Turbulent Transport, Dissipation & Drag

Charles R. Doering
Department of Mathematics and
Michigan Center for Theoretical Physics
University of Michigan, Ann Arbor

Outline:

1. Phenomenology, physics & philosophy
2. Mathematical models & methods
3. Conclusions & conundrums
Key features of turbulent flows:

- **Qualitative**: Turbulence enhances *mixing* and thus also transport of mass, heat and momentum in a fluid.

- **Quantitative**: Turbulent transport can display *universal* features: effective transport coefficients may be *independent* of material parameters (molecular transport coefficients) of the fluid.
Viscosity: molecular transport coefficient of momentum

Spot size grows diffusively, $r^2 \approx \nu t$.

Momentum diffusion coefficient:

$\nu = \text{kinematic viscosity}$
Viscosities of familiar fluids:

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Density ((\rho))</th>
<th>Kinematic Viscosity ((\nu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (0° C)</td>
<td>(1.0 \times 10^3 , \text{kg/m}^3)</td>
<td>(1.8 \times 10^{-6} , \text{m}^2/\text{s})</td>
</tr>
<tr>
<td>Water (20° C)</td>
<td>(1.0 \times 10^3 , \text{kg/m}^3)</td>
<td>(1.0 \times 10^{-6} , \text{m}^2/\text{s})</td>
</tr>
<tr>
<td>Air (0° C)</td>
<td>(1.3 , \text{kg/m}^3)</td>
<td>(1.3 \times 10^{-5} , \text{m}^2/\text{s})</td>
</tr>
<tr>
<td>Air (20° C)</td>
<td>(1.2 , \text{kg/m}^3)</td>
<td>(1.5 \times 10^{-5} , \text{m}^2/\text{s})</td>
</tr>
<tr>
<td>Glycerine (20° C)</td>
<td>(1.3 \times 10^3 , \text{kg/m}^3)</td>
<td>(1.1 \times 10^{-3} , \text{m}^2/\text{s})</td>
</tr>
</tbody>
</table>
Viscosity is the *friction* and the *dissipation* coefficient

Force required to maintain *laminar* flow: \(F = \rho \cdot \nu \cdot \left(\frac{U}{h} \right) \cdot A \)

Power required to maintain *laminar* flow: \(P = F \times U = \rho A h \cdot \nu \cdot \frac{U^2}{h^2} \)

General relationship: \(P_{\text{laminar}} \sim \text{mass} \times \text{viscosity} \times (\text{stirring rate})^2 \)
Example: what is the maximum speed V of your car?

Suppose engine power $P = 100$ horsepower $\approx 75,000$ W.

- If drag due to air is *laminar* friction, then $P = P_{laminar}$.

- Use *spherical approximation* for the car so $P_{laminar} = P_{Stokes} = 6\pi r \rho_{\text{air}} \nu_{\text{air}} V^2$

- Therefore, $V_{\text{max}} \approx (P/[6\pi \rho_{\text{air}} \nu_{\text{air}} r])^{1/2}$

- Use $r = 1 \text{ m}$ as radius of the sphere.

- $V_{\text{max}} = 14,000 \text{ m/s} = 30,000 \text{ mph}$!

- *Note:* speed of sound $= 350 \text{ m/s} = 750 \text{ mph}$
Laminar vs. Turbulent flows:

- Laminar flows appear at high viscosity or low stirring rates in small domains.
- Turbulence appears at low viscosity or high stirring rates in large systems.
- Measure of susceptibility to instabilities leading to turbulence is the Reynolds number: \(\text{Re} = \frac{U h}{v} \).
The turbulent cascade process:

small flow features—"eddies"—appear spontaneously …

da Vinci's words "… The small eddies are almost numberless, and large things are rotated only by large eddies and not by small ones, and small things are turned by both small eddies and large"
Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

Lewis F. Richardson
Cambridge University
circa 1922
Zeroth Law of Turbulence:

If, in a turbulent flow experiment, everything is held constant except the kinematic viscosity which is lowered to zero, then the power consumed does not vanish, but has a finite lower limit.

(Richardson, Taylor, Kolmogorov: first half of the 20th century.)
Kolmogorov 1941 theory: focus on energy/mass spectrum $E(k)$

$$U^2 \equiv \left\langle |u|^2 \right\rangle = 2 \times \int_{(large\ scale)}^{(small\ scale)} E(k) dk \quad [E] = L^3/T^2$$

\rightarrow Energy is input at large (“outer”) scale ℓ

\rightarrow Energy is dissipated at small scale η (to be determined)

\rightarrow Energy is transferred via inviscid mechanisms between ℓ and η.

\rightarrow Energy dissipation rate (flux) per unit mass $\varepsilon \equiv$ Power/mass; $[\varepsilon] = L^2/T^3$

\rightarrow Assume that for $\ell^{-1} \ll k \ll \eta^{-1}$ viscosity plays no role, only k & ε determine E:

$$E(k) \approx C_K \varepsilon^{2/3} k^{-5/3} \quad \text{in the “inertial” range } \ell^{-1} \ll k \ll \eta^{-1}$$
Reality check …

Experiment
Champagne, 1978

Direct numerical simulation (DNS)
Kaneda et al, 2002
More from Kolmogorov theory …

Assuming the small “dissipation scale” η depends only on ε & ν,

$$\eta \propto \left(\frac{\nu^3}{\varepsilon} \right)^{1/4}$$

So then as $\nu \to 0$ …

$$U^2 \approx 2 \times \int_{2\pi \nu^{-1}}^{2\pi \eta^{-1}} E(k) \, dk \approx 2C_k \varepsilon^{2/3} \int_{2\pi \nu^{-1}}^{\infty} k^{-5/3} \, dk \propto (\varepsilon \ell)^{2/3}$$

$$\Rightarrow \varepsilon \propto \frac{U^3}{\ell}$$
Recap:

• At low Re, $\varepsilon \sim \nu U^2/l^2$

$$c_D(Re) \equiv \varepsilon l/U^3 \sim \nu/Ul = 1/Re$$

• At high Re, $\varepsilon \sim U^3/l$

$$c_D(Re) = \varepsilon l/U^3 \sim O(1)$$

• What else could it be? How can we construct units of power out of U, l & ρ without using ν?

• General relationship:

$$P_{turbulent} \sim \text{mass} \times \text{geometrical factors} \times (\text{stirring rate})^3$$
Reality check …

Experiments:

Direct numerical simulations:
Example: What is the maximum speed V of your car?

Suppose engine power $P = 100$ horsepower $\approx 75,000$ W.

- If drag due to air is turbulent dissipation, then $P = P_{\text{turbulent}} = c_D \rho_{\text{air}} A V^3$.
- c_D is the **drag coefficient**, depends only on the **shape** of the car.
- $V_{\text{max}} \approx (P / c_D \rho_{\text{air}} A)^{1/3}$
- Use $A = 1 \text{ m}^2$ and $c_D = .2$ for guesstimate:
 - $V_{\text{max}} = 66 \text{ m/s} \approx 140 \text{ mph}$
- Compare laminar estimate $V_{\text{max}} \approx \text{Mach 40}$!
Mathematical models & methods

Navier-Stokes equations:

\[\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{\rho} \nabla p = \nu \Delta \mathbf{u} + \frac{1}{\rho} \mathbf{f} \]

\[\nabla \cdot \mathbf{u} = 0 \]

- \(p(x,t) \) is pressure
- \(f(x,t) \) is body force (appropriately “nice”)
- plus initial condition \(u_0(x) \) (appropriately “nice”)
- plus boundary conditions in domain \(\Omega \) (appropriately “nice”)
- At best, at high \(Re \) we can hope for weak solutions in 3-dimensions
- \(u(t,x) \in L^\infty([0,\infty), L^2(\Omega)) \) i.e., finite bulk kinetic energy at each time \(t \)
- \(u(t,x) \in L^2([0,\infty), H^1(\Omega)) \) i.e., finite space-time averaged dissipation rate
Question: how much (if any) of the turbulence lore follows \textit{rigorously} from the Navier-Stokes equations?

- Must formulate mathematical setting appropriately and define quantities precisely.

- General observation (over recent decades): turbulent scalings are often \textit{limits} for solutions of the Navier-Stokes equations.

- Simplest example: body-forced turbulence in the absence of boundaries (model for homogeneous, isotropic turbulence).
Energy dissipation in body-forced turbulence

By CHARLES R. DOERING1 AND CIPIRIAN FOIAS2

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA
e-mail: doering@umich.edu

2Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

\[\Omega : 3\text{-d torus} = [0, L]^3 \text{ with periodic BCs.} \]

Body force \(f(x) \) periodic on scale \(\ell \leq L. \)

\[\text{WLOG } \text{div} \ f = 0 \text{ and } \int_{\Omega} f = 0. \]

Write \(f(x) = F \Phi(\ell^{-1}x). \)

\(\Phi(y) \) is the \textit{shape} of the force, periodic on \([0, 1]^3\).
Facts, **definitions** and **questions**

- Solution has mean zero if initial data does: \(\langle \tilde{u} \rangle = 0 \)

- Mean kinetic energy defines turbulent velocity scale:
 \[
 U^2 \equiv \langle |\vec{u}|^2 \rangle
 \]

- Power balance (from averaging \(\mathbf{u} \cdot \text{NS-eq} \)):
 \[
 \varepsilon \equiv \langle \nu |\nabla \vec{u}|^2 \rangle = \langle \frac{1}{\rho} \vec{f} \cdot \vec{u} \rangle \quad (\leq \text{for weak solutions})
 \]

- \(U \) and \(\varepsilon \) are *emergent* quantities, properties of solutions.

- Are just \(\varepsilon, U, \nu, \) and \(l \) simply related?

- … without reference to \(F, \rho \) and \(L \)?
Theorem: if $\Phi \in L^2([0, 1]^3)$, then there exist constants c_1 and c_2, uniform in ν, ℓ, L, F & $u_0(x)$, such that

$$\varepsilon \leq c_1 \nu \frac{U^2}{\ell^2} + c_2 \frac{U^3}{\ell}$$

- Remark 1: c_1 and c_2 depend on homogeneous ratios of norms of the shape function Φ (see proof, next slide).

- Remark 1(a): this “shape” dependence is not unexpected due to vagueness of definition of ℓ in the scaling theory.

- Remark 2: defining $Re = U\ell/\nu$, theorem says

$$c_D(Re) = \varepsilon \ell/U^3 \leq \frac{c_1}{Re} + c_2$$
Proof

First consider the power balance for weak solutions:

\[\varepsilon \equiv \left\langle \nu |\nabla \tilde{u}|^2 \right\rangle \leq \left\langle \frac{1}{\rho} \tilde{f} \cdot \tilde{u} \right\rangle = \frac{1}{\rho} F \left\langle \tilde{\Phi} \cdot \tilde{u} \right\rangle \leq \frac{1}{\rho} F \| \tilde{\Phi} \|_2 U \]

Then let smooth, divergence-free vector field \(\Phi(y) \) be periodic on \([0,1]^3\) such that \(\int \Phi(y)\Psi(y)d^3y \neq 0 \). Project \(\text{NS-eq} \) onto \(\Psi(\ell^{-1}x) \):

\[\left\langle \tilde{u} \cdot \left(-\nabla \tilde{\Psi} \right) \cdot \tilde{u} \right\rangle = \left\langle \nu \Delta \tilde{\Psi} \cdot \tilde{u} \right\rangle + \frac{1}{\rho} F \left\langle \tilde{\Phi} \cdot \tilde{\Psi} \right\rangle \]

Estimate \(\frac{1}{\rho} F \), sort out \(\ell_s \), and insert into power balance:

\[\frac{1}{\rho} F \left| \left\langle \tilde{\Phi} \cdot \tilde{\Psi} \right\rangle \right| \leq \nu \| \Delta \tilde{\Psi} \|_2 \frac{U}{\ell^2} + \| \nabla \tilde{\Psi} \|_\infty \frac{U^2}{\ell} \quad \Rightarrow \]

\[\varepsilon \leq \left| \frac{\| \Delta \tilde{\Psi} \|_2 \| \tilde{\Phi} \|_2}{\left\langle \tilde{\Phi} \cdot \tilde{\Psi} \right\rangle} \nu \frac{U^2}{\ell^2} + \frac{\| \nabla \tilde{\Psi} \|_\infty \| \tilde{\Phi} \|_2}{\left\langle \tilde{\Phi} \cdot \tilde{\Psi} \right\rangle} \frac{U^3}{\ell} \right. \]
Dissipation in *Stokes flow*, with $c_D \sim Re^{-1}$, is a *lower* bound.
Remarks

• Coefficients \(c_1 \) and \(c_2 \) can be optimized over choices of projector \(\Psi \).
 Even better, define \textit{min-max} variational problem for the bounds.

• Soluble for a simple geometry: \textit{forced flow in a slippery channel} …
 analytically (at \(\infty \) \(Re \)) with Eckhardt & Schumacher (\textit{JFM} 2003);
 numerically (finite \(Re \)) with Petrov & Lu (\textit{J. Turbulence} in review).

• If \(\Phi \notin L^2 \) then \textit{scaling may change} … with only \(\Phi \in H^{-1} \) best estimate is
 \(\varepsilon \leq c_3 U^4/\nu \), consistent with theories of Vascillicos \textit{et al} (\textit{JFM} 2004) and
 Biferale \textit{et al} (\textit{PRL} 2004).

• For \textit{boundary-driven} flows \(U \) is given (not emergent): dissipation-rate estimation has a \textit{long} history beginning with Hopf in 1941 …
 … continuing with Lou Howard’s & Fritz Busse’s work in 60s & 70s …
 … with a resurgence in the 90s including many new developments by collaborators & colleagues including Peter Constantin, Siegfried Grossmann \textit{et al}, Xiaoming Wang, Rich Kerswell …
 … \textit{with many new applications by many others}.
Theorem: the power P required to maintain any solution of the incompressible Navier-Stokes equations, *laminar* or *turbulent*, is bounded according to

$$ \rho \nu U^2 A/h \leq P = \rho Ah \varepsilon \leq c_D \rho A U^3 $$

with $c_D < .09$ (Plasting & Kerswell, *JFM* 2003: $c_D < .0086$)
Reality check …

- Upper bound —
- Lower bound —–
- Real data XXX from Lathrop, Feinberg & Swinney (1992)
- “Logarithmic friction law”
 \[c_D \sim 1/[\ln(Re)]^2 \]
 as \(Re \to \infty \) for smooth walls.
Conclusions and comments

• Fully developed turbulent dissipation and drag becomes independent of viscosity (modulo logarithms) … diffusive transport of momentum becomes a physical property of the flow, not of the fluid!

The molecular transport coefficients are essentially “renormalized” to zero but they cannot be zero!

Implication: your car won’t go any faster—and you won’t get any better gas mileage—if the air gets any more slippery!

• Turbulent transport of mass and heat become independent of the material parameters (modulo caveats) … “eddy diffusion” & “eddy conductivity” are properties of the flow, not properties of the fluid!

• Turbulent transport is essential ingredient in natural phenomena (e.g., atmosphere & ocean science, astrophysics) and engineering applications (e.g., drag in pipe flows, mixing in chemical production, heat transfer).

• There are still many open problems to work on …
Conundrum

• For many cases analysis and experiment agree that $\varepsilon_{\text{turbulent}} \sim U^3/l$.

• But analysis has not established such a bound for open flows …

… such as turbulence past an object (e.g., past a car or sphere).

• As of Snowbird 2005, we must resort to Hopf-1941 estimates …

… for drag coefficient of the form $c_D \sim Re e^{Re}$.

• For a car travelling at 60mph, $Re \approx 3 \times 10^6$.

• There’s room for improvement!
• With special thanks to the National Science Foundation PHY (Mathematical Physics) DMS (Applied Mathematics),

• and to DOE (via Los Alamos),

• and to all my collaborators and colleagues from whom I’ve learned so much …

The End