
, RENORMALIZATION 
•t • I ----------------

As we have seen, the renormalization of scattering a•plitudes is a 

physical necessity; what is measured is not the bare masses and 

the bare verticesfl). but the dressed propagators and vertices. 

This is pretty obvious; less obvious is the fact that the 

renoraalization can cure a theory of its ultraviolet divergences. 

The miracle of unaMbiguous predictions extracted from divergent 

integrals is hard to swallow; the eagle fro• the land of Quefithe 

reJects it to this very day, and the crow is not too happy about 

it, either. The prevailing view today is prag•atic: what you 

cannot see, you cannot see. The field theories that we play with 

are phenomenological models valid over limited ranges of distances 

and energies. When we measure an electron spiralling in a weak 

magnetic field, we have no way of knowing what would happen to it 

at the Planck length. We measure a &Mall shift in the electron's 

propagator; the contributions fro• the ultra-high energies are not 

affected by this shift, they are the same for the propagator and 

the renoraalization constants, and they cancel. 

Today we go even further, and turn this disease of the old field 

theory into a cornerstone of the new field theory. Instead of 

complaining about the renormalization of ultraviolet divergences, 

today we take the renoraalizability, along with the locality and 

1. Unleaa there is a liMit in which all radiative corrections 
decouple, as in the case of the QED Thompson limit. 
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unitarity. to be the starting line for model builders. One can 

even "derive". quite persuasively. the gauge theories as the only 

class of models of particle interactions that meets the 

requireaents of locality. unitarity and the ultraviolet 

blindness. 

While the 11ultiplicative renormalization of S-matrix elements is 

obvious. the proof that it cancels the UV divergences. and yields 

unique finite parts, is a longer story. 

four steps: 

It goes in Cat least> 

1. eower_counting identifies divergences in each Feynaan 

diagraa 

2. subtractions reaove divergences diagram by diagram 

3. counterterms absorb divergences into the renormalizar-""tion 

constants 

4. finite renormalizations relate the counterteras 10~ 

tit{}e'rt.h t renor11al ization conditions 

The arguments ~mbinatoric, and they require no details about 

the theory other than existence of a regularization scheme. The 

choice of the regularization scheme is a separate issue, of great 

(lY~S 
practical importance, but no bearing on the of this 

chapter. 

A. Power counting 

For a given graph G the degree of divergence deg<G> is the sum of 

the powers of loop momenta and vertex momenta. minus the sum of 

powers of the propagator momenta. A few examples suffice to 
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illustrate the concept <the gener•l rule 1.·s - derived in exercise 
...... i. } : 

-0-- JAi~ ~ D~(G-) = d-2.-2.. = c.\-+ N 
l'V 

( . l) 

-& I'\# Ji~J__L ~ ~ D~(<i-) ~ d-2-1- 2. ~ d-4 ...... 
¥ }( ~~ 

,3) 

I£ deg<G>>=O the graph is gy~~§!! divergent. If deg<G><O the 

graph is <superficially> convergent; superficially, because it can 
i'il --fv~r ~"'~~(OIi'~ 1 

still have divergent aubdiagrams. For exampl~e above box 
,.§:1._t~~ 

diagram ia superficially'<convergent, but contains a vertex 

aubgraph which is divergent. 

I£ a theory has only a finite nu•ber of lPI Green functions whose 

Feynman diagrams are overall divergent, it is called 

renor•alizable; otherwise the theory ia called non-renorMalizable 

and pre.umed hopeless. 

To ck,krrM.V1.l whJJW.f o. ik.t.o~y l~ 
renormalizable, add an extra loop to a diegr••• 

1i ~> ~s ~+- ch~y-~ ~ru. oJ- d).."~ct.. )fh.t 

1koy I~ ~f~~i.J.1.t t 'tor- e.Jxa,/',v,.pll...) if we add a photon correction 

to the QEO vertex diagram 
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( ,4) 

the new loop integration ia coMpenaated by the extra propagators. 

Hence deg<G> depends only on the number 0£ external legs of an lPI 

diagraa, and not on the order in perturbation theory <exercise 

~.1>. As QED has only a few overall divergent types 0£ diagrams 

<exercise .A.3) it is renorMalizable. 

-E-xerC-.:s.e. .. A. l 'Powtt cov-.V\-h'VlCf Co L •1 ·· =" • l'\5,1·Q.l.y o..1r1. ,::ub1my 

-tht.oy Jer~ ~)' Cl s£t- of \Jf.<hc.ts . Tfu.. t'-'lGWX zj c:t-1:v~\ei. ()j o.__ 

Vttr-~ A) tlA..fvu.A ~ 

5 : b + 3.f/2. + k- d. ( , s) 

w\..i.tt- k = ~ aJ chmvo..1'Nt_s ) b = hM."-'W a1 bos~c. ~ _, f :-
tv..vm~ o~ ,{utr\A·o~'c.. ~- Tor rtV\0Tw--.dM3a.b.& --tkon't..s ~·~ 
t\'\~ v&Wv\.Sht-s, s-h~ ila- ~- ~ru. oj, d.-i'vttr~ oJ ~ 
k~j rON-A.. is. t"~ ky 

D~(G-): -B-3F/2. +cl+ ~h)b/ ( .l) 

w\.u..t < B-=- ~~ o)-- ½-k.n-\,.,l .bo5o~c.. J~.i F ::: ~blf 1 ~k,~ 
fe.rrn.tO"V\.l·c. ur J 0/h.~ 'Y\tl = hwM.b,t..r 6)} vw1'ict-s. ai .:-~ ,pt. 

f. X-{;v-C< ·'><. -A Z 'J} J.. ...rl .L 
-----· -· - ~l~orYl'I-A.lt.J!bft. 'le,Jl~S • C ~c~ !VI.Ol VaMA.5~-✓ 

af C , 5) 1:S ejl.V.va_~ -f<r reiu...·n:; -tr..it ~ ~j 
~sto.M.~ k tl.t~.s,rn ets.s, 
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( , 7) 

exhauata all •uperfioially overall-divergent diogr••• of QED. We 

soy "superficially". because the photon-photon scattering Green 

function• are actually convergent due to the gouge invariance 

<•x•rci•• 1
• '· ) , ~~ t'~'la.riGVr\.c:.e.._ o..lso rttl...u.a...~ ~ 

~f~ o~ r)...:"~Vr-ct.. fr photo~ ¼L\-~01 cl-t~ ra,,w.5 
-to D~(G-):::: 0 

1 
e.?<~~~ 7,. 1 . 

Ex~r~s.e. . ,A.4 

l).rjw-m_e,,d- of C 

t:hl> I SI.AC~ Dr> 

Q C.. D d iv u;_r nc...e .i . j t. ~ 'f'6..lt ·}(-- -t ~ 
. 4 ') 1 a- a'~o~ \"tst,tt'onS 0\1'\ d~o"' 

-b-
To k- 1h..i' $, 

1 
Jov-.. o~ h.ttd -f1> k~ ~aJ· flt.• 3-j ~~ . 

"'ut"¼ i~ f t1fo,'t'\ o V\c,.L ~ %~~ C o..pp¼~ D), ks+ 
-rk sv..pt1tf'4a..~ J..:"~ 1'Pl d.-tjrwM~ fr Qc D t·~ 

~" eL'm..t \'\S\ 6'"'t--S, 
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Exercise __ .A.§ Prove that 

diaension&. 

i& renormalizable in 6 

Exerciae_~~-6. Sketch (without any index orgy) the power counting 

£or gravity as perturbation theory in apin-2 graviton. Show that 

gravity i& non-renoraalizable above two dimension& <and 

non-exiatant in two diaenaiona>. 
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B. Subtractions 

Overall_divergenO,~§• A typical feynMan integral is of fora 

M =- J cJz.J Icz) ( ,8) 

where the integration variables z vary over aoae range <they could 

be Feyn•an parameter&, aoMenta, or whatever), and if the integral 

is divergent, the divergences arise from identifiable regions of 

the integration range: 

f 
' +------ s1·V\~ (.( (o.::.1/ r:3~ 

( 

If a divergence ari••• fro• the region of the integration apace 

which corresponds to all loop moaenta very large and co•parable, 

it is called an 2Y~£9!! UV divergence. We can subtract this 
IV 

singularity by constructing any integrand I(Z) which 

coincides with ICz) in the singular region: 

( 
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• 

• 

(1-k)I<z) 

( .11) 

We,call thi• con•truction K-operation't ahould be 

su££iciently cloee to I<z> to ensure that the integral 

( , It) 

ia £inite. K-operation is typically a Taylor eKpanaion of aoae 

sort <we shall give explicit examples later on>. Its point is 

that it cancels the singularities point by point. That is 

especially important for nuaerical evaluation. as otherwise the 
\,~('),_!'-c.t.~1\'o-,,.~ c:>~' ~1,~+-, 

integrals are doMinated by~large contributions froaFaingularities • 

and the physically interesting finite parts get awaMped by the 

nuaerical errors. 

Subdivergences. Ultraviolet divergences can also arise from any 

subset of loop aoaenta. As loop moaentua has to loop. it is by 

definition cosigned to a lPI subdiagraa. To subtract a 

subdivergence. we construct an integrand which approximates the 

divergent aubdiagraa around the singularity in the variables 

corresponding to high loop aomenta, and which coincides with the 

integrand I<z~ in the reaaining variablea: 
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-,$- ...... 
' \ I 

( 

L3 is a divergent 

computed by the saae K prescription as the overall divergent 

constant L; diagraaaaticaly Lia a new vertex 0£ the theory, and• 

indicates all index contraction and momenta integrations implicit 
rlO-~ \'10 S~!~Ct o..-t\-S.l~ ~ 4-,, 

in the above ~rO-fh. By construction, <1-K~>M . You 

can visualize K-operation aa a kni~• that •h•v•• off the UV 

singularity of the correaponding integrand! 

( , \+) 

(1-K>M reaoves the 

di (1 -Ks><l-K>M then reaovea the aubdiagr•• S overall UV vergence, 

divergence. and 80 forth. until the reaaining integral ia 



ultraviolet finite. Th• operation of re•oving all divergences ia 

called the R-operation (ie .. the renor•alization operation): 

Overla22ing_~iVHHDQH• There ia one potential probl•• with the 

above definition of the finite part of M. If two aubdiagrama • 

overlap. our prescription seeaa not unique. as the result of 

I 

K.s -0--
2. 

( 

is not the aaae aa the result of isolating singularities in the 

other order 

( 

, I 5) 

. lt) 

If the value of RM depended on the order in which we constructed 

the subtractions. we would get quite confused. However. the 

overlap problea is only apparent. The reason is that if the 

momenta of both overlapping subdiagraas are high. then all the 

( ,\7) 

and the probleaatic overlap singularities do not exist in an 

overall-subtracted integral. 

To summarize: given a prescription K £or conatructing integrand 

subtractions we can extract the unique finite part of any Feynman 

diagraa. 
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C.. Counterter111s 

The R-operation rearrangea a single Feynaen diagram into a su111 of 

a finite part plua aiyard divergent terms: 

M = Tr(I-Ks) MG- -r 'i:. Ks Mc;. - ~ I<~ \(T MC"r +· · 
& $ S >,T 

( .18) 

For t,,x.Q/lv\ f \ e 

(_ I \Cf) 

M - ~M + L -+ L_s* M11/s + L1* MG-Ji - Ls* LT..lt MG/sr 

Our next taak ia to ahow that th••• divergent constants can be 

collected into counterteras and absorbed into renoraalization 

constants. Unlike the R-operation~ the counterterms do not 

subtract divergence• graph by graph. Therefore one needs to prove 

that the coabinatorica of R-aubtractions ia equivalent to 

subtraction• generated by counterteraa. 
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In a sense this is obvious. If you understand the diagrammatic 

derivations of the first few chapters, you'll see it immediately. 

If not, you will have to do soae expansions and check the 

collbinatorics. 

K operation associates with each 1PI Green function either a 

divergent constant L, or nothing, depending on the degree of 

divergence. As 1PI Green functions are the generalized vertices 

of the theory, L's can be viewed as the additional vertices of the 

renoraalized theory, ie. the theory that generates finite graphs 

RM instead of divergent M's. L's can be collected into a 

counterterlll functional L [~J, 

renormalized action 

and the action replaced by the 

Sf'.- = S - L 

(_ ,2.\) 

, c. 'L c,~"' If,~- .:1,sv...v SR--L~- t \.-~ c . 2.0) 

,lL, s\.(,~to-e,h'o,....) W)ifL_ cam.tit- ~~,·1-'l\,t»ncs 

o~ ~fr)) 
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