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Phenomenology, physics & philosophy

Key features of turbulent flows:

• Qualitative: Turbulence enhances mixing and thus also transport of
mass, heat and momentum in a fluid.

• Quantitative: Turbulent transport can display universal features:
effective transport coefficients may be independent of material
parameters (molecular transport coefficients) of the fluid.



Viscosity: molecular transport coefficient of momentum

Spot size grows diffusively, r2 ≈ νt.

Momentum diffusion coefficient:

ν = kinematic viscosity
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Viscosities of familiar fluids:

1.8 × 10–6 m2/s1.0 × 103 kg/m3Water (0º C)

1.1 × 10–3 m2/s1.3 × 103 kg/m3Glycerine (20º C)

1.5 × 10–5 m2/s1.2 kg/m3Air (20º C)

1.3 × 10–5 m2/s1.3 kg/m3Air (0º C)

1.0 × 10–6 m2/s1.0 × 103 kg/m3Water (20º C )

Kinematic Viscosity  (ν)Density  (ρ)Fluid



Viscosity is the friction and the dissipation coefficient

Force required to maintain laminar flow: F = ρ•ν•(U/h)•A

Power required to maintain laminar flow: P = F×U = ρAh•ν•U2/h2

General relationship:  Plaminar  ~  mass × viscosity × (stirring rate)2

U

h

Area A

Gap
density ρ
viscosity ν



Example: what is the maximum speed V of your car?

Suppose engine power P = 100 horsepower ≈ 75,000 W.

• If drag due to air is laminar friction, then
P = Plaminar.

• Use spherical approximation for the car so
Plaminar = PStokes  =  6 π r ρair νair V2

• Therefore, Vmax ≈ (P/[6πρairνairr])1/2

• Use r = 1 m  as radius of the sphere.

• Vmax = 14,000 m/s  =  30,000 mph !

• Note: speed of sound = 350 m/s = 750 mph



Laminar vs. Turbulent flows:

• Laminar flows appear at high
viscosity or low stirring rates in
small domains.

• Turbulence appears at low
viscosity or high stirring rates in
large systems.

• Measure of susceptibility to
instabilities leading to
turbulence is the Reynolds
number:  Re = Uh/ν.



The turbulent cascade process:

small flow features––“eddies”––appear spontaneously …

da Vinci's words "... The small eddies are almost numberless, and

large things are rotated only by large eddies and not by small

ones, and small things are turned by both small eddies and

large"



Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

Lewis F. Richardson
Cambridge University
circa 1922



Zeroth Law of Turbulence:

If, in a turbulent flow experiment, everything is
held constant except the kinematic viscosity which
is lowered to zero, then the power consumed does

not vanish, but has a finite lower limit.

(Richardson, Taylor, Kolmogorov: first half of the 20th century.)
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Kolmogorov 1941 theory: focus on energy/mass spectrum E(k)
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(small scale)-1

$ [E] = L3/T2

 → Energy is input at large (“outer”) scale l

 → Energy is dissipated at small scale η (to be determined)

 → Energy is transferred via inviscid mechanisms between l and η.

 → Energy dissipation rate (flux) per unit mass ε ≡ Power/mass;  [ε] = L2/T3

 → Assume that for l–1 << k << η–1 viscosity plays no role, only k & ε determine E:

→    E(k) ≈ CK ε2/3 k–5/3  in the “inertial” range l–1 << k << η–1



Reality check …

Experiment
Champagne, 1978

Direct numerical simulation (DNS)
Kaneda et al, 2002



More from Kolmogorov theory …

 Assuming the small “dissipation scale” η depends only on ε & ν,

So then as ν → 0 …
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Recap:
• At low Re,  ε ~ νU2/l2

cD(Re)  ≡  εl/U3  ~  ν/Ul  = 1/Re

• At high Re,  ε ~ U3/l

cD(Re) =  εl/U3  ~  O(1)

• What else could it be?  How can we construct units
of power out of U, l & ρ without using ν?

• General relationship:
Pturbulent ~ mass × geometrical factors × (stirring rate)3



Reality check …
Experiments:     Direct numerical simulations:



Example: What is the maximum speed V of your car?
Suppose engine power P = 100 horsepower ≈ 75,000 W.

• If drag due to air is turbulent dissipation,
then P = Pturbulent =  cD ρair A V3.

• cD is the drag coefficient, depends only
only on the shape of the car.

• Vmax ≈ (P/ cD ρair A )1/3

• Use A = 1 m2  and cD = .2 for guesstimate:

• Vmax = 66 m/s ≈  140 mph

• Compare laminar estimate Vmax ≈  Mach 40!



Mathematical models & methods
Navier-Stokes equations:

• p(x,t) is pressure

• f(x,t) is body force (appropriately “nice”)

• plus initial condition u0(x) (appropriately “nice”)

• plus boundary conditions in domain Ω (appropriately “nice”)

• At best, at high Re we can hope for weak solutions in 3-dimensions

• u(t,x) ∈  L∞([0,∞) , L2(Ω ))   i.e., finite bulk kinetic energy at each time t

• u(t,x) ∈  L2([0,∞) , H1(Ω )) i.e., finite space-time averaged dissipation rate
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Question: how much (if any) of the turbulence lore
follows rigorously from the Navier-Stokes equations?

• Must formulate mathematical setting appropriately and define
quantities precisely.

• General observation (over recent decades): turbulent scalings
are often limits for solutions of the Navier-Stokes equations.

• Simplest example: body-forced turbulence in the absence of
boundaries (model for homogeneous, isotropic turbulence).



Ω : 3-d torus = [0, L]3 with periodic BCs.

Body force f(x) periodic on scale l ≤ L.

WLOG  div f = 0  and  ∫ Ω f  =  0.

Write f(x) = F Φ(l–1x).

Φ(y) is the shape of the force, periodic on [0, 1]3.



Facts, definitions and questions
• Solution has mean zero if initial data does:

• Mean kinetic energy defines turbulent velocity scale:

• Power balance (from averaging u·NS-eq):

•  U and ε are emergent quantities, properties of solutions.

•  Are just ε, U, ν, and l simply related?

•  … without reference to F, ρ and L?
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Theorem: if Φ ∈ L2([0, 1]3), then there exist constants
c1 and c2, uniform in ν, l, L, F & u0(x), such that

• Remark 1: c1 and c2 depend on homogeneous ratios of
norms of the shape function Φ (see proof, next slide).

• Remark 1(a): this “shape” dependence is not unexpected
due to vagueness of definition of l in the scaling theory.

• Remark 2: defining Re = Ul/ν, theorem says

cD(Re)  =  εl/U3  ≤  c1/Re + c2
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Proof
First consider the power balance for weak solutions:

Then let smooth, divergence-free vector field Ψ(y) be periodic on [0,1]3

such that ∫ Φ(y)Ψ(y)d3y ≠  0.   Project NS-eq onto Ψ(l–1x) :

Estimate 1/ρ F, sort out ls, and insert into power balance:
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Upper & lower bounds (sketch)

Dissipation in Stokes flow, with cD ~ Re–1, is a lower bound.



Remarks
• Coefficients c1 and c2 can be optimized over choices of projector Ψ.  

Even better, define min-max variational problem for the bounds.

• Soluble for a simple geometry: forced flow in a slippery channel …
analytically (at ∞ Re) with Eckhardt & Schumacher (JFM 2003);
numerically (finite Re) with Petrov & Lu (J. Turbulence in review).

• If Φ ∉ L2 then scaling may change … with only Φ ∈ H–1 best estimate is
ε ≤ c3U4/ν, consistent with theories of Vascillicos et al (JFM 2004) and
Biferale et al (PRL 2004).

• For boundary-driven flows U is given (not emergent): dissipation-rate
estimation has a long history beginning with Hopf in 1941 …

… continuing with Lou Howard’s & Fritz Busse’s work in 60s & 70s …

… with a resurgence in the 90s including many new developments by
collaborators & colleagues including Peter Constantin, Siegfried
Grossmann et al, Xiaoming Wang, Rich Kerswell …

… with many new applications by many others.



Theorem: the power P required to maintain any solution of the incompressible
Navier-Stokes equations, laminar or turbulent, is bounded according to

ρ ν U2 A/h  ≤  P = ρAhε  ≤  cD ρ A U3

with cD  < .09    (Plasting & Kerswell, JFM 2003: cD  < .0086)
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Reality check …

• Upper bound –––

• Lower bound – –

• Real data xxx from Lathrop,
Feinberg & Swinney (1992)

• “Logarithmic friction law”

cD ~ 1/[ln(Re)]2

as Re → ∞ for smooth walls.



Conclusions and comments
• Fully developed turbulent dissipation and drag becomes independent of

viscosity (modulo logarithms) … diffusive transport of momentum
becomes a physical property of the flow, not of the fluid!

The molecular transport coefficients are essentially “renormalized” to zero
but they cannot be zero!

Implication: your car won’t go any faster–––and you won’t get any better
gas mileage–––if the air gets any more slippery!

• Turbulent transport of mass and heat become independent of the material
parameters (modulo caveats) … “eddy diffusion” & “eddy conductivity”
are properties of the flow, not properties of the fluid!

• Turbulent transport is essential ingredient in natural phenomena (e.g.,
atmosphere & ocean science, astrophysics) and engineering applications
(e.g., drag in pipe flows, mixing in chemical production, heat transfer).

• There are still many open problems to work on …



Conundrum
• For many cases analysis and experiment agree that εturbulent ~ U3/l .

• But analysis has not established such a bound for open flows …

 … such as turbulence past an object (e.g., past a car or sphere).

• As of Snowbird 2005, we must resort to Hopf-1941 estimates …

 … for drag coefficient of the form  cD ~ Re eRe.

• For a car travelling at 60mph, Re ≈ 3×106.

• There’s room for improvement!



The End
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