
Appendix A25

Discrete symmetry factorization

A25.1 C4v factorization

If an N-disk arrangement has CN symmetry, and the disk visitation sequence is
given by disk labels {ε1ε2ε3 . . . }, only the relative increments ρi = εi+1 − εi mod N
matter. Symmetries under reflections across axes increase the group to CNv and
add relations between symbols: {εi} and {N − εi} differ only by a reflection. As
a consequence of this reflection increments become decrements until the next re-
flection and vice versa. Consider four equal disks placed on the vertices of a
square (figure A25.1). The symmetry group consists of the identity e, the two
reflections σx, σy across x, y axes, the two diagonal reflections σ13, σ24, and the
three rotations C4, C2 and C3

4 by angles π/2, π and 3π/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4}
by relative increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new sym-
bol will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation sequence
1+12+13+21 · · · = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle 112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle 112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1 corresponds to a flip in orientation after the second and fifth symbols);
this time the period in the full space is twice that of the fundamental domain. In
particular, the fundamental domain fixed points correspond to the following 4-disk
cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2
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Figure A25.1: Symmetries of four disks on a square.
A fundamental domain indicated by the shaded wedge.
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Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table A25.1.

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,
where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table A25.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

The C4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (25.20) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1 − t p̃)8 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃) (1 − tp̃)4

C2: (1 − t2
p̃)4 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃) (1 + tp̃)4

C4,C3
4: (1 − t4

p̃)2 = (1 − t p̃) (1 − tp̃) (1 + t p̃) (1 + tp̃) (1 + t2
p̃)2

σaxes: (1 − t2
p̃)4 = (1 − t p̃) (1 + tp̃) (1 − t p̃) (1 + tp̃) (1 − t2

p̃)2

σdiag: (1 − t2
p̃)4 = (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 − tp̃) (1 − t2

p̃)2

appendSymm - 25oct2017 ChaosBook.org edition16.0, Feb 13 2018



APPENDIX A25. DISCRETE SYMMETRY FACTORIZATION 930

Table A25.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labeled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For
typographical convenience, the symbol 1 of sect. A25.1 has been replaced by 0, so that
the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np. Orbit 2
is the sole boundary orbit, invariant both under a rotation by π and a reflection across a
diagonal. The two pairs of cycles marked by (a) and (b) are related by time reversal, but
cannot be mapped into each other by C4v transformations.

p̃ p h p̃
0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy
12 12 41 34 23 C3

4
001 121 232 343 414 C4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃
0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2
0012 1212 4141 3434 2323 C3

4
0021 (a) 1213 4142 3431 2324 C3

4
0022 1213 e
0102 (a) 1214 2321 3432 4143 C4
0111 1214 3234 σ13
0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24
0211 1243 2134 σx
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 3412 4123 C4
1122 1231 3413 C2
1222 1242 4131 3424 2313 C3

4

The possible irreducible segment group elements hp̃ are listed in the first column;
σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag denotes
a reflection across a diagonal (see figure A25.1). In addition, degenerate pairs
of boundary orbits can run along the symmetry lines in the full space, with the
fundamental domain group theory weights hp = (C2 + σx)/2 (axes) and hp =

(C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)(1 − 0t p̃)(1 + tp̃)2

diagonals: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − 0t p̃)(1 − tp̃)(1 + tp̃)2(A25.1)

(we have assumed that t p̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits 13, 24
occur; they correspond to the 2 fixed point in the fundamental domain.
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The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.2)

(for typographical convenience, 1 is replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characters can be read off the symbol
strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 , where n0 and
n1 are the number of times symbols 0, 1 appear in the p̃ symbol string. For B2 all
tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.3)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (A25.1) the orbit t2 does not contribute to A2
and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)

(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A25.4)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A25.5)
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Figure A25.2: Symmetries of four disks on a rectan-
gle. A fundamental domain indicated by the shaded
wedge.

In the above we have assumed that t2 does not change sign under C4v reflections.
For the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = 1 + t2 + (−t02 + t12) + (2t002 − t2t02 − 2t112 + t2t12)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t02t12) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t02t12

+2t002(−t02 + t12) − 2t112(−t02 + t12)) (A25.6)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (18.46).
exercise 23.8

A25.2 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C2v sym-
metry, see figure A25.2. C2v consists of {e, σx, σy,C2}, i.e., the reflections across
the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
on that axis; with these symmetry operations g0 = σx and g1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonally opposed disk cross the
boundaries of the fundamental domain twice; the product of these two reflections
is just C2 = σxσy, to which we assign the label 2. For example, a ternary string
0 0 1 0 2 0 1 . . . is converted into 12143123. . . , and the associated group-theory
weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in table A25.2.
Note that already at length three there is a pair of cycles (012 = 143 and 021 = 142)
related by time reversal, but not by any C2v symmetries.
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Table A25.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The de-
generacy of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other by C2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect. A25.2, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2
0211 1421 2312 σx
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics.

The group C2v has four 1-dimensional representations, distinguished by their
behavior under axis reflections. The A1 representation is symmetric with respect
to both reflections; the A2 representation is antisymmetric with respect to both.
The B1 and B2 representations are symmetric under one and antisymmetric under
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (25.19), the contributions of peri-
odic orbits split as follows
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gp̃ A1 A2 B1 B2
e: (1 − t p̃)4 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃)

C2: (1 − t2
p̃)2 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − tp̃)

σx: (1 − t2
p̃)2 = (1 − t p̃) (1 + tp̃) (1 − t p̃) (1 + tp̃)

σy: (1 − t2
p̃)2 = (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
table A25.2. For A1 all characters are +1, and the corresponding cycle expansion
is given in (A25.2). Similarly, the totally antisymmetric subspace factorization A2
is given by (A25.3), the B2 factorization of C4v. For B1 all tp with an odd total
number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.7)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)

+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.8)

Note that all of the above cycle expansions group long orbits together with their
pseudo-orbit shadows, so that the shadowing arguments for convergence still ap-
ply.

The topological polynomial factorizes as
1
ζA1

= 1 − 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1 + z,

consistent with the 4-disk factorization (18.46).

Commentary

Remark A25.1. C4v labeling conventions While there is a variety of labeling con-
ventions [2, 3] for the reduced C4v dynamics, we prefer the one introduced here because
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of its close relation to the group-theoretic structure of the dynamics: the global 4-disk
trajectory can be generated by mapping the fundamental domain trajectories onto the full
4-disk space by the accumulated product of the C4v group elements.

Remark A25.2. C2v symmetry C2v is the symmetry of several systems studied in
the literature, such as the stadium billiard [1], and the 2-dimensional anisotropic Kepler
potential [4].
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