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what is this? some background

this talk is an introduction to the

spatiotemporal cat1

the simplest example of

spatiotemporal turbulence2

that motivates our study of discrete spatiotemporal lattices

1P. Cvitanović and H. Liang, Spatiotemporal cat: An exact classical chaotic field theory, in preparation, 2020.
2M. Gudorf and P. Cvitanović, Spatiotemporal tiling of the Kuramoto-Sivashinsky flow, in preparation, 2020.



motivation : need a theory of large fluid domains

pipe flow close to onset of turbulence 3

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

3M. Avila and B. Hof, Phys. Rev. E 87 (2013)



the goal

build
a chaotic field theory

from
the simplest chaotic blocks

using
time invariance
space invariance

of the defining partial differential equations



1 coin toss
2 temporal cat
3 spatiotemporal cat
4 bye bye, dynamics



fair coin toss (AKA Bernoulli map)

the essence of deterministic chaos

xt+1 =

{
f0(xt ) = 2xt
f1(xt ) = 2xt (mod 1)

⇒ fixed point 0, 2-cycle 01, · · ·

a coin toss
the simplest example of deterministic chaos

https://www.random.org/coins/?num=2&cur=40-antique.aurelian


what is (mod 1) ?

map with integer-valued ‘stretching’ parameter s ≥ 2 :

xt+1 = s xt

(mod 1) : subtract the integer part mt+1 = bsxtc
to keep fractional part φt+1 in the unit interval [0,1)

φt+1 = sφt −mt+1 , φt ∈Mmt

mt takes values in the s-letter alphabet

m ∈ A = {0,1,2, · · · , s − 1}



a fair dice throw

slope 6 Bernoulli map

φt+1 = 6φt−mt+1 , φt ∈Mmt

6-letter alphabet
mt ∈ A = {0,1,2, · · · ,5}

6 subintervals {Mm1}



what is chaos ?

a fair dice throw

6 subintervals {Mm1}, 62 subintervals {Mm1m2}, · · ·

each subinterval contains a
periodic point, labeled by
M = m1m2 · · ·mn

Nn = 6n unstable orbits

definition : chaos is

positive Lyapunov (ln s) - positive entropy ( 1
n ln Nn)

the precise sense in which
dice throw is an example of deterministic chaos

https://www.random.org/dice/


lattice Bernoulli

now recast the time-evolution Bernoulli map

φt+1 = sφt −mt+1

as a 1-step difference equation on the temporal lattice

φt − sφt−1 = −mt , φt ∈ [0,1)

with a field φt , source mt
on each site t of a 1-dimensional lattice t ∈ Z

write an n-sites lattice segment as
the lattice state and the symbol block

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)



think globally, act locally

Bernoulli equation at every instant t , local in time

φt − sφt−1 = −mt

is enforced by the global equation(
1− sσ−1

)
Φ = −M ,

where the [n×n] matrix

σjk = δj+1,k , σ =


0 1

0 1
. . .
0 1

1 0


implements the 1-time step operation



think globally, act locally

solving the lattice Bernoulli equation

JΦ = −M ,

with the [n×n] matrix J = 1− sσ−1 ,

can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

the entire global lattice state ΦM is now

a single fixed point (φ1, φ2, · · · , φn)

in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



orbit Jacobian matrix

solving a nonlinear F [Φ] = 0 fixed point condition with Newton
method requires evaluation of the [n×n] orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

what does this global orbit Jacobian matrix do?

1 fundamental fact !
2 global stability of lattice state Φ, perturbed everywhere



(1) fundamental fact

to satisfy the fixed point condition

JΦ + M = 0

the orbit Jacobian matrix J
1 stretches the unit hyper-cube Φ ∈ [0,1)n into the

n-dimensional fundamental parallelepiped
2 maps each periodic point ΦM into an integer lattice Zn point
3 then translate by integers M into the origin

hence Nn , the total number of solutions = the number of
integer lattice points within the fundamental parallelepiped

the fundamental fact4

Nn = |DetJ |

# integer points in fundamental parallelepiped = its volume
4M. Baake et al., J. Phys. A 30, 3029–3056 (1997).

http://dx.doi.org/10.1088/0305-4470/30/9/016


example : fundamental parallelepiped for n = 2

orbit Jacobian matrix, unit square basis vectors, their images :

J =

(
1 −2
−2 1

)
; ΦB =

(
1
0

)
→ ΦB′ = J ΦB =

(
1
−2

)
· · · ,

Bernoulli periodic points of period 2

N2 = 3

fixed point Φ00
2-cycle Φ01, Φ10

square [0BCD]⇒ J ⇒ fundamental parallelepiped [0B′C′D′]



fundamental fact for any n

an n = 3 example
J [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube Φ ∈ [0,1)n

n > 3 cannot visualize

a periodic point→ integer lattice point, • on a face, • in the interior



(2) orbit stability vs. temporal stability

orbit Jacobian matrix

Jij = δF [Φ]i
δφj

stability under global perturbation of the whole orbit
for n large, a huge [dn×dn] matrix

temporal Jacobian matrix
Jn propagates initial perturbation n time steps

small [d×d ] matrix

J and J are related by5

Hill’s (1886) remarkable formula

|DetJ | = |det (1− Jn)|

5G. W. Hill, Acta Math. 8, 1–36 (1886).

http://dx.doi.org/10.1007/bf02417081


periodic orbit theory

how come DetJ counts periodic points ?

in 1984 Ozorio de Almeida and Hannay6 related the number of
periodic points to a Jacobian matrix by their

principle of uniformity
“periodic points of an ergodic system, counted with their natural
weighting, are uniformly dense in phase space”

where

natural weight of periodic orbit M

1
|det (1− JM)|

6A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

http://dx.doi.org/10.1088/0305-4470/17/18/013


periodic orbit theory

how come a DetJ counts periodic points ?

“principle of uniformity” is in7

periodic orbit theory
known as the flow conservation sum rule :∑

M

1
|det (1− JM)|

=
∑

M

1
|DetJM|

= 1

sum over periodic points ΦM of period n

state space is divided into
neighborhoods of periodic points of period n

7P. Cvitanović, “Why cycle?”, in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst.,
Copenhagen, 2020).

http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4
http://ChaosBook.org/paper.shtml#getused


periodic orbit theory

how come a DetJ counts periodic points ?

flow conservation sum rule :∑
φi∈Fixf n

1
|DetJi |

= 1

Bernoulli system ‘natural weighting’ is simple :

the determinant DetJi = DetJ the same for all periodic points,
whose number thus verifies the fundamental fact

Nn = |DetJ |

the number of Bernoulli periodic lattice states
Nn = |DetJ | = sn − 1 for any n



topological zeta function

the generating function that counts orbits, one per each set of
periodic points Nn, is called the ‘zeta function’

1/ζtop(z) = exp

− ∞∑
n=1

zn

n
Nn

 =
1− sz
1− z

numerator (1− sz) says that Bernoulli orbits are built from
s fundamental primitive lattice states,

the fixed points {φ0, φ1, · · · , φs−1}

every other lattice state is built from their concatenations and
repeats.

solved!
this is ‘periodic orbit theory’
And if you don’t know, now you know

https://www.youtube.com/watch?v=_JZom_gVfuw


think globally, act locally - summary

the problem of enumerating and determining all global solutions
stripped to its essentials :

1 each solution is a zero of the global fixed point condition

F [Φ] = 0

2 global stability : the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact : the number of period-n orbits

Nn = |DetJ |

4 zeta function 1/ζtop(z) : all predictions of the theory



coin toss ? that’s not physics !

a field theory should be Hamiltonian and energy conserving,
and Quantum Mechanics requires it

because that is physics !

need a system as simple as the Bernoulli, but mechanical

so, we move on from running in circles,
to a mechanical rotor to kick.



1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



field theory in 1 spacetime dimension

we now define

the cat map in 1 spacetime dimension
then we generalize to

d-dimensional spatiotemporal cat

cat map in Hamiltonian formulation
cat map in Lagrangian formulation
(so much more elegant!)



(1) the traditional cat map

Hamiltonian formulation



example of a “small domain” dynamics : a single kicked rotor

an electron circling an atom, subject to
a discrete time sequence of angle-dependent kicks F (xt )

Taylor, Chirikov and Greene standard map

xt+1 = xt + pt+1 mod 1,
pt+1 = pt + F (xt )

→ chaos in Hamiltonian systems



the simplest example : a cat map evolving in time

force F (x) = Kx linear in the displacement x , K ∈ Z

xt+1 = xt + pt+1 mod 1
pt+1 = pt + Kxt mod 1

Continuous Automorphism of the Torus, or

Hamiltonian cat map
a linear, area preserving map of a 2-torus onto itself(

φt
φt+1

)
= J

(
φt−1
φt

)
−
(

0
mt

)
, J =

(
0 1
−1 s

)
for integer “stretching” s = tr J > 2 the map is
beloved by ergodicists :
hyperbolic→ perfect chaotic Hamiltonian dynamical system



(2) a modern cat

Lagrangian formulation



cat map in Lagrangian form

replace momentum by velocity

pt+1 = (φt+1 − φt )/∆t

formulation on (φt , φt−1) temporal lattice is particularly pretty8

2-step difference equation

φt+1 − s φt + φt−1 = −mt

integer mt ensures that
φt lands in the unit interval

mt ∈ A , A = {finite alphabet}

8I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

http://dx.doi.org/10.1016/0167-2789(87)90037-6


think globally, act locally

temporal cat at every instant t , local in time

φt+1 − s φt + φt−1 = −mt

is enforced by the global equation

(σ − s1 + σ−1) Φ = −M ,

where



orbit Jacobian matrix

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

are a lattice state, and a symbol block

and [n×n] orbit Jacobian matrix J is

σ − s1 + σ−1 =


−s 1 1
1 −s 1

1
. . .
−s 1

1 −s





think globally, act locally

solving the temporal cat equation

JΦ = −M ,

with the [n×n] matrix J = σ − s1 + σ−1

can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = (φ1, φ2, · · · , φn)
in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



fundamental fact in action

temporal cat fundamental parallelepiped for period 2
square [0BCD]⇒ J ⇒ fundamental parallelepiped [0B′C′D′]

N2 = |DetJ | = 5

fundamental parallelepiped
= 5 unit area quadrilaterals

a periodic point per each unit volume



temporal cat zeta function

is the generating function that counts orbits

substituting the number of periodic points

Nn = |DetJ |

into the topological zeta function

1/ζtop(z) = exp

(
−
∑
n=1

zn

n
Nn

)

leads to the elegant explicit formula9

1/ζtop(z) =
1− sz + z2

(1− z)2

solved!
9S. Isola, Europhys. Lett. 11, 517–522 (1990).

http://dx.doi.org/10.1209/0295-5075/11/6/006


what continuum theory is temporal cat discretization of?

have

2-step difference equation

φt+1 − s φt + φt−1 = −mt

discrete lattice

Laplacian in 1 dimension

φt+1 − 2φt + φt−1 = �φt

so temporal cat is an (anti)oscillator chain, known as

d = 1 damped Poisson equation (!)

(�− s + 2)φt = −mt

did you know that a cat map can be so cool?



a reminder slide, to skip : Helmholtz equation in continuum

inhomogeneous Helmoltz equation
is an elliptical equation of form

(� + k2)φ(x) = −m(x) , x ∈ Rd

where φ(x) is a C2 function, and m(x) is a function with
compact support

for the λ2 = −k2 > 0 (imaginary k ), the equation is known as
the screened Poisson equation10, or the Yukawa equation

10A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua, (Dover, New York, 2003).



that’s it! for spacetime of 1 dimension

lattice damped Poisson equation

(�− s + 2)φz = −mz
solved completely and analytically!



think globally, act locally - summary

the problem of determining all global solutions stripped to its
bare essentials :

1 each solution a zero of the global fixed point condition

F [Φ] = 0

2 compute the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact Nn = |DetJ | = period-n states

4 ⇒ zeta function 1/ζtop(z)



1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



spatiotemporally infinite ‘spatiotemporal cat’



herding cats in d spacetime dimensions

start with

a cat map at each lattice site

talk to neighbors

spacetime d-dimensional spatiotemporal cat

Hamiltonian formulation is awkward, forget about it
Lagrangian formulation is elegant



spatiotemporal cat

consider a 1 spatial dimension lattice, with field φnt
(the angle of a kicked rotor “particle” at instant t , at site n)

require
each site couples to its nearest neighbors φn±1,t

invariance under spatial translations
invariance under spatial reflections
invariance under the space-time exchange

obtain11

2-dimensional coupled cat map lattice

φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t = −mnt

11B. Gutkin and V. Osipov, Nonlinearity 29, 325–356 (2016).

http://dx.doi.org/10.1088/0951-7715/29/2/325


spatiotemporal cat : a strong coupling field theory

symmetries : translational and time-reversal, spatial reflection

the key assumption
invariance under the space-time exchange

spatiotemporal cat is a Euclidean field theory
in Lagrangian formulation



herding cats : a discrete Euclidean space-time field theory

write the spatial-temporal differences as discrete derivatives

Laplacian : in d = 1 and d = 2 dimensions
�φt = φt+1 − 2φt + φt−1
�φnt = φn,t+1 + φn,t−1 − 4φnt + φn+1,t + φn−1,t

−mnt = φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t

the cat map is thus generalized to

d-dimensional spatiotemporal cat

(�− d(s − 2))φz = −mz

where φz ∈ T1 , mz ∈ A and z ∈ Zd = integer lattice



discretized linear PDE

d-dimensional spatiotemporal cat

(�− d(s − 2))φz = −mz

is linear and known as
Helmholtz equation if stretching is weak, s < 2
(oscillatory sine, cosine solutions)
damped Poisson equation if stretching is strong, s > 2
(hyperbolic sinches, coshes)

the nonlinearity is hidden in the “sources”

mz ∈ A at lattice site z ∈ Zd



the simplest of all ‘turbulent’ field theories !

spatiotemporal cat

(�− d(s − 2))φz = −mz

can be solved completely (?) and analytically (!)

assign to each site z a letter mz from the alphabet A.

a particular fixed set of letters mz (a lattice state)

M = {mz} = {mn1n2···nd} ,

is a complete specification of the corresponding
lattice state Φ

from now on work in d = 2 dimensions, ‘stretching parameter’ s = 5/2



think globally, act locally

solving the spatiotemporal cat equation

JΦ = −M ,

with the [n×n] matrix J =
∑2

j=1

(
σj − s1 + σ−1

j

)
can be viewed as a search for zeros of the function

F [Φ] = JΦ + M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = {φz}
in the LT-dimensional unit hyper-cube Φ ∈ [0,1)LT

L is the ‘spatial’, T the ‘temporal’ lattice period



Bravais lattices
2-dimensional Bravais lattice is an infinite array of points

Λ = {n1a1 + n2a2 |ni ∈ Z}

example : [3×2]1 Bravais tile

basis vectors
a1 = (3,0), a2 = (1,2)

6 field values, on 6 lattice sites z = (n, t), [3×2] rectangle:[
φ01 φ11 φ21
φ00 φ10 φ20

]



fundamental fact works in spacetime (!)

recall Bernoulli example ?

[0BCD] :
unit hyper-cube Φ ∈ [0,1)2

[0B′C′D′] :
fundamental parallelepiped

J [0BCD] = fundamental parallelepiped [0B′C′D′]

spacetime d fundamental parallelepiped basis vectors Φ(j)

= columns of the orbit Jacobian matrix

J = (Φ(1)|Φ(2)| · · · |Φ(LT))



example : spacetime periodic [3×2] Bravais block

F [Φ] = JΦ + M = 0

6 field values, on 6 lattice sites z = (n, t), [3×2] rectangle:[
φ01 φ11 φ21
φ00 φ10 φ20

]
z = (`t), z ′ = (`′t ′) ∈ T 2

[3×2]

vectors and matrices can be written in block form, vectors as
1-dimensional arrays,

Φ[3×2] =



φ01
φ00
φ11
φ10
φ21
φ20

 , M[3×2] =



m01
m00
m11
m10
m21
m20





with the [6×6] orbit Jacobian matrix in block-matrix form

J[3×2] =



−2s 2 1 0 1 0
2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s





fundamental parallelepiped basis vectors Φ(j) are the columns
of the orbit Jacobian matrix

J[3×2] =



−2s 2 1 0 1 0
2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s


the ‘fundamental fact’ now yields the number of solutions for
any s

N[3×2] = |DetJ[3×2]| = 4(s − 2)s(2s − 1)2(2s + 3)2



counting spatiotemporal cat solutions

1 can construct all Bravais spacetime tilings, from small tiles
to as large as you wish

2 for each Bravais spacetime tile [L×T]S, can evaluate

N[L×T]S

the number of doubly-periodic lattice states for a Bravais tile



but, is this

chaos?

yes, short tiles are exponentially good ‘shadows’ of the larger
ones, so can attain any desired accuracy



is spatiotemporal cat ‘chaotic’?

in time-evolving deterministic chaos any chaotic trajectory is
shadowed by shorter periodic orbits

in spatiotemporal chaos, any unstable lattice state is shadowed
by smaller invariant 2-tori (Gutkin et al.12,13)

next figure : code the M symbol block φnt at the lattice site nt
with (color) alphabet

mt` ∈ A = {1,0,1,2, · · · } = {red ,green,blue, yellow , · · · }

12B. Gutkin and V. Osipov, Nonlinearity 29, 325–356 (2016).
13B. Gutkin et al., Linear encoding of the spatiotemporal cat map, 2019.

http://dx.doi.org/10.1088/0951-7715/29/2/325


shadowing, symbolic dynamics space

2d symbolic representation Mj of two invariant 2-tori Φj
shadowing each other within the shared block MR

border R (thick black)
symbols outside R differ

s = 7/2 Adrien Saremi 2017



shadowing

the logarithm of the average of the absolute value of site-wise
distance

ln |φ2,z − φ1,z |
averaged over 250 solution pairs

note the exponential falloff of the distance away from the center
of the shared block R
⇒ within the interior of the shared block,

shadowing is exponentially close



zeta function for a field theory ???

‘periodic orbits’ are now invariant 2-tori (Bravais tiles)
each a spacetime lattice tile p of area Ap = LpTp
that cover the phase space with ‘natural weight’

∑
p

e−Aps

|DetJp|

at this time :
d = 1 cat map zeta function works like charm
d = 2 spatiotemporal cat works
d ≥ 2 Navier-Stokes zeta is still but a dream



spatiotemporal cat topological zeta function

know how to evaluate the number of doubly-periodic lattice
states

N[L×T]S ,

for a given [L×T]S finite Bravais spacetime tile

now substitute the numbers of periodic points into the
topological zeta function

1/ζtop(z) = ??

but we currently have no generating function that presents all
solutions in a compact form

not solved :(



1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



summary

spatiotemporal cat



insight 1 : how is turbulence described?

not by the evolution of an initial state
exponentially unstable system have finite (Lyapunov) time and
space prediction horizons

but

by enumeration of admissible field configurations
and their natural weights



insight 2 : symbolic dynamics for turbulent flows

applies to all PDEs with d translational symmetries

a d-dimensional spatiotemporal field configuration

{φz} = {φz , z ∈ Zd}

is labelled by a d-dimensional spatiotemporal block of symbols

{mz} = {mz , z ∈ Zd} ,

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-“body”
system, or a small computational domain).



insight 3 : description of turbulence by invariant 2-tori

1 time, 0 space dimensions
a phase space point is periodic if its orbit returns to itself after a
finite time T; such orbit tiles the time axis by infinitely many
repeats

1 time, d-1 space dimensions
a phase space point is spatiotemporally periodic if it belongs to
an invariant d-torus R,
i.e., a block MR that tiles the lattice state M,
with period `j in j th lattice direction



bye bye, dynamics

1 goal : describe states of turbulence in infinite
spatiatemporal domains

2 theory : classify, enuremate all spatiotemporal tilings
3 example : spatiotemporal cat, the simplest model of

“turbulence”

there is no more time

there is only enumeration of admissible spacetime field
configurations



in future there will be no future

goodbye

to long time and/or space integrators

they never worked and could never work



miaw


	a coin toss
	a kicked rotor
	spatiotemporal cat
	bye bye, dynamics

