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KURAMOTO-SIVASHINSKY DYNAMICS
ON THE CENTER-UNSTABLE MANIFOLD*

DIETER ARMBRUSTERY, JOHN GUCKENHEIMER#, AND PHILIP HOLMES#

Abstract. This paper studies the dynamical behavior of solutions of the Kuramoto-Sivashinsky partial
differential equation with periodic boundary conditions on a spatial interval [0, h]. The length h is the
bifurcation parameter and reduction is made to a two-(complex-)dimensional system on a local center-
unstable manifold near the second bifurcation point h, from the trivial solution. The resulting O(2)-
equivariant system displays all the behavior found in high precision simulations of the partial differential
equation near this bifurcation point. In particular, bifurcation sequences to stable traveling waves, unstable
modulated traveling waves, and attracting heteroclinic cycles are reproduced qualitatively and quantitatively
within 1% in the parameter range h,+20%. A clear understanding of the global dynamical behavior in this

»

region is thus obtained. 4
Key words. O(2)-symmetry, invariant manifolds, heteroclinic cycles, modulated traveling waves

AMS(MOS) subject classifications. 34C30, 34C35, 34C40, 35B32, 58F14

1. Introduction. The Kuramoto-Sivashinsky and related model equations have
been studied extensively in recent years, both in the context of inertial manifolds and
finite-dimensional attractors and in numerical simulations of dynamical behavior (cf.
Nicolaenko, Scheurer, and Temam [1985], [1986], Foias et al. [1985a], [1985b], Hyman
and Nicolaenko [1985], [1986], Hyman, Nicolaenko, and Zaleski [1986], Kevrekidis,
Nicolaenko, and Scovel [1988]). Equations of this type have been used to model flame
fronts in combustion, directional solidification, and weak two-dimensional turbulence
(cf. Novick-Cohen and Sivashinsky [1986], Novick-Cohen [1987], Foias, Nicolaenko,
and Temam [1987]).

The specific equation we consider in this paper may be written as follows:

(1.1a) U+ au o+ U +i(u,)?=0, 0=x=h
with periodic boundary conditions
(1.1b) u(0,t)=u(h,t),  uJ(0,0)=uh,t),---.

Here a is a positive viscosity parameter (it will subsequently be scaled out) and h is
the domain length that will be varied as a bifurcation parameter. Equations (1.1a)-(1.1b)
are invariant under translations (x—> x+ ) and reflections (x> —x) in the spatial
variable. This symmetry is crucial in our subsequent analysis, as it is in those of
Nicolaenko et al. However, the reader is cautioned that many of the theoretical studies
(cf. Nicolaenko, Scheurer, and Temam [1985], [1986], Foias et al. [1988]) were done
for the case of even periodic functions corresponding to Neumann boundary conditions
(u(0, t) = u,(h, t)=0). In particular, proof of boundedness of |u.|, Hausdorff
dimension estimates for attractors, and existence of inertial manifolds have been
obtained only for this case. In contrast, much of the numerical work mentioned below
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was done for the fully periodic case of (1.1a)-(1.1b). Thus, while the general theory
(Carr [1981], Henry [1981]) guarantees the existence of a local attracting center-
unstable manifold, the fact that our calculations suggest that this manifold exists in a
finite (O(1)) neighborhood of the trivial solution and provides a good description of
the global dynamics for moderate values of h(=~4mv @) remains an interesting theoreti-
cal challenge (see § 6 below).

In the numerical work of Hyman and Nicolaenko [1985], Hyman, Nicolaenko,
and Zaleski [1986], and Kevrekidis, Nicolaenko, and Scovel [1988], the authors varied
h (or actually a nondimensional parameter involving a and h) and studied the evolution
of attractors as h increases. For low values the trivial solution u(x, t)=0 is globally
asymptotically stable and as h increases successive bifurcations to S'-families of steady,
spatially periodic solutions having one, two, three, - - - maxima occur. Only the first
of these is stable. These solutions subsequently bifurcate, giving rise to traveling waves,
solutions that are themselves stationary in a translating frame. Other, more complicated
“pulse-like” solutions were observed, which Hyman et al. [1985], [1986] conjectured
to be related to homoclinic or heteroclinic orbits to steady solutions. Modulated
traveling waves (quasiperiodic solutions) were also observed. Figure 1 reproduces a
part of the bifurcation diagram for low values of h due to Kevrekidis, Nicolaenko,
and Scovel [1988]. We shall concentrate on the range of parameters explored in Fig.
1, but observe that the behavior in this range is repeated, with additional complications,
in successively higher h-ranges. We feel that our methods may be useful in the
understanding of these ranges as well.

/////
-~ P
lul T
l;l/‘”ﬂuj
W
\
———+———|————r————|———-|'———-l————+—LL
1 4 7

FIG. 1. The bifurcation diagram for the Kuramoto-Sivashinsky equation obtained from numerical simula-
tions ( Nicolaenko, Scheurer, and Temam [1986]). Stable branches shown bold, attracting heteroclinic cycles
hatched, nonattracting cycles dotted.

The outline of this paper is as follows. In § 2 we use the Galerkin projection to
recast equation (1.1) as an infinite or arbitrarily large system of first-order, complex,
ordinary differential equations and we discuss the symmetries of this system. Section
3 briefly reviews the linear stability analysis of the trivial solution and branches
bifurcating from it. Reduction to a dynamical system on a two-(complex-)dimensional
center-unstable manifold near the second bifurcation point from the trivial solution is
carried out in § 4. We compute a Taylor series approximation to this manifold to third
order, which allows us to obtain a reduced vector field to fourth order. In § 5 we study
the dynamics of this reduced system, both in third- and fourth-order truncations, using
our earlier analysis of O(2)-equivariant systems (Armbruster, Guckenheimer, and
Holmes [1988]). We show that the bifurcations and dynamical behavior of the fourth-
order reduced system agree well, qualitatively and quantitatively, with simulations of
the full partial differential equation (PDE) by Hyman et al. [1985], [1986] as well as
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simulations of 8- and 16-mode Galerkin truncations; cf. Kevrekidis, Nicolaenko, and
Scovel [1988]. However, it is necessary to go to fourth order to obtain the full picture:
the third-order truncation has one branch of solutions with qualitatively different
properties. We conclude with a brief discussion in § 6.

At this point it is worth stressing that, while our computation of an attracting local
center-unstable manifold and derivation of the reduced system near the second bifurca-
tion point is rigorously justified, the most interesting behaviors we observe—heteroclinic
cycles and modulated traveling waves—do not occur arbitrarily near to the bifurcation
point. To show that such solutions do indeed lie in an 0(1) (global) inertial manifold
appears to be a substantial task; in particular it may be difficult to get a dimension
estimate as low as the value (4) suggested by our formal extension of the local
four-dimensional manifold. See the discussion in § 6.

For a general background in the methods of analysis used in §§ 3-5, see Gucken-
heimer and Holmes [1983]. For earlier studies of O(2)-equivariant vector fields of the
type encountered here, see Dangelmayr [1986], Dangelmayr and Armbruster [1986],
and the paper already cited (Armbruster, Guckenheimer, and Holmes [1988]). Proctor
and Jones [1988] (cf. Jones and Proctor [1987]) have also performed very similar
analyses of O(2)-equivariant systems occurring in Bénard convection studies.

2. Galerkin projection. Equation (1.1a) with boundary conditions (1.1b) defines
a semiflow on the space & of (27/h)-periodic functions. (We shall not concern
ourselves with technical issues such as the precise functional analytic setting. See the
references cited in § 1 for details.) A suitable basis for this space is provided by the
Fourier coefficients ¢, (x) =exp (i27kx/h)%-_«; thus, we expand the dependent vari-
able u as follows:

@ u(x 0= ¥ algux),

where the a, are complex-valued modal coefficients. Reality of u implies that we require
(2.2) a_,=af,

where * denotes the complex conjugate. The inner product in & is given by
h

(2.3) £8= J f(x)g*(x) dx.

0

Denoting the operator defined by (1.1a) as N(u(x, t)) and substituting (2.1),
projection into the subspace spanned by the Ith basis function yields

(N(Zardi), ¢1)=0.

More eXpliCit]y, Since d)l = d)—l and (¢k)xx = _(27Tk/h)2¢ka (¢k)xxxx = (27Tk/h)4d)ka we
have

h 27k\* 2k\? 1_i27k i21j

(2.4)J {Z[dkrﬁﬁa(%) akdn—(%) akqsk]+52'T”ak¢kz’h—’”a,¢,}¢_,dx
0 k k J

=0.

Since Ig drdp_ dx = 5,,h (othogonality of Fourier modes), equation (2.4) yields

. 271\ * 271\ ? 1/27\*_ . .
h{a,+a<—h—) a,—(—h—) a,—5<7) ?](l—])aja,_,}=0
or

27l 1\’ ’
(2.5) a,=(7”) (1—a(gh1> )a,+%(%:—7> gj(l—j)a,-az_,:@-
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It is convenient to rescale time so that

oa a4 \n)dar \n)Y
and to define a nondimensional length
1/ h\’
(2.6b) M =—<—> ,
a\2m

which will be our bifurcation parameter. (Note that this differs from Nicolaenko’s
choice.) Using (2.6a), (2.6b), we may rewrite (2.5) as

P 1
2.7 a;=12(1——)a,+—2j(l—j)aja,_j.
7 275

Formally, (2.7) defines an infinite set of first-order ordinary differential equations
(ODEs) as I (and j) range from —co to +00, although generally we truncate and study
the finite set obtained when max |I, j| = N <. The reality condition (2.2) implies that
we need only consider the equations for a;, /=0. Moreover, the “diagonal” linear
term and particular form of the quadratic interaction leads to the decoupling of the
equation for a,, the spatial mean of u. While a, is driven by the other modes,

1.
(2.8) ay= —Ezfla,-lz
J

(set =01n (2.7)), and can become unbounded, its value does not enter the evolution
equations for the coefficients a;, #0. Thus we need not consider the a, equation
explicitly (cf. Hyman et al. [1985], [1986], who remove the mean from their numerical
computations to avoid overflow).

To give a feeling for the system, and for our future convenience in center manifold
reduction, we display the equations obtained by truncating at N =4:

1 4 1

a)= (1 ——)al —2a¥a,—6a%a;—12a%a,, ay= 4(1 ——>a2+5 ai—3a¥a;,—8a%a,,
n n

(2.9)

9 16
at= 9(1 ——) as+2a,a,—4a¥a,, a,= 16(1 ——)a4+2a§+3a1a3.
e w

At this point it is important to observe how the physical symmetries of (1.1a),
(1.1b) noted in § 1 appear in the system of ODEs (2.7) and in specific truncations such
as (2.9). Spatial translation x> x + 8 corresponds to rotation in Fourier phase:

217l
(2.10a) a,—>exp<l ZB)a,

and reflection x > —x corresponds to complex conjugation:
(2.10b) a~>af=a_,.

It is easy to check that the vector field defined by (2.7) is invariant under the
action of these group elements. In particular, the real subspace (a, = af) is invariant
for the flow and corresponds to the special case of Neumann boundary conditions
considered in the theoretical studies referred to in § 1.

3. Linear analysis: bifurcation from a, = 0. Since the linear part of (2.7) is diagonal,
each linearized modal equation is uncoupled and the stability and bifurcation analysis
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is trivial. Nonetheless, we sketch it as an introduction to the subtler analysis of the
next section. There is a countable, increasing sequence of bifurcation values {u,, =
m’|m=1,2,- -} at each of which the linear operator «(3*/9x*)+(5°/9x>) of (1.1a)
has a double zero eigenvalue and the linear part of the mth projected equation

2
m
al,= m2(1 ——)am
“

vanishes. The multiplicity is a direct consequence of the O(2)-equivariance (Dangel-
mayr [1986]). The mth pair of eigenvalues of the trivial solution a@;=0, [>0 (u(x, t)=
const.) are simply

(3.1) )\m=m2<1—m—)
m

and thus, for u € (m”, (m +1)?), this solution has precisely 2m real, positive eigenvalues
while all other eigenvalues are strictly negative (and also real).

To determine the nature of the bifurcation occurring at u = u,, we seek a center
manifold tangent to the eigenspace of the double zero eigenvalue: the two-dimensional
subspace spanned by the complex mode a,,. Thus we seek a set of functions

(3.2) a=h(an, a}),  1#m—mh=0(a,|)

that are invariant for the flow. The reduced (two-dimensional) system on the center
manifold is then given by

m2

a:,, = m2(1 __>am _4m2a—mh2m(ama a?:!)
M

(3.3)

o0

+ Z .](m_.])j;(am’ aikn)fm—j(am’ afr)'

j==00
Jj#m0,m?2m

Note that we have extracted the third-order terms from the sum.

To determine the branching behavior at the bifurcations of the trivial solution, it
will suffice to truncate (3.3) at 0(|a,|*), so that in studying the reduced equation for
the mth mode, we need only compute the function h,,,. To do this, it suffices to balance
the quadratic terms in the right-hand sides of the evolution equation for a,,,. (This is
a special instance of the more general invariant manifold reduction outlined and
applied in § 4.) Thus we set

(3.4) (2m)2<1—%'1—1)—)h2m+% > J@m= ), =0,

where it is understood that h,, = a,,. Only the term j = m in the sum contributes to the
0(|a,,|*) piece of h,,, ; thus (3.4) leads to

_(@2m)?

(2m)2(1 >h2m+%m2aﬁ,+@(|am|3)=0,

or

2 2\ —1
ham = —1(1 —(—"—’)—) @+ 0(lan]?).
8 7

Finally, setting u = m” (the bifurcation value), we obtain
(3.5) hom = 2500+ 0(|a,[).
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Substitution into (3.3) yields the reduced system
m’ m*

66 = (1= ) =" P + Ol
M

which is a valid approximation for u ~m?> Writing u =m’+¢ and expressing a,, =
iom

r,, e in polar coordinates, we obtain the truncated amplitude and phase equations:

2
(3.7) P = et = 0, =0,
It is clear that, for ¢ <0 (u <m?) the trivial solution r,, =0 is the only fixed point
locally while for £ >0 (> m?) there is a circle of fixed points given by r,, =v6¢/m.
The fact that such a circle of degenerate equilibria appears is due to the O(2)-
equivariance. The branch of bifurcating solutions retains the symmetry induced by
reflection on the x-axis. Thus the center manifold lies in the subspace defined by
a,=af and 6}, in (3.7) is identically zero, and not just zero to second order. Thus, if
(P, 6,,) is an equilibrium, then so is (7,,, 0, +B) for any B.

We conclude that we have an infinite sequence of supercritical bifurcations to
invariant circles filled with fixed points. Although only the first such bifurcation yields
an asymptotically stable circle (for w=1+¢, £>0 and small), the succession of
nontrivial branches of solutions thus created acts as a kind of backbone on which the
dynamical behavior of the Kuramoto-Sivashinsky equation is built. In the remainder
of this paper we shall concentrate on secondary bifurcations and dynamical behavior
occurring near the second bifurcation point at u =4.

4. A center-unstable manifold near u =4. We recall some general results on
invariant manifolds for ordinary and partial differential equations (cf. Kelley [1967],
Carr [1981], Henry [1981], Guckenheimer and Holmes [1983]). Consider an evolution
equation of the following form:

Xx=Av)x+f(x ),
(4.1) y=B)y+g(xy), (x,y)eXxY, veR,
v=0,

where A and B are linear operators depending smoothly (C*) on the (real) parameter
v; A having finite-dimensional domain and range; and B, defined on Y, being possibly
infinite-dimensional. The third (trivial) evolution equation for v is added for later
convenience. We assume that the spectrum of A(0) lies entirely in the nonnegative
half plane (including the imaginary axis), while all eigenvalues of B(0) have strictly
negative real parts and f and g are strictly nonlinear (O(|x||?, ||y||*)) C® functions.
Thus v =0 is a bifurcation point. In the absence of nonlinear terms, X is the center-
unstable eigenspace and Y the stable eigenspace. The basic theorems state that this
splitting persists, at least locally, for the nonlinear problem. Specifically, there is a
C7(y<o0) center-unstable, invariant manifold # tangent to X xR at (x,y, v)=
(0,0, 0), which can be represented locally as a graph y = h(x, v).

Normally we seek a center manifold alone, by splitting out both stable and unstable
directions, but for our application it will be important to retain both marginal and
linearly unstable modes in the reduced model. Hence we seek a center-unstable
manifold.
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To explore consequences of the existence of /# in examples we must approximate
the function h(x, v) describing it. This is done by substitution into the second com-
ponent of (4.1) to obtain

y = D.hx+ D,hv = Bh+ g(x, h),
or, using ¥ =0 and the first component for x:
(4.2) D:h(x, v)[A(v)x +f(x, h(x, v))]= B(v)h(x, v) + g(x, h(x, v)).

The function h is approximated by seeking a power series description and balancing
terms of corresponding orders in the functional equation (4.2). Once h is available,
we substitute into the first component of (4.1) to obtain a (finite-, low-) dimensional
system describing the projection of the flow restricted to the center-unstable manifold
onto the corresponding eigenspace:

(4.3) x=A)x+f(x, h(x, v)).

This is our reduced system, the vector field of which can (in principle) be computed
to any finite order in x, ».

Rather than continue with the general theory, we turn to the application at hand.
We are interested in behavior for u =4 (m =2), so we define a new parameter:

1 1

4.4 =———
(4.4) r
At the bifurcation point, » =0 (u =4), the center-unstable eigenspace is spanned by
x =(a;, a,) and the stable eigenspace by y =(as;, a4, - - -). Thus the center unstable
manifold is given by an infinite set of functions of the following form:

(4’5) al=hl(alaa;ka aZ,a;k, V)’ I:3’4’5""

Fortunately we only need explicitly compute the leading terms of two of these functions
(I=3,4) for the order of accuracy we require, as we now show.
Our reduced system takes the following form (cf. (2.7) and (4.4)):

a,= (%'*' v)a,—2afa,—6a5h;—12hTh,— Y iU+ 1)h;'khj+l >
j=4

(4.6) !

aé:16ya2+%a1 3a1h3 802 Z ](]+2)h*hj+2

=
We seek an approximation of (4.6) that is accurate to O(v|a;|*) and O(|a;|*), respectively.
If we can show that h; = 0(|a;’) for [ = 5, then the terms contained in the infinite sums
of (4.6) do not enter at this order and we need only compute the leading few terms
of h; and h,. To see that this is the case, we consider the lowest-order terms in a,, a,
appearing in the components of (4.2) for [ =5.
We have

£ (S a2 )

l 1 1-1 oo
=12(1_Z+12y)h1+5 Y j(I—j)aja,_j—'Z Jj(+hata;,,

j=1 j=1
where we have rewritten the nonlinear term to include only positive indices, using
(2.2). We know a priori, that

(4.8) a;=hy=0(al’),  as=hy=0(al");
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thus, for [ =5, from (4.7) we obtain
(4.9) hs=0(|a,hd, |ayhs|) + O(|a,hgl, |azhy|, - - ) = @(,aj|3)~
(Note that, since a; and a) contain terms linear in a,, a, (4.6), the left-hand side
and first term on the right-hand side of (4.7) are of the same orders in a,, a,.) Proceeding
inductively, we find that

he=0(la,hs, |ayhy, |h3|2) +0(|la,hl, |azhgl, - - ) = @(,aj,s) +-e,

h,= @(|a1h6|, |azh5|, |a3h4|) + @(|a1h8,a Iazh9|, cee)= @(laj|4) +eey,
and, in general, that

(4.10) hl — @\(lajl[(l+l)/2])’

where [y] denotes the integer part of y. Thus h,; = 0(|a;|*) for I= 5, as claimed.
We return to computation of the Taylor series for h; and h,. Writing equation
(4.2) (or (4.7)) for =1, 2, we obtain
ahy ahy ahy ahy] [G+v)a,—2afa,~- - -
da, da¥ da, 9a¥| |G+ v)a*—2a,af—- - -
dhyohy dhy dhy 16va,+3ai—- -
da,daf oa, da¥ 16vaf+ia¥*—- ..

[ (+81v)h;+2a,a,—4a¥h,— - - ]
(—48+256v)hy+2a5+3a,hy;—- - -]

(4.11)

where the terms omitted are of O(|a;|*). The reader can check that the following

approximation satisfies (4.11) to 0(v|a;|*) and 0(|a;*):
hy=5(1+%v)a,a, —i:a1 +af a3,

(412 hy=%(1+%v)a3+1zaia,.

Note also that the A, satisfy

(4.13) h(e®a,, e *a¥, ePa,, e *Pa¥)=e"h(a,, af, a,, a¥) and (h)*=h_,,

so that the approximation to the center-unstable manifold is also invariant under the
group action.

Finally, we substitute the functions h;, h,, of (4.12) into equation (4.6) to obtain
the reduced system corresponding to (4.3):

ai=(G+v)a,—2afa,~ (1+5v)|af’a, +5aiaf —gatararl*+- - -,

(4.14)  ay=16vay+3ai—3(1+5v)a|a,—5(1+5v)|a)’a,
+§af|a1(2—§a§“2a§—%af|a2|2+- o

The errors in (4.14) are of O(v°|a;|’) and O(|a;|*), respectively. As expected, (4.14) is

also equivariant with respect to the group actions (2.10a), (2.10b).

5. Dynamics on the center-unstable manifold. In thissection we analyze the reduced
system (4.14) obtained in the preceding section. We start with a truncation at third
order and apply the general results of Armbruster, Guckenheimer, and Holmes [1988]
for such systems directly. We find that the resulting dynamical behavior and bifurcation
sequences differ qualitatively from those for the full PDE. However, inclusion of the
fourth-order terms yields behavior that agrees very well. The fact that the resulting
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vector field is essentially three-dimensional and is a perturbation of a completely
integrable system, permits us to give a complete description of the global dynamlcs of
this system.

5.1. Third-order truncation. We study the following system:

(5.1) al=G+ V)a1—2a’1ka2—|a2|2a1,
as=16va,+3ai—3lal’a, —ila;|’a,.
It is convenient to rescale and change the sign of a, by letting
a,=-2a,, a,=a,
and dropping the tildes to obtain

a= (%"‘ v)a, +a§‘a2—%|a2|2al s
(5.2)

ay=16va,—ai—3la,[’a,—15a,’a,,
so that the coefficients of the quadratic terms are +1 and —1, respectively, as in the
“—case” normal form studied by Armbruster, Guckenheimer, and Holmes [1988],
henceforth referred to as [A].

It is now possible to read off a number of results directly by reference to that
paper. In particular, we obtain the bifurcation diagram of Fig. 2(a). The most striking
feature of this diagram is the existence of an open set of parameter values in which
asymptotically stable heteroclinic cycles exist. As the analysis of [A] shows, the
occurrence of such cycles in 0(2)-equivariant vectorfields is a structurally stable

(a) Travelling Wave
- +
7~
wee—
Modulated TVIV Y u/ul”” 2 Mode
lyllﬂu Heteroclmlc

1/2 Mode

cycles
I;Iﬂ+ y
———t T ——————}p
1 ++ 4 ++++
() _
++ =
-7 o+
VA
Lulll/u]w
wid
v “
y
+
A———d———F———
++++ 7

F1G. 2. Bifurcation diagrams for the reduced system (4.14): (a) truncated at third-order; (b) including
Jourth-order terms. Stable branches shown bold, attracting heteroclinic cycles hatched, nonattracting cycles
dotted; + indicates number of positive (unstable) eigenvalues.
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phenomenon (cf. Guckenheimer and Holmes [1988] for a second example of symmetry
induced cycles). The asymptotic stability of these cycles changes in a global bifurcation
in which the branch of modulated traveling waves merges with the cycle, but, unlike
the generic, nonsymmetric case (Guckenheimer and Holmes [1983, Chap. 6.1]) the
heteroclinic cycle persists on both sides of the bifurcation point.

For convenience, we summarize the relevant bifurcation equations from [A]. In
[A] the normal form in the “—case” is given by
(5.3) a;=a;kaz"'al(,U«l"‘en|al|2+312|az|2),
ab=—ai+ay(u,+ 321|al|2+ ezzlazlz)-
Since we are interested only in small values of v in (5.2), u, = 2+ v will remain positive,
so that the only bifurcation from the trivial solution that will concern us is that occurring
on the line

(5.4) ma=16v =0,
in which a circle of equilibria |a,| =0, |a,] =v—u,/ e;, =8V3v are created, existing for
v>0. This is just the bifurcation at u =4 of § 3.

There are several kinds of secondary bifurcations from this pure a, mode. Mixed
modes for which a;, a, # 0 bifurcate on the curves

(5.5) 1~ Moo/ etV /e =0,
[A, eq. (2.12)] or, by comparing (5.2) and (5.3), for
3i—47v+8/3v=0.

The two roots are v =.00218296 - - - and v =.1166491 - - - | giving values of u =4.03524
and u =7.49901 in terms of the original bifurcation parameter. Nicolaenko’s values
are 4.0350 and 5.639, respectively. The discrepancy in the higher values is not unexpec-
ted, since w is no longer close to 4.

The mixed mode bifurcates to traveling waves on the curves defined by [A, egs.
(2.13)-(2.14)]:
(5.6) [m2(2e1+e12)—pi(2ey+ 322)]2 =—2ui+ u2)(4e +2e5+ 26+ €)>0
or

R-Bv)’=G+18v)i3>0.

The appropriate root is »=-—0.050925--- for a bifurcation value u =3.32308.
Kevrekidis, Nicolaenko, and Scovel [1988] have obtained 3.2513.

The condition on the eigenvalues of the pure mode in the range u €(4.03524,

7.49901) corresponding to a change in stability type of the saddle points in the
heteroclinic cycle is [A, eq. (5.11)]:

(5.7) W1 =pM2en/ ey or (%"‘ v)= 16’/(14_2)

giving v =.0159574 - - - or u =4.27273, compared with Kevrekidis, Nicolaenko, and
Scovel’s estimate of (4.20).

The computations in [A] for Hopf bifurcation to modulated traveling waves from
the branch of traveling waves (which exists for u>3.32308 - - - in the present case)
are done in the limit u; = 0(¢e?), a;=0(¢e) as e >0 (cf. [A eq. (2.6), eq. (5.8)]. These
yield the approximate value

[1+ 9(exn—ey,)
(4e),+2e,+ 26+ e35) —3(enn—ey3)

(5.8) 2=y ]+@’(8)
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(cf. [A, (5.10)]). In terms of », we have

16vz<f—t+ v)<1+_91_§_)§)

or v=21/1572, yielding pu =4.22581 - - - .
Referring to Theorems 5.2 and 5.5 of [A], we conclude that, since

[1+ 9(exn—e1,) ] 7 1 exn
(4e)1+2e;+2e,,+ex) —3(exn—ey,)

(59) T2573 ey
the modulated traveling waves on the branch connecting the Hopf bifurcation point
u =4.22581 to the heteroclinic stability change at u = 4.27273 are asymptotically stable.

The preceding calculation is unlikely to be sufficiently accurate, however, since
w, =3+v is not small for »=0. However, a direct calculation of the Hopf bifurcation
point from the exact solution for traveling waves in (5.1) can easily be done using
computer algebra.

These computations yield a value of v =0.11682 or u = 4.19608. This value is still
lower than the heteroclinic bifurcation at wu =4.27273 (it is even lower than the
approximate value of 4.22581 found above) and so the modulated waves are still found
to be asymptotically stable at the level of approximation of (5.1). The corresponding
Hopf and heteroclinic bifurcation values of Nicolaenko are 4.3498 and 4.20, respec-
tively. Figure 2(a) summarizes the results obtained so far in the form of a bifurcation
diagram. Also see Table 1 below.

5.2. Fourth-order truncation. To obtain a more accurate description of the reduced
system we now include the terms of O(v|a;|*) and O(|a;|*) in (4.14). Again we rescale
by letting d,=—2a,, d,=a, and drop the tildes, so that the cubic and lower-order
terms are in the standard normal form of [A]:

(5.10) ai=(G+v)a,+afa,— (%+‘§‘V)|a2|2a1 —éai‘a’z"+%a’lka2|a2|2,
) 2 8 2 7 2 2| )2 2y 12
a;=16va,—a; _(%+§V)Ia1| az_(l_lz"'l_sl’)|a2| az—%allall +%a’1"a§+%a1|a2| .
While the bifurcation to the pure mode still occurs at » =0, its amplitude is now
given by

16v 3y def
5.11) af’=——5— or |a=84/—7F—=A
( Sl B A T

This leads to correction terms in the expressions for the eigenvalues of the pure mode
appearing in the bifurcation equations corresponding to (5.5) and (5.7) above. The
eigenvalues are

1 4 A?
(5.12) (§+ V> —(—+—V)A2:tA<1+—>,
4 4 3 48

with A given in (5.11). Bifurcation to mixed modes occurs when one of these eigenvalues
is zero: the resulting equations yield the values »=0.002170- - - and 0.114834 - - -
giving u =4.03503 - - - and 7.39832 - - -.

Note that the correction to the values from the third-order truncation are quite
small (.005% and 1.34% ) and that the value 7.39832 is still much too high. We certainly
need additional modes to obtain a good approximation of this point, since it is so far
from u =4.
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When the leading parts of (5.12) cancel, giving equal and opposite eigenvalues,
the heteroclinic bifurcation occurs. This gives

3 1 4v 1 7v
(5.13) <Z+ V) = 16V(Z+—3—>/(1_2+§)

or »=.015799 - - - for a value of u =4.26984 - - - . The correction to the third-order
value u =4.27273 is only .07%.

To compute the traveling wave and modulated traveling wave bifurcation points
we write (5.10) in polar form, letting a; =r; e’ and defining ¢; =26, —6,, as in [A]:

. 3 o 41/ )
Py = Z+V ritrr|l1-— 54 48 cos ¢ — 4 3 ryrs,

4
. Sr 1 8v 1 7v
(5.14) F,=16vr,— (1+27 4322) cos ¢ — (2 3 )rfrz (12 18) r,

6= (2 r1+ r§+23rfr2 ri ) 6.

r——t—=t— sin

> r, 24 432 27
The traveling wave bifurcates from the mixed mode on ¢ = 7 when the factor mutliply-
ing sin ¢ in the third equation vanishes and the right-hand sides of the first two
equations vanish with cos ¢ = —1. The first condition yields

(5.15) r=2r,

(just as in the cubic case of [A, eq. (2.13b)]), while the remaining two give fourth-order
polynomials for r,. Requiring that the appropriate (small, positive) roots of these
coincide, we have an equation for », the bifurcation value. The procedure may easily
be implemented using MACSYMA to obtain » =—.06079 or u =3.21759, a change of
—3.2% from the third-order value of 3.32308, and considerably closer to Kevrekidis,
Nicolaenko, and Scovel’s value.

For Hopf bifurcation from the traveling wave we first solve the first equation
(right-hand side = 0) of (5.14) to obtain an expression cos ¢ = f(r,, r,). Using (5.15),
which must be satisfied for traveling waves if ¢ #0, 7, we then substitute cos ¢ =
f(¥/2ry, r,) into the second equation to obtain a fifth-order polynomial of the form
ry(aory+ a,r3+a;) =0. We ple the appropriate (small, positive) root. Assembling this
information we have (7, 75, ¢) the traveling wave fixed point, in terms of ». We then
compute the characteristic polynomial of the Jacobian matrix of (5.14) and obtain the
condition for a pair of purely imaginary eigenvalues, also with the aid of MACSYMA.
Substitution of (#,, 75, <f>) into this condition yields an equation for » from which we
find the bifurcation value. Taylor expansions to O(|v|*) are used at various places. We
finally obtain »=0.019335--: or u =4.33530---. This value represents a +2.6%
change from the third-order value of 4.22581 and the bifurcation point now lies above
the heteroclinic bifurcation point 4.26984 - - - | in agreement with the computations of
Kevrekidis, Nicolaenko, and Scovel [1988].

We summarize the various results of this section in Table 1 and on Fig. 2. Figures
2(a) and 2(b) show the third-order and fourth-order bifurcation diagrams, respectively,
which should be compared with the diagram found numerically by Nicolaenko repro-
duced in Fig. 1. In connecting the heteroclinic and modulated traveling wave bifurcation
points wy, u,,, we have made the conjecture that the branch of modulated traveling
waves is unique and well behaved in the sense that there is precisely one such wave
for each u € (up, wn). Armbruster, Guckenheimer, and Holmes [1988] have proved
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TABLE 1
Bifurcation points.

Third-order Kevrekidis,

truncation Fourth-order Nicolaenko, and
Bifurcation point (u) [exact calc] truncation Scovel [1988]
Mode 2 from trivial 4 4 4
Mixed 1/2 mode from 2:
#1 4.03524 4.03503 4.035- - -
#2 7.49901 7.39832 5.639 - - -
Heteroclinic bifurcation 4.27273 4.26984 4.20 ?
Traveling wave from 1/2 3.32308 3.21759 3.2513
Modulated from traveling wave 4.22581 4.33530 4.3498
[4.19608]

this for the limiting case & >0, corresponding to |a,|, |a;| = O(e) small, but there is
little hope of a general proof along those lines, since it relies on perturbation of the
£ =0 integrable limit system. However, we observe that the monotonicity of the
modulated wave branch following from this conjecture agrees qualitatively with the
computations of Kevrekidis, Nicolaenko, and Scovel.

To illustrate the results of this section, in Fig. 3 we display numerical integrations
of the four-mode Galerkin truncation (2.9) and of the two-mode reduced system (4.14)
on the center unstable manifold. As predicted, both systems display coexisting attractors
at the parameter value selected, w =4.3. Figure 3 indicates how well the two-mode
model captures the quantitative as well as qualitative aspects of the larger system. For
additional pictures of solutions of the normal form equations, see [A].

6. Discussion. We have performed a reduction of the Kuramoto-Sivashinsky
partial differential equation (1.1a) with periodic boundary conditions (1.1b) to a
center-unstable manifold for parameter values near that at which the second Fourier
mode bifurcates. The local invariant manifold is a graph over the eigenspace of the
first two modes, approximation of which as a Taylor series including terms of order
three yields a reduced vector field accurate to fourth-order. At this level the correction
terms involve only the third and fourth modes. Invariance under spatial translation
and reflection for the PDE is reflected in O(2)-equivariance of this vector field. Building
on earlier work of Armbruster, Guckenheimer, and Holmes [1988], [A], a fairly
complete analysis of the four-dimensional reduced system is possible: the results agree
remarkably well both qualitatively and quantitatively with detailed numerical simula-
tions of the PDE using spectral methods.

One of the features of O(2) symmetric vector fields that we have elucidated (within
the space of symmetric perturbations) in [A] is the occurrence of structurally stable
heteroclinic cycles. Such cycles had been observed by Nicolaenko [1985], [1986] in
numerical simulation, but the reasons why they might be expected to occur have not
been fully understood previously. However, shortly after this paper was submitted we
received the preprint of Kevrekidis, Nicolaenko, and Scovel [1988] in which the authors
use the O(2)-equivariance in the full (nonreduced, infinite-dimensional) problem to
argue that heteroclinic cycles are likely to occur. We still do not know of a complete
proof of the existence of such cycles and the associated modulated traveling waves in
any system other than the two complex-dimensional, reduced normal form considered
here and in [A]. Nonetheless, we feel that the analysis presented here and by Kevrekidis,
Nicolaenko, and Scovel [1988] should alleviate any doubts that the heteroclinic cycles
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F1G. 3. Numerical integrations of Galerkin projection and reduced system projected onto Re (a,) —Re (a,)
plane. (a) Four-mode Galerkin projection (2.9); (b) two-mode fourth-order reduced system (4.14). Parameter
value u = 4.3. Note coexistence of attracting heteroclinic cycle and traveling wave solution in both systems. Note
the Lissajous figure characteristic of a 1:2 resonance.

observed by those authors are numerical artifacts. Their presence is fully consistent
with the dynamics to be expected from an O(2)-equivariant vector field.

The analysis of this paper is formal. While the existence of a local center-unstable
manifold is guaranteed (cf. Carr [1981], Henry [1981]), the use of a locally valid
approximation at O(1) distances from the bifurcating fixed point cannot be justified
by the usual methods of center manifolds or bifurcation theory. We need to prove
existence of a global invariant (inertial) manifold in the appropriate regions of par-
ameter and phase space. Unfortunately, all the results on such inertial manifolds for
the Kuramoto-Sivashinsky equation apply only to the case of Neumann boundary
conditions u,(0, t) = u.(h, t) =0. In particular, a first step in the existence proof relies
on bounding the derivative u, in the L* norm, which has only been done for the
Neumann case {Foias [1987]). (In terms of our Fourier representation, this implies that

© [ 27\%
2\ ) lalf <o
j=1

we have already observed that the mean a, of u can become unbounded.) Boundedness

of ||u.||* then permits construction of a global trapping region, and ultimately, of the
inertial manifold (Nicolaenko, Scheurer, and Temam [1985], Foias et al. [1988]). In
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our context, inertial manifolds are known to exist only for the system (2.7) restricted
to the real subspace a, = af. This invariant subspace, spanned by Fourier cosine modes,
does not contain any of the traveling or modulated traveling waves or heteroclinic
cycles that dominate the asymptotically stable solutions observed numerically. It is
therefore of considerable interest to extend inertial manifold results to the full periodic
boundary condition case in an attempt to justify the formal calculations of this paper.

We end by remarking that rigorous results can be obtained for a modification of
the Kuramoto-Sivashinsky equation (1.1a), as suggested by Sirovich and Pismen. If a
term Bu is added to the left-hand side, each of the projected ODEs (2.5) inherits an
additional term —Baq,. After rescaling time via (2.6a) we obtain a modified linear term

in (2.7). . .
(=)o 7-e(7)
n T

The (double) eigenvalues are now given by —y + I*(1—1?/) and we can choose pairs
of parameter values (y, u) such that two pairs of eigenvalues are simultaneously zero.
Specifically, for (y, u)=1(4/5,5) modes I =1 and [ =2 simultaneously bifurcate from
zero. Close to this point in the two parameter problem, a center manifold reduction
and normal form analysis can be performed to yield an O(2)-equivariant system of
the type (5.3), as treated in Armbruster, Guckenheimer, and Holmes [1988]. Since for
(y, u) sufficiently close to (4/5, 5) all the bifurcating solutions are contained in a small
neighborhood of a,=0, the local bifurcation results are completely rigorous. This
problem would probably be worth a detailed study. However, in this paper we have
chosen to address the original problem posed by Nicolaenko and his colleagues and
therefore have only a single parameter to work with.
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