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Abstract. we present a computational study of modulated traveling
waves (MTW) and their local and global bifurcations using the
Kuramotesivashinsky Equation (KSE) as an illustrative example. An
algorithm for the computation and stability analysis of MTW is de-
scribed and implemented; we describe simple modifications that allow
this algorithm to be incorporated in standard continuation/bifurcation
sofibware Iike AUTo. In addition to the bifurcation of MTW branches
from both simple traveling waves and from standing waves (limit cycles),
the phenomena computationally studied range from the tratw analog
of "infinite period" bifurcations to period doubling cascades of MTW.

1 Introduction

Computational studies of the development of spatiotemporal patterns in non-
linear partial differential equations (pDEs) ranging from reaction-diffusion sys-
tems to fluid mechanics necessitate algorithms for the accurate calculation of a
hiera^rchy of important solution types. such solutions involve spatially nonuni-
form steady states, constant shape traveling waves, as well as various types of
both spatially and temporally varying solutions, such as standing (oscillatory, but
non-traveling) waves. The purpose of this paper is to describe an algoiithm
for the systematic computation, continuation "nd stability analysis of the type
of solutions called modulated traveling waves (MTw). Tlese rolrtiorrs play-an
important role in the progressive symmetry breaking and development of spa-
tiotemporal chaos, and are observed in a number of models of physical systems
(e.g. two dimensional fluid flow soibelman [tggg], soibelman "rri i4ui.orrltsstl,
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binary fluid convection Knobloch and Moore [1990], axial-flow gas compressors
Adomaitis and Abed [1992] and cellular flames (Bayliss et al. [1992, 1993]).

Most theoretical studies of MTWs in the literature have been in the context
of fluid flow problems. Rand [1982], motivated by Taylor Couette experiments,
uses sJrnmetry arguments to study properties of MTWs, including a proof of the
absence of frequency entrainment of MTW and an analysis of super- and sub-critical
bifurcations of MTW from traveling waves. In his forthcoming monograph on
Couette flow, Iooss [1993] studies the bifurcation behavior of MTWs. Armbruster et
al. [1988, 1989] examine MTWs on the center-unstable manifold of the Kuramoto-
Sivashinsky Equation. Recently, Bayliss et al. [1992, 1993] presented a careful
numerical study of the rich phenomenolory of MTWs in cellular flames; they also
used phase'amplitude equations to model some of the bifurcations involved.

Our illustrative example will be the Kuramoto-Sivashinsky equation (KSE)'
a model of interfacial instabilities in thin film flow (Atherton and Homsy [1976],
Benney [1966], Sivashinsky and Michelson [1980]). Both the algorithm and the bi-
furcations studied, however, a,re applicable to general nonlinear evolution PDEs.

We consider autonomous PDEs with periodic boundary conditions of the form:

V t + F ( V ; o ) : 0 , V( r , t )  :  V( r  - f2 r , t ) . ( 1 . 1 )

a represents a bifurcation parameter. An MTW is a solution of (1.1) which appears
a.s a limit cycle ("modulated" ) iu a coordinate frame traveling at the appropriate
speed C. V(r,t) will appea,r as a spatiotemporal oscillation (Figue 1) which after

a time interval ?, returns to a spatially shifted ("traveling") version of its initial

shape. Because of the existence of two cha.racteristic frequencies (one associated

with the periodic boundary conditions, and the other associated with the modu-

lation), they appear in phase space as invariant T2 tori, and could in principle be

computed as such (see Kewekidis et al. [1985], van Veldhuizen [1987] for example).

However, MTW are special types of tori with the property:

V ( x , t ) : V ( a + C T , t + T ) .

They a,re therefore easier to compute than generic T2 tori since the two frequencies

are decoupled from each other. LettingV(r,t) : U(r+Ct,t) and substituting this

assumed form of V(x,t) into (1.1) takes the PDE into a moving coordinate frame:

u t * c u , + F ( u ; o ) : 0 . (1 .2)

If C is chosen correctly, the translational (traveling) motion can be removed and

the MTW can then be computed as a limit cycle. Figure 2 shows a phase portrait

of an MTW and its underlying limit cycle. The "correct" traveling speed C cannot
be fonnd o pri,ori,, and since it generally changes with the system parameters (C :

C(o)), it is not possible to directly compute MTW as limit cycles of (1.2) for a
given value of a. The algorithm presented here computes C iteratively.

This paper is organized as follows: we begin by describing the basic algorithm

and our Fourier spectral (spatial) - shooting (temporal) implementation (section

2). We then briefly introduce the KSE and a few of its scaling properties (section

3). The computational results a.re then discussed in detail in section 4'
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Figure 1 One period of an MTW. This one is stable and occurs at a : S3.8.

2 An Algorithm for MTW Computation

Given the form of F(U;a) in equation (1.2), the minimum information needed
to describe an MTW is: (a) a point on the torus (an initial condition U(o)); (b)
the "traveling" speed C; and (c) the "modulation" period ?.

Becatrse of the periodic boundary conditions, we uae Fourier spectral spatial
discretization of the PDE; the algorithm ca^n, however, be used with other spatial
discretization schemes. If U is approximated as the truncated Fourier series:

N N

u (a,t) I ao + D ""(r) cos(no) + D o,*r(t) sin(nc),

U=

(2 .1)
n = l n : l

then, after suitable projection (we use Galerkin), a set of 2N + 1 : M ordinary
differential equations (ODEs) arises from (1.2):

6 :  j (d ,C;a) . (2.2)

To find a limit cycle of a set of M general coupled nonlinear ODEs using a
standard shooting method, one iterates on d(t:0) and ? until:

d(t : T) - d(t : o) : E(d,,r) = 0 (2.3)

is satisfied. This represents a system of M algebraic equations in M * 1 unknowns.
The system (2.3) linearized. at a solution is singular since the Jacobian matrix

ffi h* # as a null vector; this simply reflects the translational invariance
in time that all limit cycles possess. The invariance is eliminated, and the system
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Figure 2 Phase space portrait of the stable MTW at o : 53.3. The nota-

tion (U,cos(c)) = [!" U6,t1cos(z)de represents the coefEcient of cos(c) in
a Fourier series trrirication of U. The thin solid curve is a portion of a tra-
jectory on the torus in a stationary coordinate frame (C : 0) and the thick
solid curve is the trajectory in an appropriately traveling coordinate frame
(C = 48.44055). In this coordinate frame, the MTW appears as a simple limit
cycle. The term "PMPY" (Pushmi-Pullyu!) was used in Bayliss et al. [1993]
to describe the characteristic soace time evolution of such an MTW.

(2.3) is closed by appending a phase pinning constraint P(d) :0. This is now a
well posed set of M * I equations which can be solved via Newton's method to
obtain d and ?, Doedel [1981], Keller [1976].

For a (temporal) limit cycle of a PDE with spatially periodic boundary condi-
tions, in addition to the translational invariance in f, with its corresponding null
vector [/1, arbitrarily shifting the solution in space yields a one parameter family
of limit cycles. This is the reason for an additional null vector t/,. Such a family
of limit cycles can be thought of as a 2-dimensional surface (a function of o and t)
that can be freely translated in r and t. The surface can also be thought of as a
?2 torus in phase space which is invariant under translations in r and t.

Our purpose is to computationally locate this torus. Such a formulation ac-
counts for: (a) one parameter families of standing (nontraveling) waves, parameter-
ized by the spatial shift; (b) MTW, whose trajectories become dense on the surface
of the torus when the ratio of the two frequencies, 7 and C l2r , is irrational; and (c)
MTW with rational frequency ratio, yielding a one parameter family of neutrally
stable periodic oscillations on the surface of the torus.

To find a point on the torus (locate the modulated traveling wave), we remove
the spatial and temporal shift invariants by appending two pinning conditions and
thus closing the shooting equations:

d ( t : T ) - o - ( t : 0 )  :  H : 0

h @ )  :  P 2 ( d ) : g (2.4)
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P1 and P2 arc the phase pinning constraints and d(f : ?) is found by integration
of the initial conditions d(t : 0). This yields M +2 equations in M * 2 unknowns.
Assuming good initial guesses, the correct values of. d(t :0), C, and ? can be found
by applying Newton iteration on (2.4). An example of such pinning constraints that
we have successfully used was to fix a local extremum of. U(r,t) at the point r :
t  =  0 .  Thus  as  w r i t t en  i n  Q .$  P1 (d )  =U" (a :  t : 0 )  and  P2 (d )  =U1(n :  t : 0 ) .
Flor the Fourier discretization (2.1):

4 @ )  :  U , ( r : t : 0 )  : ! r r o " * r y 1 t : 0 ;
n = 7

P z @ )  :  U 1 ( r : t : 0 )  : ! a " 1 t : O ; .

(2 .5 )

(2.6)
n:0

To solve (2.4) via Newton's method, one must integrate variational equations
to obtain the sensitivities of d(t) with respect to the initial conditions d(t : 0).
Sensitivity with respect to the period ? is obtained by evaluating the vectorfield at
t = T :

ry! :ut | - r )  -W:a(r)
and sensitivity with respect to the speed C is:

AUF) _
AC

?U(x + CT,T) : TU,(T).

qW is easily obtained from this. The partial derivatives of the last two scalar
equations in Q.! can be found by direct differentiation of (2.5) and (2.6); this com-
pletes the calculation of the Jacobian matrix of Q.\. A more detailed discussion
of this matrix, its relation to the stability of the MTW, and this particular choice
of pinning conditions is contained in Appendix A.

A multiple shooting version of this algorithm has been implemented in a pseudo-
arclength continuation scheme and the expected quadratic convergence to both
stable and unstable MTW was observed.

3 The KSE and its Scaling Law

As an illustrative example for the application of the algorithm described above,
we calculate MTW and their bifurcations for the KSE in one spatial dimension:

V +: (v,)2 + av," *  4va,, ,  :  e.

This equation has been auri-.rea as a model of spatiotemporal instabilities in a
number of physical settings, In the context of thin fllm flow down an inclined plane,
the instability parameter o contains various physical property values of the fluid
and is inversely proportional to the square of the length scale over which periodic
boundary conditions are applied. Because of a's dependence on the "spatial box
size", the KSE with periodic boundary conditions possesses a replication property
allowing new solutions to be inferred from already known solutions at different

AC
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values of o. The property is most easily illustrated for the KSE in a moving
coordinate frame (speed : C, U (a, t) : V (r * Ct, t)) :

ut +: Q,)" + a[J,, * cu" * 4u,,,,

Replication Law: If (U(x,t),C;c) is asolution of (3.1), with periodic bound-
ary conditions on s € [0,2711, then (t/(kr, kat), k3C; k2a), where /c is any
integer, is also a solution.

This law is valid for time dependent as well as steady solutions. It can be used to
predict replications of transient solutions, traveling waves, limit cycles, and mod-
ulated traveling waves in addition to steady states. For steady states (C : 0)
the solutions generated with lc : 1,2,3,. . ' are referred to as unimodal, bimodal,
trimodal, etc. solutions Kewekidis et al. [1990], Scovel et al. [1988]. Like steady
states, the above law shows that (pure) traveling waves, MTW, and limit cycles
(standing waves) will also have /r-modal replicas. If a unimodal traveling wave or
modulated traveling wave has speed C, then its k-modal replica will travel with
speed k3c. similarly, if a unimodal MTw or limit cycle has period T, then the
period of its &-modal replica will be T f ka .

Applying the replication law with k : -1 generates information about solu-
tions at lhe sane parameter values: if. (U(r,t), C) is a solution of the KSE, then
(((-r,t), -c) is also a solution. Spatially even steady states remain invariant
under this transformation. When applied to traveliug waves and MTW, this trans-
formation yields a right traveling solution from a left traveling one and vi,ce uersa.
Such solutions therefore appear in pairs at the same parameter value.

4 Results for the KSE

The computational results reported here were obtained using a 9 Fourier mode
truncation of the KSE (N : 9 in equation (2.1)) with full dealiasing. In the regime
of a values studied, we believe these results are essentially converged, i.e. they
remain almost quantitatively unchanged if more Fourier modes are kept in the dis-
cretization,

Birth and death of MTW
Figure 3 shows a partial bifurcation diagram of the KSE at comparatively

low values of a. The picture (and its blowup around a : 17) shows the first
(in increasing o) occurrence of an MTW branch. It also illustrates two of the
codimension 1 bifrucations involving the birth (death) of an MTW branch: via
Hopf (local) bifurcation from a pure traveling wave solution, and via an "infinite

period" global bifurcation involving an interaction with a persistent homoclinic
connection between steady states. Figure 4 shows how the speed and period of the
MTW evolve as homoclinicity is approached.

The basic elements of this diagram --excluding the actual MTW branches-
have been discussed in detail elsewhere (e.g. Brown et al. [1991], Kevrekidis et al.

[1990]). The uniform (flat) steady state bifurcates to a spatially nonuniform steady
state at a = 4; this is the unimodal steady state branch. Replicas of both the
bifiucation and the branch can be found at o : 16 (bimodal steady state branch),
a : 36 (trimodal branch), etc. Mixed mode steady state branches (like the bi-tri
branch seen in the diagram to bifurcate from the bimodal at 0 - 22.56) are also

- 
# lr '" 

(U,)zdx: o' (B'1)
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Figure 3 KSE bifurcation diagram showing a subcritical MTW approaching
homoclinic connection with bimodal steady states. Stability is not indicated
on this graph. The point marked "*" indicates the lowest value of a for which
the homoclinic connection is attracting (o* : 16.99622). In this figure, and
all that follow, steady states, traveling waves, and modulated traveling waves
are abbreviated: "SS", "TW", and "MTW" respectively. Q marks Hopf bi-
furcation points, Q marks period doubling bifurcatioru, E marks pitchfork
bifurcations, and I marks traveling wave bifurcations. The latter is a bifurca-
tion from nontraveling to traveling solutions (steady states + traveling waves,
or limit cycles - MTWs).
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Figure 5 Poincar6 section of phase space ((U,sin(o)) : 0) showing MTWs

approaching homoclinicity. In this projection, both the left and right running

MTWs coincide. The dashed curves are approximations to the torus-plane

intersection and were generated by integrating the MTWs through one period.

The o represent the intersections ofthe traveling waves with the cutting plane.

observed. The unimodal branch loses stability at a: 13.005 to a pair of traveling
wave branches, one traveling to the left and one to the right as discussed above (see
also Kevrekidis et al. [1990]). This traveling wave branch subsequently loses stabil-
ity to a subcritical MTW branch at, a - L7.400. The resulting branch of MTW has
been approximated on the center-unstable manifold by Armbruster et al. [1989].
They found the bifurcation to be subcritical (in agreement with the computational
observations in Kevrekidis et al. [1990]), and showed that, in their approximation'
the MTW branch terminated at a persistent heteroclinic loop associated with the bi-
modal saddle steady states. We were able to switch onto and continue this unstable
MTW branch backwards in a. Representative Poincar6 maps are shown in Figure
5. As the values of o decrease towards the global bifurcation at d : 16.99022, the
amplitudes of the Poinca,r6 cuts of the T2 tori with the (t/,sin(o)) : 0 plane are
seen to grow. This is much more accurate than the approximate value of 16.8 sug-
gested in Kevrekidis et al. [19901. These two branches of MTW (and their stable
manifolds) provide the separatrix between the stable traveling waves a,nd the stable
(attracting) persistent homoclinic loops for 16.99 < a < 17.40. In this interral, the
KSE exhibits hysteretic behavior. Using the arguments of Melbourne et al. [1989]'
we have computed the lower bounds of the stability interval of the homoclinic
connections to be a : 16.99022. This computation involved searching along the
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Figure 6 A limit cycle branch giving rise to an MTW branch. LC is an
abbreviation for limit cycle and all symbols are defined in Figure 3

bimodal steady state branch for the value of a at which the appropriate eigenvalues
had exactly opposite real parts.

After its initial loss of stability at a : 17.40, the traveling wave branch is seen
in Figure 3A to continue in increasing o and has an additional Hopf bifurcation at
a:35'050 giving rise to a new MTW branch. This branch is also born subcritical
and never stabilizes; it does undergo a period doubling bifurcation followed by a
turning point and another period doubling bifurcation. The fate of this branch will
be discussed below.

An alternative bifurcation giving rise to an MTW branch involves the loss
of stability of a branch of standing waves (limit cycles) to traveling. Standing
waves possess two Floquet multipliers at unity (one because they are limit cycles,
the second because of the spatial shift invariance). Such a bifurcation involves
an additional Floquet multiplier at unity whose eigenvector becomes aligned with
the direction of translational invariance (giving a generalized eigenvector at the
bifurcation point). This bifurcation is therefore analogous to the birth of traveling
waves from steady states. Such a bifurcation is illustrated in Figure 6.

There are many instances of generation of MTW branches from either traveling
wave or standing wave branches in our computations up to o I gb. This particular
example was chosen because of an interesting (but unrelated) bifurcation occurring
in its neighborhood, The standing wave branch (which gives rise to the MTw
branch at a x 42.02) has an interval of stability bounded by Hopf bifurcations; a
family of.T2 tori is born supercritically at a = 4b.63, and they have been followed
by numerical integration up to a : 45.g4. The Hopf bifurcation at a : 48.4g
appears to be subcritical.

The MTW branch in Figure 6 is born unstable. An example of a supercrit-
ical and stable (observable by integration) MTW branch is shown in Figure 7.
A branch of steady states (referred to in the literature as the "Giant" branch
Greene and Kim [1988]) bifurcates from the bimodal steady state branch at q :
52'89. It becomes stable at a : 70.04 in a pitchfork bifurcation to a pair of travel-
ing wave branches (branches not shown) and loses stability via a supercritical Hopf

5  
2 . e 5

4?46/ R44A Q4 1
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Figure 7 Stable MTW branch bifurcating from a stable standing wave

branch. Figure B is a blow up showing detail. In these graphs, and in several

that follow, unique styles of dashed lines indicate urutable steady states, limit

cycles and modulated traveling waves. solid lines are used to mark oll types

of stable solutions. All symbols are defined in Figure 3.

bifurcation to stable standing waves at a: 83.42. This standing wave branch loses

stability to a supercritical (stable) MTW branch at a : 85.75. This branch remains

stable until o = 89.48 when it undergoes a limit point bifurcation and destabilizes.

Stable MTW can be observed by simulation in the parameter interval 85.75 < a <
89.48.

F\rther Bifurcations of MTW Like limit cycles, stability of MTW can be re-
ported in terms of Floquet multipliers. An MTW solution of (1.1) is stable if the

corresponding limit cycle of (1.2) is stable (i.e. has one Floquet multiplier at unity
because of the temporal shift invariance, one more multiplier at unity because of

the spatial shift invariance, and the remaining multipliers inside the unit circle). In

addition to the bifrrrcations discussed in the previous subsection, involving interac-

tion of MTW with "less complicated" solution types, we find the MTW of the KSE

to undergo a number of other bifurcations. Figure 8 compactly illustrates several
of these instabilities.

o When a pair of complex Floquet multipliers crosses the unit circle, the MTW
branch undergoes a Hopf bifurcation, possibly to a ?3 torus. In Figure
8 this occurs nea,r o : 55.65. The resulting attractor is a T2 torus in a
moving frame. This particular bifurcation is supercritical and the resulting
?3 toms is observable by ntrmerical integration (for exampler &t o : 55.7 the

coordinate speed is c : 44.2515). In Bayliss et al. [1993] such a solution is

referred to as a UQPMTW'�, a quasiperiodically modulated traveling wave.

o when a Floquet multiplier crosses the unit circle through -1, a period dou-
bling occurs. Shown in Figure 8 are several such period doublings. A subcrit-
ical period doubling occurs at o : 55.87, with subsequent period doublings
at o : 55.71 to a "period 4" MTW, and of this latter branch to a "period 8"
MTW (not shown in the figure) at a = 55.73. We believe that a f-ull period

doubling cascade follows.

o At a limit point bifrucation, a Floquet multiplier crosses the unit circle at I'
An example of this is seen in Figure 8 where the subcritical period 2 MTW
branch turns and becomes stable at o = 55'7078.
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Figure E KSE bifurcation diagram showing a limit point, a Hopf bifurcation,
and several period doublings of MTW. All symbols are defined in Figure 3.

These bifurcations appear analogous to those of generic limit cycles; for ex-
ample, the traveling wave to MTW bifrucation is analogous to the regula,r Hopf
bifurcation, and the period doubling of MTW is analogous to regular period dou-
bling. There is a distinction, however, since not only the amplitude and period of
the various branches change with the bifurcation parameter a; the traveling speed,
C, also varies with a. Figure 9A shows the variation of both the period and speed of
the "period 2" MTW branch close to the period doubling bifurcation at a : 55.87
in Figure 8 (enlarged in Figure 9B). Figure l0A shows the corresponding asymp
totic behavior of the period and speed of an MTW branch with respect to a in
the neighborhood of a Hopf bifurcation from a traveling wave branch (a : 52.85)
enlarged in Figure 10B.

Figure 11 shows a bifurcation diagram including various MTW branches and
their bifurcations, computed with a 9 mode Fourier spectral discretization. For all
its complexity, the bifurcation diagram is still partial, and a number of features in it
remain unresolved. For example, in Figure 12 a branch of MTW is seen to approach
the neighborhood of a singular point (triple zero eigenvalue) on the trimodal steady
state branch at o : 36.235. While the symmetry breaking steady state bifurcations
in the neighborhood of such a point have been studied (Krupa [1988, 1990]), the
local dynamics have not been completely described.

Symmetric MTW. It can be shown that if a k-modal steady state (traveling wave)
branch has a Hopf bifurcation at a : a* while its unimodal "parent" does not have
one at o : a' /k2, then the limit cycle (MTW) branch born at the Hopf bifurcation
point will have the following property:

( 4 . 1 )

? here is the period of the oscillation and the MTW is assumed to be in the
"proper" traveling frame so as to appear as a limit cycle for equation (1.2). timit

(r(x, t)  :  r  (r  *T,t  *Tn)
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Figure 11 Bifurcation diagram containing all computed MTWs in the pa-
rameter interval 38 < a < 95. Solid lines indicate stable solutions as described
in Figure 12. Symbols and abbreviations are defined in Figure 3.
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Figure 13 A) Unimodal and bimodal steady state, traveling wave, and MTW

branches (stability not indicated). B) Blow up showing symmetric MTW

bifurcating to asymmetric MTW. C) Phase space projection of a symmetric

MTW and D) Phase space projections of an asymmetric MTW and its spatial

zr shift (dashed) in the traveling frame.

cycles possessing this type of symmetry (sometimes called "ponies on a merry-go-

round" (Aronson et al,[1991])) are known to suppress period doubling in generic one

p"r"*"t", systems (Swift and Wiesenfetd [1984]). Instead, the symmetric solution

may first undergo a pitchfork bifurcation to a pair of asymmetric (symmetric to each

otSer) solutions, which may then subsequently period double. Figure 13 illustrates

this situation for a symmetric MTW which bifurcates from a bimodal traveling wave

at e :63.3826. Note that the unimodal traveling wave branch has its first Hopf at

o : 17.3998 which predicts the bimodal replica Hopf at q :22 '17.3998 : 69.5992'

Since the bimodal Hopf at a : 63.3826 is not a replica of any unimodal Hopf' we

know a priorithat the emanating MTW branch must have the symmetry described

in equaiion (4.1) (with k :2). As expected, this MTW branch does not period

double directly. Instead, it has a pitchfork bifurcation at o : 64'6283 and the

resulting asymmetric pair of MTW subsequently period doubles at d : 64'7947 (see

enlargement in Figure 13B). Note also that both the symmetric and asymmetric

MTW undergo Hopf bifurcations in this parameter range'

B , '
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5 Summary and Discussion

We presented an algorithm for the computation of MTW in nonlinear evolution
PDEs with periodic boundary conditions in one spatial dimension. We illustrated
the use of the algorithm by computing several MTW branches and their bifurcations
(both global and local) for the Kuramoto-Sivashinsky equation. These branches of
MTW play an important role in the development of spatiotemporal patterns and
eventually chaotic behavior in the KSE. The algorithm reduces the computation
of an MTW to a set of coupled nonlinear algebraic equations. Standard pseudo-
arclength techniques were used to continue these solutions in parameter space.
Since, however, it is important to study the MTW branches in relation to other
types of solutions of the PDE (traveling waves, standing waves), branch switching
between different type solution branches becomes an important consideration. As
we point out in the appendix, the type of phase pinning condition chosen allows
the use of standard branch switching techniques for steady states and limit cycles
of generic ODEs in our problem. We actually used the ODE branch switching algo-
rithms in AUTO (Doedel [1981, 1986]) for all of the branch switching calculations
in this paper.

As shown in Appendix A, for our choice of pinning conditions there is a direct
and simple relation between the state transition matrix for a limit cycle of the
PDE and the Jacobian of equation (2.a) (an (M +2) x (M + 2) matrix). The state
transition matrix f is the M x M matrix:

n - 1 d ( t : T ), : @ '

The upper left M x M block of the Jacobian of the inflated system (2.a) is
r - 1 .

Solutions of equation (2.4) correspond to MTW of the original PDE (1.1).
For general pinning conditions, one does not expect the M * 2 eigenvalues of the
Jacobian of Q,$ to relate to the M eigenvalues of f - 1. For the pinning conditions
described above, the relation is as follows: The 2 matrices share M - 2 eigenvalues;
the remaining 2 eigenvalues of | - -I are lost; these were equal to zero, since I
had two eigenvalues at unity. Depending on whether the pinned extremum is a
minimum or a maximum, the 4 additional eigenvalues of the Jacobian are found to
be:

i 1
I : +t/ ; \(TU,, + Ud r \f (T(J,, . U,t)' - rI (U*U,, - q))

Y '  \  )  r = r = 0 .

This formula is derived in a more general setting in Appendix A. It is therefore
possible to monitor the stability of the MTW branch (quantified by the eigenvalues
of f) by monitoring the eigenvalues of the Jacobian and ignoring the 4 nonrelevant
eigenvalues. This allows the detection of not only turning points and pitchfork
bifurcations (which in general can be detected by inflated systems) but also of
Hopf bifurcations and period doublings.

In our calculations, we used the switching subroutines in the continuation pack-
age AUTO (Doedel [1981, 1986]), for the "bogus" inflated dynamical system:

d  =  g (d , ,C ;a )

i  :  &(d')  :0. (5 .1 )
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All relevant types of solution of the original PDE (1.1) (steady states, traveling
waves, standing waves, and MTW) and their bifurcations correspond to solutions
and bifurcations of this "bogus" dynamical system of ODEs. Steady states of the
PDE are steady states of (5.1) with c :0, Ttaveling waves of the PDE are steady
states of (5.1) with c + 0. Limit cycles of the PDE (MTW) are limit cycles of
(5.1) with C : 0 (C + 0 respectively). The inflated system exhibits a regular
Hopf bifurcation when a traveling wave loses stability to an MTW, and AUTO is
therefore capable of switching directly onto MTW branches.

Although stable MTWs have been observed for PDEs in several contexts via
numerical integration, few references address their computation via a fixed point
method. Soibelman [1989] and Soibelman and Meiron [1991] continued stable and
unstable 2 dimensional (in space) MTWs in their study of bifurcations in plane
Poiseuille flow. They report that bifurcations of MTWs were observed by numerical
integration but that stability of MTWs was not computed because of the prohibitive
memory requirements of the method used. For a one dimensional problem, their
method would involve expanding boththe spatial and temporal directions in Fourier
series:

N M

U(n, t ) :  t  t  an,^e in 'e i^ t
n = - N  m : - M

and solving for the x 4N M coefficients using Newton's method. The problem in-
herent in expanding the temporal dimension is that sharp oscillations, (for example
as a MTW branch approaches homoclinicity) a,re not well represented by a short
truncation of a Fourier series. Large M is required to accurately resolve temporal
oscillations. The Jacobian matrix would require O(N2 M2) memory locations which
can become costly as M will generally be large-possibly in the hundreds for the ac-
curate resolution of MTWs nearing homoclinicity. The memory problems of course
become more significant for the two (space) dimensional PDE they considered. In
contrast, the algorithm presented here uses a traditional spatial discretization with
a shooting algorithm in time and requires only O(N2) memory locations (for the
Jacobian) to accurately resolve the temporal oscillations. With K shooting points,
O(KNz) memory locations are required.

In their study of bina,ry fluid convection, Knobloch and Moore [1990] computed
stable MTW using both numerical integration and a fixed point method. Their
fixed point method, like that of Soibelman and Meiron, involved Fourier expanding
bhe temporal dependence. They observed MTW arising from bifurcations of both
traveling waves and limit cycles. They also reported the global bifurcation behavior
of MTW in the neighborhood of a Takens-Bogdanov point.

We expect that the shooting formulation presented here (along with the "tricks"

that allow the use of standard bifurcation/continuation software for steady states
and limit cycles) witl be useful in computer assisted studies of MTWs for a large
class of discretized PDEs. In particular, it could help elucidate the role of unstable
MTWs in global bifurcations,
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Appendix A Inflated Jacobians and Stability.

Let U(x,t) be a limit cycle of a PDE: Ut : F(U) with periodic boundary
cond i t ions :  U(x , t ) :U(s t2 r , t ) .S tab i l i t yo f  l im i tcyc les is repor ted in te rmsof
eigenvalues of the state transition matrix: f = ffi which has two eigenvalues
fixed at 1. These correspond to the two perturbations, U1 and U, that remain on
the limit cycle due to translational invariance in both time and space. To eliminate
these invariances, two phase pinning constraints are imposed and the system is
inflated as discussed previously. As a result of the inflation process, the following
Jacobian matrix arises in the (Newton) iterative computation of MTW:

(A.1)

Here we address the question of obtaining information about MTW stability
from this inflated matrix J. The eigenvalues of this matrix do indeed contain
the stability information of the correct matrix f and hence continuation schemes
based on the inflated system will correctly report bifurcations of MTW. While what
follows is motivated by the MTW problem it is, however, more general.

Let tr be an operator with known spectrum: LQi : r1i$i and. assume, for
simplicity, that ,L has non-repeated, real eigenvalues with the possible exception
that 41 - \2. We wish to establish a connection between the eigenvalues, 4, of .L
and the eigenvalues, ), of J:

f  au j : r )  au?)  au(T)  1
I au(t=o) oc ar I

J = l  p 1  0  0  |
L p r o o l

Ji- = _ , \ -

where:

d ,u  e  L2

k1,k2 , ) , ,11  €  R

L: L2 ---+ L2

P1, P2 : L2 ---+ R.

Equation (A,2) is equivalent to:

(L  -  ) , ^ )u^  *  h , *Qt  *  kz ,^Qz:0  (A '3 )

P!u* :  \ *k r , *  (A .4)

P2u^: \^kz,*.  (A.5)

Expand the function u- in the eigenfunction basis so that: u^ : Dltan,^dn
and substitute into (A.3):

0 = Qttkr.^ + h, -  \^)at.^) - t  Qzlkz,* + ktz -  \*)az,* l+ i {4" 
-  \^)an,^Q,.

l1? ?llr.z1L P ,  o  o  l  L k r . * '

w m

kr,^
kz.^

(A.2)

(A .6)
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since the d,s are tinea^rly independent, the series must vanish termwise and (A'6)

is satisfied only if:

0  -  k t , * * ( r n - \ ^ ) o t , ^

Q  :  k z , * * ( r t z - \ ^ ) o z . ^

Q  :  ( r l n - \ ^ ) a n , ^  n ) 3 .

Clearly a nontrivial solution to equation (A'9) is:

(A.7)
(A.8)
(A.e)

) ,7 :  t lm,  (m >  3)

Equations (A.7) and (A'8) can now be solved for 41,- and a2'^:

-kr,*
O,t - : t-------------i

\ry - \*)

f  o  i f . n l m , m ) 3
Q n ' m =  

\  a r b i t r a r Y = 1  i f . n : m , m > 3 '

attPzQt * a2,1P252
) r

and we see that u- takes on the general form: t,- - Q^*at,mftlaz,^02, (rn' 2 3')

When m = 1 or n1 :2, equati-on (A.9) indicates that for n ) 3: an,1 : an,2 = O

and r,1 and u2 take on the form: um : aL,mQt * az,^62, (m = 1,2') Substituting

this into (A.4) and (A'5) and solving for the k's gives:

kr,r: -!!+:e kzr:

When these are substituted into (A'7) and (A'8) the linear system arises:

f  Pro t

L-+ (ar - )r)

+ f f  +(nz-  \ t )

Nontrivial solutions exist only when the determinant is zero:

^  lPr i l  ,  r -  ,  , l  lPrd?,  1  /  P 'd ' \  f  P2dl \
o - 

lT +(ry- ^,) l  Li :  +hz-  ̂, ) l  -  (- f l  \  \  /
:  irr1, * trr (qr - ^)) lPzQz-r \t1tz - lr) l  -  PtQz PzQt' (A'10)

This is a fourth order polynomial in )1 whose roots are the missing eigenvalues' The

same polynomial arises io, *= 2. All four eigenvalues will be-observed since we

have not tnly ,,lost,' two of .L's eigenvalues but also need two additional eigenvalues

as a result of inflating the system. when rh : \zthe roots of (A'10) are particularly

easy to write. This case is relevant because when computing modulated traveling

*u.r.r, qt: rl2: 1. Letting W : '\1()1 -41) transforms (A'10) into a second order

polynomial in W:

w2 - w (hi l  * Pzdz) t (hh PzQz - hfz PzQr) :0

] [ : ; : l  ] : IBl

with roots:

(
w : i { t a O , + P z d ) t (hi l  *  PzQz)'  -  4(hh PzQz - PtQz PzQt)

)
(A .11)
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The ,\'s are recovered by solving, ̂ ? - )r?r - W :0 to obtain:

rr :  * {nr+1/ETM}

Example 1: Modulated Tbaveling Waves As discussed in section 2, ,L will have
two eigenvalues r/1 : Tl2 : 1 with eigenfunctions Ur(i : 0) and U1(t :0). With
the shooting scheme used, it is straightforward to show that upon convergence to
a MTW,

6  :  
W  

: T u , ( t - T )  : T ( J , ( t : o )

Q z  :  
W  

: u t ( t - T )  : ( J 1 ( t : o )

If the phase is pinned so that an extremum of the surface,U(r,t) is at the origin
(U.(a : t : 0) : Ut(n : t : 0) : 0) then P1 = 0al,=1=o and P2 : 011,=1=s. Of.
the N + 2 eigenvalues of the augmented system, N - 2 of them are the same as
those for tr. The pair of eigenvalues that were at 1 for L are, as predicted above,
not observed. The 4 "missing" eigenvalues are recovered by applying (A,11) and
(A.a):

f f t t

w : i 4(u,, lLIu) L \f (u,, auu)2 - 4T (u,,ut, - u3)f tn.rz)
t  (  )  r = t : O

) -
IL\NTM

(A.13)

Thaveling Wave Computation When computing traveling waves it is only nec-
essary to inflate by one equation and the analysis is simpler than for MTW. The
eigenvalue problem for traveling wave Jacobians is:

J r^= l : ) - (A .14)

It is straightforward to show that the eigenfunctions will take the form: o'- :

6^ t C^Qt and all but one of ,L's eigenvalues will be eigenvalues of J; that is
Am : Tl^ except when m : 1. When rn : I, the eigenfunction is: at : 6t.
Applying a solvability argument, the missing eigenvalue ()1) and the additional
one due to inflating are found to be the roots of the quadratic equation:

f ' - l
L k - j '

L  d r l f u - l
P 1  o l L k * l

) ' - ) ? , - P ( b r : 0  - )  , 1  = | l A , t

For traveling wave computations, we are especially interested in the case r/1 - 0
and thus:

Depending on the sign of P1@1, three distinctly different cases arise: (a) &dr >
0 ; A pair of real eigenvalues that are equal in magnitude and opposite in sign,
(b) &dt : o ;A pair of zero eigenvalues, and (c) hdt < 0 ;A pair of purely
imaginary eigenvalues: 

l: +it/rpr,,rr = Lia.

n? + 4PLOI
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Example 2: Traveling Waves Let U be an M dimensional approximation of the

pDE t/r : F(U). Co*f,rtation of traveling waves involves finding steady states of

the augmented sYstem:

U1:  F(U)  +  CU,  =  G(U 'C) .

For solutions with imposed spatially periodic boundary conditions, the M x M

iacobian (evaluated ti ttt" traveling wave), ffi = L:-\y the null vector U' cor-

.esporrdirrg to translational invariance. ,q.s rirlttr MTW, an extremum is usually

pinned at the origin:

P1(J : LI,(n :0) : 0; Pt = 0"'' ':o'

The resultinC (M +l) x (M * 1) system has the Jacobian:

' : l  h #r) : l  u, l .^  ? ]
This matrix now takes the form of (A.14), and as shown above, J's eigenvalues

will be the same as those of tr except for the missing ,\ : 0. The two remaining

eigenvalues are expected to be: ,\ : +',,8,rG6' Problems occur when U"(n:

Oia o and a purely imaginary pair arises. With a pair of eigenvalues always Iying

oir (practically *w close to) ihe imaginary axis, continuation programs like AUTO

will constantly detect spurious Hopfs. when a "true" Hopf occurs, it will be difficult

to distinguistr betweenihe "true" crossing pair of eigenvalues and the pair hovering

around the imaginary axis, Numerical roundoff errors often cause this "fixed" pair

toiumpfromonesideoftheimaginaryaxistotheother.Therealpartsmightvary
#;;;;;;; -10-e and 10-e *ti.tt it effectively zero; nevertheless a sign change

signaling a Hopf bifurcation will be detected'

The ,,complex extra eigenvalue pair" case arises when the solution at r = 0 is

a maximum (t/,"(0) < O); Ine "two ieal eigenvalues" case arises when the solution

is a minimum (t/""(0) > 0). This information is useful because it shows that the

continuation of traveling waves should have no problems detecting Hopf bifurcations

provided the pinned extremum is a minimum'




