

herding cats a chaotic field theory

Predrag Cvitanović and Han Liang

ChaosBook.org/overheads/spatiotemporal notes Georgia Tech

July 19, 2020

what is this? some background

this talk is an introduction to the

spatiotemporal cat¹

the simplest example of

spatiotemporal turbulence²

that motivates our study of discrete spatiotemporal lattices

 ¹P. Cvitanović and H. Liang, Spatiotemporal cat: An exact classical chaotic field theory, in preparation, 2020.
 ²M. Gudorf and P. Cvitanović, Spatiotemporal tiling of the Kuramoto-Sivashinsky flow, in preparation, 2020.

motivation : need a theory of large fluid domains

pipe flow close to onset of turbulence ³

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small turbulent cells ?

what would that theory look like ?

³M. Avila and B. Hof, Phys. Rev. E 87 (2013)

the goal

build a chaotic field theory from the simplest chaotic blocks

using

- time invariance
- space invariance

of the defining partial differential equations

coin toss

- 2 temporal cat
- spatiotemporal cat
- Ø bye bye, dynamics

fair coin toss (AKA Bernoulli map)

a coin toss

the simplest example of deterministic chaos

what is (mod 1)?

map with integer-valued 'stretching' parameter $s \ge 2$:

$$x_{t+1} = s x_t$$

(mod 1) : subtract the integer part $m_{t+1} = \lfloor sx_t \rfloor$ to keep fractional part ϕ_{t+1} in the unit interval [0, 1)

$$\phi_{t+1} = \mathbf{s}\phi_t - \mathbf{m}_{t+1}, \qquad \phi_t \in \mathcal{M}_{\mathbf{m}_t}$$

 m_t takes values in the *s*-letter alphabet

$$m \in \mathcal{A} = \{0, 1, 2, \cdots, s-1\}$$

a fair dice throw

slope 6 Bernoulli map

6 subintervals $\{M_{m_1}\}$

$$\phi_{t+1} = 6\phi_t - m_{t+1} , \ \phi_t \in \mathcal{M}_{m_t}$$

6-letter alphabet $m_t \in \mathcal{A} = \{0, 1, 2, \cdots, 5\}$

what is chaos ?

a fair dice throw

6 subintervals $\{\mathcal{M}_{m_1}\}$, 6² subintervals $\{\mathcal{M}_{m_1m_2}\}$, ...

each subinterval contains a periodic point, labeled by $M = m_1 m_2 \cdots m_n$

 $N_n = 6^n$ unstable orbits

definition : chaos is

positive Lyapunov ($\ln s$) - positive entropy ($\frac{1}{n} \ln N_n$)

the precise sense in which

dice throw is an example of deterministic chaos

lattice Bernoulli

now recast the time-evolution Bernoulli map

$$\phi_{t+1} = \mathbf{s}\phi_t - \mathbf{m}_{t+1}$$

as a 1-step difference equation on the temporal lattice

$$\phi_t - \mathbf{s}\phi_{t-1} = -\mathbf{m}_t, \qquad \phi_t \in [0, 1)$$

with a field ϕ_t , source m_t on each site *t* of a 1-dimensional lattice $t \in \mathbb{Z}$

write an *n*-sites lattice segment as the lattice state and the symbol block

$$\Phi = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad \mathsf{M} = (m_{t+1}, \cdots, m_{t+n})$$

think globally, act locally

Bernoulli equation at every instant t, local in time

$$\phi_t - \mathbf{s}\phi_{t-1} = -m_t$$

is enforced by the global equation

$$\left(1-\boldsymbol{s}\sigma^{-1}\right)\,\Phi=-\mathsf{M}\,,$$

where the $[n \times n]$ matrix

$$\sigma_{jk} = \delta_{j+1,k}, \qquad \sigma = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & \ddots & & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix}$$

implements the 1-time step operation

think globally, act locally

$$\mathcal{J}\Phi = -\mathsf{M}\,,$$

with the $[n \times n]$ matrix $\mathcal{J} = 1 - s\sigma^{-1}$,

can be viewed as a search for zeros of the function

$$F[\Phi] = \mathcal{J}\Phi + \mathsf{M} = \mathsf{O}$$

the entire global lattice state Φ_M is now a single fixed point $(\phi_1, \phi_2, \cdots, \phi_n)$

in the *n*-dimensional unit hyper-cube

orbit Jacobian matrix

solving a nonlinear $F[\Phi] = 0$ fixed point condition with Newton method requires evaluation of the $[n \times n]$ orbit Jacobian matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

what does this global orbit Jacobian matrix do?

- fundamental fact !
- global stability of lattice state Φ, perturbed everywhere

(1) fundamental fact

to satisfy the fixed point condition

 $\mathcal{J}\Phi+M=0$

the orbit Jacobian matrix ${\cal J}$

- stretches the unit hyper-cube $\Phi \in [0, 1)^n$ into the *n*-dimensional fundamental parallelepiped
- 2 maps each periodic point Φ_M into an integer lattice \mathbb{Z}^n point

then translate by integers M into the origin

hence N_n , the total number of solutions = the number of integer lattice points within the fundamental parallelepiped

the fundamental fact⁴

$$N_n = |\text{Det } \mathcal{J}|$$

integer points in fundamental parallelepiped = its volume

⁴M. Baake et al., J. Phys. A **30**, 3029–3056 (1997).

example : fundamental parallelepiped for n = 2

orbit Jacobian matrix, unit square basis vectors, their images :

$$\mathcal{J} = \left(egin{array}{cc} 1 & -2 \ -2 & 1 \end{array}
ight); \quad \Phi_B = \left(egin{array}{cc} 1 \ 0 \end{array}
ight) \ o \ \Phi_{B'} = \mathcal{J} \ \Phi_B = \left(egin{array}{cc} 1 \ -2 \end{array}
ight) \cdots,$$

Bernoulli periodic points of period 2

square $[0BCD] \Rightarrow \mathcal{J} \Rightarrow$ fundamental parallelepiped [0B'C'D']

fundamental fact for any n

an n = 3 example

 \mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube $\Phi \in [0, 1)^n$

n > 3 cannot visualize

a periodic point \rightarrow integer lattice point, \bullet on a face, \bullet in the interior

(2) orbit stability vs. temporal stability

orbit Jacobian matrix

 $\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$ stability under global perturbation of the whole orbit for *n* large, a huge $[dn \times dn]$ matrix

temporal Jacobian matrix

 J^n propagates initial perturbation *n* time steps small $[d \times d]$ matrix

J and \mathcal{J} are related by⁵

Hill's (1886) remarkable formula

$$|\text{Det }\mathcal{J}| = |\det(\mathbf{1} - J^n)|$$

⁵G. W. Hill, Acta Math. 8, 1–36 (1886).

periodic orbit theory

how come $\operatorname{Det} \mathcal J$ counts periodic points ?

in 1984 Ozorio de Almeida and Hannay⁶ related the number of periodic points to a Jacobian matrix by their

principle of uniformity

"periodic points of an ergodic system, counted with their natural weighting, are uniformly dense in phase space"

where

natural weight of periodic orbit M

$$\frac{1}{\left|\det\left(1-J_{\mathsf{M}}\right)\right|}$$

⁶A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

periodic orbit theory

how come a $\operatorname{Det} \mathcal J$ counts periodic points ?

"principle of uniformity" is in⁷

periodic orbit theory

known as the flow conservation sum rule :

$$\sum_{M} \frac{1}{\left|\det\left(1 - J_{M}\right)\right|} = \sum_{M} \frac{1}{\left|\det \mathcal{J}_{M}\right|} = 1$$

sum over periodic points Φ_M of period n

state space is divided into neighborhoods of periodic points of period *n*

⁷P. Cvitanović, "Why cycle?", in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst., Copenhagen, 2020).

periodic orbit theory

how come a $\operatorname{Det} \mathcal{J}$ counts periodic points ?

flow conservation sum rule :

$$\sum_{\phi_i \in \mathsf{Fix} f^n} \frac{1}{|\mathsf{Det}\,\mathcal{J}_i|} = 1$$

Bernoulli system 'natural weighting' is simple :

the determinant $\text{Det } \mathcal{J}_i = \text{Det } \mathcal{J}$ the same for all periodic points, whose number thus verifies the fundamental fact

$$N_n = |\text{Det } \mathcal{J}|$$

the number of Bernoulli periodic lattice states $N_n = |\text{Det } \mathcal{J}| = s^n - 1$ for any *n*

topological zeta function

the generating function that counts orbits, one per each set of periodic points N_n , is called the 'zeta function'

$$1/\zeta_{top}(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} N_n\right) = \frac{1-sz}{1-z}$$

numerator (1 - sz) says that Bernoulli orbits are built from s fundamental primitive lattice states,

the fixed points $\{\phi_0, \phi_1, \cdots, \phi_{s-1}\}$

every other lattice state is built from their concatenations and repeats.

solved!

this is 'periodic orbit theory' And if you don't know, now you know

think globally, act locally - summary

the problem of enumerating and determining all global solutions stripped to its essentials :

each solution is a zero of the global fixed point condition

 $F[\Phi] = 0$

global stability : the orbit Jacobian matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

Indamental fact : the number of period-n orbits

$$N_n = |\text{Det } \mathcal{J}|$$

2 zeta function 1/ $\zeta_{top}(z)$: all predictions of the theory

a field theory should be Hamiltonian and energy conserving, and Quantum Mechanics requires it because that is physics !

need a system as simple as the Bernoulli, but mechanical

so, we move on from running in circles,

to a mechanical rotor to kick.

coin tosskicked rotor

- spatiotemporal cat
- Ø bye bye, dynamics

field theory in 1 spacetime dimension

we now define

the cat map in 1 spacetime dimension

then we generalize to

d-dimensional spatiotemporal cat

- cat map in Hamiltonian formulation
- cat map in Lagrangian formulation (so much more elegant!)

(1) the traditional cat map

Hamiltonian formulation

example of a "small domain" dynamics : a single kicked rotor

an electron circling an atom, subject to a discrete time sequence of angle-dependent kicks $F(x_t)$

Taylor, Chirikov and Greene standard map

$$x_{t+1} = x_t + p_{t+1} \mod 1,$$

 $p_{t+1} = p_t + F(x_t)$

 \rightarrow chaos in Hamiltonian systems

the simplest example : a cat map evolving in time

force F(x) = Kx linear in the displacement x, $K \in \mathbb{Z}$

$$\begin{aligned} x_{t+1} &= x_t + p_{t+1} \mod 1 \\ p_{t+1} &= p_t + K x_t \mod 1 \end{aligned}$$

Continuous Automorphism of the Torus, or

Hamiltonian cat map

a linear, area preserving map of a 2-torus onto itself

$$\left(\begin{array}{c}\phi_t\\\phi_{t+1}\end{array}\right) = J\left(\begin{array}{c}\phi_{t-1}\\\phi_t\end{array}\right) - \left(\begin{array}{c}0\\m_t\end{array}\right), \qquad J = \left(\begin{array}{c}0&1\\-1&s\end{array}\right)$$

for integer "stretching" $s = \operatorname{tr} J > 2$ the map is beloved by ergodicists : hyperbolic \rightarrow perfect chaotic Hamiltonian dynamical system (2) a modern cat

Lagrangian formulation

cat map in Lagrangian form

replace momentum by velocity

$$p_{t+1} = (\phi_{t+1} - \phi_t)/\Delta t$$

formulation on (ϕ_t, ϕ_{t-1}) temporal lattice is particularly pretty⁸

2-step difference equation

$$\phi_{t+1} - \mathbf{s}\,\phi_t + \phi_{t-1} = -\mathbf{m}_t$$

integer m_t ensures that

 ϕ_t lands in the unit interval

$$m_t \in \mathcal{A}, \quad \mathcal{A} = \{\text{finite alphabet}\}$$

⁸I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

temporal cat at every instant t, local in time

$$\phi_{t+1} - \boldsymbol{s} \phi_t + \phi_{t-1} = -\boldsymbol{m}_t$$

is enforced by the global equation

$$(\sigma - \mathbf{s}\mathbf{1} + \sigma^{-1})\,\Phi = -\mathbf{M}\,,$$

where

orbit Jacobian matrix

$$\Phi = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad \mathsf{M} = (m_{t+1}, \cdots, m_{t+n})$$

are a lattice state, and a symbol block

and $[n \times n]$ orbit Jacobian matrix \mathcal{J} is

$$\sigma - s\mathbf{1} + \sigma^{-1} = \begin{pmatrix} -s & 1 & 1 \\ 1 & -s & 1 & \\ & 1 & \ddots & \\ & & -s & 1 \\ 1 & & & -s \end{pmatrix}$$

think globally, act locally

solving the temporal cat equation

$$\mathcal{J}\Phi = -\mathsf{M}\,,$$

with the $[n \times n]$ matrix $\mathcal{J} = \sigma - s\mathbf{1} + \sigma^{-1}$

can be viewed as a search for zeros of the function

$$F[\Phi] = \mathcal{J}\Phi + \mathsf{M} = \mathsf{O}$$

where the entire global lattice state Φ_M is

a single fixed point $\Phi_{M} = (\phi_{1}, \phi_{2}, \cdots, \phi_{n})$ in the *n*-dimensional unit hyper-cube $\Phi \in [0, 1)^{n}$

fundamental fact in action

temporal cat fundamental parallelepiped for period 2 square $[0BCD] \Rightarrow \mathcal{J} \Rightarrow$ fundamental parallelepiped [0B'C'D']

$$N_2 = |\text{Det } \mathcal{J}| = 5$$

fundamental parallelepiped = 5 unit area quadrilaterals

a periodic point per each unit volume

temporal cat zeta function

is the generating function that counts orbits substituting the number of periodic points

 $N_n = |\text{Det } \mathcal{J}|$

into the topological zeta function

$$1/\zeta_{\rm top}(z) = \exp\left(-\sum_{n=1}\frac{z^n}{n}N_n\right)$$

leads to the elegant explicit formula⁹

$$1/\zeta_{top}(z) = rac{1-sz+z^2}{(1-z)^2}$$

solved!

⁹S. Isola, Europhys. Lett. **11**, 517–522 (1990).

what continuum theory is temporal cat discretization of?

have

2-step difference equation

$$\phi_{t+1} - \mathbf{s}\,\phi_t + \phi_{t-1} = -m_t$$

discrete lattice

Laplacian in 1 dimension

$$\phi_{t+1} - \mathbf{2}\phi_t + \phi_{t-1} = \Box \phi_t$$

so temporal cat is an (anti)oscillator chain, known as

d = 1 damped Poisson equation (!)

$$(\Box - \mathbf{s} + \mathbf{2}) \phi_t = -m_t$$

did you know that a cat map can be so cool?

a reminder slide, to skip : Helmholtz equation in continuum

inhomogeneous Helmoltz equation

is an elliptical equation of form

$$(\Box + k^2) \phi(x) = -m(x), \qquad x \in \mathbb{R}^d$$

where $\phi(x)$ is a C^2 function, and m(x) is a function with compact support

for the $\lambda^2 = -k^2 > 0$ (imaginary *k*), the equation is known as the screened Poisson equation¹⁰, or the Yukawa equation

¹⁰A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua, (Dover, New York, 2003).

that's it! for spacetime of 1 dimension

lattice damped Poisson equation

$(\Box - s + 2)\phi_z = -m_z$

solved completely and analytically!

think globally, act locally - summary

the problem of determining all global solutions stripped to its bare essentials :

each solution a zero of the global fixed point condition

 $F[\Phi] = 0$

Output the orbit Jacobian matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

fundamental fact

$$N_n = |\text{Det } \mathcal{J}| = \text{period-}n \text{ states}$$

 \Rightarrow zeta function 1/ $\zeta_{top}(z)$

4

coin toss

- 2 kicked rotor
- spatiotemporal cat
- Ø bye bye, dynamics

spatiotemporally infinite 'spatiotemporal cat'

herding cats in *d* spacetime dimensions

start with **a cat map at each lattice site** talk to neighbors spacetime *d*-dimensional **Spatiotemporal cat**

- Hamiltonian formulation is awkward, forget about it
- Lagrangian formulation is elegant

spatiotemporal cat

consider a 1 spatial dimension lattice, with field ϕ_{nt} (the angle of a kicked rotor "particle" at instant *t*, at site *n*)

require

- each site couples to its nearest neighbors $\phi_{n\pm 1,t}$
- invariance under spatial translations
- invariance under spatial reflections
- invariance under the space-time exchange

obtain¹¹

2-dimensional coupled cat map lattice

$$\phi_{n,t+1} + \phi_{n,t-1} - 2s\phi_{nt} + \phi_{n+1,t} + \phi_{n-1,t} = -m_{nt}$$

¹¹B. Gutkin and V. Osipov, Nonlinearity **29**, 325–356 (2016).

spatiotemporal cat : a strong coupling field theory

symmetries : translational and time-reversal, spatial reflection

the key assumption

• invariance under the space-time exchange

- spatiotemporal cat is a Euclidean field theory
- in Lagrangian formulation

herding cats : a discrete Euclidean space-time field theory

write the spatial-temporal differences as discrete derivatives

Laplacian : in d = 1 and d = 2 dimensions

$$\Box \phi_{t} = \phi_{t+1} - 2\phi_{t} + \phi_{t-1}$$

$$\Box \phi_{nt} = \phi_{n,t+1} + \phi_{n,t-1} - 4\phi_{nt} + \phi_{n+1,t} + \phi_{n-1,t}$$

$$-m_{nt} = \phi_{n,t+1} + \phi_{n,t-1} - 2s\phi_{nt} + \phi_{n+1,t} + \phi_{n-1,t}$$

the cat map is thus generalized to

d-dimensional spatiotemporal cat

$$(\Box - d(s-2))\phi_z = -m_z$$

where $\phi_z \in \mathbb{T}^1$, $m_z \in \mathcal{A}$ and $z \in \mathbb{Z}^d$ = integer lattice

discretized linear PDE

d-dimensional spatiotemporal cat

$$(\Box - d(s-2))\phi_z = -m_z$$

is linear and known as

- Helmholtz equation if stretching is weak, s < 2 (oscillatory sine, cosine solutions)
- damped Poisson equation if stretching is strong, s > 2 (hyperbolic sinches, coshes)

the nonlinearity is hidden in the "sources"

 $m_z \in \mathcal{A}$ at lattice site $z \in \mathbb{Z}^d$

the simplest of all 'turbulent' field theories !

spatiotemporal cat

$$(\Box - d(s-2))\phi_z = -m_z$$

can be solved completely (?) and analytically (!)

assign to each site *z* a letter m_z from the alphabet A. a particular fixed set of letters m_z (a lattice state)

$$\mathsf{M} = \{m_z\} = \{m_{n_1 n_2 \cdots n_d}\},\$$

is a complete specification of the corresponding lattice state $\boldsymbol{\Phi}$

from now on work in d = 2 dimensions, 'stretching parameter' s = 5/2

think globally, act locally

solving the spatiotemporal cat equation

$$\mathcal{J}\Phi = -\mathsf{M}\,,$$

with the $[n \times n]$ matrix $\mathcal{J} = \sum_{j=1}^{2} \left(\sigma_j - s\mathbf{1} + \sigma_j^{-1} \right)$

can be viewed as a search for zeros of the function

$$F[\Phi] = \mathcal{J}\Phi + \mathsf{M} = \mathsf{O}$$

where the entire global lattice state Φ_M is

a single fixed point $\Phi_M = \{\phi_z\}$ in the *LT*-dimensional unit hyper-cube $\Phi \in [0, 1)^{LT}$

L is the 'spatial', T the 'temporal' lattice period

Bravais lattices

2-dimensional Bravais lattice is an infinite array of points

$$\Lambda = \{n_1\mathbf{a}_1 + n_2\mathbf{a}_2 \mid n_i \in \mathbb{Z}\}$$

example : $[3 \times 2]_1$ Bravais tile

basis vectors
$$\label{eq:alpha2} \begin{split} a_1 = (3,0), \, a_2 = (1,2) \end{split}$$

6 field values, on 6 lattice sites z = (n, t), $[3 \times 2]$ rectangle:

$$\left[egin{array}{ccc} \phi_{01} & \phi_{11} & \phi_{21} \ \phi_{00} & \phi_{10} & \phi_{20} \end{array}
ight]$$

fundamental fact works in spacetime (!)

recall Bernoulli example ?

[0BCD] : unit hyper-cube $\Phi \in [0, 1)^2$ [0B'C'D'] : fundamental parallelepiped

 $\mathcal{J}[0BCD] =$ fundamental parallelepiped [0B'C'D']

spacetime *d* fundamental parallelepiped basis vectors $\Phi^{(j)}$ = columns of the orbit Jacobian matrix

$$\mathcal{J} = (\Phi^{(1)} | \Phi^{(2)} | \cdots | \Phi^{(LT)})$$

example : spacetime periodic $[3 \times 2]$ Bravais block

$$F[\Phi] = \mathcal{J}\Phi + \mathsf{M} = \mathsf{O}$$

6 field values, on 6 lattice sites z = (n, t), [3×2] rectangle:

$$\begin{bmatrix} \phi_{01} & \phi_{11} & \phi_{21} \\ \phi_{00} & \phi_{10} & \phi_{20} \end{bmatrix}$$
$$z = (\ell t), z' = (\ell' t') \in T^2_{[3\times 2]}$$

vectors and matrices can be written in block form, vectors as 1-dimensional arrays,

$$\Phi_{[3\times2]} = \begin{pmatrix} \phi_{01} \\ \phi_{00} \\ \hline \phi_{11} \\ \hline \phi_{10} \\ \hline \phi_{21} \\ \phi_{20} \end{pmatrix}, \qquad M_{[3\times2]} = \begin{pmatrix} m_{01} \\ \hline m_{00} \\ \hline m_{11} \\ \hline m_{10} \\ \hline m_{21} \\ \hline m_{20} \end{pmatrix}$$

with the $[6 \times 6]$ orbit Jacobian matrix in block-matrix form

$$\mathcal{J}_{[3 \times 2]} = egin{pmatrix} -2s & 2 & 1 & 0 & 1 & 0 \ 2 & -2s & 0 & 1 & 0 & 1 \ \hline 1 & 0 & -2s & 2 & 1 & 0 \ 0 & 1 & 2 & -2s & 0 & 1 \ \hline 1 & 0 & 1 & 0 & -2s & 2 \ 0 & 1 & 0 & 1 & 2 & -2s \ \end{pmatrix}$$

fundamental parallelepiped basis vectors $\Phi^{(j)}$ are the columns of the orbit Jacobian matrix

$$\mathcal{J}_{[3 \times 2]} = egin{pmatrix} -2s & 2 & 1 & 0 & 1 & 0 \ 2 & -2s & 0 & 1 & 0 & 1 \ 1 & 0 & -2s & 2 & 1 & 0 \ 0 & 1 & 2 & -2s & 0 & 1 \ 1 & 0 & 1 & 0 & -2s & 2 \ 0 & 1 & 0 & 1 & 2 & -2s \end{pmatrix}$$

the 'fundamental fact' now yields the number of solutions for any \boldsymbol{s}

$$N_{[3\times 2]} = |\text{Det } \mathcal{J}_{[3\times 2]}| = 4(s-2)s(2s-1)^2(2s+3)^2$$

counting spatiotemporal cat solutions

- can construct all Bravais spacetime tilings, from small tiles to as large as you wish
- **2** for each Bravais spacetime tile $[L \times T]_S$, can evaluate

$N_{[L \times T]_S}$

the number of doubly-periodic lattice states for a Bravais tile

but, is this

chaos?

yes, short tiles are exponentially good 'shadows' of the larger ones, so can attain any desired accuracy

is spatiotemporal cat 'chaotic'?

in time-evolving deterministic chaos any chaotic trajectory is shadowed by shorter periodic orbits

in spatiotemporal chaos, any unstable lattice state is shadowed by smaller invariant 2-tori (Gutkin *et al.*^{12,13})

next figure : code the M symbol block ϕ_{nt} at the lattice site *nt* with (color) alphabet

 $m_{t\ell} \in \mathcal{A} = \{\underline{1}, 0, 1, 2, \cdots\} = \{red, green, blue, yellow, \cdots\}$

¹²B. Gutkin and V. Osipov, Nonlinearity **29**, 325–356 (2016).

¹³B. Gutkin et al., Linear encoding of the spatiotemporal cat map, 2019.

shadowing, symbolic dynamics space

2d symbolic representation M_j of two invariant 2-tori Φ_j shadowing each other within the shared block $M_{\cal R}$

- border R (thick black)
- symbols outside R differ

s = 7/2

Adrien Saremi 2017

shadowing

the logarithm of the average of the absolute value of site-wise distance

$$\ln |\phi_{2,z} - \phi_{1,z}|$$

averaged over 250 solution pairs

note the exponential falloff of the distance away from the center of the shared block $\ensuremath{\mathcal{R}}$

 \Rightarrow within the interior of the shared block,

shadowing is exponentially close

zeta function for a field theory ???

'periodic orbits' are now invariant 2-tori (Bravais tiles)

each a spacetime lattice tile *p* of area $A_p = L_p T_p$ that cover the phase space with 'natural weight'

$$\sum_{\rho} \frac{e^{-A_{\rho}s}}{|\text{Det }\mathcal{J}_{\rho}|}$$

at this time :

- d = 1 cat map zeta function works like charm
- d = 2 spatiotemporal cat works
- $d \ge 2$ Navier-Stokes zeta is still but a dream

spatiotemporal cat topological zeta function

know how to evaluate the number of doubly-periodic lattice states

 $N_{[L \times T]_S}$,

for a given $[L \times T]_S$ finite Bravais spacetime tile

now substitute the numbers of periodic points into the topological zeta function

$$1/\zeta_{top}(z) = ??$$

but we currently have no generating function that presents all solutions in a compact form

coin toss

e kicked rotor

- spatiotemporal cat
- o bye bye, dynamics

summary

spatiotemporal cat

insight 1 : how is turbulence described?

not by the evolution of an initial state

exponentially unstable system have finite (Lyapunov) time and space prediction horizons

but

by enumeration of admissible field configurations and their natural weights

insight 2 : symbolic dynamics for turbulent flows

applies to all PDEs with *d* translational symmetries

a *d*-dimensional spatiotemporal field configuration

$$\{\phi_{\mathbf{Z}}\} = \{\phi_{\mathbf{Z}}, \mathbf{Z} \in \mathbb{Z}^{\mathbf{d}}\}$$

is labelled by a *d*-dimensional spatiotemporal block of symbols

$$\{m_z\}=\{m_z,z\in\mathbb{Z}^d\},\$$

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-"body" system, or a small computational domain).

insight 3 : description of turbulence by invariant 2-tori

1 time, 0 space dimensions

a phase space point is *periodic* if its orbit returns to itself after a finite time T; such orbit tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions

a phase space point is *spatiotemporally periodic* if it belongs to an invariant *d*-torus \mathcal{R} , i.e., a block $M_{\mathcal{R}}$ that tiles the lattice state M, with period ℓ_j in *j*th lattice direction

bye bye, dynamics

- goal : describe states of turbulence in infinite spatiatemporal domains
- Itheory : classify, enuremate all spatiotemporal tilings
- example : spatiotemporal cat, the simplest model of "turbulence"

there is no more time

there is only enumeration of admissible spacetime field configurations

in future there will be no future

goodbye

to long time and/or space integrators

they never worked and could never work

miaw