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Rayleigh-Be'nard convection in the presence of a plane Couette flow is investigated 
by numerical computations. From earlier work it is well known that longitudinal 
rolls are preferred a t  the onset of convection and that at Prandtl numbers of the 
order unity or less these rolls become unstable with respect to the wavy instability 
which introduces wavy distortions perpendicular to the axis of the rolls. In the 
present analysis the three-dimensional flows arising from these distortions are 
studied and their stability is considered. A main result is the subcritical existence of 
three-dimensional flows at Rayleigh numbers far below the critical value for onset of 
convection. 

1. Introduction 
Thermal convection in a fluid layer heated from below and subjected to a mean 

shear represents a basic problem of geophysical fluid dynamics. Because of its 
obvious importance for the dynamics of the atmosphere this problem has long been 
investigated by theoretical meteorologists (Asai 1970 ; Kuettner 1971) and others. 
From the early work of Gallagher & Mercer (1965) it is known that rolls aligned with 
the direction of the shear represent the preferred mode for the onset of small- 
amplitude convection. Unlike convection in the presence of Poiseuille flow, in which 
case transverse rolls may be preferred for sufficient high Reynolds numbers, the 
preference of longitudinal rolls in plane Couette flow is independent of the Reynolds 
number because of the stability of isothermal plane Couette flow with respect to 
infinitesimal disturbances. This situation is changed when finite-amplitude dis- 
turbances are considered. As is well known for the isothermal case, and as will 
become apparent for the stratified case of plane Couette flow from the analysis of the 
present paper, there is a considerable region of the parameter space where subcritical 
onset of finite-amplitude instabilities occurs. 

The original motivation of the present work arose from the work of Clever, Busse 
& Kelly (1977, referred to in the following as CBK) on the instabilities of longitudinal 
rolls in plane Couette flow. It is apparent from that work that even a t  relatively small 
super critical Rayleigh numbers and small Reynolds numbers the longitudinal roll 
solution is unstable with respect to the wavy instability which tends to bend the rolls 
in a periodic fashion along their axis. The primary goal of the following analysis is 
the study of the steady three-dimensional convection flows arising from the wavy 
instability. 

The subject of convection in the presence of shear has been treated extensively in 
the literature and a comprehensive discussion of numerical computations and their 
relationships to experimental studies can be found in the recent paper by Domaradzki 
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& Metcalfe (1988). Computations of three-dimensional convection in the presence of 
a constant shear have usually been restricted to the Prandtl number of air and have 
been carried out at Rayleigh numbers in excess of lo4, where convection is time 
dependent. In this paper we focus on lower Rayleigh numbers, for which steady 
three-dimensional flows can be obtained which do not seem to have been studied in 
previous work. We also investigate the stability of the steady solutions and consider 
the dependence of the problem on the Prandtl number. 

The paper starts with the mathematical formulation of the problem in $2 and 
briefly discusses the wavy instability of two-dimensional longitudinal rolls in $ 3. 
Results for three-dimensional wavy rolls evolving from the wavy instability are 
presented in $4 for several Prandtl numbers. Because of the subcritical nature of the 
three-dimensional solutions in a wide range of the parameter space it becomes 
possible to obtain them even a t  vanishing or negative values of the Rayleigh number 
as will be shown in $5. A limited stability analysis is described in $6 and in special 
cases the time-periodic solution evolving from the instability is analysed. The paper 
closes with some concluding remarks in $ 7 .  

2. Mathematical description of the problem 
We consider a horizontal fluid layer between two horizontal rigid plates separated 

by a constant distance d and moving in opposite directions. Constant temperatures 
and T, (T, > T,) are prescribed at  the upper and lower boundary. Using d as 

lengthscale, d 2 / K  as timescale where K is the thermal diffusivity, and (T, - T,)Ra-l as 
scale for the temperature we write the Navier-Stokes equations in the Boussinesq 
approximation for the velocity vector u and the heat equation for the deviation 9. 
from the temperature distribution of pure conduction in dimensionless form : 

V2U+k9-Vn = P-' u V U + - U  , (2 . la)  

(2.1 b )  v-u = 0 ,  

(2 . lc )  V 2 8 + R a k . u  = u.V9+-9 ,  

where k is the unit vector in the vertical direction and the Rayleigh and Prandtl 

, P = - .  (2.2) 
numbers are defined by 

( .  i t )  

a 
at 

V 

KV K 

YdT2 - T,) d3 Ra = 

The solution of pure conduction is compatible with the solution of plane Couette flow 

(2.3) 
of equations @.la ,  b ) ,  u, = RePziE U,i 

where Re is the Reynolds number based on the relative velocity of the rigid plates. 
As indicated in figure 1 ,  we are assuming a Cartesian system of coordinates with 

the z-coordinate in the vertical direction, the x-coordinate in the direction of the 
applied shear, and the origin on the midplane of the layer. For more general solutions 
of (2.1) we introduce the representation 

u =  U , i + U ~ ) i + U ~ Y ) J . + V x ( V x k q 5 ) + V x k $ =  U+@+E$ with u =  U, 
(2.4) 

where the bar indicates the average over the (2, y)-plane. The component dq5 of the 
velocity field is sometimes called the poloidal part while E@ is referred to as the 
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FIGURE 1.  Sketch of wavy longitudinal convection rolls in a layer heated from below 
in the presence of plane Couette flow. 

toroidal part of the velocity field. By operating with 6 and E onto equation (2.1 c )  we 
obtain equations for q5 and $: 

V2A2 $ = P-'(E- [ (64 + E $ )  - V(Sq5 + E $ ) ]  + ( U- V + a,) A2 $ - a, U. &A2 q5}, (2.5 b)  
V 2 9 - R a  A2 q5 = (64 + E $ )  -V8+ ( U - V +  a,) 9. ( 2 . 5 ~ )  

We have also rewritten equation ( 2 . 1 ~ )  in the form ( 2 . 5 ~ ) .  In  addition equations for 
the components U p , g )  of the mean field U(z, t )  are needed, 

(aZZ-p-1a,) up) = -az(~2q5(a;zq5+a,$)) P-1, (2.5d) 
(a;z-~-la,) uy = -a~(A29(a~zq5-a,$))P-l ,  ( 2 . 5 e )  

where the bar indicates the horizontal average and the symbol A2 stands for V2 - 
The boundary conditions for the variables q5, $, 9 and Up,,) are given by 

$ = a q 5 = $ = $ = u p ) = U c u ) = o  1 at z = + &  (2.6) 

x-independent solutions of (2.5) in the form of steady longitudinal rolls and their 
instabilities have been investigated in CBK. Here attention will be focused on the 
three-dimensional forms of convection that originate from the wavy instability of the 
longitudinal rolls. Since the imaginary part of the growth rate of the wavy instability 
vanishes, we look for steady solutions. We use the Galerkin method for the numerical 
solution of (2.5) and introduce expansions in complete systems of functions for the 
variables 9, $, 9 and U r )  : 

cos ha, x 
g,(z) ;[( ( - l)A + 1) cospa, y + (( - l)A - 1) sin pa, y], (2.7 a )  

= vaApu {sin ha, x} 

cos ha, x 
sin m(z + t )  &I( ( - + 1) cospa, y + (( - - 1)  sin pa, y], * = 

b,, { sin ha, x} 
( 2 . 7 ~ )  
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(2.7d) 

where the summation runs through positive integers u and non-negative integers p 
and A. The functions g,(z) satisfying the boundary conditions for 4 were originally 
introduced by Chandrasekhar (1961, p. 635) and their definitions can also be found 
in previous work by the present authors (Clever & Busse 1975, 1977). We have 
incorporated in representation (2.7) the symmetry in the y-direction which is 
preserved in the interaction of the wavy instability with the longitudinal rolls. 
Another symmetry of the problem is expressed in the prescription that the upper 
functions in the curly bracket apply in the case of even p + u, while the lower functions 
must be chosen for odd p+u. This symmetry is an extension of the symmetry of 
longitudinal rolls corresponding to the special case A = 0 with non-vanishing 
coefficients for even p + u only. The x-dependence introduced by the wavy instability 
requires that sin ha, x and cos ha, x terms have opposite symmetry in the z-direction. 
An inspection of the nonlinear terms in (2.1) shows that the above-mentioned 
symmetries are indeed preserved. It can also be seen from representation (2.7) that  
average over x and y of the products A2 @ a2@/ay az and A, 4 a+/ax vanishes. There 
are thus no Reynolds stresses which could generate a mean flow in the y-direction. 

After introducing the representations (2.7) into (2.5), multiplying them by the 
respective expansion functions and averaging them over the fluid layer, we obtain a 
system of nonlinear algebraic equations for the coefficients ah/,,, cAr,,, bAp,,, UlV. I n  order 
to solve this system by a Newton-Raphson iteration method, we must introduce a 
truncation procedure. The condition that all coefficients and corresponding equations 
with subscripts satisfying the inequality 

are dropped from the analysis appears to provide a computationally effective 
truncation. A numerically obtained solution is regarded a reasonable approximation 
for the exact solution of the infinite system if sensitive properties such as the 
convective heat transport do not change by more than a few percent when NT is 
replaced by NT-2. Unless indicated otherwise, NT = 10 has been used for the results 
presented in the following sections. 

The Galerkin method offers the advantage of a relatively easy way in which the 
stability of stationary solutions can be ttated. Infinitesimal three-dimensional 
disturbances can be superimposed onto a steady solution of the form (2.7), an 
exponential time dependence of the disturbances can be assumed without loss of 
generality, and the growth rate can be computed as the eigenvalue of a stability 
matrix (Busse 1967). The stability analysis becomes particularly simple when the 
disturbances have the same periodicity in the horizontal dimensions as the steady 
solution. Since most instabilities seem to belong to this category and since 
computations for more general disturbances require computer resources beyond 
those needed for the computations of the steady solutions, we shall restrict attention 
to disturbances with the same basic wavenumbers a,, ay as those characterizing the 
steady solution. Accordingly the disturbances can be represented in the form 

(2.9a) 
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+ (( - l)Af 1) sinpa, y ]  exp (nt), (2.9b) 
cos ha, x 

+((-l)AT1)sinpa,y]exp(nt), ( 2 . 9 ~ )  

(2 .9d)  

Because of the symmetry of the steady solution (2 .7) ,  the disturbances of the form 
(2.9) can be separated into four classes depending on whether the choice of the upper 
and lower functions in the curly brackets is the same as or opposite to the choice for 
the steady solution (2.7) and depending on whether the upper or lower sign is chosen 
in expressions (2 .9a-c) .  The notation used for the mean flow disturbance indicates 
that either an x- or a y-component may be generated by the interaction of 
disturbances of one of the four classes with the steady solution (2 .7) .  In particular, 
a y-component oju) instead of an x-component oy) will be generated when the lower 
sign is chosen. The profiles of these mean flows will be antisymmetric or symmetric 
with respect to the plane z = 0 depending on whether the choice of the functions in 
the curly brackets is the same or opposite to that for the steady solution (2 .7) .  

3. The wave instability of longitudinal rolls 
Before discussing the three-dimensional wavy rolls arising from the wavy 

instability of two-dimensional longitudinal rolls, we would like to present some 
further information on this instability beyond that given by CBK. As in the case of 
the zigzag and the skewed varicose instabilities of convection rolls (see, for example, 
reviews by Busse 1978, 1981) the wavy instability sets in at the stability boundary 
with vanishing wavenumber a, along the axis of the rolls. As soon as the Rayleigh 
number Ra,, of the stability boundary is exceeded, however, the wavy disturbances 
of maximum growth correspond to finite values of a, as shown in figure 2. Because 
of this property there will be an entire range of experimentally realizable values of 
01,. The value a, seen in an experiment may depend, for instance, on the rate at  which 
the Rayleigh number has been increased. In the computations of finite-amplitude 
wavy rolls we have thus chosen several values in the range 0 < a, < 2 which appears 
to be the most interesting one from an experimental point of view. 

Only the stability boundary of longitudinal rolls in the case of air (P = 0.7)  has 
been given by CBK. Here we add the results of computations for P = 2.5 as shown 
in figure 3. While the shape of the stability boundary is rather similar to the case 
P = 0.71 in that Ra,, shows little variation with the Reynolds number beyond a value 
of about 100, the minimum value Ra,, -Rae is increased by a factor of the order 30. 
In this as well as in other respects longitudinal rolls with Couette flow resemble those 
with Poiseuille flow as has been noted in a recent study of the latter case (Clever & 
Busse 1991). A t  higher Prandtl numbers the boundary for the onset of the wavy 
instability moves up to higher Rayleigh numbers such that it will be preceded by 
other instabilities, e.g. the knot instability. Detailed studies of these cases have not 
yet been done. 
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FIGURE 3. The stability boundary of longitudinal rolls in the (Re, Ra)-plane with respect to the 
onset of the wavy instability for P = 2.5, u, = 3.117. 

4. Properties of finite-amplitude wavy rolls 
While the convective heat transport and the fields @ and 9 are independent of the 

Reynolds number for longitudinal rolls, they become strongly dependent on Re after 
the transition to wavy rolls has occurred. The shearing action of the Couette flow on 
the three-dimensional convection results in a dramatic decrease in the efficiency of 
heat and momentum transport by convection for Prandtl numbers around 2.5 as 
shown in figure 4(a) .  The shear Nusselt number S displayed in the figure is defined 
as the ratio between the momentum transport with and without convection, 

where the angular brackets indicate the average over the fluid layer. For longitudinal 
rolls vanishes and $ is proportional to Re has been shown in CBK. The shear 
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FIGURE 4. (a) Heat transport (-) and shear (. . . . . .) Nusselt numbers, N and S, as function of the 
Rayleigh number. Also shown is the mean flow energy, Em, (--..--.a), corresponding to the right 
ordinate. The curves for the wavy rolls with a, = 0.6 bifurcate from the corresponding curves for 
two-dimensional longitudinal rolls. All curves have been computed for P = 2.5, ay = 3.1 17, 
Re = 400. (b) The kinetic energies of the poloidal (-) and toroidal (......) components of the 
fluctuating velocity field have been plotted for the same case as ( a ) .  The arrows indicate limiting 
values for Ra = Ra,. 

Nusselt number is thus independent of the Reynolds number. The heat transport 
Nusselt number N obeys its usual definition 

Also shown in figure 4(a )  is the kinetic energy of the mean flow, 

which decreases with increasing Rayleigh number, because convection converts 
mean flow energy into energy of the spatially fluctuating motion. This decrease is 
weakened by the onset of the wavy rolls with their less efficient transport properties. 
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FIGURE 5. The heat transport Nusselt number N as a function of the Rayleigh number for two- 
dimensional rolls with P = 0.71 (-) and P = 0.3 (-.-.- ) and for wavy rolls with P = 0.71, 
Re = 200, a, = 1.3 (---); P = 0.71, Re = 400, a, = 0.9 (......) and a, = 1.5 (---.---); P = 0.71, 
Re = 700, a, = 2.0 (--.--); and P = 0.3, Re = 200, a, = 1.2 (--..--..). In all cases av = 3.117 has 
been used. 

The post-bifurcation decrease of the Nusselt number is associated with a decrease of 
the amplitude of convection as measured by the kinetic energy of the poloidal 
component of motion, 

The toroidal component of motion does not contribute to the heat transport, but it 
is strongly involved in the momentum transport according to relationship ( 2 . 5 d ) .  
The toroidal kinetic energy 

is plotted together with Epol in figure 4 ( b ) .  
The transition to  three-dimensional wavy rolls becomes more complicated as the 

Prandtl number is lowered. As shown in figures 5 and 6 some of the curves for three- 
dimensional convection are not connected with those for two-dimensional convection 
because subcritical bifurcations typically occur a t  higher values of the Reynolds 
number. With the numerical method used in the present analysis it has not been 
possible to compute the unstable branch connected with the bifurcation points on the 
curves for longitudinal rolls. For low Reynolds numbers, such as the case Re = 200, 
a, = 1.3, P = 0.71 of figures 5 and 6 the bifurcation still occurs supercritically. But 
for large Reynolds numbers and wavenumbers the subcritical character of the 
bifurcation becomes increasingly noticeable. In the case of the highest Reynolds 
number, Re = 700, shown in figures 5 and 6 (a) the Nusselt numbers N and S become 
almost independent of the Rayleigh number indicating a shear-driven mechanism for 
the generation of three-dimensional motion. This phenomenon will be discussed in 
more detail in the following section. 

Figure 7 gives an impression of the Aow field of the wavy rolls. Since a solution 
removed from the point of bifurcation has been selected, the velocity field differs 
significantly from the simple sinusoidal distortion of the longitudinal rolls at the 
onset of instability. It is interesting to notc that the distortion of the lines of constant 
vertical velocity becomes quite small in the midplane of the layer compared to the 
regions above and below. Only the isotherms continue to exhibit strong distortions 
even in the midplane as the Reynolds number is increased. The vertical velocity in 

Epol = a ( l V x ( V x k q 5 ) 1 * ) .  (4.4) 

Etor = K l V  x k ? w  (4.5) 
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FIQURE 6. (a) Shear Nusselt number S (left ordinate, ascending curves) and kinetic energy of the 
mean flow (right ordinate, descending curves) as function of the Rayleigh number. The cases of 
two-dimensional longitudinal rolls for Re = 200 (-) with bifurcating wavy rolls with a, = 1.3 
(---) and the same case for Re = 400 with a, = 1.5 (--..--.., -.-.- ) and for Re = 700 with a, = 

of Re. (b) The kinetic energies of the poloidal (-) and toroidal (--.--.-, -...-... ) components 
of the fluctuating velocity field in the case of two-dimensional longitudinal rolls with Re = 200 and 

and Re = 400, a, = 1.5 (......, E,,; -....- , E,,J. P = 0.71, ay = 3.117 are used in all cases. 

2.0 (--.--. , ...... ) are shown. P = 0.71, ay = 3.117 are used in all cases. Note that S is independent 

Re = 400. Also shown are the cases of wavy rolls with Re = 200, a, = 1.3 (----, E,,; -..--. 7 E m )  

the midplane is thus not representative of the velocity field and more interesting 
information can be obtained from isolines in planes closer to boundaries such as 
z = k0.3. 

The decrease of the kinetic energy of the mean flow with increasing Rayleigh 
number is reflected in the change of the profile of the mean flow shown in figure 8. 
It is apparent that two-dimensional longitudinal rolls exert a stronger influence on 
the mean shear than three-dimensional wavy rolls at  the same Rayleigh number. 
This property is especially evident from a comparison of the two profiles for Ra = 
2500. 
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X 

FIGURE 7.  Lines of constant vertical velocity in the plane (a) z = 0.3, ( b )  z = 0 and (c) z = -0.3; and 
( d )  isotherms and (e) streamlines $ = const. in the plane z = 0. The isotherms in the planes 
( f )  x = 0 and (9)  x = x/2a,  are shown also. All plots correspond to the case Ra = 3000, Re = 400, 
P = 0.71, a, = 1.5, ay = 3.117. Broken lines indicate negative values, solid lines positive values 
except for the line adjacent to the broken lines which indicates zero. 

5. Finite-amplitude solutions of vanishing or negative Rayleigh numbers 
The question of secondary solutions in the case of plane Couette flow of a 

homogeneous fluid has long fascinated fluid dynamicists. It has become evident 
through the work of many researchers that there does not exist a finite Reynolds 
number a t  which a secondary solution bifurcates from the basic solution of constant 
shear. Turbulent motions have been observed in experiments at Reynolds numbers 
as low as Re = 1000 (Reichardt 1959) and time-dependent solutions for the problem 
have been obtained numerically by Orszag & Patera (1983). Recently Nagata (1990) 
has obtained numerically steady three-dimensional solutions for the plane Couette 
flow problem. He has considered the problem of plane Couette flow in a rotating 
system for which secondary solutions describing Taylor vortices and more complex 
flows can easily be obtained. By changing the rotation parameter to zero Nagata was 
able to reach the case of plane Couette flow. 

In  the present problem we follow a similar procedure. By extending the subcritical 
solutions found in the case of air (P = 0.71) to  low Rayleigh numbers we find three- 
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FIGURE 8. Mean flow profiles normalized with the Reynolds number. They are shown for z > 0 only 
because of their antisymmetry with respect to z = 0. Re = 400, P = 0.71 and ay = 3.1 17 have been 
assumed in all cases: --.--. (Ra = 1800), ---.---. (Ra = 2000) and ----.----. (Ra = 2500) 
correspond to longitudinal rolls; -..--.., (Ra = 2500), -...-... (Ra = 4000) and -....-.... 
(Ra = 5000) correspond to wavy rolls with a, = 0.9. 
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FIGURE 9. Heat transport Nusselt number N (-), shear Nusselt number S (---) and kinetic 
energies ofthe mean flow, Em, (......), ofthe poloidal component, E,,, (-.--- ), and of the toroidal 
component, E,,, (--..--..), as functions of the Rayleigh number for Re = 700, P = 0.71, a, = 2.0 
and ay = 3.117. N, = 12 has been used for these computations. 

dimensional wavy roll solutions of the same kind as those of Nagata (1990). In figure 
9 the smooth dependence of the properties of wavy rolls is evident as the Rayleigh 
number is decreased to negative values for a sufficiently high prescribed Reynolds 
number. The solutions appear to be well converged if a sufficiently high truncation 
parameter has been chosen. NT = 12 has been used for the solutions plotted in figure 
9. Only towards the low-Rayleigh-number limit of their existence does a sensitive 
dependence on NT becomes noticeable. In the case of figure 9 this limit lies somewhat 
below - 3000. Of particular interest are properties of solutions in the isothermal case 
shown in figure 10 for two different Reynolds numbers. As is evident from the plots, 
the flow does not differ significantly from the flow in the unstably stratified case of 
figure 7 except that more small-scale structure becomes noticeable, especially in the 
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FIGURE 10. Lines of constant vertical velocity in the planes (a )  z = 0 and ( b )  2 = -0.3, and (c) lines 
of constant @(z, y) in the plane z = 0. All plots correspond to Ra = 0, a, = 1.5, a, = 2.5. Left and 
right plots respectively correspond to Re = 590 and Re = 1000. N,  = 16 has been used for the 
computations. 

3.0 I . I i 1500 

500 1000 

Re 

I 500 

FIQURE 11. Shear Nusselt number S (-) and kinetic energies of the mean flow, Em, (----), and 

functions of the Reynolds number for P = 0.71, Ra = 1, a, = 1.5 and ay = 3.117. Thick lines have 
been computed with N,  = 16, thin lines correspond to NT = 14. 

of the poloidal and the toroidal components of the velocity field, E,,, (......) and E,,J--- .-  1, as 
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FIGURE 12. Mean flow profiles normalized with the Reynolds number in the case of wavy rolls with 
Re = 590, 1O00, 1400 (from bottom to top). P = 0.71, Ra = 0, a, = 1.5, ay = 2.5 have been used in 
the computations. 

high-Reynolds-number case. The variation of the averaged properties with the 
Reynolds number is shown in figure 11.  For numerical reasons Ra = 1 has been 
chosen in this figure instead of Ra = 0, but this small difference has a negligible 
influence on the solutions. Since the numerical accuracy of the Galerkin scheme 
deteriorates towards high Reynolds number, we have used NT = 16 for the 
computations and show results obtained with NT = 14 for comparison. 

Finally some mean flow profiles are shown in figure 12 for this Reynolds-number 
range. The deviations of these profiles from the linear profile (2.3) of the basic state 
are more pronounced than in the cases shown in figure 8. The slope of the profile a t  
the midplane of the layer even reverses except in the case of the lowest Reynolds 
number. I n  this respect the profiles resemble that of the mean temperature for two- 
dimensional convection rolls in Rayleigh-Be'nard convection (see, for example, Busse 
1978). 

6. Instabilities of wavy convection rolls 
In addition to the solutions with large values of a, discussed in the two preceding 

sections a large number of wavy roll solutions with lower values of a, have been 
computed. They have not been considered in this paper since they usually were found 
to be unstable even close t o  their onset in the case of supercritical bifurcation. Even 
the solutions that have been discussed in the preceding section have been found to  
be unstable to a large extent. For example for P = 2.5 wavy roll solutions were 
obtained for a, = 0.2, 0.4 and 0.6. But all solutions are unstable with respect to 
growing disturbances that differ in symmetry from the steady wavy roll solution. 
The imaginary part of the growth rate corresponds roughly to &&,Re which 
indicates that the disturbances tend to have their maximum amplitude close to one 
of the boundaries and are advected by the mean flow. There is a tendency towards 
stability with increasing a,, but for P = 2.5 we have not succeeded in obtaining a 
converged solution for values of a, significantly larger than 0.6. 

The most important instability of steady wavy rolls at lower Prandtl numbers 
assumes the form of disturbances with the same spatial symmetry as that of 
expressions (2.7). This feature is surprising since instabilities usually tend to break 
a spatial symmetry of the steady flow. In the present case the symmetry in time is 
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FIGURE 13. Nusselt numberN (-), shear Kusselt number S (---), kinetic energies of the poloidal 
(...... ), toroidal (-.-.- ) and mean (--.--..- ) components of the velocity field for the 
vacillating wavy roll solution as a function of time t .  Ra = 3000, P = 0.71, a, = 1.5, ay = 3.1 17 and 
NT = 8 have been used in the computations. 

broken in that the growth rate exhibits a finite imaginary part. Since similar 
instabilities are known from rotating systems - we refer to the amplitude vacillations 
in the rotating annulus experiment (Pfeffer & Chiang 1967) and to vacillations of 
centrifugally induced convection (Or & Busse 1987) -we shall call this instability the 
vacillation instability. The imaginary part vi is usually small compared to a, Re and 
does not scale with this latter parameter. Nor does there seem to  exist a clear 
relationship with Ra. The order of magnitude of the oscillation period corresponds 
roughly to the circulation time of the rolls and the vacillations thus appear to be 
similar to the oscillations found by Domaradzki & Metcalfe (1988) at a similar 
Reynolds number, but with a 10 times higher Rayleigh number. In  the case of air 
with Re = 700 this instability occurs throughout the entire branch of the wavy roll 
solution and all solutions obtained for Ra z 0 are also unstable. I n  this latter case vi 
increases from about 10 a t  Re = 580 to about 30 at  Re = 800 in the case a, = 1.5, 
ay = 2.5. 

For air with Re = 400 the vacillation instability occurs for Ra-Ra, 2 570 when 
a, = 1.5 and for Ra-Ra, 2 390 when a, = 0.9. But in the latter case i t  is preceded by 
an instability which exhibits symmetries opposite to that of the steady solution in 
both respects as discussed in connection with (2.9). In  the case of Re = 200 with 
a, = 1.3 the vacillation instability sets in a t  Ra-Ra, = 1400. Only in the case of 
P = 0.3, a, = 1.2 no instability was found throughout the range for which the wavy 
roll solution has been computed. 

The property that the vacillation instability does not change the spatial symmetry 
of the wavy roll solutions permits a relatively straightforward computation of the 
evolution in time of the flow. Assuming time-dependent instead of constant 
coefficients in the representation (2.7) we use a semi-implicit Crank-Nicholson 
scheme for the forward integration in time. After a few periods of approximate length 
27c/vi the flow settles into a limit cyclc as shown for Ra = 3000 in figure 13. The 
vacillation occurs between a nearly two-dimensional state of longitudinal rolls with 
efficient transports as indicated by the high values of S and N and a three- 
dimensional state of strongly distorted rolls in which kinetic energy of the toroidal 
component of flow is converted into kinetic energy of the poloidal component. The 
sequence of pictures shown in figure 14 demonstrates this striking change. The latter 
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FIQURE 14. Lines of constant vertical velocity at (a) z = -0.3 and a t  (b) z = 0 and (c) 
constant temperature at  z = 0 are shown at equal time steps from t = 0.1575 (top row) t o t  = 
(bottom row) for the solution plotted in figure 13. This time interval corresponds approx 
to a half-cycle of the vacillation. Solid (broken) lines indicate positive (negative) values ex 
the solid line adjacent to the broken lines which indicates zero. 

lines of 
= 0.4275 
imately 
cept for 
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state resembles the state of three-dimensional wavy rolls shown in figure 7 except 
that the distortions appear to  be amplified. It can also be seen that the period 
exhibited by the mean properties in figure 13 corresponds to the half-period of the 
limit cycle since the process of three-dimensional distortion shifts back and forth by 
half a wavelength in the x-direction in each period. 

The evolution of the vacillation instability for Ra z 0 has also been studied. I n  
these cases, however, a limit cycle does not seem to exist and the solution approaches 
the solution of pure Couette flow, q4 z 9 z 9 = 0, asymptotically. From our 
preliminary study of time-dependent states it thus appears that a stable simple 
secondary solution does not exist in the homogeneous case Ra = 0.  

7. Concluding remarks 
It is evident from the results presented in QQ4 and 5 that the problem of the 

interaction between thermal convection and a mean shear is a complex one even in 
the case of the steady three-dimensional wavy roll solutions. At sufficiently low 
values of the Reynolds number the effect of the shear on the convection is minimal. 
As long as longitudinal rolls are realized the heat transport and the kinetic energy of 
the poloidal part of the velocity field are independent of the Reynolds number. The 
shear may even contribute to the efficiency of the heat transport by delaying the 
onset of instabilities which usually tend to decrease the efficiency of convection. 

At somewhat larger values of Re the wavy instability sets in supercritically and 
leads to  diminished transport in comparison with the longitudinal roll solutions. A t  
higher values of Re or, more accurately, of a, Re, energy of the mean flow is not only 
transferred into the toroidal fluctuating component of motion (as in the case of 
longitudinal rolls), but also into the poloidal component. An enhancement of the heat 
and momentum transport is associated with the latter process which gives rise to  
significant convective transport a t  Raylcigh numbers even below the critical value 
of onset of convection. Nevertheless, a t  high Rayleigh numbers the disrupting 
influence of the shear-induced motions still leads to lower transport than those 
associated with longitudinal rolls. 

The steady wavy roll solutions are stable with respect to disturbances which do not 
change the horizontal periodicity interval only for a limited range of Rayleigh 
numbers. Tertiary instabilities lead to time-dependent states, in general. Only 
preliminary investigations of these states have been done. Of particular interest is 
the vacillating state in which the fluid flow appears to oscillate between the 
longitudinal roll state and a highly distorted wavy roll state. This property as well 
as properties of the steady wavy roll solutions appear to be remarkably robust since 
they can be noticed in the turbulent regime a t  high Rayleigh numbers studied in the 
numerical simulations of Domaradzki & Metcalfe (1988). 

This work has been supported by the Atmospheric Sciences Section of the US 
National Science Foundation. The authors are grateful to Dr 0. Thual for drawing 
their attention to the vacillation instability. 
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