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This cat has been skinned in more ways than any other
cat in the history of cats.

— Professore Gatto Nero
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Chapter 1

Cat map

If space is infinite, we are in no particular point in space.
If time is infinite, we are in no particular point in time.

— The Book of Sand, by Jorge Luis Borges

What is a natural way to cover the torus, in such a way that the dynamics and
the partition borders are correctly aligned? You are allowed to coordinatize the
unit torus by any set of coordinates that covers the torus by a unit area. The
origin is fixed under the action of A, and straight lines map into the straight
lines, so Adler and Weiss did the natural thing, and used parallelograms (fol-
lowing Bowen [22] we shall refer to such parallelograms as ‘rectangles’) with
edges parallel to the two eigenvectors of A. Adler and Weiss observed that the
torus in the new eigen-coordinates is covered by two rectangles, labelledA and
B in figure 1.1. 1

1.1 Adler-Weiss partition of the Thom-Arnol’d cat
map

Figure 1.1 for the canonical Thom-Arnol’d cat map
remark ??

A =

[
2 1
1 1

]
. (1.1)

String people, arXiv:1608.07845, find the identity[
2 1
1 1

]
=

[
1 1
0 1

] [
1 0
1 1

]
= LL> (1.2)

1Predrag 2018-02-09: (1) motivate Manning multiples by doing the 1D circle map first. Maybe
Robinson [86] does that.
(2) motivate spatiotemporal cat by recent Gutkin et al. many-body paper

11

https://www.newyorker.com/podcast/fiction/mohsin-hamid-reads-jorge-luis-borges
http://arXiv.org/abs/1608.07845


CHAPTER 1. CAT MAP

(a)

A

B

W s(0, 0)

Wu(0, 0)

Wu(0, 1)

W s(0, 1) W s(1, 1) W s(2, 1) W s(3, 1)

W s(3, 2)Wu(−1, 0)

(b)

f ( )

f ( )

W s (0 , 0)

W u (0 , 0)

W u (0 , 1)

W s (0 , 1) W s (1 , 1) W s (2 , 1)

W
s (2, 2)

W s (3 , 2)W u (− 1, 0)

1

1'

2 '

3 '

(c)
0

1

3

4

5 AB

f(0)

f(1)

f(3)

f(4)

f(5)

0
1

3
4

5

Figure 1.1: (a) Two-rectangles Adler-Weiss generating partition for the canon-
ical Arnol’d cat map (1.1), with borders given by stable-unstable manifolds of
the unfolded cat map lattice points near to the origin. (b) The first iterate of
the partition. (c) The iterate pulled back into the generating partition, and the
corresponding 5-letter transition graph. In (b) and (c) I have not bothered to re-
label Crutchfield partition labels with our shift code. This is a “linear code,” in
the sense that for each square on can count how many side-lengths are needed
to pull the overhanging part of f(x) back into the two defining squares. (Figure
by Crutchfield [28])
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(0, 0)
B

CD

B

C

D

x
0

x
1

x
1

x−1 x0 x0

str
etc

h wrap

Figure 1.2: (Color online) The s = 3 Percival-Vivaldi cat map matrix (1.5)
stretches the unit square into a parallelogram. Translations by m0 from alpha-
bet A = {−1, 0, 1, 2} = {red, green, blue, yellow} bring stray regions back onto
the torus.

significant: “The map corresponds to successive kicks, forwards and back-
wards along the light cone [...]”

As another example, with s = 4, Manning [72] discusses a Markov partition
for the cat map (also discussed by Anosov, Klimenko and Kolutsky [5])

A =

[
3 1
2 1

]
. (1.3)

2CB
In order to count all admissible walks, one associates with the transition

graph such as the one in figure 1.1 (c) the connectivity matrix

C =

[
1 1
1 2

]
, (1.4)

where Cij is the number of ways (number of links) of getting to i from j.

1.2 Adler-Weiss partition of the Percival-Vivaldi cat
map

As illustrated in figure 1.2, the action of the cat map in the Percival-Vivaldi [80]
“two-configuration representation” is given by the antisymmetric area preserv-
ing [2×2] matrix

A =

[
0 1
−1 s

]
(1.5)

8289 (predrag–8289) 13 03/15/2022 siminos/spatiotemp



CHAPTER 1. CAT MAP

For the Arnol’d value s = 3, in one time step the map stretches the unit square
into a parallelogram, and than wraps it around the torus 3 times, as in fig-
ure 1.2. Visualise the phase space as a bagel, with x0 axis a circle on the outside
of the bagel. This circle is divided into three color segments, which map onto
each other as you got in the x1 axis direction. Now apply the inverse map - you
get 3 strips intersecting the the above strips, for 9 rectangles in all: a full shift,
i.e., a ternary Smale horseshoe. So on the torus there are only 3 strips - there is
no distinction between the two outer letters A1 = {−1, 2} = {red, yellow}, it is
the same third strip. The division into 2 triangles is an artifact of plotting the
torus as a unit square. All complicated pruning of (the current draft of) Gutkin
et al. [53] is a red herring, due to over-partitioning of the torus with a 4-letter
alphabet.

This is stupid.
How do Adler-Weiss coordinates work out for the Arnol’d cat map in the

Percival-Vivaldi representation (1.5) used here? First one needs to construct
the eigen-coordinates.

example 1.2
p. 75

For s > 2 the stability multipliers (Λ+,Λ−) = (Λ , Λ−1) are real,

Λ± =
1

2
(s±√D) , Λ = eλ , (1.6)

where

s = Λ + Λ−1 = 2 cosh(λ) ,
√
D = Λ− Λ−1 = 2 sinh(λ) (1.7)

discriminant D = s2 − 4, with a positive Lyapunov exponent λ > 0, and the
right, left eigenvectors:

{e(+), e(−)} =

{[
Λ−1

1

]
,

[
Λ
1

]}
{e(+), e(−)} =

{
[−Λ−1, 1] , [Λ,−1]

}
, (1.8)

(where the overall scale is arbitrary). As the matrix is not symmetric, the {e(j)}
do not form an orthogonal basis.

What does this do to the partition of figure 1.2? The origin is still the fixed
point. For a state space point in the new, dynamically intrinsic right eigenvec-
tor Adler-Weiss coordinate basis x′(

x′t−1

x′t

)
=

(
−Λxt + xt−1

−Λ−1xt + xt−1

)
.

the abscissa (xt−1 direction) is not affected, but the ordinate (xt direction) is
flipped and stretched/shrunk by factor −Λ, −Λ−1 respectively,(

x′t
x′t+1

)
=

[
Λ−1 0

0 Λ

](
x′t−1

x′t

)
−
(

0
mt

)
,

03/15/2022 siminos/spatiotemp 14 8289 (predrag–8289)



CHAPTER 1. CAT MAP

(a) (b)

Figure 1.3: (a) An abandoned two-rectangle Adler-Weiss generating partition
for the Percival-Vivaldi cat map (1.5), with borders given by cat map stable-
unstable manifolds. (b) An abandoned attempt to identify the finite partition,
since superseded by the partition of figure 1.6 (b) and figure 1.9.

preserving the vertical strip nature of the partition of figure 1.2. In the Adler-
Weiss right eigenbasis, A acts by stretching the e(+) direction by Λ, and shrink-
ing the e(−) direction by Λ−1, without any rotation of either direction.

Thus the Adler-Weiss coordinates preserve the convenient feature of the
Percival-Vivaldi cat map, figure 1.2: the torus ‘rewrapping’ translations remain
all vertical, specified by a single integer.

The angles of stable / unstable manifolds are irrational respective to the
lattice, and they never hit another vertex (and so they do not close onto them-
selves under quotienting of translations).

Note that from figure 1.4 (a) to figure 1.4 (b) we have used the continuous
translation invariance to center the large tile A within the unit square. That
makes the time reversal invariance more explicit. It might not be obvious that
the two parallelograms of figure 1.3 (a) tile the square lattice, but they do, as
illustrated in figure 1.4 (a). Such tilings are known as ‘Pythagorean’.

remark 1.4
Given the stable/unstable eigenvectors, the natural eigen-coordinates are

given. I had first constructed a 2-rectangle generating partition for the Percival-
Vivaldi [80] two-configuration representation (1.5) - it is a squashed and ro-
tated version of figure 1.1 (a) drawn in figure 1.3 (a). The point is, after a linear
change of coordinates one has finite grammar Adler-Weiss symbolic dynamics,
and the symbolic dynamics is a linear code in sense of Boris, but this time with
all admissible sequences generated as walks on a transition graph isomorphic
to the one in figure 1.1 (c).

I actually like better the three-rectangle, time reversal symmetric generating
partition of figure 1.5 and figure 1.6.

Thus we have constructed Percival-Vivaldi cat map coordinate transforma-

8289 (predrag–8289) 15 03/15/2022 siminos/spatiotemp
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(a) (b)

Figure 1.4: (a) [Abandoned] Tiling of the square lattice by the two-rectangle
Adler-Weiss generating partition of figure 1.3 (a) for the Percival-Vivaldi cat
map (1.5). (b) Tiling of the square lattice by the three-rectangle, time reversal
symmetric generating partition. Note that we have used the continuous trans-
lation invariance to center the large tile A within the unit square (continued in
figure 1.5 (a)).

(a) (b)

Figure 1.5: (a) The three-rectangle, time reversal symmetric generating par-
tition for the Percival-Vivaldi cat map (1.5), with borders given by cat map
stable-unstable manifolds. (b) The three-rectangle mapped one step forward
in time.

03/15/2022 siminos/spatiotemp 16 8289 (predrag–8289)
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(a) (b)

Figure 1.6: (a) The three-rectangle mapped one step forward in time. (b)
The three-rectangle wrapped back onto the torus, along the unstable direction,
yields 8-letter alphabet generating partition, with three-nodes transition graph.
One could have kept the two-rectangle Adler-Weiss generating partition of fig-
ure 1.3 (a), in which case the alphabet is the standard 5 letters.

(a) (b)

Figure 1.7: Figure 1.6 continued. (a) The three-rectangle, time reversal sym-
metric generating partition for the Percival-Vivaldi cat map (1.5), with borders
given by cat map stable-unstable manifolds. (b) The three-rectangle subparti-
tion, one step forward in time. A into three strips, B into three strips, B′ into
two strips, for a total of 8 forward links in the graph continue with a sensi-
ble coloring of these regions). Label the graph links by translations that bring
these pieces back into the unit square. Under time reversal, interchange B and
B′, get the same partition going backwards in time. Then make it Lagrangian,
meaning the combined graph should have undirected links (?).

8289 (predrag–8289) 17 03/15/2022 siminos/spatiotemp
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(a) (b)

Figure 1.8: (a) The three-rectangle, time reversal symmetric generating par-
tition for the Percival-Vivaldi cat map (1.5), with borders given by cat map
stable-unstable manifolds. (b) The three-rectangle partition of the unit square
(torus laid out). In this partition A already lies entirely within the unit square,
while B and B′ are wrapped around the torus, and only seem to consist of
three pieces each, an artifact of the wrapping. The unit square borders have no
physical meaning.

tion from the square to the intrinsic Adler-Weiss eigencoordinate basis. This
is a LINEAR transformation. As this has been falling on deaf ears for last few
years, let me say it again:

This is a LINEAR code,

as is every code in ChaosBook, as illustrated by the examples of sect. 1.8 that I
worked out for feline pleasure some years back. Got that?

As Adler-Weiss partition is generating, there is noting for Dirichlet bound-
ary conditions Green’s functions to accomplish - all admissible symbol blocks
are known. The problem is now trivial, in the Soviet sense (i.e., after a few years
of work, I understand it).

What is wrong with the argument so far? I used Newtonian, evolution-in-
time thinking to generate the d = 1 partition. That will not work in higher
dimensions, so the above argument has to be recast in the Lagrangian form.

Be my guest - I’m going to bed:)

A few side, symmetry related remarks: we must quotient translation sym-
metries, do calculations in the elementary cell or, better still, the fundamental
domain.

03/15/2022 siminos/spatiotemp 18 8289 (predrag–8289)
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(a)

(b)

(c)

(d)

Figure 1.9: (Color online) (a) An Adler-Weiss generating partition of the
unit torus for the s = 3 Percival-Vivaldi cat map (1.101), with rectangle MA

(red) and MB (green) borders given by the cat map stable (blue) and unsta-
ble (dark red) manifolds, i.e., along the two eigenvectors corresponding to the
eigenvalues (15.41). (b) Mapped one step forward in time, the rectangles are
stretched along the unstable direction and shrunk along the stable direction.
Sub-rectanglesMj that have to be translated back into the partition are indi-
cated by color and labeled by their lattice translation mj ∈ A = {1, 0, 1}, which
also doubles as the 3-letter alphabet A. (c) The sub-rectangles Mj translated
back into the initial partition yield a generating partition, with the finite gram-
mar given by the transition graph (d). The nodes refer to the rectangles A and
B, and the five links correspond to the five sub-rectangles induced by one step
forward-time dynamics. For details, see appendix 1.3 and ChaosBook [30].

1.3 Cat map: Hamiltonian formulation
2

1.3.1 Adler-Weiss partition of the cat map state space

Cat maps, also known as Thom-Anosov diffeomorphisms, or Thom-Anosov-
Arnol’d-Sinai cat maps [6, 35, 102], have been extensively studied as the sim-
plest examples of chaotic Hamiltonian systems.

Percival-Vivaldi cat map (1.101) is a discrete time non-autonomous Hamil-
tonian system, time-forced by ‘pulses’ mt. The mt translations reshuffle the
state space, as in figure 1.9, thus partitioning it into regionsMm , labeled with
letters m of the |A|-letter alphabet A, and associating a symbol sequence {mt}

2Predrag 2019-12-12: Make sure no clip & paste from ref. [53]
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CHAPTER 1. CAT MAP

to the dynamical trajectory {xt}. As the relation (1.101) between the trajectory
xt and its symbolic dynamics encoding mt is linear, Percival and Vivaldi refer
to mt as a ‘linear code’.

As explained in the companion paper [53], the deep problem with the Percival-
Vivaldi code prescription is that it does not yield a generating partition; the
borders (i.e., x0, x1 axes) of their unit-square partition (xt−1, xt) ∈ (0, 1]× (0, 1]
do not map onto themselves, resulting in the infinity of, to us unknown, gram-
mar rules for inadmissible symbol sequences.

This problem was resolved in 1967 by Adler and Weiss [2, 3, 6] who utilized
the stable/unstable manifolds of the fixed point at the origin to cover a unit
area torus by a two-rectangles generating partition; for the Percival-Vivaldi cat
map (1.101), such partition [30] is drawn in figure 1.9. Following Bowen [22],
one refers to parallelograms in figure 1.9 as ‘rectangles’; for details see De-
vaney [35], Robinson [86], or ChaosBook [30]. Siemaszko and Wojtkowski [91]
refer to such partitions as the ‘Berg partitions’, and Creagh [27] studies their
generalization to weakly nonlinear mappings. Symbolic dynamics on this par-
tition is a subshift of finite type, with the 3-letter alphabet

A = {1, 0, 1} (1.9)

that indicates the translation needed to return the given sub-rectangleMj back
into the two-rectangle partitionM =MA ∪MB .

While Percival and Vivaldi were well aware of Adler-Weiss partitions, they
felt that their “coding is less efficient in requiring more symbols, but it has
the advantage of linearity.” Our construction demonstrates that one can have
both: an Adler-Weiss generating cat map partition, and a linear code. The only
difference from the Percival-Vivaldi formulation [80] is that one trades the sin-
gle unit-square cover of the torus of (1.101) for the dynamically intrinsic, two-
rectangles cover of figure 1.9, but the effect is magic - now every infinite walk
on the transition graph of figure 1.9 (d) corresponds to a unique admissible
orbit {xt}, and the transition graph generates all admissible itineraries {mt}.

To summarize: an explicit Adler-Weiss generating partition, such as fig-
ure 1.9, completely solves the Hamiltonian cat map problem, in the sense that
it generates all admissible orbits. Rational and irrational initial states generate
periodic and ergodic orbits, respectively [65, 81], with every state space orbit
uniquely labeled by an admissible bi-infinite itinerary of symbols from alpha-
bet A.

1.3.2 Counting Hamiltonian cat map periodic orbits
2CB

The five sub-rectangles Mj of the two-rectangle Adler-Weiss partition of fig-
ure 1.9 (c) motivate introduction of a 5-letter alphabet

Ā = {1, 2, 3, 4, 5} = {A0A,B1A,A1A,B0B,A1B} , (1.10)

see figure 1.10 (b), which encodes the links of the transition graph of figure 1.9 (d).
The loop expansion of the determinant [29] of the transition graph T of fig-
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ure 1.10 (b) is given by all non-intersecting walks on the graph

det (1− zT ) = 1− z(t1 + t3 + t4)− z2(t25 − (t1 + t3)t4) , (1.11)

where tp are traces over fundamental cycles, the three fixed points t1 = TA0A, t3 =
TA1A, t4 = TB0B , and the 2-cycle t25 = TB1ATA1B .

As the simplest application, consider counting all admissible cat map peri-
odic orbits. This is accomplished by setting the non-vanishing links of the tran-
sition graph to Tji = 1, resulting in the cat map topological zeta function [30,
61] (5.184), (13.75),

1/ζAM(z) =
1− 3z + z2

(1− z)2
, (1.12)

where the numerator (1− z)2 corrects the overcounting of the fixed point at
the origin due to assigning it to bothMA (twice) andMB rectangles [71] (see
figure 1.12 (a) for an example of such over-counting). 2CB

According to ChaosBook count [29], Nn, the number of periodic points of
period n is given by the logarithmic derivative of the topological zeta function∑

n=1

Nnz
n = − z

1/ζAM

d

dz
(1/ζAM) . (1.13)

Substituting the cat map topological zeta function (1.12) we obtain∑
n=1

Nnz
n = z + 5z2 + 16z3 + 45z4 + 121z5 + 320z6 + 841z7

+2205z8 + 5776z9 + 15125z10 +O
(
z11
)

(1.14)

The number of prime cycles can be computed recursively

Mn =
1

n

Nn − d<n∑
d|n

dMd

 , (1.15)

(see siminos/mathematica/CatMaptopZeta.nb) or by the Möbius inversion formula

Mn = n−1
∑
d|n

µ
(n
d

)
Nd . (1.16)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1p2 . . . pk) = (−1)k if all prime factors are different. 3 Hence∑

n=1

Mnz
n = z + 2z2 + 5z3 + 10z4 + 24z5 + 50z6 + 120z7

+270z8 + 640z9 + 1500z10 · · · , (1.17)

in agreement with the Bird and Vivaldi [16] census. These counts are tabulated
in table 5.1.

8289 (predrag–8289) 21 03/15/2022 siminos/spatiotemp
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(a)

(b)

Figure 1.10: (Color online) (a) The sub-rectanglesMj of figure 1.9 (c). (b) Ad-
missible orbits correspond to walks on the transition graph of figure 1.9 (d),
with rectanglesMA (red) andMB (green) as nodes, and the links labeled by
5-letter alphabet (1.10), see the loop expansion (1.11).

(a) (b)

Figure 1.11: (a) An example of a 4-cycle: X0111. (b) All period 4 orbits periodic
points land in the partition of figure 1.10 (a).
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This derivation was based on the Adler-Weiss generating partition, a clever
explicit visualization of the cat map dynamics, whose generalization to sev-
eral coupled maps (let alone spatially infinite coupled cat maps lattice) is far
from obvious: one would have to construct covers of high-dimensional paral-
lelepipeds by sets of sub-volumes. However, as Keating [65] explains, no such
explicit generating partition is needed to count cat map periodic orbits. Cat
map (1.101) periodic points are the fixed points of[

qt
pt

]
=

[
qt+n
pt+n

]
= An

[
qt
pt

]
(mod 1) ,

so on the unwrapped phase space lattice, tiled by repeats of the unit square of
the cat map torus,

(An − 1)

[
qt
pt

]
=

[
mq
t

mp
t

]
, (mq

t ,m
p
t ) ∈ Z2 , (1.18)

matrix (An − 1) stretches the unit square into what Keating calls the ‘funda-
mental parallelogram’ (an example is drawn in figure 1.12). The number of
periodic points of period n is given by the area of this parallelogram

Nn = |det (An − 1)| = Λn + Λ−n − 2 , (1.19)

where the Λ is the stability multiplier (15.41) of the Hamiltonian time evolution
matrix A in (??).

Jaidee, Moss and Ward [62], Time-changes preserving zeta functions, say that a
Lehmer–Pierce sequence [69, 82], with nth term |det (An − I)| for some integer
matrix A, counts periodic points for an ergodic toral endomorphism if it is
non-zero for all n ≥ 1.

Substituting the numbers of periodic points Nn into the topological or Artin-
Mazur zeta function [7, 29] we obtain (??), (5.184), (13.75)

1/ζAM(z) = exp

(
−
∞∑
n=1

zn

n
Nn

)
= exp

(
−
∞∑
n=1

zn

n
(Λn + Λ−n − 2)

)
= exp

[
ln(1− zΛ) + ln(1− zΛ−1)− 2 ln(1− z)

]
=

(1− zΛ)(1− zΛ−1)

(1− z)2

=
1− sz + z2

(1− z)2
, (1.20)

in agreement with Isola [61], as well as the Adler-Weiss generating partition
topological zeta function (1.12). As explained in ChaosBook [29], topological
zeta functions count prime orbits (1.70), i.e., the time invariant sets of periodic
points, rather that the individual periodic points.

3Predrag 2020-01-18: did not know how to use MoebiusMu[]
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(a) (b)

Figure 1.12: (Color online) (a) The corner-centered [black] unit square (0, 1] ×
(0, 1] is stretched by (A2 − 1) into the [red] fundamental parallelogram. By
(1.18), each integer point within the fundamental parallelogram corresponds
to a periodic point solution of period 2. The 4 internal integer points are
marked by the blue dots. Note however that the 4 vertex integer points
[green] are the same point mod 1, and thus have to be counted as 1 fixed
point solution. (b) The face-centered [black] (Wigner-Seitz cell?) unit square
(−1/2, 1/2] × (−1/2, 1/2] is stretched by (A2 − 1) into the [red] fundamental
parallelogram. Now all 5 integer points [blue] are within the fundamental par-
allelogram, yielding again 5 periodic point solutions of period 2, but without
any over-counting. Percival-Vivaldi cat map (1.101), s = 3.
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1.3.3 An example: Fundamental parallelogram for period-2 cy-
cle points

To visualize the fundamental parallelogram (1.18) counting of periodic solu-
tions, consider Percival-Vivaldi s = 3 cat map (1.101) acting on states xt within
the unit square (xt−1, xt) ∈ (0, 1] × (0, 1], as in figure 1.12 (a). In 2 time steps
matrix (A2 − 1) stretches the unit square into the fundamental parallelogram,
with integer points within the parallelogram corresponding to periodic points
of period 2. Note however that the integer points on the vertices of the funda-
mental parallelogram over-count the number distinct solutions, as was already
noted in the construction of the topological zeta function (1.12).

The (xt−1, xt) = (0, 0) solution is a repeat of the fixed point solution for
n = 1, so the total number of period-2 orbits is 2, as given in (1.70).

1.3.4 An example: period-4 orbits

As a hands-on example, let us count the M4 = 10 admissible period 4 orbits,
as stated in (1.70). The admissible blocks Mp can be read off as walks on either
the 5-letter alphabet (1.10) graph, see figure 1.10 (b), or the 3-letter alphabet
(1.9) graph, see figure 1.9 (d). They are, in 5-letter (top), and 3-letter (bottom)
alphabets 4

1113
0001

1125
0011

1245
0101

1253
0111

1325
0111

1133
0011

3325
1111

3331
1110

3245
1101

4452
0011

. (1.21)

The corresponding periodic orbits Xp are computed using Green’s function
(??) (the inverse of the - of the [4 × 4] orbit Jacobian matrix (15.113), easiest to
evaluate by discrete Fourier transforms, see appendix ??):

M0001 ⇒ X0001 = g


0
0
0
1

 =
1

15


3
2
3
7

 .
Likewise, 5

4Predrag 2019-12-20: For covering symbolic dynamics, use/refer to ChaosBook.
Order (20.12) lexically.
5Predrag 2019-12-20: To Han: order lexically.
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X>0011 =
1

15

[
−1 1 4 −4

]
, X>0101 =

1

15

[
0 5 0 −5

]
X>0111 =

1

15

[
4 6 −1 6

]
, X>0111 =

1

15

[
2 8 7 −2

]
X>0011 =

1

15

[
5 5 10 10

]
, X>1111 =

1

15

[
9 11 9 1

]
X>1110 =

1

15

[
12 13 12 8

]
, X>1101 =

1

15

[
7 8 2 −2

]
X>0011 =

1

15

[
1 −1 −4 4

]
. (1.22)

One can verify that for each of these 10 period 4 orbits the periodic points
(xt, xt+1) visit the rectanglesMA orMB of figure 1.9 (b) in the temporal order
dictated by the transition graph, and thus they are all admissible cycles. 6

example 1.6
p. 79

1.3.5 Adler / Adler98

Predrag 2017-10-02 excerpts from or notes on
Adler [1] Symbolic dynamics and Markov partitions, (click here) an excellent overview
of symbolic dynamics techniques.

A =

(
a b
c d

)
, (1.23)

where a, b, c, d and detA = 1. The row vectors

{e(+), e(−)} =
{

[c,Λ− a] , [c,Λ−1 − a]
}

(1.24)

are the left expanding / contracting eigenvectors. The matrix (1.23) is in gen-2CB
eral not symmetric, so {e(j)} do not form an orthogonal basis. For matrix (1.5)
the left eigenvectors are

{e(+), e(−)} =
{

[−1,Λ] , [−1,Λ−1]
}
, (1.25)

in agreement with (1.8). I prefer the right eigenvectors basis {e(j)}, as it lies in
the first quadrant.

1.3.6 Percival and Vivaldi / PerViv

Predrag 2016-05-29 excerpts from or notes on
Percival and Vivaldi [80] A linear code for the sawtooth and cat maps (click here)

“Completely chaotic systems are comparatively well understood, but they
have been neglected as a starting point for the study of systems with divided
phase space. It is the purpose of this and related papers to remedy this.”2CB

6Predrag 2019-09-11: Add here the blog figure that has all points in the partition.
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“When one starts with an integrable system, and perturbs it to introduce
some chaos, new orbits and new classes of orbits keep on appearing by bifur-
cation processes, and they are very difficult to follow or to classify. It is better
to start with a purely chaotic system and then reduce the chaos by removing
orbits.” 7

“In this paper we present the symbolic dynamics of the sawtooth maps, and
in the companion paper [81] Arithmetical properties of strongly chaotic motions
the number theory for the periodic orbits of the automorphisms of the torus,
including the cat maps.”

“we start with the simplest systems that show the phenomena of interest-
area preserving maps. The sawtooth maps are piecewise linear systems. They
depend on a parameter K and for positive K they are completely chaotic. For
positive integer K they are automorphisms of the torus, of which the simplest
is the Arnol’d-Sinai cat map, with K = 1. We shall refer to all such toral auto-
morphisms, with positive integer K, as cat maps. They are Anosov systems,
continuous on the torus. On the other hand, when K is not an integer, the
sawtooth map is discontinuous.”

“Most of this paper is concerned with a ‘linear code’ for the symbolic dy-
namics of the sawtooth maps, including the cat maps. This code is chosen for
its convenience in practice, and differs from the usual codes for the Arnol’d-
Sinai cat.”

“In section 3 a practical problem of stabilisation is considered, that provides
a concrete model for the sawtooth and cat maps, and a natural introduction to
the linear codes. An explicit linear transformation from the itinerary to the
orbit is given.”

8 Every Anosov diffeomorphism of the torus is topologically conjugate to
a hyperbolic automorphism. These are represented by [2×2] matrices with
integer entries (for continuity), unit determinant (for area preservation) and
real eigenvalues (for hyperbolicity), and are known as cat maps.

In order to describe certain collective properties of cat map orbits Hannay
and Berry [54] introduced a function closely related to the least common mul-
tiple of their periods.

1.3.7 Isola / Isola90

Predrag 2016-06-02 excerpts from or notes on
S. Isola [61] ζ-functions and distribution of periodic orbits of toral automorphisms

Bellissard’s friend Isola gives counting formulas of the usual type - could
easily be turned into examples/exercises for ChaosBook. But I am looking for
symbolic dynamics - not even mentioned here.

We consider canonical automorphisms of the torus T 2, i.e. maps of the form

T (x, y) = (ax+ by, cx+ dy) mod 1 ,

7Predrag 2016-05-29: totally agree - they say it well
8Predrag 2016-06-02: verbatim from Keating [64]
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which are implemented by the group of [2x2] matrices with integer entries,
determinant 1, and eigenvalues (12.12).

To study the properties of this dense set of unstable periodic orbits, observe
that the periodic orbits of T consist precisely of those points having rational co-
ordinates (pl/ql, p1/q2). If p1, q1 are coprime and g is the least common multiple
of q1 and qz , then the square lattice of size l/g is invariant under T .

In this direction, Percival and Vivaldi [16, 80, 81] have constructed a nice
translation of the dynamical problem into the language of modular arithmetic,
allowing a profound understanding of the structure of periodic orbits. Here,
however, we follow another approach where a general expression for the N’s
is derived through a simple iterative scheme. Consider the numbers

un =
Λn − Λ−n√

D
. (1.26)

The first two terms of the series are u0 = 0, u1 = 1 and each term after is given
by

un = sun−1 − un−2 . (1.27)

[stuff to work out: Isola has nice figures that illustrate the partitions of the
2-torus]

For the number of periodic points he finds, for any integer s > 2

Nn = Λn + Λ−n − 2 , (1.28)

in agreement with the numerics of ref. [78]. Walters [110] defines the topologi-
cal entropy as

h = lim
n→∞

1

n
lnNn , (1.29)

This yields h = log Λ, i.e., the Sinai theorem for the entropy of an automor-
phism [6, 94].

The topological zeta function for cat-map class of models is

1/ζAM(z) =
(1− Λz)(1− Λ−1z)

(1− z)2
=

1− sz + z2

(1− z)2
. (1.30)

The denominator (1 − z)2 takes care of the over-counting of the fixed point at
the origin due to the 2-periodicity on the torus. 9

He also gives the number of orbits of period n, which is as usual given in
terms of the Moebius function µ(m),

Pn =
1

n

∑
m|n

µ(m)Nn/m . (1.31)

9Predrag 2016-06-02: I wonder whether the fact that this is quadratic in z has something to do
with the time-reversibility, and the unsigned graph’s Ihara zeta functions, see sect. 13.1 and (5.175).
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1.3.8 Creagh / Creagh94

Predrag 2016-06-02 excerpts from or notes on
Creagh [27], Quantum zeta function for perturbed cat maps (click here), who says:
“ The behavior of semiclassical approximations to the spectra of perturbed
quantum cat maps is examined as the perturbation parameter brings the corre-
sponding classical system into the nonhyperbolic regime. The approximations
are initially accurate but large errors are found to appear in the traces and in
the coefficients of the characteristic polynomial after nonhyperbolic structures
appear. Nevertheless, the eigenvalues obtained from them remain accurate up
to large perturbations. ”

Thom-Arnol’d cat map

A =

(
1 1
1 2

)
, detA = 1 . (1.32)

This system can be written as:(
qt+1

pt+1

)
= A

(
qt
pt

)
mod 1 (1.33)

It is possible to construct a symbolic coding with finite grammar, as de-
scribed in Devaney [35]. Robinson [86] goes through the construction clearly,
step by step. The coding is constructed for an antisymplectic map whose
double iteration is (1.33) - orbits of the cat map are then coded by sequences
whose length is even. A brief summary of the construction follows (see De-
vaney [35] for figures and details). The stable and unstable manifolds coming
from the fixed point at (q, p) = (0, 0) are used to divide the phase space into
3 rectangles R1, R2 and R3. Under iteration of the antisymplectic map, R1

is mapped into R2 ∪ R3, R2 into R1 ∪ R3 and R3 is mapped completely into
R2. Therefore orbits of the antisymplectic map are coded by sequences of 3
symbols (1,2,3), where 1 must be followed by 2 or 3, 2 is followed by 1 or 3,
and 3 must be followed by 2. The full cat map is coded by even sequences of
symbols following the same grammar. We can alternatively code orbits of the
full map with 5 symbols denoting the admissible pairs of the symbols above:
(a, b, c, d, e) = (12, 13, 21, 23, 32).

The integers that must be subtracted from the phase space coordinates fol-
lowing application of the linear map in (1.33) in order to take the point back
into the unit torus are fixed for each pair of symbols. The equation defining
a periodic orbit can be written out as an explicit affine equation and solved
for each itinerary. In this way a complete list of primitive periodic orbits is
obtained for the unperturbed map.

1.3.9 Keating / Keating91

Keating [65] The cat maps: quantum mechanics and classical motion.
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the action of map on the vector (p, q) can be described as the motion in the
phase space specified by the Hamiltonian [65]

H(p, q) = (k2− 4)−1/2 sinh−1[(k2− 4)−1/2/2][m12p
2−m21q

2 + (m11−m22)pq] .
(1.34)

Here, (p, q) are taken modulo 1 at each observation (the integer part is ignored),
and observations occur at integer points of time.

The paper has a nice discussion of (possible discrete symmetries of cat
maps.

Keating and F. Mezzadri [66] Pseudo-symmetries of Anosov maps and spectral
statistics. 10

Earlier work: Rykken [89] constructed new types of Markov partitions.
Snavely [98] studied the connectivity matrices of Markov partitions for hyper-
bolic automorphisms of T 2. He found that for Berg partitions the connectivity
matrices are conjugated to the dynamics. He also found a way to list all such
matrices and hence to classify the shapes of Berg partitions. He relied on the
result of Adler [1] that such partitions are indeed present for any toral auto-
morphism. Manning [72] gave a powerful generalization of this to Tn.2CB

Anosov, Klimenko and Kolutsky [5] give an introduction to Anosov dif-
feomorphisms, ways to represent their chaotic properties and some histori-
cal remarks on this subject: “ As far as we know, the first example of such
kind was pointed out by J. Hadamard about 1900. A couple of decades ear-
lier H. Poincaré discovered the “homoclinic points” which now serve as the
main “source” of “chaoticity”; however, Poincaré himself spoke only that the
“phase portrait” (i.e., the qualitative picture of trajectories’ behaviour in the
phase space) near such points is extremely complicated. A couple of decades
after Hadamard, E. Borel encountered a much simpler example of the “chaotic-
ity” where it is easy to understand the “moving strings” of this phenomenon.
We shall begin with a description of his example. About 100 years later it re-
mains the simplest manifestation of the fact that a dynamical system (which,
by definition, is deterministic) can somehow resemble a stochastic process.”

1.4 Green’s function for 1-dimensional lattice

Cat map is a second order difference equation

xt+1 − s xt + xt−1 = −mt , (1.35)

with the unique integer “winding number” mt at every time step t ensuring
that xt+1 lands in the unit interval. This is a 1-dimensional discrete screened
Poisson equation of form

Dx = m , (1.36)

10Predrag 2016-08-29: not useful for the deterministic case
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where xt are lattice states, andmt are the ‘sources’. SinceDtt′ is of a tridiagonal
form, its inverse, or its Green’s discrete matrix g on infinite lattice satisfies

(Dg)t0 = δt0 , t ∈ Z (1.37)

with a point source at t = 0. By time-translation invariance gtt′ = gt−t′,0, and
by time-reversal invariance gt′,t = gt,t′ . In this simple, tridiagonal case, g can
be evaluated explicitely [73, 80],

gtt′ =
1

Λ|t′−t|
1

Λ− Λ−1
, (1.38)

where, in the hyperbolic s > 2 case, the cat map “stretching” parameter s is
related to the 1-time step cat map eigenvalues {Λ,Λ−1} by

s = Λ + Λ−1 = eλ + e−λ = 2 coshλ , λ > 0 . (1.39)

While the “Laplacian” matrix D is sparse, it is non-local (i.e., not diagonal),
and its inverse is the full matrix g, whose key feature, however, is the prefactor
Λ−|t

′−t| which says that the magnitude of the matrix elements falls off expo-
nentially with their distance from the diagonal. For this it is crucial that the D
eigenvalues (1.39) are hyperbolic. In the elliptic, −2 < s < 2 case, the sinh’s
and cosh’s are replaced by sines and cosines, s = 2 cos θ = exp(iθ) + exp(−iθ) ,
and there is no such decay of the off-diagonal matrix elements.

For a finite-time lattice with n sites we can represent D by a symmetric
tridiagonal [n×n] Toeplitz matrix. The matrix

Dn =



s −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s


(1.40)

satisfies Dirchlet boundary conditions, in the sense that the first and the last site
do not have a left (right) neighbor to couple to. We distinguish it from the
circulant matrix (1.47) by emphasising that (Dn)0,n−1 = (Dn)n−1,0 = 0 . As
the time-translation invariance is lost, the matrix elements of its inverse, the
Green’s [n×n] matrix gtt′ , with a delta-function source term and the Dirichlet
boundary conditions

(Dg)tt′ = δtt′ t, t′ ∈ 0, 1, 2, · · · , n − 1 (1.41)
0 = g−1,t′ = gt,−1 = gnt′ = gtn

depend on the point source location t, and no formula for its matrix elements
as simple as (1.38) is to be expected. In general, a finite matrix inverse is of the
form

D−1 =
1

detD (cofactor matrix of D)> .
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While the cofactor matrix might be complicated, the key here is, as in formula
(1.38), that the prefactor 1/detD falls off exponentially, and for Toeplitz matri-
ces can be computed recursively.

Associated with this simple tridiagonal matrix are the Chebyshev polyno-
mials of the first and the second kind

Tn(s/2) = cosh(nλ) , Un(s/2) = sinh(n + 1)λ / sinh(nλ) ,

generated by a three-term recursion relation (second-order difference equa-
tion [40]).

The identity

2Tn(s/2) = Λn + Λ−n (1.42)

follows from s = Λ + Λ−1, see (1.6).
The inverse of the Dirichlet boundary conditions matrix Dn (1.40) can be

determined explicitly, in a number of different ways [59, 92, 97, 101]. Here
we find it convenient to write the inverse of Dn in the Chebyshev polynomial
form [114]. The determinant of Dn , i.e., the Jacobian of the linear transforma-
tion (1.36) is well known [48]

detDn = Un(s/2) , (1.43)

and the matrix elements of the Green’s function in the Chebyshev polynomial
form [59, 114] are explicitly

gij =
1

detDn
×
{

Ui−1(s/2)Un−j(s/2) for i ≤ j
Uj−1(s/2)Un−i(s/2) for i > j.

. (1.44)

detDn is also known as the determinant of the Dirichlet kernel (see wiki)

Dn(x) =

n∑
k=−n

eikx = 1 + 2
n∑
k=1

cos(kx) =
sin ((n + 1/2)x)

sin(x/2)
. (1.45)

It follows from the recurrence relation xi+1 = sxi − xi−1 , mod 1, that
Un(s/2) Chebyshev polynomials have the generating function

∞∑
n=0

Un(s/2)zn =
1

1− sz + z2

= 1 + sz + (s2 − 1)z2 + (s3 − 2s)z3 + · · · , (1.46)

with Un(s/2) ≈ sn ≈ Λn, and for a hyperbolic system the off-diagonal matrix
elements gtt′ are again falling off exponentially with their separation |t′ − t|, as
in (1.38), but this time only in an approximate sense.
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11 Alternatively, for finite time n we can represent D by a symmetric tridi-
agonal [n×n] circulant matrix with periodic boundary conditions

Dn =



s −1 0 0 . . . 0 −1
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
−1 0 . . . . . . . . . −1 s


. (1.47)

In the periodic boundary conditions case the determinant (in contrast to the
Dirichlet case (1.43)) is obtained by Fourier-transform diagonalization

detDn =

n−1∏
j=0

[
s− 2 cos

(
2πj

n

)]
= 2Tn(s/2)− 2 , (1.48)

see (1.42). 12

Now the discrete matrix Green’s function gtt′ satisfies periodic boundary
conditions

(Dg)t1 = δt1, t = 1, 2, · · · , n (1.49)
gn+1,t′ = g1t′ , gt,n+1 = gt1 .

Note that the Green’s matrix is strictly negative for both the periodic and Dirich-
let boundary conditions.

Left over from Boris version: Consider the single cat map equation with a
delta-function source term

(−2 + µ2)gt = δt,0, t ∈ Z1 . (1.50)

An alternative way to evaluate gi,j is to use Green’s function g and take an-
tiperiodic sum (similar method can be used for periodic and Neumann bound-
ary conditions)

gi,j =
∞∑

n=−∞
gi,j+2n(n+1) − gi,−j+2n(n+1) . (1.51)

This approach has an advantage of being extendable to the Z2 case. After sub-
stituting g and taking the sum one obtains (1.44).

See also sect. 1.6 Chebyshev series.

11Predrag 2017-09-20: Probably should do circulants first, then the complicated Dirichlet case
next, in the spirit of starting out with the infinite lattice case (1.38).

12Han 2018-12-01: I still have to derive and recheck this formula!
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1.5 Green’s blog

2017-08-24,2017-09-09 Predrag This to all curious cats, but mostly likely only
Boris might care: OK now I see why Chebyshevs...

Chebyshev expansions are used here because of the recurrence relations
that they satisfy.2CB

A Toeplitz matrix, T , is a matrix that is constant along each diagonal, i.e.,
Tjk = tj−k. A Hankel matrix, H , is a matrix that is constant along each
anti-diagonal, i.e., Hjk = hj+k. There is also the Laurent matrix or doubly
infinite Toeplitz matrix.

R. M. Gray (2009) Toeplitz and Circulant Matrices: A Review focuses on
bounds of sums of eigenvalues - I see nothing here that is of immediate
use to us, with maybe the exception of the discussion of the diagonaliza-
tion of circulant matrices (discrete Fourier series).2CB

A look at a Toeplitz matrix evokes time evolution of a periodic orbit sym-
bolic block: it looks like successive time shifts stacked upon each other,
every entry is doubly periodic on a torus of size [np × np]. Does that
have to do something with Chebyshev polynomials (rather than with the
usual discrete Fourier series)? One uses Chebyshev polynomials of the
first, second, third, and fourth kind, denoted by Tn , Un , Vn ,Wn , if, as an
example, one looks at a pentadiagonal symmetric Toeplitz matrix, a gen-
eralization of the 3rd order spatial derivative.

Circulant matrices are discussed in Aitkenref. [4] (1939).

Maybe some of the literature cited here illuminates this:

2022-01-23 Predrag This “assignment” by Chen Jing seems like a good overview
of available methods for Toeplitz matrices. Our orbit Jacobian matrices
are circulant and banded, should be easier.

2017-09-09 Predrag The eigenvalues and eigenvectors for the finite symmetric
tridiagonal Toeplitz matrix might have been obtained by Streater [101] A
bound for the difference Laplacian, but I do not see where in the article they
are. They seem to also be given in Smith [97] Numerical Solution of Partial
Differential Equations: Finite Difference Methods.

Hu and O’Connell [59] Analytical inversion of symmetric tridiagonal matrices
“ present an analytical formula for the inversion of symmetrical tridiag-
onal matrices. As an example, the formula is used to derive an exact an-
alytical solution for the one-dimensional discrete screened Poisson equa-
tion (DPE) with Dirichlet boundary conditions. ” The n eigenvalues and
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orthonormal n-dimensional eigenvectors of D are 13

γk = s+ 2 cosh
kπ

n + 1
, k = 1, 2, · · · , n

e(k)
n =

√
2

n + 1
sinh

knπ

n + 1
(1.52)

(see, for example, refs. [59, 114]). This is a typical inverse propagator, see
ChaosBook [9]

(ϕ†k ·∆ · ϕk′) =

(
−2 cos

(
2π

N
k

)
+ 2

)
δkk′ (1.53)

The inverse (the Green’s function) gD = 1 is [59] 14

gjk =
cosh(n + 1− |k − j|)λ − cosh(n + 1− j − k)λ

2 sinhλ sinh(n + 1)λ
(1.54)

The above paper is applied to physical problems in Hu and O’Connell [57]
Exact solution for the charge soliton in a one-dimensional array of small tunnel
junctions, and in Hu and O’Connell [58] Exact solution of the electrostatic
problem for a single electron multijunction trap. The erratum is of no impor-
tance for us, unless the - sign errors affect us.

A cute fact is that they also state the solution for s = 2, which, unlike
(1.54) has no exponentials - it’s a power law.

Eigenvalues, eigenvectors and inverse for [n×n] matrix D (1.40), −2 <
s < 2,

λk = −s+ 2 cos
kπ

n + 1

ek =

√
2

n + 1

(
sin

kπ

n + 1
, sin

2kπ

n + 1
, · · · , sin nkπ

n + 1

)
(D−1)kn =

2

n + 1

n∑
m=1

sin kmπ
n+1 sin nmπ

n+1

−s+ 2 cos kπ
n+1

(1.55)

are computed in Meyer [74] Matrix Analysis and Applied Linear Algebra.

Yamani and Abdelmonem [114] The analytic inversion of any finite symmet-
ric tridiagonal matrix rederive Hu and O’Connell [59], using the theory
of orthogonal polynomials in order to write down explicit expressions
for the polynomials of the first and second kind associated with a given
infinite symmetric tridagonal matrix H.

13Predrag 2017-09-09: recheck!
14Predrag 2017-09-09: It is shown in ref. [114] that is the same as the formula (1.44) Boris uses

(without a source citation).
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The matrix representation of many physical operators are tridiagonal,
and some computational methods, are based on creating a basis that ren-
ders a given system Hamiltonian operator tridiagonal. The advantage
lies in the connections between tridiagonal matrices and the orthogo-
nal polynomials, continued fractions, and the quadrature approximation
which can be used to invert the tridiagonal matrix by finding the matrix
representation of the Green’s functions.

The Green’s function G(z) associated with the matrix H is defined by the
relation

(H − zI)G = I . (1.56)

It is more convenient to calculate the inverse of the matrix (H − zI) in-
stead of the inverse of the matrix H . Note that in this formulation G is
the resolvent of H .

Simons [92] Analytical inversion of a particular type of banded matrix red-
erives Hu and O’Connell [59] by a “a simpler and more direct approach”.
The structure of (1.56) is that of a homogeneous difference equation with
constant coefficients and therefore one looks for a solution of the form

Gpq = Aqe
pλ +Aqe

−pλ , (1.57)

with appropriate boundary conditions. This leads to the Hu and O’Connell
formulas for the inverses of G.

How to invert a very regular banded Toeplitz matrix.

Yueh [115] Explicit inverses of several tridiagonal matrices has a bunch of fun
tri-diagonal Toeplitz matrix inverses, full of integers - of no interest to us.

Dow [36] Explicit inverses of Toeplitz and associated matrices: “ We discuss
Toeplitz and associated matrices which have simple explicit expressions
for their inverses. We first review existing results and generalize these
where possible, including matrices with hyperbolic and trigonometric el-
ements. In Section 4 we invert a tridiagonal Toeplitz matrix with mod-
ified corner elements. A bunch of fun tri-diagonal Toeplitz matrix in-
verses, full of integers - of no interest to us.

Noschese, Pasquini and Reichel [77] Tridiagonal Toeplitz matrices: properties
and novel applications use the eigenvalues and eigenvectors of tridiagonal
Toeplitz matrices to investigate the sensitivity of the spectrum. Of no
interest to us.

Berlin and Kac [15] The spherical model of a ferromagnet use bloc-circulant
matrices; see also

Davis [34] Circulant Matrices.

2017-09-09 Predrag Gover [46] The Eigenproblem of a Tridiagonal 2-Toeplitz Ma-
trix seems less useful: “ The characteristic polynomial of a tridiagonal
2-Toeplitz matrix is shown to be closely connected to polynomials which
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satisfy the three point Chebyshev recurrence relationship. This is an ex-
tension of the well-known result for a tridiagonal Toeplitz matrix. When
the order of the matrix is odd, the eigenvalues are found explicitly in
terms of the Chebyshev zeros. The eigenvectors are found in terms of the
polynomials satisfying the three point recurrence relationship. ”

Gover [46] motivates his paper by reviewing a tridiagonal 1-Toeplitz, or
Toeplitz matrix, referring to the original literature. Consider a tridiago-
nal [`×`] Toeplitz matrix with Dirchlet boundary conditions (1.40), with
eigenvalues (1.52).

Kübra Duru and Bozkurt [67] Integer powers of certain complex pentadiago-
nal 2-Toeplitz matrices

Elouafi [41] On a relationship between Chebyshev polynomials and Toeplitz de-
terminants: “Explicit formulas are given for the determinants of a band
symmetric Toeplitz matrix Tn with bandwidth 2r + 1. The formulas in-
volve r×r determinants whose entries are the values of Chebyshev poly-
nomials on the zeros of a certain rth degree q which is independent of
n.”

2017-09-09 Predrag Felsner and Heldt Lattice paths seem to be all on graphs - I
see no 2-dimensional lattice here.

Spectral asymptotics in one-dimensional periodic lattices with geometric inter-
action

1.6 Chebyshev series

Chebyshev series are Fourier (cosine) series in disguise.
— Jason Mireles-James

The canonical reference is Boyd [24] Chebyshev and Fourier Spectral Methods
(click here). Perhaps check also:

Keaton J. Burns Chebyshev Spectral Methods with applications to Astrophysical
Fluid Dynamics.

Philippe Grandclement [49] Introduction to spectral methods arXiv:gr-qc/0609020.

1.6.1 Spectral methods
2CB

The basic idea of all numerical techniques is to approximate any function u(x)

by polynomials, û =
∑N
n=0 ûnpn(x) where the pn(x) are polynomial trial func-

tions. Depending on the choice of trial functions, one has various classes of
numerical techniques. For example, the finite difference schemes are obtained
by choosing local polynomials of low degree. In spectral methods the pn(x) are
global polynomials, typically Legendre or Chebyshev. Spectral methods can
reach very good accuracy with only moderate computational resources; for
C∞ functions, the error decays exponentially, as one increases the degree of the
approximation.
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A function u can be described either by its value u(xi) at each collocation
point xi or by the coefficients ũi of the interpolant of u

[INu](x) =
N∑
n=0

ũnpn(x). (1.58)

The computation of ũ only requires evaluation of u at the N + 1 collocation
points. The interpolant of u is the spectral approximate of u in terms of poly-
nomials of degree N that coincide with u at each collocation point:

[Inu](xi) = u(xi) ∀i ≤ N.

If the values at collocation points are known one is working in the configu-
ration space, and in the coefficient space if u is given in terms of its coefficients.

Depending on the operation one has to perform, one choice of space is usu-
ally more suited than the other. The derivative of u can be evaluated in the
coefficient space by approximating u′ by the derivative of the interpolant,

u′(x) ≈ [INu]′(x) =
N∑
n=0

ũnp
′
n(x) .

This requires only the knowledge of the coefficients of u and the derivatives
of the basis polynomials. This approximate derivative is not the interpolant
of u′, as the polynomials that represent (INu)′ do not coincide with u′ at the
collocation points.

1.6.2 Discretizing with Chebyshev polynomials

To use Chebyshev series as a basis, one shifts the problem to functions defined
over x ∈ [−1, 1], and expands them in Chebyshev polynomial of the first kind
Tk(x)

φ(x) = φ0 + 2
∞∑
n=1

φnTn(x) , (1.59)

where Tk(z) are defined by 3-term recurrence (13.62).
Expanded as Chebyshev series, the product of functions

a(x) = a0 + 2
∞∑
n=1

anTn(x) , b(x) = b0 + 2
∞∑
n=1

bnTn(x) ,

satisfies the Fourier-like convolution formula 15

(a · b)(x) = (a ∗ b)o + 2
∞∑
n=1

(a ∗ b)nTn(x)

15Predrag 2020-06-07: I think of Fourier convolution formula as a statement of the translation
invariance condition on matrices, not sure how to think about this.
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where
(a ∗ b)n =

∑
k1+k2=n

a|k1|b|k2| , k1, k2 ∈ Z

Chebyshev polynomials are an analogue of the Fourier expansion for non
periodic functions on an interval and, as the Chebyshev polynomials of the
first kind [24] satisfy

Tn(cos(x)) = cos(nx) , (1.60)

they are Fourier series in disguise. Mapping (1.60) geometric interpretation:
the nth Chebyshev polynomial is the projection onto a plane of the function
y = cos(nx) drawn on a cylinder.

For x = 0, Tn(1) = 1 . For x = 2πk/n, k = 0, 1, ..., n − 1, cos(2πk/n) is the
kth root of equation

Tn(x)− 1 = 0 .

This equation can be written as a product over the eigenvalues

Tn(x)− 1 = 2n−1
n−1∏
k=0

[x− cos(2πk/n)] . (1.61)

Here the coefficient 2n−1 comes from matching the coefficient of xn term in the
definition of Tn(x) = · · ·+2n−1xn . For x = s/2, this is the orbit Jacobian matrix
determinant formula

Nn =

n−1∏
k=0

[s− 2 cos (2πk/n)] = 2Tn (s/2)− 2 . (1.62)

Three different types of partial differential equation solvers [49] are the Tau-
method, the collocation method and the Galerkin method.

The basic idea of the Galerkin method is to expand the solution as a lin-
ear combinations of polynomials -the Galerkin basis- that fulfill the boundary
conditions.

The Chebyshev polynomials Tn are an orthogonal set on [−1, 1] for the mea-
sure w = 1√

1−x2
, ∫ 1

−1

TnTm√
1− x2

dx =
π

2
(1 + δ0n)δmn . (1.63)

2020-06-03 Jason Mireles-James talk, Parameterization of unstable manifolds for
delay differential equations: Delay differential equations (DDEs) are impor-
tant in physical applications where there is a time lag in communication
between subsystems. They provide natural examples of infinite dimen-
sional dynamical systems. He discusses Chebyshev spectral numerical
methods for computing invariant manifolds for DDEs.
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2020-06-03 Jean-Phillipe Lessard talk, Rigorous integration of infinite dimensional
dynamical systems via Chebyshev series: In this talk we introduce recent
general methods to rigorously compute solutions of infinite dimensional
Cauchy problems. The idea is to expand the solutions in time using
Chebyshev series and use the contraction mapping theorem to construct
a neighbourhood about an approximate solution which contains the ex-
act solution of the Cauchy problem. We apply the methods to some semi-
linear parabolic partial differential equations (PDEs) and delay differen-
tial equations (DDEs).

For my screen grabs from the 2 talks, (click here).

2020-06-03 Predrag We (John Gibson channelflow.org, etc.) use Chebyshev in
the wall-normal directions in Navier-Stokes channel flow high-accuracy
integrators, as the Laplacian is a banded matrix in the Chebyshev basis.
But I do not like them, as they put all wiggles close to the walls, and lots
of interesting turbulence is going on in the middle of the channel, around
the middle of the [−1, 1] interval.

Dear Abby, am I just being prejudiced for no good reason?

1.7 Bernoulli map, beta transformation

2021-01-04 Predrag discussed here:

ChaosBook example 14.5 Bernoulli shift map state space partition

ChaosBook example 27.3 Lyapunov exponents for 1-dimensional maps.

The (unnumbered) equation, the end of ChaosBook section 28.5 Analyt-
icity of spectral determinants.

ChaosBook example 28.2 Bernoulli shift eigenfunctions.

ChaosBook exercise 28.5 Bernoulli shift on L spaces.

ChaosBook example 29.1 Return times for the Bernoulli map.

ChaosBook appendix 28.5 Pruned Bernoulli shift.

See remark 1.1 Bernoulli map. remark 1.2 Bernoulli shift.

See discussion around (??).

See (6.147).

wiki: Dyadic transformation also known as the dyadic map, bit shift map,
2x mod 1 map, Bernoulli map, doubling map, sawtooth map.

2020-01-27 Predrag Dropped: Much of ergodic theory can be illustrated by a
Bernoulli map [23, 37]. One can explicitly construct a Perron-Frobenius
operator, and compute its eigenvalues and its eigenvectors; construct the
dynamical zeta function, and count lattice states and orbits [31].

(for r written out as a matrix, see (1.83))
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Figure 1.13: f̂ (x), the full space sawtooth map (1.65), s > 2.

2019-07-30 Predrag Since all coefficients in (1.106) are integers, the lattice states
xt are always rational. This allows for their exact evaluation by integer
arithmetic.

2019-12-18 Predrag (dropped from CL18.tex)
Restrict the admissible field values xt at time-lattice site t to the symmet-
ric unit interval x ∈ [−1/2, 1/2), with ??-letter alphabet

A = {4, 3, 2, 1, 0, 1, 2, 3, 4} . (1.64)

It maps the unit interval onto itself, with fixed points x0 = 0, x1 = 1.

reduction f̂ (xt) 7→ f (xt)

Recall how the subpartitions of figure 1.14 were used to obtain the total
number of periodic points (??), as every subpartition contained one and
only one periodic point.

The closely related sawtooth map, sketched in figure 1.13, with ‘stretching’
parameter s > 2,

x̂t+1 = f̂ (x̂t) =

{
sx̂t , x̂t ∈ [0, 1/2)
sx̂t + 1− s , x̂t ∈ (1/2, 1]

(1.65)

Since the relation between mt symbol sequences and xt states is linear,
it is straightforward to go back and forth between a lattice state and its
symbolic representation.

The nth preimages b−(n−1)(x) of the critical point xc = 1/2 partition the
state space into 2n subintervals, each labeled by the first n binary digits
of points x = .m1m2m3 . . . within the subinterval: figure 1.14 illustrates
such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.

known as the doubling map if s = 2,

xt+1 = 2xt (mod 1) , (1.66)
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Figure 1.14: The Bernoulli map (1.65) for s = 2, together with the 0 fixed point,
and the 01 2-cycle. Preimages of the critical point xc = 1/2 partition the unit
interval into {M0,M1}, {M00,M01,M10,M11}, . . . , subintervals. As the map
is a circle map, x5 = 1 = 0 = x0 (mod 1).

and s-tupling map, figure 1.18 (b), for integer stretching parameter s ≥ 3,

The relation is linear, and a given block M, or ‘code’ in terms of alphabet
(??), corresponds to a unique temporal lattice state X given by the lattice
Green’s function

X = g M , g = − r

r − s 11
, (1.67)

provided we specify the boundary conditions (bc’s) for the shift operator
r.

The power of the linear encoding of the temporal Bernoulli condition (??)
is that the integer-valued symbols mt from the finite alphabet (??) encode
the real-valued lattice site states xt.

For the piecewise linear map of figure 1.14 we can evaluate the dynam-
ical zeta function in closed form. Each branch has the same value of the
slope, and the map can be parameterized by the single parameter s. The
larger s is, the stronger is the stretching action of the map.

The power of the code

M> = (mt,mt+1, · · · ,mt+k) (1.68)

for the temporal cat (1.106) is that one can use integers mt to encode the
real-valued lattice states xt.

,
(∂ − (s− 1) r−1) X = −M . (1.69)

For the s = 3 cat map example at hand, they are

{Mj} = (M1,M2,M3,M4,M5, · · · ) = (1, 2, 5, 10, 24, · · · ) , (1.70)
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Visualizing the volume relation (6.125) for a general n-dimensional fun-
damental parallelepiped is not easy, but

As the temporal Bernoulli (??) is linear, eigenmodes of J , shifted by M
as in (??) for each distinct lattice state, are also lattice states of temporal
Bernoulli.

2020-01-17 Han The determinant of this J from (??) is negative so we cannot
use the determinant trace formula directly. A correct way is: first rewrite
the J as in (1.67)

J = 11− sr−1 = −s
r

(
11− r

s

)
.

Note that det (r) = (−1)n−1. The determinant of J is:

detJ = det (
r

s
− 11)sn(−1)n−1 = −sndet ( 11− r

s
) .

Then use the determinant-trace formula:

ln det ( 11− r

s
) = tr ln( 11− r/s) = −

∞∑
k=1

1

k

tr (rk)

sk
,

and use tr rk = nδk,nr if k is a multiple of n, 0 otherwise (follows from
rn = 11),

ln det ( 11− r

s
) = −

∞∑
r=1

1

r

1

snr
= ln(1− s−n) ,

and the determinant of J is:

detJ = −sndet ( 11− r

s
) = 1− sn ,

which is negative. So for the temporal Bernoulli the count is:

Nn = |detJ | = sn − 1 ,

in agreement with the time-evolution count (??).

2020-01-25 Predrag: A Bernoulli map example. The action of orbit Jacobian
matrix J for the period-2 periodic points of the base-2 Bernoulli map,
figure 1.14, which partitions the unit interval into 2 subintervals {Mm},
is

φt+1 = 2φt −mt+1 , φt ∈Mmt , (1.71)

where mt takes values in the 2-letter alphabet

m ∈ A = {0, 1} . (1.72)
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Figure 1.15: (2020-02-14 Predrag: his is “wrong”, now superseded with the up-
dated figure in ref. [33]; 2020-09-11 the whole example seems misplaced here,
moce it to wherever it belongs) The base-2 Bernoulli map (1.71) period-2 pe-
riodic points Xp = (φ0, φ1) are 0 = (0, 0), 1 = (1, 1) fixed point repeats, and
the 2-cycle X01 = (1/3, 2/3), see figure 1.14. They all lie within the unit square
[0BCD], one within eachMm0m1

subregion, and are mapped by the [2×2] orbit
Jacobian matrix J into the parallelogram [0B′C ′D′], whose area is 4 times the
unit area. The images of periodic points Xp land on the integer lattice, and are
sent back into the origin by integer translations Mp, in order to satisfy the fixed
point condition JXp + Mp = 0.
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should suffice to convey the idea. In this case, the [2×2] orbit Jacobian
matrix, the unit square basis vectors, and their images are

J =

(
1 −2
−2 1

)
; XB =

(
1
0

)
, XD =

(
0
1

)
XB′ = J XB =

(
1
−2

)
, XD′ =

(
−2
1

)
, (1.73)

with the resulting fundamental parallelogram of area 4 shown in fig-
ure 1.15. The volume of the fundamental parallelogram lattice L (15.107)
is

Det (L) = Det (XB′ |XD′) = Det (J ) Det (XB |XD) = −3 , (1.74)

where in this case the unit cell matrix (XB |XD) = 1.
The [3×3] orbit Jacobian matrix and the unit cube basis vectors are

−J =

 −1 0 2
2 −1 0
0 2 −1

 , (XB |XC |XD) =

 1 0 0
0 1 0
0 0 1

 .

Clearly Det (−J ) = s3 − 1, and so on, reproducing the periodic states
count for Bernoulli. No point of looking at Det (−J ), as that changes
sign at every order - always evaluate |Det (J )|.

2020-02-16 Predrag Dropped from CL18 [33]:
The temporal Bernoulli lattice Green’s function in the matrix form

g =



0 Λ−1 Λ−2 Λ−3 Λ−4 Λ−5 · · ·
0 0 Λ−1 Λ−2 Λ−3 Λ−4 · · ·
0 0 0 Λ−1 Λ−2 Λ−3 · · ·
0 0 0 0

. . .
0 0 0 0 0 Λ−1 · · ·
0 0 0 0 0 0

. . .
...

...
...

...
...

...
. . .


, (1.75)

for an infinite temporal Bernoulli lattice t ∈ Z, where Λ = s is the 1-time
step stability multiplier for the Bernoulli system.

2020-02-18 Predrag Clipped here from Ising.tex, might be relevant to general-
izing Bernoulli to 2-dimensional lattice, as a warm-up to spatiotemporal
cat zeta functions:
Roettger [87], Periodic points classify a family of Markov shifts, writes:
Ledrappier introduced the following type of space of doubly indexed se-
quences over a finite abelian group G,

XG = {(xs,t) ∈ GZ2 |xs,t+1 = xs,t + xs+1,t for all s, t ∈ Z}.
The group Z2 acts naturally on the space XG via left and upward shifts.
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(a) (b)

Figure 1.16: [OLD VERSION] The Bernoulli map (??) period-2 lattice states
XM = (x0, x1) are the 0 = (0, 0) fixed point, and the 2-cycle X01 = (1/3, 2/3), see
figure 1.14. They all lie within the unit square [0BCD], one within eachMm0m1

subregion, and are mapped by the [2×2] orbit Jacobian matrix J (??) into the
fundamental parallelepiped [0B′C ′D′]. The images of periodic points XM land
on the integer lattice, and are sent back into the origin by integer translations
M, in order to satisfy the fixed point condition refeq{tempFixPoint}, JXM+M =
0. Figure 1.14 suggests subdividing the fundamental parallelepiped into (a) 4
areas, but they are not unit areas. The theory of integer lattices dictates instead
(b) covering the fundamental parallelepiped by 3 unit area rectangles, with all
vertices on the integer lattice.

2020-02-19 Predrag Suarez [103] Difference equations and a principle of double in-
duction, (click here) studies this as a “partial difference equations,” that is,
difference equations in two or more variables. He refers to many books
on the subject. His example is a first order hyperbolic equation, with
initial conditions on space and time axes, which describes some thermal
properties,

f(r,m) = f(r,m− 1) + f(r − 1,m).

The goal is to calculate, step by step, all the values of the temperature
T(m,n), starting with the initial and boundary conditions. But then I do
not get the rest of the papers. Perhaps best not to use much time on
‘spatiotemporal’ Bernoulli.

2020-03-28 Predrag The Bernoulli first-order difference equation

φt − sφt−1 = −mt , φt ∈ [0, 1) , (1.76)

characteristic equation (for mt=0)

Λ− s = 0 , (1.77)

has one characteristic root {s} .
Comparing with (6.149) we see that we need to solve a first-order inho-
mogeneous difference equation with a constant forcing term (s− 1).
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Weijie Chen does this pedagogically in his 2011 lecture notes (click here),
sect. 1.2.1 One Example, where he considers

φt − sφt−1 = M , (1.78)

and finds the particular solution by taking φp,n = φp for all n,

φp − s φp = M → φp = −M/(s− 1) .

Hence the solution is

φn = φc,n + φp,n = c sn − M

s− 1
, (1.79)

with c determined by the initial value φ0 = c s0 −M/(s − 1) . Bernoulli
starts with φ0 = 0, and according to (6.149), M = (s− 1), so c = 1.

Weijie Chen also works out the particular solution when s = 1. He also 2CB
remarks that in econometrics the shift operator r is called the lag operator.

Weijie Chen solves the temporal cat pedagogically in his lecture notes
(click here), sect. 2 Second-Order Difference Equation.

Questions

• Why is it OK to take site-independent particular solution?

• M/(s − 1) looks awkward, can one reformulate? so instead of M ,
have M/(s− 1)→ 1

• I am guessing that M = (s − 1) in (1.78) something like the total
number of ‘letters’ I can add to the count Nn at time n. Something
like that.

• Similarly for M = 2µ2 forcing term in temporal cat second-order
difference equation (6.161).

• This is still just a verification of my guess recurrence (6.149). Make
this argument into a derivation.

2020-02-23 Predrag Just curious - what does the Bernoulli fundamental paral-
lelepiped defined by the columns of [3×3] orbit Jacobian matrix

J =

 1 −2 0
0 1 −2
−2 0 1

 , N3 = |DetJ | = 23 − 1 , (1.80)

look like in a 3-dimensional rendition? Hopefully it is not symmetric, like
figure ?? (b).

2020-03-01 Predrag Wilf [112] Generatingfunctionology starts out in his sect. 1.1 An
easy 2-term recurrence, with our Bernoulli periodic points count (6.147)
and (6.158) as a trivial example of a two-term recurrence (first-order dif-
ference equation).

8289 (predrag–8289) 47 03/15/2022 siminos/spatiotemp

http://ChaosBook.org/library/Chen11.pdf
http://ChaosBook.org/library/Chen11.pdf


CHAPTER 1. CAT MAP

2020-12-21 Predrag Counting temporal Bernoulli lattice states removed from
CL18.tex→ Bernoulli.tex, replaced by refsects:Hill1stOrd

To evaluate the Hill determinant (6.125), observe that from (??) it follows
that

Det (−J ) = Det (s/r) Det ( 11− r/s) ,
where |Det (s/r)| = sn. Expand ln Det ( 11 − r/s) = Tr ln( 11 − r/s) as a
series in 1/s,

Tr ln
(

11− r

s

)
= −

∞∑
k=1

1

k

Tr (rk)

sk
. (1.81)

It follows from rn = 11 that Tr rk = nδk,rn is non-vanishing if k is a
multiple of n, 0 otherwise:

ln Det ( 11− r/s) = −
∞∑
r=1

1

r

1

snr
= ln(1− s−n) .

2020-12-09 Predrag Temporal Bernoulli

After n shifts, the lattice state X returns to the initial state, rn = 11. This re-
lation leads to the explicit expression for the orbit Jacobian matrix (1.67),

g =
r

s 11− r =
1

11− r
s

r

s
=

∞∑
k=1

rk

sk
=

sn

sn − 1

n∑
k=1

rk

sk
. (1.82)

From (1.67) it then follows that the last field in X is the field at lattice site
n

xn =
sn

sn − 1
.m1m2m3 · · ·mn =

1

s− 1

sn−1m1 + · · ·+ smn−1 +mn

sn−1 + · · ·+ s+ 1
,

(1.83)
and the rest are obtained by cyclic permutations of M.

For example, for s = 2, the lattice fields are (they are always rational-
valued),

xm1m2···mn =

n∑
k=1

mk

2k

∞∑
m=0

1

2nm
=

2n

2n − 1
.m1m2 · · ·mn

=
1

2n − 1

n∑
k=1

mk2n−k , (1.84)

where p = m1m2 · · ·mn is an orbit of period n, with stability multiplier
Λp = 2n .

For a Bernoulli map, the rational x0 are either periodic or land eventually
on a periodic orbit (the base-s version of the familiar fact that the decimal
expansion of a rational number is eventually periodic), while the orbit of
a normal irrational x0 is ergodic.
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2020-12-09, 2020-12-11 Predrag Quotienting the temporal Bernoulli system

xt − sxt−1 = −mt , xt ∈ [0, 1) , (1.85)

by its dynamical D1 = {e, σ} symmetry

σxt = 1− xt , σmt = (s− 1)−mt , for all t ∈ Z , (1.86)

where mt takes values in the s-letter alphabet

m ∈ A = {0, 1, 2, · · · , s− 1} . (1.87)

Define the fundamental domain to be x̂t ∈ [0, 1/2]. We construct the
Bernoulli fundamental domain lattice system, with ‘1/2’ unit hypercube
X̂ ∈ [0, 1/2]n , as in ChaosBook Group D1 and reduction to the fundamen-
tal domain, see figure 1.17 (b), and the fundamental domain symbolic dy-
namics Â. The temporal lattice Bernoulli condition (1.85) is now two con-
ditions (Bernoulli)/D1. They are different for s even or odd:

x̂t+1 − sx̂t = −mt+1 , x̂t ∈Mmt , s even
x̂t+1 + sx̂t = 1 +mt+1 , x̂t ∈Mσmt (1.88)

Â = {{m}, {σm}} , {m} = {0, 1, 2, · · · , s/2} ,

x̂t+1 − sx̂t = , s odd (1.89)
Â = {{m}, (s− 1)/2, {σm}} , m ∈ {0, 1, 2, · · · , (s− 3)/2} .

As an example, case s = 6, mt ∈ {0, 1, 2} is worked out in figure 1.17 (c).
(Plot also the fundamental domain map for odd values of s.)

In the matrix form (1.85), the orbit Jacobian matrix

J X = −M , J = 1− sr−1 , (1.90)

is independent of M. Not so for the symmetry reduced orbit Jacobian
matrix ÂM̂ in (1.88): it depends on M̂, as its diagonal takes values ±s. We
need to prove that the Hill determinant Det Â does not.

I had not noticed before that this parametrization converts Bernoulli into
tent map, with full state space 2-cycles turned into negative slope fixed
points.

By the inclusion-exclusion principle (20.270)

Nn = N̂n + σN̂n − N̂n ∩ (σN̂n) = 2N̂n − N̂n ∩ (σN̂n) . (1.91)

Let’s call the number of points in the shared boundary I . The x = 0 is
in I for any n, if I am allowed to identify x = 1 → 0, and that is the
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(a) (b)

(c)

Figure 1.17: (a) The Bernoulli map f with the stretching parameter s = 6
partitions the unit interval into 6 subintervals {Mm}, labeled by the 6-letter
alphabet (1.87). As the map is a circle map, x5 = 1 = 0 = x0 (mod 1). (b)
The Bernoulli map is quotiented by the dynamical G = D1 = {e, σ} symmetry
to (c) the fundamental domain x̂t ∈ [0, 1/2] map f̂ = f/G partitions the half
interval into the three 1/12 subintervals {M0,M1,M2}, and their reflections,
the three 3 subintervals {Mσ0,Mσ1,Mσ2}, labeled by a 6-letter reduced sys-
tem’s alphabet. Reduced space fixed points {σ0, σ1, σ2} correspond to self-dual
2-cycles {05, 14, 23} in the full space. Fixed point 0 is in the border, and thus
over-counted; 1 corresponds to {1, 4}, and 2 corresponds to {2, 3}.

03/15/2022 siminos/spatiotemp 50 8289 (predrag–8289)



CHAPTER 1. CAT MAP

only point in the boundary. Presumably this leads to the denominator
(1 − z) in (1.92). I guess that the symmetric irrep of D1 = {e, σ} leads to
N+ = sn and the numerator (1− sz), while the antisymmetric irrep leads
to N− = 0, and a trivial factor 1 contribution to the numerator (1.92).

1/ζAM(z) =
1− sz
1− z . (1.92)

Temporal cat should be more interesting. Also any nonlinear s-branch
map ‘Bernoulli-like’ lattice with a dynamical D1 symmetry; then the weights
tp do not necessarily cancel for the antisymmetric irrep.

2018-12-27 Linas Vepstas On the Beta Transformation arXiv:1812.10593: The beta
transformation is the iterated map (1.93). The β = 2 is known as the
Bernoulli map, and is exactly solvable. The Bernoulli map provides a
model for pure, unrestrained chaotic (ergodic) behavior: it is the full in-
variant shift on the Cantor space. The beta transformation defines a sub-
shift: iterated on the unit interval, it singles out a subspace of the Cantor
space, in such a way that it is invariant under the action of the left-shift
operator. That is, lopping off one bit at a time gives back the same sub-
space. The beta transform seems to capture something basic about the
multiplication of two real numbers: β and x. It offers a window into un-
derstanding the nature of multiplication. Iterating on multiplication, one
would get exponentiation; although the mod 1 of the beta transform con-
torts this in interesting ways. The work presented here is a research diary:
a pastiche of observations and some shallow insights. The eigenvalues of
the transfer operator seem to lie on a circle of radius 1/β in the complex
plane. Given that the transfer operator is purely real, the appearance of
such a quasi-unitary spectrum seems surprising. The spectrum appears
to be the limit of a dense set of quasi-cyclotomic polynomials, the pos-
itive real roots of which include the Golden and silver ratios, the Pisot
numbers, the n-bonnaci (tribonacci, tetranacci, etc.) numbers.

Beta transformation

Tβ(x) = βx mod 1 , 1 < β ≤ 2 (1.93)

was introduced by Alfréd Rényi [84] in 1957, and an invariant measure
for it was given by Alexander Gelfond in 1959 and independently by Bill
Parry [79] in 1960.

Beta transformation literature review and references.

A concise intro to beta-transformations? has references.

2020-09-08 Predrag Bing Li Some fractal problems in beta-expansions (video) (slides)

For greedy beta-expansions, we study some fractal sets of real numbers
whose orbits under beta-transformation share some common properties.
For example, the partial sum of the greedy beta-expansion converges
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with the same order, the orbit is not dense, the orbit is always far from
that of another point etc. The usual tool is to approximate the beta-
transformation dynamical system by Markov subsystems. We also dis-
cuss the similar problems for intermediate beta-expansions.

2021-01-05 Predrag Hofbauer and Keller [56] Zeta-functions and transfer-operators
for piecewise linear transformations (1984) has no Bernoulli zeta. Not useful
to us at this time.

2021-01-05 Predrag Takahashi [104] Fredholm determinant of unimodal linear maps
has lots of detail and examples. I might have missed something, but
Bernoulli zeta is not there, or anything we care about.

2021-01-04 Predrag Flatto, Lagarias and Poonen [42] The zeta function of the beta
transformation (1994)

which should have the β = 2 Bernoulli zeta function as the trivial case.

2021-01-05 Han Notes from Flatto, Lagarias and Poonen [42] paper:

β-transformation map is:

fβ(x) = βx (mod 1) ,

where β > 1, x ∈ [0, 1]. The symbolic dynamics of fβ is based on the fact
that the graph of fβ consists of bβc + 1 monotone pieces which they call
laps, which are assigned by the symbols 0, 1, . . . , bβc. When β ∈ Z+, the
piece bβc consists of a single point, and the symbol bβc only appears in
the itinerary of 1. To each x ∈ [1, 0] its itinerary is Iβ(x) = A0A1A2 . . . ,
where the symbol

An := An(x) = bβfnβ (x)c .
In particular the itinerary of 1, Iβ(1) = A∗0A

∗
1A
∗
2 . . . encodes complete

information about the behavior of fβ .

They introduced a power series with integer coefficients:

φβ(z) = A∗0z +A∗1z
2 +A∗2z

3 + · · · =
∞∑
n=0

A∗nz
n+1 .

This function is related to the iterates of 1 by:

φβ(z) = 1 + (βz − 1)

( ∞∑
n=0

fnβ (1)zn

)
.

Then the zeta function is:

ζβ(z) =
1

1− φβ(z)
,
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if β is not a simple β-number, and

ζβ(z) =
1− zN

1− φβ(z)
,

if β is a simple β-number, and N is minimal with fNβ (1) = 0. Simple β-
numbers are the β-numbers such that for some n, fnβ (1) = 0. This formula
gives the correct topological zeta function of temporal Bernoulli.

Associated with the β-transformation is the setXβ of all Iβ(x) for 0 ≤ x <
1. The β-shift Sβ is a symbolic dynamical system obtained as the small-
est closed (two-sided) subshift of {1, 2, . . . bβc}Z generated by all finite
substrings of Xβ . For simple β-numbers Sβ is a subshift of finite type.

There is a zeta function associated to the β-shift Sβ , which is studied by
Takahashi [105], who showed that

ζ̂β(z) =
1

1− φβ(z)
.

This formula is closely related to ζβ(z) but differs from it for simple β-
numbers, in which case the closure operation defining Sβ adds some ex-
tra periodic points.

2021-01-11 Predrag Seth Lloyd et al.. Quantum algorithm for nonlinear differential
equations arXiv:2011.06571:

[1] showed how to map the problem of solving a general linear differ-
ential equation to that of matrix inversion, which can then be performed
using the quantum linear systems algorithm [12-13]. Consider a linear
differential equation of the form,

dx

dt
+Ax = b(t), (6)

where as above x, b ∈ Cd and A is a [d× d] matrix. 2CB

Discretize the equation in time at intervals ∆t, and take k to be the index
for the discretized time, so that xk and bk are the values of x and b at time
label k.

We wish to integrate equation (6) numerically starting from the initial
state x0 ≡ b0. We obtain a series of equations of the form:

x0 = b0 x1 = x0−∆tAx0 +∆tb1 . . . xk+1 = xk−∆tAxk+∆tbk . . .
(7)

Here, we have used the Euler forward method for numerical integra-
tion, but it is straightforward to implement implicit methods such as Eu-
ler backward, Crank-Nicholson, Runge-Kutta, etc. [3]. Written in matrix
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form, these equations become

−


−I 0 0 . . . 0 0

I −∆tA −I 0 . . . 0 0
0 I −∆tA −I . . . 0 0

. . .
0 0 0 . . . −I 0
0 0 0 . . . I −∆tA −I




x0

x1

x2

. . .
xT−1

xT

 =


b0

∆tb1
∆tb2
. . .

∆tbT−1

∆tbT

 ,

Commentary

Remark 1.1. Bernoulli map. The Bernoulli shift map (??) and the doubling map (1.66)
are also known as the dyadic transformation, dyadic map, bit shift map, angle doubling
map or sawtooth map (??). There are many fine books that discuss it in depth, for
example Driebe [37]. See also remark 1.2.

Remark 1.2. Bernoulli shift. For a more in-depth discussion, consult chapter 3 of
ref. [37]. The extension of Fredholm theory to the case of Bernoulli shift on Ck+α (in
which the Perron-Frobenius operator is not compact – technically it is only quasi-compact.
That is, the essential spectral radius is strictly smaller than the spectral radius) has been
given by Ruelle [88]: a concise and readable statement of the results is contained in
ref. [11]. We see from (??) that for the Bernoulli shift the exponential decay rate of cor-
relations coincides with the Lyapunov exponent: while such an identity holds for a
number of systems, it is by no means a general result, and there exist explicit counterex-
amples. See also remark 1.1.

example 1.1
p. 75

1.8 Any piecewise linear map has “linear code”
2CB

For reasons unbeknownst to me, it is below the dignity of any cat to work out
any problem in ChaosBook, or in the online course, no matter how often I point
out that it is easier to understand what we do for cat maps if you first work it
out for 1-dimensional maps.

So I have to do these exercises myself - I’m forced to it, so Li Han can be mo-
tivated to re-derive his polynomials (as described in Bird and Vivaldi [16], see
my notes of 2016-05-21, -12-12 below), rather than to fit them to Mathematica
grammar rule counts for integer s.

Basically, I am baffled by why should “linear code” be such a big deal that
it has to go into the title of our paper [53]. Every example of symbolic dynam-
ics worked out in ChaosBook is a “linear code.” The strategy is always the
same - find a topological conjugacy from your map to a piecewise linear map,
and then use the fact that any piecewise linear map has “linear code.” The
pruning theory is always the same - kneading orbit separates admissible from
the inadmissible, also in the infinite 1-dimensional discrete lattice case worked
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out in the Diffusion chapter in the ChaosBook, and the appendix (chapter 12
reproduced here) that no one wants to read either.

A tent map is a 1-dimensional example (a simpler one would be Bernoulli,
and its sawtooth generalizations). The 2-dimensional examples are the Belykh
map, example 1.13, and the Lozi map, example 1.14. Belykh map is of particu-
lar interest to us, as it is in form very close to the cat map. Both maps have the
pruning front conjecture is proven for them, for a some sets of parameters.

example 1.11
p. 81

example 1.12
p. 82

example 1.13
p. 84

example 1.14
p. 84

1.9 Cat map blog
2CB

2016-05-18 Predrag I start with our 2011 Notes for cat map
(former appendStatMnotes.doc in dasbuch/book/notes),
to be eventually merged with chapter/appendStatM.tex.

2011-05-14 Jean-Luc Thiffeault I figured out that the grouping of periodic or-
bits is crucial, and moreover that there is something delicate with the
fixed point of the cat map, which lies on the boundary of Markov boxes.

2011-05-14 Predrag For Anosov (linear Anosov?) - Arnol’d cat map - it should
work like ton of rocks, but you have to note that because of the periodicity
there is one fixed point, not two. If you screw up an early term in the
series, then it converges very slowly. I think the Stephen Creagh [27]
tested it on weakly nonlinearly perturbed cat map (weakly, so golden-
mean grammar is working) and it converged super-exponentially (you
know the grammar, flow has bounded hyperbolicity, so weight-truncated
cycle expansions are not needed - they perform less well).

2011-05-14 Jean-Luc Thiffeault I know how to do it with the Markov partition
now, and it works much better. Keep in mind this is a warmup problem:
what I really have in mind (with my collaborator Erwan Lanneau [68]) is
to compute periodic orbits for Teichmuller flow, where the periodic orbits
themselves are actually now pseudo-Anosovs!

2011-05-16 Hans-Henrik Rugh The situation as I recall it is roughly as follows:

When you construct the symbolic dynamics you may start by picking
one periodic orbit, typically the fixed point p = f(p) (but the following
depends on the choice). You then cut the torus into pieces following s/u-
manifolds until you get a small collection of N rectangles.

R1, · · · , RN

Associated to this collection you have a transition matrix (for SINGLE
rectangles). Now, you also need to construct a transition matrix for PAIRS
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of rectangles, e.g. (R1, R2) → (R2, R1) and then TRIPLES of rectangles
... (R1, R2, R3)→ (R2, R1, R3), etc.... These k’th - order transitions comes
from the fact that there is a fixed point/periodic cycle on the boundary
of the Markov partition elements.

You get determinants dk(z) for each of these k’th–order transition matri-
ces. NB : (R1, R2)→ (R2, R1) is a periodic orbit of prime length 2 even if
it represents a fixed point of f. I think (but is not sure?) that the weights
in the determinant are calculated in the same way...

The final determinant is d(z) = d1(z)d3(z).../(d2(z)d4(z)...) if I am not
mistaken. This is related to the so-called Manning trick [71] for counting
real orbits related to

det (1− s) = 1− tr s+ tr s ∧ s− · · ·

where s is a permutation. What is not obvious is that d(z) is entire, but it
is!

It’s a kind of model problem anyway. In more realistic systems I suppose
that one may run into the problem of having several orbits on boundaries.

One of the tricky points is to see how such an orbit in the ‘higher’ order
zeta-functions/Fredholm-det.

As mentioned in e.g. d1(z) a ’physical’ fixed point may appear zero times,
or twice, or,...? In d2(z) a fixed point may actually appear as a period two
orbit, so should be treated as such when looking for cancelling terms.

Great, if you have managed to make it work in practice. I don’t think
that one can call it a standard trick but one may perhaps get it implicitly
from the paper of Ruelle [88]. But it is difficult to digest and even more
difficult to convert into computable formulae.

2018-02-10 Predrag Manning [71] writes: “ According to Bowen [22], a Markov
partition is a finite cover of state space by closed subsets called rectangles.
The rectangles are pairwise disjoint except possibly for the intersection
of their boundaries. [...] At the boundaries of the rectangles, that is
where they intersect, several periodic points individual rectangles may
be mapped to the same periodic point in the full state space. ”

“ Counting the periodic points involves also certain auxiliary subshifts
of finite type to remedy overcounting of points in the boundaries of the
rectangles. ”

2011-05-18 Jean-Luc Thiffeault emailed to Predrag pdf file Notes on periodic or-
bit expansions for Teichmüller flow (saved as POexp.pdf in dasbuch/book/notes/).
which maybe figures out cat map symbolic dynamics. He writes:

“ Updated notes: on page 4-5 I used the Markov boxes to compute the PO
expansion. I used a trick to deal with the orbit on the boundary: include
several copies of the orbit, but divide by the correct factor. It makes the
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series very nicely convergent. I don’t know if this is a standard trick but
it seems to work well. ”

2011-05-17 Predrag It is standard, it is in ChaosBook.org Chapter Counting,
Sect Counting cycles. I introduced it in Roberto Artuso, Erik Aurell and
Predrag Cvitanović [8], Recycling of strange sets: II. applications, see eq. (4)
and Fig. 6, but Manning [71] did it it in 1971 (if that’s what he did), and
Ruelle [88] at the same time, according to Hans Henrik. ChaosBook says:
“Smale [96] conjectured rationality of the zeta functions for Axiom A dif-
feomorphisms, later proved by Guckenheimer [52] and Manning [71],"
and ChaosBook cannot be wrong.
The rule of thumb is that all credit should go to old white male mathe-
maticians whose names one knows how to spell.
The argument is something like this: the correct object, the Fredholm de-
terminant, can be written as ratios of products of skew products (AKA
determinants of different dimensions), each one being the not correct ob-
ject, but historically the first thing written down (dynamical or Ruelle
zeta function).
The ones on partition boundaries (what I currently call ‘ridges’) are of
lower dimensions, either downstairs or upstairs in these rations. They
account for overcounting of the boundary fixed and periodic points.
ChaosBook does something of that when explaining the relation between
Fredholm determinants and dynamical zeta functions, but is so far silent
on explicit examples of the Manning multiples. That is why I would re-
ally like us to write up the cat map symbolic dynamics simply and el-
egantly. Jean-Luc is not the only person who has gotten lost here, any-
body mathematician who thinks that Arnol’d is the simplest exercise to
try sinks precisely at this spot (physicists train on unimodal maps and the
3-disk system, remaining blissfully ignorant of the Manning multiples)
Hans Henrik might have more elegant way of saying this. Vivianne still
more elegant.

2012-03-01 Predrag I’ve been dreaming about this forever, see for example my
post of [2012-03-01], pipes repository, A letter to our experimental friends:
“ For large aspect systems I imagine we fit local templates whose 2-dim-
ensional or 3-dimensional volume is concentrated on a region big enough
to capture interaction of close-by structures, but small enough not to track
weakly interacting ones.
In other words, cover 3-dimensional volume with a finite-size template
that tracks a neighborhood for a finite time. It’s OK to make it spatially
periodic, as long as distance is measured in finite size spatiotemporal
windows. That is what we already do when we use unstable periodic
orbits - we use temporally-infinite periodic solution (that cannot be seen
in experiment) to identify a finite-time neighboring segment of a chaotic
trajectory.
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It has not been tried, so I might be wrong (again). ”

2016-05-04 Predrag I am not suggesting that we should study this, but it’s
something to maybe keep in mind: Slipantschuk, Bandtlow and Just [95],
Complete spectral data for analytic Anosov maps of the torus, construct a fam-
ily of analytic hyperbolic diffeomorphisms of the torus (of which Arnol’d
cat map is a special case) for which the spectral properties of the associ-
ated transfer operator acting on a suitable Hilbert space can be computed
explicitly. They introduce an example of an analytic hyperbolic diffeo-
morphism on the complex unit torus, of which the cat map is a special,
linear case. the real representation of the map, Eq. (2) is area-preserving
and thus provides an example of a chaotic Hamiltonian system. Unlike
the situation for one-dimensional non-invertible maps, here is no distinc-
tion between Perron-Frobenius operators and Koopman operators as dif-
feomorphism is area-preserving.

Note that the eigenvalues of the evolution (transfer) operators come in
doublets or quadruplets, presumably because of the discrete symmetries
of the unit square.

Just looking at their Figs. 1 is inspirational.

The cat map can always be written as a composition of area preserving
orientation reversing linear automorphisms. They define a two-parameter
area-preserving family, Eq. (85), and show that measures for such maps,
where the determinant of the Jacobian varies, may have fractal proper-
ties, see Fig. 2.

2016-05-16 PC Weirdly, Wolfram’s Weisstein [111] is wrong: what he calls “Lya-
punov characteristic exponents” for Arnol’d cat map are certainly not
“exponents” but multipliers. Maybe you guys could alert him, ask him
to fix it.

The eigenvectors are correct. They are the same for all periodic points
and thus parallel: cat map is uniformly hyperbolic (the same stability ex-
ponents for all orbits), a nice example of the Anosov Axim A system, with
the stable and unstable manifolds transverse everywhere, at the same in-
tersection angle.

2016-05-16 PC The boyscout version of ChaosBook Appendix N Statistical me-
chanics applications, Artuso’s Sect. N.1 Diffusion in sawtooth and cat maps
sure merits a read. The pruning rules are given there. Exercise e-Per-P-
Cats gives the exact number of T–periodic points of the cat map.

2016-05-17 Predrag I have added for the time being chapter 12 Statistical me-
chanics applications from ChaosBook to this blog. Note that there are yet
more references to read in the Commentary to the chapter 12.

2016-05-21 Predrag I had included Percival and Vivaldi [16, 80, 81] among the
papers to read (search for 2016-05-16 PC; see remark 12.1). Percival and
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Vivaldi [81] Arithmetical properties of strongly chaotic motions is about cat
maps. ChaosBook material included in sect. ?? might be based on that,
but I do not remember now, I had last worked on that section in 1996 :)

Maybe working out exercise ?? to exercise ?? is the fastest way to make
sure one understands this symbolic dynamics...

2016-05-17 Li Han Uploaded to siminos/mathematica two Mathematica note-
books. CatMap - single cat map symbolic dynamics and statistics counts the
single cat map symbols and determines their statistics. It is interactive
and one can modify the parameters and play with it. CatMap - single cat
map periodic orbits and topological zeta functions verifies the number of pe-
riodic orbits and the topological zeta functions for a single cat map.

2016-05-21 Predrag Adrien and Rana wondered why are (24.2) and (24.3) the
same equation. Have a look at the two forms of the Hénon equation
in the ChaosBook Example 3.6. Or see (??) (eq. (2.2) in Percival and Vi-
valdi [80]). Does that help in understanding the relation? Once you do,
write it up in your reports.

2016-06-01 Predrag As no one has written anything down, I am not sure what
happened in the rest of the WebEx session, but my impression is that per-
haps we should step a step back back and first work through some more
introductory material for cat-map dynamics to start making sense. Do
not be discouraged - it is all very different in flavor from what one learns
in most traditional physics courses (though once you learn the stuff, deep
connections to statistical mechanics emerge). My recommendation is that
Rana and Adrien work through week 9, week 10, and at least parts of
week 12 (skip Chap. 23. Cycle expansions).

Could one of you focus on understanding the cat-map ‘the linear code’
part of Percival and Vivaldi [80] - perhaps just complete sect. 1.3.6 started
by me.

The other one could describe the ‘standard’ generating partition code al-
legedly given in Arnol’d and Avez [6] and in most of the references in
remark 12.1, so we all understand what Boris means when he says that
code is not good for a study of spatiotemporal chaos.

2016-07-01 Li Han :

code: mathematica/Catmap - single cat map symbol diagram and symbol fre-
quencies.nb

Single cat map symbol diagram and symbol frequencies. Analytical re-
sults of 2-symbol frequencies, up to a gap of 5. Great thanks to the new
geometry package in Mathematica 10.

2016-07-06 Li Han :

code: mathematica/Catmap - single cat map symbol diagram and symbol fre-
quencies v2.nb
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Modified the form of matrix A so that area calculation is easier;
Added sections for 3-7 symbol frequencies (joint probability).

Total pruning rules for consecutive n symbols of single Arnol’d cat map,
s = tr [A] = 3, see table 1.1. Compare with Rana’s table 21.2: the number
of inadmissible sequences that she found for na = 7 differs.

It would take 12 core*hours to run all (up to 6 symbols: 1 core*hour)

2016-07-10 Rana I agree with Li Han table 1.1 on the numbers of pruned blocks.

2016-07-20 Li Han :

code: mathematica/Catmap - single cat map symbol diagram and symbol fre-
quencies v3.nb

Total pruning rules for consecutive n symbols of single Arnol’d cat map,
s = tr [A] = 3 up to length 12, see table 1.1. Compare with Rana’s ta-
ble 21.2: the number of inadmissible sequences that she found for na = 7
differs.

For s = 3 up to ...:
length 7: ≈ 1 Core*hour
length 10: ≈ 3 Core*days
length 12: ≈ 15−−20 Core*days

2016-08-01 Predrag : According to table 1.1, there is a single new pruning rule
for each prime-number period. Li Han lists it as 2, but by the reflection
symmetry there is only one. One should really quotient the symmetry,
and it is not just by removing overall factor 2 in the table: there are prun-
ing blocks that map into each other by the reflection symmetry, and there
are pruning blocks that are self-dual under reflection, giving one pruning
rule rather than two in the not-desymmetrized listing of this table.

• Is this surmise something proved by Dyson [39]? Or does Behrends [13,
14] explain it?

• Does this new rule have a simple geometric interpretation, in terms
of the inequalities? What is the code of the pruned block?

None of

0, 2, 22, 132, 684, 3164, 13894, 58912, 244678, 1002558, 4073528, 16460290
= 2 (1, 11, 66, 342, 1582, 6947, 29456, 122339, 501279, 2036764, 8230145)

0, 2, 8, 2, 30, 2, 70, 16, 198, 2, 528, 2, · · ·
= 2 (1, 4, 1, 15, 1, 35, 8, 99, 1, 264, 1, · · · )

sequences is in the On-Line Encyclopedia of Integer Sequences, which
is bad news. It means that not only this is a number-theoretic problem
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that has to do with prime factorization (bad news) but in addition it is
not one of the standard number-theoretic problems. Means this is an un-
doable problem, unlikely to have any simple explanation. Do not waste
any more time on it.

2018-07-26 Li Han lhan629@gmail.com

Added to the repo my notes han/catMapItiners.pdf on the cat map sym-
bolic sequence, mostly about the empirical (polynomial) fit of the total
and new pruning rules Ñn, table II, which displays the “anomalous" be-
havior with periodicity of 6, i.e. at

n = 2 + 6m = 2, 8, 14, 20, · · · m = 0, 1, 2, 3, · · · .

At even lengths n = 2` there are always 2 new pruning rules
{−1, 0, 0,∆∆∆, 0,−1} and (reflection symmetry related sequence)
{s− 1, s− 2, s− 2,∆∆∆, s− 2, s− 1}.
At n = 2 the anomalous new pruning rules are vanishing.

Still a mystery: why anomalies at 2, 8, 14, ...? and what will be further
occurrences? Explicit formula?

Learning some new math theory in progress, mirror symmetry (here of
elliptic curve?), topological recursion from random matrix theory, which
might give clue to these numbers.

2018-07-29 Predrag My interpretation of table 1.1 is that the “anomalous" be-
havior happens when n − 1 is prime, is now confirmed by n − 1 =
3, 5, 7, 11, · · · Li Han’s catMapItiners.pdf table II, also for n−1 = 13, 17, 19.
Perhaps even higher, as the table is cut off at the right edge. I do not see
what Li Han’s n = 2 + 6m anomalies are...

2016-08-15 Predrag : I need this stupid Arnol’d cat map in ChaosBook.org,
because an example of a tractable Hamiltonian system is useful, and be-
cause so many people refer to it.

I say “stupid” because it is very seductive (as much of number theory
is), and totally useless as physics. The moment one goes away from the
piece-wise linear (and integer!) cat map to any physical nonlinear flow,
all this symbol counting falls apart, and one needs cycle expansions (
ChaosBook.org/course1, the 2nd course) to describe the physics. I had
wasted too much time on number theory in my life to be ever dragged
into that again. You have to be very smart, as sooner or later you discover
you are assuming the Riemann Hypothesis holds true :)

2016-10-15 Predrag Boris is thinking about temporal and spatial correlations
in spatiotemporal cats. Here is some literature on the topic, just for cat
maps:

Brini et al. [25] Decay of correlations for the automorphism of the torus T 2
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García-Mata and Saraceno [43] Spectral properties and classical decays in
quantum open systems (who study the Arnol’d cat map with a small sinu-
soidal perturbation write that Blank, Keller and Liverani [17] and Non-
nenmacher [76] provide a rigorous theoretical underpinning to their cal-
culations for quantum and classical maps on the torus.

Blank, Keller and Liverani [17] Ruelle-Perron-Frobenius spectrum for Anosov
maps extend a number of results from one-dimensional dynamics based
on spectral properties of the Ruelle–Perron–Frobenius transfer operator
to Anosov diffeomorphisms on compact manifolds.

Nonnenmacher [76] studies classical and quantum maps on the torus
phase space, in the presence of noise. We focus on the spectral properties
of the noisy evolution operator, and prove that for any amount of noise,
the quantum spectrum converges to the classical one in the semiclassical
limit.

2016-11-11 Predrag For fun and games with the cat map, check out Hunt, and
B. D. Todd [60, 107] On the Arnol’d cat map and periodic boundary conditions
for planar elongational flow

2016-08-11 Predrag Read Gozzi [47] Counting periodic trajectories via topological
classical mechanics (click here): “ We prove that the number of periodic
trajectories of arbitrary period T on the flow tangent to periodic trajecto-
ries in phase space of the same period T, is equal to the Euler number of
the undelying phase-space. This result holds for systems with compact
phase-space and isolated periodic orbits. ”

Giulietti, Liverani and Pollicott [44] Anosov flows and dynamical zeta func-
tions (click here): “ We study the Ruelle and Selberg zeta functions for an
Anosov flow on a compact smooth manifold. We prove several results,
the most remarkable being (a) for C∞ flows the zeta function is mero-
morphic on the entire complex plane; (b) for contact flows satisfying a
bunching condition, the zeta function has a pole at the topological en-
tropy and is analytic in a strip to its left; (c) under the same hypotheses
as in (b) we obtain sharp results on the number of periodic orbits. ” A
good paper, deserving a deeper study.

A discussion of determinants of graphs - says that Levins [83] illumi-
nated a connection between the characteristic polynomial and the feed-
back loops of a sparse matrix: D. Cates Wylie [113] Linked by loops: Net-
work structure and switch integration in complex dynamical systems, arXiv:0704.3640
(2007).

Wylie [113]: for the stability of control systems ref. [99] (click here).

2016-12-12 Predrag Percival and Vivaldi [80] write: “The linear code described
here may be considered as a development of the code used by Bullett [26]
for the piecewise linear tent map.” But Bullett mentions no tent map, I
see nothing there... :) His piecewise linear standard map is the simplest
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n Nn Ñn−1

2 2 0
3 22 2
4 132 8 = 2 · 2 · 2
5 684 2
6 3164 30 = 2 · 3 · 5
7 13894 2
8 58912 70 = 2 · 5 · 7
9 244678 16 = 2 · 2 · 2 · 2

10 1002558 198 = 2 · 3 · 3 · 11
11 4073528 2
12 16460290 528 = 2 · 2 · 2 · 2 · 3 · 11
13 ?? 2
14 ?? 1326
15 ?? 124
16 ?? 3410
17 ?? 2
18 ?? 9264
19 ?? 2

Table 1.1: Nn is the total number of pruned blocks of length n = na for the s =

3 Arnol’d cat map. Ñn is the number of new pruned blocks of length na, with all
length na blocks that contain shorter pruned blocks already eliminated. Note
that (empirically) there is a single new pruning rule for each prime-number
period (it is listed as 2 rules, but by the reflection symmetry there is only one).
n = 14 to n = 19 added 2018-07-28.

possible area preserving piecewise linear twist homeomorphism of zero
flux.

Beardon, Bullett and Rippon [12] Periodic orbits of difference equations might
be of interest (but I have not found it online).

2016-12-12 Predrag Pondering Li Han’s undisputable polynomial fits in s to
the (new) pruned blocks Ñn. Li Han now has a set of polynomials that
counts the number of pruning rules Ñn(s) for small finite n, but any s.
(table 1.1 lists them only for s = 3, but Li Han has new tables, not in-
cluded in the blog as yet).

What’s so unique about primes? I think that if cycle period n− 1 = p is a
prime, there is always one “most monotone (p+ 1)-cycle” such that cycle
points order themselves monotonically along the spatial coordinate q,

q1/(p+1) < q2/(p+1) < · · · < qp/(p+1) ,

and one would have to show that this forces 1 < qp/(p+1), so that one
(p + 1)-cycle is pruned, but all the rest are somehow protected and fall
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within the unit interval. Keating [64] is all about orbits, so maybe this is
explained there - of if not there, maybe in Percival-Vivaldi [81]? Percival
and Vivaldi [80] and Boris’ Green’s functions are polynomial functions of
s, so maybe the answer is there already.

What about non-prime periods n = p1p2 · · · pm? Perhaps on has to re-
place the cat map f by the commuting set of maps fp` = fp` , one for each
prime, and argue about pruning rules for fn = fp1 ◦ fp2 ◦ · · · ◦ fpm . Will
be messy. But while cat map f is linear in s, fp are polynomial in s, and
that might lead to Li Han’s polynomials for Ñn(s).

2016-05-21, -12-12 Predrag I had included Bird and Vivaldi [16] Periodic orbits
of the sawtooth maps among the papers to read, but the paper remained
woefully unread. Now Li Han has no choice but to read it :)

They assert that for the Arnol’d cat map there are 11 440 548 orbits of
period 20.2CB

Percival and Vivaldi [80] refer to the discrete Laplacian as the “central
difference operator.”

The special case s = 2 corresponds to an unperturbed twist map, for
which orbits represent uniform motions of a free rotor.

The one-parameter s family of sawtooth maps (of the 2-torus), within
which reside infinitely many Anosov diffeomorphisms. Sawtooth maps
are piecewise linear, and for this reason we are able to construct the pa-
rameter dependence of the sawtooth orbits explicitly in terms of rational
functions with integer coefficients.

(i) for integral s the sawtooth map reduces to a toral automorphism, and
the structure of periodic orbits of such maps is known [81]. They are
found to coincide with points having rational coordinates, and can be
dealt with using arithmetical techniques, one can locate and count all
periodic orbits.

(ii) if an orbit is known for one value of s, it can be computed for any
other value.

We represent orbits as doubly infinite sequences of integers (words), where
the integers are drawn from a finite set (alphabet). An orbit is written in
terms of the configuration coordinate xt alone and is denoted by (xt).
The word we denote by (mt). For s > 2 the code is an isomorphism.
For a given s, the possible values of the mt are bounded in magnitude by
|mt| ≤ Int(1 + s/2) . The itinerary of a given orbit is independent of the
parameter. The orbit is recovered by Green’s function (1.38):

qt =
1√
D

∑
s∈N

1

Λ|t−s|
bs , (1.94)

The leading eigenvalue of the cat map Jacobian matrix M is given by
(1.6). For an n-cycle xt are rational functions of Λ, given by the quotient
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of two reflexive polynomials (for example, Pt(Λ) = ΛnPt(1/Λ)),

xt = ΛPt(Λ)/Q(Λ)

Pt(Λ) =
n−1∑
τ=1

Λn−τ (Λmt+τ−1 +mt−τ )

Q(Λ) = (Λ2 − 1) (Λn − 1) (1.95)

Bird and Vivaldi [16] then discuss pruning, give formulas for the num-
bers of orbits for integer s, etc.. Most likely Li Han’s polynomials are
implicit in these formulas.

2016-12-15 Predrag to Roberto, Going catty: What is the main question? My
Question of the Day is:

In ChaosBook Diffusion chapter we show that whenever the critical point
of the 1D sawtooth map (the rightmost highest point) is pre-periodic, we
have finite grammar and an analytic cycle expansion formula (essentially
the topological zeta function, with the uniform expansion rate stuck into
zn) for the diffusion constant.

As far as I can tell, both you and Boris ignore the issues of the grammar,
get some long-time limit estimate of the diffusion constant.

Usually in 2D there is a fractal set of critical points (AKA pruning front) -
we had worked it out for the Lozi map and the Hénon map. If the strange
set is a strange repeller, there we have infinitely many examples of finite
grammars. But it never happens for non-repelling sets, like the cat map
for integer trace s. There there is a new (only one!) pruning rule for
each prime period set of cycles (ie, are we on the way to prove Riemann
conjecture?) and a messy set of rules for non-prime periods (which can
be described by a polynomial in s.

The Question: Is the cat map pruning front a fractal set? Is there a sys-
tematic set of formulas for the diffusion constant, one for each set of
grammar rules? Is this implicit in papers of Vivaldi and/or Keating?

I’m a attaching the list of table 1.1, generated by Li Han. He (and not
only he) operates on a different astral plane, so getting him to commit his
results to our blog or draft of the paper is harder than pulling teeth . He
has the grammar rules count to length 17 and the polynomials in s, but
that I have only seen on his laptop screen.

PS - I am throwing in for a good measure a tent map, sect. 1.8, to illustrate
what these polynomials in the stretching rate (s for cat, Λ for tent) are.

Now, what was YOUR main question that is still blowing in the wind?

2016-12-12 Roberto Artuso The main question, as I thought of it in my work
of many years ago [10] (see ChaosBook.org Appendix Statistical mechanics
applications, included in this blog as chapter 12), was to understand the
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behavior of D as K → 0, since it seems to get an extra factor D ∼ K2.5,
while D ∼ K2 is the usual quasilinear result. The Percival-Vivaldi linear
code seemed to me appealing since it selects allowed itineraries within a
sort of rhombus in many dimensions, and the symbols are directly linked
to transport, while usual Markov partitions for integer K are not. My
thought was that non-integer K behavior could be linked to the number
of lattice points within the “rhombus", and that the K correction (as well
as oscillations with respect to quasilinear estimate), could be related to
estimates of errors in volumes vs. number of lattice points (something
like Dyson-Bleher [18–21] work for ellipses).

2017-09-29 Predrag Vaienti [108] Ergodic properties of the discontinuous sawtooth
map might be worthy of a read.

2017-09-27 Predrag Vallejos and Saraceno [109] The construction of a quantum
Markov partition (1999), present in Figure 6 the 5-rectangles Markov parti-
tion of the Arnol’d cat map of Adler-Weiss [3] Similarity of automorphisms
of the torus. Work it out for our A′.

The three regions partition of the cat map is explained at length in Tabrizian’s
notes.

Chernov (see his Fig. 1) writes: “If the matrix A′ is not symmetric, the
stable and unstable lines for on the torus may not be orthogonal. Then,
the atoms of Markov partitions are, geometrically, parallelograms rather
than rectangles. In early works on Markov partitions [93], the term ‘par-
allelogram’ was used instead of ‘rectangle’.

Check also Nonnenmacher notes, and the Sect. 5 of Huntsman’s paper.

From math stockexchange: A reference would be the Handbook of dy-
namical systems by Hasselblatt and Katok [55], Volume 1, starting on
page 324. The cat map example is on pages 327-328. Another good source
is the original paper by Adler-Weiss [2] from 1967 and R. Bowen’s paper
on Axiom A from 1970. Constructing Markov partitions for higher di-
mensional tori is much more complicated, as the borders of their atoms
are fractal and not differentiable, hence the nice rectangles only happen
to exist in 2 dimensions.

The two and M regions partition of the cat map are drawn in Vorobets’
lecture.

Here is a beautifully laid out problem set.

For a cat map, the SRB measure is just the Lebesgue measure, which also
serves as a probability measure.

Bruin, in his Sect. 12 discussion of Toral automorphisms, asserts that Arnol’d
didn’t seem to like cats. So, never ever forget to blame the cat. Whatever
you do, the cat will be back.

2018-02-11 Predrag Ignore the following cryptic remark about symbolic dy-
namics intrinsic to being in the stable / unstable manifolds coordinates:
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The symbolic dynamics is 2-dimensional: a partition can be {left,right} =
{L,R}with respect to the unstable eigendirection through the origin, and
{up,down} = {U,D} with respect to the stable eigendirection, so parti-
tions are labeled by pairs of symbols (the canonical Arn 3-letter alphabet)

{hj , vj} ∈ {RU,LU,RD} ,

with {LD} forbidden.

2012-01-15 Predrag Read Jézéquel [63] Global trace formula for ultra-differentiable
Anosov flows: “[...] we prove that a trace formula that holds for Anosov
flows in a certain class of regularity. The main ingredient of the proof is
the construction of a family of anisotropic Hilbert spaces of generalized
distributions on which the generator of the flow has discrete spectrum.

Commentary

Remark 1.3. Phase space. The cylinder phase is [−1/2, 1/2) × R: the map is orig-
inally defined definition in [−1/2, 1/2)2, and is generalized over the cylinder by sym-
metry requirements. 16

Remark 1.4. Pythagorean tiling or two squares tessellation is a tiling of a Euclidean
plane by squares of two different sizes, in which each square touches four squares of
the other size on its four sides (see wikipedia.org/wiki/Pythagorean_tiling). This
tiling has four-way rotational symmetry around each of its squares. When the ratio
of the side lengths of the two squares is an irrational number such as the golden ratio,
its cross-sections form aperiodic sequences with a Fibonacci-type recursive structure. It
has a cyclic set of symmetries around the corresponding points, giving it p4 symmetry:
square lattice, point group C4, two rotation centres of order four (900), and one rota-
tion centre of order two (1800). It has no reflections or glide reflections. It is a chiral
pattern, meaning that it is impossible to superpose it on top of its mirror image us-
ing only translations and rotations; a Pythagorean tiling is not symmetric under mirror
reflections. Although a Pythagorean tiling is itself periodic (it has a square lattice of
translational symmetries) its cross sections can be used to generate one-dimensional
aperiodic sequences.

Remark 1.5. Symmetries of the symbol square. For a discussion of symmetry lines
of example 2.6 see refs. [50, 51, 75, 85, 90]. It is an open question (see remark ??) as to ⇓PRIVATE

⇑PRIVATE
how time reversal symmetry can be exploited for reduction of cycle expansions of chap-
ter ??. For example, the fundamental domain symbolic dynamics for reflection sym-
metric systems is discussed in some detail in sect. 5.11, but how does one recode from
time-reversal symmetric symbol sequences to desymmetrized 1/2 state space symbols?
In discussion of example 2.5, we have followed refs. [38, 45, 100]. 17

Remark 1.6. XXX.
16Predrag 2016-08-03: missing eq. refeqtra-sym reference.
17Predrag 2021-04-03: Improve references; eventually return to ChaosBook cycles.tex.
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Artuso, R. Mainieri, G. Tanner, and G. Vattay (Niels Bohr Inst., Copen-
hagen, 2022).
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Example 1.1. Temporal Bernoulli shadowing.
As the temporal Bernoulli condition (??) is a linear relation, a given block M, or ‘code’

in terms of alphabet (??), corresponds to a unique temporal lattice state X given by the
temporal lattice Green’s function

XM = gM , g =
r/s

11− r/s . (1.96)

For an infinite lattice t ∈ Z, this Green’s function can be expanded as a series in Λ−k,

g =
r/Λ

11− r/Λ =

∞∑
k=1

rk

Λk
, (1.97)

where Λ = s is the 1-time step stability multiplier for the Bernoulli system. From (1.96) it
follows that the influence of a sourcemt′ back in the past, at site t′, falls off exponentially
with the temporal lattice distance t− t′,

xt =

t−1∑
t′=−∞

gtt′mt′ , gtt′ =
1

Λt−t′
, t > t′ , 0 otherwise . (1.98)

That means that an ergodic lattice state segment of length n (or a periodic lattice state
of a longer period) is shadowed by the periodic lattice state (??) with the same n-sites
symbol block M, 18

xt =
1

1− 1/Λn

(m1

Λ
+
m2

Λ2
+ · · ·+ mn−1

Λn−1
+
mn

Λn

)
, (1.99)

with exponentially decreasing shadowing error of order O(1/Λn+1). The error is con-
trolled by the (??) prefactor 1/|DetJ | = 1/|det ( 11 − JM)| , with the determinant arising
from inverting the orbit Jacobian matrix J to obtain the Green’s function (??).

This error estimate is deeper than what it might seem at the first glance. In fluid
dynamics, pattern recognition, neuroscience and other high or∞-dimensional settings
distances between ‘close solutions’ (let’s say pixel images of two faces in a face recog-
nition code) are almost always measured using some arbitrary yardstick, let’s say a
Euclidean L2 norm, even though the state space that has no Euclidean symmetry. Not
so in the periodic orbit theory: here 1/|DetJ | is the intrinsic, coordinatization and norm
independent measure of the distance between similar spatiotemporal states.

click to return: p. 54

1.10 Examples

Example 1.2. Projection operator decomposition of the cat map: Let’s illustrate
how the decomposition works for the Percival-Vivaldi [80] “two-configuration represen-
tation” of the Arnol’d cat map by the [2×2] matrix

A =

[
0 1
−1 s

]
. (1.100)

18Predrag 2020-02-16: Do I need to derive this?
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To interpret mn’s, consider the action of the this map (1.106) on a 2-dimensional state
space point (xn−1, xn),(

xn
xn+1

)
= A

(
xn−1

xn

)
−
(

0
mn

)
. (1.101)

In Percival and Vivaldi [80] this representation of cat map is referred to as “the two-
configuration representation”. As illustrated in figure 1.2, in one time step the area
preserving map A′ stretches the unit square into a parallelogram, and a point (x0, x1)
within the initial unit square in general lands outside it, in another unit square mn steps
away. As they shepherd such stray points back into the unit torus, the integers mn

can be interpreted as “winding numbers” [65], or “stabilising impulses” [80]. The mn

translations reshuffle the state space, thus partitioning it into |A| regionsMm , m ∈ A.
Associated with each root Λi in (??) is the projection operator P i =

∏
(A−Λj1)/(Λi−

Λj) , j 6= i,

P+ =
1√
D

(A− Λ−11) =
1√
D

[
−Λ−1 1
−1 Λ

]
(1.102)

P− = − 1√
D

(A− Λ 1) =
1√
D

[
Λ −1
1 −Λ−1

]
. (1.103)

Matrices P± are orthonormal and complete. The dimension of the ith subspace is
given by di = trPi ; in case at hand both subspaces are 1-dimensional. From the char-
acteristic equation it follows that P± satisfy the eigenvalue equation AP± = Λ±P± ,
with every column a right eigenvector, and every row a left eigenvector. Picking –for
example– the first row/column we get the right and the left eigenvectors:

{e(+), e(−)} =

{
1√
D

[
−Λ−1

−1

]
,

1√
D

[
Λ
1

]}
{e(+), e(−)} =

{
1√
D

[−Λ−1, 1] ,
1√
D

[Λ,−1]

}
, (1.104)

with overall scale arbitrary. 19 The matrix is not symmetric, so {e(j)} do not form an2CB
orthogonal basis. The left-right eigenvector dot products e(j) · e(k), however, are or-
thogonal,

e(i) · e(j) = cj δij .

What does this do to the partition figure 1.2? The origin is still the fixed point. A state
space point in the new, dynamically intrinsic right eigenvector Adler-Weiss [3] coordinate
basis is (

xn−1

xn

)
= (P+ + P−)

(
xn−1

xn

)
=

1√
D

[
−Λ−1 1
−1 Λ

](
xn−1

xn

)
+

1√
D

[
Λ −1
1 −Λ−1

](
xn−1

xn

)
=

1√
D

(
xn − Λ−1xn−1

Λxn − xn−1

)
+

1√
D

(
−xn + Λxn−1

−Λ−1xn + xn−1

)
= −(Λxn − xn−1)

1√
D

[
−Λ−1

−1

]
+ (−Λ−1xn + xn−1)

1√
D

[
Λ
1

]
19Predrag 2017-10-02: compare with (1.24)
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= (−Λxn + xn−1)P+ + (−Λ−1xn + xn−1)P− .

The abscissa (xn−1 direction) is not affected, but the ordinate (xn direction) is flipped
and stretched/shrunk by factor −Λ, −Λ−1 respectively, preserving the vertical strip na-
ture of the partition figure 1.2. In the Adler-Weiss right eigenbasis, A acts by stretching
the e(+) direction by Λ, and shrinking the e(−) direction by Λ−1, without any rotation of
either direction.

Example 1.3. A linear cat map code. Eqs. (9.87,??) are the discrete-time Hamilton’s
equations, which induce temporal evolution on the 2-torus (xn, pn) phase space. For the
problem at hand, it pays to go from the Hamiltonian (xn, pn) phase space formulation to
the Newtonian (or Lagrangian) (xn−1, xn) state space formulation [80], with pn replaced
by pn = (xn − xn−1)/∆t . Eq. (??) then takes the 3-term recurrence form (the discrete
time Laplacian 2 formula for the second order time derivative d2/dt2, with the time step
set to ∆t = 1),

2xn ≡ xn+1 − 2xn + xn−1 = P (xn) mod 1 , (1.105)

i.e., Newton’s Second Law: “acceleration equals force.” For a cat map, with force P (x)
linear in the displacement x, the Newton’s equation of motion (1.105) takes form

(2 + 2− s)xn = −mn , (1.106)

with mod 1 enforced by mn’s, integers from the alphabet

A = {1, 0, . . . s−1} , (1.107)

necessary to keep xn for all times t within the unit interval [0, 1). The genesis of this
alphabet is illustrated by figure 1.2. We have introduced here the symbol |mn| to denote
mn with the negative sign, i.e., ‘1’ stands for symbol ‘−1’.

Example 1.4. Perron-Frobenius operator for the Arnol’d cat map. For a piecewise
linear maps acting on a finite generating partition the Perron-Frobenius operator takes
the finite, transfer matrix form (see ref. [32]).

Lij =
|Mi ∩ f−1(Mj)|

|Mi|
, ρ′ = ρL (1.108)

The two rectangles and five sub-rectangle areas |Mj | are given by inspection of
figure 1.10 (a): 20

|MA| = Λ/(Λ + 1) , |MB | = 1/(Λ + 1) ,

|M1| = |MA|/Λ , |M2| = (Λ− 1)|MB |/Λ , |M3| = |MA|/Λ ,
|M4| = |MB |/Λ , |M5| = (Λ− 2)|MA|/Λ , (1.109)

where Λ and D are given in (??), and we are considering the s = 3 Arnol’d cat map
case (the generalization to s > 3. is immediate) The areas are symplectic invariants,
and thus the same in any choice of cat-map coordinates. As in the ChaosBook example
exam:FP_eigs_Ulam (currently 19.1), the Adler-Weiss partitioned Percival-Vivaldi cat
map is an expanding piecewise-linear map, so we can construct the associated transfer

20Predrag 2018-02-16: to Han: PLEASE RECHECK
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matrix explicitly, by weighing the links of transition graph figure 1.10 (a) by the ratios of
out-, in-rectangle areas Tkj = |Mmk |/|Mmj |: 21


φ′1
φ′2
φ′3
φ′4
φ′5

 = Tφ =
1

Λ


1 Λ− 2 1 0 0
0 0 0 Λ− 1 1
1 Λ− 2 1 0 0
0 0 0 1 Λ− 1
1 Λ− 1 Λ−2

Λ−1
0 0



φ1

φ2

φ3

φ4

φ5

 (1.110)

The probability for starting in initial state j is conserved,
∑
k Lkj = 1 , as it should

be. Such non-negative matrix whose columns conserve probability is called Markov,
probability or stochastic matrix. Thanks to the same expansion everywhere, and a
finite transition graph, the Fredholm determinant is the characteristic polynomial of
the transfer matrix (currently ChaosBook Eq. (18.13)) defined by the transition graph
of figure 1.1 (c), expanded in non-intersecting loops tA = TA0A, t

′
A = TA1A, tB =

TB0B , tAB = TA1BTB1A :

det (1−zT) = 1−z(tA+t′A+tB)−z2tAB+z2(tA+t′A)tB = 1−3
z

Λ
−(Λ−3)

z2

Λ
, (1.111)

det (1− zT) = 1− 3
z

Λ
− (Λ− 3)

z2

Λ
, (1.112)

in agreement with (1.11). This counts the fixed point at the origin thrice (it lives in the
invariant subspace spanned by stable and unstable manifolds, the border) so that has
to be divided out.

Due to probability (unit area) conservation, T has a unit eigenvalue z = 1 = es0 ,
with constant density eigenvector ρ0 = ρ1.

In the orbit-counting case one retrieves Isola’s ζ-function [61] (??).
This simple explicit matrix representation of the Perron-Frobenius operator is a con-

sequence of the piecewise linearity of the time-forward map, and the restriction of the
densities ρ to the space of piecewise constant functions.

Example 1.5. Counting temporal cat lattice states.
The temporal cat equation (??) is a linear 2nd-order inhomogeneous difference

equation (3-term recurrence relation) with constant coefficients that can be solved by
standard methods [40] that parallel the theory of linear differential equations. 22 In-
serting a solution of form xt = Λt into the associated (mt=0) homogenous 2nd-order
difference equation

xt+1 − s xt + xt−1 = 0 (1.113)

yields the characteristic equation

Λ2 − sΛ + 1 = 0 , (1.114)

which, for |s| > 2, has two real roots {Λ , Λ−1},

Λ =
1

2
(s+

√
(s− 2)(s+ 2)) , (1.115)

21Predrag 2018-02-11: the matrix is NOT CORRECT yet, FIX!
22Predrag 2020-06-10: Comparing with (6.161) we see that we need to solve a second-order

inhomogeneous difference equation with a constant forcing term 2 (s− 2).
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and the so-called complementary solution of form

xc,t = a1Λt + a−1Λ−t . (1.116)

A difference of any pair of solutions to the temporal cat inhomogenous equation (??)
is a solution of the homogenous difference equation (1.113), so the general solution is
a sum of the complementary solution (1.116) and a particular solution xp,

xt = xc,t + xp,t . (1.117)

Eq. (1.113) is time-reversal invariant, xt = x−t, so a1 = a−1 = a. To determine the
particular solution, assume that both the source mt = m and xp,t = xp in (??) are
site-independent,

xp − s xp + xp = −m , (1.118)

so xp = m/(s− 2) . Hence the solution is

xt = xc,t + xp,t = a
(
Λt + Λ−t

)
+m/(s− 2) , (1.119)

with ai determined by fields at two lattice sites,

x0 = 2a+m/(s− 2) , x1 = a
(
Λ + Λ−1)+m/(s− 2) , .

Temporal cat starts with N0 = 0, and according to (??), N1 = s − 2, so a = 1, m =
−2(s− 2), and the number of temporal lattice states of period n is

Nn = Λn + Λ−n − 2 . (1.120)

Example 1.6. Temporal cat shadowing.
As the relation between the symbol blocks M and the corresponding lattice states

XM is linear, for M an admissible symbol block, the corresponding lattice state XM is
given by the Green’s function

XM = gM , g =
1

−r + s 11− r−1
, (1.121)

as in the Bernoulli case (??).
As in sect. ??, the Green’s function (1.121) decays exponentially with the distance

from the origin, a fact that is essential in establishing the ‘shadowing’ between lattice
states sharing a common sub-block M. For an infinite temporal lattice t ∈ Z, the lattice
field at site t is determined by the sources mt′ at all sites t′, by the Green’s function gtt′
for one-dimensional discretized heat equation [73, 80],

xt =

∞∑
t′=−∞

gtt′mt′ , gtt′ =
1

Λ− Λ−1

1

Λ|t−t′|
, (1.122)

with Λ is the expanding stability multiplier defined in (15.41).
Suppose there is a non-vanishing point source m0 6= 0 only at the present, t′ = 0

temporal lattice site. Its contribution to xt ∼ Λ−|t| decays exponentially with the distance
from the origin. More generally, as in the Bernoulli case (1.99), if two lattice states X,
X′ share a common sub-block M of length n, they shadow each other with accuracy of
order of O(1/Λn).

click to return: p. 26
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Example 1.7. Two-degrees of freedom Hamiltonian flows: 23 For a 2-degrees of
freedom Hamiltonian flow the energy conservation eliminates one phase-space vari-
able, and restriction to a Poincaré section eliminates the marginal longitudinal eigen-
value Λ = 1, so a periodic orbit of 2-degrees of freedom hyperbolic Hamiltonian flow (or
of a 1-degree of freedom hyperbolic Hamiltonian map) has one expanding transverse
eigenvalue Λ, |Λ| > 1, and one contracting transverse eigenvalue 1/Λ. The weight in
(??) is expanded as follows:

1∣∣det
(
1−Mr

p

)∣∣ =
1

|Λ|r(1− 1/Λrp)2
=

1

|Λ|r
∞∑
k=0

k + 1

Λkrp
. (1.123)

The spectral determinant exponent can be resummed,

−
∞∑
r=1

1

r

e(βAp−sTp)r∣∣det
(
1−Mr

p

)∣∣ =

∞∑
k=0

(k + 1) log

(
1− eβAp−sTp

|Λp|Λkp

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over orbits

det (s−A) =
∏
p

∞∏
k=0

(
1− tp/Λkp

)k+1

. (1.124)

24

exercise ??
click to return: p. ??

Example 1.8. Dynamical zeta function in terms of determinants, 2-dimensional
Hamiltonian maps: 25 For 2-dimensional Hamiltonian flows the above identity yields
26

1

|Λ| =
1

|Λ|(1− 1/Λ)2
(1− 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1− zL) det (1− zL(2))

det (1− zL(1))2
. (1.125)

27 This establishes that for nice 2-dimensional hyperbolic flows the dynamical zeta func-
tion is meromorphic. 28

click to return: p. ??

Example 1.9. Dynamical zeta functions for 2-dimensional Hamiltonian flows: 29

The relation (1.125) is not particularly useful for our purposes. Instead we insert the
identity

1 =
1

(1− 1/Λ)2
− 2

Λ

1

(1− 1/Λ)2
+

1

Λ2

1

(1− 1/Λ)2

23Predrag 2018-12-13: if edited, return to ChaosBook
24Predrag 2015-03-09: state here also the d-dimensional result ala Gaspard
25Predrag 2018-12-13: if edited, return to ChaosBook
26Predrag 2015-03-09: define det (1− zL(2))
27Predrag 2015-03-09: compare with 1/ζ = F2

F1F−1
of the preceeding section

28Predrag 2015-03-09: write out Ruelle’s alternating product for any dimensions
29Predrag 2018-12-13: if edited, return to ChaosBook
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(a) (b)

f(x)

x0 1

1

1 3 5 6 4 2

Figure 1.18: (a) f̂ (x̂), the full space sawtooth map (??), Λ > 2. (b) f (x), the
sawtooth map restricted to the unit circle (??), Λ = 6.

30 into the exponential representation (??) of 1/ζk, and obtain 31

1/ζk =
det (1− zL(k))det (1− zL(k+2))

det (1− zL(k+1))2
. (1.126)

Even though we have no guarantee that det (1 − zL(k)) are entire, we do know (by ⇓PRIVATEarguments explained in sect. ?!) 32 that the upper bound on the leading zeros of det (1−
⇑PRIVATEzL(k+1)) lies strictly below the leading zeros of det (1− zL(k)), and therefore we expect

that for 2-dimensional Hamiltonian flows the dynamical zeta function 1/ζk generically
has a double leading pole coinciding with the leading zero of the det (1−zL(k+1)) spec-
tral determinant. This might fail if the poles and leading eigenvalues come in wrong
order, but we have not encountered such situations in our numerical investigations.
This result can also be stated as follows: the theorem establishes that the spectral det-
erminant (1.124) is entire, and also implies that the poles in 1/ζk must have the right
multiplicities to cancel in the det (1− zL) =

∏
1/ζk+1

k product.
click to return: p. ??

Example 1.10. Linear code for a piecewise linear map. the piecewise linear map of
figure 1.18

click to return: p. ??

Example 1.11. Tent map linear code. The simplest example of a piece-wise linear
unimodal map with a binary (in general, pruned) symbolic dynamics is the tent map,

f (x) =

{
f0(x) = Λx if x < 1/2
f1(x) = Λ(1− x) if x > 1/2

, (1.127)

with 1 < Λ < ∞ and x ∈ M = [0, 1]. (Everything would go through for a skew tent
map with Λ0 6= −Λ1, but there is no need here for that complication.) For this family of

30Predrag 2015-03-09: seems the same as (1.125)?
31Predrag 2015-03-09: recheck, looks wrong
32Predrag 2015-03-09: find the sect. referred to
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unimodal maps the coarse (covering) partition of the unit intervalM = M0 ∩ C ∩M1

is given by intervals M0 = [0, 1/2), M1 = (1/2, 1], and the critical point C = 1/2.
Let’s rewrite this as a linear first-order difference equation, in the manner of cat lovers
enamoured of matters feline:

1

Λ
xt+1 + (2mt − 1)xt = mt ,

{
mt = 0 if xt < 1/2
mt = 1 if xt > 1/2

. (1.128)

That every such code is a ‘linear code’ is best understood by computing a periodic orbit
for a specified itinerary.

The fixed point condition fn(x) = x for n-cycle m1m2m3 · · ·mn−1mn is a linear
relation between the finite alphabet mt ∈ {0, 1} code, and the xt ∈ R orbit

∆(m)q(m) = m(m) (1.129)

with orbit-dependent inverse propagator ∆(m) =

2mn − 1 0 0 . . . 0 Λ−1

Λ−1 2mn−1 − 1 0 . . . 0 0
0 Λ−1 2mn−2 − 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2m2 − 1 0
0 0 0 . . . Λ−1 2m1 − 1


,

q(m) =



xn
xn−1

xn−2

...
x2

x1


, m(m) =



mn

mn−1

mn−2

...
m2

m1


,

and m(m) is needed to fold the stretched orbit back into the unit interval. While the off-
diagonal “1”s do generate cyclic shifts, the diagonal ±Λ terms are not shift invariant, so
I do not believe this can be diagonalized by a discrete Fourier transform. I had worked
it out for Λ = 2 in ChaosBook, but not sure if there are elegant tricks for arbitrary Λ 6= 2.
For an orbit

q(m) = ∆(m)−1m(m) (1.130)

to be admissible, no point should be to the right of the kneading value xκ = f(C). It
follows from the kneading theory for unimodal maps (dike map with slope Λ = 2 being
the canonical example) that if a periodic orbit exists for a given Λ, it exists for all larger
Λ, and that all orbits exist for Λ ≥ 2.

In other words, Λ is the “stretching parameter” for this problem, and the rational
polynomial expressions in Λ for xt correspond to Li Han’s polynomials for cat maps.

click to return: p. 55

Example 1.12. Periodic points of a tent map.

Exercise Check (1.130) for fixed point(s).
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Exercise Check (1.130) for the 2-cycle 01.

∆(m) =

(
−Λ 1
1 Λ

)
, m(m) = Λ

(
0
1

)
.

∆−1 =
1

Λ2 + 1

(
−Λ 1
1 Λ

)
, det ∆(m) = −(Λ2 + 1)(

x01

x10

)
=

Λ

Λ2 + 1

(
−Λ 1
1 Λ

) (
0
1

)
=

Λ

Λ2 + 1

(
1
Λ

)
.

For the Ulam tent map this yields the correct periodic points {x01, x10} = {2/5, 4/5} . In
the Λ→ 1 limit, this 2-cycle collapses into the critical point C = 1/2.

Exercise Check (1.130) for the two 3-cycles. For the Ulam tent map case, the periodic
points are

{γ001, γ010, γ100} = {2/9, 4/9, 8/9}
{γ011, γ110, γ101} = {2/7, 4/7, 6/7} .

Exercise Check (1.130) for Λ = golden mean. The 001→ 0C1 as Λ→ golden mean
from above. Do you get all admissible cycles? That is worked out in ChaosBook, but
not in this formulation.

Exercise Is there a systematic solution to (1.130) for arbitrary n-cycle? The Λ = 2
case has the elegant solution described in ChaosBook; whatever polynomials you find,
they should agree with that particular factorization. In other words, think of the sums
(1.131) and (1.132) as the expansion of a real number in terms of the digits wt in the
nonintegral base Λ. As the symbolic dynamics of a cycle is independent of Λ, the Ulam
tent map calculation, in the familiar base 2 clinches the arbitrary tent map case.

The rest of the section might even be right - has to factorize in agreement with my
Ulam tent map computations. Please fix at your leisure, if I am wrong.

If the repeating string m1m2 . . .mn contains an even number of ‘1’s, the repating 2CB
string of well ordered symbols w1w2 . . . wn is of the same length. The cycle-point x is a
geometrical sum which we can rewrite as the odd-denominator fraction

x(m1m2 . . .mn) =

n∑
t=1

wt
Λt

+
1

Λ−n

n∑
t=1

wt
Λt

+ · · ·

=
1

Λn − 1

n∑
t=1

wtΛ
n−t (1.131)

If the repeating string m1m2 . . .mn contains an odd number of ‘1’s, the string of well
ordered symbols w1w2 . . . w2n has to be of the double length before it repeats itself.
The cycle-point x is a geometrical sum which we can rewrite as the odd-denominator
fraction

x(m1m2 . . .mn) =

2n∑
t=1

wt
Λt

+
1

Λ−2n

2n∑
t=1

wt
Λt

+ · · ·

=
1

(Λn − 1)(Λn + 1)

2n∑
t=1

wtΛ
2n−t (1.132)
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click to return: p. 55

Example 1.13. Belykh map linear code. Li and Xie [70] Symbolic dynamics of
Belykh-type maps: “ The symbolic dynamics of a Belykh-type map (a two-dimensional
discontinuous piecewise linear map) is investigated. The pruning front conjecture (the
admissibility condition for symbol sequences) is proved under a hyperbolicity condition.
Using this result, a symbolic dynamics model of the map is constructed according to its
pruning front and primary pruned region. ”

The Belykh map is a piecewise linear map given by(
xn+1

yn+1

)
=

(
σn − axn + byn

xn

)
=

(
σn
0

)
+

(
−a b
1 0

)(
xn
yn

)
.

where

σn =

{
1 if xn ≥ 0
−1 if xn < 0

.

The two branches of the map are

f± =

{
±1− ax+ by
x

.

In the 3-term recurrence formulation (the linear code), the map is an asymmetric tridi-
agonal Toeplitz matrix

xn+1 + axn − bxn−1 = σn ,

or
2xn + (2 + a)xn − (1 + b)xn−1 = σn . (1.133)

For b = −1 (the Hamiltonian, time-reversible case) this is almost the cat map, with
a = −s, except that the single sawtooth discontinuity is across x = 0, there is no
mod 1 condition.

Li and Xie consider the a, b > 0 case. The strange attractor (for example, for
a = 1.5 and b = 0.3) looks like a fractal set of parallel lines. They define the pruning
front, the primary pruned region, plot them in the symbol plane, and prove the pruning
front conjecture for this map. In the symbol plane there is a symmetry under rotation by
π, but they do not seem to exploit that.

They call the past and the future itineraries of the tail and the head, and start the
head with s0.

Tél [106] Fractal dimension of the strange attractor in a piecewise linear two-dimen-
sional map computes the box-counting dimension of this map (which he does not call
Belykh map).

Example 1.14. Lozi map linear code. The Lozi map

xn+1 = 1− σnaxn + bxn−1 .

written as a 3-term recurrence relation

xn+1 − 2xn + xn−1 + (2 + σna)xn − (b+ 1)xn−1 = 1 . (1.134)

That has the same nonlinear term σnxn as (1.128), so maybe we can figure out the
pruning front as well, in this formulation.

click to return: p. 55
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1.11 *
Exercises boyscout

1.1. Cat map Green’s function, infinite lattice.
(a) Show that the eigenvalues of the cat mapM are given
by

Λ± =
1

2
(s±√D) , Λ = eλ , (1.135)

where Λ ≡ Λ+, s = Λ + Λ−1,
√
D = Λ − Λ−1, and the

discriminant is D = s2 − 4.
(b) Verify by substitution that the Green’s function is given
by

gnn′ =
1√
D

1

Λ|n′−n|
. (1.136)

(c) Show that the orbit is then recovered by

xn =
1√
D

∑
n′∈Z

Λ−|n−n
′|mn′ . (1.137)

1.2. Cat map Green’s function for a periodic orbit. Show
that the Green’s function for a periodic orbit of period np
is obtained by summing (1.136) over period np:

gpnn′ =

∞∑
j=−∞

gn−n′,jnp =
1√
D

Λ−|n−n
′| + Λ−np+|n−n′|

1− Λ−np
.

(1.138)
Verify this formula by explicit matrix inversion for a few
periodic points of cycles p of periods np = 1, 2, 3, 4, · · · .

1.3. d = 2 cat map guess Green’s function, infinite lattice.
Show by substitution that a d = 2 “Green’s function”
guess given by

gzz′ =
1

2

1√
D

1

Λ|`′−`|+|t′−t|
, (1.139)

(and similarly, in arbitrary dimension d > 1) does not sat-
isfy the Green’s function conditions

(Dg)zz′ = δzz′ = δll′δtt′ , (1.140)

Here the eigenvalues of the cat map M are

Λ± =
1

2
(s/2±√D) , Λ = eλ , (1.141)

where Λ ≡ Λ+, s/2 = Λ + Λ−1,
√
D = Λ− Λ−1, and the

discriminant is D = (s/2)2 − 4.
Hint: the check works just like for exercise 1.1.

1.4. Periodic orbits of Arnol’d cat map.
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(a) Describe precisely how you actually pick “random
q1 and q2”

(b) Explain what happens if q1 and q2 are rational

(c) Can you get a periodic orbit if q1 and q2 are irra-
tional?

(d) What do you mean by period 0?

(e) Does the Arnol’d cat map have periodic orbits of
any period?

(f) Derive analytically thatmj ∈ {−1, 0, 1, 2} (you can
continue the exposition that I started in sect. 1.3.6,
if that helps). Does you result agree with Percival
and Vivaldi [80]?

1.5. The second iterate generating partition. Figure 1.10 is
very helpful in giving us a visual understanding of what
a Hamiltonian cat map does, and how the generating
partition comes about. Draw the corresponding Adler-
Weiss generating partition for s = 3, the second, n = 2
iterate, to verify that the n = 1 determines a generating
partition for all subsequent times.

Chapter 1. Cat map
Solution 1.1 - Cat map Green’s function, infinite lattice.

(a) It’s just the roots of a quadratic equation, with s = Λ+Λ−1 , and
√
D = Λ−Λ−1 .

(b) The Green’s function (1.136)

gtt′ =
1√
D

1

Λ|t′−t|
(1.142)

for the discrete damped Poison equation (1.36) was first computed explicitly by Percival
and Vivaldi [80], using the methods introduced in Mestel and Percival [73]. It should
satisfy

(Dg)ij =
∑
k

Dikgkj = δij . (1.143)

Since we are considering infinite 1D lattice, we do not need to specify the boundary
conditions. D is a Toeplitz matrix

Dik = sδik − δi−1,k − δi+1,k (1.144)

Substituting (1.144) into (1.143)∑
k

Dikgkj = sgij − gi−1,j − gi+1,j = δij , (1.145)

and substituting (1.136)

gij =
1√
D

1

Λ|j−i|
=


1√
D

1
Λi−j if j < i

1√
D

if j = i
1√
D

1
Λj−i if j > i

. (1.146)
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into (1.145), one verifies that (1.136) is indeed the Green’s function for the infinite lattice.
By translational invariance, for i = j consider

sg00 − g−1,0 − g10 =
1√
D

(
s− 2

Λ

)
=

1√
D

(
Λ− 1

Λ

)
= 1 . (1.147)

For i > j consider

sg10 − g00 − g20 =
1√
D

(
s

Λ
− 1− 1

Λ2

)
=

1√
D

1

Λ

(
s− Λ− 1

Λ

)
= 0 . (1.148)

(c) The orbit is recovered by:

xn =
∑
n′∈Z

gnn′mn′ =
1√
D

∑
n′∈Z

Λ−|n−n
′|mn′ . (1.149)

(Han Liang)

Solution 1.2 - Cat map Green’s function for a periodic orbit. Express the periodic
orbit Green’s function in terms of the infinite lattice by using a periodic source mn′ =
mn′ + np,

∞∑
n′=−∞

gnn′mn′ =

∞∑
r=−∞

rnp+np−1∑
n′=rnp

gnn′ mn′ =

∞∑
r=−∞

np−1∑
n′=0

gn,n′+rnp mn′+rnp

=

∞∑
r=−∞

np−1∑
n′=0

gn−n′,rnp mn′ (1.150)

Comparing with the expression for the Green’s function of a periodic orbit:

np−1∑
n′=0

g
np
nn′mn′ (1.151)

we see that

g
np
nn′ =

∞∑
r=−∞

gn−n′,rnp (1.152)

Substituting (1.136) into (1.152) we have:

g
np
nn′ =

1√
D

∞∑
r=−∞

1

Λ|n−n
′−rnp|

=
1√
D

(
1

Λ|n−n′|
+

∞∑
r=1

1

Λrnp−(n−n′) +

−∞∑
r=−1

1

Λ(n−n′)−rnp

)

=
1√
D

(
1

Λ|n−n′|
+

1

Λ−|n−n′|
1

Λnp − 1
+

1

Λ|n−n′|
1

Λnp − 1

)
=

1√
D

1

1− Λ−np
(Λ−|n−n

′| + Λ−np+|n−n′|) (1.153)

This verifies (1.138).
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Bird and Vivaldi [16] show that for an n-cycle xn′ are rational functions of Λ, given
by the quotient of two reflexive polynomials (for example, Pt(Λ) = ΛnPt(1/Λ)),

xt = ΛPt(Λ)/Q(Λ)

Pt(Λ) =

n−1∑
τ=1

Λn−τ (Λmt+τ−1 +mt−τ )

Q(Λ) = (Λ2 − 1) (Λn − 1) (1.154)

Bird and Vivaldi [16] then discuss pruning, give formulas for the numbers of orbits for
integer s, etc..

(Han Liang)

Solution 1.3 - d = 2 cat map guess Green’s function, infinite lattice. The Green’s
function g for the Toeplitz matrix (tensor) in 2 dimensions

Dlt,l′t′ = [−2 + 2 (s/2− 2)]lt,l′t′

=
( s

2
δll′ − δl−1,l′ − δl+1,l′

)
δtt′

+δll′
( s

2
δtt′ − δt−1,t′ − δt+1,t′

)
. (1.155)

should satisfy (1.140), or, substituting (1.155) into (1.140),

2 δll′δtt′ =
s

2
gll′,tt′ − gl−1,l′,tt′ − gl+1,l′,tt′

+
s

2
gll′,tt′ − gll′,t−1,t′ − gll′,t+1,t′ . (1.156)

Let’s check this. By translational invariance, need to look only at different values of l− l′
and t − t′ = 0. For l = l′ and t = t′ it suffices that we consider the l = l′ = t = t′ = 0
case. Using (1.141) we have

s

2
g00,00 − g−1,0,00 − g10,00

+
s

2
g00,00 − g00,−1,0 − g00,10

=
2√
D

(
s

2
− 2

Λ

)
=

2√
D

(
Λ− 1

Λ

)
= 2 , (1.157)

verifies (1.155).
For l > l′ and t = t′ it suffices to consider l = 1, l′ = 0, t = t′ = 0 case.

s

2
g10,00 − g00,00 − g20,00

+
s

2
g10,00 − g10,−1,0 − g10,10

=
1

2
√
D

(
s/2

Λ
− 1− 1

Λ2

)
+

1

2
√
D

(
s/2

Λ
− 2

Λ2

)
=

1

2Λ
√
D

(
s

2
− 2

Λ

)
=

1

2Λ
√
D

(
Λ− 1

Λ

)
=

1

2Λ
. (1.158)

So, the guess (1.139) already does not work.
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Substitute (1.139) into (1.156) we get:

∑
z′′

Dzz′′gz′′z′ =

{
1√
D

1

Λ|`′−`|+|t′−t|
(s− 2Λ− 2Λ−1) if l 6= l′ and t 6= t′

1√
D

(s− 4Λ−1) if l = l′ and t = t′
. (1.159)

To satisfy (1.140), s,
√
D and Λ must satisfy:{

s = 2Λ + 2Λ−1

√
D = 2Λ− 2Λ−1 . (1.160)

So we will have: {
Λ = 1

4
(s+

√
s2 − 16)

Λ−1 = 1
4
(s−

√
s2 − 16)

. (1.161)

Now the problem is, if l 6= l′ but t = t′, (1.159) become:∑
z′′

Dzz′′gz′′z′ =
1√
D

1

Λ|`′−`|+|t′−t|
(s− Λ− 3Λ−1) (1.162)

and this is not satisfied by (1.161). So (1.139) does not work for the 2-dimensional case.
I haven’t figured out the correct Green’s function for the 2 dimensions.

(Han Liang)

Solution 1.3 - d = 2 cat map guess Green’s function, infinite lattice. The guess
Green’s function (1.139) doesn’t work. For l = 2, l′ = 0 and t = t′ = 0, the correct form
of (1.158) is:

s

2
g10,00 − g00,00 − g20,00

+
s

2
g10,00 − g10,10 − g10,−10 (1.163)

=
1

2
√
D

(
s

2Λ
− 1− 1

Λ2

)
+

1

2
√
D

(
s

2Λ
− 1

Λ2
− 1

Λ2

)
(1.164)

=
1

2
√
D

1

Λ

(
s

2
− Λ− 1

Λ

)
+

1

2
√
D

1

Λ

(
s

2
− 1

Λ
− 1

Λ

)
(1.165)

= 0 +
1

2Λ
. (1.166)

As in (1.158), this does not work .
(Han Liang)

Solution 1.4 - Periodic orbits of Arnol’d cat map. No solution available.

Solution 1.5 - The second iterate generating partition. Figure 1.19 is the generating
partition with s = 3 evolved after 2 steps. In the Markov diagram figure 1.19 (d) there
are 7 self cycles, two of which are the over-counted fixed points at the origin. So there
are actually 5 periodic points with period 2, including 1 fixed point and 2 length-2 orbits,
as given by (1.70).

Figure 1.19 is a very nice illustration of a generating partition subrectangles being
further subdivided.
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(a)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) (b)

(d)

Figure 1.19: (a) An Adler-Weiss one step forward in time partition of the unit
torus for the s = 3 Percival-Vivaldi cat map figure 1.9 (c). (b) Mapped two steps
forward in time, the rectangles are stretched along the unstable direction and
shrunk along the stable direction. Sub-rectanglesMj that have to be translated
back into the partition are indicated by color and labeled by their lattice trans-
lation mj . (c) The sub-rectanglesMj translated back into the unit square yield
a two steps forward in time generating partition (a subpartition of rectangles in
(a)), with (d) the finite grammar given by the transition graph for this partition.
The nodes refer to the rectangles A and B, and the 13 links correspond to the
13 sub-rectangles induced by two step forward-in-time dynamics.
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2

0

2

4

Figure 1.20: This figure is used to track where each sub-rectangles in figure 1.19
goes. Note that two step forward-in-time requires both vertical and horizontal
shifts, unlike the one step forward-in-time Percival-Vivaldi cat map (1.101).
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Chapter 2

Temporal Hénon

2.1 Hénon blog

2021-02-17 Predrag Predrag’s key 2005 result is presumably the time-reversal
symmetry induced, temporal lattice cycle by cycle full square (2.35) and
(2.34).

2021-02-15 Predrag Added Hénon map examples, mostly for Sidney (to be
edited and returned to ChaosBook):

example 2.1 Hénon map

example 2.2 Temporal Hénon

example 2.4 Temporal Hénon stability

example 2.5 Hamiltonian Hénon map, reversibility

example 2.6 Symmetry lines of the standard map

example 2.7 Symmetry lines of the cat map

Study also chronotopic literature:

sect. 10.2 PolTor92b Towards a statistical mechanics of spatiotemporal chaos

sect. 10.3 PolTor92 Periodic orbits in coupled Hénon maps

sect. 10.4 PoToLe98 Lyapunov exponents from node-counting

sect. 10.6 PolTor09 Stable chaos

2.2 A φ3 field theory

(This excerpted from LC21 [48], as of 2022-02-04)

potential (2.8) at each lattice site t to the Laplacian in (3.13). The discrete
Euler–Lagrange equations (??) now take form of 3-term recurrence, second-
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order difference equations

−2φt − V ′(φt,mt) = 0 . (2.1)

There are three ‘-’ signs here. First, we study here systems that are unstable,
hence for even k the potential (2.8) has a maximum, rather than a minimum.
Second, the action (??) is a Lagrangian, i.e., the kinetic term minus the potential
term in (3.14). The third ‘minus’, in front of the Laplacian 2, guarantees the
kinetic term in the action is positive-definite.

The simplest such nonlinear action turns out to correspond to the paradig-
matic dynamicist’s model of a 2-dimensional nonlinear dynamical system, the
Hénon map [43]

xt+1 = 1− a x2
t + b yt

yt+1 = xt . (2.2)

For the contraction parameter value b = −1 this is a Hamiltonian map.
The Hénon map is the simplest map that captures chaos that arises from

the smooth stretch & fold dynamics of nonlinear return maps of flows such as
Rössler [61]. Written as a 2nd-order inhomogeneous difference equation [27],
(2.2) takes the temporal Hénon 3-term recurrence form, explicitly time-translation
and time-reversal invariant Euler–Lagrange equation (2.12),

− φt+1 + aφ2
t − φt−1 = 1 . (2.3)

Period-1 (replaces Gallas (16.17))

φ0,1 =
1±
√

1 + a

a
→ 1±

√
7

6
(2.4)

Period-2 (replaces Gallas (16.19)) The periodic points in the 10 orbit are

φ1,2 =
1±
√
a− 3

a
→ 1±

√
3

6
(2.5)

Just as the kicked rotor (??,9.88), the map can be interpreted as a kicked
driven anaharmonic oscillator [42], with the nonlinear, cubic Biham-Wenzel [12]
lattice site potential (2.8)

V (φt,mt) = −a
3
φ3
t + φ2

t +mt φt , mt = −1 , (2.6)

giving rise to kicking pulse (9.88), so we refer to this field theory as φ3 theory.
For a sufficiently large stretching parameter a, lattice site field values of this

φ3 theory are in one-to-one correspondence to the unimodal Hénon map Smale
horseshoe repeller, cleanly split into the ‘left’, positive stretching and ‘right’,
negative stretching lattice site field values. A plot of this horseshoe, given in,
for example, ChaosBook Example 15.4 is helpfull in understanding that state
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space of deterministic solutions of strongly nonlinear field theories has fractal
support. Devaney, Nitecki, Sterling and Meiss [25, 65, 66] have shown that
the Hamiltonian Hénon map has a complete Smale horseshoe for ‘stretching
parameter’ a values above

a > 5.699310786700 · · · . (2.7)

In numerical [24] and analytic [31] calculations we fix (arbitrarily) the stretch-
ing parameter value to a = 6, in order to guarantee that all 2n periodic points
φ = fn(φ) of the Hénon map (2.2) exist, see table 2.1. The symbolic dynamics
is binary, as simple as the temporal Bernoulli, in contrast to the temporal cat
which has nontrivial pruning.

2.3 Temporal Hénon; anti-integrable limit

2021-12-23 Predrag See also sect. 3.3 Classical φ4 lattice field theory

2021-12-22 Jim Meiss: "The concept of anti-integrability was introduced by
Aubry and Abramovici [7] in 1983 for the standard map (PC: 1983? maybe
he means Aubry and Le Daeron [8]?), viewed as a linear chain of parti-
cles connected by springs in a periodic potential. They reasoned that the
integrable limit corresponded to vanishing potential energy, so that the
springs dominated giving equal spacing at equilibrium. By contrast, anti-
integrability corresponds to vanishing kinetic energy, so that particles sit
at critical points of the potential. What is most interesting about this limit
is that it is relatively easy, using a contraction mapping style argument,
to show that AI states persist, and this gives conjugacy to a shift on a
symbolic dynamics."

2021-12-07 Ibrahim I do not understand sources mt in (2.12) and (2.13). In
temporal cat (2.11) they are a finite integer-valued alphabet that translates
the field to the right fixed point, but for the nonlinear field theories they
are simply a constant? A constant that can be changed by shifting fields?

2021-12-08, 2021-12-10 Predrag You are right - we should think of mt is a (pos-
sibly noninteger) shift that centers the map on a given nonlinear segment.
Read sect. 3.5.1, see whether you have a good formulation that cover all
cases.

Garden variety scalar field theory actions S[X] are smooth, often of polyno-
mial type. In the examples below we add a potential [2–4, 27, 34, 47]

V (φt, ϕ
(m)
t ) = −g

k
φkt + φ2

t + ϕ
(m)
t φt (2.8)

at each lattice site t to the Laplacian, where ϕ(m)
t is a translation of field φt

adjusted so that for the mth fixed point solution the potential is centered so
that fixed point is at φ = 0.
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The discrete Euler–Lagrange equations now take form of 3-term recurrence,
second-order difference equations

−2φt − V ′(φt, ϕ(m)
t ) = 0 . (2.9)

For a constant (fixed point) lattice state the Laplacian 2φt in (3.14) does not
contribute, so fixed points φt = φ are the (k − 1) solutions of (2.8)

V ′(φ,m) = −gφk−1 + 2φ+ ϕ
(m)
t = 0 . (2.10)

second-order difference Euler–Lagrange equations (3.14) that we call, in the
cases considered here, the ‘temporal cat’, ‘temporal Hénon’, and ‘temporal φ4

theory’, respectively:

−φt+1 + s φt − φt−1 = mt (2.11)
−φt+1 + aφ2

t − φt−1 = mt (2.12)
−φt+1 + g φ3

t − φt−1 = mt (2.13)

Written as a 2nd-order inhomogeneous difference equation [27], (2.2) takes
the temporal Hénon 3-term recurrence form (2.3), explicitly time-translation and
time-reversal invariant Euler–Lagrange equation,

−φt+1 + aφ2
t − φt−1 = 1 .

Just as the kicked rotor (??,9.88), the map can be interpreted as a kicked driven
anaharmonic oscillator [42], with the nonlinear, cubic Biham-Wenzel [12] lattice
site potential (2.8)

V (φt,mt) = −a
3
φ3
t + φ2

t +mt φt , mt = −1 , (2.14)

giving rise to kicking pulse (9.88), so we refer to this field theory as φ3 theory.
For a sufficiently large stretching parameter a, lattice site field values of

this φ3 theory are in one-to-one correspondence to the unimodal Hénon map
Smale horseshoe repeller, cleanly split into the ‘left’, positive stretching and
‘right’, negative stretching lattice site field values.

fix (arbitrarily) the stretching parameter value to a = 6, in order to guar-
antee that all 2n periodic points φ = fn(φ) of the Hénon map (2.2) exist, see
table 2.1. The symbolic dynamics is binary, as simple as the temporal Bernoulli,

quartic potential (2.8)

V (φt,mt) = −g
4
φ4
t + φ2

t +mt φt , (2.15)

leading to our example of the ‘φ4 lattice field theory’ [46, 60],

−φt+1 + (g φ3
t −mt)− φt−1 = 0 . (2.16)

Topology of the state space of φ4 theory is very much like what we had learned
for the unimodal Hénon map φ3 theory, except that the repeller set is now
bimodal. As long as coupling g is sufficiently large, the repeller is a full 3-letter
shift.
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2.3.1 The meaning of source terms mt

Make sure that the coupling constant g in (2.8) is sufficiently strong so you are
in the anti-integrable regime, meaning that for constant field φt = φ lattice state
V ′(φt,mt) in has (3.14) has k distinct real roots

φ∗m = mϕm , (2.17)

i.e., there are k fixed-point, constant Xm lattice states (this might require further
nonleading terms in (2.8), perhaps see the history review in arXiv:1512.08645,
“problems close to hyperbolicity, concerning number of (may be, positive or
negative) real roots of a polynomial”).

The alphabetmt ∈ Awill have (k−1) letters, all nk−1 lattice states M should
be be admissible.

−φt+1 + (g φk−1
t −mtϕm)− φt−1 = 0 . (2.18)

Here mtϕm should be a translation that places mth root at the origin.
Let’s engineer potentials that give symmetrically disposed fixed points:

Odd k, ` = (k − 1)/2:

α=∏̀
α=1

(φ2 −mα
2ϕ2

α) = 0 , A = {−`, · · · ,−1, 1, · · · , `} .

Even k, ` = k/2:

φ
α=∏̀
α=1

(φ2 −mα
2ϕ2

α) = 0 , A = {−`, · · · ,−1, 0, 1, · · · , `}

φ3/Hénon field theory

(φ− ϕ)(φ+ ϕ) = φ2 − ϕ2 = 0 , A = {−1, 1}

compare with fixed points (16.17).
φ4 field theory

φ(φ− ϕ)(φ+ ϕ) = φ3 − ϕ2φ = 0 , A = {−1, 0, 1} ,

compare with the calculation following (19.1).

2.3.2 Anti-integrable blog

2021-09-12 to 2021-12-22 Predrag I have added my guess (3.70) for the infinite
coupling g anti-integrable limit of φ4 theory. That gives a 3-letter alphabet
A = {−1, 0, 1}. One can use it to find by continuation any lattice state,
at g as low as possible. ‘Generalized Hénon maps’ AKA φ4 field theory
posts are in sect. 3.3 Classical φ4 lattice field theory.
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2021-06-04 Predrag David Meiss’ student David G. Sterling [64] much (unde-
servedly) un-cited PhD thesis, Univ. of Colorado, Anti-Integrable Contin-
uation and the Destruction of Chaos has much to teach us. He studies coupled
Hénon map lattices in both Hamiltonian and Lagrangian formulations; his
definition seems pretty much consistent with our (16.12), though he has
a coupling parameter c used to make spatial couplings weak. The “anti-
integrable” refers to our choice a ≥ 6, I believe - parameter regimes in
which all of the horseshoe orbits exists.

“Specifying the anti-integrable state for an orbit of a coupled map lat-
tice requires a multidimensional symbolic object which we call a symbol
tensor.”

His Figures 6.7, 6.18 are reminiscent of my pruning front.

Thesis abstract: [...] Recurrent phenomena, the simplest of which is pe-
riodic motion, are particularly interesting and practical objects of study.
Scientists have long been captivated by the near periodic motions of the
planets. Among them, Poincaré was the first to truly recognize the im-
portance of periodic solutions in understanding more complex dynam-
ical behavior. [...] This research has two complementary aspects. Not
only do we develop a technique for locating periodic orbits in discrete
dynamical systems, but we then use these orbits to study bifurcations,
most significantly the global bifurcation that signals the destruction of
chaos. Our technique embodies the following basic principles:
(1) periodic orbits are conveniently described by a variational principle,
(2) in a special case, the variation principle simplifies, and
(3) continuation from this limiting case is an effective method for study-
ing periodic orbits. We illustrate this approach on the Hénon map.

2021-09-12 Sidney, Predrag In the a→∞, anti-integrable limit [66] the Hénon’s
original map (2.23) goes to a(φ∗)2 = 1, so

φt = mtφ
∗ , φ∗ = a−1/2 , mt ∈ {−,+} . (2.19)

The small perturbation parameter for the problem is φ∗ = a−1/2, so re-
place

φt = mtφ
∗ + φ̂t , (2.20)

study the temporal Hénon equations for φ̂t.

2021-09-12 Sidney The process for perturbations that you’re describing sounds
very reminiscent of what is in chapter 11 of Townsend, would that be
worth trying to copy here?

2021-12-22 Predrag Moved ‘generalized Hénon maps’ AKA φ4 field theory
posts to sect. 3.3 Classical φ4 lattice field theory.

2021-06-04 Predrag Read also
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Aubry and Le Daeron [8] The discrete Frenkel-Kontorova model and its exten-
sions. I. Exact results for the ground-states (1983)

Sterling and Meiss [66] Computing periodic orbits using the anti-integrable
limit (1988)

Aubry and Abramovici [7], Chaotic trajectories in the standard map. The
concept of anti-integrability, (1990)

Aubry [6] Anti-integrability in dynamical and variational problems (1995)

Chen [22]

Yi-Chiuan Chen A Proof of Devaney–Nitecki region for the Hénon mapping
using the anti-integrable limit, Adv. Dyn. Systems Appl. 13, 33–43 (2018).
He seems to not have been active the past 3 years.

Treschev, D. and Zubelevich [67] The anti-integrable limit (2009)

2021-12-21 Predrag Hagiwara and Shudo [41] An algorithm to prune the area-
preserving Hénon map (2004) describes Sterling’s anti-integrable method.

Starting with the temporal Hénon second-order difference equation (2.25),
changing variables to z = εx, ε = a−1/2 gives

− ε(zt−1 + zt+1) + z2
t − 1 = 0 . (2.21)

At the anti-integrable limit ε → 0, the map reduces to z2
t = 1, with every

orbit an arbitrary sequence of ±1.

2021-06-04 Predrag They are probably deep and good, but I find

Bolotin and MacKay [15] Multibump orbits near the anti-integrable limit for
Lagrangian systems, (1997)

Bolotin and Treschev [14] The anti-integrable limit (2015)

hard to read. Gave up.

2021-06-04 Predrag We all might find the Sect. III of Wen’s 2014 project Chaos-
Book.org/projects/Wen14.pdf interesting.
Wen says that the original Hénon’s [43] Hamiltonian Hénon map is equiv-
alent to the harmonic oscillator system. By that he means it can be in-
terpreted as a kicked driven harmonic oscillator with a nonlinear, cubic
potential kicking term [42]. If we write anything about temporal Hénon,
we should include this as a physical motivation.

Check out also Zalmond C. Barney Master’s Thesis Derivation of planar
diffeomorphisms from Hamiltonians with a kick.

Butusov et al. [19] Discrete chaotic maps obtained by symmetric integration
might be of interest for adding a reflection symmetry to the Hénon map.

2021-09-07 Predrag 2 Sidney .

1. Plot lattice field values for a � 1, then try to look at a perturbation
theory treatment of this.
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2. Learn about the perturbative treatments of field theories.

2021-09-09 Predrag Re. 1. above: I quickly tried to sketch how a � 1, did not
get anything sensible. Might be yet another crazy idea that met instant
death, do not worry about it for now.

2021-09-12 Sidney I did some preliminary calculations of a� 1 using the Gal-
las scaling (so not quite field theory, but I good test) and as a got larger,
the less variation in lattice site values occurred. There were still nega-
tive, and positive values, but in the large a limit the lattice site values all
approached an equal absolute value. I am not sure if that is useful, per-
haps if we looked at the asymptotic behavior of both large and small a
we could come up with some interesting "asymptotic temporal Hénon"
theory.

2021-09-12 Predrag That sounds very good: in this limit the fields are appar-
ently φt = mtφ

∗, mt ∈ {−,+}, where − → 0, + → 1 is the binary label
corresponding to lattice site t.

Basically you get a theory even simpler than the temporal cat.

Perturbation theory for large but finite a would come from replacement
φt → φ∗+εφ̂t in the equations, and ordering terms by powers εk and a−`.
Probably a−` only.

2021-09-12 Predrag Do you have the analytic value of φ∗?

2021-09-13 Sidney I have changed my code so that it can be easily switched
between the Hénon [43] (2.23), and Endler and Gallas [32] rescaled (2.39),
I have added this updated code Relaxation Method Henon with Orbit Jaco-
bian.py to siminos/williams/python/relax.

So, let’s see if I understand, if we plug (2.19) into the Hénon form (2.23),
expand and keep only linear terms of φ̂t, we get a new temporal Hénon
of form:

φ̂t+1 + 2mta
1/2φ̂t + φ̂t−1 = −(mt+1 +mt−1)φ∗ , (2.22)

where mt is determined by the cycle itinerary. Is that the form you were
thinking of? If this is the correct procedure, I can’t see a way of extend-
ing this to a second-order perturbation theory, as that is just reproducing
temporal Hénon.

2021-09-13 Predrag I have not thought through your (2.22) yet. Maybe φ̂t →
φ∗φ̂t helps a bit.

You have analytic formulas for fixed points (??), period-2 lattice states
(??). You might find useful approximate large a formulas for all period-n
lattice states. They might already be in David Sterling’s PhD thesis.

Maybe Hill determinants have interesting expansions in powers of a−`/2...

03/15/2022 siminos/spatiotemp 100 8289 (predrag–8289)

https://www.proquest.com/docview/304508605


CHAPTER 2. TEMPORAL HÉNON

2022-01-23 Predrag Beck [11] Spontaneous symmetry breaking in a coupled map
lattice simulation of quantized Higgs fields abstract:

We study a class of coupled map lattices with a Z(2), U(1), and SU(2)
symmetry, respectively. We point out that these types of coupled maps
have applications in particle physics, since they arise from the field equa-
tions of stochastically quantized Higgs fields in the anti-integrable limit.
For d-dimensional lattices we investigate the dependence of the vacuum
expectation of the field on the coupling constant. Spontaneous symmetry
breaking is observed at various critical coupling strengths.

He uses the stochastic quantization method with a Langevin equation, so
I will ignore the paper for now, perhaps unfairly. The Z(2) symmetry is
what I tend to call ‘dynamical’ φ→ −φ symmetry of the φ4 potential.

For the contraction parameter value b = −1 the Hénon map [43] is orienta-
tion and area preserving, and can be written as a 3-term recurrence relation

xt−1 = 1− ax2
t − xt+1 . (2.23)

Multiply both sides by −2a and define the Hénon ‘field’ at lattice site t to be
φt = −2axt. We shall refer to this form of Hénon as the temporal Hénon:

φt+1 −
1

2
φ2
t + φt−1 = −2a . (2.24)

or we can multiply both sides by −2 and define the Hénon ‘field’ at lattice site
t to be φt = −2xt, yielding temporal Hénon of form:

φt+1 −
a

2
φ2
t + φt−1 = −mt , mt = 2 , (2.25)

with the ‘coupling constant’ a the analogue of the stretching factor s in tempo-
ral cat (5.14), and a constant source mt.

The fixed points φj = φ satisfy

φ2 − 4

a
φ− 4

a
= 0 , φ± =

2

a
±
√

4

a2
+

16

a
(2.26)

Temporal Hénon is φ3 lattice field theory. Biham-Wenzel [12] find Hénon
lattice states by constructing a cubic action density (3.24),

S[φ]t −mt φt = φt+1φt + φtφt−1 −
a

3!
φ3
t −mt φt , mt = 2 . (2.27)

Still to check: is mt = ±2 the Biham-Wenzel method? Looks like it, as
that amounts to flipping the sign of the cubic term while keeping the variation
across there sits of the same magnitude.

I took +2φn out of S[φ] to treat it as a source density term mtφt.
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Now the orbit Jacobian matrix (2.28) is of the same form as the temporal cat
orbit Jacobian matrix (5.17),

J [X] =



s0 −1 0 0 · · · 0 0 −1
−1 s1 −1 0 · · · 0 0 0
0 −1 s2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 sn−2 −1
−1 0 0 0 · · · 0 −1 sn−1


, (2.28)

but with the stretching factor at site t depending on the particular lattice state,
st = φt, and once you have an expression for Hill determinant ‖J [X]‖ in terms
of traces TrJ k , i.e., the Dn invariant orbital sums for products of fields on
consecutive lattice sites, they will be the same for the temporal cat and the
temporal Hénon.

2.4 Hénon map symmetries

We note here the symmetries of the Hénon map (16.14). For b 6= 0 the Hénon
map is reversible: the backward iteration of (2.61) is given by

xn−1 = −1

b
(1− ax2

n − xn+1) . (2.29)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the pa-
rameter plane, together with x → −x/b in the coordinate plane, and there is
no need to explore the (a, b) parameter plane outside the strip b ∈ {−1, 1}. For
b = −1 the map is orientation and area preserving Hamiltonian Hénon map

xn−1 = 1− ax2
n − xn+1 , (2.30)

the backward and the forward iteration are the same, and the non–wandering
set is symmetric across the xn+1 = xn diagonal. We can write this as a nonlin-
ear field equation with a Laplacian (3.6) and a “cubic” potential (3.24)

2xn + (a xn + 2)xn = 1 . (2.31)

Endler and Gallas [32] prefer the equivalent, rescaled form (2.39).
This is one of the simplest models of a return map for a Hamiltonian flow.
For the orientation reversing b = 1 case we have ‘golden Hénon’ (in analogy

with (5.180))
xn−1 = 1− ax2

n + xn+1 , (2.32)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.
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2.5 “Center of mass” puzzle

Some of Predrag’s unpublished 2004 drafts and calculations are in

% dasbuch/book/FigSrc/gnu/Gallas % just a link
dasbuch/WWW/library/Gallas-chiral.pdf
dasbuch/WWW/projects/revHenon/Gallas0101305.txt etc
dasbuch/book/Fig/COM0001011.eps COM0001101.eps COM000111.eps

COM0011.eps COM011.eps
dasbuch/book/OldProblems/soluCOM011005.tex

predrag/reports/referee/Gallas.txt on the unpublished
Periodic orbits are not necessarily independent from each other

Some of Predrag’s unpublished 2004 drafts and calculations of Jan 26, 1999
suggests many references where similar work was published. The revised pa-
per appeared as Gallas [35] Nonlinear dependencies between sets of periodic orbits,
I believe.

Gallas-chiral.pdf (click here) has the Endler-Gallas Hénon map polynomials
up to period 8, and nothing else.

ChaosBook.org/projects/revHenon has lots of stuff:

1. chiral.pdf is an unfinished draft of Endler, Gallas and Cvitanović paper,
based on Gallas-chiral.pdf. Much of the introduction is utterly delirious.
Notation for ‘orbits’, eq. (10) is redundant and the indices of xj are use-
less, they label roots of different polynomials, ordered by increasing xj .

Figures illustrate ‘chiral’ orbit pairs,An = 0;Bn = 0 andCn = 0 self-dual
orbits. Fig. 4 might be Cn = 0 for value of a other than 6.

2. From: Jason Alfredo Carlson Gallas (14 Jan 2005) fortran plot_orbit.f, gen-
erates *.eps files, see Fig-7cycles.txt, Gallas0101305.txt.

3. per7.pdf 18 period-7 orbits.

4. chiral_p8.pdf 3 period-8 time-asymmetric pairs.

5. per8.pdf: 18 self-dual period-8 orbits (not sure that is a complete list).

6. FourClasses.pdf: defines four classes of orbits under time reversal; perhaps
useful, still need to find the LaTeX file.

7. tres.pdf: period-6, symmetries with respect to the main diagonal of 3 6-
cycles “corresponding to a σ3 factor,” plotted for a = 7. No idea what
that is...

8. Gallas0101305.txt says he does not understand me.

8289 (predrag–8289) 103 03/15/2022 siminos/spatiotemp

http://ChaosBook.org/library/Gallas-chiral.pdf
http://ChaosBook.org/projects/revHenon


CHAPTER 2. TEMPORAL HÉNON

9. Predrag011304.txt my last attempt to explain symbolic dynamics and why
is this a time-reversal symmetry. “Please use ‘time reversal’ rather than
‘chiral’. It is a standard part of the lore of Hamiltonian dynamics, and
especially Hamiltonian/symplectic mappings.” Hopeless.

10. puzzle.pdf, puzzle.tex is January 25, 2005 version of Endler and Gallas [32]
(submitted December 25, 2005?) that uses ChaosBook notation - Table 1
can be used as a check on Sidney’s periodic orbits. Other versions: puz-
zle011305.tex of 13 Jan 2005; puzzle.tex and puzzle2dasbuch.tex of 27 Jan
2005;

They published in Reductions and simplifications of orbital sums in a Hamilto-
nian repeller [31] without me as a coauthor. Algebraic number expressions
for periodic points show interesting patterns, their eqs. (22), (23) and (28),
that would not be noticed from their numerical values.

They use binary labelling also in Endler and Gallas [30] Conjugacy classes
and chiral doublets in the Hénon Hamiltonian repeller, without mentioning
me or ChaosBook at all.

11. citation.txt and puzzle.end is the footnote which Gallas would not accept:
endnote27 This exact equation was discovered by P. Cvitanović during discus-
sion and in collaboration with the authors.

12. old/puzzle011805.pdf has my comments

13. solRevHen.pdf is extracted from ChaosBook.org/projects, version 11.2.2,
Mar 10 2005. I believe all that is in ChaosBook, ignore.

14. revHenon.pdf, revHenon.zip is a template for a ChaosBook.org/projects ex-
tracted from Jason Gallas, Predrag edited puzzle.tex, Gallas text removed
18 Feb 2006. I believe no one took up the project.

To summarize, this 2005 work agrees with current Han’s work, but does not
clarify the problems we are dealing with now. The figures might be useful as
crosschecks for Sidney’s Hénon orbits.

2021-02-16 Predrag 1 Here are my notes on the work of Gallas and collabora-2CB
tors; they have written many papers on polynomial maps [28–32, 37–39].
What I had contributed (unpublished, I believe) is to show Gallas how to
use time-reversal, (??), (2.34) and (2.57), wrote a draft of a paper (click on
chiral.pdf), and –when he was not interested in it– requested my tradi-
tional citation,

This exact equation was discovered by P. Cvitanović during
discussion and in collaboration with the authors.

1Predrag 27dec2004: Extracted from the ChaosBook.org boyscout, version of 2018-08-02 tex
files. Edited here, so eventually return to ChaosBook.
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but he refused to credit me for that, so I - what’s the point - I stopped
following their papers. I remember him being stubborn in a male kind of
way. Absolutely refuses to understand binary symbolic dynamics, that
what he understands [36] to be ‘spatial x↔ y symmetry’

“[...] three algebraic conjugacy classes with respect to a spatial
reflection R(x, y) = (y, x) about the y = x symmetry diagonal
in phase-space.”

is time reversal, and he would not try to understand ChaosBook symme-
try factorizations. But it is quite possible that they (or younger me?) did
the right thing and quotiented the time reversal... Check the papers and
the papers they refer to.

As he has worked on this for at least 20 years, there are many details
specific to quadratic mappings that I think we can ignore here. Here is an
overview from my point of view: Gallas et al. observe that

1. for polynomial mapping (2.42) the orbital sum

σp =
∑
i∈p

xp,i (2.33)

is a prime cycle p invariant that satisfies a (factorized!) polynomial
equation Sn(σ) = 0 of the order np, the period of the cycle, see for
example (??).
Predrag addendum: Hill determinants are symmetric polynomials in
lattice fields {φ1, φ2, · · · , φn}, which are, by construction, all prime
cycle p invariants. The orbital sum (2.33) is one example. Another
one is the bilinear (16.21).

2. the cycle-points xp,i of a given cycle are roots of a polynomial (2.42)
of order np, see for example (??). This is remarkable, as higher it-
erates of a polynomial mapping are polynomials of a horrendous
order.

3. time-reversal invariance (my interpretation, not theirs) induces the

Sn = C2
nDnNn . (2.34)

factorization of such polynomials, where D=‘diagonal’ class, N=‘non-
diagonal’ class, and ‘C=‘chiral’ class, see below.
For me this is the key result.

This Sn is very smart, as it has a zero for every prime orbit. Perhaps we can
bring this to a full square, by including the boundary into the definition
of the temporal lattice fundamental domain, with (CDN) orbits (perhaps
in the Fourier space - they talk about ‘cyclotomic polynomials’)

S =
(CDN)2

DN
(2.35)
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by taking care of the temporal fundamental domain boundary by the
inclusion-exclusion principle (20.270), and proceed to zeta-function fac-
torization in the spirit of (5.52), (5.60), for each Hamiltonian Hénon cycle
separately.

I believe factorization (2.35) should apply to periodic orbits of any time-
reversible mapping, not just Hénon and temporal cat, but the ‘N class’
worries me.

(5.52)

(r − 1) = r̃∂̃(
r−1 − 1

)
(r − 1) = −∂̃2 = 2 (2.36)

J = 2− µ21 =
(
∂̃ + µ1

)(
∂̃ − µ1

)
J̃ = ∂̃ − µ1 = r̃ − µ1− r̃−1

2021-02-19 Predrag Gallas [36] Counting orbits in conjugacy classes of the Hénon
Hamiltonian repeller counts the numbersCn ,Dn ,Nn of (2.35) orbits (switched
to calling ‘prime cycles’ orbits, like Gallas does) in each class, for any ar-
bitrary period n.

Dn is sensible, relatively simply related to the number of points on the
time-reversal diagonal; one expects something like that for any system.

Nn is funky, has to do with the parabola symmetry line, might be what
we call "dynamical".

Cn is just the remainder Mn − Dn − Nn : C1 = · · · = C5 = 0, and then
(Gallas Table 1), starting with C6/2 = 1:

1, 2, 6, 14, 30, 62, 127, 252, 500, 968, 25446, · · · (2.37)

This is not in On-Line Encyclopedia of Integer Sequences OEIS, (It is close to
OEIS:A000918 A000918 a(n) = 2n − 2 and a(n+ 1) = 2 + 2a(n)) so it has
to be reverse engineered to find the Ñn , the numbers of periodic points
of the yet to be written down

√
Hénon map.

The number of Cn/2 periodic points:

Ñ6 = 1 ∗ 6 = 6, Ñ7 = 2 ∗ 7 = 14, Ñ8 = 6 ∗ 8 = 48, Ñ9 = 14 ∗ 9 = 126,

Actually, Ñn = n Cn/2 + n(D2n +N2n) looks more sensible

Ñ6 = ∗∗, Ñ7 = 2∗7+1 = 5, Ñ8 = 6∗8+1 = 19, Ñ9 = 14∗9+2∗2+1 = 61,

MacKay had these numbers already listed in Table 1.2.3.5.1 of his 1982
PhD thesis [51] (click here).
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n 1 2 3 4 5 6 7 8 9 10 11

Nn 2 4 8 16 32 64 128 256 512 1024 .
Mn 2 1 2 3 6 9 18 30 56 99 186

Table 2.1: Lattice states and orbit counts for the a = 6 Hénon map. Compare
with the golden (Fibonacci [9]) cat map table 5.2 and (5.183).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ñn 2 2 4 4 8 8 16 16 32 32 . . . . .
M̃n 3 . . . . . . . . . . . . .

Table 2.2: Temporal lattice states and µ = 1 golden cat map. See (5.183) and
the counting of walks on the “half time-step” Markov graph figure 5.2.

Assuming that (5.60) applies, we can compute Ñ(µ)n from N(s)n

2n = Ñ(µ)2
n , n odd

2n = Ñ(µ)2n , n even . (2.38)

2022-02-21 Predrag In 2021-05-05 Predrag I requested that Sidney use the Gal-
las form (16.11), but in 2021-08-29 Predrag I recognized the error of my
ways - mea culpa, and ever since (2.3) has been our convention for all
scalar field theories.

The Hénon map, as introduced by Hénon [43], is (2.2). Written as a 2nd-
order inhomogeneous difference equation [27], (2.2) takes the temporal
Hénon 3-term recurrence form (2.3). Its Smale horseshoe is generated by
iterates of the region plotted in figure 4.2.

2004-12-27 Predrag These extracts from ChaosBook.org are meant to comple-
ment and perhaps add to the Endler and Gallas explanation [32] of the
“center of mass” puzzle for the cycles listed in table 4.2, first observed
numerically by G. Vattay in ref. [10].

2016-09-19 Predrag 2

We present exact formulas solving the problem of partitioning the total
numberMk of period-k orbits of the area-preserving Hénon map into the
number of orbits building its three possible conjugacy classes. The for-
mulas are valid for any arbitrary period n. They are derived with com-
binatorial methods, by an application of the number-theoretic Moebius

2Predrag 2021-02-15: Copied from DBblog.tex - return eventually, as there are edits here. Not
sure where the next few paragraphs came from.
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inversion formula to a key problem in physics and dynamical systems. A
handy MAPLE implementation of the formulas is also provided.

A number of orbital symmetries and asymmetries computed analytically
and systematically for the Hamiltonian (area-preserving) b = −1 limit of
the Hénon map have been studied in refs. [30, 31].

Endler and Gallas [32] prefer the equivalent, rescaled form x → x/a of
the Hamiltonian Hénon map (2.31):

xn−1 − 2xn + xn+1 + (xn + 2)xn = a , (2.39)

They write: “ The advantage of this equation is that it generates monic
minimal polynomials, i.e. polynomials having 1 as the leading coeffi-
cient. ”

The key result reported was the existence of a natural segregation of all
orbits into three algebraic conjugacy classes with respect to a spatial re-
flection R(x,y)=(y,x) about the y=x symmetry diagonal in state space. Un-
der reflection, every periodic orbit was found to fall into one of three
classes:

D diagonal class, formed by symmetric orbits with points on the time-
reversal symmetry diagonal. An odd period symmetric cycle has
an odd number of points on the boundary, see figure 2.1 (a). An
even period symmetric cycle has an even number of points on the
boundary, see figure 2.1 (b).

N non-diagonal class, formed by self-symmetric orbits without points
on the symmetry diagonal, see figure 2.1 (c).

C chiral class, formed by pairs of asymmetric cycles that map into each
other, see figure 2.1 (d,e).

Each class contains a characteristic algebraic signature embodied by a
specific orbital decompositions (factorizations) [30]. The orbital segrega-
tion is independent of the control parameters and is specially interesting
for ah > 5.69931 · · · , the value beyond which there is a complete Smale
horseshoe and all orbits are real. This Letter reports exact analytical ex-
pressions that count the numbers Cn, Dn, Nn of orbits in each class, for
any arbitrary period n.
32CB

The problem of counting periodic orbits and its partitions is among the
first problems that one needs to address [13, 16, 18, 20, 21, 49, 50, 68]. For
the paradigmatic quadratic map it was addressed very early by Myr-
berg, in what appears to be one of the first applications of computers
to dynamics [54–58]. Apart from counting orbits, he knew well how to

3Predrag 2022-02-25: Re figure 4.1: If anybody ever gives some thought to orbit Jacobian matrix
eigenvalues of figure 16.2 (right), the corresponding eigenvectors might illuminate this point.
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Figure 2.1: Periodic orbits of the Hamil-
tonian Hénon map (2.30): (a) An odd-
period orbit can have a point on the
boundary, and thus belong to the diag-
onal class D. Example: the 3-cycles 001,
011. (b) An even-period orbit can have
two points on the boundary, and thus be-
long to the diagonal class D. Example:
the 4-cycle 0011. (c) An even-period or-
bit can belong to the non-diagonal class
N. Example: the 6-cycle 000111, with
no points on the boundary. (d) Al-
most all longer orbits are asymmetric,
‘chiral’ class C. Example: the 7-cycle
0001011, and (e) its partner 0001101 un-
der flip across the diagonal and time-
reversal. Under the time reversal peri-
odic points symbol sequences are mir-
rored into their symmetry partners point
by point. For spatiotemporal cat ex-
amples, see figure 20.5, figure 20.6, fig-
ure 20.18, figure 20.20, figure 20.22.
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exploit symbolic dynamics and what was later named “itineraries” and
“kneading sequences” [53] to efficiently tabulate parameters with no less
than 11 digits of accuracy. The problem of counting orbits for the Hénon
map was also addressed very early, in a pioneering work by Simó [62]
using an approach centered in the strange attractor creation/destruction.

The direct combinatorial problem of determining the partitions Cn, Dn,
Nn individually seems to be very hard. However there is an efficient
way of getting indirectly to them by counting the orbital points lying on
symmetry axis of the problem. This is what we do. The approach is a
nice application of enumerative combinatorics and the number-theoretic
Moebius inversion formula to a key problem in physics and dynamical
systems. Several complementary aspects of combinatorial dynamics are
discussed in ref. [1].

2021-02-18 Predrag Predrag: as the logistic map (??) is not invertible map, I ex-
pect no information about the time reversal factorization from this group
of papers:

Gallas [37] Equivalence among orbital equations of polynomial maps arXiv:1809.05399
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Table 2.3: The temporal Hénon period-5 and -6 symmetric lattice states of type
figure ?? (b), with symmetry indicated in the σ-reflection format (??). For odd
n = 2m + 1, symmetric orbits reduce to blocks of length m + 1. For even
n = 2m, their lengths are either m + 1 or m. The period-5 lattice states are
plotted in figure 4.1 (to supersede figure 16.2 (left)). There is no asymmetric
period-5, the first Cn asymmetric pair is period-6. Indicated: the binary code
sj of the field xj at the lattice site j = 0, 1, 2, 3, 4.

C5 x−2x−1x0 x1x2| D5

11110 11 0 11 | 0 11 |
00011 10 0 01 | 0 01 |
00101 01 0 10 | 0 10 |
00001 00 1 00 | 1 00 |
11010 10 1 01 | 1 01 |
11100 01 1 10 | 1 10 |

C6 x0x1x2x3x4x5 D6

001011 001011 001011
110100 110100

x0x1x2x3x2x1

010001 0 10 0 01 0 10 0
011111 0 11 1 11 0 11 1
001110 0 01 1 10 0 01 1
100000 1 00 0 00 1 00 0
101110 1 01 1 10 1 01 1

x0x1x2|x2x1x0|
001100 001|100| |001|
011110 011|110| |011|

Gallas [38] Orbital carriers and inheritance in discrete-time quadratic dynamics
arXiv:2008.01073:
[...] may be all conveniently extracted from just a single mathematical
object, a polynomial called an orbital carrier, see for example (??). All
orbits may be encoded simultaneously by a single carrier, with p orbit
parameterized by the orbital sum σp.
recurrence
from Pincherle’s relation
Simó [62] On the Hénon-Pomeau attractor is a very fine early paper. Cite it
in Hénon remark. No mention of symmetry lines, though.
MacKay [51] 1982 PhD thesis, published as Renormalisation in Area-preserving
Maps has a chapter on reversible maps. Do cite in our paper(s).
The theory comes from deVogelaere [26] On the structure of symmetric pe-
riodic solutions of conservative systems, with applications (1958)

Orbits and periodic points A periodic point is a solution (x, n), x ∈ Rd, n ∈ Z
of the periodic orbit condition

x = fn(x) (2.40)

for a given mapping f . Each periodic point x = xp,i ∈ p belongs to a time orbit,
a orbit p of period np, and its np distinct images

fk(xp,i) = xp,i+k , i+ k mod np
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Figure 2.2: The 6 period-5 orbits are
of Endler-Gallas class D (here called
odd period symmetric cycles (o), see
(??)): they are symmetric under reflec-
tion across the diagonal, have a single
point on it, corresponding to 2 successive
field values of an even-reflection pair.
Compare with the lattice state plots of
figure 4.1. The pairs 5,1 & 5,3 and 5,1
& 5,3 have an additional symmetry un-
der reflection and stretch (Predrag: what
is that? I do not see it) across the other
diagonal.
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are the successive periodic points along the cycle.
A orbit p of period np is a single traversal of the orbit.
We list the number of orbits up to length 10 for the 2-letter complete sym-

bolic dynamics in tables ?? and ??.
4 5 Consider the n-periodic point condition 0 = fn(x)− x. This polynomial

of order 2n has zeros at all shorter, period d orbits if d is a divisor of n. Dividing
those out, we arrive at the polynomial [52]

Qn(x) =
∏
d|n

(
fd(x)− x

)µ(n/d)
, (2.41)

with nMn zeros corresponding to the n periodic points for each orbit p of pe-
riod np = n, Qn(x) =

∏
p Pp(x) , where the nth order polynomial

Pp(x) =
∏
i∈p

(x− xp,i) = 0 , np = n (2.42)

has zeros at all periodic points in orbit p. Except for some values of a, at which
bifurcations occur, these are simple zeros.

4Predrag 27dec2004: table ?? derived from knead.tex
5Predrag 27dec2004: extracted from smale.tex
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The coefficients in the expansion of (2.45) are symmetric polynomials in xi,
all reducible to powers of the orbital sum σp (2.33), a orbit p invariant, For
example, the xn−2 coefficient

2
∑
i<j

xixj = σ2 −
∑
i

x2
i = σ2 + 2σ − npa

can be expressed in terms of σ2, σ and a

Pp(x) = xnp − σpxnp−1 + (σ2 + 2σ − npa)xnp−2 + · · · ± (σnp · · · ) . (2.43)

We refer to σ as the “center of mass” of cycle p (up to an overal prefactor of
1/np). It was introduced by Friedland and Milnor [34], who refer to it as ‘the
center of gravity’.

By cyclic invariance of periodic points in p, σp is invariant under x→ f(x),
so it is an intrinsic property of the orbit p, hence it can take at most Mn distinct
values corresponding to the Mn orbits p of period np = n.

Endler and Gallas [32] succeeded - after considerable algebra - in comput-
ing explicitly the Mn-th order polynomials

Sn(σ) = 0 , (2.44)

6 for np ≤ n. The Mn root σ = σp substituted into the nth order polynomial

Pn(x, σp, a) =
∏
i∈p

(x− xi) = 0 , (2.45)

yields the n periodic points x = xp,i belonging to the orbit p as the roots of
Pn(x, σp, a) = 0. As the reduction of symmetric polynomial coefficients does
not rely on the shape of a given orbit p, Pn has the same form for all np = n.

Smale horseshoe Smale horseshoes and symbolic dynamics labeling of the
dynamics - it’s really great, once you get it, because the label tells you every-
thing about the periodic point and the cycle it belongs too. From table ?? you
can read off the shape and symmetry of individual cycles, and the factorization
of S - at least the highest power of σ in each of the monic polynomials it factors
into.

The Jacobian matrix for the nth iterate of the Hamiltonian Hénon map is

Mn(x0) =
1∏

m=n

[
−2xm −1

1 0

]
, xm = fm1 (x0, y0) . (2.46)

7 The determinant of the Hénon one time-step Jacobian matrix (2.46) is con-
stant,

detM = Λ1Λ2 = 1 (2.47)
6Predrag 27dec2004: fill in the explanation
7Predrag 27dec2004: main text - explain the order of multiplication
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so only one eigenvalue Λ1 = 1/Λ2 needs to be determined.
Iterating xn+1 = f (xn) . and checking the sign of xk associates a temporally

ordered topological itinerary s−m · · · s−1s0 with a given trajectory,

sk =

{
1 if xk > 0
0 if xk < 0

. (2.48)

Time reversal symmetry Under the time reversal (2.59) the points in the sym-
bol square for an orientation preserving map are symmetric across the diag-
onal γ = δ. Consequently the periodic orbits appear either in dual pairs
p = s1s2s3 . . . sn, p = snsn−1sn−2 . . . s1, or are self-dual under time reversal,
Sp = Sp.

8 For the orientation preserving case a self-dual cycle of odd period has
at least one point (or odd number of points) on the symmetry diagonal. In
particular, all fixed points lie on the symmetry diagonal.

A self-dual cycle of even period has no, or even number of points on the
symmetry diagonal.

One distinguishes three kinds of cycles: asymmetric cycles a, symmetric
cycles s built by repeats of irreducible segments s̃, and boundary cycles b.

Asymmetric cycles C (‘chiral’ class): A periodic orbits is not symmetric if
{xa} ∩ {Rxa} = ∅, where {xa} is the set of periodic points belonging to the
cycle a. Thus R generates a second orbit with the same number of points and
the same stability properties.

For this class of cycles for any n,

Pa(x, σ, a) =

p∏
(x− xa,i) (2.49)

has n distinct roots {xa,i}. The associated equation for is C(σ)2 = 0.

Example : Follow the successive periodic points in the orbit 0001011, fig-
ure 2.1 (d); then flip across the diagonal, reverse the direction along the cycle,
and you are now on the orbit 0001101, the time reversed partner of 0001011.

Symmetric cycles, no boundary point N (‘non-diagonal’ class): A cycle s
is reflection symmetric if operating with R on the set of periodic points repro-
duces the set. The period of a symmetric cycle is always even (ns = 2m) and the
mirror image of the xs periodic point is reached by traversing the irreducible
segment s̃ of length m, fm(xs) = Rxs.

PN (x, σ, a) = (x− x1)(x− x2)2 · · · (x− xm)2(x− xm+1) (2.50)

has m+ 1 distinct roots.

σp = x1 + 2x2 + ·+ 2xm + xm+1 (2.51)
8Predrag 27dec2004: insert this into the book
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Example : Symmetric (or self-dual orbit):
Draw 4-cycles 0001 and 0111. They map into themselves under flip and time
reversal. That means that if you know 2 periodic points, the other 2 are given
by symmetry.

Even symmetric cycles, 2 boundary points D (‘diagonal’ class):

PD(x, σ, a) =

p∏
(x− xs,i)2 (2.52)

has ns̃ distinct roots.

σp = 2

ns̃∑
i

xp,i (2.53)

3 or more boundary points are not possible for orbits.
Cycle 0011 is an example of even-period boundary orbit . Two periodic

points x1001, x0110 are on the symmetry diagonal, and reflection symmetry of
the remaining x0011, x1100 pair forces a square-shaped trajectory in the [x, y]
plane, see figure 2.1: 9[[

x1001

x1001

]
,

[
−x1001

x1001

]
,

[
−x1001

−x1001

]
,

[
x1001

−x1001

]]
Hence σ0011 = 0, and

P0011 = (x2 − x2
0011)2 . (2.54)

with x0011 =
√
a. Note that this 4-cycle is more robust than the 2-cycle given in

(??) - it exists for a > 0, and is not the period-doubling relative of the 2-cycle.

Odd symmetric cycles n = 2m+ 1, 1 boundary point D (‘diagonal’ class):

PB(x, σ, a) = (x− x1)2 · · · (x− xm)2(x− xm+1) (2.55)

has m+ 1 distinct roots.

σp = 2x1 + 2x2 + ·+ 2xm + xm+1 (2.56)

Example Boundary cycles:
Draw 3-cycles 001 and 011. They have a point on the diagonal, indicated in the
table S.1.

The time reversal symmetry of the state space (this is true for all Hamilto-
nian time-reversible flows whose Poincaré section is symmetric under [q, p]→
[p, q] diagonal flip, not just polynomial mappings) implies - but we need to
cleanly explain it for this case that Sn(σ) always factorizes into form (2.34).
Endler and Gallas [32] indeed observe that the polynomials S = Sn(σ) fac-
torize into product of polynomials over the above three kinds of cycles.

9Predrag 27dec2004: make into an exercise
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For each n, the Pn(x, σ, a) polynomial should be written explicitly for each
of the 3 symmetry classes [a, s, b]. In particular, for Ps(x, σ, a) the factorization
over 1/2 of the state space

Ps(x, σ, a) =

(
s̃∏

(x− xs̃,i)
)2

(2.57)

is expected, as exemplified by the 6-cycle figure 2.1 (c).

Remark 2.1. “Center of mass” puzzle. The “center of mass” notions play important
role in a number of physical problems, such as: (1) the periodic-orbit formulation of
the deterministic drift and diffusion (2) the kinematic dynamo problem [10, 40], and
(3) Sullivan’s formulation [5, 23, 45, 59] of the Feigenbaum δ eigenvalue problem in the
period-doubling renormalization theory.

The “center of mass” puzzle for the cycles listed in table 4.2 was first observed nu-
merically by G. Vattay in ref. [10], and was resolved by Endler and Gallas [32]. Their
method of solution resembles the methods earlier employed for quadratic polynomials
(and their Julia sets) by Brown [17] 10 and Stephenson [63]. Brown gives cycles up to
length 6 for the logistic map, employing symmetric functions of periodic points. Hitzl
and Zele [44] study the Hénon map for cycle lengths up to period 6.

All explicit values of periodic points for the Hamiltonian Hénon map displayed
here are taken from ref. [32]. Method of ref. [32] applies to cycles of polynomial maps
only, in this case the quadratic map.

Remark 2.2. Complete Smale horseshoe, Hamiltonian Hénon map. It was proved
by Devaney and Nitecki [25, 66] that there is indeed a hyperbolic horseshoe when a >
5 + 2

√
5. Numerical studies indicate that [65, 66]

a > 5.699310786700 · · · . (2.58)

2.6 Symmetries of the symbol square
11 Depending on the type of dynamical system, the symbol square might have
a variety of symmetries. Under the time reversal

· · · s−2s−1s0.s1s2s3 · · · → · · · s3s2s1.s0s−1s−2 · · · (2.59)

the points in the symbol square for an orientation preserving map are symmet-
ric across the diagonal γ = δ, and for the orientation reversing case they are
symmetric with respect to the γ = 1 − δ diagonal. Consequently the periodic
orbits appear either in dual pairs p = s1s2s3 . . . sn, p = snsn−1sn−2 . . . s1, or are
self-dual under time reversal, Sp = Sp. For the orientation preserving case a
self-dual cycle of odd period has at least one point on the symmetry diagonal.

10Predrag : Brown [17] did all the right algebra for the logistic case. but computed approximate
numbers rather than algebraic ones.

11Predrag 2021-04-03: Moved to here from ChaosBook appendFiniteGr. Return once updated
here.
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In particular, all fixed points lie on the symmetry diagonal. Determination of
such symmetry lines can be of considerable practical utility, as it reduces some
of the periodic orbit searches to 1-dimensional searches. 12

2.6.1 Symmetry lines

discuss symmetry lines
example 2.6
p. 124
example 2.7
p. 124
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[10] N. J. Balmforth, P. Cvitanović, G. R. Ierley, E. A. Spiegel, and G. Vattay,
“Advection of vector fields by chaotic flows”, Ann. New York Acad. Sci.
706, 148–160 (1993).

12Predrag 2021-03-24: create appendix chapter/appendCont.tex, include add JH
Jan 18, 2008 Desymmetrization of large spaces, thinking is extra price version from hal-
crow/blog/TEX/symm.tex; create Problems/exerAppCont.tex, Problems/soluAppCont.tex, in-
clude halcrow/blog/TEX/zeghlache.tex; create chapter/refsAppCont.tex.

03/15/2022 siminos/spatiotemp 116 8289 (predrag–8289)

http://dx.doi.org/10.1142/4205
http://dx.doi.org/10.1142/4205
http://dx.doi.org/10.1134/s0040577921050032
http://dx.doi.org/10.1134/s0040577921050032
http://dx.doi.org/10.1134/s0040577921050032
http://dx.doi.org/10.1088/1361-6544/aa7e9b
http://dx.doi.org/10.1088/1361-6544/aa7e9b
http://dx.doi.org/10.1088/1361-6544/aa7e9b
http://dx.doi.org/10.1088/1361-6544/aa7e9b
http://dx.doi.org/10.1134/s156035471802003x
http://dx.doi.org/10.1134/s156035471802003x
http://dx.doi.org/10.1134/s156035471802003x
http://dx.doi.org/10.1134/s156035471802003x
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1016/0167-2789(95)00109-h
http://dx.doi.org/10.1016/0167-2789(95)00109-h
http://dx.doi.org/10.1016/0167-2789(90)90133-A
http://dx.doi.org/10.1016/0167-2789(90)90133-A
http://dx.doi.org/10.1016/0167-2789(90)90133-A
http://dx.doi.org/10.1016/0167-2789(83)90233-6
http://dx.doi.org/10.1016/0167-2789(83)90233-6
http://dx.doi.org/10.1016/0167-2789(83)90233-6
http://dx.doi.org/10.1016/0167-2789(83)90233-6
http://dx.doi.org/10.3934/dcds.2013.33.527
http://dx.doi.org/10.3934/dcds.2013.33.527
http://dx.doi.org/10.3934/dcds.2013.33.527
http://dx.doi.org/10.3934/dcds.2013.33.527
http://dx.doi.org/10.1111/j.1749-6632.1993.tb24687.x
http://dx.doi.org/10.1111/j.1749-6632.1993.tb24687.x
http://dx.doi.org/10.1111/j.1749-6632.1993.tb24687.x


CHAPTER 2. TEMPORAL HÉNON

[11] C. Beck, “Spontaneous symmetry breaking in a coupled map lattice sim-
ulation of quantized Higgs fields”, Phys. Lett. A 248, 386–392 (1998).

[12] O. Biham and W. Wenzel, “Characterization of unstable periodic orbits
in chaotic attractors and repellers”, Phys. Rev. Lett. 63, 819 (1989).

[13] R. L. Bivins, J. D. Louck, N. Metropolis, and M. L. Stein, “Classification
of all cycles of the parabolic map”, Physica D 51, 3–27 (1991).

[14] S. V. Bolotin and D. V. Treschev, “The anti-integrable limit”, Russ. Math.
Surv. 70, 975–1030 (2015).

[15] S. Bolotin and R. MacKay, “Multibump orbits near the anti-integrable
limit for Lagrangian systems”, Nonlinearity 10, 1015–1029 (1997).

[16] A. Bridy and R. A. Pérez, “A count of maximal small copies in Multibrot
sets”, Nonlinearity 18, 1945–1953 (2005).

[17] A. Brown, “Equations for periodic solutions of a logistic difference equa-
tion”, J. Austral. Math. Soc. Ser. B 23, 78–94 (1981).

[18] K. M. Brucks, “MSS sequences, colorings of necklaces, and periodic
points of f(z) = z2-2”, Adv. Appl. Math. 8, 434–445 (1987).

[19] D. N. Butusov, A. I. Karimov, N. S. Pyko, S. A. Pyko, and M. I. Bogachev,
“Discrete chaotic maps obtained by symmetric integration”, Physica A
509, 955–970 (2018).

[20] O. Chavoya-Aceves, F. Angulo-Brown, and E. Piña, “Symbolic dynam-
ics of the cubic map”, Physica D 14, 374–386 (1985).

[21] W. Y. C. Chen and J. D. Louck, “Necklaces, MSS sequences, and DNA
sequences”, Adv. Appl. Math. 18, 18–32 (1997).

[22] Y.-C. Chen, “Bernoulli shift for second order recurrence relations near
the anti-integrable limit”, Discrete & Continuous Dynamical Systems -
B 5, 587–598 (2005).
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Example 2.1. Hénon map. The map 2CB

xn+1 = 1− ax2
n + byn

yn+1 = xn (2.60)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. Written as a 2nd-order inhomogeneous difference equation (3-term
recurrence relation), the temporal Hénon is

xn+1 = 1− ax2
n + bxn−1 . (2.61)

An (n+ 1)-term recurrence relation is the discrete-time analogue of an nth order differ-
ential equation, and it can always be replaced by a set of n 1-step relations.

Always plot the dynamics of such maps in the (xn, xn+1) plane, rather than in the
(xn, yn) plane, and make sure that the ordinate and abscissa scales are the same, so
xn = xn+1 is the 45o diagonal. There are several reasons why one should plot this way:
(a) we think of the Hénon map as a model return map xn → xn+1, and (b) as parameter
b varies, the attractor will change its y-axis scale, while in the (xn, xn+1) plane it goes
to a parabola as b→ 0, as it should.

Example 2.2. Temporal Hénon. For b = −1 parameter value the Hénon map 2CB
(16.14) is the simplest example of a nonlinear Hamiltonian map, a 2-dimensional orien-
tation preserving, area preserving map, often studied to better understand topology and
symmetries of Poincaré sections of 2-degrees of freedom Hamiltonian flows.

We find it convenient [32] to multiply (2.61) by a and absorb the a factor into the
definition the lattice field φ = a x. This brings the Hamiltonian Hénon map to the form

φn+1 = a− φ2
n − pn

pn+1 = φn , (2.62)

or, equivalently, the temporal Hénon (2.39) 3-term recurrence relation of form

φi+1 + φ2
i + φi−1 = a , i = 1, ..., np . (2.63)

We can write this as a lattice field equation with lattice Laplacian (3.6)

2φn + (φn + 2)φn = a . (2.64)

The field equation is nonlinear, with the cubic potential (3.24).
For definitiveness, in numerical calculations in examples to follow we shall fix (arbi-

trarily) the stretching parameter value to a = 6, a value large enough to guarantee that
all roots of 0 = fn(x)− x (periodic points) are real.

exercise ??
click to return: p. ??Example 2.3. Temporal Hénon fixed points. Since we are looking for fixed points

pq of (2.62), each successive step is the same as the previous,(
φq
pq

)
=

(
a− φ2

q − pq
φq

)
.

Thus there two fixed points, given by the roots of the quadratic equation φ2−2φ−a = 0 ,
13

φ0 = −1−
√

1 + a

φ1 = −1 +
√

1 + a . (2.65)

13Predrag 2021-04-28: agrees with Endler and Gallas [32] a = 6 values
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14 01 periodic points are (??)

φ10 = 1 +
√
a− 3 , φ01 = 1−

√
a− 3 . (2.66)

click to return: p. ??

Example 2.4. Temporal Hénon stability. For the Hénon map (2.62) the temporal
evolution Jacobian matrix for the nth iterate of the map is the product of consecutive
one time-step Jacobian matrices

Jn(φ0) =

1∏
m=n

[
−2φm −1

1 0

]
, φm = fm1 (φ0, p0) . (2.67)

The decreasing order in the indices of the products in above formulas is a reminder
that the successive time steps correspond to multiplication from the left, Jp(φ1) =
J(φnp) · · · J(φ1).

The determinant of the Hénon one time-step Jacobian matrix in (2.67) is a constant,

det J = 1 , (2.68)

so the map is Hamiltonian (symplectic) in the sense that it preserves areas in the [φ, p]
plane.

The Floquet matrix Jp for a orbit p of length np of the Hénon map (2.62) is evalu-
ated by picking any periodic point as a starting point, running once around a orbit, and
multiplying the individual periodic point Jacobian matrices (2.67),

Jp(x0) =

1∏
k=np

[
−2φk −1

1 0

]
, φk ∈Mp , (2.69)

Once we have a periodic orbit of Hénon map, we also have its Floquet matrix. Only the
expanding eigenvalue Λ1 = 1/Λ2 needs to be determined, as det J = Λ1Λ2 = 1.

The orbit Jacobian matrix is the δ/δφk derivative of the temporal Hénon (2.63) 3-
term recurrence relation

Jp = σ + 2Xp + σ−1

=



2φ0 1 0 0 . . . 0 1
1 2φ1 1 0 . . . 0 0
0 1 2φ2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 2φn−2 1
1 0 . . . . . . . . . 1 2φn−1


, (2.70)

where Xp is a diagonal matrix with p-lattice state φk in the kth row/column, and the ‘1’s
in the upper right and lower left corners enforce the periodic boundary conditions.

The trace of the orbit Jacobian matrix is twice the orbital sum [39]

σp =
∑
i∈p

φp,i (2.71)

a prime cycle p invariant that satisfies a polynomial equation Sn(σ) = 0 of the order np,
the period of the cycle. 15

14Predrag 2021-04-28: make into na exercise: Show that (2.65)...
15Predrag 2021-05-04: Perhaps include the example (??)?
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The two fixed points (2.66) are hyperbolic for a > 3, with expanding eigenvalues

Λ0 = 1 +
√

1 + a+ (1 + a)1/4

√√
1 + a+ 2

Λ1 = 1−
√

1 + a− (1 + a)1/4

√√
1 + a− 2 , (2.72)

The action of the temporal Hénon orbit Jacobian matrix can be hard to visualize, as
a period-2 lattice state is a 2-torus, period-3 lattice state a 3-torus, etc.. Still, the funda-
mental parallelepiped for the period-2 and period-3 lattice states, should suffice to con-
vey the idea. The fundamental parallelepiped basis vectors (15.106) are the columns of
J . The [2×2] orbit Jacobian matrix and its Hill determinant follow from (2.65)

J =

(
2φ0 2

2 2φ1

)
, DetJ = 4 (φ0φ1 − 1) = −4 (a− 3) . (2.73)

The resulting fundamental parallelepiped shown in figure ?? (a). Period-3 lattice states
for s = 3 are contained in the half-open fundamental parallelepiped of figure ?? (b),
defined by the columns of [3×3] orbit Jacobian matrix

J =

 2φ0 1 1
1 2φ1 1
1 1 2φ2

 , DetJ = 8φ0φ1φ2 − 2 (φ0 + φ2 + φ3) + 2 , (2.74)

and for an period-n lattice state, 16

DetJ = 2nφ0φ1φ2 · · ·φn−1 , n > 3 . (2.75)

Example 2.5. Hamiltonian Hénon map, reversibility. The Hénon map (??) is
reversible, with its inverse interchanging the roles of x and y:

xn−1 = yn

yn−1 = a− y2
n − xn , (2.76)

hence the dynamics is symmetric in the [x, y] plane: a trajectory maps into a trajectory
under the flip across the x = y diagonal[

y
x

]
= R

[
x
y

]
=

[
0 1
1 0

] [
x
y

]
(2.77)

and the time reversal. The reversor R is orientation reversing, det [∂R] = −1, and is
an involution, R2 = 11. In other words, the Hamiltonian Hénon map is conjugate to
its inverse f ◦ R = R ◦ f−1, and can be factored into a pair of orientation reversing
involutions, f = (fR) ◦R = T ◦R, with

T

[
x
y

]
=

[
x

a− x2 − y

]
. (2.78)

Equivalently, writing f = S ◦ (Sf) = S ◦ U , the reversor

U

[
x
y

]
=

[
a− y2 − x

y

]
(2.79)

factorizes the Hénon map as f = ST .
click to return: p. ??

16Predrag 2021-05-04: A guess, absolutely wrong - Fix!
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Example 2.6. Symmetry lines of the standard map. In practice the search for im-
portant classes of periodic orbits for the standard map takes advantage of its remarkable
symmetry: A can be written as the product of two involutions, A = T2 · T1, (involution
means that the square of the map is the identity):

remark 1.5

T1(x , y) = (−x , y − k sinx)

T2(x , y) = (−x+ y , y) . (2.80)

Now define symmetry lines L1 and L2 as the sets of fixed points of the corresponding
involution: L1 consists of the lines x = 0, π, L2 of x = y/2 mod (2π). There are deep
connections between symmetry lines and periodic orbits: we just give an example with
the following statement: if (x0, y0) ∈ L1 and AM (x0, y0) ∈ L1 (i.e. they are both fixed
points of T1), then (x0, y0) is a periodic point of period 2M . 17 As a matter of fact

A2M (x0, y0) = AM−1T2T1A
M−1T2T1(x0, y0)

= AM−1T2A
M−1T2(x0, y0) (2.81)

by the fixed point property. Now the involution property implies

T2A = T1 AT1 = T2 (2.82)

and thus
AT2AT2 = AT1T2 = 1 (2.83)

and
APT2A

PT2 = AP−1T2A
P−1T2 (2.84)

from which it easily follows that (x0, y0) belongs to a 2M cycle.
click to return: p. 116

(Continued in example 2.7.)

Example 2.7. Symmetry lines of the cat map. (Continued from example 2.6.) In-
stead of standard map, consider its linear relative, the cat map, obtained by substituting
k sinx → Kx in (2.80). A can now be written as the matrix product of two involutions,
A = T2 T1,

T1(x , p) = (−x , p−Kx) ⇒ T1 =

[
−1 0
s− 2 1

]
T2(x , p) = (−x+ p , p) ⇒ T2 =

[
−1 1
0 1

]
⇒ A =

[
s− 1 1
s− 2 1

]
. (2.85)

T1 and T2 are involutions as their squares are the identity. We have substituted K =
−s+ 2, where s = trA.

18 Now define symmetry lines L1 and L2 as the sets of fixed points of the corre-
sponding involution: L1 consists of the lines x = 0 mod 1, L2 of p = 2x. There are
deep connections between symmetry lines and periodic orbits: we just give an example

17Predrag 2021-04-03: Bad notation - M is monodromy matrix
18Predrag 2021-04-10: complete the rewrite here.
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with the following statement: if (x0, p0) ∈ L1 and AM (x0, p0) ∈ L1 (i.e. they are both
fixed points of T1), then (x0, p0) is a periodic point of period 2M . As a matter of fact

A2M (x0, p0) = AM−1T2T1A
M−1T2T1(x0, p0)

= AM−1T2A
M−1T2(x0, p0) (2.86)

by the fixed point property. Now the involution property implies

T2A = T1 AT1 = T2 (2.87)

and thus
AT2AT2 = AT1T2 = 1 (2.88)

and
APT2A

PT2 = AP−1T2A
P−1T2 (2.89)

from which it easily follows that (x0, p0) belongs to a 2M cycle.
I see no J = J̃>J̃ factorization in style of (5.53)

click to return: p. 116

Exercises boyscout
2.1. “Center of mass” puzzle. Why is the “center of mass,”

tabulated in exercise 4.1, often a rational number?

2.2. Hénon temporal lattice.
1-dimensional temporal Hénon lattice (see ChaosBook
Example 3.5) is given by a 3-term recurrence

xn+1 + ax2
n − b xn−1 = 1 .

The parameter a quantifies the “stretching” and b quan-
tifies the “contraction”.
The single Hénon map is nice because the system is a
nonlinear generalization of temporal cat 3-term recur-
rence CL18 eq. catMapNewt, with no restriction to the
unit hypercube XXX, but has binary dynamics.
There is still a tri-diagonal orbit Jacobian matrix J CL18
eq. tempCatFixPoint, but CL18 eq. (Hessian) is now lat-
tice state dependent. Also, I beleive Han told me that
CL18 sect. s:Hill Hill determinant: stability of an orbit vs. its
time-evolution stability block matrices derivation of Hill’s
formula does not work any more. Neither does the ‘fun-
damental fact’, as each lattice state’s orbit Jacobian ma-
trix is different, and presumably does not count periodic
states, as there is no integer lattice within the Hill deter-
minant volume.
Does the ChaosBook flow conservation sum rule Chaos-
Book ed. (27.15) (or CL18.tex eq. Det(jMorb)eights) still
work?
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The assignment: Implement the variational searches for
periodic states in Matt’s OrbitHunter, find all lattice states
up to n = 6.
(a) a = 1.4 b = 0.3, compare with ChaosBook Ta-
ble 34.2.
(b) For b = −1 the system is time-reversible or ‘Hamilto-
nian’, see ChaosBook Example 8.5. For definitiveness,
in numerical calculations in examples to follow we fix
(arbitrarily) the stretching parameter value to a = 6, a
value large enough to guarantee that all roots of the pe-
riodic point condition 0 = fn(x)− x are real.
Note also ChaosBook sect A10.3 Hénon map symmetries
and ChaosBook Exer. 7.2 Inverse iteration method.
The deviation of an approximate trajectory from the 3-
term recurrence is

vn = xn+1 − (1− ax2
n + b xn−1)

In classical mechanics force is the gradient of a potential,
which Biham-Wenzel [12] construct as a cubic potential

Vn = xn+1xn − b xnxn−1 + (ax3
n − xn) . (2.90)

With the cubic potential at lattice site n we can start to
look for orbits variationally. Note that the potential is
time-reversal invariant for b = 1.
Compare with XXX

2.3. Engel Point Groups 1. (Engel’s [33] Point Groups
Exercise 1): The molecule on the left has C1s which sig-
nifies that it has reflection symmetry over one axis. The
molecule on the right has C3 symmetry, signifying that
it is symmetric by rotations of 2π

3
or one third of a full

circle.
M. Engel

2.4. Engel Point Groups 3. (Engel’s [33] Point Groups Ex-
ercise 3): Three point groups for C2H6: a. C3v because
rotating it by 1/3 of a circle leaves it invariant, and one
can cut the molecules into three identical pieces. b. Cs
because the top and bottom have the same orientation, it
is like looking in a mirror, so can apply reflection sym-
metry. c. Unsure, perhaps inversion symmetry Ci.

M. Engel

2.5. The matrix square root. Consider matrix

A =

[
4 10
0 9

]
.

Generalize the square root function f(x) = x1/2 to a
square root f(A) = A1/2 of a matrix A.

03/15/2022 siminos/spatiotemp 126 8289 (predrag–8289)

https://github.com/farom57/Orbit-hunter
https://ChaosBook.org/chapters/ChaosBook.pdf#table.caption.559
https://ChaosBook.org/chapters/ChaosBook.pdf#table.caption.559
https://ChaosBook.org/chapters/ChaosBook.pdf#exmple.8.5
https://ChaosBook.org/chapters/ChaosBook.pdf#section.J.3
https://ChaosBook.org/chapters/ChaosBook.pdf#Item.91
http://www-personal.umich.edu/~engelmm/lectures/ShortCourseSymmetry1.pdf
http://www-personal.umich.edu/~engelmm/lectures/ShortCourseSymmetry1.pdf


Exercises boyscout

a) Which one(s) of these is/are the square root of A[
2 2
0 3

]
,

[
−2 10
0 3

]
,

[
−2 −2
0 −3

]
,

[
2 −10
0 −3

]
?

b) Assume that the eigenvalues of a [d × d] matrix are
all distinct. How many square root matrices does such
matrix have?
c) Given a [2×2] matrix A with a distinct pair of eigen-
values {λ1, λ2}, write down a formula that generates all
square root matrices A1/2. Hint: one can do this using
the 2 projection operators associated with the matrix A.
2 points

Chapter 2. Hénon map
Solution 2.2 - Hénon temporal lattice.

(a) Here’s my initial attempt, I’m trying to see if the flow conservation law CL18
eq. Det(jMorb)eights still works for the Hénon map:

φn+1 + aφ2
n − bφn−1 = 1

The first step seems to be to construct the orbit Jacobian matrix J :

F [Φ] = JΦ− I (2.91)

Where I is the identity matrix, and F is the function where we want to find the zeros for
(the orbits). We can rewrite this as:(

σ + aIΦ− bσ−1)Φ = I (2.92)

Therefore, J is

J = σ + aIΦ− bσ−1 =



aφ1 1 0 · · · −b
−b aφ2 1 · · · 0

0
. . .

. . .
. . .

...
... · · · −b aφn−1 1
1 0 · · · −b aφn

 (2.93)

Before I take a crack at seeing if this flow conservation still holds, I do have some
questions:

Q1 Sidney It appears that the derivation from chapter 23 (eqn 23.17, I don’t know how to cite
that specifically) the denominator of the sum rule is a product of the eigenvalues
Λpi, which (if I remember correctly) are just the eigenvalues of the orbit Jacobian
matrix of the flow or map, which from basic linear algebra I know to be just the
determinant of the orbit Jacobian matrix. It cannot be that straightforward, where
is the flaw in my logic?

Q2 Sidney How do I go from the periodic orbit formulation of the sum rule from Ch 23 to
the lattice formulation? My initial thought is that since lattice states are akin to a
periodic orbit (right?) that the sum can just be immediately changed from a sum
over all periodic orbits, to a sum over all lattice states. Is this reasoning correct?
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Comment Sidney I now realize that the flow sum rule involving the orbit Jacobian matrix (NOT the
Hill matrix) is a fundamental property that applies to all systems (at least all closed
systems), what I now know is that I need to work out if I can convert between the
determinant of the orbit Jacobian matrix and the determinant of the Hill matrix.

Plan Sidney I am going to try to see what I can do with the block matrix proof, and I will get
back to everyone on Friday

Update Sidney I tried working out the proof with the block matrices for just the regular Bernoulli
map, I understand everything except the sentence "For a period-n lattice state
ΦM , the orbit Jacobian matrix (15) is now a [ndXnd] matrix function of the [dXd]
block matrix J." It sort of seemed like it was much like "poof! And then a miracle
happens!" I will keep exploring.
I shall now correct my mistake with the derivation of the orbit Jacobian matrix/Hill
matrix J I shall use the differential definition:

Jij =
δF [Φ]j
δφi

Which gives us that J = σ+2aIΦn−bσ−1. Now I will use the differential definition
of the local Jacobian, where f is a functions such that f(φn) = φn+1

Jij =
∂f(φn)i
∂φnj

Which gives us that J(φn) = −2aφn. So we can rewrite J = σ−J(phin)I−bσ−1,
with the understanding that J changes along the diagonal. I am not quite sure how
to bring this to the sum rule, but I will soon (hopefully), how do I math things like
φ and Φ bold?

Update Sidney I need to do a proper mathematical look at the flow conservation, but the Hénon
map is not flow conserving (some trajectories are inadmissible) so the sum rule
does not equal 1, I will try later to look at what it does equal analytically, but until
then I will tackle the computation. I have made great progress with that, with help
from Matt I was able to create a working code that gave me the correct orbits up
to length 10 (I could not check past that). The code is in my blog. Once Matt
has completed the current round of OrbitHunter updates I shall try to use that to
reproduce my results.

Solution Sidney (a) The flow conservation sum rule does not sum to 1 so it does not work as
before, I still need to try to relate the global Hill matrix to the local Jacobian matrix,
I think I may be close to reworking the block matrix proof. Anyway, here are the
periodic points I found (please note that the code cannot be used to find fixed
points (n=1) so I just did it analytically, I will try to add that to the code later):

n = 1 − 1.13135447

n = 1 0.63135447

n = 2 [0.97580005,−0.47580005]

n = 4 [1.12506994,−0.70676678, 0.63819399, 0.21776177]

n = 6 [1.03805954,−0.41515894, 1.07011813,−0.72776163, 0.57954366, 0.31145232]

n = 6 [1.1579582,−0.8042199, 0.44190995, 0.48533586, 0.80280173, 0.2433139]

When I tried to find n = 3 and n = 5 the code returned nothing, this matches
with what is tabulated in table 34.2. I will try using some of the analytical pruning
techniques to prove that n = 3 and n = 5 are not allowed.
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(Sidney Williams 2021-01-20)

Solution 2.3 - Engel Point Groups 1. The molecule on the left has Ci symmetry
which is inversion symmetry NOT reflection symmetry because the top and bottom ar-
rangements are not like they would be if placed in front of a mirror. The molecule on
the right has C3v symmetry, which is pyramidal symmetry which corresponds to the fact
that one could take three slices of the molecule and they would each be identical, not
just the configuration would be preserved by a rotation.

(Sidney Williams 2021-03-07)

Solution 2.4 - Engel Point Groups 3. Apparently, it depends based on whether we are
dealing with staggered Ethane or not. If it is staggered, then it has inversion symmetry,
if it is not, it has reflection symmetry, it should have C3 symmetry instead of C3v which
confuses me a great deal. If I remember correctly it should correspond to a reflection
vertical plane, which it should have, so I do not understand. The third one is C2 which I
do not understand how it is different from the inversion symmetry. Although, looking at
simulations from here, it looks like the C2 group can be used to rotate about axes that
are different in orientation from just right through the middle. (Sidney Williams)
2021-03-07

Solution 2.5 - The matrix square root. . now in CB
a) It is easy to check that

A =

[
4 10
0 9

]
=
(
A

1/2
ij

)2

for the matrices

A
1/2
++ =

[
2 2
0 3

]
, A

1/2
+− =

[
−2 10
0 3

]
A

1/2
−− =

[
−2 −2
0 −3

]
, A

1/2
−+ =

[
2 −10
0 −3

]
(2.94)

Being upper-triangular, the eigenvalues of the four matrices can be read off their diag-
onals: there are four square root ± eigenvalue combinations {3,2}, {-3,2}, {3,-2}, and
{-3,-2}.

Associated with each set λi ∈ {λ1, λ2} is the projection operator

P
(1)
ij =

1

λ1 − λ2
(A

1/2
ij − λ21) =

[
0 2
0 1

]
(2.95)

P
(2)
ij =

1

λ2 − λ1
(A

1/2
ij − λ11) =

[
1 −2
0 0

]
. (2.96)

Note that all ‘square root’ matrices have the same projection operators / eigenvectors
as the matrix A itself, so one can drop the ij subscripts on P (1), P (2).
b) If the eigenvalues of a [d × d] matrix are all distinct, the matrix is diagonalizable, so
the number of square root ± combinations is 2d. However, for general matrices things
can get crazy - there can be no, or some, or∞ of ‘square root’ matrices.
c) We know {λ1, λ2} and P (α) for A, and the four ‘square root’ eigenvalues are clearly
{±λ1/2

1 ,±λ1/2
2 }. That suggest finding the ‘square root’ matrices (2.94) by reverse-

engineering (2.95), (2.96):

A
1/2
ij = (λ1 − λ2)P (1) + λ21 ,
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which is, of course, how the problem was cooked up. For example,

A
1/2
+− = (+3− (−2))

[
0 2
0 1

]
+ (−2)

[
1 0
0 1

]
.
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Field theory

2022-01-31 Predrag My quantum field theory notes take one semester to go
through, not something we have time for right now. There is a part you
already know much about: Lattice field theory. Our partition function is
as in the notes, but while in QED and in the notes one focuses on the weak
coupling perturbation expansion Feynman diagrams, our current project
is to start from the anti-integrable, strong coupling side of the theory, and
the method is the WKB or saddle point or stationary phase approxi-
mation (Laplace method every theorist needs to know), in which - good
luck for us - deterministic solutions (our lattice states) dominate, with the
deterministic partition function eq. (9), or the ChaosBook deterministic
trace formula eq. (21.9) as our starting point. That’s in no textbook that
I know of, other than the ChaosBook.org that cover this from our global
perspective.

2021-09-24 Predrag to everybody A deep but important question for reformu-
lating all of "dynamics" as (lattice) field theory:

One important advantage of the reformulation is that we find all compu-
tations (determining lattice states, Hill determinants) more effective and
natural on the reciprocal lattice.

How does pruning work in the global, lattice formulation? Can we see
it on the reciprocal lattice? In the fundamental domain, where we only
see orbits, not the range of lattice states of which perhaps only one strays
into the inadmissible territory?

Fundamental (to me) is the pruning theory, the criteria for inadmissi-
ble orbits, see ChaosBook sect. 14.5 Kneading theory and ChaosBook
sect. 15.4 Prune Danish.

Is there a pruning criterion on the reciprocal lattice?

I would start by the reciprocal kneading value lattice state for a tent map
or Bernoulli map (maybe that one first?), color all pruned orbits a differ-

131
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CHAPTER 3. FIELD THEORY

Figure 3.1: 3-dimensional lattice. From ref. [62].

ent color, and see whether there is a ‘pruning front’ in the fundamental
domain?

Now, none of the above has “Burnside" in their index.

3.1 Lattice discretization of a field theory
1

In Euclidean field theory the fields φ(x) depend on the d Euclidean coordi-
nates, so introduce a discretized spacetime in form of a d-periodic hypercubic
integer lattice Zd/Ld (see figure 3.1), with lattice spacing ai = ∆xi and lattice
period Li = 1/∆xi along the unit vector

n̂i ∈ {n̂1, n̂2, · · · , n̂d}

pointing in the ith positive direction. The (scalar) field φ(x) is evaluated only
on the lattice points

φz = φ(x) , x = az = lattice point , z ∈ Zd/Ld . (3.1)

1Predrag 2020-03-15: Some of the formulas initially extracted from G. Münster and
M. Walzl [62] Lattice Gauge Theory - A Short Primer, arXiv:hep-lat/0012005, to use in CL18 [29].

Scholarpedia Lattice quantum field theory [61].
Maybe already used:

for CL18 [29]:
φ` = φ(a`), where φ(a`) is defined by the value of the continuum field φ(φ) at the lattice point

φ` = a`
(Here we work in Euclidean space.)
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It is periodic

φz = φz+Lin̂i .

in all directions. We refer to the set of values of Φ = {φz} as a lattice state.
In order to discretize field-theoretic partial differential equations, we need

to lattice derivatives. The forward partial lattice derivative

(∂iφ)z =
φ(x+ ∆xin̂i)− φ(x)

∆xi
=
φz+n̂i − φz

∆xi
(3.2)

depends explicitly on the lattice spacing. For our purposes it is convenient
to reformulate the problem as a discretization on an integer lattice. This is
attained by converting all continuum partial derivatives into discrete partial dif-
ferences by ∂i → Li∂i rescaling of the partial derivatives. After this rescaling ∂i
is an integer lattice forward partial difference operator

∂i = ri − 1 . (3.3)

Higher lattice partial difference operators can be defined as [33]

∂ki =
k∑
j=0

(−1)j
(
k

j

)
rk−ji , (3.4)

with support on k + 1 forward points. For example

∂2
i = r2

i − 2ri + 1

∂3
i = r3

i − 3r2
i + 3ri − 1 . (3.5)

The even ones can be centered to be reflection symmetric (symmetric under
transposition) by translation by k sites,

�i = −∂>i ∂i = ri − 21 + r−1
i

�2
i = r2

i − 4ri + 61− 4r−1
i + 6r−2

i , (3.6)

where � =
∑
�i stands for the lattice Laplacian (or d’Alambertian).

Spacetime integrals are now replaced by sums,

∫
ddx −→

∑
x

ad ,
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2 and the lattice free field action is

S =
∑
x

ad

{
1

2

d∑
i=1

(∂µφ(x))2 +
µ2

2
φ(x)2

}

=
∑
z

ad

{
1

2

d∑
i=1

φz
(
−�i + µ2

)
zz′

φz′

}
. (3.7)

In the functional integrals the measure

Dφ =
∏
x

dφ(x)

involves the lattice points x only, so for a finite lattice this is a finite dimensional
integral.

involves the lattice points x only, so we have a discrete set of variables to
integrate. If the lattice is taken to be finite, we just have finite dimensional
integrals.

3

The momenta are also discretized,

pµ =
2π

a

lµ
Lµ

with lµ = 0, 1, 2, . . . , Lµ − 1,

and the momentum-space integration is replaced by finite sums∫
d4p

(2π)4
−→ 1

a4L3T

∑
lµ

.

All “functional integrals” are now regularized, finite expressions.
To recover physics in a continuous and infinite spacetime, one needs to take

the infinite volume limit,
L, T −→∞ ,

and the continuum limit,
a −→ 0.

We shall not discuss the continuum limit of a lattice field theory here.
2Predrag 2020-03-15:

∂µφ(x) =
1

a
(φ(x+ aµ̂)− φ(x)),

and spacetime integrals by sums: ∫
d4x −→

∑
x

a4 .

3Predrag 2020-03-15: Let us assume a hypercubic lattice with length L1 = L2 = L3 = L in
every spatial direction and length L4 = T in Euclidean time,

xµ = anµ, nµ = 0, 1, 2, . . . , Lµ − 1,

with finite volume V = L3T , and periodic boundary conditions

φ(x) = φ(x+ aLµ µ̂),

where µ̂ is the unit vector in the µ-direction.
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3.1.1 To return back to LC21

We write action S[Φ] (see, for example (3.66)) such that the variational extrma
yields classical φ4 theory Euler-Lagrange equations (3.10) on a d-dimensional
hypercubic lattice.

the continuum φk theory action [49, 67, 79]

S[Φ] =

∫
ddx

{
1

2
[∂µφ(x)]

2
+
µ2

2
φ2(x)− g

k!
φk(x)

}
. (3.8)

The discrete scalar one-component field, d-dimensional φk theory Euclidean
action [61] is defined as the lattice sum over the Euclidean Lagrangian

S[Φ] =
∑
z

{
1

2

d∑
µ=1

(∆µφz)
2 +

µ2

2
φ2
z −

g

k!
φkz

}
, (3.9)

with the Klein-Gordon mass µ ≥ 0, the strength of the self-coupling g ≥ 0, and
we set lattice constant a = 1 throughout. The lattice site nonlinear potential is
S[Φ] = S0[Φ] + V [Φ]

V (φt) = − g
k!
φkz , (3.10)

at each lattice site t.
the Laplacian in (3.13).
We are in the “lattice formulation, broken-symmetry phase” or the “Gold-

stone phase” setting. By “spontaneous breaking of the symmetry” they mean
that a solution does not satisfy φ→ −φ. That is obvious for the turbulent solu-
tions, but they mostly look at the weak coupling expansions around one of the
minima.

beyond perturbation theory
4 partition function

Z[J ] =

∫
dΦ e−S[Φ]+Φ·J , dΦ =

L∏
z

dφz , (3.12)

where J = {jz} is an external ‘source’
free field theory action

S0[Φ] =
1

2
Φ>
(
−2 + µ21

)
Φ , (3.13)

The discrete Euler–Lagrange equations

(−2 + µ2)φt + V ′(φt) = 0 . (3.14)
4Predrag 2022-03-01: remove this equation from LC21:

V (Φ,M) =
∑
t∈L

(
−1

2
µ2φ2

t +mt φt

)
, (3.11)

8289 (predrag–8289) 135 03/15/2022 siminos/spatiotemp



CHAPTER 3. FIELD THEORY

Spatiotemporal cat the temporal lattice Laplacian

2φt ≡ φt+1 − 2φt + φt−1 = (s− 2)φt −mt , (3.15)

with the time step set to ∆t = 1.
no nonlinear fields: V [Φ] = 0
the cat map forcing pulse (9.88) is linear in the angular displacement φ,

P (φt) = −V ′(φt) = (s− 2)φ
the temporal cat Euler-Lagrange equation takes form (see free action (3.13))

(−2 + µ2 11) Φ = M , (3.16)

where the Klein-Gordon mass µ is related to the cat-map stretching parameter
s by µ2 = d(s− 2).

3.1.2 Transfer matrix

Picking out a ‘time direction’ and evolving in time slices (what we call Hamil-
tonian formulation) is here called ‘transfer matrix’, presumably in reference to
the similar formulation for the Ising model.

Split the 4D hypecubic lattice z = (z1, z2, z3, z4) into 3-dimensional ‘spatial’
directions z = (z1, z2, z3) and the ‘temporal’ direction z4 = t. Let

Φt = {φz|z4 = t} (3.17)

be a field configuration on a Euclidean time slice z4 = t. Decompose the lattice
action as

S[φ] =
∑
t

L[Φt+1,Φt] (3.18)

This sum looks like the usual 1D temporal lattice action (9.3). Here

L[Φt+1,Φt] =
∑

z

1

2
(φz,t+1 − φzt)

2 +
1

2
(L1[Φt] + L1[Φt+1]) (3.19)

with (here I drop a non-harmonic potential terms)

L1[Φt] =
∑

z

1

2

{
3∑
k=1

(φz+k̂,t − φzt)
2 +

m2

2
φ2

zt

}
(3.20)

Eq. (3.19) looks like a sensible generalization of the temporal lattice generating
function (6.83).

The transfer matrix is defined as

T [Φt+1,Φt] = e−L[Φt+1,Φt] (3.21)

As the matrices are presumably not commuting, it is not obvious to me that
repeated application of the transfer operator adds up to the lattice action S[φ]
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(3.18) in the exponent. Take a field Ψt defined on t time-slice. Then the transfer
operator evolves the initial time-slice by matrix multiplication,

TnΨt = Ψt+n (3.22)

As it stands, it is not obvious how this is supposed to work, but Montvay
and Münster [60] do give the standard differential formulation, explain cor-
relations, etc., so it’s probably OK. For a time-periodic lattice of time period T
they say that

Z = TrTn (3.23)

is the partition function.

2020-07-04 Predrag Would be happier if (3.23) were a Det , i.e., if there were a
T = 1− zJ kind of expression. But ... I do not see a quick way from here
to the Hill’s formula, so I abandon this path for now.

3.2 Deterministic φ3 lattice field theory

2021-12-23 Predrag All φk lattice field theories fit under the “generalized Hénon
map” umbrella. Here φ3 is covered in sect. 2.3 Temporal Hénon; anti-
integrable limit .

Consider the non-Laplacian part of the Lagrangian density (3.9) with cubic
Biham-Wenzel [afind] lattice site potential (3.10)

V1(φ) = − g
3!
φ3 +

µ2

2
φ2 = − g

3!

(
φ3 − 3λφ2

)
, λ = µ2/g , (3.24)

parametrized by the Klein-Gordon mass µ > 0 and the self-coupling constant
g ≥ 0. A cubic function can be brought to the canonical, single parameter p
form

f(x) = x3 + p x , (3.25)

by a coordinate translation φ→ φ+ ε and rescaling [wikiCubic]:

− g
3!

(
(φ+ ε)3 − 3λ(φ+ ε)2

)
= − g

3!

(
φ3 + 3(ε− λ)φ2 + 3ε(ε− 2λ)φ

)
+ (const) .

In order to bring this to the canonical form (3.25), choose the field translation
such that the φ2 term vanishes, ε− λ , so

V1(φ) = − g
3!

(φ3 − 3λ2φ) + (const) .

Rescale the field φ→ λφ, and drop the (const) term. The φ3 potential takes the
canonical form

V1(φ) = − g
3!
φ3 +

µ2

2
φ→ −λ2µ

2

3!
(φ3 − 3φ) ,
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and the k = 3 cubic action (3.9) scalar field theory takes form

S[Φ] =
µ4

g2

∑
z

{
− 1

2
φz2φz −

µ2

3!
(φ3
z − 3φz)

}
. (3.26)

The Euler–Lagrange equation (2.12) for the d = 1 scalar lattice φ3 field theory,

− φt+1 + 2φt − φt−1 −
µ2

2
φ2
t +

µ2

2
= 0 , (3.27)

is thus parametrized by a single parameter, the Klein-Gordon mass µ2, the
“coupling constant” g in (3.9) was but a Fata Morgana. Next, we compute
the period-1 and period-2 lattice states.

Period-1 lattice states. From the Euler–Lagrange equation (2.3) it follows that
the period-1 lattice states, φt = φ, for the d = 1 lattice are the zeros of function

F [φ] =
µ2

2
(1− φ2

t ) , (3.28)

with two real roots φm
(φL, φR) = (−1, 1) . (3.29)

Period-2 lattice states. (PLEASE Crosscheck THIS CALCULATION)
To determine the four period-2 lattice states Φm = φ0φ1, set x = φ2k, y =

φ2k+1 in the Euler–Lagrange equation (3.27), and seek the zeros of

F [x, y] =

(
2(x− y)− µ2

2 (x2 − 1)

2(y − x)− µ2

2 (y2 − 1)

)
. (3.30)

That is best done using the Friedland and Milnor [38] ‘the center of gravity’
and Endler and Gallas [35, 36] ‘center of mass’ or ‘orbit’ polynomials, but for
the period-2 lattice states it suffices to eliminate y using F1 = 0 ⇒ y(x) =

x− µ2

4 (x2 − 1), and seek zeros of the second component,

F2[x, y(x)] =
µ4

16
(x− 1)(x+ 1)

(
x2 − (1− 8

µ2
)
)

(3.31)

The first 2 roots are the x = y period-1 lattice states (3.29). There is one sym-
metric period-2 lattice state 12

x = −y = ±
√

1− 8/µ2 , (3.32)

so the prime period-2 lattice state exists for µ > 8.
Perhaps watch Shadow state for everyone (1:21 min). Not required :)
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3.3 Classical φ4 lattice field theory

Field theorists do not like odd potentials, such as the temporal Hénon (2.27),
for symmetry reasons, as well as that they are not bounded from below.

Classical φ4 lattice field theory. The discrete scalar one-component field, d-
dimensional φ4 theory Euclidean action [61] is defined as the lattice sum over
the Euclidean Lagrangian

S[Φ] =
∑
z

{
1

2

d∑
µ=1

(∆µφz)
2 +

µ2

2
φ2
z −

g

4!
φ4
z

}
, (3.33)

with the Klein-Gordon mass µ ≥ 0, quartic lattice site potential [50] (3.10) 5

V (φz) = − g
4!
φ4
z , (3.34)

the strength of the self-coupling g ≥ 0, and we set lattice constant a = 1
throughout.

A popular way [55] to rewrite the quartic action (3.33) is to complete the
square

µ2

2
φ2
z −

g

4!
φ4
z = − g

4!

(
φ2
z − 3!

µ2

g

)2

+ (const) ,

drop the (const) term, and rescale the field φ2
z → 3! µ

2

g φ
2
z :

S[Φ] = 3!
µ2

g

∑
z

{
− 1

2
φz2φz −

1

4
µ2
(
φ2
z − 1

)2 }
. (3.35)

The Euler–Lagrange equation (2.12) for the d = 1 scalar lattice φ4 field theory,

− φt+1 + [−(s− 2)φ3
t + s φt]− φt−1 = 0 , (3.36)

is thus parametrized by a single parameter, the Klein-Gordon mass µ2 = s− 2;
the “coupling constant” g in (3.33) was but a mirage. Next, we compute the
period-1 and period-2 lattice states.

Period-1 lattice states. From the Euler–Lagrange equation (3.36) it follows
that the period-1 lattice states, φt = φ, for the d = 1 lattice are the zeros of
function

F [φ] = µ2 (1 + φ)φ (1− φ) . (3.37)

As long as the Klein-Gordon mass is positive, there are 3 real roots φm

(φL, φC , φR) = (−1, 0, 1) . (3.38)

5Predrag 2022-03-01: Pick a more standard reference than ref. [50].
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The period-1 Bravais cell orbit Jacobian matrix J is a [1× 1] matrix

J = sm =
dF [φ]

dφ
= µ2 (1− 3φ

2

m) = µ2 or − 2µ2 , (3.39)

so the "stretching" factor for the 3 steady lattice states is

(sL, sC , sR) = (−2µ2, µ2,−2µ2) . (3.40)

Period-2 lattice states. To determine the nine period-2 lattice states Φm =
φ0φ1, set x = φ2k, y = φ2k+1 in the Euler–Lagrange equation (3.36), and seek
the zeros of

F [x, y] =

(−(s− 2)x3 + sx− 2y

−(s− 2)y3 + sy − 2x

)
. (3.41)

That is best done using the Friedland and Milnor [38] ‘the center of gravity’
and Endler and Gallas [35, 36] ‘center of mass’ or ‘orbit’ polynomials, but for
the period-2 lattice states it suffices to eliminate y using F1 = 0 ⇒ 2 y(x) =
−x3 + sx, and seek zeros of the second component,

F2[x, y(x)] =
µ8

8
(x− 1)x (x+ 1)

(
x2 − 1− 4

µ2

)(
x4 −

(
1 +

2

µ2

)
x2 +

4

µ4

)
(3.42)

The first 3 roots are the x = y period-1 lattice states (3.38). There is one sym-
metric period-2 lattice state LR

x = −y = ±
√

1 + 4/µ2 , (3.43)

and a pair of period-2 asymmetric lattice states LC, CR related by reflection
symmetry (time reversal).

For µ2 = 2 the period-2 asymmetric lattice states pairs coalesce with the
two period-1 asymmetric lattice states

2x
(
x2 − 3

)(
x2 − 1

)3
. (3.44)

To get a complete horseshoe (all 3n 3-symbol bimodal map itineraries are re-
alized), you know what to do next (see figure 2. in ref. [38]). Numerical work
indicates [78] that for µ2 > 2.95 the horseshoe is complete.

In the anti-integrable limit [AuAb90, 9] µ→∞, the site field values

F2[x, y(x)]→ µ8

8
(x+ 1)3 x3 (x− 1)3 (3.45)

tend to the three steady states (3.38).
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=========== Ignore the rest for now: ==============================
Orbit Jacobian matrix:

J =

∥∥∥∥ µ2 + 2− 3x2 −2
−2 µ2 + 2− 3y2

∥∥∥∥ (3.46)

Det (J ) = (µ2 + 2− 3x2)(µ2 + 2− 3y2)− 4

= 9(xy)4 + 4µ2 + µ4 . (3.47)

Now you have 3 valuesmt ∈ {L,C,R}, but you want to quotient the reflec-
tion symmetry. See example 5.6 A reflection–symmetric 1d map.).

The Hill determinant ‖J [Φ]‖ is again of the same form (2.28), with the
stretching factor at site t depending on the coupling constant g, the lattice site
field for the given lattice state.

For example, the Hill determinant of the [4 × 4] orbit Jacobian matrix J is
(correct this!):

Det (J ) =

∥∥∥∥∥∥∥∥
s1 −1 0 −1
−1 s2 −1 0
0 −1 s3 −1
−1 0 −1 s4

∥∥∥∥∥∥∥∥ (3.48)

= s1s2s3s4 + s1s2s3 + s2s3s4

+s1s2 + s2s3 + s1s4 + s3s4 + s1 + s2 + s3 + s4 .

3.3.1 Anastassiou et al. AnBoBa17 φ4 notes

Notes on, excerpts from Anastassiou, Bountis and Bäcker [7] Homoclinic points
of 2D and 4D maps via the parametrization method (2017).

Breathers and multibreathers in 1-dimensional Hamiltonian lattices [14, 15,
18, 19] (3.52) are homoclinic orbits at the intersections of stable and unstable
manifolds of the origin, which, if hyperbolic, is a saddle point of the map (3.58).
It suffices to locate the primary homoclinic point at which the manifolds first
meet, since it generates under repeated application of f and f−1 all other points
of the associated homoclinic orbit. The paper gives a parametrization method
to locate such homoclinic orbits, compute their points of intersection. They
also give the critical value of the dissipation parameter for which homoclinic
intersections no longer exist.
Hénon map [42]

h(x, y) = (1 + y − ax2, bx), (3.49)

More convenient: its conjugate

h(x, y) = (y,−bx+ a− y2) . (3.50)

Generalized Hénon maps [39, 54]

H(x, y) = (y,−δx+ p(y)), (3.51)
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where p(y) is a univariate polynomial. Dullin and Meiss [31, 32] and this pa-
per take a third degree p(y). Zhang [80] gives sufficient conditions for hyper-
bolicity for arbitrary polynomials p(y). Bifurcations of homoclinic tangencies
involving intersections of invariant manifolds [40] for (3.51).

The dynamics of discrete breather solutions on 1–dimensional lattices (or
chains) of nonlinearly interacting particles is described by the discrete nonlin-
ear Klein-Gordon system of ordinary differential equations

ün = −V ′ (un) + α (un+1 − 2un + un−1) , V (x) =
1

2
Kx2 +

1

4
x4 , (3.52)

where un for −∞ < n < ∞ is the amplitude of the n-th particle, α > 0 is a
parameter indicating the strength of coupling between nearest neighbors, and
V (x) is the on-site potential with primes denoting differentiation with respect
to the argument of V (x). Discrete nonlinear Schrödinger equation is similar.

A discrete breather: insert a Fourier series

un(t) =

∞∑
k=−∞

An,k exp(ikωbt) (3.53)

where ωb the frequency of the breather, obtain

−k2ω2
bAn,k = α (An+1,k − 2An,k +An−1,k)−KAn,k−

∑
k1+k2+k3=k

An,k1An,k2An,k3 ,

(3.54)
A breather solution to the lowest order approximation: substitute un(t) =
2An,1 cos(ωbt) in (3.54), An,1 = An,−1 = An, obtain a 3-term recurrence

An+1 −
2 +K − ω2

b

α
An −

3

α
A3
n +An−1 = 0 . (3.55)

They set c = (2 +K − ω2
b )/α, rescale the Fourier coefficients An→α1/2An:

An+1 − (c+ 3A2
n)An +An−1 = 0 . (3.56)

2022-03-10 Predrag Compare with (3.36), (19.15)

φt = −At , g = −3 , s = c . (3.57)

To get a 2-dimensional area-preserving map, set An−1 = x, An = y:

f(x, y) = (y,−x+ cy + 3y3), (3.58)

This is the generalized Hénon map (3.51) for p(y) = cy + 3y3. Its inverse is
given by

f−1(x, y) =
(
cx− y + 3x3, x

)
. (3.59)
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The mapping is Hamilton, reflection symmetric σ(x, y) = (−x,−y) with three
fixed points on the diagonal, the origin and

±
√

(2− c)/3 . (3.60)

The (0, 0) fixed point stability multipliers are

Λs =
1

2

(
c−

√
c2 − 4

)
, Λu =

1

2

(
c+

√
c2 − 4

)
, (3.61)

Their choice c = −5/2 yields a saddle point at the origin, and theorem of
Zhang [80] ensures existence of a complete horseshoe repeller. The eigenvalues
of the saddle at the origin are 6

Λu = −2 and Λs = −1/2
eigenvectors
(−1, 2) and (−2, 1).

3.3.2 φ4 field theory blog

2016-08-20 Predrag Might be worth a look - several papers on coupled map
lattices, see also ref. [43] on order and chaos in a continuous time, 1-dim-
ensional latticel φ4 model - if you read that literature, please share what
you have learned by writing it up there.

2021-08-11 Predrag Karimipour and Zarei [50] Completeness of classical φ4 the-
ory on two-dimensional lattices arXiv:1201.4558:

The 2-dimensional φ4 Hamiltonian for all discrete scalar field theories on
a two dimensional square lattice with periodic boundary conditions

Hc =
∑
〈r,s〉

Kr,s(φr − φs)2 +
∑
r

hrφr +mrφ
2
r + qrφ

4
r, (3.62)

where Kr,s ∈ {i,−i}, i =
√
−1 and the real parameters hr, mr and qr de-

note respectively the inhomogeneous external field, the quadratic (mass
term) and quartic coupling strengths. The linear terms {hr} are also nec-
essary for completeness.

2021-12-07 Predrag Vierhaus’s masters thesis [76] Simulation of φ4 theory in the
strong coupling expansion beyond the Ising Limit has a clear discussion of the
Ising limit of φ4. Note the reformulation (3.66) of the action, his eq. (2.15).
Compare with the Scholarpedia Triviality of the 4D lattice φ4 [79] action
(3.66).

the discrete φ4 theory Euclidean action [61] defined in terms of the Eu-
clidean Lagrangian [76]

S[Φ] =
∑
z

{
1

2

d∑
µ=1

(∆µφz)
2 +

µ2

2
φ2
z +

g

4!
φ4
z

}
(3.63)

6Predrag 2022-02-18: Signs opposite of (3.61)?
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with the scalar one component field φ, the Klein-Gordon mass µ, the
strength of the self-coupling g and the dimension d, and we set lattice
constant a = 1 throughout.

Wolff [79] sets µ2 < 0 and presumably g > 0 in (3.63), but in order to
agree with spatiotemporal cat I think we need to set µ2 > 0 and g < 0 in
(3.63), as currently written, in order to have double-well shaped density
with maxima at

φz ≡ ±φ with φ
2

= −6µ2
0/g0

Note - for this formulation, one can discuss µ = 0, g = −1 case. The
period-1 lattice states coalesce, and so does the period-2 asymmetric lat-
tice states pair:

F2[x, y(x)] =
1

8
x3(x− 2)(x+ 2)(x2 − 2)2 (3.64)

However, cannot do this for the Ising action, as (3.42) has an explicit over-
all factor of µ2.

2022-03-09 Predrag Aizenman [4] Proof of the triviality of φ4 field theory and some
mean-field features of Ising models for D > 4 (1981)

refers to Simon-Griffiths’ method, Simon and Griffiths [71] The φ4 field
theory as a classical Ising model (1973), but I do not see the action (3.66) in
this paper.

Aizenman [5] Geometric analysis of φ4 fields and Ising models. Parts I and II
(1982)

2022-03-10 Predrag The next 3 Lüscher and Weisz papers are all about weak
coupling expansion and renormalization. We do not want to get into
that, I believe. I hope :)

Lüscher and Weisz [55] Scaling laws and triviality bounds in the lattice φ4

theory (I). One-component model in the symmetric phase (1987)

A complete solution obtained in the sense that all low energy amplitudes
can be computed with reasonable estimated accuracy for arbitrarily cho-
sen bare coupling and mass in the symmetric phase region.

For notational convenience, we choose lattice units throughout this pa-
per, which means that all length scales are measured in numbers of lattice
spacings.

correlation functions

〈φ(x1)φ(x2) · · ·φ(xn)〉 =
1

Z

∫
Dφ e−S[φ]φ(x1)φ(x2) · · ·φ(xn) . (3.65)

A popular way to write the action of the lattice φ4 theory is (3.66). So I
still do not know who to refer to as doing it first.
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S =
∑
x

[
ϕ2
z + λ

(
ϕ2
z − 1

)2]− β ∑
〈zz′〉

ϕzϕz′ . (3.66)

and the parameters are restricted to the range β ≥ 0, λ ≥ 0.

φ =
√
βϕ , µ2 = (1− 2λ)

2

β
− 2d , g = 4!

λ

β2
. (3.67)

For d = 4 λ = 0, κ = 1/8 and the point at λ =∞
Lüscher and Weisz [56] Scaling laws and triviality bounds in the lattice φ4 the-
ory (II). One-component model in the phase with spontaneous symmetry break-
ing (1988)

They consider the one component φ4 theory in the phase, where the re-
flection symmetry φ→ −φ is spontaneously broken.

At strong coupling, the low energy properties of the model are therefore
likely to be more complicated in the broken symmetry phase than in the
symmetric phase, in particular, it is conceivable that bound state particles
form. In the Ising model limit of the theory such bound states do in fact
occur.

The broken symmetry phase is more difficult to treat than the symmetric
phase, because for general bare coupling λ, there is no known (practical)
expansion for β →∞.

Lüscher and Weisz [57] Scaling laws and triviality bounds in the lattice φ4

theory (III). n-component model (1989)

2021-12-05 Predrag φ4 theory also shows up in Brézin & Zinn-Justin (see sect. 13.7)
Mean field theory for the Ising model. Their formulation suggests that the
partition function (3.12) should be written as (13.123) where f [Φ] is free
energy (the large-deviation potential)

Z[J ] = e−NLf [J] . (3.68)

and NL is the number of lattice sites.

Scalar φ4 field theory textbook references: G. Kane [49], Modern Elemen-
tary Particle Physics and P. Ramond [67], Field Theory: A Modern Primer.

2021-12-22 Predrag An unchecked reverse engineering guess: Starting with
the second-order difference equation for φ4 theory:

− ε(zt−1 + zt+1) + zt(zt − 1)(zt + 1) = 0 . (3.69)

At the anti-integrable limit ε→ 0, the map reduces to zt(zt−1)(zt+1) = 0,
with every orbit an arbitrary sequence of {−1, 0, 1}. Then go back to
(3.36), using φ = z/ε, ε = g−1/3.

− φj−1 + g φ3
j − φj+1 = g2/3φj . (3.70)
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Probably not the right thing; note that (3.75) scales the linear term differ-
ently, by ε.

2021-12-22 Predrag Must study Anastassiou [6] Complicated behavior in cubic
Hénon maps, (2021). He defines the generalized Hénon map of the plane
onto itself as

H : R2 → R2, H(x, y) = (y, b x+ p(y)), (3.71)

The determinant of the Jacobian matrix connected to the dissipation of
the system is equal to −b. If the polynomial p(y) is odd, then the map
H(x, y) is symmetric under the transformation

σ(x, y) = (−x,−y) . (3.72)

For −b = 1, the map is a symplectomorphism (or symplectic map) be-
cause it preserves the natural symplectic form of the plane, dx ∧ dy.

Anastassiou studies cubic polynomial p(y) Hénon maps,

H : R2 → R2, H(x, y) =
(
y,−b x+ g(y3 − y)

)
, (3.73)

studied from a different perspective in his earlier articles [7, 8]. He locates
the region of the state space

A =

{
(x, y) ∈ R2 : |x|, |y| ≤

√
1 +

2

g

}
, (3.74)

where the bounded non–wandering set exists, and finds parameter val-
ues g > 4 for which this non–wandering set is hyperbolic. Read his proof
- it is instructive. Remember that these are just very crude bounds - the
stable/unstable manifolds will give tight bounds. He shows that his map
is conjugate to the Bernoulli three-shift, using the anti-integrability tech-
nique [9, 10, 17, 22].

φn+1 − g (φn − φ3
n) + φn−1 = 0 ,

Define ε = 1/g
− ε(φn+2 + φn+1) + φ3

n+1 = ε φn , (3.75)

It is customary to say that such a complex behavior is ‘chaotic’ because
of Devaney’s definition [11].

2021-06-04 Predrag See also Anastassiou, Bountis and Bäcker [8] (2018) Recent
results on the dynamics of higher-dimensional Hénon maps, their fig. 1. They
take

p(y) = cy + 3y3 (3.76)

They chose c = − 5
2 throughout their publication (we should too, to com-

pare results). “This choice is pictorially convenient, since c values in that
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range produce large scale manifolds that are clearly visible in the fig-
ures.”

The cubic mapping possesses three fixed points: saddle point at the ori-
gin, for all parameter values, a symmetric pair at(

±
√

(2− c)/3,±
√

(2− c)/3
)
.

The (0, 0) fixed point Floquet multipliers are

1

2

(
c−

√
c2 − 4

)
,

1

2

(
c+

√
c2 − 4

)
. (3.77)

Since c = −5/2 and δ = 1, the Floquet multipliers of the origin are Λu =
−2 and Λs = −1/2 with normalized eigenvectors (−1/

√
5, 2/
√

5) and
(−2/

√
5, 1/
√

5). The origin is thus a saddle, with a 1–dimensional stable
and a 1–dimensional unstable manifold, whose parametric computation
they explain.

2021-06-04 Predrag Friedland and Milnor [38] Dynamical properties of plane poly-
nomial automorphisms (1989) introduced the generalized Hénon map. Their
theorem 2.6 on the normal form of such maps is nice. In their fig. 2 they
do the 0th order version of the plot that Xuanqi has plotted in figure 19.4:
the three-fold horseshoe associated with a real cubic polynomial.

Dullin and Meiss [31] do that, their fig. 13 (right). They also give a not-
very-tight bound on the parameter region in which the horseshoe is com-
plete, their fig. 12. I do not know how to relate that to our parameters.

2021-06-04 Predrag Dullin and Meiss [31] Generalized Hénon maps: the cubic dif-
feomorphisms of the plane (2000):

The Euler–Lagrange equation associated with this action is

m(φt−1 + φt+1) = U ′(φt) (3.78)

which is the Lagrangian form of the Hénon map. They concentrate on the
area-preserving cubic maps. [...] These are reversible and have an addi-
tional symmetry on a codimension-one line in parameter space (Predrag
currently calls that ‘dynamical symmetry’).

2021-06-04 Predrag The Arneodo–Coullet–Tresser maps (referred to in [52])
are 5-term recurrence equations with φkt nonlinear term, ignore for now.

Li and Malkin [52] Bounded non–wandering sets for polynomial mappings
(2004)

2022-02-17 Predrag For sufficiently strong coupling, lattice state have support
on horseshoe repellers. That does not square with our intuition that QFT
should be unitary (probability conserving). Our experience with semi-
classical quantization of helium is perhaps the clue, ChaosBook sect. 42.2
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Chaos, symbolic dynamics and periodic orbits: “As soon as we switch on
electron-electron interaction these states are no longer bound states; they
turn into resonant states which decay into a bound state of the helium ion
and a free outer electron. This might not come as a big surprise if we have
the classical analysis of the previous section in mind: we already found
that one of the classical electrons will almost always escape after some fi-
nite time. More remarkable is the fact that the first, N = 1 series consists
of true bound states for all n, an effect which can only be understood by
quantum arguments.”

2022-02-28, 020-03-02 Predrag Parenthetically, wiki Cubic function [wikiCubic]
answers my question: the canonical form of a cubic map is

f(x) = x3 + p x

there is only one parameter p, and qualitatively only its sign or being 0
determines the number of its real roots, which is 3 if p < 0:

(φL, φC , φR) = (−√−p, 0,√−p) . (3.79)

Multiply by g, set gp = −µ2, g > 0, get (3.38) with 3 real roots:

g(x) = gx3 − µ2 x (3.80)
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3.3.3 Letter from Ping Ao

2020-12-16 from Ping Ao, aoping@sjtu.edu.cn
Distinguished Professor Shanghai Center for Quantitative Life Sciences
and Physics Department Shanghai University; and Shanghai Center for
Systems Biomedicine Shanghai Jiao Tong University Shanghai, China

Dear Prof. Predrag Cvitanovi c, Many thanks for your inspiring pandemi-
nar on "Spatiotemporal Cat: A Chaotic Field Theory". It is very interesting to
use "chaotic attractors" as building blocks for field theories. Here I have one
remark and one question which may be of an interest to you.

In dynamical systems it is known that there are three generic classes of sys-
tems: fixed points or linear; limit cycles; chaotic attractors. The last two must
be nonlinear, as well explained during your talk. For dissipative dynamical
systems we have explicitly constructions for all three:

1. Structure of stochastic dynamics near fixed points, C Kwon, P Ao, DJ Thou-
less. PNAS 102 (2005) 13029 (click here)

2. Limit cycle and conserved dynamics, XM Zhu, L Yin, P Ao. Intl J Modern
Physics B20 (2006) 817 (click here)

3. Exploring a noisy van der Pol type oscillator with a stochastic approach, Yuan,
R.-S.; Wang, X.-A.; Ma, Y.-A.; Yuan, B. & Ao, P. . Phys Rev E87 (2013)
062109 (click here)

4. Potential function in a continuous dissipative chaotic system: Decomposition
scheme and role of strange attractor, Yian Ma, Qijun Tan, Ruoshi Yuan, Bo
Yuan and Ping Ao. Intl J Bifur Chaos 24 (2014) 1450015 (click here)

5. A summary of our method is here: SDE decomposition and A-type stochastic
interpretation in nonequilibrium processes, Ruoshi Yuan, Ying Tang, Ping Ao
Frontiers of Physics 12 (2017) 120201 (click here)

To my knowledge, we were the first group to explicitly construct the "Hamil-
tonian" for limit cycles and chaotic attractors, thought not possible before our
work. I would be happy to be updated on this, due to our limited knowledge.

My remark is that, our explicit construction for chaotic attractors revealed
a hidden structure which may be useful for your construction, too.

My question is, is there a field theory constructed upon limit cycles?
Will be happy to receive your feedback.

2022-01-31 - Predrag still has no answered Ping Ao, but it must be
done, if you get inspired, please do it :)
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3.4 Normalizing flows

Predrag: What is here called
‘normalizing flow’ f : X → X , invertible and differentiable
Jacobian factor J(z) = |det ∂fi(z)/∂zj |

is the main idea of our refs. [26, 28]); what they call their ‘latent’ space prob-
ability distribution being set to Gaussian is what we call ‘free field theory’.
One pays a determinant of the Jacobian matrix of that field transformation, the
same as for us. But Miranda Cheng says that this determinant “can be easily
computed/approximated" which is news to me.

2021-11-01 Predrag Miranda Cheng
Machine learning and theoretical physics: some applications.

Lattice field theory is the main tool for doing nonpertubative calculations
in field theory. The idea of ML techniques, such as Normalizing Flows,
is that if we can learn an invertible map that trivializes an interacting
model to a free theory, we can easily sample the latter and push back the
samples through the inverse map to obtain (proposed) samples from the
original non-trivial distribution.
Predrag: this is the main idea of our ref. [26, 28]); what they call their
‘latent’ space probability distribution being set to Gaussian is what we
call ‘free field theory’. One pays a determinant of the Jacobian matrix
of that field transformation, the same as for us. But she says that this
determinant “can be easily computed/approximated" which is news to
me.
In the talk she defines the “observable” the way we would; I have not
seen the definition yet in their papers.
The first part is based on
Pim de Haan, Corrado Rainone, Miranda Cheng and Roberto Bonde-
sanScaling Up Machine Learning For Quantum Field Theory with Equivariant
Continuous Flows, arXiv:2110.02673. Cheng has typos in her presentation
(probability density ” + ”Det |J | rather than ×).
the contributions of their paper:
• They extend and develop continuous normalizing flows for lattice

field theories that are fully equivariant under lattice symmetries as
well as the internal φ 7→ −φ symmetry of the φ4 model.

• They train our model for the φ4 theory and and for the 32×32 lattice
we improve the effective sample size from 1% to 66% w.r.t. a real
NVP baseline of similar size.
• They study equivariance violations of real NVP models and contrast

it with the exact equivariance of our flows.

If the vector field g is equivariant, the resulting distribution on φ is in-
variant. They show how to construct a g equivariant to the square lattice
symmetries.
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The φ4 theory possesses non-trivial symmetry properties and a phase
transition. In the case of φ4 theory in two dimensions, the field configura-
tion is a real function on

the vertex set VL of the square lattice

with periodic boundaries and size L × L: φ : VL → R. The φ4 theory is
described by a probability density

p(φ) = exp(−S(φ))/Z , (3.81)

with action

S(φ) =
∑

x,y∈VL

φ(x)∆x,yφ(y) +
∑
x∈VL

m2φ(x)2 + λφ(x)4 (3.82)

Here ∆ is Laplacian matrix of the square lattice (Z/LZ)×2, m and λ are
numerical parameters. In the case of this and other non-trivial field the-
oretical densities, Z is the normalisation factor that is not known analyti-
cally for λ 6= 0.

Probability densities over those state space manifolds:

• Prior density r(z)

• Model density q(x)

• Target density p(x)

Note that, besides the space-time symmetries of the periodic lattice, the
theory possesses a

discrete global symmetry φ 7→ −φ.

We shall choose the couplings in such a way that only one minimum of
the action, invariant under this symmetry, exists. See [??] for relevant
work in the case of a symmetry-broken case.

(Was commented out:) We will work in the “unbroken" phase with m2 >
0, where the minimum of the action is invariant under the global symme-
try. See arXiv:2107.00734 for relevant work in the broken phase.

The periodic lattice VL has spatial symmetry group G = C2
L o D4, the

semi-direct product of two cyclic groups CL of translations and dihedral
group D4 of right angle rotations and mirrors. To ensure spatial equiv-
ariance of the vector field model, we should have that

∀g ∈ G, x, y, a, f,Wg(x)g(y)af = Wxyaf .

Using the translation subgroup, we can map any point x to a fixed point
x0. This allows us to write Wxyaf = Wx0tx(y)af , tx(y) = y − x+ x0.

(Predrag - they seem to be defining the point group here:)
Then let H ' D4 be the subgroup of G such that g(x0) = x0 for all g ∈ G,
and denote the orbit of y under H by [y] = {y′ | ∃g ∈ H, g(y) = y′}.
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For each such orbit [y] and dimension a and f , a free parameter W[y]af

exists, so that the other parameters are generated by Wxyaf = W[tx(y)]af .

(Was commented out; Predrag - they ignore symmetric lattice states here:)
As most orbits are of size 8, the number of free parameters per a and f is
approximately L2/8.

The orbits of D4, leaving point (0, 0) invariant, for L = 16 are shown in
Fig. 4. For each color in that figure, for each dimensions a and f , we have
a free parameter.
(Predrag - that figure says the 1/8th fundamental domain tiles the square
lattice, and ignores the symmetry boundaries. The “free parameter” is
just the values of the field in the fundamental domain.)

2021-12-05 Predrag These papers seem to be more informative:

Rezende and Mohamed (2015) “normalizing flows” arXiv:1505.05770
cites Jordan, Ghahramani, Jaakkola and Saul [45] An introduction to varia-
tional methods for graphical models (1999)

Del Debbio, Rossney and Wilson Efficient Modelling of Trivializing Maps
for Lattice φ4 Theory Using Normalizing Flows: A First Look at Scalability
arXiv:2105.12481

2021-12-05 Predrag Albergo, Boyda, Hackett, Kanwar, Cranmer, Racanière, Jimenez
Rezende and Shanahan, Introduction to Normalizing Flows for Lattice Field
Theory (2021), arXiv:2101.08176:

This notebook tutorial demonstrates a method for sampling Boltzmann
distributions of lattice field theories using a class of machine learning
models known as normalizing flows. The ideas and approaches pro-
posed in

arXiv:1904.12072

arXiv:2002.02428

arXiv:2003.06413

are reviewed and a concrete implementation of the framework is pre-
sented. We apply this framework to a lattice scalar field theory and to
U(1) gauge theory, explicitly encoding gauge symmetries in the flow-
based approach to the latter.

The Box-Muller transform is an example of a ‘normalizing’ transforma-
tion: to produce Gaussian random variables, draw two variables U1 and
U2 from unif(0, 1), then change variables to

(Z1, Z2) = (r cos(2πU2), r sin(2πU2)) , r =
√
−2 lnU1 . (3.83)

The resulting variables Z1, Z2 are then distributed according to an uncor-
related, unit-variance Gaussian distribution; U1 controls the radius, and
U2 the angle of a 2d Gaussian.
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Predrag: This might relate Bernoulli and temporal cat to Gaussian field
theories (see sect. 13.2), i.e., this maps fields in [0, 1) to fields in R.

The density associated with output samples is computed by the change-
of-variables formula relating the prior density ρ(U1, U2) = 1 to the output
density

q(Z1, Z2) = ρ(U1, U2)

∣∣∣∣det
∂Zk(U1, U2)

∂Ul

∣∣∣∣−1

= 1×
∣∣∣∣det

( −1
U1r

cos(2πU2) −2πr sin(2πU2)
−1
U1r

sin(2πU2) 2πr cos(2πU2)

)∣∣∣∣−1

=

∣∣∣∣2πU1

∣∣∣∣−1

.

(3.84)

J(U1, U2) ≡ det (∂Z/∂U) is the determinant of the Jacobian of the coordi-
nates transformation (U1, U2)→ (Z1, Z2). The Jacobian factor is a change
in volume element, therefore the change-of-variables formula must con-
tain the inverse of this factor (spreading out volume decreases density).
As

U1 = exp(−(Z2
1 + Z2

2 )/2)

and the initial density ρ(U1, U2) over the unit square was uniform, the
transformed density is

q(Z1, Z2) =
1

2π
e−(Z2

1+Z2
2 )/2 . (3.85)

This example has no free parameters because no extra parameters were
needed to create a transform that exactly reproduced the desired target
distribution, independent, unit-variance Gaussian. In general, we may
not know a normalizing flow that exactly produces our desired distribu-
tion, and so instead construct parametrized models that we can varia-
tionally optimize to approximate that target distribution, and because we
can compute the density these can be corrected to nevertheless guarantee
exactness.

In some cases, it is easy to compute the Jacobian factor even when the
whole Jacobian matrix is intractable; for example, only the diagonal ele-
ments are needed if the Jacobian matrix is known to be triangular.

The hypercubic lattice discretization of the derivatives of the continuum
Euclidean action gives rise to a lattice Euclidean action,

SEcont[φ] =

∫
d2~x (∂µφ(~x))2 +m2φ(~x)2 + λφ(~x)4

→ S(φ) =
∑
~n

φ(~n)

 ∑
µ∈{1,2}

−φ(~n+ µ̂) + 2φ(~n)− φ(~n− µ̂)

+m2φ(~n)2 + λφ(~n)4

(3.86)
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where now φ(~n) is only defined on the sites of the Lx × Ly lattice, ~n =
(nx, ny), with integer nx, ny . The discretized field φ can be thought of as
an (Lx × Ly)-dimensional vector. We use periodic boundary conditions
in all directions, i.e. φ(Lx, y) ≡ φ(0, y), etc.

More details on φ4 lattice scalar field theory can be found in Vierhaus’s
masters thesis [76] Simulation of φ4 theory in the strong coupling expansion
beyond the Ising Limit.
The lattice action then defines a probability distribution over configura-
tions φ,

p(φ) =
1

Z
e−S(φ), Z ≡

∫ ∏
~n

dφ(~n) e−S(φ), (3.87)

where
∏
~n runs over all lattice sites ~n. This is the distribution we are

training the normalizing flows to reproduce. While Z is difficult to cal-
culate, in practice we only need p(φ) up to a constant. The action can
be efficiently calculated on arbitrary configurations using Pytorch. Note
that while the theory describes 2D spacetime, the dimensionality of dis-
tribution p(φ) is the number of lattice sites, scaling with the volume of
the lattice.

The theory has a symmetric phase and a broken symmetry phase, cor-
responding respectively to nearly one mode of the distribution or two
widely separated modes (with intermediate configurations suppressed
exponentially in volume). The broken symmetry phase can be accessed
for m2 < 0 and λ less than a critical λc. For simplicity, we restrict focus to
the symmetric phase, but remain close to this phase transition such that
the system has a non-trivial correlation length.

A selection of references to related works (find the links in arXiv:2101.08176):

• Normalizing flows: Agnelli et al. (2010); Tabak and Vanden-Eijnden
(2010); Dinh et al. (2014); Dinh et al. (2016); Papamakarios et al. Nor-
malizing flows for probabilistic modeling and inference (2019), arXiv:1912.02762;
• Symmetries and equivariance: Cohen and Welling (2016); Cohen et

al. (2019); Rezende et al. (2019); Köhler et al. (2020); Luo et al. (2020);
Favoni et al. (2020);
• Flows on manifolds: Gemici et al. (2016); Falorsi et al. (2019); Finzi

et al. (2020); Mathieu and Nickel (2020); Falorsi and Forré (2020);
• Applications of flows: Müller et al. (2018) ; Noé et al. (2019); Wu et

al. (2020); Dibak et al. (2020); Nicoli et al. (2021) DOI

2021-12-13 Predrag Sara liked very much this morning’s talk by Max Welling
on ML for PDEs – the way he controls the PDE grid, incorporates sym-
metries into the NN part of the algorithm.

Garcia Satorras, Victor and Hoogeboom, Emiel and Fuchs, Fabian and
Posner, Ingmar and Welling, Max E(n) Equivariant Normalizing Flows Ad-
vances in Neural Information Processing Systems 34 (2021):
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This paper introduces a generative model equivariant to Euclidean sym-
metries: E(n) Equivariant Normalizing Flows (E-NFs). To construct E-
NFs, we take the discriminative E (n) graph neural networks and inte-
grate them as a differential equation to obtain an invertible equivariant
function: a continuous-time normalizing flow. We demonstrate that E-
NFs considerably outperform baselines and existing methods from the
literature on particle systems such as DW4 and LJ13, and on molecules
from QM9 in terms of log-likelihood. To the best of our knowledge, this
is the first flow that jointly generates molecule features and positions in
3D.

3.5 Noise is your friend

2021-11-27 Predrag Excerpts (mashed together in random order) from Cvi-
tanović, Dettmann, Mainieri and Vattay Trace formulae for stochastic evo-
lution operators:
Weak noise perturbation theory [27] (1998), arXiv:chao-dyn/9807034, and
Smooth conjugation method [28] (1998) arXiv:chao-dyn/9811003.

These are the first two papers to treat time evolution as a 1-dimensional
temporal lattice field theory. They start out by expressing the weak noise
expansions in terms of Dirac δ and its derivatives. In what is excerpted
here we omit all correction terms, as we are interested only into the lead-
ing behavior.

The central object in the theory, the trace of the evolution operator, is a
discrete path integral, similar to those found in field theory and statistical me-
chanics.

The theory is cast in the standard field theoretic formalism, and weak noise
perturbation theory written in terms of Feynman diagrams.

The noise tends to regularize the theory, replacing the deterministic delta
function evolution operators by smooth distributions. While in this paper we
are interested in effects of weak but finite noise, the σ → 0 limit is also impor-
tant as a tool for identifying the natural measure [20, 70, 72] for deterministic
flows.

We have cast the theory in the standard field theoretic language [25], in the
spirit of approaches such as the Martin-Siggia-Rose [58] formalism, the Parisi-
Wu [64] stochastic quantization, and the Feigenbaum and Hasslacher [37] study
of noise renormalization in period doubling.

The form of the perturbative expansions is reminiscent of perturbative cal-
culations of field thery, but in some aspects the calculations undertaken here
are relatively more difficult. The main difference is that there is no transla-
tional invariance along the chain, so unlike the case of usual field theory, the
propagator is not diagonalized by a Fourier transform. We do our computa-
tions in configuration coordinates. Unlike the most field-theoretic literature,
we are neither “quantizing” around a trivial vacuum, nor a countable infinity
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of stable soliton saddles, but around an infinity of nontrivial unstable hyper-
bolic saddles.

[...] our results are a priori far from obvious: [...] a more subtle and surpris-
ing result, repeats of prime cycles can be resummed and theory reduced to the
dynamical zeta functions and spectral determinants of the same form as the for
the deterministic systems.

[...] a discrete time 1-dimensional discrete Langevin equation [48, 51],

xn+1 = f(xn) + σξn , (3.88)

with ξn independent normalized random variables, suffices to reveal the struc-
ture of the perturbative corrections.

We shall treat a chaotic system with such Gaussian weak external noise
by replacing the the deterministic evolution δ-function kernel by LFP , the
Fokker-Planck kernel corresponding to (3.88), a sharply peaked noise distri-
bution function

LFP = δσ(y − f(x)) , (3.89)

where δσ is the Gaussian kernel

δσ(z) =
1√

2πσ2
e−z

2/2σ2

. (3.90)

In the weak noise limit the kernel is sharply peaked, so it makes sense to
expand it in terms of the Dirac delta function and its derivatives:

δσ(y) =
∞∑
m=0

amσ
m

m!
δ(m)(y) = δ(y) + a2

σ2

2
δ(2)(y) + . . . . (3.91)

where

δ(k)(y) =
∂k

∂yk
δ(y) ,

and the coefficients am depend on the choice of the kernel. We have omitted
the δ(1)(y) term in the above because in our applications we shall impose the
saddle-point condition, that is, we shift f by a constant to ensure that the noise
peak corresponds to y = 0, so δ

′

σ(0) = 0. For example, if δσ(y) is a Gaussian
kernel, it can be expanded as

δσ(y) =
1√

2πσ2
e−y

2/2σ2

= δ(y) +
σ2

2
δ(2)(y) + · · · . (3.92)

We start our computation of the weak noise corrections to the spectrum
of LFP by calculating the trace of the nth iterate of the stochastic evolution
operator LFP for a one-dimensional analytic map f(x) with additive noise σ.
This trace is an n-dimensional integral on n points along a discrete periodic
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chain, so x becomes an n-vector xa with indices a, b, . . . ranging from 0 to n−1
in a cyclic fashion

trLnFP =

∫ n−1∏
a=0

dxa δσ(ya)

ya(x) = f(xa)− xa+1 , xn = x0 . (3.93)

If the map is smooth, the periodic points of given finite period n are isolated
and the noise broadening σ sufficiently small so that they remain separated,
the dominant contributions come from neighborhoods of periodic points; in
the saddlepoint approximation the trace (3.93) is given by

trLnFP −→
∑

xc∈Fixfn
eWc , (3.94)

As traces are cyclic, eWc is the same for all periodic points in a given cycle,
independent of the choice of the starting point xc. Hence it is customary to
rewrite this sum in terms of prime cycles and their repeats,

trLnFP |saddles =
∑
p

np

∞∑
r=1

eWpr , (3.95)

where pr labels the rth repeat of prime cycle p.
A fixed point and its repeats are of particular interest having the same in-

teraction at every site, as does the usual field theory. What we do here is to
formulate [...] the field theory on finite periodic 1-dimensional discrete chains.

Defining y = f(x)− x , we can write the fixed point trace as

trLFP =

∫
dx δσ(f(x)− x) =

∫
dy

1

|y′(x)|δσ(y) . (3.96)

We start by calculating the trace of the nth iterate of the stochastic evolution
operator LFP for a one-dimensional analytic map f(x) with additive Gaussian
noise σ. This trace is an n-dimensional integral on n points along a discrete
periodic chain, so x becomes an n-vector xa with indices a, b, . . . ranging from
0 to n−1 in a cyclic fashion

trLnFP =

∫
[dx] exp

{
− 1

2σ2

∑
a

[xa+1 − f(xa)]
2

}

xn = x0 , [dx] =
n−1∏
a=0

dxa√
2πσ2

. (3.97)

As we are dealing with a path integral on a finite discrete chain, we find it
convenient to rewrite the exponent in matrix notation

trLnFP =

∫
[dx] e−[r−1x−f(x)]

2
/2σ2

, rab = δa,b+1 , (3.98)
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where x and f(x) are column vectors with components xa and f(xa) respec-
tively, and r is the left cyclic shift or hopping matrix satisfying rn = 1, r−1 =
rT . Unless stated otherwise, we shall assume the repeated index summation
convention throughout, and that the Kronecker δ function is the periodic one,
defined by

δab =
1

n

n−1∑
k=0

ei2π(a−b)k/n . (3.99)

[...] if the noise is weak, the path integral (3.97) is dominated by periodic
deterministic trajectories. Assuming that the periodic points of given finite pe-
riod n are isolated and the trajectory broadening σ sufficiently small so that
they remain clearly separated, the dominant contributions come from neigh-
borhoods of periodic points; in the saddlepoint approximation the trace (3.97) is
given by

trLnFP −→
∑

xc∈Fixfn
eWc , (3.100)

where the sum goes over all periodic points xc = xc+n of period n, fn(xc) = xc.
The contribution of the xc neighborhood is obtained by shifting the origin of
integration to

xa → xa + φa ,

where from now on xa refers to the position of the a-th periodic point, and
expanding f in Taylor series around each of the periodic points in the orbit of
xc.

The contribution of the neighborhood of the periodic point xc is given by

eWc =

∫
[dφ] e−(M−1φ−V ′(φ))

2
/2σ2

= |detM |
∫

[dϕ] e
∑

1
k tr (MV ′′(φ))

k

e−ϕ
2/2σ2

(3.101)

where the propagator and interaction terms are collected in

M−1
abφb = −f ′(xa)φa+φa+1 , V (φ) =

∑
a

∞∑
m=2

f (m)(xa)
φm+1
a

(m+ 1)!
. (3.102)

We find it convenient to also introduce a bidirectional propagator C = MMT

for reasons that will become apparent below. In the second line of (3.101) we
have changed coordinates,

ϕ = M−1φ − V ′(φ) , (3.103)

and used the matrix identity ln detM = tr lnM on the Jacobian

1

det (M−1 − V ′′) =
detM

det (1−MV ′′)
= detM e−tr ln(1−MV ′′) . (3.104)
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The functional dependence of φ = φ(ϕ) is recovered by iterating (3.103)

φa = Mabϕb +MabV
′
b (φ) . (3.105)

The above manipulations are standard [58] and often used in the stochastic
quantization literature [30, 64].

As the sum is cyclic, eWc is the same for all periodic points in a given cycle,
independent of the choice of the starting point xc. In the saddlepoint approxi-
mation we assume that the map is analytic and the extrema fn are isolated.

From the second path integral representation in (3.101) it follows that M
can be interpreted as the “free” propagator. As M will play a central role in
what follows, we write its inverse in its full [n×n] matrix form:

M−1 = r−1 − f ′ =


−f ′0 1

−f ′1 1

−f ′2 1
. . .

1 −f ′n−1

 (3.106)

where f ′ is a diagonal matrix with elements f
′

a = f
′
(xa) a shorthand notation

for stability of the map at the periodic point xa. The determinant of M is

det M =
(−1)n

Λc − 1
, Λc =

n−1∏
a=0

f
′
(xa) , (3.107)

with Λc the stability of the n cycle going through the periodic point xc. We shall
assume that we are dealing with a chaotic dynamical system, and that all cycles
are unstable, |Λc| > 1.

The formula for propagator itself is obtained by inverting (3.106) and using
relation (rf ′)n = Λc, (due to the periodicity of the chain):

M = − 1

1− f ′−1r−1
f ′
−1

= −
∞∑
k=0

(f ′
−1
r−1)kf ′

−1

= − 1

Λc − 1

n−1∑
k=0

r(f ′r)k (3.108)

In the full matrix form, the propagator is given by

M =
−1

Λc − 1



f
′

1...f
′

n−1 f
′

2...f
′

n−1 f
′

3...f
′

n−1 . . . 1

1 f
′

2...f
′

0 f
′

3f
′

4...f
′

0 . . . f
′

0

f
′

1 1 f
′

3...f
′

0f
′

1 . . . f
′

0f
′

1

f
′

1f
′

2 f
′

2 1
. . . f

′

0f
′

1f
′

2

f
′

1f
′

2f
′

3 f
′

2f
′

3 f
′

3

. . .
...

...
...

...
...

...
f
′

1...f
′

n−2 f
′

2...f
′

n−2 . . . . . . 1 f
′

0...f
′

n−2


(3.109)
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or, more compactly,

Mab =
−1

Λc − 1

a−1∏
d=b+1

f
′
(xd) , Ma,a−1 =

−1

Λc − 1
, (3.110)

where d increases cyclically through the range b + 1 to a − 1; for example, if
a = 0, a− 1 = n− 1. We note that M is invertible only for cycles which are not
marginal, |Λc| 6= 1.

The saddlepoint approximation (3.101) is a discrete path integral on pe-
riodic chain of n points which we shall evaluate by standard field-theoretic
methods. Separating the quadratic terms we obtain

eWc =
1

|Λc − 1|

∫
[dϕ] e−S0(ϕ)−SI(ϕ) , (3.111)

where

S0(ϕ) = ϕ2/2σ2 , SI(ϕ) = −
∞∑
k=1

1

k
tr [MV ′′(φ(ϕ))]

k (3.112)

The terms collected in SI(ϕ), linear or higher in ϕ, are the interaction vertices.
Next introduce a source term Ja and define a partition function

eWc(J) =
1

|Λc − 1|

∫
[dϕ]e−S0(ϕ)−SI(ϕ)+Jaϕa

=
1

|Λc − 1|e
−SI( ddJ )

∫
[dϕ]e−S0(ϕ)+Jaϕa

=
1

|Λc − 1|e
−SI( ddJ ) e

σ2

2 J
2

. (3.113)

Here we have used standard formulas for Gaussian integrals together with the
normalization (3.97).

[...] yields the perturbation expansion

Wc = − ln |Λc − 1|+
∞∑
k=1

Wc,2kσ
2k . (3.114)

In field-theoretic calculations the Wc,0 term is usually an overall volume term
that drops out in the expectation value computations. In contrast, here the
Wc,0 = − ln |Λc−1| term is the classical weight of the cycle which plays the key
role both in the classical and stochastic trace formulas.

If efficient methods are found for computing numerical periodic solutions
of spatially extended systems, the method might apply to the field theory as
well.
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3.5.1 Noisy Gábor

1998-03-04 Gábor Vattay The initial version.

2021-12-08 Predrag Tweaked Gábor’s note a bit. The approach is safe for mul-
timodal maps, and it should work for finite-grammar Smale horseshoe
repellers (Smale’s original horseshoe [73], his fig. 1 was unimodal, but he
also explicitly gives our φ4 bimodal map, his fig. 5.

For generic, no finite grammar case, who knows... Will be messier, prun-
ing front style. Perhaps.

Suppose we have a ‘bimodal’ system with three distinct, monotone seg-
ments such as (5.210), with map fi(φt) for ith segment. Associate with each
monotone segment one of three Perron-Frobenius operators (20.381),

Li(x, y) = δ(x− fi(y)) , i = {0, 1, 2} . (3.115)

To compute the spectral determinant

F (z) = det (1− z(L0 + L1 + L2)) , (3.116)

write

F (z) = exp(tr log(1− z(L0 + L1 + L2))) = exp(−
∑
n

zn

n
tr (L0 + L1 + L2)n) ,

(3.117)
expand the nth power,

tr (L0 + L1 + L2)n =
∑
p

∑
r|n=np·r

nptrLrp, (3.118)

where p denotes a period np prime symbol sequence composed of 0, 1, 2, and
r is its repetition number. Say p = 011, then L011 = L0L1L1 = L0L2

1, up to
a cyclic permutation. For a given n we get contributions only from primitive
orbits for which nn = r np. Then, as usual one can write

F (z) = exp(−
∑
p,r

znpr

r
trLrp), (3.119)

and after r summation we get

F (z) =
∏
p

det (1− znpLp) . (3.120)

In case of the noisy maps we can introduce -let’s say- the three branches
of the map fi(x) corresponding to the symbols f(x) = fi(x) if x is in the state
space regionMi, and define operators

Li(x′, x) =
1√
2πσ

e−
1

2σ2
(x′−fi(x))2 . (3.121)
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Map fi acts only on the state space regionMi, but it maps to all regionsMj

allowed by system’s transition graph. If you visualize this operator as a matrix,
L is an [n × n] matrix, while Li is -say- [n × n/3] matrix, the matrix elements
where the initial x is in the state space regionMj 6=Mi are all zero. For these
operators we can apply (3.120) and get the spectral determinant as a product of
spectral determinants of primitive orbits. The operators are defined on piece-
wise monotonic maps, so there is only one periodic point on each.

So, this way can get rid of repeats in an early stage, and concentrate only
on computing prime orbits. Tomorrow (March 4, 1998 - tomorrow never came)
on the train I will try to give the matrix representation elements [27] of Lp in
the unperturbed basis (eg. on xk) and hope to end up with simpler formulas.

3.6 Complex Ginzburg-Landau equation

2016-08-04 PC Afraimovich and Pesin [2] Hyperbolicity of infinite-dimensional
drift systems study the discrete versions of the complex Ginzburg-Landau
equation.

un,t+1 = un,t + τ(un,t, σ) + γ(un,t − un,t−1) +
ε

2
[un−1,t − 2un,t + un+1,t] ,

(3.122)
where τ(un,t, σ) is local time dynamics, γ is a parameter of “connection”,
a memory of the previous step, so this has a time evolution component
that could be written as a time Laplacian, with remainder presumably
playing role of a friction. Not sure why this would be a good idea, as
complex Ginzburg-Landau is the first order in time. Literature worries
about the stability of of the space-homogeneous state in chains of maps.
They consider a special ‘drift’ type of perturbation, at which point they
lost me.

2016-09-06 Matt Branching out to get a better grasp of what’s out there, I read
Pikovsky and Politi [65] Dynamic localization of Lyapunov vectors in space-
time chaos, It discusses the complex Ginzburg-Landau equation, two types
of coupled maps, as well as Kuramoto-Sivashinsky equation, so I thought
it might be useful somehow.

2016-09-06 Predrag Pikovsky and Politi [65] is a stat mech paper about using
KPZ equations in pattern formation, do not waste time on it right now.

3.7 Kuramoto-Sivashinsky equation

Assume a 2-dimensional square lattice with period L in the spatial direction
and period T in the temporal direction, finite volume LT, and periodic bound-
ary conditions. We use L = 1/∆x, T = 1/∆t discretization.

Given the Kuramoto-Sivashinsky equation of form

ut + uux + uxx + uxxxx = 0 , x ∈ [0, L) . (3.123)
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the corresponding discretized Kuramoto-Sivashinsky equation is

T∂tU +
L

2
∂xU2 + L2�xU + L4�2

xU = 0 . (3.124)

In continuum the Kuramoto-Sivashinsky equation is Galilean invariant: if
u(x, t) is a solution, then v + u(x − vt, t), with v an arbitrary constant velocity,
is also a solution. On a spacetime torus, the velocity have to be ‘quantized’,
satisfy something like n∆x − vt∆t = n

L − v tT ∈ Z , i.e., if you have relative
periodic orbit [L×T]S , allowed velocities are

v = k
n

t

T

L
, k ∈ Z .

FIX S dependence in THIS! But would like to check that one gets a sensible
spatiotemporal orbit Jacobian matrix J and DetJ , at least for the U = 0 fixed
point...

2016-01-12, 2016-08-04 PC Chen, Chen, and Yuan [23] Topological horseshoes in
travelling waves of discretized nonlinear wave equations is a mathematical
paper. They concentrate on describing relative equilibria of a discretized
version of a PDE that has Kuramoto-Sivashinsky, KdV and Burgers as
special cases. They define discretized derivatives up to the 5th, if we ever
need them. They write “ Applying the concept of anti-integrable limit 2CB
to coupled map lattices originated from space-time discretized nonlinear
wave equations, we show that there exist topological horseshoes in the
phase space formed by the initial states of travelling wave solutions. In
particular, the coupled map lattices display spatiotemporal chaos on the
horseshoes. ”

2016-08-04 Predrag Elder et al. [34] Spatiotemporal chaos in the damped Kuramo-
to-Sivashinsky equation: “ A discretized version of the damped Kuramoto-
Sivashinsky (DKS) equation is constructed to provide a simple compu-
tational model of spatiotemporal chaos in one dimension. The discrete
map is used to study the transition from periodic solutions to disordered
solutions (i.e., spatiotemporal chaos). The numerical evidence indicates
a jump discontinuity at this transition. ”

3.8 Elastodynamic equilibria of 2D solids

Predrag 2018-08-23 this section is now in book/chapters/mattress.tex, removed
from here.

3.9 Field theory blog

2021-07-20 Chris Crowley I am looking for a good citation to use that suggests
that periodic orbit theory like thinking could be useful for quantum field
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theories. I have a few references at the very end of a paper, see that try to
establish that this framework could extend to other systems and want to
add quantum field theory to the list because it sounds sexy in the current
zeitgeist.

2021-08-04 Predrag For the Quantum Field Theory I think I am still the main
proponent, I tend to cite [26]

@Article{CFTsketch,
author = {P. Cvitanovi{\’c}},
journal = {Physica A},
title = {Chaotic field theory: {A} sketch},
year = {2000},
pages = {61},
volume = {288},
doi = {10.1016/s0378-4371(00)00415-5},

}

2020-05-15 Predrag .

Kadanoff [46] (click here) 3.4 Lattice Green Function discussion of the
“Gaussian model” coefficient matrix of his (3.12)

− 1

K
Cnm =

{
K−1 if xn = xm

1 if nearest neighbors
(3.125)

is the same as our J with d s = 1/K.

He writes “As we shall see this simple and exactly solvable problem is in
fact closely related to several different situations involving phase transi-
tions. The Gaussian problem itself undergoes a kind of phase transition
at a point at which one of the eigenvalues of C approaches zero. When
that happens, the correlation matrix G goes to infinity, and very large
correlations tend to develop in the system. Some thermodynamic deriva-
tives for the system become very large, and the system shows every sign
of doing something interesting. We shall explore this interesting behavior
in considerable detail below.”

He looks at the Fourier transformed J and observes 0-Fourier mode is of
form

C(0) = 1− 2dK = 1− 2/s , (3.126)

so there is a phase transition as K approaches 1/(2d) from below, or s
approaches −2 from above. He writes “We shall investigate this point in
considerable detail in several of the chapters below.”

He returns to it in his eq. (4.38), where he notes (for 1-dimensional chain)
that −1/2 < K < 1/2, i.e., |s| > 2, so the Gaussian field theory operates
in the same regime as the spatiotemporal cat. But I have not found a
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discussion in higher dimensions, or rather, while the Gaussian model is
used throughout the book as the ‘opposite of” the Ising model, I do not
see what to make out of it from our perspective...

His lecture is nice.

2018-10-09 Predrag I have been trying to write up a standard Euclidean lattice
field theory formulation of generating functions Z[J ] and W [J ], mostly
following Montvay and Münster [60] Quantum Fields on a Lattice, though
there are many references, and some others might be smarter.

What I have done so far is in section Lattice action of the course QFT
notes.

Like Han, they single out one “time” direction, and reformulate the the-
ory as a “transfer matrix” calculation, which is essentially the Hamilto-
nian formulation, I believe. I have not written that part up yet.

2020-06-11 Nathan Seiberg Institute for Advanced Study talk: Continuum Quan-
tum Field Theories for Fractons: “ Starting with a lattice system at short dis-
tances, its long-distance behavior is captured by a continuum Quantum
Field Theory (QFT). This description is universal, i.e. it is independent
of most of the details of the microscopic system. Surprisingly, certain re-
cently discovered lattice systems, and in particular models of fractons,
seem to violate this general dogma. We present exotic continuum QFTs
that describe these systems. ”

I had a brief scan through
Exotic Symmetries, Duality, and Fractons in 2+1-Dimensional Quantum Field
Theory arXiv:2003.10466;
Exotic U(1) Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum
Field Theory arXiv:2004.00015;
Exotic ZN Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum
Field Theory arXiv:2004.06115,
but I do not get them. Ignore for now.

2020-02-19 Predrag In Berenstein and García-García15 [13] A universal quantum
constraints on the butterfly effect, arXiv:1510.08870, cat maps were gener-
alized to products of such vector spaces that can be put on a lattice, with
a variables at each site and variables at different sites commuting with
each other, for nearest neighbors on a lattice in any dimension. As they
write, “This generates a system with nearest neighbor hopping and lo-
cal scrambling.” They write down a periodic (circulant) banded matrix,
so the eigenvalues have a band structure similar to a periodic potential
with nearest neighbor hopping. The evolve forward in time, i.e., their is
a quantized Hamiltonian formulation.

Berenstein [12] A toy model for time evolving QFT on a lattice with controllable
chaos, arXiv:1803.02396 from UC Santa Barbara. is perhaps a precursor
to Gutkin and our spatiotemporal cat.
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He discusses two points of view on how the Lyapunov exponents appear
in real time correlation functions in quantum field theory and will them
compute them in the case of the cat map dynamics. The Kubo’s formula
point if view is in semiclassical physics, and the second point of view is
statistical. They both amount to different ways of making a quantity with
an indefinite sign positive.

He considers 1-dimensional spatial lattice, and caries out computations
on a spatial lattice with only two sites. He composes a local cat map at
each site with a nearest neighbor entangler and after the system is con-
structed one iterates the automorphism. The system will also be deter-
mined by a [2m×2m] matrix. Each [2×2] block on the diagonal represents
(Pi;Qi). The local cat map acts on each of these as a [2 × 2] matrix, and
the nearest neighbor entangler is a matrix that, at least for a lattice on a
line, is near the diagonal giving rise to a banded matrix. The eigenvalues
of this bigger matrix are the Lyapunov exponent of the system.

Iterating over a general M produces a cat map dynamics on the Q, and the
‘inverse’ cat dynamics on the P. The dynamics on P is actually built from
the inverse transpose, but that has the same eigenvalues as the inverse of
M.

As noted in ref. [13], models with nearest neighbor properties also mimic
the Lieb-Robinson bound [18] for propagation of information and thus
can in principle serve as toy models for relativistic field theories (they
have the equivalent of a speed of light).

He sets up a one dimensional spatial lattice, with nearest neighbor en-
tanglers whose dynamics can be encoded by an ’Dirichlet’ upper trian-
gular matrix, his eq. (64) and sketch (65), with eigenvalues 1, and thus
not chaotic. However, with periodic bc’s it is chaotic. The paper here
falls short of Gutkin and Osipov [41].

Berenstein and Teixeira [12] Maximally entangling states and dynamics in
one dimensional nearest neighbor Floquet systems, arXiv:1901.02944, describe
conditions for generating entanglement between two regions at the op-
timal rate in a class of one-dimensional quantum circuits with Floquet
dynamics. I do not get it, but it does cite Prosen [16] see 2019-11-18 Boris
below.

I do not think we need to cite him, but should send him links to our
papers: David Berenstein

2021-02-04 Predrag van der Kamp [47] Initial value problems for lattice equations
studies periodic solutions of partial difference equations (P∆Es):2CB

consider (s1, s2) relative periodic initial value problem. [...] In the Cauchy
directions, assuming the equation to be multi-linear, the periodic solu-
tion can be obtained uniquely by iteration of a simple mapping, whose
dimension is a piecewise linear function of (s1, s2).
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van der Kamp [47] paper offers geometric understanding, and shows
how to pose initial value problems for general lattice equations. He pro-
vides explicit reductions of an integrable 5-point equation.

If well-posed, the periodic solutions are uniquely determined by itera-
tion of single-valued mappings. Here, s-periodicity on the band of initial
values implies s periodicity of the solution on Z× Z.

His mappings can be obtained by using the equation only r = gcd(s1, s2)
times.

He performs different reductions for the integrable 5-point equation of
Bruschi, Calogero and Droghei [21] Tridiagonal matrices, orthogonal polyno-
mials and Diophantine relations: I. Also, read sect. 5.5.6, add your notes to
the subsection there.

Do have a look at:

Papageorgiou, Nijhoff and Capel [63] Integrable mappings and nonlinear in-
tegrable lattice equations: Periodic reductions for lattice equations defined
on a square.

Quispel, Capel, Papageorgiouand Nijhoff [66] Integrable mappings derived
from soliton equations: They realized that such reductions provide travel-
ing wave solutions.

A general description of s-reduction, with s ∈ Z×Z, is given in Rojas, van
der Kamp and Quispel [68] Lax representations for integrable maps O∆Es.

Adler and Veselov [1] Cauchy problem for integrable discrete equations on
quad-graphs give a criterion for the well-posedness of Cauchy problems
for integrable equations defined on the square, on a so-called quad-graph
(a planar graph with quadrilateral faces).

2021-11-27 Predrag The Cvitanović and Vattay unpublished draft Variational
principle for noisy dynamics explains how the leading noisy

√
DetJ be-

comes the classical DetJ (I believe that is included into ChaosBook, but
I have not checked). So that would be one way to go from noisy dynam-
ics to the deterministic limit, but I hope we can avoid this in the current
paper.

Cvitanović, Dettmann, Mainieri and Vattay Trace formulae for stochastic
evolution operators: Weak noise perturbation theory [27] and Smooth conju-
gation method [28] starts out by expressing the weak noise expansions in
terms of Dirac δ and its derivatives. (For now) you are interested in keep-
ing only the leading term, i.e., the Dirac δ that yields 1/DetJ . Exponen-
tiated action appears naturally. See sect. 3.5 Noise is your friend.

None of the above have orbit Jacobian matrix, they are all formulated
as time-stepping. I think we want to emphasize the primacy of the or-
bit Jacobian matrix, consider time-evolution as one (awkward) way of
formally evaluating DetJ , I say “formally" as time evolution stability
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cannot be implemented in practice due to exponential overfows / under-
flows in any numerical evaluation.

Field theorists think of euclidean field theory as sum over probabilities
p(φ) = exp(−S[φ])/Z, see (3.81). The papers cited there might have a ref-
erence to a simple derivation of that formula. I derive it in Cvitanović [25]
Field Theory, but I hope you do not have to go through that, that takes 1/3
of a semester-long course.

The ε trick I talked about is the ‘Gaussian damping factor’, see mu Field
Theory [25] sect. 3B Gaussian integrals, eq. (3.8).

2020-12-16 Predrag My 2000 Chaotic Field Theory: A sketch [26] gets cited every
so often. Most citations seems useless, with the exception of these two:

Stam Nicolis Supersymmetry and Deterministic Chaos (2020): We show that
the fluctuations of the periodic orbits of deterministically chaotic systems
can be captured by supersymmetry, in the sense that they are repackaged
in the contribution of the absolute value of the determinant of the noise
fields, defined by the equations of motion.

[...] In a chaotic phase there are infinitely many periodic orbits and there
have been attempts to use them to construct the measure they define,
using perturbative field theoretic techniques [26] (that’s me). [... He] dis-
cusses another way to address this issue, that does not rely on perturba-
tion theory, following the approach of his earlier papers, he writes a lattice
action and computes the identities that the correlation functions that the
noise fields would be expected to satisfy, were the system consistently
closed.

Bernd Mümken A Dynamical Zeta Function for Pseudo Riemannian Folia-2CB
tions (2006): “We investigate a generalization of geodesic random walks
to pseudo Riemannian foliations. The main application we have in mind
is to consider the logarithm of the associated zeta function as grand canon-
ical partition function in a theory unifying aspects of general relativity,
quantum mechanics and dynamical systems.”

It looks familiar in glimpses, but the math is killing me...

2020-06-30 Moshe Rozali Effective Field Theory for Chaotic CFTs “ Relations be-
tween chaos and hydrodynamics are one of the unique feature of holo-
graphic CFTs. The early time Lyapunov regime can described by an effec-
tive field theory of a single mode, which for maximally chaotic systems is
an hydrodynamic mode. We describe that effective field theory for con-
formal field theories, both in two dimensions and in higher dimensions,
and show how it captures maximal chaos and pole skipping. We discuss
the relation of the theory to other formulations of CFTs and show how it
captures interesting objects such as conformal blocks and partial waves.
We speculate on what is needed to extend the discussion to non maximal
chaos. ”
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arXiv:1712.04963; arXiv:1808.02898; arXiv:1909.05847

arXiv:1612.06330; arXiv:1811.09641; arXiv:1812.10073;
G.J. Turiaci arXiv:1901.04360; arXiv:1912.02810

2020-07-02 Ruairí Brett From two to three-body systems in lattice QCD

Problem: finite box has no continuous spectum, scattering. arXiv:1911.09047
2-body scattering: quantization condition is given by the Lüscher for-
mula, stated as a determinant. arXiv:1707.05817 implements is with
group theory, octahedralOh crystallographic irreps for a cubic box which
mix some the continuous limit O(4). They also compute on elongated
boxes, with different discrete symmetry. These 9elongated in the z, not
the temporal t direction) yields many more states.

arXiv:1901.00483

relation to relativistic formulation arXiv:1905.12007

arXiv:1709.08222 2-body scattering is a sub-calculation in the 3-body scat-
tering.

“Wrap-around effects” arise from finite temporal size of the lattice.

The cleanest example is π+π+π+ ellastic scattering. Lattice simulation
data are surprisingly sharp. They are close to 3 non-interacting pions.
The agreement with the determinant zeros (infinite volume limit) using
only 2-body scattering date, no fit are very sharp. So the 3-body contact
term will be small (they are working on that now)

The latest 3-pion formalism: arXiv:2003.10974

2021-09-23 Martin A question: Is there an intuitive reason why the Klein-Gordon
equation shows up? Why not something first order, for example? Either
like the eikonal equation or better something linear like Dirac? There is
probably a very simple answer to this but I was just wondering. Is there a
geometrical reason, for example? Nothing of urgency, otherwise I would
have shouted earlier.

2021-10-11 Predrag That will precisely be the technical part: Klein-Gordon
shows up because of the nearest neighbor coupling, and it has to be sec-
ond order because of the reflection symmetry, so Laplacian. So far, we
have only looked at the Euclidean version, to keep things as simple as
possible. Yes, we can take the "square root" of Laplacian and get two 1st
order, time-asymmetric equations and a factorized Hill determinant, but
I am not sure what to make of it. So far the field theory is only a scalar,
single field component per site. I’m very reluctant to get into Dirac spin-
1/2 fields at this time, because of lattice no-go-theorems, and the usual
fermion nonsense in lattice formulations. . .

2022-02-24 Predrag Zied Ammari, Marco Falconi and Marco Olivieri Semiclas-
sical analysis of quantum asymptotic fields in the Yukawa theory arXiv:2111.03352:
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we then show that µ0 concentrates on a set of classical asymptotic radi-
ationless states, from which no radiation is coming out or in. The later
notion is similar to that of trapped trajectories in finite dimensional semi-
classical analysis.

As for the quantum theory and asymptotic vacuum states (20), at the
classical level there is a notion of asymptotic radiationless states. These
are the phase space points in the kernel of the classical wave operator.

Predrag Their Schrödinger-Klein-Gordon equation eq. (45) has an extra
‘z′ field to it. I have Googled “radiationless” solutions; they start with
Sommerfeld and Schott in elecromagnetism, as ways of avoiding QM,
and in study of solitons on discrete lattices. Might explain why our lattice
fields thories live on Cantor sets, but I gave up on searching further.

2022-03-10 Predrag Rothe [69] Lattice Gauge Theories - An Introduction (2005),
(click here).

His definition of the free scalar field action (3.10) agrees 100% with our
(3.13).

2022-03-13 Predrag (move to Hill determinants?)

Yuhang Hou and Santosh Kandel Asymptotic analysis of determinant of dis-
crete Laplacian arXiv:1910.02887. Lots of good stuff in it, but on a very
sophisticated level:

[...] study the relation between the partition function of the free scalar
field theory on hypercubes with boundary conditions and asymptotics of
discrete partition functions on a sequence of “lattices" which approximate
the hypercube as the mesh approaches to zero. More precisely, we show
that the logarithm of the zeta regularized determinant of Laplacian on
the hypercube with Dirichlet boundary condition appears as the constant
term in the asymptotic expansion of the log-determinant of the discrete
Laplacian up to an explicitly computable constant.

They are mostly interested in the restriction to the functions which van-
ish on the boundary, call it the discrete Laplacian with Dirichlet boundary
condition. They also investigate similar problems for the massive Lapla-
cian on tori.

They refer to our free field theory action (3.13) as ‘massive Laplacian’,
and to discrete hypercube as ‘d-dimensional orthotope’.

For d = 2, there is a very special relationship between determinants of
the massive discrete Laplacian on the torus and on the hypercube, which
they state. They use formulas like the ones we use, for example

n−1∏
k=1

(
2x− 2 cos

(
kπ

n

))
= (x+

√
x2 − 1)n+(x−

√
x2 − 1)n−2 . (3.127)
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Kenyon [7] derived a partial asymptotic expansion for the determinant of
the corresponding discrete Laplacian on rectilinear polygonal domains.
[...] log determinant of discrete Laplacians with free boundary condition,
is studied by Louis [12].

2022-01-25 Michele Schiavina (ETH Zürich)
Hadfield, Kandel and Schiavina [HaKaSc20] Ruelle zeta function from field
theory arXiv:2002.03952 has lots of good stuff in it, but on a very sophis-
ticated level.

Ruelle Zeta Function from Field Theory I will discuss a field-theoretic
interpretation of Ruelle’s zeta function, which "counts" prime geodesics
on hyperbolic manifolds, as the partition function for a topological field
theory (BF) with an unusual gauge fixing condition available on contact
manifolds. This suggests a rephrasing of a conjecture due to Fried, on the
equivalence between Ruelle’s zeta function (at zero) and the analytic tor-
sion, as gauge-fixing independence in the Batalin–Vilkovisky formalism.

2022-01-26 Andrey Bagrov andrey.bagrov@ru.nl (assistant professor, Radboud
University, Nijmegen, the Netherlands) writes:

“ Your ref. [53] arXiv:2201.11325 establishing the connections between
quantum field theory and chaos in dynamical systems has attracted our
attention [...] we think you might find our paper

Ageev, Bagrov and Iliaso [3] Deterministic chaos and fractal entropy scaling
in Floquet conformal field theories (2021)

useful. From the technical point of view, the setting considered by us is
somewhat different from yours, - we study continuous field theory, and
the dynamical system is implemented on the level of conformal trans-
formations of the CFT, - it is still pretty similar ideologically. We also
show that a certain, quite atypical type of chaos can be induced in a one-
dimensional quantum system as a result of the composition of field the-
ory operators.

It would be interesting to search for more specific relations between the
two approaches. For example, did you try to study the asymptotics of
low-order correlation functions and/or scaling of the von Neumann en-
tropy in your setting? Is there a chance to have some fractal structures in
your model? ”

2022-01-30 Predrag So far, I do not understand Ageev, Bagrov and Iliaso [3]
paper.

I think our field theory is as ‘continuous field theory’ as theirs, except
that so far we had no motivation to venture into the complex plane to
represent the dynamics.

They are able to continue the Ulam map and the Ulam tent map ana-
lytically into complex plane - hence ‘conformal field theories’ and there
might be something interesting there for us to learn.
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2022-01-30 Predrag Starting to draft the email response:

“ Our article has too many unfamiliar things to say as is, so in fig-
ure 12 (b) we only hint at the fractal spectrum of nonlinear theories. One
of our priorities has been to explore the fractal nature of this spectrum for
φ3 and φ4 scalar field theories, providing our group is able to carry out
the calculations. The students have started the calculation more than a
year ago. So far we have no results to report.

However, we do know that in the anti-integrable, strong coupling limit
the eigenvalues are

λj = g φj +O(
1

〈φ〉 ) , (3.128)

where g is the coupling constant, and lattice site fields φj ’s are embedded
into Smale horseshoes, a unimodal (two branches) horseshoe for φ3, and
bimodal (three branches) for φ4 strongly coupled scalar field theories, so
there is no doubt that the spectrum is fractal. But, you would be more
easily persuaded were our group to show you a plot of such fractal.

We have not gotten yet to low-order correlation functions, their asymp-
totics, and to metric (Kolmogorov) entropy, but we eventually can and
should. We do have the partition function, article eq. (9), but we are still
struggling with details of Hill determinant weights for symmetric orbits,
such as the article eq. (151) . ”

Commentary
Remark 3.1. Lattice field theory. In his 1983 Six Lectures on Lattice Field Theory
Michael Stone explains that the free, non-interacting partition function (??) is the sum
over all loop (returning walks), i.e., related to the trace of the propagator (??). 7 This
goes back to Symanzik, and is probably explained at length in Federico Camia Brown-
ian Loops and Conformal Fields, arXiv:1501.04861.

Check Rosenfelder Path Integrals in Quantum Physics, arXiv:1209.1315.
Meyer [59] Lattice QCD: A brief introduction.
Check out also online Simons, Lecture I: Simons courses Collective Excitations: From

Particles to Fields Free Scalar Field Theory: Phonons; and Quantum Condensed Matter Field
Theory; as well as Piers Coleman [24] Introduction to Many-Body Physics (click here) +
(click here).

Further reading on lattice field theories: Sommer [75] Introduction to Lattice Gauge
Theories; Wiese [77] An Introduction to Lattice Field Theory; Rothe [69] Lattice Gauge The-
ories; Jansen [44] Lattice field theory focuses on the lattice QCD; Smit [74] Introduction
to Quantum Fields on a Lattice; Münster and M. Walzl [62] Lattice gauge theory - A short
primer, arXiv:hep-lat/0012005; Montvay and G. Münster [60] Quantum Fields on a Lat-
tice.

7Predrag 2018-10-07: Incorporate Stone explanation, with hops weighted by fugacity h =
exp(−µ).
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[53] H. Liang and P. Cvitanović, A chaotic lattice field theory in one dimen-
sion, J. Phys. A 54 (2021), to appear.

[54] H. E. Lomelí and J. D. Meiss, “Quadratic volume-preserving maps”,
Nonlinearity 11, 557–574 (1998).

[55] M. Lüscher and P. Weisz, “Scaling laws and triviality bounds in the lat-
tice φ4 theory (I). One-component model in the symmetric phase”, Nucl.
Phys. B 290, 25–60 (1987).

[56] M. Lüscher and P. Weisz, “Scaling laws and triviality bounds in the
lattice φ4 theory (II). One-component model in the phase with spon-
taneous symmetry breaking”, Nucl. Phys. B 295, 65–92 (1988).

[57] M. Lüscher and P. Weisz, “Scaling laws and triviality bounds in the lat-
tice φ4 theory (III). n-component model”, Nucl. Phys. B 318, 705–741
(1989).

[58] P. C. Martin, E. D. Siggia, and H. A. Rose, “Statistical dynamics of clas-
sical systems”, Phys. Rev. A 8, 423–437 (1973).

[59] H. B. Meyer, “Lattice QCD: A brief introduction”, in Lattice QCD for
Nuclear Physics, edited by H.-W. Lin and H. B. Meyer (Springer, York
New, 2015), pp. 1–34.

[60] I. Montvay and G. Münster, Quantum Fields on a Lattice (Cambridge
Univ. Press, Cambridge, 1994).

[61] G. Münster, “Lattice quantum field theory”, Scholarpedia 5, 8613 (2010).

[62] G. Münster and M. Walzl, Lattice gauge theory - A short primer, 2000.

[63] V. G. Papageorgiou, F. W. Nijhoff, and H. W. Capel, “Integrable map-
pings and nonlinear integrable lattice equations”, Phys. Lett. A 147,
106–114 (1990).

[64] G. Parisi and Y. S. Wu, “Perturbation-theory without gauge fixing”, Sci-
entia Sinica 24, 483–496 (1981).

[65] A. Pikovsky and A. Politi, “Dynamic localization of Lyapunov vectors
in spacetime chaos”, Nonlinearity 11, 1049–1062 (1998).

[66] G. R. W. Quispel, H. W. Capel, V. G. Papageorgiou, and F. W. Nijhoff,
“Integrable mappings derived from soliton equations”, Physica A 173,
243–266 (1991).

[67] P. Ramond, Field Theory (Routledge, 1981).

[68] P. H. Rojas O. van der Kamp and G. R. W. Quispel, Lax representations
for integrable maps O∆Es, 2007.

[69] H. J. Rothe, Lattice Gauge Theories - An Introduction (World Scientific, Sin-
gapore, 2005).

03/15/2022 siminos/spatiotemp 176 8289 (predrag–8289)

http://dx.doi.org/10.1023/b:jods.0000034436.39278.37
http://dx.doi.org/10.1023/b:jods.0000034436.39278.37
http://dx.doi.org/10.1023/b:jods.0000034436.39278.37
https://arxiv.org/abs/2201.11325
https://arxiv.org/abs/2201.11325
http://dx.doi.org/10.1088/0951-7715/11/3/009
http://dx.doi.org/10.1088/0951-7715/11/3/009
http://dx.doi.org/10.1016/0550-3213(87)90177-5
http://dx.doi.org/10.1016/0550-3213(87)90177-5
http://dx.doi.org/10.1016/0550-3213(87)90177-5
http://dx.doi.org/10.1016/0550-3213(87)90177-5
http://dx.doi.org/10.1016/0550-3213(88)90228-3
http://dx.doi.org/10.1016/0550-3213(88)90228-3
http://dx.doi.org/10.1016/0550-3213(88)90228-3
http://dx.doi.org/10.1016/0550-3213(88)90228-3
http://dx.doi.org/10.1016/0550-3213(89)90637-8
http://dx.doi.org/10.1016/0550-3213(89)90637-8
http://dx.doi.org/10.1016/0550-3213(89)90637-8
http://dx.doi.org/10.1016/0550-3213(89)90637-8
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1103/PhysRevA.8.423
http://dx.doi.org/10.1007/978-3-319-08022-2_1
http://dx.doi.org/10.1007/978-3-319-08022-2_1
http://dx.doi.org/10.1007/978-3-319-08022-2_1
http://dx.doi.org/10.1017/cbo9780511470783
http://dx.doi.org/10.4249/scholarpedia.8613
http://dx.doi.org/10.4249/scholarpedia.8613
https://arxiv.org/abs/hep-lat/0012005
http://dx.doi.org/10.1016/0375-9601(90)90876-p
http://dx.doi.org/10.1016/0375-9601(90)90876-p
http://dx.doi.org/10.1016/0375-9601(90)90876-p
http://dx.doi.org/10.1016/0375-9601(90)90876-p
http://dx.doi.org/10.15161/oar.it/1447948233.36
http://dx.doi.org/10.15161/oar.it/1447948233.36
http://dx.doi.org/10.15161/oar.it/1447948233.36
http://dx.doi.org/10.1088/0951-7715/11/4/016
http://dx.doi.org/10.1088/0951-7715/11/4/016
http://dx.doi.org/10.1088/0951-7715/11/4/016
http://dx.doi.org/10.1016/0378-4371(91)90258-e
http://dx.doi.org/10.1016/0378-4371(91)90258-e
http://dx.doi.org/10.1016/0378-4371(91)90258-e
http://dx.doi.org/10.4324/9780429034909
https://wiskun.de/Art/LaxP.pdf
https://wiskun.de/Art/LaxP.pdf
http://dx.doi.org/10.1142/5674


CHAPTER 3. FIELD THEORY

[70] D. Ruelle, Thermodynamic Formalism: The Mathematical Structure of Equi-
librium Statistical Mechanics, 2nd ed. (Cambridge Univ. Press, Cambridge,
2004).

[71] B. Simon and R. B. Griffiths, “The φ4 field theory as a classical Ising
model”, Commun. Math. Phys. 33, 145–164 (1973).

[72] Y. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys
27, 21 (1972).

[73] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc.
73, 747–817 (1967).

[74] J. Smit, Introduction to Quantum Fields on a Lattice (Cambridge Univ.
Press, Cambridge, 2002).

[75] R. Sommer, Introduction to Lattice Gauge Theories, tech. rep. (Hum-
boldt Univ., 2015).

[76] I. Vierhaus, Simulation of φ4 Theory in the Strong Coupling Expan-
sion beyond the Ising Limit, MA thesis (Humboldt-Univ. Berlin, Math.-
Naturwissen. Fakultät I, 2010).

[77] U.-J. Wiese, An Introduction to Lattice Field Theory, tech. rep. (Univ.
Bern, 2009).

[78] S. V. Williams, X. Wang, H. Liang, and P. Cvitanović, Nonlinear chaotic
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Chapter 4

Computing lattice states

The latest blog post at the bottom for this chapter, page 194

2022-02-23 Predrag Molei will join our Zoom Tigers meeting

4:15-5:15pm on Friday March 18.

Please be ready to explain your calculations to someone who has never
been a part of our discussions.

Unlike the temporal Bernoulli and the temporal cat, for which the lattice
state fixed point condition is linear and easily solved, for nonlinear lattice field
theories the lattice states are roots of polynomials of arbitrarily high order.
While Gallas and collaborators [2, 9–16, 28] have developed a powerful the-
ory that yields Hénon map periodic orbits in analytic form, it would be un-
realistic to demand such explicit solutions for general field theories on multi-
dimensional lattices. We take a pragmatic, numerical route, and search for the
fixed-point solutions starting with the deviation of an approximate trajectory
from the 3-term recurrence (3.14) -in d spatiotemporal dimensions (2d+1)-term
recurrence- given by the lattice deviation vector

vt = −2φt + V ′(φt)− jt , (4.1)

and minimizing this error term by any convenient variational or optimization
method, perhaps in conjunction with a high-dimensional variant of the New-
ton method [3, 20, 24].

4.1 Inverse iteration method

(Gábor Vattay, Sidney V. Williams and P. Cvitanović)
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The ‘inverse iteration method’ for determining the periodic orbits of 2-dimen-
sional repeller was introduced by G. Vattay as a ChaosBook.org exercise 4.1 In-
verse iteration method for a Hénon repeller (see also the solution on page 193). The
idea of the method is to

(1) Guess a lattice configuration φ(0)
t that qualitatively looks like the desired

lattice state. For that, you need a qualitative, symbolic dynamics descrip-
tion of system’s admissible lattice states. You can get started by a peak at
ChaosBook Table 18.1.

(2) Compare the ‘stretched’ field φ
(0)
t to its neighbors, using system’s defin-

ing equation. For example, φ3 (or temporal Hénon) defining equation
(2.3) is

−φt+1 + aφ2
t − φt−1 = jt .

Perhaps watch What’s "The Law"? (4 min).

(3) Use the amount by which φt ‘sticks out’ in violation of the defining equa-
tions to obtain a better value φ(1)

t , for every lattice site t. Vattay does that
by inverting the equation, determining φ(1)

t from its neighbors

φ
(m+1)
t = σt

1√
a

(
1 + φ

(m)
t+1 + φ

(m)
t−1

)1/2

(4.2)

where σt is the sign of the target site field σt = φt/|φt|, prescribed in
advance by specifying the desired Hénon symbol block

σt = 1− 2mt , mt ∈ {0, 1} . (4.3)

Perhaps watch Inverse iteration method (14:28 min).

(4) Wash and repeat, φ(m)
t → φ

(m+1)
t . Sidney starts the iteration by setting

the initial guess lattice site fields to

φ
(0)
t = σt/

√
a ,

and then loops (4.2) through all lattice site fields to obtain φ
(1)
t . When

|φ(m+1)
t − φ

(1)
t | for all lattice states is smaller than a desired tolerance,

the loop terminates, and the lattice state is found. An example of the
resulting lattice states is given in figure 4.1.

The meat of the method is contained in these two loops:

for i in range(0,len(symbols)):
cycle[i]=signs[i]*np.sqrt(abs(1-np.roll(cycle,1)[i]-np.roll(cycle,-1)[i])/a)
for i in range(0,len(symbols)):
deviation[i]=np.roll(cycle,-1)[i]-(1-a*(cycle[i])**2-np.roll(cycle,1)[i])
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Figure 4.1: Temporal Hénon (2.3), a = 6: All period n = 5 prime lattice states
φ−2φ−1φ0 φ1φ2| of table 2.3. They are all reflection symmetric, with the fixed
lattice field φ0 colored gold. The most striking feature is how far the a = 6
temporal Hénon is from the 0 ↔ 1 symmetry: stretching close to 0 fixed point
lattice state is much stronger than close to the almost marginal 1 fixed point
lattice state. For a stretching parameter value a slight lower than the critical
value ah = 5.69931 · · · , the lattice sites φ0 for 01110 and 01010 coalesce and
vanish through an inverse bifurcation. As a → ∞ we expect this symmetry to
be restored.
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(a) (b)

Figure 4.2: Temporal Hénon (2.2), (2.3) stable-unstable manifolds Smale horse-
shoe partition in the (φt, φt+1) plane for a = 6, b = −1: fixed point 0 with seg-
ments of its stable, unstable manifolds W s, Wu, and fixed point 1. The most
positive field value is the fixed point φ0. The other fixed point φ1 has negative
stability multipliers, and is thus buried inside the horseshoe. (a) Their inter-
section bounds the region M. = 0BCD which contains the non–wandering
set Ω. (b) The intersection of the forward image f (M.) with M. consists of
two (future) strips M0., M1., with points BCD brought closer to fixed point
0 by the stable manifold contraction. (The same as ChaosBook fig. 15.5, with
φt = −xt.)

The method applies to strongly coupled φ3 field theory in any spatiotempo-
ral dimension. For example, in 2 spacetime dimensions, themth inverse iterate
(4.2) compares the ‘stretched’ field φ(0)

nt to its 4 neighbors,

φ
(m+1)
nt = σnt

1√
2a

(
2 + φ

(m)
n,t+1 + φ

(m)
n,t−1 + φ

(m)
n+1,t + φ

(m)
n−1,t

)1/2

. (4.4)

It is applied to each of the LT lattice site fields {φ(m)
nt } of a doubly periodic

Bravais cell [L×T]S . Here σnt is the sign of the target site field σnt = φnt/|φnt|,
prescribed in advance by specifying the desired Hénon symbol block M,

σnt = 1− 2mnt , mnt ∈ {0, 1} . (4.5)

For the temporal Hénon 3-term recurrence (2.3), the system’s state space Smale
horseshoe is again generated by iterates of the region plotted in figure 4.2. So,
positive field φnt value has mnt = 0, negative field φnt value has mnt = 1.

4.2 Shadow state

Have: a partition of state space M = MA ∪ MB ∪ · · · ∪ MZ , with regions
Mm labelled by an |A|-letter finite alphabet A = {m}. The simplest example
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is temporal Hénon partition into two regions, named ‘0’ and ‘1’,

mt ∈ A = {0, 1} , (4.6)

plotted in figure 4.2 (b). Prescribe a symbol block M over a finite Bravais cell of
a d-dimensional lattice. A 1-dimensional example:

M = (m0, · · · ,mn−1) . (4.7)

Want: the lattice state ΦM whose lattice site fields φt lie in state space domains
φt ∈ Mm , as prescribed by the given symbol block M. A 1-dimensional exam-
ple:

ΦM = (φ0, · · · , φn−1) , φt ∈Mm , (4.8)

By lattice state Φ we mean a point in the n-dimensional state space that is a
solution of the defining Euler-Lagrange equation. For the temporal Hénon ex-
ample, that equation is the 3-term recurrence (2.3),

− φt+1 + aφ2
t − φt−1 = jt , jt = 1 , (4.9)

with all a = 6 period-5 lattice states plotted in figure 4.1.

Shadow state method. Construct a shadow state ΦM and the forcing j(M)t such
that the site-by-site deviation

ϕt = φt − φt (4.10)

is small. Determine the desired lattice state ΦM as the neighboring |ΦM − ΦM|
fixed point of the M-forced Euler-Lagrange equation.
Desideratum: Plot the first, n = 6 temporal Hénon asymmetric lattice state ΦM

and shadow state ΦM, to illustrated the idea.

First, determine the fixed points (solutions with a constant field on all lattice
sites) φt = φm . For temporal Hénon there are two, φ0 and φ1 (see figure 4.2),
labeled by the alphabet (4.6).

Next, construct the simplest configuration from |A| fields φm , each field in
the domain of state space prescribed by the symbol block M. In the shadow
state method, we pick a fixed point φm in each domain as domain’s represen-
tative φm ∈ Mm . For the temporal Hénon example, the fixed-points shadow
state is:

ΦM = (φ0, · · · , φn−1) , where φt =

{
φ0 if mt = 0

φ1 if mt = 1.
(4.11)

In general, the shadow state ΦM does not satisfy the Euler-Lagrange equation
(4.9), violating it by amount j(M)t

− φt+1 + aφ
2

t − φt−1 = 1− j(M)t , (4.12)
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mt−1mtmt+1 j(M)t

0 0 0 0
0 0 1 = 1 0 0 -A = φ1 − φ0

0 1 0 -B = a(φ
2

1 − φ
2

0)

1 0 1 B = a(φ
2

0 − φ
2

1)

1 1 0 = 0 1 1 A = φ0 − φ1

1 1 1 0

Table 4.1: Temporal Hénon fixed-points shadow state ΦM forcing j(M)t de-
pends on the t lattice site and its two neighbors mt−1mtmt+1. It takes values
(0,±A,±B). If period-2 or longer lattice states are utilized as shadows, more
neighbors contribute.

where the forcing j(M)t depends on φt and its neighbors. For the temporal
Hénon example, it takes the values tabulated in table 4.1.

Subtract (4.12) from (4.9) to obtain the 3-term recurrence for ϕt = φt − φt,
the deviations (4.10) from the shadow state,

−ϕt+1 + a (φ2
t − φ

2

t )− ϕt−1 = j(M)t .

Substituting φ2
t = (ϕt + φt)

2 and j(M)t = j(M)t − aφ
2

t , we obtain

M-forced Euler-Lagrange equation

for the deviationϕM from the shadow lattice state configuration ΦM:

−ϕt+1 + a (ϕt + φt)
2 − ϕt−1 = j(M)t . (4.13)

1 This is to be solved by whatever code you find optimal. For example:

Vattay inverse iteration (4.2) is now

ϕ
(m+1)
t = −φt + σt

1√
a

(
j(M)t + ϕ

(m)
t+1 + ϕ

(m)
t−1

)1/2

, (4.14)

and that should converge like a ton of rocks.
Perhaps watch Shadow state conspiracy (35:26 min)

Overview

1Predrag 2022-02-22: Clearly I have to recompute the violation table table 4.1, but that’s for
another day.
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1. The M-forced Euler-Lagrange equation is exact, the only difference from
the starting Euler-Lagrange equation (4.9) is that lattice fields φt have
been translated by constant amounts (4.10) in order to center it on the M-
th saddlepoint ‘landscape’. There is one such M-forced Euler-Lagrange
equation for each admissible symbol block M.

2. M-forced 3-term recurrence (4.13) is exact. It is superior to the original
recurrence as it has built-in symbolic dynamics. The deviations ϕt =
φt − φt should be small, and the topological guess based on M-forcing
should be robust. The recurrence can be solved by any method you like.

3. φ4 field theory works the same, with the M-forced 3-term recurrence for
the deviations ϕt now built from approximate 3-field values (φL, φC =
0, φR). If using Vattay (4.14), the Hénon sign σt needs to be rethought.

4. Implement M-forced 3-term recurrence for symmetric states boundary
conditions.

5. Generalization to higher spatiotemporal dimensions is immediate (see,
for example, the 2-dimensional Vattay iteration (4.4)).

6. As one determines larger and larger Bravais cell lattice states, on can use
the already computed ones instead of the initial (φ0, φ1) to get increas-
ingly better M -forced shadowing.

7. The boring forcing term jt = 1 on RHS of the temporal Hénon recurrence
(4.9) has been replaced by a non-trivial forcing j(M)t in (4.13), as hoped
for.

8. This is not the Biham-Wentzel method: it’s based on exact Euler-Lagrange
equations, there are no artificially inverted potentials, as we are not con-
structing an attractor; all our solutins are and should be unstable.

9. The Newton method requires evaluation of the orbit Jacobian matrix J .
As we have only translated field values φt → ϕt, J is the same as for the
original 3-term recurrence. For large lattice states variational methods
discussed below should be far superior to simple Newton.

10. Have a look at Fourier transform of (4.13). Anything gained in Fourier
space? Remember, we have not quotiented translation symmetry, we are
still computing n lattice states on the spatiotemporal lattice.

11. Shadowing method was first formulated by Kai Hansen [21] in Alterna-
tive method to find orbits in chaotic systems (1995).
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4.3 Variational method, Dong 2020 paper DoLiLi20

Some of the text that follows is copy & paste from Dong, Liu and Li [8] Unstable
periodic orbits analysis in the generalized Lorenz-type system 2020). That is probably
copy & paste from earlier Dong papers, have not checked that.

Their description of our variational method [3, 24] looks better than our
own, or the ChaosBook text (which is not in the public edition yet).2CB

[...] a local, time-dependent scaling factor is used to adjust the period

λ (sn) ≡ ∆tn/∆sn , (4.15)

where ∆sn = sn+1 − sn, n = 1, ..., N − 1, ∆sN = 2π − (sN − s1) and ∆tn
follows the same pattern. The scaling factor guarantees the loop increment
∆sn is proportional to its counterpart ∆tn + δtn on the periodic orbit when the
loop approaches the cycle, with δtn → 0 as L→ p.

The Jacobian matrix J (x, t) = dx (t) /dx (0) is obtained by integrating

dJ

dt
= AJ ,Aij =

∂vi
∂xj

, with J (x, 0) = 1 . (4.16)

[Predrag is getting tired of copying LaTeX from Dong, Liu and Li [8]. Whoever
continues this, remember to turn on MathJax, upper right corner of paper’s
homepage.]

The variational evolution equation containing the crux of the method of
finding periodic orbits

∂2x̃

∂s∂τ
− λA∂x̃

∂τ
− v∂λ

∂τ
= λv − ṽ . (4.17)

Rewriting as
∂ṽ

∂τ
− λ∂v

∂τ
= − (ṽ − λv) , (4.18)

yields
(ṽ − λv) = e−τ (ṽ − λv) |τ=0 , , (4.19)

a minimizing cost function:

F 2 [x̃] =
1

2π

∮
L(τ)

dx̃[ṽ (x̃)− λv (x̃)]
2
. (4.20)

As the loop descends toward a periodic orbit, the cost function decreases mono-
tonically the differences between ṽ (x̃) and v (x̃), converging in the τ →∞ limit
to the periodic orbit. On the periodic orbit, by (4.15), λ (s,∞) = (dt/ds) (x̃ (s,∞)),
and the period is given by

TP =

∫ 2π

0

λ (x̃ (s,∞)) ds . (4.21)
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The finite difference scheme is employed in a discretization of a loop

ṽn ≡
∂x̃

∂s

∣∣∣∣
x̃=x̃(sn)

≈
(
D̂x̃

)
n

(4.22)

and the five-point approximation is adopted

D̂ =
1

12h



0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0


, (4.23)

where h = 2π/N , and each entry represents a [d × d] matrix in (4.23), 8 → 8 1,
etc; the blanks in the matrix represent zeros. The two [2d× 2d] matrices, found
in the upper right-corner and the lower-left corner of (4.23), respectively, can
be written as

M1 =

(
1 −8 1
0 1

)
, M2 =

(
−1 0
8 1 −1

)
,

and are related to the periodic boundary conditions.
After discretization, (4.17) can be written as(

Â −v̂
â 0

)(
δx̃
δλ

)
= δτ

(
λv̂ − ˆ̃v

0

)
, (4.24)

where Â = D̂−λdiag [A1, A2, · · · , AN ] andAn = A (x̃ (sn)) is defined in (4.16).

v̂ = (v1, v2, · · · , vN )
T

with vn = v (x̃ (sn)) ,

are the two column vectors that we match everywhere during the evolution
of the loop. â is an Nd-dimensional row vector that restricts the coordinate
variations. The deformation of the loop coordinates δx̃ and period δλ can be
calculated by inverting the [(Nd + 1) × (Nd + 1)] matrix on the left-hand side
of (4.24).

We use the banded lower-upper (LU) decomposition scheme. Due to the
structure of the matrix in (4.24), the Woodbury formula is adopted on the cyclic
and boundary terms in the calculations [27], thus enabling an efficient search
for periodic orbits.

The variational approach is a good choice to search cycles in a low-dimensional
dissipative system. This method is not only suitable for the determination of
periodic orbits but also for the homoclinic and heteroclinic orbits [6]. In the
previous work, the periodic orbits in various chaotic systems were calculated
efficiently using the variational method [4, 5, 7], which illustrates the practica-
bility of this method in the GLTS.

The variational method can also be used to analyze bifurcation phenom-
ena. When the parameters of a dynamical system change continuously, we can
observe the conditions under which the periodic orbit is created or disappears
through deformations of the periodic orbit.

8289 (predrag–8289) 187 03/15/2022 siminos/spatiotemp



CHAPTER 4. COMPUTING LATTICE STATES

4.4 Dong 2021 paper LDJL21

Liu, Dong, Jie, and Li [26] Topological classification of periodic orbits in the general-
ized Lorenz-type system with diverse symbolic dynamics (2021) (click here).

I like their explanation of the variational method for finding periodic orbits,
and their use of it to study bifurcations by homotopy evolution, which I believe
to be authors’ original contribution to the subject.

I wish they would consider quotienting symmetries of a given dynamical
system prior to their symbolic dynamics analysis. For the 3-disk system quoti-
enting the D3 symmetry vastly improves the convergence of cycle expansions,
see ChaosBook Table 23.2, with symmetry reduction illustrated by Chaos-
Book Figure 11.1, and explained at length in ChaosBook, also for the Lorenz
flow, see ChaosBook Example 14.4, and the text leading up to it.

Reduction of the Lorenz D1 symmetry might not seem like much, but even
that is pretty impressive - the period of a prime or pre-periodic orbit is |G|/|Gp|-
th root of the full state space orbit period, and that leads to a significant sim-
plification of the given problem. For example, in ref. [25], Figure 8 (e) that led
to the 3-letter, bi-modal return map instead of a numerically unmanageable
9-letter return map in the symmetry-unreduced, original state space.

In authors’ example, symmetry reduction would reduce their Table 1 cycles
0,1; 001, 011; 0001,0111 etc to a single cycle, and 01 to repeat 1-cycle, 0011 to
a repeat of a prime 2-cycle, and in general of 1/2 period. Table 2 is another
illustration, with 2,3; barred 2,3 to a single letter, 23 a repeat of 1-cycle, ..., etc,
and the co-existing attractors of Figure 9 reduced to a single attractor. Would
be nice to visualize self-linking in the symmetry-reduced state space.

How the reduced symbolic dynamics is related to unreduced one (the kind
used by the authors) is explained in ref. [34] ChaosBook Sect. 25.5 D1 factor-
ization.

4.5 Wang and Lan 2022 paper WanLan22

Wang and Yueheng Lan have a new paper [29]: A reduced variational approach
for searching cycles in high-dimensional systems:

They accelerate the variational approach for finding periodic orbits in sys-
tems with chaotic dynamics on inertial manifold [...]. An effective loop evolu-
tion equation greatly reduces the storage and computing time, with repeated
modification of local coordinates and evolution of the guess loop being carried
out alternately. The dimension of local coordinate subspaces is generally larger
than the number of nonnegative Lyapunov exponents to ensure the exponen-
tial convergence.

Ref. [24] scheme describes a periodic orbit with a loop of discrete points,
with the topological constraint built into the loop representation. The method
requires the storage and inversion of an (Nd + 1) × (Nd + 1) matrix (d is the
dimension of system and N is the number of lattice points on the guess loop).
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Figure 4.3: The local coordinate frames {ek(si)} (k = 1, 2, ..., n; i = 1, 2, ..., N
and n ≤ d). along the orbit parametrized by si, where Si represents the hyper-
plane spanned by the vectors ek(si) (k ≤ d).

In search of connecting orbits [6] an automatic mesh allocation scheme [31]
alleviates the problem to some extent.

In ref. [30], an automatic allocation scheme of lattice points is adopted to
minimizeN . Here we consider systems where the dimension d of the system is
much greater than N , and try to accelerate the variational method by reducing
the effective dimension of the local coordinate system.

Most computation load originates from the (Nd+ 1)× (Nd+ 1) matrix(
Â −v̂
â 0

)
(4.25)

Not all directions are equally important for orbit adjustment when approach-
ing a periodic orbit from a guess loop. On a hyperplane perpendicular to the
periodic orbit, the vicinity of an orbit point is stretched in a few directions
and compressed in others. The convergence along the compressed directions
is automatic, but the deviation in the stretching or neutral directions has to be
corrected by the variational scheme.

We find a family of local coordinate frames {ek(si)} (k = 1, 2, ..., n; i =
1, 2, ..., N and n ≤ d) along these important directions, giving the projection
sketched in figure 4.3, and rewrite the original variational equation in reduced
coordinate frames.

[...] The size of the velocity gradient matrix ∂vk/∂xj obtained by numerical
differentiation, is much smaller than that of the original velocity gradient A =
∂v/∂x if n� d. The matrix (4.25) is reduced to (Nn+1)×(Nn+1), withNn+1
much smaller than the original one Nd + 1, and the storage and computing
time are greatly cut down. The larger the dimension d, the more prominent the
benefits of this reduction.

(Predrag: have not gotten into the nitty-gritty, but it looks like something
we might want to use).
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4.6 Computing lattice states blog

2022-02-26 Predrag Variational methods are central to the spatiotemporal chaos
program, so they are involved in any line of attack. Here is an attempt at
a list (incomplete) of variational links:

They were central to Yuehang Lan’s PhD work:

Y. Lan [22] Dynamical Systems Approach to 1 − d Spatiotemporal Chaos – A
Cyclist’s View (2004)

Cvitanović and Lan [3] Turbulent fields and their recurrences (2003)

Lan and Cvitanović [24] Variational method for finding periodic orbits in a
general flow (2004)

Lan, Chandre and Cvitanović [23] Variational method for locating invariant
tori (2006)

They are a recurring theme throughout DasBuch:
ChaosBook Chapter Relaxation for cyclists

ChaosBook Section Least action method

ChaosBook Appendix Dynamicist’s vision of turbulence

ChaosBook Section Cost function

ChaosBook eq. (7.5) Newton setup for flows.

ChaosBook Q. 8.1 Dynamics equals a Hamiltonian plus a bracket

Variational methods were central to Matt Gudorf’s PhD work:
Matt Gudorf [19] Spatiotemporal Tiling of the Kuramoto-Sivashinsky Equation
(2020), click here

Orbithunter: Framework for Nonlinear Dynamics and Chaos

Then there are several siminos/ repo blogs (you have to go there first, and
compile them before these links can work):

is space time? - mostly continuous PDEs, Matt Gudorf, the main parallel
variational methods blog, full of important posts

Navier-Stokes Zipped! - fluid dynamics, many variational methods posts

Desymmetrization and its discontents - mostly slicing, many variational meth-
ods posts

Gao, Gao, Li, Tong and Lee [18] Detecting unstable periodic orbits of non-
linear mappings by a novel quantum-behaved particle swarm optimization non-
Lyapunov way (2009)

Gao, Xie and Lan [17] Accelerating cycle expansions by dynamical conjugacy
(2012)

Dong and Lan [6] A variational approach to connecting orbits in nonlinear
dynamical systems (2014)
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Dong and Lan [7] Organization of spatially periodic solutions of the steady
Kuramoto-Sivashinsky equation (2014)

Azimi, Ashtari and Schneider [1] Constructing periodic orbits of high-dimensional
chaotic systems by an adjoint-based variational method (2022)

Wang and Lan [29] A reduced variational approach for searching cycles in high-
dimensional systems (2022)

2022-02-11 Predrag We have the extraordinarily gifted Molei Tao on campus,
and we should try to get his advice as we move forward, especially if we
make enough progress to be able to move into fluid dynamics.

I enjoyed his latest talk (really, two talks packed into 80 minutes, which
summarize earlier ones) very much:

ML meets dynamics (2022). What I find interesting that - while we get
rid of (position, momentum) as fast as possible, he introduces artificial
momentum, shows that it accelerates his forward-in-time integration.

Data-driven prediction of general Hamiltonian dynamics via learn-
ing exactly-symplectic maps (2021); 5 min version; arXiv:2103.14166,
arXiv:2103.05632. Their algorithm’s convergence compared to anything
else is incredible.

Stochasticity of deterministic gradient descent: Large learning rate
for multiscale objective function (2020)

Variational optimization on Lie groups with examples of leading
(generalized) eigenvalue problems (2020); 17 min version; pdf;
arXiv:2103.14166

See also Hessian-free high-resolution Nesterov acceleration for sampling
arXiv:2006.09230

This goes on, Molei is crazy productive...

2022-02-25 Burak Your shadow state method looks very much like the predictor–
corrector method.

2022-02-28 Predrag I do not quite see it. Both methods are implicit, but predictor–
corrector is forward in time, while shadow state is global. We should
check whether there is a Hill’s formula relation between the two - might
help us transfer some of the predictor–corrector techniques into the global
setting.

Exercises boyscout
4.1. Inverse iteration method for a Hénon repeller. 2CB
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Table 4.2: All periodic orbits up to n = 6 for the Hamiltonian Hénon map re-
peller (4.26) with a = 6. Listed are the cycle itinerary, its expanding eigenvalue
Λp, and its “center of mass.” The “center of mass” is listed because it turns
out that it is often a simple rational or a quadratic irrational. All orbits up to
topological length n = 20 have been computed.

p Λp
∑
φp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025
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2 3 Consider the Hénon map (16.14) for the area-preserving
(“Hamiltonian”) parameter value b = −1. The coordi-
nates of a periodic orbit of length np satisfy the equation

φp,i+1 + φp,i−1 = 1− aφ2
p,i , i = 1, ..., np , (4.26)

with the periodic boundary condition φp,0 = φp,np . Ver-
ify that the itineraries and the stabilities of the short pe-
riodic orbits for the Hénon repeller (4.26) at a = 6 are as
listed in table 4.2.
Hint: you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated by inverse iter-
ation φ(m+1)

p,i → φ∞p,i = φp,i, estimating the midpoint by
square-root of (4.26)

φ
(m+1)
p,i = σp,i

√
1− φ(m)

p,i+1 − φ
(m)
p,i−1

a
. (4.27)

Here σp,i are the signs of the corresponding periodic point
coordinates, σp,i = φp,i/|φp,i|, related in the obvious
way to desired periodic orbit’s binary itinerary,

σi + 1 = 2mi , mi ∈ {0, 1} . (4.28)

see figure 4.1. G. Vattay

Chapter 2. Hénon map
Solution 4.1 - Inverse iteration method for a Hamiltonian repeller. For the complete
repeller case (all binary sequences are realized), the cycles can be evaluated variation-
ally, as follows. According to (16.14), the coordinates of a periodic orbit of length np
satisfy the equation 2CB

φp,i+1 + φp,i−1 = 1− aφ2
p,i , i = 1, ..., np , (4.29)

with the periodic boundary condition φp,0 = φp,np .
In the complete repeller case, the Hénon map is a realization of the Smale horse-

shoe, and the symbolic dynamics has a very simple description in terms of the binary
alphabet ε ∈ {0, 1}, εp,i = (1+Sp,i)/2, where Sp,i are the signs of the corresponding pe-
riodic point coordinates, Sp,i = φp,i/|φp,i|. We start with a preassigned sign sequence
Sp,1, Sp,2, . . . , Sp,np , and a good initial guess for the coordinates φ′p,i. Using the inverse
of the equation (4.26)

φ′′p,i = Sp,i

√
1− φ′p,i+1 − φ′p,i−1

a
i = 1, ..., np

we converge iteratively, at exponential rate, to the desired periodic points φp,i. Given
the periodic points, the cycle stabilities and periods are easily computed using (2.67).

2Predrag 14oct2021: Return to ChaosBook eventually
3Predrag 27dec2004: give the center of mass paper reference somewhere
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The itineraries and the stabilities of the short periodic orbits for the Hénon repeller (4.29)
for a = 6 are listed in table 4.2; in actual calculations all orbits up to topological length
n = 20 have been computed. G. Vattay
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Chapter 5

Group theory

5.1 A dancer, a parquet floor

Think of a dancer on a parquet floor. Or a skater skating over the skating ring’s
ice. Or a cat over spacetime.

A parquet board t is a site of our lattice L, the coordinate system over which
the dancer dances.

The disposition of the dancer on a parquet board t is given by the field φt.
A lattice state is a set of all field values Φ = {φz} over the d-dimensional

lattice z ∈ Zd that satisfies a given Euler-Lagrange equation.

Space group. ‘State space’M is the totality of ‘states’ Φ: all possible arrange-
ments of cats, dancers, ... - ‘fields’ φt and their names M.

‘Coordinates’ refer to markings on the floor that they stand on.
If you mark every inch on a blank linoleum floor, that is a ‘discretization’.
If you compare dancers on adjoining parquet boards, this is a lattice deriva-

tive. The floor is still a floor; lattice derivative is property of the floor, what
parquet boards are adjoining boards in d dimensions.

If dancer strikes the same pose on a different parquet board, we call that
translational or (C∞)d symmetry.

If the dancer strikes the same pose on a parquet board of a different orien-
tation, we refer to such coordinate system symmetry as a space group G. An
example is a dancer that cannot tell left from right on a 1-dimensional lattice.
Then the coordinate system symmetry is the dihedral group D∞.

If the theory has a Lagrangian formulation, the Lagrangian is -by construction-
invariant under all symmetries.

Its first variation, the Euler-Lagrange equation is equivariant under these
symmetries. For example, for a 2-dimensional square integer lattice, a possible
symmetry of the theory can be the space group p4mm symmetry operations (7.7).

The individual lattice states either have no symmetry at all (they are, after
all, ‘turbulent’), or are invariant under subgroups of space group p4mm.
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In what follows we quotient only the translational symmetries, and post-
pone dazzling the captive reader with the full D4 point group reduction to a
later, more ponderous publication.

Space group. If a biped, the dancer can strike a bilaterally symmetric pose;
we (for the time being) call that a dynamical symmetry.

For example, inspection of the temporal cat figure 15.22 suggests that there
is a field symmetry under inversion though the center of the 0 ≤ φz < 1 unit
interval. Indeed, if M = {mnt}, composed of symbols from a given alphabet,
corresponds to a 2-dimensional lattice state ΦM = {φnt}, its conjugation sym-
metry partner

M̄ = {m̄nt} , m̄nt = 2(s− 2)−mnt , (5.1)

corresponds to lattice state Φ̄M̄ = {1−φnt}. So, every lattice state either belongs
to a conjugate pair {ΦM, Φ̄M̄}, or is self-dual under conjugation.

5.2 Random group theory bits
2CB

We used to be stuck on reflection-symmetry reduction needed to factorize the
zeta functions. But no more - see sect. 5.6 A Lind zeta function for flip systems.

classical field theory on d-dimensional lattice

(2− µ2) Φ + F [Φ] = −M , (5.2)

Definitions:
The matrix symmetry group G of a matrix M :

S(M) = {g ∈ G | gMg−1 = M} . (5.3)

The reversing matrix symmetry group R of a matrix M :

R(M) = {s ∈ R | sMs−1 = M−1} . (5.4)

A matrix M is reversible if it is conjugate to its inverse within matrix group R.
Park [68] refers to (??) as ‘skew-commuting’:

“The ‘covering space’ has two actions, f and s, where f is a Z-action, s is a map
of order two, and s and T skew-commute; that is, sfs = f−l.”

Let (M, f) be an invertible dynamical system. A homeomorphism s :M→
M is a flip if

s ◦ f ◦ s = f−1 , s2 = 1 . (5.5)

The triple (M, f, s) is called a flip system [54].
For a shift space a flip is a non-abelian group action, see (5.8). A flip system

(M, f, s) is shift-flip system of finite type if (M, f) is a shift of finite type.
Notation follows Dihedral group and Regular polygons wikis.
T is a normal subgroup of G.
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For space groups, the cosets by translation subgroup T (the set all transla-
tions) form the factor (also known as quotient) group G/T , isomorphic to the
point group g. The normal subgroup of a line group G is its translational sub-
group T , with its factor group G/T isomorphic to the isogonal point group P of
discrete symmetries of its 1-dimensional unit cell x ∈ [0, 1).

ri rj = ri+j , ri sj = si+j , si rj = si−j , si sj = ri−j , (5.6)

As the order in which a translation and a reflection are applied is not commu-
tative, dihedral groups are nonabelian.

1

To omit from the paper:
As any two flips result in a rotation, alternative presentation for Dn , n even,
is generated by a horizontal (short axis) reflection, and a diagonal (long axis)
reflection, rather than the usual (r, s) set. (I have not checked this for the odd
n.)

an even index 2k reflection s2k reflects the lattice across the kth lattice site,
while an odd index reflection s2k+1 reflects the lattice across the midpoint be-
tween sites k and k+.

Definition: Coset. Let H = {e, b2, b3, b4, · · · } ⊆ G be a subgroup of G.
The set of h elements {c, cb2, cb3, cb4, · · · }, c ∈ G but not in H , is called
left coset cH . For a given subgroup H the group elements are partitioned
into H and m− 1 cosets, where m = |G|/|H|.

There are a 2n left cosets of subgroupH(n) in D∞ (5.230), with the quotient
group D∞/H(n) isomorphic to the dihedral group Dn .

There are n infinite dihedral H(n, k) subgroups of D∞, with n left cosets
(5.231) and the quotient group D∞/H(n, k) isomorphic to the cyclic group Cn .

A typical turbulent trajectory of fluid flow has no symmetry beyond the
identity, so its symmetry group is the trivial subgroup {e}.

In summary: You can visualize an lattice states invariant under a translation
subgroupH(a), figure ?? (a), as a tiling of the lattice Z by a lattice state tiles with
a fish painted on it, swimming upstream, and no reflection symmetry.

Note that as H(10, 9) and H(10, 0) are not conjugate subgroups, there is no
translation or reflection that maps lattice state of the first type into lattice state
of the second.

An orbit is by construction a symmetry invariant notion: as the set of all
lattice states that can be reached Φ by symmetries, it is an invariant set, as any
group action merely permutes it. The full state space M is a union of such
orbits.

If G is a symmetry, intrinsic properties of an orbit p (period, Floquet multi-
pliers) evaluated anywhere along its G-orbit are the same.

1Predrag 2021-07-17: Fig. 2.1 in Damnjanović and Milošević is cute:) So is this illustration of
the group elements D8.
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A symmetry thus reduces the number of inequivalent lattice statesMp. So
we also need to describe the symmetry of a solution, as opposed to the symme-
try of the system.

A generic orbit might be ergodic, unstable and essentially uncontrollable.
The ChaosBook strategy is to populate the state space by a hierarchy of orbits
which are compact invariant sets (equilibria, periodic orbits, invariant tori, . . . ),
each computable in a finite time. They are to a generic orbit what fractions are
to normal numbers on the unit interval.

While for the infinite lattice case there are no ‘long axes’, ‘short axes’, an
even index 2k reflection s2k still reflects the lattice across the kth lattice site
(a ‘vertex’ of a triangle or a square in the finite example), while an odd index
2k−1 reflection s2k−1 reflects the lattice across the midpoint between sites k−1
and k (an ‘edge’ of a square in the finite example). 2

Not sure we need this, so I dropped it for now: “ For odd n, there are
(n − 1)/2 such classes. For even n, there are (n − 2)/2 such pairs, with the
rotation by half a circle a class {rn/2} by itself. ”

Dihedral groups are ambivalent groups – every element is conjugate to its
inverse. Thus, all the irreducible representations of a dihedral group over the
complex numbers can be realized over the real numbers. Etc.

As Dn elements are combinations of one-step translations and reflections,
its group presentation is

Dn =
〈
r, s | rn = s2 = 1, rs = srn−1

〉
. (5.7)

A presentation of the infinite dihedral group [54] is

D∞ =
〈
r, s | srs = r−1, s2 = 1

〉
. (5.8)

D1, D2, D3, D4, ...
Examples are the D3 Cayley table 5.11 and the D6 Cayley table 5.12.
So far, ChaosBook works out zeta function factorizations for D1 (exam-

ple 5.11), D2 (known as Klein four-group), D3 (symmetric group S3), and D4.

example 5.15
p. 271

example 5.17
p. 271

example 5.18
p. 272

5.3 Temporal lattice systems

5.3.1 Temporal Bernoulli system

To motivate our formulation of a spatiotemporal chaotic field theory to be
developed in the sequel [29], we recast the local initial value, time-evolution
Bernoulli map problem as a temporal lattice fixed point condition, the problem
of enumerating and determining all global solutions.

2Han 2021-08-13: This is correct only when we define that s is the reflection across the 0th lattice
site.
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‘Temporal’ here refers to the state (field) φt, and the winding number (source)
mt taking their values on the lattice sites of a 1-dimensional temporal integer lat-
tice t ∈ Z. Over a finite lattice segment, these can be written compactly as a
lattice state and the corresponding symbol block

Φ> = (φt+1, · · · , φt+n) , M> = (mt+1, · · · ,mt+n) , (5.9)

where (· · · )> denotes a transpose. The Bernoulli equation, rewritten as a first-
order difference equation

φt − sφt−1 = −mt , φt ∈ [0, 1) , (5.10)

takes the matrix form

J Φ = −M , J = 11− sr−1 , (5.11)

where the [n×n] matrix

rjk = δj+1,k , r =


0 1

0 1
. . .
0 1

1 0

 , (5.12)

implements the shift operation, a cyclic permutation that translates forward
in time the lattice state Φ by one site, (rΦ)> = (φ2, φ3, · · · , φn , φ1). The time
evolution law must be of the same form for all times, so the shift operator
r has to be time-translation invariant, with rn+1,n = r1n = 1 matrix element
enforcing the periodicity. After n shifts, a lattice state returns to the initial state,

rn = 11 . (5.13)

5.3.2 Temporal cat

Written out as a second-order difference equation, the Percival-Vivaldi map
takes a particularly elegant, temporal cat form

φt+1 − s φt + φt−1 = −mt , (5.14)

or, in terms of a lattice state Φ, the corresponding symbol block M (5.9), and the
[n×n] shift operator r (5.12),

(r − s 11 + r−1) Φ = −M , (5.15)

very much like the temporal Bernoulli condition (5.11). ‘Temporal’ again refers
to the global lattice state (field) Φ, and the winding numbers (sources) M taking
their values on the lattice sites of a 1-dimensional temporal lattice t ∈ Z.
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where the [n×n] orbit Jacobian matrix J is now given by

J = r − s 11 + r−1 (5.16)

a tri-diagonal Toeplitz matrix (constant along each diagonal, Jk` = jk−`) of
circulant form,

J =



−s 1 · · . . . · 1
1 −s 1 · . . . · ·
· 1 −s 1 . . . · ·
...

...
...

...
. . .

...
...

· · . . . . . . . . . −s 1
1 · . . . . . . . . . 1 −s


. (5.17)

5.3.3 Lattice states

A lattice state Φ is periodic if it satisfies

Φ(x+R) = Φ(x) (5.18)

for any discrete translation R = na ∈ L , where n is any integer, and a is the
integer lattice vector that defines the Bravais cell (or, the Bravais sublattice of
Z).

The basic ‘atom’ of a reflection-symmetric period n lattice state is a ‘half’ of
it, the length m orbit, and its reflection

Φ̃ = φ1φ2φ3 · · ·φm , sΦ̃ = φm · · ·φ3φ2φ1 , (5.19)

in terms of which a Bravais lattice state Φ has one of the four symmetries:

(1) Φ̃ m = n (5.20)
(2) φ0 Φ̃|sΦ̃ m = (n − 1)/2 , n odd (5.21)

(3) φ0 Φ̃φm+1sΦ̃ m = (n − 2)/2 , n even (5.22)

(4) Φ̃|sΦ̃| m = n/2 , n even (5.23)

While the defining equation for temporal cat or temporal Hénon is equivari-
ant under the integer lattice space group p1m symmetry operations, the individ-
ual lattice states either have no symmetry at all (they are, after all, ‘turbulent’),
or are invariant under subgroups of space group p1m.

In addition, the temporal cat (but not the temporal Hénon) has a dynamical
symmetry under the inversion S through the center of the 0 ≤ φj < 1 unit
interval,

φ̄j = Sφj = 1− φj , for all j ∈ L . (5.24)

Indeed, if ΦM = {φt} is a lattice state, its conjugation symmetry partner Φ̄ =
{1−φt} is also a lattice state. So, every lattice state either belongs to a conjugate
pair {Φ, Φ̄}, or is self-dual under conjugation.
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5.3.4 Reflection-symmetric lattice states

2021-08-14 Predrag Almost everything in this section is misguided or wrong.
Delete eventually...

Consider a lattice state

· · ·φ−3φ−2φ−1φ0φ1φ2φ3φ4 · · · (5.25)

over an infinite 1-dimensional integer lattice Z. Assume for the moment that
the system is linear so a sum of lattice states is also a lattice state.

If the lattice state is antisymmetric under an even reflection, the antisym-
metric subspace is 2-dimensional. The lattice state tiles the infinite lattice as:

0 φ1φ2 0 φ2 φ1 , (5.26)

Go to any lattice site k, reflect the lattice state and average the two, using
the translate-reflect operator 3

Pk =
1

2
(1 + sk) . (5.27)

The result is a lattice state reflection-symmetric across lattice site k. From (??)
it follows that for odd k, all Pk operators are in the same conjugacy class as P1,
and for even k, all Pk are in the same conjugacy class as P0. It suffices to do the
computation only once for each class.

P± = (1± s)/2

P+ =
1

2


2 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 1 1 0
0 1 0 0 1

 , trP+ = 3 (5.28)

with two orthogonal nul eigenvectors
e4 = 2−1/2(0, 0, 1,−1, 0), e5 = 2−1/2(0, 1, 0, 0,−1),
suggesting an orthogonal basis
e1 = (1, 0, 0, 0, 0), e2 = 2−1/2(0, 0, 1, 1, 0) e3 = 2−1/2(0, 1, 0, 0, 1)

Stack them up into a diagonalization matrix

V =


1 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 0 −1 0
0 0 1 0 −1

 , V −1 =
1

2


2 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 0 1 −1 0
0 1 0 0 −1

 .(5.29)

3Predrag 2021-10-08: Was ’shift-reflect’, but Burak says in fluid dynamics translation is one
direction, but ‘reflect’ is in a transverse direction; changed to avoid confusion.
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(I gave up on this - too manual)

P− =
1

2


0 0 0 0 0
0 1 0 0 −1
0 0 1 −1 0
0 0 −1 1 0
0 −1 0 0 1

 , trP− = 2 . (5.30)

The determinant of a [3 × 3] matrix can be written as the antisymmetrized
trace of the matrix [26]:

DetM = tr 3AM =
1

3

3∑
k=1

(−1)k−1(tr 3−kAM)trMk

=
1

3

(
(tr 2AM)trM − (trM)trM2 + trM3

)
tr 2AM =

1

2

(
(trM)2 − trM2

)
, (5.31)

where A is the antisymmetrization projection operator, and 3 is the dimension
of the matrix M . Evaluating this seems a bit not smart...

Apply the (5.27) operator P0 = (1 + s)/2 to lattice state (5.25). We obtain a
lattice state

· · · φ̃4φ̃3φ̃2φ̃1φ0 φ̃1φ̃2φ̃3φ̃4 · · · , (5.32)

symmetric under reflection, where φ̃j = (φ−j + φj)/2 , are pairwise symmetric
under the reflection s, with φ̃0 = (φ0 + φ0)/2 indicating that the field at the
lattice site 0 is unchanged by reflection.

Next apply the projection operator P1 = (1 + sr)/2 from (5.27) to a lattice
state (5.25). We obtain a lattice state

· · · φ̃4φ̃3φ̃2φ̃1|φ̃1φ̃2φ̃3φ̃4 · · · , (5.33)

where | indicates that the state is symmetric under reflection across midpoint
between lattice sites 0 and 1, and the successive lattice pair averages φ̃j = (φj+
φ1−j)/2 , j = 1, 2, 3, · · · , are pairwise symmetric under the reflection s1.

In summary, as reflection operators s0 = s and s1 = sr belong to the two
dihedral group D∞ classes, all other lattice states symmetric with respect to re-
flection sk, for any integer k, are conjugate to the above two types of symmetric
lattice states.

The orbit Jacobian matrix (??), 3 symmetry cases:
Odd period Bravais cell (??), is [(m+1)×(m+1)]-dimensional (compare with
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(20.326)): 4

J [Φ] =



s0 −2 0 0 · · · 0 0 0
−1 s1 −1 0 · · · 0 0 0
0 −1 s2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 sm−1 −1
0 0 0 0 · · · 0 −1 sm−1


. (5.34)

Even period n = 2m+ 2, even reflection k (??) (compare with (20.328)):

J [Φ] =



s0 −2 0 0 · · · 0 0 0
−1 s1 −1 0 · · · 0 0 0
0 −1 s2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 sm −1
0 0 0 0 · · · 0 −2 sm+1


. (5.35)

Even period n = 2m, odd reflection k (??) (compare with (20.327)):

J [Φ] =


s1−1 −1 0 · · · 0 0 0
−1 s2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −1 sm−1 −1
0 0 0 · · · 0 −1 sm−1

 . (5.36)

orbit Jacobian matrix J evaluated on the lattice state commutes with s,

J s =


s0 −1 0 0 −1
−1 s1 −1 0 0
0 −1 s2 −1 0
0 0 −1 s2 −1
−1 0 0 −1 s1




1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 = sJ . (5.37)

Even period examples: For even dimensions, there are two classes of reflec-
tions, the even ones, figure ?? (ee), that leave two ‘yellow’ site fields fixed, swap
the rest, and the odd ones, figure ?? (eo), that swap the ‘reds’ and ‘blues’. This

4Predrag 2021-09-01: The bottom, odd, looks like Neumann boundary condition, see
Pozrikidis [69] (click here) eq. (1.5.4). The top, time-direction symmetry breaking b.c. I do not
recognize.
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is illustrated by the D4 permutation representation of the even s, odd s3 reflec-
tion symmetries of a square, figure ?? (e):

s =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , s3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (5.38)

The even reflection keeps two site fields fixed,

(sΦ)> = (φ0 , φ3, φ2 , φ1) ,

in agreement with (??). while the odd reflection reverses the order of site fields

(s3Φ)> = (φ3, φ2|φ1, φ0) ,

in agreement with (??),

(20.343) is invariant under the 1/2 lattice spacing reflection:

s =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


. (5.39)

(20.347) the corresponding reflection operator leaves sites 1 and 4 invariant:

s1 =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0


. (5.40)

Combination r + r−1 commutes with sk, and sk conjugacy reverses S

skJ sk = −r + skS sk − r−1

=



sn−1 −1 0 0 . . . 0 −1
−1 sn−2 −1 0 . . . 0 0
0 −1 s2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s2 −1
−1 0 . . . . . . . . . −1 s1


(5.41)
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where S is a diagonal matrix with the lattice site k ‘stretching’ factor sk in the
kth row/column.

If a period-9 orbit is invariant under the reflection operator (see (20.348))

s =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


. (5.42)

If a period-8 orbit is of form (see (??))

φ0φ1φ2φ3φ4φ3φ2φ1 , (5.43)

the corresponding reflection operator leaves sites 0 and 4 invariant (see (20.348)):

s =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0


. (5.44)

2021-08-23 Predrag I still worry about the antisymmetric states (20.330), (20.331);
here (5.45) and (5.45) look wrong as they force the fixed lattice site fields
to be zero. Cannot be true for nonlinear field theories, such as temporal
Hénon. Presumably, individual symmetric lattice states are either sym-
metric or antisymmetric under the swap, not just the reflection-reduced
orbit Jacobian matrix J . I wish someone would actually show me how
this works for individual temporal cat or temporal Hénon lattice states?
I’ll plod on...

2021-08-28 Predrag For example, if the period of the lattice states is 6, we have
two kinds of reflections. If the lattice state is antisymmetric under an odd
reflection, the antisymmetric subspace is 3-dimensional, and the Bravais
lattice state tiles L as:

φ1φ2φ3|φ3 φ2 φ1| , (5.45)

where the underline is a shorthand for φj = −φj .

2021-08-29 Predrag A period-5 reflection antisymmetric lattice state tiles the in-
finite lattice as:

· · ·φ2 φ1 φ0 φ1φ2 |φ2 φ1 φ0 φ1φ2 | · · · , (5.46)
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The thing to get used to is that a reflection of the Bravais cell leads to

s φ0 φ1φ2 |φ2 φ1 = φ0 φ1 φ2 |φ2φ1 ,

which is not a translation; length-2 block (φ1, φ2) lattice fields have changed
signs. I assume that is OK because the overall number of ‘-’s does not
change.

−s0φ0 = −m0

φ0 − s2φ1 + φ2 = −m1

φ1 − (s3 + 1)φ2 = −m2

.

Note, this differs from (20.331), where it is assumed that the antisym-
metry forces φ0 = 0 (which is indeed the case for a multiplicative sym-
metrization operator with eigenvalue -1, but we are not doing that here,
I think).

orbit Jacobian matrix

J− =

 −s0 0 0
1 −s1 1
0 1 −s2 − 1

 or
(
−s1 1

1 −s2 − 1

)
DetJ− = −s0(s1s2 + s2 − 1) (5.47)

where the [2× 2] matrix comes from assuming that separately fixed.

As temporal cat fields are always presented mod 1, there the asymmetric
states do not look asymmetric. That would be much easier to see in plots
of temporal Hénon lattice states of table 2.3 and figure 2.2.

For sj = 3 the determinant of this orbit Jacobian matrix is 3*11 or 11. Are
there 11 antisymmetric lattice states, i.e., the corresponding 2 antisym-
metric 5-orbits? I assume φj = 0 fixed point counts as ‘antisymmetric’.
Seems to agree with table 20.3.

Starting with the block (φ2, φ1), followed by φ0 presumably results in a
time-reversed orbit Jacobian matrix sJ s. From this construction it is not
clear how to connect this to the 5-dimensional Bravais cell; so, see also
(??), and the continuation in (20.326).

2CB

2022-01-02 Predrag Not sure this is good for anything, so just for the record:
Blümel and Dabaghian Combinatorial identities for binary necklaces from ex-
act ray-splitting trace formulae (2001) arXiv:math-ph/0107026:

two words w and w′ are equivalent in our context, and code for the same
periodic orbit, if they are of the same length (i.e. they consist of the same
number of symbols) and their respective symbol sequences are identical
up to cyclic permutations. Sequences of objects that are identical up to
cyclic permutations are called (Pólya) necklaces [72] (see also necklace).
If the number of objects they consist of is two, they are called binary neck-
laces. The periodic orbits can be coded with the help of binary necklaces
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over the symbols L and R. It is remarkable that every Newtonian or
non-Newtonian periodic orbit can be mapped one-to-one onto a binary
necklace. In other words, “pruning” is not necessary for the binary neck-
laces relevant to us.

Given two letters, for instance L and R, we can form 2` words of length
`. But, in general, many of these words will be cyclically equivalent, and
correspond to the same necklace. So, how many necklaces of length ` are
there? This question is answered by the following formula. There are
exactly [72]

N(`) =
1

`

∑
n|`

φ(n) 2`/n (5.48)

binary necklaces of length `, where the symbol “n|`” denotes “n is a di-
visor of `”, and φ(n) is Euler’s totient function defined as the number of
positive integers smaller than n and relatively prime to n with φ(1) = 1
as a useful convention. Thus the first four totients are given by φ(1) = 1,
φ(2) = 1, φ(3) = 2 and φ(4) = 2.

Next we define the set Wp of prime necklaces as the ones that cannot be
written as a periodic concatenation of substrings. There exists an exact
periodic orbit expansion for the spectral density in terms of prime binary
necklaces (see also us).

necklace J. H. van Lint and R. M. Wilson, A Course in Combinatorics (Cam-
bridge University Press, Cambridge, 1992).

us Y. Dabaghian, R. Jensen, and R. Blümel, Phys. Rev. E 63, 066201 (2001).

2021-10-18 Predrag to Han You might enjoy the discussion of “fundamental
domains" in

Knots in hyperbolic space.
now in CB

2021-10-31 Predrag to Han Does not mention ’Burnside’, but seems like Matt
Macauley ( homepage) on visualizing group actions is a possible path to
understanding Burnside marks...

The course is here, and it, as well as Dana Ernst’s online An inquiry-
based approach to abstract algebra are inspired by

Nathan Carter’s Visual Group Theory, (read it online through GaTech-
Library) seems very good.

2021-10-31 Predrag Matt Macauley has a nice discussion of dihedral D∞ in
his Chapter 1: Groups, intuitively.
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5.4 Time reversal symmetry reduction

5.4.1 Laplacians (and time reversal?)
2CB

The symmetric (self-adjoint) Laplacian 2 = −∂>∂ suggests that time-reversal
desymmetrized dynamics is given by a first order derivative ∂ = r − 1 (also
known as the integer lattice forward difference operator, see (3.3), (3.4)). The
symmetric (self-adjoint) combination 2 = −∂>∂ is the Laplacian

J = 2− µ21 = −
(
r−1 − 1

)
(r − 1)− µ21 , (5.49)

where
µ =
√
s− 2 . (5.50)

is the Yukawa mass parameter (6.26) in d = 1 dimension.
For purposes of the time-reversal desymmetrization its is more convenient

to work with the centered, reflection antisymmetric difference operators (3.6),

∂̃ = r̃ − r̃−1 , r̃ = r1/2

= −∂̃> , (5.51)

constructed by interpolating 1/2-unit spacing lattice L̃ points between the in-
teger lattice L points, with the derivatives written as

(r − 1) = r̃∂̃(
r−1 − 1

)
(r − 1) = −∂̃2 = 2 (5.52)

J = 2− µ21 = J̃>J̃
J̃ = ∂̃ − µ1 = r̃ − µ1− r̃−1

J̃> = ∂̃ + µ1 = r̃ + µ1− r̃−1

Written out in the matrix form, the J = J̃>J̃ factorization can be checked by
matrix multiplication 5

J [Φ] =



−s0 0 1 0 . . . 1 0
0 −s1 0 1 . . . 0 1
1 0 −s2 0 . . . 0 0
...

...
...

. . .
...

...
...

0 0 . . . 0 −sn−3 0 1
1 0 . . . 1 0 −sn−2 0
0 1 . . . 0 1 0 −sn−1



J̃ =



−µ0 −1 0 0 . . . 0 1
1 −µ1 −1 0 . . . 0 0
0 1 −µ2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . −µn−2 −1
−1 0 . . . . . . . . . 1 −µn−1


, (5.53)

5Predrag 2021-09-14: Checked that factorization (5.53), metal temporal lattice condition (5.54)
works also for the orbit Φ dependent case (??).

8289 (predrag–8289) 209 03/15/2022 siminos/spatiotemp



CHAPTER 5. GROUP THEORY

where µ2
t = st − 2 is the lattice site "Klein-Gordon mass", "stretching factor",

respectively, and J , J̃>, J̃ act on the 1/2-unit spacing lattice L̃, i.e., remember
(perhaps reintroduce ∆t lattice spacing explicitly?) that r̃ = r1/2 in (5.52) is
the shift operator on the 1/2 lattice spacing. So two applications of 1/2 lattice
shift operator give you one full lattice spacing.

Written out as a second-order difference equation, the metal map takes a
temporal lattice form

φ̃t+1 − µtφ̃t − φ̃t−1 = −m̃t , (5.54)

or, in terms of a lattice state Φ, the corresponding symbol block’ M, and the
[n×n] shift operator r,

(r̃ − µ[Φ] 11− r̃−1) Φ̃ = −M̃ , (5.55)

where µ[Φ] 11 stands for site-dependent diagonal Klein-Gordon mass matrix.
J̃ discrete Fourier diagonalization

λm = µ2 + 2− 2 cosαm = µ2 + 4 sin2 (αm/2)

=
(
µ− i 2 sin

(αm
2

)) (
µ+ i 2 sin

(αm
2

))
=

(
µ+ eiαm/2 − e−iαm/2

) (
µ+ eiαm/2 − e−iαm/2

)∗
where αm = 2πm/n (5.56)

i.e., the sin2 (αm/2) version of the eigenvalues is there for a reason, a conse-
quence of the time-reversal symmetry, with J̃ eigenvalues being

−2i sin (αm/2) = eiαm/2 − e−iαm/2 .

Phase is αm/2 because the fundamental domain is 1/2 of the full line. The
square root is natural because the Yukawa mass µ2 = d(s−2) parameter (6.26).

Discrete Fourier diagonalization J = J−J+ , turns r̃ into its eigenvalues
exp(iαk/2), and the temporal cat Hill determinant (20.260) factorizes as

DetJ = DetJ−DetJ+

DetJ+ = µ

`−1∏
k=1

(µ+ 2i sin(αk/2)) , αk = 2πk/`

DetJ− = µ

`−1∏
k=1

(µ− 2i sin(αk/2)) . (5.57)

By derivation (do it!) analogous to the Isola’s cat map ζ(Z) (1.30), the topo-
logical zeta function for metal cat maps is

1

ζ̃(t)
=

1− µt− t2
(1− t)2

, (5.58)
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n 1 2 3 4 5 6 7 8 9 10 11

Nn 1 5 16 45 121 320 841 2205 5776 15125 39601
Mn 1 2 5 10 24 50 120 270 640 1500 3600

Table 5.1: Lattice states and orbit counts for the s = 3 cat map. Compare with
the golden (Fibonacci [8]) cat map table 5.2 and (5.183).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ñn 1 1 4 5 11 16 29 45 76 121 199 320 521 841 1364
M̃n 1 0 1 1 2 2 4 5 8 11 18 25 40 58 90

Table 5.2: Temporal lattice states and orbit counts for the µ = 1 golden cat
map. See (5.183) and the counting of walks on the “half time-step” Markov
graph figure 5.2.

where z = t2, in agreement with (5.182) for µ = 1. See also (6.155).
Denote the [ñ × ñ] orbit Jacobian matrix J̃ (µ) of the 1/2 time-step lattice

L̃ as J̃ñ, where ñ is the period of the lattice state Φ̃ on the half interval lattice
L̃. Denote the orbit Jacobian matrix J (s) of the temporal cat lattice L as Jn,
where n is the period of the lattice state Φ on the integer lattice L. For odd,
respectively even periods, the determinants of J̃ and J are related as:

det (J̃>2m+1J̃2m+1) = det (J2m+1)

det (J̃>2nJ̃2n) = det (Jn)2 , (5.59)

hence 6

N(s)n = detJn = (det J̃n)2 = Ñ(µ)2
n , n odd

N(s)n = |detJn| = |det J̃2n| = Ñ(µ)2n , n even . (5.60)

For odd n, see (5.79) and compare odd entries in table 5.1 and table 5.2.
For even n, compare the n entries in table 5.1 with the ñ = 2n entries in

table 5.2.
Ĵ = J̃>J̃ is the orbit Jacobian matrix of the temporal cat on the half inter-

val lattice L̃ (denoted J in (5.53)). Ĵ2n = J̃>2nJ̃2n is the orbit Jacobian matrix of
the temporal cat on the half lattice with period 2n, which is period n in the unit
lattice. But Ĵ2n is different from Jn, the orbit Jacobian matrix of the temporal
cat on the unit lattice, because it has more lattice sites. Note that:

Ĵ2n = Jn ⊗ 1[2×2] .

6Predrag 2021-02-13: Have not checked whether absolute values | · · · | are needed for the even
case.
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Using the second identity in (15.103) we can get the second relation in (5.59).
Ĵ2n+1 = J̃>2n+1J̃2n+1 is the orbit Jacobian matrix of the temporal cat on the

half lattice with period 2n + 1, which has period n + 1/2 on the unit lattice.
Ĵ2n+1 is same as the J2n+1 after a permutation, which leads to the first relation
in (5.59).

The “functional equation” [2]

ζ(z) = ζ(1/z) (5.61)

is for us the obvious statement of time-reversal invariance. Note also under the
time reversal t→ 1/t

1

ζ̃(1/t)
= − 1

ζ̃(−t)
. (5.62)

5.4.2 Time reversal blog

2007-11-20 Keating, Marklof and Williams The cat map A acting on (qt, pt)
must be symplectic, and time-reversal symmetric,

TAT = A−1 (5.63)

where T is the time-reversal operator

T =

[
1 0
0 −1

]
(5.64)

An example is

A =

[
2 1
3 2

]
(5.65)

The Percival-Vivaldi 2-configuration map (1.5) acts on a 2-dimensional
state space point (φn−1, φn), so time reversal permutes the two entries,

A =

[
0 1
−1 s

]
, T =

[
0 1
1 0

]
. (5.66)

Not sure what T is for cat map of form (6.61).

2004-11-01 Predrag and Lan We implemented the “half-step” figure 5.2 reduc-
tion for the Kuramoto-Sivashinsky spatial reflection symmetry in Unsta-
ble recurrent patterns in Kuramoto-Sivashinsky dynamics [58], see figure 5.1.
It happens in sect. B Curvilinear coordinates, center repeller of the paper,
and the result is the 3-letter bimodal return map of figure 5.1 (c). With-
out quotienting the D1 symmetry, the return map would have up to 11
letters, and be an unmaneagable holly mess.

2018-04-12 Predrag For our many (failed) attempts to find an Adler-Weiss for-
ward and backward in time symmetric partition, see sect. 20.3 Time rever-
sal.
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Figure 5.1: The return map on the Poincaré section PC of the unstable mani-
fold of equilibrium C, antisymmetric subspace of Kuramoto-Sivashinsky, the
intrinsic coordinate: (a) There are 11 monotone segments, requiring an 11-letter
alphabet. However, in the (Kuramoto-Sivashinsky)/D1-spatial reflection sym-
metry reduced state space, (b) the return map simplifies to an antisymmetric
return map, which becomes (c) a 3-letter bimodal return map in the fundamen-
tal domain, with the symbolic dynamics given by three symbols {0 , 1 , 2}. It’s a
wild

√
time simplification of the dynamics! enabling us to populate the neigh-

boring strange attractor with many periodic orbits. (Taken from fig. 8 (e) of Lan
and Cvitanović [58]).
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2018-04-12 Predrag Birdtracks.eu Sect. 8.2.3 Time reversal symmetry might be
relevant to spatiotemporal cat: when the Hamiltonian is invariant under
time reversal, the symmetry group is enlarged.

2016-11-16 Predrag Maillard group, Anglès d’Auriac, Boukraa and Maillard [2]
Functional relations in lattice statistical mechanics, enumerative combinatorics,
and discrete dynamical systems state the “functional equation”

ζ(z) = ζ(1/z) (5.67)

which for us is the obvious statement of time-reversal invariance.

2016-11-16 Predrag Note also (5.62) under the presumed time reversal t→ 1/t
This all has to do with time reversibility - we should exploit time and
space reversal symmetries in this way, and - who knows - understand
Ihara zeta functions better.

2020-12-24 Predrag Note that in the discussion of time-reversal invariant re-
currence relations (6.170) (see (1.40), etc.) the characteristic equation fac-
tors as a(φ) = `(φ) `(l/φ) where the factors `(φ) and `(l/φ) of a(φ) are
known as the Hurwitz factors.

2020-01-10 Predrag The “square root” C (5.174) might be related to resistor
networks’s Laplace-like operator factorizationL = RR>, see (6.208), with
no transpose needed in this example, as C is symmetric.

2020-02-06 Predrag J = J̃>J̃ factorization [69], as in (20.289):

J̃ =



µ −1 0 0 . . . 0 1
1 µ −1 0 . . . 0 0
0 1 µ −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . µ −1
−1 0 . . . . . . . . . 1 µ


. (5.68)

J̃> =



µ 1 0 0 . . . 0 −1
−1 µ 1 0 . . . 0 0
0 −1 µ 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . µ 1
1 0 . . . . . . . . . −1 µ


. (5.69)

Note that Pozrikidis [69] L = RR> factorization (6.208) the factors R are
bi-diagonal, as in the forward difference operator (5.49). He does not
seem to introduce 1/2 lattice spacing central difference operator (5.51),
and considers only the Helmholtz equation µ = 0 case, not our tri-diagonal
map. I do not see our symmetry reduction there...
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J is time reversal (5.73) invariant (self-adjoint; Hermitian), RJR> = J ,
but J̃> = R̃J̃ R̃> is time reversed, as a first order derivative should.

2020-09-30 Predrag Note that in (5.184) Maillard et al. [2] quotient the time re-
versal (reflection) symmetry for s = 3 temporal cat.
The reflection-symmetric operator

Tij =
d∑

µ=1

[(rµ)ij + (rµ)ji] , (5.70)

generates all steps of length 1. The symmetric (self-adjoint) combination
∆ = −∂>∂ = ∂2 (note this notation for 2)

∆− µ21 = −
d∑

µ=1

{(
r−1
µ − 1

)
(rµ − 1) + µ21

}
= J =

d∑
µ=1

(
r−1
µ + rµ − s1

)
= (T − ds1) (5.71)

relates the walker T to the lattice Laplacian and the orbit Jacobian matrix
J .

2020-10-31 Predrag Han, what does Gradshteyn and Ryzhik [41] have to say
about formulas (5.57)? Sine is a cosine rotated by π/2.
Still have to factorize the zeta function, as in (5.184). Clearly detJ+(µ) =
(−1)`detJ−(−µ), so, up to a complex phase, detJ+ is a square root of J .
Not sure anything is attained by computing one rather than the other...
A guess for factorization in d dimensions (still wrong) is something like

∆− d(s− 2)1 = −
d∑

µ=1

{(
r−1
µ − 1

)
(rµ − 1) + (s− 2)1

}
= −

d∑
µ=1

{
−i
(
r−1
µ − 1

)
+
√
s− 2 1

}
{
i (rµ − 1) +

√
s− 2 1

}
(5.72)

2020-09-30 Predrag Failed attempt, can safely ignore. In d = 1 temporal cat
case the time reflection operator R, R2 = 1, is

R =



0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0
0 0 0 . . . 1 0 0
...

...
...

...
. . .

...
...

0 1 . . . . . . . . . 0 0
1 0 . . . . . . . . . 0 0


. (5.73)
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with projection operators (for n = 3)

PA1
=

1

2

 1 0 1
0 2 0
1 0 1

 , PA2
=

1

2

 1 0 −1
0 0 0
−1 0 1

 (5.74)

dA1
= trPA1

= 2 , dA2
= trPA2

= 1 (5.75)

For any n

dA1
= trPA1

=
1

2
(tr 1 + trR) =

1

2
(n + 1) , dA2

=
1

2
(n − 1) (5.76)

This can only work for n odd. For even ones there must be another irrep?

JA1
=

1

2

 1− s 2 1− s
2 −2s 2

1− s 2 1− s

 , JA2
=

1

2

 −1− s 0 1 + s
0 0 0

1 + s 0 −1− s


(5.77)

JA1 = 1 +

 − 1+s
2 1 1−s

2
1 −(1 + s) 1

1−s
2 1 − 1+s

2

 (5.78)

We know that for [3×3] orbit Jacobian matrix

J =

 −s 1 1
1 −s 1
1 1 −s


N3 = |DetJ | = (s− 2)(s+ 1)2 =

[
µ(µ2 + 3)

]2
, (5.79)

but clearly

DetJA1
= 0 , DetJA2

=
1

4

(
0(1 + s)2 − 0(1 + s)2

)
= 0 . (5.80)

As det of sum is not sum of det’s, JA1 , JA2 are not fundamental paral-
lelepipeds, and have no geometrical meaning, both have vanishing deter-
minants. Actually, JA1

should be invariant under time reversal, so what
did I screw up? Failed attempt, done.

2021-03-22 Predrag Grava et al. [42] eq. (5.119) suggests what went wrong with
the above failed D1 factorization attempt: we should have started from
the Hamiltonian formulation, decompose the one-time step temporal evo-
lution [2×2] Jacobian matrix Ĵ1 that generates a time orbit by acting on the
2-dimensional ‘phase space’ of successive temporal lattice points (15.115)
with time reversal T (5.66) decomposing the 2nd order Percival-Vivaldi
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time-evolution equation into two 1st order invariant subspace evolution
equations:

T =

[
0 1
1 0

]
, P+ =

1

2

[
1 1
1 1

]
, P− =

1

2

[
1 −1
−1 1

]
. (5.81)

so

Ĵ1 =

[
0 1
−1 s

]
; Ĵ+

1 =
1

2

[
1 1

s− 1 s− 1

]
, Ĵ−1 =

1

2

[
−1 1
−s− 1 s+ 1

]
.

(5.82)
Next: verify the Hill’s formula, sect. 9.9.1, and/or sect. 5. Hill determinant:
stability of an orbit vs. its time-evolution stability of siminos/kittens/CL18.tex
for period-n lattice states;

DetJ± = det
[
1− (Ĵ±1 )n

]
. (5.83)

This establishes, following Fejér [39, 71] (1916) Fejér and Riesz lemma
sect. 5.5.1, -doubting Thomases nonwithstanding- that the time reversal
invariance leads to factorization of zeta functions for -hopefully- any tem-
poral lattice systems with time-inversion t→ −t invariance.

As far as I can tell, we are the first to make this claim for time evolution,
not for spatially discrete or N -body systems.

Sidney and Han, please go to sect. 26.4 Pow wow 2021-03-22 and do the
homework. Call me any time for any clarifications you need. As always,
everything prof says might be wrong, so remain vigilant. And stay safe.

2021-03-22 Predrag The above might be a failed attempt again..., as Percival-
Vivaldi form is not right: [T,J1] 6= 0:

T =

[
0 1
1 0

]
, P+ =

1

2

[
1 1
1 1

]
, P− =

1

2

[
1 −1
−1 1

]
. (5.84)

so

Ĵ1 =

[
0 1
−1 s

]
; Ĵ+

1 =
1

2

[
1 1

s− 1 s− 1

]
, Ĵ−1 =

1

2

[
−1 1
−s− 1 s+ 1

]
.

(5.85)

2020-11-18 Predrag Factorization (1.2)

A =

[
2 1
1 1

]
=

[
1 1
0 1

] [
1 0
1 1

]
= LL> (5.86)

leads to
det (1− tL>) det (1 + tL) = det (1− zA) (5.87)
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which also verifies (5.184). Both (5.171), (1.2) are symmetric under trans-
position. What about the asymmetric Percival-Vivaldi (1.5)? The similar-
ity transformation (6.113) that maps (1.1) into (1.5),

A =

[
2 1
1 1

]
, B =

[
0 1
−1 3

]
, (5.88)

is
B = S−1AS , (5.89)

where

S = S−1 =

[
−1 2
0 1

]
.

See also discussion around (6.114) and (20.43).

2021-02-10 Predrag I looked cursorily at it and did not spot anything, but it is
of possible interest:

Terry Loring and Fredy Vides Computing Floquet Hamiltonians with Sym-
metries arXiv:2007.06112

2021-04-10 Predrag For specializing example 2.6 Symmetry lines of the standard
map to cat map, see example 2.7 Symmetry lines of the cat map.

2021-04-10 Predrag For a scholarly discussion of many facets of “time-reversal”,
see the essay Time Reversal by Bryan W. Roberts (2019).

2021-04-14 Predrag to Stephen In spirit of our ‘square root’ philosophy, Wol-
fram Physics Project writes:

Another promising possibility relates to the distinction between
fermions and bosons. We’re not sure yet, but it seems as if
Fermi–Dirac statistics may be associated with multiway graphs
where we see only non-merging branches, while Bose–Einstein
statistics may be associated with ones where we see all branches
merging. Spinors may then turn out to be as straightforward as
being associated with directed rather than undirected spatial
hypergraphs.

The problem is that I cannot find a technical paper on that, if it exists.
I do not find any hint of this in his Wolfram [88] A Project to Find the
Fundamental Theory of Physics.

That jives with our spatiotemporal cat work. There the graph is just
a d-dimensional undirected hypercubic lattice, but reflection symmetry
reduces the graph to a pair of directed graphs, much like reducing the
Klein-Gordon Laplacian to two Dirac operators.
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2021-04-15 Stephen There’s nothing yet on our home pages.

Very interesting! Now I just went searching in your material ... and
couldn’t find this either. Can you point me to this?

I’m wondering if it’s at all related to the (disappointingly vague) notes-9-
16–discrete-quantum-mechanics. (2021-04-16 Predrag: Read this, do not
see any connection to our work.)

I saw various Klein-Gordan-like equations in your works ... but nothing
Dirac like (did I miss it?)

The d-dimensional hypercubic lattice obviously has certain discrete sym-
metry. Does the “square root lattice” have some other identifiable, and
perhaps spinorial, symmetry?

By the way ... if you’re up for it sometime, I’d love to try to talk through
the geodesic-balls-in-hypergraphs-have-limiting-symmetries-that-are-Lie-
groups story. Your hypercubic lattice is too “special” ... but imagine a
random d-dimensional lattice (for integer d). Then presumably the in-
variances of the geodesic ball limit to SO(d). But what happens with
one-way vs two-way connections? How does it affect representations?
What about fractional d? Etc. etc. I have a suspicion that with your help
this might be able to be cracked...

2021-04-17 Predrag to Tony Kennedy <Tony.Kennedy@ed.ac.uk>

You might be The Man for the job:

We are stuck on reflection-symmetry reduction needed to factorize the
zeta functions. Here is a simple way to explain what the problem is:

Think of a discrete time dynamical system (iterations of a map) as a 1-
dimensional lattice with the field on each site labeled by integer time. An
period-n lattice state lives on a discrete 1-torus (a ring or necklace) of pe-
riod n, and if the law is time-independent, sets of solutions are invariant
under cyclic perturbations. The symmetry is Cn, and one needs to distin-
guish Cn orbits (”prime cycles” in ChaosBook; one per each orbit). The
right way to do this is by going to Cn irreps, ie, by the discrete Fourier
transform, with all reciprocal lattice Brillioun zone solutions orbits in an
1/n sliver of a n-gon. If n is prime, this is irreducible; if it is a multiple of
a prime, one should remove those solutions, as they have already been
accounted for.

If, in addition, the law is time-reversal (or time-inversion) invariant, the
symmetry includes time-reflection, ie, it is dihedral group Dn with 2n el-
ements, so the reciprocal lattice should be a half of the above 1/n sliver of
a n-gon, and irreps are now either 1 or 2 dimensional. Even n is different
from odd n, and solutions either appear in pairs, or are self dual under
reflection in 3 different ways.

ChaosBook works out zeta function factorizations for D1, D2 (known as
Klein four-group), D3 (symmetric group S3), and D4, but somehow I get
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confused by all the invariant subspaces of solutions for Dn, so we are
stuck... Not to mention counting orbits for a Bravais lattices (doubly pe-
riodic lattice states) for spatiotemporal cat. There we do not know how
to write down the zeta function, let alone factorize it into irreps of the
discrete symmetry group of a given Bravais lattice.

For more detail, see sect. ?? Dihedral groups.

5.4.3 Poles of dynamical zeta functions

1993-03-11 Predrag A clip from (boyscouts only) ChaosBook Chapter Quan-
tum pinball, taken from Predrag’s c.tex [36], Casati and Shilnikov [20].

2020-11-07 Predrag In 1993 I have not thought of (5.92) as clue to time-reversal
factorization, but the Hamiltonian weight, one per each degree of free-
dom,

det (1− Jp) = (1− Λp)(1− 1/Λp) = −Λp + 2− 1/Λp (5.90)

sure looks suggestive, in the spirit of (20.261). It leads to factorization
(5.99),

1/ζj =
Fj
Fj+1

Fj+2

Fj+1
, (5.91)

compare with (5.184).

For a Hamiltonian two degree of freedom system, Jp is a [2×2] matrix with
unit determinant. If the cycle is unstable, the eigenvalues Λp and 1/Λp are real,
and we denote the expanding eigenvalue by Λp. The denominator can then be
expanded in a geometric series

1/|det (Jp − 1)| = |Λp|−1(1− 1/Λp)
−2 = |Λp|−1

∞∑
j=0

(j + 1)Λ−jp . (5.92)

Performing the r summation and interchanging sums and logarithms one ends
up with Ω(s) = ∂

∂s lnF (s), where F (s) is the classical Fredholm determinant

F (s) =
∏
p

∞∏
j=0

(
1− |Λp|−1Λ−jp esTp

)j+1
. (5.93)

As Ω(s) is a logarithmic derivative, its poles are given by the zeros and poles
of F (s). Denoting the classical weight of the cycle p by

tp = znpesTp/|Λp| (5.94)

and defining dynamical zeta functions [77]

1/ζj = exp

(
−
∑
p

∞∑
r=1

1

r
(tp/Λ

j
p)
r

)
=
∏
p

(
1− tp/Λjp

)
, (5.95)
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the Fredholm determinant (5.93) can be written as an infinite product over 1/ζj :

F (s) =
∏
p

∞∏
j=0

(1− tp/Λjp)j+1 =
∞∏
j=0

1/ζj+1
j . (5.96)

We have introduced a bookkeeping variable z raised to the power of the topo-
logical length (number of disk collisions in a cycle) in order to be able to sys-
tematically expand the infinite products in terms of increasing topological cycle
length.

The double pole is not as surprising as it might seem at the first glance;
indeed, the theorem that establishes that the classical Fredholm determinant
(5.96) is entire implies that the poles in 1/ζj must have right multiplicities in
order that they be cancelled in the F =

∏
1/ζj product. More explicitly, 1/ζj

can be expressed in terms of weighted Fredholm determinants

Fj = exp

(
−
∑
p

∞∑
r=1

1

r

(tp/Λ
j
p)
r

(1− 1/Λrp)
2

)
(5.97)

by inserting the identity

1 =
1

(1− 1/Λ)2
− 2

Λ

1

(1− 1/Λ)2
+

1

Λ2

1

(1− 1/Λ)2
(5.98)

into the exponential representation (5.95) of 1/ζj . This yields

1/ζj =
FjFj+2

F 2
j+1

, (5.99)

and we conclude that for 2-dimensional Hamiltonian flows the dynamical zeta
function 1/ζj has a double leading pole coinciding with the leading zero of the
Fj+1 Fredholm determinant.
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5.5 Time reversal literature

5.5.1 Grava et al. 2021 paper GKMM21

Notes on Grava, Kriecherbauer, Mazzuca and McLaughlin [42] Correlation func-
tions for a chain of short range oscillators, arXiv:2010.09612:

[C]onsider a system of N = 2M + 1 particles interacting with a short range
harmonic potential with Hamiltonian of the form

H =
N−1∑
j=0

p2
j

2
+

m∑
s=1

κs
2

N−1∑
j=0

(qj − qj+s)2 , (5.100)

and Hamiltonian density

ej =
p2
j

2
+

1

2

( m∑
s=1

τs(qj+s − qj)
)2

,

local in the variables (p,q) for fixed m. If we let N → ∞, the quantity ej
involves a finite number of physical variables (p,q). We always take periodic
boundary conditions, the indices j are taken from Z/NZ and therefore

qN+j = qj , pN+j = pj

holds for all j.
The relative shift S boundary condition qN+1 = q1 + S can be also be con-

sidered (see e.g. ref. [83]). The periodic boundary condition is recovered by
change of coordinates qj → qj − S

N (j − 1).
The coefficients τs are the entries of the circulant localized square root T of

the matrix A by which we mean a solution of the equation (5.105) of the form
(5.106).

The Hamiltonian (5.100) can be rewritten in the form

H(p,q) :=
1

2
〈p,p〉+

1

2
〈q, Aq〉, (5.101)

where p = (p0, . . . , pN−1), q = (q0, . . . , qN−1), 〈 ., .〉 denotes the standard scalar
product inRN and where A ∈Mat(N,R) is a positive semidefinite symmetric
circulant matrix generated by the vector a = (a0, . . . , aN−1) namely Akj =
a(j−k)modN or

A =



a0 a1 . . . aN−2 aN−1

aN−1 a0 a1 aN−2

... aN−1 a0
. . .

...

a2
. . . . . . a1

a1 a2 . . . aN−1 a0

 , (5.102)
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The harmonic oscillator with only nearest neighbour interactions is recovered
by choosing

a0 = 2κ1, a1 = aN−1 = −κ1,

and the remaining coefficients are set to zero.
The equations of motion for the Hamiltonian H take the form

d2

dt2
qj =

m∑
s=1

κs(qj+s − 2qj + qj−s), j ∈ Z/NZ. (5.103)

The integration is obtained by studying the dynamics in Fourier space. [...]
Following the standard procedure in the case of nearest neighbour interactions
we replace the vector of position q by a new variable r so that the Hamiltonian
takes the form

H =
1

2
〈p,p〉+

1

2
〈r, r〉.

Such a change of variables may be achieved by any linear transformation

r = Tq, (5.104)

with an N ×N matrix T that satisfies

A = T ᵀT, (5.105)

where T ᵀ denotes the transpose of T .
In the case of nearest neighbour interactions one may choose

rj =
√
κ1(qj+1 − qj)

corresponding to a circulant matrix T generated by the vector

τ =
√
κ1(−1, 1, 0, . . . , 0) .

We show that short range interactions given by matrices A of the form (5.102)
also admit such a localized square root. More precisely, there exists a circulant
N ×N matrix T of the form

T =



τ0 τ1 . . . τm 0 . . . 0
0 τ0 τ1 . . . τm 0

. . . . . . . . . . . .

τm 0
. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
τ2 . . . τm 0 . . . τ0 τ1
τ1 τ2 . . . τm 0 0 τ0


. (5.106)

that satisfies (5.105). The crucial point here is that T is not the standard (sym-
metric) square root of the positive semidefinite matrixA but a localized version
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generated by some vector τ with zero entries everywhere, except possibly in
the first m+ 1 components. [...] Note that 1 = (1, . . . , 1)ᵀ satisfies T1 = 0 since
〈1, A1〉 = 0. This implies

m∑
s=0

τs = 0 , rj =
m∑
s=1

τs(qj+s − qj) and
N−1∑
j=0

rj = (1, . . . , 1)Tq = 0.

The local energy ej takes the form

ej =
1

2
p2
j +

1

2
r2
j .

Due to the spatial translation invariance of the Hamiltonian

H(p,q) = H(p,q + λ1) ,

λ ∈ R, that corresponds to the conservation of total momentum, we reduce the
Hamiltonian system by one degree of freedom, with the reduced phase space

M :=

{
(p,q) ∈ RN ×RN :

N−1∑
k=0

pk = 0 ;
N−1∑
k=0

qk = 0

}
. (5.107)

[...] the dispersion relation |ω(k)| for the harmonic oscillator with short
range interaction in the limit N →∞ obtaining

f(k) = |ω(k)| =

√√√√2

m∑
`=1

κ` (1− cos(2πk`)) , (5.108)

[...] we show that the evolution equations for the generalized position, mo-
mentum can be written in the form of conservation laws which have a poten-
tial function. For the case of the harmonic oscillator with nearest neighbour
interaction, we show that this function is a Gaussian random variable and de-
termine the leading order behaviour of its variance as t→∞.

[...] some notation. First of all, a matrix A of the form (5.102) with a ∈ RN
is called a circulant matrix generated by the vector a.

m-physical vector and half-m-physical vector Fix m ∈ N. For any odd N >
2m, a vector x̃ ∈ RN is said to bem-physical generated by x = (x0, x1, . . . , xm) ∈
Rm+1 if x0 = −2

∑m
s=1 xs and

x̃0 =x0 , (5.109)
x̃1 =x̃N−1 = x1 < 0, x̃m = x̃N−m = xm < 0, (5.110)
x̃k =x̃N−k = xk ≤ 0, for 1 < k < m, (5.111)
x̃k =0, otherwise, (5.112)
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while the vector x̃ ∈ RN is called half-m-physical generated by y ∈ Rm+1 if
y0 = −∑m

s=1 ys and

x̃k =yk, for 0 ≤ k ≤ m
x̃k =0, for m < k ≤ N − 1.

Following the proof of a lemma by Fejér and Riesz, one can show that a circu-
lant symmetric matrix A of the form (5.101) generated by a m-physical vector
a always has a circulant localized square root T that is generated by a half-m
physical vector τ .

Fejér and Riesz [71, pg. 117 f] lemma asserts that every positive trigono-
metric polynomial can be represented by the square of the absolute value of
another trigonometric polynomial whose coefficients are, in general, complex.

Fix m ∈ N. Let the circulant matrix A be generated by an m-physical vector
a, then there exist a circulant matrix T generated by an half-m-physical vector
τ such that:

A = T ᵀT . (5.113)

Moreover, we can choose τ such that
∑m
s=1 sτs > 0. Then one has

∑m
s=1 sτs =√∑m

s=1 s
2κs.

For example, if we consider m = 1, and a0 = 2κ1 and a1 = aN−1 = −κ1.
The matrix T is generated by the vector τ = (τ0, τ1) with τ0 = −√κ1 and τ1 =√
κ1. When m = 2 and a0 = 2κ1 + 2κ2, a1 = aN−1 = −κ1, a2 = aN−2 = −κ2.

The matrix T is generated by the vector τ = (τ0, τ1, τ2) with

τ0 = −
√
κ1

2
− 1

2

√
κ1 + 4κ2, τ1 =

√
κ1,

τ2 = −
√
κ1

2
+

1

2

√
κ1 + 4κ2,

so that the quantities rj are defined as

rj = τ1(qj+1 − qj) + τ2(qj+2 − qj) , j ∈ Z/NZ .

[...] The Hamiltonian H(p,q) represents clearly an integrable system that can
be integrated passing through Fourier transform. Let F be the discrete Fourier
transform with entries Fj,k := 1√

N
e−2 Imπjk/N with j, k = 0, . . . , N − 1. It is

immediate to verify that

F−1 = F̄ Fᵀ = F . (5.114)

Thanks to the above properties, the transformation defined by

(p̂, q̂) = (F̄p,Fq) (5.115)
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is canonical. Furthermore ¯̂pj = p̂N−j and ¯̂qj = q̂N−j, for j = 1, . . . , N−1, while
p̂0 and q̂0 are real variables. The matrices T and A are circulant matrices and
so they are reduced to diagonal form by F :

FAF−1 = FT ᵀTF−1 = (FTF−1)
ᵀ
(FTF−1) .

Let ωj denote the eigenvalues of the matrix T ordered so thatFTF−1 = diag(ωj).
Then |ωj |2 are the (non negative) eigenvalues of the matrix A and

|ωj |2 =
√
N(F ã)j , ωj =

√
N(F τ̃ )j , j = 0, . . . , N − 1, (5.116)

where ã is the m-physical vector generated by a and τ̃ is the half m-physical
vector generated by τ . It follows that

ω0 = 0, ωj = ωN−j , j = 1, . . . , N − 1, (5.117)

which implies |ωj |2 = |ωN−j |2, j = 1, . . . , N − 1.

Circulant hierarchy of integrals

In this section we construct a complete set of conserved quantities that have lo-
cal densities. The harmonic oscillator with short range interaction is clearly an
integrable system. A set of integrals of motion is given by the harmonic oscilla-
tors in each of the Fourier variables: Ĥj = 1

2

(
|p̂j |2 + |ωj |2|q̂j |2

)
, j = 0, . . . N−1

2 .
However, when written in the physical variables p and q, the quantities

Ĥj =
1

2

N−1∑
k,l=0

Fj,kFj,l(pkpl + |ωj |2qkql)

depend on all components of the physical variables. We now construct inte-
grals of motion each having a density that involves only a limited number of
components of the physical variables and this number only depends on the
range m of interaction.

For this purpose we denote by {ek}N−1
k=0 the canonical basis inRN .

Local conserved quantities Let us consider the Hamiltonian

H(p,q) =
1

2
pᵀp +

1

2
qᵀAq , (5.118)

with the symmetric circulant matrixA as in (5.101), (5.102). Define the matrices
{Gk}Mk=1 to be the symmetric circulant matrix generated by the vector 1

2 (ek +
eN−k) and {Sk}Mk=1 to be the antisymmetric circulant matrix generated by the
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vector 1
2 (ek − eN−k). Then the family of Hamiltonians defined as

Hk(p,q) =
1

2
pᵀGkp +

1

2
qᵀT ᵀGkTq =

1

2

N−1∑
j=0

[pjpj+k + rjrj+k] , (5.119)

Hk+N−1
2

(p,q) =pᵀT ᵀSkTq =
1

2

N−1∑
j=0

[(
m∑
`=0

τ`pj+`

)
(rj+k − rj−k)

]
, k = 1, . . . ,

N − 1

2

(5.120)

together with H0 := H forms a complete family (Hj)0≤j≤N−1 of integrals of
motion that, moreover, is in involution. [...] Now we introduce the local densi-
ties corresponding to the just defined integrals of motion

e
(k)
j =

{
1
2 (pjpj+k + rjrj+k) , for k = 1, . . . , N−1

2

(
∑m
l=0 τlpj+l) (rj+k − rj−k) , for k = N+1

2 , . . . , N .
(5.121)

[...]

Nonlinear regime

In this section we consider a nonlinear perturbation of the harmonic oscillators
with short range interactions of the form

H(p,q) =
N−1∑
j=0

p2
j

2
+

m∑
s=1

κs

1

2

N−1∑
j=0

(qj − qj+s)2 +
χ

3

N−1∑
j=0

(qj − qj+s)3 +
γ

4

N−1∑
j=0

(qj − qj+s)4

 .

(5.122)
We consider examples with different strengths of nonlinearity namely

m = 2, κ1 = 1, κ2 = 1
4 ,

{
χ = 0.01 and γ = 0.001

χ = 0.1 and γ = 0.01

m = 3, κ1 = 1, κ2 = 1
8 , κ2 = 7

72 ,

{
χ = 0.01 and γ = 0.001

χ = 0.1 and γ = 0.01
.

5.5.2 Baake et al. 2008 paper BaRoWe08

2017-09-27, 2021-02-03 Predrag reading Baake, Roberts andWeiss [10] Periodic
orbits of linear endomorphisms on the 2-torus and its lattices arXiv:0808.3489.

2021-02-03 Predrag Summary

1. The main result is the third matrix invariant: the ‘gmc’ that fixes
the conjugacy class of a given lattice in an invariant way, unlike the
Hermite normal form (6.126) that breaks the ‘spatiotemporal’ sym-
metry; mention and cite in CL18 [29], even if we do not use it.
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2. They do counting for the golden (Fibonacci [8]) cat map (5.180), see
table 5.2 and (5.183), as the simplest example; we do not need to cite
their counting in CL18 [29], cite 1997 sect. 5.5.3 Baake, Hermisson and
Pleasants [7] instead. (I’m somewhat sure that name ‘golden cat’ is
not already in 1967 Smale [82], or 1995 Katok and Hasselblatt [52].
Perhaps better to call it “Fibonacci” [8]?) There is no mention that
this is a time-reversal reduction of the s = 3 cat map in Baake et
al. [10]. Perhaps Katok and Hasselblatt [52] mention that?

3. They do not mention any time-reversal symmetry reduction con-
nection to the lattice states and orbit counts for the s = 3 cat map
table 5.1; do not cite them for that.

Their focus on the relation between global and local aspects and between
the dynamical zeta function on the torus and its analogue on finite lattices. The
situation on the lattices, up to local conjugacy, is completely determined by the
determinant, the trace and a third invariant of the matrix defining the toral
endomorphism.

In introduction they refer to much literature on cat maps on lattices, and
I’ve not read much of it.

[...] the system (Ω, T ) is called chaotic when the periodic orbits of T are2CB
dense in Ω and when also a dense orbit exists, see Banks et al. [12] On De-
vaney’s definition of chaos for details. Knowledge of the periodic orbits can be
used to detect characteristic properties of T . For example, if T ′ represents an-
other continuous mapping of Ω, then a necessary condition for T and T ′ to be
topologically conjugate is that they share the same number of periodic points
of each period.

[...] endomorphisms of the 2-torus, represented by the action (mod 1) of an
integer matrixM ∈Mat(2,Z) on T2 ' R2/Z2. A well-studied subclass consists
of the toral automorphisms, represented by elements of the groupGL(2,Z), be-
ing the subgroup of matrices with determinant ±1 within the ring Mat(2,Z).
Particularly important are the hyperbolic ones (meaning that no eigenvalue is
on the unit circle), which are often called cat maps. Since these are expansive, all
periodic point counts are finite. Hyperbolic toral automorphisms are also topo-
logically mixing and intrinsically ergodic, see refs. [52, 86]. By the Bowen-Sinai
theorem, this has the consequence that the integral of a continuous function
over T2 equals its average value over the points fixed by Mm in the limit as
m→∞.

The topological entropy of a hyperbolic toral automorphism M ∈ GL(2,Z)
is given by log |λmax|, where λmax is the eigenvalue of M with modulus > 1.
This is also the metric (or Kolmogorov-Sinai) entropy ofM , and completely de-
termines the dynamics up to metric isomorphism, compare ref. [1]. This does
not imply topological conjugacy though, and one important difference emerges
from the periodic orbits, which live on a set of measure 0. Indeed, on T2, it is
well-known that the periodic orbits of hyperbolic linear endomorphisms lie on
the invariant lattices given by the sets of rational points with a given denomi-
nator n, also known as n-division points. One of our main themes in this paper
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is the interplay between the periodic orbit statistics on a certain lattice (which
we call local statistics) versus periodic orbit statistics on the union of all lattices
(which we call global statistics). What determines when two cat maps have the
same global statistics? What determines when two cat maps have the same
local statistics on a certain lattice or on all lattices?

The time of recurrence of a hyperbolic M ∈ GL(2,Z) on the toral ratio-
nal lattice with denominator n is denoted by per(M,n), where this is the least
common multiple of the periods present on the n-division points.

[...] for symmetries or (time) reversing symmetries of a cat map, these be-
ing automorphisms of the torus that commute with the cat map, respectively
conjugate it into its inverse.

[...] there has been quite some interest in dealing with this challenge of
so-called pseudo-symmetries of quantum maps that are not quantisations of
symmetries of the cat map on the torus, but instead are manifestations of local
symmetries of the cat map restricted to some lattice [53, 56].

Conjugacy of GL(2,Z) matrices is another topic that has arisen in a broad
variety of contexts and has been considered by many Conjugacy is determined
by a triple of invariants, namely the determinant, the trace and one other in-
variant which can be related to ideal classes, representation by binary quadratic
forms or topological properties. Conjugacy in GL(2,Z) can also be completely
decided by using the amalgamated free product structure of PGL(2,Z), which
attaches a finite sequence of integers to each element which corresponds to its
normal form as a word in the generators of the amalgamated free product [9].

There are various ways of deciding GL(2,Z)-conjugacy, amounting to ex-
ploiting a third and final conjugacy invariant.

Result of this paper: The matrix gcd is a key quantity. It is preserved by
GL(2,Z) conjugacy, so it provides a quick tool to see that twoGL(2,Z) matrices
with different matrix gcd are not conjugate on the torus. If two integer matrices
share the same determinant, trace and matrix gcd they are linearly conjugate
on all rational lattices of the torus. As an illustration of this result, consider
cat maps and time-reversal symmetry. The fact that any M ∈ SL(2,Z) shares
determinant, trace and matrix gcd with M−1 means that the two matrices are
conjugate on all rational lattices, though not necessarily by matrices that derive
from one and the same matrix on the torus.

Consider a compact space Ω and some (continuous) mapping T of Ω into
itself. Let Fixm(T ) := {x ∈ X | Tmx = x} be the set of fixed points of Tm. Of
particular interest are the fixed point counts, defined as

am := card{x ∈ Ω | Tmx = x} = card(Fixm(T )) . (5.123)

The quantity am has the disadvantage that one keeps recounting the contri-
butions a` for all `|m. Clearly, the fixed points of genuine order m permit a
partition into disjoint cycles, each of length m. If cm is the number of such
cycles, one thus has the relation

am =
∑
d|m

d cd . (5.124)
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An application of a standard inclusion-exclusion argument, here by means of
the Möbius inversion formula from elementary number theory, results in the
converse identity,

cm =
1

m

∑
d|m

µ
(
m
d

)
ad , (5.125)

where µ(k) is the Möbius function.
[...] a toral endomorphism M ∈ Mat(2,Z) is hyperbolic if it has no eigen-

value on the unit circle S1. The standard 2-torus is T2 ' R2/Z2, where Z2 is the
square lattice in the plane. It is a compact Abelian group, which can be written
as T2 := [0, 1)2, with addition defined mod 1.

[...] the abbreviation Zn = Z/nZ for the finite integer ring mod n, and
Z×n = {1 ≤ k ≤ n | gcd(k, n) = 1} for its unit group.

Some ‘obvious’ number theory defines gcd, but I have not put in the effort
needed to understand it.

For counting orbits, this might be useful:
Let M ∈ Mat(2,C) be a non-singular matrix, with D := det (M) 6= 0 and

T := tr (M). Define a two-sided sequence of (possibly complex) numbers pm
by the initial conditions p−1 = −1/D and p0 = 0 together with the recursion

pm+1 = Tpm −Dpm−1, for m ≥ 0,

pm−1 =
1

D
(Tpm − pm+1), for m ≤ −1.

(5.126)

This way, as D 6= 0, pm is uniquely defined for all m ∈ Z. Note that the
sequence (pm)m∈Z depends only on the determinant and the trace of M . When
M ∈ Mat(2,Z), one has pm ∈ Q, and pm ∈ Z for m ≥ 0. When M ∈ GL(2,Z),
all pm are integers.

Note an interesting property, which follows from a straight-forward induc-
tion argument (in two directions):

The two-sided sequence of rational numbers defined by the recursion (5.126)
satisfies the relation

p2
m − pm+1pm−1 = Dm−1 , (5.127)

for all m ∈ Z.
To deal with combinatorial quantities such as the fixed point counts am, it is

advantageous to employ generating functions. Here, the concept of a dynamical
zeta function is usually most appropriate. Consequently, given a matrix M ∈
Mat(2,Z), we set

ζM (t) := exp
( ∞∑
m=1

am
m

tm
)
, (5.128)

where, from now on, am := card{x ∈ Fixm(M) | x is isolated} is the number
of isolated fixed points of Mm.

The ordinary power series generating function for the counts am can be
calculated from ζM (t) as

∑
m≥1 amt

m = t d
dt log

(
ζM (t)

)
. The significance of the
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formulation used in Eq. (5.128) follows from the fact that it has a unique Euler
product decomposition as

1

ζM (t)
=
∏

cycles C

(
1− t|C|

)
=
∏
m≥1

(
1− tm

)cm
, (5.129)

where |C| stands for the length of the cycle C and cm is now the number of
isolated cycles of M on T2 of length m, as determined from Formula (5.125).
Consequently, the role of cycles in dynamics is similar to that of primes in
elementary number theory.

The dynamical zeta function, a special case of which was also given in
ref. [38].

Let M ∈ GL(2,Z) be hyperbolic, and define σ = sgn
(
tr (M)

)
. Then, with

the coefficients am = card{x ∈ T2 | Mmx = x (mod 1)}, the dynamical zeta
function (5.128) of M on T2 is given by

ζM (t) =
(1− σt)(1− σtdet (M))

det (1− σtM)
=

(1− σt)(1− σdet (M) t)

1− |tr (M)| t+ det (M) t2
.

In particular, ζM (t) is a rational function, with numerator and denominator in
Z[t]. The denominator is a quadratic polynomial that is irreducible over Z. Its
zero tmin closest to 0 gives the radius of convergence of ζM (t), as a power series
around 0, via rc = |tmin|.

If M is hyperbolic, the general formula for the am

am = σm
(
tr (Mm)− (1 + det (M)m)

)
can be derived by observing that the two eigenvalues of A can be written as λ
and det (A)/λ. For the detailed argument, one may assume |λ| > 1 and check
the different cases. Note that a hyperbolic toral automorphism is never of trace
0.

The formula for the zeta function now follows from (5.128) by inserting the
expression for am. The statement on the nature of the rational function is then
clear. With M ∈ GL(2,Z), the denominator only factorises for tr (M) = 0,
det (M) = −1 or for tr (M) = ±2, det (M) = 1, both cases being impossible for
hyperbolic matrices.

Two hyperbolic GL(2,Z)-matrices with the same trace and determinant
possess the same dynamical zeta function, hence the same fixed point counts.
The converse is slightly more subtle.

3.3. Generating functions on lattices: I tried reading this before, I tried on
2017-09-27 again, and on 2021-02-03 again, and I still do not get it.

Consider a 2×2-matrix

M =

(
a b
c d

)
(5.130)

If M ∈Mat(2,Z), the quantity

mgcd(M) := gcd(b, c, d− a),
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is called the matrix gcd of M , or mgcd for short. Here, we take the gcd to be a
non-negative integer, and set mgcd(M) = 0 when b = c = d − a = 0. The last
convention matches that of the ordinary gcd, and is compatible with modular
arithmetic.

For M ∈Mat(2,Z), the following statements are equivalent:

(a) The matrix gcd satisfies mgcd(M) = 0.

(b) M = k1 for some k ∈ Z.

(c) The minimal polynomial of M is of degree 1.

Consequently, whenever mgcd(M) = r ∈ N , M cannot be a multiple of the
identity, and its characteristic and minimal polynomials coincide.

Most significantly, the matrix gcd satisfies the following invariance prop-
erty:

If M,M ′ ∈ Mat(2,Z) are two integer matrices that are conjugate via a
GL(2,Z)-matrix, one has mgcd(M ′) = mgcd(M). In particular, the matrix gcd
is constant on the conjugacy classes of GL(2,Z).

consider the integer matrices

M =

(
a b
c d

)
and C =

(
0 −D
1 T

)
(5.131)

with D = det (M) and T = tr (M). Here, C is the standard companion matrix
for the characteristic polynomial

x2 − T x+D (5.132)

of the matrix M . [...]

2017-09-27, 2021-02-03 Predrag read superficially Llibre and Neumärker [62]
Period sets of linear toral endomorphisms onT 2; did not understand much.

5.5.3 Baake et al. 1997 paper BaHePl97

In 1997 Baake, Hermisson and Pleasants [7] The torus parametrization of quasiperi-
odic LI-classes (click here) refer to time-reversal as ‘inversion’ symmetry, and dis-
cuss the golden (Fibonacci [8]) cat map. Before giving up on them, do have a
look at their eq. (18) zeta function and Table 2. Inflation orbit counts for 1D cut-
and-project patterns with inflation, compare with table 5.2; compare their Table 4.
with table 5.1. Their eq. (18) zeta function is not our Kim et al. [54] (5.150). Do
cite in CL18 [29]!

Sect. 2.3 Symmetry The only kind of point symmetry possible for 1D chains
is mirror symmetry, which we shall usually refer to as inversion symmetry in
order to have the same terminology for all dimensions (‘inversion’ meaning
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the isometry x → −x). Inversion symmetric chains correspond to points t on
the torus with t = −t, i.e. 2t = 0. There are four such points

(0, 0) (
1

2
, 0) (0,

1

2
) (

1

2
,

1

2
) , (5.133)

that form the discrete subgroup of ‘two-division points’ of T 2, isomorphic to
C2 × C2.

They count many inversion-symmetric patterns in various dimensions, but
I do not think any of that applies to temporal cat or spatiotemporal cat.

5.5.4 Baake 2018 paper Baake18

Read this:
Michael Baake [6] A brief guide to reversing and extended symmetries of dynamical
systems arXiv:1803.06263.

5.5.5 Lamb and Roberts 1998 paper lamb98

Lamb and Roberts [57] Time reversal symmetry in dynamical systems: A survey
(1998) is a very extensive compendium of references on reversibility. Even
though they touch upon discrete lattice settings (the Frenkel-Kontorova model [5])
I see no place a reference to group-theoretic description of D∞ lattices that we
undertake in LC21 [59].

Example 3.4. Symmetric difference equations of the form
section 13.6

φn+l − f(φn) + φn−1 = 0 (5.134)

the Frenkel-Kontorova model which is equivalent to the area-preserving Chirikov-
Taylor standard mapping.

Remarkably, (5.134) is not only reversible, but the associate ‘time’ mapping
is also area-preserving. Many area-preserving (symplectic) mappings studied
in the literature are reversible (e.g. the well-studied area-preserving Hénon
map, cf. Roberts and Quispel [74] (1992) and references therein).

2021-03-25 Predrag See example 2.5; shouldn’t “time-reversal operator”
just reverse momentum/velocity (5.64)? The definitive review of the nomen-
clature is Roberts and Quispel [74] Chaos and time-reversal symmetry. Order and
chaos in reversible dynamical systems.

It turns out that symmetry naturally arises in the study of return maps of
flows of time-periodic vector fields with mixed space-time symmetries. In a
natural way these space-time symmetries form a group under composition.

4.1. Symmetric periodic orbits
a result on periodic orbits is by far the most well known and used result in

reversible dynamical systems. In 1915, Birkhoff [Birkhoff, 1915] described the
use of reversibility to find periodic orbits of the restricted three-body problem.
In 1958 DeVogelaere [30] described the method again, but now as a tool for
searching for symmetric periodic orbits of reversible systems (by computer).
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Definition 4.1 (Symmetric orbits). An orbit of a dynamical system is s-
symmetric or symmetric with respect to s when the orbit is setwise invariant
under s.

Theorem 4.2 (Symmetric orbits for maps) is the same as LC21 [59] classifi-
cation of 3 kinds of symmetric orbits (Predrag believes).

Theorem 4.1 or 4.2 is used in almost every paper discussing reversible dy-
namical systems. In particular, these theorems imply efficient techniques for
tracking down s-symmetric periodic orbits, as it justifies searching for them in
only a subset of the full phase space.

A well-known property of linear reversible systems is that their eigenvalue
structure is similar to that of Hamiltonian systems.

Theorem 4.4 (Eigenvalues of linear reversible systems)...

5.5.6 Calogero 2007 paper BrCaDr07

Bruschi, Calogero and Droghei [17] Tridiagonal matrices, orthogonal polynomials
and Diophantine relations: I.

If the equations of motion and the solution of their initial-value problems
involve only algebraic operations: finding the zeros of explicitly known poly-
nomials of degree N , finding the eigenvectors and eigenvalues of explicitly
known N×N matrices, the dynamical system is called solvable.

It is well known that the eigenvalues of tridiagonal matrices can be iden-
tified with the zeros of polynomials satisfying three-term recursion relations
and being therefore members of an orthogonal set. They consider the class of
monic polynomials pn(s), of degree n in the variable s, defined by the three-
term recursion relation

pn+1(s)− (s+ an)pn(s)− bnpn−1(s) = 0 , (5.135)

They associate a tridiagonal [n×n] matrix M with it, related to pn(s) via the
“well-known” formula

pn(s) = det (s−M) . (5.136)

The n zeros of the polynomial pn(s) coincide with the n eigenvalues of the
tridiagonal matrix M .

Favard’s theorem: a sequence of polynomials satisfying a suitable 3-term
recurrence relation of the form p(s)n+1 = (s − cn)p(s)n − dnp(s)n−1 for some
numbers cn and dn, then the polynomials p(s)n form a sequence of orthogonal
polynomials. We are interested in this, because we would like to understand
Hill determinants polynomials factorization, such as in (13.79).

See also Jacobi operator. The self-adjoint Jacobi operators act on the Hilbert
space of square summable sequences over the `2(N):

Jf0 = a0f1 + b0f0, Jfn = anfn+1 + bnfn + an−1fn−1, n > 0 ,

where the coefficients are assumed to satisfy

an > 0, bn ∈ R .
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The solution pn(s) of the recurrence relation

J pn(s) = s pn(s), p0(s) = 1 and p−1(s) = 0 ,

is a polynomial of degree n and these polynomials are orthonormal. Here J
can be interpreted as a lattice right-shift operator, i.e., for a temporal lattice this
is related to the evolution in time. This recurrence relation can also be written
as

an+1pn+1(s)− (s− bn)pn(s) + anpn−1(s) = 0 , (5.137)

(Compare with (6.161).)
or (if one replaces s→ µ2)

(−J + µ2)pn(µ2) = 0 ,

reminiscent of the Klein–Gordon equation (6.25). The operator will be bounded
if and only if the coefficients are bounded. The case a(n) = 1 is known as the
discrete one-dimensional Schrödinger operator. It also arises in:

• The Lax pair of the Toda lattice (see 2020-08-02 Predrag Toda post)

• The three-term recurrence relationship of orthogonal polynomials.

• Algorithms devised to calculate Gaussian quadrature rules, derived from
systems of orthogonal polynomials.
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5.6 A Lind zeta function for flip systems

Let G be a group, M a set and f : G ×M → M a G-action onM. The Lind
zeta function [60] is defined by

ζLind(t) = exp

(∑
H

NH
|G/H| t

|G/H|

)
, (5.138)

where the sum is over all finite-index subgroupsH of G, such that |G/H| <∞,
and NH is defined by (see (5.144)):

NH = |{x ∈M : all h ∈ H f(h, x) = x}|. (5.139)

example 5.16
p. 271

A flip system (M, f, s) is a dynamical system, where M is a topological
space and f : M → M is a homeomorphism. s : M → M is flip for (M, f)
that satisfy:

s ◦ f ◦ s = f−1 and s2 = 1 . (5.140)

Kim et al. [54] showed that the zeta function ζs of a flip system (M, f, s) can be
defined as a Lind zeta function ζLind of the D∞-action f : D∞ ×M →M that
is given by:

f(r, x) = f(x) and f(s, x) = s(x) . (5.141)

Every finite index subgroup of the infinite dihedral group D∞ is either

H(n) = 〈rn〉 or H(n, k) = 〈rn , rks〉 , (5.142)

with indices

|D∞/H(n)| = 2|n| or |D∞/H(n, k)| = |n| . (5.143)

7

If n is a positive integer and k is an integer, then Ns
n,k will denote the num-

ber of points inM fixed by fn and fk ◦ s: 8

Ns
n,k = |{x ∈M : fn(x) = fk ◦ s(x) = x}| . (5.144)

They obtain 9

ζs(t) = exp
( ∞∑
n=1

Nn
2n

t2n +
∞∑
n=1

n−1∑
k=0

Ns
n,k

n
tn
)
. (5.145)

7Han 2021-07-16: The infinite dihedral group D∞ is the point group of a 1-dimensional Bravais
lattice.
The subgroup H(n) is a translation group of a sublattice of the 1-dimensional Bravais lattice.
The subgroup H(n, k) is the symmetry group of a 1-dimensional lattice with a picture in the unit
cell that is invariant under sk = srk .

8Predrag 2021-07-04, 2021-08-25: our notation, replaced subscript f,s by noting.
9Predrag 2021-07-04: my own notation, replaced subscript f,s by superscript s.
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The first sum factors as an Artin-Mazur zeta function (5.227):

exp

( ∞∑
n=1

t2n

2n
Nn

)
=
√
ζtop(t2) (5.146)

The definition of a flip (5.144) tells us that

Ns
n,k = Ns

n,k+n = Ns
n,k+2 (5.147)

and this implies

Ns
n,k =


Ns
n,0 if n is odd,

Ns
n,0 if n and k are even,

Ns
n,1 if n is even and k is odd .

(5.148)

Hence 10

n−1∑
k=0

Ns
n,k

n
=


Ns
n,0 if n is odd ,

Ns
n,0 +Ns

n,1

2
if n is even .

(5.149)

so the Lind zeta function of the flip triple system (M, f, s) is

ζs(t) =
√
ζtop(t2) eh(t), (5.150)

where ζtop is the Artin-Mazur zeta function (5.227), and the counts of symmet-
ric orbits

h(t) =
∞∑
m=1

{
Ns

2m−1,0 t
2m−1 +

(
Ns

2m,0 +Ns
2m,1

) t2m
2

}
. (5.151)

they call the “generating function.”
The exp(h(t)) in (5.150) can be factored into terms that presumably corre-

spond –in the particular, Hénon case– to the DnNn factors in (2.34), but this
is now totally general, in the spirit of table 20.3, for any time-reversal discrete
time dynamical system. Should be generalizable also to systems with continu-
ous time.

10Han 2021-07-07: To understand Nn,k = Nn,k+2: Note that rHn,kr−1 = Hn,k+2. Let x be a
periodic point that is fixed by group Hn,k :

h · x = x, ∀h ∈ Hn,k .

For simplicity here I denote f(h, x) as h · x. There is a periodic point r · x that is fixed by group
Hn,k+2 = rHn,kr

−1:
rhr−1 r · x = rh · x = r · x, ∀h ∈ Hn,k .

So the numbers of periodic points fixed by group Hn,k and Hn,k+2 are equal.
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The zeta function ζs can be written as a product over orbits. Let O1 be
the collection of finite orbits with time reversal (flip) symmetry, and O2 be the
collection of the pairs of orbits without time reversal symmetry, each an orbit
and the flipped orbit. A finite orbit p is a periodic points set

p = {x, f(x), . . . , fnp−1(x)}

if p ∈ O1, and

p = {x, f(x), . . . , fk−1(x)} ∪ {s(x), f ◦ s(x), . . . , fk−1 ◦ s(x)}

if p ∈ O2, where k = np/2.
If p ∈ O1,

ζp(t) =

√
1

1− t2np exp

(
tnp

1− tnp
)
, (5.152)

and if p ∈ O2,

ζp(t) =
1

1− tnp . (5.153)

The product form of the zeta function is:

1/ζs(t) =

√ ∏
p1∈O1

(1− t2np1 ) exp

(
− tnp1

1− tnp1

) ∏
p2∈O2

(1− tnp2 ) . (5.154)

2021-07-28 Predrag Checked: Douglas Lind does have a Lind zeta function
(5.138) in Lind [60]. His Theorem 5.4 presumably is the product formula
for his zeta.

More important for us, going forward to spatiotemporal cat, he knows
how to count prime tiles in any Zd lattice, see his Table 1.

2021-07-28 Predrag Rather than Lind’s nebulous ‘index’ [60], for |G/H| in (5.138)
I would like to use ChaosBook p. 166:

Definition: Multiplicity. For a finite discrete group, the multiplicity of
orbit p is mp = |G|/|Gp|.

2022-02-01 Predrag to Yanxin Feng Can you give me a good reference for "in-
dex". I call it multiplicity, because "index" says nothing to me, but I al-
ways have to refer to the "official" nomenclature as well.

We use ‘multiplicity’ in the current LC21 eq. (175), but Lind called it an
"index".

2022-02-01 Yanxin Feng "Index" is popular in math books. One reference [87]
could be our omniscient wiki.

Parenthetically, Cima [21] On the relation between index and multiplicity has
nothing to do with finite groups, ignore.
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2022-02-01 Chris DuPre p.90 of Dummit and Foote [34] Abstract Algebra has it,
(click here). The book is a massive resource for groups.

2022-02-01 Predrag to Yanxin Feng Reading the wiki you gave me I do not re-
ally understand this:

When G is infinite, |G : H| is a nonzero cardinal number that
may be finite or infinite. For example, |Z : 2Z| = 2, but |R : Z|
is infinite.

Maybe the way to understand is to first establish it for Dn subgroups of
D∞ and then take n →∞, show it applies to D∞ as well?

5.6.1 Counting lattice states

Given the topological zeta function (5.145) we can count the number of fixed
points from the generating function:

−t ddt (1/ζs(t))
1/ζs(t)

=
∞∑
n=1

Nnt
2n +

∞∑
n=1

n−1∑
k=0

Ns
n,kt

n =
∞∑
m=1

amt
m , (5.155)

where the coefficients are:

am =



m−1∑
k=0

Ns
m,k = mNs

m,0 , m is odd ,

Nm/2 +
m−1∑
k=0

Ns
m,k = Nm/2 +

m

2

(
Ns
m,0 +Ns

m,1

)
, m is even .

(5.156)
Using the product formula of topological zeta function (5.154) and the numbers
of orbits with length up to 5 from the table 20.3, we can write the topological
zeta function:

1/ζs(t) =
√

1− t2 exp

(
− t

1− t

)
(1− t4) exp

(
− 2t2

1− t2
)(√

1− t6
)3

exp

(
− 3t3

1− t3
)

(1− t6)(1− t8)3 exp

(
− 6t4

1− t4
)

(1− t8)2(1− t10)5 exp

(
− 10t5

1− t5
)

(1− t10)6 . . . . (5.157)

The generating function is:

−t ddt (1/ζs)
1/ζs

= t+ 7t2 + 12t3 + 41t4 + 55t5 + . . . , (5.158)

which is in agreement with (5.156), where the Nn and Ns
n are the Cn and SFn

in the table 20.3.
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We are not able to retrieve the numbers of fixed points by their symme-
try groups using this topological zeta function (5.145), unless we rewrite the
topological zeta function with two variables:

ζs(t, u) = exp
( ∞∑
n=1

Nn
2n

t2n +
∞∑
n=1

n−1∑
k=0

Ns
n,k

n
un
)
. (5.159)

Using this topological zeta function ζs(t, u) we can write two generating func-
tions:

−t ∂∂t (1/ζs(t, u))

1/ζs(t, u)
=
∞∑
n=1

Nnt
2n , (5.160)

and
−u ∂

∂u (1/ζs(t, u))

1/ζs(t, u)
=
∞∑
n=1

n−1∑
k=0

Ns
n,ku

n . (5.161)

Using the product formula of this topological zeta function and the numbers
of orbits with length up to 5 from the table 20.3, the topological zeta function
is:

1/ζs(t, u) =
√

1− t2 exp

(
− u

1− u

)
(1− t4) exp

(
− 2u2

1− u2

)(√
1− t6

)3

exp

(
− 3u3

1− u3

)
(1− t6)(1− t8)3 exp

(
− 6u4

1− u4

)
(1− t8)2(1− t10)5 exp

(
− 10u5

1− u5

)
(1− t10)6 . . . . (5.162)

And the generating function from this topological zeta function is:

−u ∂
∂u (1/ζs(t, u))

1/ζs(t, u)
= u+ 6u2 + 12u3 + 36u4 + 55u5 + . . . , (5.163)

which is in agreement with (5.161), where the Ns
n is the SFn in the table 20.3.

5.7 Permutation representations

Burnside’s Table of marks, whose rows are the orbit types, and the columns are
the subgroups seems related to ChaosBook determinant factorizations.

Marks wiki: Much as character theory simplifies working with group rep-
resentations, ‘marks’ simplify working with permutation representations and
the Burnside ring (for the D3 example, see (20.333)).

See also ncatlab Table of marks. Possibly DOI contains the tables we might
want to use.

GAP is an amazing system for computational discrete algebra. In particular,
it computes tables of marks.
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Permutation representations wiki:
Associated to a lattice state X is a vector space with the X lattice sites as the

basis. An action of a finite group G on X induces a linear action on this vector
space, called a permutation representation.

H ⊆ G is a subgroup of G.
The table of marks of the group G is computed from the lattice of subgroups

of G.
The mark of H on X is the number of elements of X that are fixed by every

element of H : mX(H) =
∣∣XH ∣∣, where

XH = {x ∈ X | h · x = x,∀h ∈ H} .
IfH andK are conjugate subgroups, thenmX(H) = mX(K) for any finiteG-set
X; indeed, if K = gHg−1 then XK = gXH .

Let G1 = 11, G2, · · · , GN = G be representatives of the N conjugacy classes
of subgroups of G, ordered in such a way that whenever Gi is conjugate to a
subgroup ofGj , then i ≤ j. Now define the [N×N ] table (square matrix) whose
(i, j)th entry is m(Gi, Gj). This matrix is lower triangular, and the elements on
the diagonal are non-zero so it is invertible.

The table of marks (Burnside matrix) entries are the number of elements in
the orbit G/K fixed by the subgroup H .

The first column is the degree of the representation. The bottom row is 1’s
because G/G is a single point. The diagonal terms are (CONTINUE)

D3 table of marks is given in table 5.3, and D6 table of marks in table 20.4.
Corresponding sets of lattice states are given by Burnside rings (20.333) and
(20.337)

Theorem (Burnside 1897): If X is a G-set, and ui = mX(Gi) its row vector of
marks, then X decomposes as a disjoint union of ai copies of the orbit of type
Gi, where the vector a satisfies (20.335)

aM = u , (5.164)

and M is the matrix of the table of marks.

2021-06-27 Predrag Study example 5.30 discussion of the D3 symmetry: com-
pact and elegant.

2021-06-21 Predrag Montaldi discussion of D3 is instructive.
In agreement with our results, his D3 permutation representation is

D3 : A0 + E , (5.165)

see for example figure ??.
His “orientation permutation” representation on the set of 3 edges of the
triangle, is A1 + E. I do not think we use that representation.
Montaldi Product structure in Burnside Ring seems to be a variant of the
class operators multiplication tables.
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Table 5.3: D3 table of marks, from Montaldi. For D6 see table 20.4.

D3 11 D2 C3 D3

D3/ 11 6
D3/D2 3 1
D3/C3 2 0 2
D3/D3 1 1 1 1

D3 permutation representation on the

• 3 vertices of an equilateral triangle is A0 + E

D4 permutation representation on the

• 4 vertices of the square is A0 +B1 + E

• not used: 4 edges of the square is A0 +B2 + E

• not used: 2 diagonals of the square is A0 +A1

D5 permutation representation on the

• 5 vertices of the pentagon is A0 + E1 + E2

D6 permutation representation on the

• 6 vertices of the hexagon is A0 +B1 + E1 + E2

• not used: 3 diagonals joining opposite vertices of the hexagon is A0 + E2

Table 5.4: Dn permutation representation irreps (from J. Montaldi).

2021-06-21 Predrag James Montaldi has a cute overview of the D2 to D6 irreps.
Our fields φt are defined on n lattice sites, not on links

Dihedral irrep:

2021-06-21 Predrag Character tables in physics and chemistry use the Mulliken
symbols as the representations names, such as A1 or T2g . Montaldi ad-
heres to that notation, except that he denotes the trivial representation by
A0 rather than A1.

Montaldi Notes on circulant matrices (2012) are very pedagogical. He dis-
cusses (as we do, calling this the permutation rep) the representation the-
ory of the cyclic group (or dihedral group in the symmetric case) acting
on Rn .

For each ` = 1, ..., [(n − 1)/2] let A` be the irreducible 1-dimensional real
representation of Dn : let the rotation r act by rotation through 2π`/n and
let s act by a reflection (this is independent of the choice of reflection as
any two reflections are conjugate, and the resulting irreps equivalent).

Here [q] denotes the greatest integer less than or equal to q.
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A0 is the trivial rep and if n is even, An/2 is the 1-dimensional rep where
r and s act by multiplication by -1. These irreducible representations
are also irreps for the cyclic group Cn (ignoring s). The real 1-dimen-
sional reps Er are irreducible but not absolutely irreducible, and their
complexification splits as a sum of two 1-d reps.

Proposition 1 The above (permutation) representation decomposes as
a sum of irreps:

A0 ⊕A1 · · · ⊕An/2 (5.166)

This is called the isotypic decomposition of Rn for this action (or represen-
tation).

The eigenvectors of M are the same for any circulant matrix M. Define
the vectors u(`), v(`) ∈ Rn , with components

u
(`)
j = cos(2πj`/n) , v

(`)
j = sin(2πj`/n) . (5.167)

Note that u(n−`) = u(`) and v(n−`) = −v(`). In particular, v(0) = 0 and if
n is even then v(n/2) = 0. There is therefore a total of n linearly indepen-
dent vectors

u(`) (` = 0, ...,
[n

2

]
) and v(`) (` = 1, ...,

[
n − 1

2

]
) . (5.168)

They form a basis for Rn (there is more complex components detail in
Montaldi notes).

In particular, u(0) = (1, 1 · · · , 1)> and u(n/2) = (1,−1, 1...,−1)> (the latter
if n is even) are real eigenvectors.

Proposition 2 The component A` is spanned by the vectors u`, v`.

Proposition 3 A matrix M is circulant iff it commutes with the action of
Cn , and it is symmetric and circulant iff it commutes with Dn . λ0 and (if
n is even) λn/2 are simple, while the other λ` are double eigenvalues.

2021-06-27 Predrag The markaracter table of a finite group was introduced by
Shinsaku Fujita.

2021-07-04 Predrag For a bit of history, see J. E. Humphreys review of Pioneers
of representation theory.

2021-07-07 Predrag Dirac characters (Harter’s central operators, see Harter’s
Sect. 3.2 First stage of non-Abelian symmetry analysis) were introduced by
Dirac [31] in The Principles of Quantum Mechanics (1930) (click here): “[...]
what is called in group theory a character of the group of permutations.”

Corson [25] Note on the Dirac character operators (1948) writes:
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[...] the evaluation of Dirac and similar character operators is
all that is required for the solution of the standard molecular
problems in the spirit of Dirac’s original program which avoids
appeal to formal group theory.

Dirac characters (??) use not only the abstract group information, but also
account for the symmetry information contained in the basis set used.
The diagonalization of Dirac characters has three main advantages:

1. It can be realized by means of a quite simple and general algorithm.

2. The projective irreps obtained are just the ones that are needed to
reduce the starting basis set into irreducible sets.

3. No tabulated quantities are required to construct the projective ir-
reps.

The scheme is completely general, in the sense that it applies to all space
groups.

Cini and Stefanucci [23] Antiferromagnetism of the two-dimensional Hubbard
model at half-filling: The analytic ground state for weak coupling, arXiv:cond-
mat/0009058, uses Dirac characters to diagonalize a square integer [N ×
N ] lattice with D4 symmetry. Might help us with the temporal cat desymetriza-
tion.

Cini [22] Topics and Methods in Condensed Matter Theory (2007) (click here)

Jacobs [49] Group Theory with Applications in Chemical Physics, (click here)
(2005)

El-Batanouny and Wooten [13] Symmetry and Condensed Matter Physics:
A Computational Approach (2008) (click here). In sect. 4.3 they describe
the Burnside’s method. They give an example of Mathematica code that
constructs the character table. If needed, on might use Dixon’s method,
which is more clever for numerical computations.

Big Chemical Encyclopedia, Dirac character

The CRYSTAL package performs ab initio calculations of the ground state
energy, energy gradient, electronic wave function and properties of peri-
odic systems. Uses Dirac characters.

2021-07-08 Predrag Ananda Dasgupta had 1.68K followers on YouTube, now
he has one more.

playlist for his Symmetries in Physics course:

Lecture 15 (start at about 35 min into the lecture) has a nice discus-
example 5.22

sion of Dirac characters, their relation to characters, and motivates the
algorithmic Burnside’s method for computing characters via class multi-
plication tables (Hi)jk.

PH4213 Discussion Class 8 applies Burnside’s method to D4.
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Less interesting, but anyway, you might learn something:

PH4213 Discussion Class 9 gets projection operators out of characters.

Lecture 16 Projection operators, the Wigner-Eckart theorem.

A discussion from the Group Theory course:
Sect. 2.10 What are cosets good for?

Henriette Roux asks: What are cosets good for? Apologies for glossing over
their meaning in the lecture. I try to minimize group-theory jargon, but
cosets cannot be ignored.

Dresselhaus et al. [32] (click here) Chapter 1 Basic Mathematical Background:
Introduction needs them to show that the dimension of a subgroup is a di-
visor of the dimension of the group. For example, C3 of dimension 3 is a
subgroup of D3 of dimension 6.

In ChaosBook Chapter 10. Flips, slides and turns cosets are absolutely
essential. The significance of the coset is that if a lattice state has a sym-
metry, then the elements in a coset act on the lattice state the same way,
and generate all equivalent copies of this lattice state. Example 10.7. Sub-
groups, cosets of D3 should help you understand that.

Henriette Roux writes: When talking about the cosets of a subgroup we demon-
strated multiplication between cosets with a specific example, but this
wasn’t leading to something along the lines of that the set of all left cosets
of a subgroup (or the set of all the right cosets of a subgroup) form a
group, correct? It didn’t appear so in the example since the “unit” {E,A}
we looked appears to only have the properties of an identity with mul-
tiplication from one direction (the direction depending on if it is the set
of left cosets or the set of right cosets). In the context of the lecture I
think this point was related to Lagrange’s theorem (although we didn’t
call it that) and I vaguely remember cosets being used in the proof of La-
grange’s theorem but I wasn’t connecting it today. Are we going to cover
that in a future lecture?

Predrag You are right - Lagrange’s theorem (see the wiki) simply says the
order of a subgroup has to be a divisor of the order of the group. We used
cosets to partition elements of G to prove that. But what we really need
cosets for is to define (see Dresselhaus et al. [32] Sect. 1.7) Factor Groups
whose elements are cosets of a self-conjugate subgroup (click here). I will
not cover that in a subsequent lecture, so please read up on it yourself.

Henriette Roux You talked about the period of an element X , and said that
that period is the set

{E,X, · · · , Xn−1} , (5.169)

where n is the order of the element X . I had thought that set was the
subgroup generated by the element X and that the period of the element
X was a synonym for the order of the element X? Is that incorrect?
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2CB

Predrag To keep things as simple as possible, in Thursday’s lecture I followed
Sect. 1.3 Basic Definitions of Dresselhaus et al. textbook [32], to the letter. In
Def. 3 the order of an element X is the smallest n such that Xn = E, and
they call the set (5.169) the period ofX . I do not like that usage (and do not
remember seeing it anywhere else). As you would do, in ChaosBook.org
Chap. Flips, slides and turns I also define the smallest n to be the period of
X and refer to the set (5.169) as the orbit generated by X . When we get to
compact continuous groups, the orbit will be a (great) circle generated by
a given Lie algebra element, and look more like what we usually think of
as an orbit.

I am not using my own ChaosBook.org here, not to confuse things fur-
ther by discussing both time evolution and its discrete symmetries. Here
we focus on the discrete group only (typically spatial reflections and fi-
nite angle rotations).

◦ Sect. 5.8 Reduction to the reciprocal lattice

◦ See (6.119) for Dudgeon and Mersereau [33] explaining clearly how to get
the “quotient” Q when “dividing” by P . |det Λ|/|detQ| = |detP | is then
the number of cosets.

Canals and Schober [18] Introduction to group theory. It is very concise and
precise, a bastard child of Bourbaki and Hamermesh [45]. Space groups
show up only once, on p. 24: “By working with the cosets we have effec-
tively factored out the translational part of the problem.”

5.8 Reduction to the reciprocal lattice

My Phys 7143 zipped! World Wide Quest to Tame Group Theory course notes are
here.

/birdtracks.eu Sect. 8.2.2, here copied as sect. ?? One-dimensional line groups
.

Gutkin lecture notes Lecture 7 Applications III. Energy Band Structure, Sects. 1.
Lattice symmetries and 2. Band structure. Also good reads: Dresselhaus et al. [32]
(click here) chapter 9. Space Groups in Real Space, and Cornwell [24] (click here)
chapter 7. Crystallographic Space Groups. Walt De Heer learned this stuff from
Herzberg [48] Molecular Spectra and Molecular Structure. Condensed matter peo-
ple like Kittel [55] Introduction to Solid State Physics, but I am not a fan, because
simple group theoretical facts are there presented as solid state phenomena.
Quinn and Yi [70] Solid State Physics: Principles and Modern Applications intro-
duction to space groups looks compact and sensible.

Martin Mourigal found the Presqu’île Giens, May 2009 Contribution of Sym-
metries in Condensed Matter Summer School very useful. Villain [85] Symmetry
and group theory throughout physics gives a readable overview. The overheads
are here, many of them are of potential interest. Mourigal recommends
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Ballou [11] An introduction to the linear representations of finite groups appears
rather formal (and very erudite).
Grenier, B. and Ballou [43] Crystallography: Symmetry groups and group represen-
tations.
Schober [78] Symmetry characterization of electrons and lattice excitations gives an
eminently readable discussion of space groups.
Rodríguez-Carvajal and Bourée [75] Symmetry and magnetic structures
Schweizer [79] Conjugation and co-representation analysis of magnetic structures
deals with black, white and gray groups that Martin tries not to deal with, so
all Mourigal groups are gray.

If you are curious about graphene, work out Gutkin lecture notes Lecture 7
Applications III. Energy Band Structure, Sect. 7.3 Band structure of graphene. Villain
discusses graphene in the Appendix A of Symmetry and group theory

The symmetry is Cn, and one needs to distinguish Cn orbits (”prime cycles”
in ChaosBook; one per each orbit). The right way to do this is by going to Cn
irreps, ie, by the discrete Fourier transform, with all reciprocal lattice Brillioun
zone solutions orbits in an 1/n sliver of a n-gon. If n is prime, this is irreducible;
if it is a multiple of a prime, one should remove those solutions, as they have
already been accounted for.

The translation group T , the set of translations ~t that put the crystallo-
graphic structure in coincidence with itself, constitutes the lattice. T is a normal
subgroup of G. It defines the Bravais lattice. In 1 dimension translations are of
the form

~t = ~t~n = n~a , n ∈ Z .
The basis vector ~a spans the unit cell. The lattice unit cell is always a generating
region (a tile that tiles the entire space), but the smallest generating region –the
fundamental domain– may be smaller than the lattice unit. At each lattice point
the identical group of “atoms” constitutes the motif. A primitive cell is a minimal
region repeated by lattice translations. The lattice and the motif completely
characterize the crystal.

The cosets by translation subgroup T (the set all translations) form the fac-
tor (AKA quotient) group G/T , isomorphic to the point group g (rotations). All
irreducible representations of a space group G can be constructed from irre-
ducible representations of g and T . This step, however, is tricky, as, due to
the non-commutativity of translations and rotations, the quotient group G/T
is not a normal subgroup of the space group G.

The quantum-mechanical calculations are executed by approximating the
infinite crystal by a periodic one, and going go to the reciprocal space by de-
ploying CN discrete Fourier transform. This implements the G/T quotienting
by translations and reduces the calculation to a finite Brilluoin zone. That is
the content of the ‘Bloch theorem’ of solid state physics. Further work is then
required to reduce the calculations to the point group irreps.

One would think that the one-dimensional line groups, which describe sys-
tems exhibiting translational periodicity along a line, such as carbon nanotubes,
would be simpler still. But even they are not trivial – there are 13 of them.
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The normal subgroup of a line group L is its translational subgroup T , with
its factor group L/T isomorphic to the isogonal point group P of discrete sym-
metries of its 1-dimensional unit cell x ∈ (−a/2, a/2]. In the reciprocal lattice
k takes on the values in the first Brillouin zone interval (−π/a, π/a]. In Irre-
ducible representations of the symmetry groups of polymer molecules. I, Božović,
Vujičić and Herbut [16] construct all the reps of the line groups whose isogonal
point groups are Cn, Cnv, Cnh, S2n, and Dn. For some of these line groups the
irreps are obtained as products of the reps of the translational subgroup and
the irreps of the isogonal point group.

According to W. De Heer, the Mintmire, Dunlap and White [66] paper Are
Fullerene tubules metallic? which took care of chiral rotations for nanotubes by
a tight-binding calculation, played a key role in physicists’ understanding of
line groups.

Consequences of time-reversal symmetry on line groups are discussed by
Božović [15]; In the case when the Hamiltonian is invariant under time rever-
sal [47], the symmetry group is enlarged: L+ θL. It is interesting to learn if the
degeneracy of the levels is doubled or not.

Johnston [51] Group theory in solid state physics is one of the many reviews
that discusses Wigner’s time-reversal theorems for a many-electron system,
including the character tests for time-reversal degeneracy, the double space
groups, and the time-reversal theorems (first discussed by Herring [47] in Ef-
fect of time-reversal symmetry on energy bands of crystals).

Consider
ρ~G(~x) = ei

~G·~r(~x) ,

where ~G is a reciprocal lattice vector. By definition, ~G · ~a is an integer multiple
of 2π, ρ~G = 1 for lattice vectors. For any other state, reciprocal lattice state is
given by

ei
~G·~u(~x) 6= 1 .

When a cube is a building block that tiles a 3D cubic lattice, it is referred
to as the ‘elementary’ or ‘Wigner-Seitz’ cell, and its Fourier transform is called
‘the first Brillouin zone’ in ‘the reciprocal space’.

2018-03-18 Predrag Check sect. 20.2.1 Reduction to the reciprocal lattice for pos-
sibly useful material.

2018-05-22 Han For the Fourier transform of all the admissible period-5 see
figure 20.35. For a 1-dimensional lattice with lattice spacing 1, the recip-
rocal lattice has spacing 2π/1 = 2π, with the (first) Brillouin zone from
k = −π to k = π. Due to the time reversal, all k = 2π/5 irrep states are
the same as the k = 4π/5 irrep states.

2018-04-18 Predrag I would expect the time-reversal pairs to be the complex-
conjugate pairs in Fourier space, as C4 shift moves them in opposite di-
rections.
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2020-01-10 Predrag A very pedagogical, down to earth textbook: Pozrikidis [69]
An introduction to grids, graphs, and networks, (click here).

He discusses Sect 2.6.1 Bravais Lattices, the reciprocal lattice, the discrete
Brillouin zone or Wigner-Seitz cell.

2020-01-23 Predrag Barvinok arXiv:/math/0504444:
Let V be a d-dimensional real vector space with the scalar product 〈·, ·〉
and the corresponding Euclidean norm ‖ · ‖. Let L ⊂ V be a lattice and
let L∗ ⊂ V be the dual or the reciprocal lattice

L∗ =
{
x ∈ V : 〈x, y〉 ∈ Z for all y ∈ L

}
.

For τ > 0, we introduce the theta function

θL(x, τ) = τd/2
∑
m∈L

exp
{
−πτ‖x−m‖2

}
(detL)−1

∑
l∈L∗

exp
{
−π‖l‖2/τ + 2πi〈l, x〉

}
, (5.170)

where x ∈ V . The last equality is the reciprocity relation for theta series
(essentially, the Poisson summation formula).

2021-02-27 Sidney Figure 16.1 shows all Hamiltonian Hénon (2.30), a = 6 lat-
tice states of period n = 6, in the C6 reciprocal lattice.

Compare with Han’s figure 20.60.

5.9 Dynamical symmetry factorization

Here we shall distinguish “geometrical symmetry" (invariance of a shape of an
object under coordinate translations, reflections, and rotations.

Physical Symmetry vs. Symmetry
A dynamical symmetry is often a hidden symmetry. The classic example

would be the Hydrogen atom. Naively, we would only expect an SO(3) sym-
metry associated with rotational symmetry. This would be the geometrical
symmetry, which leads to the conserved angular momentum vector. In fact,
the full symmetry of the system is SO(4); this is exhibited by there being an-
other conserved vector, the Laplace-Runge-Lenz (LRL) vector. Since the LRL
vector is peculiar to the particular potential of the hydrogen atom and does
not emerge as the result of some general geometrical feature shared by a whole
class of systems (like rotational symmetry), it is referred to as a dynamical sym-
metry.

Noether?
the symmetry of a particular figure or lattice in a two- or three-dimensional

Euclidean space is defined by a subgroup of the group of all translations, rota-
tions, reflections and inversions — the subgroup that converts the object into
itself.
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Associated with each geometric object is the set of symmetry operations
that leave invariant the relation between the object and a coordinate system.
These conceptions of symmetry and operations of symmetry have their basis
in Euclidean geometry.

Symmetry in physics means invariance under any kind of transformation,
for example arbitrary coordinate transformations.

The invariance group of an equation is an intrinsic property of the equation.
To avoid this problem, we will henceforth use the words intrinsic symme-

try and intrinsic symmetry groups when speaking of invariance properties of
equations and functions. If functions or equations are left invariant by the op-
erations of a group of transformations, the group will be said to be an intrinsic
symmetry group of the functions or equations.

The hyperspherical symmetry of Kepler Hamiltonians is a truly dynamical
symmetry — a symmetry present when there is motion. It is a symmetry that
exists only when motion is allowed.

The phrase hidden symmetry is sometimes used to signify the presence of
dynamical symmetry greater than ordinary geometrical symmetry.

Note; we do not know yet how this section relates to sect. 5.4.1 Laplacians
and (time) reversal.

5.9.1 Dynamical symmetry blog

2016-11-16 Predrag Note that [3] the canonical Thom-Arnol’d cat map (1.1) can
be written as [

2 1
1 1

]
=

[
1 1
1 0

]2

, (5.171)

so each of equivalence classes with respect to centralizer is split into two
equivalence classes with respect to the group {±An | n ∈ Z}. (See also
(5.175).)

Jaidee, Moss and Ward [50] Time-changes preserving zeta functions say that

Nn = tr

[
1 1
1 0

]n
, (5.172)

is a ‘golden mean’ system, andNn is the nth Lucas number (1, 3, 4, 7, 11, · · · ),
with zeta function

1

ζ̃(t)
= 1− t− t2 , (5.173)

(compare with (5.182)).

2016-11-16 Predrag Maillard group, Anglès d’Auriac, Boukraa and Maillard [2]
Functional relations in lattice statistical mechanics, enumerative combinatorics,
and discrete dynamical systems note that (see (5.171), (1.2))

A =

(
2 1
1 1

)
=

(
1 1
1 0

)2

= C2 . (5.174)
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Anosov, Klimenko and Kolutsky [3] say: “so each of equivalence classes
with respect to centralizer is split into two equivalence classes with re-
spect to the group {±An | n ∈ Z}.” (whatever that means)

Factorization

det (1− tC) det (1 + tC) = det (1− zC2) (5.175)

leads then to (5.184) (see (1.30), (1.20), (13.75); here corrected by Han
(5.184))

2020-09-30 Predrag (I have no generalization guess of (5.175) yet.)

The Yukawa massive field mass parameter is related to the spatiotempo-
ral cat stretching parameter s by (6.26)

µ2 = d(s− 2) . (5.176)

Observe that(
1− t2

µ2

)2

− t2 = 1− sz + z2 , t2 = µ2 z

=

(
1− t− t2

µ2

)(
1 + t− t2

µ2

)
(
µ2 − t2

)2 − µ4t2 = µ4(1− sz + z2)

=
(
µ2(1− t)− t2

) (
µ2(1 + t)− t2

)(
µ2 − t2

)2
µ4

= (1− z)2 , (5.177)

so Predrag gets (see (5.184)) time-reflection factorized 1/ζ̃(t).

1

ζ(z)
=

1− sz + z2

(1− z)2
=

1

ζA1(t)

1

ζA1(−t)
1

ζA1(t)
=

µ2(1− t)− t2
µ2 − t2 = 1− µ2t

µ2 − t2 . (5.178)

The antisymmetric A2 subspace dynamical zeta function ζA2
differs from

ζA1
only by a minus sign for cycles with an odd number of 0’s, see (5.271).

This is presumably the same as metal cat map zeta (5.58) except here I
chose to count the symmetry-reduced cycles by the t =

√
µ2 z expansion.

I suspect that the factorization (6.174) is another example of such factor-
ization, but for a cubic lattice.

2020-10-31 Predrag Note that time-reversal factorization of zeta functions nat-
urally leads to formulas in terms of the mass µ =

√
s− 2 , see (5.56) and

(5.72).
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2020-11-06 Han
1

ζ(z)
=

det (1− zA)

det (1− zB)
, B =

(
1 0
0 1

)
.

Using the factorization:

det (1− tB) det (1 + tB) = det (1− zB)

we have (5.184).

2020-12-09, 2020-12-11 Predrag Reread the “quotienting the temporal Bernoulli
system” (1.85) by its dynamical D1 = {e, s} symmetry (1.86); figure 1.17.

2020-12-29 Predrag Temporal cat dynamical D1 = {e, s} symmetry is (20.278)

sxt = 1− xt , sst = µ2 − st , for all t ∈ Z , (5.179)

where st takes values in the s-letter alphabet (20.277).

2021-01-13 Han The factorization of (5.184) can be interpreted as the product
of the topological zeta function of a half time step cat map, see (20.282)
and what follows.

2017-09-27, 2021-02-03 Predrag reading Baake, Roberts andWeiss [10] Periodic
orbits of linear endomorphisms on the 2-torus and its lattices arXiv:0808.3489,
see sect. 5.5.2:

They discuss zeta functions of toral automorphisms, see their Table 1.
Fixed point and orbit counts for the golden cat map. Example 2 is amus-
ing:

The best known hyperbolic toral automorphism is the ‘classic’ or golden
(Fibonacci [8]) cat map (see also (6.155))

M =

(
0 1
1 1

)
. (5.180)

It has det (M) = −1 and is thus orientation reversing (sometimes, as in
ref. [52], its square is used instead). One obtains

ζM (t) =
1− t2

1− t− t2 =
∏
m≥1

(
1− tm

)−cm
with am = fm+1 +fm−1−

(
1+(−1)m

)
and cm according to Eq. (5.125), see

also entries A001350 and A060280. Here, fm are the Fibonacci numbers,
defined by the recursion fm+1 = fm + fm−1, for m ≥ 0, together with the
initial condition f0 = 0 and f−1 = 1. The first few terms of the counts
are given in table 5.2. Note that ζM (t) = 1 +

∑∞
m=0 fmt

m, and one has
Mm = fmM + fm−1 1, the latter being valid for all m ∈ Z.
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2021-02-12 Han By derivation (do it!) analogous to the Isola’s cat map ζ(Z)
(1.30), the topological zeta function for metal cat maps is (5.58) where
z = t2, in agreement with (5.182) for µ = 1. See also (6.155).

2021-02-12 Predrag What is this square root of z? This is expected, see Chaos-
Book sect. 25.5 Z2 = D1 factorization: [...] if a cycle p is invariant under
the symmetry subgroupHp ⊆ G of order hp, its weight can be written as
a repetition of a fundamental domain cycle

tp = t
hp
p̂ (5.181)

computed on the irreducible segment that corresponds to a fundamental
domain cycle. [...] In the D1 case, tp is a orbit, or a double repeat of a
orbit, tp = t2p̂, hence the square root.

For the µ = 1 golden (Fibonacci [8]) cat zeta function (20.283) or (5.184)
or [50] (5.173):

1

ζ̃(t)
=

1− t− t2
(1− t)2

, (5.182)

Ñn, the number of lattice states of period n is given by the logarithmic
derivative of the golden cat zeta function (1.13),∑

n=1

Ñnt
n = − ζ̃t d

dt

1

ζ̃

= t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7

+45 t8 + 76 t9 + 121 t10 + 199 t11 + . . . . (5.183)

So this is the golden (Fibonacci [8]) cat map count, table 5.2 of Baake et
al. [10] Periodic orbits of linear endomorphisms on the 2-torus and its lattices.
It is also the number of walks on Han’s reduced Markov diagram, fig-
ure 5.2.

1

ζ(z)
=

1

ζ̃(t)ζ̃(−t)
=

1− t− t2
(1− t)2

· 1 + t− t2
(1 + t)2

=
1− 3z + z2

(1− z)2
, (5.184)

where z = t2.

2021-04-03 Predrag The temporal Hénon (2.39) is a 3-term recurrence relation
of form (2.63)

φi+1 + φ2
i + φi−1 = a , i = 1, ..., np . (5.185)

5.10 Symmetry factorization blog

For the latest entry, go to the bottom of this section
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1

2

(a)

1

2

(b)

1

2

(c)

1

2

(d)

Figure 5.2: (a), (b), (c) and (d) are the Markov diagrams corresponding to the
transition matrices A, B, A′ and B′. We can get (a) and (b) by mapping (c)
and (d) two time steps forward. 1/ζ(z) is the topological zeta function of the
Markov diagram (a) with periodic orbits in (b) eliminated. 1/ζ̃(t) is the top-
ological zeta function of the Markov diagram (c) with periodic orbits in (d)
eliminated.

2018-09-02 Predrag Miles [65] A dynamical zeta function for group actions,
arXiv:1506.08555: “ introduces and investigates the basic features of a
dynamical zeta function for group actions, motivated by the classical dy-
namical zeta function of a single transformation. A product formula for
the dynamical zeta function is established that highlights a crucial link
between this function and the zeta function of the acting group.

The zeta function of a dynamical system is a fundamental invariant that
has warranted considerable attention since the definitive work of Artin
and Mazur [4]. Ruelle [76] provides an introduction to various guises of
this function, and Sharp [80] (seems to be lacking from here) provides a
comprehensive survey by in the context of periodic orbits of hyperbolic
flows. ”

“ The relevance of the dynamical zeta function in questions of orbit growth
is also considered. ”

2020-09-24, 2020-12-16 Predrag to Robert S. MacKay (see discussion around (7.4))
My thoughts in that directions (that is in my temporal cat talk, and in this
blog, see (6.170), (13.71), (13.74), (13.85)) are that for the 1-dimensional
temporal cat [29, 44]

xn,t+1 + xn,t−1 − 2s xt + xn+1,t + xn−1,t = −st , st ∈ A , (5.186)
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with alphabet

A = {−3,−2,−1, 0, · · · , µ2 + 1, µ2 + 2, µ2 + 3} , (5.187)

and the Yukawa mass squared of the scalar field x

µ2 = 2(s− 2) . (5.188)

The ζ function has to satisfy all spatiotemporal symmetries of the square
lattice

D4 = {1, r, r2, r3, s, s1, s2, s3, } . (5.189)

See ChaosBook sect. A25.1.

In the international crystallographic notation, this square lattice space
point group is referred to as p4mm [32].

2CB

2019-01-28 Predrag Useful wikis:

Dihedral group D4

Wolfram Demonstrations:
Dihedral Group n of Order 2n
Cosine and Sine Identities with Dihedral Transformations

The symmetry group of a square: I find their “different Cayley graph”
interesting: here D4 is generated by a horizontal (short axis) reflection,
and a diagonal (long axis) reflection, rather than the usual (r, s) set.

Linear representation theory of dihedral groups summarizes everything
worth knowing:

2021-01-08 Predrag taken from ChaosBook remark 11.2: Examples of systems
with discrete symmetries.

D2 = C2v = V4 = Z2 × Z2 symmetry in the stadium billiard [73]. Cvi-
tanović, Davidchack and Siminos [28] eq. (2.13)

See ChaosBook sect. A25.2.

D4 = C4v symmetry: in quartic oscillators [35, 63], in the pure x2y2 po-
tential [19, 64] and in hydrogen in a magnetic field [37].

Dn symmetry: see Ding thesis example 2.9.
Pdflatex siminos/lyapunov/blog.tex, read sect. 7.11.2 Factorization of Cn and
Dn.

2020-12-20 Predrag This square lattice symmetry group is the space group p4mm,
with point group D4 (5.189), so all calculations should be carried out on
the reciprocal lattice, with a 1/8th of a square Brilluion zone, figure 5.3.

Furthermore, one should quotient the temporal cat (7.4) by its D1 = {e, σ}
dynamical symmetry

σxt = 1− xt , σst = µ2 − st , for all t ∈ Z , (5.190)
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Figure 5.3: The shaded (or yellow) area indicates a fundamental domain, i.e., the
smallest part of the pattern whose repeats tile the entire plane. For the most
symmetric 2D square lattice, with point group p4mm, the fundamental domain
is indicated by the shaded triangle ΓΛRSX∆Γ which constitutes 1/8 of the
Brillouin zone, and contains the basic wave vectors and the high symmetry
points (Fig. 10.2 of Dresselhaus et al. [32]).

where st takes values in the s-letter alphabet (7.5). Define the funda-
mental domain to be x̂t ∈ [0, 1/2]. We construct the temporal cat funda-
mental domain lattice system, with ‘1/2’ unit hypercube X̂ ∈ [0, 1/2]n , as
in ChaosBook Group D1 and reduction to the fundamental domain, see fig-
ure 1.17 (b), and the fundamental domain symbolic dynamics Â. That
leads to ChaosBook chapter 25 Discrete symmetry factorization of zeta
functions.

2021-06-08 Predrag Lecture 7 (Unedited as of 2021-06-18)

◦ We work out the symmetry reduction and a breaking of the D3 sym-
metry in the [3× 3] permutation matrices representation

2021-06-20 Predrag I’ll have to rerecord the above video from scratch, exam-
ple 5.30 discussion of the D3 symmetry is much more compact and ele-
gant.

2021-06-20 Predrag This analysis of Dn irreps does not apply to symmetric or-
bits. For that on has to look at the subgroup structure of dihedral groups,
see groupprops wiki, the subgroup called there 〈x〉. Han’s discussion
of (5.250), (5.251) and (8.20) counts the broken rotational invariance solu-
tions.

2021-06-21 Predrag Paul Garrett (2014) course notes Harmonic analysis of di-
hedral group contain a nice discussion of use of discrete Fourier basis for
representation of fields (i.e., scalar functions) on Dn lattices. His Repre-
sentation theory course contains many interesting nuggets.

2018-07-04 Predrag Siemaszko and Wojtkowski [81] Counting Berg partitions
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describe symmetries of Adler-Weiss partitions. They are present for re-
versible toral automorphisms.

2021-07-04 Predrag The full symmetry group of a toral automorphism was
studied by Baake and Roberts [9].

2021-07-04 Predrag The infinite dihedral group D∞ (5.8) was introduced by Kim,
Lee and Park [54] A zeta function for flip systems (2003).

Kim, Lee and Park [54] give the explicit formula (5.150) for the Lind zeta
function [60] ζs (search for “Lind96” to find more about it) of a flip system
(M, f, s) (5.5).

[...] investigate dynamical systems with flip maps (5.5), regarded as in-
finite dihedral group actions. We introduce a zeta function for flip sys-
tems, and find its basic properties including a product formula. When
the underlying Cn-action is conjugate to a topological Markov shift, the
flip system is represented by a pair of matrices, and its zeta function is
expressed explicitly in terms of the representation matrices.

[...] Any topological Markov shift whose transition matrix is symmetric
has a natural flip.

[...] establish a zeta function for flip systems which is a conjugacy in-
variant, and give a finite description of the function when the underlying
Z-action is conjugate to a topological Markov shift.

2021-07-04 Predrag The much desired -see (2.35)- square root and dependence
on t2 finally makes an appearance in the Lind zeta function (5.150)!

2021-07-04 Predrag S. Ryu The Lind Zeta functions of reversal systems of finite or-
der arXiv:1712.03519 (2017) deals with a more general case of reversing
operators, but the LaTeX file was useful for clip & paste.

If (M, f) is a shift of finite type, then there exists a square matrix A with
non-negative integer entries such that the number of fixed points Nn can
be expressed in terms of matrices [61]

Nn = trAn (m = 1, 2, · · · ) (5.191)

Similarly, when (M, f, s) is a shift-flip system of finite type, the number
of fixed points Ns

n can be expressed in terms of matrices [54].

They write: “ Since there is a dynamical system (X, T) which is not conju-
gate to its time reversal (X,T−1), not every dynamical system has a flip.
See p. 104 of Boyle, Marcus and Trow [14].
Note: Predrag does not understand that page. Worse still, Predrag does
not understand any page in the entire monograph :(

In Park [68] it is shown that if the underlying Z-actions are Kolmogorov
and isomorphic, there are examples of non-isomorphic D∞-actions. ”
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2021-08-11 Predrag Park [68] On ergodic foliations (1988).

The ‘covering space’ has two actions, f and s, where f is a Z-action, s is
a map of order two, and s and T skew-commute; that is, sfs = f−l.
Note: Predrag does not understand this paper, not at all.

2021-07-04 Predrag Still to read:

Boyle, Marcus and Trow [14] Resolving maps and the dimension group for
shifts of finite type (1987).

Nordin and Noorani [67] Counting finite orbits for the flip systems of shifts of
finite type (2021).

Yumiko Hironaka Zeta functions of finite groups by enumerating subgroups,
arXiv:1410.4326 (2014) is potentially interesting: Hironaka forms zeta func-
tion like Riemann, rather than Artin-Mazur.

Richard Miles Orbit growth for algebraic flip systems DOI (2014)

Sieye Ryu PhD thesis The Lind Zeta Function and Williams’ Decomposition
Theorem for Sofic Shift-Reversal Systems of Finite Order (2014)

Golubitsky and Stewart [40] The Symmetry Perspective, chapters Time Pe-
riodicity and Spatio-Temporal Symmetry and Periodic Solutions of Symmetric
Hamiltonian Systems (2002)

example 5.11
p. 267

example 5.35
p. 284

example 5.30
p. 280

example 5.31
p. 280

example 5.32
p. 282
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5.11 Group theory and symmetries: a review
11 12 In quantum mechanics, whenever a system exhibits some symmetry, the
corresponding symmetry group commutes with the Hamiltonian of this sys-
tem, namely, [U(g), H] = U(g)H − HU(g) = 0. Here U(g) denotes the op-
eration corresponding to symmetry g whose meaning will be explained soon.
The set of eigenstates with degeneracy `, {φ1, φ2, · · · , φ`}, corresponding to
the same system energy Hψi = Enψi, is invariant under the symmetry since
U(g)ψi are also eigenvectors for the same energy. This information helps us
understand the spectrum of a Hamiltonian and the quantum mechanical se-
lection rules. We now apply the same idea to the classical evolution oper-
ator Lt(xe, xs) for a system f t(x) equivariant under a discrete symmetry group
G = {e, g2, g3, · · · , g|G|} of order |G|:

f t(D(g))x) = D(g) f t(x) for ∀g ∈ G . (5.192)

We start with a review of some basic facts of the group representation theory.
Some examples of good references on this topic are ref. [46, 84].

Suppose group G acts on a linear space V and function ρ(x) is defined on
this space x ∈ V . Each element g ∈ G will transform point x to D(g)x. At the
same time, ρ(x) is transformed to ρ′(x). The value ρ(x) is unchanged after state
point x is transformed toD(g)x, so ρ′(D(g)x) = ρ(x). Denote U(g)ρ(x) = ρ′(x),
so we have

U(g)ρ(x) = ρ(D(g)−1x) . (5.193)

This is how functions are transformed by group operations. Note, D(g) is the
representation of G in the form of space transformation matrices. The operator
U(g), which acts on the function space, is not the same as group operation
D(g), so (5.193) does not mean that ρ(x) is invariant under G. Example 5.12
gives the space transformation matrices of C3.

example 5.12
p. 269

5.11.1 Regular representation

An operator U(g) which acts on an infinite-dimensional function space is too
abstract to analyze. We would like to represent it in a more familiar way. Sup-
pose there is a function ρ(x) with symmetry G defined in full state space M,
then full state space can be decomposed as a union of |G| tiles each of which is
obtained by transforming the fundamental domain,

M =
⋃
g∈G

gM̂ , (5.194)

11Predrag 2021-06-19: A copy of the 2017-03-09 section from Xiong Ding’s thesis
siminos/xiong/thesis/chapters/symGroup.tex.

12Predrag 2021-06-19: Update/replace the ChaosBook version, as now Z2 → D1,Z3 → C3.
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where M̂ is the chosen fundamental domain. So ρ(x) takes |G| different forms
by (5.193) in each sub-domain in (5.194). Now, we obtained a natural choice of
a set of bases in this function space called the regular basis,

{ρreg1 (x̂), ρreg2 (x̂), · · · , ρreg|G| (x̂)} = {ρ(x̂), ρ(g2x̂), · · · , ρ(g|G|x̂)} . (5.195)

Here, for notation simplicity we use ρ(gix̂) to represent ρ(D(gix̂)) without am-
biguity. These bases are constructed by applying U(g−1) to ρ(x̂) for each g ∈ G,
with x̂ a point in the fundamental domain. The [|G|×|G|] matrix representa-
tion of the action of U(g) in basis (5.195) is called the (left) regular representation
Dreg(g). Relation (5.193) says thatDreg(g) is a permutation matrix, so each row
or column has only one nonzero element.

We have a simple trick to obtain the regular representation quickly. Sup-
pose the element at the ith row and the jth column of Dreg(g) is 1. It means
ρ(gix̂) = U(g)ρ(gj x̂), which is gi = g−1gj =⇒ g−1 = gig

−1
j . Namely,

Dreg(g)ij = δg−1, gig
−1
j
. (5.196)

So if we arrange the columns of the multiplication table by the inverse of
the group elements, then setting positions with g−1 to 1 defines the regular
representation Dreg(g). Note, the above relation can be further simplified to
g = gjg

−1
i , but it exchanges the rows and columns of the multiplication table,

so g = gjg
−1
i should not be used to get Dreg(g). On the other hand, it is easy

to see that the regular representation of group element e is always the identity
matrix.

example 5.13
p. 269

5.11.2 Irreducible representations

U(g) is a linear operator under the regular basis. Any linearly independent
combination of the regular bases can be used as new basis, and then the rep-
resentation of U(g) changes respectively. So we ask a question: can we find a
new set of bases

ρirri =
∑
j

Sijρ
reg
j (5.197)

such that the new representation Dirr(g) = SDreg(g)S−1 is block-diagonal for
any g ∈ G ?

Dirr(g) =

D
(1)(g)

D(2)(g)
. . .

 =
r⊕

µ=1

dµD
(µ)(g) . (5.198)

In such a block-diagonal representation, the subspace corresponding to each
diagonal block is invariant under G and the action of U(g) can be analyzed
subspace by subspace. It can be easily checked that for each µ, D(µ)(g) for all
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g ∈ G form another representation (irreducible representation, or irrep) of group
G. Here, r denotes the total number of irreps of G. The same irrep may show
up more than once in the decomposition (5.198), so the coefficient dµ denotes
the number of its copies. Moreover, it is proved [46] that dµ is also equal to the
dimension of D(µ)(g) in (5.198). Therefore, we have a relation

r∑
µ=1

d2
µ = |G| .

example 5.14
p. 270

Character tables. Finding a transformation S which simultaneously block-
diagonalizes the regular representation of each group element sounds difficult.
However, suppose it can be achieved and we obtain a set of irrepsD(µ)(g), then
according to Schur’s lemmas [46], D(µ)(g) must satisfy a set of orthogonality
relations:

dµ
|G|

∑
g

D
(µ)
il (g)D

(ν)
mj(g

−1) = δµνδijδlm . (5.199)

Denote the trace of irrep D(µ) as χ(µ), which is referred to as the character of
D(µ). Properties of irreps can be derived from (5.199), and we list them as
follows:

1. The number of irreps is the same as the number of classes.

2. Dimensions of irreps satisfy
∑r
µ=1 d

2
µ = |G|

3. Orthonormal relation I :
∑r
i=1 |Ki|χ(µ)

i χ
(ν)∗
i = |G|δµν .

Here, the summation goes through all classes of this group, and |Ki| is
the number of elements in class i. This weight comes from the fact that
elements in the same class have the same character. Symbol ∗ means the
complex conjugate.

4. Orthonormal relation II :
∑r
µ=1 χ

(µ)
i χ

(µ)∗
j = |G|

|Ki|δij .

The characters for all classes and irreps of a finite group are conventionally
arranged into a character table, a square matrix whose rows represent different
classes and columns represent different irreps. Rules 1 and 2 help determine
the number of irreps and their dimensions. As the matrix representation of
class {e} is always the identity matrix, the first row is always the dimension
of the corresponding representation. All entries of the first column are always
1, because the symmetric irrep is always one-dimensional. To compute the
remaining entries, we should use properties 3, 4 and the class multiplication
tables. Spectroscopists conventions use labels A and B for symmetric, respec-
tively antisymmetric nondegenerate irreps, and E, T , G, H for doubly, triply,
quadruply, quintuply degenerate irreps.
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example 5.20
p. 274

5.11.3 Projection operator

We have listed the properties of irreps and the techniques of constructing a
character table, but we still do not know how to construct the similarity trans-
formation S which takes a regular representation into a block-diagonal form.
Think of it in another way, each irrep is associated with an invariant subspace,
so by projecting an arbitrary function ρ(x) into its invariant subspaces, we find
the transformation (5.197). One of these invariant subspaces is

∑
g ρ(gx̂), which

is the basis of the one-dimensional symmetric irrep A. For C3, it is (5.215). But
how to get the others? We resort to the projection operator:

P
(µ)
i =

dµ
|G|

∑
g

(
D

(µ)
ii (g)

)∗
U(g) . (5.200)

It projects an arbitrary function into the ith basis of irrep D(µ) provided the di-
agonal elements of this representation D(µ)

ii are known. P (µ)
i ρ(x) = ρ

(µ)
i . Here,

symbol ∗ means the complex conjugate. For unitary groups
(
D

(µ)
ii (g)

)∗
=

D
(µ)
ii (g−1). Summing i in (5.200) gives

P (µ) =
dµ
|G|

∑
g

(
χ(µ)(g)

)∗
U(g) . (5.201)

This is also a projection operator which projects an arbitrary function onto the
sum of the bases of irrep D(µ).

Note, for one-dimensional representations, (5.201) is equivalent to (5.200).
The projection operator is known after we obtain the character table, since the
character of an one-dimensional matrix is the matrix itself. However, for two-
dimensional or higher-dimensional representations, we need to know the di-
agonal elements D(µ)

ii in order to get the basis of invariant subspaces. That is
to say, (5.200) should be used instead of (5.201) in this case. Example 5.21 illus-
trates this point. The two one-dimensional irreps are obtained by (5.201), but
the other four two-dimensional irreps are obtained by (5.200).

example 5.21
p. 275

The C3 and D3 examples used in this section can be generalized to any Cn
and Dn. For references, Example 5.26, example 5.33 and example 5.34 give the
character tables of Cn and Dn.

example 5.26
p. 277

example 5.33
p. 283

example 5.34
p. 284
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Commentary
Remark 5.1. Time reversal. (2021-01-27 Predrag harmonize this remark with the
same in ChaosBook discrete.tex)
Some background on D∞ symmetry of the temporal cat and φ4 1d lattice field theory,
sect. ?? Translations and reflections. Time-reversed lattice states (if not self-dual under
reflection) are counted as pairs, see for example ChaosBook fig. 11.6, ChaosBook ex-
ample 11.11, ChaosBook Example 15.6 C2 recoded, ChaosBook fig. 15.15, ChaosBook
table 18.1 The 4-disk orbits up to period 8, ChaosBook table 34.1, the time-reversal discus-
sion in ChaosBook section 42.2.3, and ChaosBook fig. 42.5.

This is a many-years outstanding frustration, see ChaosBook Remark 16.3 Symme-
tries of the symbol square and ChaosBook Remark 25.2 Other symmetries.

42.2.3 Periodic orbits
The zeta functions are still to be factorized in the z → t2 sense, perhaps as in (5.182).

Then the corresponding ChaosBook chapters have to be rewritten.

5.12 Examples

Example 5.1. Discrete groups of order 2 on R3. Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidean space R3: 2CB

reflections: s(x, y, z) = (x, y,−z)
rotations: r(x, y, z) = (−x,−y, z) (5.202)

inversions: P (x, y, z) = (−x,−y,−z) .

s is a reflection (or an inversion) through the [x, y] plane. r is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P = rs is an inver-
sion (or parity operation) through the point (0, 0, 0). Singly, each operation generates a
group of order 2: D1 = {e, s}, C2 = {e, r}, and D1 = {e, P}. Together, they form the
dihedral group D2 = {e, s, r, sr} of order 4. (continued in example 5.2)

click to return: p. ??

Example 5.2. Discrete operations on R3. (Continued from example 5.1.) The matrix 2CB
representation of reflections, rotations and inversions defined by (5.202) is

D(s) =

 1 0 0
0 1 0
0 0 −1

 , D(r) =

 −1 0 0
0 −1 0
0 0 1

 , D(P ) =

 −1 0 0
0 −1 0
0 0 −1

 ,

(5.203)
with detD(r) = 1, detD(s) = detD(P ) = −1; that is why we refer to r as a rotation,
and s, P as inversions. As g2 = e in all three cases, these are groups of order 2.
(continued in example 5.3)

click to return: p. ??

Example 5.3. Equivariance of the Lorenz flow. (Continued from example 5.2) The
velocity field in Lorenz equations (??)

exercise ?? ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (5.204)
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is equivariant under the action of cyclic group C2 = {e, r} acting on R3 by a π rotation
about the z axis,

r(x, y, z) = (−x,−y, z) . (5.205)

(continued in example 5.4)
click to return: p. ??

Example 5.4. Desymmetrization of Lorenz flow. (Continuation of example 5.3) Lorenz2CB
equation (5.204) is equivariant under (5.205), the action of order-2 group C2 = {e, r},
where r is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ r(x, y, z) = (−x,−y, z) . (5.206)

r2 = 1 condition decomposes the state space into two linearly irreducible subspaces
M = M+ ⊕M−, the z-axis M+ and the [x, y] plane M−, with projection operators
onto the two subspaces given by (see sect. ??)⇓PRIVATE

⇑PRIVATE
P+ =

1

2
(1 + r) =

 0 0 0
0 0 0
0 0 1

 , P− =
1

2
(1− r) =

 1 0 0
0 1 0
0 0 0

 . (5.207)

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at E0, A commutes
with r, and, as we have already seen in example ??, the E0 stability matrix decomposes
into [x, y] and z blocks. 13

The 1-dimensionalM+ subspace is the fixed-point subspace, with the z-axis point-
wise invariant under the group action

M+ = Fix (C2) = {x ∈M | g x = x for g ∈ {e, r}} (5.208)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A C2-fixed point x(t)
in Fix (C2) moves with time, but according to (??) remains within x(t) ∈ Fix (C2) for all
times; the subspaceM+ = Fix (C2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (5.204)
is reduced to the exponential contraction to the E0 equilibrium, 14

ż = −b z . (5.209)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy−bz
in the Lorenz equation (5.204) send all initial conditions withinM− = (x(0), y(0), 0) into
the full, z(t) 6= 0 state spaceM/M+. (continued in example ??)

click to return: p. 728 (E. Siminos and J. Halcrow)

Example 5.5. Discrete symmetries of the plane Couette flow. The plane Couette2CB
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in streamwise
and spanwise directions. The Navier-Stokes equations for the plane Couette flow have
two discrete symmetries: reflection through the (streamwise , wall-normal) plane, and
rotation by π in the (streamwise , wall-normal) plane. That is why the system has equi-
librium and periodic orbit solutions, as well as relative equilibrium and relative periodic
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Figure 5.4: The bimodal Ulam sawtooth
map with the D1 symmetry f(−x) =
−f(x). If the trajectory (a) x0 → x1 →
x2 → · · · is a solution, so is its reflection
(b) σx0 → σx1 → σx2 → · · · . (work
through example 5.6; continued in fig-
ure 5.5).

(a)

x

f(x)

x
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x
1

x
2

x
3

(b)

f(x)

2
x

σ

σ
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xσ

x

3
x

x1

0

orbit solutions discussed in chapter ??). They belong to discrete symmetry subspaces.
(continued in example ??)

click to return: p. ??

Example 5.6. A reflection–symmetric 1d map. Consider a 1-dimensional bimodal 2CB
‘sawtooth’ map f shown in figure 5.4.

xt+1 =


fL(xt) = Λ(xt + 1)− 1 , xt ∈M0 = [−1,−`/2)
fC(xt) = ΛCxt , xt ∈M0 = [−`/2, `/2]
fR(xt) = Λ(xt − 1) + 1 , xt ∈M1 = (`/2, 1] ,

(5.210)

with ` = 2/|ΛC |, and 2/|Λ| + 1/|ΛC | = 1. The map is piecewise-linear on the state
spaceM = [−1, 1], a compact 1-dimensional line interval, split into three regionsM =
ML ∪MC ∪MR. The map is reflection-symmetric, f(−x) = −f(x).

Denote the reflection operation by σx = −x. The 2-element group G = {e, σ}
goes by many names, such as Z2 or C2. Here we shall refer to it as D1, dihedral
group generated by a single reflection. The G-equivariance of the map implies that
if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent trajectory because
σxn+1 = σf(xn) = f(σxn) .

In the temporal lattice formulation, there is a triplet of fields φt = (φLt , φ
C
t , φ

R
t ) at

each lattice site t. Just like the temporal Bernoulli (1.76), temporal lattice states satisfy
a linear first-order difference equation

φt − f ◦ φt−1 = 0 , (5.211)

but now for a triplet of fields satisfying the local condition (5.210) at each lattice site.
As the local slope can be either Λ or ΛC , the [3n×3n] orbit Jacobian matrix J takes a
block-diagonal form, and depends on the symbol block of a particular lattice state.

Challenge: write down the Hill determinant for a given symbol block, not only using
Hill’s formula, but also directly, without time evolution.

(continued in example 5.7) 15

click to return: p. ??

Example 5.7. D1-asymmetric cycles. (Continued from example 5.6) 16 The D1- 2CB

13Predrag 20171-07-24: create example in sect. ?? from the last sentence
14Predrag 2017-07-24: pointer to turbulence chapter here
15Predrag 2021-06-12: write up exercise exer:ReflectA: write down the formula for the map of

figure 5.4, verify its D1-equivariance.
16Predrag 2019-02-18: REPLACE discreteD1.mp4, eventually.
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Figure 5.5: The D1-equivariant bimodal sawtooth map of figure 5.4 has three
types of periodic orbits: (a) D1-fixed fixed point C, asymmetric fixed points
pair {L,R}. (b) D1-symmetric (setwise invariant) 2-cycle LR, composed of the
relative cycle segment from L to R and its repeat from R to L. (c) Asymmetric
2-cycles pair {LC,CR}. (study example 5.7; continued in figure 5.6) (Y. Lan, )

equivariance of a map, D1 = {e, σ}, implies that, in particular, if a finite set of states
Mp = {xn} constitutes a periodic orbit p, so does its reflectionMσp = {σxn}, with the
same period and the same stability properties.

Label the three regions M = {ML,MC ,MR} of the bimodal ‘sawtooth’ map of
figure 5.5, with a 3-letter alphabet L(eft), C(enter), and R(ight). This symbolic dynamics
is complete ternary dynamics, with any sequence of letters A = {L,C,R} correspond-
ing to an admissible trajectory (‘complete’ means no additional grammar rules required,
see example ?? below).

If a is an asymmetric cycle M̃a, σ maps it into the reflected cycle σM̃a, with no
points in common, M̃a ∩ σM̃a = ∅. Examples are the fixed points pair {L,R} and the
2-cycles pair {LC,CR} in figure 5.5 (c).

click to return: p. ??

Example 5.8. D1-symmetric cycles. (Continued from example 5.7) For D1 the2CB
period of a set-wise symmetric cycle is even (ns = 2ns̃), and the mirror image of the xs
periodic point is reached by traversing the relative periodic orbit segment s̃ of length ns̃,
fns̃(xs) = σxs, see figure 5.5 (b).

click to return: p. ??

Example 5.9. D1-invariant cycles.2CB
Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just this

fixed point x = 0, the reflection symmetry point.
In the example at hand there is only one G-invariant (point-wise invariant) orbit,

the fixed point C at the origin, see figure 5.5 (a). As reflection symmetry is the only
discrete symmetry that a map of the interval can have, this example completes the
group-theoretic analysis of 1-dimensional maps. We shall continue analysis of this sys-
tem in example 5.10, and work out the symbolic dynamics of such reflection symmetric
systems in example 5.11).

click to return: p. ??

Example 5.10. D1 reduction to the fundamental domain. Consider again the2CB
reflection-symmetric bimodal Ulam sawtooth map f(−x) = −f(x) of example 5.7, with
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Figure 5.6: The bimodal Ulam sawtooth
map of figure 5.5 with the D1 symme-
try f(−x) = −f(x), restricted to the fun-
damental domain. f(x) is indicated by
the thin line, and fundamental domain
map f̃(x̃) by the thick line. (a) Boundary
fixed point C is the fixed point 0. The
asymmetric fixed point pair {L,R} is re-
duced to the fixed point 2, and the full
state space symmetric 2-cycle LR is re-
duced to the fixed point 1. (b) The asym-
metric 2-cycle pair {LC,CR} is reduced
to 2-cycle 01. (c) All fundamental do-
main fixed points and 2-cycles. (work
through example 5.10 ) (Y. Lan, )
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symmetry group D1 = {e, σ}. The state space M = [−1, 1] can be tiled by half-line
M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every time
a trajectory leaves this interval, it is mapped back using σ.

In figure 5.6 the fundamental domain map f̃(x̃) is obtained by reflecting x < 0
segments of the global map f(x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0,M̃1,M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 5.6:

In (a) the boundary fixed point C is also the fixed point 0. The asymmetric fixed point
pair {L,R} is reduced to the fixed point 2, and the full state space symmetric 2-cycle LR
is reduced to the fixed point 1. (b) The asymmetric 2-cycle pair {LC,CR} is reduced
to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC is reduced to the 2-cycle 02.
This completes the conversion from the full state space for all fundamental domain fixed
points and 2-cycles, frame (c). 17

click to return: p. ??

Example 5.11. D1-reduced binary symbolic dynamics. 2CB
18 Consider a nonlinear, D1-symmetric ‘bent Bernoulli’ map of figure 5.7; like the

bimodal map figure 5.5, but with the middle interval squeezed to a point, so the symbolic
dynamics is simpler, complete binary with a 2-letter alphabet L(eft), R(ight).

In figure 5.8 the fundamental domain map f̃(φ̃) is obtained by reflecting φ < 0
segments of the global map f(φ) into the upper right quadrant. f̃ also has two branches,
with M̃ = [0, 1] split into two regions M̃ = {M̃0,M̃1} which we label with a 2-letter

17Predrag 2019-02-18: draw this cycle both in the full and in the fundamental domain.
in figure 5.6 (a) double label, with 0, 1 and 2.

18Predrag 2017-09-20: Extracted this from ChaosBook symm.tex Discrete symmetry factorization,
ChaosBook sect. 25.5 Z2 = D1 factorization (version of 2015-04-07).
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Figure 5.7: The D1-equivariant ‘bent
Bernoulli’ map has two types of peri-
odic orbits: (a) asymmetric pairs, such
as the fixed points pair {L,R}. (b) D1-
symmetric (setwise invariant) periodic
orbits, such as the 2-cycle LR, composed
of the relative cycle segment from L to R
and its repeat from R to L. (study ex-
ample 5.11; continued in figure 5.8)

Figure 5.8: The ‘bent Bernoulli’ map
of figure 5.7 with the D1 symmetry
f(−φ) = −f(φ), restricted to the funda-
mental domain. f(φ) is indicated by a
blue line, and fundamental domain map
f̃(φ̃) by the purple line. The asymmet-
ric fixed point pair {L,R} is reduced to
the fixed point 0, and the full state space
symmetric 2-cycle LR is reduced to the
fixed point 1. (work through exam-
ple 5.11)

alphabet Ã = {0, 1}. While the full state space map has two monotone branches with
positive slopes, the symmetry reduced map is a unimodal map, with negative slope
branch f̃1.

The negative slope branch is the consequence of relative periodicity: the mirror
image of the xs periodic point is reached by traversing the relative periodic orbit segment
s̃ of length ns̃, fns̃(xs) = σxs, see the LR 2-cycle in figure 5.7, so the relative periodic
orbit temporal Jacobian matrix carries a minus sign.

We could have illustrated this with the Bernoulli piecewise linear map, figure 1.14,
whose symmetry-reduced map is the Ulam tent map, but there the D1 symmetry is so
obvious that it is hidden in the plain sight. 19

The symbolic dynamics is again complete binary dynamics, with any sequence of
letters {0, 1} admissible. Assume that all periodic orbits are strictly unstable, |Λp > 0|,
so that each orbit or orbit is uniquely labeled by an infinite string {si}, si ∈ {R,L}, and
that the dynamics is invariant under the R↔ L interchange, i.e., it is D1 symmetric. The
periodic orbits separate into the symmetric orbits s ∈ {RL,RRLL,RRRLLL,RLLRLRRL, · · · } ,
with multiplicity ms = 1, and the asymmetric orbit pairs a ∈ {R,L,RRL,LLR, · · · } ,
with multiplicity ma = 2. For example, as there is no distinction between the “left" or the
“right" branch of the map, the weights tR = tL, tRRL = tRLL, are equal, and so on.

exercise ??
The symmetry reduced labeling s̃i ∈ {0, 1} is related to the full state space labels

19Predrag 2021-08-03: Make up the Bernoulli D1-symmetry example, setting up example 5.36,
will need it for LC21.
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Table 5.5: Correspondence between the D1 symmetry reduced cycles p̃ and the full
state space periodic orbits p, together with their multiplicities mp. Also listed are the
two shortest cycles (length 6) related by time reversal, but distinct under D1.

p̃ p mp

0 R 2
1 LR 1
01 LLRR 1
011 LLR 2
001 LLLRRR 1
0111 LRLLRLRR 1
0001 LRRR 2
0011 LLLLRRRR 1
01111 LRLRL 2
00111 LRLLLRLRRR 1
11010 LRRLLRLLRR 1
00011 LRLLLRLRRR 1
10100 LLRRR 2
00001 LLLLLRRRRR 1
110100 LRRLLLRLLRRR 1
110010 LRRRLLRLLLRR 1

si ∈ {L,R} by

If si = si−1 then s̃i = 0

If si 6= si−1 then s̃i = 1 (5.212)

For example, both L = · · ·LLLL · · · and R = · · ·RRRR · · · map into · · · 000 · · · = 0,
LR = · · ·LRLR · · · maps into · · · 111 · · · = 1, LRRL = · · ·LLRRLLRR · · · maps
into · · · 0101 · · · = 01, and so forth. A list of such reductions is given in table 5.5. 20

(continued in example 5.35, illustrated by the Bernoulli example 5.36)
click to return: p. 258

Example 5.12. A matrix representation of cyclic group C3. A 3-dimensional 2CB
matrix representation of the 3-element cyclic group C3 = {e, r, r2} is given by the three
rotations by 2π/3 around the z-axis in a 3-dimensional state space,

D(e) =

1
1

1

 , D(r) =

cos 2π
3
− sin 2π

3

sin 2π
3

cos 2π
3

1

 ,
D(r2) =

cos 4π
3
− sin 4π

3

sin 4π
3

cos 4π
3

1

 .
(continued in example 5.13) (X. Ding, )

click to return: p. 259

Example 5.13. The regular representation of cyclic group C3. (continued from 2CB
example 5.12) Take an arbitrary function ρ(x) over the state space x ∈M, and define

20Predrag 2021-08-02: please recheck table 5.5: I have interchanged ‘0’ and ‘1’ compared to
ChaosBook, might have introduced errors.
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Table 5.6: The multiplication tables of the dihedral group D1, and cyclic group
C3.

D1 e s
e e s
s s e

C3 e r−1 r−2

e e r2 r
r r e r2

r2 r2 r e

a fundamental domain M̂ as a 1/3 wedge, with axis z as its (symmetry invariant) edge.
The state space is tiled with three copies of the wedge,

M = M̂1 ∪ M̂2 ∪ M̂3 = M̂ ∪ rM̂ ∪ r2M̂ .

Function ρ(x) can be written as the 3-dimensional vector of functions over the funda-
mental domain x̂ ∈ M̂,

(ρreg1 (x̂), ρreg2 (x̂), ρreg3 (x̂)) = (ρ(x̂), ρ(rx̂), ρ(r2x̂)) . (5.213)

The multiplication table of C3 is given in table 5.6. By (5.196), the regular representation
matrices Dreg(g) have ‘1’ at the location of g−1 in the multiplication table, ‘0’ elsewhere.
The actions of the operator U(g) are now represented by permutations matrices (blank
entries are zeros):

Dreg(e) =

1
1

1

 , Dreg(r) =

 1
1

1

 , Dreg(r2) =

 1
1

1

 .
(5.214)

(X. Ding, )
click to return: p. 260

Example 5.14. Irreps of cyclic group C3. (continued from example 5.13) For2CB
D1, whose multiplication table is in table 5.6, we can form the symmetric base ρ(x̂) +
ρ(sx̂) and the antisymmetric base ρ(x̂) − ρ(sx̂). You can verify that in this new basis,
D1 is block-diagonalized. We would like to generalize this symmetric-antisymmetric
decomposition to the order 3 group C3. Symmetrization can be carried out on any
number of functions, but there is no obvious anti-symmetrization. We draw instead
inspiration from the Fourier transformation for a finite periodic lattice, and construct from
the regular basis (5.213) a new set of bases

ρirr0 (x̂) =
1

3

[
ρ(x̂) + ρ(rx̂) + ρ(r2x̂)

]
(5.215)

ρirr1 (x̂) =
1

3

[
ρ(x̂) + ω ρ(rx̂) + ω2ρ(r2x̂)

]
(5.216)

ρirr2 (x̂) =
1

3

[
ρ(x̂) + ω2ρ(rx̂) + ω ρ(r2x̂)

]
. (5.217)

Here ω = e2iπ/3. The representation of group C3 in this new basis is block-diagonal by
inspection:

Dirr(e) =

1
1

1

 , Dirr(r) =

1 0 0
0 ω 0
0 0 ω2

 , Dirr(r2) =

1 0 0
0 ω2 0
0 0 ω

 .
(5.218)
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So C3 has three 1-dimensional irreps. Generalization to any Cn is immediate: this is
just a finite lattice, discrete Fourier transform. (X. Ding, )

click to return: p. 261

Example 5.15. C∞ group. Consider the integer lattice Z. The infinite cyclic group 2CB
C∞ is generated by r, the right shift by one lattice spacing

C∞ =
〈
r | r`, ` ∈ Z

〉
. (5.219)

Every finite index subgroup of the infinite cyclic group C∞ is also cyclic, isomorphic to
Cn

H(n) = 〈rn〉 , (5.220)
with index

|C∞/H(n)| = |n| . (5.221)
The infinite cyclic group elements are all shifts

C∞ =
〈
rj | rj = rj ; j ∈ Z

〉
= {· · · , r−2, r−1, 1, r1, r2, r3, · · · } , (5.222)

where rj = rj denotes translation by j lattice sites. r0 = 1 denotes the identity. Cyclic
group multiplication adds translations.

click to return: p. 199

Example 5.16. Marching forward in time: Artin-Mazur zeta function. Consider the
integer lattice Z, invariant under infinite cyclic group shifts by one or integer number of
lattice spacings (see example 5.15):

C∞ =
〈
r | r`, ` ∈ Z

〉
. (5.223)

Every period n sublattice is n-steps infinite cyclic group,

H(n) = 〈rn〉 , (5.224)

with the quotient C∞/H(n) isomorphic to Cn , with multiplicity

|C∞/H(n)| = |n| . (5.225)

Let Nn denote the number of points inM fixed by fn :

Nn = |{x ∈M : fn(x) = x}| . (5.226)

The corresponding Lind zeta function (5.138) is known as the Artin-Mazur zeta func-
tion [4, 27]

1/ζAM(t) = exp

(
−
∞∑
n=1

tn

n
Nn

)
(5.227)

click to return: p. 236

Example 5.17. D∞ group multiplication table. The infinite dihedral group [54] 2CB
elements are all shifts and translate-reflections

D∞ =
〈
ri, sj | risj = sjr−i; s

2
j = 1; i, j ∈ Z

〉
= {· · · , r−2, s−2, r−1, s−1, 1, s, r1, s1, r2, s2, · · · } . (5.228)

where rj = rj denotes translation by j lattice sites, and sj = srj denotes reflection
across the jth lattice site. r0 = 1 denotes the identity, and by definition s0 = s. Dihedral
group multiplication table 5.7 adds up translations, or translates and then reverses their
direction.

click to return: p. 199
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Table 5.7: C∞ cyclic group multiplication adds up translations. D∞ dihedral
group multiplication adds up translations, or translates and then reverses their
direction.

C∞ rj
ri ri+j

D∞ rj sj
ri ri+j sj−i
si si+j rj−i

Example 5.18. D∞ subgroups and cosets. H(n), any n, is a translation subgroup 2CB
of D∞ (a 1-dimensional Bravais sublattice L (??), with a basis vector a that defines the
Bravais cell of length n) with group elements 〈rn〉 >, or, more explicitely:

H(n) = {· · · , r−2n , r−n , 1, rn , r2n , · · · } . (5.229)

There are a 2n left cosets of subgroup H(n) in D∞:

H(n) = {· · · , r−2n , r−n , 1, rn , r2n , · · · } (5.230)

sH(n) = {· · · , s−2n , s−n , s, sn , s2n , · · · }
rH(n) = {· · · , r−2n+1, r−n+1, r, rn+1, r2n+1, · · · }
s1H(n) = {· · · , s−2n+1, s−n+1, s1, sn+1, s2n+1, · · · }

...

rn−1H(n) = {· · · , r−n−1, r−1, rn−1, r2n−1, r3n−1, · · · }
sn−1H(n) = {· · · , s−n−1, s−1, sn−1, s2n−1, s3n−1, · · · } .

Using elements {1, s, r, s1, · · · , rn−1, sn−1} as representatives of these cosets we see
that the quotient group D∞/H(n) is isomorphic to the dihedral group Dn .

There are n infinite dihedralH(n, k) subgroups of D∞, for any n, 0 ≤ k < n (Bravais
cell of length n, with reflection point shifted k steps):

H(n, k) = {· · · , r−2n , s−2n+k, r−n , s−n+k, 1, sk, rn , sn+k, r2n , s2n+k, · · · } .

The left cosets of the subgroup H(n, k) in D∞ are: 21

H(n, k) = {· · · , r−2n , s−2n+k, r−n , s−n+k, 1,

sk, rn , sn+k, r2n , s2n+k, · · · } (5.231)

rH(n, k) = {· · · , r−2n+1, s−2n+k+1, r−n+1, s−n+k+1, r

sk+1, rn+1, sn+k+1, r2n+1, s2n+k+1, · · · }
...

rn−1H(n, k) = {· · · , r−n−1, s−n+k−1, r−1, sk−1, rn−1,

sn+k−1, r2n−1, s2n+k−1, r3n−1, s3n+k−1, · · · } .

Using {1, r, · · · , rn−1} as representatives of these cosets we see that the quotient group
D∞/H(n, k) is isomorphic to the cyclic group Cn .

21Predrag 2021-07-24: Explain that sjH(n, k) is a rearrangement.
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Table 5.8: D3 group and class operator multiplication tables.

D3 1 r r2 s1 s2 s3

1 1 r r2 s1 s2 s3

r r r2 1 s3 s1 s2

r2 r2 1 r s2 s3 s1

s1 s1 s2 s3 1 r r2

s2 s2 s3 s1 r2 1 r
s3 s3 s1 s2 r r2 1

D3 C1 C2 C3
C1 C1 C2 C3
C2 C2 2C1+C2 2C3
C3 C3 2C3 3C1+3C2

To show that H(n, k) is not a normal subgroup: using (??) we have: ri skr−1
i =

sk−2i. For i 6= n, generally sk−2i = r2isk is not an element of H(n, k).
Let φ(n) be a lattice state that is invariant under the action of subgroup H(n):

H(n)φ(n) = φ(n) , (5.232)

and φ(n, k) be a lattice state that is invariant under the action of subgroup H(n, k):

H(n, k)φ(n, k) = φ(n, k) . (5.233)

Since H(n) is a normal subgroup of D∞, we have:

H(n)gφ(n) = gH(n)g−1gφ(n)

= gH(n)φ(n)

= gφ(n) , g ∈ D∞ . (5.234)

So gφ(n) with g ∈ D∞ is also a lattice state that is invariant under H(n). For the lattice
state φ(n, k) we have:

gH(n, k)g−1gφ(n, k) = gH(n, k)φ(n, k)

= gφ(n, k) , g ∈ D∞ . (5.235)

SinceH(n, k) is not a normal subgroup, gH(n, k)g−1 is a conjugate subgroup ofH(n, k).
So gφ(n, k) with g ∈ D∞ is not invariant under H(n, k), but invariant under a conjugate
subgroup of H(n, k).

click to return: p. 199(H. Liang, 2021-07-28)

example 5.19
p. 273

Example 5.19. The regular representation of dihedral group D3. 2CB
D3 = {e, r, r2, s, s1, s2} represents the symmetries of a triangle with equal sides. r

and r2 are rotations by 2π/3 and 4π/3 respectively. s, s1 and s2 are the 3 reflections.
The regular basis in this case are

(ρ(x̂), ρ(sx̂), ρ(s1x̂), ρ(s2x̂), ρ(rx̂), ρ(r2x̂)) .

It helps us obtain the multiplication table quickly by the following relations

s2 = s1r , s1 = r2s , rs = sr2 , r2s = sr . (5.236)
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Table 5.9: The multiplication table of D3, the group of symmetries of an equi-
lateral triangle.

D3 e s s−1 s−2 r−1 r−2

e e s s1 s2 r2 r
s s e r r2 s2 s1

s1 s1 r2 e r s s2

s2 s2 r r2 e s1 s
r r s2 s s1 e r2

r2 r2 s1 s2 s r e

The multiplication table of D3 is given in table 5.9. By (5.196), the 6 regular repre-
sentation matrices Dreg(g) have ‘1’ at the location of g−1 in the multiplication table, ‘0’
elsewhere. For example, the regular representation of the action of operators U(s1) and
U(r2) are, respectively:

Dreg(s1) =


0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

 , Dreg(r) =


0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

 .

(X. Ding, )
click to return: p. 273

Table 5.10: Character tables of D1, C3 and D3. The classes {s12, s13, s14}, {r, r2}
are denoted 3s, 2C, respectively.

D1 A B
e 1 1
s 1 -1

C3 A E
e 1 1 1
r 1 ω ω2

r2 1 ω2 ω

D3 A B E
e 1 1 2
3s 1 -1 0
2C 1 1 -1

Example 5.20. Character table of D3. (continued from example ??) Let us construct2CB
table 5.10. one-dimensional representations are denoted by A and B, depending on
whether the basis function is symmetric or antisymmetric with respect to transpositions
sij . E denotes the two-dimensional representation. As D3 has 3 classes, the dimension
sum rule d2

1+d2
2+d2

3 = 6 has only one solution d1 = d2 = 1, d3 = 2. Hence there are two
one-dimensional irreps and one two-dimensional irrep. The first row is 1, 1, 2, and the
first column is 1, 1, 1 corresponding to the one-dimensional symmetric representation.
We take two approaches to figure out the remaining 4 entries. First, since B is an
antisymmetric one-dimensional representation, so the characters should be ±1. We
anticipate χB(s) = −1 and can quickly figure out the remaining 3 positions. Then
we check that the obtained table satisfies the orthonormal relations. Second, denote
χB(s) = x and χE(s) = y, then from the orthonormal relation of the second column
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with the first column and itself, we obtain 1+x+2y = 0 and 1+x2 +y2 = 6/3. Then we
get two sets of solutions, one of which is incompatible with other orthonormal relations,
so we are left with x = −1, y = 0. Similarly, we can get the other two characters. (X.

click to return: p. 262Ding, )

Example 5.21. Bases for irreps of D3. (continued from example ??) We use 2CB
projection operator (5.201) to obtain a basis of irreps of D3. From table 5.10, we have

PAρ(x̂) =
1

6

[
ρ(x̂) + ρ(sx̂) + ρ(s2x̂) + ρ(s1x̂) + ρ(rx̂) + ρ(r2x̂)

]
(5.237)

PBρ(x̂) =
1

6

[
ρ(x̂)− ρ(sx̂)− ρ(s2x̂)− ρ(s1x̂) + ρ(rx̂) + ρ(r2x̂)

]
. (5.238)

For projection into irrep E, we need to figure out the explicit matrix representation first.
Obviously, the following 2 by 2 matrices are E irreps.

DE(e) =

[
1 0
0 1

]
, DE(r) =

[
ω 0
0 ω2

]
, DE(r2) =

[
ω2 0
0 ω

]
(5.239)

DE(s) =

[
0 1
1 0

]
, DE(s2) =

[
0 ω2

ω 0

]
, DE(s1) =

[
0 ω
ω2 0

]
. (5.240)

So apply projection operator (5.200) on ρ(x̂) and ρ(sx̂), we get

PE1 ρ(x̂) =
1

6

[
ρ(x̂) + ωρ(rx̂) + ω2ρ(r2x̂)

]
(5.241)

PE2 ρ(x̂) =
1

6

[
ρ(x̂) + ω2ρ(rx̂) + ωρ(r2x̂)

]
(5.242)

PE1 ρ(sx̂) =
1

6

[
ρ(sx̂) + ωρ(s1x̂) + ω2ρ(s2x̂)

]
(5.243)

PE2 ρ(sx̂) =
1

6

[
ρ(sx̂) + ω2ρ(s1x̂) + ωρ(s2x̂) .

]
(5.244)

The above derivation has used formulas (5.236). In the invariant basis{
PAρ(x̂), PBρ(x̂), PE1 ρ(x̂), PE2 ρ(sx̂), PE1 ρ(sx̂), PE2 ρ(x̂)

}
,

we have

Dirr(s2) =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 ω2 0 0
0 0 ω 0 0 0
0 0 0 0 0 ω2

0 0 0 0 ω 0

 Dirr(r) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 ω 0 0 0
0 0 0 ω2 0 0
0 0 0 0 ω 0
0 0 0 0 0 ω2

 .

(X. Ding, )
click to return: p. 262

Example 5.22. The class multiplication table for D3. 2CB
See table 5.11.
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Table 5.11: D3 group and class operator multiplication tables.

D3 1 r r2 s s1 s2

1 1 r r2 s s1 s2

r r r2 1 s2 s s1

r2 r2 1 r s1 s2 s
s s s1 s2 1 r r2

s1 s1 s2 s r2 1 r
s2 s2 s s1 r r2 1

D3 11 R S
11 11 R S
R R 2 11 +R 2S
S S 2S 3( 11 +R)

(a) (b) (c)

(d)

Figure 5.9: The 3-disk pinball orbits: (a) 12, 13, 23, 123; the clockwise 132
not drawn. (b) Orbit 1232; the symmetry related 1213 and 1323 not drawn.
(c) Orbit 12323; orbits 12123, 12132, 12313, 13131 and 13232 not drawn. (d)
The fundamental domain, i.e., the light-shaded 1/6th wedge in (a), consisting
of a section of a disk, two segments of symmetry axes acting as straight mirror
walls, and the escape gap to the left. The above 14 full-space orbits restricted to
the fundamental domain and recoded in binary reduce to the two fixed points
0, 1, period-2 orbit 10, and period-5 orbit 00111 (not drawn).
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Example 5.23. Subgroups, cosets of D3. (Continued from example ??) 2CB
The 3-disks symmetry group, the D3 dihedral group (??) has six subgroups

{e}, {e, s}, {e, s1}, {e, s2}, {e, r, r2}, D3 . (5.245)

The left cosets of subgroup D1 = {e, s} are {r, s1}, {r2, s2}. The coset of subgroup
C3 = {e, r, r2} is {s, s1, s2}. The significance of the coset is that if a solution has a
symmetry H, for example the symmetry of a 3-cycle 123 is C3, then all elements in a
coset act on it the same way, for example {s, s1, s2}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e, r, r2}, of order 3, so possible cycle
multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full
symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-disk
billiard. Examples of other multiplicities are given in figure 5.9 and figure ??. (continued
in example 5.24)

click to return: p. ??

Example 5.24. Classes of D3. (Continued from example 5.23) 2CB
The three classes of the 3-disk symmetry group D3 = {e, r, r2, s, s1, s2}, are the identity,
any one of the reflections, and the two rotations,

{e} ,


s
s1

s2

 ,

{
r
r2

}
. (5.246)

In other words, the group actions either flip or rotate. (continued in example ??)
click to return: p. ??

Example 5.25. Cyclic groups. The cyclic group Cn ⊂ SO(2) (sometimes called 2CB
Zn) of order n is generated by one element a shift r, the 1/n circle rotation by 2π/n.

click to return: p. ??

Example 5.26. Character table of cyclic group Cn. The symmetry under a discrete 2CB
rotation by angle 2π/n gives birth to a cyclic group Cn = {e, r, r2, · · · , rn−1}. Since Cn
is Abelian, each element forms a separate class, and thus Cn has n one-dimensional
irreducible representations. The characters multiply as group elements: χα(ri)χα(rj) =
χα(ri+j) mod n . Therefore, we get table 5.14. (X. Ding, )

click to return: p. 262

Example 5.27. Dihedral groups. The dihedral group Dn ⊂ O(2), n = 1, 2, 3, · · · 2CB
(sometimes called Cnv), can be generated by two elements one at least of which must
orientation reversing. For example, take s corresponding to reflection across the x-
axis. s2 = e; such operation is called an involution. r to rotation through 2π/n, then
Dn = 〈s, r〉, and the defining relations are s2 = rn = e, (rs)2 = e.

click to return: p. ??

Example 5.28. D4 reflection symmetric, antisymmetric permutation representation
subspaces. The characteristic equation s2 = 1, with eigenvalues {+1,−1} , enables
us to start the symmetry reduction of the n-dimensional permutation representation of
Dn by splitting it into the reflection symmetric or antisymmetric subspaces by means of
projection operators.

When the period n of the lattice states is even, there are two classes of reflections.
For example, when the period of the lattice states is 4, reflection operators s and s1 = sr
(see example 5.17) belong to distinct dihedral group D4 classes:

s =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , s1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , (5.247)
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where r is the shift matrix. Either one splits the n-dimensional permutation represen-
tation of Dn into the reflection symmetric and antisymmetric subspaces. For s the two
projection operators are

P0+ =
s− (−1)1

1− (−1)
=

1

2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1



P0− =
s− 1

−1− 1
=

1

2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 , (5.248)

and for s1 they are

P1+ =
1− (−1)s1

1 + 1
=

1

2


1 0 1 0
0 2 0 1
1 0 1 0
0 0 0 2



P1− =
1 + (−1)s1

1 + 1
=

1

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 . (5.249)

Either splits the n-dimensional permutation representation, but in a different way. The
dimensions dα = trPα of the pairs of subspaces are ds+ = 2, ds− = 2, and ds1+ = 3,
ds1− = 1. They are reducible further by each other, and by the translation operator
characteristic equation r4 = 1. Of course, there is no reason to single out reflection op-
erators s and s1. For a systematic, all commuting operator approach, see example 5.31
for the Burnside, class operator full reduction.

click to return: p. 728

Example 5.29. D6 reflection symmetric, antisymmetric permutation representation
subspaces. The characteristic equation s2 = 1, with eigenvalues {+1,−1} , enables
us to start the symmetry reduction of the n-dimensional permutation representation of
Dn by splitting it into the reflection symmetric or antisymmetric subspaces by means of
projection operators.

When the period n of the lattice states is even, there are two classes of reflections.
For example, when the period of the lattice states is 6, reflection operators s and rs
belong to distinct dihedral group D6 classes:

s =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , (5.250)
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and 22

rs =


1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , (5.251)

where r is the shift matrix. Either one splits the n-dimensional permutation represen-
tation of Dn into the reflection symmetric and antisymmetric subspaces. For s the two
projection operators are

P0+ =
s− (−1)1

1− (−1)
=

1

2


1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1



P1− =
rs− 1

−1− 1
=

1

2


0 0 0 0 0 0
0 1 0 0 0 −1
0 0 1 0 −1 0
0 0 0 0 0 0
0 0 −1 0 1 0
0 −1 0 0 0 1

 , (5.252)

and for rs they are

P0− =
s− 1

−1− 1
=

1

2


1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 −1 1 0 0
0 −1 0 0 1 0
−1 0 0 0 0 1



P1+ =
rs− (−1)1

1− (−1)
=

1

2


2 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 2 0 0
0 0 1 0 1 0
0 1 0 0 0 1

 . (5.253)

Either splits the n-dimensional permutation representation, but in a different way. The
dimensions dα = trPα of the pairs of subspaces are d0+ = 3, d0− = 3, and d1+ = 4,
d1− = 2. They are reducible further by each other, and by the translation operator
characteristic equation r6 = 1. Of course, there is no reason to single out reflection op-
erators s and rs. For a systematic, all commuting operator approach, see example 5.31
for the Burnside, class operator full reduction. (H. Liang, 2021-05-11)

click to return: p. 961

22Predrag 2021-07-25: I would prefer s1 = sr, to be consistent with the wiki convention of
example 5.17.
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Example 5.30. D3 multiplication tables and the permutation rep. For period-3
lattice states, the class operators are the identity 11 and

R =

 0 1 1
1 0 1
1 1 0

 , S =

 1 1 1
1 1 1
1 1 1

 = 11 +R , (5.254)

so either R or S can be eliminated from the class multiplication table 5.11. In the spirit
of the presentation of a dihedral group in terms of two flips, let’s eliminate R = S − 11:

D3 11 S
11 11 S
S S 3S

(5.255)

From this D3 class operator multiplication table follows the Hamilton-Cayley equation for
its 3-dimensional permutation rep, with two eigenvalues,

S(S − 3 11) = 0 , (5.256)

with projection operators

λ projection op. d

3 P3 = S/3 1
0 P0 = (3 11− S)/3 2

(5.257)

Note that the zero-eigenvalue P0 is the Laplacian operator.
Take orbit Jacobian matrix of form common to both the temporal cat (6.82) and the

temporal Hénon (15.174), and use the spectral resolution 11 = P0 + P3:

d = 3 J =

 −J00 1 1
1 −J11 1
1 1 −J22

 = P0 − (J − 11) , (5.258)

Study also wiki: Character of the permutation representation.
Dixon, J. D. and Mortimer, Permutation Groups, Springer

click to return: p. 258

Example 5.31. D6 multiplication tables. From the D6 class operator multiplication
table follow the Hamilton-Cayley equations (for any matrix representation; in our ap-
plication (??) that is the 6-dimensional matrix representation of permutations), with 16
eigenvalues as listed, 23

(R3 − 11)(R3 + 11) = 0

(R1 − 11)(R1 + 11)(R1 − 2 11)(R1 + 2 11) = 0

(R2 − 11)(R2 + 11)(R2 − 2 11)(R2 + 2 11) = 0

S0(S0 − 3 11)(S0 + 3 11) = 0

S1(S1 − 3 11)(S1 + 3 11) = 0 , (5.259)

23Predrag 2021-06-16: R2 is a guess, I have not derived it.
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Table 5.12: The D6 Cayley table (group multiplication (??) table), and the class
operator multiplication table. The class operator multiplication table is sym-
metric under transposition, so it suffices to fill up the upper half-triangular
region. The 6 classes correspond to 4 1-dimensional irreps, and the 2 1-dimen-
sional irreps.

D6 1 r3 r r5 r2 r4 s s2 s4 s1 s3 s5

1 1 r3 r r5 r2 r4 s s2 s4 s1 s3 s5

r3 r3 1 r4 r2 r5 r s3 s5 s1 s s1 s2

r r r4 r2 1 r3 r5 s1 s3 s5 s2 s4 s
r5 r5 r2 1 r4 r r3 s5 s1 s3 s s2 s4

r2 r2 r5 r3 r r4 1 s2 s4 s s3 s5 s1

r4 r4 r r5 r3 1 r2 s4 s s2 s5 s1 s3

s s s3 s1 s5 s2 s4 1 r4 r2 r5 r3 r
s2 s2 s5 s3 s1 s4 s r2 1 r4 r r5 r3

s4 s4 s2 s5 s3 s s2 r4 r2 1 r3 r r5

s1 s1 s4 s2 s s3 s5 r r5 r3 1 r4 r2

s3 s3 s s4 s2 s5 s1 r3 r r5 r2 1 r4

s5 s5 s3 s s4 s1 s3 r5 r3 r r4 r2 1

D6 11 R3 R1 R2 S0 S1

11 11 R3 R1 R2 S0 S1

R3 . 11 R2 R1 S1 S0

R1 . . 2 11+R2 2R3+R1 2S1 2S0

R2 . . . 2 11+R2 2S0 2S1

S0 . . . . 3( 11+R2) 3(R3+R1)
S1 . . . . . 3( 11+R2)
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so there is lots of redundancy - there are only 6 irreps.

R3 : λ = 1 → P1 = ( 11 +R3)/2

R3 : λ = −1 → P−1 = ( 11−R3)/2

S0 : λ = 0 → P0,0 = (2 11−R2)/3

S0 : λ = 3 → P0,3 = ( 11 +R2 + S0)/6

S0 : λ = −3 → P0,−3 = ( 11 +R2 − S0)/6

S1 : λ = 0 → P1,0 = P0: 0

S1 : λ = 3 → P1,3 = ( 11 +R2 + S1)/6

S1 : λ = −3 → P1,−3 = ( 11 +R2 − S1)/3 . (5.260)

Split P0,−3 using P1:

P1P0,−3 = ( 11 +R3 +R1 +R2 − S0 − S1)/12 . (5.261)

Sj equations are the same form as for D3 1-dimensional irrep, so the number of
such equations presumably equals the number of 1-dimensional irrep, and the same for
Rj , j 6= n/2 equations.
Sj equations presumably contain symmetric/antisymmetric solutions, in the spirit of

(5.250) and (5.251).
For even dimensions Rn/2 presumably leads to 4 1-dimensional irreps, of which I

assume the two antisymmetric ones do not contribute to then-dimensional matrix rep-
resentation of permutations, while all 1-dimensional irrep do.

That is probably easier to count using the character formulas.
click to return: p. 258

Example 5.32. D6 permutation rep. For period-6 lattice states, the class operators
are the identity, and:

R3 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , (5.262)

R1 =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 , R2 =



0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

 . (5.263)

S0 =



0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

 , S1 =



1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

 . (5.264)
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The reflection operators eigenvalues are +1 and −1, corresponding to the reflection
symmetric and antisymmetric subspaces.

To compute the dimensions of irreps obtained from (5.259), we need the characters
of the permutation representation class operators:

tr 11 = 6 , trR3 = 0 , trR1 = 0 , trR2 = 0 , trS0 = 0 , trS1 = 6 . (5.265)

(Predrag: I do not see why S1 is special...) In particular, we have a vanishing dimension
λ = −3 representation, so

S1, λ = −3 → P1,−3 = ( 11 +R2 − S1)/2 = 0 , (5.266)

Taking trace of (5.261) we find that also P1P0,−3 is 0-dimensional, so, 6-dimensional
permutation representation is not faithful, and the classes are not independent (you can
check this by inspecting eqs. (5.264) to (5.263)):

S0 = R3 +R1

S1 = 11 +R2 , (5.267)

so forget the last two equations in (5.259) for the n-dimensional permutation represen-
tations of Dn . I think it is clear from (5.261) that this means no antisymmetric 1-dimen-
sional reps.

Lecturing about the "projector analysis" of D3 I was such a fool - I forgot to follow
birdtracks.eu, which explains very clearly that whenever there is a matrix equation =0,
that means a relationship between matrices, they are not independent.

Now one can eliminate Sj from projection operators (5.260):

S0 : λ = 3 → P0,3 = ( 11 +R3 +R1 +R2)/6

S1 : λ = 3 → P1,3 = ( 11 +R2)/3 , (5.268)

To summarize - this is rather inelegant, but the main result is that the flip classes
S0,S1,S2, · · · do not contribute to the reduction of the permutation representation; is
can be done purely in terms of the rotation classes R1,R3,R3, · · · . This strikes me as
a big deal, as this is isomorphic - I believe - to the cyclic group Cn/2 (for the even period
n). I tentative submit table 5.13 being sufficient to construct all irreducible projection
operators. Of course, C6 is the only normal subgroup of D6, but we do not use that - we
use only 4 classes rather than the 6 of C6. Looks pretty illegal:)

Can you check that you get 2 symmetric 1-dimensional irreps, and the two 1-dimen-
sional ones?

click to return: p. 258

Example 5.33. Character table of dihedral group Dn, n odd. The Dn group 2CB

Dn = {e, r, r2, · · · , rn−1, s, rs, · · · , rn−1s}
has n rotation elements and n reflections. Group elements satisfies ri · rjs = rjs · rn−i,
so ri and rn−i form a class. Also, rn−i · r2i+js = rjs · rn−i implies that rjs and
r2i+js are in the same class. Therefore, there are only three different types of classes:
{e}, {rk, rn−k} and {s, rs, · · · , rn−1s}. The total number of classes is (n + 3)/2. In
this case, there are 2 one-dimensional irreducible representations (symmetric A1 and
antisymmetric A2 ) and (n−1)/2 two-dimensional irreducible representations. In the jth
two-dimensional irreducible representation, class {e} has form

(
1 0
0 1

)
, class {rk, rn−k}

has form
( exp( i2πkj

n
) 0

0 exp(− i2πkj
n

)

)
, and class {s, rs, · · · , rn−1s} has form

(
0 1
1 0

)
. We get

table 5.15. (X. Ding, )
click to return: p. 262
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Table 5.13: A tentative D6 class operator multiplication table restricted to the
permutations matrix representation, with flip classes eliminated using (5.267).

D6 11 R3 R1 R2

11 11 R3 R1 R2

R3 . 11 R2 R1

R1 . . 2 11+R2 2R3+R1

R2 . . . 2 11+R2

Table 5.14: Character table of cyclic group Cn. Here k, j = 1, 2, · · · , n− 1.

Cn A Γj
e 1 1
rk 1 exp( i2πkjn )

Example 5.34. Character table of dihedral group Dn, n even. In this case, there are 2CB
(n+6)/2 classes: {e}, {rn/2}, {rk, rn−k}, {s, sr2, · · · , srn−2} and {sr1, sr3, · · · , srn−1}.
There are four different one-dimensional irreducible representations, whose characters
are ±1 under reflection s and translate-reflect operation sr1. We get table 5.16. (X.

click to return: p. 262 Ding, )

Example 5.35. D1 factorization. (Continued from example 5.11)
Depending on the maximal symmetry group Hp that leaves an orbit p invariant (see

refsects degene Dynami as well as example 5.7), the contributions to the full state⇓PRIVATE

⇑PRIVATE
space dynamical zeta function factor as

A1 A2

Hp = {e} : (1− tp̂)2 = (1− tp̂)(1− tp̂)
Hp = {e, s} : (1− t2p̂) = (1− tp̂)(1 + tp̂) , (5.269)

For example:

A1 A2

HRRL = {e} : (1− tRRL)2 = (1− t001)(1− t001)

HRL = {e, s} : (1− tRL) = (1− t0) (1 + t0) , where tRL = t20 .

The A1 subspace dynamical zeta function has the same form as the full state space
M binary expansion refeq curvbin:

1/ζA1 = 1− t0 − t1 − (t01 − t1t0)− (t001 − t0t10)− (t011 − t1t10)

−(t0001 − t0t001)− (t0111 − t1t011)

−(t0011 − t001t1 − t0t011 + t0t01t1)− · · · . (5.270)

The form is the same, however, the weights tp̃ are different - a symmetric orbit weight is
a square root of the corresponding full state space orbit weight. The asymmetric orbits
retain the same weight, but contribute only once.
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Table 5.15: Character table of dihedral group Dn, n odd.

Dn (n odd) A1 A2 Ej
e 1 1 2

rk, rn−k 1 1 2 cos( 2πkj
n )

s, sr1, · · · , srn−1 1 -1 0

Table 5.16: Character table of dihedral group Dn, n even. Here k, j =
1, 2, · · · , n− 1.

Dn (n even) A1 A2 B1 B2 Ej
e 1 1 1 1 2
r1/2 1 1 (−1)n/2 (−1)n/2 2(−1)j

rk, rn−k (k odd) 1 1 -1 -1 2 cos( 2πkj
n )

rk, rn−k (k even) 1 1 1 1 2 cos( 2πkj
n )

s, sr2, · · · , srn−2 1 -1 1 -1 0
sr1, sr3, · · · , srn−1 1 -1 -1 1 0

The antisymmetric A2 subspace dynamical zeta function ζA2 differs from ζA1 by a
minus sign for cycles with an odd number of 0’s:

1/ζA2 = (1 + t0)(1− t1)(1 + t10)(1− t100)(1 + t101)(1 + t1000)

(1− t1001)(1 + t1011)(1− t10000)(1 + t10001)

(1 + t10010)(1− t10011)(1− t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0)− (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1)− . . . . . . (5.271)

Note that the group theory factors do not destroy the curvature corrections (the cycles
and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. refsect bound-o) with
group-theoretic factor hp = (e + σ)/2, the boundary orbit does not contribute to the
antisymmetric subspace

A1 A2

boundary: (1− tp) = (1− tp̂)(1− 0tp̂) (5.272)

This is the 1/ζ part of the boundary orbit factorization discussed in example 5.7, where
the factorization of the corresponding spectral determinants for the 1-dimensional re-
flection symmetric maps is worked out in detail.

click to return: p. 258

Example 5.36. D1-symmetry factorization of the temporal Bernoulli zeta function.
24 For the particularly simple, linear Bernoulli case at hand, the field xt is a scalar, the

24Predrag 2021-08-03: Making up the Bernoulli D1-symmetry example, will need it for LC21.
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1-time step [1×1] time-evolution Jacobian matrix (9.57) at every lattice point t is simply
Jt = s, and the orbit Jacobian matrix (??) is the same for all, in general distinct lattice
states of period n, so

Nn = |DetJ | = sn − 1 ; (5.273)
all itineraries are allowed, except that the periodicity of rn = 11 accounts for 0 and s−1
fixed points (see figure 1.14) being a single periodic point.

For a Bernoulli system (5.273),

1/ζAM(z) = exp

(
−
∞∑
n=1

zn

n
(sn − 1)

)
= exp [ln(1− sz)− ln(1− z)]

=
1− sz
1− z . (5.274)

The numerator (1 − sz) says that a Bernoulli system is a full shift [27]: there are s
fundamental lattice states, in this case fixed points {x0, x1, · · · , xs−1}, and every other
lattice state is built from their concatenations and repeats. The denominator (1 − z)
compensates for the single overcounted lattice state, the fixed point xs−1 = x0 (mod 1)
of figure 1.14 and its repeats.

The dynamical D1-symmetry factorized zeta function, analogous to (5.184), follows
from (5.269):

1

ζ(z)
=

1

ζA1(t)

1

ζA1(−t) , z = t2 , s = µ2

1

ζA1(t)
=

1− µt
1− t . (5.275)

The antisymmetric A2 subspace dynamical zeta function ζA2 differs from ζA1 only by a
minus sign for cycles with an odd number of 1’s, see (5.271). At the level of the linear
Bernoulli map, this seems a triviality, but for a nonlinear example 5.11, it is not; all cycles
are computed numerically in the D1-symmetry-reduced fundamental domain figure 5.8.

click to return: p. ??

Example 5.37. XXX.

5.13 Discrete factorization of the dynamical zeta func-
tion

25 When a dynamical system has a discrete symmetry, the cycle averaging for-
mula can be simplified substantially, and the expansion needs much fewer or-
bits to achieve the desired accuracy. In this section, we discuss how the dyn-
amical zeta function can be factorized by a product of contributions from each
irreps of this discrete symmetry.

5.13.1 Factorization of C3 and D3

C3 has two subgroups {e} and {e, r, r2}, so there are two types of periodic
orbits as shown in figure 5.10. A type-(a) orbit has symmetry {e}, i.e., no sym-

25Predrag 2021-06-19: A copy of the 2017-03-09 Xiong Ding’s section, not included in his thesis
siminos/xiong/thesis/chapters/symFactor.tex.
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3

21 (a)

3

21 (b)

Figure 5.10: The two different kinds of periodic orbits in a system with C3

symmetry. The green region is the chosen fundamental domain. The red cycles
are periodic orbits.

metry, and it has two replicas by rotation r and r2 respectively, which are not
shown in this figure. So the contribution from a type-(a) orbit to the dynamic-
al zeta function is (1 − tp)3. The cubic order refers to the a fact that there are
three sibling orbits together. Also, since the entire orbit is in the fundamental
domain, we have

1/ζa = (1− tp̂)3 .

The hat on p means that tp̂ is evaluated only on the part of the orbit that is
in the fundamental domain. A type-(b) orbit is invariant under e, r and r2.
This orbit has no siblings and only one third of this orbit is in the fundamental
domain. The other two thirds are replicas by rotation r and r2 of the part in the
fundamental domain. So, its contribution to dynamical zeta function is

1/ζb = 1− tp = 1− t3p̂ .

Here, relation tp = t3p̂ is easily obtained by its definition in (??). On the other
hand, by example 5.13, we know that the regular representations of e, r, and r2

are respectively

Dreg(e) =

1
1

1

 , Dreg(r) =

 1
1

1

 , Dreg(r2) =

 1
1

1

 .
You can easily verify that

(1−tp̂)3 = det (1−Dreg(e)tp̂) , 1−t3p̂ = det (1−Dreg(r)tp̂) = det (1−Dreg(r2)tp̂) .

Therefore, you see that the contribution from periodic orbits to the dynamical
zeta function in a system with C3 symmetry are related to the regular repre-
sentation of C3.

Let us check out another example - a system with D3 symmetry. D3 has four
different kinds of subgroups {e}, {e, s}, {e, r, r2}, and D3 itself. Here s can be
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3

21 (a)

3

21 (b)

3
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3
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Figure 5.11: The four different kinds of periodic orbits in a system with D3

symmetry. The green region is the chosen fundamental domain. The red cycles
are periodic orbits.

any one of s12, s23 or s31. Accordingly, there are four types of periodic orbits
as shown in figure 5.11. The fundamental domain is one sixth of the full state
space. Similar to the analysis of the two orbits in the C3 case, we have

1/ζa = (1− tp̂)6 , 1/ζb = (1− t2p̂)3 , 1/ζc = (1− t3p̂)2 , 1/ζd = 1− t6p̂ .

Example ?? gives the regular representation of D3. You can also verify that

(1− tp̂)6 = det (1−Dreg(e)tp̂) , (1− t2p̂)3 = det (1−Dreg(s)tp̂)

(1− t3p̂)2 = det (1−Dreg(r)tp̂) , 1− t6p̂ =? .

I leave a question mark above since no analogous expression exists for it. We
will come back to it after proving the identity (5.276).

We can generalize the above observation for a system invariant under a
general discrete group G = {e, g2, g3, · · · , g|G|}. Let h be an element of G with
order (period) m, i.e., m is the smallest positive integer such that hm = e. Then
we have

(1− tm)
|G|
m = det (1−Dreg(h)t) . (5.276)

The proof starts from the matrix identity ln det = tr ln, by which we have

ln det (1−Dreg(h)t) = tr ln(1−Dreg(h)t) = −
∞∑
k=1

trDreg(hk)tk

k
.

The last identity above comes from the Taylor expansion ln(1−x) = −∑∞k=1
xk

k .
As we know, the regular representation of a group element has nonzero trace
if and only if this group element is e. So we have,

ln det (1−Dreg(h)t) = −
∞∑
k=1

|G|tmk
mk

= −|G|
m

∞∑
k=1

tmk

k
=
|G|
m

ln(1− tm) .

Therefore, we obtain (5.276). This is why we have the observation in the C3 and
D3 example. However, for the type-(d) orbit in figure 5.11, the symmetry group
of this orbit is {e, s12, s32, s13, r, r2}. The order of s is 2 while the order of r is 3.
The least common multiple is 6. Therefore, the contribution to the dynamical
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zeta function is (1 − t6p̂)1 and it cannot be written as form det (1 − Dreg(h)tp̂)
with some h ∈ G.

Actually, we can write

1− t6p̂ = det (1−Dreg(r)t2p̂) , or 1− t6p̂ = det (1−Dreg(s)t3p̂)

With Dreg(r) the [3× 3] representation of r in group C3 and Dreg(s) the [2× 2]
representation of s in reflection group {e, s}. Anyway, for the type-(d) orbit we
have no choice but to give up the regular representation of D3.

5.13.2 Factorization of Cn and Dn

for a discrete symmetry group G = {e, g2, . . . , g|G|}. The orthogonality and
completeness of projection operator can be easily verified by the orthogonal-
ity relation among characters of irreducible representation. Define Lα = PαL,
then the trace of evolution operatorL can be decomposed into a sum of

∑
α trLα

because of the completeness of projection operators. 26 So we only need to in-
vestigate the projected trace formula:

trLα =
dα
|G|

∑
hg∈G

χα(h)h−1

∫
M
dxL(x, x)

=
dα
|G|

∑
hg∈G

χα(h)h−1
∑
ag∈G

∫
M̃
d(ax̃)L(ax̃, ax̃)

=
dα
|G|

∑
hg∈G

χα(h)h−1 · |G|
∫
M̃
d(x̃)L(x̃, x̃)

= dα
∑
hg∈G

χα(h)

∫
M̃
dx̃L(h−1x̃, x̃)

In the above derivation, we have used the invariance of evolution operator
under group transform. For a periodic orbit in the fundamental domain p̃, we
follow the standard argument in Chaosbook and get∫

M̃
dx̃L(h−1x̃, x̃) = np̃

∞∑
r=1

erβ·Ap̃

|det
(
1− M̃r

p̃

)
|
δn,np̃rδh,hrp̃ ;

so, the spectral determinant is

F (z) =
∏
α

Fα(z)dα

Fα(z) = exp

−∑
p̃

∞∑
r=1

1

r

χα(hrp̃)z
np̃rerβ·Ap̃

|det
(
1− M̃r

p̃

)
|

 , (5.277)

26XD 2014-05-03: Here the decomposition of trace just relies on the completeness of projection
operators, we haven’t used the commuting relation between evolution operator and group trans-
form. Am I right?
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which is discrete factorization for maps. The same method can be applied to
flows with discrete symmetry:

Fα(z) = exp

−∑
p̃

∞∑
r=1

1

r

χα(hrp̃)e
r(β·Ap̃−sTp̃)

|det
(
1− M̃r

p̃

)
|


Making an approximation |det

(
1− M̃r

p̃

)
| ≈ |Λp̃| where Λp̃ is the product

of all expanding multipliers, we get the factorized zeta function:

Fα(z) = exp

−∑
p̃

∞∑
r=1

1

r
χα(hrp̃)t

r
p̃

 (5.278)

Formula (5.278) is the ultimate goal of Discrete Factorization, which basi-
cally tells us that, equipped with character table of the group in question, we
can write down all the factorized zeta function for all classes of this group. On
the other hand, in order to verify our result, let’s calculate the zeta function in
the full state space.

F (z) =
∏
α

Fα(z)dα

= exp

−∑
p̃

∞∑
r=1

1

r

∑
α

(
dαχα(hrp̃)

)
trp̃


= exp

−∑
p̃

∞∑
r=1

1

r
|G|δhrp̃t

r
p̃


= exp

−∑
p̃

∞∑
k=1

|G|
mk

tmkp̃

 ,

that is

F (z) =

(
1− t

|G|
m

p̃

)m
, (5.279)

where m is the smallest positive number such that hmp̃ = e, namely the multi-
plicity of the periodic orbit in the full state space. Formula (5.279) is just the
left side of

(1− thpp̃ )g/hp = det (1−D(hp̃)tp̃) =
∏
α

det (1−Dα(hp̃)tp̃)
dα (5.280)

in Chaosbook and actually formula (5.278) is the right side of it. For com-
pleteness, I derive their equivalence here. By the definition of character and
representation of a group, χα(hrp̃) = trDα(hrp̃) = tr (Dα(hp̃))

r where D is the
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regular representation of this group, so (5.278) can be rewritten as follows,

Fα(z) = exp

−tr
∑
p̃

∞∑
r=1

1

r
(Dα(hp̃))

rtrp̃


= exp

tr
∑
p̃

ln(1−Dα(hp̃))


=
∏
p̃

det (1−Dα(hp̃))

Here, we have used relation tr ln = ln det . All calculation of factorized zeta
function in Chaosbook is conducted by det (1 − Dα(hp̃)), but I are apt to use
(5.278) because it doesn’t contain information about any specific representa-
tion. 27 All the following examples are analyzed by (5.278).

Cn case
When hp̃ = e,

FA = FΓj = exp(−
∞∑
r=1

1

r
trp̃) = 1− tp̃ ,

Where we only investigate the contribution from one specific periodic orbit
and ignore the summation

∑
p̃.

When hp̃ = Ckn, Similarly,

FA = 1− tp̃

FΓj = exp(−
∞∑
r=1

1

r
e
i2πkjr
n trp̃) = 1− e i2πkjn tp̃ ,

In sum,

hp̃ A Γj
e: (1− tp̃)n = (1− tp̃) (1− tp̃)

Ckn: (1− tmp̃ )
n
n = (1− tp̃) (1− exp( i2πkjn )tp̃)

Dn (n odd) case: When hp̃ = e,

FA1
= FA2

= exp(−
∞∑
r=1

1

r
trp̃) = 1− tp̃

27XD 2014-05-05: I am not sure whether I understand it correctly here.
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FEj = exp(−
∞∑
r=1

2

r
trp̃) = (1− tp̃)2

When hp̃ = Ckn, the same goes for A1 and A2: FA1
= FA2

= 1 − tp̃, but for Ej ,
it requires a little special treatment.

FEj =exp(−
∞∑
r=1

1

r
2 cos

2πkjr

n
trp̃)

=exp

(
−
∞∑
r=1

1

r
(exp(

i2πkjr

n
) + exp(− i2πkjr

n
))trp̃

)

=

(
1− exp(

i2πkj

n
)tp̃

)(
1− exp(− i2πkj

n
)tp̃

)
=1− 2 cos

2πkj

n
tp̃ + t2p̃

When hp̃ ∈ {s, s1, · · · , sn−1}, h2
p̃ = e.

FA1 =1− tp̃

FA2 =exp(−
∞∑

r=even

1

r
trp̃ +

∞∑
r=odd

1

r
trp̃) = (1 + tp̃)

FEj =exp(−
∞∑

r=even

1

r
2trp̃) = (1− t2p̃)

In sum,

hp̃ A1 A2 Ej
e: (1− tp̃)2n = (1− tp̃) (1− tp̃) (1− tp̃)4

Ckn, C
n−k
n : (1− tmp̃ )

2n
m = (1− tp̃) (1− tp̃) (1− 2 cos( 2πkj

n )tp̃ + t2p̃)
2

s, s1, · · · , sn−1: (1− t2p̃)n = (1− tp̃) (1 + tp̃) (1− t2p̃)2

Dn (n even) case:
Similar calculation gives us the following factorized zeta function table.

hp̃ A1 A2 B1 B2 Ej
e: (1− tp̃)2n = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)4

rn/2: (1− t2p̃)n = (1− tp̃) (1− tp̃) (1− (−1)
n
2 tp̃) (1− (−1)

n
2 tp̃) (1− (−1)jtp̃)

4

rk
(odd): (1− tmp̃ )

2n
m = (1− tp̃) (1− tp̃) (1 + tp̃) (1 + tp̃) (1− 2 cos( 2πkj

n )tp̃ + t2p̃)
2

rk
(even): (1− tmp̃ )

2n
m = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1− 2 cos( 2πkj

n )tp̃ + t2p̃)
2

s: (1− t2p̃)n = (1− tp̃) (1 + tp̃) (1− tp̃) (1 + tp̃) (1− t2p̃)2

rs: (1− t2p̃)n = (1− tp̃) (1 + tp̃) (1 + tp̃) (1− tp̃) (1− t2p̃)2
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When it comes to continuous symmetry, projection operator is

Pm = dm

∫
G

dg χm(g−1)Og . (5.281)

The corresponding trace formula in the irreducible subspace is

∞∑
β=0

1

s− sm,β
= dm

∑
p

`p

∞∑
r=1

χm(grp)
er(βAp−s`p)∣∣∣det
(
1− M̃r

m,p

)∣∣∣ . (5.282)

Therefore the spectral determinant is factorized as

det (s−A) =
∏
α

Fα(z)dα

Fα(z) = exp

−∑
p̃

∞∑
r=1

1

r

χα(grp̃)z
np̃rerβ·Ap̃

|det
(
1− M̃r

p̃

)
|

 (5.283)

It differs from the discrete case on that now the group operator gp̃ is continuous
and the factorization may have infinite terms.

Used formulas Here I list several formulas used in the above post.

1

2π

∞∑
n=−∞

einx = δ(x) (5.284)

This identity comes from one definition of delta function δ(x) = limN→∞
1

2π
sin(N+1/2)x

sin( 1
2x)

and simple calculation gives
∑N
n=−N e

inx = sin(N+1/2)x

sin( 1
2x)

.∑
R

χα(R)χβ(SR−1) =
|G|
dα

δα,βχα(S) (5.285)

This is the orthogonality between characters of irreducible representations. If
we set S = e, then it reduces to

∑
R χα(R)χβ(R−1) = |G|δα,β . The orthogonal-

ity of projection operators can be checked:

PαPβ =
dα
|G|

dβ
|G|

∑
h,sg∈G

χα(h)χα(s)h−1s−1

=
dα
|G|

dβ
|G|

∑
sg∈G

|G|
dα

δα,βχα(sh)(sh)−1

=δα,β
dα
|G|

∑
sg∈G

χα(s)s−1

=δα,β Pα
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The last formula is ∑
α

dαχα(R) = |G| δe,R (5.286)

which comes from orthogonality relation above. For regular representation,
the trace of R in terms of irreducible representations is χ(R) =

∑
α aαχα(R),

so the summation of all group elements gives∑
R

χ(R)χα(R−1) =
∑
α

aα
∑
R

χα(R)χα(R−1) = |G| aα

On the other hand, χ(R) = |G| δe,R for regular representation, then the left
side of the above expression is just |G|χα(e), so aα = χα(e) = dα the dimen-
sion of αth irreducible representation. In this way, we obtain (5.286). Now the
completeness of projection operator can be checked:

∑
α

Pα =
∑
α

dα
|G|

∑
hg∈G

χα(h)h−1 =
1

|G|
∑
hg∈G

(∑
α

dαχα(h)

)
h−1 = e
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[28] P. Cvitanović, R. L. Davidchack, and E. Siminos, “On the state space ge-
ometry of the Kuramoto-Sivashinsky flow in a periodic domain”, SIAM
J. Appl. Dyn. Syst. 9, 1–33 (2010).
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Chapter 6

Spatiotemporal cat

2016-09-09 Predrag I have added this chapter with intention to include it as
several examples in ChaosBook.org.

2020-12-16 Predrag The abstract of my online Mathematical Physics Webinar,
Rutgers University - the most attended of the series :)

Spatiotemporal cat - a chaotic field theory (55 min seminar)

When I refer to a physical phenomenon -such as motions of a Navier-
Stokes fluid- as ‘chaotic’, or ‘turbulent’, I am often told: We understand
‘chaos’ for a system such as Lorenz attractor, but what is a ‘chaotic’ field,
a field with infinitely many degrees of freedom?

The goal of the seminar is to answer this question pedagogically, as a
sequence of pencil and paper calculations. First I will explain what is
’deterministic chaos’ by walking you through its simplest example, the
coin toss or Bernoulli map, but reformulated as problem of enumerat-
ing admissible global solutions on an integer-time lattice. Then I will
do the same with the ’kicked rotor’, the simplest mechanical system that
is chaotic. Finally, I will take an infinity of ‘rotors’ coupled together on
a spatial lattice to explain what ‘chaos’ or ‘turbulence’ looks like in the
spacetime.

What emerges is a spacetime which is very much like a big spring mat-
tress that obeys the familiar harmonic oscillator field theory equations,
the discrete Helmholtz equation (or the tight-binding model), but instead
of being ‘springy’, this metamaterial is a dicretization of the Euclidean
Klein-Gordon equation, with an unstable rotor at every lattice site, that
gives, rather than pushes back, a theory formulated in terms of Hill de-
terminants and zeta functions. We call this mother of all chaotic field
theories the ‘spatiotemporal cat’.

This is the simplest example of reformulating a space and time trans-
lationally invariant, exponentially unstable ‘turbulent’ field theory as a
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(D+1)-dimensional spatiotemporal system which treats space and time
on equal footing. Here there is no ‘evolution in time’: there is only the
enumeration of the repertoire of admissible tilings of spacetime by invari-
ant (D+1)-dimensional tori, or ‘periodic orbits’, very much as the parti-
tion function of the Ising model is a weighted sum formed by enumerat-
ing its lattice states. But that is a story for another seminar.

And if you don’t know, now you know

6.1 Coupled map lattices

Diffusive coupled map lattices (CML) were introduced by Kaneko [132, 133]:

xn,t+1 = g(xn,t) +
ε

2
[g(xn−1,t)− 2g(xn,t) + g(xn+1,t)] = (1 + ε2)g(xn,t) (6.1)

where the individual site dynamical system g(x) is a 1D map such as the logis-
tic map.

In the discretization of a spacetime field q(x, t) on lattice points (xn, tj), the
field is replaced by its lattice point value qn,j = q(xn, tj). For a Hamiltonian set
of fields we also have pn,j = p(xn, tj). In the spatiotemporal cat, a cat map at
each periodic lattice site is coupled diffusively to its nearest neighbors:

qn,j+1 = pn,j + (s− 3)qn,j − (qn+1,j − 2qn,j + qn−1,j)−mq
n,j+1

pn,j+1 = pn,j + (s− 4)qn,j − (qn+1,j − 2qn,j + qn−1,j)−mp
n,j+1 (6.2)

The spatiotemporal symbols follow from the Newtonian equations in d spa-
tiotemporal dimensions

(qn,j+1 − 2qnj + qn,j−1) + (qn+1,j − 2qnj + qn−1,j)− (s− 4)qnj = mnj(
−2 + µ21

)
q = −m . (6.3)

The 2 + 2d1 part is the standard statistical mechanics diffusive inverse prop-
agator that counts paths on a d-dimensional lattice [55], µ2 = d(s − 2) is the
Yukawa mass parameter (6.26), and −s1 is the on-site cat map dynamics, de-
scribed by the stretching parameter s. For d = 1 lattice, s = 3 is the usual
Arnol’d cat map.

2018-12-15 Predrag Frahm and Shepelyansky [82] Small world of Ulam networks
for chaotic Hamiltonian dynamics, and the related Shepelyansky work is of
potential interest.

“Ulam method” replaces discrete dynamics by an Ulam approximate [81]
of the Perron-Frobenius operator (UPFO). The Ulam method produces
directed “Ulam networks” with weighted probability transitions between
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nodes corresponding to phase-space cells. From a physical point of view
the finite cell size of UPFO corresponds to the introduction of a finite
noise with amplitude given by a discretization cell size. Ulam networks
have small-world properties, meaning that almost any two nodes are in-
directly connected by a small number of links.

They show that the Ulam method applied to symplectic maps generates
Ulam networks which belong to the class of small-world networks. They
analyze the small-world examples of the Chirikov standard map and the
Arnold cat map, showing that the number of degrees of separation grows
logarithmically with the network size for the regime of strong chaos, due
to the instability of chaotic dynamics. The presence of stability islands
leads to an algebraic growth with the network size.

The usual case of the cat map corresponds to L = 1. The map on a torus
of longer integer size L > 1 generates a diffusive dynamics [69]. For
L � 1 the diffusive process for the probability density is described by
the Fokker-Planck equation.

The time scales related with the degrees of separation and the relaxation
times of the Perron-Frobenius operator have different behaviors. The
largest relaxation times remain size independent in the case of a diffu-
sive process, like for the Arnold cat map on a long torus.

In the Appendix they show that the exact linear form of the cat map al-
lows for very efficient and direct exact Ulam network network size 108

computation of the transition probabilities needed for the UPFO. Shep-
elyansky tends to omit boring formulas, so I see no stability multipliers
which are so important in our computations.

In UPFO discretizations of the standard map they use the Arnoldi method.
The main idea of the Arnoldi method is to construct a subspace of “mod-
est”, but not too small, dimension (the Arnoldi-dimension) generated by
the vectors that span a Krylov space); the Arnoldi method in ref. [81] is
quite interesting.

The construction of the Ulam networks is (verbally?) described in ref. [81],
but I have not understood it. As graphs are directed (?), there is proba-
bly no Laplacian. There might be a related undirected network model,
with a graph Laplacian (13.54). In that case a Lagrangian formulation (in
terms of graph Laplacians) might be a more powerful formulation than
their Hamiltonian one. “Arrow of time” is perhaps encoded by the ori-
entations of the links in a directed complex network.

2CB

2018-12-15 Predrag Ermann and Shepelyansky [69] The Arnold cat map, the Ulam
method and time reversal show that the “Ulam method” coarse-graining
leads to irreversibility.

2020-05-31 Predrag Houlrik [110] Periodic orbits in a two-variable coupled map
computes periodic orbits in 1 + 1 spacetime CML for a linear map com-
posed of two coupled Chaté-Manneville maps [39] [tent map + linear
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branch] (see (6.1))

xn,t+1 = f(xn,t) +
ε

2
[f(xn−1,t)− 2f(xn,t) + f(xn+1,t)] (6.4)

what we call the [2×n]0 family periodic orbits, using symbolic dynam-
ics blocks M defined as the direct product of the single-map symbols
A = {0, 1, 2}. He credits Bunimovich and Sinai [35] with introducing
the (D+1)-dimensional spatiotemporal symbolic dynamics.

The [2×2] matrix

A =

(
1− ε ε
ε 1− ε

)
= (1− ε)1 + ε(d+ d−1) (6.5)

and sources

B(M) =
k=0∑
n−1

J(sn−1) · · · J(sk+1)Ab (6.6)

He finds the [2×n]0 periodic orbits by solving

(1− J(M)) X = B(M) (6.7)

The fixed point condition (6.7) has a periodic orbit solution

X =
1

1− J(M)
B(M) (6.8)

for each admissible brick M, where this needs still to be rewritten in the
n-dimensional temporal lattice state formulation, hence the partial prod-
ucts of [2× 2] stability matrices in (6.6). The admissible lattice states and
the pruning criterion are easily visualized in the (φ1,0, φ2,0) plane.

2016-01-12, 2016-08-04 PC Literature related to Gutkin and Osipov [97] Classi-
cal foundations of many-particle quantum chaos:

The existence of 2D symbolic dynamics was demonstrated in ref. [190],
for a particular model of coupled lattice map.

“In general, calculating periodic orbits of a non-integrable system is a
non-trivial task. To this end a number of methods have been developed,”
and then, for some reason, they refer to ref. [19].

Pethel et al. [189] Symbolic dynamics of coupled map lattices

Pethel et al. [190] Deconstructing spatiotemporal chaos using local symbolic
dynamics

Amigó, Zambrano and Sanjuán [6] Permutation complexity of spatiotempo-
ral dynamics study diffusive logistic coupled map lattices (CML) (6.1).

Sun et al. [216] A method of recovering the initial vectors of globally coupled
map lattices based on symbolic dynamics study CMLs with logistic, Bernoulli,

03/15/2022 siminos/spatiotemp 304 8289 (predrag–8289)



CHAPTER 6. SPATIOTEMPORAL CAT

and tent chaotic maps. They cite refs. [189, 190]. Gundlach and Rand [95]
study coupled circle maps (the results of subsequent papers in this series
are wrong, see Jiang [125]), which is too mathematical for me to under-
stand. Sad.

Coutinho and Fernandez [50] Extended symbolic dynamics in bistable CML:
Existence and stability of fronts, (1997) has a discrete model of reaction dif-
fusion dynamics, with a linear spatiotemporal code.

W. Just [127]

Just [128] Equilibrium phase transitions in coupled map lattices: A pedestrian
approach. A class of piecewise linear coupled map lattices with simple
symbolic dynamics is constructed. It can be solved analytically in terms
of the statistical mechanics of spin lattices. The corresponding Hamilto-
nian is written down explicitly in terms of the parameters of the map. The
method works only for map lattices with repelling invariant sets. Not of
interest to us, I think.

Just [129] On symbolic dynamics of space-time chaotic models

Sakaguchi [200] Breakdown of the phase dynamics was the first to study a
coupled Bernoulli maps lattice (in D = 2).

Kawasaki and Sasa [139] Statistics of unstable periodic orbits of a chaotic dy-
namical system with a large number of degrees of freedom, study a coupled
Bernoulli maps lattice (in spatial D = 1); Bernoulli forward in time, but
tanh-coupled to the nearest spatial neighbors, so that the natural invari-
ant measure for spin configurations coincides with the canonical distri-
bution for an Ising spin Hamiltonian. The most significant feature of
the Bernoulli CML is that it respects a detailed balance and the result-
ing measure coincides with the canonical distribution of the 1D Ising
model. There is a one-to-one correspondence between symbol sequences
and periodic orbits, as proven by Yutaka Ishii, Note on a paper by Kawasaki
and Sasa on Bernoulli coupled map lattices. Then they commit the Japanese
heresy: “In summary, we have demonstrated that the macroscopic prop-
erties of the Bernoulli CML can be calculated with high accuracy using
only one periodic orbit sampled from the special periodic orbit ensem-
ble.”

Takeuchi and Sano [219] Role of unstable periodic orbits in phase transitions
of coupled map lattices also study the spatially periodic Bernoulli CML (in
spatial D = 1).

Atay, Jalan and Jost [12] study coupled map networks with multiple time
delays; of no current interest for us.

2016-11-13 Predrag Potential inserts, varied temptations

B. Fernandez and P. Guiraud [71]
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B. Fernandez and M. Jiang [72]: “two diffusively coupled identical uni-
modal maps [...] the eventual periodicity of the position of orbits with
respect to the diagonal of the square phase space and the asymptotic pe-
riodicity for orbits whose coordinates have the same sign. [...] a global
condition for the existence of symmetric orbits.

2022-02-19 Predrag W. Just and F. Schmüser [130] On phase transitions in coupled
map lattices: “ In order to tackle such a problem one assigns symbol lattice
to each spatio–temporal pattern. One dimension of the symbol lattice
corresponds to the temporal evolution in the dynamical system whereas
the other dimensions of the symbol lattice take the spatial extension of
the dynamical system into account.

Thus we end up with a nearest neighbour coupled two-dimensional Ising
model.

Summarising, by adopting a symbolic description and translating the
time into a lattice dimension dynamical properties may be reformulated
within the concepts of canonical equilibrium statistical mechanics. For
expansive dynamical systems we obtain Hamiltonians with short range
interaction.”

R. S. MacKay, Dynamics of networks: features that persist from the un-
coupled limit, in “Stochastic and spatial structures of dynamical systems”,
eds. S. J. van Strien, S. M. Verduyn Lunel (North Holland, 1996), 81–104.

Ya. B. Pesin, Ya. G. Sinai [188] (1988).

6.2 Helmoltz type equations

The inhomogeneous Helmoltz equation is an elliptical equation of form

(2 + k2)φ(x) = −4πρ(x) , x ∈ Rd , (6.9)

where the field φ(x) is a C2 function of coordinates, and ρ(x) is a density func-
tion with compact support. Its Green’s function satisfies

(2 + k2) g(x, x′) = δ(x− x′) . (6.10)

For example, in d = 3 dimensions the stationary wave, the outgoing wave and
the incoming wave Green’s functions are:

g0(x, x′) = −cos(k|x− x′|)
4π|x− x′|

g+(x, x′) = − eik|x−x
′|

4π|x− x′|

g−(x, x′) = − e−ik|x−x
′|

4π|x− x′| . (6.11)
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Furthermore, to these any solution to the homogeneous Helmholtz equation

(2 + k2) f0(x, x′) = 0

can be added. On infinite space, the solution of (16.1) is of the form

φ(x) = φ0(x)−
∫
V

ddx′ ρ(x′) g(x, x′) , (6.12)

where (2 + k2)φ0(x) = 0.

6.2.1 Poisson and Laplace’s equations

The Poisson equation is the k → 0 limit of the Helmholtz equation;

2φ(x) = −4πρ(x) , x ∈ Rd , (6.13)

with Green’s function
g(x, x′) = − 1

4π|x− x′| . (6.14)

For ρ = 0, the equation is known as Laplace’s equation.

6.2.2 Screened Poisson equation

For the µ2 = −k2 > 0 (imaginary k), the equation

(−2 + µ2)φ(x) = 4πρ(x) , x ∈ Rd , (6.15)

is known as the screened Poisson equation [73], Klein–Gordon or Yukawa equation.
The name arises from its applications to electric field screening in plasmas.

In chemistry the equation governs steady-state diffusion in presence of the so-
lute ρ(x) piped in or generated by a chemical reaction, or of heat diffusion in
presence of heat sources.

The solutions of the screened Poisson equation (6.15) are of the same form
as for the Helmholtz equation, but with the oscillatory sin, cos, and exp(i · · · )
solutions replaced by the hyperbolic sinh, cosh, and exp(− · · · ).

The outgoing Green’s function (6.11) is here known as the Yukawa potential,
the static, spherically symmetric solution

g(x, x′) = − e−µ|x−x
′|

4π|x− x′| . (6.16)

to the Klein–Gordon equation. The Fourier transform relates the Yukawa po-
tential to the massive scalar particle propagator, i.e., Green’s function of the
static Klein–Gordon equation (6.24),

V (r) =
−g2

(2π)3

∫
eik·r

4π

k2 + µ2
d3k .
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In d = 2 this integral can be explicitly evaluated as a Bessel function, 1

g(r, 0) =
1

2π

∫ +∞

0

dkr
kr J0(krr)

k2
r + µ2

=
1

2π
K0(rµ). (6.17)

6.2.3 Klein–Gordon equation

wiki says: The Klein–Gordon equation for a scalar particle of mass m and
complex-valued function ψ(t,x) of the time variable t and space variables x,

1

c2
∂2

∂t2
ψ −∇2ψ +

m2c2

~2
ψ = 0 , (6.18)

is derived by requiring that its plane-wave solutions

ψ = e−iωt+ik·x = eikµx
µ

(6.19)

obey the energy–momentum relation of special relativity,

− pµpµ = E2 − p2 = ω2 − k2 = −kµkµ = µ2 , (6.20)

with (−,+,+,+) metric. It is written compactly in natural units,

(2 + µ2)ψ = 0 , (6.21)

where µ = mc/~, and

2 = −∂ν∂ν =
1

c2
∂2

∂t2
−∇2 (6.22)

is the d’Alembert operator, while the scalar operator

∆ = ∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂y2
, (6.23)

is called the Laplacian or the Laplace operator.
Writing the equation as

− ∂2
t ψ +∇2ψ = µ2ψ , (6.24)

we note that for the time-independent solutions, the Klein–Gordon equation
becomes the homogeneous screened Poisson equation(

∇2 − µ2
)
ψ(r) = 0 . (6.25)

1Predrag 2020-10-31: Recheck the 2π factors
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6.2.4 Spatiotemporal cat equation

The Yukawa massive field mass parameter is related to the spatiotemporal cat
stretching parameter s by

µ2 = d(s− 2) . (6.26)

The d-dimensional, purely hyperbolic µ2 > 0 spatiotemporal cat

(−2 + µ21)zz′φz′ = −mz , φz ∈ T1 , mz ∈ A1 , z ∈ Zd , (6.27)

that we study is a discretization of the inhomogeneous screened Poisson equation
(6.25), while the discretization of the Helmholtz equation corresponds to s < 2.

We denote the differential operator by the d’Alembert 2 rather than the
Laplacian ∆ (6.23) to emphasize that we are studying the spatiotemporal spa-
tiotemporal cat rather than the temporally static solutions (6.25).

6.2.5 Helmholtz blog

wiki: In the inhomogeneous case, the only difference between the inhomoge-
neous screened Poisson equation and the inhomogeneous Helmholtz equation
is the the sign of the µ2 parameter.

2020-10-31 Predrag In sect. 1.30 Introduction, Gradshteyn and Ryzhik write:

The trigonometric and hyperbolic sines are related by the identities

sinhx =
1

i
sin(ix) , sinx =

1

i
sinh(ix) . (6.28)

The trigonometric and hyperbolic cosines are related by the identities

coshx = cos(ix) , cosx = cosh(ix) . (6.29)

Because of this duality, every relation involving trigonometric functions
has its formal counterpart involving the corresponding hyperbolic func-
tions, and vice versa. In many cases, both pairs of relationships are mean-
ingful.

In sect. 6.94 Relationships between eigenfunctions of the Helmholtz equation in
different coordinate systems they define the scalar Helmholtz equation as

(∇2 + k2)Ψ = 0 , (6.30)

with a 3-dimensional Laplacian (6.23), and a Cartesian particular solution
of form

Ψkxkykz (x, y, z) ∝ ei(kxx+kyy+kzz) with k2 = k2
x + k2

y + k2
z . (6.31)

2017-09-09 Predrag Hu and O’Connell [111] also state the discretized version
of the solution (6.14) for s = 2, which, unlike (1.54) has no exponentials -
it’s a power law.

I find Robert E. Hunt notes quite good, both for the continuum case, and
for solving the lattice discretization.
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2020-10-31 Predrag In publications, it would be nice if we could refer to Grad-
shteyn and Ryzhik [91] whenever we mention continuum limits of our
discretized equations. It’s the best known, classical reference.

Unfortunately, Gradshteyn and Ryzhik [91] do not define the Laplace
equation and (damped?) screened Poisson equation, see wiki. For that,
we should combine our definitions (6.10), (6.56), (6.204), (6.205), see also
2017-09-09 Predrag, 2020-01-13 Predrag, and discretizations of Helmholtz [61,
152] and screened Poisson [36, 62, 90, 111, 112] (also known as Klein–Gordon
or Yukawa) equations.

2020-10-31 Predrag Relation to field theory is discussed in sect. 3.1 Lattice dis-
cretization of a field theory.

2018-09-26 Predrag The Lagrangian formulation (6.3) suggests that the action
(integral over the Lagrangian density, one-step generating function (6.72))
is given by

Z[M] = eW [M] =

∫
[dX] eS[X]+X·M , (6.32)

W [M] = Γ[X] + X ·M . (6.33)

with “source” symbol block M, free action

S[X] = −1

2
X>
(
−2 + µ21

)
X , (6.34)

and the Yukawa mass parameter µ2 = d(s − 2) related to the spatiotem-
poral cat stretching parameter s by (6.26).

Were X not confined to a unit hypercube, the Gaussian integral for quadratic
action

S[X] = −1

2
X>
(
−2 + µ21

)
X (6.35)

could be integrated out in the usual way,

Z[M] = |det (−2 + µ21)|−1/2e
1
2 M>(−2+µ21)−1M , (6.36)

leading to determinants and traces

W [0] = lnZ[0] = −1

2
ln det (−2 + µ21) = −1

2
tr ln(−2 + µ21) . (6.37)

2020-09-24 Predrag The trace formula is logarithmic derivative of the determi-
nant,

tr
1

−2 + µ2
=

d

dµ2
ln det (−2 + µ2) . (6.38)

To recover det (−2 + µ2) integrate both sides with respect to µ2,∫ µ2

µ2
0

du tr
1

−2 + u
= ln

det (−2 + µ2)

det (−2 + µ2
0)
,
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and exponentiate. In this form, the determinant is regularized, as the
divergent, large wave-numbers k contribution cancels out

det (−2 + µ2)

det (−2 + µ2
0)

= exp

(∫ µ2

µ2
0

du tr
1

−2 + u

)

= exp

(∫ ∞
0

dt

∫ µ2

µ2
0

du tr e−t(−2+u)

)

= exp

(
−
∫ ∞

0

dt
1

t
tr
(

e−t(−2+µ2) − e−t(−2+µ2
0)
))

.

This appears to be the natural form of topological zeta functions, see
(13.74), with the Laplacian value µ0 = 0.

(Another variant, following worldline formalism:) The free scalar propa-
gator for the Euclidean Klein-Gordon equation [3, 202] is

gzz′ =

(
1

−2 + µ2

)
zz′

. (6.39)

Exponentiate the denominator following Schwinger,

gzz′ =

∫ ∞
0

dt e−µ
2t
(

e−t(−2)
)
zz′

, (6.40)

Replace the operator in the exponent by a path integral, i.e., the sum over
random walks (see Wanderings of a drunken snail)

gzz′ =

∫ ∞
0

dt e−µ
2t

∫ x(t)=x

x(0)=x′
Dx(τ) e−

∫ t
0
dτ 1

4 ẋ
2

, (6.41)

where τ is a proper-time parameter (the fifth parameter [79]), and the dot
denotes a derivative with respect to the proper time. This is the worldline
path integral representation of the relativistic propagator of a scalar par-
ticle in Euclidean space-time. In the vacuum (no background field), it is
easily evaluated by standard methods and leads to the usual space and
momentum space free propagators, 2∫ x(t)=x

x(0)=x′
Dx(τ) e−

∫ t
0
dτ 1

4 ẋ
2

=
1

(4πt)d/2
, (6.42)

should be one derivation of (6.16).

Let g(x, x′), with x, x′ ∈ R be the corresponding Green’s function on a
bounded, simply connected domainR ⊂ Rd, satisfying some boundary condi-
tion (e.g., periodic, Dirichlet or Neumann) at ∂R. The Green’s function identity

2Predrag 2017-06-17: Here a study of Sect. 6. Worldline formalism of Gelis and Tanji [86] might
be helpful - it reexpresses the integral as an average over Wilson loops.
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allows us to connect the values of xz inside of R with the ones attained at the
boundary (an arbitrary Soviet citation):

x(z) =

∫
R
g(z, z′)m(z′)dz′

−
∫
∂R
∇n g(z, z′′)x(z′′) dz′′ +

∫
∂R
∇n x(z′′)g(z, z′′) dz′′ . (6.43)

The Neumann boundary condition can be imposed by extending the origi-
nal field symmetrically across its sides, so that the extended field, which is four
times bigger, is symmetric and periodic.

At the risk of sounding repetitive: it’s crazy to formulate this problem in
terms of the symmetry-breaking domains with Dirichlet boundary conditions,
when all that is needed are the trivial periodic solutions on 2-dimensional tori.
To appreciate how difficult the Dirichlet problem is, you can at your leisure
study the paper On the solution of the Helmholtz equation on regions with corners by
Soviet mathematicians Serkh and Rokhlin [203] (one of them a Member of The
National Academy of Sciences of The USA), who solve several boundary value
problems for the Helmholtz equation on polygonal domains. In terms of the
boundary integral equations of potential theory, the solutions are representable
by series of appropriately chosen Bessel functions. Making the space discrete
does not make these calculations any easier.

6.3 Green’s function for 2-dimensional square lat-
tice

Copied to here from siminos/cats/GHJSC16.tex 2019-10-31

The free Green’s function g(z, z′) ≡ g(z − z′, 0) ≡ gzz′ solves the equation

(−2 + µ2)gzz′ = δzz′ , z = (n, t) ∈ Z2 . (6.44)

The solution is given by the double integral [164]

gz0 =
1

π2

∫ π

0

∫ π

0

cos(nx) cos(ty)

s− 2 cosx− 2 cos y
dxdy , (6.45)

an expression which can, in turn, be recast into single integral form,

gz0 =
1

2π3

∫ +∞

−∞
dη

∫ π

0

∫ π

0

cos(nx) cos(ty)

(s/2− 2 cosx− iη)(s/2− 2 cos y + iη)
dxdy

=
1

2π

∫ +∞

−∞
dη
L(η)−nL∗(η)−t

|L(η)− L(η)−1|2 , (6.46)

where
L(η) + L(η)−1 = s/2 + iη, |L(η)| > 1 . (6.47)
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The above equation can be thought as the integral over a product of two Z1

functions:

gz0 =
1

2π

∫ +∞

−∞
dη gn0(s/2 + iη)gt0(s/2− iη) . (6.48)

An alternative representation is given by modified Bessel functions In(x) of the
first kind [164]:

gz0 =

∫ +∞

0

dη e−sηIn(η)It(η) , (6.49)

which demonstrates that gzz′ is positive for all z = (n, t). The representation
(6.49) enables explicit evaluation of the n = t diagonal elements in terms of a
Legendre function,

gz0 =
1

2πi
Qn−1/2(s2/8− 1), s2/8− 1 > 1, z = (n, n) .

Dirichlet boundary conditions. Consider next the Green’s function gzz′ which
satisfies (6.44) within the rectangular domain R = {(n, t) ∈ Z2|1 ≤ n ≤ `1, 1 ≤
t ≤ `2} and vanishes at its boundary ∂R, By applying the same method as in
the case of 1-dimensional lattices we get

gzz′ =
+∞∑

j1,j2=−∞
gn−n′+2j1(`1+1),t−t′+2j2(`2+1) + gn+n′+2j1(`1+1),t+t′+2j2(`2+1)

−gn−n′+2j1(`1+1),t+t′+2j2(`2+1) − gn+n′+2j1(`1+1),t−t′+2j2(`2+1) ,

where gzz′ is the free Green’s function (6.45). Substituting (6.48) yields the
spatiotemporal Green’s function as a convolution of the two 1-dimensional
Green’s functions (??)

gzz′ =
1

2π

∫ +∞

−∞
dη gnn′(s/2 + iη)gtt′(s/2− iη) . (6.50)

3

6.4 Toeplitz tensors

In refsect s-lattProp we worked out the propagator in the only in d = 1 con-
figuration space, and stated the result for d > 1 after the Fourier transform
diagonalization. What are the generalizations of Toeplitz matrices to d > 1?
They are called Toeplitz tensors.

2018-02-24 Predrag This one I think is not relevant to us: Lim [154] Singu-
lar values and eigenvalues of tensors: A variational approach - “ A theory of

3Boris 2017-07-18, 2019-10-31: TO NEVER BE CONTINUED
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eigenvalues, eigenvectors, singular values, and singular vectors for ten-
sors based on a constrained variational approach much like the Rayleigh
quotient for symmetric matrix eigenvalues. An illustration: a multilinear
generalization of the Perron-Frobenius theorem. ”

2018-02-24 Predrag Khoromskaia and Khoromskij [143] Block circulant and Toeplitz
structures in the linearized Hartree-Fock equation on finite lattices: Tensor ap-
proach seems quite relevant to our project - they work out theD = 3 lattice
case: “ grid-based tensor approach to solution of the elliptic eigenvalue
problem for the 3D lattice-structured systems. We consider the linearized
Hartree-Fock equation over a spatial L1×L2×L3 lattice for both periodic
and non-periodic case. In the periodic case the low-rank tensor structure
in the diagonal blocks of the Fock matrix in the Fourier space reduces the
conventional 3D FFT to the product of 1D FFTs. ”

Xie, Jin and Wei [236] A fast algorithm for solving circulant tensor systems:
“ Circulant tensors is a generalization of the circulant matrix. We define
the generalized circulant tensors which can be diagonalized by a Fourier
matrix, and solve the circulant tensor system by a fast FFT algorithm. ”

Cui et al. [54] An eigenvalue problem for even order tensors with its applica-
tions: “ Using the matrix unfolding of even order tensors, we can estab-
lish the relationship between a tensor eigenvalue problem and a multi-
level matrix eigenvalue problem. We show that higher order singular
values are the square root of the eigenvalues of the product of the ten-
sor and its conjugate transpose, as in the matrix case. Also we study
an eigenvalue problem for Toeplitz/circulant tensors, and give the lower
and upper bounds of eigenvalues of Toeplitz tensors. ”

Rezghi and Eldén [198] Diagonalization of tensors with circulant structure: “
A tensor of arbitrary order, which is circulant with respect to two modes,
can be diagonalized in those modes by discrete Fourier transforms. This
property can be used in the efficient solution of linear systems involv-
ing contractive products of tensors with circulant structure. Tensors with
circulant structure occur in models with periodic boundary conditions. ”

2018-02-24 Predrag In 2007 the N-way Toolbox, Tensor Toolbox, and Multilin-
ear Engine were software packages for working with tensors.

block-Toeplitz matrix

A tensor can be regarded as a multidimensional array of data. The order
of a tensor is the number of dimensions. The dimensions of a tensor also
are known as ways or modes.

Multilevel matrices arise in multidimensional applications.
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6.5 Green’s blog

2016-07-13 Predrag Cat map Green’s functions are standard ’lattice propaga-
tors’ for discrete lattices, obtained by discrete Fourier transform diag-
onalization of discrete Laplacian. Working through ChaosBook sections
D.3 Lattice derivatives to D.5.2 Lattice Laplacian diagonalized might help you
understand this material.
Note: All eq. numbers refer to svn ver. 5020 of 160521Gutkin.pdf and
ChaosBook.org ver. 15.7. You can also use current ver., but the chapter
numbering is different.

2017-02-17 Predrag For diffusion, a linear (symmetric, Vivaldi) code is needed.
For spatiotemporal cat

1. linear code seems needed. Have not proven that.
2. its partition volumes have no relation to 2-tori weights
3. linear code pruning rules undercount 2-tori pruning rules
4. 2-tori are intrinsic to the flow, there might exist Markov partitions

Boris 2017-02-17 Markov partitions for spatiotemporal cats exist,
but their complexity grows exponentially with number of cats.
Predrag 2017-03-04 That is what you keep saying, but if you mean
finite Markov partitions for the spatiotemporal cat, even on a finite
spatially periodic domain, I have never seen it. It would require
high-dimensional unstable/stable manifolds of the fixed point at the
origin to map onto each other, in order to get a generating partition
consisting of a finite number of volumes. Pretty amazing.

2017-08-25 Predrag I have not understood this before, but theR = [2×1] block

M =
[
s11s21

]
is not just a 1D temporal cat - the Dirichlet boundary conditions make
this nasty as well,

M ∪ ∂R =

 x12x22

x01s11s21x31

x10x20

 .
2017-08-25 Predrag ∂R = {x1, x2, · · ·x8} is not consistent with our notation:

they live on sites, and should be labelled by index pairs ∂R = {xz}, in
R = [2×1] example as ∂R = {x01, x02, x13, · · · , x10}. That is consistent
with the cat map, where the corresponding block + boundary points is
correctly labelled as x0s1s2x3. The crazy thing is that even with the cor-
rect notation, there is no rhyme nor reason in the above 8 inequalities.

0 ≤ (x01 + x10 − s12)(s
2 − 2) + (x13 + x02 + x31 + x20 − s22 − s11)s+ (x23 + x32 − s21)2 ≤ νs

0 ≤ (x02 + x13 − s22)(s
2 − 2) + (x01 + x10 + x23 + x32 − s12 − s21)s+ (x20 + x31 − s11)2 ≤ νs

0 ≤ (x20 + x31 − s11)(s
2 − 2) + (x01 + x10 + x23 + x32 − s12 − s21)s+ (x02 + x13 − s22)2 ≤ νs

0 ≤ (x23 + x32 − s21)(s
2 − 2) + (x13 + x02 + x31 + x20 − s22 − s11)s+ (x01 + x10 − s12)2 ≤ νs

8289 (predrag–8289) 315 03/15/2022 siminos/spatiotemp

http://chaosbook.org/pdf.shtml
http://chaosbook.org/pdf.shtml


CHAPTER 6. SPATIOTEMPORAL CAT

2017-08-30 Boris In principle you are right, but keeping 2 indices would only
make things look terribly “heavy“ (without a good justification, as any-
way ”there is no rhyme nor reason“). The single index notation for the
boundary points seems to me the least evil. 2017-09-09 Predrag not con-
vinced, but this is really a minor point. We follow Boris’ convention.

2017-09-09 Predrag Dorr [62] The direct solution of the discrete Poisson equation on
a rectangle

Hu, Ryu and O’Connell [112] Analytical solution of the generalized discrete
Poisson equation “ present an analytical solution to the generalized dis-
crete Poisson equation (DPE), a matrix equation which has a tridiagonal
matrix with fringes having an arbitrary value for the diagonal elements.”

Many physical problems require the numerical solution of the Poisson
equation on a rectangle. In general, one uses the finite-difference method [62],
where the rectangle is replaced by anN×k grid, and the Poisson equation
is solved in the finite-difference representation. In this way, the problem
is reduced to the discrete Poisson equation (DPE) on an [N ×k] grid, a
matrix equation Dx = s having a tridiagonal matrix [k×k] with fringes,
of form

D =



M 1 0 0 . . . 0 0
1 M 1 0 . . . 0 0
0 1 M 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . M 1
0 0 . . . . . . . . . 1 M


, (6.51)

where M is a [N ×N ] symmetric tridiagonal matrix (1.40), with con-
stant −s along the diagonal, and the [N ×N ] identity matrix 1 as the
off-diagonal elements. Thus, the matrix D consists of [k×k] submatri-
ces of [N ×N ] elements. An important special case is s = 4, which is
the matrix form for the Poisson equation on a rectangle arising from the
difference method.

They invert D in three steps:

1. By applying the results of ref. [111], invertD intoD−1. This general-
izes (1.54) to a (sub)matrix formula, with gjk replaced by submatrix
Θjk, where Θ is an [N×N ] matrix defined by

−2 cosh Θ = M

2. The eigenvalues and eigenfunctions for the submatrices of the block
matrix g = D−1 are given by (1.52).

3. Evaluate analytically each of the individual elements in the inverted
matrix D−1 by the Schur decomposition scheme [90].
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I find the procedure inelegant and cumbersome, as the two dimensions
are treated in different ways. The result is, however, a bit more symmetric
(but not written fully symmetric), written in terms of coefficients such as:

αlm(n) =

√
2

N + 1
sinh

lnπ

N + 1
sinh

mnπ

N + 1
.

In contrast, Boris formulation (6.45) is symmetric.

My intuition is explained in refsect s-lattProp - the d translations com-
mute, so should compute eigenvalues for each direction separately. Works
out for periodic boundary conditions.

As a wild guess, in d-dimensional the Jacobian (1.43) for Dirchlet b.c.
would generalize to the product of d Jacobians, one for each direction

det (D`1×`2×···`d) = U`1(s/2)U`2(s/2) · · ·U`d(s/2) . (6.52)

For example,
det (D1×1) = U1(s/2)U1(s/2) = s2 , (6.53)

and
det (D2×2) = U2(s/2)U2(s/2) = (s2 − 1)2 . (6.54)

This naive guess is almost certainly wrong...

How does one get cosh’s and sinh’s in the circulant matrix case?

2017-09-09 Predrag A few more links to digest:

Eigenvalues of periodic lattice Laplacian? uses the Kronecker product, and
Harshaw gives sensible, symmetric eigenvalues for a doubly-periodic
torus, something like

λ
[`1×`2]
jk = −µ2 − 2 cos

jπ

`1
− 2 cos

kπ

`2
, (6.55)

where, , 0 ≤ j ≤ `1 − 1 , 0 ≤ k ≤ `2 − 2 , and d = 2. Their problem is
the usual diffusive Laplacian on a square lattice, has no s term, so this is
still only a guess.

Andreas Wipf [231] Statistical Approach to Quantum Field Theory: An Intro-
duction (click here).

arXiv:math/0010135 Integrable Lattices: Random Matrices and Random Per-
mutations

arXiv:1702.00339 Block circulant and Toeplitz structures in the linearized Hartree-
Fock equation on finite lattices: tensor approach

2017-09-08 Predrag Giles and Thorn [87] Lattice approach to string theory. The
Giles-Thorn (GT) discretization of the worldsheet begins with a represen-
tation of the free closed or open string propagator as a lightcone world-
sheet path integral defined on a lattice.

8289 (predrag–8289) 317 03/15/2022 siminos/spatiotemp

https://math.stackexchange.com/questions/1829043/eigenvalues-of-periodic-lattice-laplacian
http://ChaosBook.org/library/Wipf13.pdf
http://arXiv.org/abs/math/0010135
http://arXiv.org/abs/1702.00339


CHAPTER 6. SPATIOTEMPORAL CAT

The sequel Papathanasiou and Thorn [182] Worldsheet propagator on the
lightcone worldsheet lattice give in Appendix B 2D lattice Neumann open
string, Dirichlet open string, and closed string propagators.

Discrete Green’s functions are explained, for example, by Chung and Yau [43]
who give explicitly, in their Theorem 6, a 2-dimensional lattice Green’s
function for a rectangular R[`1×`2]. I do not understand the paper - in
any case, I see no determinants in it. This paper is cited over 100 times,
maybe there is a better answer in that list.

2017-09-11 Predrag Bhat and Osting [26] Diffraction on the two-dimensional square
lattice write: The lattice Green’s function is quite well known [67, 135].

Katsura [137] Lattice Green’s function. Introduction: The Helmholtz equa-
tion for the wavefunction ψ(r) in the continuous space is given by(

1

2
∆ + E

)
ψ = 0 (6.56)

The Green’s function g(E, r) is the solution of(
1

2
∆ + E

)
g = δ(r) (6.57)

The real part of the square lattice Green’s function (6.45) is odd or even
function of s, and the imaginary part is even or odd function of s, if the
sum of n and t is even or odd, respectively.

Morita and Horiguchi [174] Calculation of the lattice Green’s function for
the bcc, fcc, and rectangular lattices: see the appendix The lattice Green’s
functions for the rectangular lattice (includes the square lattice as a special
case). They integrate (6.45) and express it as the complete elliptic integral
of the first kind (6.173).

Katsura, Inawashiro and Abe [136] Lattice Green’s function for the simple
cubic lattice in terms of a Mellin-Barnes type integral
Horiguchi [107] Lattice Green’s function for the simple cubic lattice - GaTech
does not have online access to it.

Horiguchi and Morita [108] Note on the lattice Green’s function for the simple
cubic lattice: “ A simple recurrence relation connecting the lattice Green’s
function at (l,m n) and the first derivatives of the lattice Green’s function
at (l± 1,m, n), is presented for the simple cubic lattice. By making use of
that recurrence relation, the lattice Green’s functions at (2,0,0) and (3,0,0)
are obtained in closed forms, which contain a sum of products of the
complete elliptic integrals of the first and the second kind, see (6.173). ”

Asad [11] Differential equation approach for one- and two-dimensional lattice
Green’s function seems a continuation of ref. [108]: “ A first-order dif-
ferential equation of Green’s function, at the origin G(0), for the one-
dimensional lattice is derived by simple recurrence relation. Green’s func-
tion at site (m) is then calculated in terms of G(0). A simple recurrence
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relation connecting the lattice Green’s function at the site (m,n) and the
first derivative of the lattice Green’s function at the site (m± 1, n) is pre-
sented for the two-dimensional lattice, a differential equation of second
order in G(0, 0) is obtained. By making use of the latter recurrence re-
lation, lattice Green’s function at an arbitrary site is obtained in closed
form. ”

2017-09-11 Boris Some caution on Green’s functions: In 1D everything is ex-
plicit and simple. The real problem is 2D. For the paper we need two
facts – positivity of its elements, and exponential decay (both for Dirich-
let boundary conditions). I was unable to extract them from the literature
(which is bizarre), but checked numerically. Proofs are still lacking, but
should be within reach.

2017-09-20 Predrag Continued feline misery. From the periodic orbit theory
point of view, it is insane to work with finite lattice blocks with Dirich-
let boundary conditions. The theory demands periodic boundary condi-
tions. They preserve translational invariance which makes Green’s matri-
ces trivially diagonizable by discrete Fourier transforms. Now that Boris
is such a mensch that he can do it, I am writing up a pedagogical Dirich-
let/periodic b.c.’s Green’s matrices appendix to ref. [96] (or per chance
even a section of the paper proper, as this is no afterthought - this is the
central point of the paper), an appendix whose ultimate goal is to show
that the matrix elements are decaying exponentially as

Dzz′ ≈ e−λ|z−z
′|d , (6.58)

i.e., in our humble d = 2 example as exp(−λ|z − z′|2). If the coauthors
were to understand or (gasp!) contribute to the write up, we would be in
cat heaven.

So far, still writing up the d = 1 temporal cat example of sect. 1.4, but the
determinant of the Helmholtz operator for any finite d = 2 rectangular
lattice region of sect. 6.4 should play out the same way.

To Matt and Andy: This goes lock, stock and barrel into the continuum
field theories, such as Kuramoto-Sivashinsky, with the Euclidian metric
in (6.58) replaced by the (still to be thought through) correct Kuramoto-
Sivashinsky spacetime metric.

2017-10-18 Predrag Glaser [88] Numerical solution of waveguide scattering prob-
lems by finite-difference Green’s functions computes a 2-dimensional Green’s
function with boundary conditions on arbitrary shape approximated by
a discrete boundary: “A finite-difference Green’s function method for
solving time-harmonic wave guide scattering problems involving metal-
lic obstacles of finite size is applied to the two-dimensional problem of a
TE10 mode impinging on cylindrical metallic posts of arbitrary shape in
a rectangular waveguide.”
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2017-10-19 Predrag de la Llave [158] Variational methods for quasiperiodic solu-
tions of partial differential equations has a pedagogical discussion of the dis-
crete lattices gradient flows.

2017-09-11 Predrag Katsura and Inawashiro [135] Lattice Green’s functions for
the rectangular and the square lattices at arbitrary points. They start with
product of two Bessel functions (6.49), then go hypergeometric, or K(u)
complete elliptic. In the appendix they study lattice Green’s function of
the linear lattice (i.e., d = 1 lattice), and relate it to Chebyshev Tm(u) and
in turn to the hypergeometric 2F 1.

2019-11-04 Predrag Doyle and Snell [63] arXiv:math/0001057 present the con-
nection between random walks and electric networks.

2020-05-09 Predrag Sunada [218] Topological Crystallography (click here) Chap. 9
is all about random walks on lattices.2CB

2020-05-10 Predrag Some general graph-theory definitions, from different sources,
will eventually be all in ChaosBook appendMarkov.tex :

Many follow the definitions in Serre [204] and Stark and Terras [213].

Let G = (V,E) be a connected non-directed graph, with V the set of |V |
vertices or nodes (assume that there are no 1-degree vertices), E the set
of |E| unoriented edges (possibly multiple edges and 1-loops) labeled
e1, · · · , e|E|.
The adjacency matrix for an undirected graph with n nodes is an [n×n]
matrix (13.43) with (i,j)-th entry specifying the number of non-directed
edges from node i to j with i-th diagonal entry being twice the number of
self-adjoining loops on i-th node.

A graph is finite if it has a finite number of and edges. It is connected if
every node can be reached by traversing a path.

A rooted graph is a pair (G, v) , where G is a graph and v ∈ V is a vertex
of G, called the root.

A graph is simple if it has no loops, i.e., no edges of the form (u, u) u ∈ V
and there is at most a single edge between any two vertices.

A graph is bi-partite if its vertices can be partitioned into two disjoint sets
U and W such that no vertex in U is adjacent to any other vertex in U and
likewise for W; the graph has edges only between “U” and “W” vertices.

In order to define a closed path in a non-directed graph orient the edges
in an arbitrary but fixed way. Oriented edge e = (u, v) ∈ E(G) joins two
vertices, the origin u = o(e) to the tip v = t(e).

The vertices o(e) and t(e) are the extremities of the edge E. Two vertices
are adjacent if they are extremities of an edge.

The degree of a vertex v is degv = Card{e ∈ Ev : o(e) = v}. A graph is
d-regular if each vertex has degree d.
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The in-degree (respectively out-degree) of any vertex of a directed graph
is the number of in-coming (respectively out-going) edges. For a directed
regular graph all vertices have equal in-degrees and out-degrees.

A graph is vertex transitive if there is a group of automorphisms which is
transitive on the vertices. Such a graph is regular.

In the physics literature regular trees are called Bethe lattices.

Denote by e−1 = (v, u) the inverse of e = (u, v), with the origin v and the
tip u.

Let G′ be the graph with 2|E| oriented edges built from such oriented
graphG by adding the opposing oriented edges e|E|+1 = (e1)−1, ...,e2|E| =
(e|E|)

−1.

If ei belongs to an oriented loop, ei+|E| = (ei)
−1 belongs to oriented loop

going through the same pair of vertices.

A path P = (e1, · · · , en) has a backtracking if e−1
i+1 = ei. The path has a

tail if e0 = e−1
n−1.

The inverse cycle of a cycleC = (e1, · · · , en) is the cycleC−1 = (e−1
n , · · · , e−1

1 ).

The cycle C is called reduced if C2 has no backtrack, and prime if it can
not be expressed as C = Df for any cycle D and f ≥ 2.

A cycle C is prime if it is not a repeat of a strictly smaller cycle.

Cycles C1 = (e1, · · · , en) and C2 = (f1, · · · , fn) are called equivalent if
there exists k such that fj = ej + k for all j. Let [C] be the equivalence
class which contains a cycle C.

For a cycle C, the equivalence class [C] is the set of cyclic permutations of
C , i.e., cycles are equivalent up to choice of the initial/terminal vertex.

A ‘prime cycle’ (‘orbit’) is non-backtracking, tailless and not a r-multiple
cycle.

A geodesic in a graph is a path without back-tracking, consistent with
Riemannian geometry where a geodesic is a path which is locally distance
minimizing. A closed geodesic is a closed path without back-tracking or
tails.

A tree is a connected nonempty graph without geodesic loops.

In Riemannian geometry geodesics are locally distance minimizing paths
and the difference between a geodesic loop and a closed geodesic is that the
latter is required to be differentiable also at the starting/ending point.

A path is closed if e0 = en. A geodesic is a path without backtracking.
A geodesic loop (or circuit in Serre’s terminology) is a closed path that is
a geodesic. A closed geodesic is a closed path with no tail and without
backtracking.

The path of length zero counts as a closed geodesic and, therefore, is a
geodesic loop. Additionally, every closed path with one edge counts as a
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closed geodesic. Any length two geodesic loop is also a closed geodesic,
but the closed path e e−1 is neither.

A prime geodesic is an equivalence class of closed geodesics [C] (where
the equivalence class is forgetting the starting point) which is primitive
in the sense that it is not a power of another closed geodesic. The latter
means by definition that there is no closed geodesic d and integer n > 1
such that [C] = [dn], which says in words that c is not just a geodesic that
traverses another one n number of times.

In graph theory the names for “closed geodesics” or “geodesic loops”,
range from circuits, loops etc, to closed paths without backtracking and
no tails.

In terms of a graph G = (V,E), a random walk is a stochastic process
associated with a positive-valued function p on E satisfying∑

e∈Ev

p(e) = 1 .

p(e) is the transition probability that a random walker at o(e) moves to
t(e) along the edge e. The transition operator P : C(V ) → C(V ), C(V )
the space of functions on V , is defined by

Pf(x) =
∑
e∈Ev

p(e)f(t(e)) .

The n-step transition probability p(n, x, y) is the probability that after the
n-steps a random walker at the initial site x is found at y,

(Pn) f(x) =
∑
y∈V

p(n, x, y)f(y) .

The simple random walk on G = (V,E) is the walk such that the probabil-
ities moving along out-going edges from a vertex are the same, with the
transition probability p(e) = 1/deg o(e).

The operator P − I is the discrete Laplacian associated with the weight
functions mV (v) = deg v, mE = 1,

((Pn − I)f) (v) =
1

deg v

∑
e∈Ev

[f(t(e))− f(o(e))] . (6.59)

Pv − I is the discrete analogue of the twisted Laplacian [217] 4 5

Let Λ be a Bravais lattice. Then P is Λ-equivariant, and is related to the
transition operator P0 associated with the simple random walk on over a
finite graph G0 = (V0, E0) as

P (f ◦ ω) = (P0(f)) ◦ ω ,
4Predrag 2020-05-05: Looked at Sunada [217], but still not sure what is a ‘twisted’ Laplacian.
5Predrag 2020-05-13: Why 1/deg v in (6.59)?
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where f is an arbitrary function on V0, and ω : G → G0 is the covering
map.

2020-05-11 Predrag Bharatram Rangarajan A combinatorial proof of Bass’s deter-
minant formula for the zeta function of regular graphs, arXiv:1706.00851:

For an integer d ≥ 2, let G = (V,E) be a finite d-regular undirected graph
with adjacency matrix A. A walk on the graph G is a sequence v0v1 . . . vk
where v0, v1, . . . , vk are (not necessarily distinct) vertices in V , and for
every 0 ≤ i ≤ k − 1, (vi, vi+1) ∈ E. The vertex v0 is referred to as the root
(or origin) of the above walk, vk is the terminus of the walk, and the walk
is said to have length k.
It is often useful to equivalently define a walk as a sequence of directed
or oriented edges. Associate each edge e = (v, w) ∈ E with two directed
edges (or rays) denoted

~e = (v → w)

~e−1 = (w → v)

Note that the origin org(~e) is the vertex v and its terminus ter(~e) is the
vertex w. Similarly, the origin org(~e−1) is the vertex w and its terminus
ter(~e) is the vertex v. Let ~E denote the set of m = nd directed edges of
G. So a walk of length k can equivalently be described as a sequence
~e1~e2 . . . ~ek of k (not necessarily distinct) oriented edges in ~E such that for
every 1 ≤ i ≤ k − 1,

ter(~ei) = org(~ei+1)

This is a walk that starts at org(~e1) and ends at ter(~ek).
It is easy to show that for any k ∈ Z, the number of walks of length
k between vertices u, v ∈ V is exactly (Ak)u,v . In particular, the total
number of rooted cycles of length k in G is exactly

tr (Ak)

A non-backtracking walk of length k from v0 ∈ V to vk ∈ V is a walk
v0v1 . . . vk such that for every 1 ≤ i ≤ k − 1,

vi−1 6= vi+1

Equivalently, a non-backtracking walk of length k from v ∈ V to w ∈ V
is a walk ~e1~e2 . . . ~ek such that org(~e1) = v, ter(~ek) = w and for every
1 ≤ i ≤ k − 1,

~ek+1 6= ~e−1
k

Non-backtracking random walks on graphs have been studied in the con-
text of mixing time [cite alon], cut-offs [cite peres], and exhibit more use-
ful statistical properties than ordinary random walks. In [cite peres], the
authors obtain further interesting results on the eigendecomposition of
the Hashimoto matrix H .
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A rooted, non-backtracking cycle of length kwith root v is a non-backtracking
walk v, v1, v2, . . . , vk−1, v with the additional boundary constraint that

v1 6= vk−1

Let C denote the set of all rooted, non-backtracking, closed walks in G,
and for C ∈ C, let |C| denote the length of the walk C. There are two
elementary constructions we can carry out to generate more elements of
C from a given cycle C:

• Powering: Given a rooted, non-backtracking closed walk C ∈ C of
length k of the form

C = ~e1~e2 . . . ~ek

then for m ≥ 1 define a power

Cm = ~e1 . . . ~ek~e1 . . . ~ek . . . ~e1 . . . ~ek︸ ︷︷ ︸
m times

which is a concatenation of the string of edges corresponding to the
walk C with itself m times. Note that Cm is also a rooted, non-
backtracking closed walk in G of length mk. Essentially, Cm rep-
resents the walk obtained by repeating or winding the walk C m
times. Also note that C and Cm are both rooted at the same vertex.

• Cycle class: Given a rooted, non-backtracking closed walk C ∈ C of
length k of the form

C = ~e1~e2 . . . ~ek

we can form another walk

C(2) = ~e2~e3 . . . ~ek~e1

which is also a rooted, non-backtracking closed walk in G of length
k, but now rooted at the origin of the directed edge ~e2 (or the termi-
nus of ~e1). More generally, for 1 ≤ j ≤ k, define

C(j) = ~ej~ej+1 . . . ~ek~e1~e2 . . . ~ej−1

which is a cyclic permutation of the walk C obtained by choosing
a different root. So given a walk C ∈ C of length k, we get k − 1
additional walks in C of length k for free this way. In fact, this defines
an equivalence class ∼ on C, and the set

[C] = {C(1), C(2), . . . , C(k)}

is called the equivalence class of C. An element [C] ∈ C/ ∼ repre-
sents a non-backtracking closed walk modulo a choice of root.
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2019-10-31 Predrag Guttmann [98] Lattice Green’s functions in all dimensions starts
the way I understand, with random walks on lattices ( Wanderings of a
drunken snail), apparently discussed eruditely by Hughes [114] and also
used in the calculation of the effective resistance of resistor networks [52],
but then quickly leads to an amazing range of deep mathematics which
we can safely ignore (though not some of the references).

“ for a translationally invariant walk on a d-dimensional periodic Bravais
lattice, a natural question to ask is the probability that a walker starting
at the origin of a lattice will be at position z after n steps. The probability-
generating function is known as the lattice Green’s function gz,0 . [...] the
structure function of the lattice and is given by the discrete Fourier trans-
form of the individual step probabilities. For example, for the d-dimen-
sional hypercubic lattice, the structure function is

λ(k) =
1

d
(cos k1 + cos k2 + · · ·+ cos kd) .

Harshaw (6.55) seem to be in the same spirit.

[...] The probability of returning to the origin is

1− 1/g0,0 .

Since g0,0 diverges for two-dimensional lattices, the probability of return-
ing to the origin by a random walker in two dimensions is certain. [...]
For the infinite square lattice, the result is remarkably simple:

gz,0(u) =
2

π
K(u)

where K(u) is the complete elliptic integral of the first kind (6.173), with
hypergeometric representation

K(u) =
π

2
2F 1

(
1

2
,

1

2
; 1;u

)
For the square lattice, we can also use the equivalent structure function

λ(k) = cos k1 cos k2 ,

demonstrating that structure functions for a given lattice are not unique.
[...] In d = 3 the result for the simple cubic case is a saga in itself. [...] ”

2020-02-09 Predrag Chen [40] On the solution of circulant linear systems: In the
case where multidimensional problems are concerned, the matrices of
coefficients of the resulting linear systems are block circulant matrices.
After some transformations and permutations we are led to a block diag-
onal matrix with circulant blocks on the diagonal. This reduces the prob-
lem to the solution of n circulant linear systems, which may be performed
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in parallel. An important example is the finite difference approximate so-
lution of elliptic equations over a rectangle with periodic boundary con-
ditions [36, 232].

Sect. 4: A block matrix is a matrix defined by smaller matrices, called
blocks. A block matrix M , where each of the blocks Mi it self an cir-
culant, is called block circulant with circulant blocks. He first extracts
eigenvalues of circulant blocks, then inserts them into the large matrix.

It is well known [36] that the approximation of Poisson’s equation on a
rectangle subject to periodic boundary conditions in both directions by
the standard five-term difference scheme on a uniform mesh results in
the block circulant linear system.

He also solves biharmonic (Laplacian squared) equation with the stan-
dard 13-term difference approximation.

2020-02-16 Predrag An example computed for
CL18.tex, using siminos/mathematica/Tensors.nb

Block circulant with circulant blocks [36, 40] J[4×2] =

(
−2s 2

2 −2s

) (
1 0
0 1

) (
0 0
0 0

) (
1 0
0 1

)
(

1 0
0 1

) (
−2s 2

2 −2s

) (
1 0
0 1

) (
0 0
0 0

)
(

0 0
0 0

) (
1 0
0 1

) (
−2s 2

2 −2s

) (
1 0
0 1

)
(

1 0
0 1

) (
0 0
0 0

) (
1 0
0 1

) (
−2s 2

2 −2s

)


(6.60)

is of [L×L] block form, L = 4, with [T×T] blocks, T = 2.
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6.6 Generating functions; temporal cat
2CB

Lagrangian systems are conservative dynamical systems which have a varia-
tional formulation. To understand the relation between the discrete time Hamil-
tonian and Lagrangian formulations, one needs to understand the discrete
mapping generating function, such as (8.42). 6

Consider a cat map [9] of form(
qt+1

pt+1

)
= A

(
qt
pt

)
mod 1 , A =

(
s− 1 1
s− 2 1

)
, (6.61)

with both qt and pt in the unit interval, A a linear, state space (area) preserving
map of a 2-torus onto itself, and s = trA > 2 an integer. Implement explic-
itly, as in (1.101), the mod 1 operation by introducing mq and mp winding
numbers, (

qt+1

pt+1

)
= A

(
qt
pt

)
−
(
mq
t+1

mp
t+1

)
. (6.62)

This is a non-autonomous, time-forced Hamiltonian equation of motion of
form (??,9.88):

qt+1 = qt + pt+1 + (st+1
p − st+1

q) (6.63)
pt+1 = pt + µ2qt − st+1

p , (6.64)

with the force and the corresponding potential energy given by

P (qt) = −dV (qt)

dqt
= µ2qt − st+1

p , (6.65)

V (qt) = −1

2
µ2 q2

t + st+1
pqt . (6.66)

As always, the Lagrangian, or, in the parlance of discrete time dynamics, the
generating function L(qi, qi+1), is given by the difference of the kinetic and po-
tential energies, where in the literature [28, 160, 161, 166] there are different
choices of the instant in time at which V (q) is be evaluated. We define the
generating function as

L(qt, qt+1) =
1

2
p2
t+1 − V (qt) .

Next one eliminates momenta in favor of velocities, using (6.63)

L(qt, qt+1) =
1

2
(qt+1 − qt − st+1

p + st+1
q)2 +

1

2
µ2q2

t − st+1
pqt

=
1

2
q2
t+1 +

s− 1

2
q2
t − qtqt+1

−qt+1st+1
p + qt+1st+1

q − qtst+1
q + constant . (6.67)

6Predrag 2019-08-05: In preparing this summary we have found expositions of Lagrangian
dynamics for discrete time systems by MacKay, Meiss and Percival [161, 166], and Li and Tomso-
vic [150] particulary helpful.
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And this generating function satisfies (6.77).

Consider a symplectic (“area preserving”) map acting on phase space

xt+1 = M(xt) , xt = (qt, pt)

that maps xt to xt+1 while preserving the symplectic area.
A path is any set of successive configuration space points

{qi} = {qt, qt+1, · · · , qt+k} . (6.68)

In a Lagrangian system each path of finite length in the configuration space is
assigned an action. 7

To get the action of an orbit from time t0 to tn, we only need to sum (6.67)
over intermediate time steps:

S(qt0 , qt0+1, . . . , qtn−1, qtn) =

tn−1∑
t=t0

L(qt, qt+1) . (6.69)

For example, in a discrete-time one-degree-of-freedom Lagrangian system
with the configuration coordinate qi at the discrete time i, and generating func-
tion (“Lagrangian density”) L(qi, qi+1), the action of path {qi} is

St,t+k ≡
t+k−1∑
i=t

L(qi, qi+1) , (6.70)

For 1-dof systems, the geometrical interpretation of the action St,t+k is that
L(qt, qt+1) is, up to an overall constant, the phase-space area below the pt to
pt+k graph for the (qt, qq+k) path in the (q, p) phase plane.

8

Denoting the derivatives of the generating function L(q, q′) as

L1(q, q′) =
∂

∂q
L(q, q′) , L2(q, q′) =

∂

∂q′
L(q, q′)

L12(q, q′) = L21(q, q′) =
∂2

∂q∂q′
L(q, q′) , (6.71)

the momenta are given by [161, 166]

pn = −L1(qn, qn+1) , pn+1 = L2(qn, qn+1) . (6.72)

The twist condition

∂pn+1/∂qn 6= 0 for all pn+1, qn , (6.73)
7Predrag 2019-08-04: repeat of text in catLagrang.tex; 2020-07-04 no recollection of where that

is?
8Predrag 2016-11-11, 2018-09-26: What follows is (initially) copied from Li and Tomsovic [150],

Exact relations between homoclinic and periodic orbit actions in chaotic systems arXiv source file, then
merged with the MacKay-Meiss-Percival action principle refs. [161, 166].
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ensures that
L12(qn, qn+1) 6= 0 . (6.74)

We distinguish a path (6.68), which is any set of successive points {qn} in the
configuration space, from the orbit segment Mk(xn) from xn to xn+k, a set of
successive phase space points

{xi} = {xn, xn+1, · · · , xn+k} . (6.75)

that extremizes the action (6.70), with momenta given by (6.72). In other words,
not only qn, but also pn have to align from phase space point to phase space
point [186],

∂

∂qn
(L(qn−1, qn) + L(qn, qn+1)) = 0 . (6.76)

Any finite path for which the action is stationary with respect to variations of
the segment keeping the endpoints fixed, is called an orbit segment or trajec-
tory [55]. Infinite paths for which each finite segment is an orbit segment are
called orbits.

Given by Keating [141], for the 1-dimensional cat map (1.101), the action of
a one-step orbit (which is the generating function) from (xt, pt) to (xt+1, pt+1)
can be written as (6.87). And the map (6.62) can be generated using [161, 166]:

pt = −∂L(xt, xt−1)/∂xt , pt+1 = ∂L(xt, xt−1)/∂xt+1 (6.77)
9

Setting the first variation of the action δS to 0 we get:

∂S

∂xt
=
∂L(xt, xt+1)

∂xt
+
∂L(xt−1, xt)

∂xt
= 0 (6.78)

⇒ −xt−1 + sxt − xt+1 = st+1
x − stx + st

p . (6.79)

This is the Percival-Vivaldi second-order difference equation of the cat map
with st = st+1

x − stx + st
p.

Using (6.67–6.69) we can compute the action of any finite trajectory. For a
trajectory . . . xt−1xtxt+1xt+2 . . . , the action can be written as:

S(x) = −1

2
x>Jx− s>x , (6.80)

where x and s are column vectors,

x =



...
xt−1

xt
xt+1

xt+2

...


, s =



...
st−1

st
st+1

st+2

...


, (6.81)

9Han 2019-08-01: (6.87) is given by Keating [141] but I cannot find the derivation of this gen-
erating function in that paper and the papers referred [140, 187]. The following derivation of
generating function is from our blog.
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and the orbit Jacobian matrix J is a Toeplitz matrix

−J =



. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . s −1 0 0 . . . 0 0
. . .

. . . −1 s −1 0 . . . 0 0
. . .

. . . 0 −1 s −1 . . . 0 0
. . .

. . .
...

...
. . . . . . . . .

...
...

. . .
. . . 0 0 . . . . . . . . . s −1

. . .
. . . 0 0 . . . . . . . . . −1 s

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .



. (6.82)

For an orbit with finite length, we need to know the bc’s to find the action
at boundaries. Note that the action computed in this way will not have the
constant terms in (6.67). The matrix J has same effect as (s−2− 2) where the
2 is the discrete one-dimensional Laplacian defined in (3.15).

6.6.1 Lagrangian formulation
10 While introduction of ‘temporal Bernoulli’ might have seem unmotivated
(as we had already shown, there are many way to skin a cat), in mechanics the
‘temporal’ formulation is as old as the modern mechanics itself, and known
as the Lagrangian, or variational formulation, the additional twist being phase
space volume conservation. In the simplest, 1-degree of freedom kicked rotor
example, that means area preservation.

An area-preserving map (??,9.88) that describes a kicked rotor subject to a
discrete time sequence of angle-dependent impulses P (xt) has a Lagrangian
(generating function) for a particle moving in potential V (x) at the lattice site
(time instant) t,

L(xt, xt+1) =
1

2
(xt − xt+1)2 − V (xt) , P (x) = −dV (x)

dx
. (6.83)

In the Lagrangian formulation a global lattice state X is assigned an action func-
tional S[X] =

∑
t L(xt, xt+1)+X>M , for a prescribed symbol block M of sources

st. The action can be written down by inspection,

S[X] =
1

2
X>J X + X>M =

1

2

∑̀
t,t′=1

xt′Jt′txt +
∑̀
t=1

stxt , (6.84)

as its first variation δS/δX> = 0 has to yield JXM + M = 0, the temporal cat
fixed point condition (3.16). The solutions XM of the variational condition of

10Predrag 2020-07-24: This is a former subsection Lagrangian formulation of cat.tex, called by
CL18.tex.
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δS/δX> = 0 are stationary points of the action, so they are sometimes called
stationary configurations; here we refer to them as ‘lattice states’. The form is
the same as the Bernoulli fixed point condition refeq{tempFixPoint}, but with
the temporal cat orbit Jacobian matrix J given by the symmetric [n×n] matrix
of second variations refeq{Hessian} Jtt′ = ∂2S/∂xt∂xt′ , in mechanics often re-
ferred to as the Hessian matrix. Here, due to the fact that the temporal stability
multipliers refeq{StabMtlpr} are the same for all temporal lattice states of the
same period `, this orbit Jacobian matrix depends only on the period of the lat-
tice state. That does not hold for general nonlinear cat maps [51], where each
periodic temporal lattice state XM has its own stability.

2020-01-17 Han In my previous computation, the orbit Jacobian matrix is J =
−d + s1 − d−1. And I think my J is correct. One way to show this is:
S[X] =

∑
t L(xt, xt+1)+X>M , and in the Lagrangian (6.83) if you expand

the first term there will be a −xtxt+1 term. So the subdiagonal elements
of J should be −1.

And 2 = ∂>∂ = d>d − 21 is not right. In the first chapter of your
Quantum Field Theory notes, section of Lattice Laplacian, you have 2 =
−∂>∂.

∂>∂ = 21−d>−d. So using my orbit Jacobian matrix J = −d+ s1−d−1

the action has form:

S[X] =

n∑
t=1

{
1

2
(∂xt)

2 − 1

2
µ2 x2

t

}
+

n∑
t=1

stxt . (6.85)

2020-01-31 Predrag I would love to have your convention J “ =′′ −d + s1 −
d−1. But there is no avoiding the pesky overall “-” sign; it arises from
st+1 = bsxtc, being the integer part of sxt. This leads to (??), and there
is no logically clean rational for changing the sign of st. But I do have
to ponder again the meaning of ∂>∂ = 21 − d> − d for the Lagrangian
formulation

2021-12-14 Predrag I now avoid the pesky overall “-” sign; it arises from st+1 =
bsxtc, being the integer part of sxt by having redefined the temporal
Bernoulli. Han’s (6.85) is the way to go.

By noting that the temporal lattice Laplacian can be written as 2 = ∂>∂ =
d>d−21, where the [n×n] matrix ∂ = (1−d)/∆t is the discrete time derivative
refeq{1stepVecEq}, the temporal cat Lagrangian density (6.83) and the action
(20.192) can be written in the more familiar, field-theoretic form

S[X] =

n∑
t=1

{
1

2
(∂xt)

2 +
1

2
µ2 x2

t

}
+

n∑
t=1

stxt . (6.86)
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For 0 ≤ s < 2 this is the action for a 1-dimensional chain of nearest-neighbor
coupled harmonic oscillators. Here we are, however, interested in the ev-
erywhere hyperbolic, unstable, anti-integrable or inverted parabolic potential,
s ≥ 2 case.

6.6.2 Temporary: Cat map in the Lagrangian formulation

============ the rest: TEMPORARY TEXT ===========
Rewrite (1.101) back to (6.61)’s form, and let mq and mp be the winding

numbers, we can get (6.62).
11 The action of the system in this one-step motion is [141] 12

L(qt, qt−1) =
1

2
[(s− 1)q2

t−1 − 2qt−1(qt +mq
t ) + (qt +mq

t )
2 − 2mp

t qt] . (6.87)

The action of a longer orbit is the sum of the one-step actions at each time step.
The Lagrangian equations of motion are obtained by demanding that the first
variation of the action vanishes:

∂L(qt+1, qt)

∂qt
+
∂L(qt, qt−1)

∂qt
= 0 (6.88)

−qt−1 + sqt − qt+1 = mq
t+1 −mq

t +mp
t = mt , (6.89)

which gives us the screened Poisson equation (1.118) with mt = mq
t+1 −mq

t +
mp
t . If the orbit has periodic bc’s with period n, qt = qt+n, the action of the

periodic orbit can be written as (20.192), where the n×n matrix J is given by
refeq{Hessian}, and

x =


x1

x2

x3

...
xn

 , m =


m1

m2

m3

...
mn

 . (6.90)

Jn is called the orbit Jacobian matrix (or the Hessian matrix) of period n. The
element of matrix −Jn is −(Jn)ij = ∂2L(x)/∂xi∂xj . Letting the first deriva-
tive of action (20.192) be 0, we can see that a periodic point of cat map with

11Predrag 2019-08-04: Percival-Vivaldi [186] (3.1) uses only mp, no need for this confusing
additional mq , for their Hamiltonian (2.1), with no specialization to the Percival-Vivaldi cat map.

12Predrag 2019-08-04: By MacKay, Meiss and Percival [161, 166] convention (3.2), and Li and
Tomsovic [150] convention (9) we should always have L(qt, qt+1) . Unfortunately Keating [141]
definition (3) corresponds to L(qt, qt−1), but we do not take that one.
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period n satisfies:
s −1 0 . . . −1
−1 s −1 . . . 0
0 −1 s . . . 0
...

...
...

. . .
...

−1 0 0 . . . s




x1

x2

x3

...
xn

 =


m1

m2

m3

...
mn

 ,

m1

m2

m3

...
mn

 ∈ Zn , (6.91)

13

L(xt+1, xt) =
1

2
[(s− 1)x2

t − 2xt(xt+1 +mx
t+1) + (xt+1 +mx

t+1)2 − 2mp
t+1xt+1] .

(6.92)
14 15

Consider cat map of form (6.61).

L(qt, qt+1) =
1

2
(qt+1 − qt)2 − V (qt) , P (q) = −dV (q)

dq
, (6.93)

The problem with formulation (6.66) is that the potential energy contribu-
tion is defined asymmetrically in (6.93). We should really follow Bolotin and
Treschev [28] eq. (2.5), and define a symmetric generating function

L(qt, qt+1) =
1

2
(qt+1 − qt)2 − 1

2
[V (qt) + V (qt+1)] , (6.94)

The first variation (9.13) of the action vanishes,

0 = L2(qt+1, qt) + L1(qt, qt−1) (6.95)
= qt − qt+1 + µ2qt − st+1

p + qt − qt−1

= −qt+1 + sqt − qt−1 − st+1
p ,

hence
qt+1 − sqt + qt−1 = −st+1

p . (6.96)

Defining st = −st+1
p, we recover the screened Poisson equation (1.118).

Alternatively, Han’s generating function (1-step Lagrangian density) is:

L(qn+1, qn) =
1

2
[pn+1(qn+1, qn)]

2 − V (qn) (6.97)

=
1

2
(qn+1 − qn +mq

n+1 −mp
n+1)2 +

1

2
µ2q2

n −mp
n+1qn .

13Predrag 2019-05-27: For a more detailed discussion, see for example (9.91) in spa-
tiotemp/chapter/Hill.tex; spatiotemp/chapter/examCatMap.tex text: generating function (6.93) This gen-
erating function is the discrete time Lagrangian for a particle moving in potential V (x).

14Han 2019-06-10: (6.87) is already given by Keating [141]. Do we want to add our procedure
here? I got the Lagrangian (9.95) which is different from (6.92) only by a constant.

15Han 2019-06-12: The generating function of a 2-dimensional spatiotemporal cat (8.42) in given
by Gutkin and Osipov [97].
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The action is the sum over the Lagrangian density over the orbit. The first
variation (9.13) of the action vanishes,

0 = L2(qn+1, qn) + L1(qn, qn−1)

= qn − qn+1 +mp
n+1 −mq

n+1 (6.98)

+µ2qn −mp
n+1 + qn − qn−1 +mq

n −mp
n

= −qn+1 + sqn − qn−1 − (mq
n+1 −mq

n +mp
n) ,

hence
− qn+1 + sqn − qn−1 = mq

n+1 −mq
n +mp

n . (6.99)

Letting mn = mq
n+1 −mq

n +mp
n, we recover the Lagrangian formulation

refeq{eq:CatMapNewt}, except for the wrong sign for mn. Now we see why
mn’s are called ‘sources’.
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Figure 6.1: A fundamental parallelogram spanned by (4,1) and (1,2) contains
DetL = 7 points. Note that the far vertices (4,1), (1,2) and (5,3) are not counted,
as they belong to other tiles.

6.7 Lattice points enumeration

God made the integers, all else is the work of man.
— Leopold Kronecker

6.7.1 Complex plane

wiki: Gaussian integers have many nice properties (factorization, primes, etc)
but I do not feel the complex plane relevant to our problem; for us it is only the
d = 2 case of general lattice point counting of the next section..

2020-01-23 Predrag .

wiki: A fundamental pair of periods is a pair of complex numbers ω1, ω2 ∈ C
such that, considered as vectors in R2, the two are not collinear. The
lattice generated by ω1 and ω2 is

L = {mω1 + nω2 | m,n ∈ Z}

The two generators ω1 and ω2 are called the lattice basis. The parallelo-
gram defined by the vertices 0, ω1 and ω2 is called the fundamental parallel-
ogram, see figure 6.1. The fundamental parallelogram contains no further
lattice points in its interior or boundary. Conversely, any pair of lattice
points with this property constitute a fundamental pair, and furthermore,
they generate the same lattice.

A fundamental parallelogram spanned by (4,1) and (1,2) contains

Det

(
4 1
1 2

)
= 7

points, see figure 6.1.

There is no unique fundamental pair; an infinite number of fundamental
pairs correspond to the same lattice. Any pair of fundamental parallelo-
grams is related by a modular group matrix ∈ SLn2Z. This equivalence

8289 (predrag–8289) 335 03/15/2022 siminos/spatiotemp

https://en.wikipedia.org/wiki/Gaussian_integer
https://en.wikipedia.org/wiki/Fundamental_pair_of_periods


CHAPTER 6. SPATIOTEMPORAL CAT

of lattices underlies many of the properties of elliptic functions (espe-
cially the Weierstrass elliptic function - I think not relevant to us) and
modular forms.

The abelian group Z2 maps the complex plane into the fundamental par-
allelogram. That is, every point z ∈ C can be written as z = p+mω1 +nω2

for integers m, n, with a point p in the fundamental parallelogram.

If one identifies opposite sides of the parallelogram as being the same,
the fundamental parallelogram has the topology of a torus; the quotient
manifold C/L is a torus. We are possibly interested in functions on C/(lattice),
functions on C with a certain periodicity condition. These doubly peri-
odic, meromorphic functions are called elliptic.

6.7.2 Integer lattice in d dimensions

Since we are interested in combinatorial rather than metric properties, it suf-
fices to consider the case of the standard integer lattice Zd ⊂ Rd. The case of a
general lattice L in Rd reduces to that of Zd by a change of the coordinates.

2020-01-23 Predrag .

wiki: Lattice (group): A lattice L in Rd has the form

L =

{
d∑
i=1

aivi

∣∣∣∣∣ ai ∈ Z

}
where

{v1, v2, · · · , vd} (6.100)

is a basis (or ‘integral basis’) that defines the Bravais cell. One convention
is that an integral basis is ordered according to the length of its elements;
i.e. |v1| ≤ |v2| ≤ · · · ≤ |vd|.
wiki: A lattice graph, mesh graph, or grid graph, is a graph whose draw-
ing, embedded in Rd, forms a regular tiling. In d = 2 a lattice graph (or a
square grid graph) is the graph whose vertices correspond to the points
in the plane with integer coordinates.

The determinant (‘discriminant’ or ‘volume’) of lattice L is

d(L) = |det (v1|v2| · · · |vd)| . (6.101)

The determinant is the reciprocal of the average density of points in the
lattice. Different bases can generate the same lattice, but the absolute
value of the determinant is uniquely determined by L. If one thinks of a
lattice as dividing the whole of Rd into equal polyhedra (copies of an d-
dimensional parallelepiped, the ’fundamental region’ of the lattice), then
d(L) is equal to the d-dimensional volume of this polyhedron. This is
why d(L) is sometimes called the covolume of the lattice. If it equals 1, the
lattice is called unimodular.
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Figure 6.2: A parallelepiped spanned by (3,1) and (2,3) contains Det

(
3 2
1 3

)
=

7 points. Note that (3,1), (2,3) and the far vertex (5,4) are not counted. Barvi-
nok [20] Fig. 81.

The master of counting integer lattice points in various domains (and all
dimensions) is Alexander Barvinok. Barvinok lectures are very clear
and simple. On p. 20 he defines the fundamental parallelepiped, and
then shows that

Theorem 2. The number of integer points in the fundamental paral-
lelepiped is equal to the volume of the parallelepiped.

Note that the fundamental parallelepiped is half-open, as indicated by
dashed lines in figure 6.2 so that the its translates form a partition of the
whole space.

Barvinok [20] A Course in Convexity, (click here)

Barvinok [21] Integer Points in Polyhedra, (click here) seems to be a harder
read, and not helpful for our integer lattice points counting.

1831 pages Handbook of Discrete and Computational Geometry might
be of some use.

Hademard’s inequality. Let v1, v2, · · · , vd be any basis for L. Then

d(L) ≤ |v1||v2| · · · |vd| , (6.102)

as the volume of a parallelepiped is never greater than the product of the
lengths of its sides. Hadamard’s inequality is an equality if and only if
the basis vectors are orthogonal. A theorem of Hermite says that every
lattice has a basis that is reasonably orthogonal (see (6.126)), where the
amount of nonorthogonality is bounded solely in terms of the dimension.
A reduced basis is an integral basis that minimizes the product of lengths
(6.102) over all bases of the lattice. Lattice L is bounded by T, if it has a
reduced basis consisting of vectors of length at most T.

LattE is an “Lattice point Enumeration” program that count lattice points
contained in convex polyhedra defined by linear equations and inequali-
ties with integer coefficients [59]. In 1994 Barvinok [22] gave an algorithm
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that counts lattice points in convex rational polyhedra in polynomial time
when the dimension of the polytope is fixed. LattE counts the lattice
points using multivariate generating functions P (a), za = za1za2 · · · zad ,
implementing Barvinok algorithm. At the end, f(P ) is written as a sum
of “short” rational functions.

Latte home page.

Maple code.

Simplicial cone: Let (6.100) be a set of k linearly independent integral vec-
tors in Rd, where k ≤ d. Consider simplicial cone K and parallelepiped
S generated by (6.100),

K = {λ1v1 + λ2v2 + · · ·+ λkvk} , 0 ≤ λi (6.103)

S = {λ1v1 + λ2v2 + · · ·+ λkvk} , 0 ≤ λi < 1 (6.104)

The generating function for the lattice points in K equals [212] 16

∑
β∈K∩Zd

zβ =

 ∑
τ∈S∩Zd

zτ

 k∏
i=1

1

1− zvi (6.105)

A unimodular cone is a simplicial cone with all λ = 1 which forms an in-
tegral basis for the lattice R{v1, v2, · · · , vk}∩Zd. In this case the numerator
of the formula has a single monomial; in other words, the parallelepiped
has only one lattice point. The number of points in the parallelepiped is
obtained by setting zi = 1 in the generating function

f(S; z) =

 ∑
τ∈S∩Zd

zτ

 (6.106)

However, the generating function is not constructed by enumerating all
the integer points in S, but rather as a signed sum of rational functions
that can be derived from the description of S. They all count points in a
general polyhedron; counting them in a parallelepiped should be a sim-
ple special case, but I have not seen that discussed separately.

Note that this count does not identify opposing sides of the parallelepiped.

If we need to enumerate periodic points one-by-one, John Voight math-
overflow question might be a start.

Stumbling Robot derives the area of a polygon whose vertices are lattice
points.

The study of integer points in convex polyhedra is motivated by ques-
tions such as "how many nonnegative integer-valued solutions does a

16Predrag 2020-01-25: I cannot find this formula in Stanley [212], (click here).
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system of linear equations with nonnegative coefficients have" or "how
many solutions does an integer linear program have".

wiki: Minkowski’s theorem relates the number d(L) and the volume of a
symmetric convex set S to the number of lattice points contained in S.
The number of lattice points contained in a polytope all of whose vertices
are elements of the lattice is described by the polytope’s Ehrhart polyno-
mial. Formulas for some of the coefficients of this polynomial involve
d(L) as well.

wiki: An integral polytope has an associated Ehrhart polynomial that en-
codes the relationship between the volume of a polytope and the number
of integer points the polytope contains. A generating function for the
Ehrhart polynomials, or the Ehrhart series is a rational function - this
suggest that we should able to convert this series into a zeta function.
This wiki has some intriguing explicit examples.

2020-09-18 Predrag Subramaniam and Balani have an E-book with a cute chap-
ter on lattices, but it standard Bravais lattice crystallography, of no use
to us. Ignore

2020-07-31 Predrag The spatiotemporal cat orbit Jacobian matrix (15.105) in
the Hill determinant detJ computation for a [L×T]0 rectangular Bra-
vais cell is expressed naturally and spacetime symmetrically in terms of
‘horizontal’, ‘vertical’ translation generators d1, d2.

I expect that for an arbitrary Bravais cell, such as figure 6.2, the corre-
sponding translation generators should act along the ‘integral basis’ vec-
tors (6.100) that define the Bravais cell L, i.e., the spatiotemporal cat Hill
determinant should be given by

detJ = det (JL)/detL , (6.107)

where spatiotemporal cat orbit Jacobian matrix J should be expressed
in terms of translations along the Bravais cell basis vectors, and the Hill
determinant should be expressed terms of invariant quantities that can
be constructed from them. The simplest is the volume (15.107), the oth-
ers are presumably related to traces trLk and the corresponding subvol-
umes. Not sure what they are, but someone has surely thought about
that. My understanding is summarized in birdtracks.eu.

Han and I have an answer of asymmetric form for the orbit Jacobian ma-
trix (15.105) for a tilted Bravais domain (relative periodic orbit) (9.46),
with the relative periodicity all in the ‘comoving frame’ translation gen-
erator d−S/T1 ⊗ d2.

This space-time asymmetry is a consequence of choosing the Hermite
normal form (6.126) to define the Bravais cell. So - even though we
are computing the representation-independent determinants, we do not
have an invariant statement of cell’s ‘tilt’. There must be a more elegant
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answer to this. Some of this discussion is in the 2020-07-11 Predrag post,
around eq. (6.119).

But that might lead us too deep into the role that prime numbers play
in characterizing equivalent Bravais cells L and their volumes. When-
ever you result depends on factorization in primes, it is time to sound a
potentially deep number theory red alert :)

2020-01-23 Predrag Oded Regev is good on this - will post more links. He
uses Micciancio and Goldwasser [169] Complexity of Lattice Problems - A
Cryptographic Perspective (click here) as his course textbook.

Oded Regev: Definition 5 defines d(L), the determinant of a lattice in
terms of the Bravais basis that might be useful to us.

Lattices, Convexity and Algorithms lecture notes from 2013 might be
better. Check out “Gram Schmidt Orthogonalization,” which I think is
his construction of the Hermite normal basis, and “Equivalence of Lat-
tice Definitions.” Also check out his Fundamental Parallelepiped and the
Determinant lecture.2CB

2020-12-12 Predrag Haviv and Regev arXiv:1311.0366 address the Lattice Iso-
morphism Problem (LIP). I like their definitions.

Two lattices L1 and L2 are isomorphic if there exists an orthogonal linear
transformation mapping L1 to L2.

An orthogonal linear transformation (or isometry) O : V1 → V2 is a linear
transformation that preserves inner products, that is, 〈x, y〉 = 〈O(x), O(y)〉
for every x, y ∈ V1. For a set A ⊆ V1 we use the notation O(A) = {O(x) |
x ∈ A}.
For a matrix B we denote its ith column by bi, and O(B) stands for
the matrix whose ith column is O(bi). span(B) stands for the subspace
spanned by the columns of B.

LetB andD be two matrices satisfyingBT ·B = DT ·D. Then there exists
an orthogonal linear transformation O : span(B) → span(D) for which
D = O(B).

An m-dimensional lattice L ⊆ Rm is the set of all integer combinations
of a set of linearly independent vectors {b1, . . . , bn} ⊆ Rm, i.e., L =
{∑n

i=1 aibi | ∀i. ai ∈ Z}. The set {b1, . . . , bn} is called a basis of L and
n, the number of vectors in it, is the rank of L. Let B be the m by n ma-
trix whose ith column is bi. We identify the matrix and the basis that it
represents and denote by L(B) the lattice that B generates.

A basis of a lattice is not unique: two bases B1 and B2 generate the same
lattice of rank n if and only if B1 = B2 · U for a unimodular matrix U ∈
Zn×n, i.e., an integer matrix satisfying |det (U)| = 1.

The determinant of a lattice L is defined by

det (L) =
√

det (BTB) , (6.108)
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where B is a basis that generates L. det (L) is independent of the choice
of the basis. A set of (not necessarily linearly independent) vectors that
generate a lattice is called a generating set of the lattice.

A latticeM is a sublattice of a lattice L ifM⊆ L, and it is a strict sublattice
ifM ( L. If a lattice L and its sublatticeM span the same subspace, then
the index ofM in L is defined by |L : M| = det (M)/det (L). IfM is a
sublattice of L such that |L :M| = 1 thenM = L.

They define lattices by their Gram matrices. The Gram matrix of a matrix
B is defined to be the matrix

G = BT ·B , (6.109)

or equivalently,

Gij = 〈bi, bj〉 , for every i and j . (6.110)

A Gram matrix specifies a basis only up to rotation.

In the Lattice Isomorphism Problem the input consists of two Gram ma-
trices G1 and G2, and the goal is to decide if there exists a unimodular
matrix U for which G1 = UT ·G2 · U .

The dual lattice of a lattice L, denoted by L∗, is defined as the set of all vec-
tors in span(L) that have integer inner product with all the lattice vectors
of L, that is,

L∗ = {u ∈ span(L) | ∀v ∈ L. 〈u, v〉 ∈ Z} .

The dual basis of a lattice basis B is denoted by B∗ and is defined as the
one which satisfies BT · B∗ = I and span(B) = span(B∗), that is, B∗ =
B(BTB)−1. It is well known that the dual basis generates the dual lattice,
i.e., L(B)∗ = L(B∗).

The relations between parameters of lattices and parameters of their dual
are known as transference theorems.

2020-02-14 Predrag Given a nondegenerate lattice L, we can construct an in-
variant by choosing a basis, and taking the determinant of the matrix
whose (i,j) entry is the inner product of the i-th basis vector with the j-th
basis vector. The matrix is called the Gram matrix of the basis, and the
determinant is a rough measure of how loosely packed the lattice vectors
are in L ⊗ R.

2020-02-14 Predrag I have run (once) into ‘fundamental parallelepiped’ being
called ‘fundamental parallelotope’.

2020-12-12 Predrag For our choice of Hermite normal form (6.127), (20.220),
the Gram matrix (6.109) is

G =

[
L2 LS
LS L2 + T2

]
. (6.111)
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2020-09-08 Predrag Daniele Micciancio is very economical. I propose we fol-
low his exposition, and use Micciancio and Goldwasser [169] Complexity
of Lattice Problems - A Cryptographic Perspective (click here). They say (I
have not looked at any of these, so they might be even better than Mic-
ciancio and Goldwasser, for our purposes):

“Classical references about lattices are Cassels [38] (or 1971) (click here)
and Gruber and Lekerkerker [93] (click here). Another very good refer-
ence is Siegel [206] (click here). For a brief introduction to the applica-
tions of lattices in various areas of mathematics and science the reader is
referred to (Lagarias 1995) and (Gritzmann and Wills 1993), which also
touch some complexity and algorithmic issues. A very good survey of
algorithmic application of lattices is (Kannan 1987a).”

Lattices are regular arrangements of points in Euclidean space. The sim-
plest example of lattice inn-dimensional space is Zd, the set of all d-dim-
ensional vectors with integer entries. More generally, a lattice is the result
of applying a nonsingular linear transformation B ∈ Rm×d to the integer
lattice Zd, to obtain the set B(Zm) = {Bx : x ∈ Zd} . etc. - you fill it in.

To Han: can you replace our ‘Bravais’ by Micciancio and Goldwasser [169]
lattice definitions?

Is the ‘Hermite normal form’the same as the ‘Gram-Schmidt orthogonal-
ization method’?

2020-09-11 Han Gram Schmidt Orthogonalization constructs orthogonal with
basis vectors whose tips are not on Zd lattice; not Hermite normal form,
forget it.

2018-01-31 Han The similarity transformation S that maps (1.1) into (1.5),

A =

[
2 1
1 1

]
, B =

[
0 1
−1 3

]
, (6.112)

is
B = S−1AS , (6.113)

where

S = S−1 =

[
−1 2
0 1

]
.

2018-04-27 Predrag Note that det S = −1. Why? That can be fixed by mul-
tiplying it by i, but why? It is also not unique, one could, for example,
use

S′ = S′−1 =

[
0 −1
1 0

] [
−1 2
0 1

] [
0 1
−1 0

]
=

[
1 0
−2 −1

]
.

For a systematic discussion, see sect. 4. Global versus local conjugacy and
orbit statistics of Baake et al. [16], and sect. 2.5. Results for d = 2 of Baake

03/15/2022 siminos/spatiotemp 342 8289 (predrag–8289)

http://cseweb.ucsd.edu/classes/sp14/cse206A-a/lec1.pdf
http://ChaosBook.org/library/MicG0l02.pdf
http://ChaosBook.org/library/Cassels59.pdf
http://ChaosBook.org/library/GruLek871.djv
http://ChaosBook.org/library/Siegel89.pdf


CHAPTER 6. SPATIOTEMPORAL CAT

et al. [15] Orbit structure and (reversing) symmetries of toral endomorphisms
on rational lattices. The main point (for us) is that maps that are in the
same conjugacy class need to have 3 invariants in common; the trace, the
determinant, and the mgcd (the matrix greatest common denominator).
For the Thom-Arnol’d cat map (1.1), mgcd(A) = 1

Baake et al. [15] discus “pretails” to periodic orbits at length.

2018-04-27 Predrag Next, one can transform Arnold cat map “square root” C
(or, according to Baake et al. [16], the ‘classic” or golden orientation re-
versing cat map, or the Fibonacci cat map [15], with det (C) = −1)

A = C2 , C =

[
1 1
1 0

]
(6.114)

to the Percival-Vivaldi version

B = C̃2 , C̃ = S−1CS =

[
−2 1
−1 1

]
. (6.115)

As noted in (5.184), taking this “square root” expresses the zeta function
as a product of a time-reversal pair of zeta’s. B and C̃ have the same
eigenvectors, but as det C̃ = −1, one of the stability multipliers is a neg-
ative square root of the B multipliers (1.6),

Λ̃ = Λ̃1 =
1 +
√

5

2
, Λ̃2 =

1−
√

5

2
. (6.116)

The issue of reversibility seems complicated [15]. When M ∈ SL(2,Z),
also its inverse is in M−1 ∈ SL(2,Z), and M and M−1 share the same
determinant, trace and mgcd:

M =

[
a b
c d

]
, M−1 =

[
d −b
−c a

]
.

The the golden (Fibonacci [15]) cat map (6.114) is not reversible in GL(2,Z)
(while its square A is [15]).

2020-02-19 Predrag Linear recurrences with constant coefficients: the multivariate
case by Mireille Bousquet-Mélou1a and Marko Petkovšek, (DOI) has the
right feel and a few 2-dimensional integer lattice recurrences and the cor-
responding functional equations, but I do not see how to apply it to the
2-dimensional spatiotemporal cat.

2020-07-11 Predrag Woods [233] (2012) (click here) is very clear, what follows
is excerpted from it. As Woods says, his starting chapters are taken from
Lim [153] Two-dimensional Signal and Image Processing (click here) (click
here), who copies from Dudgeon and Mersereau [66] (1984) Multidimen-
sional Digital Signal Processing (click here) which cover the same ground.
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A 2-dimensional field φnt is periodic with period [L×T]0, if the following
equalities hold for all integers n, t:

φnt = φn+L,t = φn,t+T , (6.117)

where L and T are positive integers. This type of periodicity occurs often
for 2-dimensional signals and is referred to as rectangular periodicity. We
call the resulting period the rectangular period.

Given a periodic function, the period effectively defines a basic cell in
the plane, which can be repeated to form the function over all integers
n, t. As such, we often want the minimum size unit cell for efficiency
of both specification and storage. In the case of the rectangular period,
we seek the smallest nonzero integers that will suffice for [L×T]0 to form
this basic cell.

Horizontal Wave. Consider the sine wave φnt = sin(2πn/4) . The hori-
zontal period is L = 4. In the vertical direction, the signal is constant, so
we can use any positive integer T. The smallest such value is T = 1. Thus
the rectangular period is [L×T]0 = [4×1]0, and the basic cell consists of
the set of points {(nt) = [(0, 0), (1, 0), (2, 0), (3, 0)]} or any translate of this
set.

In general, ‘periodicity’ refers to a repetition of blocks, not necessarily
rectangular blocks or blocks occurring on a rectangular repeat grid, with
the periodicity represented with two integer vectors,

v1 =

(
L
c21

)
, v2 =

(
S
T

)
.

While they note the nonuniqueness of Bravais cells with respect to uni-
modular transformations, image processing textbooks seem not to use
the Hermite normal form (6.126) to eliminate c21.

The 2-dimensional field φnt is periodic with period (v1, v2) = Λ if the
following hold for all integers n, t:

φnt = φn+L,t+c21 = φn+S,t+T , (6.118)

To avoid degenerate cases, restrict the integers in vj with the condition

det (v1, v2) 6= 0 .

“We leave it to the reader to show that” the number of samples in this re-
gion is det Λ, i.e., the absolute value of the determinant of the periodicity
matrix gives the number of samples of φn contained in one period.

The matrix Λ is called the periodicity matrix. In matrix notation, the peri-
odic field satisfies

φn = φn+Λr , r =

(
r1

r2

)
.
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Two integer vectors m and n are congruent with respect to the matrix
modulus Λ if m = n + Λr for some integer vector r.

In the case that Λ is a diagonal matrix, φn is rectangularly periodic.

If P is any integer matrix, then PΛ is also be a periodicity matrix for φn.
Thus the periodicity matrix is not unique for any periodic sequence.

A matrix E for which detE = 1 is called a unimodular matrix. E−1 is then
also a unimodular matrix. Unimodular matrices are the only integer ma-
trices whose inverses are also integer matrices. If det Λ is a prime number,
we will say that Λ is a prime matrix. If Λ is neither prime nor unimodu-
lar, we say that it is composite, and can be decomposed, nonuniquely - up
to a unimodular transformation - into a product of two non-unimodular
matrices

Λ = PQ . (6.119)

If either P or Q is composite, one continues the process, until det Λ is the
product of its prime factors.

Dudgeon and Mersereau [66] then explain clearly how to get the “quo-
tient” Q when “dividing” by P . |det Λ|/|detQ| = |detP | is then the num-
ber of cosets. In the image-processing, Fourier transforms trade this non-
prime factorization is known as “decimation-in-time Cooley-Tukey FFT
algorithm,” “twiddle factors,” and “butterflies.” 17

Example Relative equilibrium field sin[2π(n/8 + t/16)] is constant along
the line 2n+ t = 16 . The basis vectors are

v1 =

(
4
8

)
, v2 =

(
1
−2

)
, with det Λ = 16 .

Definition 1.1-1: Linear System [· · · ]

Definition 1.1-2: Shift Invariance [· · · ]
“Linear shift-invariant discrete systems are generally implemented using
difference equations. Although multidimensional difference equations
represent a generalization of 1-dimensional difference equations, they are
considerably more complex and are, in fact, quite different. A number of
important issues associated with multidimensional difference equations,
such as the direction of recursion and the ordering relation, are really not
issues in the 1-dimensional case.

[· · · ] they define multidimensional recursive systems and consider the is-
sues associated with multidimensional difference equations; [· · · ] define
the multidimensional Z-transform. ”

17Predrag 2020-07-15: Use this to define prime factorization in ref. [57]?
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2-dimensional Convolution If a system is linear shift-invariant (LSI), then
[· · · ] the field h is called the LSI system’s impulse response. [· · · ] He defines
the 2-dimensional convolution operator [· · · ]
Properties of 2-dimensional Convolution or Convolution Algebra [· · · ]
All 5 properties of convolution hold for any 2-dimensional fields x, y, and
z, for which convolution is defined (i.e., for which the infinite sums ex-
ist). His Figure 1.1-9 illustrates a convolution.

Stability in 2-dimensional Systems 18 Stable systems are those for which
a small change in the input gives a small change in the output. We de-
fine bounded-input bounded-output (BIBO) stability for 2-dimensional
systems analogously to that in 1-dimensional system theory. A spatial or
2-dimensional system will be stable if the response to every uniformly
bounded input is itself uniformly bounded. For an LSI system the condi-
tion is equivalent to the impulse response being absolutely summable,∑

k1,k2

|hk1,k2| <∞ . (6.120)

Sect. 1.2 2-dimensional discrete-space Fourier transform The Fourier
transform is important in 1-dimensional signal processing because it ef-
fectively explains the operation of linear time-invariant (LTI) systems via
the concept of frequency response, i.e., the Fourier transform of the sys-
tem impulse response. While convolution provides a complicated de-
scription of the LTI system operation, with the input at all locations n
affects the output at all locations, the frequency response provides a sim-
ple interpretation as a scalar weighting in the Fourier domain, where the
output at each frequency ω depends only on the input at that same fre-
quency. A similar result holds for 2-dimensional systems that are LSI.

2020-07-15 Predrag Note that the discrete Fourier transform of a Bravais
lattice always carries the prefactor 1/det Λ. Going back involves a volume
(2π)d.

Definition 1.2-1: 2-dimensional Fourier Transform [· · · ] In the 2-dim-
ensional Fourier transform the frequency variable ω1 is called horizontal
frequency, and the variable ω2 is called vertical frequency. [· · · ] As n, t are
integers, the 2-dimensional Fourier transform is periodic with rectangu-
lar period 2π × 2π, and only needs be calculated for one period, usually
taken to be [−π, π]× [−π, π].

[· · · ] the 2-dimensional Fourier transform is a separable operator, because
it can be performed as the concatenation of 1-dimensional operations on
the rows followed by 2-dimensional operations on the columns.

Inverse 2-dimensional Fourier Transform [· · · ]

18Predrag 2020-07-11: I do not understand BIBO, but maybe we should?
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Fourier Transform of 2-dimensional or Spatial Convolution
Theorem 1.211: Fourier Convolution Theorem [· · · ]

[· · · ] As a 2-dimensional or spatial LSI system is characterized by its im-
pulse response hn,t, its frequency responseHω1,ω2 suffices to characterize
such a system. And the Fourier transform Y of the output equals the
product of the frequency response H and the Fourier transform X of the
input. When the frequency response H takes on only values 1 and 0, the
system is an ideal filter, filtering out some frequencies and passing oth-
ers unmodified. More generally, the term filter include all such LSI sys-
tems, and has been extended to shift-variant and even nonlinear systems
through the concept of the Voltera series of operators. 19

Some Important Properties of the FT Operator [· · · ]

Some Useful Fourier Transform Pairs [· · · ]

Example 1.2-4: Fourier Transform of Separable Signal [· · · ]

Symmetry Properties of the Fourier Transform [· · · ]

Generally, we think of the Fourier transform as the evaluation of the Z-
transform on the unit polycircle {|z1| = |z2| = 1}; however, this assumes
the polycircle is in the region of convergence of X(z1, z2), which is not
always true.

[· · · ] linear shift-invariant systems with sinusoidal excitations are natu-
rally described by the Fourier transform. The Z-transform is a gener-
alization of the Fourier transform which allows us to treat exponential
inputs.

[· · · ] Exponentials of the form xn1n2
= zn1zn2 are eigenfuctions of 2-dim-

ensional linear shift invariant systems.

The 2-dimensional Z-transform of a discrete field X is defined as

XZz1z2 =
∞∑

n1=−∞

∞∑
n2=−∞

xn1n2
z−n1

1 z−n2
2 . (6.121)

Example 3.4-5: Comparison of Fourier Transform and Z-Transform [· · · ]

The Fourier transform is not strictly a subset of the Z-transform, because
it can use impulses and other singularity functions, which are not per-
mitted to Z-transforms.

19Predrag 2020-07-11: ‘Voltera series of operators’? Defined in S. Thurnhofer and S. K. Mitra,
A General Framework for Quadratic Volterra Filters for Edge Enhancement, IEEE Trans. Image Process.,
vol. 5, June, pp. 950-963, 1996.
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z2

z1

(1, 1)

(−2, 3)

Figure 6.3: The coneK and its fundamental parallelogram, fig 3.3 from ref. [25].

[· · · ] The Fourier transform is used primarily to describe signals and to
describe the actions that systems will have on them. The Z-transform is
used to describe systems and to provide an additional tool for manipulat-
ing difference equations. While the 2-dimensional Z-transform is related
to its l-dimensional counterpart, the two transforms are actually quite
different.

For z1 = eiω1 , z2 = eiω2 the Z-transform reduces to the Fourier transform.
The corresponding surface in the Z-domain is the called 2-dimensional
unit bicircle. 2-dimensional Z-transform converges on the Reinhardt do-
main, the 2-dimensional analog of the annulus for 1-dimensional case.

2020-02-23 Predrag Continuing on the multivariate generating functions, the
integer-point transform introduced in this textbook in integer lattices count-
ing: Beck and Robins [25] Computing the Continuous Discretely, (click here),
might be helpful:

Let a = (a1, . . . , ad) ∈ Zd be an integer point. The Laurent monomial za

is defined as
za := za11 za22 · · · zadd , z0 := 1 (6.122)

where 0 := (0, 0, . . . , 0). For a given rational cone or rational polytope
S ⊂ Rd,

σS(z) = σS(z1, z2, . . . , zd) :=
∑

a∈S∩Zd
za (6.123)

is called the integer-point transform of S. The function σS lists all integer
points in S not as a list of vectors, but as a sum of monomials. This σS also
goes by the name moment generating function or simply generating function
of S.

They start with the usual trivial example of a geometric series in Example
3.3, and work out a 2-dimensional {(1, 1), (−2, 3)} Bravais lattice in exam-
ple Example 3.4, see figure 6.3. They call the R2 interior of the half-open
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Bravais cell ‘fundamental parallelogram Π’, and tile the two-dimensional
cone K with its non-negative translations. That results in the rational
polynomial formula for the integer-point transform of the cone K

σK(z) =
1 + z2 + z2

2 + z−1
1 z2

2 + z−1
1 z3

2

(1− z1z2)(1− z−2
1 z3

2)
(6.124)

of the form that I had suggested to Han for the spatiotemporal cat.

Check also:

• 2020-03-02 Predrag notes below, on Wilf [230] sect. 1.5 Two indepen-
dent variables.

• Characteristic function or “five-point stencil” (6.171)

2020-03-03 Predrag OK, the fundamental parallelepiped determinant (15.107)
counts integer points

Nn = |DetJ | = |Det (v1|v2| · · · |vn)| . (6.125)

What does trJ do? That is also an invariant under SLG(n) lattice trans-
formations.

6.7.3 Primitive parallelogram

2020-01-25 Predrag A lattice vector is called primitive, if there is no other lattice
points on the segment between 0 and the tip.

or:

An integer vector v ∈ Zd is primitive if it cannot be written as an integer
multiple m 6= 1 of some other integer vector w ∈ Zd.

or:

A lattice point is a primitive lattice point if it is not a multiple of any other
lattice point, that is, the greatest common divisor of its coordinates is one.

or:

A primitive lattice point is a lattice point visible from the origin.

Let A be an integer [d×d]-matrix with nonzero determinant k and primi-
tive row vectors. The common divisors of the entries of each row ofA are
preserved under multiplication on the right by any matrix X ∈ SLndZ.

A lower triangular integer matrix

C =


c11 0 · · · 0

c21 c22
. . . 0

...
. . . 0

cd1 · · · cd(d−1) cdd

 (6.126)
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is said to be in (lower) Hermite normal form if 0 < c11 and 0 ≤ cij < cii for
all j < i.

I would prefer the vectors to be column vectors, as in Lind (20.166). In
particular, in the case of 2-dimensional square lattice,

C =

(
L S
0 T

)
(6.127)

The Bravais cell basis column vectors are

v1 =

(
L
0

)
, v2 =

(
S
T

)
,

where 0 ≤ S < L is the relative-periodic ‘shift,’ or ‘screw’ for a screw-
boundary condition, and our convention is L ≥ T, the rest obtained by
discrete symmetries.

Orbit of Λ, a matrix in Hermite normal form with primitive row vectors,
is denoted {AΛ|A ∈ SLn2Z}.
Lemma[Cohen [48], Theorem 2.4.3] Assume k > 0. Given an arbitrary
matrix A ∈ Mn,k, the orbit ASLndZ contains a unique matrix Λ in Her-
mite normal form.

Samuel Holmin PhD thesis [106] is a user-friendly overview of his pa-
pers, such as Counting nonsingular matrices with primitive row vectors [105]
arXiv:1211.2716. Holmin defines a primitive parallelogram: “Consider
a parallelogram with integer coordinates which cannot be decomposed
into smaller parallelograms with integer coordinates. We will call such
an object a primitive parallelogram; see figure 6.4 for an illustration. How
many primitive parallelograms are there with an area of 10? There are in-
finitely many such primitive parallelograms: in fact, starting with a sin-
gle primitive parallelogram, we can produce another one with the same
area by for example shifting it an integer distance up or to the right, or by
shearing it, and by repeating either of these operations we can produce
arbitrarily many different parallelograms, all of which are primitive and
have the same area.”

Curiously, even though in his 2nd papers he mentions that different Bra-
vais cells correspond to the same lattice, his claim of figure 6.4 is wrong.

Wigman [229] Counting singular matrices with primitive row vectors: “ Let us
consider the set of singular [n×n] matrices with integer entries. We are in-
terested in the question how many among these matrices have primitive
row vectors, that is each row is not a nontrivial multiple of an integer vec-
tor. We count the matrices according to the maximal allowed Euclidean
length of the rows. Without the constraint of primitivity the problem of
counting such matrices was solved by Katznelson [??].”

Wigman [229] and Katznelson focus on asymptotic counting, which we
probably do not need.
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Figure 6.4: Four Bravais cells of area 10, a figure from Holmin’s PhD the-
sis [106]. The two blue Bravais cells are not ‘primitive’ (i.e., prime), as they
are clearly tiled by smaller prime Bravais cells. Homlin claims that the two
blue Bravais cells are primitive, but that is wrong, see (20.235).

2020-02-19 Predrag Alexander Gorodnik lecture notes discuss cat map (An −
1) and says “The number of such solutions is exactly the area det (An−1)
of fundamental parallelepiped in virtue of the

Pick’s theorem (Gorodnik’s Theorem 1.5.3, and A.4.1). Let i be the num-
ber of points with integer coordinates in the interior of parallelogram P
and b be the number of points with integer coordinates on the perimeter
of P . Then, Area(P ) = i+(b/2)+1, with points on the edges are counted
as half and all vertices count as a single point.

He proves the theorem. As usual, Pick’s theorem is for R2, not general
enough for us.

2020-02-19 Predrag Baake, Hermisson and Pleasants [14] The torus parametriza-
tion of quasiperiodic LI-classes call this theorem a “Fundamental fact” (their
eq. (10)), and prove it, in Appendix for d-dimensional tori maps, i.e., in
the case that we need. They use it to count all manner of tilings. What
they emphasize, and what we might have to pay attention to, is the struc-
ture of the symmetry solutions on Td.

2020-02-21 Predrag Jezierski and Marzantowicz [124] (click here) write:

let f : X → X be a self-map of a set X.
(1.0.4) Definition. If x ∈ X is a periodic point of f then any m ∈ N such
that fm(x) = x is called a period of x. The smallest period of x is called the
minimal period of x with respect to f. The set of all minimal periods of
x ∈ X is called the set of minimal periods of f and denoted by Per(f).

We will define the fundamental algebraic invariants of a map f which
allow us to study the following notions:

• Lefschetz number L(f) (cf. (2.3.12)), correspondingly Lefschetz num-
bers L(fm) of all iterations and their algebraic combinations, inform-
ing about the existence of fixed, respectively periodic points.

• Nielsen number N(f) (cf. (4.1.2)), correspondingly Nielsen periodic
numbers NFm(f) (cf. (5.1.16)), NPm(f) (cf. (5.1.14)) estimating from
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below the number of fixed, respectively points of period m and m-
periodic points.

[...] This theory was initiated by Jakob Nielsen [176] in 1920 by the ob-
servation that every self-map of the two-dimensional torus f : T2 → T2

has at least |det(I-A)| fixed points (here I, A ∈M2×2(Z) are respectively
the identity matrix and the matrix representing the induced homotopy
homomorphism f# of π1(T2) = Z2).

In 1975 R. Brooks, B. Brown J. Pak, and D. Taylor [33] derived a nice for-
mula for the Nielsen number N(f) for the torus map: the Nielsen num-
ber equals the absolute value of the Lefschetz number. [...] The following
theorem has been proved in ref. [33].

(4.3.14) Theorem. For every self-map of the torus f : Td → Td, L(f) =
det(I-A) and N(f) = |L(f)|.

Proof. Since the Lefschetz and Nielsen numbers are homotopy invariants
we may assume that f = fA, i.e. f is induced by the linear map A.

1. fA has exactly |det(I-A)| fixed points,
2. no two fixed points of fA are Nielsen related,
3. the index of each fixed point equals sgn(det(I-A)).

[...] the fundamental theorem which allows us to extend the Nielsen fixed
point theory from tori into nilmanifolds. This theorem was proved simul-
taneously by Anosov [An], and also Fadell and Husseini [FaHu2].

(6.3.13) Theorem. Let f : X → X be a self-map of a compact nilmanifold.
Then N(f) = |L(f)| and L(f) = det(I-A), where A denotes the linearization
matrix of f (cf. Definition (6.3.4), Proposition (6.3.6)).

2020-02-22 Predrag Brooks et al. [33] Nielsen numbers of maps of tori:

If f : X → X is any map on a k-dimensional torus X, then the Nielsen
number and Lefschetz number of f are related by the formula N(f) =
|L(f)|. Thus, on the torus, the Lefschetz number gives information, not
just on the existence of fixed points, but on the number of fixed points as
well. No other compact Lie group has this property.

1995-09-08, 2020-12-08 Predrag Fel’shtyn and Hill [70] Trace formulae, Zeta func-
tions, congruences and Reidemeister torsion in Nielsen theory arXiv:chao-
dyn/9509009 paper is rich in examples of trace formulas and zeta func-
tions, but it’s probably safe to ignore all this...

“ The Artin-Mazur zeta function and its modification count periodic points
of a map geometrically, the Lefschetz’s type zeta functions do this alge-
braically (with weight given by index theory). Another way to count the
periodic points is given by Nielsen theory.

The Lefschetz zeta function is always rational function of z and is given
by a determinant formula. Manning [162] proved the rationality of the
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Artin-Mazur zeta function for diffeomorphisms of a compact smooth man-
ifold satisfying Smale’s Axiom A.

In Nielsen theory the ‘fixed point class’ is determined by the ‘lifting class’.
A fixed point class is called essential if its index is nonzero. The number of
lifting classes (and hence the number of fixed point classes, empty or not)
is called the Reidemeister Number. Generating functions for these numbers
are called the Reidemeister zeta and Nielsen zeta functions. They are
homotopy invariants. ”

6.7.4 Tensor eigenvalues

In principle Han has solved the periodic states counting problem for d-dim-
ensional hypercubic lattices by the discrete Fourier transform diagonalization
formula (20.179). A conceptual problem is that the answer is stated in terms
of cos’s of rational angles, and it is not obvious how those combine to yield an
integer as the final result, the number of periodic states.

For that reason it might be nice to perform the inverse Fourier transform
to the configuration space, to see what the basis vectors and the fundamen-
tal parallelogram of the 2-dimensional integer lattice look like, and unify the
treatment of the 1-dimensional and higher-dimensional lattice points counting.
We have looked at the relationship between the lattice states and their Fourier
representation in (20.32), figure 20.24, (20.56), etc..

Also we have some suggestive lattice solutions, such as (20.65), figure 20.29
(unit cube have been preferable - this is in the cube center coordiantes).

There is much literature on eigenvectors of tensors - probably we can figure
it out on our own, but I’m recording possible references just for record here:

2018-02-06 Predrag A job candidate Glen Evenbly talked about “Tensor Net-
works”, (also known as “birdtracks”, but getting a citation out of com-
puter nerds who do it is harder than pulling teeth - at best I can pass
under “Penrose diagrams”). If you want to see a lot of non-birdtracky
pictures, Román Orús has them. Basically, if you are solving a 1D lattice
problem, the transfer operator is a matrix. However, if you are acting
on a 2-dimensional or higher lattice, the transfer operator has pairs of
more indices replacing each index ow the 1D matrix, hence “tensor.” We
need to understand that as we go from cat map Toeplitz matrices to their
d-dimensional generalizations.

2020-02-14 Predrag Mateusz Michałek and Bernd Sturmfels [170] Invitation to
Nonlinear Algebra, (click here) discuss symmetric [n×n] matrices tensor
eigenvectors in Sect. 9.1.

The main monograph in this subject is Qi, Chen and Chen [195] Tensor
Eigenvalues and Their Applications, (click here).

They find convenient to replace the n-dimensional affine space with the
(n-1)-dimensional projective space, where two nonzero vectors are iden-
tified if they are parallel.
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Papers not looked at yet:

All Real Eigenvalues of Symmetric Tensors DOI:

Generalized Tensor Eigenvalue Problems DOI:

On determinants and eigenvalue theory of tensors DOI:

6.8 Difference equations

sect. 2.3 Linear homogenous equations with constant coefficients, Elaydi [68]

Consider kth-order difference equation

φn+k + p1 φn+k−1 + p2 φn+k−2 + · · ·+ pk φn = 0 , (6.128)

where pi are constants and pk 6= 0. A kth-order difference equation with con-
stant coefficients is often referred to as (k + 1)-term recurrence relation, see
sect. 6.9. Assuming a solution of form φn = Λn leads to the characteristic equa-
tion (see also ‘characteristic function’ (6.170))

Λk + p1Λk−1 + p2Λk−2 + · · ·+ pk = 0 , (6.129)

with characteristic roots {Λ1,Λ2, · · · ,Λk} . If the roots are distinct,

{Λn1 ,Λn2 , · · · ,Λnk }

is a set of fundamental solutions, and the general solution is of form

φn =
k∑
i=1

aiΛ
n
i , (6.130)

where constants ai are determined by the initial conditions {φ0, φ1, · · · , φk−1}.
If the roots are not distinct, one also has fundamental solutions of form

nmΛni .

sect. 2.4 Linear inhomogenous equations, Elaydi [68]

φn+k + p1 φn+k−1 + p2 φn+k−2 + · · ·+ pk φn = gn (6.131)

represents a physical system in which the forcing term (or external force, or con-
trol, or input) gn is the input, and φn the output,

gn → system → φn .

The solutions of (6.131) do not form a vector space, i.e., their linear combina-
tions are not also solutions. However, a difference of any pair of solutions is
a solution of the homogenous difference equation (6.128), and a general solu-
tion of the linear inhomogenous system (6.131) is a sum of the complementary
solution (a homogenous solution φc of (6.128), and a particular solution φp

φn = φc,n + φp,n (6.132)
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A simple example of a particular solution: if gn = an, then φp,n = c1a
n.

2020-03-28 Predrag There are many books on difference equations.
I like Elaydi [68] (click here), but I have also downloaded
Kelley and Peterson [142] (click here)
Agarwal [1] (click here)
Agarwal [2] (click here)
Allen, Aulbach, Elaydi and Sacker [5] (click here)
Galor [85] (click here)
Ozisik, Orlande, Colaco and Cotta [181] (click here)
Micciancio and Goldwasser [169]

2020-04-13 Predrag Dannan, Elaydi and Liu [58] Periodic solutions of difference
equations is a treasure trove of results on periodic solutions of difference
equations: marginal eigenvalues, Floquet exponents and multipliers, Fred-
holm alternative.

2020-08-10 Predrag Lick [152] Difference Equations from Differential Equations (click
here) we probably do not need.

The most general, quasi-linear, second-order PDE in two independent
variables is his eq. (2.0.2). Depending on coefficients, the equation can be
hyperbolic, such as the d = 2 spacetime wave equation (2.0.3). He focuses
on parabolic (s = 2 for us), such as the time dependent diffusion equation
given by (2.0.4).

Elliptic equations usually describe the steady-state limit of problems where
the time-dependent problem is described by parabolic or hyperbolic par-
tial differential equations. The most common elliptic equation is d = 2
space‘time’ symmetric Laplace’s equation (2.0.5).

He defines Helmholtz equation (4.0.5), Laplace’s equation (4.0.6), and
Poisson’s equation (4.0.7). His emphasis is on the discretized Helmholtz
equation (4.1.3).

Sect. 2.4 Algorithms for Two-Dimensional Problems has the 5-term recur-
rence, his eq. (2.4.3) and (4.1.3).

Difference equations arising from elliptic equations generally necessitate
the solution of a large set of linear algebraic equations. The matrix cor-
responding to this set of equations is generally sparse and good solution
methods take advantage of this fact. [...] the direct solution of these dif-
ference equations is quite time consuming. When the number of equa-
tions is large, iterative methods of solution are usually more efficient.

(4.2.8) defines Jacobi iteration, a method of improving initial guess solu-
tion. (4.2.9) method is known as Gauss-Seidel iteration or the method of
successive relaxation.
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2016-07-11 Predrag Boris cites P. A. Martin [164] Discrete scattering theory: Green’s
function for a square lattice

The lattice Green’s function is the main subject of the paper.

We consider the simplest problem, with a two-dimensional, square lat-
tice. Each lattice point can move out of the plane of the lattice, and
that each point is connected to its neighbours by springs; only nearest-
neighbour interactions are included. This leads to a system of partial dif-
ference equations. The same equations are obtained if the two-dimensional
Helmholtz equation is discretized using the central-difference approxi-
mation (lattice d’Alembert operator) for the Laplacian.

2017-09-11 Predrag Morita [173] Useful procedure for computing the lattice Green’s
function - square, tetragonal, and bcc lattices: “ A recurrence relation, which
gives the values of the lattice Green’s function along the diagonal direc-
tion from a couple of the elliptic integrals of the first (6.173) and second
kind, is derived for the square lattice by an elementary partial integration.
The values of the square lattice Green’s function at an arbitrary site are
then calculated in a successive way with the aid of the difference equa-
tion defining the function. ” The method yields a recursion formula for a
peculiar lattice Green’s function on a 2d lattice, but not the LGF itself.

2017-09-09 Predrag Simons [208] uses (6.130) in his (1.57) to invert a particular
banded matrix.

See also example 1.11 Tent map linear code.

Compare characteristic equation (6.129) to the characteristic function a(z)
(6.170).

6.8.1 Time quasilattices

2018-10-10, 2020-03-12 Predrag Felix Flicker writes: “My student Leon Za-
porski and I have been investigating the topological entropy of substitution
sequences in the symbolic dynamics of periodic orbits in discrete-time dynam-
ical systems. We were hoping you might be willing to take a look at our draft,
Zaporski and Flicker [238] Superconvergence of topological entropy in the symbolic
dynamics of substitution sequences, arXiv:1811.00331, and to send any thoughts
you might have, both in terms of whether you think the results would be of
interest to the community, and if there is a journal you might recommend for
us to submit to.”2CB

I failed to read it. But it needs to be included in ChaosBook, as well
as many of the references.

Their Fig. 1 is the topological entropy as a function of a control parameter of
the logistic map [185]. [...] In the cases that accumulation points correspond
to generalised time quasilattices, the Boyle-Steinhardt class [32] is indicated
above the curve.
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Predrag: I made several attempts to get some kind of renormaliza-
tion theory for the Sharkovsky sequence, with no interesting results
to report. Dahlquist wrote up his attempt ChaosBook (click here).

[...] Period doubling continues to be of importance to cutting edge research:
recent experiments established the existence of (discrete) time crystals, which
spontaneously break the symmetry of a periodic driving by returning a robust
period-doubled response, made rigid to perturbations and finite temperature
by the local interactions of many degrees of freedom. [...] periodically-driven
nonlinear systems can feature not just period-doubled responses, but robust
responses with the symmetries of one-dimensional (generalised) time quasilat-
tices [77]. [...] Quasilattice substitution rules fall within the set we consider,
and, by considering a simple generalisation of the basic quasilattice concept,
we find that we are able to identify aperiodic orbits corresponding to all phys-
ically relevant quasilattices, extending previous results identifying two cases.
Generalizing further we consider a set of substitutions additionally covering,
for example, the period-doubling cascade. [...] Whereas the topological en-
tropy is zero for all sequences in the period-doubling cascade, for other substi-
tution sequences it increases monotonically. [...] We find that the topological
entropy of the wide class of substitution sequences we consider converges as
a double exponential onto its accumulation point. [...] We demonstrate that all
one-dimensional quasilattices can appear as stable orbits in nonlinear dynam-
ical systems.

Here is something we might find useful for spatiotemporal cat:
[...] we focus on the generalised composition rules, which systematically gen-

erate admissible words by a substitution process [34].
[...] The universal order of periodic windows coincides with the parity-

lexicographic order of words, defined through the relation ‘≺’ in the following
way:

L ≺ C ≺ R
and for two admissible words they state it in a way that is perhaps superior to
ChaosBook ChaosBook. Cite it there. 2CB

[...] Word operations

• ĀB̄ indicates the concatenation of words Ā and B̄

• |Ā| returns the number of letters in Ā

• |Ā|R,L returns the number of letters R,L in Ā

• Ā|C substitutes the final letter of Ā with the letter C.

Inverse words are defined as follows (Predrag - I do not understand this):

Ā−1
(
ĀB̄

)
= B̄(

ĀB̄
)
B̄−1 = Ā. (6.133)
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Theorem 6.1. Substitution rules generating a cascade with initial word W̄1 = R
and W̄2 = R̄ can be restated as a second order linear recursive relation W̄n+2 =
g(W̄n,W̄n+1) under concatenation if W̄3 = g(W̄1,W̄2).

[...] Consider a [2× 2] growth matrix

A =

(
a b
c d

)
(6.134)

which quantifies the growth in the numbers of each letter type:( ∣∣W̄n

∣∣
R∣∣W̄n

∣∣
L

)
→
(
a b
c d

)( ∣∣W̄n

∣∣
R∣∣W̄n

∣∣
L

)
=

( ∣∣W̄n+1

∣∣
R∣∣W̄n+1

∣∣
L

)
(6.135)

The class of substitutions we consider can then be written as

W̄n = W̄n−1P
(
W̄

tr(A)−1
n−1 W̄

−det (A)
n−2

)
(6.136)

for n > 2, with W̄1 = R, and W̄2 a specified word. The symbol P indicates an
unspecified permutation. The characteristic equation of the growth matrixA is

λ2 − tr (A)λ+ det (A) = 0 . (6.137)

The eigenvalues of A must be real, either integer or quadratic irrational (when
we consider quasilattices). The ratio of the components of the eigenvector as-
sociated to the largest eigenvalue gives the relative frequencies of the two cell
types [32]. Eq. (6.137) can be seen as the n → ∞ limit of the defining equation
of some integer sequence Wn given by

Wn = tr (A)Wn−1 − det (A)Wn−2 (6.138)

for n > 2, W1 =
∣∣W̄1

∣∣ = 1, and W2 =
∣∣W̄2

∣∣. The ratio Wn/Wn−1 gives the
best possible rational approximation, for denominators not larger than Wn−1,
to the largest eigenvalue of the growth matrix, i.e. the larger of the solutions to
Eq. (6.137).

[...] As an example, the period-doubling substitutions lead to the integer
sequence

Wn = Wn−1 + 2Wn−2 (6.139)

for n > 2, with W1 =
∣∣W̄1

∣∣ = |R| = 1 and W2 =
∣∣W̄2

∣∣ = |RL| = 2. Explicitly,
the first few terms are

1, 2, 4, 8, 16, 32, 64, . . . (6.140)

i.e. Wn = 2n−1.

Predrag: This is perhaps related to s = 2 version of (1.119).
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Then they do Fibonacci. [...] The eigenvalues of a [2 × 2] growth matrix A are
real and given by

λ± =
1

2

(
s±

√
s2 − 4detA

)
, s = trA . (6.141)

If s2 = 4detA they are integers. Otherwise, the larger eigenvalue is a quadratic
irrational ‘Pisot-Vijayaraghavan’ (PV) number: the largest root of an irreducible
monic polynomial, all of whose Galois conjugates have modulus strictly less
than one. [...] The three conditions are necessary and sufficient for the substi-
tutions to correspond to quasilattice inflation rules [32]:

1. the growth matrix must be unimodular, |detA| = 1

2. there must be two spacings between each symbol

3. the largest eigenvalue of the growth matrix must be a PV number.

The condition |detA| = 1, implies the inverse of the growth matrix is also an
integer matrix. The inflation (substitution) of any quasilattice sequence can
therefore be undone with a well-defined deflation. This endows quasilattices
with a discrete scale invariance [31]. The third, PV numbers condition is neces-
sary for the interpretation of the quasilattice sequence in terms of a cut through
a higher-dimensional regular lattice.

The concept of quasilattices relating to higher-dimensional lattices is dis-
cussed at length in refs. [32, 77].

Predrag: So our s = 3 temporal cat λ2−3λ+1 = 0 eigenvalue 3+
√

5
2

turns out to be a PV number. So is s = 4 temporal cat λ2−4λ+1 = 0
eigenvalue 2 +

√
3. Both are the Boyle-Steinhardt [32] quasilattices,

of class 1, respectively 3.

[...] Starting from an orbit described by the word R, repeated application of
the inflation rules will lead to a cascade of stable periodic orbits of increas-
ing length. After an infinite number of substitutions, i.e. at the accumulation
point of the sequence, lies a stable orbit described by an aperiodic word: a time
quasilattice. [...] Characteristic equation

λ2 = 4λ− 1. (6.142)

leads to the (modulus of the) Clapeyron numbers Cn (A125905 in the On-Line
Encyclopedia of Integer Sequences)

Cn = 4Cn−1 − Cn−2 (6.143)

for n > 2 with C1 = 1, C2 = 4.

Predrag: In conclusion, temporal cat is related to counting of quasi-
lattice words. Not sure it is of any use to us.

2020-04-12 Predrag Have a look at Flicker, Simon and Parameswaran [78] Clas-
sical dimers on Penrose tilings. [...] [...] [...] [...] [...] [...] [...] [...] [...]
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6.9 Generating functions

(Note, there is also a totally unrelated Lagrangian ‘generating function’, sect. 8.6,
nothing to do with this section of the blog.)

Definition [25]. Let f(x) be a series in powers of x. Then by the symbol
[xn]f(x) we will mean the coefficient of xn in the series f(x).

2CB

2020-03-20 Predrag The theory generating function (AKA Z-transforms) is ped-
agogically explained by Elaydi [68], including a table of common Z-transform
pairs, in analogy with the familiar Laplace transform tables.

2CB

2020-09-30 Predrag Online Signals and Systems has pedagogical chapters on
Z-transforms.

2020-07-11 Predrag Woods [233] Multidimensional signal, image, and video pro-
cessing and coding, Chap. 3 Two-Dimensional Systems and Z-Transforms (2012)
(click here).

2020-01-23 Predrag For multivariate generating functions

N(z) , zn = zn1zn2 · · · znd , (6.144)

see (6.105), (6.122), (6.123), (6.124) .

Other examples of generating functions: (1.46), (6.193), (13.24) .

2020-04-07 Han Perhaps we need three generating function variables

N(z1, z2, z3) =
∑
L=1

N[L×T]S z
L
1 z

T
2 z

S
3 ., (6.145)

Here zS3 sum is finite, −L < S < L, and that feels not sufficiently invari-
ant, as it depends on Hermite normal form convention. Need something
invariant...

2020-03-01 Predrag Cute but true; Wilf [230] Generatingfunctionology defines
the periodic points counting generating function as

N(z) =
∑
n≥0

Nnz
n , (6.146)

and starts out in his sect. 1.1 An easy 2-term recurrence, with our Bernoulli
periodic points count (for the s = 2 case only)

Nn = sn − 1 , (6.147)

as a trivial example of a two-term recurrence (first-order difference equa-
tion [68])

Nn+1 = 2Nn + 1 , (s = 2;n ≥ 0, N0 = 0) , (6.148)
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and (Predrag’s insert) for s 6= 2,

Nn+1 − sNn = (s− 1) , (n ≥ 0, N0 = 0) , (6.149)

and its conversion to the periodic points count generating function (6.146).
For (6.148) he derives and expands in partial fractions

N(z; 2) =
z

(1− z)(1− 2z)
=

2z

1− 2z
− z

1− z , (6.150)

and (Predrag’s addition) for s 6= 1,

N(z; s) = (s− 1)z+ (s− 1)(s+ 1)z2 + (s− 1)(s2 + s+ 1)z3 + · · · , (6.151)

verifying the Bernoulli periodic points count (6.147). Take Nn = (s −
1)N̂n , then (6.149) leads to

N̂n+1 − s N̂n = 1 , (n ≥ 0, N̂0 = 0, N̂1 = 1) . (6.152)

N̂(z; s) = z + (s+ 1)z2 + (s2 + s+ 1)z3 + · · · , (6.153)

For s = 1 this is a complicated way to generate integers.

Then he does, as an example of a 3-term recurrence (second-order differ-
ence equation [68]), the Fibonacci recurrence

Fn+1 = Fn + Fn−1 : , (n ≥ 1, F0 = 0, F1 = 1) , (6.154)

and derives

N(z) =
z

1− z − z2
=

1

z−1 − 1− z . (6.155)

Here the expansion in partial fractions is in terms of roots of the (‘golden
mean’) polynomial 1− z − z2 .

He notes that the Stirling numbers of the first kind satisfy a 3-term recur-
rence relation.

2020-06-20 Predrag Oscar Levin Discrete Mathematics: An Open Introduction Sect. 5.1
Generating Functions works out a 3-term recurrence an = 3an−1−2an−2,
with a0 = 1, a1 = 3 in Example 5.1.6. Surprisingly, one gets again (!)

an = 2n+1 − 1 .

2020-06-20 Predrag Check out also Al Doerr and Ken Levasseur Applied Dis-
crete Structures:

Sect. 8.3 Recurrence relations.

Sect. 8.5.2 Solution of a Recurrence Relation Using Generating Functions.

8289 (predrag–8289) 361 03/15/2022 siminos/spatiotemp

http://discrete.openmathbooks.org/dmoi3/sec_addtops-genfun.html
http://discrete.openmathbooks.org/dmoi3/sec_addtops-genfun.html
http://faculty.uml.edu/klevasseur/ads/index-ads.html
http://faculty.uml.edu/klevasseur/ads/index-ads.html
http://faculty.uml.edu/klevasseur/ads/s-recurrence-relations.html
http://faculty.uml.edu/klevasseur/ads/s-generating-functions.html


CHAPTER 6. SPATIOTEMPORAL CAT

2020-03-04 Predrag Ron Knott writes:

The series of natural numbers 1, 2, 3, 4, · · · has the generating function

1

(1− z)2
=

1

1− 2z + z2
(6.156)

and the 3-term recurrence (second-order difference equation [68])

φn − 2φn−1 + φn−2 = 0

and compare that with the denominator of the generating function, namely:

1− 2z + z2

which might be a way to understand why s = 2 is special.

A variant of Fibonnaci: 0,1,3,8,21,...is generated by

z

z2 − 3z + 1
=

1

z − 3 + z−1

which looks temporal cat-like.

2020-03-02 Predrag In sect. 1.4 A three term boundary value problem Wilf [230]
considers a 3-term recurrence with Dirichlet bc’s

aun+1 +bun+cun−1 = dn , (n = 1, 2, ..., N−1;u0 = uN = 0) (6.157)

where the positive integer N, the constants a, b, c and the sequence {dn}N−1
n=1

are given in advance. The eqs (6.157) determine the sequence {ui}N0
uniquely. Such boundary value problems arise in applications such as
the interpolation by spline functions.

2020-03-01 Predrag Compare (6.149) to our [57] Bernoulli 1-step difference con-
dition

φt − sφt−1 = −st , φt ∈ [0, 1) . (6.158)

This suggests that the periodic points count is obtained by

φt → Nn , st → 1− s . (6.159)

The temporal cat second-order difference equation is

φt+1 − s φt + φt−1 = −st , (6.160)

Mimicking (6.159), my guess for the recurrence for periodic points count
is

Nn+1−sNn+Nn−1 = 2(s−2) , (n ≥ 1, N0 = 0, N1 = s−2) . (6.161)
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Nn+1−(µ2+2)Nn+Nn−1 = 2µ2 , (n ≥ 1, N0 = 0, N1 = µ2) . (6.162)

Indeed, this generates the correct series for arbitrary s (compare with
(1.120), (5.137).)

N(z; s) = (s− 2)z + (s− 2)(s+ 2)z2 + (s− 2)(s+ 1)2z3

+(s− 2)(s+ 2) s2z4+ (6.163)

N(z : µ2) = µ2z + µ2(µ2 + 4)z2 + µ2(µ2 + 3)2z3

+µ2(µ2 + 4) (µ2 + 2)2z4+ (6.164)

Take Nn = µ2N̂n , then (6.161) leads to

N̂n+1 − s N̂n + N̂n−1 = 2 , (n ≥ 1, N̂0 = 0, N̂1 = 1) . (6.165)

N̂(z; s) = z + (s+ 2)z2 + (s+ 1)2z3 + (s+ 2) s2z4

+(s2 + s− 1)2z5 + (s2 − 1)2(s+ 2)z6+ (6.166)

N̂(z; s) = z + (µ2 + 4)z2 + (µ2 + 3)2z3 + (µ2 + 4) (µ2 + 2)2z4

+(µ4 + 3µ2 + 5)2z5 + (µ2 + 1)2(µ2 + 3)2(µ2 + 4)z6+(6.167)

For µ = 0 this is a complicated way to generate integers squared (see also
(6.156))

N̂(z; 2) = z + 4z2 + 9z3 + 16z4 + 25z5 + 36z6+ (6.168)

Recurrence (6.163) appears correct for the s = 3 count (have not rechecked)

N(z; 3) = z + 5z2 + 16z3 + 45z4 + 121z5 + 320z6 + 841z7

+2205z8 + 5776z9 + 15125z10 + 39601z11 + · · · .(6.169)

2020-03-02 Predrag In sect. 1.5 Two independent variables and 1.6 Another 2-variable
case Wilf [230] considers problems that involve functions of two discrete
variables. His example is combinatorial, probably not what we need.

A generating function with the 1/n!’s thrown into the coefficients, is called
an exponential generating function. After his eq. (1.6.12), he explains the

x(d/dx) log

operation. He works it out for the “Bell numbers’, and derives that the
Bell numbers satisfy the recurrence depending on all previous Bell num-
bers, much like the ChaosBook formulas for cumulants.

He says, comfortingly: “[...] there’s no need for the guilt, because the
various manipulations can be carried out in the ring of formal power
series, where questions of convergence are nonexistent.”
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2012-06-19 Predrag In ChaosBook example 18.12 (edition 16.4.5), I show that
for alphabet A = {a, cbk; b} , the cycle counting ζ-function is

1/ζAM = 1− 3z + z2 ,

i.e., the Isola [117] ζ-function (1.30) for s = 3, without the (1 − z)2 factor
(see (??), (1.20), (5.184), (13.75)). That might be a simple statement of the
cat map symbolic dynamics.

2020-02-09 Predrag Fischer, Golub, Hald, Leiva and Widlund [75] On Fourier-
Toeplitz methods for separable elliptic problems solve linear equations, where
M arises from a finite difference approximation to an elliptic partial dif-
ferential equation.

Such a situation arises for those problems that can be handled by the clas-
sical separation-of-variables technique. Their methods are a computer
implementation of the separation of variables carried out on a discretized
model of the elliptic differential equation.

In one-dimensional lattice, the characteristic function a(x) of a symmetric
2k-banded Toeplitz matrix A is defined as

a(x) = akx
k + · · ·+ a0 + · · ·+ akx

−k (6.170)

(see (1.40), for example). Such matrices occur in fourth, or higher, order
accurate finite difference approximation to second order elliptic prob-
lems, when solving the bi-harmonic problem by a Fourier method, in
higher order spline interpolation, etc.

For a 1-dimensional lattice one assumes that the characteristic function
a(x) has no roots on the unit circle. Then they factor a(x) = `(x) `(l/x),
where l(x) = b0 + · · ·+ bkx

k, b0 > 0, is a real polynomial with no roots in-
side the unit circle, their Lemma 1. The factors `(x) and `(l/x) of a(x) are
known as the Hurwitz factors. Predrag has not found any useful literature
on these.

Their algorithm applied to the temporal cat tri-diagonal case (1.47) with
a1 = −1 and a0 > 2, has linear convergence; see obscure references
[3] F. L. Bauer, "Ein direktes Iterationsverfahren zur Hurwitz-Zerlegung
eines Polynoms," Arch. Elec. Ubertr., v. 9, 1955, pp. 285-290.
[4] F. L Bauer, "Beiträge zur Entwicklung numerischer Verfahren für pro-
grammgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Poly-
noms," Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B., v. 1956, pp. 163-203.
[18] M. Malcolm & J. Palmer, A Fast Method for Solving a Class of Tri-
Diagonal Linear Systems, Computer Science Report 323, Stanford Uni-
versity, 1972,
[24] V. Thomée, "Elliptic difference operators and Dirichlet’s problem,"
Contributions to Differential Equations, v. 3, 1964, pp. 301-324.
[25] O. B. Widlund, "On the use of fast methods for separable finite differ-
ence equations for the solution of general elliptic problems," Sparse Ma-
trices and Their Applications, edited by D. J. Rose and R. A. Willoughby,
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Plenum Press, New York, 1972.
which we hopefully can ignore.

In the semidefinite case, a0 = 2, one still has convergence, but the error
decreases only as l/n.

2-dimensional lattice: When the characteristic function depends on sev-
eral variables, a factorization like the one of their Lemma 1 is possible
only in exceptional cases. They seek an appropriate factorization of the
characteristic function for 2-dimensional lattice Laplacian

a(x1, x2) = −x1 − x2 + 4− x−1
1 − x−1

2 (6.171)

which cannot be factored in a useful way. They turn to the separation of
variables technique.

“Characteristic function” (6.170) does not seem to be a commonly used
name; compare with (6.170).

our preference is to call this characteristic equation, as in (6.129).

Lothar Reichel refers to (6.171) as the standard “five-point stencil” for
discretization of the Poisson equation on a rectangle by finite differences.

2020-06-15 Predrag Insert into (6.171) xnii → Λnii to get characteristic equation
for the 2-dimensional homogenous linear 2nd-order difference equation

1

x1
(x2

1 − sx1 + 1) + c
1

x2
(x2

2 − sx2 + 1) = 0 ,

where [c] = [`1]/[`2] is dimensionally the ‘velocity’ parameter.

We can write

x2(Λ− x1)(Λ−1 − x1) + c x1(Λ− x2)(Λ−1 − x2) = 0 ,

with each term separately zero for x1 = x2 = 0 and 4 combinations xi ∈
{Λ, 1/Λ}. Though there there is no reason to set terms separately to zero,
so there are 1-dimensional families of roots,

x2(Λ− x1)(Λ−1 − x1) = b

c x1(Λ− x2)(Λ−1 − x2) = −b , (6.172)

parametrized by b. So I too am lost as to how to use characteristic equa-
tions in higher dimensions...
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6.10 Resistor networks

2017-09-11 Predrag A textbook: Blanchard and Volchenkov [27] Random Walks
and Diffusions on Graphs and Databases, (click here); Chapter 6 Random
walks and electric resistance networks. They cite Doyle and Snell 1984; Tetali
1991; Chandra et al. 1996; Bollobas 1998 (have not looked at any of these).

They define the discrete representation of the Laplace operator on a lat-
tice in their eq. (4.22). The matrix (4.38) corresponds to the normalized
Laplace operator.

“ It was established in Tetali (1991) and Chandra et al. (1996) that the
effective resistance might be interpreted as the expected number of times
a random walker visits all nodes of the network in a random round trip
from i to j and back. ”

2020-01-10 Predrag A textbook: A very pedagogical, down to earth textbook:
Pozrikidis [194] An introduction to grids, graphs, and networks, (click here)
discusses this in Chap. 6 Network performance. In part based on Wu [234],
cited below. My notes are bellow, search for 2020-01-10 Predrag.

2020-01-13 Predrag A textbook: Grimmett [92] Probability on Graphs: Random
Processes on Graphs and Lattices, (click here). Not sure we need this now,
but it is a modern stat mech book on percolation, Schramm–Löwner evo-
lution, Gibbs states and Markov fields, the Ising and Potts models.

Chapter 1 is devoted to the relationship between random walks (on graphs)
and electrical networks. This leads to the Thomson and Rayleigh princi-
ples, and thence to a proof of Pólya’s theorem.

Early papers are

Venezian [224] On the resistance between two points on a grid

Atkinson and van Steenwijk [13] Infinite resistive lattices

leading to much cited:

Cserti [52] Application of the lattice Green’s function for calculating the resis-
tance of an infinite network of resistors:

In the network of resistors it is assumed here that the resistances of all
the edges of the hypercube are the same, say R. The goal is to find the
resistance between the origin and a given lattice point of the infinite hy-
percube. Ohm’s and Kirchhoff’s laws for potential at a lattice site are
expressed in terms of the lattice Laplacian. To find the resistance one
solves a Poisson-type equation by using the lattice Green’s function.

The 1-dimensional case, his eq. (23) is very simple.

The energy-dependent lattice Green’s function of the tight-binding Hamil-
tonian for a square lattice, his eq. (30), has energy E playing the role of
our stretching parameter s.
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He does the actual derivations on finite d-tori, but only as a step prelim-
inary to taking the infinite-lattice limit; no actual calculations for finite
d-tori.

[...] The value of G(0,0,0) was evaluated for the first time by Watson [21]
and subsequently by Joyce [22] in a closed form in terms of the complete
elliptic integral of the first kind

K(k) =

∫ π/2

0

dθ
1√

1− k2 sin2 θ
(6.173)

It is worth mentioning that a simpler result was obtained by Glasser and
Zucker [23] (see also Doyle and Snell’s book [63]), arXiv:math/0001057,
who calculated the integrals in terms of gamma functions:

2G(0, 0, 0) =

√
3− 1

96π3
Γ2(1/24)Γ2(11/24) . (6.174)

Predrag finds this form intriguing, as he expects symmetry factorizations
in the spirit of (5.182).

Glasser and Montaldi [27] gave other useful integral representations of
the lattice Green’s function for the hypercubic lattice for arbitrary dimen-
sion d. It was shown by Joyce [22] that the function G(E;0,0,0) can be
expressed in the form of a product of two complete elliptic integrals of
the first kind. (Predrag: presumably a symmetry factorization.)

This work is continued in ref. [53]:

2019-11-04 Predrag Cserti, Széchenyi and Dávid [53] Uniform tiling with electri-
cal resistors: “ The resistance between two arbitrary nodes of a network
of resistors is studied when the network is perturbed by connecting an
extra resistor between two arbitrary nodes in the perfect lattice. The lat-
tice Green’s function and the resistance of the perturbed network are ex-
pressed in terms of those of the perfect lattice by solving Dyson’s equa-
tion. A comparison is carried out between numerical and experimental
results for a square lattice. ”

The electric resistance between two arbitrary nodes on any infinite lattice
structure of resistors that is a periodic tiling of space is obtained, using
the lattice Green’s function of the Laplacian matrix associated with the
network. The method can be extended to the random walk problem or
to electron dynamics in solid state physics. The results may be used to
calculate the wavefunctions at the lattice points for complicated lattice
structures.

I do not think we need this paper at the present stage - understanding
‘undecorated’ square lattice is all we need...

2019-11-01 Predrag Introduction of Owaidat, Asad and Tan [180] Resistance
computation of generalized decorated square and simple cubic network lattices
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has a very exhaustive lattice Green functions literature discussion, start-
ing with

Kirchhoff [144] Üeber die Auflösung der Gleichungen, auf welche man bei
der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird,
which, weirdly enough, reminds me that I’ve computed for my PhD [56]
the determinants for QED that we here seek to compute for a much sim-
pler lattice problem.

Their work follows the Green’s function theory presented by Cserti [52].
They say that the lattice Green functions are usually evaluated as the el-
liptic integrals (6.173) or by recurrence relations methods.

They do display a determinant of a Laplacian, eq. (B.11) in their Ap-
pendix B. The matrix elements of the Green’s function for the generalized dec-
orated simple cubic lattice, but it is a determinant of a single Fourier mode
(in each of the three directions of a cubic lattice). Han has the analogue
for the square lattice - what we do not have is the product formula, in
which all eigenvalues (cosines, etc) average out, and all that is left is a
polynomial in s

2019-11-04 Predrag Jafarizadeh, Sufiani and Jafarizadeh [122] Calculating two-
point resistances in distance-regular resistor networks provide an algorithm
for the calculation of the resistance between two arbitrary nodes in an
arbitrary distance-regular resistor network.

Past efforts have been focused mainly on infinite lattices, with little at-
tention paid to finite networks. They present a general formulation for
computing two-point resistances in finite networks.

Their starting point is the Laplacian matrix associated with a network.
The Laplacian is a matrix whose off-diagonal entries are the conduc-
tances connecting pairs of nodes. Just as in graph theory where every-
thing about a graph is described by its adjacency matrix (whose element
is 1 if two vertices are connected and 0 otherwise), everything about an
electric network is described by its Laplacian.

The two-point resistances on a network depend only on the Stieltjes func-
tion Gµ(x) corresponding to the network. The Stieltjes function corre-
sponding to an infinite network possesses a unique representation as an
infinite continued fraction. In the cases for which the parameters iterate
themselves after some finite steps, one can find a closed form for the in-
finite continued fraction. This situation takes place, for instance, in the
infinite line network. But in most cases, this situation dose not occur and
one cannot obtain a closed form for the Stieltjes function of the network.

2019-11-04 Predrag Wu [234] Theory of resistor networks: the two-point resistance
is a foundational paper, where a theory to calculate the resistance be-
tween arbitrary nodes for a finite lattice of resistors is given in terms of
the eigenvalues and eigenvectors of the graph Laplacian matrix.
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(0,0) (5,0)

(0,1)

(0,2)

(0,3)

(5,1)

(5,2)

(5,3)

(1,0) (2,0) (3,0) (4,0)

Figure 6.5: A [5×4] rectangular resistor network: resistors with resistances r
and s on edges of the network in, respectively, horizontal and vertical direc-
tions.

Wu gives a closed-form expression, his eq. (43), for the resistance R[L×T ]
z1z2

of a finite square lattice between nodes z1 = (x1, y1) and z2 = (x2, y2) for
free, periodic and cylindrical boundary conditions.

The paper is very clear and explicit, with many examples, including the
1-dimensional periodic chain (sect. 3.2. Periodic boundary conditions) and
the doubly periodic [L×T ] square lattice, his sect. 5. Two-dimensional
network and figure 6.5. His eq. (43) gives the resistance between nodes
z1 = (x1, y1) and z2 = (x2, y2)

R[L×T ]
z1z2 =

M−1∑
m=0

N−1∑
n=0(m,n)6=(0,0)

∣∣∣ψ(m,n);(x1,y1) − ψ(m,n);(x2,y2)

∣∣∣2
λ(m,n)

=
r

N

[ ∣∣∣x1 − x2

∣∣∣− (x1 − x2)2

M

]
+

s

M

[ ∣∣∣y1 − y2

∣∣∣− (y1 − y2)2

N

]

+
1

MN

M∑
m=1

N∑
n=1

1− cos
[
2(x1 − x2)θm + 2(y1 − y2)φn

]
r−1
(
1− cos 2θm

)
+ s−1

(
1− cos 2φn

) ,
(6.175)

The result depends only on the differences
∣∣x1 − x2

∣∣ and
∣∣y1 − y2

∣∣, as it
should by translational invariance. This is a double sum over Fourier
modes, and I see no determinant calculation where these are summed
over and what remains is some sensible polynomial.

However, his sect. 10. Summation and product identities might be just what
we need:

8289 (predrag–8289) 369 03/15/2022 siminos/spatiotemp



CHAPTER 6. SPATIOTEMPORAL CAT

He shows that

FN (`) =
1

N

N−1∑
n=1

1− cos(`φn)

1− cosφn

= |`| − 1

N

(
`2 + |`|

2
−
[
|`|
2

])
(6.176)

where [x] denotes the integral part of x. Similarly

GN (`) =
1

N

N−1∑
n=1

1− cos(2`φn)

1− cos 2φn
.

is evaluated as a special case of the identity (6.179), using the recursion

relation
GN (`)−GN (`− 1) = 1− 1

N

(
2`− 1

)
which yields

GN (`) =
∣∣`∣∣− `2/N . (6.177)

Proposition: Define

Iα(`) =
1

N

N−1∑
n=0

cos
(
α ` nπN

)
coshλ− cos

(
α nπ

N

) , α = 1, 2 .

Then the following identities hold for λ ≥ 0, N = 1, 2, · · · ,

I1(`) =
cosh(N − `)λ

(sinhλ) sinh(Nλ)
+

1

N

[
1

sinh2 λ
+

1− (−1)`

4 cosh2(λ/2)

]
, 0 ≤ ` < 2N,

(6.178)

I2(`) =
cosh

(
N
2 − `

)
λ

(sinhλ) sinh(Nλ/2)
, 0 ≤ ` < N . (6.179)

Remarks:

3. In the N →∞ limit both (6.178) and (6.179) become the integral

1

π

∫ π

0

cos(`θ)

coshλ− cos θ
d θ =

e−`λ

sinhλ
` ≥ 0.

4. Set ` = 0 in (6.178), multiply by sinhλ and integrate over λ, we obtain
the product identity

N−1∏
n=0

(
coshλ− cos

nπ

N

)
= (sinhNλ) tanh(λ/2). (6.180)
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5. Set ` = 0 in (6.179), multiply by sinhλ and integrate over λ. We obtain
the product identity

N−1∏
n=0

(
coshλ− cos

2nπ

N

)
= sinh2(Nλ/2). (6.181)

Proof:

Introduce

Sα(`) =
1

N

N−1∑
n=0

cos(` θn)

1 + a2 − 2a cos θn
, a < 1, α = 1, 2 (6.182)

so that
Iα(`) = 2 aSα(`), a = e−λ. (6.183)

It is readily seen that we have the identity

Sα(1) =
1

2a

[
(1 + a2)Sα(0)− 1

]
. (6.184)

1. Proof of (6.178):

First we evaluate S1(0) by carrying out the following summation, where
Re denotes the real part, in two different ways. First we have

Re 1

N

N−1∑
n=0

1

1− a eiθn = Re 1

N

N−1∑
n=0

1− a e−iθn∣∣∣1− a eiθn ∣∣∣2
=

1

N

N−1∑
n=0

1− a cos θn
1 + a2 − 2a cos θn

= S1(0)− aS1(1)

=
1

2

[
1 + (1− a2)S1(0)

]
. (6.185)

Secondly by expanding the summand we have

Re 1

N

N−1∑
n=0

1

1− a eiθn = Re 1

N

N−1∑
n=0

∞∑
`=0

a`ei`nπ/N

and carry out the summation over n for fixed `. It is clear that all ` =
even terms vanish except those with ` = 2mN,m = 0, 1, 2, ... which yield∑∞
m=0 a

2mN = 1/(1−a2N ). For ` = odd = 2m+ 1, m = 0, 1, 2, ... we have

Re
N−1∑
n=0

ei(2m+1)nπ/N = Re 1− (−1)2m+1

1− ei(2m+1)π/N
= 1
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after making use of

Re
(

1

1− eiθ

)
=

1

2
, 0 < θ < 2π . (6.186)

So the summation over ` = odd terms yieldsN−1
∑∞
m=0 a

2m+1 = a/N(1−
a2), and we have

Re
N−1∑
n=0

1

1− a eiθn =
1

1− a2N
+

a

N(1− a2)
(6.187)

Equating (6.185) with (6.187) we obtain

S1(0) =
1

1− a2

[(
1 + a2N

1− a2N

)
+

2a

N(1− a2)

]
. (6.188)

To evaluate S1(`) for general `, we consider the summation

Re 1

N

N−1∑
n=0

1−
(
a eiθn

)`
1− a eiθn = Re 1

N

N−1∑
n=0

(1− a` ei`θn)(1− a e−iθn)∣∣1− a eiθn ∣∣2 (6.189)

= S1(0)− aS1(1)− a`S1(`) + a`+1S1(`− 1) ,

where the second line is obtained by writing out the real part of the sum-
mand as in (6.185). On the other hand, by expanding the summand we
have

Re 1

N

N−1∑
n=0

1−
(
a eiθn

)`
1− a eiθn = Re 1

N

N−1∑
n=0

`−1∑
m=0

ameiπmn/N

= 1 +Re 1

N

`−1∑
m=1

am

(
1− (−1)m

1− eiπm/N

)

= 1 +
a(1− a`)
N(1− a2)

, ` = even < 2N

= 1 +
a(1− a`−1)

N(1− a2)
, ` = odd < 2N ,(6.190)

where again we have used (6.186).

Equating (6.190) with (6.189) and using (6.184) and (6.188), we obtain the
recursion relation

SN (`)− aSN (`− 1) = Aa−` +B` (6.191)

where

A =
a2N

1− a2N
, B` =

a(1+(−1)`)/2

N(1− a2)
. (6.192)
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The recursion relation (6.191) can be solved by standard means. Define
the generating function

Gα(t) =
∞∑
`=0

Sα(`) t`, α = 1, 2 . (6.193)

Multiply (6.191) by t` and sum over `. We obtain

(1− at)G1(t)− S1(0) =
Aa−1t

1− a−1t
+

t+ at2

N(1− a2)(1− t2)
. (6.194)

This leads to

G1(t) =
1

1− at

[
S1(0) +

Aa−1t

1− a−1t
+

t+ at2

N(1− a2)(1− t2)

]

=
1

(1− a2)(1− a2N )

[
1

1− at +
a2N

1− a−1t

]

+
1

2N(1− a)2(1− t) −
1

2N(1 + a)2(1 + t)
,

from which one obtains

S1(`) =
a` + a2N−`

(1− a2)(1− a2N )
+

1

2N(1− a)2
− (−1)`

2N(1 + a)2

=
a` + a2N−`

(1− a2)(1− a2N )
+

1

2N

[
4a

(1− a2)2
+

1− (−1)`

(1 + a2)2

]
.(6.195)

It follows that using I1(`) = 2 aS1(`) we obtain (6.178) after setting a =
e−λ.

2. Proof of (6.179):

Again, we first evaluate S2(0) by carrying out the summation

Re 1

N

N−1∑
n=0

1

1− a ei2θn , a < 1

in two different ways. First as in (6.185) we have

Re 1

N

N−1∑
n=0

1

1− a ei2θn =
1

2

[
1 + (1− a2)S2(0)

]
, (6.196)

where S2(`) is defined in (6.182). Secondly by expanding the summand
we have

1

N

N−1∑
n=0

1

1− a ei2θn =
1

N

N−1∑
n=0

∞∑
`=0

a`ei2`nπ/N =
1

1− aN (6.197)
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where by carrying out the summation over n for fixed ` all terms in
(6.187) vanish except those with ` = mN,m = 0, 1, 2, ... Equating (6.197)
with (6.196) we obtain

S2(0) =
1

1− a2

(
1 + aN

1− aN

)
(6.198)

and from (6.184)

S2(1) =
1

1− aN .

We consider next the summation

Re 1

N

N−1∑
n=0

1−
(
a ei2θn

)`
1− a ei2θn a < 1 . (6.199)

Evaluating the real part of the summand directly as in (6.189), we obtain

Re 1

N

N−1∑
n=0

1−
(
a ei2θn

)`
1− a ei2θn = S2(0)− aS2(1)− a`S2(`) + a`+1S2(`− 1).(6.200)

Secondly, expanding the summand in (6.199) we obtain

1

N

N−1∑
n=0

1−
(
a ei2θn

)`
1− a ei2θn =

1

N

N−1∑
n=0

`−1∑
m=0

amei2πmn/N

=
1

N

[
N +

`−1∑
m=1

1− ei2mπ
1− ei2mπ/N

]
= 1 m < ` ≤ N. (6.201)

Equating (6.201) and (6.200) and making use of (6.198) for S2(0), we ob-
tain

S2(`)− aS2(`− 1) =
aN−`

1− aN (6.202)

The recursion relation (6.202) can be solved as in the above. Define the
generating function G2(t) by (6.193). We find

G2(t) =
1

1− at

[
S2(0) +

aN−1t

(1− aN )(1− a−1t)

]

=
1

(1− a2)(1− a2N )

[
1

1− at +
aN

1− a−1t

]
, (6.203)

from which one reads off

S2(`) =
a` + aN−`

(1− a2)(1− a2N )
.

Using the relation I2(`) = 2 aS2(`) with a = e−λ, we obtain (6.179).
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2019-11-04 Predrag Tzeng and Wu have extended this impedance networks,
where the Laplacian matrix has complex matrix elements; I think we do
not care about this at this time.

2019-11-04 Predrag The corner-to-corner resistance and its asymptotic expan-
sion for various boundary conditions were calculated by Izmailian and
Huang [121] Asymptotic expansion for the resistance between two maximally
separated nodes on an M by N resistor network: “ The computation of the
asymptotic expansion of the corner to-corner resistance, in other word
the resistance between two maximally separated nodes of a rectangular
resistor network is of interest as its value provides a lower bound to the
resistance of compact percolation clusters in the Domany-Kinzel model
of a directed percolation [15]. ”

They take a [L×T] array, use a ton of funky identities, and manage to re-
duce Wu’s double sum (6.175) to a single, highly non-obvious sum, their
eq. (33). Then there are Kronecker’s double series expressed in terms of
the complete elliptic integrals K(s) and E(s).

2020-01-11 Predrag Dienstfrey, Hang and Huang [61] Lattice sums and the two-
dimensional, periodic Green’s function for the Helmholtz equation. They com-
pute the Green’s function for the Helmholtz equation in two dimensions
with doubly periodic boundary conditions, on a fundamental cell [−1/2, 12)2.
I believe this is not relevant to us, it solves a continuous problem over the
unit cell, rather than a problem on discrete lattice.

Due to the translation invariance, the Green’s function has a convolu-
tion structure, G(x, x0) = G(y) , y = x − x0 ∈ [−1, 1)2 . A periodic
Helmholtz equation can be computed via the method of images over
the zeroth-order Hankel function of the first-kind. The sums can also be
evaluated by recognizing an identity between the so-called ‘spectral’ and
‘spatial’ representations of G. For a square array, there are symmetries
which allow for further simplification.

2020-01-10 Predrag Stewart and Gökaydin [214] Symmetries of quotient networks
for doubly periodic patterns on the square lattice, (click here). Read for sect. 20.4 Re-
duction to the fundamental domain that has still to be completed.

2020-01-10 Predrag A very pedagogical, down to earth textbook: Pozrikidis [194]
An introduction to grids, graphs, and networks, (click here):

Graphs are finite or infinite sets of vertices connected by edges in struc-
tured or unstructured configurations.

Infinite lattices and tiled surfaces are described by highly ordered graphs
parametrized by an appropriate number of indices.

Networks consist of nodes connected by physical or abstract links with an
assigned conductance in spontaneous or engineered configurations. In
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physical and engineering applications, networks are venues for conduct-
ing or convecting a transported entity, such as heat, mass, or digitized
information according to a prevailing transport law.

Finite difference and finite element grids can be regarded as networks whose
link conductance is determined by the differential equation, as well as by
the chosen finite difference or finite element approximation.

A finite difference grid for solving ordinary or partial differential equa-
tions consists of rectilinear grid lines that can be regarded as conveying
links intersecting at nodes.

Topics: The node adjacency, Laplacian, and Kirchhoff matrices; The com-
putation of the regular and generalized lattice Green’s function describ-
ing the response to a nodal source; The pairwise resistance of any two
nodes.

Consider the Poisson equation in one dimension for an unknown func-
tion of one variable, f(x),

d2f

dx2
+ g(x) = 0 , (6.204)

to be solved in a finite domain, [a, b], where g(x) is a given source func-
tion. When g(x) = 0, the Poisson equation reduces to Laplace’s equation.
When g(x) = αf(x), the Poisson equation reduces to the Helmholtz’s
equation, (

d2

dx2
+ α

)
f(x) = 0 , (6.205)

where α is a real or complex constant. (See also sect. 6.2 Helmoltz and
screened Poisson equations.)

Applying the Poisson equation at the ith node, approximating the second
derivative with a central difference

fi+1 − 2fi + fi−1 = −gi (6.206)

where fi = f(xi), gi = g(xi). He says: “The signs on the left- and right-
hand sides of (6.206) were chosen intentionally to conform with standard
notation in graph theory regarding the Laplacian, as discussed in Section
1.7.”

The discretized Helmholtz’s equation:

fi+1 − 2fi + fi−1 + αfi = 0 , (6.207)

so for us α = 2− s.
For any boundary conditions -Neumann, Dirichlet, or periodic- the coef-
ficient matrix of the linear system admits the factorization

L = RR> (6.208)
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where R is a square or rectangular matrix. This factorization is the dis-
crete counterpart of the second derivative constructed as the sequential
application of the first derivative. Note that the commutative property
RR> = R>R is not always satisfied.

When the Dirichlet boundary condition is specified at both ends of the
solution domain, the first and last values, f1 and fn+1, are known. Col-
lecting the difference equations (6.206) for the interior nodes, i = 2, ..., n,
we obtain a system of linear equations where L is (n− 1)× (n− 1) sym-
metric tridiagonal Toeplitz matrix, a matrix with constant diagonal lines.
The m = 1, 2, · · · , n− 1 eigenvalues of L are

λm = 2− 2 cosαm = 4 sin2 ( 1
2αm) , αm = π

m

n
(6.209)

He also lists eigenvectors and factorizes as in (6.208), and discusses the
Neumann boundary condition, in which case L is a “nearly Toeplitz ma-
trix.” as well. In factorization (6.208), R is now a rectangular matrix.

For periodic boundary conditions, L is a “nearly tridiagonal matrix.” Be-
cause of the zero eigenvalue of the Laplacian, λ0 = 0, corresponding to a
constant eigenvector, the matrixL is singular. The rest of the eigenvectors
are pure harmonic waves. The identity

f> · L · f =
n∑
i=1

(fi+1 − fi)2 ≥ 0 (6.210)

for arbitrary periodic field f demonstrates that the matrix L is positive
semidefinite.

The periodic Laplacian is a circulant matrix.

He defines the graph Laplacian.

The adjacency matrixA, defined asAij = 1 if nodes i and j are connected
by a grid line or link, 0 otherwise, with the convention thatAii = 0. Thus,
by convention, the diagonal line of the adjacency matrix is zero. .

The number of paths that return to an arbitrary node after s steps have
been made, summed over all starting nodes, is

ns =
n∑
j=1

µ2
j (6.211)

where µj are eigenvalues of A.

The degree of the ith node, denoted by di, is defined as the number of
links attached to the node, which is equal to the sum of the elements in
the corresponding row or column of the adjacency matrix. The Laplacian
equals L = D − A, where D is a diagonal matrix whose ith diagonal
element is equal to the corresponding node degree di.

8289 (predrag–8289) 377 03/15/2022 siminos/spatiotemp



CHAPTER 6. SPATIOTEMPORAL CAT

He introduces the oriented incidence matrix R, by labeling nodes and
links sequentially, and shows it leads to the factorization (6.208). All of
these notions generalize to graphs.
A uniform two-dimensional Cartesian (square) lattice.
An Archimedean lattice consists of an infinite doubly periodic array reg-
ular polygons. In particular, each node is surrounded by the same se-
quence of polygons. There are 11 Archimedean lattices.
The Archimedean 44 lattice, also known as the square lattice, is a Bravais
lattice consisting of a doubly periodic array of empty squares.
Laves lattices are the duals of the Archimedean lattices. A Laves lat-
tice arises by introducing vertices in the middle of the tiles (faces) of an
Archimedean lattice and then connecting the vertices to cross the edges
of the Archimedean lattice. The dual of the square lattice is the same
square lattice.
The nodes of a two- or three-dimensional regular lattice, regarded as a
structured network, can be identified by two or three indices assigned to
the individual lattice directions. The spectra of lattice networks Lapla-
cians are used in computing of lattice Green’s functions.
His figure 6.6 is interesting: I think it is a plot of the lowest eigenstates
(“spectral partitioning”) of a [17×17] square lattice (“Cartesian network”)
consisting of a complete set of horizontal and vertical links. As an exam-
ple, the spectral partitioning of a square network is shown in Figure 2.2.1.

In spectral partitioning (a weighed sum of eigenvectors of the Laplacian
matrix) roughly an equal number of eigenvector components with pos-
itive and negative sign appear. Eigenvector corresponding to the zero
eigenvalue of the Laplacian matrix is uniform over the nodes of a net-
work; the eigenvector corresponding to the zero eigenvalue is filled with
ones. Orthogonality of the set of eigenvectors requires that all other
eigenvectors have mean zero, his Eq. (2.2.8). Higher eigenvectors par-
tition the network into two or a higher number of pieces (spectral par-
titioning). To partition a network, we may group together nodes whose
eigenvector components corresponding to a specified eigenvalue have
the same sign. The eigenvalue with the second smallest magnitude, is
chosen for division into two fragments, while higher eigenvalues are cho-
sen for division into a higher number of fragments.
A network whose structure is isomorphic to that of a square lattice con-
sists of two intersecting one-dimensional arrays of links. A theorem due
to Fiedler [8, 74] states that the eigenvectors of the Laplacian matrix for
certain types of boundary conditions are tensor products of those of the
constituent one-dimensional graphs, and the eigenvalues are the sums
of the eigenvalues of the Laplacian of the constituent one-dimensional
graphs. This property reflects the separability of the discrete Laplace op-
erator in Cartesian coordinates.
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Figure 6.6: A [17 × 17] rectangular Helmholtz (6.207) network. Positive com-
ponents of an eigenvector are marked as filled circles, negative components
are marked as dots, and zero components are unmarked. The network shown
consists ofN = 172 = 289 nodes connected by L = 544 links. The degree of the
4 corner nodes is 2, the 60 edge nodes is 3, and 225 interior nodes is 4. Exact
expressions for the eigenvalues and eigenvectors of the Laplacian of the square
network are discussed in Pozrikidis Chapter 3. The first nine eigenvalues cor-
responding to the eigenvectors shown here are λi = 0, 0.0341 (double), 0.0681,
0.1351 (double), 0.1691 (double), and 0.2701. Pozrikidis [194] Fig 2.2.1.
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We need to understand spatiotemporal cat eigenmodes. If s < 2 lattice is
a spring mattress, with spring constant 2− s, what are the normal modes
of the s > 2 spatiotemporal cat? In the above he discusses the Helmholtz,
s = 2 Laplacian eigenmodes case (6.207).

2020-01-21 Predrag Fruchart, Zhou and Vitelli [83] Dualities and non-Abelian
mechanics seems interesting. The abstract: “ Dualities are mathematical
mappings that reveal links between apparently unrelated systems in vir-
tually every branch of physics. Systems mapped onto themselves by a
duality transformation are called self-dual and exhibit remarkable prop-
erties, as exemplified by the scale invariance of an Ising magnet at the
critical point. Here we show how dualities can enhance the symmetries
of a dynamical matrix (or Hamiltonian), enabling the design of meta-
materials with emergent properties that escape a standard group theory
analysis. As an illustration, we consider twisted kagome lattices, recon-
figurable mechanical structures that change shape by means of a col-
lapse mechanism. We observe that pairs of distinct configurations along
the mechanism exhibit the same vibrational spectrum and related elastic
moduli. We show that these puzzling properties arise from a duality be-
tween pairs of configurations on either side of a mechanical critical point.
The critical point corresponds to a self-dual structure with isotropic elas-
ticity even in the absence of spatial symmetries and a twofold-degenerate
spectrum over the entire Brillouin zone. The spectral degeneracy origi-
nates from a version of Kramers’ theorem in which fermionic time-reversal
invariance is replaced by a hidden symmetry emerging at the self-dual
point. The normal modes of the self-dual systems exhibit non-Abelian
geometric phases that affect the semiclassical propagation of wavepack-
ets, leading to non-commuting mechanical responses. ”

Mechanical structures are described at the linear level by normal modes
of vibration and their oscillation frequencies. Both are determined by the
dynamical matrix D̂, which summarizes the Newton equations of motion
in the harmonic approximation [...] our analysis also applies when D̂
is replaced by other linear operators, such as the Maxwell operator of a
photonic crystal[ref28], the mean-field Hamiltonian of a quantum system
(in which case the eigenvalues are energies) or the dynamical matrix of
an electrical circuit [4, 146, 177].

A symmetry is a transformation that maps a system onto itself. A duality
relates distinct models or structures. In self-dual systems, the distinc-
tion between dualities and symmetries is blurred: additional symmetries
can emerge at a self-dual point even if the spatial symmetries are un-
changed. Such dualities can be harnessed to engineer material properties
from wave propagation to static responses that are not predicted by a
standard symmetry analysis based on space groups.

This one as well: Souslov and Vitelli [211] Geometry for mechanics: “ The
mechanics of many materials can be modelled by a network of balls con-
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nected by springs. A bottom-up approach based on differential geometry
now captures changes in mechanics upon network growth or merger, go-
ing beyond the linear deformation regime. ”

2021-01-09 Predrag Fruchart, Zhou and Vitelli [83] cite

Ningyuan et al. [177] Time- and site-resolved dynamics in a topological cir-
cuit: I think we can ignore this paper. Though supplemental material
explains: (1) The Harper-Hofstadter model, and its extension to spin-
ful systems. (2) Photonic lattices, in both massive and massless limits.
(3) Adding topology to photonic lattice models. (4) Mathematical tools
for the calculation of band-structure, corresponding band Chern num-
bers, and two-point response of photonic lattice models. (5) Mathemati-
cal tools for calculating band- and edge- structure of finite strips.

Albert, Glazman and Jiang [4] Topological properties of linear circuit lattices
have a 3-site lattice example, where the Lagrangian contribution of the
link between neighboring sites is built from a (kinetic) capacitive part
with what we call orbit Jacobian matrix J , and a (potential) inductive
part with what we call shift matrix d.

2021-01-09 Predrag Fruchart, Zhou and Vitelli [83] cite Lee et al. [146] Topolec-
trical circuits. The normal mode frequency matrix of our circuit is unitar-
ily equivalent to the hopping matrix of a quantum spin Hall insulator.

Circuits consisting of resistor, inductor and capacitor (RLC) components
are governed by its circuit Laplacian, which is analogous to the Hamilto-
nian describing the energetics of a physical system. Here we show that
topological insulating and semimetallic states can be realized in a peri-
odic RLC circuit.

Any electrical circuit network can be represented by a graph whose nodes
and edges correspond to the circuit junctions and connecting wires/elements.
The circuit behavior is fundamentally described by Kirchhoff’s law. As
an initial step towards identifying circuits with tight-binding lattice mod-
els, they rewrite Kirchhoff’s law in a matrix form, and consider circuits
made up of periodic sublattices, with periodic boundary conditions (i.e.
without grounded terminations).

What we call orbit Jacobian matrix J they call ‘the grounded Laplacian’
J .

The regularized inverse of J known as the circuit Green’s function (regu-
larization in this context means that 0 modes are omitted). The Laplacian
is defined in terms of the conductances by L = D − C, where C is the
(adjacency) matrix of conductances and D lists the total conductances
out of each node. They call the set of eigenvalues the bandstructure of
the circuit, and also refer to the nodes as sites.

RLC circuits obey a linear 2nd order ordinary differential equation (ODE),
just like a mechanical system with springs, dampers and masses.
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6.11 Counting invariant 2-tori
20 An invariant 2-torus on a 2-dimensional spatiotemporally infinite Z2 lattice
has more complicated pattern than a cat map periodic orbit. An invariant 2-
torus can tile the infinitely large 2-dimensional space not only by repeating in
the time or space direction, but also by moving in both of the spatiotempo-
ral directions. The repeating pattern can generally be described by a Bravais
lattice:

L = {n1a1 + n2a2|ni ∈ Z}. (6.212)

And the invariant 2-tori tile the infinitely large 2-dimensional space by:

xz = xz+R , R ∈ L . (6.213)

The z here is a two-dimensional vector which labels the position and time of
the field. The screened Poisson equation (??) can be written as:

(−2s+ σ1 + σ>1 + σ2 + σ>2 )xz = −mz , (6.214)

where the σi is a translation operator which can translate the field in the posi-
tive ith direction by length one and σ>i is the inverse of the operator σi which
translates the field in the negative ith direction. Here we can assume that σ1 is
a translation in the time and σ2 is a translation in space. But since the system is
invariant under the exchange of space and time, we don’t need to distinguish
these two directions.

Note that in (6.214) the operators, field and source are defined on infinitely
large 2-dimensional space (lattice). For an invariant 2-torus, which is a periodic
tile, the screened Poisson equation (6.214) is also satisfied on this finite tile. But
in this case, the translation operators need to satisfy the periodic bc’s specified
by this invariant 2-torus. And the −2s+ σ1 + σ>1 + σ2 + σ>2 on the finite region
is the orbit Jacobian matrix matrix of this specific periodic pattern.

Following the same procedure as counting the periodic points of a cat map,
we know that the number of periodic points is given by the determinant of
the orbit Jacobian matrix. To find the determinant and the inverse of the orbit
Jacobian matrix, we need to first find the eigenvectors and eigenvalues.

The eigenvectors here are fields defined in this finite tile. The elements of
these eigenvectors are generally complex numbers. If we tile the whole 2-dim-
ensional space with one of these finite fields using the periodic condition, we
will get an eigenvector of the operator in (6.214) defined in the infinite 2-dim-
ensional space. And the eigenvalue remains unchanged. So we can find the
eigenvectors and eigenvalues in the infinite 2-dimensional space then reduce
the field into the finite tiles.

21

20Han 2019-06-25: This section is a version of kittens refsect s:dDcatMap that starts from 2D
cat map without giving the formula of general d-dimensional spatiotemporal cat. I feel this is less
clear than start with the d-dimensional spatiotemporal cat, but it directly follows the section of
spatiotemporal cat map. Eventually this text was not used not used in kittens [57].

21Han 2019-06-17: I will need to rewrite this paragraph to make it clearer.
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For a 2-dimensional spatiotemporal cat map, we want to find eigenvectors
with periodicity given by the Bravais lattice (6.212), where a1 and a2 are two
2-dimensional basis vectors. The general form of these basis vectors are a1 =
{l1, l2} and a2 = {l3, l4}. For a given Bravais lattice, the choice of basis vectors
is not unique. It is shown by Lind [155], (click here) that we can choose basis
vectors with form a1 = {l1, 0} and a2 = {l3, l4} without loss of generality. 22

Then the reciprocal lattice is:

L = {n1b1 + n2b2|ni ∈ Z} , (6.215)

where the vectors b1 and b2 satisfy:

bi · aj = 2πδij . (6.216)

The eigenvectors of the translation operator which satisfy the periodicity of the
Bravais lattice (6.212) are plane waves of form:

fk(z) = eik·z , k ∈ L , (6.217)

where the wave vector k is on the reciprocal lattice L. For the basis vectors
a1 = {l1, 0} and a2 = {l3, l4}, the basis vectors of the corresponding reciprocal
lattice are b1 = 2π/l1l4 {l4,−l3} and b2 = 2π/l1l4 {0, l1}. The expression of
eigenvector with wave vector k = n1b1 + n2b2 is:

fk(z) = eik·z = exp[i
2π

l1l4
(n1l4z1 − n1l3z2 + n2l1z2)] , (6.218)

where the z = (z1, z2). The eigenvalue of the operator s − σ1 − σ>1 − σ2 − σ>2
corresponding to this eigenvector is:

λk = s− 2 cos(
2πn1

l1
)− 2 cos(−2πn1l3

l1l4
+

2πn2

l4
) . (6.219)

It is sufficient to use the wave vectors k with n1 from 0 to l1 − 1 and n2 from
0 to l4 − 1 to get all of the eigenvectors. Any wave vector on the reciprocal
lattice outside of this range will give an eigenvector which is equivalent to an
eigenvector with the wave vector in the range. So the number of eigenmodes
we can get is l1l4, which is the number of lattice sites in a smallest repeating
tile.

Using the counting formula (??), we can find the number of the periodic
points by computing the determinant of the orbit Jacobian matrix, which is the
operator −2s+ σ1 + σ>1 + σ2 + σ>2 defined on the finite tile with periodic bc’s:

N =
∏
k

λk =

l1−1∏
n1=0

l4−1∏
n2=0

[
2s− 2 cos(

2πn1

l1
)− 2 cos(−2πn1l3

l1l4
+

2πn2

l4
)

]
.

(6.220)
This is the number of periodic points with the periodicity given by Bravais
lattice (6.212) with the basis vectors a1 = {l1, 0} and a2 = {l3, l4}.

Using the eigenvectors we can do a Fourier transform to the orbit Jacobian
matrix and get the inverse which is the Green’s function.

22Predrag 2020-02-15: This is called ‘Hermite normal form’, see (6.126).
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6.12 Integer lattices literature

There are many reasons why one needs to compute an “orbit Jacobian matrix”
Hill determinant |DetJ |, in fields ranging from number theory to engineering,
and many methods to accomplish that:

discretizations of Helmholtz [61, 73, 152] and screened Poisson or Klein–Gordon
or Yukawa [62, 90, 111, 112] equations

Green’s functions on integer lattices [8, 11, 26, 36, 40, 43, 74, 88, 107, 108,
135–137, 158, 164, 167, 173, 174, 186, 214, 232]

linearized Hartree-Fock equation on finite lattices [143]
random walks, resistor networks, electrical circuits [4, 13, 27, 52, 53, 63, 92,

98, 114, 144, 146, 177, 194, 218, 224, 234]
Gaussian model [80, 131, 163, 205]
tight-binding Hamiltonians [52, 53, 67]
discrete Schrödinger equation [184], Harper or Hofstadter model [99, 104]

or almost Mathieu operator [207]
quasilattices [32, 77]
circulant tensor systems [36, 40, 170, 195, 198, 236]
Ising model [24, 101, 102, 113, 115, 118–120, 138, 151, 159, 165, 178, 191, 235],
Ising model transfer matrices [179, 235]
lattice field theory [123, 168, 172, 175, 199, 209, 210, 228]
modular transformations [37, 241]
lattice string theory [87, 182]
spatiotemporal stability in coupled map lattices [7, 84, 239]
Van Vleck determinant, Laplace operator spectrum, semiclassical Gaussian

path integrals [49, 148, 149, 223]
Jacobi operator
time reversal
Hill determinant [28, 49, 160]; discrete Hill’s formula and the Hill discrimi-

nant, Toda lattice [222]
Lindstedt-Poincaré technique [225–227]
heat kernel [41, 65, 68, 126, 134, 167, 186, 237]
chronotopic models [192]
lattice points enumeration [20, 21, 25, 59]
cryptography [169]
primitive parallelogram [14, 33, 176, 229]
difference equations [58, 75, 215]
Bernoulli map [30, 64, 103], beta transformation [76, 183, 197]
digital signal processing [66, 153, 233]
generating functions, Z-transforms [68, 230]
integer-point transform [25]
graph Laplacians [44, 89, 156, 193]
graph zeta functions [10, 18, 23, 29, 45–47, 60, 65, 94, 100, 109, 116, 145, 147,

193, 196, 201, 204, 213, 220, 221, 240]
zeta functions for multi-dimensional shifts [17, 155, 157, 171]
zeta functions on discrete tori [41, 42, 237]
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Chapter 7

Zeta functions in 2D

“symbols” are sometimes called “colors”. 2CB
1 Let Z2 be a two-dimensional planar lattice. For any m,n ≥ 1 and (i, j) ∈

Z2, the m×n rectangular lattice with the left-bottom vertex (i, j) is denoted by

Zm×n((i, j)) = {(i+m′, j + n′) | 0 ≤ m′ ≤ m− 1, 0 ≤ n′ ≤ n− 1} .

and Zm×n = Zm×n((0, 0)). Let Sp be an alphabet of p (≥ 2) symbols. Form,n ≥
1, Σm×n(p) = SZm×np is the set of all m× n local patterns or rectangular blocks,
and Σm×n(B) is the set of admissible m × n patterns. Σ(B) is the set of all
admissible patterns in B.

2016-11-07 Predrag There is much literature on multi-dimensional shifts [2–6,
8, 9, 17, 21, 23, 24, 33, 34, 43, 45]. It does not seem to directly relevant to
the 2-dimensional spatiotemporal symbolic dynamics studied by us.

2016-05-04 Predrag There is much literature on multi-dimensional shifts that
we have to understand (or at least understand whether it is relevant to
our 2-dimensional symbolic dynamics):

Ward [46] An algebraic obstruction to isomorphism of Markov shifts with group
alphabets introducedZ2-subshift, or the space of doubly indexed sequences
over a finite abelian compact group G.

Ward [45] Automorphisms of Zd-subshifts of finite type

Ward and Miles [47] A directional uniformity of periodic point distribution and
mixing: “ For mixing actions generated by commuting automorphisms of
a compact abelian group, we investigate the directional uniformity of the
rate of periodic point distribution and mixing. When each of these au-
tomorphisms has finite entropy, it is shown that directional mixing and
directional convergence of the uniform measure supported on periodic
points to Haar measure occurs at a uniform rate independent of the di-
rection. ”

1Predrag 2016-10-11: From Ban et al. [3], on two-dimensional Z2-shifts of finite type
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Miles and Ward [36] The dynamical zeta function for commuting automor-
phisms of zero-dimensional groups: “ For a Zd-action α by commuting home-
omorphisms of a compact metric space, Lind [26], (click here) introduced
a dynamical zeta function that generalizes the dynamical zeta function of
a single transformation. We investigate this function when α is generated
by continuous automorphisms of a compact abelian zero-dimensional
group. We address Lind’s conjecture concerning the existence of a natural
boundary for the zeta function and prove this for two significant classes
of actions, including both zero entropy and positive entropy examples.
The finer structure of the periodic point counting function is also exam-
ined and, in the zero entropy case, we show how this may be severely
restricted for subgroups of prime index in Zd. ”

Ward and Miles [48] Directional uniformities, periodic points, and entropy:
“ For dynamical systems generated by d ≥ 2 commuting homeomor-
phisms, dynamical invariants like entropy and periodic point data, be-
come more complex and permit multiple definitions. A powerful theory
of directional entropy and periodic points can be built. An underlying
theme is uniformity in dynamical invariants as the direction changes, and
the connection between this theory and problems in number theory; we
explore this for several invariants and highlight Fried’s notion of average
entropy and its connection to uniformities in growth properties. ”

Al Refaei 2011 “The group Z2 acts natural on the space ?? via left and
upward shifts" is gibberish, ignore it.

Roettger [44], Periodic points classify a family of Markov shifts, writes:

Ledrappier introduced the following type of space of doubly indexed se-
quences over a finite abelian group G,

XG = {(xs,t) ∈ GZ2 |xs,t+1 = xs,t + xs+1,t for all s, t ∈ Z}.

The group Z2 acts naturally on the space XG via left and upward shifts.

Chow, Mallet-Paret and Van Vleck [8, 9, 33, 34] Pattern formation and spa-
tial chaos in spatially discrete evolution equations

(Actually, Bunimovich might have worked on this)

Friedland [17] On the entropy of Zd subshifts of finite type

Quas and Trow [43] Subshifts of multi-dimensional shifts of finite type

Desai [12] Subsystem entropy for Zd sofic shifts

Ban and Lin [4, 5] Patterns generation and transition matrices in multi-dimensional
lattice models

Boyle, Pavlov and Schraudner [6] Multidimensional sofic shifts without sep-
aration and their factors

Hochman and Meyerovitch [21] A characterization of the entropies of multi-
dimensional shifts of finite type
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Ban, Hu, Lin, and Lin [3], Verification of mixing properties in two-dimensional
shifts of finite type

Hu and Lin [23] Nonemptiness problems of plane square tiling with two colors

Hu and Lin [24], On spatial entropy of multi-dimensional symbolic dynamical
systems, discuss multi-dimensional shift space for a rectangular spatial
entropy which is the limit of growth rate of admissible local patterns on
finite rectangular sublattices.

2016-05-04 Predrag Ban, Hu, Lin, and Lin [2], Zeta functions for two-dimensional
shifts of finite type seems to be a must read, with exhaustive references.
The zeta functions of two-dimensional shifts of finite type which general-
izes the Artin-Mazur [1] zeta function was given by Lind [26], (click here)
for Z2-action. The rotationally symmetric trace operator is the transition
matrix for x-periodic patterns with period n and height 2. The rotational
symmetry induces the reduced trace operator, and the zeta function in
the x-direction is now a reciprocal of an infinite product of polynomials.
The zeta function can be presented in the y-direction and in the coor-
dinates of any unimodular transformation in GL2(Z). Therefore, there
exists a family of zeta functions that are meromorphic extensions of the
same analytic function. The Taylor series for these zeta functions at the
origin are equal with integer coefficients, yielding a family of identities,
which are of interest in number theory.

Their Example 7.2
Let F2 = {0, 1} and

Z =
{
φnt = φn,t+1 + φn,t−1 + φn+1,t + φn−1,t for all nt ∈ Z2

}
is about the harmonic patterns on square-cross lattice L studied by
F. Ledrappier, Un champ markovien peut être d’entropie nulle et mélangeant,
C. R. Acad. Sc. Paris Ser. A 287 (1978), 561-562. For us, this is a bit strange
- our ‘harmonic’ value would be 4φnt, not φnt.

2016-10-11 Predrag Boris has explained the strategy of Ban et al. [2], approach
that he himself has used: one constructs ζ functions for finite periodic
domain in one direction, i.e., infinite strip Z∞×L or ZT×∞. with a transfer
operator generating the other, infinite direction, as in figure 7.1 (b). Those
zeta functions are multiplied. The infinite products, a different formula
for each direction, describe the same set of admissible patterns, resulting
in some unexpected identities.

I find this very unnatural - intelligent zeta should account for all com-
muting directions democratically.

2020-03-05 Predrag Douglas Lind’s website.

Lind [26]: Let f : X → X be a homeomorphism of a compact space
and Nn(f) denote the number of points in X fixed by f . We assume
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Figure 7.1: (a) A fixed L periodic spatial domain, all t. (b) A fixed T peri-
odic temporal domain, all x. (c) A fixed LT, doubly periodic spatiotemporally
invariant 2-torus.

that Nn(f) is finite for all n ≥ 1. [· · · ] The zeta function has the product
formula

1/ζAM(z) =
∏
p

(1− znp) (7.1)

where the product is over all finite orbits p of f and np denotes the num-
ber of points in p.

To compute ed(n) we use the Hermite normal form of an integer matrix
(see ref. [29], Thm. 22.l).·
[10] Mac Duffee [29] The Theory of Matrices, (Chelsea, New York, 1956)
(click here); Y. Katznelson, Ergodic automorphisms of Tn are Bernoulli,
Israel J. Math. 10 (1971), 186-195.

The following question was suggested to us by David Ruelle:
Problem 7.5. Compute explicitly the thermodynamic zeta function for
the 2-dimensional Ising model, where α is the Z2 shift action on the space
of configurations.

2021-07-28 Predrag Here is a cute “interesting zeta function” over Z with the
product formula, apparently known to Gauss:∏

n

1

1− zn =
∑
`

p`z
` (7.2)
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where p` of is the number of partitions of `.

2018-10-09 Predrag Lind and Schmidt [27] Symbolic and algebraic dynamical sys-
tems, (click here) studies zeta functions for Zd actions.

2018-09-02, 2018-10-09 Predrag Einsiedler, Lindenstrauss, Michel and Venka-
tesh [14] Distribution of periodic torus orbits and Duke’s theorem for cubic
fields: “ We study periodic torus orbits on spaces of lattices. Using the
action of the group of adelic points of the underlying tori, we define a
natural equivalence relation on these orbits, and show that the equiva-
lence classes become uniformly distributed. This is a cubic analogue of
Duke’s theorem about the distribution of closed geodesics on the mod-
ular surface: suitably interpreted, the ideal classes of a cubic totally real
field are equidistributed [...] ”

Homogeneous toral sets do not seem to be defined. They generalize the
groupings of compact orbits (I believe these compact orbits are what we
call -at this moment- prime tori).

They define two invariants for homogeneous toral sets, volume (defined
in their eq. (13), measuring how “large" it is) and discriminant (measuring
its arithmetic complexity). I have no intuition about what this discrimi-
nant is in our applications.

The periodic orbits are grouped into equivalence classes, equivalent or-
bits having the same volume and discriminant. An equivalence class of
compact orbits is a packet. Compact orbits in the same packet have the
same stabilizer and the same discriminant.

2020-12-18 Predrag Esposti and Isola [15] Distribution of closed orbits for linear
automorphisms of tori (1995) develop zeta functions for d-dimensional tori;
then they specialized to D dof symplectic matrices acting on 2D-dimen-
sional tori, of which Isola’s d = 2 is a special case. But I’m confused. I do
not think that has to do with lattice zeta functions we seek...

2020-11-22 RSM The November 20, 2020 Matthew Gudorf Spatiotemporal tiling
of the Kuramoto-Sivashinsky system thesis dissertation defense interests me.
At the conceptual level it was already in Pesin & Sinai [39] 1988 Space-time
chaos in the system of weakly interacting hyperbolic systems, for CML, and in
my MacKay [31] Space-time phases 2012 lecture notes, but claiming it ap-
plies to Kuramoto-Sivashinsky is bold. I suppose it does not fit perfectly,
but interesting if it fits approximately.

Is there a paper I can read?

2022-021-19 Predrag I see no ‘symbol table’ in Pesin & Sinai [39] (1988). Buni-
movich and Sinai [7] (1988) has two-dimensional ‘symbolic representa-
tion’.

R.S. MacKay [30] Indecomposable coupled map lattices with non-unique phase
(2005) refers to ‘symbol tables’.
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Coutinho and Fernandez [10] (1997) call this ‘spatiotemporal code’.

2020-11-22 Predrag to Han: please read MacKay [31] Space-time phases: Statis-
tical properties of dynamics on large networks (click here), Sect. 2.2 Statistical
Phases for Uniformly Hyperbolic Attractors of Finite-Dimensional Determinis-
tic Dynamical Systems and related, and please take notes here on anything
that is related to our project.

2020-12-16 RSM Cf. section 7.2.3 Uniformly hyperbolic dynamics on networks in
our 2013 LMS lecture notes [31] “Masters of Complexity Science” (click
here).

2020-12-16 Predrag Han Liang and I have been studying your Space-time phases:
Statistical properties of dynamics on large networks [31], and I was supposed
to report back to you. I like the proof of hyperbolicity for the spatiotem-
poral CML. Other than sect. 10.1 Chronotopic literature, this is the closest
to our spatiotemporal work.

2020-12-16 RSM Perhaps the analogue of the MM formula that is relevant is
the formula on line 4 of p. 436, of which I am proud but it was also found
by Bricmont and Kupiainen, and they published before I did.

2020-12-23 Predrag Bricmont and Kupiainen, High temperature expansions and
dynamical systems arXiv:chao-dyn/9504015: “ We develop a resummed
high-temperature expansion for lattice spin systems with long range in-
teractions, in models where the free energy is not, in general, analytic. We
establish uniqueness of the Gibbs state and exponential decay of the cor-
relation functions. Then, we apply this expansion to the Perron-Frobenius
operator of weakly coupled map lattices.”

They credit D. L. Volevich, Kinetics of coupled map lattices, Nonlinearity 4,
37-45 (1991); The Sinai -Bowen-Ruelle measure for a multidimensional lattice
of interacting hyperbolic mappings, Russ. Acad. Dokl. Math.47, 117-121
(1993); and Construction of an analogue of Bowen-Ruelle-Sinai measure for
a multidimensional lattice of interacting hyperbolic mappings, Russ. Acad.
Math. Sbornik 79, 347-363 (1994).

2020-12-16 Predrag Spatially homogenous lattice models also invariant under
discrete space translations were studied by Bunimovich and Sinai [7] in the
case when g(φnt) is a one-dimensional expanding map.

Regarding your “symbol tables” (what we call symbol blocks): the pre-
vious examples of (D+1)-dimensional spatiotemporal symbolic dynam-
ics: Pesin and Sinai [39], Bunimovich and Sinai [7], Pethel, Corron and
Bollt [40, 41]. In other literature, I noticed that Houlrik [22] gives Buni-
movich and Sinai [7] the credit.

The key insight [7, 20] –an insight that applies to coupled-map lattices [40–
42], and field theories modeled by them, not only the system considered
here– is that a field X = {φz} over a d-dimensional spacetime lattice
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z ∈ Zd has to be described by a corresponding symbol block M = {mz} ,
over the same d-dimensional spacetime lattice z ∈ Zd, rather than a 1-
dimensional temporal symbol sequence (1.68), as one does when describ-
ing a finite coupled “N -particle” system in the Hamiltonian formalism.
Other than the “symbol tables”, Bunimovich and Sinai [7] (1988) and
Pesin and Sinai [39] are profoundly different, nothing to do with the spa-
tiotemporal cat. Bunimovich has heard me talk about it, Sinai not.
As spatiotemporal cat equations are symmetric under interchange of the
‘space’ and the ‘time’ directions, their temporal and spatial dynamics are
strongly coupled, corresponding to ε ≈ O(1) in (6.1), in contrast to the
traditional spatially weakly coupled CML [7].
The conventional CML models start out with chaotic on-site dynamics
weakly coupled to neighboring sites, with strong spacetime asymmetry.
In order to establish the desired statistical properties of CML, such as
the continuity of their SRB measures, refs. [7, 39] and most of the subse-
quent mathematical literature rely on the structural stability of Anosov
automorphisms under small perturbations. Contrast this with the non-
perturbative 2-dimensional Gutkin-Osipov [20] spatiotemporal cat (20.46).
Unlike the systems studied in ref. [7], spatiotemporal cat cannot be con-
jugated to a product of non-interacting cat maps; a way to see that is to
compare the numbers of invariant 2-tori in the two cases – they differ.
In all other coupled maps literature I am aware of, the starting point is
time evolution of a non-interacting particle at each site, with its 1-dim-
ensional temporal symbolic dynamics, with spatial coupling to D spatial
neighbors subsequently tacked on. While the spacetime coordinate of site
is (D+1)-dimensional, its symbolic dynamics is 1-dimensional.
Your paper I found most eye-opening was the Hill’s formula of [32] Linear
stability of periodic orbits in Lagrangian systems.
We do not derive the formula the way you did it (ours also works for
dissipative systems), but the paper made the light bulb turn on...
Is there something else?
The thing we’ve been struggling with the most, that has kept the paper
from a publication is unimodular invariance of the defining cell (Bravais
cell) of a lattice (tiling of spacetime) so I have not been able to write down
a rational spatiotemporal topological zeta function in terms of prime (non-
repeating) 2-tori (spatiotemporal periodic orbits). Should be doable (the
Green’s function is elliptic K function), but I just do not get it:)

2020-12-16 RSM Yes, neat to consider cat map as a second order recurrence on
one variable rather than a first order one on two variables (I hadn’t appre-
ciated the advantage when Vivaldi was talking about it way back then)
and then it indeed looks like a discrete field theory and extends naturally
to space-time and you can code all solutions by lattices of integers, one
for each point in space-time.
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In the general “uniformly hyperbolic” situation (in quotes because it is
the way to connect with dyn sys, but the point is to escape from time-
evolution view, as you do, and consider solutions as being zeroes of
some function from states on spatiotemporal lattice to the spatiotempo-
ral lattice and then u hyp just means the derivative of the function has
bounded inverse), expect to be able to code all solutions by some set of al-
lowed symbol tables, via spatiotemporal shadowing (which is just shad-
owing in the more general context, again having nothing to do with time-
evolution). Not sure to what extent I mentioned this in my lecture notes,
but perhaps it appears in the article I wrote for Chazottes & Fernandez
earlier. I have certainly waved spatiotemporal shadowing around as pro-
viding an answer, but never really done it for any particular system. Will
think about it.
Will also think about your question of zeta fn for the Gutkin-Osipov
CML. It will be a straightforward answer once we have thought of it, but
a question of keeping everything straight in one’s mind. I’m not clear
where your obstacle is. We can count all spatiotemporal periodic solu-
tions and so make a zeta fn; you want to reduce it to an expression in
terms of prime ones? or to one in terms of collections of disjoint elemen-
tary cycles? (I put elementary in there because graph theorists use closed
walk for what you might call a cycle and cycle for what I’m calling an
elementary one) “Just” need to work out the spatiotemporal analogue.
Maybe I need to wake up fresh tomorrow morning to do it. Or have a
whisky now to do it (except I don’t have any in the house right now!).

2020-12-17 RSM I found the Percival-Vivaldi [37] paper (having first found
their other one [38] from 1987 on the periodic orbits). As I remembered,
they do not appear to derive finite-type conditions on their coding. I
suspect it is not of finite type. Thus I’d say it is pretty useless, compared
to the Adler-Weiss partition.
I wasn’t convinced by Percival-Vivaldi [37] as it is not obvious (to me)
what are the constraints on the sequence of integers mt. Do you know?
Say we take φt+1 − 3φt + φt−1 = 0 mod 1, φ ∈ [−1/2, 1/2) then we can
get {−2,−1, 0, 1, 2}, but not all sequences of such integers are possible
because that would give entropy log 5 whereas it is supposed to be log(3+√

5)/2, or log(s+
√

(s− 2)(s+ 2))/2 in general. There should be a simple
finite-type condition. Do you know it?

2020-12-18 Predrag I agree. It’s ridiculous, arbitrary frame on the unit torus,
contra natura, ignoring stable/unstable manifolds, painful to implement
– Dirichlet conditions destroy the time-translational invariance of the lat-
tice. That is why I included figure 2 and table 2 – an impossible number-
theoretic problem created by ignoring the well-known generating parti-
tion construction. There Vivaldi and Percival got it wrong.
Aside: Nobody listens to me, and in particular Russians, so I had to watch
and assist Gutkin and 3 grad students push this pointless torture of a pa-
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per. The problem is that quantum chaos crowd profoundly lacks under-
standing of periodic orbit theory – I wrote a whole book to explain that
periodic orbit calculations are general nonlinear coordinate transforma-
tion invariant, that one does not need nowhere differentiable probability
measures, to no avail. Russians make it worse by idolizing Sinai and
believing that one has to construct explicit, coordinate-dependent gener-
ating partitions – that never works except in 3 or so examples which are
the only ones they are always taught.

2020-12-17 RSM Do you have a way around it?

2020-12-18 Predrag Yes, we construct the Adler-Weiss generating partition for
Percival-Vivaldi 2-configuration map in ChaosBook.org (not polished yet,
but for you I’ve promoted it from internal to publicly readable text):
ChaosBook Example 14.12 Adler-Weiss partition of the cat map state space.
Our construction is sufficiently clever that my very smart collaborator
Gutkin still does not get it:)
While Percival and Vivaldi were well aware of Adler-Weiss partitions,
they felt that their “coding is less efficient in requiring more symbols, but
it has the advantage of linearity.” Our construction demonstrates that one
can have both: an Adler-Weiss generating cat map partition, and a linear
code. The only difference from the Percival-Vivaldi formulation [37] is
that one trades the single unit-square cover of the torus of (1.101) for
the dynamically intrinsic, two-rectangles cover, but the effect is magic -
now every infinite walk on the transition graph corresponds to a unique
admissible orbit {φt}, and the transition graph generates all admissible
itineraries {mt}.
But the Hamiltonian formulation is stupid. The great advantage of the
Lagrangian, temporal lattice formulation is that the fundamental fact yields
the number of periodic solutions and the zeta function without any ex-
plicit time-evolution generating partition. I believe that explicit time-
evolution generating partitions are impossible to generalize to spatial lat-
tices evolving in time.

2020-12-17 RSM You cited Isola [25] for the ζ-function for the cat map but I
thought people like Manning had calculated it earlier. I looked up his
1971 paper on rationality of zeta for Axiom A and see he cites Smale’s
1967 review for toral automorphisms.

2020-12-18 Predrag I doubt it. In his 1971 Axiom A diffeomorphisms have rational
zeta function [35] he explains rationality of topological (orbit counting)
of Smale’s school zeta functions in terms of ‘Manning multiples’, what I
understand as inclusion-exclusion principle (when sets share boundaries,
boundary has to be –recursively- subtracted not to be overcounted).
It is easy enough to construct, but I have not seen cat map zeta function
earlier than the one written down by Isola. Will change the citation if we
find an earlier one.

8289 (predrag–8289) 407 03/15/2022 siminos/spatiotemp

https://ChaosBook.org/chapters/ChaosBook.pdf#exmple.14.12


CHAPTER 7. ZETA FUNCTIONS IN 2D

2020-12-18 RSM OK, you map the Adler-Weiss partition into (x, x′) coordi-
nates and then reduce by translation into that fundamental domain in-
stead of the standard one. Got it. I thought you had some magic for the
standard fundamental domain. I agree the tedious thing about count-
ing periodic orbits of toral automorphisms is the ambiguity of coding for
orbits on the partition boundaries. A cute thing is that if you consider
the map on a sphere (with 4 conical points) induced by quotienting by
reflection through 0,0 then you get exactly trAn fixed points of An, see
Llibre and MacKay [28] Pseudo-Anosov homeomorphisms on a sphere with
four punctures have all periods (1992).

2020-12-18 Predrag A very cute paper, but it will not help me here, will it?

2020-12-18 RSM OK, I might look up Pollicott on zeta fns for toral autos be-
cause I think he has some lecture notes in which he gives history.

On your big question, can I phrase it as how many orbits under SL2(Z)
are there for its action on integer parallelograms of given area (based at
0)? Equivalently, how many sublattices of given area are there in Z2?

2020-12-18 Predrag It’s the first step, a warm-up exercise - we all can do it. But
then you have to count the number of invariant 2-tori that live on each
parallelogram. The paper explains that we know how to do it, but if we
had the zeta functions, it would generate all these numbers.

It could be that the sensible zeta function is a double series in (zL1 , z
T
2 ),

in which case we want to count integer parallelograms of periods (L, T),
not lump them into areas A = LT, and have a zeta function which is a
series in single zA.

2020-12-18 RSM It is the sort of thing Marklof probably knows. But we can
think about it too. For area 1 I get 1 because I can map any unit parallelo-
gram to the unit square by the inverse of the matrix representing its sides,
which is in SL2(Z). For area 2, I think I get two, by observing that to have
area 2, the matrix has one row or column divisible by 2 and then dividing
that out and using its inverse to map to one of the two standard rectan-
gles. For area 3 I didn’t get an answer yet. But I wonder if it is something
trivial like the area. This would fit with your fundamental fact.

2020-12-18 RSM I see I was wrong in getting only two orbits of parallelograms
for area 2. There’s also the diamond. I must have missed something with
the rows and columns calculation (which admittedly I did while in bed)!
Ah yes, I remember I did see one more solution and then forgot it by the
time I go up. Here it is done properly:

Number of sublattices of Z2. “I would like to count the number
of sublattices L of Z2 of index n = |detL|.”
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2020-12-19 Predrag This example lists detL = 2 parallelograms as (columns
are their basis vectors)[

2 0
0 1

]
,

[
0 1
2 0

]
,

[
1 −1
1 1

]
. (7.3)

The third one is not in the Hermite normal form, but presumably a uni-
modular transformation (have not checked it) brings it to the upper di-
agonal form [2×1]1 invariant 2-torus that we use.

This example counts parallelograms under distinct translations (must
make sure that each unimodular orbit is counted only once). Guido, Isola
and Lapidus [18] (or ChaosBook chapter 25 Discrete symmetry factoriza-
tion) count parallelograms distinct under reflections.

I think counting detL = A parallelograms is easy. What we need is a gen-
erating function that counts numbers of invariant 2-tori, and the related
zeta that counts the numbers of prime invariant 2-tori.

2020-12-18 Predrag If it is any help, for small areas answers are listed in table
2.

2020-12-18 RSM The question is how to make a zeta fn from these counts. Take
simplest case of Bernoulli on s symbols. For each area n, we have Tn =∑
d over divisors of n, sublattices. Each can be populated by sn patterms

(not worrying about patterns with a smaller lattice), so there are snTn
patterns with an area n. I suppose it is natural to divide by n because
we could move the origin to any of the n points. So propose ζ(z) =
exp

∑
n s

nznTn/n for this example. Need to look up some number theory
to simplify this but I think it is some standard formula.

2020-12-18 RSM Ah, I see from (86) of your draft paper that I have made a
mistake. Yes, have identified my error now. Here is a useful page. So,
OK, number of Bravais lattices has zeta fn (with respect to area) =

∏
L(1−

zL). But you already knew this. Your question at the bottom of p. 21 is
to count prime lattices or perhaps the more subtle one of counting prime
periodic patterns taking the finite-type conditions of spatiotemporal cat
into account.

2020-12-19 RSM If define ζ(z) = exp
∑
n z

n/nNn where Nn is the number
of lattice states that have a period parallelogram of area n, and we let
prime patterns be ones that are not repetitions of ones with a smaller
area, and regarded as equivalent if differ by a translation, then I get
ζ(z) =

∏
γ F (z|γ|) over orbits γ, where F (x) =

∏
m(1 − xm)−1/m. Not

sure if F can be simplified.

2020-12-16 Predrag We have not been able to make that one work. Square lat-
tice is separable, so one hopes for something like that. The problem is
that in the addition to double periodicity, there is a third integer – paral-
lelogram come with different tilts (screw bc’s). Some details are towards
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the end of the current draft [11], Predrag Cvitanović and Han Liang Spa-
tiotemporal cat: A chaotic field theory rough draft, (November 2020) on spa-
tiotemporal homemade.

2020-12-20 RSM I have some thoughts about the 2D ζ function, in particular
the question of how to generalise det (I−zW ) from finite type conditions
(or more generally weights W ) for nearest nbr chains to finite type con-
ditions (or more generally weights from cliques) for 2D lattices. I think it
proceeds in same way as I did for Gibbs measures for CML.

2020-09-24, 2020-12-16 Predrag My thoughts in that directions (that is in my
spatiotemporal cat talk, and in this blog, see (6.170), (13.71), (13.74), (13.85))
are that for the 2-dimensional spatiotemporal cat [11, 19]

φn,t+1 + φn,t−1 − 2s φnt + φn+1,t + φn−1,t = −mnt , mnt ∈ A , (7.4)

with alphabet

A = {−3,−2,−1, 0, · · · , µ2 + 1, µ2 + 2, µ2 + 3} , (7.5)

and the Yukawa mass squared of the scalar field φ

µ2 = 2(s− 2) . (7.6)

The ζ function has to satisfy all spatiotemporal symmetries of the square
lattice (5.189)

C4v = D4 = {E,C+
4z, C

−
4z, C2z, σy, σx, σa, σb} . (7.7)

See ChaosBook sect. A25.1.

In the international crystallographic notation, this square lattice space
point group is referred to as p4mm [13].

2020-12-16 Predrag The simplest rational ζ function that satisfies these sym-
metries is of form

1/ζAM(z1, z2) = d(s)/d(2) = 1− µ2/d(2) , (7.8)

where
d(s) = z1 + z2 − 2s+ z−1

1 + z−1
2 (7.9)

d(s) is the Z-transform (discrete Laplace transform) of (7.4). Fischer et
al. [16] call this the characteristic function, a somewhat over-abused nothing-
saying appellation.

Anything more complicated would be a disappointment :)

2020-12-20 Predrag Its massless µ2 = 0, Poisson equation value d(2) is the Z-
transform of the d = 2 lattice Laplacian. d(s) can be written in a D4-
symmetric form

d(s) = (1− Λz1)(1/z1 − 1/Λ) + (1− Λz2)(1/z2 − 1/Λ)

d(2) = (1− z1)(1/z1 − 1) + (1− z2)(1/z2 − 1) . (7.10)
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Here (Λ, 1/Λ) are the roots of the d = 1 characteristic equation

Λ2 − sΛ + 1 = 0 , (7.11)

which, for |s| > 2, has two real roots {Λ , Λ−1},

Λ =
1

2
(s+

√
(s− 2)(s+ 2)) , (7.12)

Λ =
1

2
(µ2 + 2 + µ2

√
1 +

(
2

µ

)2

) , (7.13)

s = Λ + Λ−1 = eλ + e−λ = 2 coshλ , λ > 0 . (7.14)

Derivatives, integrations with respect to the parameter (z1, z2), should
relate this to the numbers of lattice states generating function, but Han,
my graduate student, tells me that does not work. Perhaps, in the spirit
of Schwinger and Feynman ‘tricks’ derivatives, integrations with respect
to the stretching parameter s or squared mass µ2 do the job.

Decomposition (7.10) is dodgy - in higher dimesnions there are other
eigenvalues than (7.12).

2020-12-17 RSM I found [...] Percival-Vivaldi [37] [... see above ...] There
should be a simple finite-type condition. Do you know it?

2CB

2020-12-20 Predrag As for the cat map, we split the µ2 + 7 letter alphabet A =
A0 ∪ A1 into the interior A0 and exterior A1 alphabets [19]

A0 = {0, . . . , µ2}, A1 = {−3,−2,−1} ∪ {µ2 + 1, µ2 + 2, µ2 + 3} . (7.15)

For example, for µ2 = 1 (ie, s = 5/2) the interior, respectively exterior
alphabets are

A0 = {0, 1}, A1 = {−3,−2,−1} ∪ {2, 3, 4} . (7.16)

If all mz ∈ M belong to A0, M is admissible, i.e., AZ2

0 is a full shift [19].
All grammar rules involve exterior alphabet A1. I do not know whether
there is a finite grammar, or the grammar is the infinite one investigated
by Gutkin et al. [19]. My claim is that it does not matter, as we know how
to count all [L×T]S , and for each we can read off all admissible M by
listing all integer points within the JM fundamental parallelepiped.

Curiously, even the Poisson µ = 0 case looks chaotic, numerically (though
how would our graduate students notice logarithmic corrections due to
the 0-mode?), see figure 5 (c) of Gutkin et al. [19]. That presumably arises
from the intersection set (the boundary) of the (5.190) fundamental do-
main and its reflection.
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Chapter 8

Spatiotemporal stability

8.1 Temporal lattice

Assume that a periodic orbit x(Tp + t) = x(t) of a continuous time flow ẋ =
v(x) is known ‘numerically exactly’, that is to say, to arbitrary (but not infinite)
precision. One way to present the solution is to give a single point x(0) in the
orbit, and let the reader reconstruct the orbit p by integrating forward in time,
x(t) = f t(x(0)), t ∈ [0, Tp].

However, for a linearly unstable periodic orbit a single point does not suf-
fice to present the orbit, because there is always a finite ‘Lyapunov time’ tLyap
beyond which f t(x(0)) has lost all memory of the periodic orbit p. This prob-
lem is particularly severe in searches for ‘exact coherent structures’ embedded
in turbulence, where even the shortest period solutions have to be computed
to the (for everyday fluid dynamics excessive) machine precision [19, 20, 28] in
order to complete the first return to the initial state.

Instead of relaying on forward-in-time numerical integration, global methods
for finding periodic orbits [5] view them as equations for the vector fields ẋ
on spaces of closed curves. In numerical implementations one discretizes the
periodic orbit p into sufficiently many short segments [5, 11, 12, 14, 21], and
lists a point for each segment

p = (x1, x2, · · · , xnp) . (8.1)

For a d-dimensional discrete time map f obtained by cutting the flow by a
set of Poincaré sections, with the periodic orbit p of discrete period np, every
segment can be reconstructed by a short time integration, and satisfies

xk+1 = f(xk) , (8.2)

to high accuracy, as for sufficiently short times the exponential instabilities are
numerically controllable.

So, how accurate is such an orbit, i.e., how fast do errors grow for such
globally specified orbit? In numerical work we know the cycle points only to a
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finite precision

p̂ = (x̂1, x̂2, · · · , x̂np) , x̂k = xk + ∆xk , (8.3)

where xk are the exact periodic orbit points. Define the error field by F (p̂) =
f(p̂) − σp̂, an operator which compares the forward map of every point in p̂
with the next point σp̂, a (np×d)-dimensional vector field obtained by stacking
np state space points x̂k

F (x̂) = F


x̂1

x̂2

· · ·
x̂np

 =


x̂1 − f̂np
x̂2 − f̂1

· · ·
x̂np − f̂np−1

 , f̂k = f(x̂k) , (8.4)

which measures the misalignment of every finite forward-in-time segment f(x̂)k
with the next listed point x̂k+1 on the periodic orbit.

By (8.2), the exact discretized cycle (8.1) is a zero of this vector field, F (x) =
0. Assuming that the d-dimensional vectors ∆xk are small in magnitude, and
Taylor expanding the one discrete time-step map f to linear order around the
exact solution,

f(xt + ∆xt) = xt+1 + Jt∆x+ (· · · ) ,
where

[Jt]ij =
∂fi(xt)

∂xj
, t = (1, 2, · · · , np) , i, j = (1, 2, · · · , d) (8.5)

one finds that the neighborhood of entire cycle p is linearly deformed by the
[npd× npd] orbit Jacobian matrix

∆x′ = J (x) ∆x , Jij(x) =
∂F (x)i
∂xj

, (8.6)

with
J = 1− σJ ,

the one discrete time-step temporal [d×d] diagonal Jacobian matrix J evaluated
on the entire cycle p, and σ the shift matrix

σ =



0 11
11 0

11 0
11

. . . 0
11 0


, J =



J1

J2

J3

. . .
Jnp−1

Jnp


,

(8.7)
with 11 in the upper right corner assuring periodicity, σnp = 11. 1

Next, we address two questions: (i) how is the high-dimensional orbit Ja-
cobian matrix J related to the temporal [d×d] Jacobian matrix J? and (ii) how
does one evaluate the orbit Jacobian matrix J ?

1Predrag 2019-10-10: this is σ−1 shift operator as defined in ChaosBook.
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8.1.1 Second-order difference equation
2 2CB

A second-order difference equation with constant coefficients has the form

xt+2 + p1xt+2 + p2xt = 0 (8.8)

Let x0,t = xt, x1,t = xt+1, and rewrite this as a pair of coupled first-order
difference equations

Xt+1 = AXt , Xt = (x0,t, x1,t)
>

A =

(
0 1
−p2 −p1

)
. (8.9)

The characteristic equation

λ2 + p1λ+ p2 = 0 (8.10)

can be obtained by substitution xt = λn into the two-term recursion (8.8).
If λ1 6= λ2, λj real, then the solution of (8.8) is

xt = c1λ
t
1 + c2λ

t
2 . (8.11)

If λ1 = λ2 = λ, then the solution is

xt = c1λ
t + c2tλ

t . (8.12)

If λ1 = α+ iβ, λ2 = α− iβ, then the solution is

xt = |λ|t(c1 cos tω + c2 sin tω) , (8.13)

where ω = arctan(β/α). To solve such second-order difference equation, one
has to specify initial conditions, for example x0 = 1, x1 = 0 .

(Based on Elaydi [17])

8.1.2 Third-order difference equation

One can always reformulate an k-term recursion relation (6.128) as a set of k
coupled first-order difference equations (delay equations). For example, one
can rewrite the three-term recursion relation (third-order difference equation)

xt+3 + p1xt+2 + p2xt+1 + p3xt = 0 (8.14)

as three coupled first-order difference equations

x0,t+1 = x1,t,

x1,t+1 = x2,t,

x2,t+1 = −p3x0,t − p2x1,t − p1x2,t . (8.15)

2Predrag 2020-12-15: Transfer to ChaosBook.org. Once incorporated, remove from here)
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where x0,t = xt, x1,t = xt+1, x2,t = xt+2. Compactly

Xt+1 = AXt , Xt = (x0,t, x1,t, x2,t)
>

A =

 0 1 0
0 0 1
−p3 −p2 −p1

 . (8.16)

The eigenvalues ofA are the characteristic roots of (8.14), see (6.129) and (6.170).
The discrete time derivative of a lattice state X evaluated at the lattice site t

is given by the difference operator

Ẋt =

[
∂X

∂t

]
t

=
xt − xt−1

∆t
(8.17)

Eq. (8.16) can be viewed as a time-discretized, first-order ODE dynamical sys-
tem

Ẋ = v(X) , (8.18)

with the time increment set to ∆t = 1
(Based on Elaydi [16])

8.2 Repeats of a prime Bravais cell

2021-06-11 Han

A lattice state Xp is prime if it is not a repeat of a smaller lattice state. The
orbit Jacobian matrix of a period-(rn) lattice state X which is a r-th repeat of a
period-n prime lattice state Xp has a tri-diagonal block circulant matrix form

J =


sp −d −d>

−d> sp −d
. . . . . . . . .

−d> sp −d
−d −d> sp

 , (8.19)

where sp, d and d> are [n×n] block matrices

sp =


s0 −1 0
−1 s1 −1

. . . . . . . . .
−1 sn−2 −1

0 −1 sn−1

 ,

d =


0 · · · 0

. . .
...

1 0

 , d> =


0 1

...
. . .

0 · · · 0

 , (8.20)
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and d and its transpose enforce the periodic bc’s.

As J is a block circulant matrix, it brought into a block diagonal form by a
unitary transformation, with a repeating block along the diagonal.

Note that matrices sp, d and d> are not circulant, the matrix J is not a block
circulant with circulant blocks [3, 4, 29].

8.2.1 Bravais cell repeats symmetrized

2021-06-11 Han

The tri-diagonal block matrix can be projected into the symmetric subspace
of the shorter lattice state. As an example, take the shorter lattice state of period
n = 4, and the long lattice state given by the shorter lattice state repeated 4
times. Then the reflection operator can also be written into the 16-dimensional
space of the long lattice state:

d =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



=


R̂ 0 0 0

0 R̂ 0 0

0 0 R̂ 0

0 0 0 R̂

 , (8.21)

where R̂ is the reflection operator in the 4-dimensional space of the shorter
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lattice state. Using the projection operator of this reflection matrix R:

PR+ =
1

2



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1



=


PR̂+ 0 0 0

0 PR̂+ 0 0
0 0 PR̂+ 0
0 0 0 PR̂+

 (8.22)

the orbit Jacobian matrix is projected into the symmetric subspace and it still
has the tri-diagonal form:

JPR+ =


spPR̂+ −dPR̂+ 0 −d>PR̂+

−d>PR̂+ spPR̂+ −dPR̂+ 0
0 −d>PR̂+ spPR̂+ −dPR̂+

−dPR̂+ 0 −d>PR̂+ spPR̂+

 . (8.23)

8.2.2 Repeats blog

2016-09-28 Predrag Amritkar et al. [1, 18] have investigated the stability of spa-
tiotemporally periodic orbits in one- and two-dimensional coupled map
lattices, i.e., 1 + 1 and 1 + 2 spatiotemporal dimensions. They derive con-
ditions for the stability of periodic solutions in terms of the criteria for
smaller orbits.

2020-06-01 Predrag Gade and Amritkar [18] Spatially periodic orbits in coupled-
map lattices (a preliminary version of a part of this work was published as
Amritkar, Gade, Gangal and Nandkumaran [1] Stability of periodic orbits
of coupled-map lattices):

They are interested in stability, rather than our focus on instability.

They take CMLs with periodic orbits over [L×T]0 and study the stability
of their periodic orbit ‘replicas’ [kL×T]0 obtained by repeating [L×T]0 k
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times in the spatial direction, and show that orbit Jacobian matrix eigen-
values of the replica follow from the small periodic orbit. Not obvious,
as the replica periodic orbit has more directions to be stable/unstable in.
The trick is observing that the replica orbit Jacobian matrix is a block cir-
culant with circulant blocks. The stability matrices for such lattice states
are block circulant and hence can be brought onto a block diagonal form
through a unitary transformation, their eq. (19).

The textbook they use is Davis [10] Circulant Matrices.

They write:

We call Xn,r the r replica solution of Xn,1. We address the problem of
what can be stated about the stability properties of such spatially and
temporally periodic solutions Xn,r, from the analysis of the stability ma-
trices for Xn,1 of the building blocks [1]. In other words the question is,
What is the effect of enlargement of phase space and the couplings on the
stability of the replica solutions?

(Their eq. (16) is our (8.20). Note their block-circulant matrix eq. (18))

The trick is observing that the replica orbit Jacobian matrix is a block
circulant with circulant blocks. The stability matrices for such lattice
states are block circulant and hence can be brought onto a block diagonal
form through a unitary transformation, their eq. (19). The unitary ma-
trix which affects the block diagonalization is a direct product of Fourier
matrices of sizes [r × r] and [n × n].

(2022-01-12 Predrag: but block matrix sp in (8.20) is not circulant?)

The effects on the stability due to the enlargement of the state space and
couplings manifest themselves through the eigenvalues of the additional
blocks.

Our analysis leads to the following important conclusion about unstable
periodic orbits. The matrix sp appears as a block of the matrix J . Hence,
a solution built out of the replicas of unstable periodic orbits will also be
unstable. Enlargement of state space and the effect of couplings cannot
stabilize an unstable replica solution. The unstable periodic orbits are
dense on the chaotic attractor. They are supposed to form the backbone
of the dynamics on the attractor.

Our formalism will be useful if one tries to use unstable periodic orbits
to analyze the spatially extended systems. It is clear that the replica so-
lutions can be used to construct a hierarchy of unstable periodic orbits
based on the orbits for building blocks. This may help in the organiza-
tion of spatio-temporal chaos on the lines of arguments in ref. [6].

We have also discussed the two-dimensional extension of our formalism.
From the convenient form in which the equations can be set, it is obvious
that the generalization to higher dimensions is also possible. If one tries
to analyze the problems similar to the ones analyzed here, in oscillator
arrays this procedure can be easily used to simplify the computation.
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Cited Gade and Amritkar [18] in LC21 as an early investigation of a lattice
orbit Jacobian matrix. They did not know about ‘Hill’s formula.

2016-11-11 Predrag Bountis and Helleman [2] On the stability of periodic or-
bits of two-dimensional mappings: “ We apply our criterion and derive
a sufficient stability condition for a large class of periodic orbits of the
widely studied “standard mapping” describing a periodically ‘kicked’
free rotator. ”

I find this paper quite interesting, because the computation of Floquet
multipliers, i.e., linearization of periodically ‘kicked’ free rotor, is full of
matrices that look like Laplacians + a diagonal term which varies along
the periodic orbit. For cat maps this term is constant, essentially the
stretching factor s. This might help with interpreting coupled ‘kicked’
rotor lattices.

This is presumably related to the block circulant stability matrices [1, 18]
for spatially and temporally periodic orbits in coupled map lattices.

2016-09-28 Predrag Zhilinet al. [30] Spatiotemporally periodic patterns in symmet-
rically coupled map lattices write: “ The stability of the deduced orbits is
investigated and we can reduce the problem to analyze much smaller
matrices corresponding to the building block of their spatial periodicity
or to the building block of the spatial periodicity of the original orbits
from which we construct the new orbits. In the two-dimensional case the
problem is considerably simplified. ”

2019-02-04 Predrag A relative periodic block p̂ is always preperiodic to a peri-
odic block whose period Tp = rTp̂, so you can always Fourier-transform
this larger torus. But the right way of doing is acting relative periodic
block p̂ with the translation dr that makes it periodic, and then Fourier-
transforming the minimal d-torus.

In this case we are still solving (20.158) except the rank 2d tensor is no
longer a circulant tensor.

2019-02-04 Predrag The orbit Jacobian matrix times the translation dr is circu-
lant, I believe. That is how we compute the Jacobian matrices of relative
periodic orbits in ChaosBook. But we can still solve for the eigenvec-
tors. I have shown how to compute the eigenvectors and eigenvalues in
(20.122–20.132) and verified this is correct for small blocks. In (20.133–
20.139) I proved this is correct in any dimension. Using these eigenvec-
tors we can diagonalize the orbit Jacobian matrix and get the inverse
(Green’s function). The only problem is even though the counting for-
mula is very compact, it seems to me that now it is hard to simplify the
topological zeta function.

2019-02-04 Predrag I doubt it. In ChaosBook we show that after symmetry re-
duction, counting relative periodic orbits is not any harder than counting
periodic orbits.
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2021-05-04 Predrag Can one write the orbit Jacobian matrix of a repeat of a p-
cycle as a product of p-cycle orbit Jacobian matrices?
(2021-06-14 Predrag This is now accomplished by the block matrix for-
mulation (8.23).)

J (2)
p J (1)

p =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 φ0 1 1
0 0 0 1 φ1 1
0 0 0 1 1 φ2




φ0 1 1 0 0 0
1 φ1 1 0 0 0
1 1 φ2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



6=


φ0 1 0 0 0 1
1 φ1 1 0 0 0
0 1 φ2 1 0 0
0 0 1 φ0 1 0
0 0 0 1 φ1 1
1 0 0 0 1 φ2

 , (8.24)

Another try:

J (2)
p J (1)

p =


1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 1 0 0
0 0 1 φ0 1 0
0 0 0 1 φ1 1
1 0 0 0 1 φ2




φ0 1 0 0 0 1
1 φ1 1 0 0 0
0 1 φ2 1 0 0
0 0 1 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1



6=


φ0 + 1 1 0 0 0 2

1 φ1 1 0 0 0
0 1 φ2 + 1 2 0 0
0 0 1 φ0 + 1 1 0
0 0 0 1 φ1 1

φ0 + φ2 0 0 0 1 φ2 + 1

 , (8.25)

(partly wrong, but does not matter), so orbit Jacobian matrices do not
multiply.

But they do not add up, either, cannot reconcile the small block periodic
bc’s with the repeated block bc’s. Defeated again.

2021-08-22 Predrag I believe was wrong in asking that we look at the stabil-
ity of repeats of a shorter period block, eq. (8.20) above. That does not
arise in the new formulation of periodic orbit theory; the Hill determi-
nant is computed on any lattice state X in the orbitMc of a lattice state
Xc. There are only orbits, nothing is computed on repeats. There should
be no repeats summation in the derivation of zeta functions.

2022-01-22 Predrag believes today that he was very wrong on 2021-08-22 :)
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Example 8.1. Temporal lattice stability of a 3-cycle. For for a 1-dimensional map
f , orbit Jacobian matrix is an [np × np] matrix:

J (x) =


1 −f ′np
−f ′1 1

· · · 1
· · · 1

−f ′np−1 1

 . (8.26)

Let us invert a 3-cycle orbit Jacobian matrix J (x) for such 1-dimensional map by
hand, step by step. According to (8.6), the initial small ∆x deviations from the periodic
orbit (8.3) are mapped into deviations ∆x′ a time step later by ∆x′1

∆x′2
∆x′3

 =

 1 0 −f ′3
−f ′1 1 0

0 −f ′2 1

 ∆x1

∆x2

∆x3

 ,

where the d-dimensional vectyor ∆xi = x̂i−xi is the error at ith periodic point. In terms
of the shift matrix σ, the one-time step cycle Jacobian matrix (8.26) can be written as

J = 1− σf ′ , σ =

 0 0 1
1 0 0
0 1 0

 , f ′ =

 f ′1 0 0
0 f ′2 0
0 0 f ′3

 . (8.27)

Suppose all |f ′k| > 1, so forward in time the errors are growing. We can make errors
contract by going backwards in time, i.e., evaluating the inverse matrix J , and noting
that every 3rd power (σf ′)3 = Jp1 is diagonal,

1

1− σf ′ =

∞∑
j=0

(σf ′)j =

∞∑
k=0

Jkp

2∑
`=0

(σf ′)` =
1

1− Jp
[
1 + σf ′ + (σf ′)2] (8.28)

=
1

1− J

1 + σ

 f ′1 0 0
0 f ′2 0
0 0 f ′3

+ σ2

 f ′2f
′
1 0 0

0 f ′3f
′
2 0

0 0 f ′1f
′
3

 ,
where Jp = f ′3f

′
2f
′
1 is the forward-in-time stability of the cycle p, so ∆x1

∆x2

∆x3

 =
1

1− Jp

 ∆x′1 + f ′3∆x′3 + f ′3f
′
2∆x′2

∆x′2 + f ′1∆x′1 + f ′1f
′
3∆x′3

∆x′3 + f ′2∆x′2 + f ′2f
′
1∆x′1

 .

For an unstable cycle, the error gets contracted by overall factor 1/(1 − J), with the
earlier errors amplified by the orbit instability; for example, ∆x3 receives a contribution
from two time steps in the past of form f ′2f

′
1∆x′1.

By explicit evaluation, for 1-dimensional maps 3 J (x)3 = (1− Jp)1 + (...) and

DetJp = det (1− Jp) (8.29)

for the d-dimensional case. J (x) is a cycle rotation by one time step; for a 3-cycle we
are back, times a constant, uniform factor multiplying all errors by the rotation invariant
scalar quantity det (1− Jp), whose inverse happens to be the cycle-expansions’ size of
the neighborhood of cycle p.

4

3Predrag 2019-10-10: Still have to derive this formula, probably by ln det = tr ln relation
4Predrag 2019-09-28: I have inverted this Newton Jacobian matrix often, see for example

03/15/2022 siminos/spatiotemp 424 8289 (predrag–8289)



CHAPTER 8. SPATIOTEMPORAL STABILITY

Example 8.2. Temporal lattice stability of a 3-cycle.
Consider an period-n lattice state Xp, with d fields {xt,1, xt,2, . . . , xt,d} on each lat-

tice site t satisfying the condition

xt − f (xt−1) = 0 , t = 1, 2, · · · , n , (8.30)

where d-dimensional time evolution function. A deviation ∆X from Xp must satisfy the
linearized condition

∆xt − Jt−1 ∆xt−1 = 0 , (Jt)ij =
∂f(x)i
∂xj

∣∣∣∣
xi=xt,i

, (8.31)

where Jt is the 1-time step [d×d] time-evolution Jacobian matrix. Let 11d be a d-dim-
ensional identity matrix. For an period-n lattice state Xp, the orbit Jacobian matrix
Jp ∆X = 0 is an [nd×nd] matrix

Jp = 11− d−1J =


11d −Jn
−J1 11d

−J2

. . .
11d

−Jn−1 11d

 , (8.32)

where the [nd×nd] matrix

d =


0 11d

0 11d
. . .
0 11d

11d 0

 , (8.33)

implements the shift operation, a cyclic permutation that translates forward in time the
lattice state Xp by one site, (dX)> = (x2, x3, · · · , xn , x1).

To evaluate the Hill determinant (??), note that dn = 11, that tr (d−1J)k = nδk,rntr Jrp
is non-vanishing only if k is a multiple of n, and expand

ln Det (Jp) = tr ln( 11− d−1J) = −
∞∑
k=1

1

k
tr ((d−1J)k)

= −tr

∞∑
r=1

1

r
Jrp = ln det ( 11d − Jp) . (8.34)

So, the Hill determinant for any hyperbolic 2-term difference equation on a temporal
lattice is

Det (Jp) = det ( 11d − Jp) .

eq. (16) and onward in Cvitanović, Dettmann, Mainieri and Vattay [7], click here. I have also
introduced the notation for finite-time (shorter than the period) Jacobian matrices, see for exam-
ple eq. (69) in Cvitanović and Lippolis [9], click here. But I have never done it the way I should
have, by a discrete Fourier transform, into sum of irreps of Cn (AKA Fourier modes) and using
characters for discrete Fourier transforms.
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In the temporal Bernoulli case, the field xt is a scalar, and the 1-time step [d×d] time-
evolution Jacobian matrix (8.31) at any time is simply Jt = s, so

Nn = |DetJ | = sn − 1 , (8.35)

in agreement with the time-evolution count.
In terms of the shift matrix d, the one-time step cycle Jacobian matrix (8.26) can be

written as

Jp = 11− d−1J , d =

 0 0 11d
11d 0 0
0 11d 0

 , J =

 J1 0 0
0 J2 0
0 0 J3

 . (8.36)

Suppose all Jp 6= 1. Note that every nth power (dJ)3 = JpJ is diagonal,

1

11− dJ =

∞∑
j=0

(dJ)j =

∞∑
k=0

Jkp
2∑
`=0

(dJ)` =
1

1− Jp
[
J + dJ + (dJ)2] (8.37)

=
11

11− J

J + d

 J1 0 0
0 J2 0
0 0 J3

+ d2

 J2J1 0 0
0 J3J2 0
0 0 J1J3

 ,
where Jp = J3J2J1 is the forward-in-time stability of the cycle p.
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To summarize, a discretized, temporal lattice periodic orbit linear stability
can be computed in two ways - either by computing the [npd × npd] Jacobian
matrix J (x), or by computing Jp

|DetJp| = |det (1− Jp)| , (8.38)

where Jp is the np time-steps [d×d] forward-time Jacobian matrix. In the limit
of discretization np → ∞ the left hand side is a functional determinant of an
∞-dimensional operator. Nevertheless, thanks to the discrete Fourier diagonal-
ization of J (x), appendix ??, the determinant DetJp is easier to compute than
the ill-posed Jp. 5 6

The projection operator on the kth Fourier mode is

Pk =
∏
j 6=k

d− ωj 11
ωk − ωj

. (8.39)

The set of the projection operators is complete,∑
k

Pk = 11 , (8.40)

and orthonormal
PkPj = δkjPk (no sum on k) . (8.41)

[TO BE CONTINUED]

8.3 Spatiotemporal lattice

In spatiotemporal settings, Jp can be defined only for finite numbers of spatial
sites, and it gets funkier and funkier as the spatial direction increases (that is
why we are able to work only with very small spatial domain Kuramoto-Siva-
shinsky discretizations). But, as shown for the spatiotemporal cat in ref. [8],
DetJp works just fine on any spatiotemporal torus. In particular, for any in-
variant 2-torus Kuramoto-Sivashinsky discretization.

8.4 Noether’s theorem

2018-05-04 Predrag Moved this section to spacetime continuous systems spatiotemp/blog.tex

5Predrag 2019-10-10: J (x) is block-diagonalized by the discrete Fourier transform on a peri-
odic lattice of three sites. Write up next the discrete Fourier evaluation of DetJp.

6Predrag 2019-10-10: Rewrite the derivation of the Hill-Poincaré-Van Vleck stability matrix
(9.55) for symplectic / Lagrangian Hessians (orbit Jacobian matrix) using the shift matrix (8.27).
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8.5 Stability blog

2019-10-10 Predrag Reread Lindstedt-Poincaré [25] Fourier method papers by
Viswanath [26, 27]; his most accurate resolution of fractal structure of the
Lorenz attractor. It is a very thin fractal, stable manifold thickness is of
the order 10−4. He has computed all 111011 periodic orbits correspond-
ing to symbol sequences of length 20 or less, all with 14 digits accuracy.

2019-10-13 Predrag Viswanath [25] writes: “ The Lindstedt-Poincaré technique
uses a nearby periodic orbit of the unperturbed differential equation as
the first approximation to a perturbed differential equation. One of the
examples presents what is possibly the most accurate computation of
Hill’s orbit of lunation since its justly celebrated discovery in 1878.
The eigenvalues excluding 1 are called characteristic multipliers.
AUTO [13, 14] collocation method, Guckenheimer and Meloon [21], Choe
and Guckenheimer [5] all set up their periodic orbits as in (8.4). Since the
linear systems that they form are sparse, the cost of solution is only linear
in the number of mesh points.
There are other variants of this forward multiple shooting algorithm: one
is a symmetric multiple shooting algorithm and another is based on Her-
mite interpolation.
He dismisses harmonic balance methods for computing periodic orbits
(Lau, Cheung and Wu [?15], and Ling and Wu [?16]) as being too expen-
sive, of order O(n3), where the Fourier series are of width n, whereas his
method is of order O(n lnn) .
Wisvanath algorithm for computing periodic orbits is a “polyphony of
three themes:” the Lindstedt-Poincaré technique from perturbation the-
ory, Newton’s method for solving nonlinear systems, and Fourier inter-
polation.
To compute n Fourier coefficients of x(t), the fast Fourier transform (FFT)
is applied to the function evaluated at n equispaced points in [0, 2π). The
width n of the Fourier series must be sufficiently large to pick up all the
coefficients above a desired accuracy threshold.
If (x1, x2, · · · , xm) are 2π periodic, so is f(x1, x2, · · · , xm). To obtain its
Fourier series from those of the xi, interpolate xi at equispaced points,
evaluate f at those points, and apply the FFT. The inverse FFT can be
used to interpolate a Fourier series at equispaced points [24]. In d state
space dimensions, one needs d Fourier series, one for each coordinate in
Rd.
His 4 coupled Josephson junctions (10-dimensionalstate space) uses 64
Fourier modes.
”
The implementation of the algorithm must pay attention to the possibility
of aliasing.
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2019-10-13 Predrag Viswanath [26] writes: “ The representation of periodic or-
bits by Fourier series is both accurate and efficient because, when a peri-
odic orbit is analytic, the Fourier coefficients decrease exponentially fast,
making its Fourier representation compact.

”

2019-10-13 Predrag Guckenheimer and Meloon [21] set up their periodic or-
bits as in (8.4), and have the same d-dimensional orbit Jacobian matrix
variant of (8.26), but with extra, time-direction fixing diagonals, as they
are looking at continuous time flows. Instead of the cyclic group, they
use LU factorization. They get 1− Jp matrix.

2019-10-14 Predrag Notes on Choe and Guckenheimer [5], a clear and enjoy-
able read:

Instead of relaying on forward-in-time numerical integration, global meth-
ods for finding periodic orbits view the vector field as an equation on a
function space of closed curves. Here f is a Lipschitz continuous vector
field on a smooth manifoldM, and p : S1 → M is a C1 closed curve in
M.

Computer implementation of global methods for computing periodic or-
bits requires discretization of closed curves and approximation of the pe-
riodic orbit equations. One defines finite-dimensional submanifolds of
the space of closed curves and approximates the periodic orbit equations
as a map defined on this space.

They keep the number of discretization points fixed and increase the ac-
curacy by automatic differentiation, constructing the Taylor series of trajec-
tories at discretization points. They also compute stability matrix deriva-
tives of the Taylor series coefficients with respect to the state space vari-
ables for use in the Newton iteration. As the degree of the computed
Taylor series increases, their curves converge since the trajectories are an-
alytic.

The Taylor series is obtained by repeated differentiation of the differential
equation ẋ = v(x) and recursive substitution of the values of derivatives
x(k)(t) of increasing degree. To make the approximate curve smooth and
continuous, they use a somewhat funky interpolation function they call
β(t).

[Predrag’s aside: hopefully our strategy of using Fourier transforms has
much faster convergence than Taylor series. Even if one wants polynomi-
als, I suspect Chebyshev or Hermite or some other orthogonal sets would
be better.]

Indeed, the Hermite splines, interpolating functions that arc polynomials
of degree 2d+ 1, gave the best results in their computations.

They eliminate the time translation marginal eigenvalue by using sets of
Poincaré section hyperplanes transverse to the vector field, and solving
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for points that lie on the intersection of Poincaré section with the periodic
orbit. They use the orthogonal complements to the vector field v(xi) at
the mesh points xi. The normal subspace to the vector field at xi, is de-
termined by computing the QR factorization of the [d×(d + 1)] matrix.
There is a whole PhD thesis worth of detail here.

The structure of the Jacobian matrices that are used in the root finding has
a simple sparsity pattern that can be exploited in its inversion. Explicit
inversion of this block matrix in terms of the inverses of the individual
blocks yields a relationship between the regularity of the root finding
problem and the hyperbolicity of the periodic orbit. They relate the reg-
ularity of orbit Jacobian matrix J to the periodic orbit’s monodromy ma-
trix, their sect. 3. Analysis, using LU factorization. They show that J is
invertible (needed for Newton schemes) if and only if the monodromy
matrix Mof the Poincaré section does not have 1 as an eigenvalue.

Since their methods produce smooth approximations to periodic orbits,
they can evaluate the distance between the tangent vectors to a computed
curve and the vector field along that curve. These error estimates enable
them to develop strategies for mesh refinement that balance the error in
different mesh intervals. Since the approximating solution in a mesh in-
terval is determined entirely by its endpoints, mesh refinement is a sim-
ple process and does not change the structure of the discretized periodic
orbit equations.

They define the error field (8.4) as operator F (p) = f(p) − σp, with pe-
riodic orbits solutions satisfying F = 0. p are analytic curves, but Choe-
Guckenheimer approximations are not analytic.

The starting data is an N -point discrete closed curve (8.3), a cyclically or-
dered collection of N points. Given a map S, on seeks seek systems of
(np×d)-dimensional vector field equations FS = 0 whose solutions yield
good approximations to periodic orbits of f. The convergence is takes
place on a fixed mesh, but with increasing degree d of map Sd. They
compute the orbit Jacobian matrix J and invert it to use in the Newton
routine, but do not mention or discus computing detJ .

They test their algorithm with the Hodgkin-Huxley equations, a moder-
ately stiff 4-dimensional vector field with strongly stable directions. They
do not boast, but their residual errors are of order 10−11.
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8.6 Generating function literature

For the latest entry, go to the bottom of this section

2016-11-11 Predrag I still cannot get over how elegant the Gutkin-Osipov [22]
spatiotemporal cat is. It is linear! ( mod 1, that is - the map is continuous
for integer s). A 1-dimensional cat map has a Hamiltonian (1.34), and
they have written down the 2-dimensional Lagrangian, their Eq. (3.1) (or
the “generating function”, as this is a mapping). Their spatiotemporal
cat generating function is defined on a spatiotemporal cylinder, infinite
in time direction,

S(qt, qt+1) = −
N∑
n=1

qntq1+n,t −
N∑
n=1

qnt(qn,t+1 +mq
n,t+1) +

a

2

N∑
n=1

q2
nt

+
b

2

N∑
n=1

(qn,t+1 +mq
n,t+1)2 −mp

n,t+1qn,t+1 , (8.42)

where qt = {qnt}Nn=1 is a spatially periodic state at time t, with qnt be-
ing the coordinate of nth “particle” n = 1 . . . N at the moment of time
t ∈ Z, and mq

n,t+1,m
p
n,t+1 are integer numbers which stand for wind-

ing numbers along the q and p directions of the 2N-torus. Note that
x1+n,t = x1+(nmod N),t . The coefficients a, b, s = a + b are integers which
they specify. Gutkin and Osipov refer to the map generated by the ac-
tion (8.42) as non-perturbed coupled cat map, and to an invariant 2-torus
p as a “many-particle periodic orbit” (MPO) if qnt is doubly-periodic, or
“closed,” i.e.,

qnt = qn+L,t+T , n = 1, 2, · · · , L , t = 1, 2, · · · , T .

2D symbolic representation Encode each invariant 2-torus (many-particle
periodic orbit) p by a two dimensional (periodic) lattice of symbols ant,
(nt) ∈ Z2, where symbols ant belong to some alphabet A of a small size.
Each invariant 2-torus p is represented byL×T toroidal array of symbols:

Āp = {ant| (nt) ∈ Z2
LT } .

The Hamiltonian equations of motion can be generated using (6.72) but
who needs them? Remember, a field theorist would formulate a space-
time symmetric field theory in a Lagrangian way, with the invariant ac-
tion.

2016-11-11 Predrag Percival and Vivaldi [23] state the Lagrangian variational
principle in Sect. 6. Codes, variational principle and the static model: 7

7Predrag 2016-11-12: eventually move to remark 12.1
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The Lagrangian variational principle for the sawtooth map on the real
line states that the action sum (6.93) is stationary with respect to varia-
tions of any finite set of configurations xt. Their discussion of how “elas-
ticity” works against the “potential” is worth reading. For large values
of stretching parameter s, the potential wins out, and the state xt falls
into themtth well: “the code may be considered as a labelling of the local
minima of the Lagrangian variational principle.”

Dullin and Meiss [15] Stability of minimal periodic orbits does the calcula-
tions in great detail.

2016-11-11 Predrag “mean action” = the action divided by the period

2018-12-07 Predrag as shown in (copied here from ChaosBook) example 1.7,
example 1.8, and example 1.9 Hamiltonian spectral determinant and dyn-
amical zeta function have a special form. Recheck against our cat map
1/ζAM.

2019-10-14 Predrag The Jacobi operator acts on a discrete periodic lattice as

Lu(t) = a(t+ 1)u(t+ 1) + b(t)u(t) + a(t− 1)u(t− 1) ,

where a(t) and b(t) are real valued for each t ∈ Z, and M-periodic in t.
Jacobi operators are the discrete analogue of Sturm–Liouville operators,
with many similarities to Sturm–Liouville theory.

2022-02-13 Josh & Sam Questions about how to best (and practically) evaluate
cycle averaging formulas:

1. The numbers of terms in the expansion grows so quickly with re-
spect to the minimal symbol length orbit excluded that we are not
quite sure how and where to truncate the sum, even moderately
sized collections of orbits.

2. Has anyone attempted to compute periodic orbits averages by nu-
merically computing the zero and derivative of F =

∏
p(1 − tp) di-

rectly?

2022-02-11 Predrag .

1. Nobody so far has had enough understanding of Navier-Stokes pe-
riodic orbits to evaluate truncation errors. For low-dimensional sys-
tems:

(a) If grammar is known, exponentially decreasing errors kick in
only after ‘fundamental’ cycles are accounted for, read the end
of ChaosBook sect. 18.3 Determinant of a graph

(b) If symbolic dynamics is not understood, ChaosBook sect. 23.7
Stability ordering of cycle expansions

2. None has attempted it - an idea worth exploring.
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(a) Watch out for ChaosBook sect. 22.4 False zeros: the unexpanded
product

∏
p(1− tp) is only a shorthand, just like for the original

Riemann zeta function.
(b) If you expand the terms as a (pseudo)cycle expansion, numeri-

cally “computing the zero and derivative” seems to be what we
already do?

3. But your question does lead to something that Matt Gudorf never
explored in his thesis: Perhaps the most important insight of the spa-
tiotemporal reformulation of ‘chaos’ is that the weight of periodic
orbits (N -torus, if theory has N continuous symmetries) is given by
its Hill determinant, see LC21 sect 8.2 Periodic orbit theory for the
retarded.

(a) Can you think of new/better ways to evaluate DetJ ? Orbit Ja-
cobian matrix J is big, but very sparse, and DetJ has a nice ge-
ometrical interpretation as a LC21 fundamental parallelepiped?
The edges of the parallelepiped are the columns of the orbit Ja-
cobian matrix, which are sparse, so maybe it is computable?

(b) In the continuum limit (more appropriate to Navier-Stokes?),
maybe the best was is to follow LC21 Hill and Poincaré, and
truncate Fourier series?

(c) For viscous flows, like Navier-Stokes, the infinity of transient,
strongly dissipative modes immediately damp put, so the Hill
determinant should only have the dimension of the inertial man-
ifold. Does it?

2022-02-19 Predrag JAX is said to make evaluation of Jacobians trivial.
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Chapter 9

Hill’s formula

9.1 An overview over “Hill’s formulas”

A succinct explanation of the Hill’s formula:
If you evaluate stability of the 3-term recurrence (13.110) on a pe-
riodic lattice you get the orbit Jacobian matrix J ; if you evaluate
it by multiplying the ‘two-configuration representation’ matrix J ,
you get the ‘time evolution’ side of the Hill’s formula.

We should emphasize that, while discovered first in Lagrangian setting,
Hill’s formulas are much more general, they apply also to dissipative dynami-
cal systems as well, see

CL18 sect. 1.5 Stability of an orbit vs. its time-evolution stability
CL18 appendix C Spatiotemporal stability
sect. 9.2 Generating functions; action
sect. 9.4 Hill’s formula, Lagrangian setting
sect. 9.5 Spatiotemporal cat Hill’s formula
sect. 9.6 Hill’s formula for relative periodic orbits
sect. 9.8 Han’s temporal cat Hill’s formula
sect. 9.10 Han’s spatiotemporal cat Hill’s formula
sect. 9.10.1 Han’s relative-periodic Hill’s formula
sect. 9.11 Han’s Hénon map Hill’s formula

9.2 Generating functions; action
1 For discrete-time one-degree-of-freedom Lagrangian systems satisfying a pe-
riodicity condition (i.e., cat map):

L(q + 1, q′ + 1) = L(q, q′) + C , (9.1)
1Predrag 2016-11-11, 2018-09-26: What follows is (initially) copied from Li and Tomsovic [39],

Exact relations between homoclinic and periodic orbit actions in chaotic systems arXiv source file, then
merged with the MacKay-Meiss-Percival action principle refs. [42, 45].
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one can consider relative periodic paths (or pre-periodic paths, also called pe-
riodic paths of type (d, n) by Mackay and Meiss [41]), with 2

qi+n = qi + d . (9.2)

Every qi returns to its value after time period n, but shifted by d. Orbits satis-
fying (9.2) are given by stationary points of the action

S =

q−1∑
i=0

L(qi, qi+1) (9.3)

in the space of periodic paths of type (d, n). For periodic paths, it suffices to
consider one period, because an orbit is periodic if and only if it is a stationary
point of the action of one period in the space of periodic paths.

If the constant C (the Calabi invariant [7]) in the periodicity condition (9.1)
is zero, and the Lagrangian satisfies a convexity condition

L12(q, q′) < 0 , (9.4)

where subscript k refers to the derivative with respect to the kth argument,
then the action of periodic paths of type (d, n) is bounded below, so there is a
minimising path. Since its action is stationary, it gives a periodic orbit of type
(d, n).

3 For orbit p of period np, the action of the orbit is:

Sp ≡
np−1∑
n=0

L(qn, qn+1) . (9.5)

Sp is the generating function that maps a point along the orbit for one (prime)
period. For the case of a fixed point p of period np = 1, the action is

Sp = L(qp, qp) , (9.6)

where the generating function L(qp, qp) maps xp into itself in one iteration.

9.3 Homoclinic and periodic orbit actions in chaotic
systems

4 For an aperiodic orbit {x0} going through the point x0, the action, evaluated
as the sum over an infinity of successive mappings,

S{x0} ≡ lim
N→∞

N−1∑
n=−N

L(qn, qn+1) = lim
N→∞

S−N,N , (9.7)

2Predrag 2018-09-29: presumably they are relative periodic orbits, or pre-periodic orbits, with a
rational winding number p/q.

3Predrag 2018-01-21: Is this true? To go from the Hamiltonian (xt, pt) phase space formulation
to the Newtonian (or Lagrangian) (xt−1, xt) state space formulation, replace pt by pt = (xt −
xt−1)/∆t , where ∆t = 1.

4Predrag 2018-09-29: What follows is copied from Li and Tomsovic [39].
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Figure 9.1: A sketch of a partial homoclinic tangle which forms a complete
horseshoe structure. The unstable (stable) manifold of x is the solid (dashed)
curve. There are two primary homoclinic orbits {h0} and {g0}. R is the closed
region bounded by loop LUSUS[x,g−1,h0,g0]. (From ref. [39])

is not necessarily convergent. However, the MacKay-Meiss-Percival action
principle [42, 45] can be applied to obtain well defined action differences be-
tween pairs of orbits. For example, the relative action ∆S{h0}{x} between a fixed
point xp and its homoclinic orbit {h0}, where h±∞ → xp:

∆S{h0}{xp} ≡ lim
N→∞

N−1∑
i=−N

[L(hi, hi+1)− L(xp, xp)]

=

∫
U [xp,h0]

pdq +

∫
S[h0,xp]

pdq =

∮
US[xp,h0]

pdq

= A◦US[xp,h0] (9.8)

where U [xp, h0] is the segment of the unstable manifold from xp to h0, and
S[h0, xp] the segment of the stable manifold from h0 to xp. The ◦ superscript on
the last line indicates that the area is interior to a path that forms a closed loop,
and the subscript indicates the path: US[xp, h0] = U [xp, h0] + S[h0, xp]. The
clockwise enclosure of an area is positive, counterclockwise negative. ∆S{h0}{xp}
gives the action difference between the homoclinic orbit segment [h−N , · · · , hN ]
and the length-(2N + 1) fixed point orbit segment [xp, · · · , xp] in the limit
N → ∞. In later sections, upon specifying the symbolic code of the homo-
clinic orbit {h0} ⇒ 0γ0, we also denote ∆S{h0}{xp} alternatively as

∆S{h0}{xp} = ∆S0γ0,0 (9.9)

by replacing the orbits in the subscript with their symbolic codes.
Likewise, a second important case is for the relative action between a pair
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of homoclinic orbits {h′0} ⇒ 0γ′0 and {h0} ⇒ 0γ0, which results in

∆S{h′0}{h0} ≡ lim
N→∞

N−1∑
i=−N

[
L(h′i, h

′
i+1)− L(hi, hi+1)

]
= lim

N→∞

[
L(h′−N , h

′
N )− L(h−N , hN )

]
=

∫
U [h0,h′0]

pdq +

∫
S[h′0,h0]

pdq = A◦US[h0,h′0]

= ∆S0γ′0,0γ0 (9.10)

where U [h0, h
′
0] is the segment of the unstable manifold from h0 to h′0, and

S[h′0, h0] the segment of the stable manifold from h′0 to h0. Due to the fact that
the endpoints approach xp forward and backward in time, one can also write

∆S{h′0}{h0} = lim
N→∞

[
L(h′−(N+n), h

′
N+m)− L(h−N , hN )

]
−(n+m)F0 . (9.11)
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9.4 Hill’s formula, Lagrangian setting
5 There can be more than one minimising path. In particular, translating one
minimising path by an integer in time or space or both gives another. This
implies existence of saddle points of the action in between the minima, with
one downward direction [1-3]. They are called minimax points, and give rise
to minimax periodic orbits of type (d, n). The statement of the existence of at
least two periodic orbits of each type (d, n) is known as the Poincaré-Birkhoff
theorem.

As a corollary, Mackay and Meiss [41] rederive the old result that when
the convexity condition is satisfied, the multipliers of a minimising orbit are
a reciprocal pair of positive reals, and those of a minimax orbit are either a
complex conjugate pair on the unit circle, or a reciprocal pair of negative reals.
The result for minimising orbits was shown by Poincaré [52] for two-degree-
of-freedom continuous-time systems, and Birkhoff [1] discusses the minimax
case.

The linear stability of a periodic orbit is determined by its multipliers, the
eigenvalues of the derivative of the return map round the orbit. While the first
variation of the action is by definition zero for an orbit, the multipliers of a peri-
odic orbit can be related to the second variations of the action in the space of pe-
riodic paths. This has been shown in various cases. Hill [21] and Poincaré [52]
derived a formula for the multipliers in the case of one-degree-of-freedom sys-
tems of the form kinetic minus potential [21], using a Fourier representation
for periodic paths. In his study of periodic orbits of the three-body problem,
Hill obtained a formula connecting the characteristic polynomial of the mon-
odromy matrix of a periodic orbit with the infinite determinant of the Hessian
of the action functional. Mackay and Meiss [41] derived a formula (9.17) for the
multipliers of a periodic orbit for general discrete-time one-degree-of-freedom
systems. Bolotin and Treschev [5] give two multidimensional generalizations
of Hill’s formula: for discrete Lagrangian systems (symplectic twist maps) and
for continuous Lagrangian systems, and discuss implications of symmetries
and reversibility. Bountis and Helleman [6] and Greene [17] treated the case of
discrete-time one-degree-of-freedom systems with

L12(q, q′) = −1 . (9.12)

Schmidt [54] determined n-tupling bifurcations by the criterion that the matrix
of second variations of the action with respect to periodic paths of n times the
period have a zero eigenvalue.

Mackay and Meiss [41] relate the multipliers of a periodic orbit to the sec-
ond variations of the action about the orbit, and compute the Hill determinant
of the matrix of second variations of the action in the space of periodic paths of
period T.

5Predrag 2016-11-11, 2018-09-26: The current draft of this section starts out with excerpts
from Mackay and Meiss [41] Linear stability of periodic orbits in Lagrangian systems, and Bolotin and
Treschev [5] Hill’s formula.
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Stationarity (6.76) of the action for an orbit of a discrete-time one-degree-of-
freedom system implies that

L2(qi−1, qi) + L1(qi, qi+1) = 0 . (9.13)

Thus the tangent orbits δxi satisfy [...]. The multipliers Λ of a periodic orbit of
period q are defined by existence of a tangent orbit satisfying [...] residue of a
periodic orbit one can easily solve for multipliers. [... losing steam]

Mackay and Meiss [41] formulas for the multipliers of minimising and min-
imax orbits follow. Under the convexity condition (9.4), the denominator is
positive. At a minimum of action (whether local or global):

D(1) ≤ 0 , (9.14)

so the multipliers are real and positive. At a minimax with one downward
direction:

D(1) ≥ 0 , (9.15)

so the multipliers are on the unit circle or the negative real axis.
Residue [17] R of a periodic orbit p of period np

4R = det (1− Jp) = tr (1− Jp) = 2− Λp − 1/Λp (9.16)

is related to the Hill determinant D(Λ) by what the discrete Hill’s formula [5]:
6

det (1− Jp) = −D(1)

(
np−1∏
i=0

(−L12[i, i+ 1])

)−1

. (9.17)

This formula was derived by Mackay and Meiss [41] and Allroth [2] (Allroth
eq. (12)). It applies to general “one-degree-of-freedom” systems, i.e., 1D lattices
with only the nearest neighbor interactions. For a finite set of neighbors, i.e.,
higher-dimensional discrete-time systems, Allroth [2] has some partial results
in the context of Frenkel-Kontorova models.

D(1) is the Hill determinant of the matrix of second variations of the action
in the space of periodic paths of period q. So we have related the multipliers
of a periodic orbit to the second variations of the action about the orbit.

6Predrag 2018-09-30: See Bolotin and Treschev [5] eqs. (2.8) and (2.13)
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9.5 Spatiotemporal cat Hill’s formula

2020-07-23 Predrag I have everything in place for deriving spatiotemporal cat
(and temporal catas a special case) Hill’s formula from the elementary
Kronecker product (9.18) block matrix rules

1. multiplication (15.102) leads to shift (15.125) accruing correctly.

2. Hill determinant (15.103), (15.126); yields correct ln det = tr ln re-
duction to periodic Jp

3. A ⊗ B being similar to B ⊗ A by (15.104) explains why [2L×2L]
phase space is equivalent to the [L×L] orbit stability.

2020-07-23 Predrag Next: streamline, move to CL18.tex

2020-07-27 Predrag Essential parts copied to CL18.tex, siminos/kittens/Hill.tex

The d = 2 lattice spatiotemporal cat equations can be recast in a matrix
form, by rewriting the defining equations as block matrices [10, 16, 24], con-
structed by the Kronecker product A⊗B,7 an operation that replaces elements
of the [n×n] matrix A by [m×m] matrix ‘blocks’ B, resulting in an [mn×mn]
block matrix [4, 65]

A⊗B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 . (9.18)

Consider A, C square matrices of size [n×n], and B, D square matrices of size
[m×m]. The matrix product of two block matrices is a block matrix [4, 64],

(A⊗B) (C⊗D) = (AC)⊗ (BD) . (9.19)

The trace and the determinant of a block matrix are given by

tr (A⊗B) = tr A tr B

det (A⊗B) = det (Am) det (Bn) . (9.20)

The two [mn × mn] block matrices A ⊗ B and B ⊗ A are equivalent by a
similarity transformation

B⊗A = P> (A⊗B) P , (9.21)

where P is permutation matrix. As det P = 1, the block matrix determinant
det (A⊗B) = det (B⊗A) is independent of the order in which blocks are
constructed.

7Predrag 2020-08-01: The Zehfuss product (1858), really. The Hill determinant is from 1886,
though it does not look recognizably anything like out the Hill determinants... These things are
everywhere!
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Now, apply this formalism to a [L×T]0 rectangular Bravais cell. In the Kro-
necker product block matrix notation (9.18), the orbit Jacobian matrix refeq{eq:BxAtempJ}
can be written as a [LT × LT] block matrix

J = 11 ⊗
(
d2 + d−1

2

)
− 2s11 ⊗ 12 +

(
d1 + d−1

1

)
⊗ 12 , (9.22)

where the (9.18) matrix A and identity 11 matrix are ‘spatial’ [L×L] matrices,
with blocks B and identity 12 ‘temporal’ [T×T] matrices, with indices ‘1’, ‘2’
referring to ‘spatial’, ‘temporal’ lattice directions, respectively.

Our goal is to compute the Hill determinant |detJ |. As we have shown in
the example refsect{s:catLattRel3x2}, this is best done directly, by computing
the volume of the fundamental parallelepiped. 8

However, in classical and statistical mechanics, one often computes the Hill
determinant using a Hamiltonian, or ‘transfer matrix’ formulation. An exam-
ple is the temporal cat 3-term recurrence (6.160) in the Percival-Vivaldi [49]
‘two-configuration’ cat map representation (1.101)

x̂t+1 = Ĵ1 x̂t − ŝt , (9.23)

with the one-time step temporal evolution [2×2] Jacobian matrix Ĵ1 generating
a time orbit by acting on the 2-dimensional ‘phase space’ of successive config-
uration points

Ĵ1 =

[
0 1
−1 s

]
, x̂t =

(
xt−1

xt

)
, ŝt =

(
0
st

)
, (9.24)

Similarly, for the d = 2 spatiotemporal cat lattice at hand, one can recast the
5-term recurrence (XX) (compare with the (6.170))

xnt = xnt

xn,t+1 = −xn,t−1 + (−xn−1,t + 2s xnt − xn+1,t)− snt (9.25)

in the ‘two-configuration’ matrix form (15.114) by picking the vertical direction
(indexed ‘2’) as the ‘time’, with temporal 1-time step Jacobian [2L×2L] block
matrix

Ĵ1 =

[
0 11

−11 −J1

]
, (9.26)

(known as a transfer matrix in statistical mechanics [46, 47]) generating a time
orbit by acting on a 2L-dimensional ‘phase space’ lattice strip x̂t along the
‘spatial’ direction (indexed ‘1’),

x̂t =

[
xt−1

xt

]
, ŝt =

[
0

s1t

]
, xt =

 x1t

...
xLt

 , st =

 s1t

...
sLt

 , (9.27)

8Predrag 2020-07-27: Insert refsect{s:catLattRel3x2} example here?
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where the hatˆ indicates a 2L-dimensional ‘two-configuration’ state, and J1 is
the spatial [L×L] orbit Jacobian matrix of form (XX),

J1 = d−1
1 − 2s11 + d1 (9.28)

The ‘two-configuration’ coupled cat maps system (15.114) is a generalization
of the Bernoulli map time evolution formulation (XX) to a higher-dimensional
spatially-coupled lattice. Just as in the temporal Bernoulli condition refeq {temp-
FixPoint}, the first order in time difference equation (15.114) can be viewed as
a lattice state fixed point condition refeq{tempFixPoint}, a zeros of the function
F [X̂] = Ĵ X̂ + M̂ = 0 , with the entire periodic lattice state X̂M treated as a single
fixed point in the 2LT-dimensional unit hyper-cube, and the [2LT× 2LT] block
matrix orbit Jacobian matrix given either by

Ĵ = 1̂− Ĵ1 ⊗ d−1
2 , (9.29)

or by

Ĵ ′ = 1̂− d−1
2 ⊗ Ĵ1 . (9.30)

Here the unity 1̂ = 1̂1⊗12 is a [2LT×2LT] block matrix, and the time-evolution
Jacobian matrix Ĵ1 (15.117) is a [2L×2L] matrix.

The order in which the block matrix blocks are composed does not matter,
yielding the same the Hill determinant det Ĵ = det Ĵ ′ by (15.104). However,
written out explicitly, the two orbit Jacobian matrices (15.121) and (15.124) are
of a very different form.

For example, for the [L×T]0 rectangular Bravais cell, the spatiotemporal
cat orbit Jacobian matrix (XX) involves the [T×T] time shift operator block
matrix d2 (XX) with the one-time-step [2L×2L] time-evolution Jacobian matrix
Ĵ1 (15.117)

Ĵ =

[
11 ⊗ 12 −11 ⊗ d−1

2

11 ⊗ d−1
2 11 ⊗ 12 + J1 ⊗ d−1

2

]
, (9.31)

and for spatiotemporal cat (15.116) this is a time-periodic [T × T] shift opera-
tor block matrix d2 (XX), each block now a space-periodic [2L×2L] matrix Ĵ1

(15.117).
If a block matrix is composed of four blocks, its determinant can be factor-

ized by Schur’s (1917) formula [55, 64]

det

[
A B
C D

]
= det (A) det (D−CA−1B) . (9.32)

so, noting (15.102), (15.105) and (15.118), we find that the [2LT × 2LT] ‘phase
space’ det Ĵ defined by (15.121) is actually the desired Hill determinant of
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[LT × LT] orbit Jacobian matrix J ,

det Ĵ = det

[
11 ⊗ 12 −11 ⊗ d−1

2

11 ⊗ d−1
2 11 ⊗ 12 + J1 ⊗ d−1

2

]
= det

[
11 ⊗ 12 + J1 ⊗ d−1

2 + (11 ⊗ d−1
2 )(11 ⊗ 12)(11 ⊗ d−1

2 )
]

= det
[
11 ⊗ 12 + J1 ⊗ d−1

2 + 11 ⊗ d−2
2

]
= det (d−1

2 ) det
[
11 ⊗ d−1

2 + (d−1
1 − 2s11 + d1)⊗ 12 + 11 ⊗ d2

]
= detJ , (9.33)

where we have used det 11 = det 12 = det d1 = det d2 = 1.
Consider next (15.120), the equivalent way of forming of the block matrix

for the [L×T]0 rectangular Bravais cell, with temporal period taken for defini-
tiveness T = 4. The spatiotemporal cat orbit Jacobian matrix (15.120) is now
constructed as the [4×4] time shift operator block matrix d2 (XX), with the one-
time-step [2L×2L] time-evolution Jacobian matrix Ĵ1 (15.117) and unit matrix
1̂1 as blocks

Ĵ ′ = 12 ⊗ 1̂1 − d−1
2 ⊗ Ĵ1 =


1̂1 0 0 −Ĵ1

−Ĵ1 1̂1 0 0

0 −Ĵ1 1̂1 0

0 0 −Ĵ1 1̂1

 . (9.34)

To evaluate the Hill determinant det Ĵ ′, note that from the block-matrix multi-
plication rule (15.102) and the determinant rule (15.103) it follows that

(d−1
2 ⊗ Ĵ1)(d−1

2 ⊗ Ĵ1) = d−2
2 ⊗ Ĵ2

1 , (d−1
2 ⊗ Ĵ1)k = d−k2 ⊗ Ĵk1 , (9.35)

and

det (d−1
2 ⊗ Ĵ1) = (det d2)−L(det Ĵ1)T = det Ĵp , Ĵp = ĴT1 , (9.36)

where Ĵp is the Jacobian matrix of a temporal periodic orbit p. Expand ln det Ĵ ′ =

tr ln Ĵ ′ as a series using (15.103) and (15.125),

tr ln Ĵ ′ = tr ln(1− d−1
2 ⊗ Ĵ1) = −

∞∑
k=1

1

k
tr (d−k2 ) tr Ĵk1 , (9.37)

and use tr dk2 = T if k is a multiple of T, 0 otherwise (follows from dT2 = 1):

ln det (1− d−1
2 ⊗ Ĵ1) = −

∞∑
r=1

1

r
tr Ĵrp = ln det (1̂1 − Ĵp) .

So for the spatiotemporal cat the orbit Jacobian matrix and the temporal evo-
lution (15.114) stability Ĵp are related by the remarkable Hill’s formula

|detJ | = |det (1̂1 − Ĵp)| . (9.38)
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which expresses the Hill determinant of the arbitrarily large orbit Jacobian ma-
trix Ĵ ′ in terms of a determinant of a small [2L×2L] time-evolution Jacobian
matrix Ĵ1.

Remark From (15.86) we have2CB

det Ĵ1 = det

[
0 11

−11 −J1

]
= det (J1) det (J−1

1 ) = 1 , (9.39)

so Ĵ1 is a canonical, or phase-space volume preserving transformation, as one
expects of Hamiltonian systems.

Remark The reformulation of the spatiotemporal cat 5-term recurrence (15.116)
as the ‘two-configuration’ form (15.114) is really just the usual passage from La-
grangian to the Hamiltonian formulation, but we chose to short-circuit it, as all
that heavy general formalism is not needed for the problem at hand. 9

Remark I am not a big fan of the Kronecker product (9.18) as it treats the
time and the space differently. Nicer notion would be a tensor product that
treats all directions in d-dimensional on equal, symmetric footing. Perhaps the
‘outer product’ does that (see the wiki) explains the outer product of tensors,
and its relation to the Kronecker product. Arfken, Weber & Harris [4] Mathe-
matical Methods for Physicists: A Comprehensive Guide (click here) call it the direct
tensor or Kronecker product, see AWH eq. (2.55).

Perhaps Steeb and Hardy [58] Matrix Calculus, Kronecker Product and Tensor
Product (I have not downloaded the book) deals with that. Not sure if that is
different from Steeb and Hardy [57] Matrix Calculus and Kronecker Product - A
Practical Approach to Linear and Multilinear Algebra.

Kowalski and Steeb [33] Nonlinear Dynamical Systems and Carleman Lineariza-
tion (click here) already goes beyond the other Kronecker product references I
had looked at, as it emphasizes commutators of Kronecker products.

Horn and Johnson [23] Matrix Analysis (click here) promises to do Kro-
necker product in the companion volume Horn and JohnsonHoJo94 Topics in
Matrix Analysis that I have not looked yet.

Schur’s (1917) formula (15.122) is derived in exercise A.12 of Stone and
GoldbartStGo09 Mathematics for Physics (click here).

9.6 Hill’s formula for relative periodic orbits

As a first try, let’s reverse-engineer relative periodicity for the more familiar
‘two-configuration’ spatiotemporal cat (15.114). The stability matrix of a tem-
porally periodic orbit

δx̂T = ĴT1 δx̂0 , (9.40)
corresponds spatiotemporally to a [L×T]0 rectangular Bravais cell, while the
stability matrix of a relative periodic orbit includes the relative shift S,

δx̂T = dS1 ĴT1 δx̂0 , (9.41)
9Predrag 2020-07-15: Perhaps refer to ChaosBook 8.1 Hamiltonian flows. Mention transfer

matrix formulation of lattice field theories?
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and corresponds spatiotemporally to a [L×T]S parallelepipedal Bravais cell,
which can be convert into a rectangular cell by going into a co-moving frame,
with the temporal 1-time step Jacobian [2L×2L] block matrix (15.117) replaced
by

J̃1 ⇒ d
S/T
1 Ĵ1 =

[
0 d

S/T
1

−dS/T1 −dS/T1 J1

]
, (9.42)

and Ĵ ′[L×T]S
is of the rectangular cell form, with replacement Ĵ1 → J̃1 in (15.124).

In evaluating the corresponding determinants we can use (15.126),

det (d−1
2 ⊗ J̃1) = (det d2)−L(det J̃1)T = det J̃p , J̃p = dS1 ĴT1 , (9.43)

where J̃p is the Jacobian matrix of the temporal prime relative periodic orbit p.
Now we can reverse-engineer relative periodicity for the d = 2 lattice. We

have just worked out Ĵ ′ defined by (15.120). Consider next Ĵ (15.119), with
‘time’ and ‘space’ blocked in the other order, defined by (15.119), (15.121) and
(9.42),

Ĵ =

[
11 ⊗ 12 −dS/T1 ⊗ d−1

2

d
S/T
1 ⊗ d−1

2 11 ⊗ 12 + J1d
S/T
1 ⊗ d−1

2

]
, (9.44)

We next evaluate the [2LT × 2LT] ‘phase space’ det Ĵ defined by (15.121), and
show again that it equals the Hill determinant of [LT × LT] orbit Jacobian ma-
trix J ,

det Ĵ = det
[
11 ⊗ 12 + J1d

S/T
1 ⊗ d−1

2 + d
2S/T
1 ⊗ d−2

2

]
= det

[
d
S/T
1 ⊗ d−1

2 + (d−1
1 − 2s11 + d1)⊗ 12 + d

−S/T
1 ⊗ d2

]
= detJ , (9.45)

The orbit Jacobian matrix (15.105) for a tilted Bravais domain (relative periodic
orbit) is thus a [LT × LT] block matrix

J[L×T]S =
(
d
S/T
1 ⊗ d−1

2 + d
−S/T
1 ⊗ d2

)
− 2s11 ⊗ 12 +

(
d1 + d−1

1

)
⊗ 12 . (9.46)

All the relative periodicity is in the d
−S/T
1 ⊗ d2. This space-time asymme-

try is a consequence of choosing the Hermite normal form (6.126) to define
the Bravais cell, so we are not home yet - even though we are computing the
representation-independent determinants, we do not have an invariant state-
ment of cell’s ‘tilt’.

What do I mean? An example of an invariant condition is the statement
that a prime lattice Lp tiles the given lattice L only if the area spanned by the
two ‘tilted’ basis vectors

a2 × ap2 = STp − TSp (9.47)
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is a multiple of the prime tile area LpTp.

Remark Perhaps we can use Floquet theory analogue of a comoving frame
(9.42) to put the generally time-varying (Ĵ1)t into an average, constant per time
step form J̃1, in order to use the block-matrix formalism.

9.7 Han’s 1st order difference eq. Hill’s formula

2019-10-04 Han I haven’t found the proof of (8.38), so I will prove it here.
Assuming we have a d-dimensional map. The state of the system at time t

is give by a d-dimensional vector X(t) = {x1(t), x2(t), . . . , xd(t)}. The forward-
time Jacobian matrix is:

J(t)ij =
∂xi(t+ 1)

∂xj(t)
. (9.48)

A block matrix is a matrix defined by smaller matrices, called blocks. The ma-
trix H (8.26) is now an [npd× npd] block matrix:

H(xp) =


1 −J(np)

−J(1) 1
· · · 1

· · · 1
−J(np − 1) 1

 , (9.49)

where 1 is a d-dimensional identity matrix and J(t) is the [d× d] forward-time
Jacobian matrix. To evaluate the determinant of the matrixH , we will eliminate
the off diagonal elements in the lower triangular region start from the second
row. Eventually the matrix H becomes:

H̃(xp) =


1 −J(np)
0 1 −J(1)J(np)

0 1 −J(2)J(1)J(np)
0 1 · · ·

0 1− J

 , (9.50)

where J = J(np − 1)J(np − 2) . . .J(2)J(1)J(np). The determinant of the block
matrix H̃ is equal to the product of the determinant of the matrices on the
diagonal, which is the determinant of 1− J.

The cat map is a 2-dimensional map that can be written as 1-dimensional
time delay map. A general form of this map is 10

xt+1 = f(xt, xt−1) . (9.51)

10Predrag 2019-10-11: Note to myself: Reference the cat map equation in the text. Explain how
imposing “direction” of time is in the case arbitrary, but related to Hamiltonian formulation (which
this is not)
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The forward-time Jacobian matrix can be written as:

J(t) =
∂(xt, xt+1)

∂(xt−1, xt)
=

(
0 1

f2(xt, xt−1) f1(xt, xt−1)

)
, (9.52)

where the subscript of fk refers to the derivative with respect to the kth argu-
ment of f . For a periodic orbit p, the matrix H is:

H(xp) =


1 −f2(xnp , xnp−1) −f1(xnp , xnp−1)

−f1(x1, xnp) 1 −f2(x1, xnp)
−f2(x2, x1) −f1(x2, x1) 1

· · · 1
−f2(xnp−1, xnp−2) −f1(xnp−1, xnp−2) 1

 .

(9.53)

To change this matrix to upper triangular form, 11

first add f1(x1, xnp) times the first row to the second row:
1 −f2(xnp , xnp−1) −f1(xnp , xnp−1)
0 1 −f2(xnp , xnp−1)f1(x1, xnp) −f2(x1, xnp)− f1(xnp , xnp−1)f1(x1, xnp)

−f2(x2, x1) −f1(x2, x1) 1
· · · 1

−f2(xnp−1, xnp−2) −f1(xnp−1, xnp−2) 1

 .

(9.54)

Note that the [2 × 2] block on the upper-right corner is −J(1)J(np). After we
finish the first two rows, when we eliminate the elements on the tth row in the
lower triangular region, we will add f2(xt−1, xt−2) times the (t− 2)th row plus
f1(xt−1, xt−2) times the (t− 1)th row to the tth row. If the [2× 2] block on the
right end of the (t − 2)th and (t − 1)th row is −Jt−1, after we eliminate the
sub-diagonal elements on the tth row the [2 × 2] block on the right end of the
(t− 1)th and tth row is −J(t− 1)Jt−1.

Repeat this procedure until we reach the (np − 1) row. The [2× 2] block on
the right end of the (np − 2)th and (np − 1)th row is:(

0 0
1 0

)
− Jnp−1,

where Jnp−1 = J(np − 2) . . .J(1)J(np). The next step is eliminating the off-
diagonal elements in the last row. We will only eliminate the element on the

11Predrag 2019-10-11: to Han - can you derive this more elegantly using the CN formulation of
(8.7)?
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(np − 2)th column by adding f2(np − 1, np − 2) times the (np − 2)th row plus
f1(np − 1, np − 2) times the (np − 1)th row to the last row. The [2× 2] block on
the lower-right corner is now:

1− J(np − 1)Jnp−1 .

Now the matrix H becomes an upper-triangular block matrix:

H̃(xp) =


1 −J(1)J(np)

1 · · ·
1 · · ·

1 · · ·
1− J

 ,

(9.55)

where 1 is a 2-dimensional identity matrix and J = J(np−1)J(np−2) . . .J(1)J(np).
The determinant of matrix H is equal to the product of the determinant of the
matrices on the diagonal, which is equal to the determinant of 1− J.

2019-10-13 Predrag to Han - can you have a look at my Guckenheimer and
Meloon [18] “symmetric multiple shooting algorithm” notes, sect. 9.12? First
verify and understand that their argument that the orbit Jacobian matrix for
their (9.107) is equivalent to the orbit Jacobian matrix for the ‘forward shooting’
case.

Then do the same for the time-reversible ‘error’ field (9.107) with self-adjoint
(symmetric orbit Jacobian matrix) orbit Jacobian matrix (9.109). We have to
show that its determinant is the Hill’s formula.

9.7.1 Hill’s formula for a first-order system
12

Consider an period-n lattice state Φp, with d fields {φt,1, φt,2, . . . , φt,d} on
each temporal lattice site t satisfying the condition

φt − f (φt−1) = 0 , t = 1, 2, · · · , n , (9.56)

where f (φ) is a d-dimensional function. A deviation ∆Φ from Φp then satisfies
the linearized condition

∆φt − Jt−1 ∆φt−1 = 0 , (Jt)ij =
∂f (φ)i
∂φj

∣∣∣∣
φj=φt,j

, (9.57)

where Jt is the 1-time step [d×d] Jacobian matrix.
It suffices to work out a temporal period n = 3 example to understand the

calculation for any period. In terms of the [3d×3d] matrix shift matrix r, the

12Predrag 2020-12-15: Transfer to CL18.tex. Once incorporated, remove from here - too much
duplication, as is;)
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orbit Jacobian matrix can be written as

Jp = 11− r−1J , r−1 =

 0 0 11d
11d 0 0
0 11d 0

 , J =

 J1 0 0
0 J2 0
0 0 J3

 , (9.58)

where 11d is the d-dimensional identity matrix. Next, note that

(r−1J)2 = r−2

 J2J1 0 0
0 J3J2 0
0 0 J1J3

 , (r−1J)3 =

 J2J1J3 0 0
0 J3J2J1 0
0 0 J1J3J2

 ,
as r−3 = 11. Likewise, as rn = 11 for any period n, the trace of [nd×nd] matrix

tr (r−1J)k = δk,rn n tr Jrp , Jp = JnJn−1 · · · J2J1

is non-vanishing only if k is a multiple of n, with Jp the forward-in-time [d×d]
Jacobian matrix of the periodic orbit p.

Now we can evaluate the Hill determinant (6.125) by expanding

ln Det (Jp) = tr ln( 11− r−1J) = −
∞∑
k=1

1

k
tr (r−1J)k

= −tr

∞∑
r=1

1

r
Jrp = ln det ( 11d − Jp) . (9.59)

The Hill determinant for a 2-term difference equation (??) on a temporal lattice

Det (Jp) = det ( 11d − Jp)

thus relates the global orbit stability to the Floquet, temporal evolution stabil-
ity. In the temporal Bernoulli case, the field φt is a scalar, and the 1-time step
[1×1] time-evolution Jacobian matrix (9.57) at every lattice point t is simply
Jt = s, so

Nn = |DetJ | = sn − 1 , (9.60)

in agreement with the time-evolution count.

9.8 Han’s temporal cat Hill’s formula

The orbit Jacobian matrix of the ` = 4 temporal cat has form:

J =


−s 1 0 1
1 −s 1 0
0 1 −s 1
1 0 1 −s

 .
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For example, the ` = 4 the orbit Jacobian matrix expressed in the terms of
the one-step [2× 2] temporal Jacobian matrix (15.114) is:

Ĵ1 = 1− r−1 ⊗ J (9.61)

=



1 0 0 0 0 0 0 −1
0 1 0 0 0 0 1 −s
0 −1 1 0 0 0 0 0
1 −s 0 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 1 −s 0 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 1 −s 0 1


.

det
(
1− r−1 ⊗ J

)
= det

(
1− J ⊗ r−1

)
= det

[(
1− J ⊗ r−1

) (
1[2×2] ⊗ r

)]
,

where:

1− J ⊗ r−1 =



1 0 0 0 0 0 0 −1
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 1 1 0 0 −s
1 0 0 0 −s 1 0 0
0 1 0 0 0 −s 1 0
0 0 1 0 0 0 −s 1


,

and

(
1− J ⊗ r−1

) (
1[2×2] ⊗ r

)
=



0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
1 0 0 0 0 0 0 −1
1 0 0 0 −s 1 0 0
0 1 0 0 0 −s 1 0
0 0 1 0 0 0 −s 1
0 0 0 1 1 0 0 −s


.

A block matrix is a matrix defined by smaller matrices, called blocks. The de-
terminant of a block matrix is [64] (see wiki):

det

(
A B
C D

)
= det (A) det (D − CA−1B) . (9.62)

or

det

(
A B
C D

)
= det (D) det (A−BD−1C) . (9.63)
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9.9 Han’s 2nd order difference eq. Hill’s formula

2022-01-16 Han A map of form φt+1 = f(φt−1, φt) can be replaced by a pair of
1st order difference equation for the 2-component field φ̂t = (φt−1, φt):

φ̂t+1 = f̂(φ̂t) =

(
φ̂t,2

f(φ̂t,1, φ̂t,2)

)
=

(
φt

f(φt−1, φt)

)
. (9.64)

The trace of the Perron-Frobenius operator is:

trLn =

∫
dφ̂0 δ(φ̂0 − f̂n(φ̂0))

=

∫ n−1∏
t=0

(
dφ̂t δ(φ̂t+1 − f̂(φ̂t)

)
, φ̂t+n = φ̂t .

=

∫ n−1∏
t=0

(
dφ̂t,1dφ̂t,2δ(φ̂t+1,1 − φ̂t,2)δ(φ̂t+1,2 − f(φ̂t,1, φ̂t,2)

)
.

(9.65)

Integrating over the first components dφ̂t,1 and using the trivial Dirac delta
δ(φ̂t+1,1 − φ̂t,2), we can drop the dφ̂t,1 and rewrite φ̂t,1 as φ̂t−1,2. So the trace
becomes:

trLn =

∫
dφ̂0 δ(φ̂0 − f̂n(φ̂0))

=

∫ n−1∏
t=0

(
dφ̂t,2δ(φ̂t+1,2 − f(φ̂t−1,2, φ̂t,2)

)
. (9.66)

Now write φ̂t,2 as φt, we have:

trLn =

∫ n−1∏
t=0

(dφtδ(φt+1 − f(φt−1, φt))

=

∫
[dΦ]

n−1∏
t=0

δ(φt+1 − f(φt−1, φt)) , dΦ =

n−1∏
t=0

dφt . (9.67)

Note that before we integrate the Dirac delta function, we should write the
map f̂ as a map from φ̂t to φ̂t+1.

2022-01-16 Predrag That looks about right - I have a small notational sug-
gestion in LC21.tex. Can you try to polish that section, while I move on with
editing to other sections? I think this derivation is the simpler than any I have
seen for Hamiltonian systems. Doin it as delta-function deterministic kernels
really helps.
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9.9.1 Hill’s formula for a second-order system
13

Consider an period-n lattice state Φp, with d fields {φt,1, φt,2, . . . , φt,d} on
each temporal lattice site t satisfying the condition

φt+1 − f (φt−1) + φt−1 = 0 , t = 1, 2, · · · , n , (9.68)

where f (φ) is a d-dimensional function.
Consider one-dimensional Schrödinger equation [20, 22, 48, 56],H = −d2/dx2+

V (x) with V (x) almost periodic and the discrete (= tight binding) analog, i.e.,
the doubly infinite Jacobi matrix

hij = δi,j+1 + Viδi,j + δi,j−1 (9.69)

with Vn almost periodic on the integers.
A deviation ∆Φ from Φp then satisfies the linearized condition

∆φt − Jt−1 ∆φt−1 = 0 , (Jt)ij =
∂f (φ)i
∂φj

∣∣∣∣
φj=φt,j

, (9.70)

where Jt is the two-configuration [d×d] Jacobian matrix.
in our notation (13.110) is written as (1.118)

φ`+1 − s` φ` + φ`−1 = −m` , (9.71)

He, as everybody else, sooner or later, rewrites (13.113) in the “Percival-
Vivaldi’́ ‘two-configuration representation’ [22, 49] matrix J (1.5),[

∆φt
∆φt+1

]
=

[
0 11d
− 11d Jt

] [
∆φt−1

∆φt

]
. (9.72)

(note ‘upside-down’ 2D vector), and concerns himself with the rational, energy
tr Jm < 2, oscillatory case.

Note, it’s only about the order of recurrence, nobody says the systems should
be Hamiltonian / Lagrangian, works for dissipative systems as well.

A deviation ∆Φ from Φp then satisfies the linearized condition

∆φt − Jt−1 ∆φt−1 = 0 , (Jt)ij =
∂f (φ)i
∂φj

∣∣∣∣
φj=φt,j

, (9.73)

where Jt is the two-configuration [d×d] Jacobian matrix.
It suffices to work out a temporal period n = 3 example to understand the

calculation for any period. In terms of the [3d×3d] matrix shift matrix r, the
orbit Jacobian matrix can be written as

Jp = 11− r−1J , r−1 =

 0 0 11d
11d 0 0
0 11d 0

 , J =

 J1 0 0
0 J2 0
0 0 J3

 , (9.74)

13Predrag 2020-12-15: Merge sect. 9.5 Spatiotemporal cat Hill’s formula into his, to transfer to
CL18.tex. Once incorporated, remove from here (too much duplication, as is)
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where 11d is the d-dimensional identity matrix. Next, note that

(r−1J)2 = r−2

 J2J1 0 0
0 J3J2 0
0 0 J1J3

 , (r−1J)3 =

 J2J1J3 0 0
0 J3J2J1 0
0 0 J1J3J2

 ,
as r−3 = 11. Likewise, as rn = 11 for any period n, the trace of [nd×nd] matrix

tr (r−1J)k = δk,rn n tr Jrp , Jp = JnJn−1 · · · J2J1

is non-vanishing only if k is a multiple of n, with Jp the forward-in-time [d×d]
Jacobian matrix of the periodic orbit p.

Now we can evaluate the Hill determinant (6.125) by expanding

ln Det (Jp) = tr ln( 11− r−1J) = −
∞∑
k=1

1

k
tr (r−1J)k

= −tr
∞∑
r=1

1

r
Jrp = ln det ( 11d − Jp) . (9.75)

The Hill determinant for a 2-term difference equation (??) on a temporal lattice

Det (Jp) = det ( 11d − Jp)

thus relates the global orbit stability to the Floquet, temporal evolution stabil-
ity. In the temporal Bernoulli case, the field φt is a scalar, and the 1-time step
[1×1] time-evolution Jacobian matrix (9.57) at every lattice point t is simply
Jt = s, so

Nn = |DetJ | = sn − 1 , (9.76)

in agreement with the time-evolution count.

9.10 Han’s spatiotemporal cat Hill’s formula

Consider a [`×`]0 rectangular Bravais cell. In the Kronecker product block
matrix notation (9.18), the orbit Jacobian matrix refeq{eq:BxAtempJ} is the [``×
``] block matrix (15.105):

J = 11 ⊗
(
r2 + r−1

2

)
− 2s1 +

(
r1 + r−1

1

)
⊗ 12 .

The temporal Jacobian matrix J is:

J =

(
01 11

−11 −Ĵ1

)
,

where Ĵ1 is a [` × `] matrix (15.118):

Ĵ1 = r−1
1 − 2s11 + r1 .
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There is another [2`` × 2``] orbit Jacobian matrix:

J ′ = 1− r−1
2 ⊗ J1 .

Here we will show that:
detJ = detJ ′ .

detJ ′ = det
(
1− r−1

2 ⊗ J1

)
= det

(
1− J1 ⊗ r−1

2

)
= det

[
(1⊗ r2)

(
1− J1 ⊗ r−1

2

)]
= det (1⊗ r2 − J1 ⊗ 12)

= det
{( 11 ⊗ r2 0

0 11 ⊗ r2

)
−
(

0 11 ⊗ 12

−11 ⊗ 12 −Ĵ1 ⊗ 12

)}
= det

(
11 ⊗ r2 −11 ⊗ 12

11 ⊗ 12 11 ⊗ r2 + Ĵ1 ⊗ 12

)
= det

(
11 ⊗ r2 + Ĵ1 ⊗ 12 + 11 ⊗ r−1

2

)
= detJ . (9.77)

9.10.1 Han’s relative-periodic Hill’s formula

Consider a ‘tilted’ or ‘relative periodic’ [`×`]S Bravais cell for which we have
after one time period:

Ĵpût = ût+` = g−1
S ût ,

so (
1̂1 − gS Ĵp

)
ût = 0 .

First we will show that:

det Ĵ ′ = det
(
1̂1 − gS Ĵp

)
, (9.78)

where

gS =

[
rS1 0
0 rS1

]
, (9.79)

The right hand side of (9.78) is different from (9.38), because ...
Note that gS and Ĵ1 commute. Let unt be a variation on the field φnt.

ût =

[
ut−1

ut

]
, ut =

 u1t

...
u`t

 .
Now we need to know the form of Ĵ ′ in (9.78). Let:

û =


û1

û2

...
û`−1

û`

 .
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Then

Ĵ ′ =


1̂1 −Ĵ1gS
−Ĵ1 1̂1

. . .
−Ĵ1 1̂1

 ,
where gS is the ‘tilt’ (9.79), and Ĵ ′û = 0 for a periodic perturbation field. In an
analogy with the usual construction of Floquet matrices, let g

1/`
S be a `’th root

of the total relative shift gS . Change the field to a co-moving frame ût → ŵt,
where ût = g

−t/`
S ŵt . Now Ĵ ′ is replaced by Ĵ ′S :

Ĵ ′S = 1̂− r−1
2 ⊗

(
Ĵ1g

1/`
S

)
.

Then we have Ĵ ′Sŵ = 0 when Ĵ ′û = 0. Using the method from (15.127),

det Ĵ ′S = det

[
1̂1 −

(
Ĵ1g

1/`
S

)`]
= det

(
1̂1 − Ĵ`1gS

)
= det

(
1̂1 − gS Ĵ`1

)
.

When we change to the co-moving frame ût → ŵt, all of the operators are
changed by a similarity transformation:

Ĵ ′S = P̂Ĵ ′P̂−1 ,

where
P̂ = diag

(
g

1/`
S ,g

2/`
S , . . . ,g

(`−1)/`
S ,gS

)
is a [2`` × 2``] block diagonal matrix. In the co-moving frame, we have ŵt =

g
t/`
S ût , ŵ = P̂û and w = Pu , where

u =


u1

u2

...
u`−1

u`

 ,

and
P = diag

(
r
S/`
1 , r

2S/`
1 , . . . , r

(`−1)S/`
1 , rS1

)
.

Now we can prove that (9.46) is the orbit Jacobian matrix for the tilted Bravais
domain in the co-moving frame. The orbit Jacobian matrix for the tilted Bravais
domain in the original frame is:

J[`×̀ ]S =


J1 11 rS1
11 J1 11

. . . . . . . . .
11 J1 11

r−S1 11 J1

 ,
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which can also be written as:

J[`×̀ ]S = 2s12 ⊗ 11 + 12 ⊗
(
r1 + r−1

1

)
+ B ,

where

B =


0 11 rS1
11 0 11

. . . . . . . . .
11 0 11

r−S1 11 0


and the rest of J[`×̀ ]S is the diagonal part. The diagonal part commutes with
P since J1 and r

−S/`
1 commute. So the diagonal part is unchanged after the

similarity transformation. The block matrix B becomes:

PBP−1 =


0 r

−S/`
1 r

S/`
1

r
S/`
1 0 r

−S/`
1

. . . . . . . . .
r
S/`
1 0 r

−S/`
1

r
−S/`
1 r

S/`
1 0

 = r2⊗r−S/`1 +r−1
2 ⊗r

S/`
1 .

So the orbit Jacobian matrix in the co-moving frame is:

PJ[`×̀ ]SP−1 = r2 ⊗ r−S/`1 + r−1
2 ⊗ rS/`1 + 12 ⊗

(
r1 + r−1

1

)
+ 2s12 ⊗ 11 .

9.11 Han’s Hénon map Hill’s formula

The temporal evolution Jacobian matrix of the Hénon map (2.62) is:

J(φn) =
∂(φn, φn+1)

∂(φn−1, φn)
=

[
0 1
−1 −2aφn

]
.

For the periodic orbit Φp with period n, we have two orbit Jacobian matrices:
The [n× n] orbit Jacobian matrix from the 3-term recurrence relation (2.63),

Jp =



2φ0 1 0 0 . . . 0 1
1 2φ1 1 0 . . . 0 0
0 1 2φ2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 2φn−2 1
1 0 . . . . . . . . . 1 2φn−1


,
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and the [2n×2n] orbit Jacobian matrix from the first-order difference equation,

Ĵp =


1 −J(φ0)

−J(φ1) 1
. . . . . .

−J(φn−2) 1
−J(φn−1) 1

 ,

where 1 is the [2× 2] identity matrix.
To show

|DetJp| =
∣∣∣Det Ĵp

∣∣∣ ,
we need to use the [2n × 2n] permutation matrix P to change the form of Ĵp.
The matrix elements of P is the Kronecker (circular) delta function:

Pkj = δ2k−2+dk/ne,j =
1

2n

2n−1∑
l=0

ei
2π
2n (2k−2+dk/ne−j)l , (9.80)

where the dxe is the ceiling function. Using the permutation matrix P , the orbit
Jacobian matrix Ĵp can be transformed into a block matrix:

P ĴpP> =



1 0 · · · 0 0 0 0 · · · 0 −1
0 1 · · · 0 0 −1 0 · · · 0 0
...

...
. . .

...
...

...
. . . . . .

...
...

0 0 · · · 1 0 0 · · · −1 0 0
0 0 · · · 0 1 0 · · · 0 −1 0
0 0 · · · 0 1 1 0 · · · 0 2aφ0

1 0 · · · 0 0 2aφ1 1 · · · 0 0
...

. . . . . .
...

...
...

. . . . . .
...

...
0 · · · 1 0 0 0 · · · 2aφn−2 1 0
0 · · · 0 1 0 0 · · · 0 2aφn−1 1


.

Then use (15.122) we have |DetJp| =
∣∣∣Det Ĵp

∣∣∣.
Now we will evaluate the Hill determinant

∣∣∣det (Ĵp)
∣∣∣ and prove the Hill’s

formula: ∣∣∣det (Ĵp)
∣∣∣ = |det (1− Jp)| ,

Where Jp = J(φn−1)J(φn−2) . . . J(φ1)J(φ0).
Write the orbit Jacobian matrix Ĵp as:

Ĵp = 1̂− J̃p ,
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where 1̂ is the [2n× 2n] identity matrix and J̃p is a block matrix:

J̃p =


0 J(φ0)

J(φ1) 0
. . . . . .

J(φn−2) 0
J(φn−1) 0

 .

Expand ln det Ĵp = tr ln Ĵp as a series:

tr ln Ĵp = tr ln
(
1̂− J̃p

)
= −

∞∑
k=1

1

k
tr J̃ kp .

Note that tr J̃ kp is non-zero only when k is a multiple of n, and

J̃ np =


J(φ0)J(φn−1) . . . J(φ1)

J(φ1) . . . J(φ2)
. . .

J(φn−2) . . . J(φn−1)
J(φn−1) . . . J(φ0)

 ,

is a block diagonal matrix, with the jth block on the diagonal:[
(J̃ np )2j−1,2j−1 (J̃ np )2j−1,2j

(J̃ np )2j,2j−1 (J̃ np )2j,2j

]
= J(φj−1)J(φj−2) . . . J(φ1)J(φ0)J(φn−1)J(φn−2) . . . J(φj+1)J(φj) .

So we have:

ln det Ĵp = −
∞∑
k=1

1

k
tr J̃ kp = −

∞∑
r=1

1

r
tr Jrp = tr ln (1− Jp) = ln det (1− Jp) .

And we have proved the Hill’s formula:∣∣∣det (Ĵp)
∣∣∣ = |det (1− Jp)| .

9.12 Hill’s formula blog

For the latest entry, go to the bottom of this section

2022-01-30 Predrag We have omitted (or forgotten? from exhaustion...) to
mention in LC21 [40] four more ways of evaluating Hill determinants:

1. Symmetric polynomials (2.33), (16.21), (2.43), (2.45), (20.357). Please
correct (3.48).
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2. Hill determinant time-reversal factorization (5.57).

3. Kim-Lee-Park zeta function (5.150) gives a hint, but we still do not
know how to use Endler and Gallas Dn factorization (2.35).

4. In the anti-integrable limit all stretching parameters sj on J diag-
onal are arbitrarily large, the ‘kinetic energy’ (off-diagonal ‘-1’s) is
swamped by the potential energy (3.128), so

Det (J )→
n−1∏
j=0

sj . (9.81)

Gershgorin circle theorem (16.54) is a refinement of the anti-integrable
limit for sj moderately large.

2019-10-13 Predrag Viswanath [63] describes, and numerically solves Hill’s
problem: “ In 1878, Hill [21] derived the equations that describe the pla-
nar motion of the moon around the earth:

ẍ− 2ẏ =
∂Ω

∂x

ÿ + 2ẋ =
∂Ω

∂y
, Ω =

3

2
x2 + (x2 + y2)−1/2 . (9.82)

The Jacobi integral 2Ω − ẋ2 − ẏ2 is constant along the solutions of Hill’s
equation, so each orbit is characterized by a “Jacobi constant.” The orbits
Viswanath (and Hill) computes are symmetric with respect to both the
x and the y axes - C2 × C2-symmetric, so it suffices to compute them to
quarter-period `/4. He uses a Fourier series of width 64 and filters out
20% of the frequencies at the high end after each iteration.

I do not see Hill’s formula in this paper. ”

2018-10-27 Predrag Petrisor [50] Twist number and order properties of periodic or-
bits works mostly with the standard-like maps, but we might find her
article useful both as a review of the standard literature, as well as an
aid in understanding the J of the cat map, and perhaps the twisted bc’s
(relative) invariant 2-tori of spatiotemporal cat as well.

Petrisor [51] Monotone gradient dynamics and the location of stationary (p, q)-
configurations might also be of interest.

A standard-like map is a twist map Fε, defined by a Lagrangian generat-
ing function of the form

h(x, x′) =
1

2
(x− x′)2 − εV (x) ,

where V is a fixed 1-periodic even function. Classical standard map cor-
responds to the potential V (x) = − 1

(2π)2 cos(2πx) . The twist map Fε is
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reversible, i.e. it factorizes as Fε = I ◦ R, where R and I are the involu-
tions. [...] The R-invariant orbits are called symmetric orbits.

A numerical characteristic associated with a periodic orbit is the rota-
tion number, which measures the average rotation of the orbit around
the annulus. Mather [44] defined also the amount of rotation, which is
called twist number or torsion number. [...] Angenent [3] proved that
in the space of (p, q)-sequences a critical point of the Wpq action [...] is
connected by the negative gradient flow of the action.

The 1-cone function is defined on the phase space of a twist map and
takes negative values within the region where the map exhibits strong
folding property. We prove that the restriction of this function to a pe-
riodic orbit gives information on the eigenvalues of the orbit Jacobian
matrix Jq associated with that orbit.

[...] we revisit the definition and properties of the twist number of a pe-
riodic orbit based on the structure of the universal covering group of the
group SL2(R). The twist number is defined as the translation number
of a circle map induced by the monodromy matrix associated with the
periodic orbit. [...] we give the relationship between the twist number
value of a (p, q)-periodic orbit, and the position of the real number 0 with
respect to the sequence of interlaced eigenvalues of the orbit Jacobian
matrix Jq , associated with the corresponding (p, q)-sequence, and of a
symmetric matrix derived from Hq .

Petrisor eq. (11) expresses the Hessian in terms of the 1-step forward Ja-
cobian matrix, and gives references to the related literature. In particular,
the discrete Hill’s formula, the characteristic polynomial of a periodic Ja-
cobi matrix, and the Hill discriminant are presented in Toda [60].

The orbit Jacobian matrix Jq of theWpq action associated with a (p, q)-
periodic orbit, q ≤ 3, is a Jacobi periodic matrix (i.e. a symmetric tridiag-
onal matrix with non-null entries in the upper right, and left lower cor-
ners, and the next-to-diagonal entries have the same sign), see Petrisor
eq. (19). For q = 2, Hq is simply a symmetric matrix.

Let Jq be the orbit Jacobian matrix of the actionWpq at a critical point φ =
(φn). The signature (the number of negative and positive eigenvalues) of
the Hessian Jq , at a non-degenerate minimizing sequence is (0, q), while
at the corresponding mini-maximizing sequence it is (1, q-1). The number
of negative eigenvalues is called the Morse index of the critical sequence.

2020-08-02 Predrag Toda [60] Theory of Nonlinear Lattices (click here), Chapt. 4.Pe-
riodic Systems has way more wisdom than what I am capable of learning
this Sunday.

Toda studies the classical mechanics of one-dimensional lattices (chains)
of particles with nearest neighbor interaction; they are discrete and infi-
nite in space, continuous in time.
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When the force is proportional to displacement, that is, when Hooke’s
law is obeyed, the spring is said to be linear, the potential is quadratic.
While for us that leads to site stretching rate s, for Toda it leads to the
Laplacian (s = 2), not sure why..

The inverse scattering method for an infinite lattice makes use of the dis-
crete Schrodinger equation. For periodic systems this gives a discrete
Hill’s equation, and in place of the scattering data, it is convenient to use
the spectrum of the discrete Hill’s equation and the auxiliary spectrum
for fixed boundary conditions of the same equation. In this case the fun-
damental solutions and the discriminant of the discrete Hill’s equation
play important roles. The discriminant is a polynomial of the spectrum,
and the integral of motion is given in terms of elliptic integrals. Thus
the initial value problem reduces to the inverse problem (Jacobi’s inverse
problem), or inverse spectral theory.

His discrete Hill’s equation is continuous in time, so presumably most
work is for stationary states; I have probably misunderstood the formu-
lation...

He works with a 3-term recurrence (4.1.3a), and defines a 2-configuration
monodromy matrix (4.1.11).

For special values of A, the solution of (4.1.4) can be periodic, but more
generally it is relative periodic (4.1.16), or the Bloch function (it’s exis-
tence given by the Floquet theorem) which he relates to the trace of the
monodromy matrix (4.1.19). The simplest example is his (4.1.23). His
orbit Jacobian matrix (4.1.28) has variable diagonal and off diagonal ele-
ments, corresponding to nontrivial nonlinear solutions for d = 1 lattice.

He says that the ` = 3 three-particle system [4.8] is important because,
though the simplest, it shows nearly all the characteristic features which
`-particle systems exhibit.

2020-07-24 Predrag Bolotin and Treschev [5] Hill’s formula: give two multidi-
mensional generalizations of Hill’s formula:

1. to discrete Lagrangian systems (symplectic twist maps)

2. to continuous Lagrangian systems

They discuss additional aspects which appear in the presence of symme-
tries or reversibility.

1. study the change of the Morse index of a periodic trajectory after the
reduction of order in a system with symmetries

2. applications to stability of periodic orbits

“In his study of periodic orbits of the 3 body problem, Hill obtained a
formula relating the characteristic polynomial of the monodromy matrix
of a periodic orbit and an infinite determinant of the Hessian of the action
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functional. A mathematically correct definition of the Hill determinant
and a proof of Hill’s formula were obtained later by Poincaré.”

Hill computed detH approximately replacing H by a 3×3 matrix, which
gave quite a good approximation. Hill did not prove convergence for the
infinite determinant detH . Poincaré [53] (Vol. I: Solutions périodiques.
Non-existence des intégrales uniformes. Solutions asymptotiques) ex-
plained the meaning of the Hill determinant and presented a rigorous
proof of Hill’s formula. The equation appeared in 1983 for discrete La-
grangian systems in ref. [41] and independently in ref{4}. Here H is the
finite Hessian matrix associated with the action functional at the criti-
cal point generated by the periodic solution. In ref{5} (see also ref{6}) a
general form of Hill’s formula was obtained for a periodic solution of an
arbitrary Lagrangian system on a manifold. In this case H is a properly
regularized Hessian operator of the action functional at the critical point
determined by a periodic solution.

Hill’s relates P , the monodromy matrix of the periodic trajectory, to the
second variation of the action functional at the periodic trajectory, with
H the corresponding Hessian operator.2CB

The first dynamical application of Hill’s formula is the well known state-
ment that the Poincaré degeneracy of a periodic trajectory (that is, the
condition that 1 is an eigenvalue of P ) is equivalent to the variational
degeneracy (the condition detH = 0).

2019-01-30 Predrag Downloaded the monograph by Treschev and Zubelevich [61]
Introduction to the Perturbation Theory of Hamiltonian Systems (click here)
which contains a chapter Hill’s formula. Here are some clippings:

“In 1886, in his study of stability of the lunar orbit, Hill [21] published a
formula which expresses the characteristic polynomial of the monodromy
matrix for a second order time periodic equation in terms of the determi-
nant of a certain infinite matrix.”

2018-09-29 Predrag Some papers that follow up on Bolotin and Treschev [5]:

Xu and Weng [66] The calculation for characteristic multiplier of Hill’s equa-
tion in case with positive mean

Hu and Wang [27] Conditional Fredholm determinant for the S-periodic orbits
in Hamiltonian systems

Hu and Wang [28] Conditional Fredholm determinant and trace formula for
Hamiltonian systems: a survey

Hu, Ou and Wang [25] Trace formula for linear Hamiltonian systems with its
applications to elliptic Lagrangian solutions. Their eq. (1.17) Krein formula
for eigenvalues of a linear Hamiltonian systems with D degree of free-
doms is intriguing.
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Krein [35] The basic propositions of the theory of λ-zones of stability of a canon-
ical system of linear differential equations with periodic coefficients (have not
found a free version on line)

Davletshin [14] Hill’s formula for g-periodic trajectories of Lagrangian systems

Hu and Wang [29] Eigenvalue problem of Sturm-Liouville systems with sepa-
rated bc’s

Hu and Wang [30] Hill-type formula and Krein-type trace formula for S-
periodic solutions in ODEs, arXiv:1504.01815

Hu, Ou and Wang [26] Hill-type formula for Hamiltonian system with La-
grangian bc’s, arXiv:1711.09182: “ The Hill-type formula connects the in-
finite determinant of the Hessian of the action functional with the deter-
minant of matrices which depend on the monodromy matrix and bc’s.
Consequently, we derive the Krein-type trace formula and give nontriv-
ial estimation for the eigenvalue problem. ”

Hu, Wu and Yang [31] Morse index theorem of Lagrangian systems and sta-
bility of brake orbit

Sunada [59] Trace formula for Hill’s operators

Carlson [9] Eigenvalue estimates and trace formulas for the matrix Hill’s equa-
tion

2019-01-28 Predrag Downloaded monographs (have not started studying them
as yet):

Maybe encyclopediaofmath.org Hill equation is a starting point for this
literature.

A whole book on the subject that we might have to have a look at: Mag-
nus and Winkler [43] Hill’s Equation (click here)

Added a Bolotin conference abstract (click here) and a Hu conference ab-
stract (click here).

2019-04-21 Predrag Kozlov [34] Problem of stability of two-link trajectories in a
multidimensional Birkhoff billiard has a simple derivation of Hill’s formula
for billiards, where the Hessian is the second derivative of the length
function.

2018-09-29 Predrag Agrachev [1] Spectrum of the second variation, arXiv:1807.10527
writes: Second variation of a smooth optimal control problem at a regu-
lar extremal is a symmetric Fredholm operator. We study the spectrum of
this operator and give an explicit expression for its determinant in terms
of solutions of the Jacobi equation.

We study the spectrum of the second variation D2
uϕ that is a symmetric

Fredholm operator of the form I + K, where K is a compact Hilbert–
Schmidt operator. K is NOT a trace class operator so that the trace of K
and the determinant of I +K are not well-defined in the standard sense.
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[...] A simple example: for the 1-dimensional linear control system ẋ =

ax + u with the quadratic cost ϕ(u) =
∫ 1

0
u2(t) − (a2 + b2)x2(t) dt our

determinantal identity reads:

∞∏
n=1

(
1− a2 + b2

a2 + (πn)2

)
=
a sin b

b sh a
; (9.83)

the case a = 0 corresponds to the famous Euler identity

∞∏
n=1

(
1− b2

(πn)2

)
=

sin b

b
. (9.84)

The example is simple, but, unfortunately, the paper itself is a hell to
read...

2018-12-07 Predrag Reread Kook and Meiss [32] Application of Newton’s method
to Lagrangian mappings. They describe an Newton’s method algorithm for
finding periodic orbits of Lagrangian mappings. The method is based on
block-diagonalization of the orbit Jacobian matrix of the action function.
The explicit form of the Hessian displayed by Kook and Meiss reminds
me of Bolotin discrete Hill’s formula (sect. 9.2, Predrag post 2018-09-29
above, eq. (9.92)), maybe that’s the way to derive it.

2018-09-26 Han I worked through the example ?? cat map example. The equa-
tion of motion is:[

qn+1

pn+1

]
=

[
s− 1 1
s− 2 1

] [
qn
pn

]
mod 1 . (9.85)

Rewrite this equation as:

qn+1 = qn + pn + (s− 2)qn −mn+1
q

pn+1 = pn + (s− 2)qn −mn+1
q − (mn+1

p −mn+1
q) . (9.86)

and compare with (9.88),

qn+1 = qn + pn+1 mod 1, (9.87)
pn+1 = pn + P (qn) , (9.88)

so

qn+1 = qn + pn+1

pn+1 = pn + (s− 2)qn −mn+1
p . (9.89)

where themn+1
q seems happily absorbed into pn+1. The generating func-

tion (1-step Lagrangian density) is

L(qn, qn+1) =
1

2
(qn+1 − qn)2 − V (qn) , P (q) = −dV (q)

dq
, (9.90)
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and the potential energy is:

V (qn) = −s− 2

2
q2
n +mn+1

pqn . (9.91)

The problem with this formulation is that the potential energy contribu-
tion is defined asymmetrically in (6.93). We should really follow Bolotin
and Treschev [5] eq. (2.5), and define a symmetric generating function

L(qn, qn+1) =
1

2
(qn+1 − qn)2 − 1

2
[V (qn) + V (qn+1)] , (9.92)

The first variation (9.13) of the action vanishes,

0 = L2(qn+1, qn) + L1(qn, qn−1) (9.93)
= qn − qn+1 + (s− 2)qn −mn+1

p + qn − qn−1

= −qn+1 + sqn − qn−1 −mn+1
p ,

hence
qn+1 − sqn + qn−1 = −mn+1

p . (9.94)

Letting mn = −mn+1
p, we recover the Lagrangian formulation (1.118).

Alternatively, Han’s generating function (1-step Lagrangian density) is:

L(qn+1, qn) =
1

2
[pn+1(qn+1, qn)]

2 − V (qn) (9.95)

=
1

2
(qn+1 − qn +mq

n+1 −mp
n+1)2 +

s− 2

2
q2
n −mp

n+1qn .

The action is the sum over the Lagrangian density over the orbit. The
first variation (9.13) of the action vanishes,

0 = L2(qn+1, qn) + L1(qn, qn−1)

= qn − qn+1 +mp
n+1 −mq

n+1 (9.96)
+(s− 2)qn −mp

n+1 + qn − qn−1 +mq
n −mp

n

= −qn+1 + sqn − qn−1 − (mq
n+1 −mq

n +mp
n) ,

hence
− qn+1 + sqn − qn−1 = mq

n+1 −mq
n +mp

n . (9.97)

Letting mn = mq
n+1 −mq

n + mp
n, we recover the Lagrangian formulation

(1.118), except for the wrong sign for mn. Now I see why mn’s are called
‘sources’.

But I think I missed something. I believe (6.35) is correct. Because 2−µ21
has negative determinant, so we can do the Gaussian integral. But it
seems like the action S[X] is the negative of the sum of Lagrangian along
the orbit? Because if we sum (9.95) along the orbit, the sign before s
should be positive but in (6.35) it is negative...
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2020-07-14 Han To prove the Hill’s formula (??) for the cat map, first note that
both the left hand side and right hand side are polynomials with the same
leading terms sn . The left hand side is the determinant of the tri-diagonal
Toeplitz matrix (15.113). From the (15.41) and (1.19), the right hand side
can be written in the form

|det (Jn − 11)| = Λn + Λ−n − 2

= 2 cosh(nλ)− 2

= 2 cosh
[
narc cosh

(s
2

)]
− 2 , (9.98)

where we used s = 2 cosh(λ). As the Chebyshev polynomial of the first
kind can be written as Tn(x) = cosh[narc cosh(x)], the right hand side of
(??) is

|det (Jn − 11)| = 2Tn

(s
2

)
− 2 ,

which has the leading term sn .
Let u = (uj)j=1,2,...,n be the variation to the periodic orbit Φ with length
n. J u = 0 only if Jnw = w where w = (u1, u2). Then |det (Jn − 11)| = 0 is
equivalent to |DetJ | = 0. Then the polynomials |DetJ | and |det (Jn− 11)|
have the same roots and the same leading terms so they are equal.

2020-07-17 Han Let s go to infinity. Then the stability multipliers becomes:

lim
s→∞

Λ = lim
s→∞

s+
√
s2 − 4

2
= s ,

lim
s→∞

Λ−1 = lim
s→∞

2

s+
√
s2 − 4

= lim
s→∞

1

s
= 0 . (9.99)

Then in the limit:

lim
s→∞

|det (Jn − 11)| = lim
s→∞

Λn + Λ−n − 2 = sn , (9.100)

So the leading term of the right hand side of (??) is sn .

|det (Jn − 11)| = Λn + Λ−n − 2

=

(
s+
√
s2 − 4

2

)n
+

(
s−
√
s2 − 4

2

)n
− 2

=
1

2n

n
2∑

k=0

(
2k

n

)
sn−2k(s2 − 4)k − 2 , (9.101)

2019-09-25 PC Levit and Smilansky [38] A theorem on infinite products of eigen-
values of Sturm-Liouville type operators computes a Gaussian path integral
with a Laplacian kernel. Looks simple, but I do not understand it.
Levit and Smilansky [37] A new approach to Gaussian path integrals and the
evaluation of the semiclassical propagator.
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2019-09-25 PC Han, can you clean up the rest, make it (9.103) and beyond into
a derivation of the Hill’s formula for our paper - what follows is just a
sketch in (close to) our notations:

Colin de Verdière [11] Spectrum of the Laplace operator and periodic geodesics:
thirty years after discusses the mathematical history of “Semi-classical trace
formula,” a formula expressing the smoothed density of states of the
Laplace operator on a compact Riemannian manifold in terms of the pe-
riodic geodesics. This seems to be an elaboration oof these lectures from
which one can clip & paste.

Colin de Verdière [11] and Levit and Smilansky [37] are deriving “semi-
classical” or “Gaussian path integral” evolution trace formulas, which

lead to
∣∣det

(
1−Mp

)∣∣ 12 rather than the classical
∣∣det

(
1−Mp

)∣∣. That does
not matter for our purposes, which is the derivation of the Hill’s formula,
sketched in (9.103), and on.

What we call periodic orbit’s monodromy matrix M he seems to call (lin-
ear) Poincaré map Π a closed orbit computed on a hypersurface trans-
verse to the orbit, an “inversible (symplectic) endomorphism of the tan-
gent space”. The periodic orbit weight

∣∣det
(
1−Mp

)∣∣ shows up in his
eq. (5.5).

In his Theorem 11, Sect. 11, Colin de Verdière evaluates the integral over
exp(iS(x)/~) in the stationary phase approximation, with S(W ) having
support on a critical manifold W has a measure dµW given by the quo-
tient of the measure |dx| by the “Riemannian measure” on the normal
bundle to W associated to the Hessian of S

dµW =
|dx|

|det (∂2
αβS)| 12 |dz|

, (9.102)

where z = (zα) are the coordinates on the normal bundle.

The Hessian is associated to a periodic Sturm-Liouville operator for which
many regularizations have been proposed.

Elsewhere [37, 62] det (∂2
αβS) is known as the Van Vleck determinant. Ir-

relevant to the problem at hand, but a fun history read Nicholas Wheeler
is here. In Sect. 11.6 Regularized Determinants of continuous Sturm-Liouville
operators he discretizes the n-cycle Hessian just as we do (except he allows
s to vary along the path), with Dirichlet, or periodic boundary conditions,

Hn =



A B 0 . . . 0 B>

B> A B . . . 0 0
0 B> A . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . A B
B 0 0 . . . B> A


(9.103)
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In general the [2×2] matrices

A =
1

∗

(
a11 a12

a21 a22

)
, B = − 1

∗

(
∗ ∗
∗ ∗

)
(9.104)

are time dependent, (At, Bt), but for our simple temporal cat they are
constant, (At, Bt) = (A,B). For some choices, see sect. 24.2 Adrien’s blog.
Denote b = −detB, and by(

x1

x2 − x1

)
= J

(
x0

x1 − x0

)
(9.105)

the 1-time step symplectic (canonical) transformation

J =

(
α β
γ δ

)
. (9.106)

From his theorem 13 he gets Hill’s formula detH = det (1 − Jp) for the
periodic case.

2019-09-28 PC It is clearer and clearer that the smart way of doing the multi-
shooting Newton and various related “noisy” dynamics problems is by
discrete Fourier (Cn cyclic group) irreps diagonalization. So I might have
to rework several earlier papers:

I had inverted Newton Jacobian matrix often, see for example eq. (16)
and onward in Cvitanović, Dettmann, Mainieri and Vattay [12], click
here. I have also introduced the notation for finite-time (shorter than
the period) Jacobian matrices, see for example eq. (69) in Cvitanović and
Lippolis [13], click here. But I have never done it the way I should have,
by a discrete Fourier transform, into sum of irreps of Cn (AKA Fourier
modes). Probably best to use characters?

2019-09-28 PC I think I have finally committed the long awaited conceptual
breakthrough. To remind everyone - one unsolved problem in Matt and
my work [19] is “Hill’s formula” for the first-order time derivative dis-
sipative dynamics, which relates linear stability of a spatiotemporal pat-
tern to (1− J) temporal evolution stability.

I’m writing this up in chapter 8 Spatiotemporal stability.

2019-10-01 PC Cao and Voth [8] Semiclassical approximations to quantum dynam-
ical time correlationfunctions (click here): “ find an alternative to evaluate
the Jacobi matrices and have thereby found it necessary to derive the
initial-value expression from a new perspective. Straight-forward and
self-contained, this derivation leads to a discretized expression for the
Jacobi matrices and a simple interpretation of the Maslov-like index. ”

They derive the Jacobi equations from a dicretization, their Appendix B.
These equations evolve sublocks of the Jacobian that maintain the sym-
plectic invariance.
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Langouche, Roekaerts and Tirapegui [36] WKB Expansion for arbitrary Hamil-
tonians might be of interest, but I have not studied it.

2019-10-13 Predrag Guckenheimer and Meloon [18] define a “symmetric mul-
tiple shooting algorithm” as is a small modification of the forward mul-
tiple shooting method that makes the method time reversible. Let p =
(φ1, φ2, · · · , φnp) , as in (8.1). They evaluate some “Taylor polynomials”
at time-interval midpoints, I admit not to see how their formulas are time
reversible. I believe they replace (8.4) by segments that traverse a time in-
terval in both direction

FGM (φ̂) =


f̂np − f̂−1

1

f̂1 − f̂−1
2

· · ·
f̂np−1 − f̂−1

np

 , f̂k = f(φ̂k) , (9.107)

Now the orbit Jacobian matrix (8.26) picks up the derivatives of inverse
map along the diagonal (instead of the identity matrices). They manipu-
late it and show it is the same Jacobian as the forward shooting one.

For my taste having a diagonal and sub-diagonal is not time-symmetric
enough. Inspired by the formula for the discrete Laplacian (3.15), I sug-
gest trying the tri-diagonal vector field

H(φ̂) =


f̂−1

2 − 2φ̂1 + f̂np
f̂−1

3 − 2φ̂2 + f̂1

· · ·
f̂−1
np−1 − 2φ̂np + f̂np−1

 , f̂k = f(φ̂k) , (9.108)

that reverses its direction under time reversal. The orbit Jacobian matrix

H = (σJ)−1 − 2J + σJ , (9.109)

is of self-adjoint form. We have to show that its determinant is the Hill’s
formula.

Is it what we need for the Hessian / Lagrangian case? I suspect that the
temporal cat case - uniform stretching, is easily brought to the temporal
cat orbit stability form, by rescaling (9.109) so that off-diagonal J ′s are
absorbed into the diagonal µ2 factors.

Read Doedel et al. [15] (click here). They show how two-point bound-
ary value problem continuation software like AUTO [Doedel et al., 1997;
Doedel et al., 2000] can be used to compute families of periodic solutions
of conservative systems, i.e. systems having a first integral. Seems the
same as chaos book as far as adding and additional constraint is con-
cerned. See no word “determinant” anywhere...

2020-08-01 Predrag I guess I should have looked more closely. The original
the Hill determinant (see mathworld.wolfram) is, with various terms
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absorbed into our stretching parameter s, a 3-term recurrence which is
exactly our d = 1 temporal cat, with our Hill determinant, except Hill did
it for the oscillatory parameter value µ2 < 0.

Check Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part
I. New York: McGraw-Hill, pp. 555-562, (1953).

Magnus and Winkler [43] Hill’s Equation (click here).

Dan Rothman told me to look at J. J. Stoker (but it is not in Differential
geometry), so it’s in the wave mechanics book... Have not found it yet.
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Chapter 10

Chronotopic musings

2020-10-25 Predrag ChaosBook.org spatiotemporal homepage

2020-10-25 Predrag 2021 APS March Meeting (held virtually) March 15 - 19
Abstracts deadline has been extended to Friday, November 6 at 5:00 p.m.
ET.

Sorting Categories
03.0 Statistical and Nonlinear Physics (GSNP)
03.07.00 Pattern Formation and Spatio-temporal Chaos
03.08.00 Chaos and Nonlinear Dynamics

2020-10-25 Predrag SIAM DS21 May 23 - 27, 2021
Minisymposium Proposal Submission Deadline: November 23, 2020,
11:59 p.m. ET

2020-10-25 Predrag 2021 Dynamics Days DD21-Europe
August 24-28, 2020, Nice, France
Minisymposium Proposal Submission Deadline: not announced yet.

10.1 Chronotopic literature

The latest entry at the bottom for this blog

2016-03-02 Boris Just stumbled upon Lepri, Politi and Torcini [11] Chronotopic
Lyapunov analysis. I. A detailed characterization of 1D systems.

Are you familiar with this? Somewhere in the direction I thought about.

2016-03-02, 2016-09-03 Predrag Politi and collaborators work is very close to
our way of spatiotemporal thinking. See sect. ??, sect. ??, sect. ?? and
sect. 10.4. If you read that literature, please share what you have learned
by writing it up there.

477

http://ChaosBook.org/overheads/spatiotemporal/index.html
https://march.aps.org/abstracts/
https://www.siam.org/conferences/cm/submissions-and-deadlines/ds21-submissions-deadlines
https://dynamicsdays2020.univ-cotedazur.fr/
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2016-03-02 Predrag Also Pazó et al. [15] Structure of characteristic Lyapunov vec-
tors in spatiotemporal chaos. Actually (I hesitated to bring it up) this line
of inquiry goes smoothly into Xiong Ding’s inertial manifold dimension
project.

Not sure Li et al. [13] Lyapunov spectra of coupled chaotic maps is of any
interest, but we’ll know only if we read it.

2016-09-06 Matt Chronotopic Approach I’ve been reading refs. [6, 11, 12, 21]
on chronotopic approach to spatiotemporal chaos.

Rafael 2016-09-29 I spent a lot of time in the coupled cat maps, but in the
regime of small coupling. One thing I did explore numerically is when
the conjugacy given by the structural stability breaks down as one turns
up the coupling.

Rafael 2016-10-10 The main paper about the coupled maps is the paper with
Miaohua Jiang. We show that the local chains of Anosov remain Anosov
under local couplings. The partitions remain the same if you make changes
of coordinates that are essentially local.

Of course, the fact that there is a regime of large perturbations in which
this does not happen begs the question of studying the transition. Some
of this has been studied also by Bastien Fernandez [4].

I have done some preliminary numerics (too crude to show). One possi-
bility is that some of the Lyapunov exponents go to zero. Another is that
the Lyapunov exponents remain away from zero but that the angle be-
tween the splittings goes to zero. There are heuristic arguments that the
second possibility should occur. (Almost a proof when there is a system
small coupling to another more massive one).

There were other points of the discussion. The space dynamics for PDE’s.
This contains references to older papers notably Kirchgassner and Mielke
as well as applications to some papers.

I think Weinstein [22] is related.

2011-02-17 PC A large-deviation approach to space-time chaos by Pavel V. Kuptsov
and Antonio Politi [10], arXiv:1102.3141. They say:

“ We show that the analysis of Lyapunov-exponents fluctuations con-
tributes to deepen our understanding of high-dimensional chaos. This is
achieved by introducing a Gaussian approximation for the entropy func-
tion that quantifies the fluctuation probability. More precisely, a diffu-
sion matrix D (a dynamical invariant itself) is measured and analyzed in
terms of its principal components. The application of this method to four
(conservative, as well as dissipative) models, allows: (i) quantifying the
strength of the effective interactions among the different degrees of free-
dom; (ii) unveiling microscopic constraints such as those associated to a
symplectic structure; (iii) checking the hyperbolicity of the dynamics. ”
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2016-09-28 Predrag Isola, Politi, Ruffo and Torcini [8] Lyapunov spectra of cou-
pled map lattices.

Fontich, de la Llave and Martín [5] Dynamical systems on lattices with de-
caying interaction I: A functional analysis framework. [...] consider weakly
coupled map lattices with a decaying interaction. [...] applications of the
framework are the study of the structural stability of maps with decay
close to uncoupled possessing hyperbolic sets and the decay properties
of the invariant manifolds of their hyperbolic sets, in the companion pa-
per by Fontich et al. (2011).

2016-11-18 Matt : There is a storm in the distance however, as this general
procedure is ruined for the spatial problem. According to the chronotopic
literature [6, 11, 12, 21], iteration in space typically does not converge to
the same attractor as iteration in time, and generally corresponds to a
strange repeller. Therefore I cannot hope to form an initial guess loop
from using a Poincaré section in the spatial direction, as typically all of
my Fourier coefficients go off to infinity before a recurrence is found.

2017-03-02 Predrag I asked GaTech library to order Pikovsky and Politi [16]
Lyapunov Exponents: A Tool to Explore Complex Dynamics.

2017-11-07 Matt My spatiotemp/blog comments of 2017-11-02 were mainly pred-
icated by the fact that once we find these roots, I don’t think we can ap-
ply the same type of reasoning as Politi and Torcini [19] as they aren’t
truly fixed points of a fictitious dynamical system, like so, F (âkj, T, L) =
âkj, T, L. But rather, like I have already described, they are the roots of a
system of nonlinear algebraic equations, F (âkj, T, L) = 0.

2019-05-11 Predrag My extensive notes on extensivity in Carlu, Ginelli, Lu-
carini and Politi [2] Lyapunov analysis of multiscale dynamics: the slow bundle
of the two-scale Lorenz 96 model are in lyapunov/dailyBlog.tex.

2020-12-16 Alessandro Torcini alessandro.torcini@u-cergy.fr
to Domenico:

si avevo visto l’annuncio della tesi di Gudorf ma alla fine non avevo
partecipato, se ho capito bene lui e’ riuscito a fare nello spazio-tempo
continuo una cosa che io e Politi avevamo tentato nel 1990 in tempo dis-
creto e spazio discreto (mappe accoppiate), cioè’ riscrivere come un mod-
ello Markoviano la evoluzione spazio-temporale di un sistema con caos
spazio temporale in termini di unità spazio temporali, tipo i mattoncini
del Tetris.

(I had seen the announcement of the thesis of Gudorf but in the end I
had not participated, if I understood well he was able to do in continu-
ous space-time something that Politi and I had tried in 1990 in discrete
time and discrete space (coupled maps), that is to rewrite as a Markovian
model the spatio-temporal evolution space-time evolution of a system
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with space-time chaos in terms of space-time units time-space units, like
Tetris bricks.)

Io ci ho speso 6 mesi sopra e credo di avere ancora quaderni su quaderni,
ma alla fine non pubblicammo mai nulla con Politi. A parte un PRL del
1992 molto poco citato ed un Chaos.

(I spent 6 months on it and I think I still have notebooks upon notebooks,
but in the end we never published anything with Politi. Except for a 1992
PRL very little cited and a Chaos.)

Poi scrivemmo 3 lavori con Lepri su chronotopic approach al caos spazio
temporale, questa roba e’ finita in 2 o 3 libri, ma di fatto la linea di ricerca
e’ stata molto poco seguita , infine nel 2013 siamo riusciti a calcolare tutto
lo spettro dei i comoving Lyapunov exponents (lavoro ignoto ai piu),

(Then we wrote 3 papers with Lepri on chronotopic approach to space-
time chaos. time chaos, this stuff ended up in 2 or 3 books, but in fact
the research line of research was very little followed, finally in 2013 we
managed to calculate the whole spectrum of the the whole spectrum of
comoving Lyapunov exponents, work unknown to most,)

A. K. Jiotsa, A. Politi, and A. Torcini [9], Convective Lyapunov Spectra J.
Phys. A 46 (2013) 254013.

potete trovare tutto nella mia web page e scaricare tutto

(you can find everything in my web page and download everything)

perso.u-cergy.fr/ atorcini/prepri.html

Per la review a SIAM grazie va bene, per i fondi sino al 31 marzo non ho
problemi, dopo si, spero di poter pagare prima .... la FEE.

(For the review in SIAM thank you is fine, for the funds until March 31 I
don’t have any problem, after that I hope to be able to pay before .... the
FEE)

Spero di riuscire a studiare la tesi di Gudorf prima o poi.

(I hope to be able to study Gudorf’s thesis sooner or later.)

A presto

10.2 PolTor92b Towards a statistical mechanics of
spatiotemporal chaos

2017-10-31 Burak I looked everywhere but could not find Politi and Torcini [19]
Towards a statistical mechanics of spatiotemporal chaos (1992) in this blog. The
abstract:

Coupled Hénon maps are introduced to model in a more
appropriate way chaos in extended systems. An effective tech-
nique allows the extraction of spatiotemporal periodic orbits,
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which are then used to approximate the invariant measure. A
further implementation of the ζ-function formalism reveals the
extensive character of entropies and dimensions, and allows
the computation of the associated multifractal spectra. Finally,
the analysis of short chains indicates the existence of distinct
phases in the invariant measure, characterized by a different
number of positive Lyapunov exponents.

We should all read it very carefully. They use Biham-Wenzel [1] to infer
spatiotemporal periodic orbits and their symbolic dynamics by introduc-
ing a continuous fictitious time.

I’m not sure if they are using periodic orbits of different chain spatial pe-
riod L in order to estimate the statistics of the system at thermodynamic
limit L → ∞. If that’s the case and the dynamical ζ function is designed
for this purpose, then this paper is very similar to what we have in mind.

2017-10-31 Matt I find it interesting that they use a continuous fictitious Biham-
Wenzel [1] dynamics for a spatiotemporal system of mappings, while I
have a discrete fictitious time (in the form of my spatiotemporal map-
ping) introduced for continuous (albeit discretized) spatiotemporal equa-
tions.

If a paper is worth something, other people cite it. Currently it has 13
APS and 22 Google Scholar citations.

To motivate the Politi and Torcini [19] coupled Hénon map lattice, we start
by a review a single Hénon map, written using the conventions of Chaos-
Book.org.

Note: Politi and Torcini say that in the case of ε = 0 that the original Hénon
map is retrieved, but if you actually do this then indices don’t match the origi-
nal equation.

xn+1 = 1− ay2
n+1 + bxn−1

yn+1 = xn , (10.1)

or, as a 3-term recurrence

φn+1 + aφ2
n − b φn−1 = 1 .

The parameter a quantifies the “stretching” and b quantifies the “contraction”.
The single Hénon map is nice because the system is not linear, but has bi-

nary dynamics.
The deviation of an approximate trajectory from the 3-term recurrence is

vn = φn+1 − (1− aφ2
n + b φn−1)

In classical mechanics force is the gradient of potential, which Biham-Wenzel [1]
construct as a cubic potential

Vn = φn(φn+1 − b φn−1 − 1) + aφ3
n (10.2)
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With the cubic potential of a single Hénon map we can start to look for orbits
with initial conditions of two points (two point recurrence relation requires
this) and make the guess as we iterate in time. A particular guess is to choose
a sequence of maxima/minima of the potential.

In order to accurately enumerate the orbit with symbolic dynamics, in or-
der to choose which way you "roll" the potential needs to be modified by ±1,
as when viewed from the perspective of the cubic potential, trajectories roll
downhill, so in order to flip the direction one must apply a flip. The symbolic
dynamics is therefore binary and determined by these flips. One can just list
the binary sequences and see if the orbit is realized by the system. Chaosbook
does this up to sequences of length 13, while it has been done by Grassberger,
Kantz and Moenig [7] to symbol length 32. This means that there could be as
many as 232/32 distinct periodic orbits.

In the Politi-Torcini [19] coupled Hénon map equations t is the index asso-
ciated to time, while n is the index associated with space: 1

φn,t+1 + y2
nt − b φn,t−1 = a

ynt = φnt +
ε

2
(φn+1,t − 2φnt + φn−1,t) (10.4)

In the Hamiltonian b = −1 case the only parameter is the stretching a; when
it is small some orbits become stable, not everyone is unstable. If there’s not
strong stretching then there is a mixture as the hyperbolicity isn’t dominating.
All of these coupled maps, say something wild happens at each site (alternat-
ing between 1 and -1 is far in this case), and THEN you couple it weakly to its
neighbors.

But when the coupling with neighbors is very strong, its a very different
phenomena. The cats have written a Helmholtz in space and time where the
Laplacian is weighted by +1 as opposed to 1,−1 in the Minkowski case. Sec-
ond order operator that has different weights (as determined by some metric)
its called the Beltrami operator. Predrag also thinks the sign is different. This
is 1992 though, and there’s not much there because its Phys. Rev. Lett. so there
must be real work somewhere.

They cite the fact that most people don’t use it for invertible dynamics.
Then they say the spatially and temporally periodic orbits are extracted using
the Newton method. What they actually do, they take L = 1, 2, 3, 4 only. They
don’t elucidate on interesting tricks, like how to use the method for coupled
maps. The density of periodic orbits in the invariant measure is stated, but this
is only really known for single maps, Predrag doubts this.

1Matt 2017-11-08: Politi-Torcini Hénon map form differs from the ChaosBook convention
(10.1). If we take their claim that in the ε = 0 case we should retrieve the classical Hénon equations
very strictly, this is how they should appear I believe. The difference lies in the time index t + 1
versus t of the y terms.

φn,t+1 = 1− a(yn,t+1)2 + b φn,t−1

yn,t+1 = (1 + ε)φnt +
ε

2
(φn+1,t + φn−1,t) . (10.3)
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Politi and Torcini [19] is one of the first papers that uses spatiotemporal
symbolic dynamics, as seen by Predrag in the literature. Symbol of a torus
is really just a lattice label. Politi and Torcini use doubly periodic boundary
conditions, with canonical values from Hénon for the parameters.

When you write the equations in diagonal, form you’ll likely take a square
root of it. Then, they say some orbits are pruned, some exist only with uncou-
pled case. That helps them because if you can prove you only lose orbits and
never gain orbits you can see if certain orbits are realized or not.

It is important to realize that not all invariant 2-tori belong to the inertial
manifold. There are isolated orbits, corresponding to fixed points.

The orbits are found with Newton method.
They discarded all of the cycles that had a sequence, specifically ¯000 in sym-

bolic dynamics, is not allowed. The application of the zeta function, "they don’t
know what they are doing, so ignore it".

Their intuition is that the inertial manifold is extensive: if you double the
spatial length, you should double the number of physical Lyapunov exponents
as you go in time. They compute some Jacobian, they are just the normal Ja-
cobians in time. Using these they compute 2J × 2J sized matrices for the spa-
tiotemporal domain, (thinks Bloch theorem doesn’t apply, maybe). They also
say to take the logarithm and divide it by the size of the domain. Their entropy
is a sum of temporal Lyapunov exponents divided by L. They have an intu-
ition but its hard to check because of the small L. One possible solution is to
use the fixed point, as its a representative of the stretching rate in the neighbor-
hood. "Let’s just say the typical stretching rate is roughly the same no matter
the domain size." I.e. they assume its a frozen state so it doesn’t matter how
big the domain gets. Grand canonical formalism for the Zeta function, but it
can be "safely ignored". Multifractal stuff seems useless, look at this h, instead
of plotting everything from infinity to infinity, but can subtract something and
it works out and they get a plot. But there seems to be an envelope which may
be connected to the quantity they try to claim, maybe.

Different phases, but they notice that different periodic orbits have different
number of positive Lyapunov exponents. They interpret periodic orbits with
the same number belong to the same ’phase’.

The problem only uses Biham in time; Not clear why they did it because
they say its invertible, which makes sense because Hamiltonian.

For a particular solution, the potential is just a set of numbers, even though
it depends on x. It will have to be evaluated at the linearization of the nonlinear
equations and evaluated along the orbit. e.g. stablity of orbits do not look like
constant anything. PC Thinks the Jacobian will work out somehow.

2017-10-31 Matt Part Two: Discussions from the Invariant Solns Meeting

Ignore the last third of the paper. The one thing PC doesn’t understand,
is that they are studying coupled Hénon maps because they’re invertible,
but he doesn’t understand why they care.

They uses the standard parameter values of Hénon.
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Fictitious time isn’t important, the method is the method of Biham where
they derive a cubic potential such that its derivative is the Hénon map.

The coupling is what determines the type of behavior here, in the weak
coupling limit, everything looks unstable on its own, but when the cou-
pling is strong The model is then determined to be an ergodic model,
because it is fully developed due to the length scale imposed but no lam-
inar patches (No point where there are a different number of unstable
directions).

If we write it carefully, take a Hamiltonian map, rewrite in terms of Bel-
trami operator (Laplacian with metric). Looking at this operator, its bilin-
ear in derivative, but the derivatives have different weights and can have
opposite signs.

Elliptic structure in PC’s case, but thinks the Hénon there should be a
negative sign.

If you have a spatially periodic chain, (they still think of a chain in space
evolved in time, but they change this in the future). They say if you have
periodic lattice, you should use Bloch theorem, which is what is done
in condensed matter. They write the Bloch theorem, but we don’t know
why. PC believes it may be because the coupling is weak, so deformations
are long wavelength deformations.

Explicitly the stretching parameter, changed from small to large, the prob-
lem becomes hyperbolic and sines and cosines change to hyperbolic sines
and cosines.

In order to rewrite the equations in one variable that has a spatiotemporal
Beltrami operator, we need to modify (10.3). First we write the set of
equations as two step recurrence in one variable,

φjn+1 + bφjn−1 = 1− a((1 + ε)φjn +
ε

2
(φj+1
n + φj−1

n ))2 , (10.5)

Then we can add and subtract 2φjn to the LHS of the equation,

(2t − 2)φjn = 1− a((1 + ε)φjn +
ε

2
(φj+1
n + φj−1

n ))2 , (10.6)

Because the quadratic nonlinearity is where the spatial part of the Bel-
trami or Laplacian is, I don’t know how to get around this and combine
space and time currently. I recall Predrag mentioning something about a
square root but it doesn’t seem very well motivated because the spatial
coupling is completely separated from time coupling unless I’m missing
some type of approximation.

2020-06-25 Predrag Perhaps the easiest thing would be to replace the Hénon
in (10.4) by the Lozi map?
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10.3 PolTor92 Periodic orbits in coupled Hénon maps

2020-05-31 Predrag Politi and Torcini [18] Periodic orbits in coupled Hénon maps:
Lyapunov and multifractal analysis is quite close to our spatiotemporal cat.
The problem is harder, as the Hénon map is nonlinear; MUST CITE in
ref. [3].

They study spatiotemporal Hénon, a (1+1)-spacetime lattice of Hénon maps
orbits which are periodic both in space and time, and note that the depen-
dence of the lattice field at time φt+1 on the two previous time steps pre-
vents an interpretation of dynamics as the composition of a local chaotic
evolution with a diffusion process, and that the |b| = 1 case(s) could be
important as examples of Hamiltonian lattice field theories. (Predrag:
they do not comment on the role of the spacetime asymmetry of spa-
tiotemporal Hénon.)

Their numerical method is an extension of Biham and Wenzel [1] for the
single Hénon map, with symbols mnt in A = {0, 1}. Any fixed point in
fictitious time corresponds to a spatio-temporal cycle [L×T]S .

The search of periodic orbits is further simplified by the fact that a small
coupling prunes some of cycles which are present for ε = O. There-
fore, the knowledge of the topological structure of the single Hénon map
yields a symbolic encoding of the dynamics and allows for restricting the
set of candidate admissible symbol blocks to be investigated. For a = 1.4,
b = 0.3 this works well for ε = 0.1.

They comment on existence both time-equilibria [L×1]0 and time-rela-
tive equilibria [L×1]S , S 6= 0 (seen as stationary patterns in a reference
frame moving with a constant velocity).

A problem in reconstructing the statistical properties of an attractor from
periodic orbits is ensuring that all orbits used belong to the natural in-
variant measure. For instance, in the single Hénon map, one of the two
fixed points is isolated and it does not belong to the strange attractor.
Something similar should occur in the CML.

A family of specific Lyapunov exponents is defined, which estimate the
growth rate of spatially inhomogeneous perturbations, related to the co-
moving Lyapunov exponents.

The ζ-function formalism is used to analyze the scaling structure of the
invariant measure both in space and time.
(Predrag: here things fall apart. They do numerics for various small fixed
L or T, but have no path to constructing a spacetime ζ-function.)

In the case of a CML, the periodic orbit weights depend exponentially
both on space and time variables, tj = rLTj . This suggests that the ζ-
function formalism could be effectively extended, by performing an ad-
ditional sum over all spatial periods. Unfortunately, a straight implemen-
tation of this scheme is not so effective as in the low-dimensional case.
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Therefore, we limit ourselves to apply the standard formalism, checking
afterwards the dependence on the length chain L.

10.4 PoToLe98 Lyapunov exponents from node-counting

Politi, Torcini and Lepri [21] Lyapunov exponents from node-counting arguments
is a promising start, but there does not seem to have been any followup
since 1998...

The chronotopic approach aims to extending the concept of Lyapunov spec-
trum to spatially inhomogeneous perturbations.

The main result of the chronotopic approach is the existence of a dynamical
invariant, the entropy potential, the knowledge of which allows to determine
all properties of the evolution of localized as well as extended perturbations.

One can describe the spatial structure of a generic Lyapunov vector with a
single complex number µ̃ = µ + ik, the real part of which is the exponential
growth rate, while the imaginary part is the wavenumber. The frequency ω can
be read as the imaginary part of the complex number λ̃ = λ + iω, where λ is
the temporal growth rate (i.e. the Lyapunov exponent) of the given perturba-
tion. The analyticity properties of the “dispersion relation" connecting µ̃with λ̃
furnish the last ingredient to “prove" the existence of an entropy potential [12].

This paper introduces a wavenumber by define “rotation numbers" as the
imaginary counterpart of the Lyapunov exponents. They compute the Lya-
punov spectrum by using the transfer matrix approach. The approach is lim-
ited to a class of coupled map lattices (CMLs) with everywhere expanding mul-
tipliers.

(First) they assume a time-stationary spatiotemporal solution and compute
the 1 spatial dimension orbit Jacobian matrix. That resembles the tight-binding
approximation of the lD Schrödinger equation (with imaginary time) in the
presence of a random potential, i.e.., the Anderson model. They note the close
analogy with the computation of the vibrational spectrum of a chain with ran-
dom masses. The spectrum of the Schrödinger problem can be determined
without diagonalizing the operator (which is the sum of the discretized spatial
Laplacian and a diagonal operator). Its symmetry ensures the applicability of
the node theorem which states that the eigenfunctions are ordered according
to the number of their zeros [14].

For a time-stationary spatiotemporal solution, one can always redefine site
fields φnt to make them all a constant field φoo. Then the spatial structure of
the corresponding Lyapunov vector counts the nodes. Furthermore, all eigen-
values are real, i.e., no rotations in tangent space.

(Second), they consider orbits of temporal period T > 2. The operator
is a banded matrix (of width 2T + 1) so that we are dealing with a sort of
Schrodinger problem with long-range hopping. The fundamental difference
is that no similarity transformation can turn the operator into a symmetric
matrix, hence generic existence of complex eigenvalues. That’s a problem for
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them, as the node theorem is proved only for operators with a strictly real and
positive spectrum. They waffle.

Still, they do a numerical calculation for [L11×T7]S0
and [L7×T5]S0

Bravais
cells and get the correct counting, their figs. 2 and 3. They finish with

“More important, in our opinion, is the question whether the same ap-
proach can be extended to continuous-time and -space systems. We believe
that instead of checking numerically whether this is true or not, it is more
important to look for the possibly deep reasons that lie behind the apparent
validity of the conjectures presented in this paper.”

2020-04-18 Predrag A long shot, but maybe Pastur and Figotin [14] Spectra of
Random and Almost-Periodic Operators Chap. III offers some estimate of
the Kuramoto-Sivashinsky spectra, and provides mean node-count for
Kuramoto-Sivashinsky?

10.5 PolPuc92 Invariant measure in coupled maps

2016-11-06 Predrag Politi and Puccioni [17] Invariant measure in coupled maps
write: “ The state of affairs is much less clear when we pass from closed
chains (as above) to sub-chains of an-in principle-infinite lattice. This
corresponds to the canonical-ensemble picture of statistical mechanics:
the system of interest (sub-chain of length E) is coupled with a thermal
bath given by the rest of the chain. From the previous considerations, the
attractor corresponding to an isolated system would fill, for E sufficiently
large, a ρE-dimensional manifold. The main effect of the coupling with
the heat bath is to add a sort of “external noise” dressing the manifold
along all directions, and thus making the resulting invariant measure to
become E-dimensional. ”

This paper is lots of hand-waving, so I gave up on reading it.

10.6 PolTor09 Stable chaos

Politi and Torcini [20] Stable chaos (2009), arXiv:0902.2545

Chaos is associated with an exponential sensitivity to tiny perturbations in
the initial conditions, so that the presence of at least one positive Lyapunov
exponent is considered as a necessary and sufficient condition for the occur-
rence of irregular dynamics in deterministic dynamical systems. In fact, the
first observation in coupled-map models of stochastic-like behaviour accom-
panied by a negative maximum Lyapunov exponent came as a big surprise.
The unexpected coexistence of local stability and chaotic behaviour, due to the
phenomenon was called stable chaos (SC). The irregular behaviour is a tran-
sient phenomenon that is restricted to finite-time scales.

We might want to study the ‘chronotopic approach’ of eqs. (10) to (17).
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[3] P. Cvitanović and H. Liang, Spatiotemporal cat: A chaotic field theory,
In preparation, 2022.

[4] B. Fernandez, “Breaking of ergodicity in expanding systems of glob-
ally coupled piecewise affine circle maps”, J. Stat. Phys. 154, 999–1029
(2014).

[5] E. Fontich, R. de la Llave, and P. Martín, “Dynamical systems on lattices
with decaying interaction I: A functional analysis framework”, J. Diff.
Equ. 250, 2838–2886 (2011).

[6] G. Giacomelli, S. Lepri, and A. Politi, “Statistical properties of bidimen-
sional patterns generated from delayed and extended maps”, Phys. Rev.
E 51, 3939–3944 (1995).

[7] P. Grassberger, H. Kantz, and U. Moenig, “On the symbolic dynamics
of Hénon map”, J. Phys. A 22, 5217–5230 (1989).

[8] S. Isola, A. Politi, S. Ruffo, and A. Torcini, “Lyapunov spectra of coupled
map lattices”, Phys. Lett. A 143, 365–368 (1990).

[9] A. K. Jiotsa, A. Politi, and A. Torcini, “Convective Lyapunov spectra”, J.
Phys. A 46, 254013 (2013).

[10] P. V. Kuptsov and A. Politi, “Large-deviation approach to space-time
chaos”, Phys. Rev. Lett. 107, 114101 (2011).

[11] S. Lepri, A. Politi, and A. Torcini, “Chronotopic Lyapunov analysis. I.
A detailed characterization of 1D systems”, J. Stat. Phys. 82, 1429–1452
(1996).

[12] S. Lepri, A. Politi, and A. Torcini, “Chronotopic Lyapunov analysis. II.
Towards a unified approach”, J. Stat. Phys. 88, 31–45 (1997).

[13] X. Li, Y. Xue, P. Shi, and G. Hu, “Lyapunov spectra of coupled chaotic
maps”, Int. J. Bifur. Chaos 18, 3759–3770 (2008).

[14] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators
(Springer, Berlin, 1992).

[15] D. Pazó, I. G. Szendro, J. M. López, and M. A. Rodríguez, “Structure of
characteristic Lyapunov vectors in spatiotemporal chaos”, Phys. Rev. E
78, 016209 (2008).

[16] A. Pikovsky and A. Politi, Lyapunov Exponents: A Tool to Explore Complex
Dynamics (Cambridge Univ. Press, Cambridge, 2016).

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex488 8289 (predrag–7383)

http://dx.doi.org/10.1103/physrevlett.63.819
http://dx.doi.org/10.1103/physrevlett.63.819
http://dx.doi.org/10.1103/physrevlett.63.819
http://dx.doi.org/10.5194/npg-26-73-2019
http://dx.doi.org/10.5194/npg-26-73-2019
http://dx.doi.org/10.5194/npg-26-73-2019
https://ChaosBook.org/overheads/spatiotemporal/
http://dx.doi.org/10.1007/s10955-013-0903-9
http://dx.doi.org/10.1007/s10955-013-0903-9
http://dx.doi.org/10.1007/s10955-013-0903-9
http://dx.doi.org/10.1007/s10955-013-0903-9
http://dx.doi.org/10.1016/j.jde.2010.07.023
http://dx.doi.org/10.1016/j.jde.2010.07.023
http://dx.doi.org/10.1016/j.jde.2010.07.023
http://dx.doi.org/10.1016/j.jde.2010.07.023
http://dx.doi.org/10.1103/PhysRevE.51.3939
http://dx.doi.org/10.1103/PhysRevE.51.3939
http://dx.doi.org/10.1103/PhysRevE.51.3939
http://dx.doi.org/10.1103/PhysRevE.51.3939
http://dx.doi.org/10.1088/0305-4470/22/24/011
http://dx.doi.org/10.1088/0305-4470/22/24/011
http://dx.doi.org/10.1088/0305-4470/22/24/011
http://dx.doi.org/10.1016/0375-9601(90)90373-V
http://dx.doi.org/10.1016/0375-9601(90)90373-V
http://dx.doi.org/10.1016/0375-9601(90)90373-V
http://dx.doi.org/10.1088/1751-8113/46/25/254013
http://dx.doi.org/10.1088/1751-8113/46/25/254013
http://dx.doi.org/10.1088/1751-8113/46/25/254013
http://dx.doi.org/10.1103/physrevlett.107.114101
http://dx.doi.org/10.1103/physrevlett.107.114101
http://dx.doi.org/10.1103/physrevlett.107.114101
http://dx.doi.org/10.1007/BF02183390
http://dx.doi.org/10.1007/BF02183390
http://dx.doi.org/10.1007/BF02183390
http://dx.doi.org/10.1007/BF02183390
http://dx.doi.org/10.1007/BF02508463
http://dx.doi.org/10.1007/BF02508463
http://dx.doi.org/10.1007/BF02508463
http://dx.doi.org/10.1142/S0218127408022718
http://dx.doi.org/10.1142/S0218127408022718
http://dx.doi.org/10.1142/S0218127408022718
http://books.google.com/books?vid=ISBN9783540506225
http://dx.doi.org/10.1103/PhysRevE.78.016209
http://dx.doi.org/10.1103/PhysRevE.78.016209
http://dx.doi.org/10.1103/PhysRevE.78.016209
http://dx.doi.org/10.1103/PhysRevE.78.016209
http://dx.doi.org/10.1017/cbo9781139343473
http://dx.doi.org/10.1017/cbo9781139343473


CHAPTER 10. CHRONOTOPIC MUSINGS

[17] A. Politi and G. P. Puccioni, “Invariant measure in coupled maps”, Phys-
ica D 58, 384–391 (1992).

[18] A. Politi and A. Torcini, “Periodic orbits in coupled Hénon maps: Lya-
punov and multifractal analysis”, Chaos 2, 293–300 (1992).

[19] A. Politi and A. Torcini, “Towards a statistical mechanics of spatiotem-
poral chaos”, Phys. Rev. Lett. 69, 3421–3424 (1992).

[20] A. Politi and A. Torcini, “Stable chaos”, in Understanding Complex Sys-
tems (Springer, Berlin, 2009), pp. 103–129.

[21] A. Politi, A. Torcini, and S. Lepri, “Lyapunov exponents from node-
counting arguments”, J. Phys. IV 8, 263 (1998).

[22] A. Weinstein, “Periodic nonlinear waves on a half-line”, Commun. Math.
Phys. 99, 385–388 (1985).

8289 (predrag–7383) 48904/19/2020 siminos/spatiotemp/chapter/chronotope.tex

http://dx.doi.org/10.1016/0167-2789(92)90124-6
http://dx.doi.org/10.1016/0167-2789(92)90124-6
http://dx.doi.org/10.1016/0167-2789(92)90124-6
http://dx.doi.org/10.1063/1.165871
http://dx.doi.org/10.1063/1.165871
http://dx.doi.org/10.1063/1.165871
http://dx.doi.org/10.1103/PhysRevLett.69.3421
http://dx.doi.org/10.1103/PhysRevLett.69.3421
http://dx.doi.org/10.1103/PhysRevLett.69.3421
http://dx.doi.org/10.1007/978-3-642-04629-2_6
http://dx.doi.org/10.1007/978-3-642-04629-2_6
http://dx.doi.org/10.1007/978-3-642-04629-2_6
http://dx.doi.org/10.1051/jp4:1998636
http://dx.doi.org/10.1051/jp4:1998636
http://dx.doi.org/10.1051/jp4:1998636
http://projecteuclid.org/euclid.cmp/1103942768
http://projecteuclid.org/euclid.cmp/1103942768
http://projecteuclid.org/euclid.cmp/1103942768


Chapter 11

Symbolic dynamics: a
glossary

Analysis of a low-dimensional chaotic dynamical system typically starts [4]
with establishing that a flow is locally stretching, globally folding. The flow is
then reduced to a discrete time return map by appropriate Poincaré sections.
Its state space is partitioned, the partitions labeled by an alphabet, and the
qualitatively distinct solutions classified by their temporal symbol sequences.
Thus our analysis of the cat map and the spatiotemporal cat requires recalling
and generalising a few standard symbolic dynamics notions.

Partitions, alphabets. A division of state spaceM into a disjoint union of
distinct regionsMA,MB , . . . ,MZ constitutes a partition. Label each region by
a symbol m from an N -letter alphabet A = {A,B,C, · · · , Z}, where N = nA
is the number of such regions. Alternatively, one can distinguish different re-
gions by coloring them, with colors serving as the “letters” of the alphabet. For
notational convenience, in alphabets we sometimes denote negative integer m
by underlining it, as in A = {−2,−1, 0, 1} = {2, 1, 0, 1} .

Itineraries. For a dynamical system evolving in time, every state space
point x0 ∈M has the future itinerary, an infinite sequence of symbols S+(x0) =
m1m2m3 · · · which indicates the temporal order in which the regions shall be
visited. Given a trajectory x1, x2, x3, · · · of the initial point x0 generated by
a time-evolution law xn+1 = f(xn) , the itinerary is given by the symbol se-
quence

mn = m if xn ∈Mm . (11.1)

The past itinerary S-(x0) = · · ·m−2m−1m0 describes the order in which the
regions were visited up to arriving to the point x0. Each point x0 thus has
associated with it the bi-infinite itinerary

S(x0) = S-.S+ = · · ·m−2m−1m0.m1m2m3 · · · , (11.2)
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or simply ‘itinerary’, if we chose not to use the decimal point to indicate the
present,

{mt} = · · ·m−2m−1m0m1m2m3 · · · (11.3)

Shifts. A forward iteration of temporal dynamics x → x′ = f(x) shifts the
entire itinerary to the left through the ‘decimal point’. This operation, denoted
by the shift operator r,

r(· · ·m−2m−1m0.m1m2m3 · · · ) = · · ·m−2m−1m0m1.m2m3 · · · , (11.4)

demotes the current partition label m1 from the future S+ to the past S-. The
inverse shift r−1 shifts the entire itinerary one step to the right.

The set of all itineraries that can be formed from the letters of the alphabet
A is called the full shift

Σ̂ = {(mk) : mk ∈ A for all k ∈ Z} . (11.5)

The itinerary is infinite for any trapped (non-escaping or non–wandering
set orbit) orbit (such as an orbit that stays on a chaotic repeller), and infinitely
repeating for a periodic orbit p of period np. A map f is said to be a horse-
shoe if its restriction to the non–wandering set is hyperbolic and topologically
conjugate to the full A-shift.

Lattices. Consider a d-dimensional hypercubic lattice infinite in extent,
with each site labeled by d integers z ∈ Zd. Assign to each site z a letter mz

from a finite alphabet A. A particular fixed set of letters mz corresponds to a
particular lattice state M = {mz} . In other words, a d-dimensional lattice re-
quires a d-dimensional code M = {mn1n2···nd} for a complete specification of
the corresponding state X. In the lattice case, the full shift is the set of all d-
dimensional symbol blocks that can be formed from the letters of the alphabet
A

Σ̂ = {{mz} : mz ∈ A for all z ∈ Zd} . (11.6)

Commuting discrete translations. For an autonomous dynamical system,
the evolution law f is of the same form for all times. If f is also of the same form
at every lattice site, the group of lattice translations (sometimes called multi-
dimensional shifts), acting along jth lattice direction by shift rj, is a spatial
symmetry that commutes with the temporal evolution. A temporal mapping
f that satisfies f ◦ rj = rj ◦ f along the d−1 spatial lattice directions is said
to be shift invariant, with the associated symmetry of dynamics given by the
d-dimensional group of discrete spatiotemporal translations.

Assign to each site z a letter mz from the alphabet A. A particular fixed
set of letters mz corresponds to a particular lattice symbol array M = {mz} =
{mn1n2···nd} , which yields a complete specification of the corresponding state
X. In the lattice case, the full shift is the set of all d-dimensional symbol arrays
that can be formed from the letters of the alphabet A

as in (11.6)
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A d-dimensional spatiotemporal field X = {xz} is determined by the cor-
responding d-dimensional spatiotemporal symbol array M = {mz} . Consider
next a finite block of symbols MR ⊂ M, over a finite rectangular [`1× `2×
· · · ×`d] lattice region R ⊂ Zd. In particular, let Mp over a finite rectangular
[`1×`2× · · · ×`d] lattice region be the [`1×`2× · · · ×`d] d-periodic block of M
whose repeats tile Zd.

Blocks. In the case of temporal dynamics, a finite itinerary
MR = mk+1mk+2 · · ·mk+` of symbols fromA is called a block of length ` = nR.
More generally, letR ⊂ Zd be a [`1×`2×· · · `d] rectangular lattice region, `k ≥ 1,
whose lower left corner is the n = (n1n2 · · ·nd) lattice site

R = R[`1×̀ 2×···`d]
n = {(n1 + j1, · · ·nd + jd) | 0 ≤ jk ≤ `k − 1} . (11.7)

The associated finite block of symbols mz ∈ A restricted to R, MR = {mz|z ∈
R} ⊂ M is called the block MR of volume nR = `1`2 · · · `d. For example, for a
2-dimensional lattice aR = [3×2] block is of form

MR =

[
m12 m22 m32

m11 m21 m31

]
(11.8)

and volume (in this case, an area) equals 3× 2 = 6. In our convention, the first
index is ‘space’, increasing from left to right, and the second index is ‘time’,
increasing from bottom up.

Cylinder sets. While a particular admissible infinite symbol array M =
{mz} defines a point X (a unique lattice state) in the state space, the cylinder set
MMR , corresponds to the totality of state space points X that share the same
given finite block MR symbolic representation over the regionR. For example,
in d = 1 case

MMR = {· · · a−2a−1 .m1m2 · · ·m`a`+1a`+2 · · · } , (11.9)

with the symbols aj outside of the block MR = [m1m2 · · ·m` ] unspecified.
Periodic orbits, invariant d-tori. A state space point xz ∈ X is spatiotem-

porally periodic, xz = xz+` , if its spacetime orbit returns to it after a finite
lattice shift ` = (`1, `2, · · · , `d) over region R defined in (11.7). The infinity
of repeats of the corresponding block MR then tiles the lattice. For a spa-
tiotemporally periodic state X, a prime block Mp (or p) is a smallest such block
`p = (`1, `2, · · · , `d) that cannot itself be tiled by repeats of a shorter block.

The periodic tiling of the lattice by the infinitely many repeats of a prime
block is denoted by a bar: Mp. We shall omit the bar whenever it is clear from
the context that the state is periodic. 1 2

In d = 1 dimensions, a prime block is called an orbit p, a single traversal of
the orbit; its label is a block of np symbols that cannot be written as a repeat of
a shorter block. Each periodic point xm1m2···mnp is then labeled by the starting

1Predrag 2019-01-19: eliminate _m−m+1 · · ·m0_ and [m−m+1 · · ·m0., ] notation in favor a
single convention

2Predrag 2018-11-07: Generalize to invariant d-tori.
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symbol m1, followed by the next (np − 1) steps of its future itinerary. The set
of periodic pointsMp that belong to a given periodic orbit form a cycle

p = m1m2 · · ·mnp = {xm1m2···mnp , xm2···mnpm1
, · · · , xmnpm1···mnp−1

} . (11.10)

More generally, a state space point is spatiotemporally periodic if it belongs to
an invariant d-torus, i.e., its symbolic representation is a block over region R
defined by (11.7),

Mp = MR , R = R[`1×̀ 2×···×̀ d]
0 , (11.11)

that tiles the lattice state M periodically, with period `j in the jth lattice direc-
tion.

Generating partitions. A temporal partition is called generating if every
bi-infinite itinerary corresponds to a distinct point in state space. In practice
almost any generating partition of interest is infinite. Even when the dynamics
assigns a unique infinite itinerary · · ·m−2m−1m0.m1m2m3 · · · to each distinct
orbit, there generically exist full shift itineraries (11.5) which are not realized
as orbits; such sequences are called inadmissible, and we say that the symbolic
dynamics is pruned.

Dynamical partitions. If the symbols outside of given temporal block b
remain unspecified, the set of all admissible blocks of length nb yield a dynam-
ically generated partition of the state space,M = ∪bMb.

Subshifts. A dynamical system (M, f) given by a mapping f : M → M
together with a partition A induces topological dynamics (Σ, r), where the sub-
shift

Σ = {(mk)k∈Z} , (11.12)

is the set of all admissible itineraries, and r : Σ→ Σ is the shift operator (11.4).
The designation ‘subshift’ comes from the fact that Σ is a subset of the full shift.

Let Σ̂ be the full lattice shift (11.5), i.e., the set of all possible lattice state M

labelings by the alphabet A, and Σ̂(MR) is the set of such blocks over a region
R. The principal task in developing the symbolic dynamics of a dynamical
system is to determine Σ, the set of all admissible itineraries/lattice states, i.e.,
all states that can be realized by the given system.

Pruning, grammars, recoding. If certain states are inadmissible, the alpha-
bet must be supplemented by a grammar, a set of pruning rules. Suppose that
the grammar can be stated as a finite number of pruning rules, each forbidding
a block of finite size,

G = {b1, b2, · · · bk} , (11.13)

where a pruned block b is an array of symbols defined over a finite R lattice
region of size [`1×`2× · · · × `d]. In this case we can construct a finite Markov
partition by replacing finite size blocks of the original partition by letters of a
new alphabet. In the case of a 1-dimensional, the temporal lattice, if the longest
forbidden block is of lengthL+1, we say that the symbolic dynamics is Markov,
a shift of finite type with L-step memory.
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Subshifts of finite type. A topological dynamical system (Σ, r) for which
all admissible states M are generated by recursive application of the finite set
of pruning rules (11.13) is called a subshift of finite type. 2CB

If a map can be topologically conjugated to a linear map, the symbolic dy-
namics of the linear map offers a dramatically simplified description of all ad-
missible solutions of the original flow, with the temporal symbolic dynamics
and the state space dynamics related by linear recoding formulas. For exam-
ple, if a map of an interval, such as a parabola, can be conjugated to a piecewise
linear map, the kneading theory [6] classifies all of its admissible orbits.

11.1 Symbolic dynamics, inserts

2019-01-19 Predrag Merge everything here to chapter 11 Symbolic dynamics: a
glossary then svn rm this file.

2017-08-05 Predrag Consult / harmonize with ChaosBook.org Chapter Chart-
ing the state space (source file knead.tex).

to Predrag: check that all this is in ChaosBook, then erase:

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabet A is called the full shift (or topological Markov chain)

Here we refer to this set of all conceivable itineraries as the covering sym-
bolic dynamics.

Orbit that starts out as a finite block followed by infinite number of repeats
of another block p = (m1m2m3 · · ·m`) is said to be heteroclinic to the cycle p.
An orbit that starts out as p∞ followed by a different finite block followed by
(p′)∞ of another block p′ is said to be a heteroclinic connection from cycle p to
cycle p′.

Suppose that the grammar can be stated as a finite number of pruning rules,
each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (11.14)

where a pruned block b is a sequence of symbols b = m1m2 · · ·mnb , m ∈ A, of
finite length nb.
Subshifts of finite type. A topological dynamical system (Σ, σ) for which all
admissible itineraries are generated by a finite transition matrix

Σ =
{

(mk)k∈Z : Tsksk+1
= 1 for all k

}
(11.15)

is called a subshift of finite type.
Reflection symmetries. Symmetries of the cat map induce invariance with
respect to corresponding symbol exchanges. Define m̄ = s−m−2 to be the con-
jugate of symbol m ∈ A. For example, the two exterior alphabet A1 symbols
are conjugate to each other, as illustrated by (1.101). 3 If b = m1m2 . . .m` is a

3Predrag 2019-05-27: fix this eq. reference; edit it away
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block, and b̄ = m̄1m̄2 . . . m̄` its conjugate, then by reflection symmetry of the
cat map we have |Pb| = |Pb̄|. Similarly, if b∗ = mlml−1 . . .m1, the time reversal
invariance implies |Pb| = |Pb∗ |.

There are many ways to skin a cat. For example, due to the space reflection
symmetry about x = 1/2 of the Percival-Vivaldi cat map (1.101), it is natural
(especially in studies of deterministic diffusion on periodic lattices [1–3]) to
center the phase space unit interval [7] as x ∈ [−1/2, 1/2). In this formulation
the Percival-Vivaldi cat map has a 5-letter alphabet A = {2, 1, 0, 1, 2}, in which
the spatial reflection symmetry is explicit (the “conjugate” of a symbol m ∈ A
is m̄ = −m).
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11.2 Enumeration of prime invariant 2-tori

2020-08-10 Predrag Copied to siminos/kittens/prime.tex, in CL18.tex The two ver-
sions are from now on edited separately

11.2.1 Covering alphabet

Our algorithm for generating all prime [`×`]S Bravais lattices consists in pick-
ing the lexically lowest block for every set of blocks related by spatial and tem-
poral translations:

1. Fill the first row [m11 m21 · · ·m`1] by lexically ordered symbols, mj1 ≤
mj+1,1 , keep one block for each set of spatially cyclically related permu-
tations.

2. Picking the lexically ordered first row representatives uses up the cyclic
invariance under spatial translations, so for the second [m12 m22 · · ·m`2]
and higher rows fill in all |A|` combinations of symbols.

3. The count is the same for all [`×`]S relative-periodic blocks.

4. Group blocks into sets related by cyclic permutations in the time direc-
tion. For each such set, pick a representative that has lexically lowest first
row, throw away the rest.

5. Throw away all blocks which are repeats of shorter blocks in the spatial
direction.

6. Throw away all blocks which are repeats of shorter blocks in the temporal
direction. What remains in Nk prime periodic blocks p of the same size
[`p × `p] = [`k × `k].

7. The total number of (doubly) periodic blocks is the sum of all cyclic per-
mutations of prime blocks,

|A|`` =
∑
p

Np [`p×`p]Sp

where the sum goes over prime tilings of the [`×`]S block.

This completes the list of prime invariant 2-tori, with the alphabet A taken as
a covering alphabet, i.e., we have generated all possible prime blocks, under
assumption of no grammar rules.

The number of prime invariant 2-tori is given recursively by (see (1.15)),

Mp =
1

``

Np −∑
p′

`p′`p′Mp′

 , (11.16)
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where the sum is over p′, the prime ‘divisors’ of p that satisfy tiling conditions
(9.47).

Example: [2×2]0 Bravais lattices prime blocks.
Consider [2×2]0 Bravais lattices prime block

Mp =

[
m01 m11

m00 m10

]
, (11.17)

and the relative-periodic [2×1]1 block with 1 site-shift periodic boundary, which
is periodic after the second repeat in the time direction,

Mp =

[
[m00 m10]

[m00 m10]

]
. (11.18)

According to (11.16), the number of prime [2×2]0 lattice states is

M[2×2]0 =
1

2 · 2
(
N[2×2]0 − 2M[2×1]0 − 2M[1×2]0 − 2M[2×1]1 −M[1×1]0

)
,(11.19)

We can work this out explicitly as follows:
(1) Fill the first row [m11 m21] by lexically ordered symbols, one for each set
of spatially cyclically related permutations. For the alphabet (??) there are 36
such length 2 strings.

(2) As we have already ‘used up’ the cyclic invariance under spatial trans-
lations by picking the lexically ordered first row representatives, for the second
[m12 m22] and higher rows all 81 combinations of 9 symbols are allowed. We
now have 36× 81 = 2916 blocks in all.

(3) The [2×1]1 relative-periodic block (11.18) is counted as the [2×2]0 in-
variant 2-torus; as in (1), after spatial cyclic rotations, there are 36 such prime
blocks.

(4) Group blocks into sets related by cyclic permutations in the time direc-
tion. For each such set, pick a representative that is lexically lowest in the first
row, throw away the rest.

(5) Throw away all blocks which are repeats of shorter blocks. There are
three kinds of repeating small blocks:

[2×1]0 =

[
a b
a b

]
, [1×2]0 =

[
b b
a a

]
, [2×1]1 =

[
a b

a b

]
.

(6) The result is 1584 [2×2]0 prime blocks.
There are also 36 prime [2×1]0 blocks repeating in time, 36 prime [1×2]0

blocks repeating in space, 36 prime [2×1]1 blocks repeating in time with 1/2-
shift periodic boundary, and 9 blocks which are repeats of one-symbol prime
[1×1]0 block. The total number of [2×2]0 blocks is recovered by all cyclic per-
mutations of prime blocks (11.19):

N[2×2]0 = 92×2 = 6561 (11.20)
= 1584 [2×2]0 + 36 [2×1]0 + 36 [1×2]0 + 36 [2×1]1 + 9 [1×1]0 ,
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where · · · stands for the number of prime blocks of a given shape. This com-
pletes the count with the alphabet (??) taken as a covering alphabet, i.e., we have
generated all possible prime blocks, were there no further grammar rules.

Example: [3×2]0 Bravais lattices prime blocks.
Consider the Bravais lattice

M =

[
m12 m22 m32

m11 m21 m31

]
. (11.21)

According to (11.16), the number of prime [3×2]0 lattice states is

M[3×2]0 =
1

3 · 2
(
N[3×2]0 − 3M[3×1]0 − 2M[1×2]0 −M[1×1]0

)
, (11.22)

Unlike the [2×2]0 case (11.18), there no sub-blocks with relative-periodic bound-
ary contributing to the [3×2]0 blocks count, since [3×1]0 and [1×2]0 sub-blocks
cannot fit into the [3×2]0 doubly-periodic Bravais lattice without a shift.

Following the same algorithm as for [2×2]0 blocks, we get 88440 [3×2]0
prime blocks, 240 prime [3×1]0 blocks repeating in time, 36 prime [1×2]0 blocks
repeating in space, and 9 blocks which are repeats of one symbol prime [1×1]0
block. The total number of [3×2]0 blocks is recovered by all cyclic permutations
of prime blocks:

N[3×2]0 = 93×2 = 531441

= 88440 [3×2]0 + 240 [3×1]0 + 36 [1×2]0 + 9 [1×1]0 . (11.23)

11.2.2 Admissible prime invariant 2-tori

To determine the admissible blocks, compute Xp for each prime block Mp, and
eliminate every Xp which contains a lattice site or sites on which the value of
the field violates the admissibility condition xz ∈ [0, 1)2.

2019-11-22 Han For s = 5/2 spatiotemporal cat the pruning is very severe.
Of 1584 covering alphabet prime blocks in (11.20), only 52 prime [2×2]0
blocks are admissible. As for the repeats of smaller blocks, there are 2 ad-
missible [1×2]0 blocks repeating in time and 2 [2×1]0 blocks repeating in
space. There are 4 admissible 1/2-shift periodic boundary [1×2]0 blocks.
And there is 1 admissible block [1×1]0 which is a repeat of letter 0. The
total number of [2×2]0 of invariant 2-tori is obtained by all cyclic permu-
tations of admissible prime blocks (a significant pruning, compared to
the full shift count (11.20)),

N[2×2]0 = 225 (11.24)
= 52 [2×2]0 + 2 [2×1]0 + 2 [1×2]0 + 4 [2×1]1 + 1 [1×1]0 .
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Table 11.1: The numbers of the s = 5/2 spatiotemporal cat [`×`]S invariant 2-tori:
M[`×̀ ]S is the number of prime invariant 2-tori,N[`×̀ ]S is the number of doubly periodic
lattice states, and R[`×̀ ]S is the number of prime invariant 2-tori in the D4 symmetries
orbit.

[`×`]S M N R

[1×1]0 1 1 1
[2×1]0 2 5 = 2 [2×1]0 + 1 [1×1]0 2
[2×1]1 4 9 = 4 [2×1]1 + 1 [1×1]0
[3×1]0 5 16 = 5 [3×1]0 + 1 [1×1]0
[3×1]1 16 49 = 16 [3×1]1 + 1 [1×1]0
[4×1]0 10 45 = 10 [4×1]0 + 2 [2×1]0 + 1 [1×1]0
[4×1]1 54 225 = 54 [4×1]1 + 4 [2×1]1 + 1 [1×1]0
[4×1]2 60 245 = 59 [4×1]2 + 2 [2×1]0 + 1 [1×1]0
[2×2]0 52 225 = 52 [2×2]0 + 2 [2×1]0 + 2 [1×2]0

+4 [2×1]1 + 1 [1×1]0 1
[2×2]1 60 245 = 60 [2×2]1 + 2 [1×2]0 + 1 [1×1]0
[3×2]0 850 5 120 = 850 [3×2]0 + 5 [3×1]0

+2 [1×2]0 + 1 [1×1]0
[3×2]1 1 012 6 125 = 1 012 [3×2]1 + 16 [3×1]2

+2 [1×2]0 + 1 [1×1]0
[3×3]0 68 281 614 656 = 68 281 [3×3]0 + 5 [3×1]0

+16 [3×1]1 + 16 [3×1]2 + 5 [1×3]0 + 1 [1×1]0 1
[3×3]1 70 400 633 616 = 70 400 [3×3]1 + 5 [1×3]0 + 1 [1×1]0
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Table 11.2: The numbers of spatiotemporal cat lattice states for Bravais lattices Λ =
[`×`]S up to [3×3]2. Here NΛ(s) is the number of doubly periodic lattice states, MΛ(s)
is the number of prime invariant 2-tori, and RΛ is the number of prime invariant 2-tori
in the D4 symmetries orbit. The stretching parameter s can take half-integer or integer
values.

Λ NΛ(s) MΛ(s) R

[1×1]0 2(s− 2) 2(s− 2) 1
[2×1]0 2(s− 2)2s 2(s− 2) 1

2
(2s− 1) 2

[2×1]1 2(s− 2)2(s+ 2) 2(s− 2) 1
2
(2s+ 3)

[3×1]0 2(s− 2)(2s− 1)2 2(s− 2) 4
3
(s− 1)s

[3×1]1 2(s− 2)4(s+ 1)2 2(s− 2) 1
3
(2s+ 1)(2s+ 3)

[4×1]0 2(s− 2)8(s− 1)2s 2(s− 2) 1
2
(2s− 3)(2s− 1)s

[4×1]1 2(s− 2)8s2(s+ 2) 2(s− 2) 1
2
(s+ 2)(2s− 1)(2s+ 1)

[4×1]2 2(s− 2)8(s+ 1)2s 2(s− 2) 1
2
(2s+ 3)(2s+ 1)s

[4×1]3 2(s− 2)8s2(s+ 2) 2(s− 2) 1
2
(s+ 2)(2s− 1)(2s+ 1)

[5×1]0 2(s− 2)
(
4s2 − 6s+ 1

)2
2(s− 2) 4

5
(s− 1)(2s− 3)(2s− 1)s

[5×1]1 2(s− 2)16
(
s2 + s− 1

)2
2(s− 2) 1

5
(2s− 1)(2s+ 3)(4s2 + 4s− 5)

[2×2]0 2(s− 2)8s2(s+ 2) 2(s− 2) 1
2
(2s− 1)(2s2 + 5s+ 1) 1

[2×2]1 2(s− 2)8s(s+ 1)2 2(s− 2) 1
2
(2s+ 1)(2s+ 3)s

[3×2]0 2(s− 2)2s(2s− 1)2(2s+ 3)2 2(s− 2) 2
3
(2s− 1)(4s3 + 10s2 + 3s− 5)s

[3×2]1 2(s− 2)32s3(s+ 1)2 2(s− 2) 1
6
(2s− 1)(2s+ 1)(8s3 + 16s2 + 10s+ 3)

[3×3]0 2(s− 2)16(s+ 1)4(2s− 1)4

[3×3]1 2(s− 2)(2s− 1)2(8s3 + 12s2 − 1)2

2019-11-23 Han For s = 5/2 spatiotemporal cat only 850 prime [3×2]0 blocks
are admissible. There are 5 admissible repeating prime [3×1]0 blocks, 2
admissible repeating prime [1×2]0 blocks, and 1 admissible block which
is a repeat of 0. The total number of admissible solutions obtained by all
cyclic permutations of admissible prime blocks is:

N[3×2]0 = 5120 = 850 [3×2]0 + 5 [3×1]0 + 2 [1×2]0 + 1 [1×1]0 , (11.25)

in agreement with the counting formula (??) for the [3×2]0 invariant 2-
tori.

2020-06-09 Han The admissible prime invariant 2-tori counts for any half-integer
or integer s are listed in table 11.2. Note that N[3×̀ ]1(s) = N[3×̀ ]2(s), by
reflection symmetry, as N[3×̀ ]2(s) = N[3×̀ ]−1

(s).

These two expressions do not fit into the table format:

M[3×3]0 = 2(s− 2)
1

9
(256s8 + 512s7 − 128s6 − 640s5

+16s4 + 320s3 − 48s2 − 72s+ 9) . (11.26)

The last, currently unreduced formula exemplifies what is nonintuitive
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(a) (b) (c)

Figure 11.1: Examples of [`×`]S periodic blocks together with their spatiotem-
poral Bravais lattice tilings (??). (a) [3×1]0, basis vectors a1 = {3, 0} and
a2 = {0, 1}; (b) [1×3]0, basis vectors a1 = {1, 0} and a2 = {0, 3}; (c) [3×1]1,
basis vectors a1 = {3, 0} and a2 = {1, 1};

about the Fourier space results; it is not at all obvious that this

M[3×3]1 = M[3×3]2 = 2(s− 2)
1

9
(1− 2s)2 ×{[

2s+ 1− 2 sin
( π

18

)]2 [
2s+ 1 + 2 cos

(π
9

)]2
[
(2s+ 1− 2 cos

(
2π

9

)]2

− 1

}
(11.27)

is an integer for any half-integer or integer s. Predrag to Han: can you
evaluate this using the fundamental fact Nn = |DetJ |?

2020-06-09 Han The admissible prime invariant 2-tori counts are listed in ta-
ble 11.1. This list verifies the counting formula (??).

2019-11-24 Han The interior alphabet depends on the value of s and the ad-
missible range of xz . For s = 5/2, xz ∈ [0, 1), the interior alphabet is
A0 = {0, 1} (see eq. (38) in ref. [5]). For s = 7/2, xz ∈ [0, 1), the interior
alphabet is A0 = {0, 1, 2, 3} (eq. (46) in ref. [5]).

2020-06-09 Han Figures 11.1 and 11.2 are the plots of the periodic blocks by
color. The three figures in figure 11.1 are the blocks with periodicity
[1×3]0, [3×1]0 and [3×1]1, which can show the periodicity of the space-
equilibria, time-equilibria and time-relative equilibria. Figure 11.2 is the
color coding of the periodic blocks with periodicity [2×1]1, [3×2]1 and
[3×2]0.

2019-11-23 Predrag We always reduce relative-shift symmetries, so I am not
happy about the [2×1]1 relative-periodic block (11.18) being counted as
the [2×2]0 invariant 2-torus. We’ll have to revisit symmetry reduction...
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(a) (b) (c)

Figure 11.2: Examples of [`×`]S periodic blocks together with their spatiotem-
poral Bravais lattice tilings (??). (a) [2×1]1, basis vectors a1 = {2, 0} and
a2 = {1, 1}; (b) [3×2]0, basis vectors a1 = {3, 0} and a2 = {0, 2}; (c) [3×2]1,
basis vectors a1 = {3, 0} and a2 = {1, 2};

2019-11-23 Predrag For uses of the lexical ordering, ChaosBook table Chaos-
Book 18.1: Orbits for the binary symbolic dynamics up to length 9, and ap-
pendix ChaosBook A18.2 Prime factorization for dynamical itineraries might
be of interest.
In the paper, we will probably first review the temporal cat counting,
something along the lines of the above tables.
suggestion of constructing covering prime blocks wildly overcounts the
candidates for admissible prime invariant 2-tori, so we should give up
this avenue of constructing them - no need to count any larger Bravais
lattices.

2020-03-17 Han PrimeTiles.nb generates all prime tiles that can tile a larger tile.
It gives some not obvious results. For example, let the large tile be [3×2]1,
and consider the full-shift 9-symbol [3×2]1 blocks. The number [3×2]0
blocks is given by (11.23). The program shows that the [3×2]0 tile can
only be tiled by [1×1]0, [1×2]0 and [3×1]0 tiles. So we get the result in
(11.23):

N[3×2]0 = 93×2 = 88440 [3×2]0 + 240 [3×1]0 + 36 [1×2]0 + 9 [1×1]0 .

For the full-shift the number of periodic blocks is given by the area of the
larger tile, and number of [3×2]S blocks is the same for all S. But now
[3×1]0 tile cannot tile the [3×2]1 tile. Instead, the [3×2]1 can be tiled by
[1×1]0, [3×1]2 and [1×2]0 tiles,

N[3×2]1 = 93×2 = 88440 [3×2]1 + 240 [3×1]2 + 36 [1×2]0 + 9 [1×1]0 .

A priori is not obvious that [3×1]2 tile can tile a [3×2]1 tile. But if you
stack [3×1]2 tile in the shifted temporal direction by 2 then the left edge
of the tile is shifted by 4 in the spatial direction. With the spatial period
being 3, shifted by 4 in the spatial direction is same as shifted by 1. So the
bc’s of [3×2]1 tile are satisfied by the [3×1]2 tiles.
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Chapter 12

Statistical mechanics
applications

12.1 Cat map

HERE WE WILL DEAL WITH the prototype example of chaotic Hamiltonian
maps, hyperbolic toral automorphisms, (subspecies of which, known as
the as the ‘Arnol’d cat map’, you have most likely already encoun-

tered), acting on a cylinder or over R2. Their dynamics restricted to the ele-
mentary cell involves maps on T2 (two–dimensional torus). On such torus an
action of a matrix in SL2(N) with unit determinant and absolute value of the
trace bigger than 2 is known as the Anosov map.

12.2 New example: Arnol’d cat map

the Arnol’d-Sinai cat is a practical cat
— Ian Percival and Franco Vivaldi [15]

The ‘standard’ generating partition code of Arnol’d and Avez [2] is rather
simple - it is described in Devaney [9]. 1 It relies on a 3-rectangles complete
partition of the torus. It is a subshift of finite type - it is well suited to the
generation and counting of periodic orbits on the torus, see Isola [11] rational
topological zeta function in sect. 1.3.7.

However, the Arnol’d–Avez alphabet has no easy translation to the integers
shift on the unfolded torus (on the lattice, most of torus periodic orbits are rela-
tive periodic orbits). Furthermore, for N coupled cat maps the number of such
rectangles would grow exponentially [10]. 2

1Predrag 2016-08-03: I do not have either monograph at hand, but Creagh [7] summary in
sect. 1.3.8 is pretty clear.

2Predrag 2016-08-03: Have not checked that, or whether this is explained in ref. [10].
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There is a general consensus in the cat map community [12] that the ‘linear
code’ of Percival and Vivaldi [15] (here sect. 1.3.6) is deeper and more power-
ful. For deterministic diffusion developed in ChaosBook (chapter 12 here) that
is the only choice, as one needs to convert symbolic dynamics of an relative
periodic orbit to the integer shift (translation) on the lattice. 3 The downside is
that the Markov/generating partition is infinite, meaning that for longer and
longer orbits there are more and more new pruning (inadmissible blocks) rules,
ad infinitum.

4 Iterated area preserving maps of the form

p′ = p+ F (x) (12.1)
x′ = x+ p′ mod 1, (12.2)

where F(x) is periodic of period 1, are widely studied because of their impor-
tance in dynamics. They include the standard map of Taylor, Chirikov and
Greene [5, 13], and also the sawtooth and cat maps that we describe here. Be-
cause values of x differing by integers are identified, whereas the correspond-
ing values of p are not, the phase space for these equations is a cylinder.

These maps describe ‘kicked’ rotors that are subject to a sequence of angle-
dependent impulses F(x), with 2πx as the configuration angle of the rotor, and
p as the momentum conjugate to the configuration coordinate x. The time step
has been set to ∆t = 1. Eq. (12.1) says that the momentum p is accelerated to
p′ by the force pulse F (x)∆t, and eq. (12.2) says in that time the trajectory x
reaches x′ = x+ p′∆t.

The phase space of the rotor is a cylinder, but it is often convenient to extend
it to the plane or contract it to a torus. For the former case the “ mod 1” is
removed from (12.2) and for the latter it is included in (12.1).

Eqs. (12.1,12.2) are a discrete time form of Hamilton’s equations. But for
many purposes we are only interested in the values of the configuration co-
ordinate x, which satisfy the second-order difference equation (the discrete
Laplacian in time)

δ2xt ≡ xt+1 − 2xt + xt−1 = F (xt) mod 1 (12.3)

where t is a discrete time variable that takes only integer values. This equation
may be considered as the Lagrangian or Newtonian equation corresponding to
the Hamiltonian form (2.1), with pt = xt + xt−1 .

Rewrite (12.3) as

xt+1 = 2xt + F (xt)− xt−1 mod 1 (12.4)

Call the 1-step configuration point forward in (12.2) xt = y, and the next con-
figuration point xt+1 = y′. This recasts the dynamical equation in the form of

3Predrag 2016-08-03: I do not know why this symbolic dynamics is natural for extensions to N
nearest-neighbor coupled maps.

4Predrag 2016-06-02: verbatim from Percival and Vivaldi [15]
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an area preserving map in which only configurations at different times appear,

x′ = y

y′ = 2y + F (y)− x mod 1 . (12.5)

This they call the ‘two-configuration representation’.
The sawtooth map represents a rotor subject to an impulse F(x) that is linear

in x, except for a single discontinuity. The impulse is standardised to have zero
mean, the origin of x is chosen so that F(0)= 0, so

F (x) = Kx (−1/2 ≤ x < 1/2) (12.6)

With these conventions Hamilton’s equations for the sawtooth are

x′ = y mod 1

y′ = −x+ sy mod 1 (12.7)

in the two-configuration representation, where

s = K + 2 . (12.8)

For s > 2 the map is unstable. In the two-configuration representation, Hamil-
ton’s equations can be written in matrix form as(

x′

y′

)
= M

(
x
y

)
mod 1 (12.9)

with

M =

(
0 1
−1 s

)
, (12.10)

characteristic polynomial
Λ2 − sΛ + 1 . (12.11)

and eigenvalues

Λ = (s+
√
D)/2 , Λ′ = (s−√D)/2 , (12.12)

where D = s2 − 4 . When s is an integer, then the map (12.9) is continuous on
the torus, because the discontinuity of the sawtooth is an integer absorbed into
the modulus. The map is then continuous; it is a toral automorphism, of a class
called cat maps, of which the Arnol’d-Sinai cat map [2] with s = 3 is a special
case,

M =

(
0 1
−1 3

)
. (12.13)

If instead of (12.4) dynamics on a torus, one considers motion on a line (no
mod 1), one can land in any unit interval along the q-axis. Let then −bt be the
sequence of integer shifts that ensures that for all t the dynamics

xt+1 = 2xt + F (xt)− xt−1 − bt (12.14)
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CHAPTER 12. STATISTICAL MECHANICS APPLICATIONS

stays confined to the elementary cell xt ∈ [−1/2, 1/2). The Newton equation
(12.3) then takes the form

(δ2 −K)xt = −bt (12.15)

The linear operator or infinite tridiagonal matrix on the left of (12.15) has a
Green’s function or inverse matrix given by the unique bounded solution gts
of the inhomogeneous equation 5

gt+1,t′ − s gtt′ + gt−1,t′ = δtt′ , (12.16)

which is given by
gtt′ = −Λ−|t−t

′|/
√
D . (12.17)

This solution is obtained by a method that is directly analogous to the method
used for second order linear differential equations [14] (click here). The solu-
tion of (12.15) for the orbit is therefore 6

tt =
′∑
t

gtt′(−bt) =
1√
D

′∑
t

Λ−|t−t
′|bt′ = δtt′ , (12.18)

defining the orbit uniquely in terms of the symbol sequence. That is to say that
the code is complete. We shall refer to an integer code such as {bt} for a linear
system as a linear code: the orbit and the code are related to one another by a
linear transformation. Clearly, a shift in the symbol sequence {bt} corresponds
to an equivalent time shift of the orbit.

The past and the future sums in (12.18) resembles the expression for a real
number in terms of the digits bt, using a representation of the reals in the non-
integral base Λ, in contrast with the past and future coordinates for the baker’s
transformation, which have a similar form, to base 2. The ‘present’ symbol b0
is incorporated with the past in our convention.

Commentary

Remark 12.1. Deterministic diffusion in Hamiltonian maps. (Continued from remark ??)
The quasilinear estimate (??) was given in ref. [4] and evaluated in refs. [3, 16]. Circulant
matrices are discussed in Aitkenref. [1] (1939). The result (??) agrees with the saw-tooth
result of ref. [4]; for the cat maps (??) is the exact value of the diffusion coefficient. This
result was also obtained, by using periodic orbits, in ref. [8], where Gaussian nature of
the diffusion process is explicitly assumed. Measure polytopes are discussed in ref. [6].

7

5Predrag 2016-05-29: still have to check this calculation
6Predrag 2018-03-11: Mestel and Percival [14] is very systematic, with Wronskians, etc., but I do

not see this solution there. Percival and Vivaldi [15] state it, say it can be derived by the method of
Mestel and Percival [14], and say “as may be verified by substitution.”

7Predrag 2018-12-01: Had here Problems/exerAppStatM until 30dec2017, now only copy is the
renamed ChaosBook exerAppDiff.tex.
REMEMBER: move the cat map exercises to exerCatMap.tex
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Chapter 13

Ising model in 2D

ChaosBook Exercise 17.1 Time reversibility. Hamilto-
nian flows are time reversible. Does that mean that their
transition graphs are symmetric in all node→ node links,
their transition matrices are adjacency matrices, sym-
metric and diagonalizable, and that they have only real
eigenvalues?
Solution 14.1, 2021-12-07 Read sect. ?? and on for a
group-theoretic solution.

— An open exercise from ChaosBook.org

2CB
2016-02-19 Predrag A wild idea, to keep in mind, if we get to the point where

QFT is within reach. ‘Fundamental domain’ appears in an interesting
stat mech context in Wipf et al. [131, 132] Generalized Potts-models and their
relevance for gauge theories. They study the 3-state Potts model, a natu-
ral extension of the Ising model with 3 vectors at each site, whose global
symmetries are point group C3, and the 1d lattice of discrete translations.
The domain of the traced Polyakov loop variable (?) for SU(3) is a trian-
gle, with a C3 fundamental domain. Then they compute leading terms
in the strong coupling limit using characters χpq for the SU(3) represen-
tation (p, q). These characters transform under C3, so they restrict calcu-
lations to the fundamental domain inside the above triangle. Or perhaps
D3, could not tell in my first, very superficial reading. These articles were
immediately followed up by a bunch of other articles - there are too many
quantum field theorists out there:)
In other words, Potts model could provide a bridge from Boris’ cat maps
to QFT on lattices.
There is also a continuation with G2 Yang-Mills by the same authors, but
that’s for another, more ambitious time...

2016-10-03 Predrag Not quick or easy to explain, but I have a hunch that the
spatiotemporal zeta function should be something like the 2D Ising model
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CHAPTER 13. ISING MODEL IN 2D

zeta function described by Aizenman (click here). It should assign a
weight for every spatiotemporal domain, described by its 2D symbolic
dynamics.

2016-10-08 Predrag qmath16 Aizenman talk notes (mostly gibberish - my fault):

It is known (?) that QM is emergent from the classical stat mech of Ising
models. Key tools: Pfaffians. Random current representation of Ising.

Groenevald-Boel-Kasteleyn’78: describe correlations in the planar Ising
model, by boundary segments, ordered cyclically. Pfaffian refers to spin-
spin correlations along the boundary. There is a parity sign that makes it
a non-interacting fermion model.

Aizenman et al. extend it to nonplanar modles, where planarity emerges
at the critical point. ADTW’16 proof utilizes the random current representa-
tion. Starts with high temperature expansion. Partition function is a sum
over loops. In a correlation, sources are connected pairwise by lines, ie,
Gaussian limit. Above critical dimension - four - the theory is free (sum
of products over pairs). In 2D, fermionic case, you get Pfaffian. Leads to
the integrability of the model. (Read Chelkak-Cimasoni-Kassel ’15.)

“Almost planar"

Order-disorder variables.

Aizenman: Two implications of planarity

1) For any planar graph, and a symmetric edge function

F({Kθ}) = det (1−KW)

is the square of a multilinear function of the parameters {Kθ}θ∈ε0 . This is
proven through a reduction to an antisymmetric matrix A, and (Kaste-
leyn matrix ’63):

det (A) = Pf[A]2.

For planar models, done by Kac-Ward. Works for any planar graph (“amor-
phous graphs”), not only on a regular lattice.

2) For any planar loop of oriented non-backtracking edges {e1, e2, · · · }
n∏
j=1

Wej+1,ej = (−1)w(ρ∗) = (−1)n(ρ∗) .

with w(ρ∗) = winding number, and n(ρ∗) = # of self crossings [Whit-
ney’s Thm].

This is then combined with the Ihara relation, for matrices indexed by ori-
ented edges:

det (1−KW )ε0×ε0 =
∏
`

[
1 + (−1)n(`)χ−K(`)

]2
.

the product being over unoriented loops on G (hence the power 2).
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CHAPTER 13. ISING MODEL IN 2D

2020-09-30 Predrag .

Michael Aizenman biographical sketch

Aizenman Rutgers talk (unrecorded) was a modal of clear exposition. It
is an audience friendly explanation of the background to, and advance
for d = 4 explained in Michael Aizenman and Hugo Duminil-Copin
Marginal triviality of the scaling limits of critical 4D Ising and φ4

4 models,
arXiv:1912.07973. Duminil-Copin will give a tutorial on this work on Oc-
tober 9-10, 2020, in 42nd Midwest Probability Colloquium.

I especially liked the ‘reminder’ explaining how φ4 goes to Ising in par-
ticular limit.

Related publications to check:

Michael Aizenman and Simone Warzel Kac-Ward formula and its extension
to order-disorder correlators through a graph zeta function, arXiv:1709.06052

Is the loop-soup expansion related to my random walk interpretation of
the hypercubic orbit Jacobian matrix traces and the determinant? Refer-
ences might be in Michael Aizenman, Hugo Duminil-Copin and Simone
Warzel Dimerization and Néel order in different quantum spin chains through
a shared loop representation, arXiv:2002.02543.

2016-10-05 Predrag Aizenman, Laínz Valcázar and Warzel [2] Pfaffian correla-
tion functions of planar dimer covers does not seem to be what we need (no
word ‘zeta’ in this paper). They refer to 2016 preprint of

M. Aizenman H. Duminil-Copin, V. Tassion, S. Warzel, Fermionic correla-
tion functions and emergent planarity in 2D Ising models. (that paper does
not seem to be available anywhere, as yet)

The structure of the solution of Kac and Ward has been explained in un-
published lectures by Feynman (Aizenman referred to Feynman’s stat
mech book).

Sherman [116] Combinatorial aspects of the Ising model for ferromagnetism. I.
A conjecture of Feynman on paths and graphs

Hurst and Green [62] New solution of the Ising problem for a rectangular
lattice

Burgoyne [14] Remarks on the combinatorial approach to the Ising problem

Vdovichenko [128] A calculation of the partition function for a plane dipole
lattice. The steps: a) the sum over polygons is reduced to a sum over
closed loops without intersections; b) the sum over closed loops without
intersections is transformed into a sum over all loops; c) the sum over all
loops is reduced to a random-walk problem and is calculated easily.

Cimasoni [23] A generalized Kac-Ward formula: “ As a consequence of our
second proof, we also obtain the following fact: the Kac–Ward and the
Fisher–Kasteleyn methods for solving the Ising model are one and the
same. ”
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Cimasoni [24] The critical Ising model via Kac-Ward matrices: The Kac-Ward
formula [72] allows to compute the Ising partition function on any finite
graph G from a determinant with quite remarkable properties. First of
all, they satisfy some generalized Kramers-Wannier duality: there is an
explicit equality relating the determinants associated to a graph and to
its dual graph. Also, they are proportional to the determinants of the
discrete critical Laplacians on the graph G.

Fisher [43] On the dimer solution of planar Ising models

Kasteleyn [76] The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice

Kasteleyn [77] Dimer statistics and phase transitions

H. Au-Yang, J. H. H. Perk. Ising correlations at the critical temperature.
Physics Letters A 104, 131–134 (1984).

Kager, Lis and Meester [74] The signed loop approach to the Ising model:
Foundations and critical point

Lis [89] A short proof of the Kac-Ward formula:

det (Id− Λ) = Z2 (13.1)

The original proof of Kac and Ward [72] famously contained an error. We
refer the reader to ref. [74] for a longer discussion on the history of this
theorem. The main improvement here, in comparison with ref. [74], is
that there is no need for expanding the generating functions into gener-
ating functions of collections of loops. The combinatorial mechanism of
the Kac-Ward formula is here as transparent as the one of the loop-erased
walks.

Chertkov, Chernyak and Teodorescu [19] Belief propagation and loop series
on planar graphs, write: “ We discuss a generic model of Bayesian infer-
ence with binary variables defined on edges of a planar graph. The Loop
Calculus approach of Chertkov and Chernyak [18] is used to evaluate the
resulting series expansion for the partition function. We show that, for
planar graphs, truncating the series at single-connected loops reduces,
via a map reminiscent of the Fisher transformation [42], to evaluating the
partition function of the dimer-matching model on an auxiliary planar
graph. Thus, the truncated series can be easily re-summed, using the
Pfaffian formula of Kasteleyn [76]. This allows us to identify a big class
of computationally tractable planar models reducible to a dimer model
via the Belief Propagation (gauge) transformation. The Pfaffian repre-
sentation can also be extended to the full Loop Series, in which case the
expansion becomes a sum of Pfaffian contributions, each associated with
dimer matchings on an extension to a subgraph of the original graph. Al-
gorithmic consequences of the Pfaffian representation, as well as relations
to quantum and non-planar models, are discussed. ”
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“ As the seminal work of Onsager [103] on the two-dimensional Ising
model and its combinatorial interpretation by Kac and Ward [72] have
shown, the planarity constraint dramatically simplifies statistical calcu-
lations. ”

Onsager [103] computed the free energy, and Yang [135] obtained a for-
mula for the magnetization. In particular, this formula implies that the
magnetization is zero at criticality. These results have been reproved in a
number of papers since then. See Werner [130] for a recent proof.

Onsager’s computation of the free energy is based on the study of the
eigenvalues of the so-called transfer matrices. The original strategy used
by Onsager is based on the fact that the transfer matrix is the product of
two matrices whose commutation relations generate a finite dimensional
Lie algebra. Later on, Kaufman [79] gave a simpler solution using Clif-
ford algebra and anti-commuting spinor (free-fermion) operators.

The most famous expansions of the partition function are called the low
and high temperature expansions. An expansion in terms of subgraphs
of the original graph, called the random-cluster model, was found by
Fortuin and Kasteleyn [44]. The strength of all these expansions is that
they work for all graphs. They do not lead to an explicit computation
of the partition function or the free energy, but they provide new insight
and often highlight specific properties of the model.

2019-11-04 Predrag Ivashkevich, Izmailian and Hu [65] Kronecker’s double series
and exact asymptotic expansions for free models of statistical mechanics on torus:

Consider a planar square lattice of size M × N with periodic boundary
conditions, i.e. torus. To each site (m,n) of the torus a spin variable is
ascribed, smn, with two possible values: +1 or −1. Two nearest neigh-
bor spins, say smn and sm,n+1 contribute a term −J smn sm,n+1 to the
Hamiltonian, where J is some fixed energy. Therefore, the Ising model
Hamiltonian is the sum of all such terms, one for each edge of the lattice

H(s) = −J
N−1∑
n=0

M−1∑
m=0

(smn sm+1,n + smn sm,n+1) (13.2)

(Predrag:) Note that this can be written in terms of a shift matrices σj as

H(s) = −J s> · (σ1 + σ2) · s ,

which looks asymmetric - check whether this has a lattice Laplacian for-
mulation?

The partition function of the Ising model is given by the sum over all spin
configurations on the lattice

ZIsing(J) =
∑
{s}

e−H(s)
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It is convenient to set up another parameterizations of the interaction
constant J in terms of the mass variable µ = ln

√
sh 2J . Critical point

corresponds to the massless case µ = 0.

An explicit expression for the partition function of the Ising model on
M ×N torus, which was given originally by Kaufmann [79], can be writ-
ten as

ZIsing(µ) =
1

2

(√
2eµ
)MN {

Z 1
2 ,

1
2
(µ) + Z0, 12

(µ) + Z 1
2 ,0

(µ) + Z0,0(µ)
}

(13.3)
where we have introduced the partition function with twisted boundary
conditions

Z2
α,β(µ) =

N−1∏
n=0

M−1∏
m=0

4
[

sin2
(
π(n+α)
N

)
+ sin2

(
π(m+β)
M

)
+ 2 sh2µ

]
(13.4)

Here α = 0 corresponds to the periodic boundary conditions for the un-
derlying free fermion in the N -direction while α = 1

2 stands for anti-
periodic boundary conditions. Similarly β controls boundary conditions
in M -direction. With the help of the identity [48]

4 |sh (Mω + iπβ)|2 = 4
[

sh2Mω + sin2 πβ
]

=

M−1∏
m=0

4
[
sh2ω + sin2

(
π(m+β)
M

)]
(13.5)

partition function the partition function with twisted boundary condi-
tions Zα,β can be transformed into simpler form

Zα,β(µ) =
N−1∏
n=0

2
∣∣∣sh [Mωµ

(
π(n+α)
N

)
+ iπβ

]∣∣∣ (13.6)

where lattice dispersion relation has appeared

ωµ(k) = arcsinh

√
sin2 k + 2 sh2µ (13.7)

This is nothing but the functional relation between energy ωµ and mo-
mentum k of a free quasi-particle on the planar square lattice.

2019-11-04 Predrag Ivashkevich, Izmailian and Hu [65] Elliptic Theta Func-
tions. We adopt the following definition of the elliptic θ-functions:

θα,β(z, τ) =
∑
n∈Z

exp
{
πiτ

(
n+ 1

2 − α
)2

+ 2πi
(
n+ 1

2 − α
) (
z + 1

2 − β
)}

= η(τ) exp
{
πiτ
(
α2 − α+ 1

6

)
+ 2πi

(
1
2 − α

)(
z + 1

2 − β
)}

×
∞∏
n=0

[
1− e2πiτ(n+α)−2πi(z−β)

][
1− e2πiτ(n+1−α)+2πi(z−β)

]
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These should be compared with the notations of Mumford.

The elliptic θ-functions satisfies the heat equation

∂

∂τ
θα,β(z, τ) =

1

4πi

∂2

∂z2
θα,β(z, τ) (13.8)

2020-12-23 Predrag Kaufman [79] Crystal statistics. II. Partition function evalu-
ated by spinor analysis is an impressive paper, bug I hope we do not need
it.

2020-06-16 Predrag Machide [92] An elliptic analogue of generalized Dedekind-
Rademacher sums: “We mention a relation between the generating func-
tion of Kronecker’s double series [65] and that of the (Debye) elliptic
polylogarithms studied by A. Levin.”

Machide [93] Sums of products of Kronecker’s double series

2020-06-16 Predrag Shanker [115] Exact solution of Ising model in 2d shortcut net-
work

Janke and Kenna [69] Finite-size scaling and corrections in the Ising model
with Brascamp-Kunz boundary conditions

Izmailian, Oganesyan and Hu [68] Exact finite-size corrections for the square-
lattice Ising model with Brascamp-Kunz boundary conditions

Wu and Hu [133] Exact partition functions of the Ising model on M x N planar
lattices with periodic-aperiodic boundary conditions

Kastening [78] Simplified transfer matrix approach in the two-dimensional
Ising model with various boundary conditions

Izmailian [66] Finite-size effects for anisotropic 2D Ising model with various
boundary conditions,

Lyberg [91] Free energy of the anisotropic Ising lattice with Brascamp-Kunz
boundary conditions

Poghosyan, Izmailian and Kenna [106] Exact solution of the critical Ising
model with special toroidal boundary conditions

2020-06-19 Predrag Okabe, Kaneda, Kikuchi and Hu [102] Universal finite-size
scaling functions for critical systems with tilted boundary conditions, deal with
the two-dimensional Ising model on ` × ` square lattices with periodic
boundary conditions in the horizontal ` direction and tilted boundary
conditions in the vertical ` direction, such that the i-th site in the first
row is connected with the mod(i+ c`, `)-th site in the ` row of the lattice,
where 1 ≤ i ≤ `; see figure 13.1. They find that the finite-size scaling
functions are universal for fixed sets of aspect ratio a = `/` and tilt pa-
rameter c = S/`.
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Figure 13.1: ` × ` square lattice with tilt parameter c. Here, ` = 8, ` = 4
and c = 1/4, so S = `/4. The i-th site of the first row is identical with the
mod(i + c`, `)-th site in the last row. The left-most site and the right-most site
on the same horizontal line are identical.

It is interesting to discuss this problem in terms of the modular (confor-
mal) transformation. According to Cardy [15], the shape of the 2D lattice
may be represented by the imaginary number

z = 1/a+ i c. (13.9)

Then, Cardy asserted that the partition function becomes invariant under
the transformations

z → z + i (13.10)

and
z → 1/z, (13.11)

in the limit that the system size becomes infinite. The first translates, the
2nd inverts: these are easiest to understand in the complex upper half-
plane, see figure 13.2.

2021-01-08 Predrag Lecian [85] discusses this group in detail in
arXiv:1303.6343, see ‘big billiard’, ‘small billiard’, Sect. III.A. The modular
group, Maass wavefunctions.

We have another invariant transformation

z → z∗, (13.12)

which corresponds to the fact that we can confine c to the interval of
0 ≤ c ≤ 1/2. Starting from the recurrence relation

zn+1 =
1

zn + i
+ i, (13.13)

we can easily show that (recheck! `, ` rewrite wrong as it stands)

A = a/(c2a2 + 1) =
`

`

1
S2

`2
`2

`2
+ 1

(13.14)

is an invariant, and can be regarded as the effective aspect ratio.

8289 (predrag–7383) 51504/19/2020 siminos/spatiotemp/chapter/chronotope.tex

http://arXiv.org/abs/1303.6343


CHAPTER 13. ISING MODEL IN 2D

0 1 2−1−2

I2 T T 2T−1T−2

S TS T 2ST−1ST−2S

ST−1ST TSTSTS TST−1 T 2STT−1STT−1STS

Figure 13.2: Action of SL2(Z) on the complex upper half-plane by linear frac-
tional transformations T and S. Taken from Keith Conrad.

2020-10-16 Predrag For me the problem is that I do not see any of the above
formulas in Cardy [15], except for (13.9) that might correspond to his fig-
ure of a parallelepiped. I understand nothing in the paper. He writes
thoug something intriguing: “the symmetry of the parallelogram, which
corresponds to the invariance of Z(δ) under the modular group, has re-
cently been exploited to limit the possible gauge groups in heterotic string
theories by D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett.
54 (1985) 502.” I would stay far away from such references.

2020-06-19 Predrag Ziff, Lorentz and Kleban [137] Shape-dependent universality
in percolation, arXiv:cond-mat/9811122.

The torus with a twist has various topological symmetries that apply to
any shape-dependent universal quantity u(r, t). We consider a rectangu-
lar boundary with base 1 and height r, with a horizontal twist t in the
periodic b. c. (Note that having twists in two directions leads to a non-
uniform system, so we don’t consider it.) u(r, t) satisfies the obvious
symmetries of reflection

u(r, t) = u(r,−t) (13.15)

and periodicity in the t direction

u(r, t) = u(r, 1 + t) (13.16)

Another symmetry follows from the observation that the same rhombus
can be made into a rectangle in two different ways, leading to:

u(r, t) = u

(
r

r2 + t2
,

t

r2 + t2

)
(13.17)
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(c)

1a


2a


'1a


'2a


1Q

2Q 1P

2P

d

M

N

Figure 13.3: A helical tiling is formed by pairwise joining of the edges of the
rectangle spanned by an orthogonal set of basis vectors in the Z2 lattice: (a) the
direction of the basis vectors coincides with the lattice orientations for the con-
ventional toroidal bc’s, and (b) a helical torus. (c) Equivalence between the bc’s
in helical and twisted schemes prescribed by {~a1,~a2} and {~a′1,~a′2} respectively,
on a [M ×N ] square lattice. For the helical bc’s, the setting Q1/P1 = Q2/P2 en-
sures that the two primitive vectors are orthogonal. On the other hand, twist-
ing is generated by a d-unit traverse shift.

Another construction shows that when t = 1/n where n is an integer,

u

(
r,

1

n

)
= u

(
1

n2r
,

1

n

)
(13.18)

which also follows from Eqs. (13.15-13.17). On the complex τ = t + ir
plane, (13.17) corresponds to τ → 1/τ while (13.16) corresponds to τ →
τ + 1. These transformations generate the modular group, and functions
invariant under them are called modular. Thus, b(r, t) must necessarily
be a modular function.

Besides the excess number, another universal quantity on a torus is the
cross-configuration probability π+(r, t), which can be expressed in a quite
compact form. Things veer off to Dedekind eta function and such, and
Predrag gives up.

2020-06-19 Predrag Liaw et al. Exact treatment of Ising model on the helical tori,
arXiv:cond-mat/0512262, published as Liaw et al. [87] Partition functions
and finite-size scalings of Ising model on helical tori: The exact closed forms
of the partition functions of a two-dimensional Ising model on square
lattices with twisted bc’s are given.

A helical torus is related to the twisted boundary conditions tiling by an
SL2(Z) transformation. In d = 2, the equivalence transformations among
the Bravais cell vector-pairs preserve the area and are thus SL2(Z). This
is the prototype of the modular symmetry of the conformal field theory.
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In figure 13.3 they make a distinction between the ‘helical’, and the equiv-
alent ‘twisted’ tiles.

Helical tori are tiled by pairwise joining the edges of the rectangle spanned
by any orthogonal set of vectors on the lattice plane. This leads to distinct
orientations of the underlying lattice, labelled by the chirality [sahito]
as well as the chiral aspect ratio. The conventional periodic BC is re-
ferred as the helical Bravais cell with trivial chirality, as depicted in fig-
ure 13.3 (a).

The twisted BC Bravais cell is a modification to the conventional Bra-
vais cell by cutting the torus and then rejoining after twisting. Twisted
tori are what we call Hermite normal form Bravais cells. There are two
types of twisting: TwI(M,N, d/M) Bravais cell specified by {−→a 1 = Mx̂+
dŷ,−→a 2 = Nŷ}, and TwII(M,N, d/N) Bravais cell specified by {−→a 1 =
Mx̂,−→a 2 = dx̂+Nŷ} used in ref. [34].

In CL18 [34] notation: TwII(`, `, S/`) Bravais cell is specified by
{−→a 1 = `x̂,−→a 2 = Sx̂+ `ŷ}.
It suffices to study the unique correspondence of a helical torus to the one
of the above twistings, say TwI .

The helical tori Bravais cell is given by the orthogonal basis vector pair,

−→a ′1 = x̂ P1 + ŷ Q1,
−→a ′2 = −x̂ Q2 + ŷ P2, (13.19)

where the two radii for the torus are given as Li =
√
P 2
i +Q2

i for i = 1, 2.
They denoted the helical system by Hl(B,L1, χ), where the chiral aspect
ratio B = L2/L1 and the chirality χ = Q1/P1 ≡ Q2/P2. In order to
furnish the equivalent structure Hl(B,L1, χ) ∼= TwI(A,M,α), M11 =
P1/M andM21 = −Q2/M implies that

M21 = −BχM11 (13.20)
1 = M11M22 − M21M12. (13.21)

A =
(M21)

2

B
+B (M11)

2
, (13.22)

α = −M21M22

B
−BM11M12. (13.23)

The helical Bravais cell is a subclass of twisted one by an SL2(Z) equiva-
lence relation, figure 13.3 (c) and (13.17).

They refer to α = d/M (our notation: α = S/`) as a “twisting factor".

QαM,N = Q−αM,N as twisting either clockwise or counterclockwise is not
distinguished by the energy. Note that reversing the sign of a twist factor
α is not an SL2(Z) transformation.

The [M ×N ] square lattice with the helicity factor d = D/M , the system
has periodic boundary conditions in the N direction and helical (tilted)
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boundary conditions in the M direction such that the i-site in the first
column is connected with the mod (i+D,M)th site in the N column of
the lattice.

R. Sahito, G. Dresselhaus and M. S. Dresselhaus, Physical properties of Car-
bon Nanotubes, (Imperial College Press, London, 1998).

Alexi Morin-Duchesne, Paul A. Pearce and Jorgen Rasmussen Modular
invariant partition function of critical dense polymers, arXiv:1303.4895: [...]
The torus is formed by gluing the top and bottom of the cylinder. This
gives rise to a variety of non-contractible loops winding around the torus.
[...] a parameter v that keeps track of the winding of defects on the cylin-
der. [...] The modified trace is constructed as a linear functional on planar
connectivity diagrams in terms of matrix traces tr d (with a fixed number
of defects d) and Chebyshev polynomials of the first kind.

We assume helical boundary conditions in x-direction, i.e., φLx+1,y =
φ1,y+1 , and periodic boundaries in y-direction.

2020-06-16 Predrag Izmailian and Hu [67] Finite-size effects for the Ising model
on helical tori: “ We analyze the exact partition function of the Ising model
on a square lattice under helical boundary conditions obtained by Liaw et
al. [87]. We find that finite-size corrections for the free energy, the internal
energy, and the specific heat of the model in a crucial way depend on the
helicity factor of the lattice. ”

2019-11-04 Predrag Hobrecht and Hucht [56] Anisotropic scaling of the two-dimensional
Ising model I: the torus: They compute the partition function and the free
energy of the finite two-dimensional square lattice Ising model with pe-
riodic boundary conditions.

The problem of finding the generating function of the closest-packed
dimer configurations on an arbitrary planar graph was solved by Kaste-
leyn in terms of Pfaffians, as it gives the number of perfect matchings of a
given directed planar graph with an even number of sites. This is espe-
cially powerful because of the connection between the Pfaffian and the
determinant, namely

(PfA)
2

= detA. (13.24)

[...] The nearest-neighbour structure in a row and a column are both rep-
resented by the [n× n] matrix

Hb,n =


0 1 0 · · · 0
0 0 1 0
...

. . .
...

0 0 0 1
−b 0 0 · · · 0

 , (13.25)
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with b ∈ {+1, 0,−1} accounting for b = 0 open, b = +1 periodic, and b =
−1 for anti-periodic boundary conditions. b = −1 accounts for periodic
boundaries on the directed graph, i. e., in the dimer system, in the sense
that all edges are likewise aligned, while it accounts for antiperiodic BCs
in the Ising model. However, the topology of the underlying directed
graph is not representative for the Ising model, which is emphasised by
the fact that the Ising partition function is a combination of four Pfaffians.

[...] the characteristic polynomials are

P±β (N ;ϕ) =
N−1∏
m=0

(
e±iϕ − eiϕ(β)

m

)
= e±iNϕ + β (13.26)

with

ϕ(β)
m =

{
2mπ/N if β = −1

(2m+ 1)π/N if β = +1
(13.27)

for m ∈ {0, 1, 2, . . . , N−1}, and thus we will call β = −1 even and β = +1
odd. Note that the eigenvalues lie equidistantly on the unit circle and thus
we have a free shifting parameter for the spectrum. We have chosen it in
such a way, that the eigenvalue ϕ(−)

0 = 0 appears in the even spectrum; a
shift by −π on the other hand would have given rise to a dependency on
whether N is even or odd.

Characteristic polynomials (13.26) have a simple scaling form as one only
have to replace ϕ = Φ/N to obtain

P±e (Φ) = e±iΦ − 1, (13.28a)

P±o (Φ) = e±iΦ + 1 . (13.28b)

They compute variety of determinants. Particularly suggestive is the
product formula for translational invariance in both directions, their eq. (2.32),
that looks like Han’s determinant. This was previously computed by Mc-
Coy & Wu for the anisotropic torus [97]. There is an interesting matrix for
the torus, their eq. (4.3). All in all, looks harder than what we need for
the spatiotemporal cat.

2019-11-04 Predrag Baxter [9] The bulk, surface and corner free energies of the square
lattice Ising model

Hucht [61] The square lattice Ising model on the rectangle I: finite systems

Hobrecht and Hucht [57] Anisotropic scaling of the two-dimensional Ising
model II: surfaces and boundary fields
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13.1 Ihara zeta functions

2020-05-12 Predrag .

• I think it should be little work to verify for temporal cat that the Boss
determinant (13.48), (13.61), (13.68) for the Ihara zeta function (that
counts undirected loops) is the Isola’s Bowen-Ruelle zeta (13.75).
This counts walks of the cat map directed Markov graph.

• Clair’s square 2D lattice (13.46) presumably counts 1D loops (return-
ing walks) on a 2D lattice. So does Kasteleyn [77] elliptic integral of
the first kind (13.50) (see also (6.173)).

• For spatiotemporal cat we count 2D tori (Bravais lattices); expect a
variable zj for every translational symmetry direction, not a single z
as in (13.50). In Ising models, one counts the 2D configurations - so
how come Ihara functions can do that? Or can they?

• Explain the relation between a discrete torus and the Cayley graph.
For example, given n ∈ N∗, letGn denote the Cayley graph (Z/nZ, {±1}).

13.1.1 Heat equation
1 Let Tnt be temperature at spatial site n at time t. The heat equation for tem-
perature field T = {Tnt} is

∂tT = D∆xT , (13.29)

whereD is the diffusion constant. Convert this into an integer lattice difference
equation over a finite spacetime domain by the same rescaling as for (3.3). Then
the heat difference equation for temperature field T = {Tnt} over a finite tile
[`×`]S is

∂tT = β∆xT , (13.30)

In the space and time continuum limits, β is related to the diffusion constant
by

β =
∆t

(∆x)2
D =

`2

`
D .

13.1.2 Heat kernel

2020-05-05 Predrag Jorgenson and Lang [71] The ubiquitous heat kernel

2020-05-13 Predrag For general regular graphs with a transitive group action,
in particular the discrete tori, a zeta function has been defined in an im-
pressive paper by Chinta, Jorgenson and Karlsson [21] Heat kernels on
regular graphs and generalized Ihara zeta function formulas: Let q be a posi-
tive integer and G be a (q + 1)-regular graph. There is an associated heat

1Predrag 2020-03-15: I like Elaydi [41]’s Sect. 3.5.5 The heat equation
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kernel KG(t, x0, x) corresponding to the Laplacian formed by consider-
ing the adjacency matrix on G. The building blocks of KG are I-Bessel
functions, and the number of geodesics from a fixed base point x0 to x of
length m.
N0
m denotes the number of closed geodesics of length m in G with base

point x0.
They give a clear introduction into heat kernels on graphs, the origin
of I-Bessel functions, and the relationto the number of paths. They also
deduce the classical Ihara determinantal formula.
There is a second expression for the heat kernel coming from spectral
considerations. Equating the two expressions for the heat kernel, as in
known approaches to the Poisson summation formula or the Selberg trace
formula, one obtains an identity which is a type of theta inversion for-
mula. To this identity they apply an integral transform, a Laplace trans-
form with a change of variables, and obtain the logarithmic derivative of
the Ihara zeta function.
For finite graphs, the classical Ihara zeta function is their Ihara zeta func-
tion raised to the power equaling the number of vertices (by fixing the
base point x0, they can work with infinite graphs). They give a formula,
their Theorem 1.3, for 1/ζ as an integral over the spectral measure for the
Laplacian.
They also count geodesics paths, not only closed geodesics paths. That
corresponds to computing the Hurwitz zeta function instead of the Rie-
mann zeta function, they say.

2020-05-13 Predrag Chinta, Jorgenson and Karlsson [20] Zeta functions, heat
kernels, and spectral asymptotics on degenerating families of discrete tori:
By a discrete torus we mean the Cayley graph associated to a finite prod-
uct of finite cycle groups with the generating set given by choosing a
generator for each cyclic factor.
We examine the spectral theory of the combinatorial Laplacian for se-
quences of discrete tori when the orders of the cyclic factors tend to infin-
ity at comparable rates. First, we show that the sequence of heat kernels
corresponding to the degenerating family converges, after rescaling, to
the heat kernel on an associated real torus.
We then establish an asymptotic expansion, in the degeneration parame-
ter, of the determinant of the combinatorial Laplacian. The zeta-regularized
determinant of the Laplacian of the limiting real torus appears as the con-
stant term in this expansion.
By a classical theorem by Kirchhoff, the determinant of the combinatorial
Laplacian of a finite graph divided by the number of vertices equals the
number of spanning trees, called the complexity, of the graph. As a result,
we establish a precise connection between the complexity of the Cayley
graphs of finite abelian groups and heights of real tori.
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It is also known that spectral determinants on discrete tori can be ex-
pressed using trigonometric functions and that spectral determinants on
real tori can be expressed using modular forms on general linear groups.
Another interpretation of our analysis is thus to establish a link between
limiting values of certain products of trigonometric functions and modu-
lar forms. The heat kernel analysis which we employ uses I-Bessel func-
tions. Our methods extend to prove the asymptotic behavior of other
spectral invariants through degeneration, such as special values of spec-
tral zeta functions and Epstein-Hurwitz–type zeta functions.

For any d ≥ 1, let N = (n1, · · · , nd) denote a d-tuple of positive integers,
and consider the product

D(N) =
∏
K 6=0

(2d− 2 cos(2πk1/n1)− · · · − 2 cos(2πkd/nd)) ; (13.31)

where the product is over all d-tuples K = (k1, · · · , kd) of non-negative
integers with kj < nj , omitting the zero vector in the product.

One can view D(N) as a determinant of a naturally defined matrix from
graph theory. Quite generally, associated to any finite graph, there is a
discrete Laplacian which acts on the finite dimensional space of complex
valued functions whose domain of definition is the space of vertices of
the graph. D(N) is equal to the product of the non-zero eigenvalues of
the Laplacian associated to a graph which we call a discrete torus.

The d-dimensional discrete torus is defined as the product space

DTN =

d∏
j=1

`jZ\Z, (13.32)

See also

Yamasaki [134] An explicit prime geodesic theorem for discrete tori and the
hypergeometric functions
Anders Karlsson Spectral zeta functions, arXiv:1907.01832

2020-06-04 Predrag Evgeny L. Korotyaev and Jacob Schach Møller [82], ko-
rotyaev@gmail.com, jacob@math.au.dk, arXiv:1701.03605: Weighted es-
timates for the Laplacian on the cubic lattice:

The starting point for their analysis is a representation of the summa-
tion kernel of the free resolvent (the propagator) in terms of a product of
Bessel functions.

The momentum representation of the discrete Laplacian: one may di-
agonalize the discrete Laplacian, using the (unitary) Fourier transform
Φ: `2(Zd)→ L2(Td), where T = R/(2πZ). It is defined by

(Φf)(k) = f̂(k) = 1(2π)d2
∑
n∈Zd

fne
in·k, where k = (kj)

d
j=1 ∈ Td.
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Here k · n =
∑d
j=1 kjnj is the scalar product in Rd. In the resulting mo-

mentum representation of the discrete Laplacian ∆, we write ∆̂ = Φ∆Φ∗.
The Laplacian is transformed into a multiplication operator

(∆̂f̂)(k) =
( d∑
j=1

cos kj

)
f̂ .

The operator eit∆, t ∈ R is unitary onL2(Td) and has the kernel (eit∆)(n−
n′), where for n ∈ Zd:

(eit∆)(n) = 1(2π)d
∫
Td
e−in·k+it

∑d
j=1 cos(kj)dk

=

d∏
j=1

( 1

2π

∫ 2π

0

e−injk+it cos(k)dk
)

= i|n|
d∏
j=1

Jnj (t),

where |n| = n1 + · · ·+ nd. Here Jn(z) denotes the Bessel function:

Jn(t) = (−i)n2π

∫ 2π

0

eink−it cos(k)dk ∀ (n, z) ∈ Z× R.

The rest is all about bounds, we can safely ignore it.

2020-05-14 Predrag Jérémy Dubout, Jeremy.Dubout@unige.ch, is a smart cookie.
I’m very impressed by Dubout [39] Zeta functions of graphs, their symme-
tries and extended Catalan numbers, arXiv:1909.01659:

It is natural to form symmetric functions of the eigenvalues of operators,
in finite dimensions one has the trace and determinant. In infinite dimen-
sions things become more complicated. For example, the determinant of
the Laplace operator on a manifold cannot be directly defined, but the
following the heat kernel function can

ζM (s) =
∑
n∈N

λ−sn =
1

Γ(s)

∫ ∞
0

tr
(
e−t∆

)
ts
dt

t
, (13.33)

for s in the half-plane {s|Re (s) > 0}. Since graphs have a natural Lapla-
cian ∆, Dubout considers sums over the eigenvalues as in (13.33), and
introduces the spectral zeta function of a graph G as

ζG(s) =

∫
σ(∆)

x−sµδv,δv∆ (dx) ,

where µδv,δv∆ (dx) is a spectral measure of the Laplacian. ζG provides an
analogue of the right hand side of (13.33) for graphs. Dubout introduces a
heat function Ht for infinite graphs [46] as an analogue of the heat kernel
for manifolds:

ζG(s) =
1

Γ(s)

∫ ∞
0

HG
t t

s dt

t
.
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This spectral zeta function recovers both previous definitions for finite
graphs, the lattice Zd and the infinite d-regular tree. Dubout extends the
Z functional equation [46] to Z2. For more general s an d > 2 the existence
of such symmetries remains unknown. The formula acts can interpreted
as a symmetry for Catalan numbers. Dubout is able to describe ζG explic-
itly for G = Zd as well as for products for integers values.

Contrary to the compact manifold case, the heat kernel of an infinite
graph is not always a trace-class operator. Instead of taking its trace,
Dubout therefore evaluates it on the rooted graph, at some cost.

The resolvant
R(z,∆) =

1

z −∆
.

The heat kernel of Z is given by

HZ
t =

∫ 4

0

e−tx

π
√
x(4− x)

dx = e−2tI0(2t) ,

where I0 a modified Bessel function of first kind, the same as ref. [75] (up
to a factor 2, coming from their normalization of the Laplacian). Dubout
extends this result to Zd with

HZd
t = e−2dtI0(2t)d .

The spectral zeta function of Z is given by

ζZ(s) =

∫ 4

0

x−s
1

π
√
x(4− x)

dx =
1

π

∫ 1

0

4−sx−s−
1
2 (1− x)−

1
2 dx

=
4−s

π
B

(
1

2
− s, 1

2

)
=

4−s√
π

Γ
(

1
2 − s

)
Γ (1− s) , (13.34)

where B,Γ are the beta and gamma functions.

The function ζZ is meromorphic over C \
{

1
2 ,

3
2 , . . .

}
and satisfies

ζZ(s) =

(−2s

−s

)
for any s.

For a finite transitive graph G with n vertices, the spectral zeta function
ζG can be written in explicit form, similar to the one in the first part of
Equation 13.33, and analytically continued over C with the formula

ζG(s) =
1

n

∑
λ6=0

λ−s , (13.35)

where the sum is over the non-zero eigenvalues of ∆G. The Lebesgue’s
decomposition theorem allows us to split the spectral measure into an
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absolutely continuous part, a singular continuous part and a pure point
part. The only issue with ζG’s analyticity is the presence of 0 in the spec-
trum: A graph G is finite if and only if 0 belongs to the pure point part.
Dubout then does some serious analysis.

Dubout introduces a regularized determinant. If G is finite and transitive,
then det ∗(x+ ∆) = det (x1 + ∆)

1
|VG| . In the case of the regularized deter-

minant for Z, Dubout almost gets the generating function of the Catalan
numbers:

det ∗(x+ ∆Z) =
x

2
+ 1 +

1

2

√
x(4 + x) = x+ 2 +

∑
n≥1

Cn
(−1)n

xn
, (13.36)

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

Predrag: Amusing, but I’ve also run into Catalan numbers while count-
ing rooted trees, back in 1976: Cvitanović [32] Group theory for Feynman
diagrams in non-Abelian gauge theories

Dubout computes the standard characteristic polynomial of the Lapla-
cian of a cyclic graph, by a new, completely analytical way of obtain-
ing the coefficients. Given n ∈ N∗, let Gn denote the Cayley graph
(Z/nZ, {±1}). Then

det (x+ ∆Gn) =
n−1∑
l=0

(
2n− l
l

)
2n

2n− l x
n−l . (13.37)

The coefficients of det (x+ ∆Gn) can be computed numerically using the
eigenvalues of ∆Gn . Dubout gets the our usual discrete Fourier product
formula

det (x+ ∆Gn)) =
n−1∏
k=0

(
x+ 4 sin2

(
kπ

n

))
,

but he did not find a way to expand this product into a polynomial with
integers coefficients.
Predrag: we should alert him to our integer-points counting formulas!

Dubout then relates the Ihara zeta function ZG [126] of a d-regular finite
graph G

ZG(u) =
(

(1− u2)
(d−2)|VG|

2 det
(
1− (d−∆G)u+ (d− 1)u2

))−1

. (13.38)

to his spectral zeta function. Given a d-regular finite graph G with n
vertex, the Ihara zeta function of G can be computed as

ZG(u) = (yudet ∗ (xu + ∆G))
−n

, (13.39)

with yu = u(1− u2)
d
2−1 and xu = (1− 1

u )(u(d− 1)− 1).
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The appearance of |VG| in (13.39) as only an exponent provides good mo-
tivation for defining a modified Ihara zeta function that extends to infi-
nite graphs:

The regularized Ihara zeta function of a (possibly infinite) d-regular graph
G is defined as

Z∗G(u) = u−1(1− u2)1− d2 det ∗
((

1− 1

u

)
(u(d− 1)− 1) + ∆G

)−1

.

(13.40)
This coincides with the known one for the Cayley graph of a finitely gen-
erated group.

It follows from (13.39) that if G is finite then Z∗G(u)|VG| = ZG(u). This
allows us to extend the functional equations to infinite regular graphs.

The regularized determinant of Z was calculated in (13.36), and following
(13.40) he obtains the regularized Ihara zeta function of Z:

Z∗Z(u) =

{
1 if 0 < |u| < 1,

u2 if |u| > 1.
(13.41)

Note the functional equation

Z∗Z

(
1

u

)
=

1

u2
Z∗Z(u) .

That Z∗Z(u) = 1 for 0 < u < 1 is a natural result, as the original definition
of the Ihara zeta function is a generating function of weighted loops, and
Z does not have any, giving us only 1 as generating function. The same
argument holds for any tree-like graph.

2020-05-14 Predrag Lenz, Pogorzelski and Schmidt [86] The Ihara zeta function
for infinite graphs, arXiv:1408.3522, a very lengthy and ambitious pa-
per, apparently gives yet another definition of an Ihara zeta function for
infinite graphs. Dubout was unable do determine how it compares to
his (13.38). I’m not frisky enough to read this paper, after having gone
through Dubout already today...

13.1.3 Clair / Clair14

For the two dimensional integer lattice a zeta function has been defined and
computed in Clair [25] The Ihara zeta function of the infinite grid

Bryan Clair is a great fan of Ihara zeta functions.
Shahriar Mokhtari-Sharghi [26, 27] have shown that Ihara’s construction

can be extended to infinite graphs on which a discrete group acts isomorphi-
cally and with finite quotient. Their works seems to deal with trees, not lattices,
though Clair [25] does discuss infinite square lattice, see (13.45).
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The Ihara zeta function may be considered as a modification of the Selberg
zeta function [8], and was originally written in terms of the variable s, where
z = q−s. One of main properties of the Ihara zeta function is the determinant
formula, i.e., that its inverse is the determinant of a matrix-valued polynomial.
A consequence of the determinant formula is that the Ihara zeta function mero-
morphically extends to the whole complex plane, and its completions satisfy a
functional equation.

The main formula in all these papers gives a connection between the zeta
function, originally defined as an infinite product, and the Laplacian of the
graph.

Pollicott [108] explains in Dynamical zeta functions Sect. 3.3 what the Lapla-
cian for a undirected graph is, relates it to the adjacency matrix in a somewhat
obvious way, as we are used to on a lattice. He defines Ihara for undirected
graph

1. the graph G has valency q+1 with q ≥ 2 (i.e., every vertex has q+1 edges
attached)

2. there is at most one edge between any two vertices

3. there are no edges starting and finishing at the same vertex

He outlines a proof of the Bass determinant formula for the Bowen-Lanford
zeta function.2CB

Loop: A closed path in G, up to cyclic equivalence, without backtracking.

Prime: A loop p which is not a power (a repeat) of another loop.

Back-track: A path has a back-tracking if a subsequence of the form · · · , x, y, x, · · ·
appears.

The Ihara zeta function of a finite graph G

ζ(z) =
∏
p

1

1− znp (13.42)

It is instructive to have a look at the octahedral graph in Clair’s talk above.
There is no self-crossing condition, so ζ(z) always has an infinity of prime cy-
cles, of arbitrary length (as does any topological zeta function).

As a power series in z, the Ihara zeta has non-negative coefficients, and
thus a finite radius of convergence. However, the inverse of the Ihara zeta is a
polynomial.

Ihara considered the special case of regular graphs (those all of whose ver-
tices have the same degree; i.e., the same number of oriented edges coming out
of the vertex). A graph is k-regular if every vertex has degree k.

Terras [126] defines the m×m adjacency matrix as,

Aij =

 k if a transitionMj →Mi is possible in k ways
2 `j if i = j
0 otherwise ,

(13.43)
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where `j is the number of loops at vertex j. She then assigns to every of the
e unoriented edges a pair of oriented edges. Her graphs are finite, connected
and undirected, without “backtracks" and “tails". It will usually be assumed
that they contain no degree 1 vertices (called “leaves" or “hair" or “danglers").
We will also usually assume the graphs are not cycles or cycles with hair. A
cycle graph is obtained by arranging the vertices in a circle and connecting
each vertex to the 2 vertices next to it on the circle. We will allow our graphs
to have loops and multiple edges. For any closed loop, the equivalence class
is the set of all its cyclic permutations. Two loops are equivalent if they differ
only by the starting vertex.

Terras: We do not consider zeta functions of infinite graphs here. Nor do
we consider directed graphs. Zeta functions for such graphs are discussed, for
example, by Matthew Horton [60].

There is no unique factorization into primes. The only nonprimes are pow-
ers of primes. We distinguish prime p from p−1 which is the loop traversed
in the opposite direction. All graphs have infinity of primes, with exception
of the cycle graph that has only 2 primes p, p−1, traversing the vertices in the
opposite directions.

Theorem [8, 63]: Consider a finite connected graph G (without degree 1
vertices) with m vertices, e unoriented (or undirected) edges, deg mi the num-
ber of (undirected) edges going into vertex i. Let A be the adjacency matrix, Q
be the m×m diagonal matrix with Qii = deg mi − 1, and ∆z = I − zA+ z2Q.
The (vertex) adjacency matrix A of G is a m ×m matrix whose i,j entry is the
number of directed edges from vertex i to vertex j. The matrix Q is a diagonal
matrix whose j-th diagonal entry is 1 less than the degree of the j-th vertex. If
there is a loop at a vertex, it contributes 2 to the degree.

1/ζ(z) = (1− z2)e−mdet ∆z (13.44)

(then comes Riemann Hypothesis for the spectrum of a regular graph G, and
Ramanujan graphs).

See 2020-05-11 Bharatram Rangarajan (13.67) below for another derivation
of the same.

Next, consider the ‘grid’ zeta function for G the infinite grid, i.e., a square
2D lattice. Let π = Z× Z be a translation acting on G. The zeta function is still

ζ(z) =
∏
[p]

1

1− znp (13.45)

where [p] is an equivalence class of loops under translation by π:

1/ζ(z) = (1− z4)2(1− z6)4(1− z8)26(1− z10)152 · · · (13.46)

(look at the 8-loops in Clair’s talk - there seems to be an extra factor 2 in loop
counting. I only see two 6-loops, not four).
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On infinite graphs, the adjacency matrix becomes an `2(Z×Z)→ `2(Z×Z)
adjacency operator. For the infinite grid,

∆z = I − zA+ z3 (13.47)

There is still a determinant formula for the zeta function:

1/ζπ(z) = (1− z2)det π∆z . (13.48)

With π = Z× Z, det π is an operator determinant:

det π∆z = exp Tr π ln ∆z , (13.49)

where Tr π is the trace on the group von Neumann algebra N (π).
The adjacency operator on a square lattice is essentially the 2D Laplacian.

Clair throws in the 2D Ising, then Kasteleyn [77] and ends up with

1/ζπ(z) = (1− z2)(1 + 3z2) exp I(k) , (13.50)

with a simple set of singularities, and I(k) is related to an elliptic integral of
the first kind (6.173), expressed in terms of theta functions (whose squares are
modular forms of weight 1).

13.1.4 Ihara blog

2016-10-03 Predrag For further discussion, see Wiki, and the notes for equa-
tion (13.54).

Ihara zeta function for undirected graphs satisfies a functional equation [126].
The formulation of the graph Riemann Hypothesis in terms of Ihara zeta
function is based on the fact that the adjacency matrix of an undirected
regular graph is symmetric. There is no analogue of Riemann Hypothesis
for directed graphs.

A zeta function of a regular graph G associated to a unitary representa-
tion of the fundamental group of G was developed by Sunada [120].

2016-10-03 Predrag I cannot, at the moment, tell the difference between Ihara
and what I call the topological zeta function in ChaosBook.org (section
18.4; the chapter alone is here). I find Aizenman’s derivation of 2D On-
sager solution beautiful - will have to chew on it.

2018-03-22 Predrag Trying to incorporate dynamics into a generalized, time-
reversal invariant Laplacian by replacing a time forward cat map A by
something like a time reversal invariant combination AA>:

Incidence matrix B entries are bij = ±1, depending on whether vi is a
target or a source.

For literature and further discussion, see sect. 13.1 Ihara zeta functions.
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For the finite transition graph figure 20.4 (d) and (20.15) the incidence ma-
trix is (2018-05-02 Predrag as they currently stand, the next two equation
are wrong - they should be [`× `] matrices, not 2-dimensional ones. Also,
the literature discusses only ‘simple’ graphs, i.e., graphs without 1-loops)[

φ′A
φ′B

]
= Bφ =

[
2 1
−1 1

] [
φA
φB

]
(13.51)

and

BB> =

[
2 1
−1 1

] [
2 −1
1 1

]
=

[
5 −1
−1 2

]
. (13.52)

Actually, we need something that acts on the whole chain, some Toeplitz
matrix like

BB>“ =′′ −



−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2


, (13.53)

but with 2 fields [φA,t, φB,t]
> at each site t.

Proposition 17.2. [Godsil and Royle [47]] Given any directed graph G if
B is the incidence matrix of G, A is the adjacency matrix of G, and D is
the degree matrix such that Dii = d(vi), then

BB> = D −A . (13.54)

The matrix L = D − A is called the (unnormalized) graph Laplacian
of the graph G. BB> is independent of the orientation of G and D-A is
symmetric, positive, semidefinite; that is, the eigenvalues of D.

Each row of L sums to zero (because B>1 = 0). Consequently, the vector
1 is in the nullspace of L.

The connection between the incidence matrix of a graph and its Laplacian
is the well-known equation L = ∂∂>.

2021-04-14 Predrag Fan Chung [22] Spectral Graph Theory (revised and im-
proved 2006) is the “bible" of spectral graph theory. Should read chapter
Eigenvalues and the Laplacian of a graph.

See Gabriel Peyré tweet.

Daniel A. Spielman Spectral and Algebraic Graph Theory deals with the
combinatorial, normalized and random walk version of the Laplacian.

What -I think- is important for us is that any graph Laplacian can be
written as

L = SS> , (13.55)
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where S is the matrix whose rows are indexed by the vertices and whose
columns are indexed by the edges.

Let 1 denote the constant function which assumes the value 1 on each
vertex. This is an eigenfunction of Lwith eigenvalue 0.

2018-04-05 Predrag There might be a related undirected network model, with
a graph Laplacian (13.54). In that case a Lagrangian formulation (in terms
of graph Laplacians) might be a more powerful formulation than their
Hamiltonian one. “Arrow of time” is perhaps encoded by the orienta-
tions of the links in a directed complex network.

2016-10-05 Predrag Zeta functions of infinite graphs are discussed, for exam-
ple, by

Bryan Clair and Shahriar Mokhtari-Sharghi [26],

Rostislav Grigorchuk and Andrzej Zuk [?46] (that one is about Cayley
trees).

Guido, Isola, and Lapidus [51] Ihara’s zeta function for periodic graphs and
its approximation in the amenable case.

Guido, Isola and Lapidus [52] A trace on fractal graphs and the Ihara zeta
function

2020-12-18 Predrag Daniele Guido, Tommaso Isola, and Michel Lapidus [50]
Ihara zeta functions for periodic simple graphs arXiv:math/0605753:

Z(G, u) = ZG(u) =
∏
[C]

1

(1− u[C])1/GC
, (13.56)

The standard lattice graph L = Z2 endowed with the action of the group
G which is generated by the rotation by π

2 around the point P and the
translations by elements (m,n) ∈ Z2 acting as (m,n)(v1, v2) := (v1 +
2m, v2 + 2n), for v = (v1, v2) ∈ V L = Z2.
Why face-centered point P ? why 2m? In their example, the length [C]
in (13.56) is the number of group elements that map C into itself (the
‘stabilizer’), see figure 13.4, not what we need.

The main result in the theory of Ihara zeta functions (13.56) says that Z
is the reciprocal of a holomorphic function, which, up to a factor, is the
determinant of a deformed Laplacian on the graph.

2016-10-05 Predrag Unlike in dynamical systems, Ihara zeta functions are de-
fined on graphs with unoriented (or undirected) edges.

Hashimoto [54] Zeta functions of finite graphs and representations of p-adic
groups

2020-05-13 Predrag Bass [8] The Ihara-Selberg zeta function of a tree lattice. It
seems that Ihara zeta function walks carry signs - investigate.
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Figure 13.4: A cycle with |GC | = 2

He also introduces the edge zeta function to give a determinant form of
Ihara zeta function for undirected graph. This text is from Zhou, Xiao
and He [136], arXiv:1502.05771:

• The edge matrix W of size [2m × 2m] for an undirected graph with
m undirected edges has entries wij . The (i, j)-th entry of W , wij ,
is a complex variable if the edge ei is connected with edge ej with
ej 6= e−1

i , and the entry is 0 if otherwise.

• For a closed path C in an undirected graph X written as a sequence
of edges C = e1e2 · · · es, the edge norm of C is

NE(C) = w12w23 · · ·ws1.

The edge zeta function is defined as follows

ζE(W,X) =
∏

[P ]∈Prime Cycles

(1−NE(C))−1.

It is clear from this definition that if wij is set to z ∈ C, we recover the
original Ihara zeta function such that

ζG(z) = ζE(W1, G),

where W1 is the edge matrix when all non-zero entries set to z.

Furthermore, we have the following formula (cf. Chapter 3 of Terras [126])

ζE(W,G) = Det(I −W )−1 . (13.57)

2016-10-05 Predrag In A Window Into Zeta and Modular Physics [80] (that should
warm Li Han’s heart) Audrey Terras discusses Ihara zeta function. She
says: “the Ruelle zeta function of a dynamical system, will be shown
to be a generalization of the Ihara zeta.” Things are looking deep. “It
turns out (using the Ihara determinant formula again) that the Riemann
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hypothesis means that the graph is Ramanujan”, etc. She also discusses
it in ref. [126] Zeta Functions of Graphs: A Stroll through the Garden.

To swoon over the multitude of zetas, read Bartholdi [7] Zeta functions of
graphs: a stroll through the garden, by Audrey Terras [126]. Book review.

Teimoori Faal and M. Loebl [123] Bass’ identity and a coin arrangements
lemma

Like my topological zeta functions, Loebl’s Ihara-Selberg function of G
is the infinite product is over the set of the prime reduced cycles of G.

Loebland and Somberg [90] Discrete Dirac operators, critical embeddings and
Ihara-Selberg functions

da Costa [29] The Feynman identity for planar graphs: “ The Feynman iden-
tity (FI) of a planar graph relates the Euler polynomial of the graph to an
infinite product over the equivalence classes of closed nonperiodic signed
cycles in the graph. The main objectives of this paper are to compute the
number of equivalence classes of nonperiodic cycles of given length and
sign in a planar graph and to interpret the data encoded by the FI in the
context of free Lie superalgebras. This solves in the case of planar graphs
a problem first raised by Sherman and sets the FI as the denominator
identity of a free Lie superalgebra generated from a graph. Other results
are obtained on the zeta functions of graphs. ”

da Costa Graphs and Generalized Witt identities arXiv:1409.5767

2016-10-05 Predrag Sato [112] Bartholdi zeta functions of group coverings of di-
graphs:

The (Ihara) zeta function of a graph G is defined [63] to be a function of
with u sufficiently small, by

Z(G, u) = ZG(u) =
∏
[C]

1

1− u[C]
, (13.58)

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Samuel Cooper and Stratos Prassidis (2010) Zeta functions of infinite graph
bundles, DOI :
Originally, Ihara defined the zeta function on finite graphs imitating the
classical definition of the zeta function, where the product is over all
equivalence classes of primitive closed loops C, and [C] denotes the length
of C.

2016-10-05 Predrag Horton [60] Ihara zeta functions of digraphs considers di-
graphs whose adjacency matrices are directed edge matrices.

Tarfulea and Perlis [122] An Ihara formula for partially directed graphs:
“ In 2001 Mizuno and Sato showed that the Ihara zeta function of a fully
directed graph has a similar expression, and in 2005, Sato [112] gener-
alized Ihara’s formula to connected, simple, partially directed graphs.
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(Sato proved his formula for the more-general two-variable Bartholdi
zeta function.) This paper provides a new proof of Ihara’s formula for
the Ihara zeta function of any finite graph, not necessarily connected or
simple, no matter whether it is undirected, fully directed, or partially di-
rected. ”

2016-10-30 Predrag I worry a lot about what time-reversibility means - spa-
tiotemporal cat is both time and space reversible, and then there are Ihara
zeta functions for undirected graphs. So I find this interesting: Copper-
smith, Kadanoff and Zhang [28] Reversible Boolean networks I: distribution
of cycle lengths. They write: “ We [...] consider time-reversible dynamics
of N Boolean variables models, with the time evolution of each depend-
ing on K of the other variables, which necessarily have the property that
every possible point in the state space is an element of one and only one
cycle. The orbits can be classified by their behavior under time reversal.
The orbits that transform into themselves under time reversal have prop-
erties quite different from those that do not; in particular, a significant
fraction of latter-type orbits have lengths enormously longer than orbits
that are time-reversal symmetric. For large K and moderate N, the vast
majority of points in the state space are on one of the time-reversal singlet
orbits. However, for any finite K, the random hopping approximation
fails qualitatively when N is large enough (N>22K). When K is large, typ-
ical orbit lengths grow exponentially with N, whereas for small enough
K, typical orbit lengths grow much more slowly with N. The numeri-
cal data are consistent with the existence of a phase transition at which
the average orbit length grows as a power of N at a value of K between
1.4 and 1.7. However, in the reversible models, the interplay between the
discrete symmetry and quenched randomness can lead to enormous fluc-
tuations of orbit lengths and other interesting features that are unique to
the reversible case. ”
Need to check also
Toffoli and Margolus [127] Invertible cellular automata: A review
D’Souza and Margolus [35] Thermodynamically reversible generalization of
diffusion limited aggregation

2020-05-11 Predrag Deitmar [38] Ihara zeta functions of infinite weighted graphs:
“The theory of Ihara zeta functions is extended to infinite graphs which
are weighted and of finite total weight. In this case one gets meromorphic
instead of rational functions and the classical determinant formulas of
Bass and Ihara hold true with Fredholm determinants.”
Tempesta [124] A theorem on the existence of trace-form generalized entropies
Tempesta [125] Beyond the Shannon-Khinchin formulation: The composability
axiom and the universal-group entropy

2020-05-11 Predrag Supriyo Dutta and Partha Guha Ihara Zeta Entropy,
arXiv:1906.02514; A System of Billiard and Its Application to Information-

8289 (predrag–7383) 53504/19/2020 siminos/spatiotemp/chapter/chronotope.tex

https://scholar.google.com/citations?hl=en&user=P74k94cAAAAJ
http://arXiv.org/abs/1906.02514


CHAPTER 13. ISING MODEL IN 2D

Theoretic Entropy, arXiv:2004.03444: they define Ihara entropy, an information-
theoretic entropy based on the Ihara zeta function of a graph. A dynam-
ical system consists of a billiard ball and a set of reflectors correspond
to a combinatorial graph. The reflectors are represented by the vertices
of the graph. Movement of the billiard ball between two reflectors is
represented by the edges. The prime cycles of this graph generate the
bi-infinite sequences of the corresponding symbolic dynamical system.
The number of different prime cycles of a given length can be expressed
in terms of the adjacency matrix of the oriented line graph. It also con-
structs the formal power series expansion of Ihara zeta function. There-
fore, the Ihara entropy has a deep connection with the dynamical system
of billiards.

2017-03-08 Predrag Reading Band, Harrison and Joyner [6] Finite pseudo orbit
expansions for spectral quantities of quantum graphs one expects to run into
another rediscovery of Ihara zeta functions, as the links are not directed:
“ The quantum graphs we consider are metric graphs equipped with a self-
adjoint differential operatorH, the Hamiltonian. Here we are particularly
interested in the negative Laplace operator,

H : f(x) 7→ −d
2f

dx2
, (13.59)

or the more general Schrödinger operator,

H : f(x) 7→ −d
2f

dx2
+ V (x)f(x) , (13.60)

where V (x) is a potential, which we assume to be bounded and piecewise
continuous. Note that the value of a function or the second derivative of
a function at a point on the bond is well-defined, thus it is not important
which coordinate, xb or xb̂ is used. This is in contrast to the first derivative
which changes sign according to the direction of the chosen coordinate.
”
Indeed, they go through the usual steps of defining oriented graphs and
then putting pairs of oriented bonds on each link, etc. This is explored
further in
Ren, Aleksić, Emms, Wilson and Hancock [109] Quantum walks, Ihara zeta
functions and cospectrality in regular graphs: review the literature on the
discrete-time quantum walks and the Ihara zeta function.
Setyadi and Stor [113] Enumeration of graphs with the same Ihara zeta func-
tion
Higuchi, Konno, Sato and Segawa [55] A remark on zeta functions of finite
graphs via quantum walks
Saito [111] A proof of Terras’ conjecture on the radius of convergence of the
Ihara zeta function has a nice explicit matrix example, and eigenvalues
computation.
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2020-05-05 Predrag Mizuno and Sato [98] Zeta functions of digraphs define a
zeta function of a digraph and an L-function of a symmetric digraph.
That is the usual Bowen-Ruelle (in ChaosBook topological) zeta function.
Tarfulea and Perlis [122] do note: “The formula for the zeta function of
a directed graph was proved in 1968, wearing a thin disguise, by Bowen
and Lanford [12]. The elementary connection to directed graphs is made
explicit in Th.6.4.6 of Lind Marcus [88].”

Various authors, such as Zhou, Xiao and He [136] Seiberg duality, quiver
gauge theories, and Ihara’s zeta function, nevertheless refer to it as “Ihara”,
see their Table 2 Ihara zeta functions for various toric phases of del Pezzo and
Hirzebruch quivers. Apparently, “the toric phases are the most popular.”

“The coefficients of the inverse of Ihara zeta function are related to simple
cycles. In gauge theories, this translates to generic super-potentials that
can be generated from certain quivers.” This seems to be expansion of a
topological zeta function in terms of fundamental cycles.

2020-05-05 Predrag Davey, Hanany and Pasukonis [36] On the classification of
brane tilings, arXiv:0909.2868. (See also arXiv:hep-th/0503149) has an
Appendix A Tiling catalog.

A brane tiling (or dimer model) is a periodic bipartite graph on the plane.
Alternatively, we may draw it on the surface of a 2-torus by taking the
smallest repeating structure (known as the fundamental domain) and
identifying opposite edges [1]. The bipartite nature of the graph allows
us to colour the nodes either white or black such that white nodes only
connect to black nodes and vice versa.

2020-05-05 Predrag Sunada [121] Topological Crystallography. Have the book
(click here), but do not know how to get useful info for spatiotemporal
cat out of it.

“the Ihara zeta function [is] a graph-theoretic analogue of class field the-
ory, discrete Laplacians, and harmonic maps.”

Again, “Abel–Jacobi maps” pop up, and again I have no idea what they
are.

2020-05-06 Predrag Ren, Wilson and Hancock [110] Graph characterization via
Ihara coefficients: For an unweighted graph, the Ihara zeta function is the
reciprocal of a quasi characteristic polynomial of the adjacency matrix of
the associated oriented line graph.

First, we demonstrate how to characterize unweighted graphs in a per-
mutation-invariant manner using the polynomial coefficients from the
Ihara zeta function, i.e., the Ihara coefficients.

Second, we generalize the definition of the Ihara coefficients to edge-
weighted graphs, using the reduced Bartholdi zeta function.

Experimental results reveal that the Ihara coefficients are more effective
than methods based on Laplacian spectra.
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Bulò, Hancock, Aziz and Pelillo [13] Efficient computation of Ihara coeffi-
cients using the Bell polynomial recursion: They present a method for com-
puting the Ihara coefficients in terms of complete Bell polynomials and
show how the Ihara coefficients can be efficiently computed provided
that the eigenvalues of the adjacency matrix are known.

2020-05-05 Predrag Arrigo, Grindrod, Higham and Noferini [4] On the expo-
nential generating function for non-backtracking walks do not mention “Ihara",
but seem to derive it anyway from a 3-term recurrence relation. They
write:

We derive an explicit formula for the exponential generating function as-
sociated with non-backtracking walks around both undirected and di-
rected graphs. Eliminating backtracking walks in this context does not
significantly increase the computational expense. We show how the new
measures may be interpreted in terms of standard exponential centrality
computation on a certain multilayer network. Insights from this block
matrix interpretation also allow us to characterize centrality measures
arising from general matrix functions.

2020-05-11 Predrag Bharatram Rangarajan A combinatorial proof of Bass’s deter-
minant formula for the zeta function of regular graphs, arXiv:1706.00851: The
zeros and poles of the Selberg zeta function appear in the Selberg trace
formula, which relates the distribution of primes with the spectrum of the
Laplace-Beltrami operator of the surface. The idea of considering closed
geodesics as primes inspired the work of Hashimoto [54], Bass [8], Kotani
and Sunada [83] to come up with an analogous notion in the discrete set-
ting.

Just like the Selberg zeta function is related to the spectrum of the Laplace-
Beltrami operator of the surface, it is natural to ask if its discrete ana-
logue, the Ihara zeta function of a graph, is related to the spectrum of the
Laplacian matrix (or the adjacency matrix) of the graph. Bass [8] gives an
expression for the Ihara zeta function of a graph G = (V,E) as

ζG(t) =
1

(1− t2)|E|−|V |det (I − tA+ (D − I)t2)

where A is the adjacency matrix of G and D is the diagonal matrix of de-
grees of the vertices of G, or in other words, D = diag(A~1). In particular,
if G is d-regular, then (see (13.47), derivation (13.68))

ζG(t) =
1

(1− t2)|E|−|V |det (I − tA+ (d− 1)t2I)
(13.61)

gives a way of obtaining the set of poles of ζG(t).

For a general, partially directed graph see Sato [112] and Tarfulea and R.
Perlis [122].
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Most proofs Bass’s determinant formula start by expressing the zeta func-
tion in terms of not the adjacency matrixA ofG, but the adjacency matrix
H of the oriented line graph of G (called the Hashimoto edge-incidence
matrix).

In this paper, we shall see a more elementary combinatorial proof of
Bass’s determinant formula in the case when G is regular. The proof goes
as follows:

• The zeta function ζG(z) has an expansion of the form

ζG(z) = exp

( ∞∑
k=1

Nk
zk

k

)

where for k ∈ Z, Nk is the number of rooted, non-backtracking cycles
in G of length k.

• An expression for Nk is not immediate, the starting point is the
study of non-backtracking walks on G. We can construct the family
{Ak}k∈Z≥0

of n × n matrices such that for every k ∈ Z≥0 and every
v, w ∈ V , (Ak)vw is the number of non-backtracking walks on G of
length k from v to w.

• Nk is combinatorially computable from Tr (Ak).

• Tr (Ak) is well-understood in terms of the eigenvalues of A and a
family of Chebyshev polynomials. These ingredients lead to a proof
of Bass’s determinant formula.

(Ak)vw counts the total number of walks (with backtrackings) on G from
v to w of length k. Let

A0, A1, A2, A3, . . .

be [n × n] matrices over C such that the value (Ak)vw is the number of
non-backtracking walks on G from v to w of length k. This family {Ak}k∈Z
can be recursively defined using powers of A as follows:

• A0 = I

• A1 = A

• A2 = A2 − dI
• For k ≥ 3,

Ak = AAk−1 − (d− 1)Ak−2

This recurrence relation shows that the ordinary (matrix) generating func-
tion for the above sequence is

∞∑
k=0

zkAk = (1− z2)I.
(
I − zA+ (d− 1)z2I

)−1
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i.e., generating function

1− z2

1−Az + (d− 1)z2

Consider the family of Chebyshev polynomials of the second kind

U0(x), U1(x), U2(x), . . .

defined by the recurrence
U0(x) = 1

U1(x) = 2x

and for k ≥ 2,
Uk(x) = Uk−1(x)U1(x)− Uk−2(x)

and with generating function

∞∑
k=0

Uk(x)zk =
1

1− 2xz + z2

It is easy to see that∑
0≤j≤k/2

Ak−2j = (d− 1)k/2Uk

(
A

2
√
d− 1

)

implying that for k ≥ 2,

Ak = (d− 1)k/2Uk

(
A

2
√
d− 1

)
− (d− 1)k/2−1Uk−2

(
A

2
√
d− 1

)
This holds for 0 ≤ k ≤ 2 as well, if

Um(x) = 0

for every m < 0. This allows us to work with the above expression for
Ak for all non-negative integers k.

Taking trace on both sides,

Tr (Ak) = (d−1)k/2
n−1∑
j=0

Uk

(
µi

2
√
d− 1

)
−(d−1)k/2−1

n−1∑
i=0

Uk−2

(
µi

2
√
d− 1

)
where

d = µ0 ≥ µ1 ≥ · · · ≥ µn−1 ≥ d
are the n eigenvalues of the adjacency matrix A. Thus we have an ex-
pression for the trace ofAk as a polynomial in the eigenvalues ofA. For a
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detailed and elementary exposition of Chebyshev polynomials and non-
backtracking walks on regular graphs, the reader is referred to the mono-
graph by Davidoff, Sarnak and Valette [37].

While (Ak)vw counts the number of walks on G from vertex v to vertex
w without backtracking, the diagonal element (Ak)vv does not count the
number of non-backtracking cycles of length k rooted at v. This is because
(Ak)vv also counts walks of the form

e1e2 . . . ek

where ei+1 6= ei for any 1 ≤ i ≤ k − 1 but ek = e1. That is, e1e2 . . . ek is
non-backtracking as a walk from v to v, but when considered as a closed
walk (or a loop), the two end edges form a backtracking! Such an instance
of a backtracking that gets overlooked in Tr (Ak) shall be referred to as a
tail.

So Tr (Ak) counts the number of closed, rooted walks of length k that
could have at most 1 tail, and hence does not count the rooted, non-
backtracking cycles of length k. It is interesting to ask what the number
of closed, rooted non-backtracking walks of length k is.

Relation between Mk = Tr (Ak) and Nk: For every k ≥ 3,

Nk =

{
Mk − (d− 2)(Mk−2 +Mk−4 + · · ·+M1) odd k
Mk − (d− 2)(Mk−2 +Mk−4 + · · ·+M2) even k

By linearity of trace,

Nk =

{
Tr (Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A1)) if k is odd
Tr (Ak − (d− 2)(Ak−2 +Ak−4 + · · ·+A2)) if k is even

[... after a few steps ... this is related to]

Uk(x)− Uk−2(x) = 2Tk(x)

where Tk(x) is the Chebyshev polynomial of the first kind defined by

T0(x) = 1 , T1(x) = x

Tk(x) = 2xTk−1(x)− Tk−2(x) for k ≥ 2 , (13.62)

with the generating function

∞∑
k=0

Tk(x)zk =
1− xz

1− 2xz + z2
(13.63)

[... after a few probably unnecessary steps, ... taking a derivative ... this
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is related to]

N1z+N2
z2

2
+N3

z3

3
+ . . . (13.64)

= −n(d− 2)

2
ln (1− z2)−

n−1∑
j=0

ln (1− µjz + (d− 1)z2) (13.65)

= −
(
nd

2
− n

)
ln (1− z2)− ln

n−1∏
j=0

1− µjz + (d− 1)z2


(13.66)

= −(|E| − |V |) ln (1− z2)− ln
(
det (I −Az + (d− 1)z2)

)
(13.67)

resulting in (13.44):
Bass’s determinant formula LetG = (V,E) be a d-regular graph with ad-
jacency matrixA, and letNk count the number of rooted, non-backtracking
cycles of length k in G. Then

ζG(z) =
1

(1− z2)|E|−|V |det (I − zA+ (d− 1)z2I)
(13.68)

13.1.5 Maillard

Another scary line of literature. Connecting Baxter to dynamical zetas func-
tions. Maillardinians have a burst at the end of 20th century. Very easy to
collect the literature, as only they cite their own articles, and nobody else cites
them.

A cute cat map exercise - but I have to bike home, will continue later...

2016-11-16 Predrag Anglès d’Auriac, Boukraa and Maillard [3] Functional re-
lations in lattice statistical mechanics, enumerative combinatorics, and discrete
dynamical systems write “ ... non-linear functional relations appearing in
[...] lattice statistical mechanics [...] We then consider discrete dynam-
ical systems corresponding to birational transformations. The rational
expressions for dynamical zeta functions obtained for a particular two-
dimensional birational mapping, depending on two parameters [...] com-
patible with a chaotic dynamical system.

They obsess about the Arnol’d complexity, which counts the number of
intersections between a fixed line and its nth iterate. I do not see why we
should care.

I like Bedford and Diller [10] Real and complex dynamics of a family of bi-
rational maps of the plane: The golden mean subshift better, so I follow their
notation here. It’s a rather impressive paper.

For reasons known to some people (symmetries of Baxter models?) they
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study a birational transformation and its inverse,

xn+1 = yn
xn+a
xn−1

yn+1 = xn + a− 1

xn−1 = yn + 1− a
yn−1 = xn

yn−aa
yn+1

, a ∈ R .(13.69)

The map is area-preserving in the sense that it preserves a meromorphic
2-form

dx ∧ dy
y − x+ 1

and is reversible, which means that the map is conjugate to its inverse
via involution (x, y)→ (−y,−x). The inverse transformation amounts to
yn ↔ −zn, i.e., the time reversal symmetry, and the x − y = 0 line is the
time-reversal invariant line. The topological zeta function for (13.69) is

1/ζAM(z) =
1− z − z2

1− z2
. (13.70)

It counts all periodic orbits, real and complex. Interestingly, this zeta
satisfies an elegant functional relation relating ζ(z) and ζ(1/z).
The zeta function for real roots is complicated and depends on the pa-
rameter a. 2CB

Bedford and Diller [10] construct a generating partition and the Markov
diagram (they call that Graph of Filtration), including the transient nodes.
The recurrent part of this graph is just the golden mean graph, with 11
repeats forbidden. They obsess much about their “rectangles.” Show
that all periodic orbits are hyperbolic. Discuss pre-periodic orbits. Zeta
functions are never mentioned, though topological entropy is computed.
Abarenkova et al. [1] Rational dynamical zeta functions for birational trans-
formations is not worth reading - the material is better explained in their
other papers.
If the dynamical zeta function can be interpreted as the ratio of two char-
acteristic polynomials of two linear operators A and B, namely

1

ζ(z)
=

det (1− zA)

det (1− zB)
, (13.71)

then the number of fixed points is given by

Tr (An)− Tr (Bn) . (13.72)

In this linear operators framework, the rationality of the ζ function [49,
94], and therefore the algebraicity of the exponential of the topological en-
tropy, amounts to having a finite dimensional representation of the linear
operators A and B.
Their only explicit example of a rational zeta dynamical function is the
case of the Arnol’d cat map on torus T2 = R2/Z2 ,

A =

(
2 1
1 1

)
, B =

(
1 0
0 1

)
(13.73)
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The topological zeta function [64] for Arnol’d cat map is

1/ζAM(z) =
det (1− zA)

det (1− zB)
=

1− 3z + z2

(1− z)2
. (13.74)

2016-06-02, 2020-09-24 Predrag From my notes on Isola [64] ζ-functions and dis-
tribution of periodic orbits of toral automorphisms, see sect. 1.3.7: [...] The
topological zeta function for cat-map class of models is (see (5.184))

1/ζAM(z) =
1− sz + z2

(1− z)2
. (13.75)

Define
d(s) = z−1 − s+ z (13.76)

then (compare with (13.71))

1/ζAM(z) =
d(s)

d(2)
= 1 +

d(s)− d(2)

d(2)
= 1− µ2 1

d(2)
(13.77)

I wonder whether the fact that this is quadratic in z has something to
do with the time-reversibility, and the unsigned graph’s Ihara zeta func-
tions?

The “characteristic function” (6.170) for the 3-point recurrence centered
on the s term, 1/z − s+ z suggests multiplying (13.75) by z−1/z−1. That
leads to

1/ζAM(z) = 1 +
µ2

(1− z)(1− 1/z)
= 1 +

(
z

1− z +
1/z

1− 1/z

)
µ2 . (13.78)

Interpretation: the temporal cat zeta function denominator is the Lapla-
cian, and µ2 is measuring the deviation from the pure Laplacian case
(marginal, no solutions other than the n = 1 (line of) fixed point(s).

Conversely, given the topological zeta function, the generating function
for the number of temporal lattice states of period n is given by the loga-
rithmic derivative of the topological zeta function (1.13),

∞∑
n=0

Nnz
n =

2− sz
1− sz + z2

− 2

1− z =
2/z − s

1/z − s+ z
− 2

1− z

=
(2/z − s)(1− z)− 2(1/z − s+ z)

(1/z − s+ z)(1− z)

= µ2 1 + z

(1/z − s+ z)(1− z)
= µ2

[
z + (s+ 2)z2 + (s+ 1)2z3

+ (s+ 2) s2z4 + (s2 + s− 1)2z5 + · · ·
]
.(13.79)
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which is indeed the generating function for T`(s/2), the Chebyshev poly-
nomial of the first kind.

To me it looks like we should include (time reflection symmetry!) also
negative n in the zn series (Laurent series?), with a negative sign, so I get

∞∑
n=−∞

Nnz
n =

µ2

z−1 − s+ z

(
1 + z

1− z−
1 + z−1

1− z−1

)
=

µ2

z−1 − s+ z

(1 + z)(1− z−1)−(1− z)(1 + z−1)

(1− z)(1− z−1)

=
2µ2

z−1 − µ2 − 2 + z

z − z−1

(1− z)(1− z−1)

=
2µ2

z−1 − µ2 − 2 + z

z−1 − z
z−1 − 2 + z

. (13.80)

2020-09-30 Predrag The Bernoulli equation rewritten as a first-order difference
equation:

xt − sxt−1 = −mt , xt ∈ [0, 1) . (13.81)

For a Bernoulli system

1/ζAM(z) = exp [ln(1− sz)− ln(1− z)]

=
1− sz
1− z . (13.82)

Define
d(s) = z−1 − s (13.83)

then (compare with (13.71))

1/ζAM(z) =
d(s)

d(2)
= 1 +

d(s)− d(2)

d(2)
= 1 + (s− 1)

1

d(2)
(13.84)

The numerator (1 − sz) says that a Bernoulli system is a full shift [33]:
there are s fundamental lattice states and every other lattice state is built
from their concatenations and repeats.

2020-09-24 Predrag For 2-dimensional spatiotemporal cat the “characteristic
function” (6.170) the above musings suggests a guess

1/ζAM(z1, z2) =
z1 + z2 − 2s+ z−1

1 + z−1
2

z1 + z2 − 4 + z−1
1 + z−1

2

= 1− 2µ2

z1 + z2 − 4 + z−1
1 + z−1

2

(13.85)

= 1 +
2µ2

(1− z1)(1− 1/z1) + (1− z2)(1− 1/z2)
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If we define
d(s) = z1 + z2 − 2s+ z−1

1 + z−1
2 (13.86)

then (compare with (13.71))

1/ζAM(z1, z2) =
d(s)

d(2)
(13.87)

suggest some derivatives, integrations with respect to the parameter s,
resulting in ln d(s)− ln d(2) from the ends of the integration domain.

See also (13.74).

2020-05-05 Predrag Kotani and Sunada [83] Zeta functions of finite graphs seems
cited a lot and perhaps belongs to ChaosBook.org.

2020-05-05 Predrag Stark and Terras [118] Zeta functions of finite graphs and cov-
erings is cited a lot and perhaps belongs to ChaosBook.org.

Stark and Terras [119] Zeta functions of finite graphs and coverings, Part II
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13.2 Gaussian model

2019-11-04 Predrag Ivashkevich, Izmailian and Hu [65] Kronecker’s double series
and exact asymptotic expansions for free models of statistical mechanics on torus:

Gaussian model is a boson analog of Ising model. Consider square lattice
of size N ×M wrapped on a torus. To each site (m,n) of the lattice we
assign a continuous variable φmn. The Hamiltonian of the model is

H(φ) = −J
N−1∑
n=0

M−1∑
m=0

(
φmn φm+1,n − 2φ2

mn + φmn φm,n+1

)
, (13.88)

with the partition function

Z(J) =

∫
RMN

e−H(φ) dσ(φ)

If the measure dσ(φ) in the phase space RMN is Gaussian

dσGauss(φ) = π−MN/2
N−1∏
n=0

M−1∏
m=0

e−φ
2
mn dφmn

the integration can be done explicitly and the partition function of the
free boson model can be written in terms of the partition function with
twisted boundary conditions (13.6)

Zα,β(µ) =

N−1∏
n=0

2
∣∣∣sh [Mωµ

(
π(n+α)
N

)
+ iπβ

]∣∣∣ (13.89)

and parameterization J−1 = 4 ch2 µ as

ZGauss(µ) =
(√

2 chµ
)MN [

Z0,0(µ)
]−1

(13.90)

where

Z2
0,0(µ) =

N−1∏
n=0

M−1∏
m=0

4
[

sin2
(
πn
N

)
+ sin2

(
πm
M

)
+ 2 sh2µ

]
. (13.91)

This model exhibit phase transition at the point µc = 0 where the parti-
tion function is divergent. This is due to the presence of so-called zero
mode, i.e. due to the symmetry transformation φmn → φmn + const,
which leave the Hamiltonian (13.88) invariant. Correlation functions of
disorder operator in this model have been studied by Sato, Miwa and
Jimbo.
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The reason why this model is often considered as boson analog of the
Ising model is that one can choose another measure in the phase space,
which makes this model equivalent to the Ising model considered above

dσIsing(φ) = 2−MN
N−1∏
n=0

M−1∏
m=0

[
δ(φmn − 1) + δ(φmn + 1)

]
dφmn

where δ’s are Dirac δ-functions. With such a definition the variables φmn
can actually take only two values: +1 or −1, so that φ2

mn = 1. In this
case integration can be replaced by summation over discrete values of
φmn = ±1 and the Hamiltonian (13.88) coincides with the Hamiltonian
of the Ising model (13.2) up to a constant.

2020-06-19 Predrag Connect to (6.35)?

Recheck [2019-09-25 PC] Levit and Smilansky?

2020-06-19 Predrag P. A. P. Moran [99] A Gaussian Markovian Process on a Square
Lattice is a very good paper that does all the right stuff with the Gaussian
“model,” and ends up with the complete elliptic integral of the first kind
(6.173).

2020-06-19 Predrag Eduardo Fradkin [45] Field Theories of Condensed Matter Physics,
discusses on p. 336 the quantum partition function of the dimer model
which is given by the classical partition function of a discrete Gaussian
model in three Euclidean dimensions on a cubic lattice. See also p. 332,
345 and 354. Not sure how to connect it to our work.

Shankar [114] Quantum Field Theory and Condensed Matter defines the Gaus-
sian model in Eqs. (13.2), (6.219); sect 11.1 The renormalization group: first
pass;

Marino [95] Quantum Field Theory Approach to Condensed Matter Physics
(see 5.2 Gaussian Functional Integrals) does not seem to refer to the Gaus-
sian model.

Chaikin and Lubensky [17] Principles of Condensed Matter Physics see 5.3
Gaussian integrals, 5.8.3 Gaussian model

Lattice 89: Proceedings of the 1989 Symposium on Lattice Field Theory edited
by N. Cabbibo, E. Marinari, G. Parisi

2020-09-06 Predrag Kadanoff [73] on Gaussian model: sect. 3.4 Lattice Green
Function and many more. The “coefficients matrix”C in Kadanoff eq. (3.9)
is the inverse of our ‘propagator’ ∆.

A lattice with one field φn for each site, then we can define a particularly
simple and important problem by giving the coefficient matrix Kadanoff
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eq. (3.12)

C =



1 −K 0 0 . . . 0 −K
−K 1 −K 0 . . . 0 0

0 −K 1 −K . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 1 −K
−K 0 . . . . . . . . . −K 1


. (13.92)

The on-site interaction normalizes the Gaussian variables, for K = 0 one
gets the usual multi-dimensional Gaussian. −K is the nearest neighbor
coupling strength, related to our case be −s → 1, off-diagonal 1 → −K,
so the conversion is s = −1/K (I believe).
Fourier transform of the d-dimensional Green’s function Kadanoff eq. (3.19)

G(q) =
1

1− 2K
∑d
j=1 cos(2πkj/`j)

, qj = (13.93)

Compare with (6.55) and our Fourier-transformed field for kth discrete
d-dimensional Fourier component on `1, `2, · · · , `d torus, no tilt,

φ̂k =
1

ds− 2
∑d
j=1 cos(2πkj/`j)

m̂k , (13.94)

where k = (k1, k2, · · · , kd) , so

K =
1

ds
, (13.95)

Kadanoff eq. (4.38) shows that the d-dimensional Gaussian model only
makes sense when K is in the interval [−1/2d, 1/2d], i.e., if |s| > 2. If |K|
exceeds this limit (Kadanoff says “dragons live here”), the Gaussian in-
tegrals diverge at infinite q-values, and the whole problem stops making
sense. When there is any qualitative change in behavior of a many par-
ticle system we say that it undergoes a phase transition. The Gaussian
model does so at the two points K = ±1/2d.
I still have some (conceptual) sign problems, as Kadanoff shows that his
allowed values K correspond to harmonic oscillator states. I would like
that to correspond to |s| < 2. I also need to explain why spatiotemporal
cat has grammar, while Gaussian model has no restrictions... Still do not
understand why all our Hill determinants have an µ2 prefactor. Incon-
clusive.

13.3 Tight-binding Hamiltonians

2017-09-11 Predrag Economou [40] Green’s Functions in Quantum Physics (click
here) contains a vast amount of useful information. Lattice shows up in
chap. 5 Green’s Functions for tight-binding Hamiltonians. Extracted text:
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“[...] the Green’s functions for the so-called tight-binding Hamiltonian (TBH)
are calculated. The TBH is of central importance for solid-state physics because
it is the simplest example of wave propagation in periodic structures. It is also
important for quantum physics in general because it is rich in physical phe-
nomena (e.g., negative effective mass, creation of a bound state by a repulsive
perturbation) and, at the same time, simple in its mathematical treatment. Thus
one can derive simple, exact expressions for scattering cross sections and for
bound and resonance levels. The multiple scattering formalism is presented
within the framework of the TBH and applied to questions related to the be-
havior of disordered systems (such as amorphous semiconductors).”

He studies the Green’s functions associated with a class of periodic Hamil-
tonians, i.e., Hamiltonians remaining invariant under a translation by any vec-
tor on a regular d-dimensional lattice.

He also considers the more general case where the lattice can be divided
into two interpenetrating sublattices such that each point of sublattice 1 is sur-
rounded by points belonging to sublattice 2; the Hamiltonian remains invariant
under translation by vectors of sublattice 1 or sublattice 2.

Periodic Hamiltonians are mathematically equivalent to a system of cou-
pled 1-d harmonic oscillators and, as a result, they describe (by direct general-
ization to 3-d) the ionic motions in a crystalline solid.

In this approach one views the solids as being made up of atoms brought
together from an infinite relative distance. It is then natural (following the
usual practice for molecules) to try to express the unknown electronic wave
functions as linear combinations of atomic orbitals (LCAO). The simplest ver-
sion of this approach considers only one atom per primitive crystal cell, only
one atomic orbital per atom, nearest-neighbor coupling only, and orthonormal-
ity of the atomic orbitals. This oversimplified version of the LCAO is known
as the tight-binding model (TBM); the atomic orbital associated with the atom
located at site ` is symbolized by

w(r − `) = 〈r|`〉 . (13.96)

The matrix elements of the Hamiltonian within this subspace are

H =
∑
`

|`〉ε`〈`|+
∑
`m

|`〉V`m〈m| . (13.97)

The diagonal matrix elements are denoted by ε` and the off-diagonal matrix el-
ements by V`m (V`` = 0). The periodicity of the Hamiltonian, i.e., its invariance
under translations by a lattice vector `, implies that

ε` = ε0 (13.98)

V`m = V`−m . (13.99)

For the sake of simplicity one assumes that

V`m =

{
V if `,m nearest neighbors
0 otherwise . (13.100)
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Figure 13.5: One-dimensional coupled pendulum analog of the tight-binding
Hamiltonian, nearest-neighbor coupling (a). In the periodic case all pendula
and all nearest-neighbor couplings are identical (b). The double spacing peri-
odic case (c). (From Economou [40])

There is only one quantity, V , which, following the usual practice in the litera-
ture, can be taken as negative (for s-like orbitals V is indeed negative).

H =



ε0 V 0 0 . . . 0 V
V ε0 V 0 . . . 0 0
0 V ε0 V . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . ε0 V
V 0 . . . . . . . . . V ε0


. (13.101)

A negative V , in contrast to a positive V , preserves the well-known property
that as the energy of real eigenfunctions increases so does the number of their
sign alternation.

The first term on the rhs of (13.97) describes a particle that can be trapped
around any particular lattice site ` with an eigenenergy ε`. The second term al-
lows the particle to hop from site ` to sitemwith a transfer matrix element V`m.
The quantum motion associated with the Hamiltonian (13.97) is equivalent to
the wave motion of the coupled pendula, see figure 13.5.miω

2
i +

∑
j

κij −miω
2

uj −
∑
j

κijuj = 0 . (13.102)

where ui is the 1-d displacement of the pendulum located at site i, ωi is its
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eigenfrequency in the absence of coupling, and
∑
j κij(ui − uj) is the force

exercised on the pendulum at the i site as a result of the couplings with all the
other pendula; mi is the mass at i.

If we generalize to 3-d displacements, the problem of coupled pendula is re-
duced to that of the ionic (or atomic) motion in solids (by setting ωi = 0) since
each ion (or atom) is indeed performing small oscillations around its equilib-
rium position with the restoring force being equal to −∑j κij(ui − uj). This
yields the electronic eigenfunctions and eigenenergies of the TBM. The eigen-
modes are propagating waves such that the amplitude at each site is the same
and the phase changes in a regular way. For a 2-d square lattice

E(k) = ε0 + 2V [cos(k1a) + cos(k2a)] , (13.103)

where a is the lattice constant. In the 1d case, the function E(k) has an absolute
maximum (which corresponds to the upper band edge) for k = π/a or −π/a
with a valueEmax = ε0+2|V |; it has an absolute minimum (which corresponds
to a lower band edge) for k = 0 with a value Emin = ε0 − 2|V |. Thus the
spectrum is a continuum (a band) extending from ε0 − 2|V | to ε0 + 2|V |. The
bandwidth is 4|V |.

In his eq. (5.38) the diagonal matrix element of the square lattice Greens
function is given by the complete elliptic integral of the first kind [59] (6.173).

2020-10-04 Predrag The reason I went above into detail with TBM is (1) it is
spatiotemporal cat for s < 2 and (2) has well known elliptic function
solutions. According to (13.101), the precise formula relating ε0 and V to
spatiotemporal cat stretching factor s is

s = −ε0/V , uj → uj/
√
−V .

and the spectrum band extends from ε0/|V | − 2 to ε0/|V | + 2, in other
words, TBM assumes |s| < 2.
I assume the band structure for s < 2 has no counterpart in the hyper-
bolic, s > 2 case, but am not sure.

2018-03-18 Predrag to Han - can you have a look at the Group Theory course
week 8 exercises, solution 8.3? I should know this, but I do not, and you
have thought about it: is spatiotemporal cat in any illuminating sense re-
lated to a tight-binding model? We are not doing QM, but if we formulate
the problem in the continuous space x ∈ Rd, rather than the integer lattice
x ∈ Zd, our Hamiltonian is δ function on each site, and its neighbors.
If there is a relation, we definitely have to explain that in our paper, as
many colleagues care about couple spin chains and lattices.

2020-01-27 Predrag to Han - For us there is no field X(z) defined over con-
tinuum space z ∈ Rd, only xz . Our problems live on the integer lat-
tices z ∈ Zd. This might be called ‘tight-binding models’. Please verify
whether that’s what ‘tight-binding models’ are.
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2019-10-10 Predrag Watanabe [129] A proof of the Bloch theorem for lattice models:
“ The Bloch theorem states that the expectation value of the U(1) current
operator averaged over the entire space vanishes for large quantum sys-
tems. The theorem applies as long as all terms in the Hamiltonian are
finite ranged. Finite systems are sensitive to the boundary conditions.
Under the periodic boundary condition, one can only prove that the cur-
rent expectation value is inversely proportional to the linear dimension
of the system, while the current expectation value completely vanishes
before taking the thermodynamic limit when the open boundary condi-
tion is imposed. We also provide simple tight-binding models that clarify
the limitation of the theorem in dimensions higher than one. ”

2020-01-13 Predrag See also Cserti et al. [30, 31], in sect. 6.10 Resistor networks:
The energy-dependent lattice Green’s function of the tight-binding Hamil-
tonian for a square lattice, his eq. (30), has energy E playing the role of
our stretching parameter s.

2019-07-13 Predrag Kohler and Cubitt [81] Translationally invariant universal clas-
sical Hamiltonians give an explicit construction of a translationally invari-
ant, 2D, nearest-neighbour, universal classical Hamiltonian with a sin-
gle free parameter, drawing on techniques from theoretical computer sci-
ence, in particular complexity-theoretic results on tiling problems. Seems
too sophisticated for us.

2020-04-19 Predrag See also chapter 10 Chronotopic literature, Politi, Torcini and
Lepri [107] Lyapunov exponents from node-counting arguments: “ That re-
sembles the tight-binding approximation of the lD Schrödinger equation
(with imaginary time) in the presence of a random potential, i.e.., the An-
derson model.”

13.4 Discrete Schrödinger equation

2020-12-06 Predrag Marius Lemm, Arka Adhikari and Horng-Tzer Yau, Global
eigenvalue distribution of matrices defined by the skew-shift arXiv:1903.11514
study the following question:

Suppose the entries of the large Hermitian matrices HN are gener-
ated by sampling along the orbits of an ergodic dynamical system.
Do their eigenvalues still exhibit random matrix statistics, like the
Wigner semicircle law?

We will answer this question in the affirmative for the model of HN de-
fined below, where the underlying dynamical system is generated from
the skew-shift dynamics:(

j

2

)
ω + jy + x mod 1,
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Here x, y ∈ T (with T being the torus) are the starting positions of the
dynamical system and ω ∈ T is a (typically irrational) parameter called
the frequency. The skew-shift dynamics possesses only weak ergodicity
properties, e.g., it is not even weakly mixing. Nonetheless, it is believed
to behave in a quasi-random way (meaning like an i.i.d. sequence of ran-
dom variables) in various ways reviewed at the end of the introduction.
Moreover, the quasi-random behavior of the skew-shift should deviate
from that of the more rigid standard shift jω + x mod 1 (the circle rota-
tion by an irrational angle ω). The key difference between the skew-shift
and circle rotation is of course the appearance of a quadratic term j2ω
for the skew-shift. This quadratic term has the effect of increasing the
oscillations and thus improving the decay of the exponential sums over
skew-shift orbits. This general fact is a central tenet of analytic number
theory HL,Mont,W1,W2, and of our analysis here as well.

The model. Let T be the one-dimensional torus, which we identify with
[0, 1] in the usual way. For the skew-shift, the role of the “angle” is played
by the frequency ω ∈ [0, 1]. The skew-shift is then the transformation

T :T2 → T2

(x, y) 7→ (x+ y, y + ω).

We write T j for the j-fold iteration of T and (T j(x, y))1, for the first com-
ponent of the vector T j(x, y) ∈ T2, i.e.,

(T j(x, y))1 =

(
j

2

)
ω + jy + x. (13.104)

We consider 2N × 2N Hermitian matrices of the form

H =

(
0 X
X∗ 0

)
with X an [N ×N ] matrix generated from the skew-shift via

Xi,j =
1√
N
e

[((
j

2

)
ωi + jyi + xi

)]
, e[t] := exp(2πit) (13.105)

Here the ω1, . . . , ωN are chosen deterministically (see the examples be-
low), the y1, . . . , yN in (13.105) are sampled uniformly and independently
from [0, 1], and the x1, . . . , xN are arbitrary. (In particular, one can take
x1 = x2 = . . . = xN = 0.)

Predrag: (13.105) is an [N ×N ] matrix full of complex phases: it is unlike
our 3-banded matrices, I think we can ignore these papers.

Marius Lemm GaTech seminar 2020-04-09: “ Global eigenvalue distribution
of matrices defined by the skew-shift: A central question in ergodic theory
is whether sequences obtained by sampling along the orbits of a given
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dynamical system behave similarly to sequences of i.i.d. random vari-
ables. Here we consider this question from a spectral-theoretic perspec-
tive. Specifically, we study large Hermitian matrices whose entries are
defined by evaluating the exponential function along orbits of the skew-
shift on the 2-torus with irrational frequency. We prove that their global
eigenvalue distribution converges to the Wigner semicircle law, a hall-
mark of random matrix statistics, which evidences the quasi-random na-
ture of the skew-shift dynamics. ”

Kielstra and Lemm On the finite-size Lyapunov exponent for the Schroedinger
operator with skew-shift potential arXiv:1904.08871:

A one-dimensional quantum particle living on Z with energy E ∈ R is
described by the discrete Schrödinger equation

ψn+1 + λvnψn + ψn−1 = Eψn, (13.106)

where ψ = (ψn)n∈Z is a sequence in `2(Z;C). The real-valued potential
sequence v = (vn)n∈Z represents the environment that the particle is sub-
jected to. (The “coupling constant” λ > 0 is factored out for convenience.)
Physically, one observes a sudden onset of insulating behavior in the
presence of a random environment (“Anderson localization”). Mathe-
matically, it is known that for arbitrarily small λ > 0, the one-dimensional
Schrödinger operator

(Hψ)n = ψn+1 + λvnψn + ψn−1 . (13.107)

has pure point spectrum with exponentially decaying eigenfunctions [16,
84].

A natural follow-up question is then: How random does the environ-
ment have to localize the quantum particle? Alternative “quasi-random”
environments are generated by sampling a nice function along the or-
bit of an ergodic dynamical system. This question is interesting from a
purely mathematical ergodic theory perspective, but it also has practical
implications, since computer simulations are mostly based on appropri-
ate pseudo-random number sequences.

A standing conjecture in this direction concerns the case when the poten-
tial is generated from the nonlinear skew-shift dynamics T : T2 → T2,
T (x, y) = (x+ y, y + ω), namely it is of the form

vn = 2 cos

((
n

2

)
ω + ny + x

)
(13.108)

with ω irrational (say Diophantine). The key difference between (13.108)
compared to vn = 2 cos(nα+θ) is the appearance of the nonlinear quadratic
term n2ω. The conjecture states that the associated Schrödinger operator
H defined by (13.107) is Anderson localized for arbitrarily small λ > 0 ev-
erywhere in the spectrum. Partial results in this vein are due to Bourgain
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and Bourgain-Goldstein-Schlag. Note that the conjecture says in partic-
ular that the skew-shift dynamics is appreciably more random-like than
the circle rotation where vn = 2 cos(nα+ θ). (Recall that the latter is only
localized for λ > 1, for us s > 2.) The observation that the skew-shift is
more quasi-random than the shift has been made in another context by
Rudnick-Sarnak-Zaharescu RSZ and others DR,MY,RS (concerning the
spacing distribution) and also recently in ALY (concerning eigenvalues
of large Hermitian matrices).

2020-12-06 Predrag Possibly also of interest: Marius Lemm and David Sutter
Quantitative lower bounds on the Lyapunov exponent from multivariate ma-
trix inequalities arXiv:2001.09115: The Lyapunov exponent characterizes
the asymptotic behavior of long matrix products. Recognizing scenarios
where the Lyapunov exponent is strictly positive is a fundamental chal-
lenge that is relevant in many applications. In this work we establish a
novel tool for this task by deriving a quantitative lower bound on the
Lyapunov exponent in terms of a matrix sum which is efficiently com-
putable in ergodic situations. Our approach combines two deep results
from matrix analysis — the n-matrix extension of the Golden-Thompson
inequality and the Avalanche-Principle. We apply these bounds to the
Lyapunov exponents of Schrödinger cocycles with certain ergodic po-
tentials of polymer type and arbitrary correlation structure. We also de-
rive related quantitative stability results for the Lyapunov exponent near
aligned diagonal matrices and a bound for almost-commuting matrices.

2020-12-06 Predrag Carmona, Klein and Martinelli [16] Anderson localization for
Bernoulli and other singular potentials:

Bernoulli potentials are potentials that take only two values

µ = pδ(v − a) + (1− p)δ(v − b) , 0 < p < 1 .

Kunz and Souillard [84] Sur le spectre des opérateurs aux différences finies
aléatoires is presumably similar - models for Anderson localization, we
do not need them here.

13.5 Harper’s model

2020-12-06 Predrag Kielstra and Lemm On the finite-size Lyapunov exponent for
the Schroedinger operator with skew-shift potential arXiv:1904.08871 write: “
For example, one can consider vn = 2 cos(nα + θ) generated from sam-
pling cosine along an irrational circle rotation; this is the Harper [53]
or almost-Mathieu [117] model. It turns out that these linear underly-
ing dynamics only produce localization for sufficiently strong potentials,
namely only for λ > 1 (for us, s > 2) [70]. ”

Jitomirskaya [70] Metal-insulator transition for the almost Mathieu operator.
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Svetlana Jitomirskaya, Lyuben Konstantinov and Igor Krasovsky
On the spectrum of critical almost Mathieu operators in the rational case
arXiv:2007.01005:

The Harper operator, a.k.a. the discrete magnetic Laplacian a tight-binding
model of an electron confined to a 2D square lattice in a uniform magnetic
field orthogonal to the lattice plane and with flux 2πα through an ele-
mentary cell. It acts on `2(Z2) and is usually given in the Landau gauge
representation

(H(α)ψ)m,n = ψm,n−1 + ψm,n+1 + e−i2παnψm−1,n + ei2παnψm+1,n,
(13.109)

first considered by Peierls [104], who noticed that it makes the Hamilto-
nian separable and turns it into the direct integral in θ of operators on
`2(Z) given by:

(Hα,θ φ)n = φn−1 +2 cos 2π(αn+θ)φn+φn+1 , α, θ ∈ [0, 1). (13.110)

In physics literature, it also appears under the names Harper’s or the
Azbel-Hofstadter model, with both names used also for the discrete mag-
netic Laplacian H(α). In mathematics, it is universally called the critical
almost Mathieu operator [117]. In addition to importance in physics, this
model is of special interest, being at the boundary of two reasonably well
understood regimes: (almost) localization and (almost) reducibility, and
not being amenable to methods of either side.

Simon [117] Almost periodic Schródinger operators: A review
[...] one-dimensional Schrödinger equation, H = −d2/dx2 + V (x) with
V (x) almost periodic and the discrete (= tight binding) analog, i.e., the
doubly infinite Jacobi matrix

hij = δi,j+1 + Viδi,j + δi,j−1 (13.111)

with Vn almost periodic on the integers.

The Chambers’ formula presents the dependence of the determinant of the
almost Mathieu operator with α = p/n restricted to the period n with
Floquet boundary conditions, on the phase θ and quasimomentum k. In
the critical case it is given by

det (Jθ,k,n − E) = ∆(E)− 2(−1)n(cos(2πnθ) + cos(kn)), (13.112)

where ` ∈ Z/n, and in our notation (13.110) is written as (1.118)

x`+1 − s` x` + x`−1 = −s` , (13.113)

with site-dependent stretching s` (so not a Toeplitz matrix, compare with
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(8.7), (9.49), (9.107),(15.115),(15.124), (9.46))

Jθ,k,n :=



−s0 1 0 0 · · · 0 0 e−ikn

1 −s1 1 0 · · · 0 0 0
0 1 −s2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −sn−2 1
eikn 0 0 0 · · · 0 1 −sn−1


, (13.114)

compare with the orbit Jacobian matrix J (6.82). For Harper model,
stretching s` is given by

s`(θ) = −2 cos(2π
p

n
`+ θ) , s(x) = x) , (13.115)

and the discriminant ∆ is independent of θ and k. They obtain a formula
of this type for det (Bθ,k,` − E).

2020-12-06 Predrag For α ∈ Z this is a Helmholtz problem with stretching pa-
rameter s = 2 cos 2π(θ).

For rational α has periodic s [58], as in (13.115). Note the relative-periodic
corner phases e±ikq in (13.114)).

Hofstadter [58] Energy levels and wave functions of Bloch electrons in rational
and irrational magnetic fields writes about rational case: “ Algebra reveals
the fact that this condition on α is precisely that of rationality: We now
proceed, making full use of this somewhat bizarre ansatz. ”

He, as everybody else, sooner or later, rewrites (13.113) in the “Percival-
Vivaldi’́ ‘two-configuration representation’ [105] matrix J (1.5),(

∆φt
∆φt+1

)
=

(
0 1
−1 st

)(
∆φt−1

∆φt

)
. (13.116)

(note ‘upside-down’ 2D vector), and concerns himself with the rational,
energy tr Jm < 2, oscillatory case.

Note, it’s only about the order of recurrence, nobody says the systems
should be Hamiltonian / Lagrangian, works for dissipative systems as
well.

The famed butterfly is a plot of the eigenvalues for all rational phases α.

2020-12-06 Predrag I am looking at (13.110) because this is a different way to
introduce a nonlinearity than the Hénon CML (10.4) because for irra-
tional α it has a quadratic dependence on the lattice site,

2 cos(2παn) = 2− (2παn)2 + · · · .

Nevertheless, this discrete Schrödinger is very different from temporal
cat, so one more Sunday has been wasted (?) on learning other stuff.
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2021-06-25 Indubala Satija Geometry, Number Theory and the Butterfly Spectrum
of Two-Dimensional Bloch Electrons arXiv:2106.1387:

We take a deeper dive into the geometry and the number theory that
underlay the butterfly graphs of the Harper and the generalized Harper
models of Bloch electrons in a magnetic field. Root of the number the-
oretical characteristics of the fractal spectrum is traced to a close rela-
tionship between the Farey tree – the hierarchical tree that generates all
rationals and the Wannier diagram – a graph that labels all the gaps of
the butterfly graph. The resulting Farey-Wannier hierarchical lattice of
trapezoids provides geometrical representation of the nested pattern of
butterflies in the butterfly graph. Some features of the energy spectrum
such as absence of some of the Wannier trajectories in the butterfly graph
fall outside the number theoretical framework, can be stated as a simple
rule of "minimal violation of mirror symmetry". In a generalized Harper
model, Farey-Wannier representation prevails as the lattice regroups to
form some hexagonal unit cells creating new species of butterflies.

13.6 Frenkel-Kontorova model

2021-02-01 Predrag The equilibria and relative equilibria of Frenkel-Kontorova
models [5], widely studied in literature, might be closely related to tem-
poral Hénon and φ4 lattices.

It is difficult stuff, safely ignored, for now:)

Note the text below (9.17) and (13.117).

Search for 2019-12-12 Meisinger and Ogilvie notes in this blog.

2022-03-08 Predrag It is difficult stuff, no more safely ignored :(

2021-02-01 Anna Vainchtein (U. Pittsburgh)

Traveling waves in a driven Frenkel-Kontorova lattice: Variants of Frenkel-
Kontorova model, originally proposed to describe dislocations in crystal
lattices, have been widely used to study a variety of physical phenom-
ena, including dynamics of twin boundaries and domain walls, crystal
growth, charge-density waves, Josephson junctions and DNA denatura-
tion. I discuss properties and stability of traveling waves in chains of
Frenkel-Kontorova type driven by a constant external force. After re-
viewing some earlier studies for piecewise-smooth variants of the model,
where exact and semi-analytical solutions can be constructed, I will de-
scribe numerical results for a fully nonlinear damped driven chain from
a recent work with J. Cuevas-Maraver (U. of Sevilla), P. Kevrekidis (U. of
Mass.) and H. Xu (Huazhong U.). In this setting, traveling wave solu-
tions are computed as fixed points of a nonlinear map. [...] Exploring the
spectral stability of the obtained waveforms, we identify, at the level of
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numerical accuracy of our computations, a precise criterion for instabil-
ity of the traveling wave solutions: monotonically decreasing portions of
the kinetic curve always bear an unstable eigendirection.

The recorded talk will be available here. It is a difficult subject, but our
case - equilibria and relative equilibria is perhaps a trivial case described
in this literature.

2019-06-26 Predrag Mramor and Rink [100] Ghost circles in lattice Aubry-Mather
theory, arXiv:1111.5963:

“Monotone lattice recurrence relations such as the Frenkel-Kontorova lat-
tice, arise in Hamiltonian lattice mechanics as models for ferromagnetism
and as discretization of elliptic PDEs. They are a multidimensional coun-
terpart of monotone twist maps.”

The paper has an appendix of twist maps, refers to Mather and Forni [96]
Action minimizing orbits in Hamiltomian systems. Example of exact sym-
plectic twist maps are the Chirikov standard map and convex billiards.
I think the focus in all this work is on integrable, not chaotic: “Under
generic conditions, the Poincaré return map of a 2 degree of freedom
Hamiltonian system near an elliptic equilibrium point is an exact sym-
plectic twist map. In this case, the corresponding twist map is close to
integrable, so that it allows for the application of various kinds of per-
turbation theory [96].” Lectures on Equidistribution of periodic orbits: An
overview of classical VS quantum results by Degli Esposti, Graffi, and Isola
in Transition to Chaos in Classical and Quantum Mechanics [11] are also of
interest.

Twist maps often admit a variational structure, so that the solutions x :
Zd → R are the stationary points of a formal action functionW (x). Given
any rotation vector ω ∈ Rd, Aubry-Mather theory establishes the exis-
tence of a large collection of solutions of ∇W (x) = 0 of rotation vector
ω. For irrational ω, this is the Aubry-Mather set. It consists of global mini-
mizers and it may have gaps.

The part relevant to our spatiotemporal cat is the idea of studying glob-
ally stationary solutions by means of a formal gradient. We do not re-
ally know how to find all invariant 2-tori in 2 or more dimensions, even
though we know how to count them, right? They study the parabolic gra-
dient flow dx

dt = −∇W (x) and prove that every Aubry-Mather set can be
interpolated by a continuous gradient-flow invariant family, the so-called
‘ghost circle’. The existence of these ghost circles is known in dimension
d = 1, for rational rotation vectors and Morse action functions.

d-dimensional Frenkel-Kontorova lattice: Here, the goal is to find a d-
dimensional “lattice configuration” x : Zd → R that satisfies

V ′(xi)− (∆x)i = 0 for all i ∈ Zd . (13.117)
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The smooth function V : R→ R satisfies V (ξ + 1) = V (ξ) for all ξ ∈ R. It
has the interpretation of a periodic onsite potential.

I like their definition of the discrete Laplace operator ∆ : RZd → RZd ,
defined as

(∆x)i :=
1

2d

∑
||j−i||=1

(xj − xi) for all i ∈ Zd . (13.118)

where ||i|| := ∑d
k=1 |ik|. Thus, (∆x)i is the average of the quantity xj−xi

computed over the lattice points that are nearest to that with index i, i.e.,
the graph Laplacian [24, 108] (13.54) for the case of hypercubic lattice, or
the “central difference operator” [105].

One can think of (13.117) as a naive discretization of the nonlinear elliptic
partial differential equation V ′(u) − ∆u = 0 for a function u : Rd → R
and xi = u(i).

Eq. (13.117) is relevant for statistical mechanics, because it is related to
the Frenkel-Kontorova Hamiltonian lattice differential equation

d2xi
dt2

+ V ′(xi)− (∆x)i = 0 for all i ∈ Zd. (13.119)

This differential equation describes the motion of particles under the com-
peting influence of an onsite periodic potential field and nearest neighbor
attraction. Eq. (13.117) describes its stationary solutions.

In dimension d = 1, the solutions of equation (13.117) correspond to or-
bits of the Chirikov standard map TV : A→ A of the annulus.

The Frenkel-Kontorova problem (13.117) is an example from a quite gen-
eral class of lattice recurrence relations to which the results of this paper
apply. These are recurrence relations for which there exists, for every
j ∈ Zd, a real-valued “local potential” function Sj : RZd → R so that the
relation can be written in the form∑

j∈Zd
∂iSj(x) = 0 for all i ∈ Zd. (13.120)

It turns out that for the Frenkel-Kontorova problem (13.117), such local
potentials exist and it is easy to check that they are given by

Sj(x) := V (xj) +
1

8d

∑
||k−j||=1

(xk − xj)2. (13.121)

For the general problem (13.120), the functions Sj(x) will be required to
satisfy some rather restrictive hypotheses. Physically, the most important
of these hypotheses is the monotonicity condition. It is a discrete analogue
of ellipticity for a PDE. Among the more technical hypotheses is one that
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guarantees that the sums in expression (13.120) are finite. For the purpose
of this introduction, it probably suffices to say that the potentials (13.121)
of Frenkel-Kontorova are prototypical for the Sj(x) that we have in mind.

It is important to observe that the solutions of (13.120) are precisely the
stationary points of the formal sum

W (x) :=
∑
j∈Zd

Sj(x). (13.122)

This follows because differentiation of (13.122) with respect to xi pro-
duces exactly equation (13.120) and it explains why solutions to (13.120)
are sometimes called stationary configurations.

In the case that the periodic onsite potential V (ξ) vanishes, the Frenkel-
Kontorova equation (13.117) reduces to the discrete Laplace equation ∆x =
0, for which it is easy to point out solutions. For instance, when ξ ∈ R
is an arbitrary number and ω ∈ Rd is an arbitrary vector, then the linear
functions xω,ξ : Zd → R defined by

xω,ξi := ξ + 〈ω, i〉

obviously satisfy ∆x = 0. It moreover turns out that the xω,ξ are action-
minimizers, in the sense that for every finite subset B ⊂ Zd and every
y : Zd → R with support in B, it holds that∑

j∈Zd

(
Sj(x

ω,ξ + y)− Sj(xω,ξ)
)
≥ 0 .

Note that this sum is actually finite and can be interpreted as W (xω,ξ +
y)−W (xω,ξ).

Definition 13.1. Let x : Zd → R be a d-dimensional configuration. We say
that ω ∈ Rd is the rotation vector of x if for all i ∈ Zd, the limit

lim
n→∞

xni
n

exists and is equal to 〈ω, i〉 .

Clearly, the rotation vector of xω,ξ is equal to ω. On the other hand, in
dimension d 6= 1, a solution to (13.117) does not necessarily have a ro-
tation vector. An example is the hyperbolic configuration xh defined by
xhi = i1i2 · · · id−1id which solves ∆x = 0.

13.7 Mean field theory for the Ising model

According to E. Brézin and J. Zinn-Justin, finite-size mean field theory for the
Ising model is described by the distribution

pMFT(m) ∝ exp (−Nf(m)) , (13.123)
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where N is the number of spins and the free energy (the large-deviation poten-
tial) at reduced temperature t̃ is

f(m) =
1

2
t̃ m2 +

1

4!
m4, (13.124)

to leading order in N .

13.8 Clock model

The free field solutions of Potts models are most directly related to our dy-
namical considerations. If all states are allowed the underlying set of states
is given by a full shift. If neighboring spins are only allowed in certain spe-
cific configurations, then the state space is given by a subshift of finite type.
The partition function may then be written as a trace of the adjacency matrix,
specifying which neighboring spin values are allowed.

The wiki says: The ZN model, a generalization of the Ising model, some-
times known as the clock model or the vector Potts model, is defined by assigning
a spin value at each node r on a graph, with the spins taking values Sr =
exp 2πiq

N , where q ∈ {0, 1, . . . , N − 1}. The spins therefore take values in the
form of complex roots of unity. The spin assigned to each node of the ZN
model is pointing in any one of N directions. The Boltzmann weights for a
general edge rr′ are:

w (r, r′) =
N−1∑
k=0

x
(rr′)
k (SrS

∗
r′)

k

where ∗ denotes complex conjugation and the x(rr′)
k are related to the inter-

action strength along the edge rr′. Note that x(rr′)
k = x

(rr′)
N−k and x0 is often

set to 1. The (real valued) Boltzmann weights are invariant under the trans-
formations Sr → ωkSr and Sr → S∗r , the universal rotation and the reflection
respectively.

The q-state clock model discretizes the rotor angle [0, 2π], so that is
not what we need; spatiotemporal cat has discrete winding num-
bers. It is X − Y model that has our sn as vortex charges, and in-
teractions between (mod 1) angles, except those are no the nearest
neighbor, but logarithmic.

The local magnetic moment or “spin”, a 2D vector dimensionless vector of
magnitude one, Si = (cos(2πqk), sin(2πqk)), where k = 0, 1, · · · , q − 1, at site i
can point in any of the q directions in a given plane, with equal probability for
all q values. The isotropic Hamiltonian for such a system can be written as:

H = −J
2

∑
〈ij〉

Si · Sj −B ·
∑
i

Si , (13.125)
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In the q-state clock model on each lattice point there is a vector spin pointing
to q different directions, which differ by the angle 2π/q. The 2D q-state clock
model is defined by the Hamiltonian

H = −J
∑
〈ij〉

cos(θi − θj)− h
∑
i

cos θi , (13.126)

where J is interaction strength, the summation is over the nearest neighbors,
h is the applied weak magnetic field in units of J/µ, where µ is the magnetic
moment of each spin usually set to 1, and θi = 2πni/q with ni = 0, . . . , q − 1.
Generalized Eq. (13.126) is of form

H =
∑
〈ij〉

V (θi − θj)− h
∑
i

cos θi ,

where the spin-interaction potential V has the Zq symmetry. The Villain q-state
clock model has

V (φ) = −J
β

ln

{ ∞∑
n=−∞

exp
[
−β(φ− 2πn)2/2

]}
,

where β ≡ 1/(kBT ) with the Boltzmann constant kB and temperature T . This
potential has been introduced to separate the vortex degrees of freedom from
the spin-wave degrees of freedom as an approximate version of theXY model.
The Villain clock model on the square lattice possesses self-duality.

The case q=2 corresponds to the Ising model, the case q=3 is a special case
of the Potts model. Already for q=4 the phase diagram is more complicated
that for the Ising model: there are 3 phases, instead of 2.

Once the partition function is known, the thermodynamic observables, such
as internal energy U, specific heat C, and entropy S, can be calculated by em-
ploying [101]:

U(T ) = T 2 ∂

∂T
lnZ(T,B) . (13.127)

C(T ) =
∂U

∂T
, (13.128)

S(T ) =
U

T
+ lnZ(T,B) . (13.129)

The lattice average of the spin configuration, equivalent to the magnetization
per site M, is given by

M =
1

N

∑
j

Sj . (13.130)

They go on to compute the internal energy U and the specific heat C.
In all of the literature the focus is on Berezinskii-Kosterlitz-Thouless (BKT)

transition, between a topological phase and the high-temperature paramag-
netic (or disordered) phase, and phases possible for q > 5. If there is no con-
tinuous symmetry, existence of standard ferromagnetic order is allowed at low
but finite temperature.
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We are focused on the high-temperature paramagnetic (or disordered) phase.
section 13.6

2019-12-12 Predrag Meisinger and Ogilvie The Sign Problem, PT Symmetry and
Abelian Lattice Duality arXiv:1306.1495: For Abelian models in the class
of lattice field theories with the fundamental fields which are elements
z = exp(iθ) of Z(N) or U(1), with complex actions, lattice duality maps
models with complex actions into dual models with real actions.

Explicit duality relations are given for models for spin and gauge models
based on Z(N) and U(1) symmetry groups. The dual forms are general-
izations of the Z(N) chiral clock model and the lattice Frenkel-Kontorova
model, respectively.

We begin with duality for d = 2 Z(N) models with a chemical potential
for the Villain, or heat kernel, action. Defining the site-based spin vari-
ables as exp (2πim(x)/N), with m(x) an integer between 0 and N , the
partition function is given by

Z[J, µδν,2] =
∑
m

∑
nν

exp

[
−J

2

∑
x,ν

(
2π

N
∂νm (x)− iµδν2 − 2πnν (x)

)2
]

(13.131)
where ∂νm(x) ≡ m(x+ ν̂)−m(x) and the sum over link variables nν(x) ∈
Z ensures periodicity. Using the properties of the Villain action, we can
write

Z[J, µδν,2] = (2πJ)
−dV/2∑

m

∑
pν

exp

[
− 1

2J

∑
x,ν

p2
ν (x)

+ i
∑
x,ν

pν (x)

(
2π

N
∂νm (x)− iµδν2

)]

where V is the number of sites on the lattice such that dV is the number of
links. Summation over them (x)’s give a set of delta function constraints:

Z[J, µδν,2] = (2πJ)
−dV/2∑

pν

exp

[
− 1

2J

∑
x,ν

p2
ν (x) +

∑
x,ν

p2 (x)µ

]∏
x

δ∂·p,0(N)

where the notation in the Kronecker delta function indicates ∂ · p = 0
moduloN . We introduce a dual bond variable p̃ρ (X) associated with the
dual lattice via pν (x) = ενρp̃ρ (X) and note that the constraint on pν is
solved by p̃ρ (X) = ∂ρq̃ (X) +Nr̃ν (X). We have

Z[J, µδν,2] = (2πJ)
−dV/2∑

q̃

∑
r̃ν

exp

[
− 1

2J

∑
x,ν

(∂ρq̃ (X) +Nr̃ν (X))
2

+µ
∑
x,ν

(∂1q̃ (X) +Nr̃1 (X))

]
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which leads to

Z[J, µδν,2] = (2πJ)
−dV/2

exp

[
+
V

2
Jµ2

]
Z[

N2

4π2J
,−i2πJµ

N
δν,1]

The generalized duality here is

J → J̃ =
N2

4π2J
(13.132)

µδν,2 → µ̃δν,1 = −i2πJµ
N

δν,1. (13.133)

The dual of the original model, which has a complex action, is a chiral
Z(N) model with a real action.

2019-12-12 Predrag Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-
Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, and Tao Xi-
ang, Phase transition of the q-state clock model: duality and tensor renormal-
ization, arXiv:1706.03455.

Now, memorize the authors:)

13.9 X-Y model

2019-12-22 Predrag Peter N. Meisinger and Michael C. Ogilvie, The Sign Prob-
lem, PT Symmetry and Abelian Lattice Duality, arXiv:1306.1495
(see also Meisinger and Ogilvie The sign problem and Abelian lattice dual-
ity, arXiv:1311.5515): The partition function of the two-dimensional XY
model with an imaginary chemical potential term has the form

Z[K,µδν,2] =

∫
S1

[dθ]
∑
nν

exp

[
−K

2

∑
x,ν

(∂νθ (x)− iµδν2 − 2πnν (x))
2

]
.

Using the properties of the Villain action, we have

Z[K,µδν,2] =

∫
S1

[dθ]
∏
x,ν

∑
pν(x)∈Z

1√
2πK

e−p
2
ν(x)/2Keipν(x)(∇νθ(x)−iδν2µ).

[...] The partition function is now

Z =
∑

{m(X)}∈Z

1√
2πK

e−
∑
X [

∑
ν(∇νm(X))2/2K+µ∇1m(X)].

The final step is to introduce a new field φ(x) ∈ R using a periodic δ-
function, effectively performing a Poisson resummation:

Z =

∫
R

[dφ (X)] e−
∑
X [

∑
ν(∇νφ(X))2/2K+µ∇1φ(X)]

∑
{m(X)}∈Z

e2πim(X)φ(X).
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If we keep only the m = 1 contributions, we have a lattice sine-Gordon
model

Z =

∫
R

[dφ (X)] exp

−∑
X,µ

1

2K
(∇µφ (X))

2 −
∑
X

µ∇1φ (X) +
∑
X

2y cos (2πφ (X))


with y = 1. This will be recognized as a two-dimensional lattice version
of the Frenkel-Kontorova model, a sine-Gordon model with an additional
term proportional to µ. For each fixed value of X2, the term

∑
X ∇1φ (X)

counts the number of kinks on that slice: The particles in the original
representation manifest as lattice kinks in the dual representation.

2020-06-15 Predrag I do not even know what this is: Mazel, Stuhl and Suhov,
High-density hard-core model on Z2 and norm equations in ring Z[ 6

√
−1],

arXiv:1909.11648. They study the Gibbs statistics of high-density hard-
core configurations on a unit square lattice Z2, for a general Euclidean
exclusion distance D, with D2 = a2 + b2, a, b ∈ Z. Pictorially, the problem
is to study properties of configurations formed by non-overlapping ‘hard
spheres’ of a given diameter (or exclusion distance) D with specified po-
sitions of the centers.

They say that a configuration φ is periodic if there exist two linearly inde-
pendent vectors e1, e2 such that φ(x) = φ(x+e1) = φ(x+e2). If a periodic
configuration φ contains the origin, we say that φ is a sub-lattice. The par-
allelogram with vertices 0, e1, e2, e1+e2 is a fundamental parallelogram (FP)
for φ. We always assume that e1,2 are chosen so that the shorter diago-
nal of the FP divides it into two triangles with non-obtuse angles; one of
these triangles, with a vertex at the origin, is referred to as a fundamental
triangle (FT). They say that a sub-lattice is isosceles or non-isosceles if the
FT is isosceles or not.

The term Z2-triangle means a triangle with vertices in Z2. Without loss
of generality we will assume that one of the vertices is at the origin (0, 0).

They say that a given value D exhibits sliding if exist two or more M-
triangles T(1), T(2), . . ., with (i) a common side called a sliding base, with
two common vertices, and (ii) distinct third vertices lying in the same
half-plane relative to the shared side. Sliding leads to a multitude of pe-
riodic and non-periodic ground states characterized by layered or stag-
gered patterns. The point is that under sliding there are countably many
periodic and continuum of non-periodic ground states.
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Chapter 14

Checkerboard

14.1 Checkerboard model

2019-03-08 Zeb Rodrigues et al. [1] looks very interesting.

I’m interested in whether the nonlinearities of these flexible structures
can lead to interesting chaotic behavior. The thing foremost on my mind
is the structure (not dynamics) of a 1D chain of repeating mechanical ele-
ments. A rigid-body mechanism would lead to a nonlinear transfer func-
tion between the configuration of one element and its neighbors. That
seems like it could lead to something like the logistic equation, and per-
haps different structures depending on the shape of the unit cell and the
“initial" (i.e., boundary) conditions.

I couldn’t get that to work out, but Michael, see figure 14.1 (a), found
something that suggests it could work. Specifically, he found a structure
that is repeated every three unit cells.

Two-dimensional structures like the origami are also quite interesting, of
course, but the 1D chain seems easier to us as a starting point.

2019-03-08 Adrian James McInerney work is focused on origami.

2019-03-08 Michael D. Czajkowski <michael.czajkowski@physics.gatech.edu>
I have located a configuration of a chain of 1-d rotors which repeats in
three cycles, see figure 14.1 (a).

It is not unlike the wheels on a classical steam engine, but with the rod
lengths varied around to produce a mismatch. We are thinking, of course,
of the sequence of rotors going from left to right (or vice versa) as like
time going forward in the iterative cycles of the logistic map. Despite
the simplicity it seems promising in identifying a deterministic geometric
system, which will never repeat, by varying the intrinsic parameters (like
the rotor radius, connector length, etc).
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Period three implies chaos

(a)

(b)

Figure 14.1: (a) The wheels on a steam engine, with the rod lengths varied
around to produce a mismatch. (b) Forward-iteration almost always has two
solutions, as there are two points at which the two circles intersect.

There is one caveat to this, which is that we are thinking of the (for in-
stance) orientation of the leftmost rotor as the input which (together with
the intrinsic length of our blue rod, the radius of the orange circles and
the spacing between them) determines the next orientation of the follow-
ing rod to the right of it. However, this almost always has two solu-
tions, as there are two points at which the two circles intersect, see fig-
ure 14.1 (b). So we are not entirely sure yet how to think of determinism
in this system. Perhaps that is a bad thing, or perhaps it will be an inter-
esting source of additional richness.

There is a separate perspective on this same mechanical system where
there may be an analogue of chaos in a correspondence with topological
mechanical polarization, but this is less developed and I will wait to share
until I have gathered my thoughts a bit more.

14.1.1 Checkerboard literature

For the latest entry, go to the bottom of this section

2019-03-08 Predrag Rodrigues, Fonseca, Savi and Paiva [1] Nonlinear dynamics
of an adaptive origami-stent system
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Chapter 15

Article edits

15.1 Cats’ GHJSC16blog

Internal discussions of ref. [40] edits: Move good text not used in ref. [40] to
this file, for possible reuse later.

2016-12-06 Boris I prefer a precise title. E.g. :
Linear encoding of cat map lattices

Some earlier titles:
Linear encoding of the spatiotemporal cat
A spatiotemporal cat encoded
A spatiotemporal code for a coupled maps lattice
A spatiotemporal symbolic dynamics for a coupled maps lattice
A spatiotemporal symbolic dynamics for a coupled cat maps lattice
A linear symbolic dynamics for coupled cat maps lattices
A spatiotemporal herding of coupled lattice cats
Herding five cats

2016-11-18 Predrag A theory of turbulence that has done away with dynamics?
We rest our case.

2016-10-05 Predrag My approach is that this is written for field theorists, fluid
dynamicists etc., who do not see any reason to look at cat maps, so I am
trying to be pedagogical, motivate it as that chaotic counterpart of the
harmonic oscillator, something that field theorists fell comfortable with
(they should not, but they do).

2016-11-13 Predrag The next thing to rethink: Green’s functions for periodic
lattices are in ChaosBook sections D.3 Lattice derivatives and on, for the
Hermitian Laplacian and s = 2. For real s > 2 cat map, the potential
is inverted harmonic oscillator, the frequency is imaginary (Schrödinger
in imaginary time), eigenvectors real - should be a straightforward gen-
eralization. Have done this already while studying Ornstein-Uhlenbeck
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with Lippolis and Henninger - the eigenfunctions are Hermite polynomi-
als times Gaussians.

2016-11-13 Predrag The claim “the cat map A =

(
a c
d b

)
is assumed to be

time-reversal invariant, i.e. c = d.” seems to be in conflict with Boris

choice A =

(
s− 1 1
s− 2 1

)
We write (3.16) as

(2 + 2− s)xt = st , (15.1)

Percival and Vivaldi [66] write their Eq. (3.6)

(2 + 2− s)xt = −bt (15.2)

so their “stabilising impulses” bt (defined on interval x ∈ [−1/2, 1/2))
have the opposite sign to our “winding numbers” st (defined on x ∈
[0, 1)).

Did not replace Arnol’d by PerViv choice.

A =

(
0 1
−1 s

)
, (15.3)

xt+1 = pt mod 1

pt+1 = −xt + s pt mod 1 (15.4)

Predrag’s formula, removed by Boris 2017-01-15:

xt+1 = (s− 1)xt + pt
pt+1 = (s− 2)xt + pt

mod 1 , (15.5)

Predrag’s formula, removed by Boris 2017-01-15:
As the 3-point discretization of the second time derivative d2/dt2 (central
difference operator) is 2xt ≡ xt+1 − 2xt + xt−1 (with the time step set to
∆t = 1), the temporal cat map (6.61) can be rewritten as the discrete time
Newton equation for inverted harmonic potential,

(2 + 2− s)xt = st . (15.6)

Predrag’s formula, replaced by a more abstract form by Boris 2017-01-15:
a d-dimensional spatiotemporal pattern {xz} = {xn1n2···nd} requires d-
dimensional spatiotemporal block {mz} = {mn1n2···nd} ,
for definiteness written as

A =

(
2 1
1 1

)
, (15.7)
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2016-08-20 Predrag “ The fact that even Dyson [32] counts cat map periods
should give us pause - clearly, some nontrivial number theory is afoot. ”

Not sure whether this is related to cat map symbolic dynamics that we
use, dropped for now: “ Problems with the discretization of Arnol’d cat
map were pointed out in refs. [13, 14]. Ref. [14] discusses two partitions
of the cat map unit square. ”

“ and resist the siren song of the Hecke operators [54, 62] ”

While stability multipliers depend only on the trace s, the phase space
eigenvectors depend on the explicit matrix A, and so do “winding num-
bers” st (which also depend on the defining interval x ∈ [−1/2, 1/2),
Percival and Predrag choice, or Boris choice x ∈ [0, 1). Time-reversed has
different eigenvectors (orthogonal to the forward-time ones), so I am not
even sure how time reversed st look.

2016-05-21 Predrag Behrends [10, 11] The ghosts of the cat is fun - he uncovers
various regular patterns in the iterates of the cat map.

2016-09-27 Boris Cat maps and spatiotemporal cats

In the spatiotemporal cat, “particles” (i.e., a cat map at each periodic lat-
tice site) are coupled by the next-neighbor coupling rules:

qn,t+1 = pnt + (s− 1)qnt − qn+1,t − qn−1,t −mq
n,t+1

pn,t+1 = pnt + (s− 2)qnt − qn+1,t − qn−1,t −mp
n,t+1

The symbols of interest can be found by:

snt = qn,t+1 + qn,t−1 + qn+1,t + qn−1,t − s qnt .

2016-10-27 Boris Gutkin and Osipov [41] write: “In general, calculating peri-
odic orbits of a non-integrable system is a non-trivial task. To this end
a number of methods have been developed,” and then, for a mysterious
reasons, they refer to ref. [8].

2016-11-07 Predrag The dynamical systems literature tends to focus on local
problems: bifurcations of a single time-invariant solution (equilibrium,
relative equilibrium, periodic orbit or relative periodic orbit) in low-dim-
ensional settings (3-5 coupled ODEs, 1-dimensional
PDE). The problem that we face is global: organizing and relating simul-
taneously infinities of unstable relative periodic orbits in ∞-dimensional
state spaces, orbits that are presumed to form the skeleton of turbulence
(see ref. [34] for a gentle introduction) and are typically not solutions that
possess the symmetries of the problem. In this quest we found the stan-
dard equivariant bifurcation theory literature not very helpful, as its gen-
eral focus is on bifurcations of solutions, which admit all or some of the
symmetries of the problem at hand.
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2016-11-17 Predrag Adler and Weiss [1] discovered that certain mappings from
the torus to itself, called hyperbolic toral automorphisms have Markov
partitions, and in fact these partitions are parallelograms. One famous
example is the Arnol’d Cat Map

(Axiom A; Anosov)

are a family of analytic hyperbolic automorphisms of the 2-dimensional
torus which

The “linear code” was introduced and worked out in detail in influential
papers of Percival and Vivaldi [12, 66, 67].

For d = 1 lattice, s = 5 the spatial period 1 fixed point is equivalent to the
usual s = 3 Arnol’d cat map.

The cat map partitions the phase space into |A| regions, with borders de-
fined by the condition that the two adjacent labels k, k+1 simultaneously
satisfy (3.16),

x1 − sx0 + x−1 − ε = k , (15.8)

x1 − sx0 + x−1 + ε = k + 1 , (15.9)

x2 − sx1 + x0 = s1 , (15.10)

x1 − sx0 + x−1 = s0 , (15.11)

(x0, x1) = (0, 0)→ (0, 0) , (1, 0)→ (0,−1) , (0, 1)→ (1, s) , (1, 1)→ (1, s−1)

2016-11-05 Predrag Dropped this:
Note the two symmetries of the dynamics [49]: The calculations general-
ize directly to any cat map invariant under time reversal [51].

2016-11-11 Boris “Deeper insight” into d = 2 symbolic dynamics Informa-
tion comes locally (both in space and time). Allows to understand corre-
lations between invariant 2-tori. Connection with field theories.

To Predrag: we have similar results on 2×1 blocks, but I think 1×1, 2×2
is enough. Agree?
2016-12-08 Predrag: I agree

2016-12-06 Boris Confused about Predrag’s claim that refs. [20, 35] tile “ spa-
tially and temporally infinite domains”(?) In both papers the spatial ex-
tension of the system is finite, and the attractors have relatively small
dimensions.
2016-12-08 Predrag: I rewrote that now, is it clearer?

2016-12-06 Boris Is this claim true: “Temporally chaotic systems are exponen-
tially unstable with time: double the time, and roughly twice as many
periodic orbits are required to describe it to the same accuracy. For large
spatial extents, the complexity of the spatial shapes also needs to be taken
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[the same plot as figure ??]

Figure 15.1: (Color online) Newtonian Arnol’d cat map (x0, x1) phase space
partition into (a) 4 regions labeled by s0. , obtained from (x−1, x0) phase space
by one iteration (the same as figure 1.2). (b) 14 regions labeled by past block
s−1s0. , obtained from (x−2, x−1) phase space by two iterations. (c) 44 regions,
past block s−2s−1s0. (d) 4 regions labeled by .s1 , obtained from (x2, x1) phase
space by one backward iteration. (e) 14 regions labeled by future block .s1s2 ,
obtained from (x3, x2) phase space by two backward iterations. (f) 44 regions,
future block s3s2s1. Each color has the same total area (1/6 for st = 1, 2, and
1/3 for st = 0, 1). All boundaries are straight lines with rational slopes.

[the same plot as figure ??]

Figure 15.2: Newtonian Arnol’d cat map (x0, x1) phase space partition into
(a) 14 regions labeled by block b = s0.s1, the intersection of one past (fig-
ure 15.1 (a)) and one future iteration (figure 15.1 (d)). (b) block b = s−1s0.s1,
the intersection of two past (figure 15.1 (b)) and one future iteration (fig-
ure 15.1 (d)). (c) block b = s−1s0.s1s2, the intersection of two past (fig-
ure 15.1 (b)) and two future iterations (figure 15.1 (e)). Note that while some
regions involving external alphabet (such as _22_ in (a)) are pruned, the inte-
rior alphabet labels a horseshoe, indicated by the shaded regions. Their total
area is (a) 4× 1/8, (b) 8× 1/21, and (c) 16× 1/55.

into account. A spatiotemporally chaotic system is extensive in the sense
that ...” Double the time and the number of periodic orbits is squared?
2016-12-08 Predrag: It is true only for discrete time, complete binary dy-
namics, but any other statement brings in more confusing words. I do
not want to say “entropy” here. I rewrote it now.

2016-12-06 Boris Predrag’s statement “Essentially, as the stretching is uniform,
distinct admissible symbol patterns count all patterns of a given size,
and that can be accomplished by construction the appropriate finite size
transition matrices [22].” is true only for symbolic dynamics based on
Markov partitions. Wrong e.g., for linear coding.
2016-12-08 Predrag: I rewrote that now, is it correct?

2016-12-12 Predrag My claim (in a conversation with Boris) that spatiotempo-
ral cat symbolic dynamics is “d-dimensional” was nonsensical. I have
now removed this from the draft: “ The key innovation of ref. [41] is
the realization (an insight that applies to all coupled-map lattices, and
all PDEs modeled by them, not only the system considered here) that
d-dimensional spatiotemporal orbit {xz} requires d-dimensional symbolic
dynamics code {mz} = {(m1,m2, · · · ,md)} , rather than a single tempo-
ral symbol sequence (as one is tempted to do when describing a finite
coupled Nd−1-“particle” system).”
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[the same plot as figure ??]

Figure 15.3: (Color online) ` = 1 phase spaces on (x0, x1) phase space with
respect to symbols st, t = 0,−1,−2, 1, 2, 3 for s = 3. In each block values of
st = −1, 0, 1, 2 are shaded with light red, green, blue, and yellow, respectively,
and each color has the same total area (1/6 for st = −1, 2, 1/3 for st = 0, 1) in
all blocks. All boundary lines are straight lines with rational slopes, while the
slopes tend to irrational values set by stable/unstable directions of the cat map
exponentially fast in the limit t→ ±∞.

[the same plot as figure ??]

Figure 15.4: ` = 2, 3, 4 phase spaces on (x0, x1) phase space for s = 3, using
blocks s0s1, s−1s0s1, and s−1s0s1s2 from the ` = 1 diagrams. Shaded diamonds
or rectangles correspond to sequences of all interior symbols (0, 1)⊗`, having a
total area of 4× 1/8, 8× 1/21, 16× 1/55 respectively from left to right.

Li Han text: “ To generate such phase space partitions, we start with
length ` = 1. Consider first the symbol s0 = sx0−(x1+x−1) = bsx0 − x1c,
where b· · · c is the floor function. s0 has symbol boundaries which are
equally spaced parallel lines of slope s and passing through (x0, x1) =
(0, 0), (1, 1). We then look at the time-evolved images of these symbol
regions under forward map (1.101). The transformed region therefore
means that at coordinate (xt+1, Fxt+2) the point has symbol st, which
in turn implies that when interpreted back to (x0, x1) phase space, a
point is associated with symbol s−1. As a result, we can generate all
length-1 phase spaces corresponding to symbols st, t = 0,±1,±2, · · ·
on the (x0, x1) phase space simply by applying the forward map (1.101)
or its inverse. We plot such length-1 diagrams in figure ?? for symbols
s0, s−1, s−2 (top), and s1, s2, s3 (bottom), and call them different blocks.
Note that any of the blocks can be used to recover the 1-symbol mea-
sure f1(m) by calculating the total of respective region areas, while with
blocks s0 = bsx0 − x1c and s1 = bsx1 − x0c the computations are the
easiest, which have symbol boundaries of slopes s and 1/s respectively.

The fact that µ(m ∈ A0) are all equal and twice of µ(m ∈ A1) is also
obvious from the s0, s1 blocks of length-1 phase spaces.

A length-` phase space is then the superposition of any ` consecutive
blocks of length-1 diagrams, while a choice that is symmetric about block
s0 or s0 and s1 will make the amount of calculations minimal. We have
evaluated µ(m) up to ` = 12 from both (??) and symbolic diagrams for
s = 3, 4, 5, and they are consistent. In figure ?? we plot the symbolic
diagrams for 2, 3, and 4 consecutive symbols using blocks s0,1, s−1,0,1,
and s−1,0,1,2 of figure ??. Sequences of all interior symbols correspond to
congruent parallelogram regions whose opposite sides are exactly par-
allel, and for even ` the regions are diamonds whose sides are of equal
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length. Sequences of symbols from bothA0 andA1 are not all admissible,
which is the topic of next section. Here we note that the corresponding
regions of such sequences have general polygon shapes and are not par-
allelograms, no matter which consecutive set of blocks we use.

All boundary lines are straight lines with rational slopes, while the slopes
tend to irrational values set by stable/unstable directions of the cat map
exponentially fast in the limit t→ ±∞.

From (??) the measure µ(b) for a block b = s1s2 · · · s` is proportional to
the area of the polygon defined by inequalities (??).

The full list of measures µ(s1s2 · · · s`) has a tensor structure of tensor rank
` with each index running over A and can be interpreted as a joint prob-
ability function. ”

Boris results.tex text: “ whose lower left corner is the (n, t) lattice site

Rnt = {(n+ i, t+ j)|i = 0, . . . , `1 − 1, j = 0, . . . , `2 − 2} ,

It is straightforward to see that when M is such that all symbols sz belong
to A0 = {0, . . . , s − 4} then M is always admissible. By positivity of
Green’s function (see appendix ??) it follows immediately that 0 < xz
while the condition

∑
z′∈Z gzz′ = s− 2 implies that xz ≤ 1.

”

Predrag text, recycle: “ Here the piecewise linearity of the spatiotemporal
cat enables us to go far analytically. Essentially, as the cat map stretch-
ing is uniform, distinct admissible symbol blocks count all blocks of a
given shape (they all have the same stability, and thus the same dynam-
ical weight), and that can be accomplished by linear, Green’s function
methods. ”

Predrag removed Boris poetry: “ The alphabet separation into interior
and external parts nicely illustrates the transition of the model from the
correlated regime to the uncorrelated Bernoulli process as parameter s
in (20.46) tends to ∞. Indeed, the number of external symbols in A1 is
fixed within a given differential operator 2 structure, while the number
of interior symbols inA0 grows linearly with the parameter s controlling
the strength of chaos in a single map. For cat map this transition can be
achieved by merely increasing the time step of time evolution. Increasing
the time step from 1 to 2 leaves the form of equation (3.16) intact, but
renormalizes the constant s→ s2−1. This reflects the fact that φ2 is more
“chaotic” than φ. With an increase of k the map φk resembles more and
more uncorrelated Bernoulli process. Similar transition can be observed
in the coupled Z map lattices, with a caveat that switch from Φ to Φk

renormalizes not only the constant s, but 2 itself. The resulting equation
of motion will contain an elliptic operator 2(k) of higher order. Still, it is
straightforward to see that the number of external symbols is controlled
by the order of the operator 2(k) which grows linearly with k. On the
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other hand, the number of interior symbols grows in the same way as the
constant s i.e., exponentially. ”

Replaced N (for N “particles”) by L (for spatial extent) throughout

2019-09-10 Boris Old version, now replaced in results.tex by a more compact
paragraph:

To be specific, let R be a rectangular [`1×`2] region, and let MR be the
[`1×`2] block of M symbols from the alphabet A. Let N (MR|M[L×T ]) be
the number of times a given symbol block MR appears anywhere within
a much larger admissible symbol block M[L×T ] cut out from a spatiotem-
porally infinite generic solution M of the spatiotemporal cat (20.46). The
d = 1 cat map is known to be fully hyperbolic and ergodic for s > 2, with
a unique invariant natural measure µ in the phase space (6.61) of the sys-
tem. The d = 2 spatiotemporal cat is fully hyperbolic and ergodic for
s > 4, see (??). In the language of spatially extended systems, we assume
that a steady state spatiotemporally chaotic solution is on average spa-
tiotemporally invariant, so the number of times a given admissible block
MR shows up over a region [L×T ] is expected to grow linearly with the
area LT . Hence a relative frequency of the occurrence of the block MR can
be defined as

f(MR|M[L×T ]) =
1

LT
N (MR|M[L×T ]) . (15.12)

With L and T increasing at comparable rates (for example, take a square
[L×T ], with L = T ), the ergodic measure of finding the block MR across
the infinite spatiotemporal domain is given by

µ(MR) = lim
L,T→∞

f(MR|M[L×T ]) ,
∑
MR

µ(MR) = 1 . (15.13)

For an ergodic system with a unique invariant natural measure µ, the
limiting frequencies f(MR) are equal to the measures µ(MR) of the cylin-
der setsMR, defined as sets of phase space points XR having MR sym-
bolic representation over the region R. For this reason, we sometimes
refer, with a slight abuse of notation, to the frequencies f(MR) defined
by (15.12) as measures of MR in the limit L, T →∞, and denote them by
µ(MR) in what follows.

2016-11-20 Boris The spatiotemporal symbols follow from the Newtonian equa-
tions in d spatiotemporal dimensions

sn,j = (qn,j+1 − 2qn,j + qn,j−1) + (qn+1,j − 2qn,j + qn−1,j)− (s− 4)qn,j

m = [2 + 2d1− s1] q . (15.14)

2017-02-16 Predrag To me, the Green’s functions look strictly positive. Must
harmonize definitions (??), (??), (6.44), (20.46) and (3.16), originating in
Boris’ flip-flop st → −st
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Is there a reference to Green’s functions in terms of Chebyshevs?

2017-08-02 Boris Yes, and it is OK with our present convention - Green’s func-
tions must be positive.

2017-08-02 Boris Rule-of-thumb - internal symbols are non-negative, Green’s
functions are positive.

2017-07-31 Boris “As every Anosov automorphism is topologically conjugate
to a linear cat map ...” Is it really true ?

2017-08-11 Predrag That’s what I read in some of the articles cited. But no
need to say it here, so now this is removed from our article.

2016-11-13 Predrag to all cats - where we write (3.16), Percival and Vivaldi [66]
write their Eq. (3.6) (2 + 2 − s)xt = −bt so their “stabilising impulses”
bt have the opposite sign to our “winding numbers” st (defined on x ∈
[0, 1)).
To all cats: keep checking that after your flip of signs of st’s Eqs. (20.46),
(3.16), (??) and (15.14) are consistent.

2017-07-31 Boris Changed time ago. They should have the same sign as Perci-
val and Vivaldi i.e., our m are positive!

2017-08-11 Predrag I now get it. LT is the area of R. The total number of
blocks grows exponentially with the size ofR and is bounded from above
by (LT )|A|. You are saying that the number of times a single admissible
block MR shows up over a region [L×T ] grows linearly with the area LT ,
and so does the sum over frequencies of all distinct admissible blocks
M
′

R? These “frequencies” are relative, in the sense that correct normaliza-
tion is not (15.13), but

µ(MR) =
f(MR)∑

M
′
R
f(M

′
R)

. (15.15)

2017-08-05 Predrag Cylinder sets are subtle: if we were counting only admissi-
ble X, the cylinder set would be much smaller. But we almost never know
all inadmissible states.

2017-07-31 Boris Li subsection Blocks of length `, was siminos/cats/catGenerL.tex
2017-02-17, mostly contained repetitions of the previous stuff. Did not
think we needed it. Few usable things could be brought to other places.
Agree?

2017-08-23 Predrag Done.

2017-08-26 Predrag Removed: “ The term 2 + 2d 1 is the standard statistical 2CB
mechanics diffusive inverse propagator that counts paths on a d-dim-
ensional lattice [77], and −s1 is the on-site cat map dynamics (for the
Hamiltonian formulation, see appendix ??).
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2017-08-05 Boris Something unclear here (at least for me). “The iteration of a
map g(xt) generates a group of time translations”. Why translations? g is
a (time) map acting on all sites of lattice independently (no interaction).
Note: I think the models in [68] and [17] are of the same type. Both can
be thought of as products of two maps: “ Interactions” · “Single particle
propagations” (i.e., product of g’s)
2017-09-04 Predrag: You are right, I have rewritten that text now.

2017-08-28 Predrag For the Dirichlet (as opposed to periodic) boundary condi-
tion, which breaks the translational symmetry, we take the very unphysi-
cal b.c. xz = 0 for z ∈ R. Finite windows into turbulence that we describe
by our symbol blocks never have such edges. Methinks...

2017-09-12 Boris This equation

xn,t+1 = pnt + (s− 3)xnt − (xn+1,t − 2xnt + xn−1,t)−mx
n,t+1

pn,t+1 = pnt + (s− 4)xnt − (xn+1,t − 2xnt + xn−1,t)−mp
n,t+1 .(15.16)

seems wrong. We use (??).

2017-09-14 Boris Recall that (the Dirichlet) gzz′′ is a function of both z and z′′

and not just of the distance between them |z − z′′|.

2017-09-04 Predrag “integer s > 4” is not the correct condition, for d = 2 s = 4
is presumably already hyperbolic. To add to the confusion, in his report
Adrien computes for s = 3, the case with no interior alphabet symbols.
So s > 2 is the correct hyperbolicity condition for all d? Give the correct
condition on s, explain it.

2017-09-12 Boris Here are the answers to this and co. questions over the paper.

1. The system is uniformly (fully) hyperbolic for s > 2d. This means all
eigenvalues of linearized map (see (??) for d = 2) are either |Λ| < 1
(stable subspaces) or |Λ| > 1 (unstable subspaces).

2. For s = 2d the system is partially hyperbolic. This means every-
thing as above except two Lyapunovs for which Λ = 1 (neutral sub-
spaces).

3. For |s| < 2d system is non-hyperbolic. Apparently for everything in
this paper 1 & 2 is OK. But

4. drastically changes everything (suspect a phase transition in physics
jargon i.e., non-unique SRB measure). So whatever we consider in
the paper should be for s ≥ 2d.

2017-09-14 Boris A comment on s = 2d case (do not know how much of it
we need for the paper). Our results in this paper require in principle
s > 2d (all Lyapunovs are positive). However certain things still work
(by whatever reason) for s = 2d as two figs in sect. ?? show. In this case
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the total momentum
∑L
n=1 pnt is preserved. This can be seen from the

invariance of (20.46) under translation xnt → xnt + α. So the system is
not ergodic and linear encoding is not one to one (different trajectories
might have the same symbolic representation). However, it is (probably)
ergodic on the shell

∑L
n=1 pnt = const. This is probably the reason why

our formulas for frequencies of MR still work.

2017-09-26 Boris Dropped this: “ with the corresponding probability of occur-
rence of a fixed symbol block MR given by

µ(MR|M[L×T ]) =
f(MR|M[L×T ])∑

M
′
R
f(M

′
R|M[L×T ])

,
∑
MR

µ(MR|M[L×T ]) = 1 ,

where the sum goes over all distinct admissible blocks M
′

R.”

The point is that∑
MR

N (MR|M[L×T ]) = LT − “Terms linear in L and T”.

So no need in an artificial normalization - normalization in (15.13) would
follow anyhow.

2017-09-14 Boris Replaced this eq.

M ∪ ∂R =

 x12

x01 s11 x21

x10

 =

 x2

x1 s11 x3

x4

 (15.17)

by the first plot in figure ??.

2016-11-15, 2017-08-28 Predrag Note: When I look at the intersection of the
diagonal with the partition strips in by inspecting figure ??, I find that
the Fibonacci numbers 1,2,3,5, ... give the numbers of periodic points, in
agreement with the Adler-Weiss Markov partition. So the linear code is
not a generating partition, but periodic orbits do the right thing anyway.

2018-04-05 to Adrien from Predrag I think figure 15.8 is really hard to explain
to a reader; why these axes, how did all points get mapped into the same
unit square, why there are huge empty swaths - all stuff that distracts
from the main point which is that xz’s within the center of the shared
symbol block are exponentially close.

2018-04-05 Predrag I think we can simplify this greatly, using the fact that the
(damped) screened Poisson equation (??) is linear, so one can subtract
patterns in order to visualize their distance.

In order to have a 2-dimensional visualization for each block, color the
symbol Mj [L1×L2] block with discrete color alphabetA0, as in figure 15.6,
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(a)

0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 15.5: (Color online) (a) X2,z − X1,z , the site-wise distance between the
invariant 2-tori fields corresponding to the two [18×18] blocks M1, M2 (colored
tiles) of figure 15.6 (a,b). (b) The plot of the site-wise symbol difference |M2,z −
M1,z| of figure 15.6 (b) and (b) (for a better visualization, see figure 15.9).

and the corresponding state Xj [L1×L2] block with colors chosen from a
continuum color strip.

As this is a linear problem, you can also represent closeness of two [L1×
L2] blocks by using this coloring scheme for M2 −M1 and X2 − X1.

For pairs of distinct 2-tori which share the same region of sz’s, or a single
2-torus in which the same region of sz’s appears twice, the states xz in
the center of the region should be exponentially close, in order to demon-
strate that they shadow each other.

So, replace figure 15.8 by (a) M2 −M1 from figure 15.6 (it will be all the
same color in the shared region), and (b) plot X2 − X1. Mark the lattice
point z with the minimal value of |x(2)

z − x(1)
z | on this graph, and in the

text state the minimal value of |x(2)
z − x(1)

z |. You can also state the mean
Euclidean (or L2) distance between the two invariant 2-tori:

dX2−X1
=

(
1

LT

∑
z

(x(2)
z − x(1)

z )2

)1/2

, (15.18)

or distance averaged over the lattice points restricted a regionR.
(taken care of by AKS)

2018-04-13 Adrien After reconstructing the orbits separately, I plotted the dis-
tance between the positions in (q, p) space for each lattice site z, see the
new figure 15.5, meant to replace the current figure 15.8. Still have to use
sensible color ranges, and compute figure 15.5 (b).
(taken care of by AKS)

2018-04-13 to Adrien from Predrag Also of interest might be the color-coded
plot of value of xq,p for at least one of them. Would be nice to check
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(a) (b)

Figure 15.6: Figure nixed by Boris 2019-08-21, replaced by digits figure ??.
Symbolic representation (colored tiles) of two [L×T ] = [18 × 18] invariant 2-
torus solutions of (??), s = 7, that shadow each other within the shared block
MR = MR0

∪ MR1
(blue). The symbols within R, drawn randomly from the

interior alphabet A0, are the same for both solutions; the symbols outside R,
also drawn randomly from A0, differ. The shared block R = R0 ∪ R1 is split
into the interior regionR0 (bold blue) and the border stripR1 (blue).

-at least once- whether there is any relation to the corresponding mq,p

(probably there is no relation).

We’ll have to rethink coloring (should be the same as mq,p, more or less).

As the distance decreases exponentially towards the center, you probably
want a color plot of ln |x(2)

q,p − x(1)
q,p| to resolve the small distances towards

the center of the square.
(taken care of by AKS)

2017-08-02 Boris The representation figure ?? has changed from digits to colors
figure 15.6 (PC 2019-08-26 reverted this figure to digits).
Was it try and see, or is it going to stay? In my opinion it is more colorful,
but less informative. The reason is a) digits are directly mnt - no need
to translate colors into numbers + make sense without colors (on line).
b) the encounters (regions with the same coding) can be visualized by
coloring. 1

2019-08-21 Boris Now that we got rid of the color figure 15.8, there’s no point
in having two different colors in figure ?? for the overlapping regions of
symbols, light blue for the outer region called R1 in the paper, dark blue
for the inner one calledR0.

1Predrag 2017-08-11: Well, that’s a bit subjective - it is unintelligible to a human eye either way.
I would keep this one figure as an illustration that color coding is an alternative to number coding.
(taken care of by AKS)
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toDo
(taken care of by AKS)

2019-08-21 Boris I like including the differences plot figure 15.5 or figure ??
(we have something similar in Our Paper [41] with Vladimir Osipov) (im-
plemented PC 2019-08-27).
It should be included as addition to figure ??, and not as substitution
to it (it substitutes figure 15.8, now removed from the paper). Without
figure ?? it would be difficult to digest and explain its content.

2019-10-30 Adrien I think by now we agreed we would keep the digits figure
only. The figures of symbolic difference (figure 15.5) and of symbolic
coloring (figure 15.6) are either outdated or ugly. We can toss them out of
the blog. figure 15.7 and figure 15.8 could be moved to another appendix.
We could also move figure 15.9 to another appendix, as it is the most
recent “difference of symbols" figure.
(taken care of by AKS)

2019-08-27 Predrag If you mean “metric distances” of Gutkin-Osipov figures
A3 and C2, that is quite different than our log(distance) plots. Prob-
lem is that Gutkin-Osipov measure Eucliden distance between symplec-
tic phase-space points, not a meaningful distance. Would have to subtract
actions, but this is not a thing for this paper...

2019-08-21 Adrien You mean figure 15.5 here in GHJSC16blog.tex, i.e., fig-
ure ?? (a) which is the log of the norm of the difference of the two trajecto-
ries in phase space? I agree that if anything, figure ?? (a) should substitute
figure 15.8 and not figure ??. What do you think on the updated color pat-
tern, figure ?? (b)?
(taken care of by AKS)

2019-08-26 Boris Still not good enough. The coloring is too jumpy. It should
range from white or light blue to dark blue. For a more reasonable col-
oring of this type see figure 14 from Our Paper [41] arXiv:1503.02676.
Maybe also the periods of tori L, T should be larger to make things smoother.
(taken care of by AKS)

2019-08-21 Adrien We still need the two symbolic representation figures in fig-
ure ??. In figure 15.7 I have regenerated those symbolic representation as
numbers instead of colors, as an alternative to figure ??. Which one do
you prefer?
(taken care of by AKS)

2019-08-21 Boris For figure ?? - a different coloring pattern is indeed needed +
the size of the figures (a), (b) should be the same.
AKS I agree. Except for the size, which should be the same as the current
figure ?? (a).
toDo
(taken care of by AKS)
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(a)

3 3 1 3 3 0 3 2 2 3 0 1 3 3 2 0 1 2
2 0 3 2 2 1 2 2 3 3 2 1 1 1 0 3 0 1
1 3 1 0 2 0 0 1 3 1 0 0 0 1 2 0 0 3
1 2 3 1 1 1 1 1 2 2 0 1 2 0 2 1 3 0
2 3 1 2 1 0 2 0 1 1 3 1 0 0 0 2 2 2
2 2 3 0 3 2 3 3 3 2 2 0 0 0 2 0 1 1
2 3 3 1 1 1 1 1 3 3 3 1 1 1 0 1 2 0
2 2 1 3 2 2 0 2 2 0 2 3 3 0 1 2 2 2
1 0 2 2 0 0 0 0 3 2 3 0 0 1 2 0 3 0
1 0 2 2 1 3 2 3 0 1 1 1 0 0 0 1 1 2
2 1 3 0 3 1 1 0 1 0 2 1 3 3 0 0 0 2
2 0 0 2 1 1 2 0 0 1 0 1 0 0 0 3 2 0
3 3 2 1 3 1 1 1 3 3 3 3 0 1 0 3 2 1
3 1 3 3 3 1 0 2 2 1 3 0 1 3 3 3 1 3
2 2 1 1 1 1 0 3 0 3 2 2 1 2 1 0 3 2
0 1 3 2 2 1 1 2 1 2 2 1 3 3 2 2 2 1
2 3 0 0 2 1 2 1 1 3 2 1 1 2 3 0 1 1 (b)

3 1 1 1 2 2 1 3 0 2 3 0 1 3 3 1 3 0
0 0 1 3 1 3 3 0 1 1 2 3 2 3 1 3 3 1
1 1 3 0 2 0 0 1 3 1 0 0 0 1 2 3 3 2
3 1 0 1 1 1 1 1 2 2 0 1 2 0 2 2 3 0
2 2 0 2 1 0 2 0 1 1 3 1 0 0 0 2 2 1
1 0 0 0 3 2 3 3 3 2 2 0 0 0 2 1 1 2
2 1 1 1 1 1 1 1 3 3 3 1 1 1 0 0 2 2
1 1 1 3 2 2 0 2 2 0 2 3 3 0 1 2 0 3
1 0 2 2 0 0 0 0 3 2 3 0 0 1 2 2 3 1
2 0 2 2 1 3 2 3 0 1 1 1 0 0 0 2 0 3
0 1 0 0 3 1 1 0 1 0 2 1 3 3 0 1 2 1
1 2 1 2 1 1 2 0 0 1 0 1 0 0 0 2 1 3
3 3 0 1 3 1 1 1 3 3 3 3 0 1 0 0 2 3
3 0 2 3 3 1 0 2 2 1 3 0 1 3 3 3 3 1
1 0 0 2 2 2 2 2 3 2 3 2 2 3 0 2 3 3
2 2 1 2 2 2 3 1 0 1 2 2 0 2 1 2 0 3
0 1 2 3 0 3 1 2 0 0 3 2 2 3 3 2 3 1

Figure 15.7: (Color online) Symbolic representation (numbered tiles) of two
[L×T ] = [18 × 18] invariant 2-torus solutions of (??), s = 7, that shadow each
other within the shared block MR = MR0

∪MR1
(blue). The symbols withinR,

drawn randomly from the interior alphabetA0, are the same for both solutions;
the symbols outsideR, also drawn randomly fromA0, differ. The shared block
R = R0∪R1 is split into the interior regionR0 (bold blue) and the border strip
R1 (blue).

2019-08-28 Adrien I am re-generating both figures of figure ?? with larger pe-
riods in time and space (L = 28 and T = 27) so that they appear more
smoothly. I’ve also expanded the shadowing region so we could observe
an even larger exponential decay. Finally, I chose a coloring pattern sim-
ilar to that of Boris’s paper [41] arXiv:1503.02676. What do you guys
think?
Here (on the blog/comments) I am attaching the difference of symbols
(check figure figure 15.9).
For all the new figures I added, I’ve labeled them identically to their pre-
vious version and re-labeled the old ones "nameindex" so that they’re
stored in THE CLOUD.
Also I think it’s not needed to break down the region R into R1,R2 as
we’re no longer distinguishing between outer and inner regions of shared
symbols (on figure 6,7 for example).
(taken care of by AKS)

2019-09-09 Predrag The point-wise block difference of figure 15.9 contains mo
information - it’s obvious from figure ?? that M2,z −M1,z is zero overR.

2019-08-28 Boris :

1. sect. ?? Introduction: there were wide cuts in comparison to the pre-
vious version. This was probably justified, but in my opinion it is
overdone by now. It is difficult to understand what is a general mo-
tivation for our paper. It looks very technical, dry and restricted to
concrete model. A bit more poetry on (linear) coding, e.g., why it is
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Figure 15.8: (Color online) (a) Phase space representation (q
(i)
z , p

(i)
z ), where

i = 1, 2 refers to the two invariant 2-tori of figure 15.7. (b) A zoom into small
rectangular area shown on the left. The phase space is covered only partially,
as symbols in blocks M are restricted exclusively to the interior alphabet. Only
data for z = (n, t) ∈ R are shown in the figure. The centers of red (small)
circles and green (large) circles are the points (q

(i)
z , p

(i)
z ) of the first (i = 1) and

the second (i = 2) invariant 2-torus for z’s from the interior R0. The centers
of violet (large) and magenta (small) squares show the respective points from
the border R1, see figure 15.7. All (q

(1)
z , p

(1)
z ) and (q

(2)
z , p

(2)
z ) in the interior are

well paired, while the separations are larger for z’s in the border region R1.
This illustrates shadowing being exponentially stronger the closer the point is
to the center ofR, see (??).

Figure 15.9: The site-wise distance M2,z −M1,z between the [28 × 27] symbol
blocks M1, M2 of figure ??. (For a worse visualization, see figure 15.5.)
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useful for description of dynamical systems might improve things.

2. sect. ?? Model and overview of the main results: I propose mother fig-
ures out how to use LaTex in order how to implement several of my
desired changes in today’s so deftly emailed GHJSC16_notes.pdf
(in yellow).

2019-08-29 Predrag :

1. sect. ?? Introduction: I would like Boris to write the general motiva-
tion in his own voice, as that is a voice that quantum chaos com-
munity will resonate with. Predrag’s pitch in the parallel Ref. [28]
universe is to the turbulence community, I think having the two in-
troductions, sung in different keys, will serve us better.

2. Text about not knowing the Percival-Vivaldi cat map grammar rules
is now moved to just before sect. ?? From itineraries to orbits and back.
sect. ?? Model and overview of the main results (Boris yellow markings)
is reshuffled, hopefully as was his desire to have had it reshuffled.

2019-09-07 Boris redundant, removed:
Answer to Q1. The spatiotemporal cat admits a natural 2-dimensional linear
symbolic code with a finite alphabet. In principle, we can compute analytically
the measure of a given finite spatiotemporal symbol block MR over a regionR.

2019-09-09 Predrag Files AKSLPS12_2.pdf, AKSLPS12_3.pdf are not referred to
anywhere. If needed, I think they corresponds to log difference of the
two small invariant 2-tori of figure 15.6.

2017-09-04 Predrag Border notation in (??) conflicts with (??). Shouldn’t it be
+gt,0x0 + gt,`+1x`+1 ?

2019-09-12 Boris No way :) I checked, (??) is correct.

2017-09-25 Predrag Eq. (??) would be “average coordinate” for the periodic
boundary conditions, i.e., the periodic point (with repeats of the defining
block correctly summed. Here x̄i(b) is at the lower edge (lower corner?)
of the admissible polytope.

2019-09-12 Boris I found the calculation following originally upon (??) redun-
dant, so I removed it to here. Hope you understand everything without
it.

TheMb are partitions of the (x0, x1) phase space, in contrast to the poly-
gons Pb, plotted in the Lagrangian coordinates (x0, x`+1), see figure ??.
Hence the interior alphabet measures µ(b), si ∈ A0, are given by the Jaco-
bian (??) of coordinate transformation from the Lagrangian coordinates
(x0, x`+1) to the phase space (x0, x1), µ(b) = U|b|(s/2)

−1
. The value of

U|b|(s/2) is always an integer greater than 1, and thus the (x0, x1) phase
space is “magnified" and wrapped around the (x0, x`+1) phase space
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U|b|(s/2) times through ` iterations of the cat map. Lagrangian coor-
dinates (x0, x`+1) are related to phase space coordinates (xk, pk), pt =
(xt − xt−1)/∆t , at time t ∈ (0, `+ 1) by

xt = x̄t(b) +
U`−t(

s
2 )

U`(
s
2 )

x0 +
Ut−1( s2 )

U`(
s
2 )

x`+1

pt+1 = x̄t+1(b)− x̄t(b) +
U`−t−1( s2 )− U`−t( s2 )

U`(
s
2 )

x0 +
Ut(

s
2 )− Ut−1( s2 )

U`(
s
2 )

x`+1 .

This is a linear map, so its Jacobian d` = |∂(x0, x1)/∂(x0, x`+1)| is simply

d` =
1

U`(
s
2 )2

det

(
U`(

s
2 ) U−1( s2 )

U`−1( s2 ) U0( s2 )

)
=

1

U`(
s
2 )
. (15.19)

2019-09-12 Predrag Droped this: “ Unlike the systems studied in ref. [17], spa-
tiotemporal cat cannot be conjugated to a product of non-interacting cat
maps. A way to see that is, for an example, to compare the numbers of
periodic orbits in the two cases – they differ.”

2017-09-14 Boris More straightforward argument is that BL (see (??) in ap-
pendix ??) is not conjugated to any feline with B = 0).

2019-09-27 Boris Checked (??). It is OK. The only question is whether the no-
tation is sufficiently explained? (I plan to improve a bit figure ??.)

2019-09-28 Predrag Has anybody checked that the block of example following
(??) is admissible?

2019-09-30 Boris Most probably not. On the other hand it is not terribly im-
portant. At the worst case they are all zeroes :)

2019-10-08 Predrag Cannot beat the post-Soviet perfectionism :)

2019-09-30 Boris We need Hamiltonian formulation for two reasons. First, our
measure dp dq comes from there. Second, for all numerics we actually use
initial data problem i.e., Hamiltonian formulation. We need appendix ??,
but should keep it compact.

2019-10-03 Boris A risky statement below. Did anybody checked this? “As Xz
take rational values for any finite [L×T ] invariant 2-tori, for sites suffi-
ciently close to the center of R the cancelation x2,z − x′z can be exact.”
Predrag: dropped it.

2017-01-25 Predrag Gutkin and Osipov refer to the map generated by the ac-
tion (15.21) as non-perturbed coupled cat map, and to an invariant 2-torus
p as a “many-particle periodic orbit” (MPO) if xnt is doubly-periodic, or
“closed,” i.e.,

xnt = xn+L,t+T , n = 0, 1, 2, · · · , L− 1 , t = 0, 1, 2, · · · , T − 1 . (15.20)
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Action of an invariant 2-torus p is

Sp = −1

2

T∑
t=1

L∑
n=1

sntxnt . (15.21)

2019-10-08 Boris Do you want formula for action in the paper?

2017-01-25 Predrag Not unless it is necessary to discuss it anywhere in the pa-
per... Besides, to me (15.21) seems almost surely wrong.

2019-01-24 Predrag Some of this invariant 2-torus stuff presumably goes to the
kittens paper [28]; this paper does only the Dirichlet b.c..

2019-10-08 Boris Do you mean g0
zz′? Should we refer here to [28] instead of

appendix ???

2017-09-05 Li Han I’m looking at numerical data. The number of total admis-
sible rules of cat map takes an exponential law: ∼ 2.63n for s=3, ∼ 3.74n

for s=4 for example. i.e., effectively 2.63/3.74 symbols are needed for
s=3/s=4. They agree with that from the topological entropy and Lya-
punov exponent, which are (3 +

√
5)/2, 2 +

√
3, respectively. Intuitively

this should hold (that log[ number of admissible rules]/n = topological
entropy), but is it well-known/justified in symbolic dynamics?

2019-10-10 Boris Now dealt with, in sect. ??. Added concrete numbers to the
picture caption.

2017-07-31 Boris Should we change layout of table ?? to the horizontal one?

2017-08-11 Predrag Not sure - easier to see the exponential growth in this for-
mat.

2017-09-01 Li Han How about including list of new pruning rules for small
lengths as an Appendix?

2019-09-14 Boris Would be fine if you can do this.

2017-08-02 Boris figure ?? “Any 4 × 4 block of symbols appears one and the
same number of times in both representations.”
means the following: If we scroll/peep through the (upper) torus sym-
bolic representation with 4 × 4 window, there are exactly NT different
4×4 blocks of symbols. Each of them appears the same number of times,
as well, in the symbolic representation of the bottom tori (but for possibly
different window positions).

2019-10-19 Predrag to Boris and Han: I have not checked it, but (??) is very
pretty, kind of formula on gets from discrete-Fourier digitalization of
Green’s functions. You seem to be saying the det of the 2-torus Jacobian
matrix counts the numbers of invariant 2-tori, and are computing ln det
to get a rate per area |R|. Could some Chebyshev polynomials lurk here,
and an analytic answer?
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2017-09-14 Predrag Spatiotemporal cat metric entropy (??) is presumably exact
for spatiotemporal cat as long as T and L are going large at comparable
rates. For systems without the space-time symmetry t ↔ x, hk should
be different along the time and the space directions, so I do not think we
can define one spacetime entropy? Enlightenment on this point would
be very welcome.

2019-10-20 Adrien to Predrag and Boris: I can see why we would want to plot
the logarithm of the site-wise distance ln |xz − x′z| between the states X,
X′. The idea would be to remain in the Lagrangian picture. To be clear,
right now:

• figure ?? is actually plotting ln
(√

(qz − q′z)2 + (pz − p′z)2
)

which is
the site-wise distance in the Hamiltonian picture (q = x and p is
momentum). I already have generated the figure that corresponds
to the Lagrangian site-wise distance, which is simply ln |xz−x′z|. We
want that one, correct?

• for figure ?? and figure ??, I can also generate the same ’Lagrangian’
distance. For the 3 diamond blocks, we would have to generate two
site-wise distance, let’s say between (X1,X2) and (X1,X3). Would
that work? It would look something like what’s on figure G11 of
this blog.

(taken care of by AKS)

2019-10-20 Predrag to Boris - I admit to not understanding to what the title
of sect. ?? Full shadowing refers to. Xi − Xj shadow each other with the
doughnuts, as they should, all distances elsewhere are of O(1). What’s
Full shadowing about that?

2019-10-20 Predrag I would like to give shelter to figure ?? and figure ?? here in
Bloglandia - they would require too much explanation - and replace them
by the likes of figure 15.10. We could replace both by a single figure, the
left frame giving ln |xz − x′z| for figure ??, and using figure 15.10 as the
right frame, no need to exhibit the two other pairwise distances, as they
should all look very much the same.

We let Boris decide.
(taken care of by AKS)

2019-10-19 Predrag Green’s function notation is gt is not helpful - it’s a matrix,
so easier to use gtt′ throughout. Green’s function notation is gnt is not
helpful, and here even misleading - it’s a tensorial matrix, so less confus-
ing to use gzz′ notation throughout.

2019-10-21 Boris Semi-agree :). It is a matter of perception - after all “Green’s
function“ is also (or rather first of all) a function (of z, z′). I have changed
the notation. Looks more clumsy, but might be a less evil.
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2016-11-08 Predrag Say: THE BIG DEAL is
for d-dimensional field theory, symbolic dynamics is not one temporal
sequence with a huge alphabet, but d-dimensional spatiotemporal tiling
by a finite alphabet
“Classical foundations of many-particle quantum chaos” I believe could
become a game-changer. Corresponding dynamical zeta functions should
be sums over invariant 2-tori (as is done in the kittens paper [28]), rather
than 1-dimensional periodic orbits.

2016-11-20 Boris All papers that I know were dances around question of unique-
ness SRB measure. Either show that measure is unique or opposite way
around (phase transitions). We know from the start that system is in the
high temperature regime, so the measure is unique.

2019-09-12 Boris Two remarks

1. In several cases you call A0 as a “full shift”. This looks wrong. As
far as I understand (see Scholarpedia), one can call AZ

0 (together
with the shift map T) as a “full shift”, but not A0. “Full shift” is a
dynamical system = state space (AZ

0 ) + map (shift) not just alphabet.
2. Regarding notion of generating partition. “A partition Q is called

a generator or generating partition if µ-almost every point x has a
unique symbolic name”. So the partitions which we consider here
are generating. I think what you mean by “generating” are rather
called “Markov partitions”.

Predrag 2019-09-17 Thanks, for me these are very important remarks, to
be fixed also in ChaosBook. Will chew on them... Until then, keep this
remark here, as a reminder.

2019-10-19 Predrag I would like to use only one Green’s function notation, i.e.,
g0
zz′ , and not g(z, z′).

2019-10-19 Boris Do you mean gzz′ (g0
zz′ is reserved for periodic boundary con-

ditions)? I have changed g(z, z′) to gzz′ , everywhere except section A3.
Seems to me - putting there everything downstairs would make things
more uglier.

2019-09-30 Boris To be on the safe side it would be nice to check if everything
above is compatible with numerics on figure ??. Is there a hero who can
do this?

2019-10-20 Predrag to Boris: A typical reader (if there will be any:)) of this
opus magnum will not be encumbered by precisely your flavor of your
quantum chaos baggage. To motivate this funky section full of peculiar
doughnuts and their permuted holes, you need to explain why action dif-
ferences (are the defined anywhere?) need to be small for close periodic
orbit encounters in the quantum work that connects periodic orbits and
quantum chaos spectral distributions.
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2019-10-26 Boris It was done already in our paper with Vladimir. No need to
repeat. Motivation here is somewhat different - By using internal sym-
bols you can easily manufacture invariant 2-tori with whatever proper-
ties you wish/need (like in baker’s map).

2019-10-26 Boris 1) Brought 2 unnamed figures back from the exile (at least
they are correct).

2) Removed some confusion over domains – Z2
LT andR are 2 different do-

mains. R is sub domain of Z2
LT. Removed some unnecessary/confusing

indexes

3) If you start to change notation (I prefer not to do this at this stage) - be
careful there is high probability you will need to do it all over the paper
= lot of work.

4) Did not like ‘doughnut’ slang - everything is pretty flat here (You can
sell some topological stuff but only after very long and unnecessary :)
discussion = you would need first to make a smooth picture out of this
i.e., discuss smooth field theories. Some attempts in this direction are in
our paper with Vladimir.) ‘doughnut hole’ is completely misleading. So
for the lack of anything better I return back to ’annular-like domain’ =
seems to me much less evil.
(taken care of by AKS)

2017-09-06 Predrag to Boris: Do you have some analytically small number, like
µ(MR) = 1/8!s(s2 − 1) for any of the measures in sect. ???

2019-09-30 Boris To Predrag: for this particular M would be a lot of work to
get it.

2019-10-28 Boris Returned figure 15.10 back to Blogosiberia

2017-08-06 Predrag I have crosschecked (??) with siminos/spatiotemp/reportRJ.tex

2017-09-06 Predrag to Rana - explaining figure ?? you write: “relative frequency
equal to 0.995755”: how many digits do we trust? we should state only
the significant digits.

When you replot, and replot you must, make both plots in figure ??
square, with both axes going from 0 to 1.

2016-11-07 Predrag figure ??: Note 5th bullet on page ?? and appendix ??.
Refer here (within this comment) to the source code (in the repository)
that generates these figures.
2019-10-29 Predrag giving up waiting on the response.

2017-09-04 Predrag to Li Han or Adrien or Rana: Please reformat the LaTeX
layout of figure ?? (not the plots themselves! and without decreasing the
sizes of individual plots) so each plot has in the lower left corner a label
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(a)

-8

-6

-4

-2
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(b)

Figure 15.10: (Color online) The plots of the logarithm of the site-wise distance
ln |xz − x′z| (a) of the states X1, X2 of figure ?? illustrate the exponential fall-off
of the site-wise distances within the shared doughnut blocks MR1

, MR2
; (b) of

one of the three pairs of states Xi, Xj of figure ??; the other combinations have
similar site-wise distance plots. Outside of the shared domains the distances
are of the order 1. 2019-10-30 Boris: “completely wrong!”

(a), (b), ..., (h), (i)
2019-10-29 Predrag giving up waiting on the response.

2019-09-30 Predrag In figure ?? Boris writes “the two invariant 2-tori X1 and X2

shadow each other at every point.” I do not know what “every point” he
has in mind, but I agree that M1 and M2 are identical everywhere except
for the A1, A2 permutation, so if I stand on my head, I can see it being
right in some inexplicable sense.

Happy is the referee who grasps figure ?? without any reference to any
explanatory text.

2019-10-28 Adrien I don’t know to what extent do Predrag wanted to explain
or define the use of momentum coordinates in figure ?? and figure ??. I
am satisfied with its current state, but could see that we add the definition
for the coordinates (q

(i)
z , p

(i)
z ). 2

2019-10-29 Predrag Explanation would be nice... When I write in figure ?? cap-
tion that “This Hamiltonian representation is explained in appendix ??”
I am lying, no? 3

2019-10-30 Adrien Added a (taken care of by AKS) note to each completed
blog post which concerned sect. ??.

2Adrien 2019-10-30: Those are defined in appendix ??
3Adrien 2019-10-30: Not sure about that...
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2019-09-30 Rana dropped this: “ If only a column or row of symbols belongs
to the interior alphabet, the value of relative frequency |PMR | is typically
either close to 1 or 0. For example, for s = 7 the block[

5 3
1 0

]
,

with the [3, 0]T column in the interior alphabet, has a relative frequency
≈ 1− 0.005. ”

2016-10-10 Predrag RECHECK! Do they still use pacs?

2017-08-31 Boris On my current level of resolution (5 in the morning) the pa-
per is completely ready for submission at any journal of this galaxy.

15.1.1 Cats/nonlin-v2/ GHJSC16 revisions

2020-10-16 Boris dropped formulas
The remarkable feature of the spatiotemporal cat is that its every solu-
tion {xz, z ∈ Zd} is uniquely encoded by a linear transformation to the
corresponding finite alphabet d-dimensional symbol lattice {mz, z ∈ Zd}

2020-10-16 Boris dropped formulas
dropped:
This paper builds explicit 2-dimensional spatiotemporal cat phase space
partitions using winding numbers mz . An alternative, generating Adler-
Weiss partition for the cat map, and a periodic orbit theory for spatiotem-
poral cat in higher dimensions are formulated in the parallel paper [28].

inserted instead later:
This paper builds explicit 2-dimensional spatiotemporal cat symbolic dy-
namics using winding numbers mz . (An alternative construction, based
on generating Adler-Weiss partition for the cat map, and a periodic orbit
theory for spatiotemporal cat in higher dimensions are formulated in the
parallel paper [28].)

2020-10-17 Predrag Removed:
“(An alternative construction, based on generating Adler-Weiss partition
for the cat map, and a periodic orbit theory for spatiotemporal cat in
higher dimensions are formulated in the parallel paper [28].)”

The case s < −2 can be treated analogously.

2020-10-16 Boris added:
The following theorem allows for evaluation of symbol blocks measures.

Theorem 15.1. Let b be a finite sequence of symbols. The corresponding mea-
sure is given by the product

µ(b) = d`|Pb|, d` = 1/U`(s/2), (15.22)

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex602 8289 (predrag–7383)



CHAPTER 15. ARTICLE EDITS

where |Pb| is the area of the polygon Pb defined by the inequalities

0 ≤ x̄i(b) +
U`−i(s/2)

U`(s/2)
x0 +

Ui−1(s/2)

U`(s/2)
x`+1 < 1 , i = 1, . . . , `,(15.23)

0 ≤ x0 < 1, 0 ≤ x`+1 < 1 (15.24)

in the plane (x0, x`+1).

2020-10-16 Predrag Boris has now renamed refeq FreqDecomp to (??). While
Boris-introduced (??) is cited many times, (??) is never cited.

Too many ‘In general,’s

mark as EDITED:
Since all coefficients in (??) are given by rational numbers, the polygon
areas |Pb| are rational too. The same holds for the d` factor. As a result,
measures µ(b) are always rational (see, for example, table 21.1). This al-
lows for their exact evaluation by integer arithmetic. As the factor d` in
(??) is known explicitly, the

2020-10-16 Boris rewrote:

Interior symbols. For blocks composed of interior symbols only, the
inequalities (??) are always satisfied, and Pb are unit squares of area 1.
The corresponding measure

µ(b) = 1/U|b|(s/2), si ∈ A0 , i = 1, . . . |b|

depends only on the length of the block b.

Rationality. Since all coefficients in (??) are given by rational numbers,
the polygon areas |Pb| are rational too. The same holds for the d` fac-
tor. As a result, measures µ(b) are always rational (see, for example, ta-
ble 21.1). This allows for their exact evaluation by integer arithmetic.

2020-10-31 Predrag Dropped: “ The always trustworthy but so un-cited Soviet
scientists (1781–1840) teach us that...’

2020-10-17 Predrag Edited everything down to d = 2 dimensions. Was:
The temporal cat map (??), and the spatiotemporal cat (??) can be brought
into uniform notation and generalized to d dimensions by converting the
spatiotemporal differences to discrete derivatives. This yields the dis-
crete screened Poisson equation [30, 45] for the d-dimensional spatiotem-
poral cat.

The key insight is that d-dimensional spatiotemporal lattice of integers
{mz} = {mz, z ∈ Zd} is the natural encoding of a d-dimensional spa-
tiotemporal state.
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Eq. (20.46) was

(−2 + 2(s− 2))xz = sz , sz ∈ A ,
A = {−2d+ 1,−2d+ 2, · · · , s− 2, s− 1} ,(15.25)

2020-11-12 Boris With the redefined stretching parameter s alphabet runs up
to 2s− 1. s can attain half-integer values.

2020-11-15 Predrag Thanks for noticing that A = {−3,−2, · · · , s− 2, s− 1} in
(20.46) was not updated to (??). Fixed now. Yes, s > 2 can attain half-
integer values, the lowest one is s = 5/2.

2020-11-15 Predrag I do not remember the unnumbered equation after (??) any
longer. Do I know this identity? Does it follow from Green’s function
being the inverse of the linear operator in (??)? From appendix ?? Lattice
Green’s identity? I changed it to 2(s − 2) rather than the old convention
(s− 4).

2020-11-12 Boris Text below (??) - “from which the above ‘generic’ state X is
assumed to be drawn.”
This part is very unclear. To obtain a generic solution X you need to
draw generic (with respect to mu) initial conditions and then apply the
map which is defined in the appendix. This how we check our results
numerically.

2020-11-15 Predrag Ok. Go ahead with the rewrite.

2020-11-12 Boris Have we definedR before the end of “Answer to Q1"?

2020-11-15 Predrag Yes, see 4 lines above Q1..

2020-11-12 Boris s = 2 is the marginal case, with one zero Lyapunov exponent.
Apparently the results are applicable to this case as well, as numerics
shows.

2020-10-17 Predrag In figure ?? we are simulating the marginal, s = 2 (Laplace
operator) case. I do not trust student’s simulations here -it’s so easy to
miss power laws- but it’s too late to do anything about that. We will pass
it over in silence, unhappily.

To Boris: This Dirichlet bc is lots of pain for a no gain. Again I do
not know what even R = [1] means. Or Figure 4. (a) A [5× 3] domain R
I would like to think of as a [4 × 2] domain, centered on (`j + 1)/2. Will
rethink this tomorrow. For now, Good night.
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15.2 Kittens’ CL18blog

Internal discussions of ref. [28] edits: Move good text not used in ref. [28] to
this file, for possible reuse later.

Tentative title: “Is there anything cats cannot do?"

2016-11-18 Predrag A theory of turbulence that has done away with dynamics?
We rest our case.

2016-10-05 Predrag My approach is that this is written for field theorists, fluid
dynamicists etc., who do not see any reason to look at cat maps, so I am
trying to be pedagogical, motivate it as that chaotic counterpart of the
harmonic oscillator, something that field theorists fell comfortable with
(they should not, but they do).

2016-11-13 Predrag The next thing to rethink: Green’s functions for periodic
lattices are in ChaosBook sections D.3 Lattice derivatives and on, for the
Hermitian Laplacian and s = 2. For real s > 2 cat map, the potential
is inverted harmonic oscillator, the frequency is imaginary (Schrödinger
in imaginary time), eigenvectors real - should be a straightforward gen-
eralization. Have done this already while studying Ornstein-Uhlenbeck
with Lippolis and Henninger - the eigenfunctions are Hermite polynomi-
als times Gaussians.

2016-11-13 Predrag We write

(−2 + (s− 2) 11) X = M . (15.26)

screened Poisson equation as

(2 + 2− s)xt = st , (15.27)

Percival and Vivaldi [66] write their Eq. (3.6)

(2 + 2− s)xt = −bt (15.28)

so their “stabilising impulses” bt (defined on interval x ∈ [−1/2, 1/2))
have the opposite sign to our “winding numbers” st (defined on x ∈
[0, 1)).

Did not replace Arnol’d by PerViv choice.

A =

(
0 1
−1 s

)
, (15.29)

qt+1 = pt (mod 1)

pt+1 = −xt + s pt (mod 1) (15.30)
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Predrag’s formula, removed by Boris 2017-01-15:

xt+1 = (s− 1)xt + pt
pt+1 = (s− 2)xt + pt

(mod 1) , (15.31)

Predrag’s formula, removed by Boris 2017-01-15:
As the 3-term discretization of the second time derivative d2/dt2 (central
difference operator) is 2xt ≡ xt+1 − 2xt + xt−1 (with the time step set to
∆t = 1), the temporal cat map (15.38) can be rewritten as the discrete time
Newton equation for inverted harmonic potential,

(2 + 2− s)xt = st . (15.32)

a d-dimensional spatiotemporal pattern {xz} = {xn1n2···nd} requires d-
dimensional spatiotemporal block {mz} = {mn1n2···nd} ,

2016-08-20 Predrag “ The fact that even Dyson [32] counts cat map periods
should give us pause - clearly, some nontrivial number theory is afoot. ”

Not sure whether this is related to cat map symbolic dynamics that we
use, dropped for now: “ Problems with the discretization of Arnol’d cat
map were pointed out in refs. [13, 14]. Ref. [14] discusses two partitions
of the cat map unit square. ”

“ and resist the siren song of the Hecke operators [54, 62] ”

2016-05-21 Predrag Behrends [10, 11] The ghosts of the cat is fun - he uncovers
various regular patterns in the iterates of the cat map.

2016-09-27 Boris Cat maps and spatiotemporal cats

In the spatiotemporal cat, “particles” (i.e., a cat map at each periodic lat-
tice site) are coupled by the next-neighbor coupling rules:

qn,t+1 = pnt + (s− 1)qnt − qn+1,t − qn−1,t −mq
n,t+1

pn,t+1 = pnt + (s− 2)qnt − qn+1,t − qn−1,t −mp
n,t+1

The symbols of interest can be found by:

snt = qn,t+1 + qn,t−1 + qn+1,t + qn−1,t − s qnt .

2016-10-27 Boris Gutkin and Osipov [41] write: “In general, calculating peri-
odic orbits of a non-integrable system is a non-trivial task. To this end
a number of methods have been developed,” and then, for a mysterious
reasons, they refer to ref. [8].

2016-11-07 Predrag The dynamical systems literature tends to focus on local
problems: bifurcations of a single time-invariant solution (equilibrium,
relative equilibrium, periodic orbit or relative periodic orbit) in low-dim-
ensional settings (3-5 coupled ODEs, 1-dimensional PDE). The problem
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that we face is global: organizing and relating simultaneously infinities of
unstable relative periodic orbits in∞-dimensional
state spaces, orbits that are presumed to form the skeleton of turbulence
(see ref. [34] for a gentle introduction) and are typically not solutions that
possess the symmetries of the problem. In this quest we found the stan-
dard equivariant bifurcation theory literature not very helpful, as its gen-
eral focus is on bifurcations of solutions, which admit all or some of the
symmetries of the problem at hand.
4

2016-11-17 Boris Unlike the systems studied in ref. [17], spatiotemporal cat
cannot be conjugated to a product of non-interacting cat maps; a way
to see that is to compare the numbers of periodic orbits in the two cases
– they differ.

2016-11-17 Predrag The cat map partitions the phase space into |A| regions,
with borders defined by the condition that the two adjacent labels k, k+1
simultaneously satisfy (15.26),

x1 − sx0 + x−1 − ε = k , (15.33)

x1 − sx0 + x−1 + ε = k + 1 , (15.34)

x2 − sx1 + x0 = s1 , (15.35)

x1 − sx0 + x−1 = s0 , (15.36)

(x0, x1) = (0, 0)→ (0, 0) , (1, 0)→ (0,−1) , (0, 1)→ (1, s) , (1, 1)→ (1, s−1)

2016-11-05 Predrag Dropped this:
Note the two symmetries of the dynamics [49]: The calculations general-
ize directly to any cat map invariant under time reversal [51].

2016-11-11 Boris “Deeper insight” into d = 2 symbolic dynamics Informa-
tion comes locally (both in space and time). Allows to understand corre-
lations between invariant 2-tori. Connection with field theories.

2016-12-12 Predrag Predrag text, recycle: “ Here the piecewise linearity of the
spatiotemporal cat enables us to go far analytically. Essentially, as the
cat map stretching is uniform, distinct admissible symbol blocks count
all blocks of a given shape (they all have the same stability, and thus the
same dynamical weight), and that can be accomplished by linear, Green’s
function methods. ”

4Predrag 2016-11-15: Homework for all cats: Write the correct (??) for an n-cycle. For inspira-
tion: check ChaosBook.org discussion of the kneading theory, where such formula is written down
for unimodal maps. Might require thinking.

Hint: the answer is in the paper:)
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2017-08-28 Predrag “Average state” depends on bc’s. Average state GHJSC16.tex
eq. catMapAverCoord is computed for the very unphysical Dirichlet bc’s
xz = 0 for z ∈ R which breaks translation invariance. If one takes the
much gentler, translationally invariant doubly periodic b.c., the “average
state” x̄z is the invariant 2-torus periodic point, a more natural choice.

2017-08-28 Predrag Probably lots of repeats with existing text:

Consider a linear, area preserving map of a 2-torus onto itself 5

(
xt+1

pt+1

)
= A

(
xt
pt

)
(mod 1) , A =

(
s− 1 1
s− 2 1

)
, (15.38)

where both xt and pt belong to the unit interval. For integer s = trA > 2
the map is referred to as a cat map [4]. It is a fully chaotic Hamiltonian dy-
namical system, which, rewritten as a second-order difference equation
in (xt, xt−1) takes a particularly simple form (??) with a unique integer
“winding number” st at every time step t ensuring that xt+1 lands in the
unit interval [66]. While the dynamics is linear, the nonlinearity comes
through the ( mod 1) operation, encoded in st ∈ A, where A is finite
alphabet of possible values for st.

A generalization to the spatiotemporal cat map is now immediate. Con-
sider a 1-dimensional spatial lattice, with field xn,t (the angle of a kicked
rotor “particle” at instant t) at site n. If each site couples only to its nearest
neighbors xn±1,t, and if we require (1) invariance under spatial transla-
tions, (2) invariance under spatial reflections, and (3) invariance under
the space-time exchange, we arrive at the 2-dimensional Euclidean cat
map lattice (??). Note that both equations (??), (??) can be brought into
uniform notation and generalized to d dimensions by converting the spa-
tialtemporal differences to discrete derivatives. This yields the Newton
(or Lagrange) equation for the d-dimensional spatiotemporal cat (??) where
2 is the discrete d-dimensional Euclidean space-time Laplacian, given by
2xt ≡ xt+1−2xt+xt−1, 2xn,t+1 ≡ xn,t+1+xn,t−1−4xn,t+xn+1,t+xn−1,t

in d = 1 and d = 2 dimensions, respectively. The key insight (an insight
that applies to all coupled-map lattices, and all PDEs modeled by them,
not only the system considered here) is that a d-dimensional spatiotem-
poral pattern {xz} = {xz, z ∈ Zd} is described by the corresponding d-
dimensional spatiotemporal symbols block {mz} = {mz, z ∈ Zd} , rather
than a single temporal symbol sequence (as one is tempted to do when
describing a finite coupled Nd−1-“particle” system).

5Predrag 2019-10-31: compare with(
qt+1

pt+1

)
= J

(
qt
pt

)
(mod 1) , J =

(
a c
d b

)
, (15.37)

where a, b, c, d are integers whose precise values do not matter, as long as det J = 1, i.e., the map
is area-preserving.
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the cat map in one dimension (temporal dynamics of a single “particle”)
and for the spatiotemporal cat (??) in d dimensions (temporal dynam-
ics of a (d-1)-dimensional spatial lattice of Nd−1 interacting “particles,”
N → ∞). Linearity of (??) enables us to solve for {xz} given {sz} by
lattice Green’s function methods. However, dependence on the parame-
ter s introduces an infinite set of grammar rules for admissible itineraries
{sz}. In this paper we focus on the d = 1 case (introduced in ref. [66]),
and the d = 2 case (introduced in ref. [41]).

2018-11-16 Predrag some potential verbiage for abstract, introduction:

Recent advances in fluid dynamics reveal that the recurrent patterns ob-
served in turbulent flows result from close passes to unstable invariant
solutions of Navier-Stokes equations. While hundreds of such solutions
been computed, they are always confined to small computational do-
mains, while the flows of interest (pipe, channel, plane flows), are flows
on infinite spatial domains. To describe them, we recast the Navier-
Stokes equations as a spacetime theory, with all infinite translational di-
rections treated on equal footing.

We illustrate this by solving what is arguably the simplest classical field
theory, the discretized screened Poisson equation, or the "spatiotemporal
cat", and describe its repertoire of admissible spatiotemporal patterns.
We encode these by spatiotemporal symbol dynamics (rather than a sin-
gle temporal string of symbols).

In the spatiotemporal formulation of turbulence there are no periodic or-
bits, as there is no time evolution. Instead, the theory is formulated in
terms of unstable spacetime tori, which are minimal tilings of spacetime.
The measure concept here is akin to the statistical mechanics understand-
ing of the Ising model - what is the likelihood of occurrence of a given
spacetime configuration?

Herding cats

In the spatiotemporal formulation of turbulence the zeta functions (Fred-
holm determinants) are presumably 2-d or (1+3)-d Laplace/Fourier trans-
forms of trace formulas, one dimension for each continuous symmetry:
one Laplace transform for time, and one Fourier transform for each infi-
nite spatial direction.

We have not written either the trace or the determinant formulas yet. The
spatiotemporal cat periodic points (invariant 2-tori) counting suggests a
way, so far unexplored.

We sketch how these are to be encoded by spatiotemporal symbol dy-
namics, in terms of minimal exact coherent structures. To determine
these, radically different kinds of codes will have to be written, with
space and time treated on equal footing.
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• review cat map in damped Poisson formulation

• explain solution for temporal cat

• show few plots of 2D solutions

• future: computational literature that advocates for spatiotemporal
computations

2018-02-16 Predrag We need a simple explanation for why the 2-dimensional
1 − An and the linearization of the periodic orbit 2n-dimensional orbit
Jacobian matrix give the same multipliers. (DONE since)

2019-05-20 Han My action of cat map is different from Keating’s action [50]
by two constant terms, which do not affect the computation.

2019-05-23 Han I rewrote the section of Perron-Frobenius operators and peri-
odic orbits theory of cat maps and moved the original version here.

2018-02-16 Predrag Dropped this: “ , both for the cat map (??) in one dimen-
sion (temporal dynamics of a single “particle”) and for the spatiotempo-
ral cat (??) in d dimensions (temporal dynamics of a (d-1)-dimensional
spatial lattice of Nd−1 interacting “particles,” N → ∞). Given a set of
{sz}, the linearity of (??) enables us to find solution for {xt} by lattice
Green’s function methods.

However, for our purposes, Adler-Weiss codes still have one fatal short-
coming, and are therefore not used in this paper: for L coupled cat maps
the size of the alphabet |A| (the number of partitions of the phase space,
a 2L-dimensional unit hypercube) grows exponentially with L.
6

2019-08-10 Predrag .

Nn = |det (An − I)| = |tr (An) − 2 | = |Λn + Λ−n − 2 | , (15.39)

if , or
Nn = |tr (An)| = |Λn + Λ−n | , (15.40)

if det (An) = −1. Here stability multipliers (Λ , Λ−1) real, with a positive
Lyapunov exponent λ > 0,

Λ = eλ = (s+
√

(s− 2)(s+ 2))/2 , s = tr J = Λ + Λ−1 . (15.41)

of A.

2018-12-01 Predrag Give reference for (15.40). I see it nowhere in Isola [47] or
Keating [50].

6Predrag 2018-04-05: In the “Lagrangian” coordinates {xt−1, xt+1} formulation the 2-cycles
are symmetric, as in (20.37), and the fixed point is very special, as it sits in the maximally invariant
subspace.
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2019-06-06 Han I cannot find (15.40) either, but it can be proved by explicitly
computing the determinant.

The orbit Jacobian matrix Jn is given by (15.113).
For our problem, −L12[i, i+ 1] = 1.

In practice one can supply only symbol sequences of finite length, in which
case the truncated (1.122) returns a finite trajectory xt, with a finite accuracy.
However, a periodic orbit p of period n (an n-cycle) is infinite in duration, but
specified by a finite admissible block p = [s1s2 · · · sn]. To generate all admis-
sible n-cycles for a given n, list all orbit symbol sequences [s1s2, · · · sn] , (one
string per its n cyclic permutations, not composed from repeats of a shorter
cycle), apply (1.122) with cyclic [n×n] gtt′ , and then apply modulus one to all
points in the cycle,

xt =

n+t−1∑
t′=t

gtt′st′ mod 1 . (15.42)

If the cycle is admissible, mod 1 does not affect it. If it is inadmissible, add
the string to the list of pruned symbol strings. One can even start with any
random sequence [s1s2 · · · sn], have mod 1 corral back the stray xt’s into the
unit interval, and in this way map any inadmissible symbol sequence into an
admissible trajectory of the same duration. 7

2016-11-15 Predrag Homework for all cats: Write the correct (15.42) for an n-
cycle. For inspiration: check ChaosBook.org discussion of the kneading
theory, where such formula is written down for unimodal maps. Might
require thinking.

Hint: the answer is this paper :)

2019-06-10 Han Currently the argument of ref. [28] (this paper) is organized
as:

1. Hamiltonian cat map

2. Periodic orbits theory of cat maps

3. Lagrangian cat map

4. Spatiotemporal cat (Predrag: I call it simply spatiotemporal cat, as
it is not a “map”)

In the section of Hamiltonian cat map we also introduced the Adler-Weiss
generating partition and used the Markov diagram of this partition to
compute the topological zeta function.

We need to introducetemporal cat before the discussion of the periodic
orbit theory. Although we can also get the temporal cat (6.91) from the
linear code (15.26), we still need to write down the Lagrangian explicitly
to define the orbit Jacobian matrix, (Jn)ij = ∂2L(x)/∂xi∂xj . Then we

7Predrag 2018-12-03: Mixing st′ and mod 1 strikes me as profoundly wrong.
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can use the Hill’s formula to show that the two counting methods are
equivalent.

2019-10-10 Predrag Rewrite the derivation of the Hill-Poincaré-Van Vleck sta-
bility matrix (9.55) for symplectic / Lagrangian orbit Jacobian matrix us-
ing the shift operator (8.27).

2019-06-25 Han I added Invariant tori in d-dimensional spatiotemporal cat that in-
troduces the method of finding eigenmodes in d-dimensional spatiotem-
poral cat.

I also wrote catMapLatt.tex, refsect s:2DcatCounting Counting invariant 2-
tori, which is an alternative version that starts from 2D cat map without
giving the formula of general d-dimensional spatiotemporal cat. I feel
this is less clear than starting with the d-dimensional spatiotemporal cat,
but it follows directly from the section on temporal cat.

2019-08-13 Predrag catMapLatt.tex was an experimental, alternative version that
starts from d = 2 cat map without giving the formula of general d-dim-
ensional spatiotemporal cat. Now kept only in blogCats.tex.

2019-08-04 Predrag Note configuration part of the map (15.43) differs from
Percival-Vivaldi [66] (2.1). However, it agrees with MacKay, Meiss and
Percival [60] definition (3.4), and Meiss [61] (no discussion of cat maps)
definition of the standard map (1.36).

2019-08-04 Predrag Percival-Vivaldi [66] get (??) immediately, their (2.2) for
any force from their Hamiltonian (2.1), rather than our Hamiltonian of
form

qt+1 − qt = pt+1 (mod 1), (15.43)
pt+1 − pt = P (qt) , (15.44)

2019-08-01 Han I changed the letter of action (20.192) from L to W , which is
the same letter as in [60, 61]. L is the generating function, and W is the
sum of L.
PC 2019-8-03 Yes, but check defsKittens.tex. S has been defined your way
since 07jan2018.

2019-08-05 Predrag Rewrite (6.62) as:

qt+1 = qt + pt + (s− 2)qt − st+1
q

pt+1 = pt + (s− 2)qt − st+1
q − (st+1

p − st+1
q) . (15.45)

Comparing this with the Hamiltonian mapping (15.43,15.44) we identify
the impulse F (qt)

qt+1 = qt + pt+1

pt+1 = pt + (s− 2)qt − st+1
p . (15.46)
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where the st+1
q seems happily absorbed into pt+1. The generating func-

tion (1-step Lagrangian density) is

2019-05-16 Han For the cat map, the problem of solving for a periodic string
eventually becomes solving the linear equation (6.91) for x’s. For any set
of integers m, there is a solution x. But the solution is admissible only
when each one of the field values in x is larger or equal to 0 and smaller
than 1.

2019-05-16 Han Will need to change the range of xz to −1/2 ≤ xz < 1/2 if we
add the shadowing to this paper.

2019-08-06 Predrag We shall refer here to the least unstable of the cat maps
(15.37), with s = 3, as the ‘Arnol’d’, or ‘Arnol’d-Sinai cat map’ [4, 29].

2019-05-27 Predrag I see no (1.19) in Percival and Vivaldi [66, 67] or Isola [47] -
papers preceding Keating [50], though it is implicit in Isola [47] eq. (11).

2019-06-06 Han The method of using the determinant det (An − I) to count
periodic points is given by Keating [50] eq.(28) and the following para-
graph.

2019-06-26 Predrag Currently the argument flow of ref. [28] (this paper) is:

1. Bernoulli map

(a) coin flip map
(b) temporal Bernoullii orbits, linear code, discrete Fourier trans-

form appendix ??

2. Hamiltonian cat map

(a) Percival-Vivaldi map
(b) Appendix: Adler-Weiss generating partition, transition graph

3. Temporal cat

(a) Hamiltonian→ Lagrangian
(b) screened Poisson equation

4. Periodic orbits theory of cat maps

(a) orbit counting
(b) Adler-Weiss zeta function of transition graph
(c) Hamiltonian volume formula
(d) Lagrangian orbit Jacobian matrix
(e) Hill’s formula

5. Spatiotemporal cat (Predrag: spatiotemporal cat, as it is not a “map”)

(a) time, space Laplacians→ screened Poisson equation
(b) Lagrangian
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(c) orbit Jacobian matrix, reciprocal lattice, spectrum formula for
volume

In language of statistical mechanics and q state clock models, in this paper
we focus on the description of the high-temperature paramagnetic (or
disordered) phase.

Although we can also get the temporal cat (6.91) from the linear code
(15.26), we still need to write down the Lagrangian explicitly to define
the orbit Jacobian matrix, (Jn)ij = δ2L[X]/δxiδxj . Then we can use the
Hill’s formula to show that the two counting methods are equivalent.

2019-06-26 Predrag which symbol blocks are admissible?

The linearity of the spatiotemporal cat enables us to

standard crystallographic methods [31] and integer lattices counting [9]
enable us to count spatiotemporally finite blocks, and give explicit for-
mulas for the number of invariant d-torus solutions for blocks of any size.

coupled map lattice models

the spacetime discretized

dynamics of small-scale spatial structures modeled by discrete time maps

single cell dynamics attached to lattice sites,

coupling to neighboring sites

the Gutkin and Osipov [41] d-dimensional coupled cat maps lattice (“spa-
tiotemporal cat” for short, in what follows), a spatiotemporal generaliza-
tion of the Percival and Vivaldi [66] linear code for temporal evolution of
a single cat map

from the cat maps (modeling the Hamiltonian dynamics of individual
“particles”) at sites of a (d−1)-dimensional spatial lattice, linearly coupled
to their nearest neighbors.

Before turning to the spatially infinite field theory in sect. ??, it is instruc-
tive to motivate our formulation of the spatiotemporal cat by investigat-
ing the temporal lattice Bernoulli and cat systems (i.e., ‘spatiotemporal
lattices’ with only one site in the spatial direction).

2017-01-25 Predrag Do not remember where it came from, but it sure looks
wrong: Action of an invariant 2-torus p is

Sp = −1

2

T∑
t=1

L∑
n=1

sntxnt (15.47)

Still, why the ‘-’ sign?

2017-09-15 Boris The measures of the following blocks are equal by D4 sym-
metry, see the example in ref. [40], following (??).
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2019-08-06 Predrag For a discrete Euclidean space-time the Laplacian is given
by

2xt ≡ xt+1 − 2xt + xt−1 (15.48)
2xnt ≡ xn,t+1 + xn+1,t − 4xnt + xn,t−1 + xn−1,t (15.49)

in d = 1 and 2 dimensions, respectively.

2018-02-09 Predrag If I understood his remark correctly, Howie Weiss sug-
gested that we read and cite Weiss-Bowen paper. But I cannot find such
paper anywhere where?

2019-08-04 Predrag By MacKay, Meiss and Percival [60, 61] convention (3.2),
and Li and Tomsovic [55] convention (9) we should always haveL(qt, qt+1)
. Unfortunately Keating [50] definition (3) corresponds to L(qt, qt−1), but
we do not take that one.

2019-08-08 Han We derived generating function because the orbit Jacobian ma-
trix is defined by the second order partial derivatives of the generating
function, −(J )ij = ∂2L(x)/∂xi∂xj . This concept is used in the Hill’s
formula (??) [15]. I think it’s fine to keep that in the appendix.

2019-08-08 Han In examples of sect. 15.3.1 and sect. ?? I used the symmetric
x ∈ [−1/2, 1/2) field range of values. And the shadowing that we did
before is also in the symmetric domain. I can change them back to the
asymmetric x ∈ [0, 1) domain if needed, since in sect. ?? the alphabet (??)
is asymmetric.

2019-08-08 Han Invariant 2-tori (??) written out:

X33 =
1

9

[
−3 3

]
, X22 =

1

9

[
−2 2

]
, X11 =

1

9

[
−1 1

]
,

X00 =
1

9

[
0 0

]
, X11 =

1

9

[
1 −1

]
, X22 =

1

9

[
2 −2

]
,

X33 =
1

9

[
3 −3

]
, X44 =

1

9

[
4 −4

]
. (15.50)

2019-08-10 Predrag The example of figure ?? is a very important, great you are
writing it up. Our notational convention, in the spirit of (1.22), (15.50):

X44 =
1

9

[
4 −4

]
, (15.51)

use M array as a subscript of the periodic state X, (the label for orbit p).

2019-08-12 Han I have figures in the blog tried to visualize the orbit Jacobian
matrix (15.55). The figures and the post are moved here. We can only
visualize this for n ≤ 3. A longer period can only be shown in higher
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dimensional space. The two figures in figure 20.37 are made with asym-
metric admissible domain x ∈ [0, 1). If these two figures are helpful I can
redo these using the symmetric domain x ∈ [−1/2, 1/2).

2019-08-08 Predrag For (15.113), refer to appendix ??, full of Toeplitz, discrete
Fourier, Chebyshev

Expand the determinant of Jn by minors at the first row, use Un(x) re-
currence relations and a relation between Un(x)’s and Tn(x)’s to derive
(??).

2019-01-08 Han I made figure 20.37 to show how the volume (area) of the
stretched torus counts the number of periodic points. Consider the cat
map with s = 3. The periodic solutions satisfy:

J X = −M , (15.52)

where Jn is the orbit Jacobian matrix of the periodic orbit with period n.
If any x on the torus satisfies (20.154), this x is a periodic solution. So we
can count the periodic points using Jn to stretch the torus and counting
the number of integer points enclosed in the stretched region. I plotted
the stretched region of periodic solutions with n = 2 and n = 3. The orbit
Jacobian matrix for n = 2 and n = 3 are:

−J =

(
3 −2
−2 3

)
(15.53)

−J =

 3 −1 −1
−1 3 −1
−1 −1 3

 (15.54)

Let the range of the field value x be 0 ≤ x < 1. Figure 20.37 (a) shows
the number of periodic points with length 2. The unit square enclosed by
black lines is the available region of (xn, xn+1). The parallelogram with
red borders are the region of the unit square stretched by the orbit Jaco-
bian matrix J . There are 4 blue dots which are the integer points in the
fundamental parallelepiped. Each one of these blue dots corresponds to
a periodic point. The 4 green dots are integer points on the vertices of
the fundamental parallelepiped. These 4 points contribute to 1 periodic
point. So there are 5 periodic points with period 2, corresponding to 3
periodic solutions (1 fixed point and 2 2-cycles). The area of this funda-
mental parallelepiped is 5.

Figure 20.37 (b) shows the periodic points with length 3. The square cube
with black border is the available region of torus (xn, xn+1, xn+2). After
stretched by orbit Jacobian matrix J it becomes the fundamental par-
allelepiped with red border. There are 6 blue dots which are the inte-
ger points completely enclosed in the fundamental parallelepiped. The
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8 green dots are integer points on the vertices of the fundamental par-
allelepiped, which contribute to 1 periodic points. There are 18 pink
points which are integer points on the surface of the fundamental paral-
lelepiped. These 18 points contribute to 9 periodic points. So the number
of periodic points is 16 which is also the volume of the fundamental par-
allelepiped

. I have a Mathematica notebook with this 3d plot in siminos/figSrc/han/Mathematica
/HLCountingFigures.nb so you can rotate it.

2019-08-13 Predrag I am starting to worry that you have not only forgotten
point groups (5.189) from our group theory course, but also the discrete
Fourier transforms?

How do you prove formulas such as (??)? Are you sticking the formula
into Mathematica? The product of eigenvalues of H ,

Nn = detH =

n−1∏
j=0

[
s− 2 cos

(
2πj

n

)]
, (15.55)

goes over all eigenfunctions exp 2πj/n, so one presumably uses the or-
thonormality of discrete Fourier eigenmodes in replacing cos’s by a poly-
nomial in s.

Is that how you are trying to simplify (??)?

2019-08-13 Han I get (??) by calculating the determinant of the circulant orbit
Jacobian matrix directly (basically a recurrence relation). I haven’t fig-
ured out how to get the Chebyshev polynomial using the orthonormality
of discrete Fourier eigenmodes...

2020-01-11 Predrag Where is that derivation written down in this blog, or any-
where?

2019-08-13 Predrag I remember this funky argument from your blog (right?),
was never a fan. If you just copied that to here with on further edits, we
can erase it again.

Try substituting (15.55) into topological zeta function (??), see whether
there are some doable sums over discrete Fourier eigenvalues exp 2πjk/n?

2019-08-21 Han I redid the shadowing plot in a larger [18 × 18] block with
s = 5. The algorithm is same as before:

(1) Start with a random admissible state X0 with −1/2 ≤ xz < 1/2. Cal-
culate the corresponding symbol block M0. The szs in this symbol block
are not integers. So we need to round these szs to the nearest integers
and get symbol block M1

(2) Use the Green’s function and the integer symbol block M1 to calculate
the state X1. If the maximum xmax is larger or equal to 1/2, calculate the
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(a)

-3

-2

-1

0

1

2

3

(b)

-3

-2

-1

0

1

2

3

Figure 15.11: (a) and (b) are two admissible [18×18] blocks corresponding to
the two distinct invariant 2-tori of figure 15.12. They coincide within the shared
[12×12] block MR, regionR indicated by the black border.

(a)

-0.49

-0.33

-0.16

0

0.16

0.32

0.48

(b)

-0.49

-0.33

-0.16

0

0.16

0.33

0.48

Figure 15.12: (a) and (b) are two invariant 2-tori whose symbol arrays are given
by the [18× 18] blocks of symbols of figure 15.11.

distance δxmax = xmax− 1/2. Round up sδxmax (and call it δsmax). Then
change the corresponding symbol smax to smax− δsmax. If the minimum
xmin is smaller than 1/2, calculate the distance δxmin = −xmin − 1/2.
Round up sδxmin (and call it δsmin). Then change the corresponding
symbol smin to smin + δsmin.

(3) Now we get a new symbol block M2. Repeat step (2) until all xz in X
are in the admissible range.

Using this method we get two periodic blocks of symbols shown in fig-
ure 15.11. In these two blocks of symbols the sz within the [12 × 12]
square region with black borders are the same. The periodic field gener-
ated by these two blocks of symbol are shown in figure 15.12. Figure 15.13
shows the pointwise distance and the logarithm of the absolute value of
the pointwise distance between the two invariant 2-tori in figure 15.12.

2019-08-21 Han I also did the shadowing plot of [18×18] blocks with a smaller
shared region of symbols. As shown in figures 15.14 and 15.15, the shared
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(a)

-0.94

-0.47

0

0.45

0.89

(b)

-9.13

-7.30

-5.50

-3.70

-1.90

-0.06

Figure 15.13: (a) The pointwise distance between the two invariant 2-tori of
figure 15.12. (b) The logarithm of the absolute value of the distance between
the two invariant 2-tori indicate exponential shadowing close to the center of
the shared MR.

(a)

-3

-2

-1

0

1

2

3

(b)

-3

-2

-1

0

1

2

3

Figure 15.14: (a) and (b) are two admissible [18×18] blocks corresponding to
the two distinct invariant 2-tori of figure 15.15. They coincide within the shared
[8×8] block MR, regionR indicated by the black border.

region is a [8× 8] block.

What I’m considering is: the symbols are on invariant 2-tori, so as we go
further from the center of the shared region, we are getting closer to the
shared region of the next tile. Using a smaller shared region we can prob-
ably reduce the effect of the next shared region. But compare figure 15.13
(b) and figure 15.16 (b), the logarithm of the distance is not too different.
So I guess we don’t need these figures with small shared region...

Also I think this exponential shadowing only exist in the region with
shared symbols? In figure 15.13 (b) and figure 15.16 (b), the distance out-
side of the shared region looks random, while the distance within the
shared region shrink exponentially as we go closer to the center.

2019-08-21 Han Another thing I tried is to generate 11 different [18 × 18] in-
variant 2-tori shared a same [12× 12] block of symbols. Take one of these
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(a)

-0.48

-0.33

-0.16

0

0.17

0.33

0.49

(b)

-0.49

-0.33

-0.16

0

0.16

0.33

0.48

Figure 15.15: (a) and (b) are two invariant 2-tori whose symbol arrays are given
by the [18× 18] blocks of symbols of figure 15.14.

(a)

-0.87

-0.44

0

0.45

0.89

(b)

-8.63

-6.90

-5.20

-3.50

-1.80

-0.12

Figure 15.16: (a) The pointwise distance between the two invariant 2-tori of
figure 15.15. (b) The logarithm of the absolute value of the distance between
the two invariant 2-tori indicate exponential shadowing close to the center of
the shared MR.
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(a)

0.01

0.17

0.35

0.52

0.69

(b)

-7.35

-5.60

-3.90

-2.10

-0.37

Figure 15.17: (a) The average of the absolute value of the pointwise distance
between the one invariant 2-torus and other 10 different invariant 2-tori with
shared [12 × 12] block of symbols. (b) The logarithm of the average of the
absolute value of the distance between the invariant 2-tori indicate exponential
shadowing close to the center of the shared MR.

invariant 2-tori and compute the distance between this invariant 2-torus
and other 10 invariant 2-tori, then compute the ensemble average. The
result is shown in figure 15.17, which looks very similar to figure 15.13.
Perhaps using a larger group of ensemble we can get a better result?

2019-08-22 Han I generated 500 different invariant 2-tori with a shared [12×12]
block of symbols at the center, labeled as X1,X2, . . . ,X500. Then I compute
the distance between Xi and Xi+250 where i goes from 1 to 250, and get
250 distance field. Figure 15.18 is the log plot of the absolute value of the
distance field. Figure 15.18 (a) is the logarithm of the distance between
field X1 and X251, and (b) is the the logarithm of the average of the 250
distance field. By doing the average, the distance field becomes smooth.
Figure 15.19 is the cross section of figure 15.18 through the center of the
field. In figure 15.19 (b) the logarithm of the distance is straight line in
the region with shared symbols, which shows that the distance shrink
exponentially as getting closer to the center.

In figure 15.19 (b), the logarithm of the distance outside of the shared
symbol block is approximately equal to ln(1/3) = −1.0986, where 1/3
is the average distance between two random numbers within the range
[−1/2, 1/2).

I still need to add axis labels to these figures... (It seems like Mathematica
doesn’t allow me to use LaTeX for writing the labels.)

2019-09-05 Predrag dropped this:
(x 7→ Ax |x ∈ T2 = R2/Z2 ; A ∈ SL2(Z)) ,

on no time-forward map,

the discrete Euler–Lagrange equations (??) take form of 3-term, second-
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(a) (b)

Figure 15.18: (a) The logarithm of the absolute value of the pointwise distance
between the solutions X1 and X251 with shared [12×12] block of symbols at the
center. (b) The logarithm of the average of the absolute value of 250 different
distance fields.

(a)

5 10 15

-7

-6

-5

-4

-3

-2

-1

(b)

5 10 15

-6

-4

-2

Figure 15.19: (a) The cross section through the center of the figure 15.18 (a).
(b) The cross section through the center of the figure 15.18 (b). The logarithm
of the distance decreases linearly as the coordinate of the field approaches the
center of the shared symbol block.
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order difference equations (3.14)

−xt+1 + V ′(xt)− xt−1 = st .

Following eqs. PerViv2.1aB and PerViv2.1bB: Here 2πq is the angle of the
rotor, p is the momentum conjugate to the angular coordinate q, the an-
gular pulse P (q) = P (q + 1) is periodic with period 1, and the time step
has been set to ∆t = 1. Eq. (15.43) says that in one time step ∆t the con-
figuration trajectory starting at qt reaches qt+1 = qt + pt+1∆t, and (15.44)
says that at each kick the angular momentum pt is accelerated to pt+1

by the force P (qt)∆t. As the values of q differing by integers are identi-
fied, and the momentum p is unbounded, the phase space is a cylinder.
However, one can analyze the dynamics just as well on the compactified
phase space, with the momentum wrapped around a circle, i.e., adding
mod 1 to (15.44). Now the dynamics is a toral automorphism acting on
a (0, 1] × (0, 1] phase space square of unit area, with the opposite edges
identified.

We shall refer here to the least unstable of the cat maps (15.37), with s = 3,
as the ‘Arnol’d cat map’ [4, 29], and to maps with integer s ≥ 3 as ‘cat
maps’.

For spatiotemporal cat (??) the field xnt takes values in the LT-dimen-
sional unit hyper-cube X ∈ [0, 1)LT , where L is the ‘spatial’, and T the
‘temporal’ lattice period.

2019-12-15 Predrag move to GuBuCv17.tex:
Flows described by partial differential equations are in principle infinite
dimensional, and, at first glance, turbulent dynamics that they exhibit
might appear hopelessly complex. However, what is actually observed
in experiments and simulations is that turbulence is dominated by reper-
toires of identifiable recurrent vortices, rolls, streaks and the like [44].
Dynamics on a low-dimensional chaotic attractor can be visualized as
a succession of near visitations to exact unstable periodic solutions of
the equations of motion, interspersed by transient interludes [23]. In the
same spirit, the long-term turbulent dynamics of spatially extended sys-
tems can be thought of as a sequence of visitations through the repertoire
of admissible spatiotemporal patterns, each framed by a finite spatiotem-
poral window. The question we address here is: can states of a strongly
nonlinear field theory be described by such repertoires of admissible pat-
terns explored by turbulence? And if yes, what is the likelihood to ob-
serve any such pattern?

Such questions have been studied extensively for systems of small spatial
extension, where the attractor dimension is relatively small [20, 25, 27, 53,
76]. However, going from spatially small to spatially infinite systems will
require completely new tools. For small systems the long time dynamics
can be thought of as motion of a point within an inertial manifold of a
moderate dimension.
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2019-12-14 Predrag restore this somewhere in cat map discussions:
The key property of hyperbolic flows is that nearby trajectories can shadow
each other for finite times controlled by their stability exponents. One
common way to quantify ‘nearness’ is to determine the minimal Euclidean
distance between pairs of trajectories. That kind of distance is not in-
variant under symplectic transformations, and is thus meaningless in the
Hamiltonian phase space. Here the notion of action comes to rescue: the
symplectic invariant distance between a pair of shadowing orbits is given by the
difference of their actions [55].

2019-12-20 Predrag dropped
Incorporate spatiotemp/Examples/tempStab3cyc.tex, eq. tempStab3cyc:inv

2019-08-04 Predrag to Han - Please make sure that all definitions and signs
agree with the discrete lattice sections of ChaosBook [23].

2020-01-28 Han To prove that the product of cosines gives Chebyshev polyno-
mial, the simplest way is to use the identity from Grashteyn and Ryzhik [37]
Table of Integrals, Summations and Products (Academic Press, New York,
1965) 1.395.2:

coshnx− cosny = 2n−1
n−1∏
k=0

{
coshx− cos(y +

2kπ

n
)
}
. (15.56)

Let y = 0, coshx = s/2, and multiply both side by 2, (15.56) becomes:

n−1∏
k=0

{
s− 2 cos(

2kπ

n
)
}

= 2{cosh[n arcosh(s/2)]− 1} . (15.57)

By the definition of the Chebyshev polynomials of the first kind:

Tn(x) = cosh(n arcoshx), ifx ≥ 1 ,

the right hand side of (15.57) is 2Tn(s/2)− 2, same as (??).

2019-12-18 Predrag turn the final version into spatiotemp/chapter/examSawtoothLin.tex
examples, then move to ChaosBook.

2020-01-24 Predrag I think (now commented out) reffigfig:FundPar (b) was il-
legal - we are not allowed to define a Bravais cell off the unit cell, on the
1/2 integer lattice. Removed, unless Han has a counterargument. It is
kept for the record in spatiotemp/chapter/catHamilton.tex

2020-01-21 Han A possible problem with (??) is that J could be negative. And
here we have the one time step Jacobian matrix instead of a scalar s so
I’m not sure if we can expand ln( 11− J⊗ σ−1) as a series in J⊗ σ−1...
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2020-01-27 Predrag Dropped: This overcounting happens if the initial unit square
is on the integer lattice. If initial states lie off the integer lattice, within the
symmetric unit square (−1/2, 1/2] × (−1/2, 1/2] (Wigner-Seitz cell?), the
fundamental parallelogram reffigfig:FundPar (b) all 5 integer points lie
within the fundamental parallelogram, without any over-counting. This
is not the situation studied here, so we will not pursue it further.

We are not aware of any useful visualizations of orbit Jacobian matrix
fundamental parallelepiped for n > 3 temporal cat and 2- and d-dimen-
sional spatiotemporal cat of sect. ??.

—————————————————————

(−2 + s− 4)0,0,i2,j2 = (J0,0)i2,j2 =

[
−1 −1 0
5 −1 −1

]
i2,j2

,

(−2 + s− 4)0,1,i2,j2 = (J0,1)i2,j2 =

[
5 −1 −1
−1 0 −1

]
i2,j2

,

(−2 + s− 4)1,0,i2,j2 = (J1,0)i2,j2 =

[
0 −1 −1
−1 5 −1

]
i2,j2

,

(−2 + s− 4)1,1,i2,j2 = (J1,1)i2,j2 =

[
−1 5 −1
−1 −1 0

]
i2,j2

,

(−2 + s− 4)2,0,i2,j2 = (J2,0)i2,j2 =

[
−1 0 −1
−1 −1 5

]
i2,j2

,

(−2 + s− 4)2,1,i2,j2 = (J2,1)i2,j2 =

[
−1 −1 5
0 −1 −1

]
i2,j2

.

To diagonalize this rank-4 orbit Jacobian matrix we need to use the the
eigenvectors (??) to form a rank-4 tensor:

Ui1,j1,i2,j2 = exp

(
i
2π

6
(2i2i1 − i2j1 + 3j2j1)

)
.

The inverse of this tensor is the conjugate transpose U†:

(U†)i1,j1,i2,j2 = (Ui2,j2,i1,j1)∗ .

The diagonalized orbit Jacobian matrix is:

(Jdiagonalized)i1,j1,i2,j2 =
2∑

i3=0

1∑
j3=0

2∑
i4=0

1∑
j4=0

(U†)i1,j1,i3,j3Ji3,j3,i4,j4Ui4,j4,i2,j2 .

The diagonalized orbit Jacobian matrix’s element (Jdiagonalized)i1,j1,i2,j2
is not 0 only when i1 = i2 and j1 = j2. We can get the inverse of this
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diagonalized tensor, J−1
diagonalized, by changing the non-zero elements to

their inverse. Then inverse of the orbit Jacobian matrix is:

(J−1)i1,j1,i2,j2 =
2∑

i3=0

1∑
j3=0

2∑
i4=0

1∑
j4=0

Ui1,j1,i3,j3(J−1
diagonalized)i3,j3,i4,j4(U†)i4,j4,i2,j2 .

The elements of the inverse orbit Jacobian matrix are:

(J−1
0,0 )i2,j2 =

1

35

[
5 5 4
11 5 5

]
i2,j2

,

(J−1
0,1 )i2,j2 =

1

35

[
11 5 5
5 4 5

]
i2,j2

,

(J−1
1,0 )i2,j2 =

1

35

[
4 5 5
5 11 5

]
i2,j2

,

(J−1
1,1 )i2,j2 =

1

35

[
5 11 5
5 5 4

]
i2,j2

,

(J−1
2,0 )i2,j2 =

1

35

[
5 4 5
5 5 11

]
i2,j2

,

(J−1
2,1 )i2,j2 =

1

35

[
5 5 11
4 5 5

]
i2,j2

.

—————————————————————

2020-01-30 Predrag Dropped everything mentioning ‘Brillouin zones’, for ex-
ample figure 20.45 (b); they are OK for solid state physics, but our job is
to count integer lattice points, and Brillouin zones live off integer lattices.

Dropped: The periodicity of a periodic state X(z) over a d-dimensional
lattice, with the state described by repeats of a Bravais cell spanned by
basis vectors (a1,a2, · · · ,ad),

Λ =

{
d∑
i=1

niai | ni ∈ Z

}
. (15.58)

and combine them as columns of matrix

Λ =

(
L S
0 T

)
(15.59)

[
a1 a2

]
=

[
L S
0 T

]
. (15.60)

This is the simplest example of a spatiotemporal cat tiling that is not just
a 1-dimensional temporal cat periodic orbit solution along one direction,
repeated along the other.
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(b)

Figure 15.20: (b) The reciprocal lattice (15.82). Each reciprocal lattice point is
a wave vector of the eigenvector of the translation operator with periodicity
given by the Bravais lattice. The green dashed square encloses the first Bril-
louin zone of the square lattice (not the Bravais lattice). The wave vectors in the
first Brillouin zone give all eigenvectors of the translation operator. Any wave
vector outside of the first Brillouin zone is equivalent to a wave vector within
it.

2019-09-11 Predrag Perhaps - if that helps: copy to here the nomenclature used
in PHYS-7143-19 week8.

2019-11-24 Predrag Do you have a closed form formula for counting these? We
will need to include it in the paper. My [2×2] count 36 = 9+8+7+ · · ·+1
was wrong.

2018-12-01 Predrag Keep it as elementary as possible. Look at the beginning
of the wiki - you can already see our zeta function there. We need none
of these funky trigonometric functions, we only need the recurrence re-
lations - they either already in this wiki, or in blogCats.tex, or referred to
in blogCats.tex.

2020-02-08 Predrag To Han: not writing up what you are working on in the
blog is self-defeating, as I cannot help you as long as I am not aware
of you doing anything. However, not saving figure-generating code in
siminos/mathematica is also inefficient, as you are making me regenerate
all figures from scratch.

2018-06-21 Predrag Your difficulty is that you keep on thinking in Hamilto-
nian way, where one steps in time, using the Hamilton’s equations for
(qt, pt), where we had replaced the momentum pt (at spatial position `)
by velocity pt = (x`t − x`,t−1)/∆t, and thus initializing the Hamiltonian,
a second-order difference equation for evolution in time by two horizontal
rows (x`t, x`,t−1) , ` ∈ Z in the spacetime plane.
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(a) (b)

Figure 15.21: (a) A 2-dimensional torus (with black border) stretched by J .
The blue dots are internal integer points in the fundamental parallelepiped
(with red border). The green dots are on the vertices of the fundamental par-
allelepiped. (b) A 3-dimensional torus (with black border) stretched by J .
The blue dots are internal integer points in the stretched fundamental paral-
lelepiped (with red border). The green dots are on the vertices of the funda-
mental parallelepiped. The pink dots are on the surface of the fundamental
parallelepiped.

(a) (b)

Figure 15.22: Was reffigfig:catCycJacob, now superannuated: (a) [2×2] orbit
Jacobian matrix J refeqcatFundPar2 had a wrong sign, meaningless partition
into 9 rectangles. (b) Han 2020-02-11: Intermediate attempt to draw reffig-
fig:catCycJacob. [3×3] orbit Jacobian matrix J had tons of irrelevant points
plotted, is unintelligible.
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You have to think in the spacetime, Lagrangian way instead. On each lat-
tice site z = (`, t) there is a scalar field x`t, not a two-torus. The field x`,t−1

belongs to a neighboring site z = (`, t − 1). The two fields do not form a
dynamical system on a two-torus, as the dynamics is also influenced by
spatial neighbors x`±1,t.

2017-09-16 Predrag Methods described above make it an easy task to obtain a
particular class of invariant 2-tori for the spatiotemporal cat.

Invariant 2-torus’s coordinate representation Γ = {xz, z ∈ Z2
LT}, is ob-

tained by taking inverse of (??):

xz =
∑

z′∈Z2
LT

g0
zz′sz′ , sz′ ∈ A0, (15.61)

where g0
zz′ is the corresponding Green’s function with periodic bc’s.

2018-12-01 Predrag Include here the song and dance from the remark.
What Hill’s formula? Is it (9.17)? Not any longer sure that [59] contains
the Hill’s formula...

discrete Hill’s formula [15]:

det (JM − 11) =
(−1)ndetJM∏n

i=1 detBi
, (15.62)

where for the one dimensional cat map the B here is an [1×1]0 matrix:

B = −δ
2L[xn+1, xn]

δxn+1δxn
= 1 , (15.63)

2020-02-02 Predrag It is hard to find (??) in Gutkin-Osipov [41]. The paper is
mostly about the Hamiltonian formulation. Their (3.4) is the equation,
once on sets c = d space-time isotropy, and drops their potential V . Their
perturbed equation (7.1) comes close to it. Their action (3.9) is a bit mys-
terious as well.

Gutkin and Osipov [41] refer to an screened Poisson equation invariant
2-torus solution p as a ‘many-particle periodic orbit’, with xnt ‘doubly-
periodic’, or ‘closed,’

xnt = xn+Lp,t+Tp , n = 0, 1, 2, · · · , Lp − 1 ; t = 0, 1, 2, · · · , Tp − 1 .

2020-02-02 Predrag Note that in (??) and throughout I have redefined the stretch-
ing parameter s to be stretching per dimension, i.e., s in (??) is replaced
by ds. This is consistent with how one defines a diffusion constant on an
isotropic d-dimensional hypercubic lattice.
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Figure 15.23: The fundamental parallelepiped of a [2×1]1 invariant 2-torus
with s = 5/2. Admissible field values lie within the unit square with blue
boundaries. This unit square is stretched by the orbit Jacobian matrix J into
the fundamental parallelepiped with red boundaries. Integer points in the fun-
damental parallelepiped are marked by the circles. There are 9 integer points
in the fundamental parallelepiped, in agreement with the counting formula.

2019-08-06 Predrag I do not think “lattice cell” is the standard terminology,
and as you have chosen not to quotient the point group, what you have
is not ‘primitive’ - that would be 1/8th triangle that tiles the first Brillouin
zone, I think. Please strictly follow the nomenclature of a single reference
-presumably Dresselhaus et al. [31], or Barvinok [9] or whatever - and
state so clearly in your text. Whenever you use a reference, ethics of the
profession requires that you clearly cite it.

2020-02-20 Han Figure 15.23 is the fundamental parallelepiped of a [2×1]1 in-
variant 2-torus. The pattern of this periodic state is shown in figure ??
(a). The orbit Jacobian matrix of this invariant 2-torus can be written as a
[2×2] matrix:

J =

(
−2s 4

4 −2s

)
.

The shape of the fundamental parallelepiped is very similar to reffig-
fig:catCycJacob (a).

2018-12-13 Predrag Must rethink the DIMENSION of F [X] and J . F [X]i is a
n-dimensional vector function - is it dimensionally the same as xj? Oth-
erwise orbit Jacobian matrix is not dimensionless, and cannot be referred
to as a ‘Jacobian’. Relation (??) only makes sense for the dimensionless
case. I think we are OK, but we have to be sure.

2019-08-11 Predrag to Han: this is wrong alphabet, for the symmetric unit in-
terval x ∈ [−1/2, 1/2). For all our examples we pick the ‘least stretching’
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spatiotemporal cat with s = 5/2, with 9-letter alphabet

A = {4, 3, 2, 1, 0, 1, 2, 3, 4} . (15.64)

2020-02-17 Predrag Now in table 11.2:

N[1×1]0(s) = 2(s− 2)

N[2×1](s) = 4(s− 2)s

N[2×1]1(s) = 4(s− 2)(s+ 2)

N[2×2](s) = 16(s− 2)s2(s+ 2)

N[3×2]0(s) = 4(s− 2)s(2s− 1)2(2s+ 3)2

N[3×2]1(s) = 64(s− 2)s3(s+ 1)2

N[3×2]2(s) = 64(s− 2)s3(s+ 1)2

N[3×3](s) = −32(s− 2)(s+ 1)4(2s− 1)4 . (15.65)

2019-11-23 Predrag Dropped: For all our examples we pick the ‘least stretch-
ing’ hyperbolic spatiotemporal cat with s = 5, and restrict the admissible
field values xz at lattice site z = (n1, n2) to the symmetric unit interval
x ∈ [−1/2, 1/2), with 9-letter alphabet (15.64)

the code depends on the choice of the unit interval: the alphabet A for
xt ∈ [−1/2, 1/2) differs from the alphabet for xt ∈ [0, 1).

Here s = 5/2 and xz ∈ [−1/2, 1/2), so the interior alphabet is one letter
alphabet A0 = {0}...

2020-02-08 Predrag I think the Nn = (s − 2) · · · factorization is true for all n
in (13.79) and table 11.2. Do you understand it? Does in the temporal cat
s = 2 case, the Laplacian has a zero mode? A constant xi eigenvector?
If so, why doesn’t the spatiotemporal cat have N = (s − 2)2 · · · , one for
each direction? Instead, one gets only a factor 2, N = 2(s− 2) · · · .

2020-02-24 Predrag Not urgent, but can you complete the primitive counts
M[L×T]S and decompositions of N[L×T]S into primitive invariant 2-tori in
table 11.1 and perhaps also in table 11.2?

2020-03-05 Predrag Temporal cat counting (all messed up, fix using
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CatMaptopZeta.nb output):
∞∑
n=0

Nnz
n =

2− sz
1− sz + z2

− 2

1− z
{Nn} = s− 2, s2 − 4, s3 − 3s− 2, s4 − 4s2,

2
(
s5 − 4s3 + 3s

)
− s

(
s4 − 3s2 + 1

)
− 2,

−2
(
s3 − 2s

)
− s

(
s4 − 3s2 + 1

)
−2− s(−1 + 6s2 − 5s4 + s6) + 2(−4s+ 10s3 − 6s5 + s7),

−2s
(
s5 − 4s3 + 3s

)
− 2

(
s4 − 3s2 + 1

)
− 2,

−2
(
s5 − 4s3 + 3s

)
+ s

(
s6 − 5s4 + 6s2 − 1

)
− 2, , (15.66)

2020-03-23 Predrag Lot’s of headless Kuramoto-Sivashinsky equation floun-
dering in preparing BlogCats.tex sect. 3.7 saved below. Hopefully the re-
sulting discretized Kuramoto-Sivashinsky equation (3.124) is correct...

The discretized Kuramoto-Sivashinsky equation is of the form

∂tU +
α

2
∂xU2 − β∆xU + γ∆2

xU = 0 . (15.67)

Rescale U→ U/∆t

∂t
∆t

U+
(∆x)2

∆t

α

2

∂x
∆x

U2− (∆x)2

∆t
β

∆x

(∆x)2
U+

(∆x)4

∆t
γ

∆2
x

(∆x)4
U = 0 . (15.68)

Our canonical choice is setting these

α =
∆t

(∆x)2
, β = − ∆t

(∆x)2
, γ =

∆t

(∆x)4
, (15.69)

equal to 1, parametrazing the problem with L = 1/∆x, T = 1/∆t,

1

T

∂t
∆t

U +
1

L

α

2

∂x
∆x

U2 − 1

L2 β
∆x

(∆x)2
U +

1

L4 γ
∆2
x

(∆x)4
U = 0 . (15.70)

Rescale U→ UT

∂t
∆t

U +
T2

L

α

2

∂x
∆x

U2 − T

L2 β
∆x

(∆x)2
U +

T

L4 γ
∆2
x

(∆x)4
U = 0 . (15.71)

Our canonical choice is setting these

α = L/T2 , β = −L2/T , γ = L4/T , (15.72)

equal to 1,

∂t
∆t

U +
1

2

∂x
∆x

U2 +
∆x

(∆x)2
U +

(
∆x

(∆x)2

)2

U = 0 , (15.73)
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2019-12-28 Predrag My argument along the following lines was unnecessarily
complicated:

ε0ε1ε2 · · · εn−1 = 1 . (15.74)

can be eliminated by going from products to sums over cyclic eigenval-
ues. For example, if a polynomial is of form G(x)/(x − λ0) , with the
zeroth root (x− ε0) = (x− 1) quotiented out from the characteristic poly-
nomial,

xN − 1

x− 1
= (x− ε)(x− ε2) · · · (x− εN−1) .

Consider a sum of the first N terms of a geometric series, multiplied by
(x− 1)/(x− 1):

1 + x+ · · ·+ xN−1 =

N−1∑
m=0

xm =
1

x− 1

N−1∑
m=0

(x− 1)xm =
xN − 1

x− 1
. (15.75)

So, the products can be written as sums

(x− ε)(x− ε2) · · · (x− εN−1) = 1 + x+ · · ·+ xN−1 . (15.76)

In CN Pn projection operators, the denominators are evaluated by substi-
tuting x→ 1 into (15.76); that adds up to N . The numerator is evaluated
by substituting x → ε−nM . We obtain the projection operator as a dis-
crete Fourier weighted sum of matrices Mm,

Pn =
1

N

N−1∑
m=0

e−i
2π
N nmMm , (15.77)

instead of the usual product form.

2020-06-08 Predrag dropped: The periodicity of a lattice states is described by
the d-dimensional Bravais lattice:

Λ =

{
d∑
i=1

niai |ni ∈ Z

}
. (15.78)

The orbit Jacobian matrix (??) is constructed from d commuting transla-
tion operators σi with i = 1, . . . , d. The eigenvectors of these translation
operators are plane waves:

fk(z) = eik·z , (15.79)

where k is a d-dimensional wave vector. A general plane wave does not
satisfy the periodicity (??), unless

eik·R = 1 . (15.80)
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Since R is a vector from the Bravais lattice L, the wave vector k must lie
in the reciprocal lattice of Λ:

k ∈ Λ∗ , Λ∗ =

{
d∑
i=1

mibi |mi ∈ Z

}
, (15.81)

where the primitive reciprocal lattice vectors bi satisfy:

bi · aj = 2πδij . (15.82)

To get the eigenvectors and the corresponding eigenvalues of the orbit
Jacobian matrix, note that

(σj + σ−1
j )eik·z = ei(k·z−kj) + ei(k·z+kj) = (2 cos kj)e

ik·z , (15.83)

where the k = (k1, k2, · · · , kd). Hence the eigenvalue of the orbit Jaco-
bian matrix (??) corresponding to the eigenvector with the wave vector k
(15.79) is

λk =

d∑
j=1

(2 cos kj − s) . (15.84)

and compute its inverse, the Green’s function.

The generalization to d spatiotemporal dimensions is immediate. A pe-
riodic lattice state X = {xz}, z ∈ Zd is a point within the (`1`2 · · · `d)-
dimensional unit hyper-cube [0, 1)`1`2···`d , where `j is the lattice period in
direction j, and the (`1`2 · · · `d)2-dimensional orbit Jacobian matrix Jzz′
is given by

J =
d∑
j=1

(
σj − s 11 + σ−1

j

)
. (15.85)

Here σi is a shift operator (??) which translates the field in the ith di-
rection by one lattice spacing. Its inverse σ−1

i translates the field in the
negative ith direction.

From now on we specialize to the 2-dimensional, z = (n, t) ∈ Z2 spa-
tiotemporal lattice, and replace the (`1, `2) notation for lattice periods by
(L, T), where L is the ‘spatial’, and T the ‘temporal’ lattice period. The
field xi takes values in the LT-dimensional unit hyper-cube X ∈ [0, 1)LT .

Throw away all blocks which are repeats of shorter blocks in the temporal
direction. What remains in Nk prime periodic blocks p of the same size
[Lp × Tp] = [Lk × Tk].

This is essential to all that follows, as the Lagrangian formulation will
apply to spatiotemporal cat in any number of spatial dimensions as well.

2020-05-31 Predrag Periodic orbits in coupled Hénon maps: Lyapunov and multi-
fractal analysis is quite close to our spatiotemporal cat. The problem is
harder, as the Hénon map is nonlinear.
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2020-05-28 Predrag Track this down: Vicky Weiskopf: “It is better to uncover
a little than cover a lot”

15.2.1 Hill’s formula: stability of an orbit vs. its time-evolution
stability

2020-07-21 Han The orbit Jacobian matrix of the temporal cat has form:

J =


−s 1 0 1
1 −s 1 0
0 1 −s 1
1 0 1 −s

 ,

while the orbit Jacobian matrix from refeqbernNotHill is

J ′ = 11− σ−1 ⊗ J =



1 0 0 0 0 0 0 −1
0 1 0 0 0 0 1 −s
0 −1 1 0 0 0 0 0
1 −s 0 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 1 −s 0 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 1 −s 0 1


.

We know that

det
(

11− σ−1 ⊗ J
)

= det
(

11− J⊗ σ−1
)

= det
[(

11− J⊗ σ−1
) (

11[2×2] ⊗ σ
)]
,

where

11− J⊗ σ−1 =



1 0 0 0 0 0 0 −1
0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 1 1 0 0 −s
1 0 0 0 −s 1 0 0
0 1 0 0 0 −s 1 0
0 0 1 0 0 0 −s 1


,

and

(
11− J⊗ σ−1

) (
11[2×2] ⊗ σ

)
=



0 1 0 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
1 0 0 0 0 0 0 −1
1 0 0 0 −s 1 0 0
0 1 0 0 0 −s 1 0
0 0 1 0 0 0 −s 1
0 0 0 1 1 0 0 −s


.
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The determinant of a block matrix is

det

(
A B
C D

)
= det (A)det (D − CA−1B) .

Then we have:

det
[(

11− J⊗ σ−1
) (

11[2×2] ⊗ σ
)]

= det [−s 11 + σ − 11σ−1(− 11)] = detJ .

What happens if we change the order of how we block the matrix, and
consider J1 ⊗ σ−1

2 instead of σ−1
2 ⊗ J1 in (15.124)?

In particular, by similarity relation (15.104), (15.124) is equivalent to ...

2020-07-25 Predrag using

det

(
A B
C D

)
= det (D) det (A−BD−1C) . (15.86)

so (not rechecked),

det (1− J⊗ σ−1) = det

[
111 − 111

111 111 + J1

]
= det (2 111 + J1) det ( 111)

= det [σ − 2(s− 1) 11 + σ−1] = |detJ | . (15.87)

in time with a [2L×2L] block matrix Ĵ, 8

X̂t+1 = ĴX̂t − ŝt , Ĵ =

[
0 I
−I −Jt

]
. (15.88)

The Kronecker product A ⊗ B is an operation by [m × n] matrix A on
[p× q] matrix B, resulting in an [pm× qn] block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 , (15.89)

tr (A⊗B) = tr A tr B and det (A⊗B) = (det A)m(det B)n . (15.90)

J1 is the spatial [L×L] orbit Jacobian matrix of form (XX),

J1 = σ−1
1 − 2s 111 + σ1

=


−2s 1 0 . . . 1

1 −2s 1 . . . 0
...

...
...

. . .
...

1 0 . . . 1 −2s

 . (15.91)

8Predrag 2020-07-15: Rewriting here (20.250), (20.251) as (15.116); will use U for the variation
of X.
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If A, B, C and D are matrices of such size that one can form the matrix
products AC and BD, then the product of two block matrices is a block
matrix:

(A⊗B) (C⊗D) = (AC)⊗ (BD) . (15.92)

If λ1, ..., λn are the eigenvalues of A, and µ1, ..., µm the eigenvalues of B,
then the eigenvalues of A⊗B are

λiµj , i = 1, . . . , n, j = 1, . . . ,m , (15.93)

temporal Jacobian matrix

J =

(
0 1
−1 s

)
= ω

(
11− ω

(
0 0
0 s

))
. (15.94)

X̂t+1 = JPV X̂t − ŝt

JPV =

[
0 I
−I −Jt

]
= ω −

[
0 0
0 Jt

]
(15.95)

as a generalization of the L = 1 cat map (15.114), where

ω =

[
0 I
−I 0

]
, (15.96)

is an antisymmetric [2L×2L] matrix, ω2 = − 11,

2019-08-11 Predrag to Han - we need something like
For the s = 5/2 example at hand, (??) yields the numbers of relative prime
invariant 2-tori [L×1]1

{M[L×1]0} = (M[1×1]0 ,M2×1,M3×1, · · · ) = (1, 9, ?, ?, ?, · · · ) , (15.97)

to be contrasted with temporal cat counting (1.70), this time for s = 3,

{ML} = (M1,M2,M3,M4,M5, · · · ) = (1, ?, ?, ?, ?, · · · ) . (15.98)

2019-11-24 Han A brute way to determine the admissible blocks, is to compute
Xp for each prime block Mp, and eliminate every Xp which contains a lat-
tice site or sites on which the value of the field violates the admissibility
condition xz ∈ [0, 1)2.

The interior alphabet depends on the value of s and the admissible range
of xz . For s = 5/2, xz ∈ [0, 1), the interior alphabet is A0 = {0, 1} (see
eq. (38) in ref. [40]). For s = 7/2, xz ∈ [0, 1), the interior alphabet is
A0 = {0, 1, 2, 3} (eq. (46) in ref. [40]).
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2020-09-06 Predrag Removed the Mathematica expansion of (13.79)

∞∑
n=0

Nnz
n =

2− sz
1− sz + z2

− 2

1− z
= (s− 2)

[
z + (s+ 2)z2 + (s+ 1)2z3

+ (s+ 2) s2z4 + (s2 + s− 1)2z5 + · · ·
]
,(15.99)

s− 2, s2 − 4, s3 − 3s− 2, s4 − 4s2,−2
(
s3 − 2s

)
+ s

(
s4 − 3s2 + 1

)
− 2,

s
(
s5 − 4s3 + 3s

)
−2
(
s4 − 3s2 + 1

)
−2,−2

(
s5 − 4s3 + 3s

)
+s
(
s6 − 5s4 + 6s2 − 1

)
−

2,

2016-11-01 Boris “Deeper insight” into d = 2 symbolic dynamics: Relevance
to semiclassics.

“Classical foundations of many-particle quantum chaos” I believe could
become a game-changer

2016-12-24 Predrag “ Alternatively, one can consider the dynamics on the in-
finite line, and interpret st as a jump to stth interval. This leads to the
phenomenon of “deterministic diffusion” [38, 70], and its periodic orbit
theory [5, 26], with unit circle periodic orbits in one-to-one relation to the
relative periodic (“running”) orbits on the line, and symbolic dynamics
given by st’s.

For single-parameter, 1-dimensional sawtooth maps, it is possible to find
infinitely many values of the parameter such that the grammar is finite
(a finite subshift), and the exact diffusion constant is given by a finite-
polynomial topological zeta function [6]. For cat maps, deterministic dif-
fusion constants are not known exactly [7]. ”

2020-07-15 Perhaps refer to ChaosBook ChaosBook 8.1 Hamiltonian flows,
when discussing ‘two-configuration’ form (15.114).

2020-09-19 Predrag dropped from the abstract: “, with the lattice state and its
symbolic encoding related linearly.”

dropped: “the problem of enumerating and determining all global solu-
tions stripped to its bare essentials.”

As a function of the strengths of cell-cell couplings, dynamics can exhibit
rich phase-transitions structure [48]. In this paper we chose couplings
such that the system is fully turbulent.

“For an explicit example, see sect. 15.3.1.”

Hamiltonan, so symplectic or area preserving, but that is not essential.
Cite the Hamiltonian zeta function from ChaosBook.

Implementing this program requires several tools not standard in dy-
namicist’s tool box: lattice Green’s functions; lattice determinants.
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Turbulence everywhere in space, with a range of length scales.

We start the paper with a reformulation of the 1 degree of freedom Bernoulli
map, because our goal, the spatiotemporal cat is nothing but its general-
ization to a mechanical system in spacetimes of arbitrary dimension, and
thus arguably the simplest possible example of a ‘chaotic field theory’.

The reader who already knows everything can start here.

solution X of a global fixed-point condition F [X] = 0 is uniquely encoded
by a finite alphabet d-dimensional symbol lattice state M

Remarkably, as far as the linear symbolic dynamics is concerned, the
above results hold both for the single cat map and its coupled lattice gen-
eralization. In both cases the proofs rely only upon ellipticity of the op-
erator 2 and the linearity of the equations. It is very plausible that the
same results hold for the lattices Zd of an arbitrary dimension d.

Furthermore, the restriction to the integer valued matrices in the defini-
tions of maps appears unnecessary. Cat map is a smooth version of the
sawtooth map, defined by the same equation (15.26), but for a real (not
necessarily integer) value of s. The linear symbolic dynamics for single
saw map has been analyzed in [66] and its extension to a coupled Zd
model along the lines of the present paper seems to be straightforward.

Also, in the current paper we sticked to the Laplacian form of 2. Again
this seems to be too restrictive and extension to other elliptic operators of
higher order should be possible. Such operators are necessarily appear
within the models with higher range of interactions.

A physically necessary extension of current setting would be addition of
an external periodic potential V to (??), rendering this a nonlinear prob-
lem,

(2− s+ 2d+ V ′(xz))xz = sz, z ∈ Zd . (15.100)

As long as the perturbation V is sufficiently weak, this lattice map can
be conjugated to the linear spatiotemporal cat, with V = 0. This ap-
proach has been used in ref. [41] to construct partner invariant 2-tori for
perturbed cat map lattices. On the other hand, for a sufficiently strong
perturbation, such a conjugation to linear system is no longer possible.
Finally, let us note that the lattice models like (15.100) can be seen as dis-
cretized versions of PDEs. In this respect it would be of interest to study
whether our results can be extended to the continuous, PDE setting.

In particular, the following questions seem to be of fundamental impor-
tance:

• Can an effective d = 2 symbolic dynamics with finite alphabet be
constructed for an example of a PDE with spatiotemporal chaos,
such that (a) Connection between periodic field solutions and their
symbolic representation is unique; (b) The local symbolic content
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would define the values of the corresponding fields with the expo-
nentially decreasing errors?

2020-09-21 Predrag As we shall here have to traverse territory unfamiliar to
many, we follow Mephistopheles pedagogical dictum “You have to say
it three times" [36], I hereby exorcise Liang-Gudorf-Williams heresy by
singing my song thrice:
sect. ?? Coin is not the table off which it bounces
sect. ?? Cat is not the floor on which it dances
sect. ?? Cats are not the spacetime over which we herd them

2020-02-16 Predrag Recheck - is there something called ‘characteristic func-
tion’ in integer lattice and other lattice literature?

15.3 Hill determinant: stability of an orbit vs.
its time-evolution stability

The d = 2 lattice spatiotemporal cat equations can be recast in a matrix
form, by rewriting the defining equations in terms of block matrices [18,
19, 30, 46], constructed by the Kronecker product A ⊗ B, an operation
(introduced by Zehfuss in 1858) that replaces the aij element of an [n×n]
matrix A by [m×m] matrix block aijB, resulting in an [mn×mn] block
matrix [3, 75]

A⊗B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 . (15.101)

Consider A, A′ square matrices of size [n×n], and B, B′ square matrices
of size [m × m]. The matrix product of two block matrices is a block
matrix [3, 74],

(A⊗B) (A′ ⊗B′) = (AA′)⊗ (BB′) . (15.102)

The trace and the determinant of a block matrix are given by

tr (A⊗B) = tr A tr B

det (A⊗B) = det (Am) det (Bn) . (15.103)

The two [mn×mn] block matrices A⊗B and B⊗A are equivalent by a
similarity transformation

B⊗A = P> (A⊗B) P , (15.104)

where P is permutation matrix. As det P = 1, the block matrix deter-
minant det (A⊗B) = det (B⊗A) is independent of the order in which
blocks are constructed.
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Consider a rectangular d = 2 lattice [L×T]0 Bravais cell. The orbit Jaco-
bian matrix (??) written as a [LT × LT] Kronecker product block matrix
is

J = 111 ⊗
(
σ2 + σ−1

2

)
− 2s 111 ⊗ 112 +

(
σ1 + σ−1

1

)
⊗ 112 , (15.105)

where the (15.101) matrix A and identity 111 matrix are ‘spatial’ [L×L]
matrices, with blocks B and identity 112 ‘temporal’ [T×T] matrix blocks.
Indices ‘1’, ‘2’ referring to ‘spatial’, ‘temporal’ lattice directions, respec-
tively.

Our task is to compute the Hill determinant |detJ |. We first show how
to do that directly, by computing the volume of the fundamental paral-
lelepiped.

15.3.1 Hill determinant: fundamental parallelepiped eval-
uation

In general, the unit vectors of the phase space unit hyper-cube X ∈ [0, 1)n

point along the n axes; orbit Jacobian matrix J maps them into a funda-
mental parallelepiped basis vectors X(j), each one given by a column of
the [n×n] matrix

J =
(

X(1)X(2) · · ·X(n)
)
. (15.106)

The Hill determinant is then

DetJ = Det
(

X(1)X(2) · · ·X(n)
)
, (15.107)

the volume of the fundamental parallelepiped whose edges are basis vec-
tors X(j).

As a concrete example consider the Bravais lattice (??) with basis vectors
a1 = (3, 0) and a2 = (0, 2). A invariant 2-torus over this Bravais cell has
6 field values, one for each lattice site z = (n, t) on a [3×2]0 rectangle:[

x01 x11 x21

x00 x10 x20

]
.

Stack up the columns of this lattice state and the corresponding sources
into 6-dimensional vectors,

X[3×2]0 =


x01

x00

x11

x10

x21

x20

 , M[3×2]0 =


s01

s00

s11

s10

s21

s20

 . (15.108)
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The corresponding orbit Jacobian matrix (??) is the block-matrix (15.105),
a block circulant matrix with circulant blocks [19],

J[3×2]0 =


−2s 2 1 0 1 0

2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s

 . (15.109)

of [L×L] block form, L = 3, with [T×T] blocks, T = 2.
The fundamental parallelepiped generated by the action of orbit Jacobian
matrix J[3×2]0 is spanned by LT = 6 basis vectors, the columns (15.106) of
the orbit Jacobian matrix (15.109):

J[3×2]0 =


−2s 2 1 0 1 0

2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s

 . (15.110)

The ‘fundamental fact’ (??) now yields the Hill determinant as the num-
ber of doubly-periodic lattice states,

N[3×2]0 = |DetJ[3×2]0 | = 4(s− 2)s(2s− 1)2(2s+ 3)2 . (15.111)

15.3.2 Hill determinant: time-evolution evaluation

the [n×n] orbit Jacobian matrix J given by

J = σ − s 11 + σ−1 (15.112)

a tri-diagonal Toeplitz matrix (constant along each diagonal, Jk` = jk−`)
of circulant form,

J =



−s 1 0 0 . . . 0 1
1 −s 1 0 . . . 0 0
0 1 −s 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . −s 1
1 0 . . . . . . . . . 1 −s


. (15.113)

In practice, one often computes the Hill determinant using a Hamilto-
nian, or ‘transfer matrix’ formulation. An example is the temporal cat
3-term recurrence (??),

xt = xt

xt+1 = −xt−1 + s xt − st ,
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in the Percival-Vivaldi [66] ‘two-configuration’ cat map representation
(1.101)

φ̂t+1 = Ĵ1 φ̂t − ŝt , (15.114)

with the one-time step temporal evolution [2×2] Jacobian matrix Ĵ1 gen-
erating a time orbit by acting on the 2-dimensional ‘phase space’ of states
on successive lattice sites

Ĵ1 =

[
0 1
−1 s

]
, φ̂t =

[
xt−1

xt

]
, ŝt =

[
0
st

]
, (15.115)

Similarly, for the d = 2 spatiotemporal cat lattice at hand, one can recast
the 5-term recurrence (??)

xnt = xnt

xn,t+1 = −xn,t−1 + (−xn−1,t + 2s xnt − xn+1,t)− snt (15.116)

in the ‘two-configuration’ matrix form (15.114) by picking the vertical
direction (indexed ‘2’) as the ‘time’, with temporal 1-time step Jacobian
[2L×2L] block matrix

Ĵ1 =

[
0 111

− 111 −J1

]
, (15.117)

(known as a transfer matrix in statistical mechanics [64, 65]) generating
a ‘time’ orbit by acting on a 2L-dimensional ‘phase space’ lattice strip φ̂t
along the ‘spatial’ direction (indexed ‘1’),

φ̂t =

[
φt−1

φt

]
, ŝt =

[
0
st

]
, φt =

 x1t

...
xLt

 , st =

 s1t

...
sLt

 ,
where the hatˆ indicates a 2L-dimensional ‘two-configuration’ state, and
J1 is the spatial [L×L] orbit Jacobian matrix of d = 1 temporal cat form
(15.112),

J1 = σ−1
1 − 2s 111 + σ1 (15.118)

The first order in time difference equation (15.114) can be viewed as a
lattice state fixed point condition, a zero of the function F [X̂] = Ĵ X̂+M̂ =

0 , with the entire periodic lattice state X̂M treated as a single fixed point in
the 2LT-dimensional phase space unit hyper-cube, and the [2LT × 2LT]
block matrix orbit Jacobian matrix given either by

Ĵ = 1̂1− Ĵ1 ⊗ σ−1
2 , (15.119)

or by
Ĵ ′ = 1̂1− σ−1

2 ⊗ Ĵ1 . (15.120)
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Here the unity 1̂1 = 1̂11 ⊗ 112 is a [2LT×2LT] block matrix, and the time-
evolution Jacobian matrix Ĵ1 (15.117) is a [2L×2L] matrix.

The order in which the block matrix blocks are composed does not mat-
ter, yielding the same the Hill determinant det Ĵ = det Ĵ ′ by (15.104).
However, written out explicitly, the two orbit Jacobian matrices (15.121)
and (15.124) are of a very different form.

For example, for the [L×T]0 rectangular Bravais cell, the spatiotemporal
cat orbit Jacobian matrix (15.119) involves the [T×T] time shift opera-
tor block matrix σ2 (??) with the one-time-step [2L×2L] time-evolution
Jacobian matrix Ĵ1 (15.117)

Ĵ =

[
111 ⊗ 112 − 111 ⊗ σ−1

2

111 ⊗ σ−1
2 111 ⊗ 112 + J1 ⊗ σ−1

2

]
, (15.121)

and for spatiotemporal cat (15.116) this is a time-periodic [T × T] shift
operator block matrix σ2 (??), each block now a space-periodic [2L×2L]
matrix Ĵ1 (15.117).

If a block matrix is composed of four blocks, its determinant can be eval-
uated using Schur’s 1917 formula [71, 74]

det

[
A B
C D

]
= det (A) det (D−CA−1B) . (15.122)

so, noting (15.102), (15.105) and (15.118), we find that

det Ĵ = det

[
111 ⊗ 112 − 111 ⊗ σ−1

2

111 ⊗ σ−1
2 111 ⊗ 112 + J1 ⊗ σ−1

2

]
= det

[
111 ⊗ 112 + J1 ⊗ σ−1

2 + ( 111 ⊗ σ−1
2 )( 111 ⊗ 112)( 111 ⊗ σ−1

2 )
]

= det
[

111 ⊗ 112 + J1 ⊗ σ−1
2 + 111 ⊗ σ−2

2

]
= det ( 111 ⊗ σ−1

2 ) det
[

111 ⊗ σ−1
2 + (σ−1

1 − 2s 111 + σ1)⊗ 112 + 111 ⊗ σ2

]
= detJ , (15.123)

where we have used det 111 = det 112 = detσ1 = detσ2 = 1.

This proves that det Ĵ of the ‘Hamiltonian’ or ‘two-configuration’ [2LT×
2LT] ‘phase space’ orbit Jacobian matrix Ĵ defined by (15.121) equals the
‘Lagrangian’ Hill determinant of the [LT × LT] orbit Jacobian matrix J .

15.3.3 Hill’s formula

Consider next (15.120), the equivalent way of forming of the block ma-
trix for the [L×T]0 rectangular Bravais cell, with temporal period taken
for definitiveness T = 4. The spatiotemporal cat orbit Jacobian matrix
(15.120) is now constructed as the [4× 4] time shift operator block matrix
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σ2 (??), with the one-time-step [2L×2L] time-evolution Jacobian matrix
Ĵ1 (15.117) and unit matrix 1̂11 as blocks

Ĵ ′ = 112 ⊗ 1̂11 − σ−1
2 ⊗ Ĵ1 =


1̂11 0 0 −Ĵ1

−Ĵ1 1̂11 0 0

0 −Ĵ1 1̂11 0

0 0 −Ĵ1 1̂11

 . (15.124)

From the block-matrix multiplication rule (15.102) and the determinant
rule (15.103) it follows that

(σ−1
2 ⊗ Ĵ1)(σ−1

2 ⊗ Ĵ1) = σ−2
2 ⊗ Ĵ2

1 , so (σ−1
2 ⊗ Ĵ1)k = σ−k2 ⊗ Ĵk1 , (15.125)

and

det (σ−1
2 ⊗ Ĵ1) = (detσ2)−L(det Ĵ1)T = det Ĵp , Ĵp = ĴT1 , (15.126)

where Ĵp is the Jacobian matrix of a temporal periodic orbit p. Expand
ln det Ĵ ′ = tr ln Ĵ ′ as a series using (15.103) and (15.125),

tr ln Ĵ ′ = tr ln( 11− σ−1
2 ⊗ Ĵ1) = −

∞∑
k=1

1

k
tr (σ−k2 ) tr Ĵk1 , (15.127)

and use trσk2 = T if k is a multiple of T, 0 otherwise (follows from σT2 =
11):

ln det ( 11− σ−1
2 ⊗ Ĵ1) = −

∞∑
r=1

1

r
tr Ĵrp = ln det ( 1̂11 − Ĵp) .

So for the spatiotemporal cat the orbit Jacobian matrix and the tempo-
ral evolution (15.114) stability Ĵp are related by the remarkable (discrete
time) Hill’s formula [15, 59]

|detJ | = |det ( 1̂11 − Ĵp)| . (15.128)

which expresses the Hill determinant of the arbitrarily large orbit Ja-
cobian matrix J in terms of a determinant of a small [2L× 2L] time-
evolution Jacobian matrix Ĵp.

Note to Predrag - send this paper to Vladimir Rosenhaus <vladr@kitp.ucsb.edu>,
Xiangyu Cao <xiangyu.cao08@gmail.com>, George Savvidy, “Demokritos”, Athens,
and David Berenstein <dberens@physics.ucsb.edu>
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15.4 Reversal’ LC21blog

The latest entry at the bottom of this section, page 667

Internal discussions of ref. [56] arXiv:2201.11325 (uploaded 27 Jan 2022)
edits: we had saved text not used in ref. [56] here, for possible reuse in ref. [28],
or elsewhere.

Tentative title: “Is there anything cats cannot do?"

2016-11-18 Predrag A theory of turbulence that has done away with dynamics?
We rest our case.

As a gentle introduction for a reader too busy [21] to study the book [24],
we disguise a brief course on chaos theory as something everyone under-
stands, a Bernoulli coin toss, sect. ??.

one determines the total number of lattice states by computing the Hill
determinant (??) of the orbit Jacobian matrix

The observation that a Bernoulli system can be viewed as a discretiza-
tion of a first-order in time ODE, eq. (??), with solutions whose tempo-
ral global linear stability is described by the orbit Jacobian matrix Jtt′ =
δF [X]t/δxt′ , has profound implications for dissipative spatiotemporal sys-
tems such as Navier-Stokes and Kuramoto-Sivashinsky [39].

As we shall here have to traverse territory unfamiliar to many, we follow
Mephistopheles pedagogical dictum “You have to say it three times" [36],
and sing our song thrice.

The deep insight here is that the two formulations of mechanics, the for-
ward-in-time Hamiltonian evolution, and the global, Lagrangian, tempo-
ral cat formulation are related by the Hill’s formula.

The deep insight here is the realization that the Hill determinant, i.e., the
volume of the orbit Jacobian matrix (figure 1.15 and ??) partitions system’s
phase space.

Next, we address two questions: (i) how is the high-dimensional orbit
orbit Jacobian matrix J related to the temporal [d×d] Jacobian matrix
J? (sect. ??), and (ii) how does one evaluate the orbit Jacobian matrix J ?
(sects. ?? and ??).

The theory is compactly summarized by its topological zeta function (??)
that counts Bravais lattices.

Still, when we think of a temporal lattice as ‘time’: no dynamicist does
that. Embarrassing.

The dynamics is breathtakingly simple on the reciprocal lattice. Spatial
period-n Bravais cell maps onto a regular n-gon in the reciprocal lattice.
Time reversal fixes the symmetric solutions to sit on the symmetry axes,
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the boundaries of the fundamental domain. Lattice shift rj maps out the
G-orbit by running on circles, and orbits visit the 1/2n wedge only once,
so the points in the fundamental domain represent an orbit each.

with all reciprocal lattice Brillioun zone solutions orbits in an 1/n sliver
of a n-gon.

No self-respecting crystallographer would be drawing longer and longer
Bravais lattice states (??)-(??) - they eventually run off the sheet of pa-
per, no matter how wide. A professional crystallographer plots all lat-
tice states snugly together in the first Brillouin zone, where the transla-
tional orbit of a lattice state is -literally- a circle, symmetric lattice states
sit on boundaries of point group’s fundamental domain, and everything
is maximally diagonalized in term’s of space group G irreps.

Consider
ρ~G(~x) = ei

~G·~r(~x) ,

where ~G is a reciprocal lattice vector. By definition, ~G · ~a is an integer
multiple of 2π, ρ~G = 1 for lattice vectors. For any other state, reciprocal
lattice state is given by

ei
~G·~u(~x) 6= 1 .

When a cube is a building block that tiles a 3D cubic lattice, it is referred
to as the ‘elementary’ or ‘Wigner-Seitz’ cell, and its Fourier transform is
called ‘the first Brillouin zone’ in ‘the reciprocal space’.

the time-reversal pairs to be the complex-conjugate pairs in Fourier space,
as C∞ shift moves them in opposite directions.

The eigenvectors of the translation operator which satisfy the periodicity
of the Bravais lattice are plane waves of form:

fk(z) = eik·z , k ∈ L , (15.129)

where the wave vector k is on the reciprocal lattice L.

A general plane wave does not satisfy the periodicity, unless

eik·R = 1 . (15.130)

Since R is a vector from the Bravais lattice L, the wave vector k must lie
in the reciprocal lattice of L:

k ∈ L∗ , L∗ = {mb |m ∈ Z} , (15.131)

where the primitive reciprocal lattice vectors b satisfies:

b · a = 2π . (15.132)

Barvinok arXiv:/math/0504444:
Let V be a d-dimensional real vector space with the scalar product 〈·, ·〉
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and the corresponding Euclidean norm ‖ · ‖. Let L ⊂ V be a lattice and
let L∗ ⊂ V be the dual or the reciprocal lattice

L∗ =
{
x ∈ V : 〈x, y〉 ∈ Z for all y ∈ L

}
.

2021-08-10 Han Reciprocal lattice state

An infinite lattice state is periodic if the state is invariant under the action
of a translation group. A translation group can be described by a Bravais
lattice, the vector in which determines the direction and distance of the
translation. When the dynamical system has time translation symmetry,
the defining equation of the system is invariant under translations. So it
is natural to use the eigenvectors of the translation operator to study the
lattice states of the system.

The eigenvectors of translation operators are plane waves defined on the
lattice. But to study the lattice states, we need to require that the plane
wave also satisfies the periodic condition. Generally, a d-dimensional
Bravais lattice can be described by:

L =

{
d∑
i=1

nibi|ni ∈ Z

}
, (15.133)

where bi is the ith primitive vector of the Bravais lattice. And a plane
wave on the d-dimensional lattice is:

fk(z) = eik·z , (15.134)

where z is the position of a lattice site, and k is the wave vector. The
periodicity given by the Bravais lattice L requires that:

fk(z + R) = fk(z) , R ∈ L . (15.135)

This condition can only be satisfied if the wave vector k exists on the
reciprocal lattice of the lattice L:

L =


d∑
j=i

nibi|ni ∈ Z

 , (15.136)

the basis vectors of which satisfy:

bi · aj = 2πδij . (15.137)

Using these eigenvectors we can transform lattice states into reciprocal
lattice states by discrete Fourier transform. Any lattice state with the pe-
riodicity given by the Bravais latticeL can be spanned by the plane waves
with wave vectors in the reciprocal lattice L. And since a lattice state only
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has values on lattice sites, we only need a finite number of plane waves
to span the lattice state.

When we write period-n lattice states as n-dimensional vectors, and write
the shift operator r as a [n × n] matrix (??) which applies cyclic permuta-
tion to the lattice state, the matrix representation of shift operators forms
a permutation representation of the cyclic translation group Cn. This per-
mutation representation is a reducible representation, i.e., it can be block
diagonalized by a similarity transformation. Each block on the diagonal
is an irreducible representation (irrep).

The abelian group Cn only has 1-dimensional irreps. The permutation
representation of Cn can be diagonalized by discrete Fourier transform.
After the transform the representation of the shift operator becomes,

rm =


1

ωm

ω2m

. . .
ω(n−1)m

 , ω = e2πi/n , (15.138)

with lattice states projected onto 1-dimensional subspaces in which ac-
tion of the shift operators is given by corresponding irrep. As we trans-
form the permutation representation of the shift operator into the block
diagonal form, the lattice states (x0, x1, x2, . . . , xn−1) are spanned by the
Fourier modes basis, with components (φ̃0, φ̃1, φ̃2, . . . , φ̃n−1). When the
shift operator acts on the lattice state: X→ rX, the irreducible representa-
tions act on the components in the corresponding subspace: φ̃k → ωkφ̃k.

Dihedral group

In the n-dimensional space of the period-n lattice states, the permuta-
tion representation of the Dihedral group Dn can be generated by the
shift operator matrix representation (??) and the reflection operator ma-
trix representation:

s =



1 0
0 1

... 1

0
...

0 1

 . (15.139)

The Dihedral group Dn has: 2 1-dimensional irreps and [(n−1)/2] 2-dim-
ensional irreps if n is odd, or 4 1-dimensional irreps and (n/2−1) 2-dim-
ensional irreps if n is even. If n is odd, the permutation representation
can be block diagonalized into irreps: A0 ⊕ E1 ⊕ · · · ⊕ E(n−1)/2. If n
is even, the permutation representation can be block diagonalized into
irreps: A0 ⊕B1 ⊕ E1 ⊕ · · · ⊕ En/2−1.
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2021-09-02 Predrag Why do you mark 1/8 in figures ?? and ??, when the units
are 1/7’s? I see. You have 1/

√
3 and π’s floating around, unless you

redefine units...

2021-07-07 Predrag Experimenting with (15.140) by:
a flip across the kth axis, k = 0, 1, 2, · · · , n − 1,

dihedral Dn : Hn,k = 〈r, sk = rks | skrsk = r−1 , rn = s2
k = 1〉 ,(15.140)

that Han had replaced with (??) and n with |n| in (5.143).

2021-07-07 Predrag A presentation of the infinite dihedral group [52] is

D∞ =
〈
ri, sj | risj = sjr−i; s

2
j = 1; i, j ∈ Z

〉
. (15.141)

2021-08-10 Predrag dropped:

Applying the projection operator P0− = 1
2 (1 − s0)/2 we obtain a lattice

state
· · · y4 y3 y2 y1 0y1y2y3y4 · · · , (15.142)

antisymmetric under reflection, where the field 0 = (x0 − x0)/2 = 0
at the reflection lattice site 0 vanishes by antisymmetry, while the rest,
yj = (xj − x−j)/2 , are pairwise antisymmetric under the reflection s.
The underline indicates the negative of, i.e., yj = −yj .
Applying the antisymmetric projection operator P1− = 1

2 (1 − sr)/2 we
obtain a lattice state

· · · y4 y3 y2 y1 |y1y2y3y4 · · · , (15.143)

antisymmetric under reflection, where yj = (xj − x1−j)/2 , are pairwise
antisymmetric under the reflection s1.

2021-08-21 Predrag The old definition of Bernoulli st in (??) conflicted with the
definition (??). I changed (??) to current form.

2021-10-29 Predrag Dropped: Cat maps are beloved by ergodicists and statisti-
cal mechanicians because, even though the field (qt, pt) is 2-dimensional,
for integer values of the stretching parameter s, a cat map has a finite al-
phabet linear code, just like the Bernoulli map, and its unit torus can be
tiled by two rectangles, 9 in analogy with the forward-in-time Bernoulli
map subinterval partitioning of figure 1.14. From this it follows that all
admissible symbol blocks can be generated as shifts of finite type, and all
periodic points determined and counted.

9Predrag 2020-12-17: Link to the ChaosBook.
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As all that is well known, and a side issue for this paper, we relegate the
details of the Hamiltonian cat map dynamics and periodic orbit count-
ing to ??. 10 Here we focus on reformulating the cat dynamics as a tem-
poral lattice (or discrete Lagrangian) problem, as we have done for the
Bernoulli system in sect. ??.

2021-10-12 Predrag Please read our draft [56], and either follow our definition
(??) of lattice state, or replace it with some other definition.

2021-10-29 Predrag Dropped: The Lagrangian formulation requires only tem-
poral lattice states and their actions, replacing the phase space ‘cat map’
(15.37) by a ‘temporal cat’ lattice (3.16). The temporal cat has no gener-
ating partition analogue of the Adler-Weiss partition for a Hamiltonian
cat map (see 11 ). As we have shown here, no funky Hamiltonian phase
space partitioning magic (such as 12 ) is needed to count the lattice states
of a temporal cat. Not only are no such partitions needed to solve the
system, but the Lagrangian,

2021-08-12 Predrag Sidney will chuckle at this comment: The usual ax2
t form

(2.25) might be preferable, as the ‘a’ is a stretching parameter, just like in
(2.11). See sect. 2.3 Temporal Hénon.

2021-08-17 Predrag See (20.359). We also MUST explain the relation to litera-
ture, as in the post including (20.358).

2020-12-17 Predrag Link to the ChaosBook? or drop?
In sect. ?? we review the traditional cat map in its Hamiltonian formula-
tion. (but relegate to the explicit Adler-Weiss generating partition of the
cat map phase space).

We evaluate and cross-check Hill determinants by two methods, either
the ‘fundamental fact’ evaluation, or by the discrete Fourier transform
diagonalization, sect. ??.

2021-10-13 Predrag Is there a - sign specific to Sidney’s definition of the Hénon
orbit Jacobian matrix Han and Predrag have to redefine both temporal cat
and temporal Hénon orbit Jacobian matrix throughout, so we do not pick
up an extraneous ‘-’ sign for odd period lattice states. See also (6.206),
and Pozrikidis [69] (click here) eq. (1.8.2). The main thing is to have a
Laplacian with positive eigenvalues, right? Maybe not, the main thing
is to have hyperbolic eigenvalues for s > 2. Rethink. determinants in
periodic orbit formulas.

Z[J ] notation extracted from lattFTnotat.tex, called by lattFT.tex.

, in field theorist’s parlance, sz are ‘sources’, and

10Predrag 2020-12-17: Link to the ChaosBook.
11Predrag 2020-12-17: Link to the ChaosBook.
12Predrag 2020-12-17: Link to the ChaosBook.
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The orbit Jacobian matrix J [X] is best understood by starting with the
period-n Bravais cell stability.

As in sect. ??, the fundamental parallelepiped given the stretching of the
n-dimensional phase space unit hypercube X ∈ [0, 1)n by the orbit Ja-
cobian matrix counts lattice states, with the admissible lattice states of
period T constrained to field values within 0 ≤ xt < 1. The fundamen-
tal parallelepiped contains images of all lattice states XM, which are then
translated by integer winding numbers M into the origin, in order to sat-
isfy the fixed point condition (??).

2021-10-21 Predrag Han, RECHECK all st, as well as formulas starting with
(??)!!! Bernoulli st in (??) conflicted with the old definition (??), so I
changed (??).

When the force is proportional to displacement, that is, when Hooke’s
law is obeyed, the spring is said to be linear, the potential is quadratic.

A matrix J with no eigenvalue on the unit circle is called hyperbolic.

Ignoring (mod 1) for a moment, we can use (??) to eliminate pt from (??)
and rewrite the kicked rotor equation as the

For the problem at hand, it pays to go from the Hamiltonian (configu-
ration, momentum) phase space formulation to the discrete Lagrangian
(xt−1, xt) formulation.

temporal lattice condition

‘Temporal’ again refers to the discretized time 1d lattice

In atomic physics applications, the values of the angle q differing by inte-
gers are identified, but the momentum p is unbounded. In dynamical sys-
tems theory one compactifies the momentum as well, by adding (mod 1)
to (??), as for the Bernoulli map (??). This reduces the phase space to a
square [0, 1) × [0, 1) of unit area, with the opposite edges identified, i.e.,
2-torus.

Thom-Anosov diffeomorphism

Cat maps with the same s are equivalent up to a similarity transforma-
tion, so it suffices to work out a single convenient realization, as we shall
do here for the Percival-Vivaldi [66] ‘two-configuration representation’
(??).

2021-11-29 Predrag Might need to introduce the inverse temperature β = 1/T
and the free energy F , as in (3.68), multiplied by ‘volume’ N the number
of lattice sites;

Z[J ] = eW [J] , W [J ] = βNF [X]

So, W [J ] is not the ‘free energy’.

Hill’s formula here is the discrete Hill’s formula [15, 59] (9.17).
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The temporal Bernoulli orbit Jacobian matrix J = ∂/∂t − (s − 1) r−1

is a differential operator whose determinant one usually computes by a
Fourier transform diagonalization (see sect. ??). The Fourier discretiza-
tion approach goes all the way back to Hill’s 1886 paper [42];

2021-11-29 Predrag !!!WARNING!!! Following Han (6.85), we are changing
the sign of the action S[X] and the orbit Jacobian matrix, as in (3.14),
THROUGHOUT! (Totally Predrag’s fault). This makes spatiotemporal
cat and φ4 theory action strictly positive for s > 2, as needed for the
probability interpretation (??). Han, Sidney and Predrag have to rede-
fine temporal cat, spatiotemporal cat and temporal Hénon orbit Jacobian
matrices throughout, to avoid the extraneous ‘-’ sign for odd period lat-
tice states. See also (6.206), and Pozrikidis [69] (click here) eq. (1.8.2).

2016-11-08 Predrag Say: THE BIG DEAL is

for d-dimensional field theory, symbolic dynamics is not one temporal
sequence with a huge alphabet, but d-dimensional spatiotemporal tiling
by a finite alphabet

2021-12-27 Predrag removed:
Hill determinant: time-evolution evaluation

However, in classical and statistical mechanics, one often computes the
Hill determinant using a Hamiltonian, or ‘transfer matrix’ formulation.

Define

φ̂t =

[
xt−1

xt

]
, ŝt =

[
0
st

]
,

where the hatˆ indicates a 2-dimensional ‘two-configuration’ [66] lattice
site t state.

The 1-dimensional field theory 3-term recurrence (3.14) written in the
Percival-Vivaldi [66] ‘two-configuration representation’ (??).

J1 is the spatial [L×L] orbit Jacobian matrix of d = 1 temporal cat form
(15.112),

This proves that det Ĵ of the ‘Hamiltonian’ or ‘two-configuration’ [2Ln×
2Ln] ‘phase space’ orbit Jacobian matrix Ĵ defined by (15.121) equals the
‘Lagrangian’ Hill determinant of the [Ln × Ln] orbit Jacobian matrix J .

While the setting is classical, such deterministic field-theory advances
offer new semi-classical approaches to quantum field theory and many-
body problems.

2021-12-26 Han I think (??–??) should be written as:

qt+1 = qt + pt+1 (mod 1), (15.144)
pt+1 = pt + P (qt) . (15.145)
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Otherwise the angle of the rotor q is not constrained to [0, 1).
Predrag: you are right, corrected.

2021-12-29 Predrag The phase spaceM of a D∞ invariant dynamical is union
of 4 subspaces of lattice states 4 distinct symmetries (see figure ??)

M =Ma ∪Mo ∪Mee ∪Mee , (15.146)

where

X ∈Ma no reflection symmetry (??), see figure ??
orbit p = {X, rX, · · · , rn−1X, sX, s1X, · · · , sn−1X}

X ∈Mo odd period, reflection-symmetric: (??) see figure ??
orbit p = {X, rX, · · · , rn−1X}

X ∈Mee even period, even reflection-symmetric: (??)

X ∈Meo even period, odd reflection-symmetric: (??).

LetMa be the set of pairs of asymmetric orbits (??), each element of the
set a forward-in-time orbit and the time-reversed orbit. If prime cycle
p ∈Ma exists, it and each of its repeats counts as 1:

1/ζp(t) = exp
(
−
∞∑
r=1

1

2npr
t2npr

)
=
√

1− t2np . (15.147)

prime lattice state p ∈Mo exists, lattice state invariant under the dihedral
group Hn,k, np values of k

1/ζp(t) = exp
(
−
∞∑
r=1

1

r
tnpr

)
= exp

(
−
∞∑
r=1

tnp

1− tnp
)
. (15.148)

prime cycle p ∈Mee exists

1/ζp(t) = exp
(
−
∞∑
m=1

{
N2m−1,0 t

2m−1 + (N2m,0 +N2m,1)
t2m

2

})
.

(15.149)

LetMs be the collection of finite orbits with time reversal (flip) symme-
try, andMa be the collection of the pairs of orbits without time reversal
symmetry, each an orbit and the flipped orbit. A finite orbit p is a periodic
points set

p = {x, f(x), . . . , fnp−1(x)}
if p ∈Ms, and

p = {x, f(x), . . . , fk−1(x)} ∪ {s(x), f ◦ s(x), . . . , fk−1 ◦ s(x)}
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if p ∈Ma, where k = np/2.

If p ∈Ms,

ζp(t) =

√
1

1− t2np exp

(
tnp

1− tnp
)
, (15.150)

The product form of the zeta function is:

1/ζKLP(t) =
∏

p1∈O1

√
1− t2np1 exp

(
− tnp1

1− tnp1

) ∏
p2∈Ma

(1− tnp2 ) .

(15.151)
========================================================================

========================================================================
How to count the number of lattice states for temporal cat?

No symmetry lattice states Hill determinant:

Nn =

n−1∏
j=0

(
s− 2 cos

2πj

n

)
.

The products of eigenvalues for the Cn discrete Fourier case follows from
(15.57):

n−1∏
j=0

(
s− 2 cos

2πj

n

)
= (Λn/2 − Λ−n/2)2 , (15.152)

It’s a square, because of the Dn symmetry. Consider even, odd casses,
use cos 0 = 1, cosπ = −1, cos(−θ) = cos θ. The product over non-trivial
eigenvalues is:

n = 2m Mn,0 =
m−1∏
j=1

(
s− 2 cos

πj

m

)
=
|Λn/2 − Λ−n/2|
µ
√
µ2 + 4

,(15.153)

n = 2m− 1 Mn,1 =
m−1∏
j=1

(
s− 2 cos

2jπ

2m− 1

)
=
|Λn/2 − Λ−n/2|

µ
,(15.154)

Next, look at the symmetric lattice states Hill determinants:

For odd n = 2m− 1,

Nn,1 =

m−1∏
j=0

(
s− 2 cos

2πj

n

)
= µMn,1 . (15.155)
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For n = 2m,

Nn,1 =
m−1∏
j=0

(
s− 2 cos

2πj

n

)
Nn,0 = (s+ 2)Nn,1 , (15.156)

and

1

2
(Nn,0 +Nn,1) =

µ2 + 5

2

m−1∏
j=0

(
s− 2 cos

2πj

n

)
=
µ2 + 5

2µ

√
(Λn + Λ−n − 2)

µ2 + 4
.(15.157)

The number of lattice states can be written as polynomials: For n = 2m−
1:

Nn,0 = µ
(

Λn/2 − Λ−n/2
)

= µ2Λ−1/2
(
Λm − Λ−m+1

)
. (15.158)

For n = 2m:

1

2
(Nn,0 +Nn,1) =

s+ 3

2(Λ− Λ−1)

(
Λn/2 − Λ−n/2

)
=

µ2 + 5

2µ
√
µ2 + 4

∣∣Λm − Λ−m
∣∣ . (15.159)

Now we can compute the h(t) from (??)

h(t) =

∞∑
m=1

[
N2m−1,0 t

2m−1 + (N2m,0 +N2m,1)
t2m

2

]
= µ

Λ1/2t

1− Λt2
− µ Λ−1/2t

1− Λ−1t2

+
µ2 + 5

2(Λ− Λ−1)

Λt2

1− Λt2
− µ2 + 5

2(Λ− Λ−1)

Λ−1t2

1− Λ−1t2
.(15.160)

Using (??) we have the symmetric lattice states part of the Kim-Lee-Park
zeta function. Expanding this zeta function using (15.170), we have:

−t ∂
∂t

(ln e−h(t)) = t+ 6t2 + 12t3 + 36t4 + 55t5 + 144t6

+203t7 + 504t8 + 684t9 + 1650t10 + . . . ,(15.161)

which is in agreement with (15.170) and table 20.3.
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15.4.1 Counting lattice states

Given the topological zeta function (??) we can count the number of lat-
tice states from the generating function: 13

−t ddt (1/ζs(t))
1/ζs(t)

=
∞∑
n=1

Nnt
2n +

∞∑
n=1

n−1∑
k=0

Nn,kt
n =

∞∑
m=1

amt
m , (15.162)

where the coefficients are:

am =

{ ∑m−1
k=0 Ns

m,k = mNs
m,0 , m is odd ,

Nm/2 +
∑m−1
k=0 Ns

m,k = Nm/2 + m
2

(
Ns
m,0 +Ns

m,1

)
, m is even .

(15.163)
Using the product formula of topological zeta function (15.151) and the
numbers of orbits with length up to 5 from the table 20.3, we can write
the topological zeta function:

1/ζs(t) =
√

1− t2 exp

(
− t

1− t

)
(1− t4) exp

(
− 2t2

1− t2
)(√

1− t6
)3

exp

(
− 3t3

1− t3
)

(1− t6)(1− t8)3 exp

(
− 6t4

1− t4
)

(1− t8)2(1− t10)5 exp

(
− 10t5

1− t5
)

(1− t10)6 . . . . (15.164)

The generating function is:

−t ddt (1/ζs)
1/ζs

= t+ 7t2 + 12t3 + 41t4 + 55t5 + . . . , (15.165)

which is in agreement with (15.163), where theNn andNs
n are theCn and

SFn in the table 20.3.

We are not able to retrieve the numbers of fixed points by their symmetry
groups using this topological zeta function (??), unless we rewrite the
topological zeta function with two variables:

ζs(t, u) = exp
( ∞∑
n=1

Nn
2n

t2n +
∞∑
n=1

n−1∑
k=0

Nn,k
n

un
)
. (15.166)

Using this topological zeta function ζs(t, u) we can write two generating
functions:

−t ∂∂t (1/ζs(t, u))

1/ζs(t, u)
=
∞∑
n=1

Nnt
2n , (15.167)

13Predrag 2021-08-25: We have the counts of the Bravais lattice states Nn , Nn,k already, from
(??), so why don’t we reverse the logic, start here, and get the zeta function (??) by integration?
Mention that this is an example of Lind zeta function [57] (??) without ever writing it down, so we
do not have to explain it? It’s a side issue for us, really.

8289 (predrag–7383) 65704/19/2020 siminos/spatiotemp/chapter/chronotope.tex



CHAPTER 15. ARTICLE EDITS

and
−u ∂

∂u (1/ζs(t, u))

1/ζs(t, u)
=
∞∑
n=1

n−1∑
k=0

Nn,ku
n . (15.168)

Using the product formula of this topological zeta function and the num-
bers of orbits with length up to 5 from the table 20.3, the Kim-Lee-Park
zeta function is:

1/ζs(t, u) =
√

1− t2 exp

(
− u

1− u

)
(1− t4) exp

(
− 2u2

1− u2

)(√
1− t6

)3

exp

(
− 3u3

1− u3

)
(1− t6)(1− t8)3 exp

(
− 6u4

1− u4

)
(1− t8)2(1− t10)5 exp

(
− 10u5

1− u5

)
(1− t10)6 . . . . (15.169)

And the generating function from this topological zeta function is:

−u ∂
∂u (1/ζs(t, u))

1/ζs(t, u)
= u+ 6u2 + 12u3 + 36u4 + 55u5 + . . . , (15.170)

which is in agreement with (15.168), where the Ns
n is the SFn in the ta-

ble 20.3.

2021-12-10 Predrag Form (V ′(xt) − st) looks like the most convenient defini-
tion of the “s-centered" subregionMs potential, applicable to both linear
and nonlinear field theories?

2021-08-23 Predrag We have omitted “Quotienting the temporal Bernoulli sys-
tem” (1.85) from this paper.

2021-12-10 Predrag
−2xt + a x2

t − 2xt − st = 0 . (15.171)

V (X,M) =
∑
t∈L

(g
k
xkt − x2

t − st xt
)
, st = −1 . (15.172)

Works also for temporal cat:

V (X,M) =
∑
t∈L

(s
2
x2
t − x2

t − st xt
)

=
∑
t∈L

(
s− 2

2
x2
t − st xt

)
, (15.173)

15.4.2 Hill determinant: fundamental parallelepiped eval-
uation

As a concrete example consider the Bravais lattice with basis vector
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The orbit Jacobian matrix is the δ/δxk derivative of the temporal Hénon
3-term recurrence relation (??)

Jp = −r + 2Xp − r−1 , (15.174)

where Xp is a diagonal matrix with p-lattice state xk in the kth row/column,
and the ‘1’s in the upper right and lower left corners enforce the periodic
boundary conditions.

The action of the temporal Hénon orbit Jacobian matrix can be hard to
visualize, as a period-2 lattice state is a 2-torus, period-3 lattice state a
3-torus, etc.. Still, the fundamental parallelepiped for the period-2 and
period-3 lattice states, should suffice to convey the idea. The fundamen-
tal parallelepiped basis vectors (15.106) are the columns of J . The [2×2]
orbit Jacobian matrix and its Hill determinant follow from (2.65)

J =

(
2x0 −2
−2 2x1

)
, DetJ = 4 (x0x1 − 1) = −4 (a− 3) . (15.175)

The resulting fundamental parallelepiped shown in figure ?? (a). Period-
3 lattice states for s = 3 are contained in the half-open fundamental par-
allelepiped of figure ?? (b), defined by the columns of [3×3] orbit Jacobian
matrix

J =

 2x0 −1 −1
−1 2x1 −1
−1 −1 2x2

 , DetJ = 8x0x1x2−2 (x0 +x2 +x3)+2 ,

(15.176)

2021-12-31 Han Note that in the temporal lattice reformulation, the Bernoulli
system involves two distinct lattices:

(i) Any lattice field theory: in the discretization (3.1) of the time con-
tinuum, one replaces any dynamical system’s time-dependent field
x(t) ∈ R at time t ∈ R by a discrete set of its values xt = x(a t) at
time instants t ∈ Z. Here t is a coordinate over which the field x is
defined.

(ii) Specific to the Bernoulli system: the site t field value xt (??) is con-
fined to the unit interval [0, 1), imparting integer lattice structure
onto the intermediate calculational steps in the extended phase space
(??) on which the orbit Jacobian matrix J (??) acts.

14

14Predrag 2021-10-25: Combine the above with the temporal cat page ?? discussion into a re-
mark that temporal Bernoulli and temporal cat aslo have a dynamical D1 symmetry, not utilized in
this paper, as nonlinear field theories such as temporal Hénon do not have such symmetries. Here
we study only the symmetries of the floor, not the dancer.
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15.4.3 Hill determinant: Reciprocal lattice evaluation

ω = e2iπ/n

φ̃k = xk + i yk = |φ̃k|eiθk
qk = 2πk/n,

n is the Bravais cell period

The temporal Bernoulli orbit Jacobian matrix J = ∂/∂t − (s − 1) r−1

is a differential operator whose determinant one usually computes by a
Fourier transform diagonalization (see sect. ??). The Fourier discretiza-
tion approach goes all the way back to Hill’s 1886 paper [42].

The first advantage of using the reciprocal lattice is that it provides a way
to compute the Hill determinant. If the orbit Jacobian matrix (??) com-
mutes with the translation operator, the plane waves are eigenvectors
of the orbit Jacobian matrix. Using these eigenvectors one can find the
eigenvalues and the determinant of the orbit Jacobian matrix. In the n-
dimensional space of lattice states with period-n, the one-lattice spacing
translation operator is a shift matrix (??), whose eigenvectors are plane
waves ẽk:

r ẽk = ωkẽk . (15.177)

For example, the eigenvalues of the temporal Bernoulli orbit Jacobian
matrix (??) are

(s 11− r) ẽk = (s− ωk) ẽk , (15.178)

and the Hill determinant is simply a polynomial whose roots are the nth
roots of unity,

Det (s 11− r) =

n−1∏
k=0

(s− ωk) = sn − 1 . (15.179)

see (??). The eigenvalues of the temporal cat orbit Jacobian matrix (15.112)
are:

(−r + s 11− r−1) ẽk = (s− 2 cos(2πk/n)) ẽk , (15.180)

and the Hill determinant is:

temporal cat: Det (−r + s 11− r−1) =

n−1∏
k=0

[s− 2 cos(2πk/n)]

= 2Tn (s/2)− 2 , (15.181)

where Tn is the Chebyshev polynomial of the first kind.
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Explain figure ??.
15

16

2020-05-31 Predrag Simó [72] On the Hénon-Pomeau attractor is a very fine early
paper. Cite it in Hénon remark.

Miguel, Simó and Vieir [63] From the Hénon conservative map to the Chirikov
standard map for large parameter values (click here):

Endler and Gallas [33]. method resembles the methods earlier employed
for quadratic polynomials (and their Julia sets) by Brown [16] and Stephen-
son [73]. (PC 2022-01-03 now referred to.)

Brown gives cycles up to length 6 for the logistic map, employing sym-
metric functions of periodic points.

Hitzl and Zele [43] study the of the Hénon map for cycle lengths up to
period 6.

2021-10-29 Predrag Dropped: , all five of form {Xs0s1s2 ,Xs1s2s0Xs2s0s1} .

Dropped this: The relation is so elementary that many practitioners rou-
tinely use it without ever having heard of any ‘Hill’s formula’.

Shortened this: One can compute the orbit Jacobian matrix of a scalar
field lattice state of such system using the forward-in-time Hill’s formula
for the k-component lattice site field, with the corresponding [kn×kn]
orbit Jacobian matrix determinant (??).

2020-12-17 Predrag Gave up on linking temporal cat to ChaosBook, as Adler-
Weiss partitions are not there yet. Maybe refer to Adler-Weiss in later
version.

2021-12-28 Han Statement after (??) is not correct. In the k = 1 and k = n − 1
subspaces, all reciprocal lattice states lie in complex plane on vertices of
regular n-gons. Generally this is not true. See figures 20.58 and 20.59
k = 2 and k = 3 (in blogCat), where the shift r rotate the reciprocal lattice
state by 2π/3 and 2π/2, instead of 2π/6. I suggest we only mention k = 1
here.

2021-12-30 Predrag It does not say in The Bible that vertices of an n-gon have
to be visited in increments of one. Lattice states lie on the vertices of n-
gons for any k, they are just visited in different order for different k. An if
n is not prime, some visitation sequences do not visit all vertices. That’s
OK. Every vertex is occupied.

15Predrag 2021-09-02: I think I prefer some version of the identity (15.56), (20.264), no mention
of Chebyshev polynomials. Not important, will revisit later.

As φ4 example adds little to understanding over what is learned from temporal Hénon, we will
not discus is further in this paper.

16Predrag 2021-08-17: Before publication, fine tune figure ?? using LaTex, as in figure ??.
2022-01-01 PC: done.
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2021-12-30 Predrag (??) formulas do not make sense to me for n odd...

Nn =
(

Λn/2 − Λ−n/2
)2

,

Nn,0 = Λn/2 − Λ−n/2 (15.182)

but I do remember all Λ1/2 eventually going away... Never mind.

2021-12-30 Han For general s we have: Nn,0 =
√

(s− 2)Nn (??). This is in
agreement with table ??.

2021-12-26 Han Given the symmetry group of the lattice states, we can find a
fundamental domain in the space of field configurations such that each
orbit in this space visits the fundamental domain only once. Each lat-
tice state in the fundamental domain is a representative lattice state of an
orbit.

A natural way to choose the fundamental domain of Cn symmetry group
is to divide the subspace of a component of the reciprocal lattice config-
uration. In the subspace of the k = 1 Fourier mode, the fundamental
domain is an 1/n wedge. The lattice shift r maps the fundamental do-
main by rotation and tiles the whole complex plane. Orbits visit the 1/n
wedge only once, so the points in the fundamental domain represent an
orbit each.

Repeats of the shorter lattice states sit on the 0 of the complex plane,
which is on the boundary of the fundamental domain.

For example, one can choose the region in the complex plane of φ̃1 with
argument −π/2n ≤ θ1 < π/2n to be the fundamental domain. Each
orbit can visit the fundamental domain only once. For the period-3 lattice
states of the temporal Bernoulli system with s = 2 shown in figure ??,
there are 3 points in this region, which are representative lattice states of
two different period-3 orbits and the fixed point 0.

As a next example, consider the 121 period-5 reciprocal lattice states of
the s = 3 temporal cat (??) plotted in figure ??. The number of lattice
states in the fundamental domain is 25. One of them is the constant
(0, 0, 0, 0, 0) state. Each one of the other, prime orbit solutions contributes
5 times to N5, the total number of lattice states belong to the same time
orbit. So we have the total number of solutions: N5 = 121 = 1+M5×5 =
1 + 24× 5, see table ??.

Repeats of the shorter lattice states sit on the 0 of the complex plane,
which is on the boundary of the fundamental domain.
17

2022-01-04 Han Moved from the end of sect. ??
17Predrag 2021-08-20: Merge figure ?? (a) with 1dLatStatC_5_0x3.svg.
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If, in addition, the law is time-reversal (or time-inversion) invariant, the
symmetry includes time-reflection, ie, it is dihedral group Dn with 2n el-
ements, so the reciprocal lattice should be a half of the above 1/n sliver of
a n-gon, and irreps are now either 1 or 2 dimensional. Even n is different
from odd n, and solutions either appear in pairs, or are self dual under
reflection in 3 different ways.

Due to the time reversal, all k = 2π/5 irrep states are the same as the
k = 4π/5 irrep states.

2022-01-15 Han where X and f̂(X) are nd-dimensional column vectors with
(id + j)th components (xt)j and [f̂(xt)]j , where 0 ≤ i < n − 1, 0 ≤ j <
d− 1, and r is the cyclic [nd×nd] time translation operator (compare with
(??), (9.58)):

r =


0 11d

0 11d
. . .
0 11d

11d 0

 , (15.183)

where 11 is the d-dimensional identity matrix.

Just as a scalar field satisfying a kth order differential equation can be
replaced by a k-component field, each satisfying a first order equation,
a kth order difference equation for a scalar field can be replaced by a k-
component lattice site field, satisfying k 1st order difference equations.

2021-10-25 Predrag A succinct explanation of the Hill’s formula:

If you evaluate stability of the 3-term recurrence (3.14) on a pe-
riodic lattice you get the orbit Jacobian matrix J ; if you eval-
uate it by multiplying the ‘two-configuration representation’
matrix J , you get the ‘time evolution’ side of the Hill’s formula.

2022-01-16 Predrag The embarrassing fact is that I no longer get what is
"succinct " about this statement...

2022-01-16 Predrag Now I get it. To get from
∏
d2xt in (??) to

∏
dxt in (??) we

note that the first component of time-step (??) written in terms of 1-dim-
ensional Dirac delta functions is trivial,∫
dx̂t δ(x̂t+1 − f̂(x̂t)) =

∫
dx̂t,1dx̂t,2δ(x̂t+1,1 − x̂t,2)δ(x̂t+1,2 − f(x̂t,1, x̂t,2))

=

∫
dx̂t,1dx̂t,2δ(x̂t+1,1 − x̂t,2)δ(x̂t+2,1 − f(x̂t,1, x̂t+1,1)

=

∫
dx̂t,1δ(x̂t+2,1 − f(x̂t,1, x̂t+1,1)

=

∫
dxt−1δ(xt+1 − f(xt−1, xt) ? (15.184)
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where we have used periodicity and dropped the component subscript,
x̂t,1 → xt−1 ? Looking back: we should get rid of field component in-
dices by using two Greek letters,
x̂t = (xt, ϕt) , where ϕt = xt+1.

2020-02-08 Predrag Gave up on this:
Complain about ref. [40] Dirichlet bc’s stupidity clearly both in the intro
and in conclusions.

2022-01-19 Predrag Removed the free energy originally snuck into (??),

Zc[J ] =
∑
c

eNLWc[J]

eNLWc[J] =

∫
Mc

dX δ(F [X]) =
1

|DetJc|
, (15.185)

as we do not use it in this article.

2022-01-17 Han I changed (9.57) from

∆xt − r−1Jt ∆xt = 0

which is incorrect. The shift matrix r cannot act on the d-dimensional
vector.
PC: OK.

2022-01-19 Predrag removed “If a potential that is bounded from below is needed
to make sense of the probabilistic interpretation of the configuration weight
(??)” from “one starts with a quartic potential (3.10) i.e., (19.14)” because
our potential is inverted.

Dropped:
For the 1-dimensional temporal lattice examples studied here, the reader
might not see much of an advantage in the global stability (‘Lagrangian’)
formulation over the forward-in time stability (‘Hamiltonian’) formula-
tion. The real payback is in the higher-dimensional spacetimes.

The fundamental fact does not apply to orbit counting for reversal-invariant
nonlinear field theories, such as the temporal Hénon.

It is prime in the same sense that Leibnitz monad is indivisible.

Toeplitz, i.e., matrix constant along each diagonal, Jk` = jk−`.

For a finite set of neighbors, Allroth [2] has partial results in the context
of Frenkel-Kontorova models.

In Toda’s work, the inverse scattering method for periodic systems yields a
discrete Hill’s equation, and in place of the scattering data, one uses the
spectrum of the discrete Hill’s equation.

we will spare the reader the group-theorist’s cosets and group quotients.
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2021-12-24 Predrag We have found MacKay [58] 1982 PhD thesis lists the pe-
riodic lattice states and orbits counts, together with the counts of time re-
versal invariant lattice states and orbits. Do cite in our paper(s). MacKay
had these numbers already listed in Table 1.2.3.5.1 of his 1982 PhD the-
sis [58].

2021-08-22 Predrag This is not quite right, one does not ‘conjugate’ a vector
xj . Not sure how to elegantly deal with xk−t term. Could have defined
actions, but that does not work for the Bernoulli (??).

si(−r1 + g V ′ − r−1)s−1
i X = (−r1 + g V ′ − r−1)X , (15.186)

where V ′ is not a linear operator but V ′(X)t only depends on φt.

2022-01-22 Predrag Gave up on this confused insert on Physical dimension
Time evolution Jacobian matrices are nice, as to the their multiplicative
structure (??), the Floquet matrix for the rth repeat of a prime period-
n lattice state Xp (??) is known, once the prime lattice state Xp Floquet
matrix (??) is known.

But that is actually quite meaningless, especially for infinite dimensional
physical systems. What matters is the Hill determinant |DetJc| = |det ( 11− Jc)|,
which is a finite number as long as there is a finite number of expanding
directions; the contracting ones are only small corrections to 1.

If ∂ivi < 0 at a given phase space point x, the flow is locally contract-
ing, and the trajectory might be falling into an attractor. If ∂ivi(x) < 0
for all x ∈ M, the flow is globally contracting, with the dimension of the
attractor necessarily smaller than the dimension of phase spaceM. For
∞-dimensional dissipative flows, such as Navier-Stokes, the∞ of stabil-
ity multipliers Λi in can be arbitrarily small; as such exponents represent
damping of arbitrarily kinky modes of a viscous fluid, they are of no in-
terest for study of steady turbulence. So the product should be truncated
to a finite number dphys of leading stability exponents. We shall refer to
this integer as a physical dimension of a strange attractor, in fluid dynam-
ics often referred to as the inertial manifold. Every expanding or marginal
direction contributes 1 to dphys, and then to get a lower bound on dphys,
one has to keep at least as many contracting Λi as needed to ensure that
the product is globally contracting. As nonlinear terms can mix various
terms in such a way that expansion in some directions overwhelms the
strongly contracting ones, dphys is larger than this bound, but still a finite
number.

This is an amazing result: a fluid’s phase space is∞-dimensional, but its
long term dynamics is confined to a finite-dimensional(!) subspace, the
reason why we can apply the few degrees of freedom technology devel-
oped here to∞-dimensional field theories.

2022-01-27 Predrag Uploaded LC21 [56] as arXiv:2201.11325.
For details, see reversal/00ReadMe.txt.
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2022-01-30 Predrag Submitted LC21 [56] to
mc04.manuscriptcentral.com/jphysa-iop

For referees, see reversal/jphysa-v1/referees.txt

Note to Han & Predrag send https://arxiv.org/abs/2201.11325 link
to
Michael Aizenman
(R. E. Amritkar and gade are not active)
S. Anastassiou
Ping Ao aoping@sjtu.edu.cn
Roberto Artuso artuso@fis.unico.it
Serge Aubry
Erik Aurell eaurell@kth.se
Bountis
Dwight Barkley d.barkley@warwick.ac.uk University of Warwick
A. Bäcker
A. Barvinok
David Berenstein <dberens@physics.ucsb.edu>
Biham
Erik M. Bollt ebollt@clarkson.edu Clarkson University
S. V. Bolotin
A. Bountis
H. Chat’e
Xiangyu Cao <xiangyu.cao08@gmail.com>
B. Clair
A. M. Ozorio de Almeida
Carl Dettmann
H. R. Dullin
Marco Falconi marco.falconi@polimi.it
Farazmand
Jason Gallas
Gutkin
Jonathan Halcrow
Masanori Hanada <hanadamasanori@gmail.com>
J. H. Hannay
S. Isola
W. Just
Jon Keating j.p.keating@bristol.ac.uk University of Bristol
J. Li
Douglas Lind
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[56] H. Liang and P. Cvitanović, A chaotic lattice field theory in one dimen-
sion, J. Phys. A 54 (2021), to appear.

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex670 8289 (predrag–7383)

http://dx.doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/0951-7715/29/2/325
http://dx.doi.org/10.1088/0951-7715/29/2/325
http://dx.doi.org/10.1088/0951-7715/29/2/325
http://dx.doi.org/10.1007/bf02417081
http://dx.doi.org/10.1007/bf02417081
http://dx.doi.org/10.1007/bf02417081
http://dx.doi.org/10.1007/bf02417081
http://dx.doi.org/10.1016/0167-2789(85)90092-2
http://dx.doi.org/10.1016/0167-2789(85)90092-2
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1088/0305-4470/29/7/020
http://dx.doi.org/10.1088/0305-4470/29/7/020
http://dx.doi.org/10.1088/0305-4470/29/7/020
http://dx.doi.org/10.1088/0305-4470/31/46/017
http://dx.doi.org/10.1088/0305-4470/31/46/017
http://dx.doi.org/10.1088/0305-4470/31/46/017
http://dx.doi.org/10.1209/0295-5075/11/6/006
http://dx.doi.org/10.1209/0295-5075/11/6/006
http://dx.doi.org/10.1209/0295-5075/11/6/006
http://dx.doi.org/10.1143/PTP.72.480
http://dx.doi.org/10.1143/PTP.72.480
http://dx.doi.org/10.1143/PTP.72.480
http://dx.doi.org/10.1143/PTP.72.480
http://dx.doi.org/10.1143/PTP.72.480
http://dx.doi.org/10.1088/0951-7715/4/2/005
http://dx.doi.org/10.1088/0951-7715/4/2/005
http://dx.doi.org/10.1088/0951-7715/4/2/005
http://dx.doi.org/10.1088/0951-7715/4/2/006
http://dx.doi.org/10.1088/0951-7715/4/2/006
http://dx.doi.org/10.1088/0951-7715/13/3/313
http://dx.doi.org/10.1088/0951-7715/13/3/313
http://dx.doi.org/10.1088/0951-7715/13/3/313
http://dx.doi.org/10.2140/pjm.2003.209.289
http://dx.doi.org/10.2140/pjm.2003.209.289
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1063/1.4757227
http://dx.doi.org/10.1215/S0012-7094-00-10314-6
http://dx.doi.org/10.1215/S0012-7094-00-10314-6
http://dx.doi.org/10.1215/S0012-7094-00-10314-6
http://dx.doi.org/10.1215/S0012-7094-00-10314-6
http://dx.doi.org/10.1103/physreve.97.022216
http://dx.doi.org/10.1103/physreve.97.022216
http://dx.doi.org/10.1103/physreve.97.022216
https://arxiv.org/abs/2201.11325
https://arxiv.org/abs/2201.11325


CHAPTER 15. ARTICLE EDITS

[57] D. A. Lind, “A zeta function for Zd-actions”, in Ergodic Theory of Zd

Actions, edited by M. Pollicott and K. Schmidt (Cambridge Univ. Press,
1996), pp. 433–450.

[58] R. S. MacKay, Renormalisation in Area-preserving Maps (World Scientific,
Singapore, 1993).

[59] R. S. MacKay and J. D. Meiss, “Linear stability of periodic orbits in La-
grangian systems”, Phys. Lett. A 98, 92–94 (1983).

[60] R. S. MacKay, J. D. Meiss, and I. C. Percival, “Transport in Hamiltonian
systems”, Physica D 13, 55–81 (1984).

[61] J. D. Meiss, “Symplectic maps, variational principles, and transport”,
Rev. Mod. Phys. 64, 795–848 (1992).

[62] F. Mezzadri, “On the multiplicativity of quantum cat maps”, Nonlin-
earity 15, 905–922 (2002).

[63] N. Miguel, C. Simó, and A. Vieiro, “From the Hénon conservative map
to the Chirikov standard map for large parameter values”, Regul. Chaotic
Dyn. 18, 469–489 (2013).

[64] I. Montvay and G. Münster, Quantum Fields on a Lattice (Cambridge
Univ. Press, Cambridge, 1994).

[65] L. Onsager, “Crystal statistics. I. A Two-dimensional model with an
order-disorder transition”, Phys. Rev. 65, 117–149 (1944).

[66] I. Percival and F. Vivaldi, “A linear code for the sawtooth and cat maps”,
Physica D 27, 373–386 (1987).

[67] I. Percival and F. Vivaldi, “Arithmetical properties of strongly chaotic
motions”, Physica D 25, 105–130 (1987).

[68] Y. B. Pesin and Y. G. Sinai, “Space-time chaos in the system of weakly
interacting hyperbolic systems”, J. Geom. Phys. 5, 483–492 (1988).

[69] C. Pozrikidis, An Introduction to Grids, Graphs, and Networks (Oxford
Univ. Press, Oxford , UK, 2014).

[70] M. Schell, S. Fraser, and R. Kapral, “Diffusive dynamics in systems with
translational symmetry: A one–dimensional–map model”, Phys. Rev. A
26, 504–521 (1982).

[71] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt
sind”, J. reine angewandte Math. 147, 205–232 (1917).

[72] C. Simó, “On the Hénon-Pomeau attractor”, J. Stat. Phys. 21, 465–494
(1979).

[73] J. Stephenson and D. T. Ridgway, “Formulae for cycles in the Mandel-
brot set II”, Physica A 190, 104–116 (1992).

[74] Wikipedia contributors, Block matrix — Wikipedia, The Free Encyclo-
pedia, 2020.

8289 (predrag–7383) 67104/19/2020 siminos/spatiotemp/chapter/chronotope.tex

http://dx.doi.org/10.1017/CBO9780511662812.019
http://dx.doi.org/10.1017/CBO9780511662812.019
http://dx.doi.org/10.1017/CBO9780511662812.019
http://dx.doi.org/10.1142/9789814354462
http://dx.doi.org/10.1016/0375-9601(83)90735-1
http://dx.doi.org/10.1016/0375-9601(83)90735-1
http://dx.doi.org/10.1016/0375-9601(83)90735-1
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1103/RevModPhys.64.795
http://dx.doi.org/10.1103/RevModPhys.64.795
http://dx.doi.org/10.1088/0951-7715/15/3/323
http://dx.doi.org/10.1088/0951-7715/15/3/323
http://dx.doi.org/10.1088/0951-7715/15/3/323
http://dx.doi.org/10.1134/s1560354713050018
http://dx.doi.org/10.1134/s1560354713050018
http://dx.doi.org/10.1134/s1560354713050018
http://dx.doi.org/10.1134/s1560354713050018
http://dx.doi.org/10.1017/cbo9780511470783
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1016/0167-2789(87)90037-6
http://dx.doi.org/10.1016/0167-2789(87)90037-6
http://dx.doi.org/10.1016/0167-2789(87)90096-0
http://dx.doi.org/10.1016/0167-2789(87)90096-0
http://dx.doi.org/10.1016/0167-2789(87)90096-0
http://dx.doi.org/10.1016/0393-0440(88)90035-6
http://dx.doi.org/10.1016/0393-0440(88)90035-6
http://dx.doi.org/10.1016/0393-0440(88)90035-6
http://books.google.com/books?vid=ISBN9780199996728
http://dx.doi.org/10.1103/PhysRevA.26.504
http://dx.doi.org/10.1103/PhysRevA.26.504
http://dx.doi.org/10.1103/PhysRevA.26.504
http://dx.doi.org/10.1103/PhysRevA.26.504
http://dx.doi.org/10.1515/crll.1917.147.205
http://dx.doi.org/10.1515/crll.1917.147.205
http://dx.doi.org/10.1515/crll.1917.147.205
http://dx.doi.org/10.1007/BF01009612
http://dx.doi.org/10.1007/BF01009612
http://dx.doi.org/10.1007/BF01009612
http://dx.doi.org/10.1016/0378-4371(92)90080-A
http://dx.doi.org/10.1016/0378-4371(92)90080-A
http://dx.doi.org/10.1016/0378-4371(92)90080-A
https://en.wikipedia.org/wiki/Block_matrix
https://en.wikipedia.org/wiki/Block_matrix


CHAPTER 15. ARTICLE EDITS

[75] Wikipedia contributors, Kronecker product — Wikipedia, The Free En-
cyclopedia, 2020.
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[77] A. Wirzba and P. Cvitanović, “Appendix: Discrete symmetries of dy-
namics”, in Chaos: Classical and Quantum (Niels Bohr Inst., Copenhagen,
2022).

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex672 8289 (predrag–7383)

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1017/jfm.2013.75
http://dx.doi.org/10.1017/jfm.2013.75
https://ChaosBook.org/paper.shtml#appendSymm
https://ChaosBook.org/paper.shtml#appendSymm
https://ChaosBook.org/paper.shtml#appendSymm


Chapter 16

Sidney’s blog

Sidney V. Williams work blog
swilliams425@gatech.edu
sidneywilliams1231@gmail.com
subversion siminos : swilliams425
cell 208 310 3866

The latest entry at the bottom for this blog, page 768

16.1 2020 blog

2020-05-20 Predrag to Sidney:

You can write up your narrative in this file. Can clip & paste anything
from above sections you want to discuss, that saves you LaTeXing time.

2021-09-09 Predrag The 3rd line of siminos/spatiotemp/blogCats.tex says

\input{inputs/inclOnlyCats} %process only the files you are editing

you uncomment a single line in that file to "process only the files you are
editing".

2021-07-04 Predrag to Sidney Pro tip: compile blogCats.tex often, as you write,
and fix errors as you write. I had to go all they way back to May to find
one of your unbalanced “{” and make the entire blog compile without
errors...

2020-08-22 Predrag First task:

Start reading kittens/CL18.tex [3] sect. Bernoulli map. Everything up to
CL18 sect. s:1D1dLatt Temporal Bernoulli you know from the ChaosBook
course.
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New stuff starts here. See how much you understand. Write your study
notes up here, ask questions - this is your personal blog.

You refer to an equation like this: CL18 eq. tempBern;

to figure like this: CL18 figure fig:BernCyc2Jacob;

to table like this: table 11.1;

to a reference like this: Gutkin and Osipov [13] (GutOsi15 refers to an
article listed in ../bibtex/siminos.bib).

and to external link like this: “For great wallpapers, see overheads in
Engel’s course [10].”

2020-08-22 Predrag An example of referring to the main text: Why do you
write orbit Jacobian matrix CL18 eq. jacobianOrb as a partial derivative,
when you already know J , see CL18 eq. tempFixPoint?

2020-08-24 Sidney Started reading from the beginning as that only adds an
additional 4 pages, and it would be beneficial to review.

General Notes: Showing what modern chaos calculations look like. The
spatiotemporal cat is the arbitrary dimension generalization of the 1-D
Bernoulli map.

(mod 1) subtracts the integer part of sφt, this keeps φt+1 within the unit
interval (group theoretic analogue?). Also partitions the state-space into
s sub-intervals.

2020-08-24 Predrag The group theory here compatifies translations on the (in-
finite) line φ ∈ (−∞,∞) to translations on the (compact) circle φ ∈ [0, 2π).

2020-08-24 Sidney Reminder to self: review the symbolic dynamics, and bi-
nary operations from chapter 14 of ChaosBook. ChaosBook Chapter
XXX. The unit interval is partitioned into sn subintervals, each with one
unstable period-n point, except the rightmost fixed point is the same as
the fixed point at the origin. So there are sn − 1 total period-n periodic
points. r in (??) is a cyclic permutation that translates forward in time the
lattice state by one site. Inverse r because the second term is always one
step behind the first term and an inverse r moves the state back one.

Questions 1. I’ve pretty much never done modular arithmetic before, I
understand CL18 eq. BerStretch in the idea that the circle map wraps in
on itself and contributes the value of its slope after one go around, but I
am unsure on how to use the modular arithmetic to do that, should I look
into that?

2020-08-24 Predrag As I do not know what “modular arithmetic” is, don’t
worry about :)
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2020-08-25 Sidney General Notes

CL18 eq. pathBern appears to be a vector of a periodic (or relative pe-
riodic orbit) through the Bernoulli map. Review Multishooting. Total
number of of periodic points of period n is Nn = sn − 1 but it also equals
the magnitude of the determinant of the orbit Jacobian matrix. (got to
page 7)

Q1 Is CL18 eq. tempBernFix the evolution function f t(y) that was refer-
enced throughout ChaosBook?

Q2 What exactly is meant by a “lattice"?

2020-08-24 Predrag .

A1 The whole point of the paper us that ChaosBook is obsolete - in
the new formulation, there is no ‘time’ evolution, no time trajectory
f t(y), there are only sets of fields the live on lattice points that satisfy
recurrence relations. CL18 eq. tempBernFix is orbit Jacobian matrix,
the stability of a lattice state, to be related to stability forward in time
in CL18 sect. s:Hill. This is a revolution: there is no more time, there
is only spacetime.

A2 Temporal lattice Z is defined in CL18 eq. pathBern. Spacetime inte-
ger lattice Z2, (or more generally Zd) in CL18 eq. KanekoCML, CL18
eq. CatMap2d. When you get to it, a 2-dimensional Bravais lattice Λ
is defined in CL18 eq. 2DBravaisLattice.
If this is unclear, read up on integer lattices, give your own precise
definition.

2020-08-26 Sidney Point Lattice (integer lattice is a special case of point lat-
tice) notes from Wolfram: "A point lattice is a regularly spaced array
of points." The integer lattice is where all of these points are integers. I
will look at the Barvinok lecture tomorrow, I have to finish moving to a
different house today. (Stayed on page 7)

Q3 Please correct me if I am wrong, but a lattice seems to be a collection
of points where are all regularly spaced, so does "regularly" mean
that it is controlled by a deterministic law? If this is the case, the
φn states in a periodic orbit can be grouped as a lattice and ordered
by location along the periodic orbit, then the associated "winding"
numbermt can be grouped in its own lattice, which in this case is an
integer lattice. What is the "regular" spacing for the winding num-
bers? Have missed the point?

A3 Wolfram is right. When you have a discrete time map, time takes
integer values t = · · · ,−1, 0, 1, 2, · · · . That is called 1-dimensional
integer lattice Z. Once you are in d = 2 or higher, the name makes
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sense, as you can visualize Z2 as a ‘lattice’. It is regular, because all
spacings between neighboring points are 1. There is nothing ‘deter-
ministic’ about this, it just says that time takes its values on integers,
rather than on a continuum.
There is only one lattice, but on each lattice site there is a real-valued
field φt and the integer valued ‘source’ mt.

2020-08-27 Sidney Thank you for A1, that makes complete sense now. Cal-
culated the orbit Jacobian matrix using equation CL18 eq. tempBernFix,
matched with the paper, yay. Orbit Jacobian matrix maps the basis vec-
tors of the unit hyper-cube into a fundamental parallelepiped basis vec-
tors, each of which is given by a column in the orbit Jacobian matrix.
|Det (s/r| = sn because r and its inverse are both unitary matrices, and
if you multiply every row of an [n × n] matrix, the determinant is multi-
plied by the constant raised to the power n. Periodicity rn = 1 accounts
for 0 and s− 1 fixed points being a single periodic point. (got to page 9)

Q4 I was trying to calculate the orbit Jacobian matrix using the r matrix,
but the delta function equation CL18 eq. hopMatrix for r doesn’t
seem to work for the Bernoulli map, I know that r2,1 = 1 and r1,2 = 1
which works with the delta function definition. However, r2,1 = δ3,1
from CL18 eq. hopMatrix, which should equal zero. Other than just
the idea of being cyclic, I don’t know why it yields one instead of
zero, what am I missing?

A4 Work it out r matrices for n = 1, 2, 3, · · · . It will start making sense.

Q5 So, does “lattice state" mean the set of all points (field of all points?)
which running through the Bernoulli map requires the specific wind-
ing number at that lattice site?

A5 Interesting, grad students too seem to confuse coordinates (for ex-
ample, (x, t) = (3.74,−0.02) in continuum, (n, t) = (7,−6) on a dis-
crtized space) and the fields φ(n, t). Physical “state” refers to value
of field φ over every (n, t) - is the grass high or low? rather than the
coordinates of spacetime.
How would you state this precisely if you were trying to explain
this paper to another student?

2020-08-30 Sidney

A5.1 Sidney: “ ΦM is the set of all values the field φz takes over the set of
coordinates M. ”

A5.2 Predrag: Please reread 2nd paragraph of CL18 sect. s:1D1dLatt and
explain what is wrong with your answer A5.1

Notes: For an period-n lattice state ΦM the Jacobian matrix is now a func-
tion of a [d x d] matrix J, so the formula for the number of periodic points
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of period n (number of lattice states of period n) is now |det (1 − JM )|
where JM =

∏n
t=1 Jt where Jt is the one-step Jacobian matrix which is

assumed to vary in time.

Note to self: look back over the topological zeta function, specifically try to un-
derstand derivation of:

1

ζtop(z)
= exp

(
−
∞∑
n=1

zn

n
Nn

)

(got to CL18 page s:bernODE)

Predrag: ChaosBook (click here)

Q6 Is “there are s fundamental lattice states, and every other lattice state
is built from their concatenations and repeats" is simply a restate-
ment of the fact that the Bernoulli map is a full shift?

A6 For Bernoulli, yes. But search for word ‘fundamental’ in Chaos-
Book Counting. For example, ‘We refer to the set of all non-self-
intersecting loops {tp1 , tp2 , · · · tpf } as the fundamental cycles’. Write
up here a more nuanced statement of ‘fundamental’ cycles might be
(I do not have firm grip on this either...).

Q7 Is CL18 eq. bernN_n-s=2 a result of expanding in a Taylor the result
of the derivative (and product of 1/ζtop and z)? Because the topo-
logical zeta function of the Bernoulli map is a closed form function,
not an infinite sum.

2020-08-31 Sidney Via a finite difference method, CL18 eq. 1stepDiffEq can
be viewed as a first order ODE dynamical system. Back-substituted with
(??) to show that with ∆t = 1 the velocity field does satisfy the diffeq
(8.18). The Bernoulli system can be recast into a discretized ODE whose
global linear stability is described by the orbit Jacobian matrix. (Stayed
on CL18 page s:bernODE))

2020-09-01 Sidney Started reading CL18 sect. s:kickRot A kicked rotor.

(??) and (9.88) describe the motion of a rotor being subjected to periodic
momentum pulses. The mod is present for the q equation to make sure
that the angle varies from 0 to 2π. As in the Bernoulli map case, here
mod is also added to the momentum equation to keep it bounded to a
unit square. Cat maps with the stretching parameter s are the same up
to a similarity transformation. An automorphism is an isomorphism of
a system of objects onto itself. An isomorphism is a map that preserves
sets and relations among elements.

Q8 Do the kicked rotor equations with Hooke’s law force, and bounded
momentum (mod 1 added to CL18 eq. PerViv2.1a) only take the
form of CL18 eq. catMap if K is an integer?
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A8 The text states: “The (mod 1) added to CL18 eq. PerViv2.1a makes
the map a discontinuous ‘sawtooth,’ unless K is an integer.” How
would you make that clearer?

Q9 How does CL18 eq. catMap have a state space which is a 2-torus? I
am having a hard time visualizing how this came about.

A9 Do you understand how (mod 1) operation turns unbounded stretch
CL18 eq. BerStretch into a circle map CL18 eq. n-tuplingMap? Cir-
cle map is 1-torus. If both (qt, pt) ∈ (0, 1] × (0, 1] are wrapped into
unit circles, the phase space (qt, pt) is not an infinite 2-dimension-
al plane, but a compact, doubly periodic unit square with opposite
edges glued together, i.e., 2-torus.

2020-09-03 Sidney I was typing my description into "summary" textbox above
the commit to master button. Obviously I was incorrect, I’ll try to type in
the "description" for this commit.

2020-09-02 Predrag “Tripping Through Fields” showed up :)

2020-09-03 Sidney

A5.3 Sidney: I’m not actually quite sure what’s wrong with my given
definition. From your answer A5 it seems that M is a set of coordi-
nates (the location of the blade of grass) and ΦM is the value at that
coordinate (the height of the grass at that point). Perhaps I forgot
that these lattice states are for periodic orbits, so I forgot the second
coordinate (period of length n).

A5.4 Predrag: The textbook inhomogeneous Helmoltz equation is an ellip-
tical equation of form

(2 + k2)φ(z) = −m(z) , z ∈ Rd , (16.1)

where the field φ(z) is a C2 functions of coordinates z, and m(z) are
sources. For example, charge density is a source of electrostatic field.
Suppose you are so poor, your computer lacks infinite memory, you
only have miserly only 10 Tb, so you cannot store the infinitely many
values that coordinates z ∈ Rd take. So what do you do?
Perhaps a peak at ChaosBook ChaosBook A24.1 Lattice derivatives
can serve as an inspiration. And once you have done what a person
must do, your Helmoltz equation (hopefully) has the form of CL18
eq. OneCat. What is a field, a source, a coordinate then?

2020-09-03 Sidney

A8.1 The sawtooth statement made sense, what made it unclear for me
was the second sentence which started with "in this case" it was
(again for me, I might not have been paying enough attention) am-
biguous, I didn’t know if it was talking about the integer case or the
sawtooth case.
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A8.2 Predrag: thanks, I rephrased that sentence.

A9.1 I understand, your explanation makes sense, thank you :).

Notes: The discrete time Hamiltonian system induces forward in time
evolution on the 2-torus phase space. The orbit Jacobian matrix can take
many different forms depending on the map. Despite this the Hill de-
terminant can still count the number of lattice states. (got to page CL18
page s:tempCatCountTEMP)

2020-09-05 Sidney

A5.5 If I was so unlucky to only have 10Tb of memory, I would take a fi-
nite interval of points z that I was interested in, and discretize them
(evenly, or unevenly) and then evaluate the field (that was probably
the wrong wording) at a finite set of points, either of particular inter-
est within the interval, or closely spaced enough so that the values
were representative of the values the field took over a continuum.
I think that a coordinate is a point in state space specified by spe-
cific values of state variables (position, time, momentum etc.). To
try to answer source, and field, I’ll be thinking of an electric charge,
a source is what generates the medium by which other sources are
effected, and the field is the medium which acts upon other sources.

A5.6 I did look at ChaosBook A24.1 Lattice derivatives, but it didn’t
seem to address quite the fundamental confusion I seem to be fac-
ing. I’m relatively confident in my coordinate definition, but not at
all in my source, and field definition.

2020-09-05 Sidney

A5.8 I read the pink bits of CL18 sect. s:lattState Lattice states (as I assume
that was the parts that you rewrote specially). From it I (think) I un-
derstand. We’re looking at two coordinates for most of the Bernoulli
and cat map stuff: a spatial one, and a temporal one, the maps only
effect the temporal placement, but effect it differently depending on
where the point was in space when the map acted on it, because
the field takes a different value at every point in space (and time).
So the coordinates are the field point placement in time and space.
The field is the value that is assigned to every lattice point. M keeps
getting referred to as an alphabet, so that makes me think that it
is similar (perhaps the multidimensional generalization) to the “al-
phabet" which was used to partition state space in the 1D maps of
Chaosbook, such as 0 for the left half of the interval and 1 for the
right, and then further partitioning the more the map is applied. Is
that close at least?

2020-09-05 Predrag .
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A5.9 Getting hotter. Look at CL18 eq. circ-m and CL18 eq. catMapNewt;
φt and mt are the same kind of a beast, mt is just the integer part
of the “stretched” field in CL18 eq. BerStretch. In this particular,
linear map setting, this integer does double duty, as a letter of an
“alphabet”. It cannot possibly be a “coordinate”, it like saying that
a dancer’s head is “floor.”

A5.10 In temporal lattice formulation no “map is applied.” That is the bril-
liance of the global spatiotemporal reformulation: there is no step-
ping forward in time, so there is no map - the only thing that exists
is the global fixed point condition that has to be satisfied by field
values everywhere on the lattice, simultaneously.
Time is dead.

2020-09-08 Sidney

Q11 So the temporal cat / spatiotemporal cat equations are moving around
points in the lattice instead of through time?

Q12 Is something of the form of CL18 eq. tempFixPoint an example of
the “global fixed point condition"?

2020-09-14 Predrag .

A11 An equation does not have to be “moving around” anything: think
of a quadratic equation x2 + bx + c = 0. Does it “move” anything?
No. It’s a condition that a single “field” x has to satisfy, and the
solution is a root of that equation. The temporal cat / spatiotempo-
ral cat equations are “equations” in the same sense, [bunch of terms
involving φz ]=0.

A12 Yes.

2020-09-09 Sidney Notes: Equations such as CL18 eq. catMapNewt can be
solved using similar methods to linear odes: guessing a solution of the
form Λt and finding the characteristic equation. Then assuming all terms
are site independent because the difference of any two solutions of CL18
eq. catMapNewt solve its homogeneous counterpart CL18 eq. diffEqs:CatCharEq.
Got to CL18 page s:tempCatZeta.

Notes: Topological zeta functions count orbits, i.e. time invariant sets of
equivalent lattice states related by cyclic permutations. The "search for
zeros" CL18 eq. tempCatFixPoint is the "fixed point condition." Which is
a global statement which enforces CL18 eq. catMapNewt at every point
in the lattice. Got to CL18 page s:catlatt

2020-09-13 Sidney The temporal cat is a special case of the spatiotemporal
cat, defined on a one-dimensional lattice Z1. In this case the associated
topological zeta function is known in a closed, analytic form.

Coupled map lattices: Starts with a review of finite difference methods for
PDEs. The d dimensions in the lattice are d-1 spatial lattice points and 1
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temporal one. The PDE is reduced to dynamics of a coupled map lattice,
with a set of continuous fields on each site.

A5.11 I have experience with finite difference methods for solving a dis-
cretized form of a PDE, but I’m having a hard time visualizing the
idea of having a discrete coordinate system in d different directions,
but with a continuous field on each site. This may be valuable as it
is a specific statement of where I’m getting stuck.

Q13 My current understanding is that at each point in the d-dimensional
integer lattice ("point" as in a lattice node with d specified coordi-
nates), but at each point (site) there is a continuous field. What is
this field continuous over? It’s at one point in a discrete coordinate
system. And why is there a continuum at each point? And finally,
I assume that these continuous fields are the values of the function
being solved for at that point, however, shouldn’t that just be a sin-
gle value? Not a field? I’m sorry if this is a rather silly question, but
I’ll keep thinking about it and I’ll make a note if my understanding
(or lack thereof) changes.

A13 Predrag: In CL18 figure 1.14 field xt or φt and f(φt) on the discrete
site t run over continuous values. For example, at temporal lattice
site t = 7 the field value is φ7 = 0.374569263952942 · · · . OK now?

Q13.1 Slight update, it seems that the field is the state of the system and
at each discretized point there is a map acting on the state, although
that conflicts with the notion that time is dead, so I’m probably still
misunderstanding.

A13.1 Predrag: Yes.

Thinking of this as a spring mattress. Often starts out with chaotic on-
site dynamics weakly coupled to neighboring sites. In this paper one sets
the lattice spacing constant equal to one. Diffusive coupled map lattices
introduced by Kaneko:

φn,t+1 = g(φn,t) + ε [g(φn−1,t)− 2g(φn,t) + g(φn+1,t)] ,

where each individual spatial site’s dynamical system g(x) is a 1D map,
coupled to the nearest neighbors by the discretized second order spatial
derivative. The form of time-step map g(φn,t) is the same for all time
i.e. invariant under the group of discrete time translations. Spatial stabil-
ity analysis can be combined with temporal stability analysis, with orbit
weights depending exponentially both on the space and the time vari-
ables: tp ∝ e−LTλp . ri translates the field by one lattice spacing in the ith

direction.

Q14 What is a lattice period?
A14 Predrag: Does the paragraph above CL18 eq. catlattFix answer you

question? I would like to refer to the set of numbers {`1, `2, · · · , `d}
as the period of lattice Λ. Would that be confusing?
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Q15 Is z in the definition of a lattice state both a temporal and a spatial
index? So equivalent to both n and t?

A15 Predrag: after CL18 eq. CatMap2d I write “a 1-dimensional spatial
lattice, with field φnt (the angle of a kicked rotor (??) at instant t) at
spatiotemporal site z = (n, t) ∈ Z2.” Should this “z = (n, t) ∈ Z2”
be repeated elsewhere. If so, where?

Q16 Often a member of the alphabet can be a negative number, which
I assume means that the state is taken out of unity in the negative
direction.

A16 Do you understand CL18 figure fig:BernCyc2Jacob and CL18 fig-
ure fig:catCycJacob?

The spatiotemporal cat has the point-group symmetries of the square
lattice. A lattice state is a set of all field values Φ = {φz} over the d-
dimensional lattice that satisfies the spatiotemporal cat equation, with all
field values constrained between zero and one. A lattice state ΦΛ is a in-
variant 2-torus if it satisfies ΦΛ(z+R) = ΦΛ(z) for any discrete translation
R = n1a1 + n2a2 ∈ Λ. Got to CL18 page s:catLatt1x1.

2020-09-14 Sidney

A13.1 I think I’m OK now. I think what I was trying to visualize was a
stack of an infinite number of values at each lattice point, which
was confusing, but this makes sense.

A14.1 Unfortunately I don’t think I quite understand. I understand the
idea of the different directions, I understand treating ΦM(φz) as a
singular fixed point, but I do not understand `i.

A15.1 I think that I lost that definition of z around CL18 eq. dDCatsT, but I
think that may have been a factor of how long it takes me personally
to digest this material.

A16.1 After reading the descriptions and staring at it for awhile, I think
that I do.

Q17 I tried a couple days back (Thursday or Friday I think, they all blend
together) to log in to your bluejeans office. But it must have been
one of the times that it had logged you off due to inactivity. There
was also another person their I didn’t recognize, and I didn’t want
to step on their toes if they were waiting for you to get back, so I
logged off. So, when in general would good times to try hopping
into your office?

2020-09-16 Sidney A Bravais lattice can be denoted Λ = [L× T]S where L is
the spatial lattice period, T is the temporal lattice period, S imposes the
tilt to the cell. Basis vectors for the Bravais cell can be written as:

a1 =

(
L
0

)
, a2 =

(
S
T

)
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Q18 If something is written as 850[3 × 2]0 what is the numerical value?
More importantly, how is it found? I know it has to do with the
cyclic permutations of the prime blocks, but I’m not sure how to get
a numerical value.

Got to page CL18 page s:catLattCount

2020-09-17 Sidney For the Bernoulli map its stretching uniformity allows the
use of combinatorial methods for lattice points. For temporal (not spa-
tiotemporal) the number of lattice states is the same as the volume of the
fundamental parallelepiped, so the magnitude of the determinant of the
orbit Jacobian matrix. The block M can be used as a 2D symbolic repre-
sentation of the lattice system state. For a given admissible source block
M, the periodic field can be computed by:

φi1j1 =
2∑

i2=0

1∑
j2=0

gi1j1,i2j2Mi2j2

2020-09-19 Predrag Sorry, I’ve been a bit overwhelmed with lecture prepara-
tions, so I will not answer any of the questions quite yet. But I have
rewritten the abstract, and the introduction to the paper, up to the start
of CL18 sect. s:Bernoulli Bernoulli map. Can you have a critical look at the
new text, report here if something does not make sense to you?

2020-09-19 Sidney

Update I read through, and aside from some very minor grammar issues
(forgetting a “have" after “we") it all makes sense.

2020-09-20 Predrag .

A15.2 I now added the z definition to CL18 eq. dDCatsT, is that clearer?

2020-09-20 Sidney

A15.3 Yes, that makes it clearer.

−
∞∑
r=1

1

r
tr Ĵrp = tr

(
−
∞∑
r=1

1

r
Ĵrp

)
= tr ln

(
1̂1 − Ĵrp

)
= ln det

(
1̂1 − Ĵrp

)
I liked the text cut from the introduction on page 44, it made the idea of
time’s death more easily digestible. Finished main paper, will look at the
appendices for math.

2020-09-22 Sidney

Math Review Part 1

Updated 9/29/20
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Bravais Lattice From Wikipedia: A Bravais lattice is an infinite array of
discrete points generated by a set of discrete translation operations
described in two dimensional space by:

R = n1a1 + n2a2

where ni is any integer and ai is a primitive vector, each ai lie in
different directions, but are not necessarily mutually perpendicular,
but they do span the lattice. A fundamental aspect of a Bravais Lat-
tice is that no matter the direction of the primitive vectors, the lattice
will look exactly the same from each of the discrete lattice points
when looking in that direction. A Lattice is is a periodic array of
points where each point is indistinguishable from any other point
and has identical surroundings. A unit cell expands the idea of the
infinite array of discrete points to include the space inbetween the
points, if we are looking at a physical system this includes the atoms
in this space. There are two main types of unit cells: primitive unit
cells and non-primitive unit cells. A unit cell is the smallest group
of atoms of a substance that has the overall symmetry of a crystal
of that substance, and from which the entire lattice can be built up
by the repetition in three dimensions. A primitive cell must contain
only one lattice point, generally, lattice points that are shared by n
cells are counted as 1

n of the lattice points contained in each of those
cells. So traditional primitive cells only contain points at their cor-
ners. The most obvious way to form a primitive cell is to use the
basis vectors which the lattice is constructed from:

C(a1,a2) = r = x1a1 + x2a2

0 ≤ xi ≤ 1

The scaling factors are to ensure that lattice points are placed on the
corners of the cell. In the current paper the primitive unit cell of
a d-dimensional Bravais lattice tiles the spacetime. C(a1,a2) is the
Bravais cell of a Bravais Lattice spanned by basis vectors (a1,a2). A
given Bravais Lattice Λ can be defined by an infinity of Bravais cells.
Hermite normal form: the analogue of reduced echelon form for
matrices over Zn. Each family of Bravais cells contains a unique cell
of the Hermite normal form, this can be written in terms of L,T, and
S, where L, and T are respectively the spatial, and temporal lattice
periods, S is the "tilt" of the cell. Hence the lattice can be defined as
[L× T ]S .

Prime Bravais Lattices It may be possible to tile a given Bravais lattice
Λ by a finer lattice Λp. A Bravais lattice is prime if there is no finer
Bravais cell, other than the unit volume [1 × 1]0 that can tile it. If
detΛ is a prime number, then Λ is a prime matrix. If Λ is neither
prime nor unimodular (a square integer matrix having determinant
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of ±1), it is composit can can be decomposed into a product of two
non-unimodular matrices Λ = PQ. In order to determine all prime
lattices Λp that tiles a given Bravais lattice Λ:

a1 = kap1 + lap2

a2 = map1 + nap2

observe that a prime tile (ap1,a
p
2) tiles the large tile only if the larger

tile’s width L is a multiple of Lp, and the height T is a multiple of Tp,
and the two tile "tilts" satisfy:

a2 = map1 +
T

Tp
ap2 → S = mLp +

T

Tp
Sp

A prime lattice only tiles the given lattice if the area spanned by the
two tilted basis vectors:

a2 × ap2 = STp − TSp

is a multiple of the prime tile area LpTp. A lattice state is a set of
all field values Φ = {φz} over the d-dimensional lattice z ∈ Z that
satisfies the spatiotemporal cat equation. Lattice state Φ is a periodic
orbit if Φ(z + R) = Φ(z) for any discrete translation R = n1a1 +
n2a2. If a given periodic orbit over lattice Λ is not periodic under
translations R ∈ Λp for any sublattice Λp (except for Λ itself) we
shall refer to it as an orbit: a lattice state of smallest periodicity in all
spacetime directions.

Shift Operator Shift operator is a matrix: rij = δi+1,j , this along with a
periodic boundary condition assuming [n× n] matrix rn = I yields

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


A lattice state is a vector with all the values that the field takes on
at each point on the lattice. Shift operator is cyclic permutation of a
lattice state, changes only the coordinates of the lattice state.

rΦ =


φ1

φ2

...
φ0


rT = r−1 cyclic permutation in the opposite direction, does not de-
stroy anything, only changes the coordinates.
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Lattice Derivatives Hypercube in d-dimensions with unit sides. Each
side is described by a unit vector in direction µ n̂µ ∈ {n̂1, n̂2, n̂3, · · · , n̂d}
unit lattice cell, points along µ’th direction.
Forward Lattice Derivative (a is lattice spacing):

(∂µφ)l =
φ(x+ an̂µ)− φ(x)

a
=
φl+n̂µ − φl

a

Backward Lattice Derivative (transpose of forward lattice deriva-
tive):

(∂µφ)
T

=
φ(x− an̂µ)− φ(x)

a
=
φl−n̂µ − φl

a

Lattice Discretization, Lattice State Divide interval of separation a cre-
ating a discrete coordinate system. At each point read off the value
of the continuous counterpart. Field has a constant value over the
interval. Lattice is a coordinate, set of points, the values of the field
at each lattice point is a lattice state.
field φ = φ(x) x = al l ∈ Z
Lattice State φ = {φ0, φ1, φ2, · · · , φn−1} "configuration".

N-Site Periodic Lattice After N steps, back

rN = I

eigenvalues=ω = e
i2π
N

rN − I =
N−1∏
k=0

(r − ωkI)

N distinct eigenvectors, N-dim space (N irrep)
N projection operators

Pk =
∏
j=k

r − ωjI
ωk − ωj

Discrete Fourier Transforms Have a lattice state φ = {φ0, φ1, · · · , φN−1}
Kth Fourier Coeff=projection of φ onto eigen vector ϕ

φ̃k = $†k · φ =
1√
N

N−1∑
l=0

e−
i2π
N klφl

Q19 I think I may have gotten to the point where I can go beyond exclu-
sively reading the paper, what should I do beyond? As well, what
times would be good for me to drop in on your Bluejeans office dur-
ing the week?
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Q20 I believe I’ve asked this before, or a form of it, but it seems that the
periodic boundary condition is in direct conflict with the definition
of the shift operator. Am I missing something?

2020-10-15 Sidney A reread.

The Bernoulli shift map is a circle map due to the mod 1 operation for
[1/s, 1) where s is the "stretching parameter" of the general Bernoulli
map: φt+1 = sφt ( mod 1). ( mod 1) subtracts the integer part of sφt
yielding the "winding number"mt+1. This keeps φt+1 in the unit interval,
and divides this interval into s subintervals. The winding number is also
the alphabet of the system, denoting at time t, it visits interval m. Brief
note from Chaosbook: we can represent a state as a base s decimal of the
resulting visitation sequence: φ0 = .m1m2m3 · · · . The Bernoulli map op-
erates on a state by shifting this itinerary over by one:φ0 = .m1m2m3 · · · →
φ1 = .m2m3 · · · . The preimages of critical points (the point which when
input into the map yield a maximum value on in the map) partition the
map into sn subintervals, where n is the orbit length. There is no prun-
ing in the Bernoulli map, as its critical points are all unity, however, as
it is a circle map the first and last fixed point (rightmost fixed point, and
the fixed point at the origin) are the same, so they are counted as one
fixed point, and thus the number of periodic orbits is Nn = sn − 1. There
can only be one periodic orbit per subinterval because each subinterval
is treated as a single point where a certain orbit is possible, thus, there
can only be one orbit. For the temporal Bernoulli, ’Temporal’ here refers
to the state (field) φt and the winding number mt (source) taking their
values on the lattice sites of a 1-dimensional temporal lattice t ∈ Z. Over
a finite lattice segment they can be written as a state, and a symbol block.
The Bernoulli equation can be written as a first order difference equation
φt− sφt−1 = −mt where phi is contained within the unit interval. This is
the condition which each point on the lattice must fulfill. This can then be
written in terms of the orbit Jacobian matrix, which is a sum of the iden-
tity and cyclic permutation matrix which has the condition rn = I . This
permutation permutates forward in time the lattice state by one site. The
temporal Bernoulli condition can be viewed as a search for zeros of the
function involving the orbit Jacobian matrix operating on the lattice state
summed with the symbol block M. This allows the entire lattice state
which solves for zero ΦM to be treated as a single fixed point. The orbit
Jacobian matrix stretches the unit hyper cube such that every periodic
point is mapped onto an integer lattice Zn site, which is then translated
by the winding numbers into the origin to satisfy the fixed point condi-
tion. Therefore Nn the number of solutions to the fixed point condition
is the number of lattice sites within the fundamental parallelepiped (fp),
which is equivalent to the volume of the fp because each unit cell in the
lattice only contains one lattic4 e point. So Nn is the magnitude of the de-
terminant of the orbit Jacobian matrix, this is called Hill’s Determinant,
or the Fundamental Fact. The orbit Jacobian matrix maps the unit hyper
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cube into the basis vectors of the fundamental parallelepiped which are
given by columns of the orbit Jacobian matrix.

2020-10-18 Sidney My notes on Barvinok [2] Lecture notes

The theory discussed in these lectures are inspired by a few series formu-
las, the first being:

n∑
m=1

xm =
1− xn+1

1− x

We take the interval [0, n) and for every integer point in the interval we
write the monomial xm and then take the sum over each integer point
on the interval. It gives a polynomial with n+1 terms, but can be written
in the form given, later we will cover doing the same over a 2D plane
(evaluating at each integer point on the plane and summing over every
integer point m = (m1,m2) with bivariate monomials xm = xm1xm2 .
The second formula is the infinite geometric series:

∞∑
m

xm =
1

1− x

This makes sense if |x| < 1 similarly

0∑
−∞

xm =
1

1− x−1
=
−x

1− x

This converges if |x| > 1
∞∑

m=−∞
xm

This converges for no values, so we will say that it equals zero, this can
be reasoned through as every positive integer added to every negative
integer is zero, we then subtract zero, as it was double counted:

∞∑
m=−∞

=

∞∑
m=0

xm +

0∑
m=−∞

xm − x0 = 0

This sugestively agrees with

−x
1− x +

1

1− x − 1 = 0

Geometrically, the real line R1 is divided into two unbounded rays inter-
secting in a point. For every region (the two rays, the line and the point),
we construct a rational so that the sum of xm over the lattice points in the
region converges to that rational function, if it converges at all.

2020-10-19 Sidney
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Inclusion-exclusion principle

|A ∪B| = |A|+ |B| − |A ∩B| (16.2)

where |A ∩B| is the number of elements which are in both A and B. This
avoids double counting.

If we think of a plane of points, we can draw lines which subdivide the
plane, each line makes the plane two half planes, and every two lines
form four angles, this forms several regions. Among these regions there
are regionsRwhere the sum: ∑

m∈R∩Z2

xm

converges for some x, and some regions where the sum will never con-
verge.

We shall show that it is possible to assign a rational function to every
region simultaneously so that each series converges to the corresponding
rational function, if it converges at all, it will also satisfy the inclusion-
exclusion principle.

Definition 1 The scalar product in Rd is

d∑
i=1

xiyi

for x = (x1, · · · , xd) and y = (y1, · · · , yd), and the same for Zd ⊂ Rd.

Definition Polyhedron P is the set of solutions to finitely many linear
inequalities:

P =

{
φ ∈ Rd :

d∑
i=1

aijxj ≤ bi
}

If all aij and bj are integers the polyhedron is rational.

Barvinok notes concern themselves with the set P ∩ Zd of integer points
in a rational polyhedron P. He introduces the algebra of polyhedra to
account for all relations among polyhedra.

2020-11-29 Predrag We only need to understand parallelepipeds, not polyhe-
dra in general. Should be easier.

2020-11-30 Sidney I understand your comments. Thank you, I am pretty sure
that the general polyhedra stuff can be put in terms of parallelpipeds, so
at least it wasn’t wasted knowledge, but I’m glad that I don’t need to
know all of it, it’s on the edge of my proof abilities.

2020-11-29 Predrag
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Definition 2 For a set B ∈ Rd, the function

[B](φ) =

{
1 if φ ∈ B
0 otherwise (16.3)

is called the indicator of B.

2020-10-24 Sidney

The intersection of finitely many (rational) polyhedra is a (rational) poly-
hedron. The union doesn’t have to be, but may be a polyhedron.

Union: The union of a collection of sets is the set of all elements in the
collection.

Intersection: A ∩ B, is the intersection of two sets A and B, i.e., the set
containing all elements of A that also belong to B.

The algebra of rational polyhedra is the vector space P
(
Qd
)

spanned by
the indicators [P ] for all rational polyhedra P ⊂ Rd

2020-11-29 Predrag Q is the field of rationals.

2020-10-24 Sidney

Valuations

Let V be a vector space. A linear transformation P
(
Qd
)
→ V is called a

valuation. This course is on the particular valuationP
(
Qd
)
→ C(x1, · · · , xd),

where C(x1, · · · , xd) is the space of d-variate rational functions.

Theorem 1 There exists a unique valuation χ : P
(
Rd
)
→ R called the

Euler characteristic, such that χ([P ]) = 1 for any non-empty polyhedron
P ⊂ Rd

2020-11-30 Predrag Klain and Rota [15] Introduction to Geometric Probability:

A valuation on a lattice L of sets is a function µ defined on L that takes
real values, and that satisfies the following conditions:

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) , (16.4)

µ(∅) = 0 , (16.5)

where ∅ is the empty set. By iterating the identity (20.270) we obtain the
inclusion-exclusion principle for a valuation µ on a lattice L, namely

µ(A1 ∪A2 ∪ ... ∪An) =
∑
i

µ(Ai)−
∑
i<j

µ(Ai ∩Aj)

+
∑
i<j<k

µ(Ai ∩Aj ∩Ak) + . . . (16.6)

for each positive integer n.
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Barvinok [2] Lecture 1, Problem 1 statement of (20.272) is less intelligible:
Take sets A1, A2, · · · , An ∈ Rd. The inclusion-exclusion formula is

∪Ai =
∑
I

(−1)|I|−1 [∩i∈IAi] , (16.7)

where the sum is taken over all non-empty subsets I ⊂ {1, . . . , n} and |I|
is the cardinality of I .

2020-10-25 Sidney

Identities in the Algebra of Polyhedra

The image of a polyhedron under a linear transformation is a polyhedron.

Theorem 1 Let P ⊂ Rd be a polyhedron and let T:Rd → Rk be a linear
transformation. Then T (P ) ⊂ Rk is a polyhedron. Furthermore, if P is a
rational polyhedron and T is a rational linear transformation (that is, the
matrix of T is rational), then T (P ) is a rational polyhedron.

Linear transformations preserve linear relations among indicators of poly-
hedra.

Theorem 2 Let T:Rd → Rk be a linear transformation. Then there exists
a linear transformation T : P(Rd) → P(Rk) such that T(P ) = [T (P )] for
every polyhedron P ⊂ Rd.

Most sensible polyhedra have vertices, but some don’t.

Definition 1 Let P ⊂ Rd be a polyhedron. A point v ∈ P is called a
vertex of P if whenever v = (x + y)/2 for some x, y ∈ P , we must have
x = y = v.

If v is a point in P, we define the tangent cone of P at v as:

co(P, v) =
{
x ∈ Rd : εx+ (1− ε)v ∈ P for all sufficiently small ε > 0

}
Not all polyhedra have vertices. In fact, a non-empty polyhedron has a
vertex if and only if it does not contain a line.

Definition 2 We say that a polyhedron P contains a line if there are
points x and y such that y 6= 0 and x+ty ∈ P for all t ∈ R. P0(Rd) ⊂ P(Rd)
is the subspace spanned by the indicators of rational polyhedra that con-
tain lines.

Theorem 3 Let P ⊂ Rd be a polyhedron. Then there is a g ∈ P0(Rd) such
that

[P ] = g +
∑
v

[co(P, v)] ,

where the sum is taken over all vertices v of P. If P is a rational polytope
then we can choose g ∈ P0(Qd)
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Definition 3-0 A polytope is a high dimensional generalization of a
polyhedron.

Definition 3 Let A ⊂ Rd be a non-empty set. the set

Ao =
{
y ∈ Rd :< x, y >≤ 1 for all x ∈ A

}
is called the polar of A, where < x, y > is the inner product.

2020-10-27 Sidney

A set S in a vector space over Rd is convex, if the line segment connecting
any two points in S lies entirely within S. If P is a rational polyhedron
then P o is also a rational polyhedron.

Theorem 4 There exists a linear transformation D : P(Qd) → P(Qd) such
that D[P ] = [P o] for every non-empty polyhedron P.

It follows from Theorem 4 that whenever we have a linear identity
∑m
i=1 αp[Pi] =

0 among the indicator functions of polyhedra, we have the same identity∑m
i=1 αp[P

0
i ] = 0 for the indicator functions of their polars.

Barvinok [2] Lecture 3.
For an integer point m = (m1, · · · ,md) we introduce the monomial xm =
xm1

1 · · ·xmdd . Given a set S ⊂ Rd, we consider the sum

f(S,x) =
∑

m∈S∩Zd
xm (16.8)

Our goal is to find a reasonably short expression for this sum as a rational
function in x.

Example 1 LetRd+ be the non-negative orthant, that is the set of all points
with all coordinates non-negative. We have

∑
m∈Rd+∩Zd

xm =

( ∞∑
m1=0

xm1
1

)
· · ·
( ∞∑
m1=0

xm1
1

)
=

d∏
i=1

1

1− xi

provided that |xi| < 1

Definition Let u1, · · · , ud ∈ Zd be linearly independent integer vectors.
The simple rational cone generated by u1, · · · , ud is the set:

K =

{
d∑
i=1

αui : αi ≥ 0 for i = 1, · · · , d
}
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The fundamental parallelepiped of u1, · · · , ud is the set

Π =

{
d∑
i=1

αui : 1 > αi ≥ 0 for i = 1, · · · , d
}

Theorem For a simple rational cone K = K(u1, · · · , ud) we have

f(K,x) =

 ∑
m∈Π∩Zd

xm

 d∏
i=1

1

1− xui

Theorem The number of integer points in the fundamental parallelepiped
is equal to its volume.

Sketch of Proof Let Λ be the set of all integer combinations of u1, · · · , ud:

Λ =

{
d∑
i=1

αiui : αi ∈ Z for i = 1, · · · , d
}

Let us consider all translates Π + u with u ∈ Λ. We claim that Π + u can
cover all Rd without overlapping, this can be extracted from the proof of
theorem 1. Let us take a sufficiently large region X ⊂ Rd and let us count
the number of integer point in X, the set is roughly covered by volX/V olΠ
translations of the parallelepiped, and each translation carries the same
number of points hence we must have |Π ∩ Zd| = volΠ.

Barvinok [2] Lect. 3, Definition 2. Let u1, · · · , ud ∈ Zd be linearly inde-
pendent vectors and letK be the simple cone generated by u1, · · · , ud. We
say that K is unimodular if the volume of the fundamental parallelepiped
Π is 1. Equivalently, K is unimodular if the origin is the unique integer
point in Π. Equivalently, (16.8) is of form

f(K,x) =
d∏
i=1

1

1− xui . (16.9)

2021-01-01 I have been looking at the flow conservation sum rule for the Hénon
map, as of today I had my suspicions confirmed that the Hénon map
is not flow conserving so, the sum rule will not go to 1. However, I
am still investigating the relation between the orbit Jacobian matrix (the
Hill matrix) and the local Jacobian JM . To do this, I have been looking
over the proof that was done with the cat map to show that |DetJ | =
|det (I − JM )|. I am hoping that I can find something similar to this iden-
tity for the Hénon map. I have been looking at section five of the cat
paper to see if I can adapt anything. I am also going to look at the re-
laxation method for finding periodic orbits so I can start working within
Orbithunter and finding periodic orbits.
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Q21 Is XXX?

Q22 What exactly is meant by XXX?

2021-01-02 Sidney Here are my notes from section 5:

Kronecker product A⊗B A is [n× n] and B is [m×m]

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB


for A, A’ [n× n] matrices and B,B’ [m×m]

(A⊗B) (A′ ⊗B′) = AA′ ⊗BB′

tr(A⊗B) = tr(A)tr(B)

det (A⊗B) = det (Am)det (Bn)

the two [mn ×mn] block matrices A ⊗ B and A ⊗ B are equivalent by a
similarity transformation

B ⊗A = PT (A⊗B)P

where P is a permutation matrix, as det (P ) = 1

det (A⊗B) = det (B ⊗A)

Consider a rectangular d=2 lattice [L × T ]0 Bravais cell, for this cell, the
spatiotemporal orbit Jacobian matrix is

J = r1 + r2 − 2sI + r−1
2 + r−1

1

The index 1 is the spacial direction, and the index 2 is the temporal di-
rection. The [LT × LT ] orbit Jacobian matrix can be rewritten using Kro-
necker products:

J = I1 ⊗ (r2 + r−1
2 )− sI1 ⊗ I2 + (r1 + r−1

1 )⊗ I2

I1 = [L× L] Identity

I2 = [T × T ] Identity

Hill determinant: fundamental parallelpiped example Consider the Bra-
vais lattice with basis vectors ~a1 =< 3, 0 > and ~a2 =< 0, 2 > a peri-
odic orbit over this Bravais cell has 6 field values, one for each lattice site
z = (n, t) on a [3x2]0 rectangle:[

φ01 φ11 φ21

φ00 φ10 φ20

]
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We can stack up the columns of this lattice state and the corresponding
sources into 6-dimensional vectors

φ01

φ00

φ11

φ10

φ21

φ20

 ,


m01

m00

m11

m10

m21

m20


The corresponding orbit Jacobian block-matrix:

J[3x2]0 =


−2s 2 1 0 1 0

2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s


The fundamental parallelpiped generated by the action of the orbit Jaco-
bian matrix is spanned by LT = 6 basis vectors: the columns of the orbit
Jacobian matrix. The fundamental fact now yields the Hill determinant
as the number of lattice states

N[3x2]0 = |Det (J[3x2]0)| = 4(s− 2)s(2s− 1)2(2s+ 3)2

In practice, one often computes the Hill determinant using a Hamiltonian
or "transfer matrix" formulation. An example is the temporal cat 3-term
recurrence

φt = φt

φt+1 = −φt−1 + sφt −mt

In the Percival-Vivaldi “two-configuration" cat map representation

φ̂t+1 = Ĵ1φ̂t − m̂t

Ĵ1 =

[
0 1
−1 s

]
, φ̂t =

[
φt−1

φt

]
, mt =

[
0
mt

]
Similarly for the d=2 spatiotemporal cat lattice at hand, one can recast
into a 5-term recurrence relation:

φnt = φnt

φn,t+1 = φn,t−1 − φn−1,t + 2sφnt − φn+1,t −mnt

Ĵ1 =

[
0 I1
−I1 −J

]
This [2L × 2L] block matrix generates a "time" orbit by acting on a 2L-
dimensional "phase space" lattice strip φ̂t along the "spatial" direction
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2021-01-04 Sidney I am going to take a break from the sum rule proof. How-
ever, I do know that the Hénon map is not a closed system so the sum
rule does not converge to 1. For this blog entry, I shall take notes on the
relaxation method for finding cycles, I will also try to write some code
today, if I do, I will post my initial python code here too.

Notes All methods for finding unstable cycles are based on the idea of
constructing a new dynamical system such that (i) the position of the cy-
cle is the same for the original system and the transformed on, and (ii) the
unstable cycle in the original system is a stable cycle of the transformed
system. For example, the Newton-Raphson method replaces iteration of
f(x) by iteration of the Newton-Raphson map:

x′i = gi(x) = xi −
(

1

M(x)− I

)
ij

(f(x)− x)j

A fixed point x∗ for a map f(x) is also a fixed point of g(x), indeed a
superstable fixed point since ∂gi(x∗)

∂xj
= 0. The relaxation methods start

with a guess of not a few points along an orbit, but a guess of the entire
orbit. The relaxation algorithm for finding cycles is based on the observa-
tion that a trajectory of a map such as the Hénon map (see the discussion
leading up to (2.30)):

xi+1 = 1− ax2
i + byi

yi+1 = xi

Is a stationary solution of the relaxation dynamics defined by the flow

dxi
dτ

for any vector field vi which vanishes on the trajectory. Here τ is a "ficti-
tious time" variable, unrelated to the dynamical time (in this example, the
discrete time of map iteration). As the simplest example, take vi to be the
deviation of an approximate trajectory from the exact 2-step recurrence
form of the Hénon map:

vi = xi+1 − 1 + ax2
i − bxi−1

For fixed xi−1 and xi+1 there are two values of xi satisfying vi = 0. These
solutions are the two extremal points of a local "potential" function:

vi =
∂

∂xi
Vi(x)

Vi = xi(xi+1 − bxi−1 − 1) +
a

3
x3
i
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Assuming that the two extremal points are real, one is a local minimum
of Vi(x) and the other is a local maximum. We can modify or vector field
differential equation with

dxi
dτ

= rivi

ri = ±1

The modified flow will be in the direction of the extremal point given by
the local maximum of Vi if ri = 1 is chosen, or in the direction of the
one corresponding to the local minimum if we take ri = −1. I think that
this is because a negative slope seeks to minimize a a values, whereas a
positive slope seeks to maximize it, therefore, if we can somehow keep
the flow from going off into positive or negative infinity, it will go to
either a local maximum or local minimum. The goal of the relaxation
method is that instead of searching for an unstable periodic orbit of a
map, one searches for a stable attractor of a vector field. More generally,
consider a d-dimensional map x′ = f(x) with a hyperbolic fixed point x∗.
Any fixed point x∗ is by construction an equilibrium point of the fictitious
time flow

dx

dτ
= f(x)− x

If all eigenvalues of the Jacobian matrix J(x∗) = Df(x∗) have real parts
smaller than unity, then x∗ is a stable equilibrium point of the flow. If
some of the eigenvalues have real parts larger than unity, then one needs
to modify the vector field so that the corresponding directions of the flow
are turned into stable directions in a neighborhood of the fixed point. To
do this, we can modify the flow by

dx

dτ
= C(f(x)− x) ,

where C is a [dxd] invertible matrix. The aim is to turn x∗ into a stable
equilibrium point of the flow by an appropriate choice of C. It can be
shown that a set of permutation/reflection matrices with one and only
one non-vanishing entry ±1 per row or column (for d-dimensional sys-
tems, there are d!2d such matrices) suffices to stabilize any fixed point.
In practice, one chooses a particular matrix C, and the flow is integrated.
For each choice of C, one or more hyperbolic fixed points of the map may
turn into stable equilibria of the flow. We can change the algorithm to
a discrete method which solves the issue of lengthy integrations of the
fictitious time method. The idea is to construct a very simple map g, a
linear transformation of the original f , for which the fixed point is stable.
We take the Newton-Raphson map and replace the Jacobian prefactor in
it with a constant matrix prefactor:

x′ = g(x) = x+ ∆τC(f(x)− x) ,
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where ∆τ is a positive real number, and C is a [dxd] permutation and re-
flection matrix with one and only one non-vanishing entry ±1 per row
or column. A fixed point of f is also a fixed point of g. Since C is in-
vertible, the inverse is also true. This construction is motivated by the
observation that for small ∆τ → dτ the map is the Euler method for inte-
grating the modified flow with integration step ∆τ . The argument why
a suitable choice of matrix C can lead to the stabilization of an unstable
periodic orbit is similar to the one used to motivate the construction of
the modified vector field. In fact, for very small ∆τ this construction just
becomes the flow. For a given fixed point of f(x) we again chose a C such
that the flow in the expanding directions of M(x∗) is turned into a con-
tracting flow. The aim is to stabilize x∗ by a suitable choice of C. In the
case where the map has multiple fixed points, the set of fixed points is
obtained by changing the matrix C (in general different for each unstable
fixed point) and varying initial conditions for the map g. For example,
for 2-dimensional dissipative maps it can be shown that the 3 matrices:(

1 0
0 1

)
(
−1 0
0 1

)
(

1 0
0 −1

)
suffice to stabilize all kinds of possible hyperbolic fixed points. If ∆τ is
chosen sufficiently small, the magnitude of the eigenvalues of the fixed
point x∗ in the transformed system are smaller than one, one has a stable
fixed point. However, ∆τ should not be chosen too small: since the con-
vergence is geometrical with a ratio 1−α∆τ (where the value of the con-
stant α depends on the stability of the fixed point in the original system),
small δτ can slow down the speed of convergence. The critical value of
∆τ , which just suffices to make the fixed point stable can be read off from
the quadratic equations relating the stability coefficients of the original
system and those of the transformed system. In practice, one can find the
optimal ∆τ by iterating the dynamical system stabilized with a given C
and ∆τ . In general, all starting points converge on the attractor provided
∆τ is small enough. If this is not the case, the trajectory either diverges
(if ∆τ is far too large) or it oscillates in a small section of the state space
(if ∆τ is close to its stabilizing value). A fixed point can now be found by
choosing a starting point in the global neighborhood of the fixed point,
and iterating the map g which now converges to the fixed point due to its
stability. The basin of attraction is very large. The step size |g(x)− x| de-
creases exponentially when the trajectory approaches the fixed point. To
get the coordinates of the fixed points with a high precision, one therefore
needs a large number of iterations for the trajectory which is already in
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the linear neighborhood of the fixed point. To speed up the convergence
of the final part of the approach to a fixed point, it is recommended to do
a combination of this approach and the Newton-Raphson method. The
fixed points of the nth iterate fn are periodic points of a cycle of period
n. If we consider the map

x′ = g(x) = x+ ∆τC(fn − x)

the iterates of g converge to a fixed point provided that ∆τ is sufficiently
small and C is a [dxd] constant matrix chosen such that it stabilizes the
flow. As n grows, ∆τ has to be chosen smaller and smaller.

2021-01-05 Sidney .

Q23 How does one choose what r or C to use? I know that for sigma, I
chose 1 if I want to drive it to converge to a local maximum in the
potential, and -1 if I want a local minimum, but how do I know if
the fixed point I am dealing with is a maximum or minimum?

2021-01-05 Predrag .

A23

2021-01-05 Sidney I have been hard at work trying to understand relaxation
for cyclists. And I have gotten somewhere, not to a solution just yet, but
somewhere. I decided that it would be best if I tried to understand the
numerical methods employed by OrbitHunter before I started using it, to
this end, I have constructed a crude python code that can find the fixed
points of the Hénon map, and the two cycle. My next step is to make the
two cycle program more efficient and cleaner, and then to generalize it to
n-length orbits. After this has been done I can start work on the exercise
that I was set. The code is in

siminos/williams/python/relax1.py

2021-01-14 Sidney I have contacted Matt about OrbitHunter and he says that
he’s working on fixing some things so it’s easier for people that are not
him to work with. He recommended that I try to work on my own code,
so I have been doing that. I was able to get the Two_Cycle working
with the modification that it can now determine the sigma itself, but the
four_cycle code is still not working, I think I need to change the differen-
tial equation solver to a Runge-Kutta algorithm instead of the Euler one
I’ve been using, I’ll paste the code under here, please please help if you
can.

2021-02-01 Predrag .

Do this Save and svn commit this code as siminos/williams/python/XXX.py,
then remove the inset from here
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\#def four_cycle(guesstrajectory,dt):
\# henon = Henon(1.4, 0.3)
\# x0=guesstrajectory
\# vi=np.zeros(4)
\# vi[0]=x0[0]-henon.oneIter(np.roll(x0,2))
\# vi[1]=x0[1]-henon.oneIter(np.roll(x0,1))
\# vi[2]=x0[2]-henon.oneIter(np.roll(x0,0))
\# vi[3]=x0[3]-henon.oneIter(np.roll(x0,-1))
\# ep=10**(-7)
\# x=np.zeros(4)
\# sigma=np.zeros(4)
\# sigma[:]=1
\# iglob=0
\# while np.all(abs(vi))>ep:
\# iglob+=1
\# for i in range(0,4):
\# x[i]=x0[i]-dt*vi[i]
\# vi[i]=x[i]-henon.oneIter(np.roll(x,(2-i)))
\# x0[i]=x[i]
\# print(x[i])
\# #print(i)
\# #time.sleep(1)
\# if abs(x[i])>5 or iglob>100000:
\# print(x)
\# return "Diverged"
\# sigma[i]=-1
\# x=np.zeros(4)
\# x0=np.zeros(4)
\# vi[0]=x0[0]-henon.oneIter(np.roll(x0,2))
\# vi[1]=x0[1]-henon.oneIter(np.roll(x0,3))
\# vi[2]=x0[2]-henon.oneIter(np.roll(x0,4))
\# vi[3]=x0[3]-henon.oneIter(np.roll(x0,5))
\# iglob=0
\# return x

For the guess trajectory I put in "np.zeros(4)" and for dt I put in 0.1 to get:
[ 1.11534978 -0.83649258 0.74365269 -0.33467244] close but no cigar. Also,
this is not intended to be a "best practices" code, I shall work on that once
I have made it work.

2021-01-15 Matt to Sidney Please comment your code so it is easier to read.
Comments are lines which start with ’#’ Pain is a part of the learning
process for programming, at least in my experience. Especially for in-
terpreted languages like Python; compiled languages like C, C++, C#,
F# etc. are must more explicit and "logical", at the expense of flexibility.
You’ll be able to look back at old code and be able to write it in a much
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clearer and nicer way in the future, that I can guarantee.

For now, I’m going to refactor your code; I do not know if it will give
the desired results, but hopefully it will get you back on track. You
can use this refactored code or simply use it as a guide, but you have to
understand its incredibly hard to interpret someone else’s code.

The way you have your cycle functions set up is not going to scale, as
you’ll have to write each component and index separately. Imagine doing
this for a thirty two cycle.

Here are some signs that you need to vectorize or refactor your code. I’ll
explain what this means in the code itself.

1. you start labeling your variables with indices (point1, point2, etc.)

2. You have multiple functions that could be converted into a single
function + parameter (two cycle and four cycle can be combined
into a "cycle" function)

3. You have functions which are special cases of other functions. A sin-
gle iteration oneIter should be produced by multiIter plus parameter
that says iteration = 1.

One way of testing if you need a higher order integration scheme is to
test large vs. small step sizes. I.e. the step size in Euler can control error,
it simply requires a much smaller step size to do so. Also, you might
look towards implicit integration schemes which are always stable, for
example, backwards Euler would be the simplest.

2021-01-15 Sidney to Matt Thank you very much for the help, I agree that
pain seems to be a necessary ingredient in coding, and it is definitely
extremely difficult to interpret another person’s code. I can try to re-
write my code to make it more readable, along with references of where
I am getting this method if that would be helpful, I shall wait for your re-
sponse on that as I do not want to take more of your time. Also, I should
definitely change the cycle functions, thank you, I will update that in the
next iterate of the code. I have made my code all comments (I started
each line with #).

2021-01-15 Matt:

Sidney the refactored code is available on an old branch of orbithunter
github:
github.com/mgudorf/orbithunter/blob/henon/notebooks/sidney_refactoring.ipynb

The issue was setting sigma to be a constant and not dependent on i. In
other words, to need a sigma for each dimension of the cycle.

2021-01-15 Sidney I have been looking at the refactored code, and I see how it
works, in fact, I understand it enough to work with it, and have generated
a good number of orbits. Unfortunately, the generated periodic points are
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not the same as they are in ChaosBook Table 34.2 the last 1 to 2 digits
are different. I am really unsure as to why this discrepancy exists. The
values of the error function vi get to values below the cutoff of 10−7, and
my original Two_Cycle code gave me values equal to those of table 34.2,
but with different values of sigma. I am tired, and I have a headache,
so I will just take notes on the "Cartesian Product" that I had to use to
construct a function to find all possible sigma matrices (C in Chaosbook),
and paste in my current working code (the modified one that I took from
Matt). My goal over the next few days is to better understand the code,
and figure out why there is that small difference between my calculated
values and table 34.2.

The Cartesian Product of two setsA andB, denoted byA×B, is the set of
all ordered pairs (a, b) where a is an element of set A and b is an element
of set B or:

A×B = {(a, b)| a ∈ A and b ∈ B}
For two sets the Cartesian Product can be computed by constructing a
table where one set is the row index and the other is the column index. or
A×Bi,j = (ai, bj), due to the tabular nature of this product the number of
ordered pairs is LALB where LA is the number of elements in set A and
LB is the number of elements in set B (from Wikipedia).

2021-02-01 Predrag .

Do this Save and svn commit this code as siminos/williams/python/XXX.py,
then remove the inset from here.

Update 2021-05-17: I removed the code here, and put the actual python
file in williams/relax

1-17-2021 Sidney I was able to get the code to match the table in Chaosbook, I
did this by changing the while loop condition to # np.any(abs(cycle.deviation()))
> ep
Will discuss whether this is better or not at the next meeting

1-28-2021 Sidney Lots of coding issues later I finally have a working algorithm
for calculating the periodic points and expanding eigenvalues for the
Hamiltonian Hénon map (b = −1, a = 6). It is messy, and I have not
written the loop to calculate, and then write to an external document all
cycles up to length n, but that should not be difficult, I also need to write
this loop for my (still working) non-Hamiltonian code. Matt has been
helping me clean up my code, I have been finding that my skills in ma-
trix manipulation within Python are sorely lacking, and I hope that I can
fix this. Once I have cleaned up the code,added the last few loops, and
added comments and other such things to make it more readable, I shall
upload it to the repository. After that point I hope to read at least some of
Han’s blog and take notes on it so that I can better understand what the
rest of the group is doing.
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16.2 2021 blog

2021-02-01 Predrag to Sidney - sorry about the Frenkel-Kontorova interrup-
tion, not worth your time right now, but Han and I might profit from
being the first to read it. We’ll keep it here until then.

2021-02-07 Sidney No issues with the interruption. I have been working to-
wards understanding the next step, which is applying a Fourier trans-
form on my states (cycles) to get them into Fourier space. From Han and
other resources (Strang Linear Algebra), I know that all I have to do is
apply a discrete Fourier transform on the periodic cycle vector, so it boils
down to matrix vector multiplication where the elements are Fjk = wjk

where w is a complex root of unity. I think I could easily code this myself,
however, I feel like I could use a prebuilt package to go much faster, so I
will use the numpy fft package, and from there figure out how to create
plots like Han did. I will hopefully soon have a full functional nice code
to put into the repository.

Q24 Sidney I know that the Fourier modes make it a lot easier to see the sym-
metries, but is there a reason for that? Or is it just coincidence? Or, is it
too far beyond my level of pure math to appreciate?

2021-02-09 Sidney I have modified my code and made it so I can generate the
symbol sequences for all orbits (001101 etc.) up to a certain length n and
store them in a list. I can then take this list and find the actual points of
the cycle using my inverse iteration code, but for some reason the code
diverges if I put the symbol sequence in the "wrong" order. For example,
it gets the correct points if I put in 10 but not if I put in 01 which is weird.
I still need to fix it. I have also used the fast Fourier transform from
numpy to get the cycles into Fourier space. Now all I need to do is figure
out why the code doesn’t like some orders, and then figure out how to
plot the points in Fourier space.

2021-02-24 Sidney I have officially completed my code, I will ask about how
to upload my data and images here, I will also work on cleaning my code
up a bit, and perhaps adding in the Fourier bit to the non-Hamiltonian
Hénon map. Until that point though, it has become extremely obvi-
ous that I need to look at the theory about WHY I am doing Fourier
transforms, so I am going to turn Michael Engel’s course [10], based
on Sands [19] Introduction to crystallography (1969) (click here). My notes:

Point Symmetry Definition 1: An Euclidean move T = {A, b} is a linear transforma-
tion that leaves space invariant:

x 7→ T (x) = Ax+ b

Here, x is a vector, A a [3× 3] orthogonal matrix and b a 3-vector.
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Definition 2: The product of two transformations T2 = {A1, b1} and
T2 = {A2, b2} is: T2 ◦ T1 = {A2A1, A2b1 + b2}(T1 is applied first)
Definition 3: The order of a transformation T is the smallest integer
n such that T n(x) = T ◦ T ◦ T ◦ · · · ◦ T = x one can also say this
transformation is n-fold.
Observations:

1. The inverse is: T −1 = {A−1,−A−1b}
2. Every transformation of finite order n (ie T n = 1)leaves at least one

point invariant.

2021-02-27 Sidney Notes from Engel’s course [10].

A group G, together with an operation, that combines any two elements
a and b to form another element a · b. To qualify as a group, the set and
the operation must satisfy the group axioms:

Closure For all a and b in G, the result of the operation a · b is also in G

Associativity For all a, b, and c in G, (a · b) · c = a · (b · c)
Identity Element There must exist an identity element in G

Inverse Element For each a in G there must exist an inverse which yields the iden-
tity element when the group operation is applied between the two
elements.

A symmetry of an object in space is an Euclidean move which leaves the
object indistinguishable. The order of the group is equal to the number
of elements in that group.

2021-02-27 Sidney Figure 16.1 shows all Hamiltonian Hénon (2.30), a = 6 lat-
tice states of period n = 6, in the C6 reciprocal lattice.

2021-02-27 Sidney Notes from Engel’s course [10].

If G is a group and X is a set, then a left group action of G on X is a
binary function:

GX → X

denoted
(g, x) 7→ g · x

Which satisfies the following two axioms:

1.(gh)x = g(hx)

2.ex = x

The setX is called a left G-set. The groupG is said to act onX on the left.
When a group G acts on a set X the orbit of a point x in X is the set of
elements of X to which x can be moved by the elements of G. The orbit
of x is denoted as Gx:

Gx = {g · x|g ∈ G}
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k = 0 k = 3

k = 1 k = 2

k = 5 k = 4

Figure 16.1: Hamiltonian Hénon (2.30), a = 6 lattice states of period n = 6, in
the C6 reciprocal lattice, k = 0, 1, 2, 3, 4, 5. k = 0, 3 are purely real. k = 5, 4
are the same as k = 1, 2, respectively, up to time reversal. Compare with Han’s
figure 20.60, for example.
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The properties of a group guarantee that the set of orbits of X under the
action of G form a partition of X . The associated equivalence relation
is x y if and only if there exists a g in G with gx = y. The orbits are
then the equivalence classes under this relation, two elements x and y are
equivalent if and only if their orbits are the same ie Gx = Gy. For every
x in X , we define the stabilizer subgroup of x (also called the isotropy
group or little group) as the set of all elements in G that fix x:

Gx = {g ∈ G|g · x = x}

In short: the orbit consists of all points that are equivalent under sym-
metry. And the stabilizer consists of all symmetries that leave a point
invariant.

Definition 6: A point symmetry is a symmetry which leaves a point x0

invariant: T (x0) = x0

So, we can see that translations cannot be point symmetries, symmetries
with finite order are point symmetries, symmetries with infinite order
cannot be point symmetries.

Definition 7: A point group is a group of point symmetries which leave
a common point x0 invariant.

So, we can see that a point group is a finite subgroup of O(3), this space
of three dimensional orthogonal matrices.

Note: O(3) = {A ∈ R3×3 : ATA = 1}

SO(3) = {A ∈ R3×3 : ATA = 1, det(A) = 1

Definition 8: Two subgroups H1 and H2 of a group G are conjugated if
there exists a g ∈ G, such that:

H2 = g−1H1g

Example: G = O(3). Two point groups are conjugated, if there is a change
of basis that maps them into each other.

Cyclic groups: C1,C2,C3, ... where Cn consists of all rotations about a
fixed point by multiples of 360/n

Dihedral groups: D1,D2,D3,D4, ...where Dn (of order 2n) consists of the
rotations in Cn together with reflections in n axes that pass through the
fixed point.

2021-03-07 Predrag For the current project, we need to understand Dn sym-
metry: see Ding thesis example 2.9.
pdflatex siminos/lyapunov/blog.tex, read sect. 7.11.2 Factorization of Cn and
Dn.

See also sect. 26.3 Pow wow 2021-01-08.
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2021-03-07 Sidney I shall now attempt some of the exercises in Engel’s [10]
Point Groups lecture.

exercise 2.3 Exercise 1
exercise 2.4

Exercise 3

Determination of the point group of an object in space

1. Object linear: C∞v or D∞h
2. High symmetry, non-axial: T , Th, Td, O, Oh, I , Ih
3. No rotation axis: C1, Ci, Cs.

Carolyn’s packings of small spheres on a big sphere

The point groups are for the sphere on the left: C2v because it has 3 axes
that it can rotate 180deg around, and for each one it can then perform a
flip and remain unchanged, I am unsure about the second sphere.

2021-03-07 Predrag For the current project, it will suffices to focus on 1-dimen-
sional and 2-dimensional crystals (wallpaper groups). Engel is a chemist,
so 3-dimensional symmetries are the most important thing, but we are
good enough keeping to 2 dimensions.

2021-03-13 Sidney Here are my notes on Xiong Ding’s example 2.9 and 2.8 in
his thesis which is referenced above.

Example 2.8 Character table of dihedral group Dn = Cnv n odd

Dn = {e, Cn, C2
n, · · · , Cn−1

n , r, Cnr, · · · , Cn−1
n r}

Dn has n rotation elements and n reflections. Group elements satisfy
CinC

j
nr = CjnrC

n−i
n , soCin andCn−in form a class. Also,Cn−in C2i+j

n r =
CjnrC

n−i
n implies that Cjnr and C2i+j

n r are in the same class. There-
fore, there are only three different types of classes:
{e}, {Ckn, Cn−kn }, {r, Cnr, · · · , Cn−1

n r}. The total number of classes is
(n+3)/2. In this case, there are 2 one dimensional irreducible repre-
sentations (symmetric A1 and antisymmetric A2) and (n−1)/2 two-
dimensional irreducible representations. In the jth two-dimensional

irreducible representation, class {e} has form
(

1 0
0 1

)
, class {Ckn, Cn−kn }

has form
(

exp( i2πkin ) 0
0 exp(− i2πkin )

)
, and class {r, Cnr, · · · , Cn−1

n r}

has form
(

0 1
1 0

)
Definition of Irreducible Representation (and Representation): Will
be using the Dresselhaus lecture notes from 2002 downloaded from
the Chaosbook website:

8289 (predrag–7383) 70704/19/2020 siminos/spatiotemp/chapter/chronotope.tex

http://www-personal.umich.edu/~engelmm/lectures/ShortCourseSymmetry1.pdf
http://chaosbook.org/course1/Course2w14.html


CHAPTER 16. SIDNEY’S BLOG

Representation: A representation of an abstract group is a substitu-
tion group (matrix group with square matrices) such that the substi-
tution group is homomorphic (or isomorphic) to the abstract group.
We assign a matrix D(A) to each element A of the abstract group
such that D(AB) = D(A)D(B).
Homomorphic/Isomorphic: Two groups are isomorphic or homo-
morphic if there exists a correspondence between their elements
such that each

A→ Â

B → B̂

AB → ÂB

If the two groups have the same order, then they are isomorphic.
Irreducible Representation: If by one and the same equivalence trans-
formation, all the matrices in the representation of a group can be
made to acquire the same block form, then the representation is said
to be reducible, otherwise it is irreducible. Thus, an irreducible rep-
resentation cannot be expressed in terms of representations of lower
dimensionality.
Aside: how to find a character table of a group. See here for the
source, symbol A denotes symmetric with Cn so yields a 1 in the
character table for all C. The subscripts 1, and 2 are symmetric (1)
and antisymmetric (-1) respectively with respect to flips r. I am un-
sure about how the Ej column got its entries, it looks like it was
a trace of the matrix representations, but I don’t know the rule for
that.

Q Sidney Conventionally, the irreps are the rows, and the symmetry opera-
tions are the columns, why are they transposed here?

2021-03-18 Sidney A review of the Group theory from Chaosbook, especially the irreps,
and character tables. The goal of this is so that I can actually under-
stand the character tables presented in the examples of Xiong Ding’s
thesis.

Q2 Sidney I am a little unsure about the statement in example 2.8 of Ding’s
thesis "in the jth two-dimensional irreducible representation class

{r, rCn, · · · , rCn−1
n } has the form

(
0 1
1 0

)
. Shouldn’t there a contri-

bution from the rotation group Cn? This looks just like the inversion
(reflection?) group r.
From Dresselhaus again.
The Unitary of Representations: This theorem which shows that in
most physical cases, the elements of a group can be represented by
unitary matrices.
Theorem: Every representation with matrices having non-vanishing
determinants can be brought into unitary form by an equivalence
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transformation. Skipping writing out the nitty gritty of the proof,
we can first form a hermitian matrix using the representations of the
group. We can than take advantage of the fact that any Hermitian
matrix can be diagonalized by a suitable unitary transformation. We
can construct this by doing a similarity transformation with some U

from there we can redefine ˆ̂
Ax = d−1/2U−1AxUd

1/2 where d is the
diagonal matrix. We can then show that ˆ̂

Ax is unitary by simple
calculation, thus we have proved the theorem.
We can use this theorem to prove Schur’s Lemma which is: A matrix
which commutes with all matrices of an irreducible representation
is a constant matrix (a constant times the unit matrix). Therefore,
if a non-constant commuting matrix exits, the representation is re-
ducible.
Proof: Let M be a matrix which commutes with all matrices of the
representation A1, A2, · · · , Ah:

MAx = AxM

Take the adjoint of both sides:

A†xM
† = M†A†x

From the Unitary Representations theorem, with no loss of general-
ity we can assume that Ax is unitary, so we can multiply on the left
and right to obtain:

M†Ax = AxM
†

So, if M commutes with Ax then so does M†.

2021-03-22 Sidney I read through the rest of the proof, and I will continue Dresselhaus
notes later, but now, I will review some Chaosbook material. I also
looked at the decomposition of the cat map done by Predrag, but I
do not understand it enough to see if it works with the Hénon map,
so I will discuss in tomorrow’s meeting. Anyway, here are notes for
Week 13.

Video 1: Hard Work Builds Character Elementary examples of discrete groups: the character table char-
acterizes the finite group.
2-element group: {e, g} g2 = e. S2, D1, C2, ... used to tile our
space. Imagine butterfly, symmetry axis across the middle. Can
separate the space into two spaces M̃ ∈ {x̃} and M̃2 = {−x̃}
(top view of butterfly space). On the side, it is just a line, half
of the line can be the fundamental domain, everything else is
a copy of the fundamental domain. (Order of the group is the
number of elements in it). Think of scalar functions defined on
this domain ρ(x). Can divide it into two functions ρ1(x̃) (de-
fined on fundamental domain) and ρ2 = ρ(−x̃). Can decom-
pose this function into a vector of functions evaluated on the
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fundamental domain, the vector will have a length equal to the
order of the group. Can write the original function on the fun-
damental domain as ρ(x̃) = 1

2 (ρ(x̃) + ρ(−x̃)) + 1
2 (ρ(x̃)− ρ(−x̃))

(decompose into symmetric, and antisymmetric components).
ρ(x̃) = ρ+(x̃) + ρ−(x̃). ρα = 1

|G|
∑
g χα(g)ρ. Where χ is the

characters from the character table.
Video 2: The Symmetry Group of a Propeller 3 elements. G = {e, g2, g3} g3 = e, rotation by 2π/3 C3 cyclic

group with three elements. Can look at this as an abstract group
(no physical, or geometrical realization): g2 = ω g3 = ω3 ω3 = e.
Can write a multiplication table from these relationships with
the inverses, there is the identity along the diagonal. Matrix
representation: in 2D plane the identity is just the unit matrix,
and the other elements are just the rotation matrices.

I shall end my notes here for today (it is getting late).

2021-04-19 Sidney I have been working through the chapter 10 ChaosBook
problems and I’m pretty confident with all but problem 10.2, could I pos-
sibly have a hint on where to start?

2021-03-07 Predrag I put all solutions that I have here. They are pretty incom-
plete. If you have solutions that I do not have, or better / comparable
solutions to those that I do have, let me know.

2021-04-24 Sidney Here I will attempt to derive the orbit Jacobian matrix, so
that I can later find the eigenvalues and eigenvectors. I will start with
analytically finding lattice states, and eigen-things. We will see how well
that goes. First, the temporal Hénon is xn+1 +ax2

n+xn−1−1 = 0 this was
drawn from the beginning of chapter 2 Temporal Hénon. Following the
formalism of the CL18 paper, I can rewrite the map as r+2aX+r−1−I = 0
where the 2 has come from the fact that finding the orbit Jacobian matrix
is in effect taking a derivative, now the orbit Jacobian matrix is
[2021-05-01 Sidney: this has wrong entries on the diagonal, (16.10), (15.174)
is the correct formula.]

J = r + 2aX + r−1 =



2axn 1 0 0 . . . 0 1
1 2axn 1 0 . . . 0 0
0 1 2axn 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 2axn 1
1 0 . . . . . . . . . 1 2axn


,

where the ones on the upper right and lower left corners, are a result
of the periodic boundary conditions. The goal is to adapt this so that
we can apply the time reversal boundary conditions, and thus construct
time-symmetric lattice states.
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2021-05-01 Sidney Here is the correct orbit Jacobian matrix (in the above I
made a mistake):

J = σ + 2aX + σ−1

=



2ax0 1 0 0 . . . 0 1
1 2ax1 1 0 . . . 0 0
0 1 2ax2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 2axn−2 1
1 0 . . . . . . . . . 1 2axn−1


(16.10)

I’ll look at (and try to understand) the proof of the Hill’s formula.

2021-05-05 Predrag Please modify your code so you are computing the (rescaled)
temporal Hénon (2.63), orbit Jacobian matrix (15.174).

2021-05-05 Sidney I shall modify my code to do that, first, I will look at the
rescaled temporal Hénon (2.63). Just for my own satisfaction, I shall red-
erive (2.63) and (15.174). The Hamiltonian Hénon map is given by

xn+1 = 1− ax2
n − xn−1

We note that an n-step recurrence relation is the discrete analogue to an
order-n differential equation. We can now introduce the change of vari-
ables φn ≡ axn this turns our map into:

1

a
φn+1 = 1− 1

a
φ2
n −

1

a
φn−1

Rearranging, we get

a = φn+1 + φ2
n + φn−1 . (16.11)

The derivative of this map yields its orbit Jacobian matrix:

Jp = r + 2X + r−1

Thus, we have rederived (2.63) and (15.174). I can now put it into my
code. I am currently trying to understand the derivation of:

Ĵp =


1 −J(φ0)

−J(φ1) 1
. . . . . .

−J(φn−2) 1
−J(φn−1) 1

 ,

Any hints would be much appreciated.
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2021-05-10 Predrag It’s all in the blog, and the siminos repo. But why don’t you
go back where you started, and reread CL18 [3]:

sect. 1.5 Stability of an orbit vs. its time-evolution stability

appendix C Spatiotemporal stability

2021-05-10 Predrag One thing you can maybe help Han and me with; we find
the block matrix formulation of sect. 9.5 Spatiotemporal cat Hill’s formula
quite reader-unfriendly. I like the latest version, sect. 9.11 Han’s Hénon
map Hill’s formula better. Any suggestions how to make this easier to read
are welcome!

2021-05-06 Matt to Sidney It’s not clear to me what you need help with, but
the origin of the derivation of the aforementioned matrix is the Jacobian
of a multipoint shooting method (see ChaosBook sec. 16.2 Multipoint
shooting method and ChaosBook example 16.2) vector xn−f(xn−1), n ∈
0, ..., N (indices may be off depending on how matrix is ordered), which
finds cycles of length n by solving a system of single steps. If the vec-
tor equals 0 then this means that we have found a cycle/orbit as we
have found a set of points which is closed under evolution (we can take
N steps and return to our original position, starting from any of the N
points defining the cycle). The actual matrix, as with all Jacobians, tells
us how the tangent space evolves. In terms of the multipoint shooting,
this is the combination of N single step Jacobians. If you are on the cy-
cle (i.e. no deviations, or components in the tangent space) which evolve
other than the velocity, which is mapped into the velocity at the new
point. This is a quick and dirty explanation which is probably over sim-
plifying, but the near-tautological explanation is: if you’re on the cycle,
then you don’t get pushed away from the cycle due to your deviation
from the cycle.

tl;dr It’s the Jacobian of the multipoint shooting equation xn − f t(xn−1).

2021-05-10 Predrag Talking about multishooting, the material around eq. (9.107)
might be worth revisiting.

2021-05-09 Sidney Thank you Matt, it makes sense now, given the definition
of the single step Jacobian it just sort of pops out. So, at this point I know
how to get both the traditional orbit Jacobian matrix (which I am cur-
rently working on coding in) and the orbit Jacobian matrix in terms of
the single step Jacobian (which I also know how to derive).

2021-05-09 Sidney At this point, I am trying to understand the block matrix
form that can be generated by applying a permutation matrix defined by
the circular Kronecker delta. What I do not understand, is:

What is the difference between the circular Kronecker delta, and the reg-
ular one?
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2021-05-10 Predrag Regular one is defined on Z (no restrictions), the circu-
lar one on Cn (periodic chain, so mod n). (Re)read ChaosBook ap-
pendix X.3 Discrete Fourier transforms.

2021-05-09 Sidney And I am also having difficulty deriving the appropriate
permutation matrix. I want to try turning the two-cycle orbit Jacobian
matrix (in terms of single-step Jacobians) into the block matrix form. The
following is my (incorrect) derivation of the 4x4 permutation matrix. I
have assumed that when the index for the circular Kronecker delta reads
something like 4, j it is equivalent to 0, j, as that would be equivalent to
going to the end of the columns (index j) and then starting back at the
beginning. By doing this I get: P is a [2n × 2n] permutation matrix. De-
fined through the circular Kronecker delta: Pk,j = δ2k−1,j , for a periodic
orbit of length n = 2 P is

P =


1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0


(This is wrong)

What did I do wrong?

2021-05-10 Predrag By ‘permutation matrix’ you mean the one-step cyclic per-
mutation r, or the shift matrix (8.7)? The circular Kronecker delta is just
the [n × n] identity matrix. I leave it to Han and you to figure out what
went wrong :)

2021-05-13 Han My Kronecker delta representation was wrong... (9.80) should
be correct. I don’t have a more compact way to write this permutation
matrix. The permutation matrix for n = 2 is:

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
2021-05-10 Predrag To everybody - always number sites of length-n periodic

chains (necklaces) as
{0, 1, 2, · · · , n − 1} ,

otherwise discrete Fourier transforms will go awkward on you.

2021-05-10 Predrag Regarding sect. 2.1 “Center of mass” puzzle:

Relevant Gallas papers are all in ChaosBook.org/library, for example
(click here), with their names (always!) given by their BibTeX ID.

Predrag’s unpublished 2004 drafts and calculations can be accessed by
clicking on the link given there:
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ChaosBook.org/projects/revHenon

There is no need to look at old drafts of papers, as the most of the relevant
stuff is already included in that section, but the link includes some data
files, orbit plots and programs that might be useful to Sidney as cross-
checks on his calculations.

2021-05-12 Sidney Here are some notes from the last meeting: Any matrix can
be written as a sum of projections into the different eigendirections. An
anti-diagonal matrix, as well as the anti-diagonal matrix multiplied by
sigma and its powers give the reflection matrix, and the reflection matrix
across all axes.

Q What are these axes? A reflection matrix has two eigenvalues ±1 (corre-
sponding to either the symmetric, or antisymmetric subspace), and a
projection operator can be constructed by subtracting out the opposite
of the subspace you want to project onto. This projection operator can
be applied to the left of the orbit Jacobian matrix to project it onto ei-
ther the symmetric, or antisymmetric space. In this way, the orbit Ja-
cobian matrix can be written as J = J− + J+, it is worth noting that
det (A + B) 6= det (A) + det (B). In the case of a linear map (where the
fundamental fact still applies) the determinant of J± counts the number
of time symmetric/antisymmetric orbits. Note that we need to apply the
time symmetric boundary conditions in order to enforce time symmetric
orbits.

Q2 Is this last statement correct? I have now updated my code to work with
the scaled Hénon map. Actually, I just did the lazy thing of dividing all
values in all orbits by a. I also added a function to generate the (scaled)
orbit Jacobian matrix, and I tried calculating its eigenvalues and vectors,
it all seems to work, but I’m really not sure what I should be seeing for
eigenvalues and vectors, I will paste my code below (I will past all of it,
but it’s mostly the same as before, just with a little added on the end):
There is probably some extra code in there that just isn’t being used, but
hey, it’s a work in progress. Update 2021-05-17: I have added this code
to the williams/relax folder in the subversion, so I have now deleted the
code here.

2021-05-13 Sidney With Han’s help I was able to see the permutation matrix,
and I was able to reproduce the Hill’s formula "proof" for the specific
case of n=2 (I use quotation marks because I only proved it for one case,
and not all cases) I will probably keep thinking about how to generalize
it, but I now feel better about applying Hill’s formula to my orbit Jaco-
bian matrix. I have been trying to work through the algebra with the
reflection, and the corresponding projection matrices described in Han’s
most recent blog post. I understand qualitatively what’s happening, ef-
fectively the projection operator is just the reflection operator with one of
the eigenspaces subtracted out, with an additional weight that forces the
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identity 1 =
∑
i PAi , this is a formula for a generic matrix. I cannot find

anywhere in lectures, or textbooks where this is formalized, so I am not
sure how the weights are constructed, but I’ll keep looking at it.

2021-05-15 Matt I’ll put a couple of responses here to hopefully help Sidney
out. Response to questions in 2021-05-12 Sidney. It seems like the ques-
tions are with respect to the proceeding sentences but they are in different
paragraphs so it is unclear to me if that is what you meant.

Q What are these axes? Is the question with respect to a specific system
or just in general? If we’re talking about reflection in D dimensional eu-
clidean space then we can reflect over anyD−1 dimensional hyperplane,
so I’m assuming it’s talking about reflection where the eigenvectors are
the normal vectors to these planes, so the hyperplane which is normal
to each eigenvector can define a reflection so maybe this is what you’re
referring to?

Q2 Is this last statement correct? What is "the last statement"? The last
statement before the question, the last statement of the previous para-
graph...? Is it the following?

Note that we need to apply the time symmetric boundary condi-
tions in order to enforce time symmetric orbits

To ensure that you get a time symmetric orbit then yes you have to im-
pose boundary conditions which constrain you to that subspace. The
unconstrained method (if variational in formulation) could possibly find
these orbits, but there would be no guarantee.

Response to 2021-05-13 Sidney.

I understand qualitatively what’s happening, effectively the
projection operator is just the reflection operator with one of
the eigenspaces subtracted out, with an additional weight that
forces the identity I =

∑
i PAi , this is a formula for a generic

matrix. I cannot find anywhere in lectures, or textbooks where
this is formalized, so I am not sure how the weights are con-
structed, but I’ll keep looking at it.

Where "this" is formalized: The "weights" are simply normalization coef-
ficients. The sum of the projection operators equaling the identity essen-
tially says that the "full" space can be decomposed into projection sub-
spaces, each of which has its own projection operator. I.e. each subspace
is a component of the full space. Predrag formalizes the projection opera-
tors a lot; especially in his group theory stuff which this is directly related
to.

For a reflection operator we can decompose∑
P± =

1

2
(I±R) = 1/2(I + I +R−R) = 1/2(2I) = I .
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For a symmetry subspace that can be broken into 4 subspaces, the nor-
malization would be 1/4, etc.

2021-05-23 Sidney Thank you to Matt for the explanation, I also have now
attended the group theory lecture on projection operators (I’ve actually
been thinking about this a good bit, but taking the time to condense my
thoughts onto my blog is not one of my strong suits). Anyway, the projec-
tion operator formalism for matrices can be derived from the Hamilton-
Cayley theorem: ∏

i

(M− λiI) = 0

In words, this is just the statement that a matrix satisfies its own charac-
teristic equation. However, if we take one element out of the product, the
RHS will no longer be zero:∏

i6=j

(M − λiI) =
∏
i6=j

(λj − λi) ei

We can rearrange to get:

Pj =
∏
i6=j

M− λiI
λj − λi

Which is the definition of the projection operators that Han used, I was
also able to reproduce his results. I also found out an issue with my code
for finding time-reversal symmetric orbits. I was not taking into account
permutations, but that is an easy fix, that I hope to fix quickly.

When I have, I can create a bank of orbits appropriate to use with the orbit
Jacobian matrix projected into the symmetric subspace using projection
operators, I know how to construct this both by hand, and by code, I just
need to implement it. I also need to go through chapter 15 in Chaos-
book, as it gives good visualization of what the Hamiltonian Hénon map
does. I will add my notes here when I have a chance, hopefully tonight,
or tomorrow. I also think that I should explore the volume of the paral-
lelpiped represented by the orbit Jacobian matrix. I could probably use a
package for that, but what I’ll most likely do is just use the fact that the
determinant of a matrix is just the product of its eigenvalues:

detA =
∏
i

λi

Then take the absolute value. I can then check the volumes generated by
different orbits.

2021-05-26 Sidney I reviewed the spatiotemporal cat derivation to see if I could
extend the idea to the Hénon map, I think I have.

If we enforce the following restrictions, we can qualitatively derive the
spatiotemporal Hénon map:
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• Each site couples to its nearest neighbors

• Spatial and temporal coupling is of the same strength

• Invariant under spatial translations

• Invariant under spatial reflections

• Invariant under space time exchange

With these conditions our temporal Hénon (2.63), (16.11)

a = φt+1 + φ2
t + φt

generalizes to my proposal for the spatiotemporal Hénon

φn,t+1 + φn,t−1 + 2φ2
n,t + φn+1,t + φn−1,t = a . (16.12)

The factor of two comes from adding together two Hénon maps (one
spatial and one temporal), following the derivation of the spatiotemporal
cat. I need to try to read Gutkin and Osipov [13] arXiv:1503.02676 to get
a better idea of the derivation.

2021-05-28 Predrag Your spatiotemporal Hénon (16.12) looks OK to me, ex-
cept maybe adding the maps for each direction of a d-dimensional lattice
results in da on the RHS? In the spirit of eq. (80) in CL18.pdf?

2021-05-28 Predrag I doubt you will find it in Gutkin and Osipov [13] - if you
do, cite their words in detail here. The above argument is mine, from
Gutkin et al. [12] and CL18 (kittens/ folder in this repository).

2021-05-28 Predrag How does your spatiotemporal Hénon compare to Politi
and Torcini [18], sect. 10.3 Periodic orbits in coupled Hénon maps?

2021-05-27 Sidney Here is my attempt at looking at the eigenvalues, eigenvec-
tors, and the determinants of the orbit Jacobian matrix. My orbit Jacobian
matrix constructor only works with orbits of length 3 and above, this is
because is row has three values in it that permute, and I’m not sure how
to scale it down, will discuss this at the next meeting. I cannot tell any-
thing about the eigen stuff so far, it seems almost random, however, the
determinant values are each approaching an integer value, so maybe that
is something.

Note: I removed the table here because it was wrong

I will hopefully rearrange some of these tables to group them by orbit in
a later post, but for now, here is the "raw" data, let me know if anything
appears.

2021-05-31 Sidney I’m not sure why, but the large table with all of the eigen-
values does not appear in the pdf version of the blog. I am not sure how
to fix that, if anyone could let me know, that would be great. I still need
to put it into a more readable format anyway. I also looked at eq. (80)
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in CL18.pdf, and it is the reason that I did not have d ∗ a on the RHS,
the form of the spatiotemporal cat eq. (79), has only M not 2M, which
it would have if both sides were added (right?), I need to read up on the
coupled maps, that will be something I do next (along with the better
tables).

That would also say that ‘1100’ is symmetric under time inversion.

2021-06-03 Sidney I want to try to take advantage of Hill’s formula:

Det (Jp) = det ( 11− Jp) = (1− Λp)

(
1− 1

Λp

)
= 2− Λp − 1/Λp . (16.13)

So, I need to calculate the eigenvalues for the scaled time-step Jacobian
matrix, but first I need to find the form of the scaled time-step Hénon
map (16.14)

xn+1 = 1− ax2
n + byn

yn+1 = xn (16.14)

We scale x→ 1
aφ, y → 1

aϕ, and the Hénon map becomes:

φn+1 = a− φ2
n + bϕn

ϕn+1 = φn (16.15)

Temporal stability of the nth iterate of the Hamiltonian Hénon map is 1

Mn(φ0) =

1∏
m=n

[
−2φm −1

1 0

]
, φm = fm1 (φ0, ϕ0) . (16.16)

It is very important to understand the Floquet multipliers are invariant
under all smooth coordinate changes, see ChaosBook sect. 5.4, so they
are not affected by this rescaling.. When we find the eigenvalues of this
matrix they give contracting and expanding, we are interested in the ex-
panding stability multiplier. There are three period 4 orbits: 1110, 1100,
1000, they have the following expanding Floquet multipliers:

2021-06-04 Predrag I do not seem to have handy list of the Hamiltonian a = 6
Hénon map Floquet multipliers. Floquet exponents for many a = 1.4, b =
0.3 orbits are listed in ChaosBook table 34.2. I believe that sect. 9.11 Han’s
Hénon map Hill’s formula also applies to the dissipative case, might be
worth by repeating the derivation with b 6= −1, or at least checking it for
a few short periodic orbits.

1Predrag 2021-06-04: Was [
−2φn

b
a

1 0

]
The correct form is (2.46). Hence, with Sidney’s “scaled Jacobian,” the four cycle Floquet multiplies
were all wrong.
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2021-06-11 Sidney I have read some of Wen’s 2014 project ChaosBook.org/projects/Wen14.pdf,
I should take some notes and put them here.

2021-06-11 Sidney The Hill determinant should equal 2− Λp − 1/Λp by Hill’s
formula (16.13), where Λp is the expanding eigenvalue of the time-step
Jacobian for that orbit, see table 16.1.

2021-06-11, 2021-06-23 Sidney Table 16.2 lists the Hill determinants computed
from the orbit Jacobian matrices. Comparing with table 16.1 period-4 Hill
determinants, we see that the Hill’s formula (16.13) is satisfied to high
precision.

2021-06-12 Predrag It looks like you now have the correct Hill determinants.
Their numbers agree with ChaosBook Table 18.1; there are 6 period-5
orbits, and 9 period-6 orbits. The period-6 itineraries are not yet correctly
assigned, fix that. The ones with even #’s of ‘1’s are presumably the pos-
itive ones.

2021-06-12 Sidney I shall fix the itineraries for 6 cycles, and I’ll add the itineraries
of the other, shorter cycles later. Some were correct, and the negative de-
terminants were in fact the odd number of 1s.

2021-06-13 Predrag Do include fixed points and the period 2 in table 16.2; might
be helpful for understanding magnitudes of longer period Hill determi-
nants.

2021-06-13 Predrag to Han and Sidney If you think of the Hénon map as a fat-
tened parabola, then 0 fixed point has large positive slope (4 for the Ulam
map), and 1 fixed point has small negative slope (-2 for the Ulam map).
This explains the magnitudes, and should also determine the signs of Hill
determinants in table 16.2.

However, either there is a - sign specific to Sidney’s definition of the
Hénon orbit Jacobian matrix, or Han and Predrag have to redefine both
temporal cat and temporal Hénon orbit Jacobian matrix, so we do not
pick up an extraneous ‘-’ sign for odd period lattice states.

See also (6.206).

Fixing this is not essential, as we use only the absolute values of determi-
nants in periodic orbit formulas.

2021-06-13 Sidney In the 2014 project paper by Haoran Wen, it is stated that
for a range of a and b, the Hénon map is “structurally stable” and that
means that the transport properties of the system have a smooth depen-
dence on the parameters. And then it states that the lack of structural
stability will result in the creation and destruction of infinitely many pe-
riodic orbits for any parameter change. Does that mean that a structurally
stable system has relatively few bifurcations?
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2021-06-13 Predrag It’s a long story, starting with a wrong conjecture by Smale,
but the answer is NO bifurcations for open intervals of system parameter
values. Tends to be possible only for repellers, that is why you are work-
ing with Hénon a > 6 which has all possible binary symbolic dynamics
cycles, and no bifurcations as you increase the parameter a.

Cat map has a finite grammar (is a "generating partition") for precisely
s=integer >2, but change s to an open interval of real values around -let’s
say- s=3, and infinity of cycle get created and destroyed for any finite
change in s.

2021-06-13 Sidney So, at a=6 we achieve all binary symbolic dynamics, and
anything more than that we still have all binary symbols? No creation or
destruction? Is there a proof for this in the blog or somewhere else easily
linkable to, that wouldn’t take me days to digest?

2021-06-13 Predrag No, not a = 6 - that’s just the closest integer value. Chaos-
Book sect. 15.2 Horseshoes explains it, and -for example- Endler and Gal-
las [9] say “This classification is independent of the control parametera.
Orbits are specially interesting for a > 5.69931 . . . , since beyond this
value there is a complete Smale horseshoe [20] and all orbits are real.”

2021-06-14 Sidney blogCats is being weird for me, it is only showing the most
recently added parts, plus the table of contents, so right now when I build
it, it only gives the dihedral groups chapter, even though all the include
commands are not commented out.

2021-06-14 Predrag In inclOnlyCats.tex the uncommented line was

\includeonly{chapter/groups}

so blogCats.tex was doing what it should.

2021-06-14 Sidney to Predrag and Han I am having trouble defining the orbit
Jacobian matrix for orbit length 1 and 2, this is because my code is de-
signed to have a minimum width of 3 for the matrix, because there needs
to be the terms for φn+1, φn−1, φn, and I am not sure how to do that for 1
and 2 orbit lengths, should I just have the orbit repeat?

2021-06-14 Predrag The fixed points and period-2 lattices you can evaluate by
hand, I believe. CL18 sect. 1.4 Fundamental fact and sect. 2.4 Fundamen-
tal fact evaluate the period-2 lattice orbit Jacobian matrices. If you un-
derstand how (20.150), (20.151), and CL18 (103) were derived, you will
understand all such special cases.

2021-06-14 Sidney to Predrag and Han Is 6 digits of accuracy good enough?
Is there a different method I should use? I am using the one from Chaos-
Book chapter 7 Fixed points (the link is right here, I’ll use that style of
referencing in the future).

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex720 8289 (predrag–7383)

https://ChaosBook.org/chapters/ChaosBook.pdf#section.15.2
https://ChaosBook.org/chapters/ChaosBook.pdf#section.15.2
http://chaosbook.org/~predrag/papers/CL18.pdf#subsection.1.4
http://chaosbook.org/~predrag/papers/CL18.pdf#subsection.2.4
http://chaosbook.org/~predrag/papers/CL18.pdf#equation.3.103
https://ChaosBook.org/chapters/ChaosBook.pdf#chapter.7
https://ChaosBook.org/chapters/ChaosBook.pdf#chapter.7


CHAPTER 16. SIDNEY’S BLOG

2021-06-18 Sidney to Predrag and Han I am trying to reproduce the projec-
tion operator analysis for D6 symmetric lattice states and I am not really
sure how to do that, which of Han’s posts talks about the lattice states?
As well, doesn’t the projection analysis apply for Dn in general, not just
specific lattice states?

2021-06-19 Sidney to Predrag and Han I tried to read Endler and Gallas [8]
2006 paper (not the Endler and Gallas paper [9] that Predrag mentioned)
because Predrag said that it explained two period 3, one period 4, and
two period 6 values in my table 16.2, but I am not quite sure how the
authors are getting their P polynomials, or their S polynomials, specifi-
cally, I am not sure where the a value comes in, because when I just try to
expand their eq. (3) and regroup it into eq. (6), I could not, so I am very
confused. What obvious thing am I missing?

2021-06-19 Predrag To “expand their eq. (3) and regroup it into eq. (6)” you
need to know analytically all period-4 periodic points, do you know
them? They claim that “the solution of this problem is trivial because
ref. [7] contains the solution for arbitrary a and b.”

However, I was referring to the Endler and Gallas [9] Table 1. The invari-
ant quantity that they associate with a periodic orbit is the orbital sum
(2.33), the sum over the periodic points, while the Hill determinant in-
volves various sums over values of fields raised to various powers. You
will immediately note that the cases that have integer orbit sums corre-
spond to your integer-valued Hill determinants. They had no reason to
think of Hill determinants, so that would be a major reworking of their
paper(s); I do not think you want to do that.

2021-06-20 Sidney to Predrag and Han Oops

I agree that a major reworking is probably not in the cards, I will go back
to trying to understand orbit Jacobian matrices for the fixed point, and
period 2 orbits. Endler and Gallas [7, 8] look exceptionally cool, I’ll give
them a whirl.

2021-06-23 Sidney I worked through both Endler and Gallas papers [7, 8], as
much as I could. Here is what I came up with: in ref. [8] the two im-
portant equations are Pk(x) and Sk(σ), where Sk(σ) is found through
manipulating the (scaled) Hénon map and σ is the sum of all points in
the cycle, Pk(x) is defined as

Pk =
k∏
`=1

(x− x`) ,

where xl is the `th orbit point. The algorithm is simple: construct Pk(x)
by expanding the product and putting each coefficient in terms of σ, then
use Sk(σ) = 0 to determine how many unique orbits of length k and 2.
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what values σ can take, then combine with Pk(x) to solve for each orbit
point. I will work two examples, first an orbit of length 1:

σ = x1

P1 = x− σ
xt+1 = a− x2

t − xt−1 = x1 = a− x2
1 − x1

Or
2σ + σ2 − a = 0 = S1(σ)

As this is a quadratic equation, we know that there are two different fixed
points, and we can solve for them directly via S1(σ) = 0, now for an orbit
of length 2:

It is useful to first state that a = 2x2 + x2
1 = 2x1 + x2

2 by the Hénon map,
and σ = x1 + x2

P2(x) = (x− x1)(x− x2) = x2 − σx+ x1x2 = x2 − σx+
1

2
a− 1

2
σ2 − σ

If we subtract the two a equations we get

0 = 2x2 − 2x1 + x2
1 − x2

2 = 2(x2 − x1) + (x1 + x2)(x1 − x2)

so
S2(σ) = σ − 2 = 0

From this we know that there is one 2 cycle and this can be solved by
solving for σ and solving for the roots of P2(x). There’s a lot of algebra
here, but I am sure there is some number theory trick that can be used that
I am unaware of. I am also a little confused by the factorization (2.35)

Sk(σ) = C2
k(σ)Dk(σ)Nk(σ) ,

I think that it is a statement that the polynomial Sk(σ) can be decomposed
into polynomials that each give roots for the Chiral, Diagonal, and Non-
diagonal orbits respectively. So it should be a way to count the number
of each type of orbit. However, I am not sure how to tell the difference
between any of them, I sort of understand that Ck has to be squared, and
that could distinguish it, but I’m really not sure how to tell them apart.

Q16.1 Any suggestions for this?
A16.1 Predrag 2021-07-04 Work through papers, they are clear and peda-

gogical

I have also figured out how to get the determinants of period 1 and pe-
riod 2 cycles, I updated table 16.2 to include them. You’ll notice that the
determinant for 0 and 1 were negatives of each other up to six decimal
places, neat. 10 was the integer −12 up to six decimal places, again, neat.

Q16.2 How do I calculate eigenvalues for periods 1 and 2?
A16.2 Here is how:
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Period 1: For the fixed points, I get

φ0,1 = −1±
√

1 + a→ −1±
√

7 (16.17)

J0,1 are [1× 1] matrices

φt+1 + φ2
t + φt−1 = a

F [φ] = 2φ+ φ2 − a = 0 ,

Evaluating the Hill determinants (8.6) for both fixed points:

J0,1 = 2(1 + φ) , DetJ0,1 = ±2
√

1 + a→ ±5.2915026 , (16.18)

in agreement with the numerical estimates of table 16.2. The Hill deter-
minants of the two fixed points are negatives of each other.

Period 2: The periodic points in the 10 orbit are (I did it on paper, do
not want to reproduce it here):

φ1,2 = 1±
√
a− 3→ 1±

√
3 (16.19)

J10 follows
F [φ]1 = 2φ2 + φ2

1 − a = 0

F [φ]2 = 2φ1 + φ2
2 − a = 0 ,

J10 =

[
2φ01 2

2 2φ10

]
. (16.20)

Hill determinants are symmetric polynomials in lattice fields {φ1, φ2, · · · , φn},
which are, by construction, all prime cycle p invariants. The orbital sum
(2.33) is one example. Another one is (16.21).

In case at hand,

DetJ = 4(φ01φ10 − 1) = 4(3− a)→ −12 . (16.21)

The Hill determinant is exactly 12, up to the annoying overall sign that
cries out for a redefinition of orbit Jacobian matrixs.

2021-06-25 Sidney With the above analytic calculations, I feel very confident
in stating that my code is accurate up to 6 decimal places.

Q16.3 Is there a way to rigorously prove that the code is accurate up to 6
decimal places?

Q16.4 Is this worth doing if it exists?

A16.4 Predrag 2021-07-04 No.

Q16.5 What do these values mean? An integer Hill determinant should
mean something right?
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Table 16.1: Hill determinants for the Hamiltonian a = 6 Hénon map, period-4
lattice states, computed from time-evolution side of the Hill’s formula (16.13).
The pesky overall ‘sign’ presumably means we have to change the overall sign
in the definition of orbit Jacobian matrix J everywhere.

Orbit Hill determinant
1110 105.697960425014
1100 -576.000010077746
1000 1046.301985671792

Table 16.2: Hill determinants for the Hamiltonian a = 6 Hénon map, with
correct symbolic dynamics. Indicated in red are values presumably explained
by Endler and Gallas [9].

Period 1
0 5.291502844
1 -5.291502494

Period 2
10 -12.000000720

Period 3
110 -53.914854639
100 133.914853323

Period 4
1110 -105.697960425
1100 576.000010077
1000 -1046.301985671

Period 5
11110 -388.996791481
11100 591.500599893
11010 712.689732105
00101 -768.203977660
00011 -4443.524089969
00001 7608.534459743

Period 6
111110 -1045.3849327
111100 3899.9387739
111010 1092.9103354
111000 -4786.6149478
101000 5135.6190985
110100 -6396.0000670
001011 -6395.9999673
110000 32220.0609406
100000 -54576.5295457
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A16.4 Predrag 2021-07-04 It is well explained in papers you have been
reading. Integer Hill determinant is a historical accident, due to our
(arbitrary) choice a = 6. But it gave Gallas and collaborators a clue
that something is going on. As does (16.26). Be Gallas.

And finally, I was thinking about the multidimensional Hénon map. Since
this is not a physical problem, there is no "physical" definition about what
makes a map "Hénon map" like, so it would be good to stick to the math-
ematical requirement of the folding being linearly related to b, so I was
thinking that for the multidimensional map, the Hénon-ness could be sat-
isfied if the appropriate time Jacobian matrix determinant would be −bd,
unfortunately, I don’t know how to define the correct time Jacobian.

2021-07-03 Sidney I have not had much time outside of my internship lately,
so I haven’t done much. However, I did make an attempt at showing
that the eigenvalues of the orbit Jacobian matrix are coordinate-choice
independent. It did not go well. First, I must remember that

Jij =
δF [φ]i
δφj

,

evaluated at a lattice state φM

F [φM ] = 0 .

This gives a problem when I try to repeat the proof done for time-step
Jacobians, because I get

J ′(φ′M )ij = Γ(0)ikJklΓ−1(φM )lj , (16.22)

which means that I cannot cancel the Γs in the determinant. So, I have
failed to prove anything.

2021-06-24 Predrag Wow, I did not expect DetJ0 = −DetJ1! But Sidney’s
(16.17) nails it.

2021-06-13 Predrag Note the ‘.91485’ decimal digits for period 3. Those are
presumably explained by Endler and Gallas [9] analytic expressions, see
their Table 1. For us they mean that Sidney’s code is accurate to ca. 6
significant digits.

The 1100 Hill determinant is integer 576 = (6×4)(−6×−4), (see (16.26)).
Explain this factorization.

(16.20) explains 01 Hill determinant=12, but do you have an argument
that this is the symmetry reduced Hill determinant=2

√
3 squared?

Show that 001011 and 001101 Hill determinants are (integer)2 (are they?).

This is also a helpful check on the time-inversion factorization formulas
Han and I are trying to establish.
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2021-07-06 Sidney I have considered showing that the Hill determinant is co-
ordinate invariant, but I think that’s just a matter of mentioning that Ja-
cobian matrix has coordinate invariant eigenvalues. I’ll formalize that in
a later post (most likely the next one).

I have also come up with a proof that the J has the same set of eigenval-
ues evaluated at every point in the orbit, I suspect that there is a proof for
the eigenvectors, but I don’t know how to do it, again, will formalize on
my next post.

2021-07-07 Predrag The orbit Jacobian matrix J is global, a property of the
entire lattice state, so I do not understand “J has the same set of eigen-
values evaluated at every point in the orbit.”

2021-07-06 Sidney I am not sure what was meant by “do you have an argu-
ment that this is the symmetry reduced Hill determinant=2

√
3 squared?".

I assume this is something either from the group theory course, or blog
which I have not yet gone over, but does this mean that I should look
for some symmetry reduction of a matrix whose Hill determinant has the
value 2

√
3?

2021-07-07 Predrag Basically, yes. I’m referring to C2
n term in (2.34),

√
ζtop(t2)

in (5.150), etc., throughout the time-reversal discussions in the blog.

Endler and Gallas [8] eq. (9) and Table 1 has

D0011 = σ , P0011 = (x2 − a)2 , (16.23)

There are two period 6 diagonal orbits

D6 = σ2 + 4σ − 4a , orbits 000111 and ?? , (16.24)

but 000111 of figure 2.1 (c) belongs to N6 messy polynomial eq. (14).

My reasoning is that due to the {1, s} time-reversal symmetry, any t < 0
temporal lattice site can be mapped into t > 0 by time reversal s, so
the D∞ ‘configuration’ fundamental domain is the t ≥ 0 temporal half-
lattice. Full lattice periodic states Hill determinants for orbits such as
01, 0011 in table 16.2 are then (that’s not quite right) squares (twice the
relative periodic orbit period) of the fundamental domain orbit Hill de-
terminants, as in example 5.11 D1 factorization.

But there no reason why you should know that, Han and I are still work-
ing it out, will have more concrete suggestions for the Hénon case once
we understand it better.

2021-06-13 Predrag If you think of the Hénon map as a fattened parabola, then
0 fixed point has large positive slope (4 for the Ulam map), and 1 fixed
point has small negative slope (-2 for the Ulam map). This explains the
magnitudes, and should also determine the signs of Hill determinants in
table 16.2.
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2021-07-07 Predrag Endler and Gallas [8] eq. (13) presumably explains the in-
teger valued pair of period-6 orbits in table 16.2:

C6 = σ − 2 , orbits 110100, 001011 , (16.25)

2021-06-25 Sidney My numerical values for period 4 eigenvalues:

1000 6.77624515,−7.4374406,−4.23778399,−σ,
1110 −2.39080489, 1.58070478, 5.70907942, σ,

1100 6, 4,−6,−4 (16.26)

2021-07-04 Predrag to Sidney and Han What’s up with two distinct orbits 1000
and 1110 in (16.26), with different Hill determinants in table 16.2, shar-
ing the eigenvalue σ = 2

√
6 = 4.89897947 (see (16.27))? Well... when two

numbers agree to 9 significant digits, it’s usually a mere numerical coin-
cidence. Happens 1/1 000 000 000 of time :)

2021-07-25 Predrag Endler and Gallas [7] have all period-4 periodic points:

S4(σ) = σ(σ2 − 4a) (16.27)

The the 2-points on diagonal 0011 of figure 2.1 (b) has σ = 0. For a = 6 the
1000 has σ = −2

√
6 = −4.898979485566356 and 1110 has σ = 2

√
6, which

happens to be their common eigenvalue in (16.26). Endler and Gallas [8]
also define

α =

√
6 + 2

√
6 = 3.3013602478

β =

√
6− 2

√
6 = 1.04929524655 . (16.28)

and the corresponding orbital equations

P1000(x) = (x2 − α2)(x+
√

6)2

P0111(x) = (x2 − β2)(x−
√

6)2

P0011(x) = (x2 − 6)2 . (16.29)

2021-07-25 Predrag For a period-4 p, the Hill determinant of the orbit Jacobian
matrix (15.174) is the polynomial

Det (Jp) = 22
[
22x0x1x2x3 − x0x3 − x1x2 − x2x3 − x1x0

]
, (16.30)

not involving the orbit sum σ, not in the form currently written. Looks
like one should rescale φi (again?).

The quadratic part is a sum of sequential pairs. There are two kinds of
ways in which it can be time-reversal invariant:
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• 2 on diagonal x0x2 fixed, x1 = −x3

Det (Jp) = 22
[
−22x0x1

2x2

]
, (16.31)

• none on diagonal, x0 = −x1, x2 = −x3

Det (Jp) = 22
[
22x0

2x2
2 + 2x0x2 + x2

2 + x0
2
]

= 22
[
(2x0x2)2 + (x0 + x2)2

]
, (16.32)

At the first glance, Hill determinants do not seem to factorize, but the
time reversal symmetry assumptions (and signs) have to be checked.

2021-07-25 Predrag Some while-falling-asleep reflections on orbits 1000 and
1110 in (16.26), sharing the eigenvalue σ = 2

√
6:

If an orbit has a symmetry H , all of its lattice states (periodic points)
presumably live in an invariant subspaceMH . An example is Kuramo-
to-Sivashinsky, where orbits that start in the antisymmetric subspace stay
in this lower dimensional subspace.

Example 5.11 possibly explains this for binary symbolic dynamics (note:
there our ‘0, 1’ are denoted ‘−,+’). In table 5.5
the pair {−+ ++,+−−−} → fundamental domain 0011,
i.e., we are back to our perennial problem of mistaking internal dynami-
cal symmetries for time reversal, not sure this symmetry reduction is the
one we need.

My hunch is that all short orbits live in invariant subspace(s), with 110100
and 001011 being the first exceptions.

Orbit 1000 is like figure 2.1 (c), placed in the upper right corner, with no
points on the diagonal. Orbit 1110 is in the lower left, also symmetric
across the diagonal. Endler and Gallas [8] plot them in their fig. 2. Ac-
cording to J. Montaldi table 5.4, the D4 permutation representation irreps
are is A0 +B1 + E.

In the 2-dimensional invariant subspace E (?) orbits 1000 and 1110 are
period-2 orbits (I’m guessing, have not checked) and their eigenvalues
might be related, like, for example, 0 and 1 in table 16.1. Or there is shared
eigenvalue in one of the 1-dimensional subspaces. Remember the z-axis
dynamics for the Lorenz flow? Read ChaosBook Desymmetrization of
Lorenz flow (here example 5.4) to understand that not every linearly in-
dependent space is invariant under time dynamics.

However, the orbit Jacobian matrix J is always a perturbation in the full
M, thus 3 other eigenvalues, all different. I would be happier if there
were only 2 distinct eigenvalues per each cycle, but you cannot have ev-
erything. At least, not if you don’t try.

example 5.28
p. 277

example 5.4
p. 264
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Basically, also for nonlinear systems orbit Jacobian matrix is linear, so ir-
reps of the symmetry group do block-diagonalize it. A stronger claim;
symmetry can restrict entire orbits to flow-invariant subspaces of the
phase spaceM, even for nonlinear flows. Then some of the orbit Jacobian
matrix eigenvectors point into that subspace.

2021-07-25 Predrag Combination r + r−1 in (16.10) commutes with σ, and σ
conjugacy reverses X

σJ σ = r + 2σXσ + r−1

=



2xn−1 1 0 0 . . . 0 1
1 2xn−2 1 0 . . . 0 0
0 1 2x2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 2x1 1
1 0 . . . . . . . . . 1 2x0


(16.33)

Next, evaluate Hill determinant with a projection operator inserted. Should
factorize?

DetJ = Det (r + 2σXσ + r−1)

= Det (r + 2X + r−1)(P+ + P−)

= Det (P+J )Det (P−J ) (16.34)

2021-08-04 Han Yes! Read the text starting about (20.351) to see how that
works.

2021-08-08 Sidney I have been out of the loop for awhile, so what I’m going to
try to do is read up on what I missed, and take notes on that, and write it
up in my blog, and then continue on with the work here, hopefully that
can all happen in a timely fashion.

2021-08-20 Sidney I have been reading LC21 [16] and Han’s blog and taking
notes as appropriate, as this already exists in this blog, I’ll only talk about
it when I can add something. Anyway, I’ve been thinking about the time
reversal pairs in the temporal Hénon. In the case of 110100 and 001011,
the determinants of the orbit Jacobian matrices were equal and they are a
time reversal pair. I think that maybe we can try to make a global state-
ment about the relative weights of time reversal pairs. So, here is the first
step in trying to see that.

First, I will remind everyone of the definition of the orbit Jacobian matrix:

Jij =
∂F [Φ]i
∂φj

This is defined for any lattice state: Φ = [φ1, φ2, · · · , φn], i defines the
lattice point which is considered the "current" location, ie. for the tem-
poral Hénon, i = 1 says that the first lattice state is what we should use
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for nth in time, instead of n+ 1 or n− 1. j defines the lattice point which
the defining equation will be differentiated with respect to. By definition,
any periodic orbit can be cyclically permuted and still be the same peri-
odic orbit. When this happens the indices in the lattice state get shifted,
say 1→ 3. In this case, the indices in the orbit Jacobian matrix must be re-
defined in accordance to the shift, if we want to know how the "original"
orbit and the "permuted" Jacobians relate. As both indicies in the defi-
nitions of the orbit Jacobian matrix depend on the same index definition
for the lattice state, when the lattice state is permuted by some number
of steps p the indices in the definition for orbit Jacobian matrix change as
follows

i→ α ≡ i+ r , j → γ ≡ j + r . (16.35)

In fact, if we ignore the rules for "sameness" of orbit and say that the
order of the lattice state can be arranged arbitrarily, the indices in the
orbit Jacobian matrix definition are mapped as follows: i→ α ≡ f(i) and
j → γ ≡ f(j), where f(x) is some one-to-one map appropriate for the
rearrangement applied to the lattice state. If we define a "diagonal entry"
of the orbit Jacobian matrix as when the difference between the indices is
zero, we can construct two indicator functions:

∆ij = i− j

∆′αγ = α− γ = f(i)− f(j)

As can be seen, when i = j both indicator functions are zero, indicating
that a diagonal entry in one index space, is a diagonal entry in the other
index space. In fact, as f(x) is one-to-one by definition there are an equal
number of diagonal entries in each index space. And finally, as the defi-
nitions of the orbit Jacobian matrix in either index space are isomorphic:

∂F [Φ]i
∂φj

' ∂F [Φ]α
∂φγ

and as the individual lattice values are unchanged by the rearranging, not
only are there an equal number of diagonal entries in each index space,
but the same values exist in each. Thus, the (unordered) set of diagonal
orbit Jacobian matrix entries is invariant under one-to-one index map-
pings, ie. arbitrary rearrangements of lattice state order.

This shows that under time reversal, the diagonal entries of an orbit Jaco-
bian matrix are preserved, even if the orbit is not time reversal symmetric.
I may have made a mistake here, either in the math, or just basic notation,
please let me know!

2021-08-23 Predrag I am not sure about this proof, discuss it with Matt and
Han first.

Here how I think about (as always, I might be wrong): The beauty of our
spatiotemporal, global approach is that every lattice state (ie, a solution of
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the defining equations of a particular problem) is a fixed point in its high-
dimensional phase space. So, if you can show that the eigenvalues of a
fixed point problem in 1, 2, 3, · · · , 63 873, · · · , dimensions do not change
under a smooth nonlinear change of fields, you have proven what we
need to prove.

If you understand it 1 or 2 dimensions, you probably understand it any
number of dimensions.

Reflection symmetry (sometime known as time reversal) comes in (see
ChaosBook sect. 8.3) as an additional set of relations between the stability
eigenvalues.

2021-08-23 Sidney At this point, I have pretty much settled on wanting to
work on the mathematical physics end of plasma physics. Specifically
with turbulence, and nonlinear aspects of fusion and astrophysics. But
I quite frequently worry that I will miss out a great deal by not work-
ing with quantum, especially path integrals and field theories. I know
that you transitioned from high energy to nonlinear dynamics and tur-
bulence. How did you find that? And how analogous is the math? I
know that for awhile there was quite a bit of overlap between turbulence
and QFT methods, but that seems to have fallen by the wayside.

2021-08-23 Predrag Mhm. My impression is that much is going on, for exam-
ple here, and you just happen to be on the most fearless and inventive
team in the field.

Don’t be Fritz Haake (who accepted the invitation on 30 May 2011). He,
who hesitates, is lost.

2021-08-25 Predrag I keep saying that the proof of the invariance of orbit Jaco-
bian matrix J eigenvalues for a nonlinear but nonsingular redefinition of
fields φi is a variant of ChaosBook sect. 5.4 Floquet multipliers are metric
invariants, but I’m not getting traction on that from anyone.

In today’s group meeting, I interpreted Sidney’s proof of the invariance
of orbit Jacobian matrix J eigenvalues (16.35) as a permutation matrix
on site labels, made a claim that any other permutation than Dn cyclic
ones or their reversals will change the value of temporal Hénon Hill de-
terminant, and challenged Sidney to compute Hill determinant for other
permutations, see that the resulting determinant is different.

But for temporal Hénon I am probably wrong, as Endler and Gallas [8]
prove that all their polynomials depend only on the orbital sum (2.33).

I believe that will not be true for the φ4 theory (2.13) on d-dimension-
al lattice (3.36), with the Hill determinant of the same form (2.28), see
sect. 3.3 Classical φ4 lattice field theory, because in that case bilinear terms
in lattice fields arising from (20.351) cannot be eliminated.
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2021-08-26 Sidney I mostly tried to write the proof to see if I could show that
the diagonal values were an invariant set for rearrangements of the or-
bits, because if I could, I could say something about the equal determi-
nants of the length 6 time reversal pairs I calculated for the temporal
Hénon. I need to look more at other cases.

As well, I tried again to look at varying the proof from ChaosBook
sect. 5.4 Floquet multipliers are metric invariants. But I run into the issue
that the fixed point condition for the map which is having its derivative
taken for the orbit Jacobian matrix, is different that the fixed point con-
dition for the map having its derivative taken for the time-step Jacobian.
Namely, from CL18 eqn 13, it is stated that F [Φ] = 0 is the fixed point
condition, NOT F [Φ] = Φ which would be required for the proof from
Chaosbook to be carried out in the same way. I also tried to take Pre-
drag’s suggestion of looking directly at permutation matrices, and then
taking the determinant to show that everything is invariant around an
orbit. I tried the shift, i.e., the permutation matrix (??)

rsij = δi,j+s ,

shifting each entry backwards by s steps. Shifting the n-dimensional vec-
tor F [Φ]

f [ϕ] = F [r−sΦ]

a function of the n-dimensional lattice state vector Φ, such that the orbit
Jacobian matrix

J =
∂f [ϕ]

∂ϕ
=
∂rsF [r−sΦ]

∂r−sΦ
.

And after this point I am stuck, mostly because I am not sure if this is
right, and it’s weird dividing by a matrix, although, I probably need to
take the derivative of the change of coordinates that I defined.

2021-08-26 Sidney For the one-dimensional case (eqn 5.15 in Chaosbook) the
final conclusion relies on the fixed point condition being f(x) = x. How-
ever, F [Φ] is effectively defined as f(x)−x. This causes a problem whether
we’re looking at scalars or vectors.

I thought a little more about the permutation proof, rs is not position
dependent, so there is no weird Jacobian shenanigans, using the chain
rule we should just get

J =
∂f [ϕ]

∂ϕ
= rs

∂F [Φ]

∂Φ
r−s .

I think that this is right, then we can just move around the determinant
by the permutation property. I should think more how to relate this to
eigenvalues.

2021-08-27 Sidney What is this “square root” thereof thou speaketh?
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2021-08-05, 2021-08-28 Predrag It’s been fuzzy all along, but roughly speaking
it is this: Stability (at least, temporal evolution stability) is multiplicative
along an orbit, so if you go twice as many time steps (lattice sites in our
perspective), the stability gets squared.

Conversely, in going from period n = 2m (20.343) D8 symmetric orbit
φ1φ2φ3φ4|φ4φ3φ2φ1| to the orbit Jacobian matrices evaluated on the m-
dimensional φ1φ2φ3 · · ·φm subspaces (20.346), the stability gets square-
rooted. There are many little things that I do not understand about how
this works in detail that you could easily work out

1. What type from the list (5.20)-(5.23) is each of the short temporal
Hénon orbits that you have? Han tells me my guesses (16.36) to
(16.38) are wrong.

2. What is its Hill determinant? Which block of orbit Jacobian matri-
ces (20.346) goes with which orbit? What are its eigenvalues, the
symmetries of eigenvectors?

3. What is the relation between our (5.20)-(5.23) and Endler and Gal-
las [8] symmetry classifications?

Inspecting Endler and Gallas [8] fig. 2: the Hénon period-4 orbits, n =
2m, are of form

1000 : φ0 φ1 φ0φ1 , (16.36)

and
1110 : φ0 φ1 φ2φ1 , (16.37)

with symmetric-antisymmetric subspace dimensions d+ = 3, d− = 1,
and

1100 : φ2 φ1 |φ1φ2| , (16.38)

with symmetric-antisymmetric subspace dimensions d+ = 2, d− = 2.

I leave it to the gentlepersons of this blog to compute the [1×1] Hill deter-
minants Det (J−) for 1000 and 1110 in (16.26), show their sole eigenvalue
is ±σ = 2

√
6.

8/29/2021 Sidney I am very confused. First off, I found out that I don’t know
how to block-diagonalize matrices using symmetry operators, I tried to
recreate the CO2 example in the group theory notes, but to no avail. So I
turned to trying to show Hill determinants Det (J−) for 1000 and 1110 in
(16.26) is, ±σ = 2

√
6. But I am missing a factor of two, and I don’t know

why. I did the following:

The symmetry is an "even" reflection as defined in (5.38), so the symmetry
matrix is

σ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
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From here, I can construct projection operators for the symmetric and
anti-symmetric subspaces of this operator:

P+ =
1

2
(I − σ) P− =

1

2
(I − σ)

Taking the trace of each of these operators gives me the dimension of each
of these subspaces: d+ = 3, d− = 1. Now, let’s look at 1000 φ0, φ1,−φ0, φ1.
In this case the (incorrect! - see (16.40)) orbit Jacobian matrix is

J =


φ0 1 0 1
1 φ1 1 0
0 1 −φ0 1
1 0 1 φ1

 (16.39)

σJ =


φ0 1 0 1
1 0 1 φ1

0 1 −φ0 1
1 φ1 1 0


The trace of P−J = 1

2 (J − σJ ) should give me the eigenvalue for the
asymmetric subspace, this gives φ1 which equals

√
6 from Endler and

Gallas [8], which is missing a factor of -2, I have no idea what’s wrong
(since corrected in(16.40)).

2021-08-29 Predrag Getting it up to factor of 2 is a triumph! The rest is work :)
Have you tried cross-checking formulas? One cannot trust anyone, one
always makes sure that the formulas are as you yourself have derived
them. I would not be surprised if there should be 2φj along the diagonal...

In this context: (2.12) and the footnote next to it will amuse you.

A small aside - when you refer to an equation, like (5.38), refer to it, rather
than having the reader try to figure out where it came from. It’s much
faster for everyone if you just do it.

A much less important thing at this stage: The macros such as σ [back-
slash Refl] are here for a reason - as the research progresses we often find
that a better notation exists in literature. That can be fixed by editing a
few characters in siminos/inputs/defsSpatiotemp.tex.

2021-08-29 Predrag to Sidney Here is a request that requires minimal work -
you have it in your code or data sets: Plot the values of lattice state fields
for the 6 lattice states of table 2.3 and figure 2.2 in the same format as
figure ?? (b).

Note - temporal Hénon fields can be positive or negative. I’m particularly
interested to see if any of your lattice states are antisymmetric under re-
flection across φ0.
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2021-09-01 Sidney In my last post I used the incorrect definition (16.39) of J ,
the correct definition is

J =


2φ0 1 0 1
1 2φ1 1 0
0 1 −2φ0 1
1 0 1 2φ1

 (16.40)

This, along with remembering that φ1 is negative for the 1000 orbit, fixes
the factor of negative 2 I was missing. I have also figured out my block
diagonalization issue from before. Now the question is, why would 1000
and 0111 have equal but opposite eigenvalues for the asymmetric sub-
space of the reflection operator (is this the correct vocab?). I also think I
know what is wanted for the plots, I will do that.

Back to an earlier project: eigenvalues of J in different coordinates. J is
not a derivative on space (like the one time step Jacobian is), it is instead a
derivative on periodic lattice points (again, could be incorrect vocab, will
work on this). So, maybe instead of using a regular coordinate transform,
we should a transform specifically on the periodic orbit? Maybe that
would help with the issue of the fixed point condition being F [Φ] = 0
instead of F [Φ] = Φ.

2021-09-01 Sidney to Predrag What colors should I use for the bars when I do
your plotting suggestion for temporal Hénon, the colors mattered in the
other bar graphs.

2021-09-01 Predrag Quality of a plot does not matter much at the exploratory
stage, I know by plotting by hand the shapes of the 6 lattice states - they
follow from their symbolic dynamics. However, if you have accurate
numbers for fields and eigenvalues, you could discover the symmetries
that I am missing in hand-sketches. Or you can put intelligible data files
in you computing folder siminos/williams/ and make Predrag do your
work, as in (16.26) :)

Plot the values of lattice state fields for the 6 lattice states of table 2.3 and
figure 2.2 in the same format as figure ?? (b), using the same color scheme.
When I plot them, I place the yellow bar at 0, then two red bars to the left
and two blue to the right. You can also superimpose symbol dynamics
code upon it - you will immediately understand ‘0’s are negative and ‘1’s
are positive.

2021-09-03 Predrag To determine C5 period-5 states of table 2.3 you only need
to determine the D5 length-3 block lattice state defined by boundary con-
ditions of (??) - you might want to check whether the lattice states so
obtained agree with the ones you already have.

Their Hill determinants are the determinants of the 3-dimensional orbit
Jacobian matrix (??).
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Figure 16.2: Temporal Hénon (2.63), a = 6: (left) The associated orbit Jaco-
bian matrix eigenvalues (?). Currently we have no interpretation. Should’t the
corresponding eigenvectors be (anti)symmetric?

To determine C6 period-6 states of table 2.3 you only need to determine
the corresponding D6 length-4 or -3 block lattice state defined by bound-
ary conditions analogous to (??). Their Hill determinants are the deter-
minants of 4- or 3–dimensional orbit Jacobian matrix (5.35) or (5.36).

2021-09-03 Predrag 2 Andrew afugett3 = fuggedaboutit

2021-09-06 Sidney 2 Everyone Sorry for the long silence, just settling back into
everything. I will be working on the plots today, and will update as I
go along, as well, I will show Andrew how to get the repository on his
laptop.

Period n = 5 lattice states of table 2.3 plotted as in figure ??. They are all
reflection symmetric, with fixed lattice field φ0 colored gold. Note that
the symbolic dynamics is given by the signs of lattice site fields. This plot
is now superseded by figure 4.1. (right)

2021-09-06 Sidney I completed the plots for both lattice field values, and the
associated eigenvalues. The formatting is not finished yet, but I will
change that later. Currently, I have the lattice state that remains fixed
colored gold, and the ones that flip colored maroon.

2021-09-07 Predrag .

1. Figure 16.2 (a) agrees with my own sketch, but only examination of
the actual φj values can reveal further symmetries and factoriza-
tions.

2. Figure 16.2 (b) currently does not make much sense to me. 3 of the
eigenvalues should belong to the symmetric subspace (16.41), (5.28),
2 to the antisymmetric subspace (5.30).
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3. 2021-09-27: Figure 16.2 (a) is now superseded by figure 4.1.

2021-09-06 Sidney For a D5 lattice state, the following boundary conditions
are respected: φi = φi+5 and φ−i = φi, if we follow (??), we find the
temporal Hénon orbit Jacobian matrix in the symmetric subspace is

J+ =

2φ0 2 0
1 2φ1 1
0 1 2φ2 + 1

 (16.41)

As well, from (??), I can find the 3 equations that define this sort of orbit
for temporal Hénon

φ2
0 + 2φ1 = a

φ0 + φ2
1 + φ2 = a

φ1 + φ2
2 + φ2 = a

(16.42)

Is there a good way of solving this system analytically? Otherwise, should
I just check it by numerically finding solutions?

2021-09-07 Predrag No, for us getting into the Endler-Gallas annalytic solu-
tions is getting too deep into the weeds. Use the same Biham-Wentzel
program you have already written, with the boundary conditions added.
The wonderful thing is that you are looking for the roots of an order 23

polynomial rather than 25.

To compute the Hill determinant DetJ+, Han would recommend doing
the discrete Fourier transform first.

2021-09-07 Predrag Currently I prefer the (2.12) form of the temporal Hénon
to (2.63), but that is not very important at this stage.

2021-09-07 Sidney The full orbit Jacobian matrix for the D5 cycles of the tem-
poral Hénon commutes with reflection about the center lattice state (??).
Therefore, we can block diagonalize to find the orbit Jacobian matrices of
the symmetric and antisymmetric subspaces:

JD5
=


2φ2 − 1 1 0 0 0

1 2φ1 0 0 0
0 0 2φ0 2 0
0 0 1 2φ1 1
0 0 0 1 2φ2 + 1

 (16.43)

Which gives the same matrix for the symmetric subspace as (16.41), there-
fore either boundary conditions or projection operators are effective for
these sort of calculations.

I took a look at my code, and it seems that I wrote it with no ability to
scale a, I will fix that, and add in the functionality of using the traditional
field theory formulation and the rescaled "Gallas" notation that I have
been using for awhile.
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2021-09-09 Predrag You sure about (16.43)? It might be correct, but how did
you derive it?

2021-09-13 Sidney I am quite sure of (16.43). I noticed that the orbit Jacobian
matrix for a time reversal invariant orbit commutes with the [5 × 5] re-
flection matrix

σ =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 (16.44)

So, I found all the eigenvectors associated with (16.44) by an online cal-
culator and and arranged them so that the ones associated with −1 (an-
tisymmetric) and 1 (symmetric) were grouped together in a matrix S, I
then used an online calculator to perform

S−1J S = JBD

And after shuffling around the columns of S (which is allowed for diag-
onalization), I got (16.43).

2021-09-07 Sidney This brings me to what Predrag has asked me to do:

Predrag check list

1. I will need to reformulate everything back into the unscaled field
values so that a multiplies the quadratic term.

2. Find eigenvalues of D5 lattice states in the symmetric subspace to
explain figure 16.2 (right).

3. Prove (or disprove) that the eigenvalues of the orbit Jacobian matrix
are metric invariants. I am stuck here.

4. Implement Han’s boundary conditions into my code so that I can
directly find orbits with specific symmetries.

2021-09-12 Sidney I will start working on adding boundary conditions to find
different symmetries (a task I have added to the list) after I clean up my
code, and make it easy to switch between Gallas form, and Field Theory
form.

2021-09-13 Sidney I have changed my code so that it can be easily switched
between the Hénon [14] (2.23), and Endler and Gallas [9] rescaled (2.39), I
have added this updated code Relaxation Method Henon with orbit Jacobian
matrix.py to siminos/williams/python/relax.

2021-09-14 Predrag 2 Sidney Added exercise 2.5 The matrix square root.
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2021-09-14 Sidney 2 Predrag and Han I looked at exercise 2.5 The matrix square
root. I feel confident in being able to do that. However, I am not sure why
I am looking at the square root here. From what I gathered during today’s
meeting, taking the square root of the time-step Jacobian at the boundary
point did not give equality to the hill determinant of the symmetry re-
duced orbit Jacobian matrix. My impression was that I would instead
need to look for a "square root" of the temporal Hénon is that incorrect?

2021-09-17 Sidney 2 Anyone Just for clarification, I should be looking at (20.379)
for time symmetric orbits of the temporal Hénon. I was thinking that
since this is an identity for the forward in time 2 × 2 Jacobian, for orbits
symmetric with respect to time reversal, I would look at the Hill deter-
minant DetJ = det (1 − J) and check to see that the equality holds for
when I take the half orbit of time-step J , compare to the symmetric part
of (16.43). Is that a good strategy?

2021-09-17 Sidney I have completed exercise 2.5, the solution I got on pen and
paper matches the solution that Predrag provided. I will take Andrew
through it tomorrow.

2021-09-17 Sidney With respect to adding boundary conditions to my code: I
do not know how to do it as I am not using the Biham-Wentzel method
for the temporal Hénon, instead (a detail nowhere described in the blog)
I invert it and feed the code a symbol sequence, see Vattay’s ChaosBook
exercise 7.2, copied to here as exercise 4.1.

2021-09-17 Sidney I do not know how to change the boundary conditions.

2021-09-30 Sidney The above statement is still true, although, around study-
ing for tests, and other homework, I been working on testing the formula
(20.379) numerically. I have also been review some of the group theory
lectures from over the summer. What I did, was say that the "factored"
time-step Jacobian for a time symmetric period-5 is

J̃ = J2J1

√
J0 (16.45)

Where
√
J0 can be calculated through the methods worked through in

exercise 2.5. I then did the following calculation for every
√
J0

|DetJ+| − |det (I − J̃)|(should) = 0 , (16.46)

where J+ is the [3 × 3] block in (16.43). This did not work. The closest
I got to getting zero was 3.4, which isn’t even an integer. So, I turned to
Mathematica, and found that DetJ+ has a fundamentally different form
from det (I− J̃) for the temporal Hénon with a time symmetric five cycle,
so, I went back to the drawing board. In the meeting at the beginning of
the week, it was mentioned that the time-step Jacobians had to satisfy the
time symmetry boundary conditions, and my thought was to try to force
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this by finding the Jacobian for each equation along a time symmetric
period-5 which, with boundary conditions, yields a 3 equations:

2φ1 + φ2
0 = a (16.47)

φ2 + φ2
1 + φ0 = a (16.48)

φ2 + φ2
2 + φ1 = a (16.49)

The time step Jacobian from (16.47) is J0 = −φ0, and the time step Jaco-
bian from (16.48) is just the normal one for the temporal Hénon. I am not
sure how to get a Jacobian out of (16.49), perhaps the quadratic equation?
If anyone has suggestions, that would be lovely.

I tried stating that (16.49) could be written as φ3 = a − φ2
2 − φ1, which

would give just the normal temporal Hénon Jacobian, but it did not match
with the determinant of the [3 × 3] block in (16.43). So my hunch was
wrong. Not quite sure where to go from here in that area.

2021-10-05 Sidney See sect. 4.1 Vattay inverse iteration method for how I com-
pute temporal Hénon lattice states.

2021-10-12 Sidney I am currently trying to address "Find eigenvalues of D5

lattice states in the symmetric subspace to explain figure 16.2 (right)."
from 16.2. I found a equation for the symmetric part of the orbit Jacobian
matrix J+ (16.43), it is of the form aλ3 +bλ2 +cλ+dwhere the coefficients
are all inelegant sums of the lattice field values of a given orbit, it is not
particularly helpful.

2021-10-15 Predrag You have to check that the “inelegant sums” are invariant
under Dn symmetries. Han knows and explains how to compute the
eigenvalues and eigenvectors (irreps of Dn) on the reciprocal lattice.

I think you will eventually end up with evrything being expressible in
terms of traces of powers of TrJ k+.

I am curious how many orbit Jacobian matrix J eigen-directions are ex-
panding, what do they look like, stuff like that.

2021-10-12 Sidney I think that part of the confusion of the right hand side of
figure 16.2 is that I tried to assign eigenvalues to individual lattice sites,
which is just incorrect, right?

2021-10-15 Predrag Eigenvalues are properties of the whole matrix, not a sin-
gle site. Only if the matrix is diagonalized are they associates with eigen-
states (‘lattice sites’ of the reciprocal lattice).

2021-10-12 Sidney I am going to look at (16.28) again to see if I can see some
pattern. But as of right now, I think the main conclusion is that the eigen-
values do not necessarily have the same symmetries as the orbit they
belong to.
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2021-10-15 Predrag Eigenvectors have symmetries, not the eigenvalues.

2021-10-25 Sidney I have generated some good data for the eigenstuff, see fig-
ure ??. I need to do further analysis to see which eigenstate(s) is most
important. As well, I think I have some insight into why (20.379) does
not work. The orbit Jacobian matrix can be block diagonalized into sym-
metric and antisymmetric blocks. As this is the case, Hill’s formula can
be written as

Det (J−)Det (J+) = det |I − J |
If we assume we can write J as (J ′)2 (which is what (20.379) assumed),
we can then write Hill’s formula as

Det (J−)Det (J+) = det |I − J ′|det |I + J ′|

Which does not imply that Det (J+) = det |I − J ′| which I numerically
showed to be incorrect a few weeks ago. This does not necessarily help
find a correct factorization, but it at least shows us what is wrong.

2021-11-11 Sidney I added the plots of the eigenstates for every 5-cycle, as
well as the decomposition for each period lattice state. Unfortunately,
there seems to be no correlation between the important eigenstates and
the size of the eigenvalues.

2021-11-11 Predrag to Sidney .

The figures currently in siminos/williams/python/Figures/ are not *.svg vec-
tor graphics - they are bit images. To see them, download Inkscape and
try to edit them.

2021-11-11 Sidney I suppose that almost makes sense because treating the whole
cycle as a fixed point removes iteration from our calculations, perhaps
they will be useful for global stability analysis?

2021-11-11 Predrag to Sidney I think so too. Note that as the orbit Jacobian
matrix is symmetric (at least for the full Bravais cell - you have to show it
also works for the symmetry-reduced case and b 6= −1) all multipliers Λj
are real. Their signs might mean something.

2021-11-11 Predrag to Han .

1. Before Sidney automatizes looking at eigenvectors, what output for-
mat do you prefer? Sidney’s narrow bars as field values, as in fig-
ure 16.2, or Han’s fat bars, as in figure 4.1?

2. The problem with temporal Hénon is that due to all period-5 lattice
states being symmetric, we are getting only 3-dimensional exam-
ples. For temporal cat you have asymmetric period-5 lattice states,
there is more information in them.

8289 (predrag–7383) 74104/19/2020 siminos/spatiotemp/chapter/chronotope.tex

https://inkscape.org/release/all/windows/64-bit/exe/


CHAPTER 16. SIDNEY’S BLOG

3. Can you take your beloved temporal cat products of
[
s− 2 cos

(
2πj
n

)]
and do the corresponding eigenvector plots as
siminos/williams/python/Figures/ for (some of) illustrative temporal
cat period-5 lattice states? Any striking similarities?

2021-11-11 Predrag .

I find the eigenvectors currently in siminos/williams/python/Figures/ ut-
terly fascinating.

The n multipliers Λj , j = 1, 2, · · · , n (ChaosBook reserves the lower case
λj to exponents, but we might change that for the spatiotemporal the-
ory) seem all to be of the same order of magnitude - that will be more
apparent when we see their lists for examples of lattice states of periods
n = 6, 7, 8, · · · .

2021-12-06 Sidney I am still a little unsure how to get the files saved as *.svg
vector graphics, the line which saves the pictures is given by

plt.savefig(name+’.svg’,dpi=300)

where name is defined earlier in the code. I am not sure why that does
not work. I am also quite close to automating the cycle finding process
with nice looking, and useful figures, I will do that after finals.

I am still stuck on proving that the eigenvalues of the orbit Jacobian ma-
trix are invariant under nonlinear coordinate transforms, the fixed point
condition under the field theory just does not seem to allow for it.

I now understand how Han was able to find 2cos(k)− s for the eigenval-
ues, but I am currently having a hard time generalizing that to temporal
Hénon I will keep working.

Finally, I have found a (probably useless) tensorial formulation of our
theory which allows for the analysis of multiple equation systems (think
the Lorenz equations discretized, or temporal Hénon before being com-
pressed into a single equation). It is as follows

Gkl [Φ] = ΓklijΦ
ij +Mkl = 0kl , (16.50)

Where the index k is for the kth equation, and index l is for the lth lattice
point. The index i ranges from 1 to n for a length n orbit, it is the field
value on the lth lattice point for the jth variable (think x and y for Henon).

Γklij ≡
δGkl [Φ]

δΦij
, (16.51)

Several caveats here, I am sure that I could condense this, perhaps com-
bining the i and l index, I am also pretty sure that I messed up the Ein-
stein notation with the co and contravariant indicies. And finally, this is
likely completely useless as I am pretty sure that given a system of k first
order difference equations, it can be combined into a single higher order
equation like what was done with temporal Hénon.
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2021-12-17 Sidney I have been trying to get an equation which shows the bounds
of the eigenvalues of the temporal Hénon but the method of just guessing
eω

nz doesn’t work for the orbit Jacobian matrix for Hénon because it does
not commute with the shift operator (δj+1,k), so there is probably some
other u(z) that I need to use, I am not sure though.

2021-12-18 Sidney I am trying to establish bounds for the temporal Hénon. I
can do this numerically, with the minimum value being -0.607625218511
etc. and the maximum still to be calculated with the code provided for
ChaosBook.org/course1 homework 7. The stable and unstable mani-
folds trace out the region that is bounded (Ω), and the maxima and min-
ima are determined by their intersections, and I know that these mani-
folds can be calculated numerically through forward and backward iter-
ation, but I feel like I should be able to find these intersections analyti-
cally. Is there something else that I could do? Or do I have to resort to
numerics?

2021-12-20 Predrag I do not believe I have ever seen an analytic expression for
a non-trivial intersection of stable / unstable manifolds: for such calcu-
lation, see sect. 3.3.1. The lower left corner of ChaosBook fig. 15.5 you
know analytically: it is the stability of fixed point 0. The upper right cor-
ner of the Smale horseshoe non–wandering set is the heteroclinic point -
lacking something more clever, one might approximate it by the longest
nearby periodic orbit, of form 100 · · · 0. You only need an lower bound on
the magnitude of the multiplier, it’s OK to be crude about such a bound.

An example of 100 · · · 0 sequence of periodic orbits is given in Artuso,
Aurell and Cvitanović Recycling of strange sets: II. Applications, see their
fig. 2. That would correspond to the tangency stretching parameter a
value (??); you are looking at a larger stretching so there is no funny

√· · ·
limit in your case, your limit is cleanly hyperbolic, see figure 4.1.

2021-09-12 to 2021-09-14, 2021-12-22 Sidney, Predrag It looked like a wild goose
chase, so not to distract Sidney further I had moved the discussion of
anti-integrable "perturbation theory" to sect. 2.3 Temporal Hénon. But it
remains of interest: many new references there in sect. 2.3 Temporal Hénon
in anti-integrable limit.

I have added my guess (3.70) for the infinite coupling g anti-integrable
limit of φ4 theory. That gives a 3-letter alphabet A = {−1, 0, 1}. One
can use it to find by continuation any lattice state, at g as low as possible.
‘Generalized Hénon maps’ AKA φ4 field theory posts are in sect. 3.3 Clas-
sical φ4 lattice field theory.

2021-12-27 Sidney I have figured out how to effectively bound the eigenvalues
for any matrix whose rows have the form [0 · · · 01V ′′(φ)10 · · · 0] using the
Gershgorin circle theorem (wiki), I will talk about it in depth once the
repository is back up and I can update my blog.
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Additionally, if anyone knows anything about machine learning, I would
appreciate some help with that so that I can try using it to more accurately
find the bounds of the temporal Hénon orbit Jacobian matrix eigenvalue
spectrum.

16.3 2022 blog

2022-01-01 Sidney Do you have any good recommendations for a look at the
Smale horseshoe? There doesn’t seem to be an introduction to it in Chaos-
Book.

2022-01-01 Predrag .

ChaosBook Horseshoes

ChaosBook 15.1 Remark

ChaosBook 1.1 Remark “Strogatz [21] [...] is not strong on chaos. There
the textbook of Alligood, Sauer and Yorke [1] is preferable: an elegant in-
troduction to maps, chaos, period doubling, symbolic dynamics, fractals,
dimensions–a good companion to Chaos- Book. Introduction more com-
fortable to physicists is the textbook by Ott [17], with the baker’s map
used to illustrate many key techniques in analysis of chaotic system.”

2022-01-02 Sidney Why does drawing the line y = x and then drawing hori-
zontal and vertical lines between the line and the map work to determine
orbits visually? I understand why it works for fixed points, but not orbits.

2022-01-02 Sidney Here is the explanation for the Gershgorin circle theorem
bounding of the eigenvalues for non-circulant orbit Jacobian matrices:
The theorem is

|λ− Jtt| ≤
∑
t′ 6=t

|Jtt′ | , (16.52)

For the types of lattice equations we are working with the RHS is always
2, and so the eigenvalues are contained within circles of radius 2 in the
complex plane centered according to the diagonal values of the orbit Ja-
cobian matrix. Therefore, the minimum value which can be obtained for
an eigenvalue is Jminii −2 and the maximum is Jmaxii +2, the values Jminii

and Jmaxii are determined by the lattice states of whichever orbit we are
analyzing, which can be bounded in and of itself.

2022-01-04 Predrag Our orbit Jacobian matrices are circulant matrices.

Have you checked your bounds against your eigenvalues, for example
figure 16.2?

I am fairly sure that if you redefine φj coordinates you can change Jtt,
so these bounds move. That might be an argument for that the orbit
Jacobian matrix eigenvalues have no invariant meaning.
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2022-01-02 Sidney Although, how do we bound φ4?

2022-01-12 Sidney I have been reading the periodic orbit theory notes linked
here,

2022-01-12 Sidney I’m about a third of the way through, as it is quite dense
reading. I have two questions right now, first, the Perron-Frobenius oper-
ator is defined as the following in the notes:

L =

∫
δ(x− f(ξ))dξ

Why is the trace of this

trL =

∫
δ(x− f(x))dx ?

Is that just a definition of taking a trace over a continuous operator in-
stead of a matrix?

2022-01-14 Yes.

2022-01-12 Sidney On a related note, why can we write the following

tr

( ∞∑
n=1

znLn
)

= tr
z L

1− z L

I understand the geometric series, but why is it the above instead of

z trL
1− z trL

Why can we pull out the trace?

2022-01-12 Sidney I have a question about the binary symbolic dynamics. How
do we know that a given binary sequence is unique to a single orbit?

2022-01-14 Predrag to Ibrahim and Xuanqi It is important that you be able to
explain this to Sidney, at least on the level of matrices. Write up the
answer here by 2022-01-21, at the latest.

2022-01-18 Ibrahim and Harrison to Sidney So before we try to look at the
trace of the geometric series, let us rewrite its final expression as

z L
1− z L = (z L) (1− z L)

−1

So now if we think about this term as the product of two matrices, and
we know that the trace of a product is not equal to the product of the
traces.
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tr (AB) 6= tr (A) tr (B)

In your previous note you phrase it as "why can we pull out the trace?"
But rather it is not that we are pulling out the trace, but that we are not
distributing the trace operation to each of the two matrices that make up
the term on the right. You can see this by first just showing the equality
of the sum to the geometric series solution and then applying the trace
operation to both sides.

2022-01-12 Sidney Why is the escape rate e−γ the leading eigenvalue of L? I
understand why it is an eigenvalue, but I don’t know why it’s the LEAD-
ING one.

2022-01-14 Predrag ChaosBook Index has 23 entries under ‘escape rate’. Check
them out, come back with specific comments if that is not explained well
enough.

2022-01-12 Sidney The new material: First a counting formula for the num-
ber of prime cycles of length n in complete binary symbolic dynamics.
First, each entry in the length n string can either be 0 or 1 so we have
a contribution of 2n. For each of n’s factors, we must subtract out the
shorter orbits that can be built up to form the longer orbit ex: n = 3 must
subtract out 2 n = 1 orbits. Additionally, in our theory, each orbit is Cn
invariant, so we must divide by n to remove orbits that are simple cyclic
permutations of each other, since the shorter orbits cannot have n unique
cyclic permutations, we have to multiply the number of shorter cycles by
nk
n . Where nk is the length of the shorter cycle, we do this instead of just

dividing by n. So, for a cycle of length n, the number of prime orbits is

1

n

(
2n − qknk

)
, (16.53)

where Einstein notation has been used, and where qk is the number of
prime orbits of length nk. The k values of nk are just all the divisors of n
that are not equal to n.

2022-01-12 Sidney Now, I am claiming that I have found a proof that shows
that the eigenvalues of the orbit Jacobian matrix are not invariant by the
definition of the orbit Jacobian matrix. We can see this, by looking at
the temporal Hénon if the eigenvalues were invariant under coordinate
change, the bounds in (16.52) would also be invariant. We can see that it
is now. First we note that to be invariant, the expression produced by the
Gershgorin circle theorem must be able to be reverted to 2aφmax/min± 2.
Let us try to do this. First, we can introduce the mapping φ = f(p).
Plugging this mapping into temporal Hénon and applying the orbit Ja-
cobian matrix definition, and the Gershgorin circle theorem, we see that
our condition is that the eigenvalues are contained in circles of radius
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f ′(pn+1) + f ′(pn−1) centered at 2af(pn)f ′(pn). Now, the minimum value
achievable by the temporal Hénon is simply the fixed point 0, so we
can write the minimum as f ′

(
f−1(φmin)

)
(2aφmin − 2). Therefore, un-

less f ′
(
f−1(φmin)

)
= 1 the minimum bound changes, and therefore, the

achievable range of the eigenvalues change, and thus, the eigenvalues are
not invariant under all smooth coordinate changes. And since the orbit
Jacobian matrix for the temporal Hénon does not have invariant eigen-
values, we can state that invariant eigenvalues is not a general property
of the orbit Jacobian matrix. Which begs the question, what are the eigen-
values?

2021-12-27 Sidney I have calculated the prime periodic orbits up to length 15
for the temporal Hénon, I’ll be generating data for all 4,720 of them over
the next few days. The length of the calculation makes me think that I
need to be a bit more clever with my code writing.

2022-01-16 Predrag If you can compute the eigenvalues of the orbit Jacobian
matrix for lattice states that you have, plot them all together in the first
Brilluoin zone as Han has done for temporal cat in figure 20.66, I think
that would be very interesting. The plot should be symmetric under k →
−k, but asymmetric under reflection across the horizontal axis, possibly
in a rather interesting way.

I have never been able to discern a pattern in what you have shared with
us so far (figure 16.2, 2021-09-07 Predrag, 2021-09-07 Sidney posts). We
do not expect an infinite lattice limit continuous curve (blue sinusoid in
his plot), but I expect the eigenvalues to lie on a fractal set with nice bi-
nary symbolic dynamics interpretation.

2022-01-19 Sidney Here is the Cantor-Style plot of the eigenvalues for the Gal-
las scaled temporal Hénon of orbits up to length 8. Yes, this file (which
is located in the figs folder in siminos) is a .png. I am still dealing with
getting everything moved onto my new laptop, and I will figure out the
svg stuff soon, as it stands though, this file is only 44kb, which should
hopefully not crash the repo.

I want to make an additional figure where I try to plot the fractilic sinu-
soids which Predrag is interested in. I am having a very difficult time
thinking of how to do this. I know how to convert to reciprocal space,
however, my eigenvectors are linear combinations of Fourier modes, which
means that the calculated eigenvalues are associated with multiple scaled
Fourier modes. So, I cannot think of a way to plot this on the k−λ plane,
without plotting a scaled λ at multiple k values (the scaling would be the
same as what is necessary in the linear combination which builds the cal-
culated eigenvectors). I could also do as Han suggests and look at infinite
orbit Jacobian matrices with varying periodicities and apply Bloch’s the-
orem with the hope of making something analytic pop out. However, I
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Figure 16.3: The eigenvalues plotted along the x-axis. The blue dots represent
the bounds predicted by (16.52). The inaccuracy of the right bound is due to
the fact that no orbit stays at the maximum achievable positive value, whereas
0 is the minimum achievable value. Perhaps a better bound would be ≈ 7.2
which is what is achieved by (16.52) if we do not add the radius of two onto
the central point (2 ∗ φ for Gallas). This could perhaps by justified by some
averaging argument.
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have no idea how to compare that with the numerically calculated eigen-
values...please help.

And now, a proof of the circle theorem, taken, basically verbatim, from
Wikipedia. First, we let A be a complex matrix, with entries aij . Now, we
let Ri be the sum of absolute values of the off diagonal elements on the
ith row:

Ri =
∑
j 6=i

|aij |

We can then define a Gershgorin disc as a disk with radius Ri centered at
aii in the complex plane: D(aii, Ri) ⊂ C. Now, if we let λk be the eigen-
value associated with the kth eigenvector, we can write A~xk = λk~xk, we
can always rescale ~xk, so we choose to scale it s.t. 1 is the largest value in
the vector, allowing us to write∑

j 6=i

aijx
k
j + aii = λk, |xkj | ≤ 1

By applying the triangle inequality (|~x + ~y| ≤ |~x| + |~y| note that this ex-
pression is valid in any metric space) we can write

|λk − aii| ≤
∣∣∣∣∑
j 6=i

aijxj

∣∣∣∣ ≤∑
j 6=i

|aij ||xkj | ≤
∑
j 6=i

|aij | = Ri , (16.54)

which is Gershgorin circle theorem!

Finally, I am working on improving my code a bit. It is not necessary,
but the function which finds the symbol sequences for all prime orbits is
painfully slow, so I am working on it. It may be helpful for future group
members.

2021-07-06, 2022-01-22 Predrag Reposting this, as it is related to yesterday’s
discussion of how Bloch theorem works for Bravais lattices.

Regarding Sidney’s attempt (16.22) to prove that the eigenvalues of the
orbit Jacobian matrix J are coordinate-choice independent:

The time-evolution Jacobian matrix in general has a different left Γ(φt)ik
and right Γ−1(φ0)lj [d×d] matrices, they line up only for the period value
t = n, so the periodic boundary condition will have to be a part of your
proof.

How the time-periodicity is built into orbit Jacobian matrices is explained
by (8.20). From that you can perhaps see how the periodicity is imposed
on the coordinate-change Jacobian [nd× nd] matrices Γ(Φ)lj ...

See whether you can prove it first for the Hill determinant detJ ?

To get it for individual eigenvalues, you’ll have to write the eigenvalue,
eigenvector equation for the orbit Jacobian matrix J , then apply coordi-
nate transformation Γ(Φ)lj .
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2022-01-22 Sidney Predrag brings up and interesting method, that I will re-
turn to. However, my 2022 January 12th blog entry gives an informal
proof showing that the lower eigenvalue bound is variable, thus imply-
ing that the eigenvalues themselves vary between coordinate transforms.
Does that proof look incorrect?

It is at this point that I am trying to make an attempt at the Bloch theorem.
Effectively, Han says that for every repeat of a prime orbit (say a length
3 orbit repeated once to give length 6) gives another Fourier mode. I do
not understand why that is, and I’d really appreciate an explanation, but
perhaps I can find it in the blog. So, I will make an attempt here, say that
I have a length 3 orbit repeated 3 times, making a length 9 orbit in total.
According to Bloch, we can write the eigenvector associated with λ(1) as

v(1) =



v
(1)
1 e0

v
(1)
2 e1

v
(1)
3 e3

v
(1)
0 e4

...
v

(1)
3 e8


, (16.55)

Where v(1)
1 ...v

(1)
3 are the elements of the original length 3 eigenvector, and

ej = ei∗j∗k. Now, using the length 9, period 3 orbit with Gallas scaling,
we see that matching either side of the eigenvalue equation (noting that
we are using the new sign definition that was introduced) we get(

2φ1 −
(
v

(1)
2

v
(1)
1

e1 +
v

(1)
3

v
(1)
1

e−1

))
e0v

(1)
1 = λ(1)v

(1)
1 e0

I need to work on this formula more, this is due to the fact that the frac-
tions next to the remaining complex exponentials have varying indicies,
and I need to think of what the pattern is. However, we can say that this
is not as helpful as the cat map version, as the eigenvalues do not reduce
down to a clean real-number only form... disappointing. How would I
plot this? Is this right?

In addition, I think I have an idea as to why having repeats adds one to
the available k, it is because the discrete Fourier transform is the genera-
tor of the Cn group, and a repeat adds periodicity, so now there is a first
Fourier mode, and a second rotated one available. Is that close?

I am also not sure if in ej j should vary from 0 to 8 or from 0 to 2 and
just be repeated. Because, the repeated "prime" orbit Jacobian matrix is
only block diagonalized by the discrete Fourier, and there should only be
3 Fourier modes, instead of 9 for a prime orbit run through a total of 3
times...Will have to think.

04/19/2020 siminos/spatiotemp/chapter/chronotope.tex750 8289 (predrag–7383)



CHAPTER 16. SIDNEY’S BLOG

2022-01-23 Predrag In the current version of siminos/reversal/, Han and I ex-
plain the orbit Jacobian matrix spectra of repeats of a prime lattice state
Φc. Each prime lattice state eigenvalue owns one blue sinusoid in fig-
ure 20.66, on which all of it repeats lie.

If you Google ‘block-circulant matrix’, there is a huge literature about
their spectra - here is a random DOI. I have not studied it.

2022-01-23 Sidney Obviously, I have some reading to do. I found this paper,
it seems to be pretty close to what I need to learn. I will read it, along
with LC21 [16].

2022-01-23 Predrag Gade and Amritkar [11] do orbit stability of repeated blocks
in detail: check sect. 8.2.2 Repeats blog. They have too conplicated off-
diagonal entries - rewrite everything for temporal Hénon case, and it will
all make sense.

2022-01-24 Sidney I saw Han’s post, it looks understandable, I will read it, and
then extend it to arbitrary period.

Ok, so I think I understand how Han found his eq. (20.409). I can also
solve for them using pen and paper via the following method. I can rear-
range eq. (20.408) as the following(

−2 cos(k)
uk,1
uk,0

+ s0

)
uk,0 = Ekuk,0

(
−2 cos(k)

uk,0
uk,1

+ s1

)
uk,1 = Ekuk,1

Now, we can define η ≡ uk,1
uk,0

and rearrange the above equations to get a
quadratic equation in η

0 = η2 − s0 − s1

2 cos(k)
η − 1

Solving we get

Ek,1,2 =

s1 − s0

2
±
√(

s0 − s1

2

)2

+ 4 cos2(k)

+ s0 , (16.56)

Inserting period-2 lattice sites field values (16.19) into s0 and s1, this
agrees with Han’s (20.409).

2022-01-24 Predrag Cool!

2022-01-24 Sidney We can extend this a bit further by taking Han’s equation,
and assuming an arbitrary period n

− uk,(j−1)e
i(j−1)k + sje

ijkuk,j − uk,(j+1)e
i(j+1)k = Eke

ijkuk,j , (16.57)
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uk,t = uk,t(mod(n))

This gives us a set of n equations, so it is very unlikely that we can get an-
alytic closed forms for these, but perhaps Mathematica, or python could
do something?

2022-01-25 Sidney PROBLEM: Using eq. (16.57) makes it so we either have
imaginary eigenvalues, imaginary eigenvectors, or the only allowed uk
being period-2. I may have to do more of the readings, but I don’t know
how to fix this.

2022-01-28 Sidney I am still looking at the results of Gade and Amritkar [11],
I still need to try to get it to match up with the 2×2 case that was worked
out above, but it may solve all problems, we’ll see.

Anyway, I have been thinking about an interpretation of the orbit Jaco-
bian matrix eigenvalues. And I think I may have come up with one. In
CL18 equation 10, we have

J φ = −M

Where M are the source terms. So, I think that perhaps the orbit Jacobian
matrix eigenvalues represent how the field deforms in response to the
source terms. Think how the strength and direction of an Electric field
shifts in response to point charges being added. This needs to be refined,
but I think it may be in the right direction.

2022-01-30 Sidney I have done a lot of algebra, and (of course) Han was right,
there is no issue with Bloch, it just becomes difficult to evaluate eigenval-
ues. I will write out all the algebra later. I will now work on figuring out
the nuts and bolts of Gade and Amritkar [11].

2022-01-31 Predrag I think it would be fastest to compute eigenvalues of all
(prime, symmetry reduced) orbit Jacobian matrices up to some lattice
state period, let’s say 6 or 7, using any code that returns the eigenvalues to
something like 3-4 significant digits, and plot them along the k = 0 axis
of figure 20.70. In contrast to figure 16.3, I would recommend thin line
ticks or similar. One also has to keep track of symbolic dynamics of the
corresponding lattice states. My draft of email to Bagrov around (3.128)
explains why.

Later I would be curious to see whether there is any advantage of diago-
nalizing these matrices on the reciprocal lattice...

2022-01-30 Sidney Is there anything in particular in Predrag’s quantum field
theory notes that we should try to learn?

2022-01-31 Predrag Have look at the start of chapter 3 Field theory.
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2022-02-04 Sidney I have been revisiting Smale horseshoes. I must understand
the a = 6 stretching parameter value, and that seems like the first step. I
am starting to work with Andrew on this so that he can see if there is a
similar limit he needs to work with for the spatiotemporal φ3.

2022-02-04 Predrag a = 6 stretching parameter value is not a limit of any-
thing. It’s a convenient first integer above the stable/unstable manifold
tangency value (2.7).

The full gang, one and all, must understand the 2n Smale horseshoe for φ3

1-d forward-in time map, in the (φt, φt+1) plane, see ChaosBook fig. 15.5
for Hénon map (2.27), (10.2), and be able to explain to anyone the signifi-
cance of the a tangency value (2.7).

2022-02-04 Sidney I have been trying to understand the LC21 [16] partition
function, I think I’m nearly there. I shall also try to take some notes on
the saddle point approximation stuff.

I have started working on producing plots of the repeated lattice state
eigenvalues.

Questions:

1. Why is the action the negative inverse temperature multiplied by
the system’s Hamiltonian?

2. How would I determine which calculated eigenvalue is associated
with which mode? I understand that there are n r eigenvectors, and
only r repeats Fourier modes. But how do I determine, given an
eigenvector and its associated eigenvalue, what mode it is associ-
ated with? My only thought is that since the second element in the
vector is v1 exp(ik), I could take the ratio of imaginary component
and real component, and then the inverse tangent to find k, but that
seems a bit complicated, and inverse tan is a multivalued function.

3. Why are we looking at eigenvalues?

4. Why are we looking at eigenvalues as a function of the Fourier mode?

2022-02-04 Predrag 2 Han Sidney questions are all questions that anybody read-
ing LC21 [16]. Can you answer them one by one today, we’ll record the
aswers, and if appropriate, add these video snippets to LC21.pdf.

2022-02-04 Predrag Hereby resolved in today’s meeting:

1. Sidney will, before doing anything else for this project, plot the orbit
Jacobian matrices eigenvalues of all temporal Hénon prime lattice
states up to period 5 or 6, clearly indicating the itinerary of each, as
given in table 16.2 and ChaosBook table 18.1, in a plot where one
horizontal line of figure 16.3 contains eigenvalues of a single prime
lattice state, with lines of shortest lattice state on top, and longer
ones on subsequent lines.
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2. Then and only then will Sidney attempt to check Han’s figure 20.70
for repeats of the above prime Bravais cells, i.e., non-zero wavenum-
bers k.

2022-02-05 Sidney Do you have a copy of Davis [4] Circulant Matrices? Gade
and Amritkar [11] reference it for block-diagonalizing block circulant ma-
trices.

2021-04-24, 2022-02-05 Predrag .

(1) Please plot the orbit Jacobian matrices eigenvalues of all temporal
Hénon prime lattice states up to period 5 or 6, one line per each
entry in table 16.2, as we have agreed on Friday, see the above.
You cannot diagonalize repeats of a period n Bravais cell unless you
first compute the n eigenvalues the m = 1 single repeat, i.e., the
[n × n] orbit Jacobian matrix.

(2) Yes, we have Davis [4] (click here) - it is a reference in sects. 1.5 and
8.2.2. It might be useful after you have computed (1).

2022-02-07 Sidney I looked at the [11] definition for the block matrices in the
block diagonal form of the block circulant matrices:

A+ ωrB + ωk−1
r C , (16.58)

Where A is the tridiagonal part of the orbit Jacobian matrix, and B is the
matrix with zeros everywhere but for a 1 in the upper right, and C is the
same, except for a 1 in the lower left.

I tried using (16.58) to reproduce (20.409). I did this with the determinant
of the matrix [

s0 − λ 1 + eik

1 + e−ik s1 − λ

]
, (16.59)

This yields the equation λ1,2 = −2 ±
√

14 + 2 cos(k) for the appropriate
s1 and s0. This does not match Han’s equation, although, it gives the
correct values for k = 0. So, this removes my idea of just evaluating
the eigenvalues of a given block to place on the plot, any ideas why the
discrepancy?

I have also been looking at some material on deriving the a tangency
value...it is hard. Here are the papers I’ve been looking at: Chen and

remark 2.2
Devaney and Nitecki [5] Shift automorphisms in the Hénon mapping (1979).
I will also look at ChaosBook horseshoes and the associated videos.

2022-02-07, 2022-02-20 Sidney Predrag had requested a plot with a horizon-
tal line with eigenvalues for each individual prime orbit, labeled by its
itinerary. The current version of my plot is figure 16.4, with a = 6 tempo-
ral Hénon orbit Jacobian matrix eigenvalues, marked black dots, lumped
together by the orbit period n = 1, 2, · · · , 12, none of them labelled. The
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eigenvalues have a remarkable fractal, Cantor set distribution, with a
large gap around 0, two smaller gaps around ±3. Turned on the side,
they are the values at which every continuous k family in figure 20.70
crosses the k = 0 axis, implying that our chaotic field theories have frac-
tal spectra, rather than the usual condensed matter bands.

I will understand the nature of these gaps, once I mark the eigenvalues
with their itineraries, and identify the sequences that converge to the
boundaries of Cantor set gaps, as is done, for example, in figs. 2 and 5
of this recent publication.

I have included the Gershgorin circle theorem bound (16.54), plotted as
±•. As expected for a = 6 Hénon, which is barely hyperbolic, and far
away from the anti-integrable limit, the bound is not good: the left bound
is far off from the most negative eigenvalue. However, the right bound
seems surprisingly good. Whys is that? Gershgorin circle theorem is the
crudest possible bound, one does not expect it to be a tight bound. The
left bound it would be closer if we added 2 to it, perhaps an averaging
argument is needed?

I have also verified that under φ 7→ −φ field redefinition, all eigenval-
ues in figure 16.4 change sign. As far as I can see here, the most use-
ful information from such plots is that they provide direct evidence that
the eigenvalues of the orbit Jacobian matrix are not invariant under field
redefinition, as under φ 7→ −φ field redefinition, all eigenvalues in fig-
ure 16.4 change sign.

2022-02-20 Sidney Lots of updates. I have a plot of the spectrum of the ho-
moclinic orbits 011 · · · 1 and 100 · · · 0, compared to the spectrum of all
possible orbits, see figure 16.4. I have gotten up to length 12, and I am
working on my code to make longer calculations more feasible.

The eigenvalues are invariant under Gallas rescaling (2.63), or any posi-
tive constant scalings.

There is a lot of interesting structure here. Especially the "Christmas
Trees" on the left and right, which seem to be contained within the Ger-
shgorin bounds of the fixed points. The most confusing part is the left
bound, which seems to be traced out by the spectrum of 011 · · ·1, I am not
sure why that is the case. My general theory of this whole thing, is that
the location of the orbit Jacobian matrix eigenvalues are organized ac-
cording the horseshoe structure of the temporal Hénon. I also think that
the extremal values should be approaching Han’s eigenvalue curves for
the temporal cat, as the longer the orbit the closer the orbit Jacobian ma-
trix is to a circulant matrix. Although, this may not be the case, as there
is so much structure that is not explained with that idea. A final idea of
explanation, is some cycle expansion argument...but I am not sure.

Figure 16.5 is a plot of the period-12 lattice states 10n−1 and 01n−1 in
Fourier space. Questions:
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Figure 16.4: a = 6 temporal Hénon (2.3) with Smale horseshoe indicated in
figure 4.2. (top frame) orbit Jacobian matrix eigenvalues for all prime orbits of
periods n = 1 to 12, plotted on top of each other, with (•) Gershgorin bounds.
(bottom frame) The eigenvalues of (red) 10n−1 and (green) 01n−1 The vertical
blue lines indicate various λ values. The fixed points (2.4) field values (φ0, φ1)
appear to be the centers of the Christmas trees at d = 2aφ1 and i = 2aφ0,
bracketed by c = 2aφ1 − 2 = the minimum, and e = 2aφ1 + 2 = maximum
Gershgorin bound for φ1; and h = 2aφ0−2 = the minimum, and j = 2aφ0+2 =
the maximum Gershgorin bound of φ0. Eigenvalue series are also converging
to values that presumably have nothing to do with the 10n−1 and 01n−1 orbits.
Period-2 orbit (2.5) field values are (φ10, φ01): b = 2aφ10 seems close to a series,
but not quite. I know numerically calculated period-3 orbit field values: f =√

6 = 2× the center value of 101 seems pretty good (at least until I start plotting
the differences), g = 4.47213 . . . which is twice either positive value in 010 is
off the mark, and so is a = −6.6204 · · · =, which 2× the center value of 11011.
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Fourier Space Lattice State with One Positive Value Length=12

(a) Fourier transform of the 12 translated lattice states in the C12 orbit of period-12 lattice
state 0111.
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Fourier Space Lattice State with One Negative Value Length=12

(b) The same for 1011.

Figure 16.5: We note that 1011 modes have larger magnitudes than the corre-
sponding 0111 modes. The φ̃0 mode is outside the box, for 0111 ≈ −18.0788,
and for 1011 ≈ 34.08.
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• What does the magnitude mean?
Predrag LC21 sect. 10.1 Reciprocal lattice states; radius matters, the
phase is just running on a circle.
Due to time reversal, (φ̃k)∗ = φ̃−k, so the 2nd row of each panel in
figure 16.5 is the repetition of the 1st row (for even n, the φ̃n/2 mode
is special).
φ̃0 = is the trace of orbit Jacobian matrix, TrJ /√n, that grows like√
n.

• In the meeting, Predrag kept mentioning that the number of dots re-
lated to the number of associated eigenvalues. What is the relation
and why?
Predrag phases are proportional to k/n. For n = 12 you get frac-
tions of form p/1, p/2, p/3, p/4, p/6, i.e., periods of your circles in
figure 16.5 are 1, 2, 3, 4, 6 and 12.

That is all so far. I am going to try to improve my code a bit to find longer
orbits (maybe about 20 I think is about what I can expect if I improve
it some, and give a day or two for computation time), and I am going to
plot the stable and unstable manifold intersections to see how that relates
to figure 16.4.

2022-02-20 Predrag The φ3 field theory is in LC21 defined as (2.3)

−φt+1 + aφ2
t − φt−1 = 1 .

2022-02-21 Sidney In previous calculations I was using the Gallas scaling (2.63),

−φt+1 + φ2
t − φt−1 = a ,

but have now switched to the LC21 convention (2.3).

2022-02-21 Predrag The Hénon map, as introduced by Hénon [14], is (2.2).
Written as a 2nd-order inhomogeneous difference equation [6], (2.2) takes
the temporal Hénon 3-term recurrence form (2.3). Its Smale horseshoe is
generated by iterates of the region plotted in figure 4.2.

BTW, Xuanqi and I still do not see how our definition (3.57) relates to
earlier φ4 literature, see sect. 3.3.1, so maybe these definitions do have to
be revisited.

2022-02-21 Sidney I have changed the symbol sequences and the Fourier plots
to the LC21 convention (2.3). I will update the axis size the Fourier plots
later this week when I have time.

2022-02-23 Predrag In sect. 4.2 Shadow state method I explain how to build in
symbolic block translations into the defining equations of nonlinear field
theories.
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Figure 16.6: (a) Maybe instead I should just plot as was given in the homework
7 code (which is what this was based on) and then flip it over the y = −x line.
Please help. (b) I have added the code which produced this in the same folder
as the code for figure 16.6 (b). In this case, there is no issue with double values,
so I don’t have to plot everything with dots.

2022-02-26 Sidney After much fiddling, I was able to get a somewhat decent
stable/unstable manifold plot for (2.3). It was strange as I had to use
the negative of what python found as the eigenvectors to get something
sensible. Of course, a negative eigenvector is still an eigenvector, so it
shouldn’t matter, but I still found it strange. Additionally, I had to plot
everything as dots because the unstable manifold (the manifold which is
produced through forward iteration) is double valued after applying the
transformation xt → −φt, and thus when python interpolated a line, it
plotted extraneous line segments.

My code is in williams/python/Misc/.

I cannot figure out how to get it to plot the stable manifold (the manifold
produced by iteration backwards) first using the reverse iteration (I used
equations xn−1 = yn and yn−1 = ay2

n− xn− 1). I am thinking I may have
to define the timestep Jacobian from these equation to do the backwards
iteration manifold creation stuff. But we’ll see. Anyway, figure 16.6 (a) is
what I plotted.

In figure 16.6 (a) I assumed that the single valued manifold wasWs. Upon
further inspection, this makes sense, as the stable manifold is that which
is generated by iteration backwards, and that is what one has to do in
order to generate the single-valued manifold. This means that I will need
to change the labeling in figure 16.6 (b).

Ideally, I will add several more partitions, and then start explaining the
eigenvalue structure of figure 16.4.

ADDITIONAL UPDATE: I tried creating a "y-Jacobian" using the back-
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wards iteration equations: [
0 1
−1 2ayn

]
(16.60)

And it worked! By implementing this Jacobian, I was able to produce
figure 16.6 (b). The eigenvalues for this Jacobian evaluated at 0 are the
same as with the "x-Jacobian" which are −

√
2
√

7 + 7 + 1 +
√

7 ≈ 0.13983,
and 1 +

√
7 +

√
2
√

7 + 7 ≈ 7.15168, I used this second eigenvalue and its
associated eigenvector in the backwards iteration, as this would be the
expanding eigenvalue over the course of iteration.

2022-02-26 Predrag Your figure 16.6 looks prefect to me - agrees with Chaos-
Book.org xt → −φt figure 4.2, in every detail.

Xuanqi has in his codes’ folder the really pretty xuanqi/matsuoka/ python
code - you might enjoy it.

2022-03-03 Sidney So, I have a couple of new contributions. I have found that
my original plan of plotting the stable/unstable manifolds for 10+ itera-
tions is not practical. I am working with Matt to try to improve my code
for the root finding, but as of now, I am just going to use an initial parti-
tion. Additionally, I have plotted the lattice states in the first partition in
16.7

We can also see where the general structure of figure 16.4 comes from by
looking at the homoclinic lattice states plotted by orbit length.

Figure 16.8 shows that the lattice states organize themselves in approx-
imately the same way as the eigenvalues in figure 16.4. Unfortunately,
due to the nature of the homoclinic orbits, there are a lot of repeated lat-
tice state values. This means that the exact structure is not replicated, but
it seems that the non-diagonal form of the orbit Jacobian matrix spreads
out the repeating lattice state values. I am not sure how, or why, but that
will be the subject of further inquiry.

Additionally, I saw Harrison’s new φ4 definition. Should I start looking
into the similar−φt+1 +(aφ2

t +sφt)−φt−1 = 1? I would obviously prefer
not to, as there is none of the pre-established nice results (such as Gallas,
and the correct a value, but it may be necessary).

2022-03-08 Sidney As of yesterday, we started talking about writing a paper
on nonlinear lattice field theory. Personally, I feel that we should at the
very least, explain the field theory formulation, and how it applies to
our theory (perhaps showing how our φ4 theory relates to the one in say
David Tong’s notes), then presenting Hill’s formula, and proving that it
still applies in nonlinear theories. Then defining orbit Jacobian matrix J
with the following lemma:

Lemma 16.1. The orbit Jacobian matrix J ≡ δF [φ]i
φi

does not, in general, have
eigenvalues which are invariant under smooth coordinate transformations.
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One Negative Lattice Value
One Positive Lattice Value

Figure 16.7: Using the LC21 definition of the temporal Hénon I generated the
stable and unstable manifolds, and then plotted the homoclinic orbits in the
form (φt, φt+1). As can be seen, there is a huge amount of symmetry. Addi-
tionally, we can see the 10000... (one negative lattice state) orbit contains all
the extremal values achievable by the temporal Hénon which explains why in
fig.16.4 all eigenvalues are bounded by the 1000... orbit eigenvalues.
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Figure 16.8: Plotting 1000... (Red one negative lattice state) and 01111... (Green
one positive lattice state), by orbit length
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Proof. One only needs to find one example to show this lemma holds. As
such, we will consider the orbit Jacobian matrix for the temporal Hénon:
−xt+1 + ax2

t − xt−1 = 1, whose rows are given by circ(2axn,−1, . . . ,−1)
with n entries for a period-n orbit. By the Gershgorin circle theorem, the
bounds of this orbit Jacobian matrix eigenvalues are given by 2axmax/min±
2. The horseshoe structure of the temporal Hénon gives that either xmax
or xmin (depending on coordinate definition) is a fixed point of the map.
We can define a smooth coordinate transformation as xn = f(φn), chang-
ing the map to −f(φn+1) + a(f(φn))2 − f(xn−1) = 1. By the definition of
the orbit Jacobian matrix the rows are given by
circ(2af(φn)f ′(φn),−f ′(φn+1), . . . ,−f ′(φn−1)). So, the extremal Gersh-
gorin bound associated with the fixed point is 2af(φmax/min)f ′(φmax/min)±
2|f ′(φmax/min)|. By pulling out the absolute value of f ′(φmax/min), we
obtain

|f ′(f−1(xmax/min))|(sign(f ′(f−1(xmax/min)))2axmax/min ± 2)

So, unless f ′(f−1(xmax/min)) = const (at which point it would be divided
out during the coordinate transformation), and sign(f ′(f−1(xmax/min))) =
1, the bound will not be invariant under f , and thus, the orbit Jacobian
matrix cannot have eigenvalues which are invariant under all smooth co-
ordinate transformations. An explicit example would be f(φ) = −φ as
sign(f ′(f−1(xmax/min))) = −1.

There are lots of other things I plan to do to try to put in the paper, here
is a list

• Identify the symmetric and antisymmetric eigenvalues in figure 16.4,
and remove the antisymmetric eigenvalues to see if the new struc-
ture is the same as figure 16.8.

• Use cycle expansions to calculate the temporal Hénon escape rate
use both configuration space, and Fourier space. I honestly don’t
know how to use the Fourier space in this case, so I will need help
with that.

• Fix the labeling in figure 16.7.

I also want to talk with Andrew, Harrison, Han and Ibrahim about what
to include in the paper, but I feel like this is a good start.

2022-03-11 Sidney Here is a short commit to look at adding the extra linear
term to the temporal Hénon through coordinate transform. If we de-
fine a mapping φ → γ + s∗, then the temporal Hénon becomes −γt+1 +

a (γt + s∗)
2− γt−1− 2s∗ = 1, rearranging we find−γt+1 + aγ2

t + 2as∗γt−
γt−1 + a(s∗)2 − 2s∗ = 1. We do not want extra constants floating around,
and the potential of φ3 theory is antisymmetric under the transform φ→
−φ so we want our lattice equation to reflect that, therefore, I am keeping
the 1 one the right hand side of the equation. By remembering that we
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set a = 6 for full binary symbolic dynamics, we find the new temporal
Hénon

−γt+1 + γ2
t + sγt − γt−1 = 1

a = 6 s = 4
(16.61)

Note that those values of s and a correspond to a transformation φ →
γ + 1

3 . If we look at the proof of lemma 16.1, we see that the transfor-
mation applied to obtain (16.61) does not change the distribution of the
eigenvalues of the orbit Jacobian matrix. Note that we can have the RHS
of (16.61) be = 0 but that would make the map invariant under γ → −γ
instead of antisymmetric, and s would equal 2± 2

√
7. I will later explore

to see what scaling arguments I can make to mirror Harrison’s work on
φ4.

2022-03-12 Sidney I looked at the eigenvalues and fixed points of this new
definition of the temporal Hénon. For the definition with 1 on the RHS
the fixed points are

−µ2 ±
√
µ4 + 4a

2a
,

where µ2 = s− 2 is the Klein-Gordon mass. The orbit Jacobian eigenval-
ues are just the slope:

dF [γ]

dγ
= 2aγ + µ2 = ±

√
µ4 + 4a

If we use the definition with 0 on the RHS we get fixed points 0, µ
2

a and
eigenvalues ±µ2. So, it seems that the independence on coupling con-
stant comes directly from the symmetry of the potential under the trans-
formation φ → −φ. Note that this analysis shows that should we choose
to use the definition with RHS = 0 we would have to choose s = 2 + 2

√
7

from the s = 2± 2
√

7 derived in my previous post.

2022-03-12 Predrag I believe we have the final formulation of φ4 theory, see
sect. 3.1.1 To return back to LC21.

2022-03-12 Sidney I looked through sect. 3.1.1 To return back to LC21, I still need
to work through the algebra, but I think it looks good, however, I am
not sure how the values of jt were justified, I feel like that would be
something good to mention. Anyway, I found a way to finalize the φ3

theory. We have our temporal Hénon and multiply both sides by −1 and
we get φt+1 − aφt + φt−1 = −1, and then we apply the transformation
φ→ −γ + 1

3 , and we get

−γt+1 +
(
−g

2
γ2
t + sγt

)
− γt−1 = −1
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Where g = 12 and s = 4. From my other 2022-03-12 post, I don’t think
that the coupling coefficient is a mirage, due to the −1 on the RHS which
is unfortunate.

Additionally, could someone point me towards the literature where the
discrete Euler-Lagrange equation is derived? It confuses me.

2022-03-14 Sidney Here is my derivation of what (I think) should be the φ3

theory. We begin with the free energy

S[φ] =
∑
z

{1

2

d∑
µ=1

(∆µφz)
2 +

µ2

2
φ2
z −

g

k!
φkz}

The non-Laplacian part, with the cubic Biham-Wenzel lattice site poten-
tial, is

• − g

3!
φ3 +

µ2

2
φ2 = −Aφ3 +Bφ2

I will begin by shifting the field by a constant φ→ φ+m then

−A(φ+m)3+B(φ+m)2 = −Aφ3−3Amφ2−3Am2φ−Am3+Bφ2+2Bmφ+Bm2

= −Aφ
(
φ2 + 3mφ+ 3m2 − B

A
φ− 2

B

A
m

)
+ const.

= −Aφ
(
φ2 +

(
3m− B

A

)
φ+

(
3m− 2

B

A

)
m

)
+ const.

If we drop the constant term, and set m = B
3A

• = −Aφ
(
φ2 − B2

3A2

)
= −Aφ

(
φ2 − 3

B2

9A2

)
.

Now, defining λ = B/3A = µ2/g, noting that Aλ = B/3 = µ2/6, and
rescaling φ→ λφ

• = −λ2µ
2

6
φ(φ2 − 3) .

2022-03-14 Predrag Thanks for fixing the algebra here! I get µ2/2 in (2.3), 1/2
of what you have in (16.62).

2022-03-14 Sidney continued: The φ3 field theory action is the sum over La-
grangian density per lattice site,

S[φ] = λ2
∑
z

{1

2
φz2φz −

µ2

3!
φz(φ

2
z − 3)} . (16.62)

Plugging this into the discrete Euler–Lagrange equation

−2φt + V ′(φt) = 0
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We get
−φt+1 + 2φt − φt−1 − µ2φ2

t + µ2 = 0

Thus, the fixed points satisfy

−µ2φ2 + µ2 = 0

Which gives fixed points of ±1.

2022-03-14 Sidney We can transform this into the classic temporal Hénon by
translating the field φ = γ + s∗ and rescaling:

−γt+1 − s∗ + 2γt + 2s∗ − γt−1 − s∗ − µ2(γt + s∗)2 + µ2 = 0

−γt+1 + 2γt − γt−1 − µ2(γ2
t + 2s∗γt + (s∗)2) + µ2 = 0

−γt+1 + 2γt − γt−1 − µ2γ2
t − 2µ2s∗γt − µ2(s∗)2 + µ2 = 0

If we define s∗ = 1
µ2 we get

−γt+1 − γt−1 − µ2γ2
t −

1

µ2
+ µ2 = 0

γt+1 + µ2γ2
t + γt−1 =

µ4 − 1

µ2

Now, we rescale by γ → −cγ giving us

−γt+1 + µ2cγ2
t − γt−1 =

µ4 − 1

cµ2

We now have a system of equations to solve to find a

cµ2 = a

µ4 − 1

µ2
= c

So,
−1 + µ4 = a→ µ2 =

√
a+ 1

and we find our temporal Hénon

−γt+1 + aγ2
t − γt−1 = 1.

2022-03-17 Sidney I am currently working on finding the period 2 points. I
will update you on it when I finish.

2022-03-14 Predrag I think you got it. Will redo the algebra, see the next edi-
tion of sect. 3.1.1 To return back to LC21.
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2022-01-02 Predrag Ultimately, a theorist needs to understand the theory, and
for me that is trace formulas, zeta functions, and cycle expansions. Chaos-
Book is long. For a quick tour, try taking Omri Gat’s 2015 Periodic orbit
theory of chaos (all of it in a Mathematica notebook) for a spin. Let me
know if that works, maybe some of it can be used to improve DasBuch...

2022-03-16 Sidney I have a question. How can we show that the zeta function
gives us the same leading eigenvalue as the spectral determinant? I un-
derstand heuristically, that for longer orbits we can ignore the corrections
and just treat the weight as the product of the expanding eigenvalues, but
I am not sure how to be more rigorous with that. The Omri Gat’s lecture
notes said on page 12 that the zeta function could be expressed as the
ratio of two spectral determinants, so for nice enough systems, it would
share the same zeros. How would I go about showing that?

2022-03-16 Predrag Good questions. I wrote a book that answers them. I rec-
ommend reading the relevant chapters, and if answers are not clear, point
out here in the blog where the problem is in the text, and I’ll try to make
them clearer.

2022-03-14 Predrag I have redone the algebra, see sect. 3.2 Deterministic φ3 lat-
tice field theory. I get µ2/2 instead of your µ2, not sure I’m right.

2022-03-17 Sidney You are not right, but it’s an easy mistake to fix. In (3.26),
you pulled the 1

2 out for the discrete Laplacian, but not for the potential
term, pulling out for both would give the µ2 present in my derivation.

2022-03-14 Predrag I must have a blind spot here... For me, the Euler–Lagrange
equation functional derivative δS[Φ]/δφt of (3.26) yields

− 1

2
φz2φz → −φt+1 + 2φt − φt−1 . (16.63)

and

− µ2

3 · 2 (φ3
z − 3φz)→ −

µ2

2
φ2
t +

µ2

2
. (16.64)

2022-03-17 Sidney From previous derivations, I thought that

− φz2φz → −φt+1 + 2φt − φt−1 . (16.65)

This intuition (although possibly wrong) came from the original φ3 deriva-
tion, and the current φ4 derivation. However, if

− 1

2
φz2φz → −φt+1 + 2φt − φt−1 . (16.66)

The µ2

2 is correct.

2022-03-17 Predrag Mhm... It is not an intuition, it’s a calculation. Please do
the calculation, convince yourself. Never trust other people’s calculations
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2022-03-17 Sidney My zeta function question: in section three of ChaosBook
sect. 22.3 Dynamical zeta functions there is only the statement that as
rTp →∞ the dominant term from |det (1−Mp)| becomes |Λp|, the prod-
uct of the expanding eigenvalues of the orbit. However, to me this seems
only valid for long orbits, instead of every orbit (which the zeta function
is built out of). Additionally, this would seem to imply that the zero is
only an approximation to the leading zero of the determinant, which I do
not believe it is.

2022-03-17 Predrag Every prime orbit repeated r times is a long orbit, domi-
nated by |Λrp|. The next eigenvalue is 1, or exponentially shrinking, so
|det (1−Mr

p | = |Λrp|+O(1).

You have studied ChaosBook sect. 21.1.1 Hyperbolicity assumption and
understand that the hyperbolicity is to key to everything? Assuming that
one has read this, what do you suggest I change in ChaosBook sect.
22.5 Spectral determinants vs. dynamical zeta functions?

2022-03-17 Sidney I would personally much appreciate a sketch of how to
write the zeta function as a ratio of determinants as mentioned in the
Omri Gat lecture, ideally with a sentence pointing out how writing it in
such a fashion shows that the spectral determinant, and the dynamical
zeta function share a leading zero.

2022-03-17 Predrag I assume you have studied ChaosBook sect. 22.5 Spec-
tral determinants vs. dynamical zeta functions and all examples of this sec-
tion. What should I elaborate? Maybe if you write up here what you feel
would help other readers, I can include it into ChaosBook.org text?

2022-03-17 Sidney I have read both of those sections, though not closely enough
to make comments, I will reread, and get back to you. Likely, this is all
due to me not thinking hard enough!

References

[1] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos, An Introduction to
Dynamical Systems (Springer, New York, 1996).

[2] A. Barvinok, Lattice Points, Polyhedra, and Complexity, tech. rep. (Univ.
of Michigen, Ann Arbor MI, 2004).
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Andrew’s blog

Andrew J. Fugett
afugett3@gatech.edu
subversion siminos : afugett3
cell +1 404 XXX XXXX

The latest entry at the bottom for this blog, page 773

2022-02-07 Predrag to Andrew:

As you go along, write up your narrative in this file, ask questions - this
is your personal blog, like an experimentalist’s log - everything that you
learn and want to share goes in here. Clip & paste anything from other
sections you want to discuss, that saves you LaTeXing time.

2022-02-07 Predrag The deal is: If you have not entered one word into the blog
in a week means that you have done nothing on this project in a week.
The rule of thumb is not less than an entry twice a week.

2022-02-09 Predrag The 3rd line of siminos/spatiotemp/blogCats.tex says “pro-
cess only the files you are editing”,

\input{inputs/inclOnlyCats}

you uncomment a single line in that file to "process only the files you are
editing".

2022-02-07 Predrag to Andrew

You refer to a reference like this: “For dull wallpapers, see Liang et al. [2]”
(CL18 refers to an article listed in ../bibtex/siminos.bib).

Pro tip: compile blogCats.tex often, as you write, and fix errors as you go.

770



CHAPTER 17. ANDREW’S BLOG

17.1 Spring 2022 blog

2022-02-17 Predrag We have so far looked at nonlinear field theories (φ3, AKA
temporal Hénon; φ4) only in one, temporal dimension. Here is a pro-
posed sequence of calculations, culminating in ones that none of us have
carried out so far:

1. Warmup: reproduce Sidney’s calculation of a = 6, n = 3 temporal
Hénon orbit Jacobian matrices, their eigenvalues and Hill determi-
nants.

2. Ask Han to walk you through the spatiotemporal cat Hill determi-
nants calculations reported in CL18 [2] table 2. Source files are in
siminos/kittens/.

3. Evaluate [2×1]0 orbit Jacobian matrix, eigenvalues and Hill deter-
minant for spatiotemporal φ3 theory, a = 6 (or larger, if needed).

4. Evaluate the same for one or a few smallest genuinely 2-dimension-
al Hénon lattice [L×T]S invariant 2-tori. I believe that [2×2]0 is the
simplest case.

2022-02-20 Andrew Successfully logged in. I’ve been looking over Sidney’s
code trying to understand it.

For the list above, do you mean numerically or algebraically solve for
length 3? Sidney only remembers doing it numerically and is currently
working on doing it through the Gallas method.

Han, can you explain the [L×T]S spatiotemporal cat?

I plan on working on reproducing Sidney’s calculations in length 3.

2022-02-20 Predrag I think numerical period-3 lattice states are good enough -
I doubt we would be able to easily extend Endler and Gallas [3] to spa-
tiotemporal cat, and it’s not worth your effort, I think.

2022-02-21 Sidney 2 Andrew Here are some resources for Andrew and his spa-
tiotemporal journey. First, following (16.12), 2021-05-26 Sidney post on
page 716, the ‘spatiotemporal scalar φ3 field theory’ in d spacetime di-
mensions (here in group’s current convention, not using Gallas rescaling)
is given by:

− φn,t+1 − φn,t−1 + daφ2
nt − φn+1,t − φn−1,t = −d . (17.1)

Not sure about the source mnt = −d; also, a = 6 may not work, I don’t
know about that.

In a paper by Politi and Torcini [5] (click here), discussed in sect. 10.3
PolTor92 Periodic orbits in coupled Hénon maps, a "nonlinearly coupled non-
linear field theory" version of the spatiotemporal Hénon map is analyzed.
It has the spatial terms coupled quadratically, which I don’t like because
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it doesn’t keep space and time "on the same footing", but looking at their
ideas and methods may be useful.

I am not sure that the method I used for finding the orbits for my tem-
poral Henon map will work for the spatiotemporal, you can check, but I
don’t think it will. The code I wrote is still useful for learning, but you
will likely have to use Biham’s over relaxation technique. Chaosbook de-
scribes it in "relaxation for cyclists" and Predrag did a video on it here,
you may also want to check out some of the other videos as they give
very good context. Anyway, good luck!

2022-02-22 Predrag You probably want to understand some of the CL18 calcu-
lations, for example CL18 eq. (93), and onward.

2020-05-31 Predrag In 1992 Politi and Torcini [5] numerical method for finding
invariant 2-tori of spatiotemporal Hénon, a (1+1)-spacetime lattice of orbits
periodic both in space and time, is an extension of Biham and Wenzel [1]
for a single Hénon map. Any fixed point in Biham-Wenzel fictitious time
corresponds to a doubly-periodic spatiotemporal cycle [L×T]S .

2021-09-17 Sidney ... I am not using the Biham-Wentzel method for the tem-
poral Hénon, instead (a detail nowhere described in the blog) I invert it
and feed the code a symbol sequence, see Vattay’s ChaosBook exercise
7.2, copied to here as exercise 4.1.

2021-12-07 Predrag 2 Ibrahim The quick & dirty calculation of short period
lattice states is outlined by Sidney in (4.2), see Vattay’s ChaosBook ex-
ercise 7.2, copied to here as exercise 4.1. We need something like that for
φ4.

The Biham-Wentzel method (search throughout this blog) might be bet-
ter. We’ll need better methods, but not yet.

2022-02-22 Predrag Don’t bother reading Gutkin and Osipov [4] at this time -
there spatiotemporal cat is written in a confusing Hamiltonian form. That
is what Han is trying to reformulate in a prettier format in siminos/CL18/
draft right now. The same goes for Politi and Torcini [5] paper.

2022-02-22 Predrag Either Vattay (see sect. 4.1 Vattay inverse iteration method)
or Biham-Wentzel numerical method should work for you. I hope that
Ibrahim’s variational method (or Lan’s, see sect. 4.5 Wang and Lan 2022
paper WanLan22) will supplant them, but you do not need to wait for that.

2022-02-23 Predrag In sect. 4.2 Shadow state method I explain how to build in
symbolic block translations into the defining equations of your problem.
Can you implement it?

2022-02-25 Andrew Working with Sidney, I have a better understanding of
Hénon maps, fixed points, and lattice states. Fixed points stay constant
over the temporal lattice. Lattice states are the roots to the polynomial
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equations, where they can be coupled to a single orbit and are unable
to jump to other orbits. Going through Sidney’s code, I was able to de-
termine the eigenvalues and eigenvectors for a=6, period n = 3. Nu-
merically, I was able to solve for the period n = 2 eigenvalues (2, -6),
confirming Sidney’s result.

2022-03-04 Andrew Looked over CL18 equations as suggested from CL18 eq. (93)
to CL18 eq. (105). I better understand the shadow state method in section
3.10 along with the lecture from last Friday’s meeting.
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Ibrahim’s blog

Ibrahim Abu-hijeh
iabuhijleh3@gatech.edu
subversion siminos : iabuhijleh3
cell +1 714 488 8926

The latest entry at the bottom for this blog, page 782

2021-12-07 Predrag to Ibrahim:

As you go along, write up your narrative in this file, ask questions - this
is your personal blog, like an experimentalist’s log - everything that you
learn and want to share goes in here. Clip & paste anything from other
sections you want to discuss, that saves you LaTeXing time.

2021-12-07 Predrag The 3rd line of siminos/spatiotemp/blogCats.tex says “pro-
cess only the files you are editing”,

\input{inputs/inclOnlyCats}

you uncomment a single line in that file to "process only the files you are
editing".

18.1 Spring 2022 blog

2021-12-07 Predrag My notes are in sect. 3.3 Classical φ4 lattice field theory. Har-
rison and you should form a study group to understand this - it’s abso-
lutely essential.

2021-12-08 Predrag The Hénon map/φ3 approaches should be safe for multi-
modal maps with complete repelling sets, and it should work for finite-
grammar Smale horseshoe repellers. Smale’s original horseshoe [4], his
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fig. 1 was unimodal, but he also explicitly gives our φ4 bimodal repeller,
his fig. 5.

2021-01-27 Predrag For some background on D∞ symmetry of the temporal
cat and φ4 1d lattice field theory, read siminos/reversal/ and remark 5.1 Time
reversal; not a priority as yet.

2021-12-07, 2022-01-16 Predrag First task:

Study LC21 paper, in this repo siminos/reversal/LC21.texA chaotic
lattice field theory in one dimension, in particular sect. 4 A φ3 field theory, and
sect. 5 A φ4 field theory.

Sorry about many broken equation links (??) - they are referring to equa-
tions in LC21.tex, now a separate article removed from this blog.

Write your study notes up here.

2022-01-21 Ibrahim So I from the meeting today I learned about what I would
expect to see for the unstable manifolds of the phi4 theory. There will be
stretched S’s due to the map being cubic, and we can look at the reverse
map which would result in the same manifold but reflected about the di-
agonal. This will give us 9 points of intersection, but only if the stretching
factor is large enough to cause the intersection.

For finding the n-period orbits, I was told about 2 possible methods:

(1) Vattay’s method that Sidney uses utilizes the symbolic dynamics and
finds the solutions at the anti-harmonic stretching parameter values.

I learned about the terminology of harmonic and anti-integrable systems,
see sect. 2.3 Temporal Hénon; anti-integrable limit. It is based on the rela-
tive strength of the kinetic verse the potential terms in the Hamiltonian.
When the kinetic term dominates as in most into quantum problems, you
get harmonic solutions. But if the potential terms dominate, you get hy-
perbolic solutions/anti-integrable.

Once you have the solutions in the anti-integrable regime, you can slowly
ween your way down to a more complicated regime with orbit bifurca-
tions.

(2) Biham-Wenzel [1] (see (2.27), (10.2), exercise 2.2 Hénon temporal lat-
tice) method makes every orbit stable and uses something like gradient
descent to find all the orbits, and even in spite of the assumption of all
orbits being stable, you still find all the correct orbits. Still not sure about
these two methods, but I will meet with Sidney to learn about Vattay’s
method, and look through the links in my blog to learn more about the
Biham-Wenzel method.

2021-12-07 Predrag The quick & dirty calculation of short period lattice states
is outlined by Sidney in (4.2), see Vattay’s ChaosBook exercise 7.2, copied
to here as exercise 4.1. We need something like that for φ4.
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The Biham-Wentzel method (search throughout this blog) might be bet-
ter. We’ll need better methods, but not yet.

2022-01-21 Sidney 2 Ibrahim I am going to copy this to both Harrison’s and
Ibrahim’s blog. For an explanation of Vattay’s method that I use, look at
(4.2) in 2021-10-05 Sidney blog post, if you have question there, let me
know. When I say "sign generated by symbol sequence" I mean either 1
or−1, depending if the symbol is a 1, or a 0 respectively. Note that±1 are
the square roots of unity. I have to edit the loop to account for the change
of sign, but that is ok. Anyway, for φ4 we have to deal with a cubed
root, and thus a cubed root of unity: γ. These are complex numbers, so
I am not sure how useful that is, but it seems that unless g and mt is set
appropriately, some of the fixed points are complex, so maybe having
complex numbers isn’t too out of the ordinary. Anyway, the formula
should be (I think)

φt = γ 3

√
mt + φt+1 + φt−1

g
,

where γ is a different root of unity depending on the symbol sequence, I
am not sure how that will work with the imaginary numbers. If this is a
valid method for you, I would be interested in learning WHY it is. I am
quite interested in numerical methods, but I have not yet bothered to see
why this specific map inversion is valid. It could be interesting.

2022-02-06 Predrag Can’t distinguish a cat from a parquet floor? Read sect. 5.1.

2021-12-07, 2022-02-08 Ibrahim 2 Predrag So my previous idea about how to
find the periodic orbits was more of the idea of forward iteration with
a guess for only one lattice site, but that wouldn’t work for φ4 since we
need a global solution in time to even be able to apply the map, since
there is a term that depends on not only the t + 1 site, but also the t − 1
site. So now after seeing the Predrag’s drawing of how to make a guess
for the state, I am thinking of this problem as a optimization problem,
where we are minimizing an error term

vt = −2φt − V ′(φt,mt) , (18.1)

see (4.1) and LC21 eq. (56), where in my particular case, the potential
term is our φ4 potential.

2022-02-11 Predrag I (and Matt) also think that new codes for finding lattice
states will be optimization codes.

2021-12-07, 2022-02-08 Ibrahim 2 Harrison I remember you talking to Predrag
about having a bit of confusion on how to find the unstable manifolds for
the φ4 map. I found a site [3] that, while focuses on the Hénon map, does
have an interactive tool that shows kind of the idea I think Predrag was
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suggesting about picking a neighborhood of points and iterating them
get the manifold: Hénon map interactive. If you need a little bit more
of an idea of how it is implemented computationally (and you can un-
derstand Java) the source code of the page shows two java scripts that I
believe are used to make the interactive tools in the page, you just need
to right click the page and press “view page source". While it might feel
like a little bit of a cheat to be looking into someone else’ code for our
purposes, I still think it could be helpful to look at to get a conceptual
idea, at least computationally, and what I think we should be doing.

2022-02-11 Predrag In love and war, all is fair:)

I have also found Demidov helpful, ChaosBook remark 15.2: “We have
tried to explain the geometric picture the best we could in the static text
format, but there is no substitute for dynamics but the dynamics itself.
We found Demidov’s “Chaotic maps” [3] simulations of the Hénon map
particularly helpful in explaining how horsheshoes partition the non–
wandering sets.”

Got curious about who Demidov is (probably this person? Twitter han-
dle?), found instead some potentially interesting sites (ignore them):

U. Waterloo Java Links

WebGL 2.0 for scientific computing (Fenton group are big fans of WebGL)

Julia Sets Animation

Ink Droplet

2022-02-11 Predrag Molei Tao is our local expert on variational methods and
much more, see the post on page 191.

2022-02-11 Predrag ChaosBook.org/extras has a bunch of variational method
codes. Some might be useful, I do not know.

2022-02-20 Ibrahim So to find the

Fixed points for the φ4 field theory (1-cycle), we can set all φt = φ. This
is if a lattice state is in fact a 1-cycle solution, the number should repeat
over every lattice site. So our least action condition becomes

gφ3 − 2φ = m (18.2)

for this first calculation, we will set m = 0, as I do not know what to set
it to anyway. The problem is a simple root finding problem that has one
clear root at φ = 0 without much inspection.

φ
(
gφ2 − 2

)
= 0

8289 (predrag–7383) 77704/19/2020 siminos/spatiotemp/chapter/chronotope.tex

https://www.ibiblio.org/e-notes/Chaos/henon.htm
https://ChaosBook.org/chapters/ChaosBook.pdf#rmark.15.2
http://www.ibiblio.org/e-notes/Chaos/contents.htm
http://www.ipm.sci-nnov.ru/~Demidov/
https://twitter.com/evgenydemidov
https://twitter.com/evgenydemidov
https://links.uwaterloo.ca/pmath370w14/PMATH370/JavaLinks.html
https://groups.google.com/g/webgl-dev-list/c/UaJ-ZOZrCwk?pli=1
https://experiments.withgoogle.com/julia-sets-animation
https://experiments.withgoogle.com/ink-droplet
http://ChaosBook.org/extras


CHAPTER 18. IBRAHIM’S BLOG

so we get all possible fixed points for the field as

ΦC = 0̄,ΦR =

√
2

g
,ΦL = −

√
2

g
.

These should be the only 1-cycles possible, so let us move onto 2-cycles.

Period-2 lattice states A period-2 orbit is a lattice state that repeats ev-
ery 2 lattice points, so in terms of (18.2), φt = φ0, φt−1 = φt+1 ≡ φ1, so we
have

gφ3
0 − 2φ1 = 0 (18.3)

However, the lattice should satisfy the least action condition no matter
what choice of lattice point I choose for φ0. So the condition should hold
true as well for

gφ3
1 − 2φ0 = 0

setting the two previous equations equal to each other gives us

gφ3
1 − 2φ0 = gφ3

0 − 2φ1

g
(
φ3

0 − φ3
1

)
+ 2 (φ0 − φ1) = 0

gφ3
0 + 2φ0 − 2φ1 − gφ3

1 = 0

we know 1-cycle lattice solutions will always be a solution to higher or-
der orbits, so we can factor out (φ0 − φ1) since this is the condition for a
repeating field on the lattice at every lattice point.

(φ0 − φ1)
(
g
(
φ2

0 + φ0φ1 + φ2
1

)
+ 2
)

= 0

This then gives us a system of equations that must be satisfied for a lattice
with period 2 to satisfy the least action condition{

gφ3
1 − 2φ0 = 0

φ2
0 + φ0φ1 + φ2

1 = −2/g
(18.4)

The second equation, however, is that of an complex ellipse (given g is
positive). That is to say it has no real solutions on the φ0φ1 plane. If we
were to be interested in negative stretching parameter values for g, then
the second equation would have real solutions, but it turns out the system
of equation as a whole gives the same solutions as the 1-cycle fixed point
solutions (I simply plotted the two curves to see this, but If you feel it
necessary I could try to show it analytically).

What I can conclude from this (assuming I did not make a mistake) is
that the mt parameter must change for different lattice sites in or for us
to even have a hope of getting prime 2-cycle orbits. Of course we already
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suspected this, but this is a good reasoning for me as to why we need the
source term to give us prime orbits of higher order.

So the question now is, what are the values of these source terms. My
leading suspicion come from the role that the source terms play in the
Bernoulli map; the source terms are used to make sure the map does not
map a value outside the unit square. The base map (with no source terms
for correction)

xt+1 = sx

where s is some stretching parameter. However, without source terms
this will map any point beyond x = 1

s outside the unit square. And so,
ever 1

s interval between 0 and 1 will have a unique source term asso-
ciated, and in each of these intervals, there must be a fixed point. If I
wanted my source terms to serve the same function φ4, what would this
mean. Well, for φ4 our forward iterate map is not one dimensional, it de-
pends on not only the current lattice point, but the previous one as well.
For the sake of simplicity, let us restrict ourselves back into finding 2-
cycles, where we can use (18.3) (except now let us reintroduce the source
term mt since we now know we can’t just leave it to 0). This makes our
map pseudo-one dimensional, since know we can write the forward in
time iteration as

φt =
g

2
φ3
t−1 −mt

We want this map to never iterate a lattice value forward in time to a
value higher than 1. So, looking at figure 18.1 (a) (here I am setting g = 6).

We can see here that there will be 2 points (so far) that will map the a
lattice point beyond 1. In order to fix this, what we can do is subtract and
add 1 in certain regions for φ0 to shift the plot back into the unit square.
When we do so, we arrive at figure ?? (b) for the forward iterate map.

And now we see that we gain 1 new fixed point (the corners at the diag-
onals should represent the same fixed point as with the Bernoulli map).
However, this was with a stretching factor of 6, if we increase the stretch-
ing factor to 10, see figure 18.1 (c).

We once again get stretched out of the unit square. Thus we will require
more source terms. So it seems to me that the number of source terms
values, and also the number of fixed points we will have for a 2-cycle, is
completely dependent on the value of the stretching parameter. This will
also become more complex once we go to orbits of orders higher than 2,
as we will no longer be able to turn are map into a 1D problem, and then
the question of what regions will correspond to what mt, will now be a
condition for the domain of the φtφt−1 plane.

Figure 18.1 (d) is the plot of (18.2) for mt = 0, and with the unit square. I
have labeled 3 points: A, B, and C. These are my thoughts on for where
we would want to consider the "beginning" of the right subinterval (would
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(a) (b)

(c) (d)

Figure 18.1: (a) The plot of g
2φ

3. (b) Subtract and add 1 in certain regions to
shift the plot. back into the unit square. (c) Increase the stretching factor to 10.
(d) The plot of (18.2) for mt = 0.
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be the reflection of where the center subinterval begins). Point A is the lo-
cal minimum of the curve, and where the positive stretching dominates.
If this is how we would choose to partition the subintervals, the left and
right subintervals would be the intervals would be regions with positive
stretching, and the center region with negative stretching. Point C is the
point where the stretching

2022-02-23 Ibrahim In my blog, I argued that for there to be three saddle points,
we need c < −4, which guarantees your ellipse to be real.

2022-02-23 Xuanqi Please try the definition from my blog, with the coefficient
for quadratic term equals to c/2 in the potential. There will be an addi-
tional term (c+ 2)φ in you equation, and the last line will be φ2

0 + φ0φ1 +
φ2

1 = −(c+ 4)/g

In my blog, I argued that for there to be three saddle points, we need
c < −4, which guarantees your ellipse to be real.

2022-02-23 Predrag In sect. 4.2 Shadow state method I explain how to build in
symbolic block translations into the defining equations of your problem.
Can you implement it?

2022-02-18, 2022-02-23 Predrag I understand that it’s wrong to put order into
chaos, but cat herding is what it is. So reposting this:

Please use symbolic dynamics of ChaosBook fig. 11.4. Eventually you
will reduce the D1 symmetry, as in ChaosBook fig. 11.5, but one step at
a time.

2022-02-18, 2022-03-27 Ibrahim Sorry for the lack of updates, the last week has
mostly been reading and working on a talk I will be giving at March
meeting. One skill I have not learned to master is the skill of both catch-
ing up while also moving forward at the same time. I tent I spent too
much time in the background information, even though there things I
could be doing with what I know at this point. So I guess the least I can
do is talk about what it is that I have been reading.

Since the realization that we have to rethink our φ4 and even potentially
our φ3 action equations, I have been reading the Scholarpedia Lattice
quantum field theory.

I have also been reading the Scholarpedia Triviality of the 4D lattice
φ4 [6] to try and think about how we need to think about our field theo-
ries. I doubt I am going to figure what is "best" (if such a thing exist) and
even then that I would figure it out before someone else, but it’s part of
my own curiosity as well, so hopefully it will not be too big a waste of
time.

I also have been not only reading ChaosBook Chapter 16 since its on
how to find fixed points, but also trying to catch up on all chapters of
ChaosBook.
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As for variational methods: When I was in undergrad, I was working
on a thesis that involved simulating liquid crystal relaxation after its liq-
uid to liquid-crystal phase transition around a nanoparticle shell with
homotropic boundry conditions. For this, I was given some code by my
PI, Daniel Beller, that would start with liquid crystal in a isotropic state,
and then relax it to its least energy nematic configuration by making vari-
ations of a Q tensor at each lattice point representing the orientation of
the local liquid crystal director. It was relatively fast, easily able to han-
dle updating a 50 by 50 lattice, with a 3 by 3 matrix at each lattice point
that must be updated based on minimizing the Landua-de Gennes free
energy.

So I thought since I used this code before, I might as well start there to
see if this might contain a useful variational method for our problem. So I
went through Daniel Beller’s paper [5] to find that the type of variational
method they used was Fast Inertial Relaxation Engine (FIRE) [2]. From
what I understand, what makes this FIRE method good is that it used
the "inertia" to help decide the direction of decent and time step. I think
what this means is that if it is descending quickly, it will increase the time
steps to save computational time, but if the "momentum" in the direction
of decent is slow, it will decrease time step and use the "momentum"
to help decide the next direction. This looks promising, thought I don’t
know if I fully understand it yet. But once I do, maybe I’ll understand
how to apply it to the shadow state method.

2020-03-02 Predrag It’s possible that (3.66) is a better way to think about φ4

theory.

2020-03-12 Predrag Indeed, (3.66) is a better way to think about this. Xuanqi’s
intuition agrees with what had been derived in the literature [LusWei87,
Vierhaus10, 6] 35-40 years ago. Yes, reading literature can be a real time
saver, and it is really easy when somebody else does the literature search
for you. Anyway:

I believe we have the final formulation of φ4 theory. Please check care-
fully sect. 3.1.1 To return back to LC21, and alert Han and me if there is
something that should be corrected or improved. If everybody agrees,
from now on all φ4 calculation follow the conventions of that section.
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Chapter 19

Xuanqi’s blog

Xuanqi Wang
xwang3021@gatech.edu
subversion siminos : xwang3021
cell +86 177-2115-8435
WeChat y2528742620

The latest entry at the bottom for this blog, page 797

2021-12-07 Predrag to Xuanqi:

As you go along, write up your narrative in this file, ask questions - this
is your personal blog, like an experimentalist’s log - everything that you
learn and want to share goes in here. Clip & paste anything from other
sections you want to discuss, that saves you LaTeXing time.

2021-12-07 Predrag The deal is: If you have not entered one word into the blog
in a week means that you have done nothing on this project in a week.
The rule of thumb is not less than an entry twice a week.

2021-09-09 Predrag The 3rd line of siminos/spatiotemp/blogCats.tex says “pro-
cess only the files you are editing”,

\input{inputs/inclOnlyCats}

you uncomment a single line in that file to "process only the files you are
editing".

2021-12-07 Predrag to Xuanqi .

You refer to a reference like this: Gutkin and Osipov [3] (GutOsi15 refers
to an article listed in ../bibtex/siminos.bib).

and to external link like this: “For great wallpapers, see overheads in
Engel’s course [2].”
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Pro tip: compile blogCats.tex often, as you write, and fix errors as you
write. I had to go all they way back to May to find one of Sidney’s unbal-
anced “{” and make the entire blog compile without errors...

19.1 Spring 2022 blog

2021-12-08 Predrag I believe that the φ4 is not very different from the φ3 theory
for sufficiently strong stretching parameter. Here are proposed exercises
for you to develop intuition about that:

1. Plot the 3n Smale horseshoe for φ4 1-d forward-in time map, in the
(φt, φt+1) plane, paralleling ChaosBook fig. 15.5 for φ3, i.e., Hénon
map (2.27), (10.2).
The intuition is topological; 1-d parabola repeller (with parabola
height larger than 1) has the same kind of Cantor set as the com-
plete Smale horseshoe repeller for the Hénon map. Similarly, I ex-
pect ChaosBook fig. 11.4, here (5.210), to capture the topology of
the φ4 repeller.

2. For the Hénon map stretching parameter values a larger than (2.58),
the ‘critical’ value ah = 5.69931 · · · guarantee a complete horseshoe.
What is (very roughly) a corresponding value for the φ4 theory?

3. (harder, not essential as yet) Quotient the D1 symmetry for φ4, as in
ChaosBook fig. 11.5. It is a ‘dynamical symmetry’, see sect. 5.1.

Ibrahim and you should form a study group to understand this - it’s ab-
solutely essential.

2021-12-08 Predrag The above approaches should be safe for multimodal maps
with complete repelling sets, and it should work for finite-grammar Smale
horseshoe repellers. Smale’s original horseshoe [6], his fig. 1 was uni-
modal, but he also explicitly gives our φ4 bimodal repeller, his fig. 5.

2021-12-07, 2022-01-16 Predrag Parallel reading, while you work on the above:

Study LC21 paper, in this repo siminos/reversal/LC21.texA chaotic
lattice field theory in one dimension, in particular sect. 4 A φ3 field theory, and
sect. 5 A φ4 field theory.

Sorry about many broken equation links (??) - they are referring to equa-
tions in LC21.tex, now a separate article removed from this blog.

Write your study notes up here.

2021-09-12 to 2021-12-22 Predrag I have added my guess (3.70) for the infinite
coupling g anti-integrable limit of φ4 theory. That gives a 3-letter alphabet
A = {−1, 0, 1}. One can use it to find by continuation any lattice state,
at g as low as possible. ‘Generalized Hénon maps’ AKA φ4 field theory
posts are in sect. 3.3 Classical φ4 lattice field theory.
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2022-01-21 Xuanqi I’m calculating eigenvalues for the Jacobian now of the φ4

horseshoe map. The matrix seem very simple, but the coordinate for
fixed point are is a cubic equation, whose analytic solution is too com-
plicated to be included. So I think I should probably generate a list of
parameters first and then calculate the fixed points separately. Now I
have no sense what range of parameter should be chosen, just randomly
decided that probably I should start as 1-10, because for Hénon it is 6.

2022-01-21 Sidney 2 Xuanqi I am going to copy this to both Harrison’s and
Ibrahim’s blog. For an explanation of my method, look at my blog (entry
for 2021-10-05), if you have question there, let me know. When I say "sign
generated by symbol sequence" I mean either 1 or −1, depending if the
symbol is a 1, or a 0 respectively. Note that ±1 are the square roots of
unity. I have to edit the loop to account for the change of sign, but that is
ok. Anyway, for φ4 we have to deal with a cubed root, and thus a cubed
root of unity: γ. These are complex numbers, so I am not sure how useful
that is, but it seems that unless g and mt is set appropriately, some of the
fixed points are complex, so maybe having complex numbers isn’t too
out of the ordinary. Anyway, the formula should be (I think)

φt = γ 3

√
mt + φt+1 + φt−1

g

Where γ is a different root of unity depending on the symbol sequence, I
am not sure how that will work with the imaginary numbers. If this is a
valid method for you, I would be interested in learning WHY it is. I am
quite interested in numeric theory, but I have not yet bothered to see why
this specific map inversion is valid. It could be interesting.

Additionally, the 6 in the Hénon map was determined via a sort of bifur-
cation analysis (that I need to actually nail down how it was done, but all
the same). Effectively, 6 is larger that the 5.6... that is the minimum value
of a which allows for all binary sequences, and it is an integer, thus 6 is
convenient.

2022-01-31 Xuanqi I have figured out the recurrence relation, but the problem
is that it cannot be symmetric around the origin, or we will be trapped by
origin being a center.

2022-01-311 Predrag Can you be explicit, write down formulas down that led
you to this ‘center’?

Does (3.76) help you? I pointed out to the Gang that 2021-12-22 Predrag
Anastassiou, Bountis and Bäcker [1] Homoclinic points of 2D and 4D maps
via the parametrization method (2017) plots the horseshoe you are trying to
plot, see their fig. 1). Maybe just reproduce their results, for starters? See
my notes following (3.71).
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2022-01-31 Xuanqi I’m thinking about the deduction of recurrence. Is it just
the second order difference equation of position equal to the gradient of
potential function?

2022-01-31 Predrag Maybe. Hamiltonian is the sum of kinetic + potential, La-
grangian is their difference. I prefer not to think about “Hamiltonian vs.
Lagrangian” but about spatiotemporal cat’s Klein-Gordon mass squared
µ2 = s−2. Sufficiently strong streching, the system is unstable. For weak
stretching the “mass” is imaginary, you have to think about a spring con-
stant again. Study LC21 fig. 1).

2022-02-03 Xuanqi I read the first few sections of Anastassiou et al. [1] Homo-
clinic points of 2D and 4D maps via the parametrization method (2017), see
sect. 3.3.1, it helps. They took the potential function of form

V (φt) =
g

4
φ4
t +

c

2
φ2
t + d . (19.1)

I observe that it has a ‘dynamical’ reflection symmetry φt → −φt , re-
ferred to in 2021-12-08 Predrag post above as · · · harder, not essential as
yet - quotient the D1 symmetry for φ4, as in ChaosBook fig. 11.5 · · · .

This is not the temporal lattice reflection symmetry φt → φ−t .

2022-02-06 Predrag Can’t distinguish a cat from a parquet floor? Read sect. 5.1.

2022-02-03 Xuanqi I calculated

(2022-02-04 Predrag Write down here the formulas of your cal-
culation step by step. What you did by hand in the meeting
today was very clear, it needs to be LaTeXed here for possible
future use in a paper or a report.)

the eigenvalues of the 1-time step time evolution Jacobian matrix, and
found that for c > 2 (c is the coefficient for quadratic term in potential
(19.1)), all fixed points are saddle points. This being Hamiltonian system,
the determinant of time evolution Jacobian matrix always equals one,
and the stability multipliers

(Λ+,Λ−) = (Λ , Λ−1) , |Λ| > 0 (19.2)

are real.

Now the thing is to chose a value c, as we surely don’t want two free
parameters in the equation. Should we choose some value close to 2 or
far away from it? My guess is that for some value close to 2, the points in
unstable manifold will be pushed away from origin.

As it so happens, Anastassiou et al. [1] have already made a choice, and
once I understand what their choice was based on, I expect to follow it.
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2022-02-03 Xuanqi Authors of ref. LC21 [4] claim that their action

V (φt,mt) = −g
4
φ4
t + φ2

t +mt φt , (19.3)

leads to the Euler–Lagrange equations for ‘φ4 lattice field theory’ of form

−φt+1 + g φ3
t − φt−1 = mt . (19.4)

Substituting φt → (φ′t + b) ;mt → 0 · · · I show that the two formulations
disagree, as follows:

φ′t+1+g a3(φt−b)3−φ′t−1 = φ′t+1+g a3(φ′t)
3−3g a3b(φ′t)

2+3g a3b2(φ′t)+−ga3b3−φ′t−1 .

In order to agree with the form

φt+1 + φt−1 − 2φt = gφ3
t + cφt +mt . (19.5)

we need b = 0, as there is no quadratic term here. However, this im-
mediately result in a zero linear term, as we have b2 in the coefficient.
Parameter a is only a rescaling of axis, but 0 is always invariant under
rescaling, so I conclude that these formulae cannot agree. · · ·

2022-02-11 Xuanqi Anastassiou et al. [1] potential function is

V (φt) =
g

4
φ4
t +

c

2
φ2
t +mtφt , with g > 0 . (19.6)

In the discrete lattice site, we have the twice difference equals to the gra-
dient of potential. That is

φt+1 − 2φt + φt−1 = gφ3
t + cφt +mt . (19.7)

Rewrite this three terms recurrence relation as a two terms recurrence for
a two-component field ϕt = (φt+1, φt): 1

φt+1 = gφ3
t + (c+ 2)φt − φt−1

φt = φt . (19.8)

In matrix notation.

ϕt =

(
gφ3

t + (c+ 2)φt −1
1 0

)
ϕt−1 (19.9)

Take φt = φ fixed point. It is a solution of the cubic equation gφ3 + cφ +
mt = 0. The forward-in-time Jacobian matrix (8.31) evaluated at the fixed
point at the origin (where mt = 0) is(

3gφ2
t + (c+ 2) −1

1 0

)
=

(
c+ 2 −1

1 0

)
(19.10)

1Predrag 2022-02-11: I do not get (19.8) - it is a still a 3-point recurrence?
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Figure 19.1: φ4 theory (19.6) stable, unstable manifolds, for Anastassiou et
al. [1] choice of coupling constant g = 10, c = −4.5. (stars) Unstable manifold.
(dots) Stable manifold. The primary cover ACBC’A. Its iterate forward and
backward will yield 9 covers of the next level of the cubic Hénon map Smale
horseshoe. Continued in figure 19.2.

Looking for the eigenvalues Λ of this matrix, we have Λ. By the Vieta’s
theorem that every school child knows, Λ1Λ2 = 1, and Λ1 + Λ2 = c. To
ensure that both eigenvalues are real, we need (Λ1 + Λ2)2 >= 4Λ1Λ2 =
4. Now, looking at the origin, it’s easy to see that if |c + 2| > 2, there
should be one eigenvalue greater than 1 and the other smaller than 1.
The remaining two fixed pointsare also saddle points, as we will always
have φ2

t > 0. Anastassiou et al. [1] chose c = −4.5, which satisfies c < 0
needed for all 3 fixed points to be real.

I think the difference between the formula in LC21 and Anastassiou et
al. [1] is merely a difference in the quadratic coefficient and the source
term, which has no effect on the neighborhood of origin.

2022-02-11 Xuanqi I had a discussion with Ibrahim (see his post page 776), and
he showed me a website that plots the horseshoe for Hénon map. That
website started with a circular region, and then map the region and let
image and pre-image intersect. However, it didn’t show a full horseshoe
in the first iteration, and we guess it’s because the circular regionis not a
natural region to choose. For my replication, I will just start with a unit
square, as in the paper, which is neither a natural set in the topological
meaning but good enough to show the entire horseshoe.

2022-02-11 Predrag I found this top secret, very exclusive website, where ev-
ery student plots the Hénon stable-unstable manifolds just as a humble
homework 7. Student evaluation praise this course specifically for this
problem set, because it taught them that stable-unstable manifolds are
not a big deal.

2022-02-17 Xuanqi Figure 19.1 looks like what we expected. How do we de-
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fine the non–wandering set Ω here, as there are four regions bounded by
Wu and Ws now.

2022-02-18 Predrag Wow, that looks great. Next, bring it to the publication
level graphics.

2022-02-18 Xuanqi (Predrag acting as Xuanqi’s blog ghost secretary) The next
step is to replace dots by a “contour line", and use ABCC’A as the region
for a backward and a forward iteration, as explained in the ChaosBook
fig. 11.5 Hénon map example.

I am using python with Matplotlib.

2022-02-11, 2022-02-18 Predrag What I mean by the [...] following (19.15) is
that you write down a formula, a parameter transformation formula like
the one given in ChaosBook example 14.6 Unimodal maps. You help Han
and me finalize the convention for you, Sidney’s and Ibrahim’s work that
way.

2022-02-18 Predrag For Anastassiou et al. [1] conventions, see sect. 3.3.1.

2022-02-23 Xuanqi My idea is that the definition in LC21 will not work, as it
gives no linear term for φt. Now my trouble is that this region Ω that
we start with is very hard to define. I tried the whole region with all
the arms and legs, and it destroys the intersection in the middle, which
is absolutely what we don’t want. After that, I tried to work with two
regions, i.e., iterate one region M forward and region N backward. Fig-
ure 19.2 (a) illustrates the region (shaded) I chose to map backward, de-

noted by A
_

CDE
_

GHA (I forgot to include that last "A" in my script with

the figure). In the same fashion, the region I mapped forward isA
_

BCE
_

FGA.

Personally I think figure 19.2 (b) is not what we want. There are corners
due to a very unnatural choice of boundary, as the stable and unstable
manifolds are passing through our region. And also, as I discussed with
Han today, we both think that it is somehow problematic to iterate two
different regions forward and backward. Can we have a meeting, as I
cannot understand how we should choose the region to iterate now. Han
had a fascinating thought, but there is not enough space on the margin to
stick it into this figure.

2022-02-23 Predrag Can you plot the stable-unstable manifolds for the fixed
point φR close to E in figure 19.2 (a)? In our discussion we concluded
that it has positive stability multipliers, and that means that it might de-
fine the outer boundary of Smale horseshoe. The fixed point (0, 0) has
negative multipliers, which means it gets buried within the horseshoe,
cannot define a boundary.

2022-02-23 Xuanqi Works! See figure 19.3 :)
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(a) (b)

Figure 19.2: (a) Region N sent backward. (b) Somewhat strange horseshoe

for g = 15, c = −8.5. The tilted square is the intersection of A
_

BCE
_

FGA and

A
_

CDE
_

GHA, which is essentially Ω. The Lo Fan [1] formulation of φ4 theory
(19.6), g = 15, c = −8.5. Continued in figure 19.3.

(a) (b)

Figure 19.3: (a) Fixed point φR stable-unstable manifold. (b) Fixed points φL,
φR stable-unstable manifolds. The Lo Fan [1] formulation of φ4 theory (19.6),
g = 15, c = −8.5. Continued in figure 19.4.
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(a) (b)

Figure 19.4: (Continued from figure 19.3.) (a) The intersections of fixed points’
φL, φR stable-unstable manifolds form the level 0, single domain ‘diamond’
cover of the bimodal Smale horseshoe non–wandering set. (b) Iterating the
‘diamond’ forward and backward yield the level 2, 32 domains cover. As this is
the Lo Fan [1] formulation of φ4 theory (19.6), g = 15, c = −8.5; φL = −0.7527,
φR = 0.7527, I will have to replot this for our group’s formulation of φ4 theory.
(Continued in figure 19.6).

2022-02-23 Xuanqi to Ibrahim I just realized that the ellipse you figured out
for the 2-cycle put the same condition on c < −4 magically. I thought
that it would be natural if my condition contains your, as if there is only
one fixed point you won’t expect the 2-cycle, but actually they are just the
same set. Do you think that this double containment has some implica-
tion about saddle point?

I also updated the disagreement with LC21, proved that a coordinate
transform won’t compromise this disagreement. I think this region will
work better, as it has two positive eigenvalues. Probably φ4 is somehow
trickier than we thought.

2022-02-23 Predrag Not tricky at all: do the same for the left fixed point L (or
reflect figure 19.3 over the horizontal and vertical axes - would have done
it for you, had you also committed the figSrc/inksacape/XWWuWs1.svg
file) and you are done! That’s the optimal cover, with 9 pretty intersec-
tions. Would be nicer if one could make it fatter...

2022-02-18, 2022-02-23 Predrag I understand that it’s wrong to try to put order
in chaos, but cat herding is what it is. So reposting this:

Use symbolic dynamics of ChaosBook fig. 11.4. Eventually you will
reduce the D1 symmetry, as in ChaosBook fig. 11.5, but one step at a
time.

2022-02-24 Xuanqi Several discoveries. (1) We now have a correct and beauti-
ful horseshoe now. I calculated stable-unstable manifolds near both fixed
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points, see figure 19.4 (a). And if we choose the region whose boundary
contains these two fixed points, shown in black, and iterate this region
forward and backward, we obtain the pretty bimodal Smale horseshoe of
figure 19.4 (b).

In fact, I thoroughly understand why this time it works. As explained in
distant past, 2022-02-23 Predrag post on page 790.

1. Predrag’s fixed point φC stable-unstable manifolds ‘diamond’ fig-
ure 19.1 looks right, but it is WRONG. The fixed point φC at (0, 0)
has negative multipliers, with iterates of points close to the fixed
points jumping across the unstable manifold, which means it gets
buried within the horseshoe, and cannot define a boundary.

2. The reflection-symmetry related pair φL = −φR has positive stabil-
ity multipliers, meaning that their unstable manifolds separate ‘in-
side’ from ‘outside’ iterating forward in time, their stable manifolds
separate ‘inside’ from ‘outside’ iterating backward in time, precisely
as they do for the φ3 field theory in figure 4.2.

2022-02-24 Xuanqi Discovery (2): the φL, φR Jacobian (who I do not want to
write it down - that’s a secret) doesn’t depend on the coupling constant
g. Stability is solely determined by parameter c.

Also, I think it might be more convenient if we make a transformation
c → c− 2 in our potential, as it always appears in my secret calculations
as c+2 in any expression such as (19.8) and (19.10), except for fixed point
condition.

2022-02-24 Predrag I do not see your (19.6) in Anastassiou et al. [1], where is
it?

2022-02-24 Xuanqi Some thoughts on the non–wandering set: I think that for
any periodic point p that is not on the stable-unstable manifold, it must
have a neighborhood (with stable-unstable manifolds as its boundary)
that is entirely in the non–wandering set, as a homeomorphism always
maps boundary to boundary, and stable-unstable manifold is closed un-
der map.

2022-02-24 Xuanqi Does every connected set in non–wandering set contains a
periodic point?

2022-02-24 Predrag Yes. BTW, it’s not “any” connected set. Also, every peri-
odic point has its own stable-unstable manifolds pair, only one.

2022-02-24 Predrag You are learning this the hard way. It’s inefficient for you
not to follow ChaosBook.org/course1, because that’s what the course is
for.

But OK. Once you convince yourself that there is only one periodic point
per cover for the Bernoulli map figure 1.14, and you’ll understand it for
Smale horseshoes.
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2022-02-18 Predrag Wow, figure 19.4 looks great. To bring your figures closer
to the publication level graphics

• Always use ‘tight’ bounding box in your programs, leaving no huge
white borders around figures, as for example in the original XW-
boundedRegion.pdf, XWphi4horseshoe.pdf.

• Always use the same units vertically and horizontally, so square
does not get printed as a squashed rectangle.

• Save the program that generated the final version of an important
figure in the repo, with indication in the figure (commented out)
where to find it.

• Save important figures’ figSrc/inkscape/*.svg, if possible.

• Draw stable and unstable manifolds as thin lines, not as collection
of fat dots.

• Remove the gray frame around plots.

• Use symbolic dynamics of ChaosBook fig. 11.4. Eventually Ibrahim
or you will reduce the D1 symmetry, as in ChaosBook fig. 11.5, but
one step at a time.

2022-02-23 Predrag Curious: what happens if you start with the φ4 field theory
as defined in sect. 4.2 Shadow state method, with the 3-term recurrence like
(4.9):

− φt+1 + g φ3
t − φt−1 = jt , jt = j = const . (19.11)

That gives you two parameters, g and j. To me it looks like you can
rescale g and φt so j → ±1, so only the sign of j matters (have not checked
that). Can you make all 3 fixed points saddles?

2022-02-28 Predrag OK, the life is too short, so I wrote it down for you in
sect. 3.3 Classical φ4 lattice field theory.

Please construct the 1-time step [2× 2] Jacobian matrix, plot the unstable
/ stable manfolds, etc, etc, as in figure 19.4, for various g, and determine
a small but sufficiently strong stretching g that yields a complete horse-
shoe. To do that, it suffices to iterate once forward, get three region, each
containing a shadow state φm .

Propose the smallest, simple to write (a fraction?) g value that we will
use from now on for all φ4 calculations.

2022-02-23 Predrag In sect. 4.2 Shadow state method I explain how to build-in
symbolic block translations into the defining equations of your problem.
Can you implement it?

2020-03-01 Predrag to Xuanqi Would lattice ‘scalar φ4 field theory’ (3.36)

−φt+1 + (−g φ3
t + sφt)− φt−1 = jt , jt = 0 (19.12)
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work for you? Needs s > 2, so that the Klein-Gordon mass µ2 > 0.

Now the problem is that we have to rethink the lattice ‘scalar φ3 field
theory’ (2.3)

− φt+1 + (aφ2
t + sφt)− φt−1 = jt , jt = −1 . (19.13)

Classical φ4 lattice field theory quartic lattice site potential (3.10)

V (φt,mt) = −g
4
φ4
t , (19.14)

our example of the lattice ‘scalar φ4 field theory’

−φt+1 + (−g φ3
t + sφt)− φt−1 = jt , jt = 0 . (19.15)

2020-03-01 Xuanqi The definition works, as long as we have g > 0 here. I
finished my calculation for what range of parameter will give a com-
plete horseshoe (though with only two significant digits now). The result
might be a bit surprising, as it doesn’t depend on g, but only depends on
s, the quadratic coefficient. My result yields s > 7.5, if I didn’t mess up
any calculation (which is highly likely!)

Now, another surprising thing is that the number of two-cycles is also
independent of g. We will have all nine roots for s > 4, five roots for
4 > s > 2. This leads me to think that we might want to abandon g, as it
seems redundant here. So I did the follow transformation: Consider two
different quartic coefficient g1 and g2 both negative, and the recurrence
generated by the first potential:

−φt+1 + (g1 φ
3
t + sφt)− φt−1 = 0 (19.16)

We have
√

g2
g1
> 0, so let’s make a stretch

√
g2
g1
φ→ ξ, then we have√

g1

g2
(−ξt+1 + (g2 ξ

3
t + sξt)− ξt−1) = 0 ,

which is nothing but

−ξt+1 + (g2 ξ
3
t + sξt)− ξt−1 = 0

It is just the defining equation for g2. So the quartic terms doesn’t nothing
but stretching the mesh. That why we didn’t see any quartic coefficient
in Anastassiou et al. [1], but a rescaling of x and y.

2020-03-02 Predrag Apologies again, I had a wrong sign :( in front of g in (3.36),
fixed now, corrections marked in red, so we have converged. I would
have preferred to vary coupling constant g, fix µ2 to a constant value in
(3.80), but you are right, we’ll just have to ride with it, and explain to the
reader that for φ4 theory the coupling constant g can be scaled away for
free.
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(a) (b)

Figure 19.5: φ4 theory (3.36) unwritten function g(φ) = φ(Aφ8 +Bφ6 + Cφ4 +
Dφ2 + E), whose zeros have something to do with period-2 lattice states. (a)
s = 4 is the bifurcation value, corresponding to µ2 = s − 2 = 0 in (3.36). For
higher s values all nine roots are real, for example for (b) s = 4.4.

2020-03-02 Predrag We do have to rethink the φ3 theory (2.3), now that we
have added the mass term µ2φ2

t/2 to the action.

2020-03-10 Xuanqi Now I’m reading some papers and books about field the-
ory. I think I need to understand, at least a little bit, the Klein-Gordon
equation. I also read Anastassiou et al. [1] again, and I found that they are
not varying the quadratic coefficient for homoclinic intersection. Their
determinant of the Jacobian doesn’t equal to 1 anymore. I’m not sure I
can understand what they are doing, so I am trying to enhance my back-
ground.

2020-03-10 Predrag It would be helpful to refer to equation numbers in their
paper, otherwise other people in the group have to reread the entire paper
to understand your comment. Is my (3.57) wrong?

2020-03-10 Xuanqi I think it (what is it?) differs from the original figure in the
axes scale, as we changed the definition of coupling constant g in (3.36),
and I chose g = −1/2 here. I will fix that in the next update.

2020-03-10 Predrag Shouldn’t g > 0? Or my steady states (3.38) for s = 4,

(φL, φC , φR) = (−2
√

2, 0, 2
√

2)

and the symmetric period-2 (3.43) are wrong? They do not fit figure 19.5 (a)
roots.

2020-03-10 Xuanqi Plots from last week: In figure 19.5 (a) the quadratic coef-
ficient s = 4 is the bifurcation value, above which all nine roots are real,
for example for s = 4.4 in figure 19.5 (b).
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(a) (b)

Figure 19.6: (Continued from figure 19.4 and figure 19.5) φ4 theory (3.36). (a)
The homoclinic tangency value is s ' 4.95 . . . . (b) unknown value of param-
eter s. Iterating the ‘diamond’ forward and backward yield the level 2, 32 do-
mains complete horseshoe cover. Can you spot the formating difference from
figure 19.4? A hint is on page 794.

According to my program, the homoclinic tangency value is s ' 4.95 . . . ,
figure 19.6 (a). Above that, the horseshoe is complete, see for example
figure 19.6 (b).

2020-03-10 Predrag What is (19.9)?

2020-03-10 Xuanqi And I think I should write a paragraph to explain our for-
mula for φ4 theory. Is it necessary?

2020-03-10 Predrag What do you think?

2020-03-02 Predrag It’s possible that (3.66) is a better way to think about this.

2020-03-12 Predrag Indeed, (3.66) is a better way to think about this. Xuanqi’s
intuition agrees with what had been derived in the literature [5, 7, 8] 35-40
years ago. Yes, reading literature can be a real time saver, and it is really
easy when somebody else does the literature search for you. Anyway:

I believe we have the final formulation of φ4 theory. Please check care-
fully sect. 3.1.1 To return back to LC21, and alert Han and me if there is
something that should be corrected or improved. If everybody agrees,
from now on all φ4 calculation follow the conventions of that section.
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Chapter 20

Han’s blog

Don’t be Fritz Haake. He, who hesitates, is lost.

Han Liang <han_liang@gatech.edu> work blog
Orcid number orcid.org/0000-0001-7181-8166
cell: +1 (401) 651-4482
WeChat lhan118

The latest entry at the bottom for this blog, page 993
Contents

20.1 Rhomboid corner partition
20.2 Rhomboid center partition
20.3 Time reversal
20.4 Reduction to the fundamental domain
20.5 Spatiotemporal cat partition
20.6.1 Stability of a periodic point vs. stability of the orbit
20.6.2 Temporal cat counting by determinant recursion

The latest post is on page 993

2018-01-12, 2022-01-30 Predrag to Han

On zero.physics.gatech.edu, or Matt’s light.physics.gatech.edu, or
your hard.physics.gatech.edu, or visitor office love.physics.gatech.edu, or any
other CNS linux workstation your login is with your GaTech credentials.

Do not do calculations on the CNS servers: zero.physics.gatech.edu which is
physically one.physics.gatech.edu or two.physics.gatech.edu - from any CNS
machine.

ssh XXXX?@hard.physics.gatech.edu

save all data on the local hard disk /usr/local/home/han/. make a link in
your CNS home directory:

cd homeHard
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Help for CNS system, and all our documentation is on
www.cns.gatech.edu/CNS-only cnsuser cnsweb

but current crop of grad students, as a matter of principle, never look at
any info, or add to these homepages.

Good luck - Matt knows linux best, also Simon Berman, Xiong Ding
and Burak Budanur (via Skype) know a lot.

2018-01-19 Han Here is an example of text edit by me, and here one of a foot-
note by me1.

2018-01-19 Han (Discussion with Predrag, cat maps project Spring 2018:

• blog the project progress here

• blog whatever I’m reading and learning about dynamical systems
here

2018-06-05 to 06-11 Predrag Read chapter ?, part of ?, and ? of Chaosbook. Do
homework of online Course 1, Weeks ? and ?.

2018-01-19 to 02-11 Han Read Chapters ?, ?, part of ?, and ? of Chaosbook. Did
homework of Weeks ? and ?.

2018-01-11 Predrag to Han: Caution - my posts can be erased your edits, if you
omit to svn up before starting your edit.

Regarding new figures: always save HL*.png (or HL*.pdf ) in siminos/figs/,
then svn add HL*.png (where * is a name of the figure.

Remember, always, before starting your work session with
svn up and colcluding it with
svn ci-m"added entropy figures" you have to go to the root directory, cd
[...]/siminos. Otherwise you are not refreshing all bibtex, figures and other
files in the repository.

20.1 Rhomboid corner partition

Partitions, alphabets. A division of phase space M into a disjoint union of
distinct regionsMA,MB , . . . ,MZ constitutes a partition. Label each region by
a symbol m from an N -letter alphabet A = {A,B,C, · · · , Z}, where N = nA
is the number of such regions. Alternatively, one can distinguish different re-
gions by coloring them, with colors serving as the “letters” of the alphabet. For
notational convenience, in alphabets we sometimes denote negative integer m
by underlining them, as in A = {−2,−1, 0, 1, 2} = {2, 1, 0, 1, 2} .

A generating partition must map borders onto borders under dynamics
(Adler-Weiss).

1Han 2018-01-19: Han test footnote
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(a) (b)

(c) (b)

(e)

Figure 20.1: Figure 1.1 recomputed with my python code. (a) Two-squares
Adler-Weiss generating partition for the canonical Thom-Arnol’d cat map (1.1),
with borders given by stable-unstable manifolds of the unfolded cat map lattice
points near to the origin. (b) The first iterate of the partition. (c) The first iterate
of the partition intersections, (d) The iterate pulled back into the generating
partition, and (e) the corresponding 5-letter transition graph. In (b) and (c) we
still have to relabel Crutchfield’s arbitrary partition labels with our shift code.
This is a “linear code,” in the sense that for each square on can count how many
side-lengths are needed to pull the overhanging part of (c) back into the two
defining squares.
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(a) (b) (c) (d)

Figure 20.2: Figure 1.6 recomputed with my python code. (a) 3-rectangle, time-
reversaal symmetric Percival-Vivaldi cat map (1.5) partition. (b) The first for-
ward iterate of the partition. (c) The first forward iterate of the partition, with
the stable manifold intersections dividing it into 6 regions. (d) The 6 rhom-
boids (5 when the two blue regions are treated as one) are translated back into
the generating partition, with the subscript label indicating the square-lattice
vertical translation group elements: {TAA = gA→A0 , TBB = gB→B0 , TBA =
gA→B−1 , T ′AA = gA→A1 , TAB = gB→A1 } . If the two blue regions are considered
as a single partition, one obtains the standard Adler-Weiss 2-partition, with 5
distinct return maps one step forward in time, and the corresponding 5-letter
transition graph of figure 20.1 (e). Together, these transitions make up the tran-
sition graph of figure 1.1 (c). The partition is generating, in the sense that the
walks on this transition graph generate all admissible sequences.

2018-01-18 Han figSrc/han/python/HLcatmapArnold.py reproduces the
standard Arnol’d map partition, figure 20.1. The plots are in siminos/figs/.

figSrc/han/python/HLcatmapPV.py reproduces Predrag’s hand-sketch
of the Percival-Vivaldi [47] “two-configuration representation” cat map
partition, figure 20.2.

2018-01-19 Predrag In the Percival-Vivaldi partition, (1.5) there is only one
partition, the [φ0, φ1] unit square. In the Adler-Weiss partition of fig-
ure 20.2 (a) there are two rhomboid partitions, each with its own coordi-
nates, lets say the big rhomboid [φA0 , φ

A
1 ] and the small rhomboid [φB0 , φ

B
1 ]

(and perhaps also its time-reversal partner [φB
′

0 , φB
′

1 ] ), each bounded
not by a unit square, but by the vectors (SA, UA), (SB , UB) of the sta-
ble/unstable manifold segments that border the rhomboids. As this is a
symplectic mapping, the important property of these rhomboids is their
(oriented) area, for 1D dof given by the wedge or skew-symmetric prod-
uct

Aα = Uα ∧ Sα = Uαi ε
ijSαj , α ∈ {A,B} . (20.1)
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The figure 20.1 and figure 20.2 partitions are related by canonical (in 1D
dof area-preserving) transformations, so for given stretching s, the small
and the large rectangle/rhomboid areas are the same in any partition.
Likewise, topologically the dynamics should be the same, i.e., have the
same transition graph figure 1.1 (c).

That should naturally follow from the generator (Lagrangian) formula-
tion sect. 9.2 in any choice of symplectically-paired coordinates.

Having several coordinate systems, one for each partition, is standard;
a typical example are the three Poincaré sections of the 3-disk pinball,
Fig. 15.15: Poincaré section coordinates for the 3-disk game of pinball, Chaos-
Book chapter Charting the state space [16].

2018-01-25 Predrag Figure out Toeplitz matrix for the simplest cycle(s) of pe-
riod two (for Toeplitz matrices, see the post of 2017-09-09 on page 317,
and the posts in sect. 1.5).

Hopefully only a [2×2] matrix. Understand its stability multipliers, eigen-
vectors.

2018-01-19 Han I’ve been working on reading the ChaosBook materials and
doing the online Course 1.

2018-01-26 Predrag to Han: Can you compute analytically areas of partitions
in figure 20.2, show that they are the same as those in figure 1.1 and fig-
ure 20.1? I expect them to be simple formulas in terms of stability multi-
pliers (1.6).

2018-01-27 Han I have computed the area of the small partitionB in figure 20.2
and figure 20.1. The areas of the small partitions are the same, for s = 3
they are AB = 1

2 (1 − 1√
5
). If the stability multipliers are (Λ, 1/Λ), where

Λ > 1, as in (1.6), the area of the small partition B in figure 20.1 is given
by

AB =
1− 1/Λ√

D
=

1

Λ + 1
. (20.2)

The area of figure 20.2 is AB = (Λ−1)/Λ√
D , i.e., the same.

2018-02-16 Predrag Is |MB | = (Λ− 2)/
√
D in (1.109), for s = 3, the same as

|MB | = 1−1/Λ√
D = 1

Λ+1 of (20.2)? Indeed, that follows from (??) by inspec-
tion.

2018-01-27 Predrag Thanks! Did you use (20.1) to compute them? I think we
need that formalism to harmonize the discussion with sect. 9.2 generating
functions.

Did you also check that the area of the big partition isAA = (1+1/Λ)/
√
D?
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(a) (b)

Figure 20.3: Abandoned attempt: (a) The three-rectangle, time reversal sym-
metric generating partition for the Percival-Vivaldi cat map (1.5), with borders
given by cat map stable-unstable manifolds. (b) The three-rectangle partition
of the unit square. In this partition A, B2, B′2 already lie within the unit square,
while B1 is shifted by (−1, 0), B3 is shifted by (−1,−1), and B′1 is shifted by
(0,−1), B′3 is shifted by (−1,−1). It is more partitions than going forward in
time, but I hope it will be the right thing for the Lagrangian formulation.

2018-01-27 Predrag Maybe you do not see what has happened in the blog - I
always use svn diff (it works nicely in the Windows GUI) to see what
has changed.

Anyway, I stared the explicit construction of the Perron-Frobenius oper-
ator in example 1.4, so we also need the sub-partitions areas to check
that.

2018-01-31 Han I have checked the area of the big partition. Adding the areas
of each partition together we will get 1, so it should be correct. I didn’t
use (20.1) to compute the area. I found the coordinates of all the vertices
on the edges of the parallelograms and got the vectors that border the
partition then did the cross product (kind of tedious...). Using (20.1) to
compute the areas should be very easy.
2018-02-10 Predrag computed them in (1.109).

2018-01-19 Predrag Read chapter Walkabout: Transition graphs [17]. Always
try to work through examples. Eventually we want to try to solve Ex-
ercise 17.1 Time reversibility. The solution might be someplace here, in
sect. 13.1 Ihara zeta functions.

2018-01-31 Han I have read chapter Walkabout: Transition graphs.

2018-02-01 Predrag I think a good partition is given in figure 20.3. The sym-
bolic dynamics notation should probably be a 7-letter alphabet, some-
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(a)

(b)

(c)

(d)

Figure 20.4: (Color online) (a) An Adler-Weiss generating partition of the unit
torus into rectanglesMA (red) andMB (green) for the Percival-Vivaldi cat map
(1.5), with borders given by the cat map stable (blue) and unstable (red) mani-
folds. (b) Mapped one step forward in time, the rectangles are stretched along
the unstable direction and shrunk along the stable direction. Sub-rectangles
Mj that have to be translated back into the partition are indicated by color and
labeled by their lattice translation mj ∈ {1, 0, 1}. (c) The sub-rectangles Mj

translated back into the unit square yield a generating partition labelled by the
5-letter alphabet (20.10), with (d) the finite grammar given by the transition
graph for this partition. The nodes refer to the rectangles A and B, and the five
links correspond to the five sub-rectangles induced by one step forward-time
dynamics. (Compare with figure 1.2. For details, see ChaosBook [18]).

thing like

A → A(0,0) , B2 → B(0,0) , B′2 → B′(0,0)

B1 → B(−1,0) , B′1 → B(0,−1)

B3 → B(−1,−1) , B′3 → B′(−1,−1) . (20.3)

2018-02-01 Predrag [2018-02-11 accomplished for the two-rectangle partition]

Han points out that the unit square borders, have no physical meaning,
and that the partition still has only three regions A, B, B′, as in figure 1.8.
The time forward partition is given in figure 1.7 (b).

2018-02-11 Han I have verified some admissible and inadmissible orbits by the
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Green’s function. The Percival-Vivaldi cat map matrix with s = 3 is:

A =

[
0 1
−1 3

]
(20.4)

For the period T = 4 we can represent the orbit Jacobian matrix J with
periodic boundary conditions by a [4× 4] circulant matrix

− J =


3 −1 0 −1
−1 3 −1 0
0 −1 3 −1
−1 0 −1 3

 (20.5)

The corresponding Green’s function is the inverse of matrix of orbit Jaco-
bian matrix −J

g =


7
15

1
5

2
15

1
5

1
5

7
15

1
5

2
15

2
15

1
5

7
15

1
5

1
5

2
15

1
5

7
15

 (20.6)

Then given symbol block M = m0m1m2m3, we can calculate the corre-
sponding orbit ΦM = (x1, x2, x3, x4). For example, if

M =


0
2
2
0

 ⇒ Φ =
1

3


2
4
4
2

 . (20.7)

This orbit should be inadmissible since it contains the pruned block 22,
and indeed the corresponding periodic points fall outside the unit inter-
val, {x1, x2} > 1 . Examples of two admissible 4-cycles:

0
2
0
0

⇒ Φ =
1

15


6
14
6
4

 ;


0
1
1
0

⇒ Φ =
1

3


1
2
2
1


We can verify that these are periodic orbits by iterating

A

[
xt−1

xt

]
=

[
xt
xt+1

]
+

[
0
mt

]
. (20.8)

2018-02-11 Predrag Very nice! Let’s take your Green’s function (20.6) for 4-
cycles

g =
1

15


7 3 2 3
3 7 3 2
2 3 7 3
3 2 3 7

 (20.9)
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but now test whether all period 4 closed walks on the transition graph of
figure 20.7 (d) yield admissible 4-cycles.

The partition figure 20.4 (c) is labeled / colored by a 5-symbol alphabet
(1.9):

A = {1, 2, 3, 4, 5} = {A0A,B1A,A1A,B0B,A1B} , (20.10)

that labels the five sub-rectanglesMmj of the cat map phase space,M =
∪Mmj , by the links of the transition graph of figure 1.9 (d), with all ad-
missible itineraries generated by all walks on the transition graph. Ratio-
nal values correspond to periodic orbits, with the phase space periodic
points uniquely labeled by the admissible itineraries of symbols from A.

Bird and Vivaldi [12] tabulate the numbers of orbits (they call that NT(λ)
in their Table 1, with s = K = 3 and 4),

∞∑
T=1

zTNT = z + 2 z2 + 5 z3 + 10 z4 + 24 z5 · · · (20.11)

They say that there are N4(λ) = 10 admissible period 4 orbits. They can
be read off as walks on figure 20.4 (d):

1113
0001

1125
0011

1245
0101

1253
0111

1325
0111

1133
0011

3325
1111

3331
1110

3245
1101

4452
0011

(20.12)

with the corresponding translations read off the superscripts in (20.10).
My sub-rectangles alphabet (20.10) is superfluous; the translations

mt ∈ {1, 0, 1} (20.13)

from (20.10) alone label uniquely the admissible orbits, as they should,
as the relation is linear. We have to figure out how to argue that reading
{mt} off the graph alone suffices to label the orbit. Not obvious, as links
0 and 1 occur twice. Green 0 has to be followed by 1, the red 0 has to be
followed by 3 or 2, so they are distinct. The blue 1 must eventually be
followed by 1, but how is that different from the purple 1?

Some clever recoding idea is called for.

2018-02-11 Han I have computed all ten 4-cycles using Green’s function (20.9)
and plotted all their periodic points in figures 20.5 and 20.6.

M =


0
0
0
1

⇒ Φ0001 =
1

15


3
2
3
7

 .
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Likewise,

Φ0011 =
1

15

[
−1 1 4 −4

]
, Φ0101 =

1

15

[
0 5 0 −5

]
Φ0111 =

1

15

[
4 6 −1 6

]
, Φ0111 =

1

15

[
2 8 7 −2

]
Φ0011 =

1

15

[
5 5 10 10

]
, Φ1111 =

1

15

[
9 11 9 1

]
Φ1110 =

1

15

[
12 13 12 8

]
, Φ1101 =

1

15

[
7 8 2 −2

]
Φ0011 =

1

15

[
1 −1 −4 4

]
(20.14)

I verified these orbits by finding the position of each point (φt, φt+1) on
the partitionMA orMB . They are all admissible. The count agrees with
table 5.1.

2018-02-11 Predrag It feels like magic; we know that what the 2-rectangle par-
tition is, and we have derived the transition graph of figure 20.4 (d), and
that by similarity transformation this is the same for any s = 3 cat map,
but it is still not obvious that the 3-letter alphabet (20.13) does the job. I
assume you have not checked any of the original literature, but I do not
recall seeing such alphabet...

2018-02-11 Predrag Next: I have mostly solved and moved example 1.4 Perron-
Frobenius operator for the Arnol’d cat map to section sect. 1.10 Examples. It
would be good if you worked through it and understood the transfer
matrix L (1.110), which I am reading off figure 20.7, in particular com-
puted it eigenvalues (interpret the λ = 1 eigenvalue) and eigenvectors
(the leading one should be the natural measure). Here

s = 3 , so Λ =
3 +
√

5

2
= 2.6180, and D = 5 .

2018-02-12 Predrag Can you plot the stretched domains corresponding to fig-
ure 20.4 (b) for one step back in time (inverse map)? Should look some-
thing like figure 20.8.

2018-03-01 Han I have calculated the stretched domains corresponding to fig-
ure 20.4 (b) for one step back in time. The result is in figure 20.9 (c) which
is not same as figure 20.8 (b). I guess this is because I start from partition
in figure 20.9 (a). If I start from the partition flipped from figure 20.9 (a)
across the φ1 = φ0 I will get figure 20.8 (b). The overlap 2 partition is also
different from figure 20.8 (c). I’m not sure...

2018-03-01 Predrag My figure 20.8 was just a quick sloppy sketch. I’m confi-
dent that your figure 20.9 is right.
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(a) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(e) (f) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20.5: Abandoned attempt: All 4-cycles from (20.14): (a) Φ0001= Φ1113, (b)
Φ1110, (c) Φ0011, (d) Φ0011, (e) Φ0111, (f) Φ1101, (g) to (j) continued in figure 20.6.
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(g) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(h) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(i) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(j) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20.6: Continuation of figure 20.5: (g) Φ1111, (h) Φ0011, (i) Φ0011, and (j)
Φ0111,
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(c)
(d) (e)

Figure 20.7: (Figure 20.4 continued) (c) The sub-rectangles Mj , indicated
by the compact 5-letter alphabet (20.10). (d) Admissible orbits correspond to
walks on the transition graph for this partition. The nodes refer to the rect-
angles A and B, and the five colored links, labeled by their lattice transla-
tion mj ∈ {1, 0, 1}, correspond to the five sub-rectangles reached in one step
forward-time dynamics. (e) Compact labeling, see (20.10).

(a) (b) (c)

Figure 20.8: (From figure 20.4) (a) The forward in time sub-rectangles Mj ,
indicated by color / 5-letter alphabet (20.10). (b) The corresponding partition
defined for one step backward in time (not the partition (a) iterated back). (c)
The overlap 2-step partition. Not sure this is right.
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(a) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b)

�

�

�

�

-�

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20.9: (a) The two rectangles partition of the Percival-Vivaldi cat map.
(b) Mapped one step backward in time. (c) The stretched partition has been
translated back to the original shape.

2018-02-15 Han I have read the section Markov Partitions for Hyperbolic Toral
Automorphisms of Robinson’s book. I’m currently working on example 1.4.
The (1.110) seems not correct. I’m working on it.

2018-02-16 Predrag I’m complicating this unnecessarily - it would be nice to
get the correct 5-rectangles transfer matrix (1.110), but it is unnecessary
for our purposes: the two-rectangle partition [2×2] Markov matrix, where
one sums over all admissible transitions, should suffice (for notation, see
(20.10) and ref. [19]):[

φ′A
φ′B

]
= Lφ =

[
LA0A + LA1A LA1B

LB1A LB0B

] [
φA
φB

]
(20.15)

L =

[
LA0A + LA1A LA1B

LB1A LB0B

]
=

[ |M1|+|M3|
|MA|

|M5|
|MA|

|M2|
|MB |

|M4|
|MB |

]

=
1

Λ

[
2 Λ− 2

Λ− 1 1

]
. (20.16)

in compact notation {A0A,B1A,A1A,B0B,A1B} = {1, 2, 3, 4, 5} . Then

Det (1− zL) =

∣∣∣∣ 1− 2z/Λ −z(Λ− 2)/Λ
−z(Λ− 1)/Λ 1− z/Λ

∣∣∣∣
= 1− 3

z

Λ
+ 2

z2

Λ2
− z2

Λ2
(Λ− 1)(Λ− 2)

= 1− 3
z

Λ
− z2

Λ
(Λ− 3) , (20.17)

in agreement with the loop expansion (1.112).

2018-02-16 Predrag For s ≥ 3, the 3-letter alphabet (1.9) generalizes to

A = {1, 0, 1, · · · , s− 2} . (20.18)

What keeps the forward iterates of the small rectangle in check is the way
this area shrinks with large Λ in (1.109).
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-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a)
-0.20.0 0.2 0.4 0.6 0.8 1.0

-1

0

1

2

3

4

(b)
-0.20.0 0.2 0.4 0.6 0.8 1.0

-1

0

1

2

3

4

(c)

Figure 20.10: (a) The 3-rectangle partition for s = 5. (b) The first forward iterate
of the partition. (c) I put (a) and (b) together so it obvious that the alphabet is
from −1 to 4.
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(a) (b)

Figure 20.11: Abandoned attempt: (a) The three-rectangle, time reversal sym-
metric generating partition for the Percival-Vivaldi cat map (1.5), with borders
given by cat map stable-unstable manifolds. (b) The three-rectangle partition
obtained by space reversal (reflection across the anti-diagonal) is also a valid
generating partition, but the distinct from (a). Thus this partition does not ex-
hibit in a simple way the space reflection symmetry that is evident in figure 1.2.

2018-02-18 Han For s ≥ 3 the alphabet for the 2- (and 3-) rectangle partition is
(20.18): see the 3-rectangle stable and unstable manifolds borders parti-
tion for s = 5 in figure 20.10.

2018-02-18 Predrag Great. It should led to more sensible labelling of figure 20.7 (e)
transition graph, for arbitrary s. You can see that, much like in the Percival-
Vivaldi figure 1.2, there is an interior (s−1)-letter alphabet A0 which is a
full shift ((s− 1) loops attached to node A), and some kind of 2-letter
exterior alphabet A1 that has to do with node B.

A well-understood alphabet can help us with solving the 2-dimensional
spatiotemporal cat - there the interior alphabetA0 is still a full shift, while
the exterior alphabet A1 is a bit bigger.

2018-02-19 Predrag The alphabet (20.13),mt ∈ {1, 0, 1} is not good, as it seems
not to encode any of the symmetries of orbits in figures 20.5 and 20.6.

2018-02-19 Predrag I wonder why all cycles (except for a small kink in Φ0111)
turn clockwise? Reminds me of harmonic oscillator, that also has a unique
rotation direction - might be a consequence of symplectic dynamics.

2018-02-27 Han I have read the Chapter 15 Counting of Chaosbook. It’s not
easy. Finally have some general ideas about the topological zeta func-
tion.

2018-01-31 Han Matrices (1.8) can diagonalize (1.5) (I may be wrong).

2018-02-13 Predrag Your Green’s function is symmetric. Diagonalize?
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(a) (b)

Figure 20.12: Abandoned attempt: (a) The three-rectangle, time reversal sym-
metric generating partition for the Percival-Vivaldi cat map (1.5), with borders
given by cat map stable-unstable manifolds. Large rectangle is self-dual under
time reversal (reflection across the diagonal), while the two small rectangles
are mapped into each other. This implies that we should go to a fundamen-
tal domain (positive time only), and recode the dynamics according to exam-
ple 5.11 D1 factorization: (b) The three-rectangle partition time reversal funda-
mental domain (the half of the full partition, cut in two by the time reflection
diagonal). Need to check whether we can handle the reflection of mn as well.

2018-02-13 Han The eigenvalues of this Green’s function are 1, 1/3, 1/3, 1/5.
These are also the diagonal elements of the diagonalized matrix.

2018-02-13 Predrag Mhm - you sure? I was expecting
√

5’s. What about eigen-
vectors? Try period-5. 5 is a prime.

2018-02-13 Han When the circulant matrix and the Green’s function are [5×5]
matrices, the eigenvalues of the Green’s function are

1, (7 +
√

5)/2, (7 +
√

5)/2, (7−
√

5)/2, (7−
√

5)/2, (20.19)

corresponding to eigenvectors:
(1, 1, 1, 1, 1),
((−1 +

√
5)/2, (1−

√
5)/2,−1, 0, 1),

(−1, (1−
√

5)/2, (−1 +
√

5)/2, 1, 0),
((−1−

√
5)/2, (1 +

√
5)/2,−1, 0, 1),

(−1, (1 +
√

5)/2, (−1−
√

5)/2, 1, 0) .

2018-02-13 Predrag Mhm - surprised again. I was motivated by (1.38) and
(1.94), and expected you to (re)discover sort of a discrete Fourier trans-
form, but with hyperbolic functions. Back to drawing board.

2018-04-22 Predrag Fourier-transformed cycle points M̂ for the periodic points
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of figure 20.5:

M̂0001 =
1

2
[1,−i,−1, i] ⇒ φ̂ = [0, , 0, ]

M̂1110 =
1

2
[3, i, 1,−i] ⇒ φ̂ = [0, , 0, ]

M̂0011 =
1

2
[0,−1 + i, 2,−1− i] ⇒ φ̂ = [0, , , ]

M̂0011 =
1

2
[0, 1− i,−2, 1 + i] ⇒ φ̂ = [0, , , ]

M̂0111 =
1

2
[1,−1 + 2i, 1,−1− 2i] ⇒ φ̂ = [0, , , ]

M̂1101 =
1

2
[1, 1 + 2i, 1, 1− 2i] ⇒ φ̂ = [0, , , ]

M̂1111 =
1

2
[2, 2i, 2,−2i] ⇒ φ̂ = [, , , ]

M̂0011 =
1

2
[0,−1 + i, 2,−1− i] ⇒ φ̂ = [, , , ]

M̂0011 =
1

2
[2,−1− i, 0,−1 + i] ⇒ φ̂ = [0, , , ]

M̂0111 =
1

2
[1, 1,−3, 1] ⇒ φ̂ = [0, , , ]

(20.20)

Each cycle has 3 further cycle points, not computed here (but that should
be plotted in the Brilliuon zone). I did not compute φ̂k, as that is a trivial
multiplication by the diagonalized Green’s function (20.33).

Take home messages; writing Fourier transforms of periodic points ana-
lytically is not useful. Only cycle-4 orbits are related to Gaussian integers,
for other orbits there will be no nice analytic formulas. And already for
4-cycles, the phases are not rational fractions of 2π. For example for 1+2i
the polar form phase in radians is arctan 2 = 1.10715.

2018-02-21 Predrag The Green’s function (20.9) and eigenvalues and eigenvec-
tors (20.19) all have Toeplitz matrix structure. In case like this, when the
problem has been around for centuries, reading literature is a great time
saver, especially if someone has already done the dive into literature for
you. You can understand your Mathematica results by the analytic solu-
tion for any cycle lengts and any s, for example (1.52) and (1.55). Here
you learn, explicitly, that for s > 2, the lattice should not be expanded in
Fourier modes, but in sinh and cosh’s. There are some other cute formulas
in literatures, for example (1.94) and (1.95).

2018-04-25 Predrag Reciprocal lattice is standard. I think you need to use sta-
ble / unstable eigenvectors in configuration space, compute reciprocal
lattice with respect to them. Will continue writeup (unless you beat me
to it:)
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Figure 20.13: The Fourier transform of the 39601 period n = 11 lattice states
(see (1.14)) of the rhomboid corner partition in the complex plane.

2018-04-25 Predrag Scratch stable / unstable eigenvectors - there is no integer-
multiple tiling along those directions (I guess it is a antiperiodic tiling),
the only configuration space vector is 1-dimensional, pointing for Percival-
Vivaldi cat map along the vertical direction.

2018-04-22 Predrag Trying to get some feeling for the Fourier space represen-
tation, by computing the rhomboid corner partition 4-cycles (20.20), to
see how they differ from the rhomboid center partition 4-cycles (20.32).
The main take home message; analytic form of these Fourier transforms
does not seem helpful, seems best to plot them numerically, in complex
plane for the reciprocal lattice / Brilluion zone (not attempted yet).

2018-04-25 Han I plotted all of the admissible 11-cycles of the rhomboid corner
partition in complex plane in figure 20.13. It looks like if I plot the figure
with k from -5 to 5 instead of from 0 to 10 (which is to move the part
with k > 5 to the left side of the origin), this figure will be symmetric
about k = 0 plane. I tried to make some changes to the figure but the
program keep getting frozen when I plot the figure. I will try again later
on a desktop.

2018-04-25 Predrag Fascinating. Is it possible to generate a version that is 3D
live (can be rotated)? Also, we need to plot these in the Brilliuon zone,
not just raw Fourier...
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20.2 Rhomboid center partition

A generating partition must map borders onto borders under dynamics (Adler-
Weiss), but a really nice partition should also embody all symmetries of the
dynamics; invariance under spatial reflections and the time reversal.

For the Percival-Vivaldi cat map the dynamics commutes with the spatial
reflection σ (across anti-diagonal), while time reversal will require extra think-
ing.

For the Percival-Vivaldi cat map the flip across the φ1 = φ0 diagonal to-
gether with the reversal of the direction of evolution is the D1 symmetry that
corresponds to the invariance of cat map under time reversal.

2018-04-20 Predrag Currently figure 20.16 (b) does not map a border onto a
border within region D of figure 20.17 (a); sadly, the partition studied in
this section is not generating.

2018-02-18 Predrag Percival-Vivaldi alphabet can be made symmetric under
spatial reflection by picking the origin in the middle of the unit inter-
val, see sect. ??. The tiling figure 1.4 (b) and the partition figure 20.3 (b)
suggests that partition should be centered differently to fully exploit the
symmetries of the tiling - perhaps with the fixed point in the center of the
square, rather with the fixed point in the corner.

2018-02-28 Predrag A proposal for a space and time symmetric partition in
figure 20.14. Do you see how to fix it?

2018-02-28, 018-03-18 Han Yes! A space reflection symmetric partition in fig-
ure 20.14 is obtained by cutting the yellow and orange rectangles into
halves, as shown in figure 20.15. That is natural in the centered unit
square tiling of the plane, i.e., the grid going through multiples of (1/2, 1/2).
Figure 20.15 (c) shows that this partition tiles the whole space. The for-
ward image of the partition of figure 20.15 (b) figure 20.16. Figure 20.16 is
the labeled 7-rectangle partition, together with the transition graph. The
alphabet is

mt ∈ {2, 1, 0, 1, 2} . (20.21)

2018-03-18 Predrag Staring at the partition of figure 20.16: no wander I failed
to draw it by hand. In figure 20.16 (b) there are little holes next to D and
G and the weird overlapsMD ∩f(ME),MG∩f(MF ), it’s a miracle that
the partition works. You might want to check it for longer period orbits
inMD.

2018-03-05 Han All period 4 orbits in the symmetric partition figure 20.15 (b)
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(a) (b)

Figure 20.14: Abandoned attempt: (a) Tiling of the square lattice by a five-
rectangle, time reversal and space reflection symmetric partition. Note that we
have used the continuous translation invariance to place the center of the large
tileA at the origin. (b) An almost a generating five-rectangle, time reversal and
space reflection symmetric partition, except that the yellow / orange rectangles
appear twice, so the area this covers exceeds the unit area.

are

Φ1111 =
1

15

[
5 5 −5 −5

]
, Φ0202 =

1

15

[
0 −10 0 10

]
Φ0011 =

1

15

[
−1 1 4 −4

]
, Φ0011 =

1

15

[
1 −1 −4 4

]
Φ1221 =

1

15

[
2 −7 7 −2

]
, Φ2211 =

1

15

[
7 −7 2 −2

]
Φ0111 =

1

15

[
4 6 −1 6

]
, Φ1011 =

1

15

[
−6 −4 −6 1

]
Φ1012 =

1

15

[
3 2 3 −8

]
, Φ1012 =

1

15

[
−3 −2 −3 8

]
(20.22)

The orbits are in figures 20.18 and 20.20. All orbits are symmetric about
both φ1 = φ0 and φ1 = −φ0, either self-dual or come in pairs.

2018-03-05 Predrag Beautiful! We have the doubly symmetric partition nailed.
I do not think this is anywhere in the literature. Can you connect to sym-
metries to cycle itineraries?

2018-04-08 Han I have recomputed the 4-cycles of (20.22) in the face-centered
Percival-Vivaldi unit square non-partition. That screws up the above
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(a) -0.5 0.0 0.5

-0.5

0.0

0.5

(b) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(c) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 20.15: (a) Start with the partition of figure 20.14 (b). The dashed lines in
the directions of stable and unstable manifolds cut the yellow and orange rect-
angles into halves. (b) The symmetric partition obtained by removing halves
of yellow and orange rectangles has area 1. (c) The partition tiles the square
lattice.
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-0.6-0.4-0.2 0.0 0.2 0.4 0.6

-2

-1

0

1

2

(a)
-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

(b)
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

(c)

Figure 20.16: (a) The forward image of the 7-rectangle partition figure 20.15 (b).
(b) The stretched partition overlaid over the original partition. (c) The stretched
partition overlaid over the tiled lattice. The x and y axes are not plotted to the
same scale.

(a) (b)

Figure 20.17: (a) The labeled 7-rectangle partition, and (b) the corresponding
7-node transition graph.
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Φ1012, Φ0202, and Φ1012:

Φ1111 =
1

15

[
−5 −5 5 5

]
, Φ1010 =

1

15

[
−5 0 5 0

]
Φ0011 =

1

15

[
−1 1 4 −4

]
, Φ0011 =

1

15

[
1 −1 −4 4

]
Φ1221 =

1

15

[
2 −7 7 −2

]
, Φ2211 =

1

15

[
7 −7 2 −2

]
Φ0111 =

1

15

[
4 6 −1 6

]
, Φ1011 =

1

15

[
−6 −4 −6 1

]
Φ0001 =

1

15

[
3 2 3 7

]
, Φ1000 =

1

15

[
−7 −3 −2 −3

]
(20.23)

2018-03-05 Predrag I still think that if one day you plot all cycle points (no lines
connecting them) on a single copy of the generating partition, you’ll find
the resulting picture very cute:)

A hint from literature: Percival and Vivaldi [47] write: “For the cat maps
the periodic orbits lie on a rational lattice, so all surds cancel, as shown
in the companion paper [48] on the number theory of the periodic orbits
of the automorphisms of the torus.”

Sect. 21.2 Numbers of periodic orbits and sect. 22.2.1 Periodic orbits - first ap-
proach might also help with developing some intuition about figure 20.22.

2018-03-07 Predrag The alphabet (20.21) seems to make sense. Space reflection
acts as

j ↔ j . (20.24)

The total translation (the sum of symbols) is zero (the orbit is periodic,
standing) for all, except for figure 20.20 (i) and (j) which translate by ±1
(the orbit is relative periodic, running).

The time reversal should reverse the order of symbols, which it seems to
do, at least for figures 20.18 and 20.20:

(c, d) 0011↔ 0011 , (e, f) 1122↔ 2211 , (20.25)

rest self-dual.

2018-03-15 Han In figure 20.22 I plotted all the cycle points on a single copy of
the partition for both partitions of figures 20.4 and 20.15.

2018-03-22 Han I have added the period 1, 2 and 3 orbits to figure 20.23. The
period 1 and 2 orbits fill the holes of figure 20.22 (b). Each of the period
3 orbits has only one symmetry, and they have the other symmetry in
pairs.
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(a) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(b) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(c) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(d) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(e) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(f) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 20.18: All 4-cycles from (20.22): (a) Φ1111 (b) Φ0202, (c) Φ0011, (d) Φ0011,
(e) Φ1122, (f) Φ2211, (g) to (j) continued in figure 20.20.
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(a) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(b) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(c) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(d) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(e) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(f) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 20.19: All 4-cycles from (20.22) plotted in “Lagrangian” coordinates
{φt−1, φt+1}, in the order of figure 20.18. The 7-rectangle partition fig-
ure 20.15 (b), appropriate to {φt, φt+1} plots, is included only to guide the eye.
(a) Φ1111 is a “Laplacian” self-retracing 2-cycle (20.37). (b) Φ0202 is a “Lapla-
cian” self-retracing 2-cycle (20.38). (c) Φ0011 and its time reversal (d) Φ0011 map
into one cycle; (e) Φ1221 and its time reversal (f) Φ2211 map into one cycle; (g) to
(j) continued in figure 20.21.
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(g) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(h) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(i) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(j) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 20.20: Continuation of figure 20.18: (g) Φ1012, (h) Φ1012 (i) Φ0111, and (j)
Φ0111,
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(g) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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-0.4
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0.6

(h) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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-0.4
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0.0
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0.6

(i) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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0.6

(j) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6
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0.4

0.6

Figure 20.21: Continuation of figure 20.19 - the space reflection dual pairs: (g)
Φ0111 and its time reversal (h) Φ1011 map into space-reflection dual 4-cycles; (i)
Φ1012 and (j) Φ1012 map into space-reflection dual 4-cycles.

(a) (b) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 20.22: All period 4 orbits in the partition of (a) figure 20.4, and (b)
figure 20.15. The holes correspond to missing cycle-1 and cycle-2 points.
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(a) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(b) -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 20.23: (a) All periodic points that belong to the 1 (purple), 2 (blue) and
4 (red) orbits, plotted in “Hamiltonian” coordinates {φt, φt+1}. The period 1-
and 2-orbits fill the holes between period 4 orbits in the figure 20.22 (b). The
3 (green) orbits start a new grid, to be filled out by the period 6, 9, etc or-
bits. (b) All periodic points that belong to the period 4 orbits of figure 20.23
plotted in “Lagrangian” coordinates {φt−1, φt+1}. The 7-rectangle partition
figure 20.15 (b), appropriate to {φt, φt+1} plots, is included only to guide the
eye. The numbers of orbits are listed in (20.11).

2018-03-13 Predrag An aside, not even right, a failed attempt kept here only
for the record: going from the partition of figure 20.4 to the partition of
figure 20.15 we have translated the origin to φ̂t = φt − 1/2, so the map
(1.5) is now [

φ̂′t+1

φ̂′t

]
= A

[
φ̂t
φ̂t−1

]
− 1

2

[
0

s− 2

]
. (20.26)

I’m not sure why we would be allowed to drop such translational terms.
A cute fact is that Percival and Vivaldi [47] actually define the map (1.5)
on φt ∈ [−1/2, 1/2] interval, i.e., without the translation term in (20.26).
Such translations should not affect the map (it’s the same automorphism
of the torus, just in different coordinates) but I do not have a clean argu-
ment that they do not matter.

2018-03-15 Han We didn’t change the origin when the partition changed from
figure 20.4 to figure 20.15. The map is also not changed. What we did is
changing the boundary of the partition. So the map is still:[

φt+1

φt

]
= A

[
φt
φt−1

]
. (20.27)

2018-04-20 Predrag Currently figure 20.16 (b) does not map a border onto a
border within region D of figure 20.17 (a); it looks as though D would
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have to be cut horizontally into two halves, and even that does not com-
plete the task. So, sadly, the partition studied in this section is not gen-
erating, and (for time being?) we have to give up on the whole section.

20.2.1 Reduction to the reciprocal lattice

2018-03-18 Predrag Check in d = 1 whether (20.59) together with the inverse
Fourier transform (20.63) recovers any of your periodic orbits?

Does the circulant eigenvalue formula (20.51) explain your (20.19)?

2018-03-19 Predrag Does the inverse Fourier transform of the propagator in
(20.59) reproduce the usual d = 1 configuration Green’s function (1.136)?

2018-03-22 Han In d = 1, (20.59) can recover the periodic orbits. (20.59) can be
written as:

φ̂ = diag(λ)−1 m̂ , (20.28)

where λ is the eigenvalue of the damped Poisson matrix (20.49). Then we
have:

φ = U† diag(λ)−1U m , (20.29)

When d = 1, s = 3 and n = 4 (4-cycles),

diag(λ)−1 =


1 0 0 0
0 3 0 0
0 0 5 0
0 0 0 3

 (20.30)

Then the Green’s function for 4-cycle is:

g = U† diag(λ)−1U =
1

15


7 3 2 3
3 7 3 2
2 3 7 3
3 2 3 7

 (20.31)

which is same as (20.9).

Using (20.51) we can also get the result of (20.19).

2018-04-18 Predrag Can you plot the Fourier space (20.59) points φ̂k, m̂k cor-
responding to your periodic orbits of figure 20.23 (a)? Interpret what you
get?
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2018-04-18 Han φ̂k, m̂k for the periodic points of figure 20.23 (a):

M̂1111 =
[

0
√

2 eiπ/4 0
√

2 e−iπ/4
]
⇒ Φ̂ =

[
0

√
2 eiπ/4

3 0
√

2 e−iπ/4

3

]
M̂0202 =

[
0 −2 eiπ/2 0 −2 e−iπ/2

]
⇒ Φ̂ =

[
0 − 2

3 e
iπ/2 0 − 2

3 e
−iπ/2

]
M̂0011 =

[
0 − e−iπ/4

√
2

1 − eiπ/4√
2

]
⇒ Φ̂ =

[
0 − e−iπ/4

3
√

2
1
5 − eiπ/4

3
√

2

]
M̂0011 =

[
0 e−iπ/4

√
2

−1 eiπ/4√
2

]
⇒ Φ̂ =

[
0 e−iπ/4

3
√

2
− 1

5
eiπ/4

3
√

2

]
M̂1221 =

[
0 − eiπ/4√

2
3 − e−iπ/4

√
2

]
⇒ Φ̂ =

[
0 − eiπ/4

3
√

2
3
5 − e−iπ/4

3
√

2

]
M̂2211 =

[
0 e−iπ/4

√
2

3 eiπ/4√
2

]
⇒ Φ̂ =

[
0 e−iπ/4

3
√

2
3
5

eiπ/4

3
√

2

]
M̂0111 =

[
1/2 1/2 −3/2 1/2

]
⇒ Φ̂ =

[
1/2 1/6 −3/10 1/6

]
M̂0111 =

[
−1/2 −1/2 3/2 −1/2

]
⇒ Φ̂ =

[
−1/2 −1/6 3/10 −1/6

]
M̂1012 =

[
0 eiπ/2 2 −eiπ/2

]
⇒ Φ̂ =

[
0 eiπ/2

3 2/5 −eiπ/2
3

]
M̂1012 =

[
0 −eiπ/2 −2 eiπ/2

]
⇒ Φ̂ =

[
0 − eiπ/23 −2/5 eiπ/2

3

]
(20.32)

2018-04-18 Predrag The 0th Fourier component of M = 0111 equals m̂0 = 1/2,
as it should.

I would expect the time-reversal pairs to be the complex-conjugate pairs
in Fourier space, as C4 shift moves them in opposite directions.

2018-04-18 Han The Green’s function (20.59) that relates φ̂k to m̂k is:

φ̂ =


1 0 0 0
0 1

3 0 0
0 0 1

5 0
0 0 0 1

3

 m̂ (20.33)

If we shift the orbit to the left by one time step, each component of the
Fourier transform will be multiplied by the C4 cyclic group phase factor.
For a 4-cycle the phase factors are

e−i2πk/4 = (1, e−iπ/2,−1, e−i3π/2) = (1, i,−1,−i) . (20.34)

2018-04-18 Han The m̂ in (20.35) are transforming under the C4 shift by phase
factors (20.34). For example, the 1221 and 2211 which correspond to suc-
cessive periodic points in the same 4-cycle, have the correct Fourier trans-
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(a) 0.5 1.0 1.5 2.0 2.5 3.0
k
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4

|Mtilde|

(b) 0.5 1.0 1.5 2.0 2.5 3.0
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0.4

0.6

0.8

|Xtilde|

Figure 20.24: (a) The Fourier space points m̂k of all the periodic orbits with
period 1, 2 and 4. The x-axis is k and y-axis is the absolute value of m̂k. (b) The
Fourier space points φ̂k.

forms,

m =
[

1 −2 2 −1
]
⇒ m̂ =

[
0 − eiπ/4√

2
3 − e−iπ/4

√
2

]
m =

[
−2 2 −1 1

]
⇒ m̂ =

[
0 − e−iπ/4

√
2

−3 − eiπ/4√
2

]
(20.35)

2018-04-18 Han I plot the Fourier space points of all of the orbits of period 1, 2
and 4 in figure 20.24 using the absolute value of φ̂k and m̂k.

2018-04-18 Predrag My hunch is that we do not want to plot the absolute val-
ues of φ̂k. You might want to plot in the complex plane instead. We have
to review what Brilluoin zone means for 1D crystals. Mourigal, DeHeer
and Berger students presumably understand that...

20.3 Time reversal

For our main thrust on understanding both the forward and backward in time,
and the global temporal cat time-reversal symmetry, see sect. 5.4 Temporal cat
reversibility factorization.

2018-02-12 Predrag Can you plot the stretched domains for one step back in
time (inverse map)? The intersections of the past and future might help
you intuition, in the way staring at the figure following figure 1.2 in
Gutkin et al. [27] reveals the Smale-horseshoe structure.

Remember, our goal is to reformulate the problem in a global, Lagrangian
way that is explicitly invariant under time reversal.

2018-02-19 Predrag The flip across the φ1 = φ0 diagonal together with the re-
versal of the direction of evolution is the D1 symmetry that corresponds
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to the invariance of cat map under time reversal. There are at least two
kinds of orbits:

1. self-dual, here figure 20.5 (a) and (b), figure 20.6 (g), (h), (i) and (j)

• even period cycles have 0, 2, 4, · · · points on the diagonal
• odd period cycles have 1, 3, 5, · · · points on the diagonal (need

to plot odd period cycles to see that they always have at least
one point on the diagonal)

2. orbits that come in pairs, here figure 20.5 (c)↔ (d), (e)↔ (f)

3. There is also invariance of the cat map dynamics (1.118) spatial re-
flection flip across the φ1 = −φ0 anti-diagonal, together with mn →
−mn so the full symmetry is in some sense D1 ×D1.

• 1 copy, self-dual under both symmetries: figure 20.6 (h)
• Figure 20.5 (a)↔ (b), self-dual under time reversal
• Figure 20.5 (c)↔ (d) is self-dual under the second reflection
• 4 copies (need to get longer cycles to see examples)

4. However, as figure 20.11 illustrates, the partition is only in part in-
variant under the spatial reflection, resulting in some cycles missing
their spatial-reflection sisters:

• Figure 20.5 (e) and (f)
• Figure 20.6 (g) and (j)

2018-02-21 Predrag The time reversal symmetry fundamental domain is given
in figure 20.12 (b). One needs to describe the symmetry reduced dynam-
ics on the fundamental domain, as in ChaosBook.org Figure 11.7: “The
bimodal Ulam sawtooth map restricted to the fundamental domain.”

2018-04-08 Han I have plotted in figures 20.19 and 20.21. all 4-cycles in ‘La-
grangian’ coordinates {φt−1, φt+1}, in the unit-square face centered par-
tition of figure 20.17. The periodic orbits in this partition are given by
(20.23) (which seems to be (20.22) modulo some cyclic permutations).
Note that sometimes different solutions appear to have the same orbit,
and that sometimes points belonging to different solutions appear in the
same position. The reason is that given the field values φt−1 and φt+1

we cannot decide φt without knowing the mt. For example, the points
{φ1, φ3} for the first two solutions Φ1111 and Φ1010 are the same.

I also plotted all of the solutions in figure 20.23 (b). There are fewer points
than figure 20.23 (a), because some of the points coincide. The 2-cycle and
the fixed point solutions

Φ11 =
1

15

[
−3 3

]
, Φ22 =

1

15

[
−6 6

]
Φ0 =

[
0
]

(20.36)

also coincide with points of the 4-cycle solutions.
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2018-04-05 Predrag In the “Lagrangian” coordinates {φt−1, φt+1} formulation
the 2-cycles are self-dual, as in (20.37), and the fixed point is very special,
as it sits in the maximally invariant subspace.

2018-04-05 Predrag Everything works like charm in the “Lagrangian” coordi-
nates {φt−1, φt+1} formulation, except that you should fix a few cycles
in figure 20.23 (b), figures 20.19 and 20.21: so far you are plotting peri-
odic points in Percival-Vivaldi face centered unit square non-partition,
rather than our 7-region partition. Please replace all plots by plots with
the 7-rectangle partition of figure 20.15 (b) indicated, as in figure 20.18.

If
Φ1111 =

1

15

[
5 5 −5 −5

]
then points on the orbit are (ignoring the 1/15 factor) a self-retracing 2-
cycle

(φt−1, φt+1) = {(−5, 5), (5,−5), (5,−5), (−5, 5), } = Φ11 + Φ11
> . (20.37)

If
Φ0202 =

1

15

[
0 −10 0 10

]
then points on the orbit are (ignoring the 1/15 factor) a self-retracing 2-
cycle

(φt−1, φt+1) = {(10,−10), (0, 0), (−10, 10), (0, 0)} = Φ02 + Φ02
> , (20.38)

where ‘+’ stands for string concatenation.

All this is very instructive about how “Laplacian” graphs implement
time-reversal invariance. My hunch is that the correct formulation is a
“Laplacian” representation such as (13.54). Briefly, B is the (directed) in-
cidence matrix of our directed graph G transition graph, giving us our
7-rectangles partition, and A is the adjacency matrix of (undirected) G.

(Read also sect. 13.1.3.)

That gives us a reformulation of directed graphs as undirected graphs,
and maybe we will know how to do it directly, rather than via (to me
unappealing) Ihara zeta functions route.

We still have to take care of space-reversal invariance. I think we need to
go to the fundamental domain figure 20.26 (a).

2018-04-10 Predrag My hunch is that we need a simpler transition graph than
figure 20.17 (b), hopefully an undirected graph. Maybe we do not need
a transition graph at all, or we need to formulate the graph is the 2-step
“Lagrangian” coordinates {φt−1, φt+1}.
Can you list the pruned (inadmissible, forbidden) strings in the alphabet
(20.21)? Presumably only blocks of period-2 and 3 are needed, and they
are hopefully explicitly time-reversal invariant.
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2018-04-12 Han I tried to get the pruned string from the transition graph fig-
ure 20.17. The pruned strings for blocks of period-2 are of two types:

12, 21, 12, 21, 22, 22 , (20.39)

but I’m not so sure...

Compare with (20.36); of the 5× 4− 6 = 14 remaining non-repeating ad-
missible 2-blocks, the period-2 periodic points 11, 11, 22, 22, are realized,
but not the 12, 21, 12, 21, 01, 10, 01, 10 and 02, 20, 02, 20 2-cycles.

2018-04-18 Han The three types of new period-3 pruned blocks from transition
graph figure 20.17 are:

002, 200, 002, 200,

102, 201, 102, 201,

202, 202 , (20.40)

new in the sense that the remaining blocks contain (20.39) blocks of period-
2, which are pruned 2-blocks:

122, 121, 120, 121, 122, 112, 112, 121, 122

122, 121, 120, 121, 122, 112, 112, 121, 122

212, 221, 222, 212, 211, 210, 211, 212, 222, 221, 220, 221, 222

212, 221, 222, 222, 221, 220, 221, 222, 212, 211, 210, 211, 212

021, 022, 021, 022, 012, 012 . (20.41)

Length-2 and -3 pruned blocks form space-reflection and time-reversal
invariant sets. We expect that each such sets gets replaced by one pruning
block in the fundamental domain of figure 20.25 (b).

2018-04-12 Predrag Lets hope that there are no new period-4 pruned block’s.

2018-04-11 Predrag Maybe in the “Lagrangian” coordinates {φt−1, φt+1} we
need to recode (20.22) 4-cycles, so I tried summing the pairs of successive
shifts:

Φ1111 ⇒ 2020 , Φ0202 ⇒ 2222

Φ0011 ⇒ 0101 = Φ0011 ⇒ 0101

Φ1221 ⇒ 1010 = Φ2211 ⇒ 0101

Φ0111 ⇒ 1001 , Φ1011 ⇒ 1100

Φ1012 ⇒ 1111 , Φ1012 ⇒ 1111 . (20.42)

What that does is to replace the shifts coded by alphabet (20.21) by av-
erages (modulo factor 1/2) of pairs of successive shifts. Everybody is
self-dual under time, and the last two pairs are related by space reflec-
tions, as it should be. However (c,d) should not be the same as (e,f), and
(i,j) is already self-dual under both reflections, so this is recorded here
just as another failed attempt to understand undirected graphs.
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2018-04-12 Han I have replaced the plots in figure 20.23 (b), figures 20.19 and 20.21.
The solutions I used are in (20.22). Note that for this partition, in order to
decide whether a solution is admissible we only need to check whether
{φt−1, φt} (not the Lagrangian coordinates {φt−1, φt+1}) is in the parti-
tion. So we can see that some of the points are out of the partition. Ac-
tually, since we don’t check if the Lagrangian coordinates are in the par-
tition, I probably shouldn’t put the partition in the figure. If we want to
let the Lagrangian coordinates to be in the 7-region partition, we will be
using another partition in which the solutions are different from (20.22).

2018-03-22 Predrag I think you have the spatial inversion fundamentally nailed.
What about the transition graph?

2018-04-27 Predrag Continuing on the (13.52) theme, we also transform the
identity (1.2), noted by string people, to Percival-Vivaldi coordinates:

L′ =

[
−1 2
1 0

] [
1 1
0 1

] [
−1 2
1 0

]
=

[
1 −1
0 1

]
L′> =

[
−1 2
1 0

] [
1 0
1 1

] [
−1 2
1 0

]
=

[
−1 4
−1 3

]
, (20.43)

so

L′L′> =

[
1 −1
0 1

] [
−1 4
−1 3

]
=

[
0 1
−1 3

]
.

Under the similarity transformation, the transpose (time reversal?) struc-
ture of (1.2) is lost, so this transpose structure (13.54) does not seem to
play nice with symplectic transformations.

2018-02-11 Predrag In (the current draft of) Gutkin et al. [27] I wrote “The
Adler-Weiss Markov partition for the Arnol’d cat map [1–3] utilizes the
stable / unstable manifold of the fixed point at the origin to partition
the torus into a 3-rectangles generating partition (see, for example, De-
vaney [14, 22]). It is a subshift of finite type (3 symbols alphabet Ā, with
a finite grammar), or a 5 symbols full shift.”

This is discussed in 2016-06-02 sect. 1.3.8 notes on Creagh [14], Quantum
zeta function for perturbed cat maps. Creagh explains both the 3-letter and
the 5-letter alphabet in ref. [14] Sect. III. A. The classical map. Robinson [51]
goes through the construction clearly, step by step. The 3-rectangles gen-
erating partition is constructed for the antisymplectic map C given in
(6.114) and (5.171), whose double iteration is the Arnold cat map - orbits
of the cat map are then coded by sequences whose period is even. I do not
see how this would result in our pretty shifts 3-letter alphabet (20.13).

2018-03-26 Predrag I have a hunch that the partition can be related to the La-
grangian (the generating function).

Area-preserving maps that describe kicked rotors subject to a discrete
time sequence of angle-dependent impulses P (xn) of form (9.87), (??)
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have a generating function (6.83)

F (qn, qn+1) =
1

2
(qn − qn+1)2 − V (qn)2 , P (q) = −dV (q)

dq
. (20.44)

This generating function is the discrete time Lagrangian for a particle
moving in potential V (x). Eq. (9.87) says that in one time step ∆t the
configuration trajectory starting at φn reaches φn+1 = φn + pn+1∆t, and
(??) says that at each kick the angular momentum pn is accelerated to
pn+1 by the force pulse P (xn)∆t.

2018-04-12 Predrag My hunch is that to go from the time evolution (Hamil-
tonian), initial point formulation to the Lagrangian, end points formula-
tion, we will have to do it not by groping blindly, but by the standard
Hamiltonian → Lagrangian transformation. The Legendre transforms
between Hamiltonian and Lagrangian generating functions of sect. 9.2
are of form (this formula might be wrong in detail!)

H(qk, pk) = pkqk+1 − L(qk, qk+1) , (20.45)

where qk+1 is implicitly defined by pk = ∂qkL(qk, qk+1).

20.4 Reduction to the fundamental domain

2018-03-07 Predrag While the original cell has edges of length 1, the quar-
ter cells with edges of length 1/2 are already set up for a reduction to
1/4 fundamental domain, whose sides are the diagonal and the anti-
diagonal. That might be the justification for halving the side-strips as
you have done: the cutting line goes through the length 1/2 lattice.

2018-03-11 Predrag Figure 20.25 (b) is cute. To me it suggests a 3-node (A,B,C)
transition graph, with alphabet to be figured out.
(a) 1111→ A ? (on both space and time symmetry lines) and
(b) 0202→ C (space, time flip symmetric) are now fixed points.
(c) 0011 and (d) 0011 (2 points on space symmetry line) are now one 2-
cycle→ AB,
(e) 1122 and (f) 2211 (on space symmetry line) are now one 2-cycle →
A?B?,
(g) 1012 and (h) 1012 (time flip symmetric) are now one 2-cycle→ A?B?,
(i) 0111, and (j) 0111 (time flip symmetric) are now one 2-cycle → AC.
This 3-partitions alphabet is not the right alphabet - still need to work
out the the corresponding 5-letter transition graph links alphabet.

2018-03-15 Han The fundamental domain figure 20.25 (b) symbolic dynamics
(a) 1111→ AB (on both space and time symmetry lines, see figure 20.28 (a))
and
(b) 0202→ C (space, time flip symmetric) are now fixed points.
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(a) (b)

Figure 20.25: Figure 20.14 (b) continued. (a) Almost correct time reversal and
space reflection symmetric partition - the correct one is figure 20.15 (b). (b)
Three triangles/rectangles fundamental domain partition. Could it be cuter?

(a) (b)

Figure 20.26: (a) The labeled space inversion fundamental domain partition.
(b) The 1-step orbit after time reversal.
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(a) (g)

Figure 20.27: (a) The space inversion operation. Point (−8/15, 3/15) happens to
be a periodic point of period 4, cycle 1012→ CAAB, see (20.18) (g,h). Actually,
any fractional coordinate belongs to a periodic orbit. The orange line is here
just to confuse you; under inversion (3/15,−8/15) maps into (−3/15, 8/15)
(not drawn). (g) The two corresponding 4-cycles reduced to a single 4-cycle
in the space inversion fundamental domain, 1012 and 1012→ CAAB.

(c) 0011 and (d) 0011→ AAAB,
(e) 1122 and (f) 2211→ ABBB,
(g) 1012 and (h) 1012 (time flip symmetric)→ AABB,
(i) 0111, and (j) 0111 (time flip symmetric)→ AACC.

2018-03-22 Han If we reduce the partition by the spatial inversion symme-
try, the fundamental domain is shown in figure 20.26 (a). Note that the
boundary {0, 0} → {∞,−∞} goes to {0, 0} → {−∞,∞} after inversion.
So for the boundary I only keep the points on ({0, 0}, {−∞,∞}) half-
diagonal (the thick black line in figure 20.26 (a)). For example, consider
the orbit of 1111. This orbit is shown in figure 20.28 (a). The inversion
will move the point 1

3{1,−1} to 1
3{−1, 1}, so I only keep the 1

3{1,−1} and
discard 1

3{−1, 1} which is on the dashed line. Then this orbit become a
2-cycle AB.

From figure 20.28 we can see that the rest of the cycles in figures 20.18
and 20.20 are:

(a) 1111→ AB
(b) 0202→ DF ,
(c) 0011 and (d) 0011→ AAAB,
(e) 1122 and (f) 2211→ BBCA,
(g) 1012 and (h) 1012→ CAAB,
(i) 0111, and (j) 0111→ AAFD.
Now we have two 2-cycles but the rest of the 4-cycles are still 4-cycles.
The two 2-cycles (blue points in figure 20.23) in the full domain are now
fixed points.
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Figure 20.28: The orbits in the fundamental domain of 4-cycles (a) 1111→ AB
in the fundamental domain. (b) 0202 → DF , (c) 0011 and 0011 → AAAB, (e)
1122 and 2211 → BBCA, (g) 1012 and 1012 → CAAB, (i) 0111, and 0111 →
AAFD. Compare with figures 20.18 and 20.20.

2018-03-22 Han If we have a orbit {φn−1, φn} → {φn, φn+1}, the time reversal
will change this orbit to {φn+1, φn} → {φn, φn−1}. Do a flip across the
diagonal we will get the orbit after time reversal but the direction of the
orbit also changed, as shown in figure 20.26 (b). I guess this is why the
time reversal is more tricky...

2020-01-10 Predrag Stewart and Gökaydin [52] Symmetries of quotient networks
for doubly periodic patterns on the square lattice, (click here).

20.5 Spatiotemporal cat partition

Consider a d-dimensional hypercubic lattice, infinite in extent, with each site
labeled by d integers z ∈ Zd. The d-dimensional spatiotemporal cat is defined by
the discrete screened Poisson equation

(−2 + s− 2d)φz = mz , mz ∈ A , (20.46)
A = {−(s+ 1)/2, · · · ,−1, 0, 1, 2, · · · , (s+ 1)/2} ,

where φz ∈ [−1/2, 1/2)2 (compare with (20.157). It is a convention that we do
not use, as that is not defined on the integer lattice). The map is smooth and
fully hyperbolic for integer s > 2d.
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For a discrete d-dimensional Euclidean spacetime the Laplacian is given by

2φn ≡ φn+1 − 2φn + φn−1 (20.47)
2φn1n2

≡ (21 + 22) φn1n2
(20.48)

21 φn1n2
= φn1+1,n2

− 2φn1n2
+ φn1−1,n2

22 φn1n2
= φn1,n2+1 − 2φn1n2

+ φn1,n2−1

in d = 1, 2, · · · dimensions.
What role do the spatiotemporal neighbors play? The local strength of “tur-

bulence” at each site is parameterized by the stretching parameter s. The effect
of neighbors is to “calm down" the local turbulence by distributing the stretch-
ing parameter s− 2 along the d directions in (20.46), effectively decreasing it as
s− 2→ s/d− 2,

d∑
j=1

(−2j + s/d− 2)φz = mz . (20.49)

An [L×L] circulant matrix

C =



c0 cL−1 . . . c2 c1
c1 c0 cL−1 c2
... c1 c0

. . .
...

cL−2
. . . . . . cL−1

cL−1 cL−2 . . . c1 c0

 , (20.50)

has eigenvectors (discrete Fourier modes) and eigenvalues Cvk = λkvk

vk =
1√
L

(1, εk, ε2k, . . . , εk(L−1))T , k = 0, 1, . . . , L − 1

λk = c0 + cL−1ε
k + cL−2ε

2k + . . .+ c1ε
k(L−1) , (20.51)

where
ε = e2πi/L (20.52)

is a root of unity.
For the determinant of a circulant matrix, see here. For the “definitive book

on circulants,” see Alun Wyn-jones. It is long - I have not checked whether it
is good.

The unitary matrix U obtained by stacking eigenvectors (20.51) into a Van-
dermonde matrix is the discrete Fourier transform

Ukj =
1√
L

e2πikj/L , (20.53)

which diagonalizes any circulant matrix C,

U†CU = diag(λ) .
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The eigenvalues of the [L×L] left-shift matrix

C =


0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1
1 0 0 0 0

 (20.54)

that shifts the orbit of an L-cycle to the left by one step and generates the cyclic
group CL are

(λk) = (e−i2πk/L) = (1, e−i2π/L , e−i3π/2, · · · , e−i2π(L−1)/L) . (20.55)

Thus, if the orbit is shifted to the left by one step, each component of its Fourier
transform will be multiplied by the CL cyclic group phase factor. That implies
that for any cyclic-permutation invariant set, such as (11.10), the set of periodic
pointsMp that belong to a given p-cycle, one only needs to specify the magni-
tude of kth Fourier component, the rest is generated by cyclic transformations
2

Take a cycle point block M = 1221 and stack its cyclic permutations (the
successive periodic points in its 4-cycle) M = 2211, · · · , into the circulant matrix
(20.50),

[M]1221 =


1 −2 2 −1
−2 2 −1 1
2 −1 1 −2
−1 1 −2 2

 . (20.56)

Its discrete Fourier transform is given by circulant matrix eigenvalues (20.51):

M̂1221 =
1

2


1− 2 + 2− 1

1− 2ε+ 2ε2 − 1ε3

1− 2ε2 + 2− 1ε2

1− 2ε3 + 2ε2 − 1ε

 =
1

2


0

−(1 + i)
6

−(1− i)

 =


0

− 1√
2
ε1/2

3
− 1√

2
ε−1/2

 .
It suffices to compute the Fourier transform of a single periodic point, as the
rest, obtained by the CL shifts, is generated by multiplicaton by phase factors
(20.55).

For example, the Fourier transformed cycle points M̂1221 and M̂2211,

M̂2211 =
1

2


−2 + 2− 1 + 1

−2 + 2ε− 1ε2 + 1ε3

−2 + 2ε2 − 1 + 1ε2

−2 + 2ε3 − 1ε2 + 1ε

 =
1

2


0

−(1− i)
−6

−(1 + i)

 =


0

− 1√
2
ε−1/2

−3
− 1√

2
ε1/2

 .
2Predrag 2018-04-21: Not true - need to specify the relative phases between successive Fourier

components, unless we can prove that each cycles has unique set of Fourier component magni-
tudes.
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which correspond to successive periodic points in a 4-cycle, have the correct
Fourier transforms,

M1221 ⇒ M̂1221 =
[

0 − 1√
2
ε1/2 3 − 1√

2
ε−1/2

]
CM1221 = M2211 ⇒ e−i2πk/4M̂1221,k = M̂2211 =

[
0 − 1√

2
ε−1/2 −3 − 1√

2
ε1/2

]
.

The eigenvalues of the damped Poisson matrix (20.49) in d = 1 are

λk = s− εk − ε−k = s− 2 cos (2πk/L) . (20.57)

In d dimensions the discrete Fourier transform is no longer a 2-index matrix,
but it acts tensorially,

Ukz = Uk1k2···kd,nd···n2n1 =
1√

L1 · · ·Ld
e2πi

∑d
j=1 k

′
jnj/Lj . (20.58)

As the d translations commute, U diagonalizes the d-dimensional (damped)
screened Poisson equation (20.49) yielding the Fourier-transformed field for
each discrete d-dimensional Fourier component

φ̂k =
1

2d− s+ 2
∑d
j=1 cos(2πkj/Lj)

m̂k , (20.59)

where k = (k1, k2) , φ̂ = Uφ , m̂ = Um , and U is the discrete Fourier transfor-
mation (20.58).

2018-03-05 Predrag Not sure you have ever worked through these formulas,
so here they are as exercise 1.1 and exercise 1.2. Can you go through
them, and fix both the formulation of the problems, and current sketches
of the solutions?

2018-03-08 Han Wrote up solution 1.1 and solution 1.2. I have compared (1.149)
with the Green’s function of 4-cycles (20.9) for s = 3, but prefer to keep
the actual calculations secret. Trust me: each cycle point matches.

Disposed of Predrag’s wild guess (1.139) for the d = 2 Green’s function.
Wrote up solution 1.3.

2018-03-11 Predrag In d = 2 dimensions any solution Φ uniquely recovered
from its symbolic representation M,

φz =
∑
z′∈Z2

gzz′mz′ , gzz′ =

(
1

−2 + s− 4

)
zz′

, (20.60)

where gzz′ = gnt,n′t′ , z = (nt), z′ = (n′t′) ∈ T 2
[L1×L2], is the Green’s func-

tion for the 2-dimensional (damped) screened Poisson equation. A lattice
state M is admissible if and only if all φz given by (20.60) fall into the
generating partition.
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TakeR = R[L1×L2] to be a rectangular region. Any L×T block of interior
symbols M = {mz ∈ A0|z ∈ Z2

LT},

Z2
LT = {z = (n, t)|n = 1, . . . , L, t = 1, . . . T} ,

is admissible and generates a invariant 2-torus solution. Its coordinate
representation Γ = {φz, z ∈ Z2

LT}, is obtained by taking inverse of (20.46):

φz =
∑

z′∈Z2
LT

g0
zz′mz′ , mz′ ∈ A0, (20.61)

where g0
zz′ is the corresponding Green’s function with periodic boundary

conditions. The block M = {mnt ∈ A , (n, t) ∈ Z2} can be used as a 2-
dimensional symbolic representation of the lattice system state.

2018-03-15 Han I have found a solution of the Green’s function in 2-dimensional
lattice in Morita [46] Useful procedure for computing the lattice Green’s func-
tion - square, tetragonal, and bcc lattices. Our Green’s function should be:

gl′t′,lt =
1

π2

∫ π

0

dy

∫ π

0

dz
cos[(l − l′)y] cos[(t− t′)z]

s− cos y − cos z
. (20.62)

I threw this to Mathematica and it told me it’s a hypergeometric function.
Maybe it can be written in a easier form... I’m still trying.

2018-03-15 Predrag I had read Morita [46], and a number of similar papers, see
sect. 6.5 Green’s blog. We had used (20.62) in our paper [27], see (6.45). I
would be very impressed if Mathematica fetched this bone you threw at
it, and brought back anything intelligent. When you read this literature,
be alert for what boundary conditions they use. We only need the peri-
odic bc. Any other bc, such as Dirichlet, breaks translation invariance,
and makes evaluation of Green’s functions a very difficult problem.

I’m hoping we can simply verify a simple guess (the wrong guess (1.139)
was not it), for any d, that would be so much simpler to write up.

2018-03-16 Predrag The bold and reckless proposal of 2018-03-05, 2018-03-11
Predrag continued: I believe we have the lattice Green’s functions in d
dimensions nailed.

• consider a d-dimensional discretized torus, with (n1, n2, ..., nd) points
along each direction

• for each lattice site z pick admissible block {mz} allowed by our
generating partition for given s

• Do the d-dimensional discrete Fourier transform of our (damped)
screened Poisson equation. This yields the Fourier-transformed field
for each discrete d-dimensional Fourier component, where φ̂ = Uφ , m̂ =
Um , and U is the discrete Fourier transformation (a stack of Fourier
eigenfunctions).
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• Then get the field in the original configuration space by the inverse
Fourier transform (relax - it is just a matrix multiplication)

φ = U†φ̂ . (20.63)

I’ve been always asking myself what would a Fourier transform of
a periodic orbit orbit look like, and what it would mean. Well, now
we can plot (φ̂k, φ̂k+1) for each periodic orbit p, and ponder it.

(Han, continue at your leisure:)

2018-03-05 Predrag With period-5 I expect that you will find orbits that have
only one or no symmetries.

2018-03-18 Predrag As illustrated in figure 20.16 (a), dynamics commutes with
the spatial reflection σ (across anti-diagonal), while time reversal will re-
quire extra thinking. Why don’t you first implement symmetry reduction
for the spatial reflection σ, with the fundamental domain the partition
being half above the anti-diagonal in figure 20.25 (a), and we postpone
figure 20.25 (b) for later?

2018-03-05,2018-03-18 Predrag I have flashed out in the above the bold and
reckless proposal for symbolic dynamics in d dimensions. We probably
do not need the d = 2 Green’s function in configurations space, as all
periodic orbits can be computed directly in the momentum space, then
Fourier transformed.

2018-03-22 Han I think the operation corresponding to the spatial reflection
{φn−1, φn} → {−φn−1,−φn} is not the reflection σ across the anti-diagonal
but the rotation of π about the origin as shown in figure 20.27 (a).

2018-03-22 Predrag I might be wrong, but I would not go for a rotation inter-
pretation - I think it is identical to the parity operation in case at hand.
φt ∈ T 1 is the only phase space coordinate at lattice site t. Parity sends
φt → −φt, mt → −mt. It is a symmetry of the equations of motion, see
(20.8) for the time-forward 2D version, or (20.46) for the d = 1 lattice for-
mulation. To be able to rotate, you need to think of φt ∈ (−∞,∞) as
embedded in 2 or 3 dimensions. That is motivated by our 2D plots, but
not necessary.

I replaced “rotation” by “inversion” in your notes - if I am wrong, we can
easily revert the commented-out parts.

2018-03-05 Predrag In d = 2 case compute the eigenvalues, eigenvectors for
s = 5 and the transition graph (I think you already have them). Then
you can test it by generating a bunch of admissible [2×2] or [3×2] or
[4×2] blocks. The number of distinct ones can be reduced by reflection
symmetries. It is not clear to me which ones are admissible, as yet, so you
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can generate all, solve by inverting corresponding the doubly-periodic 2-
tori Toeplitz (tensor) matrix→Green’s function which gives you doubly-
periodic lattice states. Then you can check which ones are within your
Adler-Weiss partition.

2018-03-29 Han In d = 2 dimensions the Green’s function gzz′ = g`t,`′t′ , z =
(`t), z′ = (`′t′) ∈ T 2

(n1,n2) is a [3 × 3] × [3 × 3] tensor. Using the tensor
Fourier transform (20.58), I calculated several periodic [3×3] blocks, with
z = (`t), z′ = (`′t′) ∈ T 2

(3,3). For example, the symbol blocks and the
corresponding 9 field values of two admissible 2-torus states are, in the
notation of (11.11),

M1 =

 1 0 0
0 1 0
0 0 1

⇒ Φ1 =
1

14

 6 4 4
4 6 4
4 4 6

 (20.64)

M2 =

 1 0 0
0 1 2
0 0 1

⇒ Φ2 =
1

14

 8 6 7
7 9 12
6 6 9

 (20.65)

In this calculation I used the Percival-Vivaldi partition of figure 1.2, with
0 ≤ x < 1, and s = 5.

As the blocks are doubly periodic, a single prime 2-torus p represents all
vertical and horizontal cyclic permutations of the corresponding symbol
block Mp. Furthermore, by lattice symmetries, Mp related by reflection
and axes interchange symmetries are equivalent, (and -not sure of this-
by the site symmetries, also internally space and time reversed) states are
equivalent.

In d = 1 dimension, the Percival-Vivaldi partition alphabet is an s =
(s − 2) + 2 letter alphabet (20.18). It has been shown in Gutkin et al. [27]
that in d = 2 dimensions the Percival-Vivaldi partition s+ 3 = (s− 4) + 7
letter alphabet A = A0 ∪ A1 can be split into into the interior A0 and
exterior A1 alphabets

A0 = {0, . . . , s− 4}, A1 = {3, 2, 1} ∪ {s−3, s−2, s−1} . (20.66)

For example, for s = 5 the interior, respectively exterior alphabets are

A0 = {0, 1}, A1 = {3, 2, 1} ∪ {2, 3, 4} . (20.67)

If all mz belong to A0 then M = {mz|z ∈ Z2} is a full shift (11.6). In
particular, the above M1 is admissible, while M2 could have been pruned
(in this case the explicit calculation shows it is admissible).

2018-03-29 Predrag Make sure you understand the alphabet (20.185). My al-
phabet (20.46) might be wrong; for s large the number of letters does
grow as s, but I do not quite see what corresponds to theA1 letters. It has
something to do with distributing s between d dimensions, as in (20.49).
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2018-03-29 Predrag We’ll have to think of how to visualize the states Φ, some-
thing analogous to figure 20.18. There is no preferred time evolution di-
rection, so it does not make sense to connect them by lines. But the states
will align on lattices, as in figure 20.23.

2018-03-29 Predrag Keeping in mind where we want to go with this, might
be better to use spatially-symmetric, unit-square face centered partition
(20.46), rather than the unit-square corner (vertex?) partition of figure 1.2.

2018-03-30 Predrag regarding your Tuesday, April 3 Diffusion confusion pre-
sentation: use it as a motivation for learning some theory applicable to
your spatiotemporal cat project. Do not do too much in the class, just
work out a few things in full detail (otherwise nobody learns anything).

Read ChaosBook Chapter 24 Deterministic diffusion. You also might find
my online lectures, Week 13 helpful. Maybe also have a glance at Chaos-
Book Appendix A24 Deterministic diffusion. As Dan has already covered
everything, you can pick and chose: maybe redo the 1-dimensional ex-
ample sect. 24.2 Diffusion induced by chains of 1-dimensional maps using the
discrete Fourier that you are using for cat maps? Doing some nontrivial
partitions, as in figure 24.4 of example 24.4?

My Group Theory course birdtracks.eu/courses/PHYS-7143-17 might
be of interest. Cyclic group Cn shows up in week 2 Examples 2.3 and 2.4.

Because of the reflection symmetries, the cat map and spatiotemporal
cat symmetry is actually not Cn, but the dihedral group Dn, whose irre-
ducible representations are not the complex 1-dimensional exp(2πikj/`),
but the real 2-dimensional (cos(2πikj/`), sin(2πikj/`), see week 4 Exer-
cises 4.3 and 4.4.

The most important for you is week 8 Space groups. The symmetries
of our spatiotemporal cat are summarized by figure 8.1 and in the exer-
cise 8.1. Band structure of a square lattice. The elastic (not chaotic) cousin of
spatiotemporal cat is described in sect. 8.2 Elastodynamic equilibria of 2D
solids.

The whole course is a subversion repository that I can give you access to,
if you want to reuse any of the LaTeX, or see the solution sets.

2018-04-05 Han I have calculated all admissible [2×2] periodic blocks in the
unit-square face centered partition, − 1

2 ≤ φn1n2
< 1

2 , for s = 5. The
alphabet is:

A = {−4,−3,−2,−1, 0, 1, 2, 3, 4} (20.68)

Using the coordinates {φl−1,t, φl,t−1, φl,t} to represent a point in the block,
I plot all periodic points of the admissible blocks in a 3-dimensional unit
cube, as shown in figure 20.29.
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(a) (b)

Figure 20.29: (a) All of the points in the periodic [2×2] blocks. The coordinates
of each points are φl−1,t, φl,t−1 and φlt. (b) The front view of (a). Clearly these
points are arranged in lines.

2018-04-05 Predrag Were there any inadmissible blocks in the unit-square face
centered partition? Or are you using the transition graph for s = 5 to
generate only admissible blocks?

2018-04-05 Predrag The visualization of figure 20.29 is quite interesting. All
periodic points φn1n2

have the same denominator?

2018-04-05 Predrag If you want to have a 2-dimensional visualisation for each
block analogous to (20.64), color the symbol Mj [L1×L2] block with 9
discrete color alphabet A from (20.68), and the corresponding state Φj

[L1×L2] block with colors chosen from a continuum color strip.

2018-04-05 Predrag As this is a linear problem, you can also represent close-
ness of two [L1×L2] blocks by using this coloring scheme for M2 − M1

and Φ2 −Φ1. To find the closest “distance” between 2-tori, you will have
to go through all cyclic permutations of the second one to align it opti-
mally (or, if you understand ChaosBook course, you’ll have to ‘slice’).

For pairs of distinct 2-tori which share the same region ofmz’s, or a single
2-torus in which the same region of mz’s appears twice, the states φz in
the center of the region should be exponentially close, in order to argue
that they shadow each other.

This is illustrated in ref. [27], but there we do not use the linearity to
actually subtract Φ2 − Φ1.

2018-04-05 Predrag Mark the lattice point z with the minimal value of |x(2)
z −

x
(1)
z | on above graphs, and in the text state the minimal value of |x(2)

z −
x

(1)
z |.
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You can also state the mean Euclidean (or L2) distance between the two
invariant 2-tori:

dΦ2−Φ1 =

(
1

LT

∑
z

(x(2)
z − x(1)

z )2

)1/2

, (20.69)

or distance averaged over the lattice points restricted a regionR.

An aside: not sure that the Euclidean distance is the correct one. A better
one might be the overlap, with the Green’s function sandwiched some-
thing like

Φ2
>gΦ1

Φ2
>Φ1

(20.70)

correctly normalized (as it stands, it is dimensionally wrong - is this “fi-
delity”?), and maximized by going through all cyclic permutations of Φ2

(to align it optimally, or by ‘slicing’). The overlap is maximal for Φ2 = Φ1,
and falls off exponentially, depending on how much of the two invariant
2-tori differ.

The correct distance really should be the difference between two actions
- that is symplectically invariant.

2018-04-05 Han This problem probably is not important. And I might be wrong.
In the [2×2] blocks if we use the unit-square corner partition, we have the
symbol block and the corresponding 4 field values:

M =

(
1 1
1 1

)
⇒ Φ =

(
1 1
1 1

)
(20.71)

which is not admissible, since for the unit-square corner partition the
range of the field values is 0 ≤ φlt < 1. But if all mz belong toA0 = {0, 1}
then M = {mz|z ∈ Z2} should be a full shift (according to (20.185)).

2018-04-05 Predrag This, I think, is important (search for ‘Manning’ in this
blog), and we have to understand it. I think you have to define all par-
tition regions including the borders, in this example as 0 ≤ φlt ≤ 1, and
then take care of over-counting the border points, such as (20.71) by quo-
tienting the zeta function as in (??).

20.6 Running blog

This section contains recent entries, before they are moved to the appropriate
specific section above.

2018-04-25 Predrag Moved all our time-reversal invariant formulation mus-
ings into sect. 20.3 Time reversal.
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Figure 20.30: (a) The 3-rectangle rhomboid corner partition mapped half a
step forward and half a step backward in time. (b) The partition mapped one
step forward and one step backward in time. The black dashed lines are the
3-rectangle partition. The red lines are the partition mapped half a step or one
step forward in time. The blue lines are the partition mapped half a step or one
step backward in time.

2018-05-10 Han The Percival-Vivaldi cat map and the corresponding "square
root" matrix are:

B = C̃2 =

[
0 1
−1 3

]
, C̃ = S−1CS =

[
−1 1
−1 2

]
. (20.72)

I plotted the 3-rectangle partition that mapped one step forward and one
step backward using the matrix C̃ (which can be seen as half a step for-
ward and backward with Percival-Vivaldi cat map). Figure 20.31 is the
partition mapped half a step forward in time. And figure 20.32 is the par-
tition for half a step backward in time. Figure 20.33 is the overlap of the
two partitions.

2018-05-10 Predrag Is it interesting to see the explicit form of the unimodular
transformation S in (20.72)?

Figure 20.31, figure 20.32 and Figure 20.33 are presumably partitioned in
too man subregions.

2018-05-10 Han From figure 20.33 we can see that the overlap of the figure that
mapped half a step forward and backward is not symmetric about the
diagonal x1 = x0. Actually in figure 20.30 we can see that the partition
that mapped half a step forward and backward are symmetric about the
antidiagonal x1 = −x0 while the partition that mapped one step forward
and backward in figure 20.30 (b) are symmetric about the diagonal x1 =

x0. The reason is that the map C̃ has a negative eigenvalue that flips the
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Figure 20.31: (a) and (b) are the partition that mapped half a step forward in
time. (c) The mapped partition translated back to the original unit area.
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Figure 20.32: (a) and (b) are the partition that mapped half a step backward in
time. (c) The mapped partition translated back to the original unit area.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20.33: The overlap of figure 20.31 (c) and figure 20.32 (c).
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Figure 20.34: (a) The generating partition tiling the square lattice. (b) The
flipped partition.

partition in the direction of stable manifold. If we use a partition that
is symmetric about antidiagonal x1 = −x0, perhaps the overlap of the
half a step forward and backward will be symmetric about antidiagonal
x1 = −x0. But I’m not sure if this is what we want...

2018-05-10 Predrag You are starting from figure 20.32 (a) dotted lines partition
(ie, figure 1.9 (a) that I had pulled out of a hat). But the literature sug-
gests that for the golden cat map (6.114) Adler-Weiss partition might look
something like Exercise 8.4 and Fig. 37. Partition from the “behold” proof of
the Pythagorean theorem. That looks very space- and time-reflection sym-
metric, in contrast to figure 1.8 (b). Does it become something interesting
for the Percival-Vivaldi golden cat map?

2018-05-13 Han Flipping the partition along the stable direction doesn’t work.
As shown in figure 20.34, the flipped partition cannot tile the square lat-
tice.

2018-05-22 Han I plotted the Fourier transform of all the admissible period-5
of the rhomboid corner partition in the Brillouin zone in figure 20.35. For
a 1-dimensional lattice with lattice spacing 1, the reciprocal lattice has
spacing 2π/1 = 2π, with the (first) Brillouin zone from k = −π to k = π.
From figure 20.35 we can see that the Fourier transform in the Brillouin
zone is symmetric about the k = 0. And if we rotate this figure, we can
see that some points lie on a straight line. Figure 20.35 (b) is all irreps
overlaid. Due to the time reversal, all k = 2π/5 irrep states are the same
as the k = 4π/5 irrep states.

I have put the Mathematica notebook in
siminos/figSrc/han/Mathematica/HLFourierTranform5Cycles.nb
so one can rotate the figure.
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Figure 20.35: (a) The 121 period n = 5 reciprocal lattice states Φ̂ (see table 5.1)
of the s = 3 temporal cat, obtained by C5 discrete Fourier transform diag-
onalization, plotted in the Brillouin zone for the rhomboid corner partition.
(b) The 121 period n = 5 reciprocal lattice admissible symbol blocks M̂ of the
s = 3 temporal cat, obtained by C5 discrete Fourier transform diagonalization,
plotted in the Brillouin zone for the rhomboid corner partition. (Continued in
figure 20.52.)
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2021-01-27 Han Figure 20.35 (c,d) is the C5 discrete Fourier transform of sym-
bol blocks M. Note that on the reciprocal lattice symbol blocks M̂ lie on
the straight lines.

2018-06-11 Han I have finished reading that introduction to group theory. I
knew some basic concept of group theory before but never learned it sys-
tematically. It is interesting.

2018-06-11 Han This is one possible way to get the generating partition for a
2-dimensional lattice, but I’m not sure if this is useful.

I understand on each lattice site there is a two-torus. In our case the
x and y coordinates are x`,t−1 and x`,t separately (Is this right?). But I
don’t know how can we have the generating partition in this torus, since
the evolution of the field value is affected by the neighboring sites.

2018-06-21 Predrag Your difficulty is that you keep on thinking in Hamilto-
nian way, where one steps in time, using the Hamilton’s equations for
(qt, pt), where we had replaced the momentum pt (at spatial position `)
by velocity pt = (x`t − x`,t−1)/∆t, and thus initializing the Hamiltonian,
a second-order difference equation for evolution in time by two horizontal
rows (x`t, x`,t−1) , ` ∈ Z in the spacetime plane.

You have to think in the spacetime, Lagrangian way instead. On each lat-
tice site z = (`, t) there is a scalar field x`t, not a two-torus. The field x`,t−1

belongs to a neighboring site z = (`, t − 1). The two fields do not form a
dynamical system on a two-torus, as the dynamics is also influenced by
spatial neighbors x`±1,t.

2018-06-11 Han In order to integrate a 2nd order differential equation with
only one variable, we need a 2-points initial condition. This the case in
the time evolution 1-dimensional problem, where the equation (20.47)
is a discrete “differential equation" in one-dimension. When we solve a
2-dimensional partial differential equation, we need the boundary condi-
tion. In the Dirichlet case, these are the field values on the boundary of
the two-dimensional domain.

So if we use the similar way as one-dimension to treat the two-dimensional
problem, we probably should start with not a single point, but the field
values on all lattice sites at a certain time. In other words, the partition
is defined by xt−1 and xt in one-dimension, where in two-dimension it
is defined in a higher dimensional torus with coordinates x`,t−1 and x`,t,
and ` is an integer from −∞ to ∞. When we have a periodic boundary
in `, the number of coordinates will be reduced.

2018-06-21 Predrag You keep on thinking in Hamiltonian way. “The field val-
ues on all lattice sites at a certain time” is a horizontal line in the space-
time plane. Yes, you need two successive lines to initiate Hamiltonian
time evolution. Those equations are ugly (see this blog, for example (6.2),
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Gutkin and Osipov [28], and Gutkin et al. [27]) an we only know how to
solve them for small “number of particles” L, not for ` ∈ Z.

2018-06-21 Predrag The problem you are solving is a Helmholtz equation. You
do not do that by specifying initial conditions. With Dirichlet b.c.’s that
is the equation for a drum, with a specified boundary, a hard problem
to solve in general. However, with periodic b.c.’s, on a spatiotemporal 2-
torus it is much easier, as it is an algebraic equation for the spatiotemporal
discrete Fourier coefficients.

2018-06-21 Predrag Can we get “the generating partition” which is a 4-torus?
Not obvious...

2018-06-11 Han If the spatial period is larger than 2, the dimension of the par-
tition will be also larger.

2018-06-21 Predrag Can we get “the generating partition” which is a 2L-torus?
Not obvious, and it probably gets uglier and uglier...

2018-06-11 Han Using the method in Robinson’s book, I think we will get the
generating partition from these eigenvectors. But these are at least in 4-
dimensions. It is not obvious what the partition looks like. And I think
this is not Lagrangian... More important thing is, if we decide the period
in space, can we still see the spatiotemporal symmetry?

2018-06-21 Predrag My experience from Kuramoto-Sivashinsky is that every
small spatial length torus (really a cylinder, as the time is infinite) has its
own grammar, and I expect the grammar for the t ∈ Z be simpler than all
these small spatial domains.

2018-06-27 Predrag Just that we are on the same page: In d-dimensional phase
space, a partition is a d-dimensional volume, and its borders are co-dimension
1, i.e., (d − 1)-dimensional. In case at hand, the partition borders are
3-dimensional hyper-planes, not 2-dimensional planes. By “the planes
given by 3 of the eigenvectors” you mean a 3-dimensional hyper-plane, I
assume.

2018-06-26 Han To find the planes given by 3 of the eigenvectors, we simply
find the normal vector that is perpendicular to the 3 eigenvectors. The 4
normal vectors we have are:

L123 = (−Λ3,−Λ3, 1, 1)

L124 = (1, 1,−Λ3,−Λ3)

L134 = (Λ1,−Λ1,−1, 1)

L234 = (−1, 1,Λ1,−Λ1) (20.73)

L123 means this is the normal vector that is perpendicular to the eigen-
vectors e1, e2 and e3. Using these normal vectors we can easily get the
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expression of the planes. The 4 planes passing through the origin are:

−Λ3x− Λ3y + z + w = 0

x+ y − Λ3z − Λ3w = 0

Λ1x− Λ1y − z + w = 0

−x+ y + Λ1z − Λ1w = 0 (20.74)

The first problem is: the last two planes in (20.74) pass through both the
origin and the point (1, 1, 1, 1).

2018-06-27 Predrag After you take mod 1? Otherwise the hyperplanes are dis-
tinct, right?

2018-06-26 Han So if we follow the same method we used in the one-dimensional
case as I state above, the partition won’t exist... But I guess my method
is not correct anyway. To find the correct partition we will have to un-
derstand the structure of these vectors in this 4-dimensional space. And
as you as see from (20.253–20.74), there are many symmetries. I expect
the partition will still be very similar to the one-dimensional case of fig-
ure 20.3. I’m still working on this.

2018-06-28 Han The four hyperplanes in (20.74) are distinct. The last two hy-
perplanes pass through both the origin and the point (1,1,1,1).

2018-06-28 Han I just realize that using the hyperplane passing through the
origin and the point (1, 1, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1)
won’t given us the correct partition.

Now I’m thinking given 3 distinct planes in 3-dimensions, how to con-
struct a region whose volume is 1 enclosed by planes that are parallel to
these 3 planes. And the origin and the point (1, 1, 1) should be on the bor-
ders. And this region should "tile" the 3-dimensional space. Intuitively
this region should be enclosed by the planes passing through the points
with integer coordinates (like (1, 1, 0), (1, 0, 0)). I have tried may ways to
enclose the region but I can’t get the correct volume. The most straight-
forward way should be cutting a unit cube with one of the planes and
move the cut off part to the other end of the cube. But it is still hard to
imagine. Currently I think there may be more subregions than just 1 large
cube and 3 small cube.

2018-06-29 Han I have solved the 3-dimensional tiling problem. It’s not too
complicated. The most important idea is: since the region will tile the
whole 3-dimensional space, when we move the region along the direc-
tion of an axis by 1 unit of length, the borders of the new region must
touch the borders of the old region. So if the planes passing through the
origin and point (1, 1, 1) are the borders, the planes passing through the
points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), and (0, 1, 1) must also be
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the borders (because these planes can be moved from the planes passing
through the origin and (1, 1, 1) by 1 unit length).

Now I’m able to find the tiling region given 3 distinct planes and get the
correct result. Hopefully this will help me to get the correct partition in
4-dimensions.

2018-07-09 Han I will start with the result: I already have the partition (which
I think is a generating partition) of the two-dimensional problem with
spatial length of two, and use this partition to calculate the solutions of
all admissible 2 × 2 blocks. From the solutions I find that the alphabet is
reduced, but not in a perfect way. The left site and right site have different
alphabet.

The partition is defined in a four-dimensional space {x1,t−1, x2,t−1, x1,t, x2,t}.
It has the time reversal symmetry, i.e., if you swap x1,t−1, x2,t−1 with
x1,t, x2,t, the partition is unchanged. Because of the periodic spatial bound-
ary, it should also have the space reflection symmetry (the partition should
be invariant when we swap x1,t−1, x1,t with x2,t−1, x2,t). But I can’t find
such a symmetric generating partition. So the result is if we have a so-
lution {x1,t−1, x2,t−1, x1,t, x2,t}, {x2,t−1, x1,t−1, x2,t, x1,t} is not necessar-
ily an admissible solution. Another result is the alphabet of the left site
(corresponding to x1,t) has different alphabet from the right site (corre-
sponding to x2,t).

Remember that when we use the “square cube" partition for two-dim-
ensional problem, the letters of the alphabet are from -4 to 4 if the field
values are− 1

2 ≤ x ≤ 1
2 . And if the field values are 0 ≤ x ≤ 1, the alphabet

is from -3 to 4. Using my new partition to calculate all admissible 2 × 2
blocks, the alphabet for the left site is from -1 to 5, and the alphabet for the
right site is from -4 to 1. There is only one solution with left site m = −1.
So I think if we use a longer block, the complete alphabet of the right site
should be from -5 to 1 (because they should have same number of letters).
Anyway, I think this shows that this new partition is very likely to be a
generating partition.

2018-07-13 Predrag That’s scary: “The left site and right site have different al-
phabet.” But already had the unwelcome asymmetry in the forward /
backward in time generating partition, that we could never resolve, so
that might be a disease of the concept of generating partitions.

Mention that s = 5?

2018-07-09 Han The next part is the tedious detailed method that find the par-
tition in four-dimensions. In fact I should call it the method of finding
the tiling region in four-dimensions enclosed by boundaries with given
directions passing through the points with integer coordinates. Like I
said one week ago, the boundaries must consist of hyperplanes that pass-
ing through all of the neighboring points, not just (1, 1, 1, 1), (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), but also (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
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(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1) and (0, 0, 1, 1).
So the structure is actually very complex. I figured out a easy way to get
the correct partition.

We know that these points listed above are fixed points if included in
our partition. So we want some of these points to be on the boundary or
on the cross section of several different boundaries, but not necessarily
on the vertex of our partition. But to make the partition simpler and
similar to the figure 20.2, I choose the point (1, 1, 1, 1) to be a vertex of
our partition, which is a cross point of four hyperplanes. The expression
of these four hyperplanes are:

−Λ3x− Λ3y + z + w = 2− 2Λ3

x+ y − Λ3z − Λ3w = 2− 2Λ3

Λ1x− Λ1y − z + w = 0

−x+ y + Λ1z − Λ1w = 0 (20.75)

So these four hyperplanes will be the boundaries of our partition. The
next step is to write down all of the hyperplanes passing through all of
the neighboring points listed above. For each of these points, there will be
four hyperplanes that are similar to the (20.74–20.75) but have different
constants at the right hand side. Then we find four hyperplanes that are
parallel to the four hyperplanes in (20.75) respectively that we can enclose
the largest possible volume with these eight hyperplanes. For example, if
we look at all of the hyperplanes that are parallel to the third hyperplane
in (20.75), we find that the possible constants on the right hand side are
Λ1, −Λ1, 1, −1, 0, Λ1 − 1, Λ1 + 1, 1 − Λ1 and −1 − Λ1. So to enclose the
largest possible volume we will pick the hyperplane with right hand side
of Λ1 + 1 or −1 − Λ1. We have two options, and I think this is why the
rules for the left site and right site are different. I chose Λ1 + 1 when I get
the partition. If I use −1− Λ1 I think the rule of the left site and the right
site will be swapped.

Now we have a very large and simple region in four-dimensions. And
we know that the point (1, 1, 1, 1) will be on a vertex of our partition.
And the four hyperplanes passing through it will be the boundaries, but
only the parts that are close to the vertex is guaranteed. The next step is
to move this large region by one unit length along the coordinate axes.
Our original region has a vertex on (1, 1, 1, 1). And now we have 15 new
regions that have vertices on (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1) and (0, 0, 0, 0). Our partition should be a
region that has one unit volume, and tiles the whole space. So if we move
the partition to these positions they should have no overlaps. But using
this large region we will have overlaps for sure. So we just need to find
the overlaps between these 15 new regions and our original region, and
cut off these overlapped region from the original region. Then what we
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get is the correct partition. It has no overlap with the neighboring region,
and I have calculate that the volume of this partition is one.

2018-07-10 Han I have the hyperplanes passing through the origin and the
point (1, 1, 1, 1) in (20.74–20.75). Other hyperplanes are:
Hyperplanes passing through (1, 0, 0, 0):

−Λ3x− Λ3y + z + w = −Λ3

x+ y − Λ3z − Λ3w = 1

Λ1x− Λ1y − z + w = Λ1

−x+ y + Λ1z − Λ1w = −1 (20.76)

Hyperplanes passing through (0, 1, 0, 0):

−Λ3x− Λ3y + z + w = −Λ3

x+ y − Λ3z − Λ3w = 1

Λ1x− Λ1y − z + w = −Λ1

−x+ y + Λ1z − Λ1w = 1 (20.77)

Hyperplanes passing through (0, 0, 1, 0):

−Λ3x− Λ3y + z + w = 1

x+ y − Λ3z − Λ3w = −Λ3

Λ1x− Λ1y − z + w = −1

−x+ y + Λ1z − Λ1w = Λ1 (20.78)

Hyperplanes passing through (0, 0, 0, 1):

−Λ3x− Λ3y + z + w = 1

x+ y − Λ3z − Λ3w = −Λ3

Λ1x− Λ1y − z + w = 1

−x+ y + Λ1z − Λ1w = −Λ1 (20.79)

Hyperplanes passing through (0, 1, 1, 1):

−Λ3x− Λ3y + z + w = 2− Λ3

x+ y − Λ3z − Λ3w = 1− 2Λ3

Λ1x− Λ1y − z + w = −Λ1

−x+ y + Λ1z − Λ1w = 1 (20.80)

Hyperplanes passing through (1, 0, 1, 1):

−Λ3x− Λ3y + z + w = 2− Λ3

x+ y − Λ3z − Λ3w = 1− 2Λ3

Λ1x− Λ1y − z + w = Λ1

−x+ y + Λ1z − Λ1w = −1 (20.81)
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Hyperplanes passing through (1, 1, 0, 1):

−Λ3x− Λ3y + z + w = 1− 2Λ3

x+ y − Λ3z − Λ3w = 2− Λ3

Λ1x− Λ1y − z + w = 1

−x+ y + Λ1z − Λ1w = −Λ1 (20.82)

Hyperplanes passing through (1, 1, 1, 0):

−Λ3x− Λ3y + z + w = 1− 2Λ3

x+ y − Λ3z − Λ3w = 2− Λ3

Λ1x− Λ1y − z + w = −1

−x+ y + Λ1z − Λ1w = Λ1 (20.83)

Hyperplanes passing through (1, 1, 0, 0):

−Λ3x− Λ3y + z + w = −2Λ3

x+ y − Λ3z − Λ3w = 2

Λ1x− Λ1y − z + w = 0

−x+ y + Λ1z − Λ1w = 0 (20.84)

Hyperplanes passing through (1, 0, 1, 0):

−Λ3x− Λ3y + z + w = 1− Λ3

x+ y − Λ3z − Λ3w = 1− Λ3

Λ1x− Λ1y − z + w = Λ1 − 1

−x+ y + Λ1z − Λ1w = Λ1 − 1 (20.85)

Hyperplanes passing through (1, 0, 0, 1):

−Λ3x− Λ3y + z + w = 1− Λ3

x+ y − Λ3z − Λ3w = 1− Λ3

Λ1x− Λ1y − z + w = Λ1 + 1

−x+ y + Λ1z − Λ1w = −Λ1 − 1 (20.86)

Hyperplanes passing through (0, 1, 1, 0):

−Λ3x− Λ3y + z + w = 1− Λ3

x+ y − Λ3z − Λ3w = 1− Λ3

Λ1x− Λ1y − z + w = −Λ1 − 1

−x+ y + Λ1z − Λ1w = Λ1 + 1 (20.87)
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Hyperplanes passing through (0, 1, 0, 1):

−Λ3x− Λ3y + z + w = 1− Λ3

x+ y − Λ3z − Λ3w = 1− Λ3

Λ1x− Λ1y − z + w = 1− Λ1

−x+ y + Λ1z − Λ1w = 1− Λ1 (20.88)

Hyperplanes passing through (0, 0, 1, 1):

−Λ3x− Λ3y + z + w = 2

x+ y − Λ3z − Λ3w = −2Λ3

Λ1x− Λ1y − z + w = 0

−x+ y + Λ1z − Λ1w = 0 (20.89)

So all of these hyperplanes are perpendicular to one of the four vectors
in (20.73). When I get the large original region, I use the boundaries:

Λ1x− Λ1y − z + w = 0

−x+ y + Λ1z − Λ1w = 0

Λ1x− Λ1y − z + w = Λ1 + 1

−x+ y + Λ1z − Λ1w = Λ1 + 1 (20.90)

These are four of the eight boundaries that enclose the large region. These
four hyperplanes are perpendicular to the last two vectors in (20.73). And
you can see why we have different rules for the left site and right site. If
I use :

Λ1x− Λ1y − z + w =
Λ1 + 1

2

−x+ y + Λ1z − Λ1w =
Λ1 + 1

2

Λ1x− Λ1y − z + w =
Λ1 + 1

2

−x+ y + Λ1z − Λ1w =
Λ1 + 1

2
, (20.91)

instead of (20.90) I will have a partition that is invariant under the swap
of x1,t−1, x1,t and x2,t−1, x2,t (in the equation of the planes it is a swap of
x, z and y, w). Then we will have the same rule for both the left site and
right site. But unfortunately these hyperplanes don’t pass through the
fixed points (points with integer coordinates). From the experience of the
one-dimensional problem I don’t think this will give us the generating
partition.

2018-07-10 Han This part is not important. The problem of finding a tiling
region in three-dimensions is very instructive when we find the generat-
ing partition in four-dimensions. Assuming we are given 3 independent
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(a) (b)

Figure 20.36: (a) A tiling region in three-dimensions. (b) The tiling region and
one nearest neighboring region. You can see the boundaries exactly matched.

planes in three-dimensions. We want to find a region that can be use to
tile the whole space by moving integer number of unit length along the
coordinate axes. This region has unit volume. And we want to use the
planes passing through the points with integer coordinates to enclose this
region. Figure 20.36 is the tiling region that I get. It’s not unique. From
this figure you can imagine the structure of the four-dimensional parti-
tion. I have a Mathematica notebook in
siminos/figSrc/han/Mathematica/HL3-dimensional_tiling.nb so you can
rotate the figure.

2018-07-13 Predrag If you are very lucky, 1-step in space direction might suf-
fice to understand all steps in space, just like for time evolution one step
in time gave partition for times. However, you are not using the sym-
plectic structure of the Hamiltonian formulation you are exploring. The
Hamiltonian phase space for this problem are the four 4-vectors, some-
thing like

(~x1,t, ~p1,t, ~x2,t, ~p2,t) ,

where the symplectic 2- and 4-volumes

~x>1,tω~p1,t, + ~x>2,tω~p2,t ,

and det (~x1,t, ~p1,t, ~x2,t, ~p2,t) = 4-volume. where you can chose ~x>1,t · ~x2,t =
0.

2018-08-02 Han I have been trying to get a general formula of the number of
periodic orbits. In fact given (20.256–20.258) we can write down the gen-
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eral formula explicitly:

N[L×T] =
L∏
i=1

T/2∑
n=0

n∑
m=0

T−2m∑
q=0

(
T

2n

)(
n

m

)(
T − 2m

q

)

(−1)m+q2−T+2m+q+1sT−2m−q cosq(
2πi

L
)− 2

]
(20.92)

when T is an even number (if T is odd we only need to change the T/2
to (T + 1)/2). But I cannot find a easier form where T and L are inter-
changeable. I’m trying to simplify (20.92) and thinking that using the
multiple-angle formulas and some identities of the combinations we can
cancel the cosine terms. Because generally they are irrational numbers
but the results of (20.92) are always integers.

I was hoping that each term of the product in (20.92) is an integer but
this is not true. One example is when L = 5 and T = 1, one of the
eigenvalues of the evolution matrix is Λ(L)1 = 1/2(s − 2 cos(2π/5) +√

(s− 2 cos(2π/5))2 − 4). The corresponding term in the product is:

(Λ1 + Λ−1
1 − 2) = s− 2− 2 cos(

2π

5
) =

1

2
(7−

√
5) (20.93)

which is not an integer. The term corresponding to the eigenvalue con-
taining cos(4π/5) is equal to 1

2 (7 +
√

5). Multiplying these two terms to-
gether gives us an integer. This means that each term in the product is not
necessarily an integer and I will need to evaluate the product explicitly
to cancel the trigonometric functions.

I also tried to evaluate (20.256) for several different L and T s, hoping to
find the expression directly. But I didn’t find any valid expression. I guess
the general formula cannot be trivial. I observed something but they are
not helpful... Rana already stated this in her report, see (21.4). When the
spatial length is 1, the number of periodic orbits can be expressed with
Fibonacci numbers. And when L = 2 or L = 3, we can also express
the number of periodic orbits by Fibonacci numbers but in very different
forms.

2018-08-03 Han I think I remember everything in the online meeting, but not
necessarily understand everything. Here is my best attempt at a sum-
mary:

(1) Understand the eigenvalues of Toeplitz tensors. When we calcu-
lated the Green’s function of the 2-dimensional spatiotemporal cat
we used the tensor Fourier transform (20.58) to diagonalize the cir-
culant tensor (1.155). And the diagonal elements are the eigenvalues
of the circulant tensor?

(2) Go from the Hamiltonian formulation (20.251) to the Lagrangian
formulation (6.3), as in sect. 9.2. Use symplectic transformations.
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(3) Use the symmetries of the system, see sect. ??. We have time reversal
symmetry and space inversion symmetry, and more.

(4) By Noether’s theorem, sect. 8.4, for each symmetry there should ex-
ist a conserved quantity, such as energy, the discrete momentum,
discrete rotations; it’s a research active subject, here is a recent con-
ference. For field theory one expects infinitely many conserved quan-
tities. Crazy idea, but very satisfying if true: could the conserved
quantities be the numbers of periodic orbits?

(5) I’m not sure about this last thing. By similarity transformation we
can interchange change the L and T?

2018-08-03 Han I just realized that I can also use the “determinant" of the cir-
culant tensor to get the number of the periodic orbits directly... I believe
you already know this and this is why you told me to look at the Toeplitz
tensors... 3

For the d = 1 case, the number of the periodic orbits is the determinant of
the circulant matrix (1.144). When the dimension is larger than 1, we have
a circulant tensor instead of the circulant matrix. And the determinant
can be given by the product of all the eigenvalues. (I guess I need to
think more before we can call it determinant...) When we calculate the
Green’s function, we use the tensorial Fourier transform to diagonalize
the tensor. For a tensor Dlt,l′t′ the diagonal elements are Dlt,lt. Then the
determinant is given by:

det (D) =

T∏
t=1

L∏
l=1

D′lt,lt (20.94)

where the D′ is the diagonalized D. I have tried a few blocks and this
gives me correct number of periodic orbits. Everything is clear now. I
will get the general form as soon as possible.

2018-08-06 Han The number of periodic points of the discrete 2-torus is: 4

N[L×T] =

T∏
t=1

L∏
l=1

(
s− 2 cos(

2πl

L
)− 2 cos(

2πt

T
)

)
(20.95)

In all d = 2 examples we take s = 5. 5

3Predrag 2018-08-010: Is the “determinant" of the circulant tensor defined anywhere in the
literature?

4Predrag 2018-08-25: My conceptual problem is totally elementary, and I probably have seen
the answer and forgotten it: how does this product of various cos’s yield integers? It has to, as we
started with integers and than went through Fourier transforms to get this diagonalized formula.
Wonder whether there is a more direct way of seeing it... Also, why is everything cos’s, whereas we
know that for sufficiently large s everything is cosh’s? For d = 1 the eigenvalues, eigenvectors [45]
are cos’s for −2 < s < 2, but cosh’s for s > 2, see (1.52). Note also that there is one trivial
eigenvalue (rotational invariance?) and T − 1 non-trivial ones.

5Predrag 2018-08-25: Notation N[L×T] is experimental.
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2018-08-06 Han I have calculated the topological entropy using (20.256). The
topological entropy of spatially periodic discrete domain of period L is

h(L) = lim
T→∞

1

T
lnNLT (20.96)

Using (20.256) we have:

h(L) = lim
T→∞

1

T
ln

L∏
i=1

(ΛTi + Λ−Ti − 2)

=

L∑
i=1

ln Λi =

L∑
i=1

ln
λi +

√
λ2
i − 4

2
(20.97)

where λi is given by (20.257).

Using (20.95) we can get the same result. Substituting (20.95) into (20.96)
we have:

h(L) = lim
T→∞

1

T
ln

T∏
t=1

L∏
l=1

[5− 2 cos(
2πl

L
)− 2 cos(

2πt

T
)]

=

L∑
l=1

lim
T→∞

1

T

T∑
t=1

ln[5− 2 cos(
2πl

L
)− 2 cos(

2πt

T
)] (20.98)

When T goes to infinity, we can change the sum over t to an integral. Let
al = 5− 2 cos(2πl/L). Then (20.99) becomes:

h(L) =

L∑
l=1

∫ 1

0

ln[5− 2 cos(
2πl

L
)− 2 cos(2πt)]dt

=

L∑
l=1

∫ 1

0

ln[al − 2 cos(2πt)]dt

=

L∑
l=1

ln
al +

√
a2
l − 4

2
, (20.99)

which is same as (20.97).

2018-08-06 Han The rate of growth of the number of periodic orbits per unit
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spatial length is h(L)/L. As L goes to infinity, we have

h = lim
L→∞

h(L)

L
= lim
L→∞
T→∞

1

L

1

T
lnN[L×T]

= lim
L→∞

1

L

L∑
l=1

lim
T→∞

1

T

T∑
t=1

ln

(
5− 2 cos(

2πl

L
)− 2 cos(

2πt

T
)

)

=

∫ 1

0

∫ 1

0

ln[5− 2 cos(2πx)− 2 cos(2πt)]dtdx

=

∫ 1

0

ln
[5− 2 cos(2πx)] +

√
[5− 2 cos(2πx)]2 − 4

2
dx (20.100)

Evaluating this numerically we get that the topological entropy density
per unit length and unit time is h ≈ 1.508.

2018-08-010 Predrag The number of periodic orbits (20.95) seems to be the
product of Harshaw (6.55) eigenvalues for a doubly-periodic torus, just
have to get the s dependence right. 6 The eigenvalues of the damped
Poisson matrix (20.49) in d = 1 are given by (20.57) or (20.257)

λ(L)k = s− 2 cos (2πk/L) . (20.101)

2018-08-010 Predrag I’m optimistic about the drift of our argument. We are al-
most home. We should be able to relegate the Hamiltonian derivation to a
tedious exercise in ChaosBook. Laplacian, or more precisely, the Green’s
function counts all paths. The trace of Green’s function (i) counts all pe-
riodic points N[L×T], and (ii) is given by the sum of eigenvalues (20.95).
As explained in ChaosBook, the trace is a derivative of the determinant
(topological zeta function), and thus we should be able to write down the
spatiotemporal cat topological zeta function.

The classical trace formula and zeta function follow from the Green’s function
evaluated on all doubly periodic invariant 2-tori.

2018-08-15 Han By Green’s function I guess you don’t mean the inverse of the
matrix at the left hand side of the (damped) screened Poisson equation
(6.3) (We used to call it Green’s function)? Because the trace of this matrix
doesn’t give us the number of the periodic orbits.

The trace of the Green’s function is:

Tr (∆) =

∞∑
T=1

∞∑
L=1

zL+T
T∏
t=1

L∏
l=1

(
s− 2 cos(

2πl

L
)− 2 cos(

2πt

T
)

)
(20.102)

6Predrag 2018-12-01: Do not remember where I got these Harshaw eigenvalues?
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I’m not sure about the zL+T (maybe it should be zLT ?). The topological
zeta function can be gotten from:

Tr (∆) = −z d
dz

ln
1

ζ(z)
(20.103)

So now the problems are how to evaluate the sum of the number of peri-
odic orbits, and what is the correct form of zL+T .

2018-08-15 Han From the definition of the topological zeta function:

1/ζAM(z) = exp(−
∞∑
n=1

zn

n
Nn) (20.104)

we can get the topological zeta function by substituting the number of
periodic points to (20.104). But now we have number of points in the
doubly periodic invariant 2-tori N[L×T] instead of 1-dimensional loops
Nn. So I’m not sure what is the correct form of the topological zeta func-
tion of our problem.

2018-08-23 Han I haven’t figured out how to evaluate the sum of the number
of the periodic blocks. Assume the topological zeta function of the 2-torus
is:

ζ(z1, z2) = exp

( ∞∑
T=1

∞∑
L=1

zL1 z
T
2

LT
N[L×T]

)
(20.105)

We will need to evaluate the sum:
∞∑
T=1

∞∑
L=1

zL1 z
T
2

LT
N[L×T] =

∞∑
L=1

zL1
L

∞∑
T=1

zT2
T
N[L×T] (20.106)

The second sum can be evaluated using (20.256). (we don’t like this for-
mula because this expression is not compact and it’s not symmetric about
L and T , but it has the time period T in the exponent which makes it eas-
ier to calculate the sum) Expanding (20.256) each term is a constant times
a combination of eigenvalues to the power of T , and the sum over all time
period T will give us a logarithm of a product of eigenvalues, similar to
(20.259). Then we evaluate the sum over L, which is a sum of logarithms.
I haven’t figured out how to evaluate this.

2018-08-23 Han I spent some time trying to understand the meaning of this
experimental topological zeta function of 2-torus (20.105). If we write the
local trace of a periodic block as tp, then we have:

zL1 z
T
2 N[L×T] =

∑
Lp|L
Tp|T

LpTpt
( L
Lp

T
Tp

)

p

=
∑
p

LpTp

∞∑
r1=1

∞∑
r2=1

δL,Lpr1δT,Tpr2t
r1r2
p (20.107)
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Substitute (20.107) into (20.105):

1/ζAM(z1, z2) = exp

(
−
∞∑
T=1

∞∑
L=1

zL1 z
T
2

LT
N[L×T]

)

= exp

−∑
p

∑
r1
r2

tr1r2p

r1r2


= exp

(∑
p

∑
r1

1

r1

∑
r2

− 1

r2
(tr1p )r2

)

= exp

(∑
p

∑
r1

1

r1
ln(1− tr1p )

)
(20.108)

This sum over r1 is convergent for small tp but I can’t get a simpler for-
mula. Let:

f(tp) = exp

(∑
r1

1

r1
ln(1− tr1p )

)
(20.109)

Then the topological zeta function becomes:

1/ζAM(z1, z2) =
∏
p

f(tp) (20.110)

This is not a product of (1 − tp) as I was hoping. But it is still a product
of all the prime periodic blocks.

I also found Ban, Hu, Lin, and Lin [7], Zeta functions for two-dimensional
shifts of finite type, see post 2016-05-04 Predrag above. I’m not sure if that
is applicable to our problem.

2018-08-23 Han Here I will explain why (20.95) gives us the number of peri-
odic blocks.

Consider first a 1-dimensional discrete time lattice of period T. The ad-
missible periodic orbits are the solutions of the (damped) screened Pois-
son equation

Dφ = m , (20.111)

where φ is a vector in T-dimensional space, and D is the circulant ma-
trix given by (1.40). If we set each element of φ to be larger or equal to
0 and smaller than 1 (the shape of the partition does not affect the num-
ber of solutions), all admissible φ are in a T-dimensional hypercube of
unit volume. The block m is also a T-dimensional vector but with in-
teger coordinates. The matrix D acting on a unit hypercube stretches
it into a hyper-parallelepiped in T-dimensional space. Within each unit
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volume of the stretched region there is a unique point with integer coor-
dinates, corresponding to one periodic solution. Hence the volume of the
stretched region, which is equal to the absolute value of the determinant
of the matrix D, is the number of periodic solutions of the given time
period T.
For 2 or more spacetime dimensions the (damped) screened Poisson equa-
tion is always of the form (20.111). As the rank of tensors φ and m is d,
one can always relabel the d indices as one vector index. For a 2-dim-
ensional lattice, φ and m are 2-index tensors which can be relabelled as
LT-dimensional vectors, and D is a (tensor) matrix with its two pairs of
indices ranging over (LT,LT). The initial vector x is in a unit volumeLT-
dimensional hypercube, which is stretched by the (tensor) matrix D into
into a hyper-parallelepiped whose volume is given by the determinant
(20.94) of the (tensor) matrix D.
The [L × T × L × T] tensor D can be viewed as a (LT, LT) matrix, with
the same number of elements. This rank 4 tensor, written as matrix, is
in general not a circulant matrix. But the eigenvalues are same as the
eigenvalues of the tensor; it is a block matrix which has a similar pattern
as a circulant matrix. The determinant of this matrix is given by (20.94),
and it indeed gives us the volume of the stretched region, i.e., the number
of invariant 2-tori.
The determinant of D (20.95) is the product of all the eigenvalues calcu-
lated by the discrete Fourier transform diagonalization of D.

2018-08-30 Han The above attempt at a definition of the topological zeta func-
tion of the two-torus (20.105) is wrong because I only count the periodic
blocks that tile the space (and time) by moving in the direction of space
or time. A more appropriate definition of the topological zeta function of
two-dimensional torus is given in Lind [34] A Zeta function for Zd-actions
(Predrag found the paper here. If needed, his book [35] is in the CNS
library.).
Lind [34] defines the topological zeta function as 7

ζα(s) = exp
( ∑
J∈Jd

pJ(α)

[J ]
s[J]
)

(20.112)

where α : X → X is a Zd-action. Jd is the collection of finite-index
subgroups in Zd. For J ∈ Jd put [J ] = |Zd/J |, and

pJ(α) = |{x ∈ X : αnx = x for all n ∈ J}| . (20.113)

For 2-dimensional lattice, a convenient general form of J2 is:

J2 =

{[
a b
0 c

]
∈ Z2 : a ≥ 1, c ≥ 1, 0 ≤ b ≤ a− 1

}
(20.114)

7Han 2018-08-31: In Lind’s article the subgroup of Zd is written as L. To avoid confusion with
our spatial length L, I change it to J in this blog.
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which gives us a complete collection of the tiling patterns, with each pat-
tern only listed once. Each J is corresponding to one given tiling pattern,
and

Z2/J =

[
a b
0 c

]
. (20.115)

2018-10-09 Predrag Lind and Schmidt [36] Symbolic and algebraic dynamical sys-
tems, (click here) studies zeta functions for Zd actions.

2018-08-31 Han For each J , the corresponding periodic solutions satisfy:

x(

[
l
t

]
) = x(

[
l
t

]
+

[
a b
0 c

] [
i
j

]
) ,

[
i
j

]
∈ Z2 (20.116)

When b = 0, we are tiling the area by moving the block (the smallest
repeating unit) along the time direction and along the space direction.
The number of points in these solutions is given by (20.95).

To find the solution satisfies the relation (20.116), we need to modify the
boundary of the tensor (1.40). I haven’t figured out how to imagine the
modified tensor. A easier way is to expand the tensor into a LT × LT
matrix then modify it. Using the inverse of this matrix (the Green’s func-
tion) we can solve for the periodic block that satisfies (20.116). And the
determinant of the modified matrix is the number of periodic points.

I already found the general formula counting the number of periodic
points, though I don’t know why this works. Define:

B = Z2/J =

[
a b
0 c

]
(20.117)

which is uniquely corresponding to a tiling pattern. Then the number of
periodic points is:

NJ =

T∏
t=1

L∏
l=1

(
s− 2 cos(

2πl′

det (B)
)− 2 cos(

2πt′

det (B)
)

)
(20.118)

where l′ and t′ are given by:[
t′

l′

]
= B

[
t
l

]
=

[
a b
0 c

] [
t
l

]
(20.119)

The L and T in (20.118) are the spatial and the time periods, and from
(20.116) we know that L = a and T = c. NJ is the determinant of the
modified matrix, and each terms in (20.118) is an eigenvalue of the mod-
ified matrix.
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I haven’t understood why (20.118) works. And I’m sure (20.118) is not a
good way to write the formula, because in (20.116) l is first component in
the column vector but in (20.118) it becomes the second component. We
can’t generalize this formula to three-dimensions. Perhaps a better way
is to let: [

l′′

t′′

]
= C

[
l
t

]
=

1

ac

[
c 0
−b a

] [
l
t

]
, (20.120)

where C is the cofactor matrix of B. The number of periodic points is:

NJ =

T∏
t=1

L∏
l=1

(s− 2 cos(2πl′′)− 2 cos(2πt′′)) (20.121)

(20.118) and (20.121) give the same result. The eigenvalues are also the
same.

I don’t understand these formulas. But good thing is these formulas are
modified from (20.95) using the matrix B = Z2/J , so given a translation
pattern we can count the number of periodic points directly.

2018-02-16 Predrag We need a simple explanation for why the 2-dimension-
al An and the linearization of the 2n-dimensional matrix give the same
multipliers, so I am re-reading Mackay and Meiss [38], Linear stability of
periodic orbits in Lagrangian systems and incrementally editing the discus-
sion of sect. 9.1.

2018-09-25 Predrag The 2018-09-27 math seminar by Igor Pak, UCLA, might
be related to our invariant 2-tori counting: “ Given a convex polytope
P, what is the number of integer points in P? This problem is of great
interest in combinatorics and discrete geometry, with many important
applications ranging from integer programming to statistics. From com-
putational point of view it is hopeless in any dimensions, as the knapsack
problem is a special case. Perhaps surprisingly, in bounded dimension
the problem becomes tractable. How far can one go? Can one count
points in projections of P, finite intersections of such projections, etc? We
will survey both classical and recent results on the problem, emphasizing
both algorithmic and complexity aspects. Some elegant hardness results
will make an appearance in dimension as small as three. If time permits,
we will discuss connections to Presburger Arithmetic and decidability
problems for irrational polyhedra. Joint work with Danny Nguyen. ”

We went, were dazzled and understood very little of it all.

2018-10-02 Han I tried to use (9.90) as the Lagrangian. It will give a result
(9.94) different from (9.97). But I think this is not correct. The first reason
is: using (9.86) we can eliminate all of the p’s, and get an equation of qn+1,
qn, and qn−1. The equation we get is (9.97).
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The second reason is: we should be able to use the Lagrangian to get the
momentum by (6.72). But using Lagrangian (9.90) we can’t get the correct
momentum. Using (9.95) we can get the correct momentum for both pn+1

and pn.

I haven’t read through Percival and Vivaldi [47]. But in their definition
of Lagrangian they used Xt instead of xt. It seems like this capital X is
not constrained by modulo 1? I might be wrong. I’m still reading this
article.

2018-10-19 Han Note: this entry is superseded by the derivation 2019-03-20
Han below, starting with eq. (20.160).
I have found a way to prove that (20.121) gives the determinant of the or-
bit Jacobian matrix for the two-dimensional lattice, for both the periodic
boundary and relative periodic (twisted) boundary.

The orbit Jacobian matrix can always be written as:

J =
d∑
j=1

(
−s1 + rj + r>j

)
. (20.122)

But for blocks with different size or different boundary, the shift matrices
rj satisfy different conditions. For example, consider the periodic blocks
satisfying (20.116). The shift matrices satisfy:

ral r
0
t = 1

rbl r
c
t = 1 . (20.123)

If b = 0, this is a regular periodic block. From (20.123) we can see that:

ral = 1

rabl r
ac
t = ract = 1 . (20.124)

So the eigenvectors of rl and rt are also the eigenvectors of the shift ma-
trices in a a× ac regular periodic block (The size of the eigenvector of the
shift matrix with relative periodic (twisted) boundary is a× c, but we can
repeat this eigenvector to fill a a×ac block). The eigenvector of this large
block can be written as:

elt = e2πi( ll
′
a + tt′

ac ) , (20.125)

where l′ = 1, 2, ..., a and t′ = 1, 2, ..., ac. Here the subscripts l and t are the
indices of the elements. For this large block, the number of eigenvectors
is a× ac. But only ac of these eigenvectors satisfy (20.123):

rbl r
c
te = e

=⇒ e2πi[
(l+b)l′
a +

(t+c)t′
ac ] = e2πi( ll

′
a + tt′

ac ) . (20.126)
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So to make the eigenvectors satisfy (20.123), we must have:

(l + b)l′

a
+

(t+ c)t′

ac
=

ll′

a
+
tt′

ac
+ n

t′ = −bl′ + na , n ∈ Z (20.127)

Let l′ = 1, 2, ..., a, and let n = 1, 2, ..., c, we will get ac sets of l′ and t′s.
Write the elements of the eigenvectors as:

elt = e2πi[ lcl
′

ac +
t(−bl′+na)

ac ]

= e2πi[ll∗+tt∗] (20.128)

where: [
l∗

t∗

]
=

1

ac

[
c 0
−b a

] [
l′

n

]
= C

[
l′

n

]
, (20.129)

The matrix C is the cofactor matrix of the matrix in (20.116) divided by
the determinant of this matrix (which is also the transpose of the inverse
matrix). So for a given set of l′ and n, we have a specific eigenvector that
has:

(σl + r>l )el′,n = 2 cos(2πl∗)el′,n

(rt + r>t )el′,n = 2 cos(2πt∗)el′,n . (20.130)

The subscripts l′ and n mean that this is the eigenvector that given by
a certain set of l′ and n (So el′,n here is a vector, not the l′th and nth
component.). l∗ and t∗ are determined by l′ and n using (20.129).

So the eigenvalues of the orbit Jacobian matrix are:

2∑
j=1

(
−s1 + rj + r>j

)
el′n = [−2s+2 cos(2πt∗)+2 cos(2πl∗)]el′n , (20.131)

and the determinant is the product of all eigenvalues is

det
2∑
j=1

(
−s1 + rj + r>j

)
=

a∏
l′=1

c∏
n=1

[−2s+ 2 cos(2πt∗) + 2 cos(2πl∗)] ,

(20.132)
the same as (20.121). 8

Now a problem is: I don’t know why in (20.129) the matrix is a transpose
of the inverse of the matrix in (20.116). I just calculate the eigenvectors
explicitly and the result I get is a cofactor matrix. I don’t know if this is
correct for higher dimensional lattice.

8Predrag 2019-07-11: to Han - correct the notation l′, n, t∗, l∗
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Another possible problem is: in (20.127), choose l′ from 1, 2, ..., a and n
from 1, 2, ..., c will give us a set of eigenvectors. But are these eigenvec-
tors always independent? If we choose l′ and n in this way, the t′ we
get is not always in 1, 2, ..., ac. But as long as the t′s we get can form
different eigenvectors we should be fine. I’m sure the eigenvectors are
independent, but I’m still thinking how to prove it.

2018-10-26 Han Using the reciprocal lattice I found that using the transpose of
inverse matrix as (20.129) is correct for three-dimensional lattice. I tried
to prove that this method is correct for any dimensions.

For d-dimensional lattice, the size and the way of tiling of a periodic block
can be given by:

x(


l1
l2
...
ld

) = x(


l1
l2
...
ld

+ A


j1
j2
...
jd

) ,


j1
j2
...
jd

 ∈ Zd , (20.133)

where:

A =


a11 a12 a13 . . . a1d

0 a22 a23 . . . a2d

0 0 a33 . . . a3d

...
...

...
. . .

...
0 0 0 . . . add

 , (20.134)

where aii ≥ 1 and for j 6= i, 0 ≤ aij ≤ aii − 1. All elements are integers.

Follow the same procedure as above, we know that the eigenvectors
of the shift matrices with the periodic boundary conditions defined in
(20.133) have the form:

~e~l = e2πi[l1l
∗
1+l2l

∗
2+···+ldl∗d] . (20.135)

This is an element of the eigenvector for a given set of ~l∗.

The shift matrices need to satisfy the relations:

ra11l1
= 1

ra12l1
ra22l2

= 1

ra13l1
ra23l2

ra33l3
= 1

... . (20.136)
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Using these operators acting on the eigenvectors (20.135), we have:
a11 0 0 . . . 0
a12 a22 0 . . . 0
a13 a23 a33 . . . 0

...
...

...
. . .

...
a1d a2d a3d . . . add




l∗1
l∗2
l∗3
...
l∗d

 = A>


l∗1
l∗2
l∗3
...
l∗d

 =


q1

q2

q3

...
qd

 ,

q1

q2

q3

...
qd

 ∈ Zd .

(20.137)

So ~l∗ satisfies: 
l∗1
l∗2
l∗3
...
l∗d

 = (A−1)>


q1

q2

q3

...
qd

 , (20.138)

which is the general form of (20.129).

Given these eigenvectors, the determinant of the orbit Jacobian matrix is:

Det

 d∑
j=1

(−s1 + rj + rTj )

 =

a11∏
q1=1

a22∏
q2=1

· · ·
add∏
qd=1

−ds+
d∑
j=1

2 cos(2πl∗j )

 ,
(20.139)

where the l∗j is given by (20.138). This is the general form of the deter-
minant of the orbit Jacobian matrix, for any given dimensions, for both
regular and relative periodic (twisted) boundary.

But there is one last thing that I haven’t figure out... How do I know the
indexes of the product in (20.139) is qd from 1 to add? It’s obvious in low
dimensions. But I don’t know how to prove this in any dimensions. I’m
still working on this.

2018-11-29 Han Here I will summarize how do we count the number of peri-
odic solutions and what do we still need to prove.

For a d-dimensional hypercubic lattice with each site labeled by d integers
z ∈ Zd, we already know that the field value on each lattice site can be
solved from:

(−2 + s− 2d)φz = mz , (20.140)

where mz is a given integer. If we want to solve for the periodic so-
lutions, we will need to use the Laplacian 2 with periodic boundaries.
Eq. (20.140) holds for all kinds of periodic solutions. All properties of
the periodic blocks are embedded in the Laplacian, including the spatial
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length, time period and the way in which the block is twisted when it
tiles the space.

φz is on a torus with length 1. The range of this torus can be simply as
from 0 to 1, or a very complicated form as what we do in figure 20.2. But
the range and partition of the torus will not affect the number of periodic
solutions. The range of mz depends on the range of the torus.

So the counting problem becomes solving:

(−2 + s− 2d)φ = m , (20.141)

and count how many sets of integers m can be given to (20.141) that have
solutions Φ enclosed in the unit volume torus. Here Φ and m have d
indices. The range of these indices are from 1 to the length of the periodic
block in the corresponding directions. Equation (20.141) in a set of linear
equations. Even though Φ and m are rank d tensors and (−2 + s− 2d) is
a rank 2d tensor, they are calculated as vectors and matrix.

Since the range of the torus will not affect the number of solutions, here
we will choose the simplest torus: 0 ≤ φz < 1. Then the admissible re-
gion of the vector x is a high dimensional hypercube with all coordinates
larger or equal to 0 and smaller than 1. The dimension of vector Φ and m

is
∏d
i=1 Li, where Li is the length of periodic block in the ith directions.

To count the number of solutions, imagine the admissible unit volume
hypercube is mapped by matrix (−2 + s− 2d) into a larger region. And
each integer point enclosed in this region is corresponding to a periodic
solution. (Unfinished)

2018-12-06 Han I checked that using the Chebyshev polynomial of the first
kind we can calculate determinant of the circulant matrix (the orbit Jaco-
bian matrix).

We already know that the determinant of the [n× n] Toeplitz matrix:

Dn =



s −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s


(20.142)

can be calculated using the Chebyshev polynomial of the second kind:

det (Dn) = Un(s/2) . (20.143)
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Now we want to calculate the determinant of the n× n circulant matrix:

− J = Hn =



s −1 0 0 . . . 0 −1
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
−1 0 . . . . . . . . . −1 s


. (20.144)

Expand the determinant of Hn by minors at the first row:

det (Hn) =

n∑
j=1

(−1)j+1(Hn)1,jM1j(Hn)

= sM11(Hn) + (−1)(−1)M12(Hn) + (−1)n+1(−1)M1n(Hn) .

(20.145)

TheMij(Hn) is a minor of matrixHn, obtained by taking the determinant
ofHn with row i and column j removed. The three minors in (20.145) are:

M11(Hn) = det (Dn−1) , (20.146)

M12(Hn) = det



−1 −1 0 0 . . . 0 0
0 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
−1 0 . . . . . . . . . −1 s


= (−1)det (Dn−2)

+(−1)n(−1)det


−1 0 0 . . . 0 0
s −1 0 . . . 0 0
−1 s −1 . . . 0 0

...
...

...
. . .

...
...

0 . . . . . . . . . s −1


(expand by minor at the first column)

= (−1)det (Dn−2) + (−1)n(−1)(−1)n−2

(the last matrix is a lower triangular matrix)
= −det (Dn−2)− 1 , (20.147)
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M1n(Hn) = det


−1 s −1 0 . . . 0
0 −1 s −1 . . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . s
−1 0 . . . . . . . . . −1



= (−1)det


−1 s −1 0 . . . 0
0 −1 s −1 . . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . s
0 0 . . . . . . . . . −1



+(−1)n−2(−1)det


s −1 0 . . . 0 0
−1 s −1 . . . 0 0

...
...

...
. . .

...
...

0 0 . . . . . . s −1
0 0 . . . . . . −1 s


(expand by minor at the first column)

= (−1)(−1)n−2 + (−1)n−2(−1)detDn−2 . (20.148)

So the determinant of the n× n circulant orbit Jacobian matrix is:

Det (−J ) = det (Hn)

= sM11(Hn) + (−1)(−1)M12(Hn) + (−1)n+1(−1)M1n(Hn)

= sdet (Dn−1) + (−1)(−1)(−det (Dn−2)− 1)

+(−1)n+1(−1)[(−1)(−1)n−2 + (−1)n−2(−1)detDn−2]

= sUn−1(s/2)− 2Un−2(s/2)− 2

= Un(s/2)− Un−2(s/2)− 2

(use recurrence relation Un+1(x) = 2xUn(x)− Un−1(x))

= 2Tn(s/2)− 2

(use relation Tn(x) =
1

2
(Un(x)− Un−2(x))) , (20.149)

In agreement with (??).
When the time period n is 1 and 2, the orbit Jacobian matrix will be spe-
cial:

−J =
(
s− 2

)
, (20.150)

−J =

(
s −2
−2 s

)
. (20.151)

These determinants still satisfy (??).
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2018-12-06 Predrag Wow - very impressive! I remember the proof of (20.143)
being very quick, basically a 3-term recurrence relation (second-order
difference equation [23]), in a reference cited someplace close to (1.43).
Maybe you can show it by induction, assuming that if (??) is true for
n− 1, then it is true for n. Then you start the recursion with (20.150) and
(20.151).

2018-12-11 Han I have read Kook and Meiss [33] Application of Newton’s method
to Lagrangian mappings. The Newton’s method here is a computational
algorithm.

In this article the orbit Jacobian matrix is written as a block matrix and
they invert the orbit Jacobian matrix via block-diagonalization. A block
matrix is a matrix defined by smaller matrices, called blocks. I tried to
write the orbit Jacobian matrix of 2-dimensional cat map (a rank 4 tensor)
explicitly as a matrix (write the L × T × L × T tensor as a LT × LT
matrix). The matrix can be written as a block matrix. For example, the
orbit Jacobian matrix of a [3× 3] periodic block (not relative periodic) is:

−J[3×3]0 =

 S −I −I
−I S −I
−I −I S

 , (20.152)

which is a circulant block matrix. The S and I are 3× 3 matrices:

S =

 s −1 −1
−1 s −1
−1 −1 s

 , I =

 1 0 0
0 1 0
0 0 1

 . (20.153)

So perhaps using the Fourier transform to diagonalize the orbit Jacobian
matrix tensor in each direction can be interpreted as doing the block-
diagonalization to the block matrix and diagonalizing the block.

But for blocks with relative periodic (twisted) boundaries, the orbit Jaco-
bian matrix will become more complicated...

2019-01-08 Han I made figure 20.37 to show how the volume (area) of the
stretched torus counts the number of periodic points. Consider the cat
map with s = 3. The periodic solutions satisfy:

J Φ = −M , (20.154)

where J is the orbit Jacobian matrix of the periodic orbit with period n.
If any φ on the torus satisfies (20.154), this φ is a periodic solution. So we
can count the periodic points using Hn to stretch the torus and counting
the number of integer points enclosed in the stretched region. I plotted
the stretched region of periodic solutions with n = 2 and n = 3. The orbit
Jacobian matrix for n = 2 and n = 3 are:

−J =

(
3 −2
−2 3

)
(20.155)
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−J =

 3 −1 −1
−1 3 −1
−1 −1 3

 (20.156)

Let the range of the field value φ be 0 ≤ φ < 1. Figure 20.37 (a) shows
the number of periodic points with length 2. The unit square enclosed
by black lines is the available region of (φn, φn+1). The parallelogram
with red borders are the region of the unit square stretched by the orbit
Jacobian matrix J . There are 4 blue dots which are the integer points in
the parallelogram. Each one of these blue dots corresponds to a periodic
point. The 4 green dots are integer points on the vertices of the paral-
lelogram. These 4 points contribute to 1 periodic point. So there are 5
periodic points with period 2, corresponding to 3 periodic solutions (1
fixed point and 2 2-cycles). The area of this parallelogram is 5.

Figure 20.37 (b) shows the periodic points with length 3. The square cube
with black border is the available region of torus (φn, φn+1, φn+2). After
stretched by orbit Jacobian matrix J it becomes the parallelepiped with
red border. There are 6 blue dots which are the integer points completely
enclosed in the parallelepiped. The 8 green dots are integer points on
the vertices of the parallelepiped, which contribute to 1 periodic points.
There are 18 pink points which are integer points on the surface of the
parallelepiped. These 18 points contribute to 9 periodic points. So the
number of periodic points is 16 which is also the volume of the par-
allelepiped. I have a Mathematica notebook with this 3d plot in simi-
nos/figSrc/han/Mathematica /HLCountingFigures.nb so you can rotate
it.

2019-01-16 Han According to (20.46), the covering alphabet for the s = 5 spa-
tiotemporal cat is

A = {3, 2, 1, 0, 1, 2, 3} .
I plotted two [12×12] blocks of d = 2, s = 5 spatiotemporal cat. I choose
the field to be in the range φz ∈ [−1/2, 1/2). Figure 20.38 are blocks
corresponding to two admissible invariant 2-tori of figure 20.39. The mz

within the black borders are the same. Figure 20.40 shows the distance
and the logarithm of the absolute value of the distance between these two
invariant 2-tori.

The covering alphabet for this φz ∈ [−1/2, 1/2) spatiotemporal cat is

mz ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4} . (20.157)

9 To make it easier to find and admissible field here I only used mz ∈
{−2,−1, 0, 1, 2} . But using mz in this range does not guarantee that cor-
responding field is admissible. The starting random block of mz usu-

9Predrag 2019-01-16: Is (20.46) wrong?
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(a) (b)

Figure 20.37: (a) A 2-dimensional torus (with black border) stretched by −J .
The blue dots are internal integer points in the stretched parallelogram (with
red border). The green dots are on the vertices of the parallelogram. (b) A
3-dimensional torus (with black border) stretched by −J . The blue dots are
internal integer points in the stretched parallelepiped (with red border). The
green dots are on the vertices of the parallelepiped. The pink dots are on the
surface of the parallelepiped.

ally yields some φz outside [−1/2, 1/2), so we keep changing the corre-
sponding mz until we find an admissible block. I can also redo this using
(20.157).

The [12×12] blocks might be too small. As this block is periodic we might
need a larger block to observe fields that differ exponentially. Adrien
used [18×18] blocks.

2019-01-16 Predrag Shadowing looks promising. The Gutkin version has an
argument about exponentially close shadowing using Green’s functions.

You have to be very precise in explaining the algorithm that gets you
from the initial random [L1×L2] block to an admissible block. You know
the number of distinct invariant 2-tori from you orbit Jacobian matrix de-
terminant counting formula. If you have a systematic way of generating
blocks for all admissible invariant 2-tori, that would be satisfying, even if
we do not have a walks-on-Markov graph interpretation.

2019-01-16 Predrag As φz are rational numbers (presumably with large de-
nominators, you can have a look), some distances in figure 20.40 (a) could
be exactly zero.

2019-01-18 Han Figure 20.41 is an example of admissible symbol block M and
the corresponding state Φ for a [12×12] 2-torus of the d = 2, s = 5 spa-
tiotemporal cat. Here I started with random symbol block M with mz

from -4 to 4. The algorithm:
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(a) 1 5 12
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0
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Figure 20.38: (a) and (b) are two admissible [12×12] blocks corresponding to
the two distinct invariant 2-tori of figure 20.39. They coincide within the shared
[8×8] block MR, regionR indicated by the black border.
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Figure 20.39: The two invariant 2-tori whose symbol arrays are given by the
admissible [12×12] blocks of figure 20.38.
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Figure 20.40: (a) The pointwise distance between the invariant 2-tori of fig-
ure 20.39. (b) The logarithm of the absolute value of the distance between the
two invariant 2-tori indicate exponential shadowing close to the center of the
shared MR.
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Figure 20.41: (a) An example of an admissible block M, initiated by a guess
block with manymz = 4. Row 1, column 3 site is the only one withm(3,12) = 4.
(b) The corresponding invariant 2-torus.

Use the Green’s function to calculate the state Φ given the random symbol
block M. If the maximum φz is larger or equal to 1/2, find the position z of
this maximum and change the corresponding symbol mmax to mmax− 1.
If the minimum of this field is smaller than -1/2, find the position of the
minimum and change the corresponding symbolmmin bymmin+1. Then
use the new block M to calculate the state Φ, and repeat this procedure
until the state φz at every site is larger or equal to -1/2, and smaller than
1/2. Generally it takes 70 to 100 iterations to reach an admissible block
M.

As we expected, the symbol 4 and -4 are not very likely to exist in the
admissible field. Because the maximum (minimum) of the field are likely
to have 4 (-4) on its site (but not always). Figure 20.41 is a very rare case
which still has a symbol equal to 4. In most of my runs I end up with all
symbol from -3 to 3.

2019-01-19 Predrag Why go in steps of one? Symbol mz is the integer part of
φz that implements the translation to the desired unit interval (modulo 1
operation). So do not change mz → mz ± 1, but replace mz by the integer
translation that places φz into the admissible range. Also, start at one
point z, and do this along a rectangular “out-spiral” around it. That will
ensure that the center is exponentially well determined, and I expect that
all inadmissible site values will sit outside the spiral.

2019-01-19 Predrag Matt, Han and I are using different words for the same
things, so I keep editing everybody notes into the ‘standard” notation.
Probably best to read chapter 11 Symbolic dynamics: a glossary, and we
discuss if something has to be changed.

2019-01-19 Predrag In our convention, the first lattice index is ‘space’, increas-
ing from left to right, and the second index is ‘time’, increasing from bot-
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tom up, see for example (11.8), so the y-axis labels in figure 20.41 (a) and
all other figures of symbol blocks M should be increasing as one goes up.
For symbol blocks the alphabet / number of colors is a discrete set, so the
color bar on the right should be a set of colored squares. The states Φ,
however, do need a continuous color bar.

2019-01-24 Han I redid the shadowing using symbol block M with mz from -4
to 4. Figure 20.42 are blocks corresponding to two admissible invariant
2-tori of figure 20.43. The mz within the black borders are the same. Fig-
ure 20.44 shows the distance and the logarithm of the absolute value of
the distance between these two invariant 2-tori.

The algorithm I used is:

(1) Start with a random admissible state Φ0 with −1/2 ≤ φz < 1/2. Cal-
culate the corresponding symbol block M0. The mzs in this symbol block
are not integers. So we need to round these mzs to the nearest integers
and get symbol block M1

(2) Use the Green’s function and the integer symbol block M1 to calcu-
late the state Φ1. If the maximum φmax is larger or equal to 1/2, cal-
culate the distance δφmax = φmax − 1/2. Round up 5δφmax (and call it
δmmax). Then change the corresponding symbolmmax tommax−δmmax.
If the minimum φmin is smaller than 1/2, calculate the distance δφmin =
−φmin − 1/2. Round up 5δφmin (and call it δmmin). Then change the
corresponding symbol mmin to mmin + δmmin.

(3) Now we get a new symbol block M2. Repeat step (2) until all φz in Φ
are in the admissible range.

Since we start with a state Φ with only admissible φz , now we only need
no more than 10 iterations to reach an admissible block. Here we have
to round up δmmax and δmmin so we always make a non-zero change. If
we don’t do this the program will very likely run into an endless loop.

The color bar of the symbol block should be colored squares. I haven’t
fixed this and the awkward axes due to "technical reasons"... Will fix that
soon.

2019-03-01 Han To summarize why can we use the determinant of orbit Jaco-
bian matrix to count the number of periodic solutions: For one-dimensional
cat map, the problem of solving for a periodic string eventually becomes
solving the linear equations

s −1 0 . . . −1
−1 s −1 . . . 0
0 −1 s . . . 0
...

...
...

. . .
...

−1 0 0 . . . s




x1

x2

x3

...
xT

 =


m1

m2

m3

...
mT

 ,

m1

m2

m3

...
mT

 ∈ ZT .

(20.158)
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Figure 20.42: (a) and (b) are two admissible [12×12] blocks corresponding to
the two distinct invariant 2-tori of figure 20.43. They coincide within the shared
[8×8] block MR, regionR indicated by the black border.
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Figure 20.43: The two invariant 2-tori whose symbol arrays are given by the
admissible [12×12] blocks of figure 20.42.
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Figure 20.44: (a) The pointwise distance between the invariant 2-tori of fig-
ure 20.43. (b) The logarithm of the absolute value of the distance between the
two invariant 2-tori indicate exponential shadowing close to the center of the
shared MR.
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for x’s.

For any set of integersmz , there is a solution xz . But the solution is admis-
sible only when each one of the field values xz’s is larger or equal to 0 and
smaller than 1. So all admissible solutions of period T are constrained to
a T-dimensional hypercube with unit volume (all the field values within
0 ≤ xz < 1). This hypercube will be stretched to a n-dependent paral-
lelepiped by the orbit Jacobian matrix in (20.158). And each of the integer
points inclosed within stretched parallelepiped will correspond to a pe-
riodic solution with period n. So the problem of counting the number of
period solutions becomes counting the number of integer points enclosed
in a parallelepiped.

Since all the field values can be equal to 0 but not equal to 1, when count-
ing the integer points we must not count the points on the boundaries
which correspond to field values 1. So counting the number of integer
points in the parallelepiped is like counting the number of atoms in a unit
cell. The parallelepiped can tile the space like the unit cell of a crystal lat-
tice. And when the parallelepipeds tile the space, each of them is a cell
of integer points, i.e., each of them is a repeating unit of integer points.
The number of points in a large space is equal to the number of paral-
lelepiped times the number of integer points within one parallelepiped.
The density of integer points in the space is 1 per unit volume. So for
an infinitely large space the number of integer points in it is equal to its
volume. The number of the tiling parallelepipeds is equal to the space’s
volume divided by the volume of one parallelepiped. So the number of
points in one parallelepiped is equal to the volume of the parallelepiped,
which is given by the determinant of the orbit Jacobian matrix in (20.158).

To summarize, the reason that we can use the volume to count integer
points is:

1. The region is a parallelepiped (so it can tile the space).

2. All vertices of the parallelepiped are integer points (so when tiling the
space, each of these parallelepipeds is a repeating unit of integer points).

3. The density of integer points is one per unit volume.

2019-03-02 Han In order to count the cat map periodic solutions, and compute
the field configuration given a symbol string, we diagonalize the orbit
Jacobian matrix by a Fourier transform and compute its inverse, i.e., the
Green’s function. For the d-dimensional spatiotemporal cat, fields and
symbol arrays are rank d tensors, related by the orbit Jacobian matrix
in (20.158) which is a rank 2d tensor. This is still a linear equation, so
the above method of counting and computing d-periodic solutions still
applies. For a d-periodic block we now use the d-dimensional Fourier
transform to invert the orbit Jacobian matrix and compute the d-periodic
field configuration.
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For a relative periodic block, with relative periodic (twisted) boundary,
we cannot use Fourier transform. I have explained everything clearly to
Glen. He doesn’t think there is any problem in these computations.

2019-02-04 Predrag What follows are some raggedly thoughts, you have al-
ready thought through all of them... My problem is I do not understand
Lind [34] and your notes starting with 2018-08-30 Han above.

We need to count all periodic and relative periodic orbits. In ChaosBook
this is no harder than counting periodic orbits, but one has to quotient
the symmetries first: for 2-dimensional spatiotemporal cat those are first
the time and space translations, then the point group. The goal is to enu-
merate all distinct tilings of a square (hypercubic) lattice. I believe they
have to be doubly (in general, d-)periodic, but we have not proven it. Is
it obvious that a -let’s say- L-shaped region is not a legal tile? A quick
sketch shows that a 3-sites L-shaped tile is equivalent to both [1×3] and
[3×1] relative-periodic tilings, but is such a thing true in general?

Consider a finite block of symbols MR ⊂ M, over a finite [L1×L2×· · ·×Ld]
hyper-parallelopiped region R ⊂ Zd. In particular, let Mp over a finite
rectangular [L1×L2× · · · ×Ld] lattice region be the [L1×L2× · · · ×Ld]
d-periodic block of M whose repeats tile Zd.

Rectangles [L1×L2] are obviously tiles, however the shape of a general
tile does not have to be rectangular, or even connected - one is allowed
to shift jth column [1×L2] by an arbitrary vertical shift rsj2 , 0 ≤ sj < L2,
and kth row [L1×1] by an arbitrary horizontal shift rsk1 , and any such
raggedly ‘tile’ tiles the (hyper-)lattice.

Here I’m visualizing fields as residing on face-centered lattice, and trans-
lation shifts as acting across the vertical / horizontal boundary lines.
Each solution finite block ΦR ⊂ M breaks translational invariances, but
the quotient (lattice)/R is still translationally invariant forR a rectangle.
But what if Φ is relative-periodic?

The reason I’m sketching such raggedly tiles is to try to visualize a ’natu-
ral’ tile for a relative periodic tiling. In continuum dynamics one can go to
a co-moving frame, where the trajectory on average looks stationary (no
phase drift) but on a lattice there is no way of drawing a parallelopied
with straight sides - they must be raggedly...

Be it as it may, I define a relative (relative) periodic field by demanding
that it satisfy

xjk = rS1
1 rS2

2 xj+L1,k+L2
on every z = (j, k) lattice site (20.159)

0 ≤ S1 < L1, 0 ≤ S2 < L2. i.e., field value xjk reappears spatiotem-
porally after periods (L1, L2) (in that case, we can draw a rectangle tile),
and, in general, translated by shifts (rS1

1 , rS2
2 ) bounded by corresponding

periods.
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Field configuration (20.159) is a legal (though not yet necessarily admis-
sible) field configuration. One first has to enumerate such configurations
distinct under the d-translations. There are clearly many equivalent rela-
tive tilings, for example easy to sketch vertical [1×3] and horizontal [3×1]
relative-periodic tilings...

Next one has to quotient the point-group, for example the D4 symmetry
for the square lattice.

2019-03-20 Han Using the reciprocal lattice to determine the eigenvalues turns
out to be much simpler than my previous method to find the eigenvectors
for a relative periodic (twisted) boundary, leading to my formula (20.121)
for the number of periodic points.

The idea is: a periodic tiling pattern is given by a Bravais lattice. All
possible eigenmodes (eigenvalues, eigenvector pairs) are given by the
reciprocal lattice wave vectors.

Imagine we have an infinite d-dimensional space with a field on it. There
are translation operators in d independent directions. The eigenvectors
(eigenstates) of these translation operators are plane waves:

fk(Φ) = eik·Φ , (20.160)

where k is any d-dimensional vector. Now we put a Bravais lattice in it,
with lattice points given by

R =
d∑
i=1

niai , (20.161)

with ai are the d independent Bravais cell vectors, and ni ∈ Z. In order
that wave vectors k in (20.160) have the periodicity of the Bravais lattice,
they must satisfy

fk(Φ + R) = eik·Φeik·R = eik·Φ = fk(Φ) , (20.162)

so k · R must equal to an integer times 2π. The admissible k lie on the
reciprocal lattice if

K =
d∑
i=1

kibi , (20.163)

where the ki are integers, and bi satisfy

bi · aj = 2πδij . (20.164)

Each lattice site in this reciprocal lattice corresponds to one eigenmode
(eigenvalues, eigenvector pair), so there are still an infinity of them. But
this is only true when we have a continuous periodic field in the space.
For the cat map, the field has support only on the lattice sites. So the co-
ordinates Φ of this field are not continuous numbers but integer indices.
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In this case we only need wave vectors in a small region. This region is
given by the first Brillouin zone of the reciprocal lattice.

For example, consider the 2D spatiotemporal cat. We want to find solu-
tions with periodicity given by Bravais lattice:

L = {n1a1 + n2a2|ni ∈ Z}. (20.165)

If these two basis vectors a1 and a2 are in the directions of the basis of
the integer lattice, this is a regular periodic condition. A general peri-
odic condition is a1 = (l1, l2) and a2 = (0, l3). 10 In Lind’s paper this
periodicity is written as a matrix, in the Hermite normal form (6.127).[

a1 a2

]
=

[
l1 l2
0 l3

]
. (20.166)

The reciprocal lattice of this Bravais lattice is:

L = {n1b1 + n2b2|ni ∈ Z} . (20.167)

These two basis vectors satisfy (20.164). In this example they are[
b1 b2

]
=

2π

l1l3

[
l3 0
−l2 l1

]
, (20.168)

which is the transpose of the inverse matrix of (20.166) times 2π. This is
true in any dimension, as to satisfy (20.164), we must have

a1

a2

...
ad

 [ b1b2 · · ·bd
]

= 2π1 . (20.169)

So for any wave vector on the reciprocal lattice k = n1b1 +n2b2 , there is
an eigenvector that satisfies the periodicity of the Bravais lattice:

fk(Φ) = eik·Φ = ei(n1b1·Φ+n2b2·Φ) , (20.170)

where Φ = {x1, x2} are a lattice site vector. This is the same as my relative
periodic (twisted) boundary eigenvectors (20.128).

But I have concern for the range of n1 and n2 in (20.170). n1 and n2 give
us the position of the wave vector. The range of these two should make
sure the wave vector in the Brillouin zone of the integer lattice. Consider
a very specific example: let the basis of the Bravais lattice be:[

a1 a2

]
=

[
l1 l2
0 l3

]
=

[
3 1
0 2

]
. (20.171)

10Han 2019-06-25: (Should be a1 = (l1, 0) and a2 = (l2, l3)?)
Predrag 2019-06-26: Sorry, at the moment I’m not thinking about this, can you derive the correct
aj for me?
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We can find the reciprocal lattice by compute the inverse of matrix in
(20.171). The Bravais lattice and the reciprocal lattice are shown in fig-
ure 20.45. Figure 20.45 (a) is the Bravais lattice which gives us the peri-
odicity. Each parallelogram is a repeating unit of the field. The red and
blue arrows are the two basis vectors a1 and a2. Figure 20.45 (b) is the re-
ciprocal lattice. Each lattice site is a wave vector of the eigenvalue of the
translation operator that satisfies the periodicity given by the Bravais lat-
tice. The square enclosed by green dashed lines is the first Brillouin zone
of the integer lattice. The field of spatiotemporal cat is a discrete field only
defined on the integer points. Any field defined only on the discrete lat-
tice can be transformed to a continuous field in the first Brillouin zone of
the discrete lattice by Fourier transform. So all of the eigenvectors of this
discrete field can be expressed with wave vectors in this Brillouin zone.
This periodic block has 6 lattice sites in it, so each state is a 6-dimensional
vector. There should be 6 eigenvectors. In figure 20.45 (b) we do have
6 points in the green square (the two points on the boundary should be
counted as one).

The problem is: the reciprocal lattice is not a square lattice as the Brillouin
zone of the integer lattice. We cannot give a range of n1 and n2 in (20.170)
separately. In my previous method I just used n1 = 0, 1, 2 and n2 = 0, 1.
These are corresponding to the wave vectors enclosed in the square with
green dashed boundaries in figure 20.46. In figure 20.46 the blue gridlines
are reciprocal lattice of the integer lattice. We don’t really need to use the
wave vectors in the first Brillouin zone to express the eigenvectors. Any
two wave vectors that differ by a vector in the reciprocal lattice of the
integer lattice (in figure 20.46 it’s the lattice of blue lines) should give us
equivalent eigenvectors. So can we use the green square in figure 20.46
to enclose the wave vectors instead of the green square in figure 20.45 (b),
and have n1 and n2 go over a set of integers independently? I think the
answer is yes. I just need to think a bit more about this...

2019-04-12 Han After we get the eigenvectors of the translation operator, we
can compute the eigenvalues of the orbit Jacobian matrix. For a d-dimensional
cat map, the orbit Jacobian matrix is:

H =
d∑
j=1

s

d
− rj − r>j . (20.172)

The eigenvectors of the translation operators are eigenvectors of this orbit
Jacobian matrix. All the eigenvectors have the form fk(Φ) = eik·Φ, where
the wave vector k is a vector on the reciprocal lattice of the direct lattice
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(a) (b)

Figure 20.45: (a) The Bravais lattice defines the periodicity of the field. The red
arrow is a1 = (3, 0) and the blue arrow is a2 = (1, 2). (b) The reciprocal lattice
of the Bravais lattice (a). Each reciprocal lattice point is a wave vector of the
eigenvector of the translation operator with periodicity given by the Bravais
lattice (a). The green dashed lines enclose the first Brillouin zone of the integer
lattice (not the Bravais lattice (a)). The wave vectors in this first Brillouin zone
give us all the eigenvectors of the translation operator. The wave vectors out-
side of this region (the first Brillouin zone enclosed by the green dashed lines)
are equivalent to a wave vector in the region (2019-03-20 PC: what regions?).

Figure 20.46: The reciprocal lattice of both the original direct lattice and the
integer lattice. The red points are the reciprocal lattice of the Bravais lattice
in figure 20.45 (a). The black points are the reciprocal lattice of the integer lat-
tice. Each of these squares enclosed by the blue lines has edge length 2π. And
these squares are also repeating unit of the wave vectors (the red dots in this
figure). Two wave vectors are equivalent if they are different by a vector on the
reciprocal lattice of the integer lattice.
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which gives the periodic tiling pattern. Let

k =


k1

k2

...
kd

 , Φ =


x1

x2

...
xd

 . (20.173)

Then we have:

(rj + r>j )fk(Φ) = ei(k·Φ−kj) + ei(k·Φ+kj) = 2 cos kje
ik·Φ = 2 cos kjfk(Φ) .

(20.174)
The eigenvalue of the orbit Jacobian matrix corresponding to the eigen-
vector labeled by k is:

λk =

d∑
j=1

s

d
− 2 cos kj . (20.175)

Then the problem becomes finding kj . k can be written as:

k =


k1

k2

...
kd

 =
[

b1 b2 . . . bd
]

n1

n2

...
nd

 = n1b1 +n2b2 + · · ·+ndbd .

(20.176)
bis are the vertical primitive vectors of the reciprocal lattice that satisfy
(20.164). [b1 b2 . . . bd] is a d × d matrix. nis are integers. Each wave
vector k is corresponding to a set of integers ni.
A simple example is a two-dimensional cat map with the periodic pattern
described by direct lattice with primitive vectors given in (20.166). The
matrix of the primitive vectors of the reciprocal lattice is 2π times the
transpose of the inverse of matrix in (20.166), given by (20.168). Then
wave vector is:

k =

[
k1

k2

]
=
[

b1 b2

] [ n1

n2

]
=

[ 2πn1

l1
2πn2

l3
− 2πl2n1

l1l3

]
. (20.177)

Substitute into (20.175):

λk =
2∑
j=1

s

2
− 2 cos kj

= s− 2 cos k1 − 2 cos k2

= s− 2 cos(
2πn1

l1
)− 2 cos(

2πn2

l3
− 2πl2n1

l1l3
) . (20.178)

And this is the eigenvalue of the orbit Jacobian matrix corresponding to
the eigenvector with wave vector k = n1b1 + n2b2.
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The determinant of the orbit Jacobian matrix is the product of all the
eigenvalues:

detH =
∏
k

λk =

l1−1∏
n1=0

l3−1∏
n2=0

s− 2 cos(
2πn1

l1
)− 2 cos(

2πn2

l3
− 2πl2n1

l1l3
) .

(20.179)
I haven’t found an elegant way to prove the product after the second
equals sign is correct, that n1 is from 0 to l1 − 1 and n2 is from 0 to l3 − 1.
One way to understand this is by looking at figure 20.46. The red points
are the reciprocal lattice of the original direct lattice given by (20.171). The
black points are the reciprocal lattice of the integer lattice. Since the field
value only appears on the integer points, any two Fourier modes with
wave vectors that are different by a vector on the reciprocal lattice of the
integer lattice (in figure 20.46 they are different by a vector on the black
points) are equivalent. So we only need wave vectors in a primitive cell
of the reciprocal lattice of the integer lattice. When we choose n1 from 0 to
l1− 1 and n2 from 0 to l3− 1 we find all the wave vectors in the primitive
cell enclosed by the green dashed line in figure 20.46. The l1 and l3 here
are two elements on the diagonal of the matrix (20.171). And choosing n1

and n2 using the numbers on the diagonal of the matrix of the primitive
vectors is only correct when the matrix is an upper triangular matrix. For
a more general matrix we are not able to let n1 and n2 go through a set of
numbers independently. But if Lind is correct then all periodic patterns
on an integer lattice can be described by a set of primitive vectors which
can form an upper triangular matrix.

The number of periodic solutions with periodic pattern given by (20.171)
is equal to the determinant of the orbit Jacobian matrix given by (20.179).

2019-11-11 Han One possible way to evaluate determinant (20.95) is to com-
pute the sum:

N−1∑
n=0

M−1∑
m=0

1

s− 2 cos(2πn/N)− 2 cos(2πm/M)
. (20.180)

Let s = coshλ, multiply (20.180) by sinhλ, and integrate over λ, we have:

N−1∑
n=0

M−1∑
m=0

∫
dλ

sinhλ

coshλ− 2 cos(2πn/N)− 2 cos(2πm/M)

=
N−1∑
n=0

M−1∑
m=0

ln[coshλ− 2 cos(2πn/N)− 2 cos(2πm/M)]

= ln
N−1∏
n=0

M−1∏
m=0

[coshλ− 2 cos(2πn/N)− 2 cos(2πm/M)] ,(20.181)

which is logarithm of the determinant.
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This method is used by Wu in Theory of resistor networks: the two-point
resistance [53]. He defines

Iα(`) =
1

N

N−1∑
n=0

cos
(
α ` nπN

)
coshλ− cos

(
α nπ

N

) , α = 1, 2 ,

and proves for α = 2:

I2(`) =
cosh

(
N/2− `

)
λ

(sinhλ) sinh(Nλ/2)
, 0 ≤ ` < N .

Setting ` = 0, multiplying I2(`) by sinhλ and integrating over λ, he
proves that:

N−1∏
n=0

(
coshλ− cos

2nπ

N

)
= sinh2(Nλ/2) , (20.182)

and this is also applicable to our counting formula of the cat map.

To evaluate the determinant one first evaluates the sum (20.180). Wu
introduces Sα(`) (6.182) and evaluates it by carrying out the summation:

Re 1

N

N−1∑
n=0

1

1− a ei2θn , a < 1

in different ways. This method works out because:

Re 1

1− a ei2θn =
1− a cos(2θn)

1 + a2 − 2a cos(2θn)
,

which gives the constant term minus cos θn in the denominator that one
needs. But the method does not work for (20.180). The denominator one
wants to evaluate is a constant term minus cos θn minus cosφm. Intu-
itively one wants to evaluate:

Re 1

NM

N−1∑
n=0

M−1∑
m=0

1

1− a ei2θn − a ei2φm .

But

Re 1

1− a ei2θn − a ei2φm =
1− a cos(2θn)− a cos(2φm)

1 + 2a2 − 2a cos(2θn)− 2a cos(2φm) + 2a2 cos(2θn − 2φm)
.

There is a cos(2θn−2φm) in the denominator that we don’t want. We will
need use a different way to evaluate (20.180). I’m still trying other ways.
I think this may work out.
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2019-11-11 Han Ivashkevich, Izmailian and Hu [30] Kronecker’s double series and
exact asymptotic expansions for free models of statistical mechanics on torus
partition function with twisted boundary conditions

Z2
α,β(µ) =

N−1∏
n=0

M−1∏
m=0

4
[

sin2
(
π(n+α)
N

)
+ sin2

(
π(m+β)
M

)
+ 2 sh2µ

]
is exactly what is needed. Note that setting α = β = 0:

sin2

(
π(n+ α)

N

)
+sin2

(
π(m+ β)

M

)
+2 sh2µ = 4 cosh(2µ)−2 cos(

2πn

N
)−2 cos(

2πm

M
) .

They use the identity

4| sinh(Mω + iπβ)|2 =
M−1∏
m=0

4
[

sinh2 ω + sin2
(π(m+ β)

M

)]
to get rid of one product, and obtain

Z2
α,β(µ) =

N−1∏
n=0

4| sinh
[
Mωµ

(π(n+ α)

M

)
+ iπβ)

]
|2 (20.183)

where ωµ(k) = arc sinh
√

sin2 k + 2 sinh2 µ. Then they use a formula in
the appendix that I haven’t gone through yet.

To be continued...

2019-11-23 Predrag Moved to sect. ?? Prime invariant 2-tori / ref. [20].
Restrict the admissible field values φz at lattice site z = (n1, n2) to the now in CL
symmetric unit interval φ ∈ [−1/2, 1/2), with 9-letter alphabet

A = {4, 3, 2, 1, 0, 1, 2, 3, 4} . (20.184)

now in CL

2019-11-22 Han The algorithm for generating all [2 × 2] and [3 × 2] Bravais
lattices prime blocks moved to sect. ?? Prime invariant 2-tori / ref. [20].

2019-11-23 Predrag For d = 2, s = 5 spatiotemporal cat with Dirichlet b.c.’s,
ref. [27] splits the s + 3 letter alphabet A = A0 ∪ A1 into the interior A0

and exterior A1 alphabets

A0 = {0, 1}, A1 = {3, 2, 1} ∪ {2, 3, 4} . (20.185)

If all mz ∈ M belong to A0, M is admissible, i.e., AZ2

0 is a full shift.

If you look at your [2 × 2] inadmissible blocks do you see any indication
that invariant 2-tori alphabets also split into the interior A0 and exterior
A1 alphabets?
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2019-11-23 Predrag I forgot to mention the most important thing - when study-
ing pruning, we focus on the inadmissible blocks; often they give us the
grammar of the admissible blocks.

2019-11-23 Predrag For uses of the lexical ordering, table ChaosBook 18.1:
Orbits for the binary symbolic dynamics up to length 9, and appendix Chaos-
Book A18.2 Prime factorization for dynamical itineraries might be of interest.

Kai Hansen and I found it very useful to plot periodic points as ‘Dan-
ish pastry’, see ChaosBook Sect. 15.3 Symbol plane, which gave us very
clean illustration of pruning rules. For that, one has to recode symbolic
dynamics, the symbols mz shifted into nonnegative integers,

γz = mz + 4 .

A way to map the array such as (11.17) onto a ‘Danish pastry’ unit square
is to write it as something like (wrong as it stands)

(γ1, γ2)(MR) = (0.γ11γ21γ31γ41 · · · γL1, 0.γ11γ12γ13γ14 · · · γ1T) (20.186)

in base s+ 3, where γk ∈ {0, 1, · · · , s+ 3}

2019-11-24 Predrag Thanks for (11.24) and (11.25) counts! It is wonderful to
have several independent confirmations of the invariant 2-tori count vol-
ume formula (6.220). Clearly my suggestion of constructing covering
prime blocks wildly overcounts the candidates for admissible prime in-
variant 2-tori, so we should give up this avenue of constructing them -
no need to count any larger Bravais lattices.

2020-01-11 Predrag Pondering figure 6.6; for both temporal cat and spatiotem-
poral cat, we should order the ‘spring mattress’ normal modes like we al-
ways do. For example, we have from 2018-02-13 Han (20.19) (that should
have been written in terms of Λ = (3 +

√
5)/2 = 2.6180 for s = 3) the

eigenvalues of the [5×5] Green’s function,

(λ0, λ1 = λ2, λ3 = λ4) = (1, 2.38, 2.38, 4.62, 4.62) (20.187)

and the corresponding (normalized) eigenvectors:

e(0) =
1√
5

(1, 1, 1, 1, 1)

e(1) =
1

2.689
(−1.618, 1.618,−1, 0, 1)

e(2) =
1

2.689
(−1, 1.618,−1.618, 1, 0)

e(3) =
1

1.662
(0.618,−0.618,−1, 0, 1)

e(4) =
1

1.662
(−1,−0.618, 0.618, 1, 0) . (20.188)
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By orthogonality to the ground state e(0), the mean values of other eigen-
vectors are 0. e(1) → e(2) and e(3) → e(4) have the same energy by time-
reversal invariance.

As the action has form

S[Φ] =
1

2

n∑
t=1

{
(∂φt)

2 +
1

2
(2− s)φ2

t

}
+

n∑
t=1

mtφt . (20.189)

For 0 ≤ s < 2 this is the action for a 1-dimensional chain of nearest-
neighbor coupled harmonic oscillators. Here we are, however, inter-
ested in the everywhere hyperbolic, unstable, anti-harmonic or inverted
parabolic potential, s ≥ 2 case. The energy of a normalized eigenmode
e(j) · e(j) = 1 is obtained by flipping the sign of the potential term.

Ej =
1

2

n∑
t=1

e(j)
t2e(j)

t +
n

2
(s− 1) =

n

2

(
ω2
j

n
+ (s− 1)

)
, (20.190)

for temporal cat, and

Ej =
LT

2

(
ω2
j

LT
+ (s− 1)

)
, (20.191)

for spatiotemporal cat, where ω2
j are the Laplacian eigenvalues. This spa-

tiotemporal cat energy is wrong, in the sense that I have not picked out a
time direction - it’s really an Euclidean, ‘elasticity’ mode.

Not sure whether we should be looking at normalized eigenmodes, but
at least the energy density Ej/(LT) looks sensible in this definition, ex-
tensive with the system size. However, looking at the eigenvector signs,
to me it looks like e(1) should have a higher energy than e(3) (more wig-
gles).

2020-01-11 Predrag So you are saved by the bell again: Have to compute and
plot the lowest energies eigenmodes for large n temporal cat, and for as
large [L×T] spatiotemporal cat. So you can avoid actual paper writing
while you do that.

The point is to demonstrate that even though the microscopic, site dy-
namics is chaotic, the most important lattice modes are ‘hydrodynamic’,
i.e., long wavelength in units of the lattice spacing.

Once you see the eigenfunctions, it will be very hard to explain why
would not one exploit the D4 and spacetime reflection symmetries.

2CB

2020-01-16 Han I computed the 5776 lattice states Φ of period n = 9 for the
s = 3 temporal cat (see (1.14); corresponding to 960 prime lattice states,
see (1.17)) with the with the 3-letter alphabetA (1.9) defined in figure 1.9.
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The action, according to ref. [20], is

S[Φ] =
1

2
Φ>J Φ + Φ>M =

1

2

T∑
t,t′=1

φt′Jt′tφt +

T∑
t=1

mtφt . (20.192)

I omitted the sources M, and computed 2S[Φ] = Φ>J Φ for these solu-
tions. The (twice the) action ranges between 0 and 239/76 = 3.1447 =
π+ 0.0031. The lowest action 0 comes from the solution which has 0 field
Φ everywhere.

The second lowest action is 17/76 = 0.224. This action comes from the
single source lattice state

M1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)

Φ1 =
1

76
(−34,−13,−5,−2,−1,−1,−2,−5,−13)

≈ −1

4
(1 + cos 2πt/n) , (20.193)

its mt → −mt reflection

M2 = (1, 0, 0, 0, 0, 0, 0, 0, 0)

Φ2 =
1

76
(34, 13, 5, 2, 1, 1, 2, 5, 13) , (20.194)

and their translations. The state (and its reflection) with the third lowest
action has source:

M3 = (1, 1, 0, 0, 0, 0, 0, 0, 0)

M4 = (1, 1, 0, 0, 0, 0, 0, 0, 0) . (20.195)

So the lowest actions correspond to the states disturbed by the smallest
sources.

Then I computed the energy (20.190) of these solutions. If I neglect the
sources, the energy is given by E = 1/2 Φ>(−2 + 2− s)Φ . The energy of
these solutions range from -3/8 to 5233/2888. The solution with lowest
energy is the period-3 lattice state Φ100

Φ =
1

4
(−2,−1,−1,−2,−1,−1,−2,−1,−1)

M = (1, 0, 0, 1, 0, 0, 1, 0, 0) , (20.196)

its reflection, and its translations.

But if we compute the energy with source, E = 1/2 Φ>(−2 + 2 − s)Φ +
M>Φ , the energy of these solutions will range from 0 to 23397/2888. The
0 energy again comes from the fixed point solution with 0 field. And
the second lowest energy, 1161/2888, comes from solutions with second
lowest action, (20.194–20.195) and their translations.
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2020-01-17 Predrag I have no idea how you count lattice states, so I included
the official, ChaosBook style census in (1.14), and the prime lattice states
(1.17), in sect. 1.3.2.

I think it is worth your time understanding that, as we hope to generalize
it to spatiotemporal cat counting, see sect. ??.

2020-01-21 Han Moved the proof of not-Hill’s formula using LU decomposi-
tion to here:

20.6.1 Stability of a periodic point vs. stability of the orbit

Consider a d-dimensional map φt+1 = f(φt), where φt = {φt,1, φt,2, . . . , φt,d}
is the state of the system at time t. In case at hand, the one time step Jacobian
matrix

J(φt)ij =
∂f(φ)i
∂φj

∣∣∣∣
φi=φi,t

(20.197)

stretches uniformly, so the Jacobian matrix does not depend on the field value
φt or time t, J(φt) = J .

For a lattice state Φp with period np, the orbit Jacobian matrix is a [npd×npd]
block matrix

Jp =


1 −J
−J 1

· · · 1
· · · 1

−J 1

 = 1− Jr−1 , (20.198)

where 1 is a d-dimensional identity matrix, and J is the one time step [d × d]
Jacobian matrix (20.197).

To evaluate the determinant of the orbit Jacobian matrix, let L be a [npd ×
npd] block lower-triangular matrix:

L =



1
J 1
... J 1

Jnp−2 . . . 1
Jnp−1 Jnp−2 . . . J 1

 , (20.199)

and U be a [npd× npd] block upper-triangular matrix:

U =


1 −J

1 −J2

1 −J3

1 · · ·
1− Jnp

 . (20.200)
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Note that:
LJp = U , (20.201)

and the determinant of L is 1. The determinant of orbit Jacobian matrix is:

detJp = det (LJp) = detU = det (1− Jnp) . (20.202)

20.6.2 Temporal cat counting by determinant recursion

2020-06-12 Han From (1.113) to (1.119) we solved an inhomogeneous difference
equation

φt+2 − s φt+1 + φt = −2(s− 2) ,

and the general solution is (1.119) with m = −2(s − 2). But then we use this
general solution to find the number of solutions, which assumes that the num-
ber of solutions Nn satisfies the difference equation:

Nt+2 − sNt+1 +Nt = −2(s− 2) .

And this is the recurrence relation that we need to prove.
I can only prove this recurrence relation by expanding the determinant of

the orbit Jacobian matrix. Here is a method that is slightly simpler than the old
one:
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Nn = |DetJn | =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s −1 0 0 . . . 0 −1
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
−1 0 . . . . . . . . . −1 s

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n×n]

(20.203)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

s −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
−1 0 . . . . . . . . . −1 s

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n×n]

(20.204)

+(−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 s −1 0 . . . 0
0 −1 s −1 . . . 0
...

...
...

. . .
...

...
0 0 . . . . . . −1 s
−1 0 . . . . . . . . . −1

∣∣∣∣∣∣∣∣∣∣∣
[(n−1)×(n−1)]

(20.205)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

s −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n×n]

(20.206)

+(−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 . . . 0 0
s −1 0 . . . 0 0
−1 s −1 . . . 0 0

...
...

... . . .
. . .

...
0 . . . . . . −1 s −1

∣∣∣∣∣∣∣∣∣∣∣
[(n−1)×(n−1)]

(20.207)

+(−1)n+1(−1)n(−1)

∣∣∣∣∣∣∣∣∣∣∣

s −1 0 0 . . . 0
−1 s −1 0 . . . 0
0 −1 s −1 . . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . s

∣∣∣∣∣∣∣∣∣∣∣
[(n−2)×(n−2)]

(20.208)

+(−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 s −1 0 . . . 0
0 −1 s −1 . . . 0
...

...
...

. . .
...

...
0 0 . . . . . . −1 s
0 0 . . . . . . . . . −1

∣∣∣∣∣∣∣∣∣∣∣
[(n−1)×(n−1)]

(20.209)
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where −Jn is the [n × n] tridiagonal matrix:

−Jn =



s −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s


. (20.211)

The determinant of −Jn satisfy the recurrence relation:

−det (−Jn) + sdet (−Jn−1)− det (−Jn−2) = 0 . (20.212)

So the determinant of the orbit Jacobian matrix satisfies:

Nn+2 − sNn+1 +Nn

= [−det (−Jn+2) + sdet (−Jn+1)− det (−Jn)]

+ [−det (−Jn) + sdet (−Jn−1)− det (−Jn−2)]− 2(2− s)
= 2(s− 2) , (20.213)

which is the difference equation that we use to solve for Nn .

2020-01-28 Predrag Is (5.127) or (1.46) the recursion we need for Chebyshevs?
Or 2017-09-09 Predrag post?

2020-01-31 Predrag Here is a stackexchange recurrence relation for Un(s/2)
determinants of a circulant matrix. Can you do the same for Tn(s/2).
Then we are done with the spatiotemporal cat zeta function.

2019-09-27, 2020-01-31 Predrag Write this up here, then distill into a paragraph,
insert into the kittens/CL18.tex:

Littlejohn notes are simple and clear on how one evaluates determinants
of 3-diagonal matrices, via 3-term recurrence (second-order difference
equation [23]), see his eq. (74). For temporal cat substitute−cj → s− 2 =
µ2, specify the boundary condition, identify it as the recursive definition
of the appropriate Chebyshev polynomials:

This is an [(n−1)×(n−1)] tridiagonal matrix (see−Jn = Dn in (1.47)). To
prove that Det (−Jn) = 2Tn(s/2)− 2, Tn(s/2) Chebyshev polynomial of
the first kind, define Det (−Jk) as the determinant of the upper [k×k] di-
agonal block, and set Det (−J0) = 1. Then by Cramer’s rule, we find the
recursion relation (something like (20.149), but make it more compact),

Tk+1(s/2)− sTk(s/2) + Tk−1(s/2) = 0 . (20.214)

Littlejohn then rescales the equation in the form appropriate to taking a
continuum limit - we do not have to do that here.
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2019-09-27 PC Question: Is there such recurrence relation for the 2-dimen-
sional spatiotemporal cat? I suspect that at the worst it is two 3-term
recurrences (second-order difference equations [23]), one for each index.
Because of the space ⇔ time symmetry they might turn into something
simple for square domains.

2020-03-03 Predrag For spatiotemporal cat the block circulant matrix with cir-
culant blocks has for [3×2]0 form

J[3×2]0 =


−2s 2 1 0 1 0

2 −2s 0 1 0 1
1 0 −2s 2 1 0
0 1 2 −2s 0 1
1 0 1 0 −2s 2
0 1 0 1 2 −2s

 . (20.215)

of [L×L] block form, L = 3, with [T×T] blocks, T = 2.

2020-03-03 Han For J[3×3]0 the block circulant matrix is:

−2s 1 1 1 0 0 1 0 0
1 −2s 1 0 1 0 0 1 0
1 1 −2s 0 0 1 0 0 1
1 0 0 −2s 1 1 1 0 0
0 1 0 1 −2s 1 0 1 0
0 0 1 1 1 −2s 0 0 1
1 0 0 1 0 0 −2s 1 1
0 1 0 0 1 0 1 −2s 1
0 0 1 0 0 1 1 1 −2s


, (20.216)

in agreement with Tensors.nb.

2020-03-03 Predrag Can you compare [3×1]0 with the temporal cat n = 3 case,

J3 =

 −s 1 1
1 −s 1
1 1 −s

 . (20.217)

2020-03-03 Han The correct form is:

J[3×1]0 =

 −2s+ 2 1 1
1 −2s+ 2 1
1 1 −2s+ 2

 . (20.218)

The block on the diagonal has a form similar to the orbit Jacobian matrix
of the temporal cat. For n = 2 the orbit Jacobian matrix has the form
(20.151), and for n = 1 the orbit Jacobian matrix has the form (20.150),
because for a fixed point (1-cycle) in temporal cat, the field value and
source satisfy:

(−s+ 2)φt = −mt .
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2020-03-17 Han In order to determine all prime tiles

b1 =

(
Lp
0

)
, b2 =

(
Sp
Tp

)
, (20.219)

that tile a larger tile

a1 =

(
L
0

)
, a2 =

(
S
T

)
, (20.220)

observe that a prime tile tiles the larger tile only if its widthL is a multiple
of Lp, its height T is a multiple of Tp, and the tile ‘tilts’ are related by

a2 = nb1 +
T

Tp
b2 → S = nLp +

T

Tp
Sp (20.221)

i.e., the area spanned by the two ‘tilted’ basis vectors a2×b2 = STp−TSp
must be a multiple of the prime tile area LpTp.

Another way to understand the prime tile condition is illustrated in fig-
ure 20.47. The gray parallelogram is the Bravais cell of the larger tile and
the blue parallelogram is the Bravais cell of the prime tile. In this figure
we assume that the first two relations, Lp divides L and Tp divides T are
already satisfied. In the periodic field over the larger tile, the field value
at the tip of a2 (marked A) is the same as the field value at the origin
O. And for the periodic field of the prime tile, the field value at the tip
of (T/Tp)b2 (marked B) is same as the field value on the origin, hence
the field values at points A and B are the same, a2 = (T/Tp)b2 which re-
quires thatA−B can be divided by Lp. So S−(T/Tp)Sp must be divisible
by Lp.

2020-06-05 Han Suppose a Bravais lattice Lwith basis

Λ =
[

a1 a2

]
=

[
a11 a12

a21 a22

]
detL = a11a22 − a12a21 . (20.222)

is tiled by a finer lattice Lp with a basis

Λp =
[

ap1 ap2
]

=

[
ap11 ap12

ap21 ap22

]
detLp = ap11a

p
22 − ap12a

p
21 . (20.223)

As L is a sublattice of Lp, the basis must satisfy

Λ =
[
kap1 + lap2 map1 + nap2

]
= Λp

[
k m
l n

]
, (20.224)
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Figure 20.47: The gray parallelogram is the Bravais cell of the large tile and the
blue parallelogram is the Bravais cell of the prime tile p, T = 2Tp and L = 3Lp.
The repeat the prime tile in the temporal direction reaches the upper boundary
of the large tile at point B. If the prime tile can tile the large tile then the
periodic boundary of the prime tile should satisfy the periodic boundary of
the large tile. So the field value at point B should be same as the field value
at point A. The distance between point B and point A should be equal to Lp
multiplied by an integer.

where k, l, m and n are integers. Solving this equation we have

k =
a11a

p
22 − a21a

p
12

detLp
, l =

a21a
p
11 − a11a

p
21

detLp

m =
a12a

p
22 − a22a

p
12

detLp
, n =

a22a
p
11 − a12a

p
21

detLp
, (20.225)

and
detL
detLp

= det

[
k m
l n

]
= kn− lm . (20.226)

To satisfy these relations, |a1 × ap1|, |a1 × ap2|, |a2 × ap1| and |a2 × ap2| need
to be multiples of the prime tile area detLp, with one relation on these
integers imposed by the volume ratio (20.226) also being an integer.

2020-08-15 Predrag Is

tr

[
k m
l n

]
= tr

(
Λ−1
p Λ

)
(20.227)

an important invariant?

2020-08-15 Predrag Any integer [2× 2] matrix with nonvanishing determinant
defines a Bravais cell, so we can turn the above argument around. The
form of (20.224) suggests that if we have two prime lattices, we can con-
struct a ‘non-prime’ (?) Bravais lattice by multiplication

Λpp′ = ΛpΛp′ . (20.228)

Can we construct all Bravais lattices this way? Not clear, as the two Bra-
vais cells do not commute, ΛpΛp′ 6= Λp′Λp . Their volumes do multiply
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det Λpp′ = det Λp det Λp′ so it is still possible they generate the same Bra-
vais lattice, or two within an relative periodic orbit family of the same
volume, but different tilt.

The ordered concatenations of primes, ChaosBook Appendix A18.2 Prime
factorization for dynamical itineraries might do the trick. Se also the factor-
ization algorithm (6.119).

2020-08-15 Predrag This checks with the Hermite normal form basis (20.219),
where a21 = ap21 = 0:

k =
LTp

detLp
=

L

Lp
, l = 0 ,

mdetLp = STp − TSp , n =
TLp

detLp
=

T

Tp
,

The volume relation

detL
detLp

= det

[
k m
0 n

]
= kn (20.229)

is trivially true. The trace (20.230)

tr

[
k m
l n

]
=

L

Lp
+

T

Tp
(20.230)

does not depend on S, so it is not an invariant that we are looking for.

2020-08-15 Predrag Consider now the prime Bravais cell whose volume is a
prime number,

detLp = p .

Its only divisor is the unit cell of Z2, so (20.225) becomes[
k m
l n

]
=

[
a11 a12

a21 a22

]
. (20.231)

In the Hermite normal form basis (20.219) we chose L = p, T = 1, so[
k m
l n

]
=

[
L S
0 T

]
, S = 0, 1, · · · , p− 1 . (20.232)

According to (20.225) the unimodular-transformation invariant formula
(is it?) for S is

S = a2 × ap2 = a12a
p
22 − a22a

p
12 , (20.233)

where Λp is an unit area Bravais cell (not necessarily the unit square) that
tiles L.

Some of discussion in the 2020-07-11 Predrag post, around eq. (6.119),
might be relevant.
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2020-08-15 Predrag As an example of an arbitrary Bravais cell Λ, consider the
prime Bravais lattice figure 6.2, with the ‘integral basis’ vectors (6.100)
and detL = 7 [

a11 a12

a21 a22

]
=

[
3 2
1 3

]
. (20.234)

2020-08-16 Predrag to Han: Figure 6.4 is an example to rethink. It shows four
parallelograms of area 10. The two blue parallelograms are claimed to be
‘primitive’. The two red parallelograms can clearly be tiled by either 2 or
5 smaller tiles. I do not trust Holmin [29] on this. Bravais lattices clearly
must be tiled by 1/2 or 1/5th prime Bravais lattices in all four cases.

1. Can you bring the first 3 parallelograms into the Hermite normal
form basis (20.219)?

2. Are they distinct?

3. Are they [5×2]S or [10×1]S?

Note, [10×1]S does not make 10 a ‘prime’, as that can be tiled by [5×1]Sp
and [2×1]Sp .

2020-08-18 Han The the first 3 Bravais cells in figure 6.4 are:

Λ′1 =

[
3 1
2 4

]
, Λ′2 =

[
3 1
−1 3

]
, Λ′3 =

[
3 2
1 4

]
.

Unimodular matrices (Uj ∈ SL2(Z), special linear group over integers of
degree 2) 11

U1 =

[
2 1
−1 0

]
, U2 =

[
3 2
1 1

]
, U3 =

[
4 1
−1 0

]
,

bring these to the Hermite normal form:

Λ1 = Λ′1U1 =

[
5 3
0 2

]
, Λ2 = Λ′2U2 =

[
10 7
0 1

]
Λ3 = Λ′3U3 =

[
10 3
0 1

]
. (20.235)

So these 3 basis span 3 different lattices. None of them is a prime lattice.
[5×2]3 is a sublattice of [5×1]4 and [1×2]0, [10×1]7 is a sublattice of [5×1]2
and [2×1]1, and [10×1]3 is a sublattice of [5×1]3 and [2×1]1.

2020-08-21 Han In this paper, we are able to systematically enumerate all pos-
sible solutions of the spatiotemporal cat in two steps. The first step is to
generate the Bravais lattices which describe the periodicities of the solu-
tions. The second step is to compute the solutions with the given peri-
odicities and to count the number of the solutions, which can be done

11Predrag 2020-08-18: where do your Uj ’s come from?
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in two ways: using the Fourier transform to diagonalize the orbit Jaco-
bian matrix, or computing the determinant of the orbit Jacobian matrix
directly.

2020-08-28 Han Periodicity: The field is invariant under a discrete translation
group, which is isomorphic to a Bravais lattice.

2020-09-08 Predrag I do not know whether you have read any literature that
defines precisely our lattices, but if you have, use that knowledge now.
Clearly, we have to give up on “Bravais” lattices as all references say
there are only 5 Bravais lattices in d = 2, so we are misusing the term -
my bad. Keep on reading.

2020-09-24 Predrag While writing up tomorrow’s talk, I came up with a simple
guess (13.85) for spatiotemporal cat zeta function. The factor 2(s− 2) the
we see in every N[L×T]S is automatic. Can you check whether it agrees
with our lattice state counts? It has no tilt S anyplace, so if it works, it
should generate the sums of all states whose tile has area [L × T]. To
recover lattice state counts N[L×T] you probably have to take derivatives
of ln det in both z1 and z2, something like∑

L=1

∑
T=1

zL1 z
T
2N[L×T] = − 1

1/ζAM
z1z2

d

dz1

d

dz2
(1/ζAM) .(20.236)

Have not checked any of that. For once, the real time pressure is on - if
true, I can announce it at 10am Friday. Who knows when I get to give
another talk on spatiotemporal cat? :)

2020-09-24 Han It does not work. If zeta function we have is:

1/ζAM = exp

(∑
L=1

∑
T=1

zL1 z
T
2

LT
N[L×T]

)
, (20.237)

then we have

f(z1, z2) =
∑
L=1

∑
T=1

zL1 z
T
2N[L×T] = z1z2

∂2

∂z1∂z2
ln(1/ζAM) . (20.238)

From the guess “zeta” function (13.85)

1/ζAM(z1, z2) = 1− 2(s− 2)

z1 + z2 − 4 + z−1
1 + z−1

2

(20.239)

I get

f(z1, z2)/4(s− 2) = (20.240)
(z1 − z−1

1 )(z2 − z−1
2 )

(
z1 + z2 − s− 2 + z−1

1 + z−1
2

)(
z1 + z2 − 4 + z−1

1 + z−1
2

)2 (
z1 + z2 − 2s+ z−1

1 + z−1
2

)2 ,
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which changes sign separately under each spacetime reflection (reversal)
z1 → z−1

1 , and is invariant under the space ↔ time diagonal reflection
z1 ↔ z2. Doing the same for the 1-dimensional temporal cat, I rederive
(13.79):

f(z) = (s− 2)
1

z−1 − s+ z

1 + z

1− z =
2− sz

z2 − sz + 1
− 2

1− z .

I rechecked that this, expended as a power series, gives the correct peri-
odic points count.

To count N[L×T], we can either compute:

N[L×T] =
1

L!T!
lim

z1,z2→0

∂L

∂zL1

∂T

∂zT2
f(z1, z2) , (20.241)

or:

N[L×T] =
1

(L − 1)!(T − 1)!
lim

z1,z2→0

∂L

∂zL1

∂T

∂zT2
ln(1/ζAM) . (20.242)

I have tried both (20.241) and (20.242). The results for small L and T are
either 0 or not converge. And this happens in most of the spatiotemporal
cat zeta functions that we guessed.

2020-09-24 Predrag f (20.240) is pretty close in form to (13.80), but why are de-
nominators squared? It’s almost like our derivatives are not right, might
be something like

1

2

(
z
∂

∂z
− z−1 ∂

∂(z−1)

)
would be better. In d = 2 there might be some conformal, complex plane,
Cauchy-Riemann magic going on, compare with use of ‘time reversal’ in
(13.9), (13.11) and figure 13.2.

2020-10-06 Han Revisiting my attempt of 2 years ago, see (20.107): We need a
definition of the topological zeta function of fields on the 2-dimensional
lattice. (20.237) is incorrect. We want to find a topological zeta function
that can be written into the product formula of prime orbits.

I tried to prove that (20.237) gives us a topological zeta function in (20.107–
20.110). But there is a mistake in the beginning. If the N[L×T] means
number of fixed points on [L×T]0, we will let each of the prime orbits
[Lp×Tp]Sp with non-zero Sp that tiles [L×T]0 contributes LT times in the
N[L×T]0 , where they actually only contribute LpTp times.

If the N[L×T] is the sum of all states whose tile is [L × T], then this is
intuitively wrong since we will overcount some solutions. For example,
the trivial solution, fixed point on [1×1]0, is counted in all states whose
tile is [L × T] with different S.
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Assume the weight assigned to a prime orbit p is:

tp = tp1tp2 , where tp1 = z
Lp
1 , tp2 = z

Tp
2 . (20.243)

Rewrite the number of lattice states as:

zL1 z
T
2N[L×T]S =

∑
Lp|L

Lp t
L
Lp

p1

∑
Tp|T

Tp t
T
Tp

p2

∑
LpTp|STp−TSp

1 (20.244)

=
∑
p

LpTp

∞∑
r1=1

∞∑
r2=1

tr1p1 t
r2
p2 δr1Lp, L δr2Tp, T

∞∑
rS=−∞

δrSLp, S−r2Sp ,

where

L = r1Lp , T = r2Tp

STp − TSp = rSLpTp

⇒ S = rSLp + r2Sp mod L . (20.245)

The next step is to sum over L, T and S. Taking sum of (20.244) over L
and T from 1to∞, we will get rid of the Kronecker deltas, as in (20.108).
The geometric series in powers of Lp sums up as in the d = 1 case, but
T and S sums are entangled through r2. The generating function for the
numbers of lattice states is

Γ(z1, z2) =

∞∑
L=1

∞∑
T=1

zL1 z
T
2

L−1∑
S=0

N[L×T]S

=
∑
p

Lptp1
1− tp1

Tp

∞∑
r2=1

tr2p2

L−1∑
S=0

∞∑
rS=−∞

δrSLp+r2Sp, S (20.246)

The sum over S is tricky. For S = 0,

rSLp = −r2Sp

and as 0 ≤ Sp/Lp < 1, so −r2 < rS ≤ 0 is non-positive. For S = L − 1,

rS = r1 −
1 + r2Sp
Lp

.

rS is strictly positive.

But if we take rS from −∞ to ∞, for some of the rS there will not be a
S ∈ [0, L − 1] such that STp − TSp = LpTprS . Maybe we need to find a
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range of rS in the sum in (20.244) such that for any rS there exists one S
that have δrSLp+r2Sp, S = 1.

The weight (20.243) is likely incorrect, and it will determine the factor
in front of N[L×T]S in the zeta function. But I think we need to first know
how to write the zeta function into the product form, then we will be able
to interpret and construct the zeta function.

2020-10-09 Han We need to reduce the range of the sum of rS such that for any
rS in the range there is one S ∈ [0, L) that satisfy:

rS =
S − r2Sp

Lp
.

Known the range of S and the relation between S and rS , the reduced
range of rS is:

rS ∈
[
−r2Sp

Lp
, r1 −

r2Sp
Lp

)
.

Sum the separated term with S in (20.244) over S:

L−1∑
S=0

⌈
r1−

r2Sp
Lp
−1

⌉∑
rS=

⌈
− r2SpLp

⌉ δrSLp+r2Sp, S =

⌈
r1−

r2Sp
Lp
−1

⌉∑
rS=

⌈
− r2SpLp

⌉ 1 = r1 . (20.247)

The dxe is the least integer greater than or equal to x.

The zeta function (20.237) can be written into product formula:

1/ζAM = exp

(
−
∑
L=1

∑
T=1

L−1∑
S=0

zL1 z
T
2

LT
N[L×T]S

)

= exp

(
−
∑
p

∞∑
r1=1

∞∑
r2=1

tr1r2p r1

r1r2

)

= exp

(∑
p

∞∑
r1=1

ln(1− tr1p )

)

=
∏
p

[ ∞∏
r1=1

(1− tr1p )

]
. (20.248)

This result is very similar to the zeta functions in Lind [34]. In Lind [34],
the function

∞∏
r1=1

1

1− tr1p

is called the generating function for the partition function.
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2020-10-07 Predrag The Kronecker (circular) delta function for a periodic lattice

δkj =
1

L

L−1∑
`=0

ei
2π
L (k−j)` . (20.249)

takes care of mod L and mod T in (20.244), but what is Kronecker delta
for S? What is the periodicity there? I suspect one has to average over
the unimodular group there, with a double sum over 2 generators, as in
(13.10), (13.11) and figure 13.2. The eigenfunctions might be some fancy
19th century special functions.

2020-10-07 Predrag As far as I can see, S sum can be separated as in my rewrit-
ten version of (20.244). That looks strange.

2020-10-07 Han Counting formulas like (11.19), for the number of prime [2×2]0
lattice states is

M[2×2]0 =
1

2 · 2
(
N[2×2]0 − 2M[2×1]0 − 2M[1×2]0 − 2M[2×1]1 −M[1×1]0

)
,

relate numbers N[L×T]S and M[L×T]S . Numbers such as the number of
orbits Mp do not appear in formula (20.244) because when we compute
the sum over all the prime orbits, labeled by p, each prime orbit will
contribute once to the sum. If the number of prime [2×2]0 lattice states is
M[2×2]0 , there will be M[2×2]0 orbits with [Lp×Tp]Sp = [2×2]0 that will be
summed.

2020-10-07 Predrag Not getting a simpler formula than (20.109) is OK; looks
like you are dealing with polylogs (wiki), and specifically with dilogs
(wiki), and/or Spence’s function (wiki).

Some random references, hopefully we do not need them:

Zagier (Predrag’s MIT wunderkid) The Dilogarithm Function.

Dilogarithm identities in conformal field theory and group homology.

2018-06-11 Han For example, consider the simplest case in two-dimensions,
with the period of ` is L = 2. In this case, we will need to know x1,t−1,
x2,t−1,x1,t and x2,t to solve for the field values on all of the lattice sites, t ∈
Z. And we can also define the generating partition in the space spanned
by these four values. If the field value satisfies (20.46) where d = 2, the
state evolves with time as:

A


φ1,t−1

φ2,t−1

φ1,t

φ2,t

 =


0 0 1 0
0 0 0 1
−1 0 s −2
0 −1 −2 s



φ1,t−1

φ2,t−1

φ1,t

φ2,t

 =


φ1,t

φ2,t

φ1,t+1

φ2,t+1

+


0
0

m1,t

m2,t


(20.250)
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The matrix A gives us the cat map for the lattice with spatial period of 2.
If the spatial period is longer, the general matrix A will be:

A =



0 . . . 0 | 1 0 . . . 0 0
| 0 1 . . . 0 0

...
. . .

... |
...

. . .
...

| 0 0 . . . 1 0
0 . . . 0 | 0 0 . . . 0 1
− − − − − − − − − − −
−1 0 . . . 0 0 | s −1 . . . 0 −1
0 −1 . . . 0 0 | −1 s −1 0
...

. . .
... |

...
. . . . . . . . .

...
0 0 . . . −1 0 | 0 −1 s −1
0 0 . . . 0 −1 | −1 0 . . . −1 s


(20.251)

which is very similar to the cat map matrix in one-dimension.

2020-07-12 Predrag See (9.10) for a compact rewrite.

2018-06-21 Predrag This is nice. In principle it should be already in this blog,
for example (6.2), and in Gutkin and Osipov [28], and Gutkin et al. [27],
but I do not recognize the equations. My impression is that the spectrum
of A for going forward in time is hard to interpret, but I have not tried.

2018-06-11 Han After we get the matrix A, we can get the eigenvalues and
eigenvectors. There will be 4 eigenvectors for the case (20.250) where
the spatial period is 2. With these four eigenvectors we can define the
generating partition in the space spanned by x1,t−1, x2,t−1,x1,t and x2,t

which is a 4-torus.

2018-06-26 Han I have tried to get the partition for spatiotemporal cat with
spatial period L = 2. But this is more complex than I thought. I thought
the partition will be same as the one-dimensional case. So using the 4
eigenvectors we will have 4 planes, and each of them is parallel to 3 of the
eigenvectors. The 4 planes passing through the origin and the 4 planes
passing through the point (1, 1, 1, 1) will enclose a four-dimensional "cube"
which is corresponding to the large rectangle in the figure 20.3 (a). And
using 4 planes passing through the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1) separately we will have 4 small region corresponding to
the 2 small rectangle in figure 20.3. This is the simplest case, but it doesn’t
work out.
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The eigenvalues of the matrix in (20.250) where s = 5 are:

Λ1 =
1

2
(7 + 3

√
5)

Λ2 =
1

2
(7− 3

√
5) = Λ1

−1

Λ3 =
1

2
(3 +

√
5)

Λ4 =
1

2
(3−

√
5) = Λ3

−1 (20.252)

The corresponding eigenvectors are:

e1 = (−1, 1,−Λ1,Λ1)

e2 = (−Λ1,Λ1,−1, 1)

e3 = (1, 1,Λ3,Λ3)

e4 = (Λ3,Λ3, 1, 1) (20.253)

Note that Λ3 and Λ4 are the eigenvalues of the Percival-Vivaldi cat map
with s = 3. These two eigenvectors are corresponding to the case when
all of the sites are having a same value at a given time.

2018-06-27 Predrag Looks like the configuration eigenvectors,

e>2i+1 · e2j+1 = 0 , i 6= j ,

and the momentum eigenvectors,

e>2i · e2j = 0 , i 6= j ,

will be separately orthogonal for the L-“particles” lattice. If we are lucky,
the jth phase-space area e>2j ·e2j+1 = Aj is preserved by the (symplectic?)
map (20.251); generically I think only the sum of areas is preserved.

2018-07-13 Predrag discussion with Han: think how to generalize the number
of periodic orbits (21.3) to the L = 2 case. Your arbitrary L evolution ma-
trix (20.251) has a very nice form, which might lead to some nice gener-
alization of eigenvalue formulas (20.252) to arbitrary L. We do not really
need explicit alphabets; to get topological zeta functions for this problem,
we only need formulas like (21.3) that only need eigenvalues (coordinate
choice invariant properties of dynamics). For L = 1 case the object of
interest is the topological entropy ln Λ (the rate of growth of the number
of periodic orbits with T → ∞). For large L you need the rate of growth
of the number of periodic orbits per unit length, i.e., (ln Λj)/L, where Λj
is the leading eigenvalue in the generalized (20.252).

2018-07-27 Predrag That suggests computing analytic expressions for eigen-
values for invariant 2-tori R = [2×2], R = [3×3], R = [4×4], · · · , try to
divine T ↔ L interchange symmetry from those...

11/27/2021 siminos/spatiotemp/chapter/blogHL.tex912 8289 (predrag–7373)



CHAPTER 20. HAN’S BLOG

2018-08-02 Predrag Have you had a look at sect. 6.4 Toeplitz tensors? Refer-
ences cited there might offer efficient ways of computing spectra of your
doubly cyclic tensorial matrices.

2018-07-24 Han The number of periodic points for the L = 2 case is easy to
get. The number of periodic points with time period T is:

N[L×T] =
∣∣det (A(L)T − I)

∣∣ (20.254)

In all examples we take s = 5. Since the matrices A and I can be diago-
nalized simultaneously, the number of periodic points for the L = 2 case
is:

N[2×T] = |(ΛT1 − 1)(Λ−T1 − 1)(ΛT3 − 1)(Λ−T3 − 1)|
= |[2− (ΛT1 + Λ−T1 )][2− (ΛT3 + Λ−T3 )]| (20.255)

As the Hamiltonian evolution matrix (20.251) is symplectic, its eigenval-
ues come in pairs for any L (for any eigenvalue Λj , Λ−1

j is also an eigen-
value). So the number of periodic orbits with time period T and spatial
period L is

N[L×T] =
L∏
i=1

|(ΛTi − 1)(Λ−Ti − 1)|

=
L∏
i=1

(ΛTi + Λ−Ti − 2) = N[T×L] . (20.256)

The problem is how to get a general form of the eigenvalues. We have the
same number of orbits for the [T×L] block and the [L×T] block, so (20.256)
must be a function of L and T invariant under the T ↔ L exchange.

2018-07-24 Han Perhaps there is a better way to get the general formulas of
the eigenvalues of (20.251), I just haven’t figured it out. It seems like the
eigenvalues of (20.251) are completely determined by the eigenvalues of
the small Toeplitz matrix at the bottom right corner of this matrix (The
large evolution matrix itself is not a Toeplitz matrix). For example, when
L = 2 and s = 5 the eigenvalues of the Toeplitz matrix are 7 and 3. The
eigenvalues of the evolution matrix are 1

2 (7+3
√

5), 1
2 (7−3

√
5), 1

2 (3+
√

5)

and 1
2 (3 −

√
5). When L = 3, the eigenvalues of the Toeplitz matrix are

6, 6 and 3, while the eigenvalues of the evolution matrix are 1
2 (6 + 4

√
2),

1
2 (6 + 4

√
2), 1

2 (6− 4
√

2), 1
2 (6− 4

√
2), 1

2

(
3 +
√

5
)

and 1
2

(
3−
√

5
)
.

So generally, the eigenvalues of (20.251) can be expressed as 1
2 (a+ b) and

1
2 (a− b). And we know that 1

2 (a+ b)× 1
2 (a− b) = 1

4 (a2− b2) = 1. And we
know that a is an eigenvalue of the small Toeplitz matrix at the bottom
right corner of (20.251). The general expression for the Toeplitz matrix is
(from (20.51)):

λ(L)i = s− 2 cos(
2πi

L
) , i = 1, 2, ..., L (20.257)
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where L is the spatial period of the lattice and the rank of the Toeplitz
matrix. The eigenvalues of (20.251) are:

Λ(L)±i =
1

2
(λi ±

√
λ2
i − 4) , i = 1, 2, ..., L . (20.258)

From (20.257) you can see that for any L, when i = L we will get the
eigenvalue λ(L)L = s−2. That is why when s = 5 the Toeplitz matrix will
always have eigenvalue 3. And this will give us the eigenvalues of the
large evolution matrix 1

2 (3+
√

5) and 1
2 (3−

√
5), which are corresponding

to the case when all of the sites have a same field value at a given time
(same as the one-dimensional case).

Now we have the general formula of the matrix (20.251). In principle I
can get a general expression of number of periodic orbits with a given
length L and period T. The number of periodic orbits will be a function
of s, L and T. But as you can see my formula of eigenvalues of arbitrary
L evolution matrix (20.251) is not pretty. When L < 5, (20.257) will be
an integer but when L = 5 the eigenvalue in (20.257) starts to become an
irrational number and the eigenvalue of (20.251) also becomes uglier. So
I’m still trying to find an elegant expression.

I haven’t figured out how to prove that the eigenvalues of (20.251) are
1
2 (a + b) and 1

2 (a − b) where a is eigenvalue of the small Toeplitz matrix
and b =

√
a2 − 4. I just calculated all of the eigenvalues of the (20.251)

and the small Toeplitz matrix from L = 1 to L = 5. And they are all
matched. I will think about how to prove this.

2018-08-15 Han This part is not important. It’s just a practice for myself. Given
a spatial length L, the topological zeta function can be calculated from
(20.256). For example, if L = 2, we will have four eigenvalues from ma-
trix (20.251). Let these four eigenvalues be Λ+

1 , Λ−1 , Λ+
2 and Λ−2 . Expand

(20.256) we can see that each term is a constant times a combination of
eigenvalues to the power of n. Substitute (20.256) into (20.104) we have
the topological zeta function:

ζ(z) =
(1− zΛ+

1 )2(1− zΛ−1 )2(1− zΛ+
2 )2(1− zΛ−2 )2

(1− zΛ+
1 Λ+

2 )(1− zΛ−1 Λ+
2 )(1− zΛ+

1 Λ−2 )(1− zΛ−1 Λ−2 )(1− z)4
(20.259)

As L becomes larger, the topological zeta function becomes more compli-
cated but it can still be written in a similar form.

2020-10-20 Predrag We have temporal cat relations (1.6), (1.7), (1.39), (1.42),
s = 2 cosh(λ),

2TT(s/2) = ΛT + Λ−T = 2 cosh(Tλ) ,

and the Hill determinant formula

NT = |DetJ | =
T−1∏
k=0

[s− 2 cos (2πk/T)] = 2 cosh(Tλ)− 2 . (20.260)
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Consider the Hermitian orbit Jacobian matrix:

JT(θ) =



s −eiθ 0 0 . . . 0 −e−iθ
−e−iθ s −eiθ 0 . . . 0 0

0 −e−iθ s −eiθ . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −eiθ
−eiθ 0 . . . . . . . . . −e−iθ s


.(20.261)

The usual Toeplitz eigenvalues formula yields the right-hand side of the
identity:

detJT(θ) = 2 cosh(Tλ)− 2 cos(Tθ) =

T−1∏
t=0

[
s− 2 cos

(
θ +

2πt

T

)]
.

The left-hand side presumably comes from the Hill’s formula - have not
checked.

What are these θ phases? Remember that [L×1]0 could be thought of
1-dimensional lattice, but with s appropriately redefined. When on con-
siders [L×1]S , the tilt S can be distributed uniformly over the lattice by
picking θ = 2πS/L.

Taking θ = 2πS/T does not do anything - detJT(θ) is the same for all S.

2020-10-20 Han Using identity (15.56)

cosh(nx)− cos(ny) = 2n−1
n−1∏
k=0

[
coshx− cos

(
y +

2kπ

n

)]
,

the counting formula (20.179) can be rewritten as:

N[L×T]S =

∣∣∣∣∣∏
k

λk

∣∣∣∣∣
=

L−1∏
n1=0

T−1∏
n2=0

[
2s− 2 cos(

2πn1

L
)− 2 cos(−2πn1S

LT
+

2πn2

T
)

]

=

L−1∏
n1=0

[
T−1∏
n2=0

(
2s− 2 cos

2πn1

L
− 2 cos

2πn2

T

)
−
(

2 cos
2πn1S

L
− 2

)]
.

(20.262)

Let

Ñ[L×T](n1) =

T−1∏
n2=0

(
2s− 2 cos

2πn1

L
− 2 cos

2πn2

T

)
.
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Then

N[L×T]S =

L−1∏
n1=0

[
Ñ[L×T](n1)−

(
2 cos

2πn1S

L
− 2

)]
.

For a L sites 1-dimensional chain involves with time, the number of fixed
points that are invariant after T time steps with a tilt S is:

N[L×T]S =

L−1∏
n1=0

(
ΛTn1

+ Λ−Tn1
− 2 cos

2πn1S

L

)

=

L−1∏
n1=0

[
2 cosh(Tλn1

)− 2 cos
2πn1S

L

]
, (20.263)

where

λn1 = cosh−1

(
s− cos

2πn1

L

)
.

When S = 0, (20.263) becomes (20.256).

2020-12-23 Predrag Looks like (13.4), where one allows tilts in both time and
space directions, no? There one uses 4 sin2 θ/2 instead of 2 cos θ, as in
(5.56).

2020-10-30 Han The determinant of the orbit Jacobian matrix (20.261) is:

detJT(θ) =

T−1∏
t=0

[
s− 2 cos

(
θ +

2πt

T

)]
= 2 cos(Tλ)−2 cos(Tθ) , (20.264)

where λ = arccos(s/2), if the stretching parameter s < 2. Here I used the
oscillatory counterpart (in the sense of (6.28) and (6.29)) of the identity
(15.56)

2 cos(nx)− 2 cos(ny) =
n−1∏
k=0

[
2 cosx− 2 cos

(
y +

2kπ

n

)]
, (20.265)

from Gradshteyn and Ryzhik [25] (1965) Table of Integrals, Summations
and Products 1.395.2. It can also be proved by using the Chebyshev poly-
nomial identity of Wikipedia:

Tn(x) =


cos(n arccosx) if |x| ≤ 1

cosh(n arcoshx) ifx ≥ 1

(−1)n cosh(n arcosh(−x)) ifx ≤ −1

.

In the continuous limit of the spatiotemporal cat equation becomes Helmholtz
equation, whose solutions are also cosine and sines.

2020-10-31 Predrag Please read and correct/improve my attempt to consoli-
date this material in a single sect. 6.2 Helmoltz type equations.
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2020-10-31 Predrag I think of Helmholtz→ screened Poisson equation relation
as the Helmholtz wavenumber ik = m conversion, where m is the mass
of the scalar Yukawa particle. The relations (1.52), (1.54), and (1.55) are
then “trivial”, in the sense that they are just examples of (6.28) and (6.29)
conversion of oscillating solutions to exponentials.

2020-10-31 Predrag Perhaps of interest to Han: Wu [53] (6.180), (6.181).

2020-10-31 Predrag Shouldn’t we abandon the stretching parameter s, and rewrite
everything physically, in terms of the mass µ2 = d(s− 2) > 0?

Chebyshev polynomials such as (20.260) are written in terms of s, but all
our Hill determinants / periodic orbit counts might look more natural as
polynomials in µ2.

2020-11-13 Han Using the counting formula (20.256) the topological zeta func-
tion of 2-dimensional spatiotemporal cat with L = 3 I get:

1

ζ(z)
= exp

(
−
∞∑
T=1

zT

T
N[3×T]

)

=
N(z)

D(z)
, (20.266)

where the numerator and denominator of the zeta function are:

N(z) =
(
1− Λ−1

1 z
)4

(1− Λ1z)
4 (

1− Λ−1
2 z
)4

(1− Λ2z)
4 (

1− Λ−1
3 z
)4

(1− Λ3z)
4(

1− Λ1Λ2Λ−1
3 z
) (

1− Λ−1
1 Λ−1

2 Λ3z
) (

1− Λ−1
1 Λ2Λ−1

3 z
)(

1− Λ1Λ−1
2 Λ3z

) (
1− Λ1Λ−1

2 Λ−1
3 z
) (

1− Λ−1
1 Λ2Λ3z

)(
1− Λ−1

1 Λ−1
2 Λ−1

3 z
)

(1− Λ1Λ2Λ3z) , (20.267)

and

D(z) =
(
1− Λ1Λ−1

2 z
)2 (

1− Λ−1
1 Λ2z

)2 (
1− Λ−1

1 Λ−1
2 z
)2

(1− Λ1Λ2z)
2(

1− Λ1Λ−1
3 z
)2 (

1− Λ2Λ−1
3 z
)2 (

1− Λ−1
1 Λ3z

)2 (
1− Λ−1

2 Λ3z
)2(

1− Λ−1
1 Λ−1

3 z
)2

(1− Λ1Λ3z)
2 (

1− Λ−1
2 Λ−1

3 z
)2

(1− Λ2Λ3z)
2

(1− z)8 (20.268)

2020-11-29 Predrag For a set B ∈ Rd, the function

[B](φ) =

{
1 if φ ∈ B
0 otherwise (20.269)

is called the indicator of B.
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2020-11-30 Predrag Klain and Rota [32] Introduction to Geometric Probability:

A valuation on a lattice L of sets is a function µ defined on L that takes
real values, and that satisfies the following conditions:

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) , (20.270)

µ(∅) = 0 , (20.271)

where ∅ is the empty set. By iterating the identity (20.270) we obtain the
inclusion-exclusion principle for a valuation µ on a lattice L, namely

µ(A1 ∪A2 ∪ ... ∪An) =
∑
i

µ(Ai)−
∑
i<j

µ(Ai ∩Aj)

+
∑
i<j<k

µ(Ai ∩Aj ∩Ak) + . . . (20.272)

for each positive integer n.

Barvinok [9] Lecture 1, Problem 1 statement of (20.272) is less intelligible:
Take sets A1, A2, · · · , An ∈ Rd. The inclusion-exclusion formula is

∪Ai =
∑
I

(−1)|I|−1 [∩i∈IAi] , (20.273)

where the sum is taken over all non-empty subsets I ⊂ {1, . . . , n} and |I|
is the cardinality of I .

2020-12-15 Han Figure 20.48 is the fundamental parallelepiped of the symme-
try reduced temporal Bernoulli system with s = 2. The fundamental
domain hypercube Φ̂ ∈ [0, 1/2]n is divided into 2n smaller hypercubes
by the symbolic dynamics Â. Each one of the smaller hypercubes is sub-
ject to different orbit Jacobian matrix, so the orbit Jacobian matrix maps
these hypercubes into different positions.

Each integer point in the fundamental parallelepiped is corresponding
to one lattice state of the symmetry reduced temporal Bernoulli system.
But now the number of integer points is no longer equal to the volume
of the fundamental parallelogram. So we need a smart way to count the
number of lattice states. It’s possible that the volume of the fundamental
parallelogram mapped from the unit hypercube [0, 1]n gives the correct
number of fixed points. Still need to understand why can we count in
this way...

2020-12-16 Predrag Figure 20.48 is cool, and you are right, now orbit Jacobian
matrices differ because of ±s on the diagonal, so different fundamental
parallelepipeds go differen places.

Do prove that the |Hill determinant| is the same for all of them.
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(a)

1

2
1

ϕt

1

2

1

ϕt+1

(b)

Figure 20.48: The fundamental parallelepiped of the symmetry reduced tem-
poral Bernoulli system with s = 2. (a) The fundamental parallelogram of
length 2 lattice state. The fundamental domain hypercube Φ̂ ∈ [0, 1/2]2 is
mapped into four fundamental parallelograms by the orbit Jacobian matrix.
Each one of them contains one integer point, which is corresponding to a lat-
tice state with length 2. The total area of the four fundamental parallelograms
is 4 × 1/4. (b) The fundamental parallelepiped of length 3 lattice state. The
fundamental domain hypercube Φ̂ ∈ [0, 1/2]3 is divided into 23 hypercubes,
and each one of them is mapped to a fundamental parallelepiped. The black
dots are integer points. Each one of the fundamental parallelepipeds contains
one integer point. So the number of the lattice states with length 3 is 8. The
total volume of the 8 fundamental parallelepipeds is 8× 1/8.
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I expect det (JL)/detL from (6.107) to be the correct formula, so we have
to divide the volumes you get by 2−n . Or maybe rescale fields φt as we
discussed, so you apply the fundamental fact to unit hypercube.

Sidney has gone through the lattice points enumeration [8, 10, 11, 21]
proof, ask him to explain it to you.

2020-12-22 Han Expand the antisymmetric contribution of an orbit into the
trace form:

Hp = {e} : (1− tp̂) = exp[ln(1− tp̂)] = exp

[
−
∑
n=1

tnp̂
n

]

Hp = {e, σ} : (1 + tp̂) = exp

[
−
∑
n=1

(−1)ntnp̂
n

]
2020-12-24 Han The attempt described in this post failed, as the fundamental

domain is not φ̂t ∈ [0, 1/2]:

Quotient the cat map

φt+1 − s φt + φt−1 = −mt φt ∈ [0, 1)

to the fundamental domain by the dynamical D1 = {e, σ} symmetry. The
fundamental domain is φ̂t ∈ [0, 1/2]. The map in the fundamental do-
main is:

φ̂t+1 − s φ̂t + φ̂t−1 = −mt , −φ̂t−1 + s φ̂t −mt ≤ 1/2

1− φ̂t+1 − s φ̂t + φ̂t−1 = −mt , −φ̂t−1 + s φ̂t −mt > 1/2 .

(20.274)

Figure 20.49 (a) is the 3 points recurrence relation of the cat map with
s = 3, and (b) is the recurrence relation in the fundamental domain.

2020-12-24 Han The cat map is a map: [0, 1)2 → [0, 1)2. So using the reflec-
tion symmetry we can only reduce the state space to the fundamental
domain which is a half of the full phase space, not a quarter. In the fig-
ure 20.49 (a) we can see that by using the symmetry {φt+1, φt, φt−1} →
{σφt+1, σφt, σφt−1}we reduce the phase space volume by half.

Another way to see why the φ̂t ∈ [0, 1/2] fundamental domain is incor-
rect: Assuming that φt ∈ [0, 1/2] and φt−1 ∈ (1/2, 1), we can compute

φt+1 = +sφt − φt−1 (mod 1) . (20.275)

But in the fundamental domain we have φ̂t = φt, φ̂t−1 = 1 − φt−1 and
using the map (20.274)

φ̂t+1 =

{
− 1 + φt−1 + sφt (mod 1) , −φ̂t−1 + s φ̂t −mt ≤ 1/2 ,

2− φt−1 − sφt (mod 1) , −φ̂t−1 + s φ̂t −mt > 1/2 .
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(a) (b)

Figure 20.49: (a) A 3D visualization of the forward-in-time figure 1.2 cat map
3-term recurrence condition for the s = 3 cat map (20.275) of, {φt} ∈ [0, 1).
(b) Incorrect: The 3 points recurrence relation in the fundamental domain
{φ̂t−1, φ̂t, φ̂t+1} ∈ [0, 1/2]3. To rotate the figures, use the notebook simi-
nos/figSrc/han/Mathematica/HLSymmReducedCat.nb .

And neither of them is equal to φt+1 or 1 − φt+1. So this lattice state in
the full space {φt−1, φt, φt+1} does not have a corresponding lattice state
in the fundamental domain. The correct fundamental domain should be
{φ̂t−1, φ̂t} ∈ [0, 1)2/D1 which is not [0, 1/2]2.

2020-12-24 Predrag I think you are right - the fundamental domain M̂ =M/D1,
should be 1/2 ofM, but my previous attempts (above in the blog) to quo-
tient that have failed...

Thinking forward in time is a human condition, difficult to cure. Fig-
ure 20.49 (a) is a nice 3D visualization of the forward-in-time figure 1.2
cat map which leads to the total mess described in Gutkin et al. [27]. That
is why I included figure 2 and table 2 in that paper – an impossible
number-theoretic problem created by ignoring the well-known generat-
ing partition construction.

Try plotting instead the temporal cat condition

φt =
1

s
(φt+1 + φt−1 +mt) (mod 1) . (20.276)

As illustrated by figure 1.2, there are the two kinds of pieces within the
state space partition: the rectanglesM0, . . . ,Ms−2, and the two exterior
half sized trianglesM1,Mµ2 , labeled by the (µ2+1)-letter interior alpha-
bet A0, and the two-letter exterior alphabet A1, respectively. For integer
s ≥ 2 these alphabets are

A = A0 ∪ A1 , A0 = {0, · · · , µ2} , A1 = {−1, µ2 + 1} . (20.277)
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For the interior alphabet A0 there will be two complete rectangles in the
plot corresponding to figure 20.49 (a); for the alphabet A1 two triangles.
You can the plot the (exponentially many) admissible intermediate {φt}
planes; you’ll see that 1/s prefactor is 1/|DetJT |. We still do not know
a simple grammar rule for spatiotemporal cat, so understanding these
plots might help, but we had already gone that way [27], and failed. My
hunch is that understanding D1 quotiented orbit Jacobian matrix Ĵ is our
best chance.

2020-12-29 Predrag Temporal cat dynamical D1 = {e, σ} symmetry is

σφt = 1− φt , σmt = µ2 −mt , for all t ∈ Z , (20.278)

where mt takes values in the s-letter alphabet (20.277).
Any codimension-1 hyperplane going through the center of mass point
φ∗t = 1/2 divides the unit hypercube phase space M = {φt} ∈ [0, 1)n

into two equal parts related by inversion through center (20.278) and can
thus serve as a boundary M̂ ∩ (σM̂) of a fundamental domain M̂, and
its copy σM̂. By the inclusion-exclusion principle (20.270)

M = M̂+ σM̂ − M̂ ∩ (σM̂) . (20.279)

The natural fundamental domain M̂ = {φ̂t} ∈ [0, 1)n/D1 for an period-
3 lattice state that satisfies the half-phase space condition and fits into
the unit hypercube is given by the plane that goes through all the 1/2
edges, i.e., a hexagon. In 4 dimensions the intersection is 2-dimensional,
an octahedron.
A hyperplane:

n∑
k=1

αkφk = 1 , αk ≥ 0 .

There are n2n edges in a hypercube. The simplest choice would be vector
α connecting two opposite corners of a hypercube. The bisecting hyper-
plane has to cut 2n edges (?) in a symmetric way under Cn rotations
about the vector α.
I’m starting to feel that construction explicit fundamental domain in this
case is a bad idea...
(what follows is currently incorrect:)

if
∑
t

φt


< 1 , φ̂t = φt is in the fundamental domain

= 1 , φ̂t = φt = σφt is in the border

> 1 , φ̂t = σφt = 1− φt .
(20.280)

The temporal cat condition in/out of the fundamental domain is:

φ̂t+1 − s φ̂t + φ̂t−1 = −mt ,

1− φ̂t+1 − s φ̂t + φ̂t−1 = −mt , . (20.281)
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Can you figure out how does the m̂t s-letter alphabet come out of the full
alphabet (20.277)?

2021-01-13 Han The factorization of (5.184) can be interpreted as the product
of the topological zeta function of a half time step cat map. The topologi-
cal zeta function of the cat map has a rational form:

1

ζ(z)
=

det (1− zA)

det (1− zB)
, A =

(
2 1
1 1

)
, B =

(
1 0
0 1

)
. (20.282)

where the matrix A and B are the transition matrices of the Markov dia-
grams in figure 5.2 (a) and (b). When the topological zeta function has a
fractional form (20.282), the number of the periodic points with period n
is given by

TrAn − TrBn .

Using the Markov diagram, the number of periodic points is given by
the number of the closed walks in the graph of matrix A, with the closed
walks in the graph of matrix B eliminated.

The topological zeta function of the half time step map is

1

ζ̃(t)
=

det (1− tA′)
det (1− tB′) , A′ =

(
1 1
1 0

)
, B′ =

(
0 1
1 0

)
, (20.283)

where
A′2 = A ,B′2 = B .

Let t2 = z, we can factorize the topological zeta function of cat map:

1

ζ(z)
=

1

ζ̃(t)

1

ζ̃(−t)
.

And the Markov diagram of the transition matrix A′ and B′ are shown in
figure 5.2 (c) and (d). If we map the figure (c) and (d) two times forward
in time we will get the figure (a) and (b).

So in (5.184) we factorized the topological zeta function using the "half
map". To use the symmetries we probably need a different factorization...

2018-02-11 Han Bird and Vivaldi [12] say that for s = 3 there are N4(λ) =
10 admissible period 4 orbits. They can be read off as walks on fig-
ure 20.4 (d), see (20.12). We have also computed them in sect. 20.2 Rhom-
boid center partition, see (20.22), as well as (20.23).

2018-04-22 Predrag The discrete Fourier-transformed cycle points M̂ for the
periodic points of figure 20.5 are complex vectors (20.20). Similarly for
(20.32). [...] Take-home messages is that writing Fourier transforms of
periodic points analytically is not useful. Only cycle-4 orbits are related
to Gaussian integers, for other orbits there will be no nice analytic for-
mulas. And already for 4-cycles, the phases are not rational fractions of
2π.
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2021-01-16 Han The state space of the 1-dimensional lattice state can be di-
vided into subspaces by the irreps of the dihedral group. For example,
when the period of the lattice state is 4, the dihedral group has a [4 × 4]
matrix representation which act on the 4-dimensional state space of the
lattice state. This representation can be generated by the reflection oper-
ator: 12

σ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

and the shift operator:

r =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

They both commute with the orbit Jacobian matrix. Using the sine and
cosine basis we can block diagonalize this representation such that each
block on the diagonal is an irrep of the D4 group, using the orthogonal
matrix:

T =


e1

e2

e3

e4

 =


1
2

1
2

1
2

1
2

− 1
2

1
2 − 1

2
1
2

0 − 1√
2

0 1√
2

1√
2

0 − 1√
2

0

 ,

each row of which is a basis vector. The kth components of these basis
vectors are:

e1k =
1

2
e

2πi0k
4 , e2k =

1

2
e

2πi2k
4 , e3k =

1√
2

cos

(
2πk

4

)
, e4k =

1√
2

sin

(
2πk

4

)
.

Using this set of basis we can block diagonalize the reflection and shift
operators:

TσT> =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 ,

T rT> =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

 ,

12Predrag 2021-06-13: You could not have chosen more devious notation: pretty much every-
where I (and some sophisticated wiki’s) write r for the 2π/n rotation (translation), and sj for
reflection across jth symmetry axis, see table ??. I’m experimenting with writing this up as in
sect. 5.7.
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which contain 3 irreps along the diagonal. The first one is the 1-dimen-
sional symmetric irrep. The second one is antisymmetric under shift by
one lattice site and one type of reflections, symmetric under other group
operations. This representation is called B1 or B2. The third one is the
2-dimensional irrep.

Using the orthogonal matrix T we can rewrite a lattice state into the space
with sine and cosine basis. For example, a lattice state {a, b, c, d} becomes:

T


a
b
c
d

 =


a
2 + b

2 + c
2 + d

2

−a2 + b
2 − c

2 + d
2

d√
2
− b√

2
a√
2
− c√

2

 .

The shifted and reversed lattice states {d, a, b, c} and {d, c, b, a} become:

T


d
a
b
c

 =


a
2 + b

2 + c
2 + d

2
a
2 − b

2 + c
2 − d

2
c√
2
− a√

2
d√
2
− b√

2

 , T


d
c
b
a

 =


a
2 + b

2 + c
2 + d

2
a
2 − b

2 + c
2 − d

2
a√
2
− c√

2
d√
2
− b√

2

 .

So in the subspace of the last two components in the new basis, the shift
and time reflection act as rotation and reflection in 2-dimensional space.
The sign of the second component is changed because the second irrep
contained in the reducible representation is −1 for the reflection σ and
shift r.

To find the fundamental domain of the cyclic permutation symmetry and
time reversal symmetry in this new state space, we need to quotient the
subspace of the last two components to 1/8 of the full subspace.

But I still need to think about how does the second 1-dimensional irrep
affect the fundamental domain. Moreover, the boundary of the funda-
mental domain is a 3-dimensional space, which can have a complicated
structure. I assume we will reach the boundary when some of the field
values are equal. For example, the lattice states {a, b, a, b} and {b, a, b, a}
are:

T


a
b
a
b

 =


a+ b
b− a

0
0

 , T


b
a
b
a

 =


a+ b
a− b

0
0

 .

The last two components are on the origin, which is on the boundary
of the fundamental domain. The lattice state {a, b, a, b} is a repeat of a
shorter lattice, so perhaps the position in the subspace and the second
component (subspace of the second 1-dimensional irrep) tell us informa-
tion about whether the lattice state can be reduced to shorter prime state.

2021-01-22 Han It’s easier to see the discrete Fourier transform (sine and cosine
transform) of the lattice state space in 3-dimensional space. In the state
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space of the lattice state with period-3, the reflection and shift operators
are:

σ =

 0 0 1
0 1 0
1 0 0

 , r =

 0 1 0
0 0 1
1 0 0

 .

Using the sine and cosine basis:

T =


1√
3

1√
3

1√
3

− 1√
6
− 1√

6

√
2
3

1√
2
− 1√

2
0

 ,

the reflection and shift operators are block diagonalized:

TσT> =

 1 0 0

0 − 1
2

√
3

2

0
√

3
2

1
2

 , T rT> =

 1 0 0

0 − 1
2

√
3

2

0 −
√

3
2 − 1

2

 ,

which contain a symmetric 1-dimensional irrep and a 2-dimensional ir-
rep. The orbit Jacobian matrix is diagonalized in this basis:

TJ T> =

 −1 0 0
0 −4 0
0 0 −4

 .

Note that in the subspace of 2-dimensional irrep the orbit Jacobian matrix
is −4× identity matrix.

Figure 20.50 shows the fundamental parallelepipeds of the period 3 lat-
tice states in the configuration space and the "Fourier space". The shapes
of the unit cube and the fundamental parallelepiped are not changed.

Figure 20.51 shows the fundamental parallelepipeds of the period 3 lat-
tice states observed from the direction of the symmetric eigenvector of
the reflection and shift operators. In the configuration space this eigen-
vector is {1, 1, 1} and in the "Fourier space" this eigenvector is {1, 0, 0}.
These 2 figures are projections of the fundamental parallelepipeds in the
subspace of the 2-dimensional irrep. The red and blue dots are the pe-
riodic points mapped by the orbit Jacobian matrix. In this figure we see
that the periodic points exist on the same positions in the 2-dimensional
subspace.

In the wikipedia of the orthogonal transformation, the orthogonal trans-
formation is a linear transformation that preserves length of vectors and
the angles between them.

2021-01-25 Predrag Just so we do not forget: this eventually goes into our main
thrust on understanding both the forward and backward in time, and
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(a) (b)

Figure 20.50: (a) The fundamental parallelepiped and the unit cube of the
lattice state with period 3 in the configuration space. (b) The fundamental par-
allelepiped and the unit cube of the lattice state with period 3 in the “Fourier
space". The 3 arrows are the axes of the space. The fundamental parallelepiped
in the “Fourier space" is different from the fundamental parallelepiped in the
configuration space by a rotation. To rotate the figures, use the notebook
siminos/figSrc/han/Mathematica/HLIrrepsBlockLength3.nb .

(a) (b)

Figure 20.51: (a) The fundamental parallelepiped and the unit cube of the lat-
tice state with period 3 in the configuration space observed from the direction
of {1, 1, 1}. (b) The fundamental parallelepiped and the unit cube of the lat-
tice state with period 3 in the “Fourier space" observed from the direction of
{1, 0, 0}. In the figure (a) the blue and red dots are integer points enclosed by
the fundamental parallelepiped. Each one of the integer points is related to one
periodic point. In the "Fourier space", the blue and red dots are integer points
transformed by the matrix T . They still form a cubic lattice, but the coordinates
are no longer integers.
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the global temporal cat time-reversal symmetry, see sect. 5.4 Temporal cat
reversibility factorization.

For our many (mostly failed) attempts to find an Adler-Weiss forward
and backward in time symmetric partition, see sect. 20.3 Time reversal.

Birdtracks.eu Sect. 8.2.3 Time reversal symmetry might be relevant to spa-
tiotemporal cat: when the Hamiltonian is invariant under time reversal,
the symmetry group is enlarged.

Not to reinvent the wheel: sect. 5.8 Reduction to the reciprocal lattice has
various references to the standard space groups theory. It proceeds in
two steps

1. Discrete Fourier transform diagonalizes the translational symmetry
CT ; that is the “reduction to the reciprocal lattice,” with complex
eigenvectors.
My problem with figure 20.50 (b) and figure 20.51 (b) is that I ex-
pected to see the infinite lattice Z eigenstates represented by a unit
interval on the reciprocal lattice.

2. Point group D1 irreps ‘diagonalization’ reduces this to DT , with real
1- and 2-dimensional irreps.
My problem with figure 20.50 (b) and figure 20.51 (b) is that I ex-
pected to see the infinite lattice Z with reflection represented by a
1/2 unit interval fundamental domain on the reciprocal lattice.

For Dn symmetry: see Ding thesis example 2.9.

Also, change to siminos/lyapunov subdirectory,
pdflatex blog
read sect. 7.11.2 Factorization of Cn and Dn.

2021-01-26 Han Figure 20.52 (a) shows the the period-5 reciprocal lattice states
the temporal cat for s = 3. The total number of the lattice states is given
by N5 = |DetJ | = 121.

See also the discusion in blog post 2018-05-22 Han above, a few pages
after (20.72).

Figure 20.52 (b) shows the lattice states in the fundamental domain. The
fundamental domain contains lattice states with the argument of the sec-
ond component of the Fourier transform of the lattice states greater or
equal to −2π/10, less than 2π/10.

The number of lattice states in the fundamental domain is 25. One of
them is the constant {0, 0, 0, 0, 0} state. Each one of the other, prime so-
lutions contributes 5 times to N5, the total number of lattice states be-
long to the same time orbit. So we have the total number of solutions:
N5 = 121 = 1 +M5 × 5 = 1 + 24× 5, see table 5.1.
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(a)

(b)
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Figure 20.52: (Continuation of figure 20.35.) The 121 period n = 5 reciprocal
lattice states (see table 5.1) of the s = 3 temporal cat, obtained by discrete C5

Fourier transform diagonalization. (a) A perspective view. (b) k = 0, 1, 2 irreps
of C5. By time reversal k = 3 has the same prime orbits as k = 2, and k = 4 as
k = 1. (c) The C5 symmetry reduced fundamental domain contains reciprocal
lattice states whose phases lie in [−2π/10, 2π/10), one reciprocal lattice state for
each C5 group orbit. The constant lattice state {0, 0, 0, 0, 0} lives in a boundary,
the intersection of the fundamental domain and all its images, with each recip-
rocal lattice state a k = 0 average over corresponding lattice states, hence real.
For C11 reciprocal lattice states, see figure 20.13. (Continued in figure 20.53.)
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Figure 20.53: The C5 k = 0, 1, 2 fundamental domains [−2π/10, 2π/10) of fig-
ure 20.52 (c) are complex conjugation symmetric, so they can be tiled by a 1/2
domain [0, 2π/10] and its complex-conjugate image. In the [0, 2π/10] domain
there are 18 reciprocal lattice states. One of them is the origin. Excluding ori-
gin, there are 10 points on the 1/2 domain boundaries, 5 points on the real
axis (with phase 0), and 5 points with phase 2π/10 belonging to the same set
of states in the time orbit, but with reverse rotation in time. The remaining 7
points lie inside the 1/2 domain. Their group orbits, generated by rotations
and reflections include 10 lattice states. So the total number of the C5 lattice
states is 1 × 1 + 10 × 5 + 7 × 10 = 121 , where 121 is the coefficient of the z5

term in the number of states generating function F (z) of (1.14). This is not a D5

symmetry-reduction, as self-dual orbits are not represented as repeats of prime
orbits of 1/2 period (coefficients of the D5 generating function F ′(t), t2 = z)
and time-reversal pairs are counted as distinct orbits, whereas under D5 each
such pair is a single prime orbit, see the D3 example figure ??. (Continued in
figure 20.54.)
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2021-01-26 Predrag I think a very nice picture is emerging of fundamental do-
mains and prime orbits for temporal cat, and hopefully eventually for
spatiotemporal cat.

You need to explain what every periodic lattice concept becomes on re-
ciprocal lattice, in particular how prime periodic states in the reciprocal
lattice fundamental domain relate to the lattice states.

If one reduces only the Cn symmetry, the numbers of reciprocal lattice
states in the fundamental domain are presumably given by Mn in ta-
ble 5.1. Not that for non-prime n there will be more prime orbits, and
more points in invariant subspaces (borders).

Once one also reduces the reflection symmetry, the numbers of recipro-
cal lattice states in the Dn fundamental domain are given by M̃n in the
golden (Fibonacci [5]) cat map table 5.2 and (5.183). This should be the
same as counting walks on the “half time-step” Markov graph figure 5.2.

Is figure 20.52 (b) for k = 4π/5 correct? I think you have to rotate by the
appropriate 2π`/5 the points that are outside the fundamental domain.

2021-01-27 Han I believe figure 20.52 (b) for k = 4π/5 and k = 6π/5 is correct.
To make this figure, I plotted all of the solutions then only kept the solu-
tions with the k = 2π/5 component in [−2π/10, 2π/10). If you rotate the
solutions to move the k = 4π/5 component into the fundamental domain,
the k = 2π/5 component will come out of the fundamental domain.

Figure 20.35 shows the solutions in the generating partition (the rhom-
boid corner partition), while figure 20.52 are solutions with field values
in [0, 1).

For the Fourier transform of the field of figure 20.35, see figure 20.52 (a,b).

2021-01-27 Han Apparently I was wrong assuming the Fourier transforms of
the symbol blocks appear on straight lines when the Fourier transforms
of the fields are not... The figure 20.35 (a) and (b) are almost identical.
The only difference is the scale. The reason is that in the Fourier space,
orbit Jacobian matrix is diagonalized so the source terms are equal to the
fields times the eigenvalues.

2021-01-27 Predrag I think this all is falling into place in a very nice way. This
is all about the symmetry reduction of the space lattice (the “floor"), we
still have to do the dynamical D1 temporal cat (the “cat") symmetry sep-
arately.

A system other than the temporal cat organized by Dnn irreps is a convex
regular polygon (a polygon that is equiangular and equilateral) n-disk
scatterer. In ChaosBook we work out the n = 2, 3, 4 cases. Unlike the
temporal cat, if disks are sufficiently thin, all symbol blocks are admissi-
ble (full grammar, no pruning).

Temporal cat lattice states correspond to all n at one go.
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(a)
(b)

Figure 20.54: (Continuation of figure 20.52.) The 9 period n = 5 reciprocal
lattice states (hopefully given by (5.183)) of the s = 3 temporal cat, obtained
by discrete D5 irreps A1 ⊗ E2 ⊗ E2 diagonalization of the 1/2 time step or
the temporal golden (Fibonacci [5]) cat lattice (generating functions in powers
of tn ). (a) A1, E2 and E2 irreps of D5. For D5 all reciprocal lattice states are
real. (b) The D5 symmetry-reduced fundamental domain contains reciprocal
lattice states whose phases lie in [0, 2π/10], one reciprocal lattice state for each
D5 group orbit. The constant lattice state {0, 0, 0, 0, 0} lives in the intersection
of the fundamental domain and all its images. The time reversal symmetry
corresponds to complex conjugation, with opposite direction orbits identified.
The phase =0 states are self-dual, reciprocal lattice states on the real axis that is
a fundamental domain boundary, and are correctly counted by the inclusion-
exclusion principle (20.270). See 2021-01-27 Predrag above to see how this is
done correctly for D3 and D4.

2021-01-27 Predrag The brilliant thing about my fellow Dane Caspar Wessel’s
great invention is that in the complex plane the unit circle is a circle, not
squashed into an ellipse :) Can you replot figure 20.35 and figure 20.52,
so Re and Im axes have the same scale? Label them as Re and Im, instead
of the awkward long labels you have now - you can explain axes in the
figure caption. Also, in this C5 example, plot the 5 irreps (Fourier compo-
nents in the C5 case) side by side, rather than a perspective drawing of 5
planes cutting across a parallelepiped. Use the same names for the figure
files, just plot them Wessel’s way.

I think you might want to repeat this for C6, as there you get two extra
sets of boundaries between 2-state and 3-state repeats, that’s more like
the case of general Cn reciprocal lattice state.

2021-01-27 Predrag The brilliant thing about Dn irreps is that they are all real,
so you don’t have to plot Wessel’s 2D complex plane. However they all
(except the two or 4 1-dimensional irreps) are 2-dimensional, so you still
have to plot cos 2πk/n, sin 2πk/n planes. How do your reciprocal lattice
states look in these 2-dimensional irreps for the C5 and C6 examples?

2021-01-29 Predrag 2 Han Can you plot the D5-symmetry reduced figure 20.54?
If the caption is not clear, call me, let’s discuss.

2021-02-01 Predrag 2 Han About plotting the Dn -symmetry reduced figure 20.54:
not sure what the good way is plotting the 2-dimensional representations.

Maybe complex regular irreps ChaosBook example 25.7 Basis for irreps of
D3 suggest the way to plot?

I find Harter’s Sect. 3.3 Second stage of non-Abelian symmetry analysis par-
ticularly illuminating. It shows how physically different (but mathemati-
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cally isomorphic) higher-dimensional irreps are constructed correspond-
ing to different subgroup embeddings. One chooses the irrep that corre-
sponds to a particular sequence of physical symmetry breakings.

2021-02-02 Han In figure 20.53, there are 18 lattice states in the fundamental
domain. The lattice state on the origin is {0, 0, 0, 0, 0}.
The 5 lattice states Φ on the boundary with phase 0 are:

1

11
{2, 1, 1, 2, 5} , 1

11
{4, 2, 2, 4, 10} , 1

11
{6, 3, 3, 6, 4} ,

1

11
{8, 4, 4, 8, 9} , 1

11
{10, 5, 5, 10, 3} . (20.284)

The 5 periodic orbits on the boundary with phase 2π/10 are:

1

11
{6, 1, 8, 1, 6} , 1

11
{7, 3, 2, 3, 7} , 1

11
{8, 5, 7, 5, 8} ,

1

11
{9, 7, 1, 7, 9} , 1

11
{10, 9, 6, 9, 10} . (20.285)

Orbits on the boundaries are invariant under reflection.

The 7 periodic orbits in the fundamental domain are:

1

11
{4, 3, 5, 1, 9} , 1

11
{4, 5, 0, 6, 7} , 1

11
{7, 0, 4, 1, 10} ,

1

11
{8, 7, 2, 10, 6} , 1

11
{10, 0, 1, 3, 8} , 1

11
{9, 0, 2, 6, 5} ,

1

11
{9, 3, 0, 8, 2} . (20.286)

2021-02-09 Han Also note that the orbits with time reversal symmetry (20.284–
20.285) have phase 2π/10 in the subspace ofE1 and 4π/10 in the subspace
of E2, or phase 0 in both E1 and E2 subspaces. So when a lattice state
has time reversal symmetry, this lattice state exists in the 3-dimensional
subspace. The dimension of the subspace is probably the period of the
orbit after quotientienting by the symmetry.

2021-02-02 Han The transition matrix of the half step map is given by the ma-
trix A′ in (20.283). The map(

qt+1

pt+1

)
= A′

(
qt
pt

)
(mod 1) (20.287)

can be rewritten as:(
qt
qt+1

)
=

(
0 1
1 1

)(
qt−1

qt

)
(mod 1) . (20.288)

(Predrag: see (5.171), (5.174). This is not the Percival-Vivaldi two config-
uration representation.)
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For s = 3, J = J̃>J̃ , where the inversion-reduced orbit Jacobian matrix
is:

J̃ =



1 −1 0 0 . . . 0 1
1 1 −1 0 . . . 0 0
0 1 1 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . 1 −1
−1 0 . . . . . . . . . 1 1


, (20.289)

as in (5.68).

This map has Ñ5 = 11 period n = 5 lattice states. One of them is the fixed
point {0, 0, 0, 0, 0}. The other 10 lattice states are the M̃5 = 2 prime orbits:

1

11
{9, 3, 1, 4, 5} , 1

11
{10, 7, 6, 2, 8} , (20.290)

and the cyclic permutations, in agreement the golden cat map counts ta-
ble 5.2 and (5.183). The repeats of these two orbits are the orbits

1

11
{4, 3, 5, 1, 9} , 1

11
{8, 7, 2, 10, 6} (20.291)

in the (20.286).

The half step lattice has 121 period n = 10 lattice states. Some of the
orbits are:

1

11
{7, 8, 4, 1, 5, 6, 0, 6, 6, 1} , 1

11
{7, 9, 5, 3, 8, 0, 8, 8, 5, 2} ,

1

11
{7, 10, 6, 5, 0, 5, 5, 10, 4, 3} , 1

11
{4, 2, 6, 8, 3, 0, 3, 3, 6, 9} ,

1

11
{8, 2, 10, 1, 0, 1, 1, 2, 3, 5} , 1

11
{5, 4, 9, 2, 0, 2, 2, 4, 6, 10} ,

1

11
{7, 3, 10, 2, 1, 3, 4, 7, 0, 7} , 1

11
{6, 4, 10, 3, 2, 5, 7, 1, 8, 9} ,

1

11
{9, 7, 5, 1, 6, 7, 2, 9, 0, 0} , 1

11
{9, 8, 6, 3, 9, 1, 10, 0, 10, 10} ,

1

11
{10, 8, 7, 4, 0, 4, 4, 8, 1, 9} . (20.292)

Each one of these orbits is corresponding to two orbits in (20.284–20.286)

2021-02-04 Predrag Sect. 5.5.2 contains my 2008 Baake, Roberts andWeiss [6]
Periodic orbits of linear endomorphisms on the 2-torus and its lattices arXiv:0808.3489
reading notes. Please improve them, if you read the paper. In any case,
we must read 1997 sect. 5.5.3 Baake, Hermisson and Pleasants [4] The torus
parametrization of quasiperiodic LI-classes, add your notes to the subsection
there.
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(a)

1

2
1

Re

Im
k=0

Re

Im
k=1

Re

Im
k=2

(b)

1

2
1

Re

Im
k=0

1

4

Re

Im
k=1

Re

Im
k=2

Figure 20.55: (a) The Ñ5 = 11 period n = 5 reciprocal lattice states of the 1/2
time step lattice (temporal golden cat) of the s = 3 temporal cat, obtained by
discrete C5 irreps diagonalization. (b) The C5 symmetry-reduced fundamental
domain contains M̃5 = 2 prime reciprocal lattice states whose phases lie in
[−2π/10, 2π/10), one prime reciprocal lattice state for each C5 group orbit. The
constant lattice state {0, 0, 0, 0, 0} lives in the intersection of the fundamental
domain and its images.
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1

1

(a)

1 2

1

(b)

1

1

(c)

(d)

Figure 20.56: (a) An Adler-Weiss generating partition of the unit torus for the
golden cat map (1/2 time step map) (5.171), (5.174), (20.288), the time-reversal
reduction of the s = 3 Thom-Arnol’d cat map (1.1) and figure 1.1, with rect-
angleMA (green) andMB (yellow) borders given by the stable and unstable
manifolds, i.e., along the two eigenvectors corresponding to the eigenvalues of
the matrix A′ in (20.287). (b) Mapped one step forward in time, the rectangles
are stretched along the unstable direction and shrunk along the stable direc-
tion. The eigenvectors are the same as for the Arnol’d cat map, but eigenvalue
Λ̃ (6.116) is a square root of the Arnol’d cat map eigenvalue (1.6), Λ = Λ̃2, hence
less stretching. As always, sub-rectangles have to be translated back into the
initial partition. (c) The sub-rectangles translated back into the initial partition
yield a generating partition, with the finite grammar given by the transition
graph (d) of figure 5.2. The nodes refer to the rectanglesA andB, and the three
links correspond to the three sub-rectangles induced by one step forward-time
dynamics. The generating partition of the half-step µ = 1 Percival-Vivaldi cat
map is shown in figure 20.57.
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2021-02-06 Han Added figure 20.56, the generating partition of the golden cat
map (1/2 time step map) (5.171), (5.174), (20.288), the time-reversal re-
duction of the s = 3 Thom-Arnol’d cat map (1.1) and figure 1.1.

2021-02-06 Predrag Note: this is not the time-reversal reduction (6.115) of the
Percival-Vivaldi cat map figure 1.9 and (20.72), that is done in figure 20.57.
I would prefer such Percival-Vivaldi golden cat map figure for inclusion
into ChaosBook.

The colors in figure 20.56 (a) and (b) should be consistent, as in figure 1.9.
But do not waste time on fixing that, draw the Percival-Vivaldi golden
cat map instead.

In despair, I had drawn the original by hand, see PVAdlerWeissB-a.svg,
PVAdlerWeissB-b.svg, PVAdlerWeissB-c.svg and PVAWMarkovCol.svg. How
do I know that? Every figure I draw has the source program indicated
as a comment. You can edit *.svg files using Inkscape, all you have to
do is to replace Λ → Λ̃ in figure 1.9 (b), remove the extra sub-partitions.
Almost done in figure 20.32 (c).

2021-02-08 Han Using (20.72), the generating partition of the half-step µ = 1
Percival-Vivaldi cat map is shown in figure 20.57.

2021-02-06 Predrag Very nice, thank you. Still, it would be nice to also have
the µ > 1 generating partition, no necessarily as a drawing.

2021-02-06 Predrag OK, we are done. You know what to do next. We now have
the golden cat orbit Jacobian matrix (5.68) on the half-time step lattice for
any µ. We had it all along, but I made a few trivial errors, and you did
not check those calculations, so it took a bit too long...

1. You can now compute∑
n=1

Ñn(µ)tn = − ζ̃t d
dt

1

ζ̃

= ??t+??t2 + µ(µ2 + 3) t3+?? t4+?? t5+?? t6+?? t7

+?? t8+?? t9 + . . . . (20.293)

2. Does it agree with (5.183)?

3. Does your N(s)n = Ñ(µ)2
n agree with (5.79) for n = 3?

4. Does it agree with our temporal catN(s)n series? For example, with
(6.164).

5. Derive 1/ζ̃(t)

6. Does it agree with (5.58)? with (5.182)?

You’ll be glad to hear that have named “golden” cats for µ > 1 “metal
cats” in a paper that was published, so that will be the official name for
those zeta’s :)

8289 (predrag–7373) 93711/27/2021 siminos/spatiotemp/chapter/blogHL.tex



CHAPTER 20. HAN’S BLOG

2021-02-06 Predrag Started drafting sect. 5.4 Time reversal symmetry reduction
for CL18.

2021-02-08 Han We are not done yet... While in the above we here use Percival-
Vivaldi [47] “two-configuration representation” cat map (1.5)

A =

[
0 1
−1 s

]
(20.294)

Gutkin et al. [27] cat map (derived as a niece of the standard map, see
(2.85)) is of form:

A =

(
s− 1 1
s− 2 1

)
. (20.295)

The square root is this matrix is not an integer matrix if s 6= 3.

Ã and A can be diagonalized simultaneously if Ã2 = A (Predrag feels
a bit unconformable taking a square root of an asymmetric matrix, even
though you diagonalize it first...). We can always use matrix:

S =
(
e(+) e(−)

)
to diagonalize the matrixA, where e(+) and e(−) are the two eigenvectors
of the matrix A:

S−1AS =

(
Λ 0
0 Λ−1

)
.

Then there are four possible Ãs:

S

( √
Λ 0

0
√

Λ−1

)
S−1 , S

( √
Λ 0

0 −
√

Λ−1

)
S−1 , (20.296)

S

(
−
√

Λ 0

0
√

Λ−1

)
S−1 , S

(
−
√

Λ 0

0 −
√

Λ−1

)
S−1 .

I found these four solutions for general s− 2 = µ2:

Ã =

(
a b
c d

)
, where

=

(
−µ −µ−1

−µ 0

)
, negative trace, usually not a solution

=

(
µ µ−1

µ 0

)
, and also solutions for which trace 6= µ:

a = − µ2 + 2√
µ2 + 4

, b = − 1√
µ2 + 4

, c = − µ2√
µ2 + 4

, d = − 2

µ2 + 4

a =
µ2 + 2√
µ2 + 4

, b =
1√
µ2 + 4

, c =
µ2√
µ2 + 4

, d =
2

µ2 + 4
.(20.297)
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1

1

(a)

1

(b)

1

1

(c)

(d)

Figure 20.57: (a) An Adler-Weiss generating partition of the unit torus for the
golden cat map (1/2 time step map) (6.115), (20.72), the time-reversal reduc-
tion of the s = 3 or µ = 1 Percival-Vivaldi cat map (1.5) and figure 1.9, with
rectangleMA (red) andMB (green) borders given by the stable and unstable
manifolds, i.e., along the two eigenvectors corresponding to the eigenvalues
of the matrix C̃ in (20.72). (b) Mapped one half time-step forward in time, the
rectangles are stretched along the unstable direction and shrunk along the sta-
ble direction. The eigenvectors are the same as for the Percival-Vivaldi cat map,
but eigenvalue Λ̃ (6.116) is a square root of the Percival-Vivaldi cat map eigen-
value (1.6), Λ = Λ̃2, hence less stretching. (c) As always, the sub-rectangles
translated back into the initial partition yield a generating partition, with the
finite grammar given by the transition graph (d) of figure 5.2. The nodes re-
fer to the green and red rectangles, and the three links correspond to the three
sub-rectangles induced by one forward half time-step.
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So only when s = 3 or µ = 1 Thom-Arnol’d cat map we can find an
integer matrix Ã.

And we cannot find square root of the Percival-Vivaldi cat map. Solving
(20.72):

B = C̃2 =

(
0 1
−1 s

)
,

the four solutions are

C̃ =

(
a b
c d

)
, where

a = µ−1 , b = −µ−1 , c = µ−1 , d =
1− s
µ

, negative trace µ

a = −µ−1 , b = µ−1 , c = −µ−1 , d =
s− 1

µ

a = − 1√
µ2 + 4

, b = − 1√
µ2 + 4

, c =
1√
µ2 + 4

, d =
−1− s
µ

a =
1√
µ2 + 4

, b =
1√
µ2 + 4

, c = − 1√
µ2 + 4

, d =
s+ 1√
µ2 + 4

.(20.298)

2021-02-08 Han For me J 6= J̃>J̃ . Let

J̃ =



µ −1 0 0 . . . 0 1
1 µ −1 0 . . . 0 0
0 1 µ −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . µ −1
−1 0 . . . . . . . . . 1 µ


.

Then we have (5.53), and I believe that the determinant detJ and det (J̃>J̃ )
are only equal when the period of the lattice state is an odd number.

2021-02-09 Predrag I expect the forward-in-time Jacobian J̃ to be related to
the orbit Jacobian matrix J̃ as in sect. 9.5 Spatiotemporal cat Hill’s formula.
You have explicit orbit Jacobian matrix J̃ (5.68), so write down the corre-
sponding J̃ acting on 1/2 time-step lattice.

2021-02-12 Han [2021-02-15 Predrag moved this post to the draft of reversal.tex,
see (5.59).]

2021-02-13 Predrag I think it might be perhaps more informative and easier
to survey the symmetries if one lists lattice states by their symbol blocks
rather than lattice fields in listings such as (20.284), (20.285), (20.286) and
(20.292), as you did for period-4 lattice states (20.14), (20.20) and (20.32).

Note that golden/metal cat number of alphabet letters Ã is about √ of
the cat map alphabet A.
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2021-02-24 Han I computed the period-6 lattice states of the temporal cat with
s = 3. Figures 20.58 and 20.59 are the reciprocal lattice states obtained by
discrete C6 irreps diagonalization.

The C6 group has 4 subgroups, which are 1, C2, C3 and C6. In the space
of the irreps of C6, the subspace spanned by the k = 0 Fourier mode is the
subspace of the 1 subgroup. k = 0 and k = 3 Fourier modes span the sub-
space of the C2 subgroup. k = 0, k = 2 and k = 4 Fourier modes span the
subspace of the C3 subgroup. Using the subspaces of these subgroups,
we can divide the lattice states into 4 categories.

The first category includes lattice states that are in the subspace of 1. We
only have 1 lattice state in this category, which is the {0, 0, 0, 0, 0, 0}.
The second category includes lattice states that are in the subspace of C2

but not in the subspace of 1. These lattice states have non-zero compo-
nents only in the subspace spanned by k = 0 and k = 3 Fourier modes,
as shown in figure 20.58 (a). There are 4 lattice states in this subspace,
which are the 2 period-2 orbits and their cyclic permutations.

The third category includes lattice states that are in the subspace of C3 but
not in the subspace of 1. These lattice states have non-zero components
only in the subspace spanned by k = 0, k = 2 and k = 4 Fourier modes,
as shown in figure 20.58 (b). There are 15 lattice states in this category,
which are the 5 period-3 orbits and their cyclic permutations.

The last category includes lattice states that are not in the subspace of 1,
C2 or C3. These lattice states are the prime period-6 lattice states, which
are not repeats of shorter lattice states. Note that some of these lattice
states have 0 component in the k = 1 subspace, but they have non-zero
components in both the k = 2 and k = 3 subspaces, so they are not in the
subspace of C2 or C3. Figure 20.59 (a) shows the reciprocal lattice states
with non-zero k = 1 component. Figure 20.59 (b) shows the reciprocal
lattice states with zero k = 1 component but non-zero k = 2 and k = 3
components. There are 276 reciprocal lattice states in the Figure 20.59 (a)
and 24 lattice states in the Figure 20.59 (b).

To get the number of orbits, we need to count the number of recipro-
cal lattice states in the fundamental domain. For the reciprocal lattice
states with non-zero k = 1 component, the fundamental domain con-
tains reciprocal lattice states whose phase of the k = 1 component lies in
(−π/6, π/6]. For the reciprocal lattice states with zero k = 1 component
and non-zero k = 2 and k = 3 components, the fundamental domain
contains reciprocal lattice states whose phase of the k = 2 component lies
in (−π/3, π/3] and k = 3 component lies in (−π/2, π/2]. The reciprocal
lattice states in the fundamental domain are shown in figure 20.60. There
are 46 reciprocal lattice states in figure 20.60 (a) and 4 reciprocal lattice
states in (b). Each one of the them is corresponding to a prime period-6
periodic orbit.

8289 (predrag–7373) 94111/27/2021 siminos/spatiotemp/chapter/blogHL.tex



CHAPTER 20. HAN’S BLOG

2021-02-24 Han Now we want to find the lattice states that are invariant under
reflection. For D6 there are 6 group elements with reflection. Reflection
operators will reflect the reciprocal lattice states over an axis in each one
of the subspaces (except for the k = 0 subspace, which is the symmetric
irrep). Let θn be the polar angle of the reflection axis in the subspace of
k = n. The 6 reflection operators will reflect the subspaces over the axes:

(1). θ1 = 0, θ2 = 0, θ3 = 0.
(2). θ1 = π/6, θ2 = π/3, θ3 = π/2.
(3). θ1 = π/3, θ2 = 2π/3, θ3 = 0.
(4). θ1 = π/2, θ2 = 0, θ3 = π/2.
(5). θ1 = 2π/3, θ2 = π/3, θ3 = 0.
(6). θ1 = 5π/6, θ2 = 2π/3, θ3 = π/2.

If a reciprocal lattice state lies on one set of these axes, then the lattice
state is invariant under one of the reflections.

Now check the figure 20.60 (a). The points in k = 1 subspace are in the
fundamental domain. So we can only have reciprocal lattice states on the
first two sets of axes, which are plotted by the green and red lines in the
figure.

Figure 20.61 (a) are the reciprocal lattice states that lie on the red axes,
θ1 = π/6, θ2 = π/3, θ3 = π/2. There are only two orbitss:

1

8
{5, 5, 2, 1, 1, 2} , 1

8
{7, 7, 6, 3, 3, 6} . (20.299)

Figure 20.61 (b) are the reciprocal lattice states that lie on the green axes,
θ1 = 0, θ2 = 0, θ3 = 0. There are 14 lattice states:

1

40
{6, 29, 1, 14, 1, 29} , 1

40
{10, 35, 15, 10, 15, 35} ,

1

40
{14, 21, 9, 6, 9, 21} , 1

40
{18, 27, 23, 2, 23, 27} ,

1

40
{24, 36, 4, 16, 4, 36} , 1

40
{26, 39, 11, 34, 11, 39} ,

1

40
{18, 7, 3, 2, 3, 7} , 1

40
{30, 25, 5, 30, 5, 25} ,

1

40
{32, 28, 12, 8, 12, 28} , 1

40
{34, 31, 19, 26, 19, 31} ,

1

40
{36, 34, 26, 4, 26, 34} , 1

40
{38, 37, 33, 22, 33, 37} ,

1

40
{36, 14, 6, 4, 6, 14} , 1

40
{38, 17, 13, 22, 13, 17} . (20.300)

The rest 30 reciprocal lattice states are not invariant under time reflection.
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There are 15 lattice states:

1

40
{18, 17, 33, 2, 13, 37} , 1

40
{20, 25, 15, 20, 5, 35} ,

1

40
{21, 29, 26, 9, 1, 34} , 1

40
{36, 9, 31, 4, 21, 19} ,

1

40
{21, 39, 16, 9, 11, 24} , 1

40
{28, 7, 33, 12, 3, 37} ,

1

40
{32, 18, 22, 8, 2, 38} , 1

40
{28, 17, 23, 12, 13, 27} ,

1

40
{32, 23, 37, 8, 27, 33} , 1

40
{36, 29, 11, 4, 1, 39} ,

1

40
{31, 29, 16, 19, 1, 24} , 1

40
{25, 35, 0, 5, 15, 0} ,

1

40
{31, 39, 6, 19, 11, 14} , 1

40
{32, 3, 17, 8, 7, 13} ,

1

40
{38, 7, 23, 22, 3, 27} , (20.301)

and their reflections.

In the figure 20.60 (b) there are only 4 reciprocal lattice states. Two of
them are on the red and green axes:

1

20
{14, 1, 9, 6, 9, 1} , 1

20
{19, 11, 14, 11, 19, 6} . (20.302)

The rest two are:

1

20
{17, 3, 12, 13, 7, 8} , (20.303)

and its reflection.

Note that in the figure 20.60 (b), the red axes are θ1 = 2π/3, θ2 = π/3,
θ3 = 0, which are different from the red axes in the figure 20.60 (a).

2021-02-26 Matt They are palindromes.

2021-03-09 Han When we found the lattice states of the golden cat (Fibonacci [5])
in (20.290–20.292), we did not use the time reflection symmetry. That is
why lattice states in (20.290) are corresponding to the cat map’s lattice
states without reflection symmetry. The boundary of the lattice states of
golden cat in (20.290) is periodic, not periodic with reflection.

2021-03-10 Predrag Correct. When you quotient a symmetry, the symmetry-
reduced map does not have that symmetry. Golden cat is clearly not
time-reversal invariant.

2021-03-09 Han We can find the lattice states with reflection symmetry by find-
ing short lattice state with periodic reflection boundary conditions.
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Figure 20.58: The period-6 reciprocal lattice states of the temporal cat with
s = 3, obtained by discrete C6 irreps diagonalization. (a) The reciprocal lattice
states in the subspace of C2, whose components are non-zero only in the k = 0
and k = 3 subspace. These lattice states are repeats of period-2 lattice states.
(b) The reciprocal lattice states in the subspace of C3, whose components are
non-zero only in the k = 0, k = 2 and k = 4 subspace. These lattice states are
repeats of period-3 lattice states.
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Figure 20.59: The period-6 reciprocal lattice states of the temporal cat with
s = 3, obtained by discrete C6 irreps diagonalization. (a) The reciprocal lattice
states that are not in the subspace of C2 or C3, which have non-zero compo-
nent in the k = 1 subspace. (b) The reciprocal lattice states that are not in the
subspace of C2 or C3, which have zero component in the k = 1 subspace and
non-zero components in the k = 2 and k = 3 subspaces.
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Figure 20.60: The period-6 reciprocal lattice states of the temporal cat with
s = 3, obtained by discrete C6 irreps diagonalization. (a) The reciprocal lattice
states that are not in the subspace of C2 or C3, which have non-zero component
in the k = 1 subspace. The symmetry-reduced fundamental domain contain
reciprocal lattice states whose phase of the k = 1 component lies in (−π/6, π/6].
(b) The reciprocal lattice states that are not in the subspace of C2 or C3, which
have zero component in the k = 1 subspace and non-zero components in the
k = 2 and k = 3 subspaces. The symmetry-reduced fundamental domain
contain reciprocal lattice states whose phase of the k = 2 component lies in
(−π/3, π/3], and phase of the k = 3 component lies in (−π/2, π/2]. The red and
green lines are axes of reflections. For Dn irreps, see the D3 example figure ??.
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Figure 20.61: (a) The period-6 reciprocal lattice states with non-zero k = 1
components, which are in the fundamental domain and on the axes of reflec-
tion θ1 = π/6, θ2 = π/3, θ3 = π/2 (the red lines). (b) The reciprocal lattice states
with non-zero k = 1 components, which are in the fundamental domain and
on the axes of reflection θ1 = 0, θ2 = 0, θ3 = 0 (the green lines). These two sets
of reciprocal lattice states are invariant under time reflection.
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Odd period example: a period-5 reflection symmetric lattice states tiles the
infinite lattice Lwith a reflection-fixed φ0 , and a length-2 block (φ1, φ2),

· · ·φ2φ1 φ0 φ1φ2 |φ2φ1 φ0 φ1φ2 | · · · . (20.304)

The boundary conditions are the index 5-periodicity mod 5, and the even
reflection across φ0 , or odd reflection after φ2:

φi = φi+5 , φ−i = φi .

The temporal cat defining equation (??)

φt+1 − stφt + φt−1 = −mt , (20.305)

is a length 3 block lattice state condition of form

−s0φ0 + 2φ1 = −m0

φ0 − s2φ1 + φ2 = −m1

φ1 − (s3 − 1)φ2 = −m2

, (20.306)

Starting with φ0 , followed by the block (φ1, φ2), yields a 3-dimensional
orbit Jacobian matrix J+ −s0 2 0

1 −s1 1
0 1 −s2 + 1

 =

 −s0 1 1
1 −s1 1
1 1 −s2

+

 0 1 −1
0 0 0
−1 0 1

 ,(20.307)

where the last matrix is displayed just to indicate the form of the even ··
and odd | bc’s, and that they only affect the top and the bottom rows. The
translational symmetry is broken.

For sj = 3 the determinant of this orbit Jacobian matrix is 11, which
counts the number of lattice states that satisfy the reflection symmetry
(20.304). There are 10 period-5 lattice state with time reflection symmetry
(20.284–20.285), and 1 period-1 lattice state, see table 20.3.

2021-03-09 Han Even period, odd reflection example: the period-6 lattice states
with odd reflection symmetry, are tiled by length-3 blocks {φ0, φ2, φ2}
that tile the infinite lattice as:

. . . φ2φ2φ0|φ0φ2φ2|φ2φ2φ0|φ0φ2φ2| · · · , (20.308)

Even period, even reflection example: length-4 blocks {φ0, φ2, φ3, φ4} that
tile the infinite lattice as:

. . . φ3φ2φ0φ2φ3φ4φ3φ2φ0φ2φ3φ4 · · · . (20.309)

The orbit Jacobian matrix of the period-3 lattice states is:

−J =

 s− 1 −1 0
−1 s −1
0 −1 s− 1

 . (20.310)
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The determinant of this orbit Jacobian matrix is 8. The 8 orbits are:

φ000 = {0, 0, 0},

φ010 =
1

4
{1, 2, 1}, φ111 =

1

2
{1, 0, 1}, φ101 =

1

4
{3, 2, 3},

and

φ001 =
1

8
{1, 2, 5}, φ011 =

1

8
{3, 6, 7}, φ100 =

1

8
{5, 2, 1}, φ110 =

1

8
{7, 6, 3}.

The 8 lattice states consist of 1 period-1 orbit, 3 period-3 orbits and 4
period-6 lattice states from (20.299). Each invariant lattice state in (20.299)
appears twice because we haven’t quotiented the time translation sym-
metry.

The orbit Jacobian matrix of the period-4 lattice states is:

−J =


s −2 0 0
−1 s −1 0
0 −1 s −1
0 0 −2 s

 . (20.311)

For s = 3 the determinant of this orbit Jacobian matrix is 40. The 40 lattice
states include: 1 period-1 orbit,

φ0 = {0} ,

2 period-2 orbits, corresponding to 4 lattice states:

φ12 =
1

5
{1, 4}, φ01 =

1

5
{2, 3},

3 period-3 orbits, 9 lattice states in all 13

φ111 =
1

2
{0, 1, 1}, φ011 =

1

4
{2, 3, 3}, φ100 =

1

4
{2, 1, 1},

and 16 period-6 orbits from (20.300) and (20.302), each one of which ap-
pears twice.

2021-03-09 Han Finding the lattice states with reflection symmetry by setting
the boundary conditions with reflection is not efficient, because it be-
comes harder to separate shorter orbits from the long prime orbits.

Perhaps the smarter way is to still use the periodic boundary conditions
and only use the Fourier modes with the reflection symmetries that we
need.

13Predrag 2021-03-10: I shortened these to period 3
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The eigenvectors of the orbit Jacobian matrix (20.311) are:

e0 = (1, 1, 1, 1) , e1 = (1, 1/2,−1/2,−1) ,

e2 = (1,−1/2,−1/2, 1) , e3 = (1,−1, 1,−1) , (20.312)

with eigenvalues:

λ0 = 1 , λ1 = 2 , λ2 = 4 , λ3 = 5 .

The kth component of the jth eigenvector is:

ejk = cos
(π

3
jk
)
. (20.313)

Compare with ChaosBook eq. (A24.25) notation; for period-6

e
(j)
k = cos

(
2π

6
jk

)
. (20.314)

The eigenvalue of the jth eigenvector is:

λj = s− 2 cos

[
2π

6
(j − 1)

]
. (20.315)

Comparing the eigenvectors of the orbit Jacobian matrix of the period-
6 cat map with periodic boundary condition, with the eigenvectors in
(20.312), we can see that the eigenvectors in (20.312) are given by the first
4 components of the cosine basis vectors, which are the eigenvectors of
the period-6 orbit Jacobian matrix with periodic boundary condition and
reflection symmetry.

2021-03-10 Predrag This discussion reminds me of Baake et al. 1997 paper [4]
The torus parametrization of quasiperiodic LI-classes (click here), sect. 2.3
Symmetry. Note the factorization of orbit Jacobian matrix, their eq. (11)
(enter what you learn from that paper into sect. 5.5.3 - remember, it’s the
only one we found that introduces 1/2 unit length lattice). Have no feel-
ing whether we are to worry about their ‘inflation’.

2021-03-10 Predrag Boring remarks, but easiest to be consistent in the notation
early on, so do not have to fix these later:

Remember, discrete Fourier modes are always counted starting with zero,
k = 0, 1, · · · , n−1, see ChaosBook eq. (A24.32). The constant eigenvector
in (20.312) is always e(0) = (1, 1, 1, 1) (why have you gone to curly vector
= {· · · } notation?), and you avoid the awkward (j− 1)(k− 1) in (20.313),
(20.315).

Please fix that throughout your blog, so I do not have to waste time on
that.
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2021-03-10 Predrag For Dn irreps, I think we should use the (5.56) form of
eigenvalues, and Klein-Gordon mass µ

λm = µ2 + 4 sin2 (αm/2)

=
(
µ− i 2 sin

(αm
2

)) (
µ+ i 2 sin

(αm
2

))
αm = 2πm/n , (20.316)

rather than (20.315) and stretching s, which is appropriate to Cn irreps.
Identities like (13.5), (20.183), (13.91) and Gradshteyn and Ryzhik [25]
Eq. 1.317.1 (click here)

2 sin2 (θ/2) = 1− cos (θ) (20.317)

are also suggestive in this context.

2021-03-10 Predrag In time evolution setting, it’s important for me to distin-
guish Floquet multipliers Λ, see ChaosBook eq. (4.8) from Floquet expo-
nents λ, see ChaosBook eq. (5.4). So I suspect for orbit Jacobian matrix
we want to use Λj in formulas such as (20.315). But I’m not sure, have
not thought that through yet...

2021-03-10 Predrag to Han Grava, Kriecherbauer, Mazzuca and McLaughlin [26]
Correlation functions for a chain of short range oscillators, arXiv:2010.09612
(enter your notes into sect. 5.5.1) is interesting for us. The setting is N -
body, coupled harmonically to neighbors up to a finite distance m away,
i.e., period N 1-dimensional discrete spatial lattice, continuous in time,
see (5.103). Our problem corresponds essentially their spatial eigenstates
(we still seem to be only ones that are thinking of this for a temporal
lattice.

1. Like us in (5.53), they construct a ‘localized square root’ (5.106)

2. Trigonometric relations like (5.56) and functional factorizations are
a result from 1915, known as Fejér and Riesz [50, pg. 117 f] lemma
(5.113), (5.116).

3. Do you understand what to they gain by (5.109) going from half-m-
physical vector to m-physical vector?

4. They seem to separate the symmetric and antisymmetric subspaces
in the Hamiltonian formulation (5.121).

5. Hénon system must be some version of their nonlinear system (5.122),
with the cubic nonlinearity χ 6= 0.

6. They only do the harmonic s = 2, µ = 1 case.

7. I have not yet seen any papers that do this for the discrete temporal
lattice.
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2021-03-23 Han Following the method used in Grava, Kriecherbauer, Mazzuca
and McLaughlin [26], we first write the "Hamiltonian" form of the cat
map: [

qt+1

pt+1

]
=

[
s− 1 1
s− 2 1

] [
qt
pt

]
(mod 1) .

Define q̇t ≡ qt − qt−1 and ṗt ≡ pt+1 − pt. We have:
q̇t = pt =

∂H

∂pt
,

ṗt = (s− 2)qt = −∂H
∂qt

,

(20.318)

then the Hamiltonian of cat map is:

Ht =
1

2
p2
t −

1

2
(s− 2)q2

t . (20.319)

The coefficient of the q2
t term is negative because this is a kicked rotor. If

the coefficient of the q2
t term is positive then this will become a harmonic

oscillator.

2021-03-24 Han Note that I defined ṗt ≡ pt+1 − pt instead of pt − pt−1, be-
cause otherwise I cannot find a Hamiltonian that satisfies the Hamilton’s
equations (20.318).

2021-03-24 Han By factorizing the matrix generated by the m-physical vector
(5.102) into the matrix generated by the half-m-physical vector (5.106),
they rewrote the Hamiltonian into a sum of a set of local Hamiltonian:

ej =
1

2
p2
j +

1

2
r2
j .

2021-03-24 Han To reverse time in the phase space {qt, pt}, we need to use the
time-reversal operator:

T =

[
1 0

2− s −1

]
. (20.320)

This operator satisfies:

T T =

[
1 0
0 1

]
,

and
T AT = A−1 ,

where

A =

[
s− 1 1
s− 2 1

]
.
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But if we write the Hamiltonian as:

Ht =
1

2
x>H x ,

where

x =

[
qt
pt

]
and

H =

[
−(s− 2) 0

0 1

]
,

we will find that [T,H] 6= 0...

2021-03-25 Predrag This T is one of the two involutions but you are right, they
do not commute.

2021-03-25 Predrag Re. ṗt ≡ pt+1 − pt convention you mention above, I un-
derstand. One always has to be explicit about how you define lattice
derivatives: forward/backward difference operators, see (3.3), (3.4) or
centered, reflection (anti)symmetric difference operators (3.6), that we
use in (5.51). Bolotin and Treschev [13] eq. (2.5) discuss this at length, see
their symmetric generating function L(qt, qt+1) defined in (6.83), and the
discussion and references in that part of the blog. These just coordinate
changes, should not effect any invariant quantities, like what solutions
exist, of what stabilities they have.

2021-03-26 Predrag I’m frustrated not to see a clear connection between the
discrete time-reflection symmetry and zeta function factorization (5.178),
if there is any. 14 How about this: You have verified factorizations such
as (5.57). You know |detJ | = |det (1̂1 − Ĵp)| from (9.38).

Can you use |detJ±| = |det (1̂1 − Ĵ±,p)| to reverse engineer the Hamilto-
nian for each subspace, and explain how the time reversal relates the two
(three) Hamiltonians?

2021-03-26 Han We can use the product formula (5.269) to check if the factor-
ization (5.184) is given by the time-reversal symmetry.

An orbit p with length np will contribute to the zeta function as:

A1 A2

Hp = {e} : (1− znp)2 = (1− znp)(1− znp)

Hp = {e, r} : (1− znp) = (1− znp/2)(1 + znp/2) . (20.321)

We know the number of prime orbits of the cat map with s = 3, and
the number of prime orbits that are invariant under time reflection up to
length 6 (table 20.1).

14Predrag 2021-03-25: Have you ever checked whether my factorization (5.178) is correct?
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n 1 2 3 4 5 6
Nn 1 5 16 45 121 320
Mn 1 2 5 10 24 50
M̃n 1 2 3 6 10 18

Table 20.1: Lattice states and orbit counts for the s = 3 cat map. M̃n is the
number of prime orbits with length n that are invariant under time reflection.

Let z = t2. The zeta functions factorized by the time-reversal symmetry
are:

1/ζA1
= (1− t)

(
1− t2

)2 (
1− t3

)3 (
1− t6

) (
1− t4

)6 (
1− t8

)2(
1− t5

)10 (
1− t10

)7 (
1− t6

)18 (
1− t12

)16
. . .

= 1− t− 2t2 − t3 − 2t4 + t5 + 39t7 + 34t8 + t9 − 38t10 +O
(
t11
)
,

(20.322)

1/ζA2 = (1 + t)
(
1 + t2

)2 (
1 + t3

)3 (
1− t6

) (
1 + t4

)6 (
1− t8

)2(
1 + t5

)10 (
1− t10

)7 (
1 + t6

)18 (
1− t12

)16
. . .

= 1 + t+ 2t2 + 5t3 + 10t4 + 23t5 + 48t6

+73t7 + 130t8 + 247t9 + 422t10 +O
(
t11
)
. (20.323)

And the zeta functions from (5.184) are:

1/ζ− =
1− t− t2

1− t2
= 1− t− t3 − t5 − t7 − t9 +O

(
t11
)
, (20.324)

1/ζ+ =
1 + t− t2

1− t2
= 1 + t+ t3 + t5 + t7 + t9 +O

(
t11
)
. (20.325)

These two factorizations are both correct if we expand their product:

1

ζA1

1

ζA2

= 1− t2 − 2t4 − 3t6 − 4t8 − 5t10 +O
(
t11
)
,

1

ζ−

1

ζ+
= 1− t2 − 2t4 − 3t6 − 4t8 − 5t10 +O

(
t11
)
.

So the factorization of (5.184) is correct but it is not factorized by the time
reversal symmetry. But the factorization (20.321) may be wrong because
I did not treat the boundary orbits correctly...
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2021-04-09 Han (Continuation of (20.307), (20.310) and (20.311).)
The numbers of lattice states self-dual under time reversal are given by
the Hill determinants of the orbit Jacobian matrix with the reflection-
symmetric boundary conditions (20.328), (20.327), and (20.326), corre-
sponding to (2.51), (2.52) and (2.55).

When the period n = 2m− 1 of the orbit is odd, there is only one kind of
reflection boundary condition:

|φ0|φ1φ2 · · ·φm|φm · · ·φ2φ1 . (20.326)

This period 2m− 1 lattice state has the [n× n] orbit Jacobian matrix:

J =



s −2 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s− 1


.

The Hill determinant of this orbit Jacobian matrix is:

|detJ | =
n−1∏
j=0

[
s− 2 cos

(
2πj

2n− 1

)]
.

An example is period-5 orbit (20.307).

When the period of the orbit is even, n = 2m there are two kinds of
boundary conditions with reflection symmetry.

The first kind of boundary condition is:

φ1φ2φ3 · · ·φm|φm · · ·φ2φ1| . (20.327)

The [n× n] orbit Jacobian matrix is:

J =



s− 1 −1 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −1 s− 1


.

The determinant of this orbit Jacobian matrix is:

|detJ | =
n−1∏
j=0

[
s− 2 cos

(
2πj

2n

)]
.
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The second kind of boundary condition is:

φ0φ1φ2 · · ·φm−1φmφm−1 · · ·φ2φ1 . (20.328)

Each φ1φ2 . . . φn−1φnφn+1 corresponds to a period-2n lattice state. The
[(n+ 1)× (n+ 1)] orbit Jacobian matrix is:

J =



s −2 0 0 . . . 0 0
−1 s −1 0 . . . 0 0
0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . s −1
0 0 . . . . . . . . . −2 s


,

with Hill determinant

|detJ | =
n∏
j=0

[s− 2 cosαj ] , αj = 2πj/2n (20.329)

=
n∏
j=0

(
µ+ eiαj/2 − e−iαj/2

) (
µ+ eiαj/2 − e−iαj/2

)∗
.

where we have replaced (s − 2 cosα) by
(
µ2 + 4 sin2(α/2)

)
, in the (5.56)

time-reversal spirit.

The above Hill determinants count the number of lattice states that have
time reversal symmetry.

In order to compare with Gallas [24] (a step not needed for our calcula-
tions): his orbits with time reversal symmetry are categorized into two
classes: diagonal class and non-diagonal class. For orbits with even pe-
riod, the diagonal class orbits satisfy the boundary condition (20.327),
and the non-diagonal class orbits satisfy the boundary condition (20.328).

LetAn be the number of lattice states with period n that satisfy the bound-
ary condition (20.326) if n is odd and the boundary condition (20.327) if
n is even. And let Qn be the number of lattice states with period n that
satisfy the boundary condition (20.326) if n is odd and the boundary con-
dition (20.328) if n is even.

An =



n−1
2∏
j=0

[
s− 2 cos

(
2πj

n

)]
, n is odd ,

n
2−1∏
j=0

[
s− 2 cos

(
2πj

n

)]
, n is even .
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n 1 2 3 4 5 6 7 8 9 10 11

Dn 1 0 3 1 10 2 28 9 72 22 198
Nn 0 2 0 5 0 16 0 45 0 130 0

Table 20.2: Time reversal symmetric prime orbit counts for the s = 3 cat map.
Dn is the number of symmetric orbits with points on the diagonal in the state
space. Nn is the number of symmetric orbits without points on the diagonal.

Qn =



n−1
2∏
j=0

[
s− 2 cos

(
2πj

n

)]
, n is odd ,

n
2∏
j=0

[
s− 2 cos

(
2πj

n

)]
, n is even .

Now let Dn be the number of orbits with period n that satisfy the bound-
ary condition (20.326) if n is odd and (20.327) if n is even. And Nn is
the number of orbits with period n that satisfy the boundary condition
(20.326) if n is odd and (20.328) if n is even. Then we have the relation:

An =
∑
d|n

anDn ,

Qn =
∑
d|n

anNn ,

where

an =

{
1 , n is odd ,
2 , n is even .

We can use the Möbius inversion formula to compute the number of the
orbits with the time reversal symmetry:

Dn =
1

an

∑
d|n

µ
(n
d

)
An ,

Nn =
1

an

∑
d|n

µ
(n
d

)
Qn ,

where µ(n) is the Möbius function. Note that using these formulas we
will have Dn = Nn if n is odd. In Gallas [24], by definition Nn = 0 if n
is odd. Set Nn = 0 for odd n. The number of orbits with time reversal
symmetry is shown in table 20.2.

2021-04-13 Han Let A : (x, y)→ (x′, y′) be the cat map with s = 3:

A

[
x
y

]
=

[
0 1
−1 3

] [
x
y

]
(mod 1) .
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And T is the time reflection:

T

[
x
y

]
=

[
0 1
1 0

] [
x
y

]
.

Fixed points of T satisfy:
x = y .

Fixed points of A ◦ T satisfy:

A ◦ T
[
x
y

]
=

[
1 0
3 −1

] [
x
y

]
(mod 1) =

[
x
y

]
,

which can be written as:

3x− 2y mod 1 = 0 .

For time reversal symmetric periodic orbits with odd period, each orbit
has one point on the Fix(AT ) and one point on the Fix(T ). If the period
is 2n + 1 and (φ0, φ1) is on Fix(AT ), then (φn, φn+1) is on Fix(T ). So we
have:

3φ0 − 2φ1 mod 1 = 0 ,

and

An
[
φ0

φ1

]
=

[
φn
φn

]
.

An is:

An
[
x
y

]
=

 2−n+1
[
(3−
√

5)
n−1−(3+

√
5)
n−1

]
√

5

2−n[−(3−
√

5)
n

+(3+
√

5)
n
]√

5

2−n[(3−
√

5)
n−(3+

√
5)
n
]√

5

2−n−1
[
−(3−

√
5)
n+1

+(3+
√

5)
n+1

]
√

5

[ x
y

]
(mod 1) .

For example, if n = 4 and the period of the orbit is 2n+ 1 = 9, we have:

A4

[
φ0

φ1

]
=

[
−8 21
−21 55

] [
φ0

φ1

]
(mod 1) =

[
φn
φn

]
,

which can be written as:

−13φ0 + 34φ1 mod 1 = 0 .

So we have: [
3 −2
−13 34

] [
φ0

φ1

]
(mod 1) = 0 .

Then the number of periodic points on the Fix(AT ) is given by the deter-
minant: ∣∣∣∣det

[
3 −2
−13 34

]∣∣∣∣ = 76 .
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When the period of the orbit is even, each orbit has two points on Fix(AT )
and none on Fix(T ), or two points on Fix(T ) and none on Fix(AT ). For
example, if the period is 10, when the orbits have no point on Fix(AT ),
we have:

φ0 = φ1 ,

and

A5

[
φ0

φ1

]
(mod 1) =

[
−21 55
−55 144

] [
φ0

φ1

]
(mod 1) =

[
φn
φn

]
.

Then the periodic point (φ0, φ1) satisfies:[
1 −1
−34 89

] [
φ0

φ1

]
(mod 1) = 0 .

So the number of points on the Fix(T ) is:∣∣∣∣det

[
1 −1
−34 89

]∣∣∣∣ = 55 .

When the orbits have no periodic point on Fix(T ), we have:

3φ0 − 2φ1 mod 1 = 0 ,

and

A5

[
φ0

φ1

]
(mod 1) =

[
−21 55
−55 144

] [
φ0

φ1

]
(mod 1) =

[
φn
φn+1

]
,

where
3φn − 2φn+1 mod 1 = 0 .

So we have: [
3 −2
47 −123

] [
φ0

φ1

]
(mod 1) = 0 .∣∣∣∣det

[
3 −2
47 −123

]∣∣∣∣ = 275 .

Using the number of periodic points on Fix(T ) and Fix(AT ) we can count
the number of orbits. The result is shown in table 20.3.

2021-04-13 Predrag Pozrikidis [49] An introduction to grids, graphs, and networks,
(click here) has a clear discussion of various boundary conditions, (see
some of my clippings around (6.208), but it is better to check out the
book). For an example of Dirchlet boundary conditions orbit Jacobian ma-
trix −J (1.40). See also antiperiodic sum (1.51).

2021-04-13 Predrag My problems with bc’s approaches is they are a natural
starting point, but they do not scale up. At all. Even for the 3-disk pinball
you start by thinking of symmetry axes as mirrors, but then what do you
do with the 2-dimensional irreps? Hill’s formula detH = det (1− Jp) for
the periodic case.
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n Fn Cn SFn SCn
1 1 1 1 1
2 5 2 1 5 0 2
3 16 5 4 3
4 45 10 3 15 1 5
5 121 24 11 10
6 320 50 8 40 2 16
7 841 120 29 28
8 2205 270 21 105 9 45
9 5776 640 76 72

10 15125 1500 55 275 22 130

Table 20.3: Fn is the number of lattice states with period n. Cn is the number
of periodic orbits with period n. SFn is the number of symmetric fixed points
of An on Fix(T ) for odd n, and on Fix(T ), Fix(AT ) for even n. SCn is the
number of symmetric orbits with periodic points on Fix(T ) for odd n, and on
Fix(T ), Fix(AT ) for even n. The notations are same as the notations used in
Table 1.2.3.5.1 of MacKay’s thesis [37].

2021-05-11 Han The product of eigenvalues of the antisymmetric eigenvectors
of the orbit Jacobian matrix does count the number of antisymmetric lat-
tice states.

For example, if the period of the lattice states is 6, we have two kinds of
reflections. If the lattice state is antisymmetric under reflection over half
lattice sites, the antisymmetric subspace is 3-dimensional. And the lattice
state tiles the infinite lattice as:

φ1φ2φ3|φ3 φ2 φ1| = . . . φ3 φ2 φ1|φ1φ2φ3|φ3 φ2 φ1|φ1φ2φ3 . . . , (20.330)

where the underline means negative.

The orbit Jacobian matrix in the 3-dimensional antisymmetric subspace
is:

J =

 s+ 1 −1 0
−1 s −1
0 −1 s+ 1

 .
The eigenvalues of this orbit Jacobian matrix in the 3-dimensional anti-
symmetric subspace are s− 1, s+ 1 and s+ 2, which are the eigenvalues
of the antisymmetric eigenvectors of the orbit Jacobian matrix in the full
space.

If the lattice state is antisymmetric under reflection over integer lattice
sites, the antisymmetric subspace is 2-dimensional. The lattice state tiles
the infinite lattice as:

0φ1φ2|φ3 φ2 0 | = . . . φ2 φ1 0 φ1φ2 0 φ2 φ1 0 φ1φ2 . . . , (20.331)
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The orbit Jacobian matrix in the 2-dimensional antisymmetric subspace
is:

J =

[
s −1
−1 s

]
.

The eigenvalues of this orbit Jacobian matrix in the 2-dimensional anti-
symmetric subspace are s − 1, s + 1, which are the eigenvalues of the
antisymmetric eigenvectors of the orbit Jacobian matrix in the full space.

2021-06-13 Predrag I think I’m starting to understand Máo Zhǔxí Yǔlù. The 3
types of D∞ symmetric states Φ are -well- symmetric, and that means
that the number ∼ m of distinct fields that describe the corresponding
period-n Bravais cell is ∼ n/2. They satisfy non-periodic bc’s equations
such as (??).

2021-06-13 Predrag That block-diagonalizes into eigenvectors that point within
the symmetry subspace of the same symmetry as the lattice state, and the
(antisymmetric) rest, that point out of it. That’s all as it should be for a
fixed point with a symmetry.

2021-05-11 Han To write the orbit Jacobian matrix in the reflection symmetric
or antisymmetric subspace, we can use the projection operators.

example 5.29
p. 278

To get the orbit Jacobian matrix in the antisymmetric subspace, we can
project the orbit Jacobian matrix of the full space into the antisymmetric
subspace:

JPR− =
1

2


s+ 1 −1 0 0 1 −s− 1
−1 s −1 1 −s 1
0 −1 s+ 1 −s− 1 1 0
0 1 −s− 1 s+ 1 −1 0
1 −s 1 −1 s −1

−s− 1 1 0 0 −1 s+ 1

 ,

JPrR− =
1

2


0 0 0 0 0 0
0 s −1 0 1 −s
0 −1 s 0 −s 1
0 0 0 0 0 0
0 1 −s 0 s −1
0 −s 1 0 −1 s

 .

And the orbit Jacobian matrix of the antisymmetric subspace can be found
in the top left blocks of JPR− and JPrR− .

2021-06-01 Han I’m still not able to use the number of symmetric lattice states
from table 20.3 to compute the factor of the topological zeta function
which is corresponding to the symmetric orbits.
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Remember that for the number of the periodic points Nn, we have:

znNn =
∑
np|n

npt
n
np
p =

∑
p

np

∞∑
r=1

δn,rnpt
r
p .

Then the topological zeta function is:

1

ζ(z)
= exp

(
−
∞∑
n=1

znNn
n

)

= exp

(
−
∞∑
n=1

1

n

∑
p

np

∞∑
r=1

δn,rnpt
r
p

)

= exp

(
−
∑
p

∞∑
r=1

1

r
trp

)
=

∏
p

(1− tp) . (20.332)

Now let Dn be the number of symmetric lattice states with points on the
diagonal. we have

znDn =
∑
np|n

apt
n
np
p =

∑
p

ap

∞∑
r=1

δn,rnpt
r
p ,

where

ap =

{
1 , np is odd ,
2 , np is even .

And
∞∑
n=1

znDn =
∑
p

ap

∞∑
r=1

trp .

To find the topological zeta function that count the number of orbits with
symmetry, I need to find a function f(n) such that:

f(rnp) = rap .

So
∞∑
n=1

1

f(n)
znDn =

∑
p

∞∑
r=1

ap
rap

trp .

2021-06-25 Han I realized why figure 5.11 (b) is unnatural to me. If the time
is continuous, we cannot have an orbit with reflection symmetry like fig-
ure 5.11 (b), because if the system has reflection symmetry, then the re-
flection axis (the boundary) is an invariant set, and orbit cannot cross it.
So orbit with reflection symmetry can only exist on the boundary.
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A

BB'

A'

(a)

A

B

A'

B'

(b)

AA'

BB'

(c)

Figure 20.62: (a): Reflection invariant orbits of system with D3 symmetry. The
orbit ABA′B′ will be changed to A′B′AB after reflection. (b) and (c): Orbits
that cannot exist for system with D3 symmetry. Although the sets of periodic
points in these orbits are invariant under reflection, the order of the periodic
points in these orbits will be changed to the opposite direction. AA′B′B will
be changed to A′ABB′ and AA′BB′ will be changed to A′AB′B.

If the time is discrete then orbit with reflection symmetry can exist as
shown in figure 20.62 (a). Note that figure 20.62 (b) and (c) cannot exist
because these two orbits will change direction after reflection, i.e., the
orbit will go opposite direction in the flipped fundamental domain. Even
though these two kinds of orbits will not exist for system with reflection
symmetry, these are the orbits that will exist for system with time reversal
symmetry.

2021-07-04 Predrag to Han I think I have finally found the ‘dihedral’ zeta func-
tion in the literature. The much desired -see (2.35)- square root and de-
pendence on t2 makes an appearance in the Lind zeta function (5.150)!

Please drop everything, and check and correct my draft sect. 5.6 A Lind
zeta function for flip systems. I hope this finally leads to a paper on zeta-
function factorization in time-reversal invariant temporal lattices.

2021-07-09 Han Figure ?? shows period-3 lattice states of s = 3 temporal cat,
plotted in the subspace of the irreps (5.165) of the permutation represen-
tation. Using these 16 lattice states as a set on which the D3 group acts,
we can apply the Burnside theorem (20.335), using the D3 table of marks
table 5.3 to compute the number of lattice states that are invariant under
the action of each subgroup.

Since irrep A1 is a symmetric irrep, we only need to study the orbits in
the subspace of irrep E1. Lattice states related by cyclic permutations
are connected by blue lines in the figure ?? (a). The two biggest triangles
are two orbits without time reflection symmetry. There are three smaller
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triangles which are orbits with time reflection symmetry. And the point
on the center is invariant under all group actions. This set of lattice states
is corresponding to an element of the Burnside ring Ω(D3):

a[D3/1]

[
D3

1

]
+ a[D3/D1]

[
D3

D1

]
+ a[D3/C3]

[
D3

C3

]
+ a[D3/D3]

[
D3

D3

]
. (20.333)

In this expression, [D3/H] is a kind of group orbits that are generate by
factor group D3 on a point x in the orbit, and x is invariant under the
action of subgroup H . And a[D3/H] is the number of this kind of group
orbits.

For the period 3 lattice states of cat map, a[D3/1] is the number of group
orbits that is only invariant under the identity subgroup 1, which is 1.
Note that the two biggest triangles are one group orbit. a[D3/D1] is 3, since
there are 3 smaller triangles that are invariant under reflection subgroup
D1. a[D3/C3] is 0. Although there is one point on the center that is invariant
under C3, the stabilizer (isotropy) subgroup is D3 itself. So this point will
contribute to a[D3/D3] instead of a[D3/C3].

The expression of the ring element of this set of orbits is

1

[
D3

1

]
+ 3

[
D3

D1

]
+ 0

[
D3

C3

]
+ 1

[
D3

D3

]
.

Let

a = (a[D3/1], a[D3/D1], a[D3/C3], a[D3/D3]) = (1, 3, 0, 1) , (20.334)

we can use the Burnside theorem (5.164)

aM = u , (20.335)

to compute the u which are the numbers of states fixed by the subgroups.
M is the matrix of the table of marks of D3 table 5.3. The result is:

u = (16, 4, 1, 1) .

16 is the number of states that are invariant under the identity group 1,
which is the total number of states. 4 is the number of states that are in-
variant under a reflection subgroup D1. As shown in figure ?? (b), there
are 4 points on each one of the reflection axis (red dashed lines). The num-
ber of states that are invariant under D3 and C3 subgroups is 1, which is
the fixed point state, or the center.

It is easy for me to find the number of states invariant under the action
of a group. So to make a good use of (20.335) we should find the number
of lattice states that are invariant under subgroup actions, then use the
inverse of the table of marks to find the numbers of each kind of orbit.
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Table 20.4: D6 table of marks, taken from GAP sect. 70.12-2 Table of marks
dihedral. For D3, see table 5.3.

D6 11 C2 D1,0 D1,1 C3 D2 C6 D3,0 D3,1 D6

D6/ 11 12
D6/C2 6 6

D6/D1,0 6 0 2
D6/D1,1 6 0 0 2
D6/C3 4 0 0 0 4
D6/D2 3 3 1 1 0 1
D6/C6 2 2 0 0 2 0 2

D6/D3,0 2 0 2 0 2 0 0 2
D6/D3,1 2 0 0 2 2 0 0 0 2
D6/D6 1 1 1 1 1 1 1 1 1 1

2021-07-10 Han The dihedral group

D6 = 〈r, s | srs = r5, r6 = s2 = 1〉 .

has 10 subgroup conjugacy classes (see (5.142) for notation):

• The identity subgroup 11 = {1}.
• Dihedral subgroup D1,0 = {1, s} = 〈s〉 and its conjugate subgroups.

• Dihedral subgroup D1,1 = {1, rs} = 〈rs〉 and its conjugate sub-
groups.

• Cyclic subgroup C2 = {1, r3} = 〈r3〉.
• Dihedral subgroup D2 = {1, r3, s, r3s} = 〈r3, s〉 and its conjugate

subgroups.

• Cyclic subgroup C3 = {1, r2, r4} = 〈r2〉.
• Dihedral subgroup D3,0 = {1, r2, r4, s, r2s, r4s} = 〈r2, s〉.
• Dihedral subgroup D3,1 = {1, r2, r4, rs, r3s, r5s} = 〈r2, rs〉.
• Cyclic subgroup C6 = {1, r, r2, r3, r4, r5} = 〈r5〉.
• D6 group.

The table of marks of these subgroups is give in table 20.4.

2021-07-10 Han For the temporal cat with s = 3, we have 320 lattice states
with period 6. Let uH be the number of states that are invariant under
the action of the subgroup H . Then

u = (u 11, uC2
, uD1,0

, uD1,1
, uC3

, uD2
, uC6

, uD3,0
, uD3,1

, uD6
)

= (320, 16, 8, 40, 5, 4, 1, 1, 5, 1) . (20.336)
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Using the Burnside theorem (5.164) we have the corresponding Burnside
ring:

a = uM−1

= (16, 1, 2, 16, 0, 3, 0, 0, 2, 1) . (20.337)

The interpretation of these numbers (see also (20.334)):

• a[D6/ 11] = 16: there are 16 pairs of C6 orbits without any symmetry.

• a[D6/C2] = 1: there is 1 pair of C3 period 3 orbits without any sym-
metry, see figure ??.

• a[D6/D1,0] = 2 and a[D6/D1,1] = 16 are the numbers of C6 period 6
orbits that are invariant under two types of reflections, in agreement
with table 20.3 SC6.

• a[D6/C3] = 0: there is no orbit of C2 period 2 without reflection sym-
metry.

• a[D6/D2] = 3: there are 3 C3 period 3 orbits with reflection symmetry,
in agreement with table 20.3 SC3.

• a[D6/C6] = 0: there is no fixed point lattice state without reflection
symmetry.

• a[D6/D3,0] = 0 and a[D6/D3,1] = 2 are the numbers of C2 period 2
orbits invariant under both types of reflections, in agreement with
table 20.3 SC2.

• a[D6/D6] = 1: there is one fixed point lattice state with reflection sym-
metry.

2021-07-11 Predrag To me indicating D6 in a[D6/D1,0], etc, in (20.334) and (20.337)
seems redundant. Is that a notation literature uses? Otherwise indicating
just the subgroup, as in aD1,0 , should suffice?

2021-07-11 Predrag A remark on the level of ChaosBook generality: Looks like
one should abandon the notion of ‘prime’, ‘relative prime’ orbit. The
notion of ‘orbit’ covers all that, so the distinction is only between ‘lattice
state’ and ‘orbit’, there is no ‘non-prime’ orbit.

2021-07-11 Predrag Very nice - I have changed the notation following (5.142),
and tentatively reordered the list (but not in the table, there we follow
GAP) by grouping Cn ’s, Dn ’s together, and putting D1’s ahead of C2’s,
though ordering by the order of the group might be more logical.

A beautiful thing is that the Lind zeta function (5.150), (5.154) does not
seem to depend on all these subgroup lattice details. That might be the
genius of zeta functions; the ‘prime’ orbits are only defined in terms of
Cn ’s, Dn ’s, and all these subgroup complications arise only when one
insists on counting the lattice states. Which is what is fundamentally not
needed, that should be emphasized in the putative paper.
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2021-07-17 Predrag to Han Before we can hope that sect. 5.6 A Lind zeta func-
tion for flip systems is publishable, we have to explain clearly that the quo-
tient taken is a lattice/sublatice quotient, isomorphic to a point group.
I’ve used the CL18.tex spatiotemporal cat text as a starting point for sect. ?? 1-
dimensional lattices and sublattices - please shorten it to a few paragraphs?
To make that understandable, I believe we need to draw some 1-dimen-
sional lattice, line group figures, illustrating

1. the unit tile has no symmetry (and arrow? a fish? drawn in it, point-
ing to the right?) for a generic dynamical system, such as the usual
Hénon map.

2. Reversible dynamical system’s unit tile has a midpoint and edge-flip
reflection symmetry (draw left-right arrow? moustache?)

3. Draw a figure illustrating that rH(n, k)r−1 = H(n, k + 2).

4. draw (for example?) a 1-dimensional, period 4 Bravais cell, and
draw the (5.142) k = 0, 1, 2, 3 flips of it.

2021-07-17 Predrag to Han and Sidney Looking at figure ??: The temporal cat
(but not the temporal Hénon) has a dynamical symmetry under the simul-
taneous inversion S through the center of the 0 ≤ φj < 1 unit interval,
see (5.24). Can you check whether the (5.184), (5.178) Isola zeta func-
tion factorization is a consequence of this dynamical inversion symme-
try? S2 = 1 should give you the projection operators.

2021-07-21 Han In the Lind zeta function (5.138), each subgroup H is a sym-
metric group of a set of lattice states. For the flip system (dynamical
system with time reversal symmetry), there are two kinds of subgroups
of D∞ (5.8): H(n) and H(n, k) (5.142). These two subgroups act on infi-
nite lattice states. Nn and Nσ

n,k are the numbers of lattice states that are
invariant under the H(n) and H(n, k).

We need to define the action of the D∞ on the lattice state. Let the gener-
ator r shift the lattice state one step to the left, and the generator σ reflect
the lattice state over the 0th lattice point. Then figure 20.63 shows lattice
states that are invariant under subgroups of D∞.

2021-07-22 Predrag I was wrong: color-coded figure 20.63 is useless, while the
field figure ?? is much easier to understand.

2021-07-27 Han The two small triangles in figure ?? are related by the D1 :
Sφi = 1− φi symmetry. Let T be the irreps transformation, φ1 and φ2 be
two lattice states related by φ1 = 1− φ2. Then we have :

Tφ1 = T1− Tφ2 = (1, 0, 0, . . . )− Tφ2 , (20.338)

where (1, 0, 0, . . . ) is a vector with the first component 1 and other com-
ponents 0. The first component in the space of irreps is the component in
the subspace of the 1-dimensional symmetric irrep, which is the average
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(a) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n

(b) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n

(c) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n

(d) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n

Figure 20.63: Lattice states same as figure ?? but the field values are color coded
(we have since abandoned this approach), rather than plotted as φt ∈ [0, 1).
Horizontal: lattice sites labelled by t ∈ Z. Vertical: value of field φt, plotted
as a bar centred at lattice site t. A period n lattice state Φ has one of the 4
possible symmetries, illustrated by: (a) A period-5 lattice state Φ invariant un-
der the translation group H(5), with no reflection symmetry. Its D5 orbit are
2n = 10 distinct lattice states, 5 C∞ translations and 5 D∞ translate-reflections.
(b) A period 9, odd-period lattice state (??), invariant under the space group
H(9, 8). This lattice state has reflection symmetry over the 4th lattice point (as
in figure ?? (a)), and the midpoint between 8th and 9th lattice points (as in fig-
ure ?? (b)). (c) A period 10, even-period lattice state (??), invariant under the
space group H(10, 9). This lattice state has reflection symmetry over the mid-
point between the 4th and 5th lattice points and the midpoint between 9th and
10th lattice points. (d) A period 10, even-period lattice state (??), invariant un-
der the space group H(10, 0). This lattice state has reflection symmetry over
the 0th lattice point and the 5th lattice point. Note that H(10, 9) and H(10, 0)
are not conjugate subgroups, so we cannot use translations or reflections to
make the lattice state (c) satisfy the symmetry of lattice state (d). The Dn or-
bits of reflection-symmetric lattice states (b-c) contain only n lattice state Cn
translations, as any reflection results in a translation of the initial lattice state.
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(a)

Figure 20.64: For a time-reversal invariant system, a period n lattice state Φ,
plotted here as the field values φt, each bar centred at lattice site t, has one of
the 4 possible symmetries, illustrated by: (a) A period-5 lattice state Φ invariant
under the translation group H(5), with no time reversal symmetry.

value of the lattice state. The effect of the action of S is to inverse the
sign of the lattice state in the space of irreps except for the subspace of
the 1-dimensional symmetric irrep.

But why the two big triangles and the one medium size triangle do not
have inversions? The orbit of these triangles are 1/4(0, 1, 3) and 1/2(1, 1, 0).
When we apply the inversion S, 0 is mapped to 0 instead of 1. So these
two orbits are mapped to 1/4(0, 3, 1) and 1/2(1, 1, 0), which are them-
selves.

2021-07-28 Predrag Moved the two “H(n, k) is not a normal subgroup” posts
to example 5.18. I agree with both.

2021-07-28 Predrag I feel that the coset count is easiest to understand look-
ing at the 3-disk billiard, ChaosBook example 11.6. I find the notion
of "isotropy" group too restrictive, and prefer "symmetry of a solution",
see ChaosBook eq. (11.2). Let me know if you agree, and if not, suggest
rewrites for the ChaosBook text.

2021-08-04 Han To block diagonalize the orbit Jacobian matrix by the symmet-
ric and antisymmetric subspace of the reflection operator as in (16.34),
we need to use the eigenvectors of the reflection operator. For example,
generally the orbit Jacobian matrix of the Hénon map (15.174) is not in-
variant under reflection and translation. But if the orbit has the reflection
symmetry, we can use the reflection operator, under the action of which
the orbit is invariant, to project the orbit Jacobian matrix into symmet-
ric and antisymmetric subspace, or block diagonalize the orbit Jacobian
matrix.

If the period of the orbit is odd, there is only one kind of reflections. For
example, if the period is 9, the orbit can be written as a vector in the 9
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dimensional space of lattice state:

φ1φ2φ3φ4φ5φ4φ3φ2φ1| . (20.339)

This orbit in invariant under the reflection operator:

σ =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


. (20.340)

Let the diagonalizing matrix V be:

V =



1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 −1
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0


, (20.341)

each column of which is an eigenvector of the reflection operator. The
first 5 vectors span the symmetric subspace of reflection and the last 4
vectors span the antisymmetric subspace. Using the eigenvectors the or-
bit Jacobian matrix can be block diagonalized as:

V −1J V =



2φ1 + 1 1 0 0 0 0 0 0 0
1 2φ2 1 0 0 0 0 0 0
0 1 2φ3 1 0 0 0 0 0
0 0 1 2φ4 1 0 0 0 0
0 0 0 2 2φ5 0 0 0 0
0 0 0 0 0 2φ1 − 1 1 0 0
0 0 0 0 0 1 2φ2 1 0
0 0 0 0 0 0 1 2φ3 1
0 0 0 0 0 0 0 1 2φ4


.(20.342)

If the period of the orbit is even, there are two kinds of reflections. For
example, the orbit

φ1φ2φ3φ4|φ4φ3φ2φ1| (20.343)
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is invariant under the 1/2 lattice spacing reflection:

σ =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


. (20.344)

Using the eigenvector matrix:

V =



1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0


, (20.345)

we can block diagonalize the orbit Jacobian matrix as:

V −1J V =



2φ1 + 1 1 0 0 0 0 0 0
1 2φ2 1 0 0 0 0 0
0 1 2φ3 1 0 0 0 0
0 0 1 2φ4 + 1 0 0 0 0
0 0 0 0 2φ1 − 1 1 0 0
0 0 0 0 1 2φ2 1 0
0 0 0 0 0 1 2φ3 1
0 0 0 0 0 0 1 2φ4 − 1


.(20.346)

If the orbit is
φ1φ2φ3φ4φ5φ4φ3φ2 , (20.347)

the corresponding reflection operator leaves sites 1 and 4 invariant:

σ1 =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0


. (20.348)
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Using the eigenvector matrix:

V =



1 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0


, (20.349)

the orbit Jacobian matrix can be block diagonalized as:

V −1J V =



2φ1 2 0 0 0 0 0 0
1 2φ2 1 0 0 0 0 0
0 1 2φ3 1 0 0 0 0
0 0 1 2φ4 1 0 0 0
0 0 0 2 2φ5 0 0 0
0 0 0 0 0 2φ2 1 0
0 0 0 0 0 1 2φ3 1
0 0 0 0 0 0 1 2φ4


.(20.350)

2021-08-04 Han The choice of eigenvectors in the symmetric and antisymmet-
ric subspaces is not unique, and it will not affect the determinant of the
orbit Jacobian matrix in the subspaces. So we can compute the deter-
minant of the orbit Jacobian matrix in the subspaces without using any
eigenvector.

The determinant of a matrix can be written as the antisymmetrized trace
of the matrix [15]:

DetM = Tr pAM =
1

p

p∑
k=1

(−1)k−1(Tr p−kAM)TrMk , (20.351)

whereA is the antisymmetrization projection operator, p is the dimension
of the matrixM . To compute the determinant of the orbit Jacobian matrix
in the subspace, we need to first project the matrix into the subspace, then
compute the antisymmetrized trace with the dimension of the subspace.

For example, consider (20.343) symmetric orbit φ1φ2φ3φ4|φ4φ3φ2φ1|. The
determinant of the orbit Jacobian matrix J+ in the symmetric subspace
is:

Det (P+J ) =

∥∥∥∥∥∥∥∥
−s1 + 1 1 · ·

1 −s2 1 ·
· 1 −s3 1
· · 1 −s4 + 1

∥∥∥∥∥∥∥∥ (20.352)

= s1s2s3s4 + s1s2s3 + s2s3s4

+s1s2 + s2s3 + s1s4 + s3s4 + s1 + s2 + s3 + s4 .
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Alternatively, using the projection operator to project the orbit Jacobian
matrix into the symmetric subspace P+J = J+:

J+ =
1

2



2φ1 + 1 1 0 0 0 0 1 2φ1 + 1
1 2φ2 1 0 0 1 2φ2 1
0 1 2φ3 1 1 2φ3 1 0
0 0 1 2φ4 + 1 2φ4 + 1 1 0 0
0 0 1 2φ4 + 1 2φ4 + 1 1 0 0
0 1 2φ3 1 1 2φ3 1 0
1 2φ2 1 0 0 1 2φ2 1

2φ1 + 1 1 0 0 0 0 1 2φ1 + 1


,(20.353)

and using (20.351) we have:

Det (J+) = Tr 4(AJ+)

=
1

4!

{
(TrJ+)4 − 6(TrJ+)2TrJ 2

+ + 3(TrJ 2
+)2

+8TrJ 3
+TrJ+ − 6TrJ 4

+

}
= 16φ1φ2φ3φ4 + 8φ1φ2φ3 + 8φ2φ3φ4 − 4φ1φ2 + 4φ2φ3

−4φ1φ4 − 4φ3φ4 − 2φ1 − 2φ2 − 2φ3 − 2φ4 , (20.354)

the same result as computing the determinant of the [4× 4] matrix.

If the orbit is φ1φ2φ3φ4φ5φ4φ3φ2, see (20.347), the determinant of the
orbit Jacobian matrix in the symmetric subspace is:

Det (J+) = Det


2φ1 2 0 0 0
1 2φ2 1 0 0
0 1 2φ3 1 0
0 0 1 2φ4 1
0 0 0 2 2φ5


= 32φ1φ2φ3φ4φ5 − 16φ1φ2φ3 − 8φ1φ2φ5

−8φ1φ4φ5 − 16φ3φ4φ5 + 4φ1 + 8φ3 + 4φ5 .

(20.355)

We can get the same result from the orbit Jacobian matrix projected into
the symmetric subspace:

P+J =
1

2



4φ1 2 0 0 0 0 0 2
2 2φ2 1 0 0 0 1 2φ2

0 1 2φ3 1 0 1 2φ3 1
0 0 1 2φ4 2 2φ4 1 0
0 0 0 2 4φ5 2 0 0
0 0 1 2φ4 2 2φ4 1 0
0 1 2φ3 1 0 1 2φ3 1
2 2φ2 1 0 0 0 1 2φ2


. (20.356)
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The determinant is:

Det (J+) = Tr 5(AJ+)

=
1

5!

{
(TrJ+)5 − 10(TrJ+)3TrJ 2

+ + 15(TrJ+)(TrJ 2
+)2

+20TrJ 3
+(TrJ+)2 − 20TrJ 2

+TrJ 3
+

−30TrJ 4
+TrJ+ + 24TrJ 5

+

}
= 32φ1φ2φ3φ4φ5 − 16φ1φ2φ3

−8φ1φ2φ5 − 8φ1φ4φ5 − 16φ3φ4φ5

+4φ1 + 8φ3 + 4φ5 . (20.357)

2021-08-04 Han Using the antisymmetrized trace formula (20.351) we can com-
pute the determinant of a matrix in the subspace. The reason is simple:
when the matrix is diagonalized, some elements on the diagonal will be
zero. These zeros will not contribute to the trace of the matrix. So if we
use the antisymmetrized trace formula with the correct dimension, the
determinant we get is the determinant of the matrix in the subspace with
non-zero eigenvalues.

2021-08-04 Predrag Very nice!

2021-08-04 Predrag It might that the above symmetric polynomials in φi are
all reducible to powers of the orbital sum rp defined in (2.33), a orbit p
invariant. For an example, see (2.43). But probably specific to Hénon
only...

2021-08-05 Predrag Added

\newcommand{\sitebox}[1]

that enables you to control the margin around φn−1 . Gave up on playing

with φn and φn .

2021-08-04 Predrag You are using the wrong definition of Hénon orbit Jaco-
bian matrix, there are no factors of a in (15.174). Please fix throughout.
We prefer Gallas et al. convention (15.174).

2021-08-04, 2021-08-11 Predrag I have -an experiment- sat 2φj = −sj , tempo-
ral cat style in (20.353) and (3.48), just to see how we like that. The signs
might be wrong, please recheck.

This also connect to the one-dimensional Schrödinger operator (13.107),
where λvn = −sj . “The real-valued potential sequence v = (vn)n∈Z rep-
resents the environment that the particle is subjected to, with the “cou-
pling constant” λ > 0 is factored out for convenience.”
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2021-08-04 Predrag It seems better to number lattice sites as φ0φ1φ2 · · ·φn−1,
at least when one or two lattice sites are invariant under the reflection,
see (20.359) and (20.360).

2021-08-04 Predrag Let us try to explicitelly connect and generalize Kim et
al. [31] orbit-counting “generating function” (5.151) counts

N2m−1,0, N2m,0, N2m,1 (20.358)

as well as MacKay’s thesis [37] table 20.3, and Gallas et al. (2.34), to the
Hill determinant-weighted, symmetry reduced and factorized periodic
orbit weights tp̃, by connecting

period n = 2m− 1 odd (N2m−1,k, SCn ) n cyclicly related lattice states

φ0φ1φ2 · · ·φm|φm · · ·φ2φ1 . (20.359)

to 1 boundary point ‘diagonal’ class D (2.55), (20.304), (20.326), (20.339);
m-dimensional symmetric, (m−1)-dimensional antisymmetric subspace
(20.342).

period n = 2m even, k = even (N2m,k, SFn (?)) m = n/2 cyclicly related
lattice states

φ0φ1φ2 · · ·φm−1φmφm−1 · · ·φ2φ1 . (20.360)

to no boundary point ‘non-diagonal’ class N (2.50), (20.309), (20.328), an-
tisymmetric (20.331), (20.347); (m + 1)-dimensional symmetric, (m − 1)-
dimensional antisymmetric subspace (20.350).

period n = 2m even, k = odd (N2m,k, SFn (?)) m = n/2 cyclicly related
lattice states

φ1φ2φ3 · · ·φm|φm · · ·φ2φ1| . (20.361)

to 2 boundary points ‘diagonal’ class D (2.54), (20.308), (20.327), antisym-
metric (20.330), (20.343), (20.353); m-dimensional symmetric, m-dimen-
sional antisymmetric subspace (20.346). Also and (3.48).

I have almost certainly mixed up the two even-period classes, please cor-
rect.

2021-08-05 Predrag We have to distinguish the symmetric (20.327) from the
antisymmetric (20.330), (20.331) throughout.

I started writing this up in sect. 5.3.4 Reflection-symmetric lattice states.

Orbit Jacobian matrix J is linear, so the anitsymmetric-symmetric fac-
torization will always apply to it. However, I expect the antisymmetric
subspace to be flow-invariant for nonlinear systems (such as temporal
Hénon; but also temporal cat should have an interesting space of anti-
symmetric solutions), with lattice states within that lower-dimensional
subspace. That would explain shared eigenvalues such as (16.26): do the
two distinct Hénon orbits 1000 and 1110 both live in the lower-dimensional
antisymmetric subspace, and because of that share the eigenvalue r?
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See my post that includes (16.36).

My hunch based on the experience with Kuramoto-Sivashinsky antisym-
metric subspace being flow-invariant, see example 5.4 Desymmetrization
of Lorenz flow, ChaosBook example 30.1 Kuramoto-Sivashinsky antisym-
metric subspace and ChaosBook example 30.2 Cyclic subgroups of SO(2).

2021-08-11 Predrag I have -an experiment- sat 2φj = −sj , temporal cat style
in (20.353) and (3.48), just to see how we like that. The signs might be
wrong, please recheck.

This also connects to the Harper’s model (13.113), tight-binding model
(13.97), and one-dimensional Schrödinger operator (13.111), (13.60) and
(13.107), where λvn = −sj . “The real-valued potential sequence v =
(vn)n∈Z represents the environment that the particle is subjected to, with
the “coupling constant” λ > 0 is factored out for convenience.”

2021-08-11 Predrag Let’s get Hamiltonian Hénon system (2.30) even closer to
the temporal cat, by multiplying both sides by −2a and taking φj =
−2axj . The rescaled temporal Hénon is (2.24). Now the orbit Jacobian
matrix is of the desired temporal cat form (2.28), with sj = φj , and once
you have an expression for Hill determinant ‖J [Φ]‖ in terms of traces
TrJ k , i.e., the Dn invariant orbital sums for products of fields on con-
secutive lattice sites, they will be the same for the temporal cat and the
temporal Hénon.

Not only that, but we should be able to write (3.66) action S[Φ] such that
the derivative of the quartic term yields classical φ4 theory (3.62) on d-
dimensional lattice (3.36), with the Hill determinant of the same form
(2.28).

2021-08-11 Predrag It would be good to evaluate small Hill determinants both
in terms of traces (20.351), and on the Cn and Dn reciprocal lattices. Re-
ciprocal lattice is diagonalized, and eigenvectors are presumably explicit.

2021-08-11 Predrag If you use birdtracks, determinant is the full antisymmetrizer,
and time reversal is a permutation with all lines crossed. The contraction
with antisymmetrizer might simplify some calculations.

2021-08-11 Predrag I have a hunch why for Hénon only the orbital sum TrJ
matters. For TrJ 2 you can use the temporal Hénon recurrence (2.24) to
eliminate φ2

t in terms of terms linear in φt±1. The same, but for TrJ 3,
might apply to the φ4 theory φ3

t terms in (3.36).

2021-08-14 Predrag About ‘right’ and ‘left’. We have to distinguish the action
of the translation operator r on coordinates (lattice site label i in discretiz-
ing x→ xi):

rj is a counterclockwise rotation of a polygon by j vertices, or
right translation of a Z lattice by j sites (we follow Dihedral
group wiki).
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vs. its action on fields, i.e., functions φi = φ(xi), given by the Wigner defi-
nition of the effect of transformations on functions, ChaosBook eq. (25.2).
I hope our introduction of translations (??) is in agreement for the conven-
tion for fields.
Time evolution clearly increases the field’s site index, φt → φt+1, · · · , and
thus shift the lattice state to the left; if I sit at the origin, lattice site ‘0’, I
should be seeing φ0, then the one time-step r ‘later’ φ1, and so on.
We also have to make sure that the direction of shift ChaosBook eq. (14.12)
is consistent with our usage here.
Am I correct?

2021-08-14 Predrag Experimenting with lattice state plots of figure ?? see fig-
ure 20.64 and figure 20.65. I still find bar graph figure ?? the best.
If a Mathematica figure
siminos/figs/*.pdf
is getting into almost publishable shape, please save it also as a
siminos/figSrc/inkscape/*.svg.
Makes easier for me to fine-tune it for the publication.

2021-08-14 Predrag I hope figure 20.65 settles for once and all the ‘odd’ and
‘even’ reflections.

2021-08-17 Han I redid figure 20.65 in figure ?? using Mathematica, so the style
of the figure is similar to figure ??. The lattice states in figure ?? and
figure ?? are actual solutions of temporal cat with s = 3.

2021-08-17 Predrag Experimenting with colors in figure ?? (a) and figure ?? (b).
There is no need to change your Mathematica code, this is best done for
the publication version in Inkscape LaTeX labeled svg.

2021-05-11, 2021-08-05, 2021-08-22 Predrag zu Sam Spielen Sie es noch einmal,
bitte:
What I do not understand is the relation between the symmetry of a lat-
tice state (5.20) - (5.23), and the Hill determinant factorization of it. Am
I supposed to extend this list to include the antisymmetric lattice states
(5.26), (5.45)? Does each carry only the Hill determinant of the orbit Ja-
cobian matrix Det (J±) with the same symmetry as the corresponding
lattice state? If so, how do we get rid of the other Det (J±) in the factor-
ized Det (J )?
Can you plot the appropriate lattice states, for temporal cat, but prefer-
ably for temporal Hénon, with analytic formulas for Det (J±)?

2021-08-26 Han We already know how to count the number of periodic lattice
states for temporal cat:

Nn =

n−1∏
j=0

(
s− 2 cos

2πj

n

)
= 2Tn (s/2)− 2 = Λn + Λ−n − 2 , (20.362)
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(a) (b)

Figure 20.65: There are two classes (??) of lattice state reflections: even, across
a lattice site, and odd, across the mid-point between a pair of adjacent lattice
sites. (a) In example (??) even reflection σ exchanges (blue φj) ↔ (red φ−j)
while leaving the field φ0 at lattice site 0 fixed. (b) In example (??) odd σ1 = σr
swaps the ‘blues’ and the ‘reds’ by a lattice translation Φ → rΦ, followed by a
reflection σ. The result is a reflection across the midpoint of the [01] interval,
marked ‘|’. Horizontal: lattice sites j ∈ Z. Vertical: lattice site fields φj , labeled
by their values before the reflection.

11/27/2021 siminos/spatiotemp/chapter/blogHL.tex978 8289 (predrag–7373)



CHAPTER 20. HAN’S BLOG

where Λ = 1
2 (s+

√
(s− 2)(s+ 2)). For n = 2m− 1,

Nn,0 =
m−1∏
j=0

(
s− 2 cos

2πj

n

)
=
√

(Λn + Λ−n − 2) (s− 2) . (20.363)

For n = 2m,

Nn,0 =
m∏
j=0

(
s− 2 cos

2πj

n

)

Nn,1 =
m−1∏
j=0

(
s− 2 cos

2πj

n

)
, (20.364)

and

1

2
(Nn,0 +Nn,1) =

s+ 3

2

m−1∏
j=0

(
s− 2 cos

2πj

n

)
=
s+ 3

2

√
(Λn + Λ−n − 2) (s− 2)

(s+ 2)
.(20.365)

Note that:

√
Λn + Λ−n − 2 =

√
Λn (1− Λ−n)

2
= |Λn/2 − Λ−n/2| . (20.366)

Using this identity, the number of lattice states can be written as polyno-
mials: For n = 2m− 1:

Nn,0 =
√
s− 2

∣∣∣Λn/2 − Λ−n/2
∣∣∣

=

√
s− 2

Λ

∣∣Λm − Λ−m+1
∣∣ . (20.367)

For n = 2m:

1

2
(Nn,0 +Nn,1) =

s+ 3

2

√
s− 2

s+ 2

∣∣∣Λn/2 − Λ−n/2
∣∣∣

=
s+ 3

2

√
s− 2

s+ 2

∣∣Λm − Λ−m
∣∣ . (20.368)

Now we can compute the h(t) from (??)

h(t) =
∞∑
m=1

[
N2m−1,0 t

2m−1 + (N2m,0 +N2m,1)
t2m

2

]
=
√
s− 2

Λ1/2t

1− Λt2
−
√
s− 2

Λ−1/2t

1− Λ−1t2
(20.369)

+
s+ 3

2

√
s− 2

s+ 2

Λt2

1− Λt2
− s+ 3

2

√
s− 2

s+ 2

Λ−1t2

1− Λ−1t2
.
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Using (??) we have the "flip" part of the zeta function. Testing this zeta
function using (15.170), we have:

−t ∂
∂t

(ln e−h(t)) = t+ 6t2 + 12t3 + 36t4 + 55t5 + 144t6

+203t7 + 504t8 + 684t9 + 1650t10 + . . . ,(20.370)

which is in agreement with (15.170) and table 20.3.

2021-08-29, 2021-08-30 Predrag I have been struggling with antisymmetric lat-
tice states - see around eq. (5.46) - the Hill determinant that I got is wrong,
will remove it from your blog.

Antisymmetric lattice states do not exist. I sketched - by hand, not posted
here - the values of lattice state fields for the 6 temporal Hénon lattice
states of table 2.3 and figure 2.2 in the same format as figure ?? (b). They
are all nicely symmetric.

2021-08-30 Predrag I think I’m starting to understand Máo Zhǔxí Yǔlù. The 3
types of D∞ symmetric states Φ are -well- symmetric, and that means
that the number ∼ m of distinct fields that describe the corresponding
period-n Bravais cell is ∼ n/2. They satisfy non-periodic bc’s equations
such as (20.306).

The orbit Jacobian matrix J [Φ] is best understood by starting with the
period-n Bravais cell stability. That block-diagonalizes into eigenvectors
that point within the symmetry subspace of the same symmetry as the
lattice state, and the (antisymmetric) rest, that point out of it. That’s all as
it should be for a fixed point with a symmetry.

It is all breathtakingly simple on the reciprocal lattice. Period-n Bravais
cell maps onto a regular n-gon in the reciprocal lattice, with the usual
Dn symmetry axes. Time reversal amounts to complex conjugation, and
the symmetric solutions sit on the symmetry axes, which are also the
boundaries of the fundamental domain. Lattice shift rj maps out the G-
orbit by running on circles, and orbits visit the 1/2n wedge only once, so
the points in the fundamental domain represent an orbit each.

2021-08-30 Predrag Back to fuzzy thinking...

Q. can one construct invariant, lower dimensional subspace like (20.306),
such that all ‘dynamics’ is restricted to it? In reciprocal space, only the
orbits that sit on symmetry axes? What I call a ‘flow-invariant subspace.”

That would be the famed ‘square root’ or ‘golden’ temporal Hénon.

2021-09-03 Predrag Slicing the reciprocal lattice; stretching out the pizza slice into a
full pizza per each Fourier mode.
Inspect figure ??, 20.35, 20.52, 20.53, 20.58, 20.59, 20.60, · · · : for Cn , wavenum-
bers k > 1 they have k-fold symmetry; for Dn , the 2k-fold symmetry.
Why? If you plot all period-n lattice states at one go, you plot all their
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group orbits at one go. In kth mode, they rotate k times faster than the
k = 1 irrep. It will amount to a Bernoulli map with slope k per each
Fourier mode, with phase written as an integer (integer part of the phase
kθk in units of 2π) + reminder representing angle across the fundamen-
tal pizza slice, scaled to 2π for Cn , and to π for Dn . There each orbit is
represented by a single reciprocal lattice state.

That is illustrated by the C5 figure 20.52 (c) and D5 figure 20.53 (c) k =
0, 1, 2 fundamental domains [−2π/(2nk), 2π/(2nk)). Multiplied by n k
they fill out the whole (semi)circle for all n.

2021-09-06 Han Bloch theorem is not very useful to us. Let the (15.112) be the
orbit Jacobian matrix that acts on the infinite lattice. The orbit Jacobian
matrix J commute with the translation operator r and the reflection op-
erator σ, so it has the D∞ symmetry. The translation group of D∞ is
described by a Bravais lattice, which is the integer lattice. So the recip-
rocal lattice of this Bravais lattice is spanned by the basis vector b = 2π.
The eigenstates of the orbit Jacobian matrix have the form:

ψk(z) = eikzu(z) ,

where z is the coordinate on the 1-dimensional direct temporal space,
u(z) is a periodic function with period 1 (the periodicity of u(z) is given
by the integer lattice), and k is a wave vector in the first Brillouin zone
k ∈ (−π, π]. For our problem the value of the function only exist on the
integer lattice site, so function u(z) with period 1 can be seen as a con-
stant. The eigenstates of the orbit Jacobian matrix can always be written
as:

ψk(z) = eikz

with eigenvalue Ek = 2 cos k − s, which does not depend on the period
of the eigenstate. Known that the wave vector k is in the first Brillouin
zone, we can plot the ’eigenvalue band’ of the orbit Jacobian matrix, as
shown in figure 20.66.

After we have the ’eigenvalue band’, we can find eigenstates that sat-
isfy periodic boundary condition. If the period of the lattice state is n,
the wave vector can only exist on a finer lattice in the reciprocal space,
the lattice spanned by 2π/n. Then only finite amount of wave vectors
can be used as wave vectors of these periodic eigenstates. For example,
in figure 20.66 (b) the reciprocal lattice sites of the period 3 lattice states
are labeled by red dashed lines. There are only 3 reciprocal lattice sites
in the first Brillouin zone. So we find 3 eigenstates, with wave vectors
k = −2π/3, 0 and 2π/3, and eigenvalues −1 − s, 2 − s and −1 − s. In
figure 20.66 (c) the reciprocal lattice sites of the period 4 lattice states are
labeled by red dashed lines. There are only 4 reciprocal lattice sites in the
first Brillouin zone. We find 4 eigenstates, with wave vectors k = −π/2,
0, π/2 and π, and eigenvalues−s, 2− s, −s and−2− s. Note that k = −π
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-π 0 π
k

s-2

s

s+2
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(a)
-π 0 π-2π/3 2π/3
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s+2
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(b)
-π 0 π-π/2 π/2

k

s-2

s

s+2
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(c)

Figure 20.66: (a) The eigenvalue Ek of the orbit Jacobian matrix on the infinite
lattice as a function of the wave vector k in the first Brillouin zone. The orbit
Jacobian matrix has the reflection symmetry so the eigenvalue is also invariant
under the reflection k → −k. (b) For period 3 lattice states, the wave vectors
of the eigenstates exist on the reciprocal lattice spanned by 2π/3. These lattice
sites are labeled by the red dashed lines. There are only 3 period 3 eigenstates,
with eigenvalues −1 − s, 2 − s and −1 − s. (c) For period 4 lattice states, the
wave vectors of the eigenstates exist on the reciprocal lattice spanned by π/2.
These lattice sites are labeled by the red dashed lines. There are only 4 period
4 eigenstates, with eigenvalues −s, 2− s, −s and −2− s. k = π and k = −π are
different by a reciprocal lattice translation, so they are a same wave vector and
should be only counted once.

-π 0 π-2π/3 2π/3
k

s-2

s

s+2

Ek

(a)
-π 0 π-π/2 π/2

k

s-2

s

s+2

Ek

(b)

Figure 20.67: (Removed from LC21) The temporal cat infinite lattice orbit
Jacobian matrix spectrum (??) plotted in blue in the first Brillouin zone, as a
function of the wavenumber k. As the system is time-reflection invariant, the
spectrum is invariant under the k → −k reflection. A period-n Bravais lattice
spectrum consist of n discrete points on this spectrum. (a) Period-3 reciprocal
lattice points k = (−2π/3, 0, 2π/3) eigenvalues are λk = (s + 1, s − 2, s + 1).
(b) Period-4 reciprocal lattice points k = (−π/2, 0, π/2, π) eigenvalues are λk =
(s, s− 2, s, s+ 2). There are only 4 reciprocal lattice states, as k = π and k = −π
differ by a reciprocal lattice translation, and should be counted only once.
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-π/2 π/2-π/3 π/3
k

-6

-2

2

Ek

(a)

-π/2 π/2-π/4 π/4
k

-6

-2

2

Ek

(b)

Figure 20.68: (Removed from LC21) The orbit Jacobian matrix spectrum (??)
of the a = 6 temporal Hénon infinite lattice tiled by period-2 prime lattice state
plotted in blue in the first Brillouin zone, as a function of the wavenumber
k. As the system is time-reflection invariant, the spectrum is invariant under
the k → −k reflection. A m-th repeat Bravais lattice spectrum consist of m
discrete points on this spectrum. (a) 3rd repeat Bravais reciprocal lattice points
k = (−π/3, 0, π/3) eigenvalues are λk = (−2 ±

√
13,−2 ± 4,−2 ±

√
13). (b)

4th repeat Bravais reciprocal lattice points k = (−π/4, 0, π/4, π/2) eigenvalues
are λk = (−2±

√
14,−2± 4,−2±

√
14,−2± 2

√
3). There are only 4 reciprocal

lattice states, as k = π and k = −π differ by a reciprocal lattice translation, and
should be counted only once.

and k = π are a same wave vector as they are different by a reciprocal
lattice translation.

The point group symmetry of the orbit Jacobian matrix is also the sym-
metry of the ’eigenvalue band’ in the reciprocal space. For the temporal
cat lattice, we only need to know the eigenstates with wave vectors k ≥ 0
as other eigenstates can be found by a reflection, and the eigenvalues are
invariant under the reflection. For the 2-dimensional spatiotemporal cat
lattice, as shown in figure 20.69, we only need eigenstates with wave vec-
tors in 1/8 of the first Brillouin zone, the rest of the eigenstates can be
found by reflections and rotations from the D4 group.

The function Ek in the figure 20.66 is Ek = 2 cos(k)− s. We can compute:

exp

∫ π

−π
ln |Ek|dk = exp(2π ln Λ) = Λ2π ,

where Λ is the expanding eigenvalue of the cat map. This result is not
surprising, because by computing the exponential of trace of the loga-
rithm I’m hoping to find the determinant of the orbit Jacobian matrix on
the infinite lattice. And the determinant of this orbit Jacobian matrix is
probably the weight of a infinitely long lattice state which should con-
verge to Λn as n → ∞. The 2π is probably introduced by the integral
which can be fixed. But I’m hoping to find a formula that I can compute
the determinant or trace of the orbit Jacobian matrix on infinite lattice
times variable z plus some other operators and then retrieve, hopefully,
the contribution to the dynamical zeta function from a single prime orbit.
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Figure 20.69: The eigenvalue Ek of the orbit Jacobian matrix on the infinite
spatiotemporal lattice as a function of the wave vector k. The point group
symmetry of the orbit Jacobian matrix is D4 so the eigenvalue function also has
the D4 symmetry.

2021-09-10 Han I do not have the Hamiltonian, forward-in-time Jacobian ma-
trix Jt for an orbit with time reflection symmetry.

Let f(φn−1, φn) = (φn, φn+1) be the map forward in time. For cat map
we have:

f(φn−1, φn) = (φn,−φn−1 + sφn) mod 1 . (20.371)

And let map t(φn−1, φn) = (φn, φn−1) be the time reflection in the state
space.

The Hamiltonian forward in time orbit Jacobian matrix is the Jacobian
matrix of (φ0, φ1)− fn(φ0, φ1), if the time reversal symmetry is not taken
into account. With the time reversal symmetry, a periodic point needs to
satisfy a different set of conditions. Consider period-7 lattice state

φ0|φ1φ2φ3φ4φ3φ2φ1| . (20.372)

2021-09-11 Predrag I do not like the interloper φ0 in (20.372); notation block
means infinite repeat of “block”. At −∞ you stick in φ0; cannot do that.
Also, please follow our convention (??) for odd period orbits:

φ0φ1φ2φ3|φ3φ2φ1 . (20.373)

2021-09-10 Han If the period-7 lattice state is φ0|φ1φ2φ3φ4φ3φ2φ1| , the two
boundaries need to satisfy

t(φ0, φ1) = (φ0, φ1) , (20.374)

and

t ◦ f(φ3, φ4) = (φ3, φ4) . (20.375)
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So now we have 3 conditions that need to be satisfied:

(φ0, φ1)− t(φ0, φ1) = 0 ,

(φ3, φ4)− t ◦ f(φ3, φ4) = 0 ,

(φ3, φ4)− f3(φ0, φ1) = 0 . (20.376)

If we compute the determinant of the Jacobian matrix of the first and sec-
ond conditions, the results are 0, which means that there are a continuous
set of points in the state space that satisfy these two conditions. I have
tried to use the first two conditions to write φ1 is a function of φ0, and
φ4 and a function of φ3, then compute the determinant of the Jacobian
matrix:

J̃ =
∂[(φ3, φ4(φ3))− f3(φ0, φ1(φ0))]

∂(φ0, φ3)
, (20.377)

but the result is apparently wrong (not an integer for cat map). So we
cannot perturb any two field values and get the correct Hill determinant.
Let F (φ0, φ1, φ3, φ4) be a function with 4 components. The first two com-
ponents are given by (φ3, φ4) − f3(φ0, φ1). The third and fourth compo-
nents are φ0 − φ1 and 2φ3 − sφ4 (for cat map), which are equal to 0 if the
first two conditions in (20.376) are satisfied. Then the Hill determinant is:

Det (J̃ ) = −s4 + s3 + 4s2 − 3s− 2

= −µ2
(
µ6 + 7µ4 + 14µ2 + 7

)
, (20.378)

which is equal to -76 if s = 3, µ = 1, in agreement with table 20.3. I
wonder if the coefficients 7 and 14 have something to do with the lattice
state period being 7.

2021-09-11 Predrag I get Det (J̃ ) = −29, which is -up to the sign- in agreement
with table 20.3.

2021-09-11 Predrag We really have to rethink the definition of orbit Jacobian
matrices to avoid this pesky minus signs for odd period Hill determi-
nants.

2021-09-11 Predrag I was expecting vaguely something like

φ0φ1φ2φ3|φ3φ2φ1

J7(φ0) =
√
J0J

>
1 J
>
2 J
>
3 J3J2J1

√
J0

= σJ̃p̃ σ1J̃p̃

Det (J̃p̃) = det (1− J̃p̃) , (20.379)

where Jt = J(φt) is the 1-time-step Jacobian matrix evaluated on lattice
site φt; see example 2.4 for what these 2-dimensional Jacobian matrices
products look like.
The square roots are in the spirit of the boundary orbit treatment in Chaos-
Book Example 25.9. Reflection symmetric 1-d maps.
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2021-09-12 Predrag The above square roots are suspect, they come from my in-
sistence on the reflection border being "shared" by the adjacent tiles. The
correct formulation is probably the inclusion-exclusion principle (20.270),
(1.91).

2021-09-14 Predrag Some matrix square roots around eq. (2.94). See also the
discussion around eq. (20.297).

2021-09-14 Predrag Checked that the orbit Jacobian matrix factorization (5.53),
metal temporal lattice condition (5.54) works also for the orbit Φ depen-
dent case (??).
That presumably takes care of the no reflection symmetry case figure ??.
Symmetric cases (??)-(??) still require boundary conditions treatment.

As to the time-step case (20.379), I would prefer 1/2 time step J = J̃>J̃-
type factorization to taking a square. It’s the right form for time-reversal
symmetry, I think.

2021-09-24 Predrag to Han Looking at sect. ?? Cyclic groups, I think there is
more to get out of the s = 2 Bernoulli example.
On the reciprocal lattice only symmetry subspace is the origin (I think);
you can define the fundamental domain as any wedge of angular width
2π/n (I think) but thinking ahead to the Dn case, it’s natural to take real
axis as the border included in the fundamental domain, and its 2π/n ro-
tation as the other, open set border, not a part of the fundamental domain.
For a generic dynamical system there is no time reversal symmetry, so no
lattice state lies on the real axis. For Bernoulli you can probably show it,
as you have all lattice states in the analytic form (1.83).
Here is my question:
We know all ChaosBook binary-labelled Bernoulli orbits and their Chaos-
Book numbers for s = 2, 3, 4. My current understanding that each orbit
visits the fundamental domain only once, with all irrep points rotated
into the fundamental domain, different rotation for each wavenumber k.
Is that correct?

2021-10-18 Predrag This one, also available online, has “Burnside" in their in-
dex: Tom Judson’s online Abstract Algebra: Theory and Applications.
Obviously, I’ve fallen into a major rabbit hole, better stop now:)

2021-10-31 Predrag to Han I have mentioned that you have to derive trace for-
mula / spectral determinant only for a single unstable lattice state. Once
you have that, you simply put the infinity of them together. That is ex-
plained in ChaosBook Appendix A39 Semiclassical quantization, with cor-
rections, see ChaosBook eq. (39.11).
You would do Vattay a favor if you drew ChaosBook Figure A39.1, he
was too excited with the implications of this chapter to actually do him-
self such a lowly thing.
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2021-11-18 Predrag to Han Have a look at ChaosBook Append. A33 Statisti-
cal mechanics recycled. Might be not useful for what you are thinking about
now, but the original intention was along the lines we are exploring now:
connecting dynamics approaches to the traditional statistical mechanics.
Ronnie also wrote a series of articles on this approach [39–44], and there
might be more.

2021-11-16 Han In Lind [34] and Kim et al. [31] the maps of a dynamical system
are related to group operations. For a system with time reversal symme-
try, there are two maps. f : M → M is the map forward in time and
t :M→M is the flip in the state space. These two maps satisfy:

t ◦ t = 1 , t ◦ f ◦ t = f−1 . (20.380)

The kernels of the Perron-Frobenius operators of these two maps are

Lf (x, y) = δ(x− f(y)) , Lt(x, y) = δ(x− t(y)) . (20.381)

The Perron-Frobenius operators satisfy the same relation as the group
operation:

(Lt ◦ Lf ◦ Lt ρ) (x) =

∫
M
dydzdw δ(x− t(y))δ(y − f(z))δ(z − t(w))ρ(w)

=

∫
M
dzdw δ(x− t ◦ f(z))δ(z − t(w))ρ(w)

=

∫
M
dw δ(x− t ◦ f ◦ t(w))ρ(w)

=

∫
M
dw δ(x− f−1(w))ρ(w)

=
(
Lf−1 ρ

)
(x) (20.382)

(Lt ◦ Lt ρ) (x) =

∫
M
dydz δ(x− t(y))δ(y − t(z))ρ(z)

=

∫
M
dz δ(x− z)ρ(z)

= ρ(x) . (20.383)

So we have:

Lt ◦ Lf ◦ Lt = Lf−1 , Lt ◦ Lt = 1 . (20.384)

So the Perron-Frobenius operators are linear representations of the D∞
group. Then the leading eigenvalue of Lf is 1, which is incorrect because
it implies that the system is bounded.

2021-10-29 Han A lattice state is a set of lattice site field values Φ = {φz} that
satisfies the defining equation at every lattice site. The defining equation
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can be rewritten as a fixed point condition F [Φ] = 0. The fixed point
condition satisfied by a periodic lattice state with period n is Fn [Φn ] = 0,
where Fn [Φn ] and Φn are n-dimensional vectors.

The weight of lattice states are computed from:

∫
δ(Fn [Φn ])eβA(Φ)dΦn =

∑
{Φi:Fn [Φi]=0}

eβA(Φi)

|detJi|
(20.385)

where

Ji =
∂Fn [Φi]

∂Φi

is the orbit Jacobian matrix. From the Hill’s formula we know that this is
equal to the trace of the time evolution operator:

trLn =

∫
δ(φ− fn(φ))eβA(φ)dφ =

∑
φi∈Fixfn

eβAi

|det (1−Mn(φi))|
.(20.386)

2021-10-29 Han The expectation value of an observable can be computed from
the expectation value of the time evolution operator:

〈eβA〉 =
1

|M|

∫
M
dx

∫
M
dy δ(y − f t(x))eβA =

1

|M|〈L
t〉 . (20.387)

Set β = 0. The time evolution operator acts on a density distribution
function as:

[Lnψ] (φn)|ψ(φ0)=1 =

∫
M
dφ0 δ(φn − fn(φ0))

=

∫
M
dφn−1dφn−2 . . . dφ2dφ1dφ0

δ(φn − f(φn−1))δ(φn−1 − f(φn−1))

. . . δ(φ2 − f(φ1))δ(φ1 − f(φ0)) . (20.388)

Let Φ be the lattice state:

Φ =



φ0

φ1

φ2

...
φn−2

φn−1


. (20.389)
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And function F be:

F (Φ, φn) =



φ1

φ2

φ3

...
φn−1

φn


−



f(φ0)
f(φ1)
f(φ2)

...
f(φn−2)
f(φn−1)


. (20.390)

The product of delta function is a delta function of function F :

n−1∏
i=0

δ(φi+1 − f(φi)) = δ(F (Φ, φn)) . (20.391)

And the time evolution operator can be rewritten as:

[Lnψ] (φn)|ψ(φ0)=1 =

∫
dΦ δ(F (Φ, φn)) . (20.392)

The trace of the time evolution operator is:

trLn =

∫
dφndφ0 δ(φn − φ0)Ln(φn , φ0)

=

∫
dΦ δ(F (Φ, φ0)) . (20.393)

Let

F (φ0, φ1, . . . , φn−1, φ0) = Fp(φ0, φ1, . . . , φn−1) = Fp(Φ) . (20.394)

Fp(Φ) = 0 is the fixed point condition of the lattice state. Compute the
trace in a small neighborhood around a fix point φj :∫

Mj

dφ δ(φ− fn(φ)) =

∫
MΦj

dΦ δ(F (Φ))

1

|det ( 11− J(φj))|
=

1

|DetJj |
. (20.395)

Jj =
∂F (Φj)

∂Φj
, (20.396)

is the Jacobian matrix of function F (Φ) at Φj , which is a periodic lattice
state that starts with φj .

In the previous example, the state φ generally is a vector. So this relation
(Hill’s formula) applies to maps with any dimension. If there exists a
multiple points recurrence relation, the orbit Jacobian matrix can be writ-
ten in a more compact way.
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Consider a map with a 3-point recurrence relation. Let φ̂i = (φi, φi+1).
The map in the 2-dimensional state space has the form:

φ̂i = f̂(φ̂i−1)

(φi, φi+1) = (φi, f(φi−1, φi)) . (20.397)

The the time evolution operator satisfies:

[Lnψ] (φ̂n)
∣∣∣
ψ(φ̂0)=1

=

∫
M
dφ̂0 δ(φ̂n − f̂n(φ̂0))

=

∫
M
dφ0dφ1 δ(φ̂n − f̂n(φ̂0))

=

∫
M
dφ′ndφ

′
n−1dφn−1dφ

′
n−2 . . . dφ2dφ

′
1dφ1dφ0

δ(φn − φ′n)δ(φn+1 − f(φ′n , φ
′
n−1))

δ(φ′n−1 − φn−1)δ(φ′n − f(φ′n−2, φn−1))

. . .

δ(φ′2 − φ2)δ(φ3 − f(φ1, φ2))

δ(φ′1 − φ1)δ(φ2 − f(φ0, φ1))

=

(
n−1∏
i=0

∫
M
dφi

)(
n−1∏
i=0

δ(φi+2 − f(φi, φi+1))

)
.

(20.398)

Let Φ be the lattice state:

Φ =



φ0

φ1

φ2

...
φn−2

φn−1


. (20.399)

And function F be:

F (Φ, φn , φn+1) =



φ2

φ3

φ4

...
φn
φn+1


−



f(φ0, φ1)
f(φ1, φ2)
f(φ2, φ3)

...
f(φn−2, φn−1)
f(φn−1, φn)


. (20.400)

[Lnψ] (φ̂n)
∣∣∣
ψ(φ̂0)=1

=

∫
dΦ δ(F (Φ, φn , φn+1)) . (20.401)
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The trace of the time evolution operator is:

trLn =

∫
dφ̂ndφ̂0δ(φ̂n − φ̂0)Ln(φ̂n , φ̂0)

=

∫
dφn+1dφn . . . dφ1dφ0δ(F (φ0, φ1, . . . , φn , φn+1))δ(φ0 − φn)δ(φ1 − φn+1)

=

∫
dΦ δ(F (Φ, φ0, φ1)) . (20.402)

Let

Fp(Φ) = F (φ0, φ1, . . . , φn−2, φn−1, φ0, φ1) . (20.403)

Fp(Φ) = 0 is the fixed point condition. Compute the trace in a small
neighborhood around a fix point φ̂j :∫

Mj

dφ̂ δ(φ̂− f̂n(φ̂)) =

∫
MΦj

dΦ δ(F (Φ))

1∣∣∣det ( 11− J(φ̂j))
∣∣∣ =

1

|DetJj |
, (20.404)

where

Jj =
∂F (Φj)

∂Φj
, (20.405)

is jacobian matrix of F (Φ) at Φj , a periodic lattice state that starts with
φ̂j . The Jj is a [n × n] orbit Jacobian matrix.

2022-01-02 Han Lind zeta function was introduced for actions on high-dimen-
sional lattices (Zd-actions). I think what we do not have is a dynamical
zeta function that relates the expectation values of observables to lattice
states with point group symmetry, or higher-dimensional lattice states.

2022-01-24 Han Eigenvalue spectrum of the orbit Jacobian matrix of a = 6

Henon period-2 prime lattice state (−1−
√

3
6 , −1+

√
3

6 ).

The orbit Jacobian matrix on the period-2 lattice is:

J =

(
s0 −2
−2 s1

)
. (20.406)

The two eigenvalues of this matrix are −6 and 2. The eigenvectors of the
linear operator J on infinite lattice are:

ψk,t = eiktuk,t . (20.407)

uk,t is periodic with period-2, so

uk,t = u
k,t mod 2

.
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-π/2 π/2
k

-6

2

Ek

Figure 20.70: The eigenvalue Ek of the period-2 a = 6 Hénon’s orbit Jacobian
matrix on the infinite lattice as a function of the wave vector k.

The periodic function uk,t is not the eigenvector of the [2 × 2] orbit Jaco-
bian matrix, unless k = 0. To find the eigenvaluesEk, solve the equations:

(Jψk)0 = −e−ikuk,1 + s0uk,0 − eikuk,1

= −2 cos(k)uk,1 + s0uk,0 = Ekuk,0

(Jψk)1 = −uk,0 + s1e
ikuk,1 − e2ikuk,0

= eik(−2 cos(k)uk,0 + s1uk,1) = Eke
ikuk,1 . (20.408)

Solve for the eigenvector uk,0 and uk,1, and the eigenvalue Ek, we find
two eigenvalues from two bands:

Ek,1 = −2 + 2
√

3 + cos2(k)

Ek,2 = −2− 2
√

3 + cos2(k) , (20.409)

where, for whatever that is worth,
3 + cos2(k) = 22 − (1− cos2(k)) = 22 − sin2(k) = (2− sin(k))(2 + sin(k)) .
See figure 20.70.

2022-01-24 Predrag 2 Han This is great, but you can do even better.

In this case, probably equally easy to solve it for a stretching parameter,
without setting it to 6. You probably want to use orbital sum (2.33) as the
parameter, rather than a.

Now, you have a great opportunity to illustrate in LC21 what happens
for a symmetric lattice state. In any case, you should combine the two
figures 12 (a) and 12 (b) into one, by marking the period-3 and period-4
reciprocal lattice eigenvalues by circles and diamonds, and make your
current figure 20.70 the new 12 (b).

Period-2 lattice state (16.19) is D1 symmetric (remember table 2.3, (16.21),
etc.). Like (16.38), if the 2-cycle would be of type (eo)

10 : φ1 |φ1| , (20.410)
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it would reduce to the [1× 1] prime orbit Jacobian matrix J .

But, as you had mentioned earlier, the symmetry type is (ee) -two un-
equal heights φ0 φ1 yellow bars in our figures (where in permutation
representation the even reflection σ = 1?)- then the prime J is [2 × 2],
as you and Sidney get by explicit calculation. You are surely right, as the
Hill determinant (15.175) is not a square of a 1-dimensional Hill determi-
nant.

2022-01-24 Predrag 2 The Gang Is figure 20.71 easier to grasp than LC21 fig-
ure 8 (a)?

2022-03-08 Predrag Have a quick look (again?) at (13.5), (13.6), (13.19), and
(13.24), just in case it is useful in writing up the Hill’s formula for the
relative-periodic [L×T]S case, or in case we should refer to them.

For possible use:

A definition of a d-dimensional discrete torus (13.32).

In sect. 13.2 the definition (13.88) of the Gaussian model action is identical
in form to the µ2 = 0, Laplacian part of our (3.13). Temporal cat, however,
is nonlinear because of the restriction of φz to the unit interval.

2020-03-02 Predrag It’s possible that (3.66) is a better way to think about φ4

theory.

2020-03-12 Predrag Indeed, (3.66) is a better way to think about this. Xuanqi’s
intuition agrees with what had been derived in the literature [LusWei87,
Vierhaus10, Wolff14] 35-40 years ago. Yes, reading literature can be a real
time saver, and it is really easy when somebody else does the literature
search for you. Anyway:

I believe we have the final formulation of φ4 theory. Please check care-
fully sect. 3.1.1 To return back to LC21, and alert Han and me if there is
something that should be corrected or improved. If everybody agrees,
from now on all φ4 calculation follow the conventions of that section.

No one ever promised us A Rose Garden :)
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[18] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos:
Classical and Quantum (Niels Bohr Inst., Copenhagen, 2022).
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