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Week 2 syllabus Tuesday, August 25, 2020

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

Tuesday’s lecture is related to AWH Chapter 6 Eigenvalue problems (click here). The
fastest way to watch any week’s lecture videos is by letting YouTube run

the course playlist

• Please do not get intimated by the length of this week’s notes - they are here
more for me than for you, as notes on these topics for future reference. If you
understand the online lectures and can solve the exercises, you are good. The
notes you can quickly skim over...

◦ Sect. 2.2 Using symmetries

◦ Sect. 2.3 Normal modes: The free vibrations of systems, for undamped sys-
tems with total energy conserved for which the frequencies of oscillation
are real.

Normal modes

◦ Example 2.1 Vibrations of a classical CO2 molecule

A Hamiltonian with a symmetry (4:46 min)

CO2 molecule (4:07 min)

Projection operators (5:33 min)

(Anti)symmetric subspaces (3:04 min)

Zero mode (5:19 min)

AWH Example 6.2.3 Degenerate eigenproblem

AWH Example 6.5.2 Normal modes

• Matrix decompositions in data science

◦ Sect. 2.4 Singular Value Decomposition

Matrices: physics vs data science

Singular value decomposition (SVD)

SVD sample calculation

2.1 Other sources
Normal modes are important in aeronautical and mechanical engineering (optional
reading for week 2, not required for this course):

• MIT 16-07-dynamics is a typical mathematical methods in engineering course.
Normal modes are discussed here.

http://ChaosBook.org/library/ArWeHa13chap6EigenvalueProbs.pdf
http://YouTube.com/https://www.youtube.com/watch?v=_4C8NaOhGEI&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=21&t=1s
http://YouTube.com/embed/_4C8NaOhGEI
http://YouTube.com/embed/DLy5MGFEg5Y
http://YouTube.com/embed/dhmM_h7ofk
http://YouTube.com/embed/Ig4OEeroLZY
http://YouTube.com/embed/v3JYzTEF0I8
http://YouTube.com/embed/-SRJrkpBf0U
http://YouTube.com/embed/6MnArm8_qy0 
http://YouTube.com/embed/NWEfIC5qotA
http://YouTube.com/embed/XXX 
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec19.pdf
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◦ Example 2.2 pen & paper derivation of normal-modes of the ring ofN asymmet-
ric pairs of oscillators (from Gutkin lecture notes example 5.1 Cn symmetry).

◦ Srdjan Ostojić @ostojic_srdjan writes: The singular value decomposition (SVD)
course by @eigensteve is great: “These lectures go into depth on the sin-

gular value decomposition (SVD), one of the most widely used algorithms for
data processing, reduced-order modeling, and high-dimensional statistics, fol-
lowing Chapter 1 of Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control by Brunton and Kutz [2], with databookuw
website and chapters.”

◦ We like the discussion of norms, least square problems, and differences between
singular value and eigenvalue decompositions in Trefethen and Bau [4], cited in
sect. 2.4.1.

◦ Andrew: In Understanding SVD Reza Bagheri develops SVD step-by-step,
starting with the concept of eigenvalues through eigenvalue decomposition and
then to SVD. I found it good to review some of the linear algebra I had forgotten.
It is long, but it takes time to develop each concept which is a style I find very
helpful.

◦ If you later need SVD in your research, Cline and Dhillon [3] Computation of
the singular value decomposition seems to be a handy cookbook.

◦ Eigen Grandito - u/cactus’s Principal Components Analysis of the Taco Bell
menu, an NumPy SVD exploration of the Onion (1998) classic on Taco Bell’s
revolutionary Grandito

ChaosBook sect. 6.1 explains the geometrical intuition behind matrix decompo-
sitions.

In ChaosBook remark 6.1. Lyapunov exponents are uncool Predrag claims that
SVD is the wrong thing in dynamics.

◦ If instead, bedside crocheting is your thing, click here.

2.2 Using symmetries
The big idea #1 of this is week is symmetry.

If our physical problem is defined by a (perhaps complicated) Hamiltonian H, another
matrix M (hopefully a very simple matrix) is a symmetry if it commutes with the
Hamiltonian

[M,H] = 0 . (2.1)

Than we can use the spectral decomposition (1.24) of M to block-diagonalize H into
a sum of lower-dimensional sub-matrices,

H =
∑
i

Hi , Hi = PiHPi , (2.2)

http://birdtracks.eu/courses/PHYS-7143-19/groups.pdf
https://twitter.com/ostojic_srdjan/status/1296748282765553669
http://https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://twitter.com/eigensteve
http://eigensteve.com
http://databookuw.com
http://databookuw.com/databook.pdf
https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d
http://www.cs.utexas.edu/~inderjit/public_papers/HLA_SVD.pdf
https://www.reddit.com/r/math/comments/k3ia4q/eigen_grandito_principal_components_analysis_of/
https://www.theonion.com/taco-bells-five-ingredients-combined-in-totally-new-way-1819564909
http://ChaosBook.org/chapters/ChaosBook.pdf#section.6.1
http://ChaosBook.org/chapters/ChaosBook.pdf#section.6.2
http://www.theiff.org/oexhibits/oe1e.html
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and thus significantly simplify the computation of eigenvalues and eigenvectors of H,
the matrix of physical interest.

2.3 Normal modes
The big idea #2 of this is week is : many body systems (molecules, neu-
ronal networks, ...) are ruled by collective modes, not individual particles
(atoms, neurons, ...).

In the linear, harmonic oscillator approximation, the classical dynamics of a molecule
is governed by the Hamiltonian

H =

N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x>i Vijxj ,

where {xi} are small deviations from the equilibrium, resting points of the molecules
labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form by an
orthogonal transformation, to a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =
N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.3)

2.4 Singular Value Decomposition
Everybody knows that the SVD is the best matrix decomposi-
tion !!!

— @Daniela_Witten, 21 July 2020

Daniela’s Twitter lecture (tweaked by Predrag): If you are in statistics or data sci-
ence, SVD is the #1 matrix decomposition, and likely the only one you will ever need.
And believe me: you are going to need it.

In data science, one often deals with a very large data setX that can be laid out as an
rectangular array, vertically arbitrarily high (n time measurements x1j , x2j , · · · , xnj ;
n faces), and horizontally relatively short (m neuronal voltages xk1, xk2, · · · , xkm; m
facial features).

What does the SVD do? You give me an [n ×m], n ≥ m rectangular matrix X ,
and I’ll give you back 3 matrices, an [n×m] rectangular matrix U , a diagonal [m×m]
matrix Σ, and unitary [m×m] matrix V that together “decompose” the matrix X:

X = UΣV T . (2.4)

U and V are orthogonal matrices (if X is complex, unitary matrices),

UTU = V TV = V V T = I[m×m] (2.5)

https://twitter.com/WomenInStat/status/1285610321747611653
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Σ is diagonal with nonnegative and decreasing elements:

σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 . (2.6)

Some terminology: the diagonal elements of Σ are the singular values, and the columns
of U and V are the left and right singular vectors uk, vj . Multiply (2.4) from right by
V . This implies that if I have the singular value σj and the short [m×1] singular vector
vj , I can multiply it with my data array X to compute the tall, [n × 1] singular vector
uj to

X vj = σjuj . (2.7)

How do I compute the singular eigenvalues? From (2.4) it follows that V is a rotation
that diagonalizes the symmetric XTX = {

∑
j xkjxj`} correlation matrix

XTX = V Σ2V T . (2.8)

So this gives us vk and σk (one always picks the positive root of σ2
k) which we label

by the decreasing eigenvalues convention (2.6), and evaluate uj using (2.7). Why σ2
k?

Rectangular matrix X is dimensionally a strange beast; it relates bricks to oranges, and
it’s transpose returns oranges to bricks. The result is an (hyper)ellipsoid, with singular
vectors as semiaxes, and singular values as lengths along the semiaxes.

Simple as that. What makes this decomposition special (and unique) is the particu-
lar set of properties of U , Σ, and V .

Don’t be fooled tho: UUT 6= In×n !!!!!!! In layperson’s terms, the columns of U
and V are special: the squared elements of each column of U and V sums to 1, and
also the inner product (dot product) between each pair of columns in U equals 0. And
the inner product between each pair of columns of V equals 0.

First of all, let’s marvel that this decomposition is not only possible, but easily
computable, and even unique (up to sign flips of columns of U and V ). Like, why on
earth should every matrix X be decomposable in this way?

Magic, that’s why. OK, so, its existence is magic. But, is it also useful? Well, YES.
Suppose you want to approximateX with a pair of vectors: that is, a rank-1 approx.

Well, the world’s best rank-1 approximation to X , in terms of residual sum of squares,
is given by the first columns of U and V :

X ≈ σ1u1vT1 (2.9)

is literally the best you can do!!
OK, but what if you want to approximate X using two pairs of vectors (a rank-2

approximation)? Just calculate

X ≈ σ1u1vT1 + σ2u2v
T
2 , (2.10)

and call it a day.
Want an even better approximation, using rank-k? You literally can’t beat this one

X ≈ σ1u1vT1 + σ2u2v
T
2 + . . .+ σkukv

T
k (2.11)
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so please don’t bother trying.
OK, so, the SVD gives me the best possible way to approximate any matrix. What

is this good for??!!
Ever heard of principal components analysis (PCA)? This is just the SVD (after

centering columns of X to have mean 0). Columns of V are PC loading vectors.
Columns of U (up to scaling) are PC score vectors.

Bam!!!
How about if you want to impute missing values in your data matrixX? (In finance

‘impute’ means “to assign (a value) to something by inference from the value of the
products to which it contributes.) Assuming that the elements of X are randomly
missing (rather than, for instance, larger elements more likely to be missing), the SVD
gives you an effective and easy way to impute those values!!

First, fill in missing elements using (say) the column mean. Then, compute SVD
to get rank-k approx for (e.g.) k = 3. Replace the missing elements with the elements
of rank-k approx. Rinse and repeat until your answer stops changing.

Voila!! I am not making this up!! The SVD is like a matrix X-ray. For instance:

XTX = V Σ2V T , (XTX)−1 = V Σ−2V T (2.12)

X(XTX)−1XT = UUT . (2.13)

Take a minute to breathe this in. Formulas (2.12), (2.13) have no U ’s, and the 3rd (hat
matrix from least squares) has no V ’s or Σ’s!

Wowzers!
Now, you may ask “well what about the eigen-decomposition?” Well I can dis-

pense with that concern in 1 tweet. A symmetric matrix A (the only type worth eigen-
decomposing, IMO - internetese for “in my opinion”) is just A = XTX for some X .
And XTX = V Σ2V T by (2.12). SVD� eigen-decomposition. QED

Not convinced? Need me to spell it out for u? Singular vectors are the eigenvectors
of A, and singular values are the square roots of the eigenvalues!!! So, the SVD gives
you the eigen-decomposition for free!!! Eigen-decomposition just got owned by the
SVD. That’s how it’s done!!!!!

The SVD is a great 1-stop shop for data analysis.
Need to know if X is multi-collinear, before fitting least squares? Check out the

singular values. If σ1/σm is huge then least squares is a bad idea.
If n > m, or if σm = 0 then bad news bears, X isn’t even invertible!! To know

if the matrix XTX is invertible, you just have to check whether the smallest singular
value is non-zero. Want to know the rank of X? It’s just # of non-zero singular values!

Want the Moore-Penrose pseudo-inverse (though please be careful — there are
better ways to approximate a matrix inverse)? That’s basically the rank-k approx from
earlier, but with 1/σk instead of σk!

And please don’t troll me with your comments about how you prefer the QR or LU
decompositions. I’m a working mom with 3 kids at home in the midst of a pandemic,
I know you don’t mean it, and I literally don’t have time for this. ( @SusCrockford,
March 12, 2020 concurs: “The next academic dude who posts about how much work
Isaac Newton or whoever got done at Cambridge during the plague I’m coming over to

https://twitter.com/SusCrockford/status/1238025028819697664
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their house with my snotty 4y and staying there to develop my genius while he deals
with the kid and then we’ll see who discovers laws of nature.”)

And if you prefer a specialty matrix decomposition, like NMF, then I’ve got news
for you: you got fooled, because that’s just a souped up SVD. Honest to god. If you
remain convinced that the NMF or any other decomposition discovered in the past 80
years can hold a candle to the SVD, then I can get you a great price on a Tesla-branded
vegan unicorn made out of CRISPR. I’ll send it to you as soon as you give me all your
Bitcoin.

The SVD is super magical and there’s so much I’ve left unsaid. While you can
compute it using a single line of code in R or any other halfway decent programming
language, it’s fun, easy, and safe to DIY with matrix multiplies!!!!

I hope that this thread has helped to grow your appreciation for this magical de-
composition. The more you learn about the SVD, the more you will love it. It will take
you far on your statistics and data science journey. Godspeed.

The rest is on YouTube.

2.4.1 Eigen values vs. singular values

It’s now more important to learn boring algebra than to practice
fun rock throwing. So you take your choice. If you choose hap-
piness over survival too consistently–well, then you die happy.
Or else, you thrive grumpily. It’s the tragedy of the human
condition. About time we changed it, in my humble opinion.

— Hans Moravec
Trefethen and Bau [4] Numerical Linear Algebra:

· · · not all matrices (even square ones) have an eigenvalue decomposition
[here week 1 and sect. 2.3], but all matrices (even rectangular ones) have a
singular value decomposition [here sect. 2.4]. In applications, eigenvalues
tend to be relevant to problems involving the behavior of iterated forms of
A, such as matrix powersAk or exponentials expA, whereas singular vec-
tors tend to be relevant to problems involving the magnitudes of elements
of A , or its inverse.

2.4.2 SVD in dynamical systems

Tosif Ahamed @_mlechha : There are lots of applications in recovering dynamics
from data. I’d also like to plug our own eigen-worms, using SVD to go from experi-
mental observations of moving worms to their periodic orbits (and more) arXiv:1911.10559.

On 2020-08-20 graduate student Daniel Dylewsky, U Washington, gave a good
presentation Koopman Approximations for Multiscale Nonlinear Physics using Dy-
namic Mode Decomposition, based on Daniel Dylewsky, Eurika Kaiser, Steven L.
Brunton and J. Nathan Kutz Principal Component Trajectories (PCT): Nonlinear dy-
namics as a superposition of time-delayed periodic orbits arXiv:2005.14321.

http://https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://twitter.com/_mlechha
https://arXiv.org/abs/1911.10559
https://github.com/dylewsky
https://arXiv.org/abs/2005.14321
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2.4.3 SVD in rocket science

Steven L. Brunton et al. Data-Driven Aerospace Engineering: Reframing the Indus-
try with Machine Learning arXiv:2008.10740, a review: “· · · The aerospace industry
is poised to capitalize on big data and machine learning, which excels at solving the
types of multi-objective, constrained optimization problems that arise in aircraft design
and manufacturing. Indeed, emerging methods in machine learning may be thought of
as data-driven optimization techniques that are ideal for high-dimensional, non-convex,
and constrained, multi-objective optimization problems, and that improve with increas-
ing volumes of data.”

2.4.4 SVD in theoretical neuroscience

Srdjan Ostojić again: During my physics education, I have never heard of singular
value decomposition.

Almost all matrices in physics are symmetric, and in that case SVD reduces to
eigenvalue decomposition.

But for non-symmetric, or especially non-square matrices, SVD is the fundamental
tool. So over the recent years, part of the theoretical neuroscience community has been
rediscovering how useful SVD is.

For instance, basic results on perceptrons can be understood in a simple way us-
ing SVD. Dynamics of learning in deep networks can be understood based on SVD:
arXiv:1312.6120, on Pnas, arXiv:1809.10374. Non-linear dynamics in recurrent neu-
ral networks can be analyzed by starting from the SVD of the connectivity matrix, and
keeping dominant terms: arXiv:1711.09672, bioRxiv:350801v3, arXiv:2007.02062,
arXiv:1909.04358, bioRxiv:2020.07.03.185942v1. Non-normal transient dynamics in
recurrent networks: on sciencedirect, arXiv:1811.07592.

References
[1] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physi-

cists: A Comprehensive Guide, Seventh (Academic, New York, 2013).
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Learning, Dynamical Systems, and Control (Cambridge Univ. Press, Cambridge
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[3] A. K. Cline and I. S. Dhillon, “Computation of the singular value decomposi-
tion”, in Handbook of Linear Algebra (CRC Press, 2006), pp. 45-1–45-13.

[4] L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).

2.5 Examples
Example 2.1. Vibrations of a classical CO2 molecule: Consider one carbon and
two oxygens constrained to the x-axis [1] and joined by springs of stiffness k, as shown

https://arXiv.org/abs/2008.10740
https://arXiv.org/abs/1312.6120
https://pnas.org/content/116/23/11537
https://arXiv.org/abs/1809.10374
https://arXiv.org/abs/1711.09672
https://biorxiv.org/content/10.1101/350801v3
https://arXiv.org/abs/2007.02062
https://arXiv.org/abs/1909.04358
https://biorxiv.org/content/10.1101/2020.07.03.185942v1
https://sciencedirect.com/science/article/pii/S0896627314003602
https://arXiv.org/abs/1811.07592
http://books.google.com/books?vid=ISBN9780123846549
http://books.google.com/books?vid=ISBN9780123846549
http://dx.doi.org/10.1017/9781108380690
http://dx.doi.org/10.1017/9781108380690
http://dx.doi.org/10.1201/9781420010572-45
http://dx.doi.org/10.1201/9781420010572-45
https://doi.org/10.1201/9781420010572-45
http://dx.doi.org/10.1137/1.9780898719574
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M  Mm

Figure 2.1: A classical colinear CO2 molecule [1].

in figure 2.1. Newton’s second law says

ẍ1 = − k

M
(x1 − x2)

ẍ2 = − k

m
(x2 − x3)− k

m
(x2 − x1)

ẍ3 = − k

M
(x3 − x2) . (2.14)

The normal modes, with time dependence xj(t) = xj exp(itω) , are the common fre-
quency ω vibrations that satisfy (2.14),

Hx =

 A −A 0
−a 2 a −a
0 −A A

x1

x2

x3

 = ω2

x1

x2

x3

 , (2.15)

where a = k/m, A = k/M . Secular determinant det (H− ω21) = 0 now yields a cubic
equation for ω2.

You might be tempted to stick this [3×3] matrix into Mathematica or whatever, but
please do that in some other course. What would understood by staring at the output?
In this course we think.

First thing to always ask yourself is: does the system have a symmetry? Yes! Note
that the CO2 molecule (2.14) of figure 2.1 is invariant under x1 ↔ x3 interchange, i.e.,
coordinate relabeling by matrix σ that commutes with our law of motion H,

σ =

0 0 1
0 1 0
1 0 0

 , σH = Hσ =

 0 −A A
−a 2 a −a
A −A 0

 . (2.16)

We can now use the symmetry operator σ to simplify the calculation. As σ2 =
1, its eigenvalues are ±1, and the corresponding symmetrization, anti-symmetrization
projection operators (1.30) are

P+ =
1

2
(1 + σ) , P− =

1

2
(1− σ) . (2.17)

The dimensions di = trPi of the two subspaces are

d+ = 2 , d− = 1 . (2.18)

As σ and H commute, we can now use spectral decomposition (1.24) to block-diagonalize
H to a 1-dimensional and a 2-dimensional matrix.

On the 1-dimensional antisymmetric subspace, the trace of a [1×1] matrix equals
its sole matrix element equals it eigenvalue

λ− = HP− =
1

2
(trH− trHσ) = (a+A)− a =

k

M
,
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so the corresponding eigenfrequency is ω2
− = k/M . To understand its physical mean-

ing, write out the antisymmetric subspace projection operator (2.18) explicitly. Its non-
vanishing columns are proportional to the sole eigenvector

P− =
1

2

 1 0 −1
0 0 0
−1 0 1

 ⇒ e(−) =

 1
0
−1

 . (2.19)

In this subspace the outer oxygens are moving in opposite directions, with the carbon
stationary.

On the 2-dimensional symmetric subspace, the trace yields the sum of the remain-
ing two eigenvalues

λ+ + λ0 = trHP+ =
1

2
(trH + trHσ) = (a+A) + a =

k

M
+ 2

k

m
.

We could disentangle the two eigenfrequencies by evaluating trH2P+, for example, but
thinking helps again.

There is still another, translational symmetry, so obvious that we forgot it; if we
change the origin of the x-axis, the three coordinates xj → xj − δx change, for any
continuous translation δx, but the equations of motion (2.14) do not change their form,

Hx = Hx + H δx = ω2x ⇒ H δx = 0 . (2.20)

So any translation e(0) = δx = (δx, δx, δx) is a nul, ‘zero mode’ eigenvector of H
in (2.16), with eigenvalue λ0 = ω2

0 = 0, and thus the remaining eigenfrequency is
ω2

+ = k/M + 2 k/m. As we can add any nul eigenvector e(0) to the corresponding
e(+) eigenvector, there is some freedom in choosing e(+). One visualization of the
corresponding eigenvector is the carbon moving opposite to the two oxygens, with total
momentum set to zero.

(Taken from AWH Example 6.2.3 Degenerate eigenproblem, but done here using
symmetries.)

Example 2.2. Vibrational spectra of molecules: Consider the ring of pair-wise
interactions of two kinds of molecules sketched in figure 2.2 (a), given by the potential

V (z) =
1

2

N∑
i=1

(
k1(xi − yi)2 + k2(xi+1 − yi)2) , zi =

(
xi
yi

)
, (2.21)

whose [2N×2N ] matrix form is (aside to the cognoscenti: this is a Toeplitz matrix):

Vij =
1

2



k1 + k2 −k1 0 0 0 . . . 0 0 −k2

−k1 k1 + k2 −k2 0 0 . . . 0 0 0
0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1

−k2 0 0 0 0 . . . 0 −k1 k1 + k2


This potential matrix is a holy mess. How do we find an orthogonal transformation (2.3)
that diagonalizes it? Look at figure 2.2 (a). Molecules lie on a circle, so that suggests
we should use a Fourier representation. As the i = 1 labelling of the starting molecule
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Figure 2.2: (a) Chain with circular symmetry. (b) Dependance of frequency on the
representation wavenumber k. (c) Molecule with D3 symmetry. (B. Gutkin)

on a ring is arbitrary, we are free to relabel them, for example use the next molecule
pair as the starting one. This relabelling is accomplished by the [2N×2N ] permutation
matrix (or ‘one-step shift’, ‘stepping’ or ‘translation’ matrix) M of form


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

M


z1

z2

z3

...
zn

 =


zn
z1

z2

...
zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi
yi

)
(2.22)

Projection operators corresponding to M are worked out in example 10.1. They are N
distinct [2N×2N ] matrices,

Pk =



I λ̄I λ̄2I . . . λ̄N−2I λ̄N−1I
λI I λ̄I . . . λ̄N−3I λ̄N−2I
λ2I λI I . . . λ̄N−4I λ̄N−3I

...
...

...
. . .

...
...

λN−2I λN−3I λN−4I . . . I λ̄I
λN−1I λN−2I λN−2I . . . λI I


, λ = exp

(
2πi

N
k

)

(2.23)
which decompose the 2N -dimensional configuration space of the molecule ring into
a direct sum of N 2-dimensional spaces, one for each discrete Fourier mode k =
0, 1, 2, · · · , N − 1.

The system (2.21) is clearly invariant under the cyclic permutation relabelling M ,
[V,M ] = 0 (though checking this by explicit matrix multiplications might be a bit tedious),
so the Pk decompose the interaction potential V as well, and reduce its action to the kth
2-dimensional subspace. Thus the [2N×2N ] diagonalization (2.3) is now reduced to a
[2×2] diagonalization which one can do by hand. The resulting kth space is spanned
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by two 2N -dimensional vectors, which we guess to be of form:

η1 =
1√
n



1
0
λ
0
...

λn−1

0


, η2 =

1√
n



0
1
0
λ
...
0

λn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

V η1 = (k1 + k2)η1 − (k1 + k2λ)η2 , V η2 = (k1 + k2)η2 − (k1 + k2λ̄)η1 .

The corresponding eigenfrequencies are determined by the equation:

0 = det
((

k1 + k2 −(k1 + k2λ)
−(k1 + k2λ̄) k1 + k2

)
− ω2

2
I

)
=⇒

1

2
ω2
±(k) = k1 + k2 ± |k1 + k2λ

k| , (2.24)

one acoustic (ω(0) = 0), one optical, see figure 2.2 (b) and the acoustic and optical
phonons wiki. (B. Gutkin)

Example 2.3. An SVD hand calculation. Given a rectangular [n×m] = [4× 3] “data
matrix”

X =


0
√

2 0
1 2 1
1 0 1
0 0 0

 (2.25)

in this example we implement by hand its singular value decomposition

X = UΣV T . (2.26)

A side remark: by inspection, the 1st and 3rd rows of X are not independent from the
2nd, the rank of the data matrix X is 2, so expect one zero eigenvalue.

The ‘right’, [m×m] = [3×3] correlation matrix (see (2.7) and (2.8)) is

Cr = XTX =

 2 2 2
2 6 2
2 2 2

 . (2.27)

The zeroes of its characteristic polynomial

det (Cr − λ1) = (−8 + λ)(−2 + λ)λ = 0 (2.28)

yield eigenvalues
{λ1, λ2, λ3} = {8, 2, 0} (2.29)

You are free to find the corresponding eigenvectors any way you like. If you use projec-
tion operators, you will also need the matrix squared:

C2
r =

 12 20 12
20 44 20
12 20 12



https://en.wikipedia.org/wiki/Phonon#Acoustic_and_optical_phonons
https://en.wikipedia.org/wiki/Phonon#Acoustic_and_optical_phonons
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The associated projection operators are:

P1 =
(Cr − 2 · 1)(Cr − 0 · 1)

(8− 2)(8− 0)
=

1

6 · 8(C2
r − 2Cr) =

1

6

 1 2 1
2 4 2
1 2 1

 (2.30)

P2 =
(Cr − 8 · 1)(Cr − 0 · 1)

(2− 8)(2− 0)
=

1

6 · 2(−C2
r + 8Cr) =

1

3

 1 −1 1
−1 1 −1
1 − 1


P3 =

(Cr − 8 · 1)(Cr − 2 · 1)

(0− 8)(0− 2)
=

1

8 · 2(C2
r − 10Cr + (8 · 2) 1) =

1

2

 1 0 −1
0 0 0
−1 0 1


Each column of a projection operator is the same right eigenvector, with a different
prefactor, and its rows are likewise proportional to the same left eigenvector. SVD,
however, demands that the eigenvectors be normalized to unit length, for example

v1 =
1√
6

 1
2
1

 (2.31)

The three normalized right singular vectors, taken as the columns, form the rotation
matrix

V =
(
v1 v2 v3

)
=


1√
6

2√
6

1√
6

1√
3

− 2√
3

1√
3

− 1√
2

0
1√
2

 (2.32)

The “left”, “big” correlation matrix

Cl = XXT =


2 2

√
2 0 0

2
√

2 6 2 0
0 2 2 0
0 0 0 0

 (2.33)

characteristic polynomial has the same non-zero eigenvalues

det (Cl − λ1) = (−8 + λ)(−2 + λ)λ2 = 0 , (2.34)

but an extra zero eigenvalue. Going through the same algebra as for Cr, we find that Cl
(unnormalized) eigenvectors can be presented as columns of matrix

Û =


√

2 3 1 0
− 1√

2
0 1 0

0 0 0 1√
2 −1 1 0

 (2.35)

After normalization to unit length we refer to them as the left singular vectors.
The singular values are, by definition, the positive square roots of Cr or Cl eigen-

values
{σ1, σ2, σ3} = {2

√
2,
√

2, 0} (2.36)

so the diagonal singular values matrix is given by

Σ =


2
√

2 0 0

0
√

2 0
0 0 0
0 0 0

 (2.37)
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SVG decomposition (2.26) is of form X = UΣV T . Now that we have the right
eigenvectors matrix V , and the diagonal singular values matrix Σ, we could compute
the left eigenvectors matrix U = XV/Σ, as can be done in some of the examples in
exercise 2.2. But zero singular values make this a bit tricky, so here we compute instead
also U from the Cl eigenvalue equation, and verify that we indeed get the rectangular
data matrix exercise 2.25 back:

UΣV T =


0
√

2 0
1 2 1
1 0 1
0 0 0



A sanity check: Mathematica does all this in one line:
{U,Σ, V } = SingularValueDecomposition[X]{U,Σ, V } = SingularValueDecomposition[X]{U,Σ, V } = SingularValueDecomposition[X] ⇒

U =


1√
6
− 1√

3
0 1√

2√
3

2
0 0 − 1

2

1

2
√

3

√
2
3

0 1
2

0 0 1 0

 , Σ =


2
√

2 0 0

0
√

2 0
0 0 0
0 0 0

 (2.38)

V =


1√
6

1√
3
− 1√

2√
2
3
− 1√

3
0

1√
6

1√
3

1√
2

 (2.39)

verifying (2.32), (2.37), and (2.35).

Exercises
2.1. Three masses on a loop. Three identical masses, connected by three identical springs,

are constrained to move on a circle hoop as shown in figure 2.3. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (Kimberly Y. Short)

2.2. Examples of singular value decomposition. Bring, by hand calculation, the following
matrices into SVD form:

A =

(
3 0
0 −2

)
, B =

(
2 0
0 3

)
, C =

0 2
0 0
0 0


D =

(
1 1
0 0

)
, E =

(
1 1
1 1

)
. (2.40)

The goal is to verify that any matrix, including these, has the unique SVD decomposition,
and (2.8), (2.6) and (2.7) should suffice for the job.
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Figure 2.3: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.
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