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As we have seen, the renormalization of scattering amplitudes is a
physical necessity; what is measured is not the bare masses and
the bare verticeséla, but the dressed propagators and vertices.
This is pretty obvious; less obvious is the fact that the
renormalization can cure a theory of its ultraviolet divergences.
The miracle of unambiguous predictions extracted from divergent
integrals is hard to swallow:; the eagle from the land of Uuefithe
rejects it to this very day, and the crow is not too happy about
it, either. The prevailing view today is pragmatic: what you
cannot see, you cannot see. The field theories that we play with
are phenomenological models valid over limited ranges of distances
and energies. When we measure an electron spiralling in a weak
mnagnetic field, we have no way of knowing what would happen to it
at the Planck length. We measure a small shift in the electron’s
propagator; the contributions from the ultra-high energies are not
affected by this shift, they are the same for the propagator and

the renormalization constants, and they cancel.

Today we go even further, and turn this disease of the old field
theory into a cornerstone of the new field theory. Instead of

complaining about the renormalization of ultraviolet divergences,
today we take the renormalizability, along with the locality and

1. Unless there is a limit in which all radiative corrections
decouple, as in the case of the QED Thompson limit.



unitarity, to be the starting line for model builders. One can
even ''derive', gquite persuasively, the gauge theories as the only
class of models of particle interactions that meets the
regquirements of locality, unitarity and the ultraviolet

blindness.

While the multiplicative renormalization of S-matrix elements is
obvious, the proof that it cancels the UV divergences, and yields
unigue finite parts, is a longer story. 1t goes in (at least)

four steps:

1. power counting identifies divergences in each Feynman

constants

4. finite renormalizations relate the counterternms QC

dﬂ}gxtﬁf'ranornalization conditions

The arguments sgga%%;binatoric, and they require no details about
the theory other than existence of a regularization scheme. The
choice of the regularization scheme is a separate issue, of great
aVWS of this

practical importance, but no bearing on the

chapter.

A. Power counting

For a given graph G the degree of divergence deg((G) is the sum of
the powers of loop momenta and vertex momenta, minus the sum of

powers of the propagator momenta. A few examples suffice to
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If deg((G?>>=0 the graph is overall divergent. If deg(G)<0 the

graph is (superficially) convergent; superficially, because it can
b ;{'our éa'me_w\ﬂws '
still have divergent subdiagrams. For example,” the above box
extrald
diagram is superficially Yconvergent, but contains a vertex

subgraph which is divergent.

If a theory has only a finite number of 1PI Green functions whose
Feynman diagrams are overall divergent, it is called

renornalizable; otherwise the theory is called non-renormalizable
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and presumed hopeless.
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renormalizable 3 | add an extra loop to a diagram,
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to the QED vertex diagram ( ,2)
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the new loop integration is compensated by the extra propagators.

Hence deg(G) depends oniy on the number of external legs of an 1P1I

diagram, and not on the order in perturbation theory (exercise
A.1). As QED has only a few overall divergent types of diagranms

(exercise ,A3) it is renormalizable.

E‘Xﬁfd5€. -Arl. POWU COLAV\—I.\.V\j _ . COhﬁl‘Cu_y o q;bl“‘\’ly
Thiory definad by o st of vedhes . The waw of divergma o] 4
VMo AS AJ.&\MA 3%

5 = b+sf/z+k-d ( ,5>

whare h"-‘-‘ NWLL:JH J; dwﬁvn:)\\lﬁj 3 b'-'-: oA a,g bosm"‘c EL?Q) _g-.-.-..
b 53 {qw‘omt &?) , Tor renommgam Fheones )ﬂ“/tﬁ

ndog varishes, Shey har Tl d.lﬂl'QL o ANEA gomer o} dovy
J;{ajrom LS 3:\!%\ \:)/

Deg (€)= -B-3F/2 +d + 26, C .€)

u\ruu{ B = Wumbac o}, o,d-cmai bosorwc ]3{; F = nusby cj exteynad
,%?_fm(mfg {Laf) ‘ oA 'h,; i’vwm\n-r oJ, Vb(j\blf; d}‘ f“ﬂﬂ :'y‘lﬂ i

1\

£ Xercise A2

’{ehormm‘gg_ln& AN s . Chack Thad VW:”L"'“?
o{; C +5) s eﬁmaa,d' T fei“‘“"‘ﬂ Tht 1 Mﬂj

tenstambtt b damemsim lss
_ 4~



£ XLreast A3 QED divergences | Proye that The
15T

“'@“‘")A‘ékjm@“‘“ ) :mj C7)

exhausts all superficially overall-divergent diagrams of QGED. We
say “superficially®”, because the photon-photon scattering Green

functions are actually convergent due to the gauge invariance
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Exercise ;.P_LE Prove that 4:3 is renormalizable in E-'
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dimensions,.

Exercise_ ,_;Ef-_f)._-__ Sketch (without any index orgy) the power counting
for gravity as perturbation theory in spin-2 graviton. Show that
gravity is non-renormalizable above two dimensions (and

non-existant in two dimensions).



R. Subtractions

A typical Feynman integral is of form

M= jcdz] Lez) ( .8)

where the integration variables zZ vary over some range (they could
be Feynman parameters, momenta, or whatever), and if the integral
is divergent, the divergences arise from identifiable regions of

the integration range:

If a divergence arises frorm the region of the integration space
which corresponds to all loop momenta very large and comparable,
it is called an overall UV divergence. We can subtract this

. N 1
singularity by constructing any integrand 1I(z) which

coincides with I(z) in the singular region:
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Qer.cnll this construction K—oporntion_': . I(:—) should be

sufficiently close to I(z) to ensure that the integral
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is finite. K-operation is typically a Taylor expansion of some
sort (we shall give explicit examples later on). Its point is
that it cancels the singularities point by point. That is
especially important for numerical evaluation, as otherwise the
conaulatons ok, gﬁﬁwujftj
integrals are dominated byfTarga contributions from'singularities,

and the physically interesting finite parts get swamped by the

numerical errors.

Subdivergences. Ultraviolet divergences can also arise from any
subset of loop momenta. As loop momentum has to loop, it is by
definition cosigned to a 1Pl subdiagram. To subtract a
subdivergence, we construct an integrand which approximates the
divergent subdiagram around the singularity in the variables

corresponding to high loop momenta, and which coincides with the

integrand I(z) in the remaining variables:

M
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Lg is a divergent = - T T

computed by the same K prescription as the overall divergent
constant L; diagrammaticaly L is a new vertex of the theory, and =
indicates all index contraction and momenta integrations implicit
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in the above gfaPh . By construction, (1-KoM wﬁ~aﬁg?w~F;;JdﬁP“ 2

can visualize K-operation as a knife that shaves off the UV

singularity of the corresponding integrand?

(1-K)M removes the

- S
overall UV divergence, (1-K5)(1~K)H then removes the subdiagranm

divergence, and so forth, until the remaining integral 1is
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ultraviolet finite. The operation of removing all divergences is

called the R-operation (ie., the renormalization operation):

RM = “IgTCl-Ks)M ( .15)

There is one potential problem with the
above definition of the finite part of M. If two subdiagrams

overlap, our prescription seems not unique, as the result of
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is not the same as the result of iscolating singularities in the

other order
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If the value of RM depended on the order in which we constructed

KTKSH

the subtractions, we would get gquite confused. However, the
overlap problem is only apparent. The reason is that if the
momenta of both overlapping subdiagrams are high, then all the
mnomenta are high, and K operation has no further effect, KKsK{M =

K-l.Ksn, 80

and the problematic overlap singularities do not exist in an

overall-subtracted integral.

To summarize: given a prescription K for constructing integrand
subtractions we can extract the unique finite part of any Feynman

diagram.
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C. Counterterms

The R-operation rearranges a single Feynman diagram into a sum of

a finite part plus miyard divergent ternms:
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Our next task is to show that these divergent constants can be
collected into counterterms and absorbed into renormalization
constants. Unlike the R-operation, the counterterms do not
subtract divergences graph by graph. Therefore one needs to prove
that the combinatorics of R-subtractions is equivalent to

subtractions generated by counterterms.



In a sense this is obvious. If you understand the diagrammatic
derivations of the first few chapters, you’ll see it immediately.
If not, you will have to do some expansions and check the

combinatorics.

K operation associates with each 1P1 Green function either a
divergent constant L, or nothing, depending on the degree of
divergence. As 1Pl Green functions are the generalized vertices
of the theory, L’s can be viewed as the additional vertices of the
renormalized theory, ie. the theory that generates finite graphs
RM instead of divergent M’s. L’s can be collected into a
counterterm functional LC¢3 ” and the action replaced by the

renormalized action

LK
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