herding cats a chaotic field theory

Predrag Cvitanović and Han Liang

ChaosBook.org/overheads/spatiotemporal
\rightarrow Chaotic field theory slides
$\rightarrow Q M^{3}$ video channel
" $Q M^{3}$ Quantum Matter meets Maths"
Lisbon

December 6, 2021

Q. what is a chaotic field theory?

A. it is a field theory

field configuration Φ probability

$$
p(\Phi)=\frac{1}{Z} e^{-S[\Phi]}, \quad Z=Z[0]
$$

partition function $=$ sum over configurations

$$
Z[M]=\int[d \phi] e^{-S[\phi]+\Phi \cdot M}, \quad[d \phi]=\prod_{z}^{\mathcal{L}} \frac{d \phi_{z}}{\sqrt{2 \pi}}
$$

example : Euclidean ϕ^{4} theory action

$$
S[\Phi]=\int d x^{d}\left\{\frac{1}{2} \sum_{i=1}^{d}\left(\partial_{\mu} \phi(x)\right)^{2}+\frac{\mu^{2}}{2} \phi(x)^{2}+\frac{g}{4!} \phi(x)^{4}\right\}
$$

Q. why a "chaotic" field theory?

turbulence!
pipe flow close to onset of turbulence ${ }^{1}$

we have a detailed theory of small turbulent fluid cells
can we can we construct the infinite pipe by coupling small turbulent cells ?
what would that theory look like ?

[^0]
the goal

build a chaotic field theory
 from
 the simplest chaotic blocks

using

- time invariance
- space invariance
of the defining partial differential equations

Dreams of Grand Schemes: solve
Navier-Stokes

$$
\rho \frac{\partial u_{i}}{\partial t}+\rho u_{j} \frac{\partial u_{i}}{\partial x_{j}}=\rho X_{i}-\frac{\partial p}{\partial x_{i}}+\mu \nabla^{2} u_{i}
$$

Einstein

$$
\begin{aligned}
& R_{i k}-\frac{1}{2} g_{i k} R=\frac{8 \pi k}{c^{1}} T_{i k} \\
& R_{k l m}^{i}=\frac{\partial \Gamma_{k m}^{\prime}}{\partial x^{\prime}}-\frac{\partial \Gamma_{k m}^{k}}{\partial x^{m}}+\Gamma_{n 2}^{i} \Gamma_{k m}^{n}-\Gamma_{n m}^{i} \Gamma_{k l^{\prime c}}^{n}
\end{aligned}
$$

Yang-Mills

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{2} F_{\alpha}^{\mu \nu} \\
& F_{\mu \nu}^{2}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{2}+g C_{2 b c} A_{\mu}^{b} A_{\nu}^{c}
\end{aligned}
$$

QFT path integrals : semi-classical WKB quantization
a fractal set of saddles
TURBULENT Q.F.T 2
a local unstable extremum

Q. what is a chaotic field theory?

A. say it three times
 coin flip

serves here as an introduction to the spatiotemporal cat ${ }^{a}$
which is the simplest example of spatiotemporally chaotic field theory ${ }^{b}$

[^1]
take-home :

harmonic field theory

tight-binding model (Helmholtz)
chaotic field theory

Euclidean Klein-Gordon (damped Poisson)

take-home :

harmonic field theory

oscillatory eigenmodes
chaotic field theory

hyperbolic instabilities

the very short answer : POT

if you win: I teach you how
(for details, see ChaosBook.org)

Mephistopheles knocks at Faust's door and says, "Du mußt es dreimal sagen!"
"You have to say it three times"

- Johann Wolfgang von Goethe Faust I - Studierzimmer 2. Teil
(what this is about
(2) coin toss
(3) temporal cat
(C) spatiotemporal cat
(3) bye bye, dynamics
(1) coin toss, if you are stuck in XVIII century
time-evolution formulation

fair coin toss

Bernoulli map

$$
\phi_{t+1}=\left\{\begin{array}{l}
2 \phi_{t} \\
2 \phi_{t}(\bmod 1)
\end{array}\right.
$$

$\Rightarrow \quad$ fixed point $\overline{0}, 2$-cycle $\overline{01}, \ldots$
a coin toss
the essence of deterministic chaos

what is $(\bmod 1) ?$

map with integer-valued 'stretching' parameter $s \geq 2$:

$$
x_{t+1}=s x_{t}
$$

$(\bmod 1):$ subtract the integer part $m_{t}=\left\lfloor s x_{t}\right\rfloor$ so fractional part ϕ_{t+1} stays in the unit interval $[0,1)$

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t}, \quad \phi_{t} \in \mathcal{M}_{m_{t}}
$$

m_{t} takes values in the s-letter alphabet

$$
m \in \mathcal{A}=\{0,1,2, \cdots, s-1\}
$$

a fair dice throw

slope 6 Bernoulli map

$\phi_{t+1}=6 \phi_{t}-m_{t}, \quad \phi_{t} \in \mathcal{M}_{m_{t}}$
6-letter alphabet
$m_{t} \in \mathcal{A}=\{0,1,2, \cdots, 5\}$

6 subintervals $\left\{\mathcal{M}_{0}, \mathcal{M}_{1}, \cdots, \mathcal{M}_{5}\right\}$

what is chaos?

a fair dice throw

6 subintervals $\left\{\mathcal{M}_{m_{t}}\right\}, 6^{2}$ subintervals $\left\{\mathcal{M}_{m_{1} m_{2}}\right\}, \cdots$

each subinterval contains a periodic point, labeled by $\mathrm{M}=m_{1} m_{2} \cdots m_{n}$
$N_{n}=6^{n}-1$ unstable orbits

definition : chaos is

positive Lyapunov $(\ln s)$ - positive entropy $\left(\frac{1}{n} \ln N_{n}\right)$

definition : chaos is
 positive Lyapunov ($\ln s)$ - positive entropy $\left(\frac{1}{n} \ln N_{n}\right)$

- Lyapunov : how fast is local escape?
- entropy : how many ways of getting back?
\Rightarrow ergodicity
the precise sense in which dice throw is an example of deterministic chaos
(2) field theorist's chaos

lattice formulation

lattice Bernoulli

recast the time-evolution Bernoulli map

$$
\phi_{t+1}=\boldsymbol{s} \phi_{t}-m_{t}
$$

as 1 -step difference equation on the temporal lattice

$$
-\phi_{t+1}+\boldsymbol{s} \phi_{t}=m_{t}, \quad \phi_{t} \in[0,1)
$$

field ϕ_{t}, source m_{t}
on each site t of a 1-dimensional lattice $t \in \mathbb{Z}$
write an n-sites lattice segment as the field configuration and the symbol block

$$
\Phi=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

' M ' for 'marching orders' : come here, then go there, ...

scalar field theory on 1-dimensional lattice

write a periodic field over n-sites Bravais cell as the field configuration and the symbol block (sources)

$$
\Phi=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

' M ' for 'marching orders' : come here, then go there, ...

think globally, act locally

Bernoulli condition at every lattice site t, local in time

$$
-\phi_{t+1}+\boldsymbol{s} \phi_{t}=m_{t}
$$

is enforced by the global equation

$$
(-r+s 1) \Phi=\mathrm{M}
$$

[$n \times n$] shift matrix

$$
r j k=\delta_{j+1, k}, \quad r=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & & \ddots & \\
& & & 0 & 1 \\
1 & & & & 0
\end{array}\right)
$$

compares the neighbors

think globally, act locally

solving the lattice Bernoulli system

$$
\mathcal{J} \Phi=\mathrm{M}
$$

$[n \times n]$ Hill matrix $\mathcal{J}=-r+s 1$,
is a search for zeros of the function

$$
F[\Phi]=\mathcal{J} \Phi-\mathrm{M}=0
$$

the entire global lattice state Φ_{M} is now a single fixed point $\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$

orbit stability

orbit Jacobian matrix

solving a nonlinear

$$
F[\Phi]=0 \quad \text { fixed point condition }
$$

with Newton method requires evaluation of the $[n \times n]$
orbit Jacobian matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\Phi]_{i}}{\delta \phi_{j}}
$$

what does this global orbit Jacobian matrix do?
© fundamental fact!
(2) global stability of lattice state Φ, perturbed everywhere
fundamental fact

(1) fundamental fact

to satisfy the fixed point condition

$$
\mathcal{J} \Phi-\mathrm{M}=0
$$

the orbit Jacobian matrix \mathcal{J}
() stretches the unit hyper-cube $\Phi \in[0,1)^{n}$ into the n-dimensional fundamental parallelepiped
(2) maps each periodic point $\Phi_{M} \Rightarrow$ integer lattice \mathbb{Z}^{n} point
(3) then translate by integers $\mathrm{M} \Rightarrow$ into the origin
hence $N_{n}=$ total \sharp solutions $=\sharp$ integer lattice points within the fundamental parallelepiped
the fundamental fact ${ }^{2}$: Hill determinant counts solutions

$$
N_{n}=\operatorname{Det} \mathcal{J}
$$

$\#$ integer points in fundamental parallelepiped $=$ its volume

[^2]
example : fundamental parallelepiped for $n=2$

 orbit Jacobian matrix for $s=2$;unit square basis vectors ; their images :

$$
\mathcal{J}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) ; \quad \Phi_{B}=\binom{1}{0} \rightarrow \Phi_{B^{\prime}}=\mathcal{J} \Phi_{B}=\binom{2}{-1} \cdots,
$$

Bernoulli periodic points of period 2

$N_{2}=3$
fixed point Φ_{00}
2 -cycle Φ_{01}, Φ_{10}
square $[O B C D] \Rightarrow \mathcal{J} \Rightarrow$ fundamental parallelepiped $\left[O B^{\prime} C^{\prime} D^{\prime}\right]$

fundamental fact for any n

an $n=3$ example

\mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube $\Phi \in[0,1)^{3}$
$n>3$ cannot visualize
a periodic point \Rightarrow integer lattice point $: \bullet$ on a face, \bullet in the interior

orbit stability

orbit Jacobian matrix

$\mathcal{J}_{i j}=\frac{\delta F[\phi]_{i}}{\delta \phi_{j}}$ stability under global perturbation of the whole orbit for n large, a huge [$d n \times d n$] matrix

temporal Jacobian matrix

J propagates initial perturbation n time steps

$$
\text { small }[d \times d] \text { matrix }
$$

J and \mathcal{J} are related by ${ }^{3}$
Hill's 1886 remarkable formula

$$
\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|=\left|\operatorname{det}\left(\mathbf{1}-J_{\mathrm{M}}\right)\right|
$$

\mathcal{J} is huge, even ∞-dimensional matrix J is tiny, few degrees of freedom matrix

[^3]
field theorist's chaos

definition : chaos is

expanding	Hill determinants	$\operatorname{Det} \mathcal{J}$
exponential \sharp	field configurations	N_{n}

the precise sense in which
a (discretized) field theory is deterministically chaotic
note : there is no 'time' in this definition

periodic orbit theory

volume of a periodic orbit

Ozorio de Almeida and Hannay ${ }^{4} 1984$:
\sharp of periodic points is related to a Jacobian matrix by
principle of uniformity
"periodic points of an ergodic system, counted with their natural weighting, are uniformly dense in phase space"
where
'natural weight' of periodic orbit M

$$
\frac{1}{\left|\operatorname{det}\left(1-J_{M}\right)\right|}
$$

[^4]
periodic orbits partition lattice states into neighborhoods

how come Hill determinant Det \mathcal{J} counts periodic points ?
'principle of uniformity' is in ${ }^{5}$

periodic orbit theory

known as the flow conservation sum rule :

$$
\sum_{M} \frac{1}{\left|\operatorname{det}\left(1-J_{M}\right)\right|}=\sum_{M} \frac{1}{\left|\operatorname{Det} \mathcal{J}_{M}\right|}=1
$$

sum over periodic points Φ_{M} of period n
state space is divided into
neighborhoods of periodic points of period n

[^5]
periodic orbit counting

how come a Det \mathcal{J} counts periodic points ?
flow conservation sum rule :

$$
\sum_{\Phi_{\mathrm{M}} \in \mathrm{Fix}^{\eta}{ }^{\eta}} \frac{1}{\left|\operatorname{Det} \mathcal{J}_{\mathrm{M}}\right|}=1
$$

Bernoulli system 'natural weighting' is simple :
the determinant $\operatorname{Det} \mathcal{J}_{M}=\operatorname{Det} \mathcal{J}$ the same for all periodic points, whose number thus verifies the fundamental fact

$$
N_{n}=|\operatorname{Det} \mathcal{J}|
$$

the number of Bernoulli periodic lattice states
$N_{n}=|\operatorname{Det} \mathcal{J}|=s^{n}-1 \quad$ for any n

remember the fundamental fact?

period 2 example

fixed point Φ_{00}
2-cycle $\quad \Phi_{01}, \Phi_{10}$
\mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]
look at preimages of the fundamental parallelepiped:

example : lattice states of period 2

unit hypercube, partitioned

fixed point Φ_{00}
2-cycle $\quad \Phi_{01}, \Phi_{10}$
flow conservation sum rule

$$
\frac{1}{\left|\operatorname{Det} \mathcal{J}_{00}\right|}+\frac{1}{\left|\operatorname{Det} \mathcal{J}_{01}\right|}+\frac{1}{\left|\operatorname{Det} \mathcal{J}_{10}\right|}=1
$$

sum over periodic points Φ_{M} of period $n=2$
state space is divided into
neighborhoods of periodic points of period n

tessellate the state space by recurrent flows

zeta function

periodic orbit theory : counting lattice states

topological zeta function

$$
1 / \zeta_{\text {top }}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} N_{n}\right)
$$

(1) weight $1 / n$ as by (cyclic) translation invariance, n lattice states are equivalent
(2) zeta function counts orbits, one per each set of equivalent lattice states

Bernoulli topological zeta function

counts orbits, one per each set of lattice states $N_{n}=s^{n}-1$

$$
1 / \zeta_{\text {top }}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} N_{n}\right)=\frac{1-s z}{1-z}
$$

numerator ($1-s z$) says that Bernoulli orbits are built from s fundamental primitive lattice states, the fixed points $\left\{\phi_{0}, \phi_{1}, \cdots, \phi_{s-1}\right\}$
every other lattice state is built from their concatenations and repeats.
solved!
this is 'periodic orbit theory'
And if you don't know, now you know

summary : think globally, act locally

the problem of enumerating and determining all lattice states stripped to its essentials :
(1) each solution is a zero of the global fixed point condition

$$
F[\Phi]=0
$$

(2) global stability : the orbit Jacobian matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\Phi]_{i}}{\delta \phi_{j}}
$$

(3) fundamental fact : the number of period- n orbits

$$
N_{n}=|\operatorname{Det} \mathcal{J}|
$$

(9) zeta function $1 / \zeta_{\text {top }}(z)$: all predictions of the theory

next : a kicked rotor

Du mußt es dreimal sagen!
 - Mephistopheles

() what this is about
(2) coin toss
(3) kicked rotor
(a) spatiotemporal cat
(3) bye bye, dynamics

coin toss ? that's not physics !

Field Theory should be Hamiltonian and energy conserving Quantum Mechanics requires it

because that is physics!

need a system as simple as the Bernoulli, but mechanical
so, we move on from running in circles,
to a mechanical rotor to kick.
time-evolution formulation

example of a "small domain" dynamics : a single kicked rotor

an electron circling an atom, subject to a discrete time sequence of angle-dependent kicks $F\left(x_{t}\right)$

Taylor, Chirikov and Greene standard map

$$
\begin{aligned}
x_{t+1}-x_{t} & =p_{t+1} \quad \bmod 1 \\
p_{t+1}-p_{t} & =F\left(x_{t}\right)
\end{aligned}
$$

\rightarrow chaos in Hamiltonian systems

the simplest example : a cat map evolving in time

force $F(x)=K x$ linear in the displacement $x, K \in \mathbb{Z}$

$$
\begin{array}{ll}
x_{t+1} & =x_{t}+p_{t+1} \\
p_{t+1} & =p_{t}+K x_{t}
\end{array} \quad \bmod 1 . \quad \bmod 1 .
$$

Continuous Automorphism of the Torus, or

time-evolution cat map

a linear, area preserving map of a 2-torus onto itself

$$
\left[\begin{array}{c}
\phi_{t} \\
\phi_{t+1}
\end{array}\right]=J\left[\begin{array}{c}
\phi_{t-1} \\
\phi_{t}
\end{array}\right]-\left[\begin{array}{c}
0 \\
m_{t}
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & 1 \\
-1 & s
\end{array}\right]
$$

for integer 'stretching' $s=\operatorname{tr} J>2$ the map is beloved by ergodicists :
hyperbolic \Rightarrow perfect chaotic Hamiltonian dynamical system

a cat is literally Hooke's wild, 'anti-harmonic' sister

for $s<2$ Hooke rules
local restoring oscillations around the sleepy z-z-z-zzz resting state
for $s>2$ cats rule
exponential runaway wrapped global around a phase space torus
cat is to chaos what harmonic oscillator is to order
there is no more fundamental example of chaos in mechanics

lattice formulation

cat map in lattice formulation

replace momentum by velocity

$$
p_{t+1}=\left(\phi_{t+1}-\phi_{t}\right) / \Delta t
$$

obtain

$$
\left[\begin{array}{c}
\phi_{t} \\
\phi_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & s
\end{array}\right]\left[\begin{array}{c}
\phi_{t-1} \\
\phi_{t}
\end{array}\right]-\left[\begin{array}{c}
0 \\
m_{t}
\end{array}\right]
$$

temporal lattice formulation is pretty ${ }^{6}$:

2-step difference equation

$$
-\phi_{t+1}+s \phi_{t}-\phi_{t-1}=m_{t}
$$

integer m_{t} ensures that
ϕ_{t} lands in the unit interval
$m_{t} \in \mathcal{A}, \quad \mathcal{A}=\{$ finite alphabet $\}$

[^6]
think globally, act locally

spatiotemporal cat at every instant t, local in time

$$
-\phi_{t+1}+s \phi_{t}-\phi_{t-1}=m_{t}
$$

is enforced by the global equation

$$
\mathcal{J} \Phi=\mathrm{M}
$$

where

orbit Jacobian matrix

$$
\mathcal{J} \Phi-\mathrm{M}=0
$$

with

$$
\Phi=\left(\phi_{t+1}, \cdots, \phi_{t+n}\right), \quad \mathrm{M}=\left(m_{t+1}, \cdots, m_{t+n}\right)
$$

a lattice state, and a symbol block
and $[n \times n]$ orbit Jacobian matrix \mathcal{J} is

$$
-r+s \mathbb{1}-r^{-1}=\left(\begin{array}{ccccc}
s & -1 & & & -1 \\
-1 & s & -1 & & \\
& -1 & & \ddots & \\
& & & s & -1 \\
-1 & & & -1 & s
\end{array}\right)
$$

think globally, act locally

solving the spatiotemporal cat equation

$$
\mathcal{J} \Phi=\mathrm{M}
$$

with the $[n \times n]$ matrix $\quad \mathcal{J}=-r+s \mathbb{1}-r^{-1}$
can be viewed as a search for zeros of the function

$$
F[\Phi]=\mathcal{J} \Phi-\mathrm{M}=0
$$

where the entire global lattice state Φ_{M} is
a single fixed point $\Phi_{\mathrm{M}}=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$
in the n-dimensional unit hyper-cube

fundamental fact in action

temporal cat fundamental parallelepiped for period 2

 square $[0 B C D] \Rightarrow \mathcal{J}=$ fundamental parallelepiped $\left[0 B^{\prime} C^{\prime} D^{\prime}\right]$

$$
N_{2}=|\operatorname{Det} \mathcal{J}|=5
$$

fundamental parallelepiped
$=5$ unit area quadrilaterals
a periodic point per each unit volume

spatiotemporal cat zeta function

is the generating function that counts orbits
substituting the Hill determinant count of periodic lattice states

$$
N_{n}=\operatorname{Det} \mathcal{J}
$$

into the topological zeta function

$$
1 / \zeta_{\text {top }}(z)=\exp \left(-\sum_{n=1} \frac{z^{n}}{n} N_{n}\right)
$$

leads to the elegant explicit formula ${ }^{7}$

$$
1 / \zeta_{\text {top }}(z)=\frac{1-s z+z^{2}}{1-2 z+z^{2}}
$$

solved!

[^7]
what continuum theory is temporal cat discretization of?

have
2-step difference equation

$$
-\phi_{t+1}+\boldsymbol{s} \phi_{t}-\phi_{t-1}=m_{t}
$$

discrete lattice
Laplacian in 1 dimension

$$
\phi_{t+1}-2 \phi_{t}+\phi_{t-1}=\square \phi_{t}
$$

so temporal cat is an (anti)oscillator chain, known as
$d=1$ Klein-Gordon (or damped Poisson) equation (!)

$$
\left(-\square+\mu^{2}\right) \phi_{t}=m_{t}, \quad \mu^{2}=s-2
$$

did you know that a cat map can be so cool?

that's it! for spacetime of any dimension

lattice Klein-Gordon equation

$$
\left(-\square+\mu^{2}\right) \phi_{t}=m_{t}
$$

solved completely and analytically!

summary : think globally, act locally

the problem of determining all global solutions stripped to its bare essentials :
(1) each solution a zero of the global fixed point condition

$$
F[\Phi]=0
$$

(2) compute the orbit Jacobian matrix

$$
\mathcal{J}_{i j}=\frac{\delta F[\Phi]_{i}}{\delta \phi_{j}}
$$

(3) fundamental fact
$N_{n}=|\operatorname{Det} \mathcal{J}|=$ period- n states
4)
\Rightarrow zeta function $1 / \zeta_{\text {top }}(z)$

chaotic field theory

Euclidean lattice field theory

scalar field $\phi(x)$

evaluated on lattice points

$$
\begin{aligned}
& \phi_{z}=\phi(x) \\
& x=a z=\text { lattice point } \\
& z \in \mathbb{Z}^{d}
\end{aligned}
$$

a periodic point per each unit cell

8

[^8]
example : discretization of a $1 d$ field

scalar field $\phi(x)$ evaluated on lattice points

periodic field $\phi(t)$ is a function of continuous coordinate t
corresponding discretized period-5 lattice state $\Phi=\overline{\phi_{0} \phi_{1} \phi_{2} \phi_{3} \phi_{4}}$,

Horizontal: t coordinate, lattice sites marked by dots, labelled by $t \in \mathbb{Z}$
the value of the discretized field $\phi_{t} \in \mathbb{R}$ is plotted as a bar centred at lattice site t

Bravais cell lattice tiling

write a periodic field over n-sites Bravais cell as the lattice state and the symbol block (sources)

' M ' for 'marching orders' : come here, then go there, ...

field theory is defined by its action

field theory

field configuration Φ occurs with probability

$$
p(\Phi)=\frac{1}{Z} e^{-S[\Phi]}, \quad Z=Z[0]
$$

partition function $=$ sum over all configurations

$$
Z[\mathrm{M}]=\int[d \phi] e^{-S[\phi]+\Phi \cdot M}, \quad[d \phi]=\prod_{z}^{\mathcal{L}} \frac{d \phi_{z}}{\sqrt{2 \pi}}
$$

‘source' M

example : Euclidean ϕ^{4} theory

continuum action

$$
S=\int d x^{d}\left\{\frac{1}{2} \sum_{i=1}^{d}\left(\partial_{\mu} \phi(x)\right)^{2}+\frac{\mu^{2}}{2} \phi(x)^{2}+\frac{g}{4!} \phi(x)^{4}\right\}
$$

lattice action

$$
S[\Phi]=\sum_{z, z^{\prime}} \frac{1}{2}\left\{\phi_{z}\left(-\square+\mu^{2}\right)_{z z^{\prime}} \phi_{z^{\prime}}\right\}+\sum_{z} \frac{g}{4!} \phi_{z}^{4}
$$

in 'lattice units' : $a=1$

QFT path integrals : semi-classical WKB quantization

a fractal set of saddles

TURBULENT Q.FT. 2

WKB backbone

classical field theory extremal condition \rightarrow eqs

$$
\frac{\delta S[\Phi]}{\delta \phi_{z}}=m_{z}
$$

classical solution Φ satisfies the extremal condition on every lattice site

think globally, act locally

fields $\Phi=\left\{\phi_{00} \phi_{01} \phi_{0 T} \phi_{10} \phi_{11} \ldots, \phi_{L, \pi A} \phi_{L T}\right\}$
sources $\mathrm{MI}=\left\{m_{s 0}, m_{\Delta \phi}, \ldots, m_{L T+1} m_{L J}\right\}$
for each symbol array M, a periodic lattice state Φ_{M}

orbit Jacobian (Hill, Hessian, ...) matrix

each lattice state has its own

$$
\mathcal{J}[\Phi]=\left(\begin{array}{cccccccc}
s_{0} & -1 & 0 & 0 & \cdots & 0 & 0 & -1 \\
-1 & s_{1} & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & s_{2} & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & s_{n-2} & -1 \\
-1 & 0 & 0 & 0 & \cdots & 0 & -1 & s_{n-1}
\end{array}\right)
$$

stretching factor $\boldsymbol{s}_{t}=V^{\prime \prime}\left[\phi_{t}\right]$ is function of the site field ϕ_{t} for the given lattice state Φ
© can compute Hill determinant $\operatorname{Det} \mathcal{J}$
(2) Hill-Lindstedt-Poincaré : all calculations should be done on reciprocal lattice
(3) toolbox : discrete Fourier transforms, irreps of D_{n}

popular 1d lattice field theories

spatiotemporal lattice field theory

$$
-\phi_{t+1}+V^{\prime}\left[\phi_{t}\right]-\phi_{t-1}=m_{t}
$$

spatiotemporal Bernoulli

$$
-\phi_{t+1}+s \phi_{t} \quad=m_{t}
$$

spatiotemporal cat

$$
-\phi_{t+1}+s \phi_{t}-\phi_{t-1}=m_{t}
$$

spatiotemporal Hénon

$$
-\phi_{t+1}+a \phi_{t}^{2}-\phi_{t-1}=m_{t}
$$

spatiotemporal ϕ^{4} theory

$$
-\phi_{t+1}+\frac{g}{3!} \phi_{t}^{3}-\phi_{t-1}=m_{t}
$$

in crystallography symmetries rule

There are only two 1-dimensional space groups G : $p 1$ infinite cyclic group C_{∞} of all lattice translations,

$$
\mathrm{C}_{\infty}=\left\{\cdots, r_{-2}, r_{-1}, 1, r_{1}, r_{2}, r_{3}, \cdots\right\}
$$

p1m infinite dihedral group D_{∞} of all translations and reflections ${ }^{9}$,

$$
\mathrm{D}_{\infty}=\left\{\cdots, r_{-2}, \sigma_{-2}, r_{-1}, \sigma_{-1}, 1, \sigma, r_{1}, \sigma_{1}, r_{2}, \sigma_{2}, \cdots\right\}
$$

4 kinds of Bravais lattice states

(n) no reflection symmetry: H_{5} invariant period-5 lattice state (o) odd period, symmetric: an $H_{9,8}$ invariant period-9 (ee) even period, even symmetric: $H_{10,0}$ invariant period-10 (eo) even period, odd symmetric: $H_{10,9}$ invariant period-10

group actions

group multiplication $g_{i} g_{j}$

	r_{j}	σ_{j}
r_{i}	r_{i+j}	σ_{j-i}
σ_{i}	σ_{i+j}	r_{j-i}

either adds up translations, or shifts and then reverses their direction

\mathbf{D}_{∞} orbit of a generic lattice state

lattice state $\Phi=\overline{\phi_{0} \phi_{1} \phi_{2} \phi_{3} \phi_{4}}$, no reflection symmetry D_{∞}-orbit is isomorphic to $\mathrm{D}_{5}: 10$ distinct lattice states

zeta functions unlike 1980's

periodic orbit theory : counting lattice states ${ }^{10}$

Lind zeta function

$$
\zeta_{\text {Lind }}(t)=\exp \left(\sum_{H} \frac{N_{H}}{|G / H|} t^{|G / H|}\right)
$$

sum is over all subgroups H of space group G
N_{H} is the number of fixed points of H
$|G / H|$ is the number of states in H orbit
(1) Lind zeta function counts group orbits, one per each set of equivalent lattice states

zeta functions unlike 1980's

periodic orbit theory :
counting lattice states for reflection-symmetric systems ${ }^{11,12}$

Kim-Lee-Park zeta function

$$
\zeta_{\sigma}(t)=\sqrt{\zeta_{\text {top }}\left(t^{2}\right)} e^{h(t)}
$$

where $\zeta_{\text {top }}$ is the Artin-Mazur zeta function, and the counts of the 3 kinds of symmetric orbits are

$$
h(t)=\sum_{m=1}^{\infty}\left\{N_{2 m-1,0} t^{2 m-1}+\left(N_{2 m, 0}+N_{2 m, 1}\right) \frac{t^{2 m}}{2}\right\}
$$

[^9](1) coin toss
(2) kicked rotor
(3) spatiotemporal cat

- bye bye, dynamics

insight 1 : how is turbulence described?

not by the evolution of an initial state
exponentially unstable system have finite (Lyapunov) time and space prediction horizons
but
by enumeration of admissible field configurations and their natural weights

insight 2 : description of turbulence by d-tori

1 time, 0 space dimensions

a phase space point is periodic if its orbit returns to itself after a finite time T; such orbit tiles the time axis by infinitely many repeats

1 time, $d-1$ space dimensions

a phase space point is spatiotemporally periodic if it belongs to an invariant d-torus \mathcal{R},
i.e., a block $\mathrm{M}_{\mathcal{R}}$ that tiles the lattice state M , with period ℓ_{j} in j th lattice direction

insight 3 : can compute 'all' solutions

Bernoulliland - rough initial guesses converge
no exponential instabilities
reciprocal lattice

- solved so far only 1-dimensional spatiotemporal lattice, point group D_{1}
© should all time-reversal symmetric systems be analyzed this way?
O should all dynamical systems should be solved on reciprocal lattice?
- for 2-dimensional spatiotemporal chaotic field theory, still have to do this for square lattice point group D_{4}
(0) then, solve the problem of turbulence (Navier-Stokes, Yang-Mills, general relativity)

Verbrechen des Jahrhunderts : das Ende der Zeit

die Zeit ist tot
 also, an die Arbeit!

bye bye, dynamics

- goal : describe states of turbulence in infinite spatiatemporal domains
© theory : classify, enuremate all spatiotemporal tilings
(3) example : spatiotemporal cat, the simplest model of "turbulence"
there is no more time
there is only enumeration of
admissible spacetime field configurations

crime of the century : this the end of time

time is dead

now, get to work

take-home :

traditional field theory

Helmholtz
chaotic field theory

damped Poisson, Yukawa

[^0]: ${ }^{1}$ M. Avila and B. Hof, Phys. Rev. E 87 (2013)

[^1]: ${ }^{2}$ P. Cvitanović and H. Liang, Spatiotemporal cat: A chaotic field theory, In preparation, 2021.
 ${ }^{b_{M}}$. N. Gudorf et al., Spatiotemporal tiling of the Kuramoto-Sivashinsky flow, In preparation, 2021.

[^2]: ${ }^{2}$ M. Baake et al., J. Phys. A 30, 3029-3056 (1997).

[^3]: ${ }^{3}$ G. W. Hill, Acta Math. 8, 1-36 (1886).

[^4]: ${ }^{4}$ A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

[^5]: ${ }^{5}$ P. Cvitanović, "Why cycle?", in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst., Copenhagen, 2020).

[^6]: ${ }^{6}$ I. Percival and F. Vivaldi, Physica D 27, 373-386 (1987).

[^7]: ${ }^{7}$ S. Isola, Europhys. Lett. 11, 517-522 (1990).

[^8]: ${ }^{8}$ G. Münster and M. Walzl, Lattice gauge theory - A short primer, 2000.

[^9]: ${ }^{11}$ M. Artin and B. Mazur, Ann. Math. 81, 82-99 (1965).
 ${ }^{12}$ Y.-O. Kim et al., Pacific J. Math. 209, 289-301 (2003).

