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1 Fluttering flame front

Turbulent flow drives a fluid through a repertoire of unstable patterns. As we watch a
turbulent system evolve, every so often we catch a glimpse of a familiar pattern. For
any finite spatial resolution, for a finite time the system follows approximately a pattern
belonging to a finite alphabet of admissible patterns, and the long term dynamics can be
thought of as a walk through the space of such patterns, just as chaotic dynamics with
a low dimensional attractor can be thought of as a succession of nearly periodic (but
unstable) motions.

Here we apply this vision to the flame flutter of gas burning on your kitchen stove.
We are happy if in a few days of experimentation we succeed in simulating the system
numerically, and develop some intuition about turbulence.

2 Problem formulation

Please read the chapter “Turbulence?" [1]

A flame front is described by the Kuramoto-Sivashinsky [KS] equation

ut = −1
2
(u2)x − uxx − uxxxx . (1)

Here t ≥ 0 is the time and x ∈ [0, L] is the periodic space coordinate. In what follows
we use interchangeably the “dimensionless system size” L̃, or the periodic domain size
L = 2πL̃, as the system parameter. The subscripts x and t denote the partial derivatives
with respect to x and t; ut = du/dt, uxxxx stands for 4th spatial derivative of the “velocity
of the flame front” u = u(x, t) at position x and time t.
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2.1 Energy budget

As the “flame front velocity” u(x, t) = u(x + 2π, t) is periodic on the x ∈ [0, 2π]
interval, expand it in a spatial Fourier basis:

u(x, t) =
+∞∑

k=−∞
ak(t)eikx/L̃ . (2)

Since u(x, t) is real,

ak = a∗
−k . (3)

Substituting (2) into (1) yields the infinite ladder of evolution equations for the complex
Fourier coefficients ak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞∑
m=−∞

amak−m . (4)

As ȧ0 = 0, the solution integrated over space is constant in time. We set this average
velocity to zero, a0 =

∫
dxu(x, t) = 0. The coefficients ak are in general complex functions

of time. The constant solution u(x, t) = 0 is an equilibrium point of (1). For this
“laminar” equilibrium the stability matrix is diagonal,

Akj(a) =
(
k2/L̃2 − k4/L̃4

)
δkj , (5)

and so is the Jacobian matrix Jt
kj = δkje

(k/L̃)2(1−(k/L̃)2)t . From (5) it follows that the
|k| < L̃ long wavelength modes of this equilibrium are linearly unstable, and the |k| > L̃
short wavelength modes are stable. For L̃ < 1, u(x, t) = 0 is the globally attractive stable
equilibrium, i.e., the dissipation is so strong that any flame front burns out.

2.1 Energy budget

A theory of turbulence should predict measurable properties of turbulent flows, such as
their mean energies and their energy dissipation rates.

The time-dependent average velocity-squared

E =
1
L

∫ L

0

dx
u2

2
(6)

has a physical interpretation as the average “kinetic energy” density of the flame front.
Its time evolution is given by the power/dissipation energy rate equation

Ė = P − D , P =
〈
(ux)2

〉
, D =

〈
(uxx)2

〉
. (7)

KS is a far-from equilibrium system: the power P pumped in by the anti-diffusion uxx

is balanced by the hypervicosity uxxxx dissipation rate D. In principle, these are exper-
imentally observable quantities, used in what follows as flow diagnostics.

2.2 Computation

We used R. L. Davidchack’s implementation of Kassam and Trefethen code[2]:

ChaosBook.org/extras/#PDEs .
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3 Fishing

Figure 1: The energy (6) of all equilibria that exist up to L̃ = 4.5 plotted as a function
of the system size L̃ (from ref. [3]). Solid curves denote n-cell solutions, dotted curves
GLMRT, the dash-dotted curve the ‘giant states’, and dashed curves the relative equilib-
ria. Open circles indicate Hopf bifurcations. The color of a branch indicates the number
of unstable eigenvalues: (red) 2 unstable eigenvalues, (blue) 1 unstable eigenvalue, (green)
stable.

3 Fishing

From here on we turn to numerical experimentation. Take L sufficiently large so that the
dynamics can be spatiotemporally chaotic, but not so large that we would be overwhelmed
by many short wavelength modes needed in order to accurately represent the dynamics.

A bit of advice: start on terra firma, small system size L̃ = 1, and increase L̃ a little
bit, integrate until the trajectory has settled down; then increase L̃ a little bit again,
restart from the trajectory just computed, integrate until has settled down. Repeat.
Sometimes stop incrementing the trajectory, increment N instead and check how sensitive
is your attractor to truncation number N . This “adiabatic” approach has advantage of
(almost) always starting you close to the attractor, thus avoiding long transients typical
of random starting conditions.

The problem with high-dimensional truncations of (4) is that the dynamics is difficult
to visualize. We visualize a trajectory by its projections onto any three 2 or 3 basis vectors
(states of the system): see Davidchack code for examples.
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3.1 Bifurcations with the increase of system size L

3.1 Bifurcations with the increase of system size L

Explore dynamics for different system sizes L by plotting long trajectories both in the
state space and in color-coded space-time plots of u(x, t). If the long time trajectory is
settling on an attractive equilibrium or periodic orbit, eliminate the initial transient by
starting the plots only after the transients have died out.

Classical papers on the equilibria of Kuramoto-Sivashinsky equation, bifurcations and
symmetry analysis are Kevrekidis, Nicolaenko and Scovel [4], and Greene and Kim [3].
You might be able to identify your states in the fig. 3 bifurcation diagram. To get the
right E, multiply by 4; the horizontal axis is L̃ =

√
α/4.

Here is what the class fished out, listed as series of numerical experiments ordered by
L̃ parameter. Please send you .png files to Matt Marshall, raequin[snail]gmail.com

1.5915494: L = 10 (Holt)
stable E1

1.7603981: L̃ = 1 + π/4 − 0.025 (Marshall)
What’s this bifurcation? Narrow the gap ±0.025 to see whether it really happens
at L̃ = 1 + π/4 ± ε. Why would that happen?

1.8103981: L̃ = 1 + π/4 + 0.025 (Marshall)

1.9098593: L = 12 (Holt, Hermand)
stable periodic orbit

2: L̃ = 2 (Marshall)

2.0690142: L = 13 (Iacobucci)
relative periodic?

2.078125: L̃ = 2 + 5/64 (Marshall)
slowly drifting relative periodic?

2.09375: L̃ = 2 + 3/32 (Marshall)
flipping between E1 and 1/2 shifted E1?

2.1591549: L̃ = 2 + 1/2π (Marshall)
flipping between E1 and 1/2 shifted E1?

2.2281692: L = 14 (Hermand)
stable E2

item[2.5:] L̃ = 2 + 1/2 (Marshall)
why does this trajectory project to (0, 0, 0) in Ruslan’s (v1, v2, v3) basis?

2.8647882: L = 18 (Marshall, Hermand)
attractive cycle?

3: L = 3 (Sonenblum)
flipping between E1 and 1/2 shifted E1?
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3.2 Energy dependence on L

3.0239439: L = 19 (Holt)
stable E2

3.22: L̃ = 2.5 + 3/4 − 0.03 (Marshall)
attractive cycle

3.28: L̃ = 2.5 + 3/4 + 0.03 (Marshall)
flipping between E2 and 1/2 shifted E2, via the above unstable cycle neighborhood?
What’s this bifurcation? Narrow the gap ±0.03 to see whether it really happens
at L̃ = 2.5 + 3/4 ± ε

3.3422538: L = 21 (Li)
relative periodic attractor? unclear

3.6605636: L = 23 (Davydychev, Holt)
strange - looks like cycle but keeps flipping

3.8197186: L = 24 (Hermand, Silverman)
spiral into E3 attractor

3.8408862: L = 24.133 (Marshall)
spiral into E3 attractor

3.978873: L = 25 (Li, Hermand)
spiral into E3 attractor

4.138028: L = 26 (Anzalone, Iacobucci, Holt)
unclear. Iacobucci drifting 3-cycle, Holt 3-cycle

4.4563384: L = 28 (Davydychev)
equilibrium

4.6154933: L = 29 (Hermand)
settles into a wierd state, asymptotic only after t > 250

5: L = 5 (Sonenblum)
stable E4

5.411268: L = 34 (Freeman)
co-existing attractors?

6.3661977: L = 40 (Iacobucci)
interesting transient

7: L = 7 (Sonenblum)
turbulent

9: L = 9 (Sonenblum)
turbulent

3.2 Energy dependence on L

Iacobucco and Freeman have interesting ways of scanning energy as function of L. With
this they have explored bifurcation sequences by plotting (inter alia) the time-averaged
values (E, P , D) of (E, P, D) defined in (7), for small increments of 1 < L < 25.
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3.3 Turbulence at L̃ = 22?

3.3 Turbulence at L̃ = 22?

1. Plot several long trajectories for L = 22, different initial conditions, using the
same vector basis as Davidchack. Is your dynamics qualitatively the same as in his
plots?

[Holt has nice long time runs]

2. Do you get any stable periodic orbits for L̃ = 22? If you do, we would love to see
them - have not found any.

[Nobody saw anything different, and no stable orbits were observed. Only Sharon
tried a set of different initial conditions, but al close-by]

4 Turbulence goes Hollywood

Kirill Davydychev: I left my laptop overnight to compute this flame front movie:

FlameFront [avi format].

From it one can guess the stable/unstable cycles, the period for them seems to be
around 7L, with 3.5 L separation. you mean period in time, or

that by increasing L̃ by 1 you
see another bifurcation?Also, here is a geeky approach to the onset of chaos: consider the file sizes of each

frame. In a lossless format such as .png, the compression ratio is an indicator of the
complexity of the structure, see graph of L vs. the file size. It correlates with the chaotic
behavior of this system (not to mention that it’s also completely useless).

Now, have a Carlsberg, perhaps the best beer in some parts of Copenhagen, and a
good summer.
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