
* * *

Phys 251/CS 279/Math 292 Winter 1999 page 1

Chapter 2

Chapter 2: From Maps to Chaos

Goals:

• To use graphics to reveal the range of behaviors exhibited by a
simple dynamical system, the logistic map

• To be able to use Java arrays, methods, and classes.

A. Introduction. Undergraduate mechanics courses start from
Newton's laws. Given the velocity and position of a particle at some
instant of time, these laws enable the prediction of the velocity and
position at all future times. From one point of view, these laws are
the simplest description of mechanics. If you want to predict when
a cannonball w i l l hit the ground, then you need to know both its
velocity when it was shot out of the cannon as well as whether the
cannon was on top of a hill. However, if one looks at Newton's laws
as a set of rules for predicting the velocities and positions at a
later time given their values at some earlier time, then it is natural
to consider systems described by different rules.

Indeed, one can imagine a system represented by a single variable x.
For example, in a problem involving population growth, x might be a
population or a ratio of the population to some reference value. We
might give x a label corresponding to the population (x) at some
particular time (t). If we call the label ‘j,’ then x j would represent
the state of the system at some particular time t j. (Then x0 would be
the initial population, at time t0, followed a bit later by a population
x1 at time t1, and so on.) Then one has a rule that says how the state
of the system at the later time depends upon that at the earlier one.
Symbolically this law can be expressed as1

x j+1 = f(xj) . (2.1)

1For a further exposition of this kind of time development see, for example, Leo P.
Kadanoff, Roads to Chaos, Physics Today, p. 46 (December, 1983). A parallel
discussion is provided in Gould and Tobochnik, second edition, Chapter 6.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 2

Chapter 2

Here, the nature of the dynamics is encoded in the function f(x). This
type of relationship is described by saying that the function f 'maps'
the population xj at time tj into the population xj+1 at time tj+1.

In this chapter and the next few, we will be examining a very simple
mapping (called the "logistic map"), where xj+1 = f(xj), with

f(x) = r*x*(1-x) (2.2)

in which r is a parameter. If we continue to interpret Eq. (2.2) as a
population model, then x could be the ratio of a population to some
maximum possible population for a biological species at some
particular time (hence x lies between zero and 1). All the biological
facts about the viability of the species in question are hidden in the
parameter r in Eq. (2.2). The value of r depends upon the species and
its environment. To interpret this parameter, notice that if the
population is small, x << 1, the population grows by a factor of r
during one time period. Hence r is simply the natural growth factor
for the population during one time period. However, as x approaches
it maximum value of 1, the quadratic term becomes important and
forces the population to decrease (presumably due to some form of
natural competition).

We shall be examining the sequence of values {x1, x2, x3,} that
are generated by the model defined by Eqs. (2.1) and (2.2), with a
particular focus on how the sequence of population values depends
upon r (we keep r fixed within any one sequence of populations). We
shall see that the qualitative properties of the sequence will be very
different in different ranges of r. In particular, for some ranges we
shall see quite orderly behavior and for others very chaotic behavior.

This interesting behavior leads us to ask many questions, including:
What is it about the logistic map that leads to its chaotic behavior?
Do systems described by other mappings (in particular, those
described by Newton's laws) have similar properties? What do we
mean when we say that the behavior of two different systems is
similar? We w i l l answer these questions over the next several
chapters.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 3

Chapter 2

To get started, we will learn just a little more Java and then write
a simple program to study the qualitative behavior of the logistic
map.

B. Methods. By putting together what you have learned last week
with the material in the text you probably know enough to do some
rough-and-ready program development in Java. We want to mention
one more concept and then get started doing some numerical work.

Methods are sets of instructions which are combined into a single
command for use in a program. We have already worked with the
supplied methods Math.sin and Math.cos. They are used so that the
statement

x = Math.sin (y);

has the result, when x and y are reals, of assigning to x the value of
sine of y (y is in radians). One can equally well define one’s own
method within a program. Below, we have written a program with a
method that implements the map we just described; it calculates x1
as a function of x0. Please write this program for yourself, and Run
it.
// Iterate.java

import java.awt.Graphics;

import java.applet.Applet;

public class Iterate extends Applet {

double x, r;

int applet_width, applet_height;

public void init() {

applet_width=300;

applet_height=600;

setSize(applet_width, applet_height); // make room for many iterates

r = 0.5; // (though this program only

x = 0.7; // iterates once)

}

public void paint(Graphics g) {

int xpos, ypos; // coordinates of output on applet

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 4

Chapter 2

xpos = 10;

ypos = 20;

g.drawString("x = " + x, xpos, ypos);

x = f(x);

g.drawString("f(x) = " + x, xpos+70, ypos);

}

public double f(double y) { // we declare a real method of a real variable

return r * y * (1 - y); // this line defines the value of f

} // en of the method

} // end of applet

Program 2.1. We define a method within a program. The method
depends upon a dummy (or formal) variable y. When we use the
method we must replace y by a number, or by a constant, or by a
variable. In any case, this replacement must take on a double value
(or an integer value that will automatically be converted to a double
value).

To see the method in action, we now want to iterate it many times.
One can do this by inserting a for(){} (or a while(){}) loop to iterate
the function and display the current value of x over and over (being
sure to increment ypos and to define the total number of iterations).
You will do this in the first Required Project.

Producing the Iterations. In Required Project I, you will modify
the program “Iterate” to produce a large number of iterations of the
logistic map, and experiment a little with different values of r and
different initial values of x.

The applet Iterate is cumbersome to use. It must be edited and re-
run each time one wants to change the init ia l value of x, or the
parameter r. It is also difficult to visualize the results, because the
output is in the form of a l ist of numbers. Graphing the results
would be much better.

Here is a program we wrote to improve this situation. You can get a
copy from the folder “Programs/Chapter_2” and run it for yourself.
Please look at it carefully to see what it does. (You might recognize
several features that it has in common with applet “SecondOrbit”

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 5

Chapter 2

from chapter one.) It is a rather primitive program in that it only
has a bare-bones minimum of graphics and analysis. To make it more
elegant you might, for example, want to f i l l in some axes and x-
values. Then you might be able to see better what is going on.
However do be careful not to do so much graphics that you spend all
your time making your result pretty and none really understanding it.
You should do just enough so that you can see what is happening with
the minimum of effort.

This program generates a primitive graph of the iterates using the
Graphics method
 drawRect(i,j,0,0);

which draws the point (i,j). It also converts the (n,x j) coordinates to
int screen coordinates (i,j), keeping in mind that the screen
coordinate j=0 is at the top of the applet. To accomplish this it uses
the methods ifromn and jfromx (defined within the program). The
conversion between the double xj and the int screen coordinate j done
by jfromx has a slight additional complication compared to that in
ifromn because the Java Math method round (which rounds to the
closest integer) converts either float to int or double to long, but not
double to int.

// FirstMap.java

import java.awt.*;

import java.awt.event.*;

import java.lang.*;

import java.applet.Applet;

public class FirstMap extends Applet // shows results of iterated logistic map

 implements ActionListener { // will listen for mouse clicks

final int APPLETHEIGHT=525;

final int APPLETWIDTH=650; // applet dimensions

final int RECTANGLEHEIGHT=400;

final int RECTANGLEWIDTH=600; // dimensions of plotting rectangle

final int IOFFSET=25, JOFFSET=100; // locates plotting rectangle on applet

int n; // n is a loop index

double[] da; // declare da as an array to store a list of x-values

double r, x; // r is the parameter in the mapping

// x is the variable in the mapping

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 6

Chapter 2

Label promptr; // prompt user to input r

Label promptx; // prompt user to input x

TextField inputr; // user types value of r in this TextField

TextField inputx; // user types value of x in this TextField

Button thebutton; // button user presses to start iterations

public void init () {

setSize(APPLETWIDTH, APPLETHEIGHT); // reset applet size

da = new double[200]; // allocate the array da

promptr = new Label("value of r:");

inputr = new TextField (10);

promptx = new Label("Initial value of x:");

inputx = new TextField (10);

thebutton = new Button("Click to start"); // instantiate Button object

thebutton.addActionListener (this); // tell the button to listen for mouse clicks

add(promptr); // put promptr on applet

add(inputr); // put TextField on applet

add(promptx); // put promptx on applet

add(inputx); // put TextField on applet

add(thebutton); // put button on applet

} // end of init

public void actionPerformed(ActionEvent e) { // handles user inputs

String s;

s = inputr.getText(); // read string in TextField inputr

r = new Double(s).doubleValue(); // convert string to double variable r

if(r <=0 || r > 4) { // check whether r is an allowed value

showStatus(

"Please choose a value of r in the range (0,4]");

return;

}

s = inputx.getText(); // read string in TextField inputx

x = new Double(s).doubleValue(); // convert string to double variable x

if(x <=0 || x > 1) { // check whether x is an allowed value

showStatus(

"Please choose a value of x in the range (0,1]");

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 7

Chapter 2

return;

}

showStatus("r = "+ r); // put value of r at bottom of applet

repaint();

} // end of actionPerformed method

// override Component class update

// do not clear background, only call paint

public void update (Graphics g){

paint(g);

}

public void paint (Graphics g) {

g.clearRect(IOFFSET, JOFFSET,

RECTANGLEWIDTH,RECTANGLEHEIGHT); // clears rectangle interior

g.drawRect(IOFFSET, JOFFSET,

RECTANGLEWIDTH,RECTANGLEHEIGHT); // draws rectangle

for (n = 0; n<=199; n++) { // main loop

x = f(x); // find new x

da[n] = x; // store x in array

g.drawRect(ifromn(n), jfromx(x), 0, 0);

// plots points from run

// higher iterations mean larger horizontal coordinate

// x-value is vertical coordinate

}

} // main loop

double f (double x) {

return r * x * (1 - x);

}

double fn (double x, int n) { // iterates the map n-times

 // not used in this program

int k ; // variable for do loop

double xp; // temporary storage for x-value

xp = x; // set initial argument of the function

for (k = 1; k<n; k++) { // doing n iterations of the function, f

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 8

Chapter 2

xp = f(xp);

} // end the iterations

return xp; // set the result

} // end fn

int ifromn(int n) { // converts n to screen coordinate i

// have 200 points in array and RECTANGLEWIDTH

// horizontal pixels in rectangle, so:

return IOFFSET+ Math.round((float) (RECTANGLEWIDTH/200.)*n);

}

int jfromx(double x) { // converts x to screen coordinate j

float temp;// temporary variable for intermediate result

temp = (float) (RECTANGLEHEIGHT*(1- x));

// we convert this double result to float to use Math.round

return JOFFSET + Math.round(temp);

// Math.round is a Java-supplied method that rounds floating-point

// numbers.

}

}

Program 2.2. A program for seeing the results of many iterations of
a map. Note the way fn is defined in terms of the method f. Notice
also how k and xp are declared within fn. Al l variables defined
within a method are local to it in the sense that they are totally
invisible outside of the method. Thus k and xp ‘disappear’ outside of
fn.

C. Arrays. One feature of this program that is somewhat new to us
is the use of arrays. An array is a structure which consists of many
elements stored in a standard pattern. In our program the array da
contains 200 double numbers. The first element in an array always
has subscript zero, so the array runs from da[0] to da[199] (the 7th
element is da[6]). The pattern of an array can be a vector of length n
(like da), or a matrix of n rows and m columns, or a matrix with yet
more indices. The array is set up in two steps. First, it is declared
with the statement

double da[];

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 9

Chapter 2

and then, it is allocated with:
da = new double[200];

You can also, if you wish, combine these two steps into a single
statement:

double da[] = new double [200];

Arrays may be declared to contain things besides numbers. For
example, an array of type String can store a set of character strings.

In Required Project 1, you will construct a program for seeing what
happens for different values of r. The goal is to characterize what
happens to x after many iterations, for several different values of r.
As you do this project, you may want to copy some of the code that
we have written into your program2, and then modify it appropriately
so that it can be used to find out what the large-iteration
qualitative behavior is for different values of r. You will find that
as r is varied, the behavior of the iterates changes a lot.

For small values of r the motion is clearly orderly in that, after a
while, it settles down to a well-defined pattern. For example, for
0 < r < 1, the pattern is obvious: Eqs. (2.1) and (2.2) imply that
xj + 1 < x j so that, as j goes to infinity, xj goes to zero. In this range
of r, the orderly long-term behavior is one in which the population,
xj , simply goes to zero after a long time. However, for larger values
of r the motion can seem quite irregular and non-repetitive. This
latter kind of motion is termed chaos3. We want to take a better look
at what happens and then study some portions of the motion in some
detail.

2Recall that if you highlight something and type in z-C, the computer copies what you
have highlighted onto the clipboard. If you put down the cursor and type z-V the
material on the clipboard is entered at the point of the cursor.

3For a non-technical discussion of chaos see the Gleick book mentioned in the
bibliography.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 10

Chapter 2

 0.0

x

 1.0

r = 0.90

steps 0 20

 0.0

x

 1.0

r = 1.10

steps 0 20

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 11

Chapter 2

 0.0

x

 1.0

r = 3.30

steps 0 20

 0.0

x

 1.0

r = 4.00

steps 0 20

Figure 2.1 x j versus j for several values of r

D. Graphing the long-time behavior. Figure 2.2 is a graph that
shows which values of x will appear, in the long run, for each value
of r.4 We ask you to make a similar plot (hopefully nicer-looking!) in
Required Project 1. This plot is done by making a loop that runs
through the r-values step by step. For each r-value, one goes through
the following steps:

i. one chooses a starting value of x

4Figure 6.2 of Gould and Tobochnik (2nd edition) is a better version of this same
drawing.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 12

Chapter 2

ii. then iterates the map a certain number of times to eliminate
the unwanted transient values of x

i i i . then iterates and plots the next bunch of x-values.

In this way one generates a picture which can show what is going on
in the mapping as a function of r.

Figure 2.2 . A plot showing how the long-run-possible values of x
can depend upon r for the map x→ r*x*(1-x).

E. Making Graphs . By now it may be clear that it would be
extremely handy if you had available some way just to make a little
plot of some function of f(x) versus x. Four ways to do this are to:

1. Do the plots using a standard package such as CricketGraph,
KaleidaGraph, or MatLab.

2. Use the l ittle programs for doing rough plots which we have
written.

3. Use fancier programs for doing nicer plots which you can get
from the World Wide Web (if you decide to try this route, you might
want to look at http://www.sci.usq.edu.au/staff/leighb/graph).

4. Write your own programs.

You might think that the simplest thing is to use the commercial
package. However, this approach is far from trivial. We discuss the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 13

Chapter 2

necessary steps and why they are complicated in Appendix A.
Options 2 and 3 are very similar in spirit. The advantage of option 3
is that you can do fancier plots, and the advantage of option 2 is that
we might be better able to help you out if you have a problem. As for
option 4, we expect that as the course progresses you w i l l be
modifying the programs that we have written to that they do what
you want.

First we show how to plot a graph using a Java class that we have
written. The applet “LogisticPlot,” shown below, calculates and
plots the logistic map f(x) = r*x*(1-x), as a function of x. This
applet is in the project Graph.mcp, in the folder Graph.

// LogisticPlot.java

import java.awt.*;

import java.applet.Applet;

public class LogisticPlot extends Applet {

// demonstrates using the GraphMaker class to make a graph

final int APPLET_HEIGHT=400; // constants for size of applet and of graph

final int APPLET_WIDTH=600; // final variables can't be changed

final int graph_height=300;

final int graph_width=500;

double[] x; // x is the set of x-values

double[] y; // y is the set of values f(x)

int k ; // a loop variable

double r; // the map's control parameter

GraphMaker gm; // the GraphMaker object that makes the plot

Dataset thedata; // Dataset object to hold the (x,y) pairs

public void init() {

setSize(APPLET_WIDTH, APPLET_HEIGHT); // resize applet so that there

// is room for the graph

gm = new GraphMaker(graph_width, graph_height);

// set up our GraphMaker

x = new double[201];

y = new double[201];

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 14

Chapter 2

r = 3.5;

for (k=0; k<=200; k++){ // loop to calculate (x,y) pairs

x[k] = k/200.; // x goes from 0 to one.

y[k] = r*x[k]*(1-x[k]);

}

thedata = new Dataset(x, y, x.length); // puts (x,y) pairs into a Dataset

gm.setData(thedata); // gives Dataset to GraphMaker

add(gm); // puts GraphMaker on applet--plots graph

}

}

Program 2.3. This applet plots f(x) = rx(1-x) versus x for x between
0.0 and 1.0.

The guts of the program are in the lines
gm.setData(thedata);

add(gm);

These lines cause the GraphMaker gm to put a graph of the Dataset
thedata on the applet. Here is the information about the classes
Dataset and GraphMaker that is used by “LogisticPlot.java:”

Class Dataset

public class Dataset

extends java.lang.Object

This class holds the (x,y) pairs of data.

// Constructor (called when object is instantiated)

public Dataset(double[] dx, double [] dy, int n)

Parameters:

dx -- array of x values

dy -- array of y values

n -- number of (x,y) points

Class GraphMaker

public class GraphMaker

extends java.awt.Canvas

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 15

Chapter 2

This class makes a graph of either one or two
Datasets. The paint method of this class handles
all the drawing operations of the graph.

// Constructor

public GraphMaker(int w, int h)

Parameters:

w -- graph width (including margin) in pixels

h -- graph height (including margin) in pixels

// Methods

public void setData(Dataset d1)

parameter:

d1 -- Dataset to be acquired

reads in single Dataset d1

public void setData(Dataset d1, Dataset d2)

parameter:

d1 -- first Dataset to be acquired

d2 -- second Dataset to be acquired

reads in two Datasets d1, d2

public void paint(Graphics g)

paints the graph.

(The method paint is called automatically when the Sun-supplied
method add(gm) puts the GraphMaker on the applet.) As you can see,
GraphMaker also has a method not used in “LogisticPlot.java.” If you
call the method setData with two Dataset arguments instead of one,
then GraphMaker will plot out both datasets on the same scale.

Notice that neither Dataset nor GraphMaker have been defined
anywhere in “LogisticPlot.java.” These apparently undefined classes
are, of course, not really undefined. They simply appear in other
files, called “Dataset.java” and “GraphMaker.java.” We have put
these files in the same folder as “LogisticPlot.java.” They can also
be in another folder; in any case they need to be Added to the
CodeWarrior project if Java is to find them.

Before we tell you more about the classes Dataset and GraphMaker,
we would like you to run the CodeWarrior project “graph.mcp,”
which is in the “graph” subfolder of the “Chapter_2” folder. Notice

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 16

Chapter 2

that the project contains six files. The html file “LogisticPlot.html”
and classes.zip are both in familar roles, as is our applet
“LogisticPlot.java.” As we saw, LogisticPlot uses the classes
Dataset and GraphMaker, which are defined in “Dataset.java” and
“GraphMaker.java.” Both Dataset and GraphMaker in turn call upon
methods defined in the class Util, which is defined in “Util.java.”

To use the classes GraphMaker, Dataset, and Util, we do not have to
know very much. First, we should know that they contain a set of
variables and methods which we can use. Second, we should know the
significance and types of the variables, and the syntax for using the
methods. The API (Application Programming Interface) information
like that given above contains exactly what we need to know to use
these classes.

The Appendix of this chapter has printouts of GraphMaker, Dataset,
and Util. GraphMaker in particular is long, but they are all rather
straightforward combinations of simple pieces.

Appendix: Files.

Here we discuss how one would go about using MatLab or some other
package to draw a graph using numbers calculated in a Java program.

These packages can either read from data typed in by hand or from a
file on the Mac's disk. Certainly, we do not wish to recopy the data
by hand. To avoid the awful job of recopying, one must put data from
the Java program onto a disk in a form suitable for reading by
another program. This means learning how to put the data into f i les,
which are covered in Chapter 8 of Beginning Java and in Chapter 10
of Exploring Java, second edition.

First, some preliminaries. So far we have done al l our output by
drawing on applets using the paint method. But it is also possible
to print text output on the window that MetroWerks Java calls "Java
Output" (Netscape calls it the "Java Console," when using Netscape
you can view it by choosing "Show Java Console" in the Netscape
Options menu). The commands used to print out text on the Java
Console are nearly identical to those used to write data into files.
In any case, it is worth knowing them because the Java Console is a

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 17

Chapter 2

scrolling window. This means that you can print out lots and lots of
numbers on it without worrying about running off the end, which is
sometimes very convenient.

The two main commands you need to know are System.out.print and
System.out.println. The following applet, which calculates the squares
of the integers 1 through 10, demonstrates how they work.
// Squares.java

// prints out the squares of the integers 1 through 10 onto the Java Console

import java.applet.Applet;

public class Squares extends Applet {

int i;

public void init() {

for(i=1; i<= 10; i++) {

System.out.print(i); // print the value of i

System.out.print(" "); // print space between columns

System.out.println(i*i); // print i*i, then new line

} // end of for loop

} // end of init

} // end of applet

Note that print and println know how to print out numbers as well as
strings (in contrast to the Graphics method drawString, which only
puts strings on an applet).

Next we consider how to get numbers actually into a file. Probably
the simplest way is first to print the numbers out onto the Java
Console. Then you can choose Select All from the Edit menu of the
Java Console window (or type z-A), Copy (z-C) and Paste (z-V) al l
the output into a text processor like SimpleText or Microsoft Word,
and finally use the text processing program to save the file. If this
solution is acceptable to you, you can skip the rest of this appendix.

You can avoid cutting-and-pasting by having your Java program open
a file and write directly into it, but there are complications. The
problems arise because applets are designed to run using a browser
over the World Wide Web. Applets run on the machine of the person
who is browsing. Therefore, your applets w i l l be run by total
strangers who have no idea whether you are a vicious computer

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 18

Chapter 2

hacker and who don't want to give you any opportunity to damage
their machine. To minimize the chance of a problem, the browsers
give Java applets very limited privileges. Java applets run using
Netscape are not allowed to write into files on the host machine.
Applets can send the data back to the machine where the applet
came from over the Internet, but this is slow. If you're interested in
learning how to do this, you can read chapter 16 of Beginning Java or
chapter 11 of Exploring Java.

However, we will often write Java programs that run on our own
machine (for instance, when we use CodeWarrior). Now CodeWarrior
imposes the same security restrictions on applets that Netscape
does, so that does not solve the problem. However, one can write a
Java application (as opposed to an applet) that is able to read from
and write into files. Java applications have the same privileges as
computer programs written in other languages such as C, Fortran, or
Pascal; in particular, they can read from and write into files. Java
applications have a slightly different structure than applets.

In this course we concentrate on using the graphical capabilities of
applets as opposed to the input-output capabilities of applications.
But just in case you really want to use files, here are two
applications, one which writes into and the other that reads from
files.

The first application, “WriteSquares,” writes output into a fi le.
First, a File object is created (this amounts to telling the computer
the name of the fi le to be used) and then it is assigned to a
FileOutputStream. Then, the file is designated a PrintStream, which tells
Java that print and println w i l l be used. Then print and println are
called to put the numbers into the file. Finally, we call close so that
Java knows that we don't need access to the file any longer.
// Writesquares.java

// prints out the squares of the integers 1 through 10 into the file "squares.dat"

import java.io.*;

public class WriteSquares {

public static void main(String args[]) throws IOException {

int i;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 19

Chapter 2

File out = new File("squares.dat");

FileOutputStream fout = new FileOutputStream(out);

PrintStream pout = new PrintStream(fout);

for(i=1; i<= 10; i++) {

pout.print(i); // print the value of i in orbit.dat

pout.print(" "); // print space between columns

pout.println(i*i); // print i*i, then new line

} // end of for loop

fout.close();

} // end of main

} // end of class WriteSquares

}

Program 2.4 . This application writes the integers from 1 to 10 and
their squares into the file squares.dat.

The second application “ReadPairs” reads up to five columns of
integers from the file "squares.dat" and prints the first two columns
out onto the Java Console.
// ReadPairs.java

// reads up to five columns of integers from file "squares.dat"

// and prints first two columns out on Java console

import java.io.*;

import java.util.*;

public class ReadPairs {

public static void main(String[] args) throws IOException {

int count;

int i[];

String line;

File inputFile = new File("squares.dat");

FileInputStream fis = new FileInputStream(inputFile);

DataInputStream input = new DataInputStream(fis);

count = 0;

i = new int[5];

try{

while ((line = input.readLine()) != null) {

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 20

Chapter 2

count=0;

StringTokenizer linetoken = new StringTokenizer(line);

while (linetoken.hasMoreTokens()){

i[count] = Integer.parseInt(linetoken.nextToken());

count++;

}

System.out.print(i[0]);

System.out.print(" ");

System.out.println(i[1]);

}

}

catch (EOFException eof) { }

input.close();

} // end of main

} // end of application ReadPairs

Program 2.5. This application reads up to five columns of integers
from the file "squares.dat" and prints the first two columns out onto
the Java Console.

So now you have two ways to get your data into a file. Once you have
the file, you will need to take it and read it into the package that
actually draws the graph. The procedure for this depends on which
package you decide to use, so we refer you to the documentation or
the help for the package.

