the page by two lines. Above the top line the two-point
correlation function of the velocity field is written as a Fourier transform of the energy spectrum (Wiener-Khinchin theorem).
Between the two lines is the inverse relation, giving the energy spectrum in terms of the correlation function. Below the
bottom line, Onsager uses this result to derive a corresponding formula for the total energy in Fourier modes with wavenumber
magnitude less than k.

FIG. 8 Page 19 of Folder 11:129 (Onsager, circa 1945). A smoothed version of the Wiener-Khinchin theorem employing a
spectral filtering function f(k) with inverse Fourier transform F (r) in physical space.
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remains finite in the limit as viscosity tends to zero. A
good derivation of the 4/5-law is given in the book of
Frisch (1995) (which is essentially identical to the cal-
culation of Onsager). He first derives a form of the law
assuming homogeneity alone without isotropy, which in
Frisch (1995) is called the Kolmogorov-Monin relation:

∇r·∆rv|∆rv|2 = −4Q. (46)

Here, as before, Q represents the energy dissipation per
unit mass, which is assumed to remain positive in the in-
viscid limit. To get Onsager’s identity—in a statistically
averaged sense—one must simply integrate both sides of
(46) with respect to F (r) and use ∇rF (r) = F ′(r)r̂.
The identity derived by Kolmogorov used also isotropy
and was in the form

(r̂·∆rv)3 = −4
5
Qr. (47)

This is the classical statement of the 4/5-law (Kol-
mogorov, 1941a). It is noteworthy that Lin remarked
to Onsager in his reply on June 26, 1945 that the “cas-
cade process of the dissipation of energy in turbulence
can also be seen from an equation derived rigorously from
the Kármán-Howarth equation” (Lin, 1945b)—referring
to an exact equation derived by Lin himself for the evo-
lution of the energy spectrum—but did not point out its
relation to equation (26) in Onsager’s note.

The proof by Duchon and Robert (2000) yielded in
fact an important generalization of Onsager’s result and
of the Kolmogorov-Monin relation. Under a very modest
assumption—namely, that

∫ T

0
dt

∫
d3r |v(r, t)|3 < ∞—

they proved that a singular solution of the incompressible
Euler equations satisfies a local energy balance:

∂t
1
2
|v|2 + ∇·

[(
1
2
|v|2 + p

)
v
]

= −D(v). (48)

The derivatives in this equation must be interpreted in
the sense of distributions. If the Euler solutions are
smooth, then the righthand side will be zero, implying
conservation of the energy. In general, however, that
term need not vanish. Duchon and Robert established
for it the following identity

D(v) = lim
�→0

1
4

∫
d3r ∇rF�(r)·∆rv|∆rv|2, (49)

where F�(r) = (1/�3)F (r/�). Thus, this term represents
the energy flux asymptotically to zero length-scale. If
the Euler solution is obtained as a zero-viscosity limit of
a Navier-Stokes solution, then it is also true that13

D(v) = lim
ν→0

ν|∇v|2 ≥ 0. (50)

13 Here we assume that there are no singularities in the solution
of the Navier-Stokes equation at any small, but finite viscosity.
Otherwise the statement of this result must be slightly general-
ized (Duchon and Robert, 2000).

Combining the two expressions for D(v) gives a spacetime
local form of the Kolmogorov-Monin relation. Duchon
and Robert furthermore prove that

D(v) = lim
r→0

− 3
4r

〈(r̂·∆rv)|∆rv|2〉ang, (51)

where 〈〉ang denotes a spherical average over the direction
vector r̂. This is a local form of what is now called the
“4/3-law” in turbulence theory. Eyink (2003) has shown
that the term D(v) can also be expressed as a local form
of the original Kolmogorov 4/5-law.

In a paper on two-dimensional turbulence, Polyakov
(1993) pointed out an interesting analogy of the 4/5-
law, and corresponding laws in 2D turbulence, to
conservation-law anomalies in quantum field theory, e.g.
the axial anomaly in quantum electrodynamics. In
particular, the derivation of the 4/5-law from the dy-
namics of the two-point velocity correlation—as in On-
sager’s unpublished notes—was rediscovered by Polyakov
who pointed out its similarity to Schwinger’s derivation
(Schwinger, 1951) of the axial anomaly by a (gauge-
invariant) point-splitting regularization. In the case of
the axial anomaly one obtains a local balance for axial
charge:

∂µJµ
5 = 2mJ5 + D(A). (52)

This equation is to be interpreted in the sense of the
Heisenberg equations of motion for (renormalized) local
composite field operators:

Jµ
5 = ψγµγ5ψ, J5 = iψγ5ψ, D(A) =

α

2π
F̃µνFµν .

(53)
See Itzykson and Zuber (1980), for example, for relevant
definitions and notations. If the mass m = 0, then axial
charge would be conserved, if D(A) were zero. The fact
that it is not zero has physical consequences, such as
the electromagnetic decay of the neutral pion π0 → γγ
(Adler, 1969; Bell and Jackiw, 1969).

The local balance equation (48) derived by Duchon
and Robert (2000) for singular Euler equations is simi-
lar in structure to the anomalous conservation equation
(52) in quantum gauge theory. Therefore, we believe that
Onsager’s result on dissipative Euler solutions does have
some analogy to anomalies in quantum field theory. In
fact, the term D(v) in (48) is nowadays often referred to
in the turbulence literature as the dissipative anomaly.
However, there are also some important differences be-
tween the dissipative anomaly D(v) in turbulent solu-
tions of Euler equations and the axial anomaly D(A) in
quantum gauge theory. For example, we have seen that
the dissipative anomaly is always nonnegative, D(v) ≥ 0,
whereas the axial anomaly can have either sign. The ax-
ial anomaly is also formally a total divergence D = ∂µKµ

with Kµ = α
2π εµνσρAνFσρ. Its global integral is only

nonzero for topologically nontrivial gauge fields A, re-
lated to the Atiyah-Singer index theorem (Jackiw and
Rebbi, 1977; Nielsen and Schroer, 1977). The dissipa-
tive anomaly for Euler equations does not have such a
topological interpretation.
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C. Intermittency and Anomalous Scaling

We now discuss the strengthening of Onsager’s theo-
rem due to Constantin et al. (1994), although only inso-
far as it ties into our next subject, anomalous scaling. A
physical interpretation of their method from the point of
view of nonequilibrium thermodynamics is given in Eyink
(1995b). What we would like to emphasize here is that
they gave the first proof of the theorem under Onsager’s
precise Hölder continuity condition and, in fact, under
a sharper condition involving so-called Besov spaces: for
example, see Eyink (1995a). The Besov space Bs

p is very
simply defined: it consists of functions that are Hölder
continuous with index s, not pointwise but in the sense
of spatial pth-order moments:

[∫
d3r′ |v(r′ + r) − v(r′)|p

]1/p

≤ (const.)rs. (54)

The result of Constantin et al. (1994) is that a singular
solution of the Euler equations will conserve energy if the
velocity field has Besov regularity with s > 1/3 for any
p ≥ 3. Since the Besov spaces for p = ∞ coincide with the
classical Lipschitz-Hölder spaces, the result of Constantin
et al. (1994) includes that of Onsager as a special case.
It is interesting to point out, however, that Onsager’s
own unpublished identity also suffices to derive the Besov
result (or even a slight improvement, as noted in Duchon
and Robert (2000)). The theorem of Constantin et al.
also includes the Sobolev space result of Sulem and Frisch
(1975), since velocity fields in three-dimensional space
with an energy spectrum steeper than k−8/3 belong to
the Besov space Bs

3 for some s > 1/3, by a standard
embedding theorem (e.g. see Eyink (1995a)).

One of the interests of the Besov space improvement of
Onsager’s result has to do with the phenomenon of small-
scale intermittency in turbulence. The original “mean-
field theory” of Kolmogorov (1941a,b,c) and the others
(Heisenberg, 1948; Obukhov, 1941a,b; Onsager, 1945c,
1949d; von Weizsäcker, 1948) predicted that all pth-order
moments should scale according to dimensional reasoning
based on mean dissipation:

|∆rv|p ∼ (Qr)p/3. (55)

However, it was later predicted by Kolmogorov himself
(Kolmogorov, 1962), and then confirmed subsequently by
experiment (Anselmet et al., 1984), that these scaling
laws depend also upon the large length-scale L, as

|∆rv|p ∼ (Qr)p/3(r/L)ξp ∼ V p(r/L)ζp , (56)

for r � L, with ζp = (p/3) + ξp. Thus, the ξp’s are
anomalous dimensions in the sense of quantum field the-
ory or critical phenomena. From a physical point of view,
ξp 
= 0 means that the statistics at the small scales have
fluctuations growing in each cascade step and hence re-
member the total number of steps from large scale L to
small scale r. A particular consequence is that the energy

spectrum decays faster than k−5/3, with

E(k) ∼ Q2/3k−5/3(Lk)−ξ2 , ξ2 > 0, (57)

corresponding to the Fourier transform of (56) for p = 2.
A modern interpretation of anomalous scaling of ve-

locity increments is the multifractal model proposed by
Parisi and Frisch (1985). According to this picture, the
turbulent velocity field in the zero-viscosity limit remains
Hölder continuous, as conjectured by Onsager. However,
according to the multifractal model there is an entire
spectrum of Hölder exponents [hmin, hmax] and the set
of points S(h) with exponent h, for each h in this inter-
val, forms a fractal set with Hausdorff dimension D(h). In
that case, the probability of a velocity increment ∆rv(r′)
having r′ in S(h) scales as (r/L)d−D(h) in d dimensions,
while at those points |∆rv(r′)| ∼ V (r/L)h. Therefore, a
simple steepest descent calculation gives

|∆rv|p ∼ V p

∫ hmax

hmin

dµ(h)
( r

L

)ph+(d−D(h))

∼ V p(r/L)ζp ,

(58)
for r � L, with

ζp = min
h∈[hmin,hmax]

{ph + (d − D(h))}. (59)

For a more detailed discussion of the multifractal model,
see Frisch (1995). In this language, Onsager’s theorem on
Euler equations is the statement that dissipation requires
hmin ≤ 1/3. The Besov space improvement by Constantin
et al. (1994) is the statement that dissipation requires
also ζ3 ≤ 1. A precise formulation and mathematical
proof of validity of the multifractal model remains, of
course, an open question. For some recent investigations
purely at the level of function spaces, without use of the
fluid equations, see Jaffard (2001).

It is remarkable that Onsager was led to similar views
about local Hölder regularity of turbulent velocities,
based on relatively weak empirical evidence about en-
ergy dissipation and its explanation by the Euler fluid
equations. His proposal was forty years earlier than that
of Parisi and Frisch, who were led to their views based
on empirical evidence about anomalous scaling laws. On
the other hand, Onsager gave no hint in any of his pub-
lished works (Onsager, 1945c, 1949d) that he anticipated
the phenomenon of intermittency and its potential to al-
ter his proposed turbulence scaling laws. There is some
irony in this, since it was Onsager’s exact solution of
the 2D Ising model (Onsager, 1944) which gave conclu-
sive evidence of anomalous scaling corrections to Lan-
dau’s mean-field theory of critical phenomena (Landau,
1937a,b). Of course, the physical role of fluctuations
near the critical point was only widely appreciated af-
ter the work of Levanyuk (1959) and Ginzburg (1960),
and not directly from the mathematical solution of the
Ising model. Therefore, it would seem possible that On-
sager did not realize that fluctuations could invalidate his
own “mean-field theory” on turbulence scaling (Onsager,
1945c, 1949d).



22

The contrary is the case, as shown by the Lin note.
Onsager wrote on p. 16 as follows:

“As far as I can make out, a more rapid de-
crease of a2

k with increasing k would require
a ‘spotty’ distribution of the regions in which
the velocity varies rapidly between neighbor-
ing points.”

Thus, he clearly anticipated the faster spectral decay in
our equation (57), and, moreover, understood its phys-
ical origin. This is made even more clear by Onsager’s
derivation of the 2/3-law in the Lin note, based upon his
identity (26) there [our (44)]. We quote at length from
this remarkable passage:

“Now put

F (r) = 3/4πa3 ; (r < a)
F (r) = 0 ; (r > a)

Then for small a the left member of (26) is
practically

∂v2/∂t

and the right member is at most of the order(
|Dr(v)|3/r

)
r=a

.

Moreover, obviously,

|Dr(v)|2 = 2v2(1 − R(r)).

Now the estimate (21) is a minimum hypoth-
esis unless the mean cube of Dr(v) consists
mainly of contributions from exceptional re-
gions of small aggregate volume.”

We note that F (r) is the spatial filtering function that ap-
pears in (26), Dr(v) is Onsager’s notation for the velocity
increment ∆rv, R(r) is the velocity correlation function,
and equation (21) in the Lin note is the 2/3-law. Onsager
chooses F (r) to be a “box filter,” uniform on the sphere
of radius a. He then observes that for small enough a, the
left side of the identity (26) will be just −2Q, which cor-
responds to the condition of constant energy flux. But,
in that case, |∆rv|3 can be no smaller than O(|r|). On-
sager then refers to it as a “minimal hypothesis” that
|∆rv|2 ∼ |r|2/3. This closely parallels one of the deriva-
tions of the 2/3-scaling that Kolmogorov presented, in his
third paper (Kolmogorov, 1941a), using the linear scaling
from the 4/5-law. Kolmogorov’s basic assumption was
of self-similarity, which, with the linear scaling of the
third-order structure function, implies a 2/3-power for
the 2nd-order structure function. Onsager’s assumption
leading to the 2/3-scaling was closely related, namely,
that spatial fluctuations are negligible and that averages
do not come “from exceptional regions of small aggregate
volume.”

Furthermore, Onsager continues to Lin:

“You can get the formula suggested
by G.I. Taylor:

1 − R(r) ∼ r

if you make the extreme assumption that the
vorticity is distributed in sheets of compara-
ble intensity and finite total area. However,
the discontinuities would give rise to oscil-
lograms of a striking rectangular structure,
rather unlike those which I have seen.”

There is a related page of notes in Folder 11:129, p.
21, immediately following Onsager’s derivation of (44).
There he writes that it is a consequence of “dynamics”
that |∆rv|3 = O(r) and of “Taylor” that |∆rv|2 = O(r).
It is interesting that this page seems to originate from a
period when Onsager was trying to determine the pos-
sible scaling exponents. The exponent 1 in the linear
scaling laws was originally another value, apparently 2,
which was then scratched out. The rest of this page seems
to contain an investigation of the statistical realizability
of the scaling relations at the top of the page. Onsager
may have been wondering whether Taylor’s proposed lin-
ear scaling for |∆rv|2 could be consistent with the linear
scaling for |∆rv|3 that he had derived from (44). If so,
he seems to have realized by the time he wrote to Lin
that such scalings are indeed compatible if velocity incre-
ments of finite amplitude are supported entirely on sheets
or shock surfaces in three-dimensional space. This is ex-
actly what occurs for Burgers equation (Burgers, 1948).
In fact, that model exhibits so-called “bifractal” statis-
tics of increments in every space dimension d, with just
two Hölder exponents: h = 0 corresponding to shocks
on sets of dimension D(0) = d − 1 and h = 1 corre-
sponding to the rest of space where velocity is smooth
with dimension D(1) = d (Frisch, 1995; Frisch and Bec,
2001). This leads to linear scaling for structure functions
of both second and third orders. However, Onsager notes
that such scaling is unlikely for fluid turbulence based on
the evidence from empirical time-series.

Thus, it is clear that Onsager realized already by 1945
that spatial fluctuations in the regularity of the veloc-
ity field could vitiate his proposed 2/3 scaling for the
second-order structure function. Another hypothesis was
needed, namely, that the region of large velocity incre-
ments is not “spotty” but instead uniform throughout
space. It is quite surprising, again, that Onsager did not
mention any of these considerations, contained in the Lin
note, in his published paper (Onsager, 1949d) four years
later. The first recognition of a possible correction to
Kolmogorov 1941 scaling due to intermittency is often at-
tributed to L.D. Landau, in his famous remark at a 1942
meeting in Kazan and in a related remark that appeared
as a footnote in the first 1944 edition of his textbook
on fluid mechanics with Lifschitz (Landau and Lifschitz,
1987). However, Landau’s remarks are very brief and
open to different interpretation, and it is not clear that he
was referring to intermittency for small-scale increments,
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despite the fact that Kolmogorov (1962) gave Landau
considerable credit. For an excellent discussion of this
issue, see Frisch (1995), §6.4. On the other hand, On-
sager’s statements are clearly and unambiguously about
such intermittency and its effect on short-distance scaling
laws of velocity increments.

To what extent did Onsager in the 1940’s fully an-
ticipate later work on anomalous scaling in turbulence?
There are, of course, many elements of modern theo-
ries that he missed. Unlike Kolmogorov (1962), twenty
years later, Onsager did not consider scaling of pth-order
moments of velocity-increments for general p but only
for p = 2 and 3. There is also nothing in any of On-
sager’s papers that we have seen at all suggestive of the
“refined similarity hypothesis” proposed in Kolmogorov
(1962). This hypothesis relates the anomalous scaling
of velocity-increments to intermittency of viscous energy
dissipation and it has played a key role in many mod-
ern approaches to the problem of turbulent scaling laws.
E.g. see Frisch (1995) for details. Onsager’s ideas were
much closer to those of the multifractal model of Parisi
and Frisch (1985), formulated entirely in terms of velocity
increments and not involving dissipation. Furthermore,
there was nothing “fractal” in any of Onsager’s consider-
ations. Even Onsager’s Burgers-like “bifractal” example
in the Lin note involves sets only of integer-valued di-
mension (d and d − 1 in space dimension d.) The first
use of fractal (and multifractal) concepts in discussing
turbulent intermittency was by Mandelbrot (1969, 1972,
1974), who cast in that mathematical framework the
ideas of Kolmogorov (1962) and others of the Russian
school. Nevertheless, while Onsager certainly did not
foresee every element of our modern understanding, it is
remarkable that Onsager perceived so clearly and so early
the possibility of spatial intermittency and its effect on
turbulent scaling laws.

D. A Closure for the Energy Spectrum

Folder 11:129 of Onsager’s notes from the 1940’s still
contains one memorable result, which is not discussed
in any of his letters or publications. In the remaining
five pages of the notes from that folder, pp. 23-27, On-
sager sketches very succinctly the derivation of a spec-
tral energy closure, which is remarkably similar to the
EDQNM (Eddy-Damped-Quasi-Normal-Markovian) clo-
sure that was proposed by Orszag (1970, 1977). The
EDQNM approximation was itself the end result of a
long line of “analytical closures” which went back to the
work of Proudman and Reid (1954) on the Quasi-Normal
closure, of Kraichnan on the Direct Interaction Approx-
imation (Kraichnan, 1959) and the Test-Field Model
(Kraichnan, 1971), and of others as well.

We reproduce here two of these five pages from Folder
11:129, pp. 23-24. Page 23 contains the main result,
while the later pages contain supporting calculations.
Onsager’s basic idea is simple: he isolates the effect on

energy transfer out of wavenumber k due to a single dis-
tinguished triad k,k′,k′′. As he had already discussed
in his Lin note and in the 1949 paper, the convective
wavenumber in the triad, k′′, say, plays a purely passive
role, simply catalyzing transfer between k and k′. There-
fore, he freezes the Fourier amplitude a(k′′) of that mode,
leading to a linear equation for the other two modes. This
is the 4× 4 matrix system that he considers on p. 24. As
a first approximation, he ignores the contribution of the
pressure term (with just a remark on p. 26 how it may be
included). On the pages which follow, Onsager diagonal-
izes the 4× 4 matrix and finds the exact solution u(k, t)
of the linear problem. The details of this need not con-
cern us, just the final result for |u(k, t)|2, written at the
top of p. 23. Onsager expands this result to second-order
in time t, and uses this to calculate an approximation to
the time-derivative

d

dt
|a(k)|2 = (2π)2t{|k′·a(k − k′)|2 + |k′·a(k + k′)|2}

× [|a(k′)|2 − |a(k)|2] + O(t2). (60)

After averaging over a homogeneous ensemble and dis-
carding of 4th-order cumulants, as in the Quasi-Normal
closure (Proudman and Reid, 1954), the moments involv-
ing distinct wavenumbers also factorize to leading order,
e.g.,

|a(k′′)|2|a(k)|2 = |a(k′′)|2 |a(k)|2[1 + O(1/V )]. (61)

This is like the “weak dependence” property used by
Kraichnan (1959). Finally, Onsager makes a bold ap-
proximation. Embedding the single triadic contribution
in the sea of other triads, he assumes that the only effect
is to replace the “bare” time t by an effective turnover-
time τk,k′ , which depends upon the triad. The final result
is

d

dt
|a(k)|2 = (2π)2

∑
k′

τk,k′
[
|k′·a(k − k′)|2

+ |k′·a(k + k′)|2
]
×

[
|a(k′)|2 − |a(k)|2

]
. (62)

This equation is now closed in terms of the energy spec-
trum. If τk,k′ is symmetric in its dependence on the
wavenumbers magnitudes k, k′, k′′, then this equation
will exactly conserve energy, because of a cancellation
between “input” terms ∝ |a(k′)|2 and “output” terms
∝ |a(k)|2. The final result is very similar to EDQNM
(Orszag, 1977), nearly thirty years before that closure
would appear in the literature. Furthermore, the deriva-
tion itself is very close to one used by Fournier and Frisch
(1978), §II-III, to obtain EDQNM. The argument and re-
sult would have been identical if Onsager had included
the contribution of the pressure and allowed the convec-
tive mode also to evolve.

What is especially interesting from an historical point
of view is that Onsager returned to this problem in the
1970’s and worked to refine his closure. The relevant
material is contained in Folders 11:132 and 11:135 from
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FIG. 9 Page 23 of Folder 11:129 (Onsager, circa 1945). The first equation is the exact solution of the 4 × 4 system on p.24.
This is Taylor-expanded in time, ensemble-averaged, and differentiated to yield an expression for the evolution of the spectrum.
The last equation is Onsager’s closure equation, with the “bare” time t replaced by an effective “turnover” time τk,k′ .

the Onsager Archive, which we have dated to the years
1973-1976. By that time, Onsager had left Yale for Uni-
versity of Miami and was working mainly on the problem
of origin of life (Onsager, 1974b), statistical mechanics of
water and ice (Chen et al., 1974; Onsager, 1973, 1974a;
Staebler et al., 1978), and his lifelong favorite topic, elec-
trolyte theory (Onsager and Chen, 1977; Onsager and
Hubbard, 1997; Onsager et al., 1977; Onsager and Kim,
1977). However, as we see from the contents of the fold-
ers, he had also returned to the study of turbulence.
In this new attempt, he incorporates correctly the pres-
sure effects and permits the evolution of the convective
modes. However, the method of derivation is slightly
changed. In his new approach Onsager studies directly
the time derivative (d/dt)Qk,k′ , with Qk,k′ given by (34)
above. Actually, that expression contains four terms,
of which Onsager studies just one representative term
−πi(a(k−k′)·k′)(a(k′)·(−k)), which he now calls Qk,k′ .

Since the latter is cubic in Fourier amplitudes, its time-
derivative is quartic. The derivative can be divided into
two contributions:

d

dt
Qk,k′ = −πi(ȧ(k − k′)·k′)(a(k′)·a(−k)) − πi×

(ȧ(k − k′)·k′)[(ȧ(k′)·a(−k)) + (a(k′)·ȧ(−k))], (63)

The first one contains the derivative of the “passive”
convective mode, which was neglected before, while the
second contains the derivative of the “active” modes in-
volved in the transfer.

We show three key pages of Folder 11:132 which give
the idea of Onsager’s treatment (pp. 4–6). On p. 4–5 he
calculates the first term in (63) as a sum over all tri-
ads. However, he immediately singles out the term com-
ing from the same triad k,k′,k′′ as that represented in
Qk,k′ itself and proposes that the rest of the triadic in-
teractions may be treated as “random”. This is very
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FIG. 10 Page 24 of Folder 11:129 (Onsager, circa 1945). The four linear equations at the top of the page give the evolution of
the Fourier modes u(k),u(k′) and their complex conjugates, when the amplitude of the third leg of the triad k′′ is “frozen.”
The pressure force is omitted in this calculation.

reminiscent of the Direct Interaction Approximation de-
vised by Kraichnan (1959), in which only direct feedback
loops of triads are retained. Eventually Onsager argues
that the entire contribution from the derivative of “pas-
sive modes” is negligible (p. 21). On p. 6, Onsager treats
the second term in (63) from the derivative of “active
modes” in a similar fashion, keeping only the contribu-
tions from “direct interactions”. The result is quite sim-
ilar to that in the 1940’s notes, except for two additional
terms that come from pressure forces. Later in these
notes (p. 17) Onsager evaluates the pressure terms and
shows that they give a result of the same form. From this
point the argument is very similar to that of the notes
in Folder 11:129—Onsager uses the approximate formula
for the time-derivative to make an expansion of Qk,k′ to
first-order in time. Replacing the “bare” time t by an ef-
fective turnover time τ(k,k′) gives Onsager’s final result
on p. 16. It is equivalent, except for the prefactor, to the

original formula from the 1940’s:

Qave(k,k′) =
2π2

3
τ(k,k′)

k2k′2 − (k·k′)2

|k − k′|2
×|a(k − k′)|2ave(|a(k′)|2 − |a(k)|2)ave(64)

Here subscript “ave” indicates ensemble averaging.
Onsager also writes down on p. 16 an expression
for the effective turnover time, as τ(k,k′) =

γQ−1/3
(
k4/3 + k′4/3 + k′′4/3

)−1/2

. This is very simi-
lar to the expression now usually adopted in EDQNM
(Orszag, 1977).

A final topic treated in Folder 11:132 is wall-bounded
flow. Onsager had long taken an interest in this subject,
particularly through the work of the oceanographer R.
B. Montgomery, whom he cited both in the Lin note and
in Onsager (1949d). Montgomery experimentally inves-
tigated turbulent boundary layers, measuring both mean
profiles and two-point correlations. Pages 9-12 of Folder
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FIG. 11 Page 4 of Folder 11:132 (Onsager, circa 1975). The top equation is the representative term of the transfer function
Qk,k′ and the third equation is the part of its time-derivative coming from the evolution of the passive, convective mode.
In the fourth equation, Onsager selects out the direct interactions and lumps together the contributions of other triads as
“(Random?)”. The final result is truncated due to lack of space and rewritten by Onsager on the following page. The numbers
at the top right corner are his own pagination of this set of notes.

11:132 contain a very transparent construction of exact
wave mode solutions of the linear Stokes equation for flow
between two infinite, parallel plates, with exponential de-
cay in time. The solutions are free plane waves along the
horizontal direction and satisfy no-slip boundary condi-
tions at the surface of each plate. The solutions are clas-
sified into even and odd sets under reflection about the
center plane between the plates. For a given set of hori-
zontal wavenumbers α, β and decay constant k, the even
solutions have the form

vx = ei(αx+βy)
{

ax cosh
(√

α2 + β2 z
)

+bx cos
(√

k2 − α2 − β2 z
)}

vy = ei(αx+βy)
{

ay cosh
(√

α2 + β2 z
)

+by cos
(√

k2 − α2 − β2 z
)}

vz = ei(αx+βy)
{

az sinh
(√

α2 + β2 z
)

+bz sin
(√

k2 − α2 − β2 z
)}

, (65)

and the odd solutions exchange sin ↔ cos, sinh ↔ cosh .
Onsager works out a dispersion relation between the com-
plex frequency k and the horizontal wavenumbers α, β.
He also observes a set of selection rules for triadic interac-
tions between these modes, with only even-even-even and
even-odd-odd as possible. Considering the context of the
rest of the notes, it is possible that Onsager was thinking
of using these modes as the basis for an EDQNM-type
analysis of turbulent channel flow.

In view of the effort that Onsager was expending on
these notes in the 1970’s, it appears that he may have
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FIG. 12 Page 5-6 of Folder 11:132 (Onsager, circa 1975). The first two equations shown are the continuation of Onsager’s
formulae from the previous page in a short half-page (numbered “3” in his own pagination). The next page contains a similar
discussion as the preceding one, but for the part of the time-derivative of Qk,k′ coming from the evolution of the active,
convected modes. In the third equality, the contribution of the direct interactions is singled out and the remainder labelled as
“R” (presumably meaning “random”).

been considering an article on the subject of his old
spectral turbulence closure, from his notes in the 1940’s.
Since that was the only part of his turbulence research
which had never seen publication, in any form, it might
have been the part he felt most important to get out. If
so, it is unlikely that he was aware of the closely parallel
work of Orszag at about the same time (Orszag, 1970,
1977) or of the large body of related work by Kraich-
nan(Kraichnan, 1959, 1971) and others, which had ap-
peared in the decades since he last worked on the subject.
It was apparently Onsager’s habit to first work out his
own ideas, and then to check the literature to see what
others had done. It is remarkable that Onsager had dis-
covered the basic ideas of EDQNM on his own already in
the 1940’s, but it is also clear that, by the early 1970’s,
the subject of spectral turbulence closures had surpassed

his individual efforts.

V. CONCLUSION

A. Historical Questions

We hope that a reader, if he is not an expert on tur-
bulence, will have learned something interesting about
this theoretically fundamental and practically important
problem. As for the turbulence experts, we hope that
they have learned some history of their subject that,
probably, comes to them as a bit of a surprise. It cer-
tainly did to us. We believe that the evidence presented
here shows convincingly that Onsager made four remark-
able discoveries in the 1940’s which, for some reason,
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he chose not to publish. First, we have shown that
he carried out detailed calculations on the equilibrium
statistics of 2D point-vortices, deriving, in particular,
the critical energy for onset of negative temperatures,
the energy-temperature relation for large positive tem-
peratures, and a mean-field Poisson-Boltzmann equa-
tion. Second, he had derived a relation between the
second and third-order velocity structure functions, re-
lated to the Kolmogorov 4/5-law, which is sufficient to
prove his published claim on inviscid dissipation and 1/3
Hölder singularities. Third, he had realized the possi-
ble violation of his “mean-field” scaling laws for turbu-
lent velocity-increments due to small-scale intermittency
and foreseen many aspects of the modern “multifractal
model.” Fourth, he had worked out a spectral energy
closure closely related to EDQNM, using ideas and meth-
ods similar to those that were discovered later by others.
These are in addition to Onsager’s contributions in his
published abstract and article, for which he is already
justly famous in the field. From a consideration of both
the published and unpublished works, it is clear that On-
sager anticipated several of the most important theoret-
ical developments in turbulence in the last fifty years.

One obvious question is: why did Onsager not publish
his four results? There are various possible answers.

First, Onsager was, in the 1940’s and later, a very
busy man. Consider that, in the decade 1945 to 1955
alone, Onsager published papers of fundamental impor-
tance on liquid diffusion (Onsager, 1945d), nematic or-
der for rod-shaped colloids (Onsager, 1949c), correlations
in the 2D Ising model (Kaufman and Onsager, 1949;
Onsager and Kaufman, 1947), isotope separation (Wat-
son et al., 1949), the de Haas-van Alphen effect (On-
sager, 1952, 1953a), the Gouy diffusion method (Gosting
and Onsager, 1952), fluctuations in irreversible processes
(Machlup and Onsager, 1953; Onsager and Machlup,
1953), liquid helium (Onsager, 1953b), and conductance
of strong electrolytes (Fuoss and Onsager, 1955) in addi-
tion to his work on turbulence (Onsager, 1945c, 1949d)!
Clearly, he had very limited time to write up all his ideas.
In fact, some of his most famous results of this period
were not formally published, including quantization of
circulation in superfluids (Onsager, 1949a) and sponta-
neous magnetization and long-range order in the 2D Ising
model (Onsager, 1949b). Even at the best of times, On-
sager was never quick to rush into print. The results
of his work with Machlup on path-functionals for fluc-
tuations of time-histories (Machlup and Onsager, 1953;
Onsager and Machlup, 1953) were already announced in
brief at the end of his second paper on reciprocal rela-
tions (Onsager, 1931b), as an “it is also possible to show”
remark. Likewise, he wrote at the end of a paper (On-
sager, 1939a) on electrostatic interactions of molecules
that “incidentally, it is possible to show” that Pauling’s
estimate of the residual entropy of ice is a rigorous lower
bound, but he published the proof only in Onsager and
Dupuis (1960). It is quite possible that Onsager planned
to publish some of the four results on turbulence that we

have uncovered....when he was ready.
Another factor which may have played a role in On-

sager’s reluctance to publish was the either cool or baffled
reception that his work received in both the fluid dynam-
ics and statistical mechanics communities. We review
here the essentials of what the sources reveal.

In Onsager’s day, the top turbulence expert in the
United States was T. von Kármán. As we have seen,
Onsager first communicated with C.C. Lin, who was
von Kármán’s student, because Lin’s pioneering papers
on point-vortex dynamics and stability of parallel flows
played an important role in his ideas on the subject. A
month later, on July 25 of 1945, Onsager sent a letter
directly to von Kármán. He enclosed both the Pauling
and Lin notes, as well as two of his reprints. One of
these was a review paper on concentrated electrolytes
(Onsager, 1933) which discussed, among other things,
Debye-Hückel theory and the Poisson-Boltzmann equa-
tion. He also included his 1931 papers on reciprocal re-
lations (which, in the course of time, won Onsager the
Nobel Prize). However, von Kármán was decidedly unim-
pressed. On August 23, 1945 he wrote a very brief letter
to Lin, which we quote in full (von Kármán, 1945):

“I received a letter and a kind of manuscript
from a certain Mr. Lars Onsager. I find his
letter somewhat ‘screwy’ so I would be glad
to have your opinion whether the paper is
worthwhile reading. Perhaps you could in-
dicate to me in a few lines what the idea is,
if any.”

Lin replied to von Kármán with a three page letter on
September 4 of 1945 (Lin, 1945a), summarizing and eval-
uating Onsager’s work. First, Lin reported the results of
his queries to physicist P. Epstein and others at Caltech,
that Onsager had a high reputation in statistical physics
and that he had “many good things in his line (statis-
tical mechanics, thermodynamics, etc.)”. However, his
evaluation of Onsager’s ideas was unenthusiastic. On the
equilibrium theory for point-vortices he wrote that he
was “rather inclined to think that his arguments are as
yet not fully developed, if there is something to be found
behind his idea.” On the cascade theory for 3D and the
2/3-law for the velocity correlation, Lin wrote that “his
method for determining F (n) [the energy spectrum as
function of wavenumber] for large values of n does not
seem to be convincing.” After this exchange with Lin,
there is no record that we could find that von Kármán
ever replied in any form to Onsager himself.

Lin wrote to Onsager, at least twice that we know. On
June 26 of 1945, Lin (Lin, 1945b) replied to Onsager’s
long letter to him earlier in the month. The letter ex-
pressed polite interest in Onsager’s note but also stated
that Lin had “not yet had time to study it thoroughly.”
The letter pointed out to Onsager a number of develop-
ments, including current work on functional integration
by mathematician C. Loewner, the spectral version of the
Kármán-Howarth equation derived by Lin himself, and,
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of special interest here, the following (Lin, 1945b):

“I would like to study in detail the way in
which you arrived at definite results, for I
never succeeded in getting any [on the spec-
trum]. I believe the way by which the Rus-
sians handled Kármán-Howarth equations is
very ingenious. I reviewed a very recent paper
of theirs in this line for the Mathematical Re-
views. Enclosed is a carbon copy for your ref-
erence. This is review of Loitziansky’s invari-
ant integral

∫ ∞
0

f(r, t) r4dr and other discus-
sions of Kolmogoroff. The author has some
new ideas, which are very clever from a math-
ematical point of view, but which perhaps do
not correspond to physical facts except when
the ‘Reynolds number of turbulence’ is low
[the emphasis added by us].”

As far as we can determine, this is the first occasion
on which Onsager heard of Kolmogorov’s work in turbu-
lence. In fact, in the Lin note earlier that month, Onsager
had written with prescience:

“My tentative limiting formula for the
correlation-function in isotropic turbulence is
not so obvious that any one student could be
expected to find it. However, it seemed very
probable to me that somebody would have in-
vestigated the line of reasoning, which is not
far fetched.”

That “somebody” was, of course, Kolmogorov, as On-
sager was to learn from Lin subsequently. It is not clear
whether Lin enclosed carbon copies of his review of Kol-
mogorov’s work or of Kolmogorov’s papers; neither is it
clear when Onsager actually received and read Lin’s mail,
but it is worth noting that this was just four months be-
fore the APS talk on which Onsager’s published abstract
(Onsager, 1945c) was based. Certainly, by the time of
the meeting in Florence four years later, Onsager had
read Kolmogorov’s works and acknowledged the prior-
ity14. Thus, Lin’s first letter to Onsager was quite in-
formative. The second—and, as far as we know, the
last—letter of Lin was on September 4, 1945 and was
much shorter. After thanking Onsager for some of his
reprints and reciprocating with reprints of his own, Lin
wrote (Lin, 1945c):

“I am sorry to say that I have not made much
progress, except that I desire still more to see
something done in this line to bring your ideas
down to my level of understanding. And I

14 Perhaps this too played some role in Onsager’s leaving the field.
Few things in science can be more discouraging than to make a
big advance and then to find that you were scooped by someone
a short time earlier!

certainly wish that I could have the happy
chance of talking to you in person on this sub-
ject, and to learn some statistical mechanics
from you some day.”

That appears to be the end of their correspondence and
interaction.

The last exchange that Onsager had with the fluid me-
chanics experts on his turbulence theories, of which we
are aware, was an “account of his work” that he sent
to G.K. Batchelor sometime before the latter’s article in
Nature on December 14, 1946 (Batchelor, 1946). This pa-
per pointed out the remarkable simultaneous discovery of
the 2/3-law for the velocity correlation by Kolmogorov,
Onsager, Heisenberg, and von Weiszäcker and was ex-
tremely influential in bringing Kolmogorov’s landmark
work to the attention of the scientific community in the
West. From Batchelor’s description, the “account” that
Onsager had sent to him was close, if not identical, to
that sent earlier to Lin. Although Onsager was given due
credit in the article, it is noteworthy that Batchelor, in
comparing the different approaches of the co-discoverers,
wrote that “the neatest and most powerful formulation
of the physical ideas is that of Kolmogoroff.”

Onsager had also communicated his ideas to his fellow
chemist, L. Pauling, in March of 1945. However, the
latter wrote back cordially but briefly on April 6, 1945,
saying (Pauling, 1945):

“Your work looks very interesting indeed to
me, but it is too far over my head for me to
appreciate it properly.”

Onsager tried again four years later at the IUPAP meet-
ing on statistical mechanics in Florence, Italy, when he
presented his paper on statistical hydrodynamics. How-
ever, the response was quite muted. No one made any re-
mark about the novel concepts of “negative absolute tem-
perature” for fluid vortices or of “inviscid dissipation” by
singular Euler solutions. There is only one recorded ques-
tion after Onsager’s talk in Florence, by M. Born, who
asked whether the new theories could predict the critical
Reynolds number for transition to turbulence. Onsager
replied. “No, the problem of the Reynold’s number is
more complicated. Consult recent work of C.C. Lin.” It
is certainly not the case that Onsager was ill-regarded by
this audience, for his breakthroughs in non-equilibrium
thermodynamics, the 2D Ising model, and superfluid he-
lium were major subjects of the meeting and had created
an enormous stir. However, one surmises that Onsager’s
advanced ideas on turbulence were generally met there
with polite incomprehension. We have already mentioned
some of the reaction after the conference. Von Neumann
discussed Onsager’s theory of vortex equilibria in his un-
published AFOSR review article on turbulence in 1949
(von Neumann, 1963). In the following decade a number
of famous physicists worked for awhile on turbulence, for
example, W. Heisenberg, T.D. Lee, R.P. Feynman, and
S. Chandrasekhar. It is remarkable that none of these
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scientists either followed up on Onsager’s hints or redis-
covered the insights for themselves. Lee (1951, 1952) ex-
tended some of Onsager’s equilibrium statistical mechan-
ics ideas to continuum Euler equations, but soon left the
field for particle physics. Feynman is famously reported
to have worked hard on turbulence in the 1950’s but to
have gotten nowhere and finally given up. With so little
reaction and progress from others, it is perhaps not so
surprising that Onsager moved off into other areas.

The situation in the subject really changed, so far as we
can determine, with the entry of R.H. Kraichnan into the
field, through his publication of the DIA closure (Kraich-
nan, 1959) and his theory of the 2D dual cascades of
inverse energy and direct enstrophy (Kraichnan, 1967).
These publications opened up lines of work on analyt-
ical turbulence closure and 2D statistical hydrodynam-
ics, that were soon followed by others, such as Edwards
(1964) and Frisch (1968) for closure and Joyce and Mont-
gomery for 2D hydrodynamics (Joyce and Montgomery,
1973; Montgomery and Joyce, 1974). Kolmogorov’s work
on intermittency and anomalous scaling (Kolmogorov,
1962) also broke open new directions that saw a large
influx of people and significant progress. Onsager’s few
cryptic hints in Onsager (1949d) on equilibrium statis-
tics of vortices and on Euler singularities and dissipative
anomalies, in the end, triggered significant work on those
directions. Because Onsager never published his ideas on
intermittency and spectral closure, he did not have any
influence in those areas. However, it now seems that
all of Onsager’s key insights in turbulence—both pub-
lished and unpublished—have been fully recovered and
even advanced upon. It has taken the community only
half a century to catch up!

B. The Future of Onsager’s Ideas

Clearly, the two most original ideas that Onsager sup-
plied to the field of turbulence are his theory of large-scale
vortices in 2D flows and his theory of inviscid dissipation
in 3D. What, if any, are their lasting significance for fu-
ture development? This is clearly a subjective question,
but worth an attempt at answering nevertheless.

As Onsager himself observed, the spontaneous ap-
pearance of large-scale and long-lived vortices is a fre-
quent but striking occurrence in two-dimensional flow—
particularly in planetary atmospheres. The mathemati-
cal foundations of Onsager’s equilibrium theory are now
largely explored and understood, and also those of its
generalization by Miller and Robert. A notable excep-
tion is the ergodicity or mixing properties of the fluid
dynamics sufficient for its validity over experimentally
accessible times. The issue of time-scales is understood
only a little better than it was in Onsager’s day. As far
as the empirical confirmation of the equilibrium vortex
theories is concerned, it must be admitted that, while
reasonable agreement has been obtained with a few nu-
merical simulations and laboratory experiments, we know

of no really convincing verifications for flows in nature.
In fact, comparison of the theory with natural flows may
require extensions and corrections of various sorts: for
finite Reynolds numbers, for three-dimensional effects,
for driving forces from boundaries, and so forth. Only
a few of these have seriously pursued so far. Further-
more, most of them will carry the problem outside the
domain of Gibbsian equilibrium theory proper and into
the regime of non-equilibrium. Quite different methods
may then be required.

The observed viscosity-independence of turbulent en-
ergy dissipation is, first and foremost, a surprising phys-
ical phenomenon. It is as astonishing, in its own way, as
quantum effects such as superfluid flow without appar-
ent viscosity. In a certain sense, turbulent flows seem to
be the opposite, i.e. “super-dissipators,” for which dis-
sipation does not disappear even as viscosity approaches
vanishingly small values. This is also the property of tur-
bulence which gives the phenomenon much of its practi-
cal importance. The scaling law (27) with constant A is
equivalent to a drag force 1

2CDρV 2S with constant CD

for a fluid of density ρ and velocity V moving past a
body with cross-sectional area S (Batchelor, 1953). The
energy required to overcome such turbulence-enhanced
drag in transport vehicles and in material transport by
pipelines is enormously costly. The phenomenological
law (27) is furthermore a bedrock assumption of all
present day theories of turbulence. Onsager’s theorem
is important because it gives a foundation to this ba-
sic experimental observation and provides insight into
the dynamical mechanism producing it. A fundamental
physical issue still poorly understood is the relation of
the Kolmogorov-Onsager “cascade picture” of turbulent
dissipation with G.I. Taylor’s Lagrangian picture based
on chaotic stretching of vortex lines.

We believe that Onsager’s theoretical vision of an
“ideal turbulence” described by inviscid fluid equations is
a proper idealization to understand high Reynolds num-
ber flows. Needless to say, in real physical turbulence
there is viscosity, which is always positive. However,
we regard the zero-viscosity limit for turbulence as quite
analogous to the thermodynamic limit for equilibrium
statistical mechanics. In any real physical system, the
volume is finite, not infinite. However, the thermody-
namic limit is a useful idealization for equilibrium sys-
tems whose dimensions are large compared to the size
of the constituent molecules. In the same way, the zero-
viscosity limit, which supposes an infinite number of cas-
cade steps, should be a good idealization for turbulence
with a large but finite number of cascade steps, that is,
a Reynolds number which is large but finite. The vindi-
cation of this belief, if it is true, must come from a set of
calculational tools for the zero-viscosity limit, which will
make it, in the end, a truly predictive device.
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APPENDIX A: The March 1945 Note to L. Pauling
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APPENDIX C: The Folders From the Onsager Archive

Folder 11:129

• p.1: List of references

• pp.2-6: Formula for the Prandtl mixing-length

– p.2: Dimensional analysis of eddy viscosity
and of the integral I

– p.3: Calculations for wind-tunnel experiments

– p.4: Proof that I is a Lagrangian invariant

– p.5-6: Formula for mixing-length in terms of
I

• pp.7-13: Two-dimensional fluids and point-vortices

– p.7: Two-dimensional Navier-Stokes for the
vorticity in Fourier representation

– p.8: The mean-field equation and its deriva-
tion

– p.9: Energy-temperature relation from Debye-
Hückel theory

– p.10: Derivation of formula for the critical en-
ergy

– p.11: Calculations for the Debye-Hückel the-
ory

– p.12: Formula for the Hamiltonian of point-
vortices

– p.13: Space-integrals of Green functions

• pp.14-21: Equation relating 2nd- and 3rd-order
structure functions

– p.14: Statement of relation between 2nd- and
3rd-order structure functions

– pp.15-18: Derivation of the main relation

– p.19: Wiener-Khinchin relation between ve-
locity correlation function and spectrum

– p.20: Energy in low-wavenumbers as an oscil-
latory integral of the velocity correlation

– p.21: Scaling of 2nd- and 3rd-order structure
functions; realizability considerations

• p.22: Demonstration of a finite time for infinitely-
many cascade steps

• pp.23-27: Closure equation for the energy spectrum

– p.23: Main derivation of the equation from the
Taylor expansion in time

– p.24: Four-dimensional linear equation for a
wavenumber triad with one leg “frozen”

– pp.25-27: Exact solution of the linear equation

• pp.28-31: Calculations for two-dimensional
Kármán vortex streets

– p.28: Derivation of conserved quantity along
Lagrangian particle paths; sketches of paths
in a vortex street

– p.29: Analytical formulae for plane curves of
particle paths

– pp.30-31: real and complex stream functions
and velocity fields

Folder 11:132

• p.1: Alternative definition of Qk,k′

• p.2: Equation for Fourier modes of the vorticity

• pp.3-6: New approach to derivation of spectral clo-
sure

– p.3: Time-derivative of spectrum and formula
for Qk,k′

– p.4-5: “Direct-interaction” part of
(d/dt)Qk,k′ , from evolution of passive
mode

– p.6: “Direct-interaction” part of (d/dt)Qk,k′ ,
from evolution of two active modes

• p.7: Page reading “Hydrodynamics (Turbulence).
Kinetic Energy and Dissipation-function to sums
of squares.” Referring to previous pages?

• p.8: Velocity space-correlation with exponential de-
cay

• pp.9-12: Eigenbasis of the Stokes operator between
infinite parallel plates

– p.9: Statement of results for eigenfunctions
odd and even under reflection about the
center-plane; selection rules for allowed triadic
interactions

– p.10-12: Derivation of the eigenbasis

• pp.13: Page reading “Turbulent Cascade.” Refer-
ring to following pages?

• pp.14-21: Detailed calculations for the spectral clo-
sure

– p.14-15: Evaluation of terms in the closure
assuming K41 scaling

– p.16: Final form of average Q(k,k′) in the
closure; a proposed formula for the dynamical
correlation time of a triad

– pp.17: Another brief calculation of the direct
interaction (DI) part of (d/dt)Qk,k′ from evo-
lution of two active modes

– pp.18: Formula for Qk,k′ ; another proposal for
the correlation time of a triad

– pp.19: Wavenumber integrals of products of
fractional powers of the spectrum
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– pp.20: Evaluation of average |a(k − k′)·k′|2.
– pp.21: Evaluation of DI part of (d/dt)Qk,k′

from evolution of convective mode, on average;
equals zero?

Folder 11:135

• p.1: Definition of Qk,k′ and exact evaluation of
(d/dt)Qk,k′

• p.2: Equation for Fourier mode a(k); all four terms
of Qk,k′

• p.3-5: Another calculation of the DI contribution
to (d/dt)Qk,k′ from evolution of two active modes
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