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We analyze unfoldings of a codimension two, steady-state/steady-state modal interaction possessing O(2) symmetry. At
the degenerate bifurcation point there are two zero eigenvalues, each of multiplicity two. The spatial wavenumbers of the
critical modes k; are assumed to satisfy k, = 2k,. We base our analysis on a detailed study of the third order truncation of the
resulting equivariant normal form, which is a four-dimensional vector field. We find that heteroclinic cycles and modulated
travelling waves exist for open sets of parameter values near the codimension two bifurcation point. We provide conditions on
parameters which guarantee existence and uniqueness of such solutions and we investigate their stability types. We argue that
such motions will be prevalent in continuum systems having the symmetry of translation and reflection with respect to one (or
more) spatial directions.

1. Introduction

This paper extends the analysis of Dangelmayr [1] and Dangelmayr and Armbruster [2). Related work,
in which the spatial wavenumbers k,; satisfy k, = k, rather than k, = 2k, as in this paper, has been done
by Guckenheimer [3] and Dangelmayr and Knobloch [4]; however, the nature of the present system and
the methods and results obtained are very different in character. In particular, our linearized system is
diagonalizable while the 1:1 systems referred to have a nilpotent linear component. Independently of our
work, Jones and Proctor {5] and Proctor and Jones (6] have obtained many similar results in the context of
convection problems.

Our interest in these systems was motivated by the study of turbulent fluid boundary layers in the wall
region (Aubry et al. [7]). Numerical investigations of models for the dynamics of fluctuations in the
boundary layer reveal the presence of intermittent solutions (“bursts”) that are persistent over a range of
parameter values in the model and that correspond to heteroclinic cycles in the model equations. Since
homoclinic and heteroclinic trajectories are destroyed by generic perturbations we wish to determine
whether the intermittent solutions of the model are accidental or an essential feature. Qur conclusion is
that the heteroclinic cycles present in this model arise as a natural feature in the context of evolution
equations which are translation and reflection invariant with respect to a spatial direction. Heteroclinic
cycles also occur in simpler situations (Guckenheimer and Holmes [8]). In this paper we describe the
dynamical systems analysis which underlies this conclusion.
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The vector fields we study are defined on R*=R? X R?=C X C by the complex equations

- 2 2
21—2122+21(l‘1+911'21| + epplz,] )’

(1.1)

. _ .2 2
Z,= =z +22(#2+921|21|2+922|22| )’

where p; and e, are real parameters.

These equations are preserved (equivariant) with respect to the symmetry operations (z,,z,)—
(e'%z,,e%%,) and (z,,z,) = (Z,, Z,). The main body of this paper gives a thorough analysis of the
dynamics of this system. The derivation of these equations from a translation and reflection invariant
system of partial differential equations yields a context within which they occur naturally in applications.
We summarize this derivation here, but the discussion of the dynamics of (1.1) is independent of this
derivation, apart from motivating the nomenclature we use for different solutions.

Consider an evolution equation of the form u, = F(u) with u(x, -) dependent upon a spatial variable x
(and perhaps other variables as well). We assume that the equation is symmetric with respect to
translations and reflections in x and that periodic boundary conditions in x of period D are imposed. For
example, F(u) might be a nonlinear differential operator with constant coefficients in which each term
involves an even number of differentiations of x (e.g. F(u)= —u, ., —u, — 3(u?) the Kuramoto-
Sivashinsky operator). Under these conditions, the translations together with the reflections induce an
action of O(2), the 2 X 2 orthogonal group. If F(0) = 0, then the linearization of F at this trivial solution
will have subspaces that are invariant under a representation of the symmetry group. In concrete terms, u
can be expanded in a Fourier series, X7_ _ a, exp(2wkxi/D) in the variable x, and the linearization of F
preserves the space of objects associated to each Fourter mode exp (+2mkxi/D). Typically, one can expect
that bifurcation in a family u, = F,(u) will occur in the simplest way compatible with the symmetry. For
non-zero wavenumbers with respect to x, the symmetry group acts in such a way that the simplest
bifurcation will have a zero eigenvalue of multiplicity two. If there is a second parameter in the problem
that varies (e.g., the length scale D), then for certain parameter values, it may happen that there is
simultaneous marginal stability of modes with wavenumbers k& and /. A reduced description of the
dynamics associated with such a “codimension two” bifurcation leads to the study of equations of the
form

A =f1(21’ 22)’

Z, =f2(21’ Zz)»

which are equivariant with respect to a (k, /) representation of O(2). Explicitly

(12)

2= e—ikl)fl(eik&zl’eilozz)’

i,= e—ilafz(eikGZl’eilﬂzz)’
and

Z =f1(21’ 52)’

éz =f-2(51’ 22)-

(1.3)

The most general equations of this form can be written in the form
iy =P(E\, E;, M)z, + Q\(Ey, By, M)z 'z,
Zy=P(Ey, Ey, M)z, + Q) (Ey, Ey, M)z{zj™h,

(1.4)
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with
E;=|z)*, j=12 and M=z{z5+7z5.

In this paper, we restrict attention to the case k =1, /=2 corresponding to simultaneous bifurcation of
modes whose periods in x are D and D/2. For (partial) studies of the general case, see Dangelmayr [1]
and Dangelmayr and Armbruster [2]. Near a point of (1,2) codimension two bifurcation, we seek to
understand the nonlinear dynamics of small amplitude solutions. For systems with well-behaved operators
F(u), center manifold theory (Carr [9], Guckenheimer and Holmes [10]) gives the basis for a reduction to a
four-dimensional system of the form described above. The system (1.1) then represents the first few terms
in the Taylor expansion of the reduced system at the point of codimension two bifurcation: i.e., after
rescaling it is the most general vector field, up to cubic terms, compatible with the group action. Regarding
(g, 1,) as parameters in (1.1), dynamical features of this system which persist under symmetric
perturbations of (1.1) can be expected to be general features of (1,2) bifurcation of the system u,= F(u).
In particular, the persistent stable homoclinic cycles that we find represent solutions which linger near a
2-mode equilibrium, then undergo an event after which the 2-mode equilibrates again in a position which
is shifted by half a period, or D/4.

The phase portraits of (1.1) near the origin fall into a small number of classes giving different stability
diagrams as (p,, t,) are varied. Much of the structure of the phase portraits is related to the presence of
invariant subspaces whose existence can be deduced from the symmetry properties of the vector field. Up
to conjugation by the symmetry group, there are three invariant subspaces for (1.1): (1) the real subspace
defined by Im(z,) = Im(z,) =0 and fixed by complex conjugation regarded as an element of O(2), (2) the
2-subspace defined by z; = 0 and fixed by the action of the group element e'", and (3) the x, = Re(z,) axis
which is the intersection of (1) and (2). The group O(2) leaves the 2-subspace invariant, but there is an
S!-family of conjugates of the real subspace. Note that two of these conjugate subspaces pass through each
point of the x,-axis, a crucial fact in understanding the homoclinic cycles of the system. In the next
sections, we describe the dynamics in these invariant subspaces. Although the system (1.1) may have
equilibria that do not approach the origin as p,, g, — 0, we use perturbation arguments to focus attention
on the small amplitude behavior. In the real plane, there are also mixed mode steady solutions (both x;
and x, are non-zero) that bifurcate to limit cycles through Hopf bifurcation. The limit cycles are called
standing waves. This part of our work is essentially a review of Dangelmayr’s results.

To understand the phase portrait of (1.1) outside its invariant subspaces, we introduce polar coordinates
z, =r,e'%, z,=r,e!% and observe that the equations for r,, r, and ¢ =26, — 6, separate from the fourth
variable due to the symmetry of the vector field. There is a new family of equilibria of the reduced system
that yields travelling waves, periodic solutions that correspond, for one-dimensional partial differential
equations, to waves drifting at constant speed in evolution equations such as that described above. A
scaling in terms of a small parameter ¢ is then introduced in an effort to obtain an integrable limit from
which perturbations can be analyzed. This goal is achieved by noting that the system

has the pair of integrals E = |z,|2+ |z,|2=r+r} and L= (1/2i)[z’Z,~ z}z,] = rlr,sin¢. Along the
level curves of the reduced system in polar coordinates, we use the method of averaging to compute, to first
order in &, the average variation of E and L along a trajectory of the integrable system. We prove that
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there is a region of parameters (p,, jt,) in which the reduced system has a unique limit cycle and hence the
system (1.1) has an invariant torus. These solutions we call modulated travelling waves, see section 2, below.
For fixed E, we follow the modulated waves lying close to various values of L from birth in a Hopf
bifurcation to their termination at heteroclinic cycles. These cycles involve two distinct 2-mode equilibria
that are translates of each other by D/4, half a 2-period. At each of these equilibria, there are two
invariant “real” subspaces as noted above. The subspaces associated to each of the two equilibria in the
cycle are the same, and the cycle contains one heteroclinic trajectory in each of the two subspaces. For
general vector fields, the stability of a heteroclinic cycle involving nondegenerate saddles is determined by
the magnitudes of the eigenvalues associated to the saddles. Here, cycles that are predicted to be unstable
according to these eigenvalues are actually stable as a result of the symmetry of the system.

The rest of the paper is organized as follows. In the next section we introduce the equations to be
studied, discuss the limit case noted above, and review some elementary bifurcation results from the works
listed above. Section 3 contains results on non-existence and existence of heteroclinic cycles. We discuss
modulated travelling waves in the limit of small amplitude |z, =0(¢) and very small parameters
|l = O( &%) in section 4 and show that the unique branch of such waves limits on the heteroclinic cycle at
one end and collapses onto the branch of travelling waves in a Hopf bifurcation at the other. Stability of
heteroclinic cycles and modulated travelling waves is discussed in section 5 and section 6 contains some
examples of unfoldings and bifurcation diagrams for specific cases.

2. Normal form and scaling

As shown by Buzano and Russo [11] and Dangelmayr [1] (cf. Dangelmayr and Armbruster [2]) and
outlined above, the normal form for an O(2) equivariant vector field involving two modes can be written in
the complex form as

Zy=z,p,+qzi 2%,
1Tl T4 I (2.1)
Zy=2,p,+qy225 Y,
where the p,, g, are smooth real functions of the invariants |z,|?, |z,|? and z{Z¥ + z]z%. Specializing to the
case of interest k=1, /=2, (2.1) becomes

. 2 2 -

G =2(p +dylz | +dy|z)| )+C122122+@(4) (22)

s — 2 2 2 ’ .
2= 22(1‘2 +dy|z)|"+dy|z,| ) +cnzj

where @(4) represents terms of order |z jl" which will not be explicitly included henceforth, ¢, d;, are real

coefficients and p,, u, are unfolding parameters. Assuming that c,,, ¢;; # 0, we can rescale, reversing time

if necessary, to obtain

Z.1=2122+21(P‘1+ell|21|2+812|22’2)’ (2.3)

. 2
Z,= i—212+22(‘11,2+621,21,2+e22122| )’

= 2 :
where e,, =d;,/|c11c15], €12 =41/, €3 =dy/ |c11¢1,] and ey =d,,/cf;,. (One can normalize one
cubic coefficient to +1 by a further time scale change; moreover, by nonlinear coordinate changes, it is
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possible to further eliminate one of the cubic coefficients [1). However, there is no advantage for our
discussion in performing these coordinate changes.)
Letting z;=r; e'%, (2.3) may conveniently be rewritten as

F=rryc08 ¢+ r(p + eprd + er),
Fy=tricos¢+r(p,+enri+epnrt), (2.49)
p= — (2r2 + rlz/rz) sin¢,
where ¢ = 20, — 8,. The emergence of the phase difference ¢ and reduction to three (real) dimensions is a
consequence of the O(2) symmetry discussed above and we remark that this phase translation invariance is
a characteristic of the full (non-truncated) O(2)-equivariant system (1.4). This is important in our
discussion of quasiperiodic motions below. However, since the transformation is singular when r,, r, =0 it
is also necessary to use the real Cartesian form
X, =Xx.x,+ +x,(py +eprt+enr?)
1 X2 TV T X\l T el 1212 )5
. 2
S1=x10, = X+ i+ enr? +epr?), (2.5)
. _ 2_ .2 )
%= 2 (xP—p2) +x,(py+ enrl+epr?),

V= =x2x 0 +Y2(l-‘2 +eyri + ‘322’22),

where r?=x?+y?. This will be especially useful in our discussion of heteroclinic cycles in section 3.

Reflection symmetry implies that the purely real system (y, =y, =0) is invariant, as is any ¢-invariant
rotation of it, for example the y;, x, system (x, = y, = 0). This will also be used in section 3.
Finally, the scaling r,=es;, p,= ezvj and ( )= e( ) transforms the polar system to

5{ = 515,008 ¢ + es; (7, + ey;57 + e1,5%),
s5=ts7cos ¢ +esy(v, + eysi+ eys?), (2.6)
¢ = —(2s, £5%/s,)sing,
and reveals two integrals for the limit e = 0. These are
E=5}%Fs3 2.7)
and
L=sls,sin¢. (2.8)

We note that the existence of these integrals was observed independently by Jones and Proctor [5] and that
they also use them in their analysis. The integrals play a crucial role in our analysis of modulated travelling
waves in section 4. :

It is appropriate at this point to discuss various classes of solutions exhibited by egs. (2.3), (2.4) and
(2.6). 1t is important here to recognize that the individual phase equations

0'1= —rysing and 92= i(rf/rz)sinqr



262 D. Armbruster et al. / Heteroclinic cycles and modulated travelling waves

have been suppressed in writing (2.4). With this in mind, steady solutions or fixed points of (2.3)
correspond to fixed points of (2.4) or (2.6) with ¢ = 0 or . In addition to the trivial solution r, = r, = 0, we
have pure modes (r, =0, r,# 0) and mixed modes, r;, r,# 0. Fixed points of (2.4), (2.6) with ¢ #0,
correspond to travelling waves of (2.3) in which the phase difference remains constant, but 8, and 6, both
increase or both decrease linearly with time (such solutions only occur in the ‘-’ case, and also require
2r2=r? so that 26, =4,). Periodic orbits of (2.4)—(2.6) on the subspace ¢ =0, 7 correspond to singly
periodic standing waves of (2.3) while periodic orbits with ¢ # 0, 7 correspond to doubly periodic modulated
travelling waves of (2.3). Since ¢ = 26, — 6, is the only combination of phase variables that appears in the
full normal form equations (1.4) such an isolated two-torus will not be subject to phase locking. Along a
cross-section defined by ¢ = constant, the points (ry, r,, 8, 8,) and (ry, r,, 6, + a, 8, + 2a) evolve so that
they are always separated by the rotation by angles (a,2a) in C X C. The cross-section can be
parametrized by a and its return map is then a rigid rotation of this coordinate. Here we explicitly see how
the SO(2) C O(2)-equivariance prevents phase locking; for a more general analysis, see Rand [12]. Finally,
a quasiperiodic solution of (2.4)—(2.6) corresponds to a triply periodic modulated travelling wave of (2.3).
These statements are all elementary deductions from the equations and the polar coordinate transforma-
tions.

Before starting our analysis of the dynamics, it is convenient to collect some facts about steady solutions
of (2.3)—(2.5). The origin is always a steady solution with eigenvalues p,, p,, each of multiplicity 2. Other
branches of nontrivial fixed points lic in subspaces that are fixed by subgroups of O(2). Rotation by = fixes
the subspace z; = 0, and (2.3) reduces to the equation

Zy= Zz(l’-z + 922|22|2)

on this subspace. When p,/e,, < 0, there are equilibria (pure modes) along the circles |z,| = (—p, /€)%
The eigenvalues of these equilibria are 0 and —2p, within the plane z; =0 and u, — p,e/e5
(—p,/€y)"? normal to the plane z; =0. Note that the zero locus for the normal eigenvalues has
quadratic contact with the parabola e,,u? + p, =0. There is also a family of planes invariant under the
reflections in O(2). These are all rotations of the “real” subspace y; = y, = 0. The restriction of (2.5) to the
real subspace gives

%= x1%,+ x,(py + ey x} + egpx2), (2.9)

s 2 2 2
X2_ ’_"_xl + x2(ﬂ2+821xl +622x2).

The system (2.9) is still quite complicated as p,, p, — 0; there may be equilibria that do not tend to the
origin. However, these equilibria play no role in our local analysis and by using the rescaling employed in
the transformation (2.5) to (2.6), we obtain the system

£ =8¢,+ €§1(V1 +epél+ 3125%)’

: (2.10)
£,=+&2+ 852(1’2 +enél+ ezzg)’

that can be studied in terms of power series in ¢. Since &§; = x,, phenomena associated with (2.10) are local
for our problem if they are @(&*) with a > —1.

Non-zero equilibria of (2.10) satisfy either £, =0 and £2 = —»,/e,, or they satisfy £, # 0. The equilibria
on the £, axis have already been discussed, while the equilibria with & # 0 satisfy +v, + (&' + gey»;
—ge,,1,)E, + (ey + €1,)E2 + ele,60 — €11€,]63 = 0 and hence solutions which are @(&*) with a > —1
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satisfy §, = —ev, — e3(e,p2 + e 9,,) +0(€3), £2 = +e2p,», + o(€?). These equilibria correspond to mixed
modes and the linearization of the equations at them has eigenvalues &(v,/2 + (v}/4 F v,,)"/?) + o(¢) in
the real plane (¢ = 0, ). Since £ = +¢2»,», > 0 for existence of the mixed mode, zero eigenvalues cannot
occur. For pure imaginary eigenvalues », must be »(¢). Further calculations yield

v, = —3e%,,v? +0(e?)
or

pa=—3enpi+o(u}), (2.11)

in terms of the original parameters. The eigenvalues in the direction normal to the real subspace are
e(2v, +»,) +o(&) and 0, the latter having its eigenvector tangent to the circle of equilibria obtained by
rotation of the equilibria in the real subspace y; =y, = 0 by the symmetry group.

Elementary bifurcation computations show that the mixed modes bifurcate from the trivial solution
when p, =0 and from the pure modes r, = (—p,/e,)"?, ¢ == (resp. ¢ = 0) on the curves

1/2
B —pae/ent (—py/en) =0, (2.12)
respectively.

We have already noted that travelling waves are equilibria of (2.4) or (2.6) with ¢ # 0, 7. Such solutions
always come in pairs and do not correspond to equilibria of (2.5), but rather to periodic orbits that are left
invariant by the symmetry group. The travelling waves must satisfy 2r} + r? =0, showing that they can
only exist in the ‘~’ case, when they are given by

ri=—Qu, +p,)/(de; +2ep,+ 2e5 +ey), (2.132)
ri=2r2, (2.13b)
cos ¢ = po(2e; + ) — pi(2ey + ) (2.13¢)

[—(2uy + ;) (der, + 261, + 2e + )] 7
The stability of the travelling waves is discussed in section 5. Travelling waves bifurcate from the mixed

mode when egs. (2.13) are simultaneously satisfied with {cos¢| =1, so that they exist in the region of
parameter space defined by

[r2(2ey; +e15) — 11 (2ey + 922)]2 < = (2p; +py)(de + 26, + 26y +eyy). (2.14)

Alternatively, we may write the bifurcation set as

2‘?214""22) dey +2(ep+ep) ey, 1/2

Py = ( 1-4(2e;,,+e -1

2 2e,, ey M 22e,, + 912)2 [( ( 11 12)#1) ]

= —2P1'(4el1+2(912+921)+322)F%+0(P‘%)- (2.15)

We remark that if we treat the truncated system (2.3), (2.4) without restricting discussion to “local”
solutions, with |p;| and |z;| small, then additional mixed modes can occur and interaction between
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bifurcation to travelling waves and standing waves becomes possible. Dropping the condition that
¢, = —ev,+o(e), & =+e’wp,+0(e?), it is possible for the mixed mode to have a second zero
eigenvalue with eigenvector normal to the zero subspace, corresponding to a bifurcation to travelling
waves. The eigenvalues of the (possibly non-local) mixed mode x, = x,, x, = X, on the real subspace are
—(2X3 + X})/X,, 0 and the roots of

M-TA+D=0,
T=2(e X2 + e, %3) Fx2/%,, (2.16)
D =4(ey 5 — epen) XiX; — 23712(921)72 t2enpX,t14 euff/)?z).

Thus, for coincident Hopf bifurcation to standing waves and pitchfork bifurcation to travelling waves we

require that (2.13a, b) and (2.15) hold and the trace T of (2.16) be zero simultaneously. Solving for X, and
X,, we find that the critical mixed mode lies at

X = 1y2X,, T=-1/(2e+ey) (2.17)
and the bifurcation point is given by

_ ep—ey _ 4e,, + 2e,, + 3ey,
= P 2
(2ell+ez2) (2e11+e22)

P =

" (2.18)

Since this implies that the p; and x; are of O(1), it goes beyond a strict local analysis, and we will not
discuss it in this paper. Proctor and Jones [6] discuss this multiple bifurcation point further.

In the following analysis we sometimes restrict ourselves to the case of e;; <0, so that the system is
globally stable. (It is easy to see that the function E =r?+ r} decreases on solution curves for E
sufficiently large in this situation.)

3. Existence and non-existence of heteroclinic cycles
We start by showing that no heteroclinic cycles exist in the ‘+’ case. In fact we have more:

Proposition 3.1. If ¢;; and ¢, have the same sign then all solutions of (2.2) are asymptotic to the set
{¢=20,—6,=0}U {¢$=m}. No travelling waves, modulated travelling waves, or heteroclinic cycles exist
in this case.

Proof. In this situation the “normalized” phase equation (2.4) is ¢=—Qr,+r2/r,)sing and since the
quantity in parenthesis is non-negative we find that ¢ <0 for ¢ € (0,n) and ¢ >0 for ¢ €(m,27) and
r, # 0. Thus ¢(7) = 0 =2m unless solutions start with ¢(0) = n. We note that the coordinate singularity at
r, = 0 does not complicate matters: solutions passing through r, = 0 near ¢ = w emerge near ¢ = 0,2, but,
since 7, = rZcos ¢ for r, =0, solutions near ¢ = 0,2 cannot reach r, = 0 again. They must therefore go to
oo or approach the ‘pure’ mode r, = (—p,/e,,)'/? or approach a mixed mode, which may be stationary or
periodic. 0



D. Armbruster et al. / Heteroclinic cycles and modulated travelling waves 265
In contrast, in the ‘=’ case we have:

Theorem 3.2. 1f €11, 5, <0, €1, + 3 < 2(e11€2,)"/%, iy, 2> 0, iy — Boerp/ex — (—py/€)" 2 <0 <py —
Poe1o/€5 + (—1y/€x)"/? and no mixed modes exist, then there is a heteroclinic cycle connecting each
diametrically opposite pair of points r, =7, =(—p,/e,)"/?, 8,=0,, r,=0and r,=#,, §,=0,+m, r,=0
on the circle of pure modes.

Proof. For ey, <0<p, there is a circle of pure modes r,=(—p,/e,)"? r =0. Without loss of
generality we restrict our attention to the two members of this circle lying in the real subspace y, =y, = 0.
These fixed points are (X, y;, X5, ¥,) = (0,0, +(—p,/€2,)"/%,0) d=efr+, r~ with eigenvalues p; — p,e,,/€5,
+ (—po/en)% —2p,, 0, respectively, and eigenvectors (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) for
r* and (0,1,0,0), (1,0,0,0), (0,0,1,0), (0,0,0,1) for r~. Under the hypotheses of the theorem, the first two
eigenvalues are positive and negative, respectively, and the third is negative. To establish the existence of a
heteroclinic cycle it is necessary to show that the (one-dimensional) unstable manifold of r*, W"(r*),
intersects the two-dimensional stable manifold of r~, W%(r~), and that W"(r™) intersects W(r*).
However, since the Cartesian equations (2.5) are invariant under the transformation (x;, y;, x,, ¥,) =
(¥, =1, =%, —py) (0Or z; > z; e/"/2), it suffices to prove the existence of the first of these connections:
the second is obtained from the first by applying an element of the symmetry group.

The eigenvector computations above show that the unstable manifold W.(r*) is tangent to the plane
¥1 =y, =0 and, since this plane is invariant for (2.5) the global manifold W"(r*) similarly lies in this
plane. Our problem therefore reduces to showing that the real planar system

. 2 2
X, = xl(l‘q +ep Xy tepxs+ xz)’

(3.1)

— 2 2) _ 2
x2—x2(p2+e21x1+e22x2) Xi

has an orbit connecting the saddle (x,,x,)=(0, +(—p,/€5)""?) to the sink (0, —(—p,/e;)"?).
Furthermore, since (3.1) is invariant under x, - —x, we may confine our attention to the positive half
plane H = {(x,, x,)|x; >0}. Now the unstable manifold W"(r*) enters H, and since the x, axis is
invariant, the « limit set of W"(r*) must lie in H (possibly at o0) or on the x, axis itself. The
nonexistence of mixed modes implies, via index arguments and the Poincaré—Bendixson theorem, that
there are no limit sets such as closed loops or periodic orbits contained in H and the conditions
€11, €y, <0 and e, + e, < 2(e;;e,,)"/? imply that solutions cross the semicircle E = x? + x3 inwards for
E sufficiently large (dE/dt=2p;x2+p,x2+ e, x} + (e, + ey)xix3+ expnx3]). Thus w(WH(r*))c
{x, = 0}. Now there are only three fixed points *, r~ and (0,0) on x, =0 and, since x;, =x,=0is a
source for p,, i, > 0, we conclude that w(W"(r*)) =r, as claimed. See fig. 1a. a

Remarks. The nonexistence of mixed modes is not necessary for heteroclinic connections. However,
stating specific conditions for existence in the presence of mixed modes is awkward. Here is an example of
the kind of statements one can make for the planar system (3.1):

Lemma 3.3. 1f e;; <OV ij, p, >0, p; — pyerp/e5 — (—po/e)? <0 <py — poery /e + (hy/ex)/? and
either p, — pie, /€, >0 and |p| is small or g, >0, then all solutions starting in the quarter plane
Q = {(xy, x3)|x, > 0, x, <0} approach the sink at (x;, x,) = (0, —(—p,/ex)"/?).
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a) b)
x2
x1

Fig. 1. Heteroclinic connections in the real subspace. (a) No mixed modes; (b) with a mixed mode; (c) a mixed mode obstructs a
connection. Note the stable standing wave (periodic orbit).

c)

Proof. Simultaneously setting X%, = x, =0 with x; # 0 in (3.1) leads to the conditions

def
xi= ‘(Hl +x2+e12x§)/eu = f.(x2),
x12 = [("11322 - e12e21)x% —enXyt e — #1321]"2/311 (3-2)
def
= gp.l,p,z(XZ)'

While a single cubic for x, can clearly be derived (cf. section 2), it is convenient to consider (3.2)
geometrically and interpret mixed modes as intersections of the graphs of f and g in the upper (x,, x2)
half plane. The conditions of the theorem guarantee that such solutions only occur in the quarter plane
x,>0, x, > 0. Thus no fixed points exist in Q and, as in the proof above, this implies that no other limit
sets exist in Q.

Since %, = —xZ on x,=0, solutions starting on the boundary x, =0 enter Q. This, together with the
fact that solutions cannot escape to oo (dE/dt <0 for large E) implies that all solutions reaching or
starting in Q are asymptotic to the sink, as claimed. |

If the hypotheses of lemma 3.3 are met, then we need only show that the unstable manifold W*(r*)
meets the x, axis transversely at some point x; > 0 to conclude that it must therefore limit on the sink.
Such a condition can be checked by numerical integration or careful construction of invariant domains.
See figs. 1b, c. We will return to examples such as these in our discussion of specific unfoldings in sec-
tion 6.
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4. The ‘-’ case: modulated travelling waves

We now turn to the scaled equations (2.6) in the case that c;, and c¢,; of (2.2) have opposite signs. The
main result is:

Theorem 4.1. If ¢, and ¢, have opposite signs, the quantity e = 4e,; + 2e,, + 2e, + e, #0and ¢ >0 s
sufficiently small, then eq. (2.6) possesses at most one periodic orbit. The family of periodic orbits
(modulated travelling waves) obtained by varying », and », limits on the travelling wave solutions
sf=2s2= —2(2v, +v,)/e, d=m1/2,31/2 when v, =»,[1 + Yey — €1,)/(€ — 3(e,, — €;,))] and limits on
the heteroclinic cycle at », = v,e,,/¢,.

Proof. For & =0, the functions E and L defined by (2.7) and (2.8) are constant on solutions of (2.6). The
phase space of (2.6) is the product of a circle S! (varying ¢) with the positive quadrant of the (s,, 5,)
plane. Note, however, that the boundary of the phase space is not invariant under the flow, and that the
points (5,0, ¢) and (s,,0, ¢ + m) should be identified so that a trajectory exiting the boundary at (s;,0, ¢)
re-enters at the point (s,,0, ¢ + ). The intersections of £ and L are transverse except on (1) the boundary
of the phase space given by s;s, = 0, and (2) the rays defined by s, = V2 s, and cos ¢ = 0. On these rays, we
have 4E* — 27L* = 0, and each ray is surrounded by a family of closed orbits formed by the intersections
of E = const. and L = const., see fig. 2. Note that 4E> — 27L? > 0 throughout the phase space. Behavior in
the region ¢ € (m,27) is identical to that in (0, w), with L replaced by — L, so henceforth we implicitly
restrict our discussion to ¢ € [0, 7]

Letting p = 57, unperturbed (i.e. ¢ =0) solutions of (2.6) may be expressed in terms of elliptic integrals
[13]. A simple computation shows that

(0)" = (2s,53)" = 4[sfs} cos? ¢] = 4(p(E — p)* - L?), (4.1)

since E=s7+p and L=s2s,sin¢. Evolution equations for E and L for the perturbed solutions may

L = const.

Fig. 2. Level sets of the integrals E and L, showing a family of unperturbed closed orbits on a surface E = const.
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then be written in terms of p:

E'=2¢[(v,+euE)E+ (v, = v+ (e, + €5 —2e1)E)p+ (e +ep— (e + ex))e?], (4.2a)
L'=eL[(2v,+9;) + (2e;+ ex) E+ ((2e15+ €35) — (25, + €1))p]. (4.2b)

We wish to compute conditions under which a given solution p(t), parametrized by £ and L, will be
“almost” preserved under the perturbation. More precisely, the method of averaging implies that for small
& > 0 periodic solutions of (2.6) will be found near the unperturbed closed orbit E = E,, L = L, when the
pair of functions

AE=fT(E°’L°)E’dt, AL=/T(EO,L0)L,dt (4.3)
0 0

has a nondegenerate zero (here T(E,, L,) is the period of the unperturbed closed orbit), cf. Hale [14],
Guckenheimer and Holmes [10, chapter 4].
Using (4.1) and (4.2), the system (4.3) has the form

[ fcatBoty? | |
se1 | 2h ey
=2 : (4.4)
AL <L(8+Xp)
fb(P(p»l” * ]

where b=b(E, L) and c=c(E, L) are the middle and smallest roots of the cubic P(p)=p*> — 2Ep*+
E% —L? and a, 8,7, 8, A are functions of E alone given by the coefficients in (4.2):

a=(v,+e,E)E,
B=(v;—v)+(e;+ey—2ey)E,
v={(en+tey)—(en+ey),
8=02v,+v,)+(2e,, te,y)E,
A=(2ep+eyp) = (26 +ey).
We now wish to use classic reduction procedures for elliptic integrals to find the zeros and the Jacobian

derivative of the mapping F(E, L)=(AE, AL). Because we are integrating around closed curves in (4.3),
the integral of any exact differential will be zero. In particular,

1/2 P’(p) 3p> —4Ep + E?
o= [alr ) =3 [ o= X GGy %

Thus

2

B AP, Ep 1 E?
T3 G 5 G (“5)
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Substituting (4.5) into (4.4) and writing I,= [(p'/(P(p))*/?)dp, (4.4) becomes

AE 2A0a—3E*) 2(B+4Ey) || Lo
[ ]=2[( ’ 1EY) . (4.6)
AL LS LA I
IO
Now (4.6) has non-trivial zeros if and only if the determinant of the matrix is zero and lies in the
Il
kernel of the matrix. For non-zero L, this gives an equation depending only on E, namely
AMa—3E*y) - 8(B+3EY)=0 (4.72)

and an equation for the ratio of the elliptic integrals (which do depend implicitly on L via the roots b, ¢ of

P(p)).

I 8
I--% (4.7b)

Since (4.7a) is independent of L, a solution of the system (4.7) will be non-singular provided that the
partial derivatives of (4.7a) with respect to E and (4.7b) with respect to L are non-zero:

(M@= 1E2)y—8(B+4E7)) #0, (4.82)
2 ( L ) #0. (4.8)

Once again, the classical reduction procedure of Legendre for elliptic integrals [13] can be used to
re-express (4.8) in terms of I, I;. We have

az() - [(5)n-n(52)]

and define
1=51 = far| 7 )dp=f—pf(z>(p))‘3ﬂdp.
Now
i/ (P(If:)(;)m 3= 2B+ BV — LY,

(4.9)

o=fd

= (i+ 1) L= 3[3),3— 4EJ, + EY ],

pi+l )
(P(p))'?
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and
0=1[3J,— 4EJ, + E¥,).

From (4.9) for i=0,1 together with the final equation, we obtain 5 equations for I, I,, Jy, J;, J5, J3, J,
which can be used to express J, and J; as functions of I, and I,. We finally obtain

Jo 1 9L2—2E? 2E? I,
=— . (4.10)
L| LGE=21L%) | 19E12—2E* 2E%-912||1,
Using (4.10), we evaluate
3 (I
B_E(T;) = (10J1 - 1110)/102
as
3 (I 1 I I\?
B_L(I_(l,) = G 7 (12EL*>-2E*) +2(2E* - 9L2)(I—(1)) - 2E2(I—(1)) ] (4.11)

The discriminant of the quadratic expression for (1, /1) in (4.11) is 3L%(27L? — 4E?), and this is negative
away from the boundary of the phase space and the ray of singular points given by s, =v2s,. We
conclude that (4.11) can never be zero in the interior of the family of closed orbits of the unperturbed
system and hence that (4.8b) is satisfied.

Next, we examine (4.8a). To begin with, evaluation of (4.7a), the condition for the matrix of (4.6) to be
singular, yields

)\y(a— %Ez) —8(B+4EY)

(4.12)
=3(r = v+ (e exn)E) (69, + 3v, + (dey, + 2e, + 2ey + e, E).

We denote the roots of (4.12) Ey; and E, respectively, since they correspond to the desired modulated

travelling waves and the travelling waves themselves. The vanishing of (4.8a) simultaneously with (4.7a)

requires that (4.12) have a double zero; i.e., both factors of (4.12) must vanish simultaneously. Now the

root of (4.12) with

—3(2», +v,)
E=Er= 4e,,+2e,+2e, + ey (4.132)
yields a value for I, /I, of
I, —(2v,+ ) _E
I,  de,, +2e,+2e,+e, 3° (4.13b)

This value of I,/1, corresponds to the value for L with L?=4E?/27 realized at the travelling wave
equilibrium solutions. On a nonsingular orbit of the unperturbed equation, we conclude that (4.8a) is
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AE . E . .
satisfied. Therefore, the variation ( ) is a nonsingular function of ( ) on the nonsingular orbits of the

unperturbed equation. Our analysis implicitly assumes that the quantLity e=4e,, +2e,,+ 2e, + ey, of
the theorem, is non-zero. If this condition fails, then the vector field is highly degenerate: for example,
there is a whole curve of equilibrium solutions that occur when 2», + v, =0.

Since the derivative of the mapping obtained from (4.6-7) is triangular and nonsingular, the mean value
theorem implies that, if e+# 0, eq. (4.4) has at most one zero for each set of parameter values. This
establishes that there is at most one modulated travelling wave solution in ¢ € (0, m) for each set of
parameter values.

To complete the proof we compute the bifurcation point at which the two roots E,, and E; of (4.12)
coincide:

Eoo T _ —3(2v,+v,) _E.
M™ e,—ey)y 4de,+2e,+2ey+ ey T
thus
9 _
R (e~ €1) (4.14)

4e,, +5e,+2ey — 264 |

This coalescence of modulated travelling wave and travelling wave corresponds to a Hopf bifurcation, as
an elementary calculation with (2.6) linearized at the approximate fixed point shows (cf. section 5 below).
At the other limit we choose Eyy = s+ 52 =0+ ((—v,/e5,)""?)* = —»,/e,,, the level set corresponding to
the saddle points s, = +(—»,/e,,)}%s, =0, to obtain

B =2Th
€12~ € €n
or
v,=veyn/e. (4.15)
We remark that the two bifurcation equations coincide when e, = e,, or 2e,; + €5, = 2e,, + €4,. o

5. Stability of heteroclinic cycles and modulated travelling waves
We start with a general result on asymptotic stability of the heteroclinic cycles discussed in section 3.

Proposition 5.1. 1f the hypotheses of theorem 3.2 or of lemma 3.3 are met, a heteroclinic cycle exists and if,
in addition

. 1,2
mln{2u2, _(l‘l —pae/en—(—ny/exn) / )} >y~ poer/ent (‘#2/322)1/2

then the heteroclinic cycle is locally asymptotically stable.
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Proof. We consider the behavior of solutions arbitrarily close to the heteroclinic loop, so that the time
taken for one circuit near the loop is dominated by the periods spent in the neighborhoods of the saddle
points, where the linear terms are dominant. Straightforward estimates of the type performed in Silnikov
[15] (cf. Guckenheimer and Holmes [10, chapters 6.1, 6.5]) then show that, if the positive eigenvalue of the
saddle A, =p, — p,e;,/€, + (—p,/€x)/? is smaller than the magnitude |A,| of its weakest negative
eigenvalue, then solutions entering a §-neighborhood U of the saddle at a distance d, <8 from the stable
manifold exit at distance

dy < 8A-N/Ag/A 1 + 0(5)] (5.1)

from the unstable manifold. Here A, = min{2p,, — (g, — pr€15/€5 — (—R,/€5,)/?)} is the weakest stable
eigenvalue and (5.1) is obtained by integrating the flow in “normal coordinates” near the saddle:

1, = (A +£(x0)x,,

o= (A, +f(x))x,. (5.2)

where A is a matrix of negative eigenvalues, the weakest being A, x, and x, lie in the (local) stable and
unstable manifolds, respectively, and f, = @(|x|) are the nonlinear terms, which are ¢(8) in U.

Thus the rate of attraction to the cycle in the neighborhood of a saddle point is controlled by the ratio of
the unstable and weakest stable eigenvalues. If |A /A | > 1 then, for sufficiently small 8, d, <d,; and
solutions in U are attracted to the cycle.

The time taken for solutions to pass through U becomes unbounded as 4, — 0, in fact

’*Aiuln(d%)’ (5:3)
while the time for solutions to pass from saddle to saddle is independent of d,, d,. Gronwall estimates
then show that, while solutions may drift away from the cycle as they pass between saddles, the attraction
near the saddles dominates.

The present situation is potentially complicated by the existence of a zero eigenvalue and associated
center manifold. However, the fact that this is due to the O(2) group action implies that there is no motion
in the direction corresponding to this eigenvector. O

We now turn to the question of stability of the travelling and modulated travelling waves. Here it is
convenient to consider the scaled equations (2.6), as in section 4. The travelling wave fixed point is given
by (2.13). Expressed in terms of the scaled variables s, =r,/e and parameters »,= j/ez, we have

si=—Q2v,+vy)/e,  si=2s3
and
sycosp= —e(v, + ey s+ epp53), (5.4)

V2(2€11 + 312) - "1(2321 + ezz)
(_(2”1 + ”2)‘3)1/2

COsS¢p =&
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where e =de,, +2e,, + 2e,, + e,, (assumed # 0) is the quantity occurring in theorem 4.1. We conclude
that sin¢ = 1 + @(&?). Linearizing (2.6) at this fixed point, we obtain the matrix

4eey p V2e2e,0 - P V2p
M=|2¢[2e,p+2P,] 2¢[eyp—P,] 20 |+ 0(e?), (5.5)
2/2 -4 0

where P, = v, + (2e,; + e;,)p and p=s= —(2v, + »,)/e. The characteristic polynomial for (5.5) is, to
order &,

N —2e((ey—€12)p — ;) N* + 12p\ — 8eep® =0,
giving eigenvalues to order &:

VZ_

A= —%(2”14'”2), >\2,3=5(Tyl+(e22——312)p>i2\/§i, (5.6)

Substituting in (5.6) for p, we conclude that the travelling wave fixed points are stable, for sufficiently
small ¢, if

— 2 + —
20, +9,>0 and 271 (2%, ”2)2“’22 en) (o, (5.7)

Note that the second condition becomes an equality precisely when (4.14) is satisfied, when the branch of
modulated travelling waves meets the branch of travelling waves. This leads us to:

Theorem 5.2. A Hopf bifurcation to modulated travelling waves occurs from the branch of travelling
waves of the scaled system (2.6) at

ey, —e def
v, = 1+M =eV1a. (5.8)
e—3(en—ep)
Moreover, if ey, €;, <0 and e =4e;; +2e,, + 2e, + e,, <0, the travelling waves are stable for », < »,a
and unstable saddles (with complex conjugate eigenvalues with positive real part) for »,>»a. If,
furthermore,

Iexn —e1r) <&

a=1+
e—3epn—en) en

(resp. > Z’_zg)’ (5.9)

12

then the modulated travelling waves exist for »,/v, € (a, ey,/€,,) (tesp. (e,,/€;,, a)) and are stable (resp.
of saddle type) for |v, — »,a| sufficiently small.

Proof. The computations of eigenvalues above allow us to check all hypotheses of the Hopf theorem
except the sign of the leading nonlinear term (Guckenheimer and Holmes [10, chapter 3.4]). However,
perturbation calculations of section 4 obviate the need to do this; the conditions used in the proposition
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determine on which side of the bifurcation point (5.8) the modulated waves occur (cf. egs. (4.14), (4.195))
and the stability conclusions can be drawn from center manifold theory applied at the bifurcation point. O

Remark. Similar results can be given if e > 0, but in that case, since existence of travelling waves requires
that —(2v; +v,)/e>0, we have (2, +»,) <0 and both travelling waves and modulated waves are
unstable.

The bifurcation and stability results of theorem 5.2 and theorem 4.1 are given in terms of the scaled
coefficients v, = ./ ¢%. In terms of ,» recalling that the analysis is accurate only to order ¢(¢), we have the
Hopf bifurcation set

9(922_912)
= 1+ ——F——=+0(¢), 5.10
K= e—3(e22—e12) ( ) ( )

and the coalescence of the modulated travelling wave with the heteroclinic orbit at
By=pen/en+0(e). (5.11)

An interesting fact emerges here. If —2p, <p, —p,e1,/€, — (—p,/€5,)/? <0, then the eigenvalue
ratio A,/A of the proof of proposition 5.1 is controlled by the quantity p, — p,e,/e,,: specifically, if
By — Boe1,/epn <0 (resp. > 0) then A /A > 1 (resp. <1). Thus, for u, > p,e,,/€,, we have an attracting
heteroclinic cycle and for p, < p.e,,/e;, a non-attracting cycle. The bifurcation value p,=pie,,/e,
coincides with the leading term of (5.11): the stability type of the heteroclinic cycle changes when the
branch of modulated waves reaches it. But there is a complication. In the small ¢ limit of the scaled
equations the eigenvalues of the saddle points in the heteroclinic loop are

2
_3(_”2/922)1/2 + 52(”1 - Vzeu/ezz) < —252”2 <0< 5(_”2/6’22)1/ + 52(”1 - Vzelz/ezz)

and consequently, even when », > ve,,/e;,, we do not necessarily have asymptotic stability, since the
weakest stable eigenvalue is 0(e?) and the unstable eigenvalue O(e).

However, the special structure of our O(2) symmetric problem comes to the rescue here: the fact that the
planes ¢ =0, (and s, = 0) are invariant for (2.6) is crucial. This in turn implies that the set L =10 is
invariant for the slowly varying perturbation equations (4.2). We will use this fact to show that L(¢)— 0
for solutions near the heteroclinic cycle.

The family of unperturbed heteroclinic cycles for (2.6) with £ =0 is given by solutions of (4.1) with
L=0:

p'=2/p(E—p)
and may be written as
p(t) = E tanh? (YE t + ¢) (5.12)

for solutions based at p(0) = E tanh?® (c).
The following lemmas show that the heteroclinic orbit is asymptotically stable in the limit ¢ — 0.

Lemma 5.3. If v, v, >0 and »; — v,e,,/e,, <0 then L(t) — 0 as 1 = + oo for solutions of (2.6) lying in a
neighborhood of the heteroclinic cycle connecting the saddles at s, =(—v,/e,,)"?, 5,=0, $ =0, 7.
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Proof. Existence of the heteroclinic cycle is guaranteed by theorem 3.2 since in the limit £ — 0 eq. (2.6) has
no mixed modes for v, », <0. We set E= —v,/e,, + F, the constant corresponding to the level set on
which the saddle points lie. After substitution of p(#) from (5.12), the evolution equation (4.26) for L then
becomes

L'=eL [2("1 —ren/en)
—,

+((2ey; + ey) = (2ep, + ezz))(e_n) sech’ ((“Vz/ezz)l/zt)] +0(LF),

which implies that the linearized equation satisfies

fL(';iLIi = ef'(A + Bsech* /Ct)dr = e[ A(1— 1,) + BYC (tanh VC1 — tanh /C1,)|
Lty o
L(t)=L(0)exp(e[A(1—1ty) + D(1,1,)]). (5.13)

Here A = 2(v; — vyen/€p), B= Qe +ey)— Qe +ep), C= —»,/e,, and since D(1,ty) =
BYC (tanh Y C t — tanhVC t,) is uniformly bounded by 2BYC we conclude that, provided 4 <0, L(¢)—0
as ¢ — oo. ]

Lemma 5.4. If v, >0 then E(t) - v,/e,, as t = + oo for solutions of (2.6) lying in a neighborhood of the
heteroclinic cycle.

Proof. The computation proceeds much as that above. Linearizing the evolution equation (4.2a) for E
about the unperturbed heteroclinic orbit given by (5.12), letting F=»,/e,, + E, we obtain

F’=2£F{—v2+

2v 1/2
SRR e_222(612+ €n _ezz)] sech? ((—v7/e22) / t)

_in

ers [(e1, + ex) — (€15 + €3)] sech® ((_Vz/ezz)l/zt)} +0(F?),

which, as above, implies that, for the linear system
F(t)=F(0)exp(2¢[—»,(t —t,) + D(t,1,)]), (5.14)

where D(t, t,) is uniformly bounded, since it contains terms of the form const. X tanh (—»,/e,,)/?t) and
const. X tanh® (—»,/e,,)/%t). We conclude that F(¢) - 0 as ¢ > + co for F(0) sufficiently small, provided

v, > 0. This in turn implies that E(¢) —» —»,/e,, and thus that nearby solutions approach the unperturbed
heteroclinic cycle. O

Remark. The time spent by solutions in the neighborhood of the saddle points at s, = (—7,/e,,)/?,
s; =0, ¢ =0, 7 dominates the behavior of £ and L in these computations. The same feature leads to
logarithmic singularities in the elliptic function computations of section 4.
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These two lemmas imply that theorem 5.2 can be extended to the scaled system for & small:

Theorem 5.5. If a heteroclinic cycle exists for the scaled equations (2.6) then for & # 0 sufficiently small
and »,> 0, v, — »,e,,/€,, <0, the cycle is locally asymptotically stable. If, moreover

a=1+ 9(exn—e1) <2(res.>f—2)
e—3(ep—ep) en 12

then the modulated travelling waves which exist in a neighborhood of the homoclinic cycle for »,/»; <
€5,/€, (Tesp. > ey /e1,) and |v; — v,e1,/e,,| small are asymptotically stable (resp. of saddle type).

Proof. The first assertion follows directly from lemmas 5.3 and 5.4. To establish the second assertion,
observe that the perturbation calculations of section 4 show that the modulated travelling wave is the only
limit set of (2.6) which lies in a neighborhood of the heteroclinic orbit (when |v, — »,e,,/€,,| is small) and
that it exists only under the conditions specified. Consider a Poincaré return map defined on a cross
section X in (E, L) space near the cycle E=v,/e,,, L =0, with domain L€[0,8), E€(—r,/ /ey —
8, —v,/e,, + 8). (Although solutions on L = 0 flow into the saddle point and hence do not return, we shall
think of the heteroclinic cycle as a fixed point of the map 0. The computations of (5.13), (5.14) show that
the heteroclinic fixed point in X is a sink for »,>0, », —v,e;,/€,, <0 and a saddle for »,>0,
v, —e1,/€, > 0. It then follows from index theory arguments that the additional modulated travelling
wave fixed point in 2 has the stability properties claimed. O

We note that the local stability results for the modulated travelling wave of theorem 5.2 and 5.5 extend
to the entire branch of waves, which are therefore stable if a <e,,/e,, and unstable if a > e,,/e,,. This
follows from the fact that the Jacobian matrix of the linearization of the slow evolution equations (4.2) for
the quantities E and L has triangular form and is nonsingular, as was pointed out in section 4.

6. Examples

To illustrate the theory developed above, we will discuss two examples. In each case we fix the
coefficients e, ; of the cubic terms and present a bifurcation set in (g, p,) space along with a bifurcation
diagram showing how nontrivial solutions of various types branch from the trivial solution and from each
other, as parameter values traverse a closed path around the origin in (g, #t,) space. In the first case we
also show some phase portraits to illustrate the standing and travelling waves, heteroclinic orbits, and
modulated travelling waves. We start with the ‘-’ case.

Example 1. “=" case: e;;= —4, ej,=—1, ej;=—2, e)= —2. Here e=4e;; +2e, +ey)+ey=
—24 <0, ey/e;,=2 and a=1+9(e,, — e1,)/(e—3(epn—e,))=10/7, so that a <e,,/e;,. Thus, by
theorems 5.2 and 5.5, the branch of modulated travelling wave is stable. Fig. 3 shows the bifurcation set,
the bifurcation of mixed from pure modes, of travelling waves from mixed modes and the Hopf and
homoclinic bifurcations to modulated waves being computed from egs. (2.12), (2.14), (5.10) and (5.11),
respectively (thus the Hopf bifurcation curve for modulated travelling waves is accurate only in the scaling
limit ¢ = 0 (eq. (2.6)). Note that the other Hopf bifurcation curve, for standing waves from the mixed
mode fixed point (eq. (2.11)), is tangent at p, = p, = 0 to the curve on which the mixed modes themselves
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1, MTWH
. MTWHopf
™, | MM, P
SWH
MM, \ SWHopt
a b d e/ i
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\\
\\ MM T
\\
PM PM
H
™,
MM,
Fig. 3. Bifurcation set for eq. (L.1), ‘~" case: e;; = —4, e;; = —1, ey = —2, 5, = —2. PM: bifurcation of pure mode from trivial

solution;: MM, MM _: bifurcation of mixed modes from pure modes with ¢ = 0 (resp. m); SWH, SWHopf{: heteroclinic and Hopf
bifurcation to standing waves; TW;,, TW, bifurcation to travelling waves from mixed mode on ¢ =0 (resp. ¢ =a); MTWH,
MTWHopf: heteroclinic and Hopf bifurcation to modulated waves from travelling waves; MM{, MM_: bifurcation to mixed mode
from trivial solution on ¢ =0 (resp. ¢ =)

bifurcate from the pure mode (cf. the discussion in section 2). There is a third curve tangent to these two in
which the standing waves vanish in a heteroclinic loop bifurcation (cf. Guckenheimer and Holmes [10,
chapter 7.4]), which we have not attempted to compute asymptotically. This curve is shown in dashes in
fig. 3. .
The corresponding bifurcation diagram is shown in fig. 4 and fig. 5 displays a sequénce of phase
portraits and two-dimensional projections of solutions for the example. The way in which the (globally)
attracting heteroclinic cycles of theorem 3.2 are “released” by the heteroclinic loop bifurcation to the
standing wave is made clear in figs. 5b, ¢, d. For these particular parameter waves the latter is unstable,
and a stable mixed mode coexists with the attracting heteroclinic cycle. The parameter values correspon-
ding to these phase points are indicated on fig. 3. Note the characteristic Lissajous figure for 1:2 resonance
of the (x,, x,) projection in fig. 5f: this feature is still present in the modulated wave of fig. Se.

We have fixed specific parameter values e,; for the system illustrated here. While similar pictures are
obtained for any e;; <0, the relative position and sequence of Hopf and heteroclinic bifurcation to
standing waves and modulated travelling waves can change (cf. theorems 5.2, 5.5).

& =+
++ MM, Py PM MM

Fig. 4. Bifurcation diagram for eq. (1.1) ‘—’ case: (pu,, p,) follows a closed path around (g, ¢,) = (0,0)). See fig. 3 for key. Stable
solutions indicated by heavy lines, 777777 denotes attracting heteroclinic cycles and ‘+’ denotes an eigenvalue with positive real part.
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mode x, mode X,

c) d

Fig. 5. Phase portraits corresponding to points a—f of fig. 3, p, = 0.2 all cases. (2) p; = —0.04; (b) p, = —0.033; (¢) p; = —0.030;
(d) p, = —0.01; (e) p; = 0.135; (f) ; =0.2. Note unstable standing wave coexists with (stable) heteroclinic cycle in (c) and note
modulated travelling wave in (). The six panels in (¢} and (f) show projections of the solutions into various planes.

Example 2. “+” case: e;;<0, Vij. In the “+” case, by proposition 3.1 there exist no travelling or
modulated travelling waves and we have only to deal with pure and mixed modes and (possibly) standing
waves. The bifurcation set corresponding to the choice of all cubic coefficients negative irrespective of
magnitude, is shown in fig. 6. In this case the local mixed mode is always of saddle type and thus Hopf
bifurcations to standing waves cannot occur. However, the existence of a non-local mixed mode is
important, since, with all e,; <0, the flow is directed inwards for large E = |z,|? + |z,|* and there is always
a compact attracting set. At the same time, there are parameter values (g, p,) for which the fixed points
near the origin are all unstable. This apparent paradox is resolved by the existence of a stable, non-local
mixed mode, indicated in the bifurcation diagram of fig. 7.
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Fig. 5. Continued

In the “+” case, the precise values of the cubic coefficients e,; play a less important role than in the
“—~> case. In view of proposition 3.1, we can restrict our attention to a study of the reduced system (2.4)

with ¢ =0 or ¢ =m. Collectively, this is equivalent to studying the purely real system in Cartesian
coordinates:

. 2 2
Xp=Xxyx,+ xl(p‘l teyuxy+ e12x2),

(6.1)

s 2 2
X, =Xxq +x2(p,2+e21+e22x2).

Local bifurcation analysis via center manifold theory or Liapunov-Schmidt reduction at the trivial
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Fig. 5. Continued.

solution x; = x, = 0 leads to the bifurcation equations

. 1
E=mé+ (en =g €+ 008")
in the case u, = 0, and

£=p b+ e+ 0(4*)

0.5

(6.2)

(6.3)

in the case p,=0. (cf. Guckenheimer and Holmes [10, chapter 3]). Eq. (6.2) describes bifurcations to
mixed modes from (0,0) and eq. (6.3) describes bifurcations to pure modes from (0,0). Similar equations
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H,

MM

PM PM

LN

< 0 Vi. PM: bifurcation to pure modes from trivial solution; MM,, MM, :

Fig. 6. Bifurcation set for eq. (1.1), “+” case, ¢; T
bifurcation of mixed modes from pure modes with ¢ = 0 (resp. ¢ = 7); MM, MM/ : bifurcation of mixed modes from trivial solution

with ¢ =0 (resp. ¢ =).

+ MM
. MM, -
+4+
MM, PM ++ MM, *Ett pM 4+

Fig. 7. Bifurcation diagram for eq. (1.1), “+” case: (p,, p,) follows a closed path around (, p;) = (0,0). See fig. 6 for key. Stable
solutions are indicated by heavy lines; non-local (stable) mixed mode by dashed ones; + denotes an eigenvalue with positive real

part.

can be written for bifurcations to mixed modes from the pure modes (x;, x,) = (0, £(— U,/€5,)' /%) They

are

E=p.b+c 8+ 0(l4%), 9
where

1,2

pi =W - ,1,2612/6’22 i (—“2/e22) /

and
1 2p,e,e
Ci =€ + s—11 i (2@12+ 821)(—”’2/822)1/2_ 292122 = ’

2,

respectively, in the cases x, = (—p,/€,,)"/? (¢ =0) and x, = —(—p,/e,,)""? (¢ = ).

If we are concerned only with the local behavior, so that the |u ;| are small, then 1/p, in (6.2) and in ¢
in (6.4) is large and the cubic coefficients in both of these equations are determined by the sign of .,
irrespective of the signs and relative magnitudes of ¢;;. Of course, we require i, and e,, to have opposite
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sign for the existence of pure modes x, = +(p,/e)). Thus, if e,, <0, we have p, >0 in (6.4) and the
cubic coefficient ¢ is positive for small u,. In (6.2) the cubic coefficient is negative for p, > 0 and positive
for p, < 0. Equipped with this information, the bifurcation diagram of fig. 7 can be sketched. To check the
conditions for existence of local and non-local mixed mode branches, it is helpful to refer to the pair of
equations analogous to (3.2) for the “+” case.

In the bifurcation diagrams, we have also indicated the stability of branches by the number of
eigenvalues with positive real part (denoted by +, + +, etc.). These assignments differ from the usual
ones, due to the degeneracy forced by O(2) invariance. They can be understood in the following way: every
bifurcation point on the trivial branch is degenerate: i.e. two eigenvalues change sign. On the bifurcating,
non-trivial branch, one of these becomes the zero eigenvalue, with eigenvector tangent to the group orbit,
the other obeys the usual exchange of stability arguments. Bifurcation from non-trivial branches occurs in
the usual way.

7. Conclusion

We conclude with brief remarks on the implications of our analysis of the truncated system (2.3) for the
full system (1.4). We have already observed that, since the full vector field is O(2)-equivariant, the
(hyperbolic) invariant tori carrying “linear” flow, found in (2.3), persist for (1.4) and that no frequency
locking will occur. Perhaps more strikingly, since the heteroclinic cycles are formed from structurally
stable saddle—sink connections within each two-dimensional invariant subspace {¢ =28, —6,=0, 7},
they also persist for the full problem, just as in the simpler situation considered by Guckenheimer and
Holmes [8]. Thus the structure of the heteroclinic cycles and modulated traveling waves cannot be
destroyed unless the O(2) symmetry is broken. The persistence of simpler structures (fixed points, periodic
orbits) and codimension one local bifurcations (saddle-nodes, pitchforks, Hopfs) for the full system
follows from the usual stability arguments, cf. Guckenheimer and Holmes [10].
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