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Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

https://youtube.com/embed/Q4ILEEGFjyc


Geometry of chaos
The fate has handed you a law of nature. What are you to do with it?

1. Define your dynamical system (M, f ): the space M of its possible states, and the 
law f t of their evolution in time.

2. Pin it down locally–is there anything about it that is stationary? Try to determine its 
equilibria / fixed points.

3. Cut across it, represent as a return map from a section to a section.

4. Explore the neighborhood by linearizing the flow; check the linear stability of its 
equilibria / fixed points, their stability eigen-directions.

5. Does your system have a symmetry? If so, you must use it.

6. Go global: Label the regions by symbolic dynamics.

7. Now venture global distances across the system by continuing local tangent space 
into stable / unstable manifolds. Their intersections partition the state space in a 
dynamically invariant way.

8. Next: ChaosBook.org.
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Chapter 6

Lyapunov exponents
[...] people should be taught linear algebra a lot earlier
than they are now, because it short-circuits a lot of really
stupid and painful and idiotic material.

— Stephen Boyd

Let us apply our newly acquired tools to the fundamental diagnostics in dy-
namics: Is a given system ‘chaotic’? And if so, how chaotic? If all points
in a neighborhood of a trajectory converge toward the same orbit, the attrac-

tor is a fixed point or a limit cycle. However, if the attractor is strange, any two
trajectories x(t) = f t(x0) and x(t)+δx(t) = f t(x0 + δx0) that start out very close to
each other separate exponentially with time, and in a finite time their separation
attains the size of the accessible state space.

This sensitivity to initial conditions can be quantified as

‖ δx(t) ‖ ≈ eλt ‖ δx0 ‖ (6.1)

where λ, the mean rate of separation of trajectories of the system, is called the 
leading Lyapunov exponent.

https://www.youtube.com/watch?v=c-cwTbMlxC0&feature=PlayList&p=06960BA52D0DB32B&index=9


Part II

Chaos rules
1. Partition the state space and describe all allowed ways of getting from ‘here’ to

‘there’

2. Learn to count

3. Learn how to measure what’s important

4. Learn how to evolve the measure, compute averages

5. and how the short-time / long-time duality is encoded by spectral determinant ex-
pression for its spectrum

6. Learn how to use short period cycles to describe chaotic world at times much beyond
the Lyapunov time
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Chapter 14

Charting the state space
The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville, Moby Dick, chapter 32

In this chapter we learn to partition state space in a topologically
invariant way, and identify topologically distinct orbits.

Even though by inclination you might only care about the serious stuff, like
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https://youtube.com/embed/r1rmVmudnUY
https://youtube.com/embed/he2m0ZNCHEM


It does not say in the Bible that all laws of nature are ex-
pressible linearly.

— Enrico Fermi

So far we have concentrated on describing the trajectory of a single initial
point. Our next task is to define and determine the size of a neighborhood
of x(t). We shall do this by assuming that the flow is locally smooth and by

describing the local geometry of the neighborhood by studying the flow linearized 
around x(t). Nearby points aligned along the stable (contracting) directions remain 
in the neighborhood of the trajectory x(t) = f t(x0); the ones to keep an eye on are 
the points which leave the neighborhood along the unstable directions.

 The repercussions are far-reaching. As long as the number of unstable 
directions is finite, the same theory applies to finite-dimensional ODEs, state 
space volume preserving Hamiltonian flows, and dissipative, volume 
contracting infinite-dimensional PDEs.

https://youtube.com/embed/Oup-CL0D6Co
https://youtube.com/embed/vAEDQn3O3gM


The best of all possible theories of deterministic chaos, and the strategy is: 

1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on 
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction 
of individual trajectories. The dynamics of densities of trajectories is described 
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution 
operators.



Chapter 20

Averaging
Why think when you can compute?

—Maciej Zworski

We discuss the necessity of studying the averages of observables in 
chaotic dynamics. A time average of an observable is computed by in-
tegrating its value along a trajectory. The integral along trajectory can

be split into a sum of over integrals evaluated on trajectory segments; if the ob-
servable is exponentiated, this yields a multiplicative weight for successive trajec-
tory segments. 

This elementary observation will enable us to recast the formulas for averages in 
a multiplicative form that motivates the introduction of evolution operators and 
further formal developments to come. The main result is that any dynamical 
average measurable in a chaotic system can be extracted from the spec-trum of an 
appropriately constructed evolution operator.
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https://youtube.com/embed/RgzzqLAJ_1M
https://youtube.com/embed/yiUnpgkQDyo


In physically realistic settings the initial state of a system can be specified only to 
a finite precision. If the dynamics is chaotic, it is not possible to calculate the long 
time trajectory of a given initial point. 

The study of long-time dynamics thus requires trading in the evolution of a 
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially 
this means trading in nonlinear dynamical equations on a finite dimensional space 
x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector space of 
density functions ρ(x). For finite times and for maps such densities are evolved by 
the Perron-Frobenius operator,

ρ(x, t) =   Lt ◦ ρ (x) ,

and in a differential formulation they satisfy the continuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure robust 
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the notion 
of an individual deterministic trajectory loses meaning, is much shorter than the 
observation time, the “sharp” observables are those dual to time, the eigenval-
ues of evolution operators. This is very much the same situation as in quantum 
mechanics; as atomic time scales are so short, what is measured is the energy, 
the quantum-mechanical observable dual to the time.



The expectation value 〈a〉 of an observable a(x) integrated, At(x) =
∫ t

0 dτ a(x(τ)),
and time averaged, At/t, over the trajectory x→ x(t) is given by the derivative

〈a〉 =
∂s

∣∣∣∣
∂β ∣β=0

of the leading eigenvalue ets(β) of the evolution operator Lt.

By computing the leading eigenfunction of the Perron-Frobenius 
operator, one obtains the expectation value of any observable a(x). 

 The good news is that the scaffolding will be removed, both L’s and their 
eigenfunctions will be gone, and only the explicit and exact formulas for 
expectation values of observables will remain.

The next question is: How do we evaluate the eigenvalues of L? 



19.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to different results.

— John Guckenheimer

(R. Artuso and P. Cvitanović)

To a student with a practical bent: the choice of function space for ρ is crucial, 
and the physically motivated choice is a space of smooth functions, rather than 
the space of piecewise constant functions.



1.8 Chaos: what is it good for?
Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), TLyap ≈ λ−1 ln |L/δx| . Beyond that, 
chaos rules. And so the most successful applications of ‘chaos theory’ have so far 
been to problems where observation time is much longer than a typical ‘turnover’ 
time, such as statistical mechanics, quantum mechanics, and questions of long 
term stability in celestial mechanics, where the notion of tracking accurately a 
given state of the system is nonsensical.





Summary 

Observations  from deterministic 
dynamical systems that are sufficiently chaotic (hyperbolic) 
resemble (genuinely random) stochastic processes 

Random dynamical systems have a nicer ergodic theory 
than deterministic systems 

e.g. ideal dynamical picture for deterministic systems still true 

Applicability of theory of chaotic dynamical systems hinges on  
verification of basic assumptions (requiring detailed info), and a 
little bit of randomness can go a long way. 

(Predrag: "Noise is your friend")

(Lai-Sang Young slide, Nov 24, 2021)
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