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Abstract. We derive generalizations of the trace formula of Gukwiller and Balian and 
Bloch that are valid in the presence of a non-Abelian continuous symmetry. The usual 
trace formula must be modified in such cases because periodic orbits occur in continuous 
families, whereas the usual trace formula requires that the periodic orbits be isolated at a 
given energy. These calculations extend the results of a previous paper, in which we 
considered Abelian continuous symmetries. The most imponant application of the results 
of this paper is to systems with full three-dimensional rotational symmetry, and we give 
this case special consideration. 

1. Introduction 

In a previous publication [ I ]  (hereafter referred to as I), we derived a generalization 
of the Gutzwiller trace formula [2,3] that is valid in the case that a continuous Abelian 
symmetry is present. In this paper we will extend the results to the case of non-Abelian 
symmetry. The usual trace formula of Gutzwiller does not apply in systems with 
continuous symmetries, because its derivation includes an assumption that periodic 
orbits are isolated at a given energy, and because in systems with continuous symmetries, 
periodic orbits are not isolated. In fact, in the typical case, periodic orbits in a system 
with a continuous symmetry appear in (k+ 1)-dimensional manifolds, where k is the 
dimension of the symmetry group. 

As shown in I, the appropriate trace formula in systems with continuous Abelian 
symmetries involves a discrete sum, not over individual periodic orbits, which are no 
longer countable, but rather over whole manifolds of periodic orbits. In this paper we 
generalize these results to the case of non-Abelian symmetries, with special attention 
given to the case of rotational symmetry. Let us summarize briefly the results that 
apply to the case of Abelian symmetry. The trace formula derived in I for this case 
has the following form, 

Orbit 
raamiiies 

where p,.,(E) is the oscillating part of the quantum mechanical density of states p ( E ) .  
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The sum is over continuous families r of periodic orbits. The phase contribution S ( E )  
is the action of any one of the periodic orbits in the family and U is the Maslov index. 
The k-vector J consists of the k first integrals whose existence is implied by the 
presence of a k-dimensional symmetry group. Note that the J-components are not 
usually action variables in the sense of integrable systems. These first integrals, along 
with the Hamiltonian If, allow one to reduce the dynamics to a ( n  - 1 - k) degree-of- 
freedom surface of section mapping, and a linearization of this mapping gives the 
( n  - 1 - k) X (n - 1 - k) reduced surface of section matrix M. The factor To V, measures 
the ( I  + k)-volume of a family r in terms of a volume element that is obtained in a 
natural way from a parametrization of r by the symmetry group and by time. It is a 
direct generalization of the factor of T-the period of a primitive orbit-that is present 
in Gutzwiller's formula for isolated orbits and is explained in detail in I. Finally, the 
term a0lJJ measures the amount by which periodic orbits of the reduced dynamics 
that are close to r fail to be periodic in the full phase space (the components of 0 
are coordinates on the symmetry group and correspond to an additional symmetry 
transformation that is required to close the orbits in full phase space). This is also 
explained in detail in I, and its analogue for non-Abelian symmetries will be discussed 
in this paper. 

As we will see in this paper, each of the terms that contribute to (1.1) has a direct 
generalization to the case in which the symmetry of the system in question is non- 
Abelian. The non-Abelian nature of the symmetry, however, means that many issues 
that are trivial in the Abelian case have much more interesting structure when one 
tries to generalize the'calculations. We will investigate those differences in this paper. 

In terms of dynamics, a major difference is that the first integrals that are connected 
with the symmetry will not Poisson commute when the symmetry is non-Abelian. This 
has many implications, the most important of which arise in the reduction process. 
('Xeduction' is the process, described by Abraham and Marsden [4j, whereby sym- 
metries are used to reduce dynamics to a system with fewer degrees of freedom. It is 
a generalization of the elimination of ignorable coordinates.) When the first integrals 
are in involution, reduction to a system with fewer degrees of freedom is straightforward, 
reducing, essentially, to the elimination of ignorable coordinates. The reduction process 
is more complicated when the first integrals are not in involution, and cannot be 
understood entirely in terms of ignoring coordinates. A particular consequence of the 
symmetry being non-Abelian is that the reduction process does not allow one to reduce 
the number of degrees of freedom to the same extent as in the Abelian case: when the 
first integrals are in involution one can eliminate a degree of freedom for every 
independent first integral, whereas not every first integral allows a reduction of a degree 
of freedom when the first integrals are not in involution. As a consequence of all this, 
the reduced surface of section matrix M arises in a somewhat different manner when 
a non-Abelian symmetry is present and, in particular, will be larger than ( n  - 1 - k )  X 

( n  - 1 - k). 
There are also implications for the other contributions to the trace formula when 

the symmetry is non-Abelian. The nearby periodic orbits of the reduced system are no 
longer parametrized by the complete set of first integrals J, or by a complete set of 
coordinates 0 on the symmetry group-a reduced set of variables is required. Therefore 
d @ / d J  needs reinterpretation, In  addition, the contribution of the group to the TUVU 
factor, representing a (1 + k)-volume of the periodic manifold, involves the invariant 
Haar measure of the group, which is trivial in the Abelian case. These aspects are 
discussed in detail in the main text of the paper. 
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The results presented in this paper, as well as those in I, expand on previous results 
for systems with continuous symmetry. These previous results include the original 
papers of Balian and Bloch [3], in which trace formulae were developed for billiard 
systems with continuous families of periodic orbits under quite general conditions. 
Also, Strutinskii and Magner [SI have found explicit formulae for specific degenerately 
integrable systems. These results have applications to nuclear shell structure, where 
the shell structure of nuclei can be understood as arising from fluctuations in the 

We expect that the results presented in this paper for rotational symmetry will be 
useful in further understanding calculations of this sort. Berry and Tabor [8] have 
derived trace formulae for integrable systems. As discussed in I, the results derived 
there can reproduce the results of Berry and Tabor in a straightforward way. We 
mention also work in a different context by Chazarain [9] and Duistermaat and 

in which periodic orbits are allowed to arise in continuous families. 
The most important single example of the systems we consider in this paper is that 

of a system with rotational symmetry. Before considering the case of a completely 
general symmetry, we will present a specialized calculation for the rotational case in 
section 3. The case of rotational symmetry has the advantage that many of the 
group-theoretical aspects ofthe calculation are intuitively obvious and it is not necessary 
to invoke the abstract group theory that is needed in the general case. This is part of 
the reason why we first give the calculation for rotational symmetry before delving 
into the general case. The general case that we consider in section 4, is that the symmetry 
group is a k-dimensional Lie group. While we try to keep the calculations self-contained, 
it is useful, for the purposes of following the calculations in section 4 and several of 
the appendices, to be familiar with the notation of differential geometry and also with 
the theory of reduction as described in Abraham and Marsden [4]. On the other hand, 
the calculations for rotational symmetry, as  described in section 3, can be understood 
without recourse to this theory. 

To simplify the presentation, we will make some additional assumptions about the 
manner in which the symmetry group acts on phase space. The first is that the vector 
fields on phase space representing the action on phase space of infinitesimal group 
elements are iineariy independent near the periodic oibits. The second is that the 
Poisson brackets of the associated first integrals obey certain relationships that are 
connected with the Lie bracket on the Lie algebra of the group. This is the assumption 
of equivariance. Both of these conditions are explained in more detail in section 4 and 
hold for typical cases of rotational symmetry. We also assume that the Hamiltonian 
vector field is linearly independent of the infinitesimal symmetry operations. These 
conditions are not r'undameniai in any way 'Dui ailow a iiioie coiicise piesenittiion of 
the basic calculation in section 4. We outline the completely general calculations in 
the appendices. 

rlnnrit.. nf rtrtnr r h n t  34-n A..- t- - - - - l l  -...-her -FCn-:l:eA -C-.n-:...4;- -A.:+c r <  71 
Y'.L""J "L 0 L Y L . I  L I I a L  Y L I D L  "U- L V  a LI'."'' ' l U ' l ' Y C L  "1 .CI . II"ICJ U1 yc"""Lc "l"lU L d - ' , .  

Goillemin y l j ,  who deve!op c.utzwi!!er-!ike formu!ae for wave operators Qn manifolds 

2. Summary of previous results 

While deriving (1.1) in I, we discussed the derivation of trace formulae under quite 
general settings. In this section we will recall those results in 1 that are directly applicable 
to the case of non-Abelian symmetry. The result of interest is an expression for the 
density of states as a sum over continuous families of periodic orbits. The contribution 
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from each family involves an explicit, but non-trivial, integral over that periodic orbit 
family. The calculations in later sections will be directed at computing this integral. 

The derivation of the trace formula proceeds along the following lines. One starts 
with a semiclassical approximation for the energy-dependent Green function in terms 
of classical trajectories. This may be in a purely position-dependent representation or 
it may be in a mixed position-momentum representation-either one might be appropri- 
ate under different circumstances. One then uses this approximation to compute the 
trace g ( E )  of the Green function by means of the stationary phase approximation. 
The stationary phase approximation receives contributions from those trajectories that 
are periodic, so that one ends up with an approximation for g ( E )  in terms of periodic 
orbits. From the relationship p ( E )  = - ( l / r )  Im g ( E )  we then find that the density of 
states p ( E )  is also determined by a sum over periodic orbits. 

In I we used a mixed representation Green function G(p,  x', E) = (plG(E) lx ' )  
(where G ( E )  is the abstract operator) to compute a trace formula for systems with 
symmetry. This representation of the Green function can be approximated in terms of 
a sum over trajectories at energy E that begin at position x' and end with momentum 
p [l]. The trace g ( E )  is obtained from G(p, x', E) according to, 
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g ( E )  = dx' 1 dpexp(ip.x'/h)G(p,x', E). 

This is a 2n-dimensional integral (where n is the number of degrees of freedom) over 
the collective variable i, which is defined by i= (x ' ,p ) .  In computing the integral in 
(2.1) by the stationary phase approximation, it is found that the stationary phase 
contributions come from points Z that correspond to periodic orbits. If there is a 
k-dimensional symmetry present, the periodic orbits will arise in (1 + k)-dimensional 
manifolds (1 dimension for time and k dimensions for the symmetry), and we must 
perform a degenerate stationary phase calculation to compute g( E). Loosely speaking, 
we find that the integration across the periodic orbit manifold can be computed using 
the regular stationary phase approximation, leaving a (1 + k)-dimensional integral 
along the periodic orbit manifold which does not have a rapidly varying phase and 
which must therefore be computed exactly. 

The details of this calculation depend to a large extent on whether 1 + k <  n or 
*I L. ~ 1- r ..._ "--":A---A .I.- 1 I & <  ""A ..,p .,,:,, mnm"+rstp ,," +hot 
I T  rr r r* 111 1 w c  C " L L I I U C . C U  l L l C  -'Lac 1 I 8, - ii '.,,U nr V1.l .."..**..L.Y.I ".. ..&U. -Yo- 

here also. If all the constants of the motion are in involution, which is the case 
considered in I, this necessarily holds. This condition also holds for the three-body 
problem (e.g. the helium atom), where n = 6 after translational symmetry is removed 
and k = 3 (corresponding to rotational symmetry). There are also interesting cases, 
however, for which 1 + k > n-for example spherical symmetry in three degrees of 
freedom, where 1 + k = 4 and n = 3. Therefore this case should also be considered in 
general. While the details of the calculation in this latter case are very different to 
those for 1 + k G n, the final results have exactly the same structure. For this reason, 
we will not present much of this calculation, but rather will give a brief summary in 
appendix A. 

When 1 + k < n, we can split i into two sets of components, xi and (x;, p ) .  where 
xll are 1 + k configuration space coordinates whose coordinate axes we can take to be 
parallel to the periodic orbit family in configuration space. The remaining ( n  - 1 - k) 
configuration space coordinates are denoted by xL. The integral over the (xL .p )  
coordinates in (2.1) can then be computed by means of the regular stationary phase 
approximation, leaving a (1 + k)-dimensional integral over the xII coordinates. If we 
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think of xll as local coordinates on the periodic orbit manifold, this remaining integral 
can be interpreted as a volume integral over the periodic orbit manifold itself. In this 
way, g ( E )  is determined as a sum over periodic orbit manifolds, where each contribu- 
tion is given by a ( 1  + k)-dimensional integral over a periodic orbit manifold. 

In I we explicitly performed the calculation outlined above and obtained the 
following result, 

where, 

-- :- I.? 1, :- ^_L.. -"̂:.--,A- P .̂ " c F--L --2->:- 
11,c >Lull 111 (L.L, 1> UVCL pc'LUuLL U l V l l  ,I,(IIIIIU,US 1 (I, sr,c,gy G. r,'lC,I pcr,uu,c U L U L L  

manifold r contributes an oscillatory term whose phase is determined by the Maslov 
index U and the action S ( E )  of a periodic orbit in r. The amplitude AtT) of each 
contribution is given by  an integral over l-, given by (2.3),  whose integrand depends 
on certain dynamical properties of the orbit. We denote by pil and p l ,  the momenta 
conjugate to XI, and x, respectively, and we let z ,  = (xu, pII) and z, = (xi, pL). Primed 
quantities refer to the initial point of a trajectory that starts near r and unprimed 
quantities refer to the final point of the trajectory. 

The Jacobian in (2.3) warrants more discussion. First of all, the subscript xil means 
that the variable xi  is held fixed while all derivatives are taken. The Jacobian is then 
one that relates two alternative sets of n + 1 variables; (z ' ,  t) in the denominator and 
( Z ~ - Z ~ , X ~ ~ , X ~ ~ ,  E)  in the numerator. It is possible to regard each of these sets of 
variables as providing a parametrization of the set of all trajectories in phase space. 
where z' is the initial point, z is the final point, t is the time of the trajectory, and E 
is its energy. An equivalent point of view is that each set of variables forms a set of 
coordinates for the extended phase space P = P x R, where P is phase space and R 
represents a time axis. There is a natural coordinate system (5 t )  on P defined in the 
obvious way. We can also consider coordinates (z ' ,  1 ) .  where z' is defined through 
z = &', in which +t is the time-t mapping on phase space. One can similarly define 
coordinates (zL - z i ,  xi(, xi, E) by mixing z and z' components. With these interpreta- 
tions, the meaning of (2.3) is clear. 

The calculations of this paper from here on will be aimed at computing the integral 
that is present in (2.3) in terms of dynamical properties of the periodic orbit manifold 
that are more easily determined in practice. We first consider rotational symmetry in 
section 3, before considering more general cases in section 4. 

3. Case of rotational symmetry 

In this section we will derive a trace formula, analogous to (l.l),  that is valid for 
systems exhibiting rotational symmetry. Technically, we assume that H is invariant 
__^-I^_ -'-.I.- " _̂ .... P f i f , ,  -- -lr""- I..," .,.".., -.-.:,. .....̂ . :-^" 
UllUEl S",,,O dCLlUll U1 L11S p u u p  O"{J,  U11 p . a " C  "pakc " J  "J1L1Y.*'L'C L 1 O I I . O L " l l l L a L I u L I ~ .  

While the paradigm for this kind of system is provided by systems of interacting 
particles in 3~ space, we will try not to make assumptions as to the precise nature of 
the action of SO(3) on phase space. We will assume however, that the action of SO(3) 
on phase space is 'locally free'. That is, the subgroup which leaves a typical point in 
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phase space invariant is discrete, so that when the whole group acts on a typical point, 
a 3D surface is swept out. We also assume that the flow of H is in turn locally 
independent of the symmetry, so that a 4D surface is obtained when both the flow and 
the symmetry group act on a point. Finally, the calculations presented are for spinless 
particles. 

As a consequence of rotational symmetry, we find, in addition to H, three indepen- 
dent constants of the motion, namely the three components of angular momentum J. 
For systems of interacting particles in 3-space, 3 is the total orbital angular momentum. 
For more general actions of S0(3), the three components of 3 are defined as being 
those Hamiltonians that generate infinitesimal rotations about three orthogonal direc- 
tions. As far as deriving a trace formula is concerned, an important difference between 
rotational symmetry and the symmetries considered in I is that rotations do not conserve 
3. We will assume that 3 transforms under rotation of phase space according to, 
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J(Rzj = M ( z ) .  (3 .1)  

(While this is true for every system of physical interest, such as interacting particles 
in 3-space, it may not hold for exotic group actions and must therefore be made an 
assumption. We stress the condition here because the analogous condition for the 
general calculation in the next section is not as obvious.) Actions that satisfy (3.1) are 
called equivariant. 

In the presence of rotational symmetry, a given periodic orbit yo will generally be 
imbedded in a 3-parameter family of orbits, parametrized by rotations R according to 
yR = Ryo. We will assume that rotational symmetry is the only (continuous) symmetry 
present, so that this 3-parameter family enumerates all of the periodic orbits that are 
continuously related to yo. We can then parametrize the corresponding periodic orbit 
manifold T by (1,  R ) ,  where f is a time coordinate along periodic orbits and R is a 
rotation. In addition to pureiy rotationai symmetry, there may ais0 be discrete sym- 
metries. For example the system might typically be symmetric under spatial inversions, 
so that O(3) is a symmetry group. The effect of these extra symmetries will be to 
produce a discrete set of families, Ti say, such that the orbits within a given family 
are related to each other through pure rotations, and different families are related to 
each other through discrete symmetry operations. In the calculations that follow we 
will concentrate on the contribution of an individual family, and therefore we will 
refer only to the SO(3) component of the symmetry group. To account for the remaining 
symmetries, we merely sum discretely over the families Ti. From now on we suppress 
the label i on Ti. 

The parametrization ( 1 ,  R )  above allows us to define a natural measure d t  dp (R)  
on r, where dp(R)  is the invariant measure for SO(3) [ll]. The measure d p ( R )  is 
!!E! ~ C Z S K P ,  cnkyc cp to E constant factor, that is invariant under left and right 
translation on SO(3). (While for general groups it is necessary to make a distinction 
between left- and right-invariant measures, they coincide for compact groups like 
SO(3). so the distinction need not be made.) We will find that the volume element 
defined by the integrand of (2.3) is proportional to d t d p ( R )  on I'. The integral in 
(2.3) then reduces to a normalization of dt  d p ( R )  over r, which gives a contribution 
to the trace formula that is analogous to the ToV,  factor in (1.1). 

All of this is analogous to the use in I of coordinates (I, e) to parametrize T. These 
coordinates were evolution parameters for the Hamiltonian flows of the first integrals 
(H, 3 )  on r. We can make this analogy more direct by introducing a similar set of 
coordinates (t, 8 )  in the rotational case, where the @-components are now evolution 
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parameters for the components of the angular momentum vector J. The 8 coordinates 
can be physically interpreted as angles of rotation about the corresponding axes in 
3-space. Care must be taken when using these coordinates for rotational symmetry 
because rotations about different axes do not commute. In order to define the coordin- 
ates globally one should fix an ordering for the axes of rotation. We will avoid this 
issue by considering only infinitesimal rotations, for which any two rotations commute 
to first order in B. These coordinates are really useful only near B = 0, and for this 
I C ~ S U I I  wc will wnsiuer aucn a ser UI cuorainaw LU oe cunsirucreu ~ O U U L  cvery ~CCIUYCC: 

orbit y in r. These local coordinates define a volume element d t  dB on r, a direct 
generalization of one constructed in I. We will show in appendix B, where we consider 
general symmetries, that d t  dB is proportional to dt dp(R).  In fact, we can choose the 
normalization of dF(R) so that dt dB =dr dp(R).  

We now proceed to simplify (2.3). The overall structure of the calculations is similar 
to those in I, and we will dwell only on those parts that are different. First we introduce 
dynamics on an extended phase space @ = P xR x S0(3), where P is phase space and 
W corresponds to time. @ generalizes the extended phase space 9, described in section 
2, to include rotations as well as time evolution. Dynamics on 9' is given by (z', t', R') + 

(z = R@,z', I + t', RR') in a 'generalized time' ( I ,  R), where we usually take I' = 0 and 
R '=  I. We can now reinterpret the Jacobian in (2.3) as a Jacobian on @, in which we 
fix B = 0. Here we regard B as local coordinates on S0(3), parametrizing rotations that 
are infinitesimally close to the identity. We write, 

---.-- ___:,, .._. :>.. .... 1 . ~ . I  .r.. ~ ~ > I  ...-. _. L. .._.._..I. J .L .... -.~ 2-2:- 

( J ( Z ~ - Z L X ~ ~ ,  E ) )  - -~ (z , -z : ,x~ ,x~~,  J(z: ,  zi,  t, e) E, e) 
(3.2) 

J(ZLPi, 1 )  

Following similar calculations in I, we use the chain rule to break up this Jacobian as 
follows, 

(3.3) 
a(z, - z:, xil, xl,, E, e) 

J ( z L  zi, 1, 0) 
where J is the initial value of the angular momentum. This step has introduced 
derivatives in which 0 is allowed to vary, so from here on infinitesimal rotations will 
be included in the trajectories. Unlike the case of Abelian symmetry considered in 1, 

between the initial value J' and the final value J of the angular momentum. 
Also following calculations that are similar to those in I, we can combine the second 

Jacobian of (3.3) with the volume element dxl, to get the natural measure for r as follows, 

.h- C--r :-...--n#n r --- .,"-.  there -...-I1 -a+-+:--- "a :+ i o  :--a_nm+ t- A:-+: :-I. 
,JIG '"JL ll'lC(j.(1,3 Y CLl" "P'y ""C' L ' l C I C  >,,La'. ' " L P L l " l l D ,  a" I I  111 ""y"'LP"L L" "'"""6"'"" 

The steps involved in showing this are essentially identical to those of the analogous 
calculation in I, so we do not show them here. We just remark that the calculation 
proceeds by breaking up the Jacobian of (3.4) into two further Jacobians by means of 
the chain rule. Each of these is the determinant of a (1  + k) x ( I  + k) matrix, whose 
columns consist of xl,-velocities under the Hamiltonian flows of the functions ( H ,  J). 
The 1 + k functions (H, J )  label the columns and the 1 + k components of x,, label the 
rows. Also, one of the Jacobians is evaluated at the initial point of a trajectory and 
the other is evaluated at the final point-of course these coincide when evaluated on 
a periodic orbit. Equation (3.4) then follows from noting that the Hamiltonian vector 
fields of (H, J )  are coordinate basis vectors for the local coordinates (I, 0 )  on r. 
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The calculations so far allow us to write, 

(3.5) 

We will now work on interpreting the remaining Jacobian in terms of surface of section 
dynamics. Until now, the calculations have been very similar to those in I. From here 
on, however, there will be distinct structural differences, reflecting the fact that the 
reduction process is more complicated for non-Abelian symmetries. 

We now describe reduced surface of section mappings that are constructed with 
the aid of rotational symmetry. First H Z  recall that J is not invariant under the dynamics 
of @, in which rotations are included. Only the magnitude J of J is invariant. The 
direction 3 can be mapped into any other direction with an appropriate rotation. We 
will therefore choose our surface of section, Z say, to lie in the (2n -2)-dimensional 
invariant surface { z lH,  J =constant), where we now focus our attention on phase space 
P rather than generalized extended phase space @. More specifically, we let Z be any 
surface which has codimension 4 within the level surface {z lH,  J = constant}. The only 
additional condition is that the four independent vector fields generated by time- 
evolution and rotations be transverse to Z. With these conditions, we find that Z 
intersects the 4~ manifold r at isolated points. We will only be interested in surface 
of section dynamics that takes place near r. 

To define a surface of section mapping J,: Z + Z, we first start a trajectory on X 
near r, and follow it around r under the Hamiltonian Row of H. We then adjust the 
4 parameters of generalized time (r, R )  to get the trajectory back onto Z, thereby 
completing the mapping +. Since X is even dimensional (its dimension is 2(n -3)),  we 
can make it into a symplectic manifold in a natural way by restricting the full phase 
space symplectic form il to it. In contrast to the analogous mappings constructed for 
Abelian symmetries in I however, we find that J, is not generally symplectic with 
respect to this symplectic structure. For that to be the case Z must be chosen so that 
J is constant on Z. We will not assume that this is the case. There does exist a symplectic 
form for Z in the general case however, with respect to which J, is symplectic. This is 
discussed in appendix C. 

Notice that while the symmetry group SO(3) is three-dimensional, so that (including 
H )  there are 3 + 1 = 4 independent first integrals, in constructing surfaces of section 
as above we have reduced the number of degrees of freedom by just 2+1=3 .  (In 
contrast, we saw in I that Abelian symmetries facilitated a reduction of one in the 
number of degrees of freedom for every independent constant of the motion.) This 
inhibited reduction is not a result of inefficiency in the construction of Z, but rather 
is an intrinsic limitation of the dynamics. Provided the only symmetry present is 
rotational, we expect that the map J, is completely generic, exhibiting no further 
symmetries or invariants. In particular for example, the fixed points of J, will be 
isolated in Z and none of the eigenvalues of M, the linearization of J, at a fixed point, 
will equal 1. Therefore det(M - I )  will be non-zero and can contribute to the trace 
formula in a similar manner to (1.1). Let us proceed to connect (3.5) with this surface 
of section mapping. 

The derivatives in the remaining Jacobian of (3.5) are all taken at constant 
(xll, xi, E). We can incorporate this condition into the dynamics by making use of a 
particular family of surfaces of sectkon, ZJ = {z lH,  J, xil = constant}, parametrized by J. 
Useful coordinates for ZJ are ( z L ,  J). The corresponding surface of section mapping 
is denoted by J,J. The periodic orbit r contributing to the trace formula will occur at 
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a particular value of H and J. In what follows we will always be concerned with 
surface of section dynamics at the same value of energy H = E, but we will want to 
consider dynamics for values of J that are slightly different from that of r. For this 
reason we suppress the energy-dependence in the notation Z, and $,. We denote by 
I: the particular Z, lying in the same constant J surface as r. If we let z = $,d, for 
any z' in any P,, we find that the restrictions that (xll, xi,, E) are held fixed are 
automatically obeyed. The vector 0 then represents the rotation that is necessary to 
bring the trajectory of z' back to 2,. If BII and %, are the components of 0 parallel to 
J and perpendicular to J, respectively, we have, 

A 

where we have used J = J ' .  In the Jacobians above, we let J represent any two 
coordinates labelling the direction of J, defined in such a way that their Jacobian with 
respect to solid angle is unity. 

It turns out that the second Jacobian in the final line above reduces to a term 
det(M - I), corresponding to the reduced surface of section mapping. To see this we 
first note that, to first order in 0, the reduced surface of section mapping rotates J on 
the sphere J = constant as follows, 

Li ==$I+ 0 x j ' =  $+ 8; x 3. (3.7) 

We can invert this to express %, in a one-to-one relationship with i-j' as follows, 

(3.8) 

as illustrated in figure 1. Since .f-.?is appr2ximately perpendicular to .?, the transfor- 
mation J -J' + 0, is just a rigid rotation of J - j' by 90" and is therefore area preserving 
on the sphere J = constant. That is, 

0, = 3 x ( j  -3) 

(3.9) 

Figure I .  j - j .  and 8, provide alternative parametrimions of the sphere J=constant 
near J .  They are related to each other by a rigid rotation of 90", which i s  area preserving 
on the sphere. For this reason the Jacobian relating the corresponding change of variables 
is equal to 1. 
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We can therefore write, 
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A ”  

a(z,-z:, 8,) - d ( z l - z L J - J ’ )  
” - A 

J (zL  J ‘ )  W ,  J ’ )  

=det (M - 1) (3.10) 

where the last identity follows from using coordinates (zl, j )  on the surface of section 
X. As before, M is the linearization of $. The quantity det(M - I )  is an invariant of 
r: it is independent of the coordinates used on 2 and also of the choice of X itself. 
This was discussed in I for the reduced surface of section mappings considered there 
and the same arguments apply here. 

We next consider the factor ( a 8 1 1 / ~ J ) z ~ ~ z ~ , ~ l  in (3.6). In light of (3.8), we see that 
keeping 8, fixed at zero in this derivative is equivalent to fixing J - J  = 0, therefore, 

A ”  

(3.11) 

where OIl(J)  is the rotational component of the generalized period of the generalized 
periodic orbit at 1. We explain this in more detail as follows. We can identify the fixed 
points of the maps $, with what we call ‘generalized periodic orbits’. These are orbits 
that close in phase space after time evolution and a rotation. Just like ordinary periodic 
orbits, the generalized periodic orbits arise in 3-parameter families, and there is a 
one-to-one correspondence between one of these families and a fixed point of the map 
$,. Because the fixed points are isolated in each XJ, there is precisely one generalized 
periodic orbit family near r for each value J of the magnitude of the angular momentum, 
and we denote this family by rJ.  Each periodic orbit family will have a generalized 
period ( r  Qll), where QI1 is the angle of rotation about the angular momentum vector 
that is necessary to close the orbit. The rotation must be about J if we are to have J 
return to its initial value. It is not difficult to see that Oll,is constant on each TJ, so 
d@,, /dJ  is well defined. If we note that, fixing zl - z: and J - J ’  at zero defines a fixed 
point of the map $,, (3.11) follows immediately. 

We can collect the preceding calculations in the following expression for the 
amplitude A(T), 

A ( r )  = J(det(M - I)I-’’’ dt  dp(R).  (3.12) 

The next step is to integrate d t  dp (R)  over r. Just like in Gutzwiller’s formula for 
isolated orbits, the time integral gives To, the period of the primitive orbit. For the 
remaining integral it is useful to note the following normalization of dp(R) over SO(3) 

I dp(R)=8v2 .  (3.13) 

If there is a one-to-one correspondence between rotations R and periodic orbits yn 
the integral of dp (R)  over r is given by (3.13). More generally however, there will be 
a discrete subgroup I ( y o )  of SO(3) whose rotations will carry a given periodic orbit 
yo into itseif. in  this case (3.13) overcounis by a facior of X I ,  ihe niiiibei of deiiieiiis 
in I(ro). Therefore, 

[ I l l ,  

so131 

,̂  .-\ 

811’ 
I r d t d p ( R ) =  To-.  NI (3.14) 
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We can finally write the trace formula for rotationally symmetric systems as follows 

(3.15) 1 1 
(Zaih)”’? /J@,,/JJ/’/’/det(M- I)/”z 

which is similar in structure to (1.1). Again we point out that the various quantities 
contributing to this trace formula are intrinsic, coordinate-free properties ofthe periodic 
orbit families, just as in Gutzwiller’s formula and the trace formula of (1.1) for Abelian 
symmetries. In addition, notice that, while we have assumed n 3 4  in this section, the 
various quantities arising in (3.15) make sense even when n = 3. This suggests that 
(3.15) is generally valid. As discussed in appendix A, this is indeed true. 

4. Case of general non-Abelian symmetry 

The calculations of the previous section can be generalized in a straightforward way 
to systems with more general non-Abelian symmetries. In this section we assume that 
H is invariant under an action of some k-dimensional Lie group G on phase space 
by symplectic transformations. We will further assume, as we did for rotational 
symmetry, that the action of G on phase space is locally free and that the flow of H 
is in tum locally independent of the action of G. This will ensure the existence of k 
independent first integrals J, whose Hamiltonian flows generate G. The case where 
the action of the group is degenerate is considered in appendix D. 

The main difference between the calculations for SO(3) and those for more general 
groups is that much of the group structure of SO(3) is easily interpreted in terms of 
simple 3~ geometry and can therefore be dealt with without explicit reference to group 
theory. In contrast, the calculations for general groups make explicit use of the group 
structure. Before delving into the calculation of the trace formula in section 4.2, we 
summarize briefly in section 4.1 the group-theoretical constructs that we will use. The 
main purpose is to establish notation and to collect together the various facts that will 
be used and not to provide a complete description. It is probably necessary, on the 
part of the reader, to have some prior familiarity with the general theory (concerning 
coadjoint orbits, momentum maps, etc) for a complete understanding of the calcula- 
tions. For more detailed explanations of the group theory, with explicit reference to 
dynamical applications, we refer the reader to Abraham and Marsden [4]. See also 
Arnol’d [12]. 

4.1. Group-theorerical preliminaries 

we denote By $3 the Lie aigebra of G, which is the tangent space IO G at the identity. 
We will make frequent use of the exponential map, which takes a Lie algebra element 
6 into a group element exp(g), defined as follows. Corresponding to the Lie algebra 
element g, we consider the left-invariant vector field X J g )  =g5 on G, obtained by 
left-translating p from the identity to g. The integral curve of X ,  emerging from the 
identity at 1 = 0  is then exp(lg) [4]. We can use the exponential map to define the 
so-called adjoint representation of G on 3. T h i s  is defined as the infinitesimal version 
of the conjugation operation h + ghg- ’  as follows, 

... 

d 
Ad& = - g . exp(4)  . g- ’  

dr 



1654 

It is easy to check that this linear map from 9 into itself is indeed a representation of 
G. It is also useful to let g become infinitesimal in (4.1), leading us to define, 
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(4.2) 

which is linear in both 5 and 7 and which can be shown [4] to be related to the Lie 
bracket on 9 according to ad& = [q, 51. 

An important object as far as dynamics is concerned is 9*, the dual space of 9. 
It is the space of all linear functionals on 9. We will denote the natural pairing between 
elements o of 9* and elements 6 of 9 by either U(.$) or (U, [ ) .  The coadjoint 
representation, g + Ad;-i, of G on 9* is defined by, 

(Adg-lw, ()=(o,Ad,-l.$) (4.3) 

and its infinitesimal version is 

d 
ad: =- d r  Ad* FxP(-t#) (4.4) 

which is connected to the Lie bracket on 9 according to (adzo, 5) = -(U, [q, 51). The 
adjoint and coadjoint actions are the natural actions of G on 9 and '3* respectively, 
and will therefore arise frequently. For this reason we will adopt the simpler notation, 
Ad&= g .  6 and Ad,*-u = g. o, where there is no risk of confusion. 

The dual space 9* is important for dynamics because the collection of first integrals 
J can naturally be thought of as a vector in 9*. More precisely, we define the so-called 
momentum map J : P + 9* according to 

( J ( z ) ,  5)= J # ( z )  (4.5) 

where J#(z ) ,  when regarded as a Hamiltonian function on P, generates as its Hamil- 
tonian vector field the infinitesimal generator on P of the Lie algebra element 6. This 
construction is described fully in Abraham and Marsden [4]. Because H i s  G-invariant, 
we find that H is conserved under the flow of Jc, so that { H, J r }  = 0, which in turn 
implies that Jf is conserved under the flow of H. Therefore the k-vector J ( z ) ,  living 
in 9*, is invariant under the flow of H, giving k independent first integrals as asserted. 

While J is invariant under the Bow of H, it is not in general invariant under the 
action of G on phase space. This defines an action of G on %* according to, 
J ( z ) + J ( g .  2). We have already seen that there is an intrinsic action of G on 9*, 
which is purely grouptheoretical, namely the coadjoint action of (4.3). For convenience, 
we make the assumption that these actions coincide, that is, 

J ( g . z ) = g , J ( z ) .  (4.6) 

Group actions satisfying this condition are called equivariant. In the special case of 
rotational symmetry the equivariance condition reduces to (3.1) while for Abelian 
symmetry it is equivalent to the assumption that the first integrals Poisson commute. 
This assumption is not strictly necessary; if a non-equivariant action arises in practice 
our calculations still carry through with minor modifications if one lets g . J represent 
the dynamical action rather than the coadjoint action. We give a brief outline of the 
more general calculation in appendix E. 

A simple example of a classical system with non-equivariant symmetry is provided 
by the case in which H does not depend on the coordinates (q..p.). The symmetry 
group consists of translations in the (q" ,  p,)-plane and is Abelian. Consequently, each 
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coadjoint operator Ad:-1 is just the identity map. The Hamiltonian generators for 
translation along the q. and p .  axes are, respectively, p .  and -4.. Therefore the 
momentum map is J ( z )  = (p,,, -4.). Notice that translations in the (q.,p.)-plane do 
not leave J ( z )  invariant whereas Ad$, does. Therefore (4.6) is violated. It might he 
objected that this is a silly example because one would not consider the nth degree 
of freedom to begin with in a case like this. However, this kind of symmetry can arise 
as a result of a change of coordinates, in such a way that the symmetry is not so trivial 
beforehand. For example, a charged particle in a uniform magnetic field has transla- 
tional symmetry. In the so-called called guiding centre coordinates [13] for the problem, 
there are a pair of canonically conjugate coordinates (X, Y) representing the centre 
of the circle of gyration. Translational symmetry of the system in the plane perpendicular 
to the magnetic field manifests itself in the independence of the Hamiltonian of the 
coordinates (X, Y), and so is an example of non-equivariant symmetry. 

Let us now concentrate on the case of equivariant symmetry. Of considerable 
importance for the trace formula will be the coadjoint orbit G .  J of a momentum 
vector J. This is the set of points in %* that is mapped out when all of the group 
elements act on J In the case of rotations, SO(3). J is the sphere J = constant. It turns 
out that one can construct a non-degenerate symplectic form for G . J, so this space 
is necessarily even-dimensional. To see this we note that any vector tangent to G. J 
at J can be written in the form a d r J  for some 6 in 9, as illustrated in figure 2. The 
symplectic form is then defined by, 

4ad$J ,  ad:J) = JK6, 71). (4.7) 

One can easily check that this is well defined and non-degenerate. We let the dimension 
of G .  J he 21. For rotations, 1 = 1 when J # 0 and the symplectic form is proportional 
to the solid angle 2-form sin 0 d0 A d+, on the sphere. 

G.J 

Figure 2. Vectors tangent LO the coadjoint orbit G ,  J at J are 811 of the form adFJ far 
some 6 in 9. This correspondence allows us to use 9-coordinates to parametrize G. J 
near J. 

The following interpretation of the coadjoint orbits might be more familiar from 
the point of view of physics. The dual space %* can be regarded as a phase space in 
its own right, on which can be defined a Poisson bracket, the so-called Lie-Poisson 
bracket [4,12]. I n  the case of rotational symmetry, %* is 3~ angular momentum space 
(coordinates (JI ,  JZ. JJ), and the Poisson bracket is the obvious one, ( J e ,  Jb} = eab,Jc. 
The Lie-Poisson bracket is degenerate in that there exist so-called Casimir functions 
which Poisson-commute with every other function (on %*)-for example, there is a 
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single Casimir function J on so(3)*. For any Poisson bracket, if all the Casimir functions 
are fixed the result is a submanifold on which the Poisson bracket is non-degenerate 
and in fact can be derived from a symplectic structure. For the Lie-Poisson bracket, 
the result is just a coadjoint orbit with the symplectic form of (4.7). The codimension 
(k-21) of G .  J within V* is then generically just the number of Casimir functions 
(there are exceptional cases where the codimension is higher, for example J = 0). 

The dimension of the coadjoint orbit has important consequences for the group 
structure. Fixing J, we can regard ad:J as a linear map from V to V*. The range of 
ad&J is the 21-dimensional tangent space to G .  J at J and therefore its kernel, VJ 
say, is a (k-2l)-dimensional subspace of 3. The kernel VJ consists of infinitesimal 
group elements that leave J fixed and is therefore the tangent space at the identity to 
the isotropy subgroup GJ of J. GJ is the subgroup of G that leaves J invariant under 
the coadjoint action. For example, in the case of rotations, GJ is the group of rotations 
about 9 and 9; Is the space of @-vectors parallel to Ji each one-dimensional. We wl!! 
use VJ to organize coordinates on V as follows. When considering a point in phase 
space with a given value of the momentum J, we choose a basis {.$a)!=, for V in such 
a way that the first k-21 vectors {to}:::’ form a basis for VJ.  The remaining hasis 
vectors {,$a)!=k-2,+, span a 21-dimensional subspace, which we will denote by 3, (A 
is for active), transverse to VJ. A particular vector .$ can then be decomposed into a 
component cK in VJ and a component 5, in VA. We denote by @ = ( O K ,  e,) the 
coordinates of a vector .$ relative to this basis. This is a generalization of the (ell, el)- 
decomposition considered in section 3 for rotations. 
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4.2. The calculation 

We are now ready to consider the geometry of periodic orbits in phase space. The 
symmetry ofH under G wiii give rise to ( i  + kj-dimensionai iamiiies oiperiodic orbits 
r, parametrized globally by ( t ,  g). We point out that if G is not connected, only the 
identity component is necessary to parametrize orbits within a given connected family 
r. The different components of G will label a discrete set of different families. As in 
the previous section, we will concentrate on one connected family at a time, so we 
will ignore all but the identity component of G. The remaining symmetries are accounted 
for when we sum discretely over families. 

Sufficiently close to any reference orbit yo, we can replace the group by the Lie 
algebra in parametrizing the periodic orbits. This gives rise to local coordinates ( t ,  0) 
on r, with 0 = 0 on yo. In particular, we choose the coordinates 0 to be defined relative 
to a basis {,$,,]!=, that is aligned with the isotropy subgroup of Jo= J ( y o )  in the manner 
described above. Therefore the coordinates on r near yo can be decomposed into 
(!, ex, eA). These ronrdi~ates wi!! cnab!e us to compute !he contribution to the integra! 
in (2.3) from an  infinitesimal strip around yo. To compute the whole integral, we will 
need to construct such a set of coordinates around every periodic orbit in r. The 
problem with this is that J will vary over r so a different basis is needed for V for 
each periodic orbit. We need some way to relate the %bases constructed for different 
periodic orbits in r, and we do  this as follows. We first fix a basis {,$a}:=, for the 
reference orbit yo. We then choose the basis corresponding to any other periodic orbit 
y, = g yo to be { g  ,$a}!=, . In this way we get a local coordinate system ( t ,  0 )  = 
( I ,  BA, e,) about every periodic orbit in r. The local coordinates ( I ,  9) then define a 
natural measure d t  d @  on l‘. In terms of the global parametrization ( f ,  g )  we can show 
that this measure coincides with d t  dpL(g). where dp,(g) is proportional to the 
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left-invariant measure for G. (For compact groups the left- and right-invariant measures 
coincide so this distinction need not be made.) We explain this in more detail in 
appendix B. We will try to interpret the integral in (2.3) in terms of this measure, just 
as we did for rotational symmetry in section 3. 

With this structure in mind, we can proceed to calculate the trace formula. In 
analogy with the previous section we will define an extended phase space 6’ = P x R X G, 
with dynamics, (z’, t’, g ’ )  + ( L  = g . &‘, t + t‘, gg’) in generalized time ( t ,  9). By methods 
like those of the previous section, we can then reduce the amplitude A(T) to the 
following form, 

Here we compute J in the basis for 9* that is dual to the basis {&I of 9. In this way 
the Hamiltonian Bow of a particular component J, (z )  generates the action on phase 
space of the corresponding Lie algebra basis element &,. 

As for rotational symmetry, the Jacobian in (4.8) can be interpreted in terms of 
reduced surface of section mappings. To do this it is necessary to use coordinates for 
B* which take into account the dynamics of J. We use any coordinates (E, f i )  for B*, 
where the (k-21) coordinates B are constant on each coadjoint orbit G .  J (these are 
the Casimir functions mentioned in section 4.1), providing, in effect, labels for the 
coadjoint orbits. The remaining 21 coordinates p then provide coordinate systems on 
each coadjoint orbit. We will specify a more detailed choice of coordinates later, but 
for now we let them-be relatively arbitrary. These coordinates are a generalization of 
the coordinates ( I ,  J )  used in the rotational case. Regarded as functions on phase 
space, we see that the B-components are invariant under both H -  and G-evolution, 
whereas G-evolution can carry a given into any other nearby 8. We will choose a 
surface of section Z to be a codimension 1 + k  subspace of the (Zn-1 -k i  
Z/)-dimensional level surface { z l (H,  B )  = constant). To define a surface of section 
mapping JI we adjust 1 + k parameters ( t ,  g) to bring trajectories that start on L back 
to L. Note that L has dimension 2 ( n  - 1 - k + l ) ,  which is even. L can therefore be 
given a symplectic structure by restricting R, the full phase space symplectic form, to 
it. While one might expect that JI would be symplectic with respect to this structure, 
it turns out, as mentioned earlier for rotations, that this is not the case. It is the case 
however, that JI is symplectic with respect to the following symplectic form on L 

ii = RIx-J*o (4.9) 

w is the symplectic form of (4.7), on the coadjoint orbit G .  Jo corresponding to L, 
and J*o is its pull-back using the restricted momentum map J:L+ G .  .Io. We show 
ihat e is symplectic with respect to 

We can interpret the Jacobian of (4.8) in terms of the particular surfaces of section 
X. = ( r l (H,  E, xll) =constant}, with surface of section mappings JI#. As usual, at the 
periodic orbit family r, we use the simpler notation L, e, etc. We let L = $.z‘ and write, 

in appendix C. 

by analogy with (3.6). With an appropriate choice for the coordinates p, the last 
Jacobian is equal to det( M - I), where M, as usual, is the Jacobian matrix of JI a t  r. 
We construct these coordinates as follows. We have seen that the mapping a d r , J  
provides a one-to-one correspondence between the space WA and the tangent space of 
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G .  J at J. This correspondence allows us to use BA as approximate coordinates on 
G.  J near J. Choosing /3 to coincide with the coordinates BA to first order near J we 
can write, 
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J(ZL-Z>, BA) J(ZL-ZL /3 -/3') ( J(Zk,/3') > n = (  J(ZL,/3') >n 

= det(M - I )  (4.11) 

where the last equality follows if we use coordinates (zl, /3) on L. 
The fixed points of the maps $,, correspond, in phase space, to  generalized periodic 

orbit families Tn,  consisting of orbits that close after time evolution and a symmetry 
operation. We expect that the fixed points of $n are isolated in each LE, and therefore 
we get precisely one (I+k)-dimensional family Tn for each B. These generalized 
periodic orbits have generalized periods ( T ,  g)  whose group part g is in the isotropy 
subgroup GJ at each point on Tn. If we consider generalized periodic orbits that are 
infinitesimally displaced from the periodic orbit family T, we can therefore represent 
the group part of the generalized period by coordinates 0 = (0, eK), corresponding to 
an element of gJ. When measured relative to the moving basis {g . f a } ,  the coordinates 
8, are constant on each Ts. This is because, if (T ,  go) is the generalized period of a 
periodic orbit yo in Ta, some other periodic orbit g .  yo has generalized period 
( T ,  ggog-'). For infinitesimal group periods this conjugation corresponds to the adjoint 
action of G on 3, for which the coordinates 0 are constant in the moving basis {g . f a } ,  
which absorbs the action of g on the period. We can therefore write, 

(4.12) 

which is weii defined and constant on r. it  is a direct generaiization of (3.iij. 
The next step is to investigate the term J(B, /3)/J(J) remaining in the integrand of 

(4.8). This Jacobian for the coordinate change J +  (B, /3) on Q* is determined by the 
volume of the (/3, E )  coordinate basis (eo, es) relative to the global vector coordinates 
J.  For the choice of coordinates /3 outlined above, the 21 vectors e, are given at some 
point J o i n  Q* by adze& along G .  Jo, where k - 2 l f l s a s k .  The remaining k-21 
vectors e. are unit-B vectors transverse to G .  Jo that point to different coadjoint orbits. 
At another point g .  Jo,  for which one uses a basis (g . f a }  in 9, the vectors e, are 
given by ad&=g. Jo= g .  adzb& (it can be shown that g '  a d z J =  ad&g. J in general). 
Since g preserves B we can assume without loss of generality that the E-coordinate 
vectors at g .  Jo are g .  eB. This assumption just amounts to allowing a change of origin 
in the /3-coordinates as a function of E, which will not affect the Jacobian. Therefore 
the faordinite hasis at any point on G. J, c m  he expressed in  the form !s. e,, ,p. e:). 
Likewise, the coordinate basis vectors (U"}:=,  , corresponding to the coordinates J, 
also vary according to W .  + g .  U' on r. This is an easy consequence of the variation 
[.,+g. f. of the dual basis (&}:=,. The net effect is that the Jacobian J(B,P) /dJ  

remains unchanged as we consider different points on G.  J. Let us denote J(B, P)/JJ 
by Qo(B). This constant term can now be removed from the integral for A(T) and all 
that is left is a normalization of the volume element d t  d d g )  over T. 

So far we have assumed that the E-coordinates are globally constant on G ' J. If 
we single out a particular momentum vector Jo, we can use coordinates which, while 
not rigorously constant on all of G .  J, are constant in a linearized sense for small 
variations away from Jo on G. J. That is, the Jacobians in 4.10 are unchanged if we 
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replace B with linear coordinates on %* that are constant on the tangent space to G' J 
at J. The basis on % gives us such a set of coordinates in a natural way when 
the basis is aligned with G ,  in the manner described earlier. This basis defines a set 
of coordinate functions { J J t = ,  on %*. Let us denote the first k-21 of these by JK, 
and the last 21 by J,. It is not difficult to check that JK = 0 along any vector of the 
form adTJo in %*, that is, that JK is constant along the tangent space T,G.  J to G .  J 
at Jo. We illustrate this schematically in figure 3. With this choice for E, and with the 
choice of 8, for P outlined above, we can then write, 

(4.13) 

Keeping JK fixed in this last Jacobian amounts to restricting ourselves to the tangent 
space TJ,G. J. We can then interpret QO' = JJ,/J8, as a Jacobian for the transforma- 
tion ad$&: 3,- T,G' J, in which we use coordinates 8, on 3, and coordinates Jn 
on T,G' J. In a similar vein, we can reinterpret the Jacobian of (4.12) as follows, 

J@JdB = JOJdJK (4.14) 

in terms of these local coordinates. 

element d t  dpL(g). Let us denote the remaining integral over r by, 
We have shown that the integrand of (4.8) is constant with respect to the volume 

d t  d p k )  = ToVo (4.15) 

where To is the period of a primitive periodic orbit in r and V, is the integral of dp,(g) 
over r. In the case of compact groups G we can write, in analogy with (4.14), 

(4.16) 

where C, is the normalization of the measure dpL(g)  = dpR(g)  over the whole group 
G and N, is the number of group elements that bring a given periodic orbit in r back 
to itself. If the group is not compact, the measure dpL(g)  is not normalizable on G 

f JK 

boadjo in t  Orbits 

Figure 3. The linear coordinates JA are locally parallel IO the coadjoint orbits near J and 
are therefore good local coordinates on a particular orbit, providing an allemative to the 
coordinates e,. The linear coordinates Jn point away from G J and provide a parametriz- 
ation of nearby coadjoint orbits. JK can therefore replace the global coordinates B near J.  
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we have to  be more careful. If I( y )  is the discrete subgroup of G that leaves a periodic 
orbit y in I‘ invariant, then V, is the normalization of dp&) over the quotient space 
G/I( y ) .  Note that I( y )  need not be a normal subgroup of G so G/I( y )  is not generally 
a group. 

We have derived the following trace formula for systems with general symmetries, 

( i  1 (4.17) 

in which, as usual, the various contributing terms are coordinate-free, invariant proper- 
ties of the periodic orbit families r. In the special cases of Abelian and rotational 
symmetries this trace formula reduces to (1.1) and (3.15) respectively. 
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ToVo exp ; S ( E )  -ium/2 
1 I 

g(E)’ih (2mih)*”f: IQol”21J0KjaJK11’21det(M-I)11’2 

5. Conclusion 

Equation (4.17), along with the modified versions in the appendices, achieves the goal 
of finding a generalization of Gutzwiller’s trace formula that is valid for systems with 
arbitrary symmetry. In terms of the density of states, we can restate (4.17) as follows, 

To v, cos (f - y - ;) 
c (5.1) 

1 1 
P O A E )  =- ~h (2mh)”’ peno~ls~Qa~”2~J~KjJJ~~”2(det(M-I)~1’2 

orb,, 
famlller 

where p., ,(E) is the ’oscillatory part of the density of states. This follows from the 
trace formuiae for g(E j  ana from posc(Ej= - ( i i m j  img(E).  in the speciai case of 
Abelian symmetry considered in I, Qo= 1 and aoK/aJK =J@/a.l For rotational sym- 
metry, Qo= J - 2  and JO,/aJK= Jol1/JJ. 

Equation (5.1) gives the density of states that corresponds to the complete set of 
energy levels of the Hamiltonian H. When there is a symmetry present, one can also 
consider just the energy levels that correspond to a given symmetry class. That is, the 
spectrum can be broken up into components that correspond to irreducible representa- 
tions, which we label by j ,  of the symmetry group and we can consider a reduced 
density of states p , ( E )  for each j .  It is then reasonable to consider trace formulae for 
each reduced density of states p , ( E ) .  We expect that such a trace formula will determine 
p , ( E )  in terms of the classically reduced dynamics. As shown by Robbins [14], this is 
already known to be true for discrete symmetries. Also, in specific cases of continuous 
symmetry, such as axial symmetry, simple direct arguments show this to be the case 
[ I ,  15, 161. Such a connection is reasonable because the irreducible representation 
labels J, can be interpreted semiclassically (in fact, the interpretation can be made 
exact) as labels for the coadjoint orbits in %* [17]. For example, in rotational symmetry, 
the angular momentum quantum number j corresponds to a classical magnitude of 
total angular momentum J = ( j  + 1/2)h. The coadjoint orbits in turn label the classically 
reduced phase spaces [4,12], so we can establish a one-to-one correspondence between 
labels j and particular reduced phase spaces, whose periodic orbits would determine 

The calculations for the reduced densities of states are clearly important and we 
will discuss them in a future publication. We would like to point out however, that 

P M .  
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the full density of states p ( E )  is important in its own right, and that there are instances 
where a trace formula for p ( E )  rather than for p j ( E )  is the relevant object to study. 
For example: it is  the density of s t ~ m  for the fa!! sgertnlm, cot the spcm~m. for a 
given angular momentum quantum number, that is relevant for the study of nuclear 
shell structure [S-71. The results described in section 4 for rotational symmetry are 
relevant for these calculations. Determining of the whole spectrum at once, as described 
in this paper, rather than through partial sums for the reduced densities of states, is 
desirable for these kinds of calculations because only orbits that are periodic in full 
phase space are required. In contrast, the sums for the reduced densities of states 
require knowledge of all orbits that are periodic in reduced phase space. The results 
of this paper provide a means of bypassing all but a small subset of these orbits. 
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Appendix A 

In this appendix we give a brief outline of the calculation of A(T) in the case 1 + k> n. 
The calculations presented here. are not meant to be comprehensive. We present only 
the main ideas; the steps in between can be completed with calculations that are similar 
to those presented in the main text. 

Suppose 1 + k P n. men, over a given point .x in configuration space, we expect 
that T will determine a (1 + k- n)-dimensional surface in momentum space. Construct 
momentum space mordinates (pu , p I )  such that the (1 + k - n) pII coordinates are 
aligned parallel with this surface and the (2n - 1 - k )  coordinates pl are transverse to 
it. Let xi, and rL be the corresponding conjugate configuration space variables. Note 
that this decomposition is not the same as the (\l,l)-decomposition considered in the 
m i w  ICXL. Iii txmqiiiiifig ihe iiitegisi in (2.1), we t k i i  iise the ~ t a t i ~ t - t ~ y  phase 
approximation to compute the integral over the pL variables, leaving an inte.gral over 
(d, pj)  whose phase is stationary everywhere. We can interpret this remaining integral 
as an integral over the periodic orbit family r, on which we use coordinates ( x ' , p L ) .  
Following the techniques in I, we arrive at the Fallowing analogue of (2.3j, 

I -. - . . 

The next step is to re-express this integral in terms of the natural measure dr de. A 
calculation similar to that preceding (3.4) gives, 

Now construct a reduced surface of section X at some point z, on I' by fixing x, 
p, ,  E and B. The dimension of this surface of section is less than that of the 
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corresponding coadjoint orbit G ' J when 1 + k > n, and therefore J maps onto some 
2( n - 1 - k+ I)-dimensional subsurface J(X) of G .I Choose coordinates p = ( y , 6 )  
on G. J such that y = O  on J(Z) and 6 are good coordinates for J(X) .  Let us further 
suppose that the coordinates (7.6) coincide locally with coordinates defined by letting 
ad,.,J act on a basis that is aligned with gJ as described in section 4. That is, we 
assume that the basis vectors for the active subspace SA can be decomposed into a 
set {&) and a set {&), which generate the y and 6 coordinate directions respectively 
under the action of ad?,. Denote the associated Lie algebra coordinates by 
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@ = ( O K ,  6,. 6 8 ) .  

The integrand of (A2)  can be decomposed as follows, 

Some further analysis allows one to interpret the individual Jacobians in (A3) in the 
following way, 

and, 

. .  

In this way one recovers the results obtained in the main text for the case 1 + k s n. 

Appendix B 

In this appendix we show that the local coordinates ( f ,  6 )  constructed on r, as described 
in section 4, yield a natural measure d f  d 6  = d f  dpL(g)  for r. We assume a general 
symmetry, as in section 4. The results can be specialized to the case of rotational 
symmetry by interpreting the three vectors 6. as orthonormal basis vectors for W3 and 
exp(O"&) as a rotation about direction e".$ by angle l8.&,1. 

Suppose first that the local coordinates (1, 0) are constructed on r with the help 
of a fixed basis {&) for 9. Let { Y,(g)} be the basis obtained for the tangent space of 
G at each point g by right translation of {&} from the identity. We define a measure 
dp&) on G, relative to which the volume of the parallelepiped defined by { Y,(g)} 
is equal to 1 for each g. If we coordinatize G near g according to g ( 6 )  =exp(e"&,)g, 
then d p R  = d 6  at g. This measure is obviously invariant under right translation and 
can therefore be taken as the right-invariant measure for G. Suppose now that, near 
a point g z o ( f )  on the periodic orbit g .  yo, we define local coordinates ( f ,  6 )  for r 
according to z( 1, 6 )  = exp( O"C.)g zo( f). Then from the preceding discussion we see 
that df  d @ = d f  dp,(g) at g .  yo.  

In reality however, we do not keep the basis {&,} fixed but rather move it around 
with the adjoint action, so that the components 8" are defined with respect to the basis 
{Ad&} at g .  yo. It is not difficult to see from the definition of the adjoint action that 

therefore defines a left- rather than a right-invariant measure dpL(g). (As an aside we 
note that it is easy to see from this that the left- and right-invariant measures are related 
through dp,(g) = det Ad, dpL(g).) It follows that, with d 6  as constructed in section 
4, df  dO=df dpL(g)  as asserted. 

iighi-:iaiis:a:iiig the bajis :Ad,&; :o g is :he saiiie as :ef:-::an;:a:ing ::.: :G g and 
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Appendix C 

In  this appendix we will investigate the symplectic structure of the reduced surface of 
section mappings $. We use the terminology and notation of the general case, described 
in section 4. While $ is derived from symplectic mappings 4 defined by &z = g 4,z, 
we find that $ is not necessarily itself symplectic, at least not with respect to the 

This is in contrast to the mappings considered in I, which were symplectic with respect 
to nix. We will find however that there is an alternative symplectic structure on E, 
given by (4.9), with respect to which $ is symplectic. 

if the following identity holds for any 
two vectors U and v tangent to E at some point z, 

9 ( @ * u ,  @*u)=n(u,u) .  (Ci) 

Here we let $*U denote the linearized propagation of U by the map $. The propagation 
of these vectors by $ is related to the propagation by the constant ( t ,  g )  mapping & 
according to 

symp!ertic I!RJC.t??TP one ..ol?!d Ens! str.ightf.rW.rd!y zssorizte Kith x, n.me!y ai,: 

The map $ is symplectic with respect to 

$*w = &*w+dt(w)X, +dO"(w)X,*. (C2) 

An analogous formula is discussed fully in I. We let X, and X,o denote the Hamiltonian 
vector fields for H and J. respectively, while dt(w) and dO"(w) represent the additional 
(infinitesimal) time evolution and symmetry operation necessary to bring the tip of w 
back to Z after propagation by &. Inserting (C2)  into condition (Cl),  we get, 

n($*U, $*v)=fi(u,  u)+IJ., Jb)  dO'(u) dOb(u)+dOn(u) dJa(+,g*v) 

-dO"(v) dJa(4t8*u). (C3) 

Note that for the mappings considered in I, for which J is constant on E and {Ja, Jb} = 0, 
(C3) automatically reduces to (Cl)  and $ is symplectic. More generally however J 
varies along Z and {J., Jb} # 0, so @ is not obviously symplectic. In the general case 
we denote the discrepancy between n($,u, $*U) and n(u ,  U) by a ( u ,  U). Then a ( u ,  U) 
can be expressed in a form that is independent of the basis {(*) for 9 as follows, 

a ( u ,  0) =(dJ(+,,*v), O(u))-(dJ(+zg*u), O ( u ) ) + ( J ( h ) ,  [O(U), N u ) l )  (C4) 
where, by an abuse of notation, we let O(w) = dO"(w)(, and make use of the fact that, 
for equivariant actions, [Jm, Jb) dO"(u) dOb(u) = J ( [ O ( u ) ,  O(u)]) [4]. 

Note now that it is inherent in the definition of Z that, when evaluated on E, J is 
restricted to a single coadjoint orbit. The variation of J along E can therefore be 
achieved by applying a group action to J. That is, for each and z' in Z, there is a 
g(z, z') such that J ( z )  = g(z, 2') . J(z ' ) .  The infinitesimal version of this is that the 
variation of J along some vector U tangent to E at a point z is given by, 

d J (u )  =ad&,J(z) (C5) 

for some ((U) in 9 that can be chosen linear in U. The variation along the propagated 
vector &*U is related to this according to, 

dJ($,,,u)=g. dJ(u) 

= g .  ad&,J(z) 

= ad&J($z). (C6) 
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Substituting this into (C4) and making use of the identity (ad:J, f ) = ( J ,  [#, VI), we 
can write, 
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~ ( u ,  U ) = ( J ( + Z ) ,  [ e ( u ) ,  g.  # ( u ) I + [ ~ .  t ( u ) ,  e(u) i+[s (u) ,  s(u)i). (C7) 

dJ(+*u) = g .  dJ(u)+ad%.,J(+z) (C8) 

ad%ul+rc~u l -c~+~  J ( + z )  = 0. (C9) 

If d J ( u )  is the variation of J along U, the variation along +,U is given by 

... L:̂ L ... L^^ -..-L:--A __.:.L , n c ,  ..:-*A. 
WIIICLL, WLIGII C"I,I"LLIS" W l l l l  ,L,,, y,c,ua 

We can use this identity to eliminate e ( u )  and @(U) from (C7) giving, after some 
manipulation, 

a(u,  u)=(J (+~) , [# (+*u) ,# (+*u) l - lg .  5 ( u ) , g .  5(u)l) .  (C10) 

~ ( u ,  u)=(J(+z), [#(+*U), 5 ( + * u ) l ) - ( C '  ' J ( + z ) ,  [5(u), 5 ( v ) l )  

= ( J ( + z ) ,  [ 5 ( + * u ) ,  E(+*u)I) - (J(z) ,  [#(U), #(u)1) 

With the identity [g . #, g. q]  = g .  [t, 171 [4], we can further reduce this to 

(C11) 
which is clearly related to the symplectic form o of (4.7), defined on a coadjoint orbit 
i" 'B*. Two VPCtDE !4 znd !! 2!ong x define, !hra"ph (a), a carrespending p2ir ef 
vectors along a coadjoint orbit in YP, to which we can apply the symplectic form o 
as follows, 

J*w(u, u ) = o ( d J ( u ) , d J ( u ) ) = ( J , [ 5 ( u ) ,  #(u)l). (C12) 

W+*u, + * u ) - J * o ( + * ~ ,  + * U ) = ~ ( U ,  v ) - J * o ( ~ ,  U) (C13) 

i.e., that + is symplectic with respect to the symplectic form f i = a I z - J * w  on X, as 
asserted. There is an important special case where fi reduces simply to Cl,  and that is 
when 2 is chosen to lie in a level set of J. In this case dJ (u )  = 0 and therefore J*w = 0. 
More generally, however, J * o  # 0 and one needs to use the full structure of fi in order 
that + be symplectic. 

Finaiiy, we note that the reduced surface of section considered here, and the 
symplectic structure defined by fi, are closely related to the so-called orbit reduction 
procedure of Marle [ IS]  and Kazhdan et nl [19]. In this procedure, one first restricts 
phase space dynamics to a level surface on which J is constrained to a coadjoint orbit 
and then identifies points related by a symmetry in G. The resulting quotientspace 
can he made into a symplectic manifold with a symplectic form similar to a. The 
reduced surface of section considered here projects to a regular surface of section in 
this reduced phase space. 

We therefore find from (C11) that 

Appendix D 

Throughout this paperi we have assumed that the action of the symmetry goup G on 
phase space is locally free. That is, we have assumed that the infinitesimal generators 

for the group action are linearly independent. We have also assumed that the 
Hamiltonian vector field X, is linearly independent of the ( { . ) p ' s .  This is not always 
the case in systems of physical interest. For example, the hydrogen atom has the 6~ 
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symmetry group S0(4), and the six infinitesimal generators for this symmetry cannot 
be linearly independent on the 5~ energy shell [ZO]. A similar argument applies to the 
n-dimensional isotropic harmonic oscillator, which has the n2-dimensional symmetry 
group U(n) [20]. 

In this appendix we will discuss how the results presented in the main text are to 
be modified for these systems. Stated in terms of the global group structure, the systems 
we want to consider are those for which the isotropy subgroup G, of  a typical point 
p in P is a coniinuous group. Gp consists of ihose eiemenis of G ihai ieave p LIACU. 

The linear dependence of the infinitesimal generators of G can be described by the 
fact that the infinitesimal generators of G, vanish at p. We will assume in this appendix 
that G, is m-dimensional. We will also assume initially that the Hamiltonian flow is 
independent of the symmetry. We find then that when the whole group acts on p ,  a 
(k - m)-dimensional manifold is swept out and that periodic orhit families correspond 
+.. I I  I L-...> , ~ . - ~ - ~ : . - - - t  _"-. r - 8 , ~  L -t.""- a D.A-A:.. ..A:+- :- f-.-:i.* 

, A  I ,. ~~, , -u . , . .~ . .~ .U , ,pA  ,,, ap'y-u. .b..VY.I ... .~,..,,, r x e  
parametrized by the (k-m)-dimensional space of left cosets 6 =  GIG,. Notice that 
G, is not necessarily a normal subgroup of G, in which case 6 cannot be made into 
a group. Notice also that the group G, varies over r according to Gg.p=gGpg-' ,  
however these isotropy subgroups are isomorphic to each other, and the differences 
between them just amount to a relabelling of points. 

G,, preserves p, it certainly preserves the momentum J of p. We find therefore that G, 
is a subgroup of G,, where GJ is the (k-21)-dimensional isotropy subgroup of 3 
under the coadjoint action of G on i$*. We also find then that gP is a subalgebra of 
SJ. We therefore have the following hierarchy of Lie-algebras within 3, 

(D1) 

We will use this hierarchy of Lie algebras to organize a basis for 9 as follows. We 
construct a basis {&,):=, for which the first m vectors span SP, and the first k-21 
vectors span %* We denote by g,, the subspace of gJ spanned by the vectors 6. with 
m < (I G k -21, and wepenote by e the subspace spanned by the vectors with m < a  G k 
The spaces gJ and S are isomorphic with the quotient spaces %,/9, and S/'Z$, 
respectively. As before, we let denote the space spanned by {calk - 2 1  < a  s k } .  We 
decompose the coordinates on 9 corresponding to this basis acco_rding to, B =  
(e,, 8,. BA), where 8, are coordinates on  3!, BK are coordinates on  3,. and BA are 
coordinates on 91A. We further denote 6= (OK, BA), which are coordinates on @. 

The coordinates 6 are to be interpreted as local coordinates on the coset space 6, 
As such they give a local parametrization of the periodic orbits in the family r near 
a reference orhit yoyo Denote the last k - m components of J collectively by .f Each 
of these components generates, as its Hamiltonian vector field, an infinitesimal gen- 
erator on phase space of one of the basis elements of g, so the 6 coordinates on r 
can be interpreted as evolution parameters for the Hamiltonips 2 One can now repeat 
the analysis leading up to (4.8), replacing B everywhere by 0, and J by J. The result is 

c...> 

W p  denote by !!$, thp m-dimensifina! gsba!g&ra of Ce that corresponds Gp: If 

q, s 9, G 9. 

The volume element d 6  can be interpreted as coming from a projection of the left 
invariant measure dpL(g)  of G onto the coset space G. 

The next step is to interpret this modified version of (4.8) in terms of reduced 
surface of section mappings. The first thing to notice is that the components of J are 
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not all functionally independent. In fact, the gradients of the first m components of 
J vanish at p because their Hamiltonian vector fields, which are infinitesimal generators 
for %?,,, vanish at p. (Notice that G,,, and therefore the coordinate system on %?* from 
which these components are taken, will vary with p . )  Therefore J represents just k - m 
independent conditions on phase space, and this implies that J maps all of phase 
space onto a (k -  m)-dimensional submanifold J ( P )  of the k-dimensional space %?*, 
at least locally. The tangent space to J (  P) at J ( p )  is specified by fixing the first m 

family of coadjoint orbits. In constructing the coordinates (E ,  8 )  described in section 
4, let us choose B to consist of k - m -21 coordinates C and m coordinates D, 
constructed in such a way that J (  P) is specified by the condition D = 0. In this way, 
the coordinates C label the coadjoint orbits within J ( P )  and the k-m coordinates 
(C, 8 )  are functionally independent on P. We will take the reduced surface of section 
to lie in a ( 2 n  - 1 - k +  m+Zl)-dimensional invariant level surface of ( H ,  C). We take 
for the surface of section X, any codimension 1 + k - m subspace of this level surface. 
Time evolution and symmetry operations then give 1 i k - m independent parameters 
with which to make trajectories intersect X. This leads to a surface of section map JI 
of n - 1 - k +  m + I degrees of freedom. 

As mentioned previously, the construction of the j coordinates depends on the 
subgroup GP. which in turn depends on p .  Therefore the j functions (as well as the 
6 coordinates) occumng in (D2) have to be redefined at each point on r as the integral 
is summed. For this reason, it is not possible to use the global coordinates (B, 8 )  in 
the same way that they are used in section 4, as, for example, in (4.10). Instead, we 
must switch straight away to local coordinates j = ( j , ,  JA), analogous to the coordin- 
ates J = (JK, JA) appearing in (4.13) and (4.14). The JA components are defined as in 
section 4, corresponding to the last 21 basis vectors {Ealk-21<a< k )  and conjugate 
to the 0, coordinates. The components JK are the last k - m - 21 components of JK, 
corresponding to the basis vectors {calm < a s  k -21)  and conjugate to the coordinates 

The coordinates jK are a local replacement for the global coordinates C. One can 
now repeat the rest of the calculations in section 4, with j=(jK, JAJ replacing 
J = (JK, JA) and e'= (e',, 0,) replacing B = (0,, OA). The result is the following 
analogue of (4.17), 
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components of r G !e.ves "'(P) inv.risnt, ro '(P) forms a [k-m-?!)-pa:am-ete: 

I .  

I 
T ~ P ~  e x p ( 7  S ( E )  -ivv/2) 

where Tapo is the normalization of dr d g  over r and Qa is still given by (4.13), 
corresponding to the change of coordinates BA+ JA on a coadjoint orbit. The group 
part of the generalized period of a generalized periodic orbit is unique only up to a 
left coset of,G,,, and these are parametrized sufficiently close to the identity by 
coordinates 0,. Finally, we note that for many systems in which the symmetry acts 
degenerately on phase space, the condition k - m > n holds and a generalization of 
the calculation of appendix A is more appropriate. The final results are the same 
however, so we will not discuss this situation further. 

I n  deriving (D3) we assumed that the Hamiltonian flow vector X, was linearly 
independent of the infinitesimal generators for the action of G on P. Once again, this 
condition is not always satisfied for physical systems, and in fact the examples of the 
hydrogen atom and the isotropic harmonic oscillator mentioned at the beginning of 
this appendix provide exceptions to this condition. I t  is therefore important to further 
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modify (D3) to take these exceptions into account. When X, can be expressed as a 
linear combination of infinitesimal generators for G, it means that the net effect of a 
time evolution on an individual point is the same as the action of some element of G 
on  that point. Therefore, when we let time evolution and group symmetries act on a 
point, the result is a (k-  m)-dimensional rather than a ( 1  + k-m)-dimensional sub- 
space of P. In particular, a periodic orbit manifold 1' is (k - m)-dimensional and the 
time coordinate t is not independent of the 6 coordinates on 1' described above. 

A convenient way to deal with this situation is to treat time evolution and the group 
symmetry simultaneously in a group =R x G. An element (t, g) in G acts t n  a point 
p-in P according to p +  +,g. p. We will assume that the isotropy subgroup G,, of p in 
G is (m + 1)-dimensional and that G,, = G, n G is m-dimensional. We can write the 
Lie algebra for 6 in the form @ = R +  9, and likewise the dual space to the Lie algebra 
is of the form @* = R +  9*. 

Corresponding to the action o i  the whoie group 6 on P, there is a momentum map 
I taking P into covectors in g*. The momentum takes the form I = (H, J ) .  Because 
bp is ( m +  1)-dimensional, I takes phase space into a subspace I ( P )  of 9* that is of 
dimension 1 + k - (m + 1) = k - m. This follows from the same sort of reasoning as 
before. The Hamiltonian vector fields generated by the m + 1 components of I that 
correspond to the (m + 1)-dimensional space V,, vanish at p. and therefore the gradients 
of i h e  coiiipoiieiits vanish iheie also. This means i k t ,  in a kieaiized seas ,  theie 
are only 1 + k - (1  + m )  independent components of I at p. and therefore that the 
tangent space to P at p is mapped into a (k - m)-dimensional plane in 9*. This implies 
that, locally, I ( P )  is a (k-m)-dimensional surface in 9*. There are interesting 
consequences of this for the values of J that can be taken on at a given energy. The 
intersection of I ( P )  with the plane H = E in 3* will be (k - m ~ 1)-dimensional, and 

submanifold of 9*. On the other hand, J maps the whole space P into a ( k -  
m)-dimensional surface. This is in contrast to the case considered earlier in which the 
Hamiltonian flow of H is independent of the symmetry, where we found that not only 
P, but also each energy shell, is mapped onto a (k-m)-dimensional surface. 

We will employ a basis for @ that combines simultaneous displacements in time 
and along the group G. We choose the first ( m + l )  vectors to be a basis for and 
we denote coordinates relative to this basis by 6,. We choose the next k -21 - m vectors 
in such a way that, along with the first m + 1 vectors, they spa? the Lie algebra of 
the isotropyAsubgroup of I under the coadjoint action of C on 9*. It is straightforward 
to see that gI is of the form GI = R +  YJ. In  particular we can choose the time direction 
as one of the vectors and we can choose the remaining k-21- m- 1 vectors to lie in 
9. We denote the k - 21 - m coordinates corresponding to these basis vectors by (I, &). 
Finally, we choose the remaining 21 vectors of the &basis to lie in Y and denote the 
corresponding coordinates by BA.  We denote the subspaces of 9 corresponding to the 
6, and BA coordinates by 3, and 9,, respectively. We denote the corresponding 
components of J by J = (J , ,  J,,). 

The coordinates (t, 6) = ( 1 ,  #,, e,,) provide a local coordinate system on a periodic 
orbit manifold r, and correspond to evolution parameters forthe Hamiltonians (H, f) = 
(ff, j , ,  J,).  We can now repeat the calculations described earlier for the case that X,, 
is independent of the symmetries. The only difference is that (f, g) = (I, 6,. 13,) and 
(H,~)=(H,~,,J,,)shouldbereplacedby(t,6)=(r,8,,BA)and(H,~)=(H,~,,~,) 
respectively. For example one arrives at the intermediate result (DZ), except with the 
tildes replaced by overlines. Likewise, the final result is the same as (D3) with overlines 

therefcre J r In  energy -..-- !eye! ~ ~ r f a c p  in p ifit. I (k-m-!!.dimefisioni! 
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replacing tildes. However, to interpret this final result a brief discussion of reduced 
surfaces of section is necessary. 

Recall that J maps a given energy shell N = E  into a (k-m-1)-dimensional 
surface in 8*. Let us construct coordinates B = (C, D )  as before, except that this time 
setting the m + 1 coordinates D = 0 specifies J({H = E}) rather than J (P) .  The remain- 
ing k-21-m-1 coordinates C then label the coadjoint orbits within J ({H = E}). A 
surface of section L will be a codimension k - m subspace of a (2n - k +  m +Z)- 
dimensional level surface of (H, C).  Trajectories are brought back to L by adjusting 
the k - m independent parameters (t, 8). This defines a surface of section map $ of 
n - k + 1 + m degrees of freedom. In computing the trace formula in terms of these 
surfaces of section, we can replace the C coordinates locally by &. In particutar, 
generalized periodic orbit families of a given energy can be parametrized locally by 
&, which leads to a term a&/& in the trace formula. Also, the 21 components of 
JA still provide a convenient local parametrization of points on an individual coadjoint 
orbit, leading to a Jacobian Q,, = aOA/aJA relating these coordinates to the coordinates 
BA defined through ad2,J. 

The resulting trace formula has exactly the same form as (D3), except that tildes 
are replaced by overlines. Also, of course, the prefactor (2nih)- iX-""2 IS ' replaced by 
(2.nih)-ik-"-'"2. In light of the preceding discussion, the individual terms can now 
be interpreted easily. 

S C Creagh and R G Littlejohn 

Appendix E 

An arbitrary group action on phase space will not necessarily satisfy the equivariance 
conditions of (3.1) and (4.6), or the condition {Jo, Jb} = 0  for Abelian symmetries. In 
this appendix we outline how the calculations presented in the main text of this paper 
must be modified for this more general case. 

It can be shown [4] that any action of a group on phase space is of the following 
form, 

(El )  J ( g  . Z) = Ad:-nJ(Z) + u(g)  

where u(g),  a vector in 8*, is independent of z and satisfies the so-called cocycle 
identity, 

u(gh) = u(g)+Ad:%u(h). (E2) 

The right-hand side of (E l )  defines an action of G on 8*, which we will refer to as 
the dynamical action and which we denote by g .  J. Note that this notation is different 

infinitesimal version of u(g)  according to, 
from !hi?! of scctio!? 4, %here 0"' J s!i?nds fer !he m.djoi"t .die!!. we define 8" 

(E3) 

which is linear in 5. 
Like a coadjoint orbit, the orbit G .  J ofa  momentum J under the dynamical action 

is a symplectic manifold. To see this we note that any vector tangent to G ' J at J is 
of the form, 

A( 5) = adTJ + ut (E4) 
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for some 5 in 9. We define the symplectic form 6 on G .  J according to, 

G ( A ( O , A ( ? ) ) = ( J ,  [5,71). (E9 
This is obviously antisymmetric and is easily seen to be well defined and non-degenerate. 
This symplectic structure forces G .  J to be even-dimensional and as before we denote 
this dimension by 21. For fixed J, C+ A(5)  provides a linear mapping from F? onto the 
tangent space of G .  J at J. We denote the (k -21)-dimensional kernel of this mapping 
by gJ and let gA be a 21-dimensional space transverse to SP Choosing a basis for 9 
that is aligned with these spaces we can decompose the coordinates of a vector in 9 
into 0 = (8K, OA), analogous to the construction of section 4. 

One can now repeat the analysis of section 4 with this structure in mind, resulting 
in a trace formula that looks exactly like (4.18) or (51). The only difference is that 
the symbols are interpreted slightly differently, in line with the preceding discussion. 
In particular one chooses coordinates (8, p )  that are constructed around dynamical 
orbits rather than coadjoint orbits. The Jacobian Qo is computed for coordinates p 
that coincide locally with coordinates 8, on the tangent space of G .  J that are defined 
by the map A of (E4). ( A  carries isomorphically into the tangent space of G .  J.) 
The reduced surfaces of section correspond to a single dynamical orbit and are 
symplectic with respect to CLlz-J*G, Finally, OK is the group part of the generalized 
period, defined relative to the basis considered in this appendix. 
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