
mathematical methods - week 12

SO(3) and SU(2)

Georgia Tech PHYS-6124
Homework HW #12 due Thursday, November 12, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 12.1 Irreps of SO(2) 3 points
Exercise 12.2 Conjugacy classes of SO(3) 4 points (+ 2 bonus points, if complete)
Exercise 12.3 The character of SO(3) 3-dimensional representation 3 points

Bonus points
Exercise 12.4 The orthonormality of SO(3) characters 2 points

Total of 10 points = 100 % score.

edited November 5, 2020
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http://ChaosBook.org/~predrag/courses/PHYS-6124-20/exerWeek12.tex
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Week 12 syllabus Tuesday, November 3, 2020

This week’s lectures are related to AWH Chapter 3 Vector Analysis (click here) and
Chapter 16 Angular Momentum (click here). The fastest way to watch any week’s
lecture videos is by letting YouTube run the course playlist (click here).

There is way too much material in this week’s notes. Watch the main sequence of
video clips, that and recommended reading should suffice. The rest is optional. You can
glance through sect. 12.1 Linear algebra, and sect. 12.2 SO(3) character orthogonality,
but I do not expect you to master this material.

Clip 1 - Rotations in 3 dimensions (30 min)

• OK, I see that formally SU(2) ' SO(3), but who ordered “spin?”

Clip 4 - Rotations in 2 complex dimensions (42 min)

– Read sect. 12.3 SU(2) Pauli matrices

– Read sect. 12.4 SU(2) ' SO(3)

Optional reading

Clip 2 - Lie algebra (21 min)

Clip 3 - Birdtracks (6 min)

For overall clarity and pleasure of reading, I like Schwichtenberg [8] (click
here) discussion best. If you read anything for this week’s lectures, read
Schwichtenberg.

Reading: Chen, Ping and Wang [2] Group Representation Theory for Physi-
cists, Sect 5.2 Definition of a Lie group, with examples (click here).

• What’s the payback? While for you the geometrically intuitive representation is
the set of rotation [2×2] matrices, group theory says no! They split into pairs of 1-
dimensional irreps, and the basic building blocks of our 2-dimensional rotations
on our kitchen table (forget quantum mechanics!) are the U(1) [1×1] complex
unit vector phase rotations.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2).

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sect. 6.6 completes discussion of Fourier analysis as continuum limit of
cyclic groups Cn, compares SO(2), O(2), discrete translations group, and
continuous translations group.

• Dirac belt trick applet

If still anxious, maybe this helps: Mark Staley, Understanding quaternions and
the Dirac belt trick arXiv:1001.1778.

http://ChaosBook.org/library/ArWeHa13chap3.pdf
http://ChaosBook.org/library/ArWeHa13chap16.pdf
https://www.youtube.com/watch?v=_i-e8GN5sI8&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=132
http://YouTube.com/embed/_i-e8GN5sI8
http://YouTube.com/embed/UuIp30Fw920
http://YouTube.com/embed/4tf_Lgpc0aI
http://YouTube.com/embed/Lzso7mNgxvY
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/library/Chen5-2.pdf
http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
https://www.gregegan.net/APPLETS/21/21.html
https://arXiv.org/abs/1001.1778
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I have enjoyed reading Mathews and Walker [7] Chap. 16 Introduction to groups
(click here). Goldbart writes that the book is “based on lectures by Richard
Feynman at Cornell University.” Very clever. In particular, work through the
example of fig. 16.2: it is very cute, you get explicit eigenmodes from group
theory alone. The main message is that if you think things through first, you
never have to go through using explicit form of representation matrices - thinking
in terms of invariants, like characters, will get you there much faster.

Any book, of 100s available, like Cornwell [3] Group Theory in Physics: An
introduction that covers group theory might be more to your taste.

Hamilton’s quaternions

Stone and Goldbart [9] (click here) Chapter 17 Sect 17.6 Analytic functions and
topology (wherein stereographic projection is revealed to be the geometric origin
of the spinor representations of the rotation group)

Question 12.1. Predrag asks
Q You are graduate students now. Are you ready for The Talk?
A Henriette Roux: I’m ready!

12.1 Linear algebra
In this section we collect a few basic definitions. A sophisticated reader might prefer
skipping straight to the definition of the Lie product (12.8), the big difference between
the group elements product used so far in discussions of finite groups, and what is
needed to describe continuous groups.

Vector space. A set V of elements x,y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under addi-
tion, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x,y ∈ V
(a+ b)x = ax + bx

a(bx) = (ab)x

1x = x , 0x = 0 . (12.1)

Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of V0,
or the span of V0, is also a vector space.

http://ChaosBook.org/library/MathWalk73.pdf
http://YouTube.com/embed/yyVTtOUvvwM 
http://ChaosBook.org/library/StGoChap17.pdf
https://www.smbc-comics.com/comic/the-talk-3
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A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.
The number of basis elements d is the dimension of the vector space V.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n,F), the
row of basis vectors transforms by right multiplication as e(j) =

∑
k(g−1)jk e

(k), and
the column of xa’s transforms by left multiplication as x′ = gx. Under left multiplica-
tion the column (row transposed) of basis vectors e(k) transforms as e(j) = (g†)j

ke(k),
where the dual rep g† = (g−1)> is the transpose of the inverse of g. This observation
motivates introduction of a dual representation space V̄ , the space on which GL(n,F)
acts via the dual rep g†.
Definition. If V is a vector representation space, then the dual space V̄ is the set of all
linear forms on V over the field F.
If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e(j) · e(k) = δkj ,

where δkj is the Kronecker symbol, δkj = 1 if j = k, and zero otherwise. The compo-
nents of dual representation space vectors ȳ ∈ V̄ will here be distinguished by upper
indices

(y1, y2, . . . , yn) . (12.2)

They transform under GL(n,F) as

y′a = (g†)aby
b . (12.3)

For GL(n,F) no complex conjugation is implied by the † notation; that interpretation
applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation, g can be
distinguished from g† by keeping track of the relative ordering of the indices,

(g)ba → ga
b , (g†)ba → gba . (12.4)

Algebra. A set of r elements tα of a vector space T forms an algebra if, in addition
to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any two
elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =

r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (12.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .
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The set of numbers ταβγ are called the structure constants. They form a matrix rep of
the algebra,

(tα)β
γ ≡ ταβγ , (12.6)

whose dimension is the dimension r of the algebra itself.
Depending on what further assumptions one makes on the multiplication, one ob-

tains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)ca = (tα)ba(tβ)cb , tα ∈ V ⊗ V̄ , (12.7)

and the Lie product

(tα · tβ)ca = (tα)ba(tβ)cb − (tα)bc(tβ)ab , tα ∈ V ⊗ V̄ (12.8)

which defines a Lie algebra.

12.2 SO(3) character orthogonality
In 3 Euclidean dimensions, a rotation around z axis is given by the SO(2) matrix

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 = expϕ

0 −1 0
1 0 0
0 0 0

 . (12.9)

An arbitrary rotation in R3 can be represented by

Rn(ϕ) = e−iϕn·L L = (L1, L2, L3) , (12.10)

where the unit vector n determines the plane and the direction of the rotation by angle
ϕ. Here L1, L2, L3 are the generators of rotations along x, y, z axes respectively,

L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 ,

(12.11)
with Lie algebra relations

[Li, Lj ] = iεijkLk . (12.12)

All SO(3) rotations by the same angle θ around different rotation axis n are conjugate
to each other,

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L , (12.13)

with eiφn2·L and e−iθn2·L mapping the vector n1 to n3 and back, so that the rotation
around axis n1 by angle θ is mapped to a rotation around axis n3 by the same θ. The
conjugacy classes of SO(3) thus consist of rotations by the same angle about all distinct
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rotation axes, and are thus labelled the angle θ. As the conjugacy class depends only on
exercise 12.3

θ, the characters can only be a function of θ. For the 3-dimensional special orthogonal
representation, the character is

χ = 2 cos(θ) + 1 . (12.14)

For an irrep labeled by j, the character of a conjugacy class labeled by θ is

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(12.15)

To check that these characters are orthogonal to each other, one needs to define
the group integration over a parametrization of the SO(3) group manifold. A group
element is parametrized by the rotation axis n and the rotation angle θ ∈ (−π, π] ,
with n a unit vector which ranges over all points on the surface of a unit ball. Note
however, that a π rotation is the same as a −π rotation (n and −n point along the
same direction), and the n parametrization of SO(3) is thus a 2-dimensional surface of
a unit-radius ball with the opposite points identified.

The Haar measure for SO(3) requires a bit of work, here we just note that after the
integration over the solid angle (characters do not depend on it), the Haar measure is

dg = dµ(θ) =
dθ

2π
(1− cos(θ)) =

dθ

π
sin2(θ/2) . (12.16)

With this measure the characters are orthogonal, and the character orthogonality the-
exercise 12.4

orems follow, of the same form as for the finite groups, but with the group averages
replaced by the continuous, parameter dependant group integrals

1

|G|
∑
g∈G
→
∫
G

dg .

The good news is that, as explained in ChaosBook.org Chap. Relativity for cyclists
(and in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [5]), one never needs
to actually explicitly construct a group manifold parametrizations and the correspond-
ing Haar measure.

http://birdtracks.eu/courses/PHYS-7143-19/continuous.pdf
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12.3 SU(2) Pauli matrices
A lightning, bullet points review.

• U(n): unitary transformation U = eiH

• Unitarity: U†U = 1⇒ H† = H , the generator is hermitian.

• SU(n): special unitary transformation detU = 1

• Must know: ln det = tr ln for any matrix, so the generator is traceless
ln detU = tr lnU = trH = 0

• SU(2) : H =

(
a c
e b

)
, a, b, c, e ∈ C , eight real numbers in all.

• H is hermitian: H =

(
a c+ id

c− id b

)
, a, b, c, d ∈ R ,

• H is traceless: 0 = trH ⇒ a+ b = 0 , three real rotation parameters in all, so

H = cσx + dσy + aσz

= c

(
0 1
1 0

)
+ d

(
0 −i
i 0

)
+ a

(
1 0
0 −1

)
(12.17)

where σj are known as Pauli matrices.

12.4 SU(2) and SO(3)
K. Y. Short

An element of SU(2) can be written as

Un(φ) = eiφ σ·n̂/2 (12.18)

where σj is a Pauli matrix and φ is a real number. What is the significance of the 1/2
factor in the argument of the exponential?

Consider a generic position vector x = (x, y, z) and construct a Hermitian matrix
of the form

σ · x = σxx+ σyy + σzz

=

(
0 x
x 0

)
+

(
0 −iy
iy 0

)
+

(
z 0
0 −z

)
=

(
z x− iy

x+ iy −z

)
(12.19)

Its determinant

det
(

z x− iy
x+ iy −z

)
= −(x2 + y2 + z2) = −x2 (12.20)
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gives the length of a vector. Consider a SU(2) transformation (12.18) of this matrix,
U†(σ · x)U . Taking the determinant, we find the same expression as before:

detU(σ · x)U† = detU det (σ · x) detU† = det (σ · x) . (12.21)

Just as SO(3), SU(2) preserves the lengths of vectors.
To make the correspondence between SO(3) and SU(2) more explicit, consider a

SU(2) transformation on a complex two-component spinor

ψ =

(
α
β

)
(12.22)

related to x by

x =
1

2
(β2 − α2), y = − i

2
(α2 + β2), z = αβ (12.23)

Check that a SU(2) transformation of ψ is equivalent to a SO(3) transformation on x.
From this equivalence, one sees that a SU(2) transformation has three real parameters
that correspond to the three rotation angles of SO(3). If we label the “angles” for the
SU(2) transformation by α, β, and γ, we observe, for a “rotation” about x̂

Ux(α) =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
, (12.24)

for a “rotation” about ŷ,

Uy(β) =

(
cosβ/2 sinβ/2
− sinβ/2 cosβ/2

)
, (12.25)

and for “rotation” about ẑ,

Uz(γ) =

(
eiγ/2 0

0 e−iγ/2

)
. (12.26)

Compare these three matrices to the corresponding SO(3) rotation matrices:

Rx(ζ) =

1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ

 , Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (12.27)

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

What does this mean? At this point, probably best to switch to Schwichtenberg [8]
(click here) who explains clearly that SU(2) is a simply-connected group, and thus the
“mother" or covering group, or the double cover of SO(3). This means there is a two-
to-one map from SU(2) to SO(3); an SU(2) turn by 4π corresponds to an SO(3) turn
by 2π. So, the building blocks of your 3-dimensional world are not 3-dimensional real
vectors, but the 2-dimensional complex spinors! Quantum mechanics chose electrons
to be spin 1/2, and there is nothing Fox Channel can do about it.

http://ChaosBook.org/library/Schwicht15-2edited.pdf
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Question 12.2. Henriette Roux asks
Q Why is this complex 2-dimensional vector called a ‘spinor’?
A Historical, as Arfken, Weber & Harris [1] explain: “It turns out that half-integral angular mo-
mentum states are needed to describe the intrinsic angular momentum of the electron and many
other particles. Since these particles also have magnetic moments, an intuitive interpretation is
that their charge distributions are spinning about some axis; hence the term spin. It is now un-
derstood that the spin phenomena cannot be explained consistently by describing these particles
as ordinary charge distributions undergoing rotational motion, [...] ”

Schwichtenberg [8]: “[...] spinors have properties that usual vectors do not have. For in-
stance, the factor 1/2 in the exponent. This factor shows us that a spinor1 is after a rotation by
2π not the same, but gets a minus sign. This is a pretty crazy property, because all objects we
deal with in everyday life are exactly the same after a rotation by 360o = 2π.

Question 12.3. Henriette Roux asks
Q What’ relation of Pauli exclusion principle to the spinor 2π rotation amounting to overall
minus sign?
A I think of fermion/Grassmann statistics as Archimedes principle + linearity, see my Field
Theory [4] chap. 4 Fermions. Basically, usually a constraint is imposed by eliminating a vari-
able, for example, given the constraint is x2 + y2 + z2 = 1, one gets rid of z by replacing
it everywhere with z →

√
1− x2 − y2. This makes a fully symmetric theory asymmetric and

ugly. In linear setting, another option is to keep all the variables and the symmetry, but add a new
variable which by construction subtracts a degree of freedom, what I call [6] a “negative dimen-
sion”. In quantum field theory such variable is called a ‘ghost’; it needs to be anti-commuting or
Grassmann.

12.5 What really happened

They do not make Norwegians as they used to. In his brief biographical sketch of So-
phus Lie, Burkman writes: “I feel that I would be remiss in my duties if I failed to
mention avery interesting event that took place in Lie’s life. Klein (a German) and Lie
had moved to Paris in the spring of 1870 (they had earlier been working in Berlin).
However, in July 1870, the Franco-Prussian war broke out. Being a German alien in
France, Klein decided that it would be safer to return to Germany; Lie also decided to
go home to Norway. However (in a move that I think questions his geometric abilities),
Lie decided that to go from Paris to Norway, he would walk to Italy (and then presum-
ably take a ship to Norway). The trip did not go as Lie had planned. On the way, Lie
ran into some trouble–first some rain, and he had a habit of taking off his clothes and
putting them in his backpack when he walked in the rain (so he was walking to Italy
in the nude). Second, he ran into the French military (quite possibly while walking in
the nude) and they discovered in his sack (in addition to his hopefully dry clothing) let-
ters written to Klein in German containing the words ‘lines’ and ‘spheres’ (which the
French interpreted as meaning ‘infantry’ and ‘artillery’). Lie was arrested as a (insane)
German spy. However, due to intervention by Gaston Darboux, he was released four
weeks later and returned to Norway to finish his doctoral dissertation.”

http://chaosbook.org/FieldTheory/04-Fermions.pdf
http://math.hawaii.edu/home/talks/burkman_master_talk.pdf
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Question 12.4. Henriette Roux asks
Q
A This is a math methods course. Why are you not teaching us Bessel functions?

Blame Feynman: On May 2, 1985 my stay at Cornell was to end, and Vinnie
of college town Italian Kitchen made a special dinner for three of us regulars. Das
Wunderkind noticed Feynman ambling down Eddy Avenue, kidnapped him, and here
we were, two wunderkinds, two humans.

Feynman was a very smart, forever driven wunderkind. He naturally bonded with
our very smart, forever driven wunderkind, who suddenly lurched out of control, and
got very competive about at what age who summed which kind of Bessel function
series. Something like age twelve, do not remember which one did the Bessels first.
At that age I read “ Palle Alone in the World,” while my nonwunderkind friend, being
from California, watched television 12 hours a day.

When Das Wunderkind taught graduate E&M, he spent hours crafting lectures
about symmetry groups and their representations as various eigenfunctions. Students
were not pleased.

So, fuggedaboutit! if you have not done your Bessels yet, they are eigenfunctions,
just like your Fourier modes, but for a spherical symmetry rather than for a translation
symmetry; wiggle like a cosine, but decay radially.

When you need them you’ll figure them out. Or sue me.
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Exercises
12.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(12.28)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e(k)

1 − i e(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?

12.2. Conjugacy classes of SO(3): Show that all SO(3) rotations (12.10) by the same angle
θ around any rotation axis n are conjugate to each other:

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L (12.29)

Check this for infinitesimal φ, and argue that from that it follows that it is also true for
finite φ. Hint: use the Lie algebra commutators (12.12).

12.3. The character of SO(3) 3-dimensional representation: Show that for the 3-dimen-
sional special orthogonal representation (12.10), the character is

χ = 2 cos(θ) + 1 . (12.30)

Hint: evaluate the character explicitly for Rx(θ), Ry(θ) and Rz(θ), then explain what is
the intuitive meaning of ‘class’ for rotations.

12.4. The orthonormality of SO(3) characters: Verify that given the Haar measure (12.16),
the characters (12.15) are orthogonal:

〈χ(j)|χ(j′)〉 =

∫
G

dg χ(j)(g−1)χ(j′)(g) = δjj′ . (12.31)
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