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5. SPACETIME PROPAGATION 

Until now the collective indices have stood for all parti­

cle labels; spacetime location, spin, particle type and so on. 

To apply field theory to particle physics we have to describe 

propagation of particles through the spacetime. I find it most 

convenient to formulate the field theory in our spacetime as an 

analytic continuation from a Euclidean world in which there is 

no distinction between time and space. What do we mean by propa­

gation in such a space? 

Our formulation is inevitably phenomenological: we have no 

idea what the structure of our spacetime on distances much short­

er than nuclear sizes might be. The spacetime might be discrete 

rather than continuous, or it might have geometry different from 

the one we observe at the accessible distance scales. The formal­

ism we use should reflect this ignorance. We will deal with this 

problem by subdividing the space into small cells and requiring 

that our theory be insensitive to distances comparable to or 

smaller than the cell sizes. 

Our next problem is that we have no idea why there are 

particles, and why or how they propagate. The most we can say 

is that there is some probability that a particle hops from one 

spacetime cell to another spacetime cell. At the beginning of 

the century, the discovery of Brownian motion showed that matter 

was not continuous but was made up of atoms. In particle physics 

we have no indication of having reached the distance scales in 

which any new spacetime structure is being sensed: hence for us 

this hopping probability has no direct physical significance. It 

is simply a phenomenological parameter: in the continuum limit 

it will be replaced by the mass of the particle. 

A. Free propagation 

We assume for the time being that the state of a particle 

is specified by its spacetime position, and that it has no further 

labels (such as spin or color): i = (x 1 ,x 2 , ••• ,xd). What is it 

like to be free? A free particle exists only in itself and for 

itself; it neither sees nor feels the others; it is, in this 

chilly sense, free. But if it is not at once paralyzed by the 

vast possibilities opened to it, it soon becomes perplexed by 



- b2 -

the problems of realizing any of .them alone. Born free, it is 

constrained by the very lack of constraint. Sitting in its cell, 

it is faced by a choice of doing nothing (s = stopping probabili­

ty) or hopping into any of the 2d neighboring cells (h = hopping 

probability) : 

The number of neighboring cells defines, if you wish, the di­

mension of the spacetime. The hopping and stopping probabili­

ties are related by the probability conservation: 1 = s + 2dh. 

Taking the hopping probability to be the same in all directions 

means that we have assumed that the space is isotropic. 

Our next assumption is that the spacetime is homogeneous, 

i.e. that the hopping probability does not depend on the loca­

tion of the cell. (Otherwise the propagation is not free, but 

is constrained by some external geometry.) This can either mean 

that the spacetime is infinite, or that it is compact and period­

ic (a torus). That is again something beyond our ken - we proceed 

in the hope that the predictions of our theory will be insensi­

tive to very large distances. 

The isotropy and homogeneity assumptions imply that our 

theory should be invariant under rotations and translations. 

The requirement of insensitivity to the very short and very long 

distances means that the theory must have nice ultraviolet and 

infrared properties. 

A particle can start in a spacetime cell i and hop along 

until it stops in the cell j. The probability of this process 

is hLs, where Lis the number of steps in the corresponding path: 

The total probability that a particle wanders from the i-th cell 

and stops in the j-th cell is the sum of probabilities associated 
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with all possible paths connecting the two cells: 

t:i . . = s L h 1N. . (L) . 
1.J L 1.J 

(5. 1) 

Nij (L) is the number of all paths of length L connecting i and 

j. Define a stepping matrix 

If a particle is introduced into the i-th cell by a source 

the stepping matrix moves it into a neighboring cell: 

The operator 

h = (h,h, ... ,h) 
µ 

generates all paths of length 1 with probability h: 

(h•S)J = h 
1~1 

1~1 

i-th cell 

(5 .2) 

(5 .3) 

(The examples are drawn in two dimensions). The paths of length 

2 are generated by 

(h•S) 2J=/·~i~ 
1. 2 

and so on. Note that the k-th component of the vector (h•S)LJ 

counts the number of paths of length L connecting the i-th and 

the k-th spacetime cells. The total probability that the particle 

stops in the k-th cell is given by 
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L 
cj>k = s I: (h • S) k . J . 

L l. l. 

s 
<I> = 1-h•S J • (5 .4) 

The value of the fieldt <Pk at a spacetime point k measures the 

probability of observing the particle introduced into the system 

by the source J. The Euclidean free scalar particle propagator 

(5.1) is given by 

(5 .5) 

or, in the continuum limit (do exercise 5.A.1) by 

(5 .6) 

So far we have assumed that the particle hops to any neigh­

boring cell with the same probability. What happens if the parti­

cle hiding in the spacetime cell is not a small spherical object, 

but something long and shapely? In that case, we have to intro­

duce spin labels to define the particle orientation: i = (xµ,a). 

Such a particle will hop and retain its orientation with some 

probability, and hop and change its orientation with a different 

probability. The hopping probability his now replaced by a hop-

ping matrix 

ic~ (5. 7) 

i+nt'-

which describes the probability that a particle with the spin 

label a hops one step in the directionµ and flips its spin to 

s. We do not want to give up the isotropy and homogeneity of 

spacetime, so the hopping matrix can depend only on the relative 

orientations of the two spins. In other words, the hopping matrix 

must be an invariant tensor under spacetime translations and ro­

tations. 

Interpreting$ as a field is consistent with the previous definition of a 
free field, equations (2.22) and (2.25). 
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How does one describe orientation of a particle? That de­

pends on the particle type. For example, if the particle orien­

tation can be specified by ad-dimensional vector, we need d 

spin labels. We shall always assume that the range of the spin 

index is finite. In the lan~uage of group theory this means 

that we shall consider only the finite dimensional representa­

tions of the rotation group. Furthermore, we shall be interested 

only in irreducible representations. The physical reason is that 

reducible representations are resolved into irreducible com­

ponents by quantum corrections. For example, if a free propa­

gator contains both an isotropic part which propagates as a 

scalar (5.5) and a non-isotropic remainder, one-loop corrections 

will be in general different for the two parts. 

If a particle of spin a is introduced into i-th cell by 

means of a s~urce 

the stepping matrix (5.2) generates the probabilities associated 

with all paths of length one: 

The probabilities associated with all paths of length two are 

given by (h•S) 2 J, and so on. Hence the propagator for a free 

spinning particle is given by 

L 
I::,.. . S =so .. o S + s :t (h• S) . . S 
10,J 1J a L>O 10,J 

(5 .8) 

To make further headway, one has to be more specific about the 

hopping probability hµ. This would get us too deep into group 

theory, and (if we started thinking about fermions), lead to 

ulcers. We stop now. 



- 66 -

Exercise 5.A.1 Continuum propagator. 
operator by 

Define the finite difference 

a a 

elf (x) 

f (x + -) - f (x - ,--) 
2 2 

a 

where a is the lattice spacing. Show that 

_hl ~ h (S~ . + s~.) = 2d+a2 a2 
, 

).I l.J Jl. 

where 32 = al-lal-l is the finite difference Laplacian. Show 
that the Euclidean scalar lattice propagator (5.5) is given 
by 2 

~ -:-~ = 1 _ ha 82 
1.J s 

The mass in the continuum propagator (5.6) is related to 
the hopping parameter by 

2 s 
m = ha2 • 

If the particle does not like hopping (h + 0), the mass is 
infinite and there is no propagation. If the particle does 
not like stopping (s + 0) , the mass is zero and the particle 
zips all over the space. 
Diagonalize a2 by Fourier transforming and derive (5.6). 

B. A leap of faith 

(5. 9) 

We have constructed the Euclidean free-particle propagator 

from a few basic notions such as addition of probabilities and 

spacetime homogeneity and isotropy. At some point we have to 

face two non-intuitive facts: our world is Minkowskian, not 

Euclidean, and the theory of elementary particles is quantum 

mechanics, not statistical mechanics. Usually somebody tells 

you that the quantum mechanics is obtained from the classical 

mechanics by replacing Poisson brackets by commutators (canonic­

al quantization). This gives me no intuition about quantum 

mechanics. With my present (lack of) understanding, I find it 

easier to think of field theory in terms of probabilities, as 

we have done up to now, and then make a leap of faith by saying: 

our world is a Wick rotation of the Euclidean world, 

(5. 10) 

This gives us 

1) special relativity gµv = ( 1 -1 -1 0 ) 

0 -1 

(5. 11) 
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2) quantum irechanics; Boltzmann weight e 8 is replaced by a 

phase factor eiS/fi~ 

Fbr example, Euclidean action 

(5. 12) 

is replaced by the Mink<M.3ki action 

(5. 13) 

where the imaginary factor i is the jacobian fran the change of 
variables (5.10). 

3) corres:i;:ondence principle; Planck constant n is the scale of 

quantum fluctuations, and the classical mechanics is the 

large action limit of the quantum theory. 

It is not good enought, but it will get us through the 

night. 

C. Scattering matrix 

A run-of-the-mill particle scattering experiment looks some­

thing like this 

Particles with sharply defined 4-momentum are accelerated over 

kilometer distances, collide in regions of nuclear size and the 

t 
There is a little problem with interpreting measurements. 



- 68 -

resulting particles fly tens of meters to detectors. The theo­

retical predictions for ·such experiments are expressed in terms 

of connected Green £unctions. If ybu think about it, you will 

realize that the experiments mea~ure the effective vertices, or 

the 1PI Green £unctions. 

If you really think about it, bur formulation in terms of 

sources is a brave idealization. In reality the entire experi­

ment is one large system 

particle 
preparation 

.. 

:- experiment ~'. 
-· ' .. 

~particle 
' detection 

(5.15) 
... 

and approximating the experimental apparatus by sources makes 

sense only when the interaction region can be well separated. 

The particles which traverse the macroscopic distances between 

the interaction region and the experimental apparatus are clas­

sical, mass-shell particles with k 2 = m 2 : 

collision 
region 

(5. 16) 

We can measure the mass of these particles by measuring their 

four-momenta. The theory predicts a mass-shift 

m2 =m2 +-e-1 
0 2 2 k =m 

(5. 17) 

This relates the bare mass (mass with all interactions turned 

off) to the physical mass. The theory also predicts a wave­

function renormalization 

~ z2 

~ -I 2 2 = k2 - m2 
k = m 

(5.18) 
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If the particles also carry spin, there will be further mass­

shell constraints. They are expressed in terms of polarizations 

Eµ(k), spinor wave £unctions ~a(k), etc.; we shall soon see such 

objects. They are the reason why Z2 is called the "wave function 

renormalization constant". 

A connected Green function (2.17) has a propagator on each 

external leg. These propagators develop poles if the correspond­

ing particles traverse macroscopic distances, and what is probed 

in an experiment is not the entire Green £unction, but only its 

mass-shell amputation 

The renormalization constants Z2 survive all such amputations, 

and cannot be disentangled from the measurements of the physical 

coupling constants: 

apparatu~ ~ 

apparatus 

The res6lution of this problem is to absorb~ into the defini­

tions of the physical coupling constants by 

(5.19) 

where g
0 

is the bare coupling constant (for a vertex with k legs), 

and the vertex renormalizations Z
1 

are computed from 

(5 .20) 

(and so on for higher vertices). The wave function renormaliza­

tions contribute factors of vz'; because they must be shared in a 

sisterly fashion between the two ends of each propagator. So, the 

quantities that are really measured in experiments, and therefore 

called the S-matrix (scattering matrix) elements, are 
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(5.21) 

(for particles with spin we should also add polarization wave 

functions on the external legs). Here the z;½ factors account 

for the bits of renormalization constants absorbed by the ex­

perimental apparatus, and the bare masses and couplings are to 

be re-expressed in terms of the physical ones by (5.17) and 

(5.19). 

This is called renormalization. It is not here because of 

(possible) ultraviolet divergences, but because it is inevitable. 

The only way to compare our theory with nature is to relate our 

Green functions to physically measurable parameters, and then re­

express all predictions of the theory in terms of those para­

meters. 

Renormalization should not be confused with regularization. 

Regularization is a mathematical problem of defining infinite 

sums in the intermediate steps of field theory calculations; re­

normalization is a unique, physically determined procedure of 

expressing the physical predictions of a theory in terms of 

physically measurable parameters. 
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