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fies Fy, F, expressions in the fashion indicated by

Fig. 8. Further simplifications and projections can
then be performed by REDUCE 2 (written by A. C. Hearn).
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Report No. CLNS-234, 1973 (unpublished), and Pro-
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ing Methods in Theovetical Physics, Marseille, 1973,
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edited by A. Visconti (Univ. of Marseille, Marseille,
1973). Wehave also written a program based on a some-,
what different approach, where all the above steps are
performed by scHooNscHIP  (written by M. Veltman).

%W, Mayeda, Graph Theory (Wiley, New York, 1972),
Sec. 7.6.
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A scheme for systematically separating ultraviolet divergences of Feynman amplitudes in parametric
space is developed. It is summarized by an explicit formula which enables us to incorporate readily the
ultraviolet-finite remainders thus constructed into the usual renormalization scheme. It is shown further
that infrared divergences can be treated in a very similar way. Our method is particularly suitable for

numerical integration.

I. INTRODUCTION

In order to evaluate Feynman integrals of higher
orders numerically, it is necessary to locate and
subtract the ultraviolet (UV) and infrared (IR) di-
vergences beforehand. Since the removal of UV
divergences is the essential aspect of the renor-
malization procedure, various prescriptions have
been proposed in the literature for the extraction
of UV-finite parts, although they vary in mathe-
matical rigor and practicality depending on the
purpose for which they have been formulated. On
the other hand, the treatment of IR divergences has
been relatively underdeveloped, particularly in
the Feynman-parametric form. Thus we have
found it necessary to develop some workable
scheme.!* The purpose of this article is to present
a general and systematic scheme for separating
both UV and IR divergences of Feynman integrals,
following the line first suggested in Ref. 1b. This
method has been applied to the evaluation of sixth-
order contributions to the electron magnetic mo-
ment.?'?

Our method is based on the parametric repre-
sentation of Feynman integrals summarized in the
preceding article,* hereafter referred to as I. It
is particularly suited for numerical calculation be-
cause of the following properties:

(i) After the removal of divergences the integral

is almost as simple as the original divergent in-
tegral.

(ii) The singularity is subtracted at each point of
the domain of integration (rather than having cancel-
lation of contributions from different parts of the
domain).

(iii) Subtraction terms introduce no new singu-
larities. (Note that the standard renormalization
introduces infrared divergences.)

(iv) Subtraction terms are factorizable into
lower-order expressions. Thus they are easier
to evaluate analytically or numerically than the
original integral.

(v) Our construction of UV and IR subtraction
terms is also useful for crosschecking of trace

" calculation.

In Sec. II we review the UV power-counting rule
for arbitrary Feynman integrals and propose a
method for removing all leading UV singularities
of parametric integrands. In Sec. III we apply it
to QED and derive an expression for Dyson-
Salam-renormalized amplitudes in terms of finite
integrals. A power-counting rule for the degree
of superficial IR divergence is developed in Sec.
IV for arbitrary QED amplitudes by examining
the properties of their denominators. In Sec. V
it is extended to the whole integrand, taking ac-
count of the structure of numerator functions. A
method for removing all IR divergences of QED
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amplitudes is sketched. Application of these
methods is given in the subsequent article.?

II. UV SINGULARITIES

A Feynman-parametric integral associated with
a one-particle irreducible diagram G can be
written in the dimensionally regularized form as

-n . N
M, = %‘I%r)t—w fdeJG , (2.1)
Jg = f]-lw [Fo+F,/GU)+++F, /(U |e”7®) |

2.2)

where the notation follows that of 1.°> We drop the
suffix G referring to the diagram G whenever no
ambiguity arises. For example, in the above,
U=U,, V(p)=Vs(p), etc. p in V(p) stands for the
set of all external momenta of the diagram G.

We define the Feynman integrand as the value
of J; for w=2. To determine its singularities,
note that all parametric functions that comprise
J; are homogeneous forms of Feynman param-
eters z;. U, B;;, @i#, and Vare of degree ,
n-1, 0, and 1, respectively, n being the number
of independent integration loops in G.

The integral M; may diverge when U vanishes
(for some z;~0) or V(p) vanishes (and some
z; ). The second possibility occurs only if
masses of some internal lines vanish, and is as-
sociated with the IR divergence, or, more general-
ly, the mass singularity.® In this section we shall
concentrate on the first case.

If all z; vanish, Uhas a zero of order n. Ualso
vanishes if all Feynman parameters of a loop or
a set of loops are set equal to zero. Since z; -0
corresponds to large momentum flowing through
the line ¢, such divergences will be the para-
metric space versions of familiar UV divergences
in momentum space. In general, let S be a con-
nected subdiagram of G (including G itself) con-
sisting of several closed loops. Then J; will be
singular in the domain boundary defined by the
limit € -0, where

o), €S
2= (2.3)
o(1) , i#S.

Let us examine the behavior of J; in this singular
region.

A. Overall UV singularities

Suppose f(z;) is a function of Feynman param-
eters associated with the diagram G. We define
its UV limit [f(z;)]§y as the leading term in the
expansion in small € defined in (2.3). Note that
the word “UV limit” is used to indicate possible

relevance to a UV divergence of the integral, but
does not necessarily mean that these functions
actually lead to divergent integrals.

The case S =G will be referred to as the overall
UV limit [ f)]Gv =[f=)]uy.

Let us now examine the overall UV limit of the
integrand J;. The exponent V(p) does not affect
the nature of this singularity since

[eV®] ., =1. 2.4)

Since B;; is of degree n -1 in z;, the most singu-
lar term of J; is the one with most contractions
(see I for definition). Thus we have

[T lov = ﬁ—;}‘ﬁ [=0(e-2m)] . (2.5)

In the integral (2.1) this singularity is suppressed
by the phase space dz; which vanishes in the over-
all UV limit as

dzg=0(") . (2.6)

It follows from (2.5) and (2.6) that the integral
(2.1) is convergent in the domain (2.3) if

Ng =2ng —mg>0, 2.7

where Ng, ng, and mg are the number of internal
lines of G, the number of integration loops, and
the maximum number of contractions, respective-
ly. The Dyson-Nakanishi power-counting rule?-8
follows from (2.7) if one rewrites it in terms of
the number of external lines.

An obvious way to construct an integrand less
singular than Jj; in the limit (2.3) is to replace it
by Jg - [Jglyy - However, [J;]yy might have an IR
divergence of its own since it is not damped ex-
ponentially for large z; because of (2.4). It cor-
responds to renormalizing Feynman amplitudes
at the point where all external momenta as well as
masses of all internal lines vanish. Instead let us
perform renormalization by defining the subtrac-
tion integrand K;J; by

Kedg=[Jsl e, (2.8)
V= V(p)l # on mass shell » (2'9)

where K; stands for the operation of constructing
an “on-the-mass-shell” subtraction term.® For
now we shall take (2.8) as the definition of the K
operation. By (2.4) we have

[KGJG]UV= [JG}UV .

Thus J; — KgJg is also less singular than J; itself
in the overall UV limit.

Unlike the usual Dyson-Salam construction of
on-the-mass-shell subtraction terms, this one
introduces no new IR divergence since the defini-
tion (2.8) keeps only the most-contracted term
F,in (2.2). In the case of QED, this is an im-

(2.10)
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portant advantage over the standard method which,
as is well known, introduces spurious IR diver-
gences associated with the renormalization pro-
cedure. Moreover, since our subtraction is also
defined on the mass shell, it will not be difficult
to express the usual renormalized amplitude in
terms of UV-finite integrals constructed by K
operations. (See Sec. IIL.)

The numerator F, depends in general on the ex-
ternal momenta p, so that one might wonder
whether F,, in (2.8) is unambiguous. Since m is
the maximum number of contractions, F, has
either all factors D contracted or one D remains
uncontracted. In the first case there is no am-
biguity since F,, does not contain external mo-
mentum. The only case of importance of the sec-
ond possibility is the electron self-energy dia-
gram. In this case we evaluate F,, in (2.8) for the
same external momentum p as for the original
integrand Jg.

B. Subdiagram UV singularities

From the definition (1.24) [Eq. (24) of paper I]
Uzdet(Ust)r Ust= Z NisNitRi »
icc

where the indices s and ¢ run over a set of inde-
pendent integration loops, it is clear that U van-
ishes if z; -0 for all ¢€S, S being a connected
subdiagram of G consisting of several loops.
More precisely, in the UV limit (2.3), U factors

aslo

[Ulgy=UsUys [=0("s)], 2.11)

where ng is the number of independent loops within
S. By G/S we mean the reduced diagram obtained
by shrinking the subdiagram S of G to a point.
Whenever a parametric function has a subscript
or superscript S, G/S, ..., it is to be understood
as defined in terms of parameters z; belonging to
the diagrams S, G/S, ... alone.!!

Let us now derive the UV limit of B;; starting
from the definition (1.51):

B;; :Z nicnchc s

where U, is a U function for the diagram obtained
from G by shrinking a closed loop c¢ to a point.
Case i,j<=S. For c¢CS, we have

(015 =0 08 [=0("s™)]

since the whole loop ¢ within S is shrunk to a point.

If ¢ belongs to both S and G/S, we have U, = 0(e"s),
and its contribution can be neglected. We thus
find

[B;,)§y =USB;, i,jeS. 2.12)

Case i,j<G/S. Applying (2.11) to each U, and
noting that U®=}] p 5 Us, Where P(AB) is any
path entering and leaving S at the points A and B,
we find

[Bij]gV=B?J(sUS; Z;]EG/S . (2.13)

Case m<S, j©G/S. This will be of interest only
when S is a self-energy subdiagram. In this case,
according to I, Sec. IVF, we find

[BynlS, =BYSASUS, jeG/S, meS  (2.14)

where 7 is the line of G/S in which S is inserted.
The UV limit of the scalar current A; = A{45)
follows from (I.74): :

Ai == '[!}_ Jg T’jszB;,‘i ’
where P =P(AB) is any path from point A to point
B. We can always choose a path avoiding the line
i so that Bf;=B;;. If i€G/S, we have [B;; ],
=0(e "S) according to (2.13) and (2.14). Thus we
can drop all terms with j&S in the above summa-
tion and obtain

(4,18, =A%S, icG/s. (2.15)

If Sis a self-energy insertion, we have according
to (1.93)

[4,]0y=AS/5AS,  meS . (2.16)

Since scalar currents remain rational homo-
geneous functions of degree 0 in the UV limit, all
z;,1ES, in the defining formula (I.3) of V drop out
and we obtain

[V(P)]Sv = Z Zj(mjz_qj [Q;]gv) .
i€a/s
Decomposing @;" into scalar currents and using
(2.15) we find

[V(P)]SV=VG/S(P) . (2.17)
We are now ready to consider the integrand

[Js]Sy as a whole. From (2.12) it is seen that only
contractions within the subdiagram S maintain the
most singular feature in the UV limit (2.3). The
leading singularity is thus given by all terms in
F, that have the maximum number of contractions
within S. If S is a vertex part, all D’ s [see (1.17)
for a definition of D] in S can be contracted among
themselves and the entire integrand factorizes as

[Jo]gszc/s[Js] Sv s (2.18)

where we have used (2.11) through (2.17) and (2.5).
Thus the power-counting rule (2.7) applies not only
to the diagram G as a whole but also to any sub-
diagram S. Again (2.18) itself is not suitable as a
subtraction term since it might introduce new IR
divergences. Instead, by generalizing (2.8) we
choose
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Ksdg=[Js]dv e™"s (2.19)

as the subtraction term.

If the number of D’s in S is odd, the factorization
of the subtraction integrand is slightly more com-
plicated than (2.18). This case will be treated
later in connection with the electron self-energy
subdiagram.

C. Formal definition of K operation

Let us now restrict our attention to Feynman
integrals having at most logarithmic UV diver-
gences. Then the K subtraction defined above is
sufficient to render such integrals UV -finite.!?
This operation may be cast in a form similar to
the renormalization prescription of Refs. 13-15
as follows: Let us define a generalized integrand
Jglay, a,, ... ) by first scaling

Z;~agz;, jES (2.20)

within J; and then multiplying the scaled J; with

aglsgmii-as)Vs (2.21)

for each subdiagram S, where Ng is the number
of internal lines of S. The factor a” takes care
of the scaling of the phase space (2.6), and Vj is
the function Vg(p) for the diagram S evaluated with
all external momenta p on the mass-shell.

The generalized integrand has the following
properties:

Je(1,1, ... )=dg, 2.22)

JG(I, aS=0» 17 . '-)

0 if Ng-2n5-mg>0,

[JG]LSrVe—iVsif Ns-2ng—mgs=0,

(2.23)
Jelag=0,1,...)

0 if Ny =2n5-mg>0,
[Telyve™" if Ng~2ng —=mg =0,

(2.24)

Thus the K-subtraction terms of (2.8) and (2.19)
are obtained by setting appropriate ag equal to
zero. According to (2.23) and (2.24) the subtrac-
tion terms will be nonvanishing only for S8, 8
being the set of all superficially divergent sub-
diagrams S of G (possibly including G itself) such
that Ng — 2ng —m s =0. In this formulation the op-
eration KsiKsj .. -Ksm is defined as setting s, = 0,
as, =0,..., asm=0, and all remaining ag=1.

By construction an integrand of the form

IIa - Ks)g(ay, ay,...)
S;e8
leads to a UV-finite integral. We shall define this
integral as the K-finite part of the Feynman ampli-
tude M, and denote it symbolically as
aMg= [[ -k, .

Ses

(2.25)

In order to ensure that A’M; is well defined, we
must show that it is independent of the order of
K factors. This is easy to confirm if $;NS;=0
(no common point) or if S;CS; or S;CS;. The only
case where K, and Ksj do not commute is when
S; and S; are overlapping diagrams. This happens,
for example, when S; and S; are overlapping vertex
parts within a self-energy diagram S, such that
S;NS;#0 and S;US;=S,. Fortunately our definition
(2.25) enables us to avoid this complication auto-
matically.’*'*® To see this, note that each z, that
acquires a factor as, by (2.20) will also have as,
or ag, or both factors. Since setting o, = 0 and
a s,=6 simultaneously is the same as setting
ag, = 0, we find

(1-Ks )Ks Ks, =0, (2.26)

which may also be written as
(1 —Ksk)(l --Ksi)(l —Ksj)= (1 —Ksk)(l _KS.- —Ksj) .
2.27)

Thus the overlapping divergence KsiKSj Mg never
contributes to the formula (2.25), and the K-finite
part A’M; is uniquely defined independent of the
order of K operations in (2.25).

III. RENORMALIZED QED AMPLITUDES

In this section we shall study how to express the
renormalized QED amplitudes in terms of UV-
finite integrals. We postpone the discussion of IR
divergences to Secs. IV and V. For now we shall
assume a finite photon mass A.

As is well known, the only superficially divergent
diagrams of QED are electron self-energy, photon
self-energy, vertex and photon-photon scattering
diagrams. Due to gauge invariance, photon-photon
scattering integrals are actually convergent. (A
method for rendering individual photon-photon
scattering diagrams separately convergent is given
in Ref. 16. Hence we shall not discuss it here.)
We define the remaining three UV -divergent dia-
grams, i.e., proper electron self-energy part,
proper photon self-energy part, and proper vertex
part, using the conventions of Ref. 17. In the di-
mensionally regularized form they are

Zo=i | s E‘k—ﬁ FemtV() 8.1)
(4m3) U



10 NEW APPROACH TO THE SEPARATION OF ULTRAVIOLET... 3995

ol _z[(4m)w-x} |7 Zg peto @32

v _ o " gz_g FV,=iV(#,d)
I‘G- [W:l v e . (3.3)

Here » is the number of integration loops. Oper-
ators F, F*”, F” consist of (§; +m;) factors from
fermion lines, y® factors from vertices, and a
factor (-1) for each closed fermion loop. When
there is an ambiguity as to which amplitude they
refer to, we shall write them as F= [Z.], F*¥

=F [TI5"], etc. The maximum number of con-
tractions is mg = n, —1 for electron self-energy,
and mg =ng for photon self-energy and vertex. Ac-
cording to the power-counting rule (2.7) electron
self-energy and vertex diagrams are (superficially)
logarithmically divergent, whereas the photon
self-energy is linearly divergent (remember that
z;~1/p;% “dimensionally” so that this corresponds
to the familiar quadratic divergence in the mo-
mentum space).

A. Photon self-energy diagram

In practical calculations it is more economical
to use the Killén-Lehmann spectral representation
for renormalized photon propagators than to utilize
the K¢ subtraction method for divergences as-
sociated with photon self-energy diagrams. Never-
theless, for completeness, we shall include the K
renormalization of photon propagators in our dis-
cussion. We know that the sum of a gauge-invari-
ant set of photon self-energy diagrams has the
form

V=(ptp” - g"tpAI(p?) . (3.4)

Thus the factor of p*p” in (3.2) may be regarded
as a contribution of the diagram G to II(p?) and de-
noted as II;(»2). Thus, if we consistently replace
everywhere as

Ig" ()~ -g" "1 (p?) (3.5)

(dropping p¥p?), the sum over contributions from
a gauge-invariant set of Feynman diagrams will
remain unchanged by gauge invariance. Now,
II;(p?) is only logarithmically UV-divergent,

and K subtractions are sufficient to render finite
all photon—self-energy contributions redefined by
(3.5). In the Appendix we discuss the calculation
of I;(p?) in the parametric form.

B. Renormalization constants

On-the-mass-shell renormalization constants
are defined by

67,}IIG=E(;II=my (3.6)

p SZG

Bo= i\ 5pf, =122, 3.7
Co==€,"Tglp2=o=(1-257") , (3.8)
Lo =22 T8 g gom= (=142, g (3.9)

for the electron self-mass, wave-function re-
normalization, charge renormalization, and vertex
renormalization, respectively. 0mg, Cg, and Lg
are obtained by evaluating Z;, Il;, and T4 on the
mass shell. B can be calculated from

326 - azg u u ~iV(p)
5b, [(Mz)“"] f o (7 +207GF Je
(3.10)
and
oF
=2r _ A FY (3.11)
app ,elego:n only P

where F } is obtained from F by the replacement
(B; +m;)~y*, and G is given by (1.36). Since G
is linear in 2;, the second term in (3.10) is not
overall UV-divergent. The maximum number of
contractions in F¥ is still mg=#ng -1, so that Bg
has a logarithmic overall UV divergence arising
from the E,,, term.

C. Overall UV divergences of renormalization constants

Let us now apply Kg operations to isolate the
overall UV divergences of the renormalization
constants. According to (2.8) the overall UV-di-
vergent parts of dmg, Bg, Cg, and Lg are

ommg=Kgdmg

__[ —ia 1] f deF,,_l[émGJ

(4”i)w- Uw*n-x b
(3.12)
EGEKGBG
~ia " [ dzzF,_,|B -
'[(47:1)‘”"} J GU"w*l'['-iGJ e, 61
Co=KsCq
—ia az.F,_, 1L
—e? [( 4712')“’"} f GU‘;';},[_IGJ (3.14)
Le=KsLg
_ -ia " deggF, [Lcj
- {(4171,)“_1} f R (3.15)
F,_,[Bg]in (3.13) is defined by
Ef[Zel=v'F,(B6] (3.16)

noting that all fermion lines are contracted so that
E}_, is proportional to y * [see (3.11) for a defini-
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tion of E]. F,_,[Tl;] in (3.14) is defined by

02, [IA7]
——f=i6 2 =F,.[0;]. 3.17)
apaapﬂ o=, B =v,a #B 1[ G]
Finally F,[L;] in (3.15) is given by
Fo[Tgl=v"F,[Lc] (3.18)

since all fermion lines are contracted. We shall
not compute any of the UV-divergent parts ex-
plicitly. However, they will be useful in showing
the equivalence of the Dyson-Salam approach and
ours.

@ "G/sT —ia s dz g sdz -
KsTe= [(47Ti)w-1} [(4712')40-1} J. UG/G/S s FrslLs ] F[TG/sle™ Vors*7s)

w w+n
s Us 'S

which is clearly factorizable as

K Th=LsThs . (3.20)
Actually G does not have to be a vertex diagram.
Any QED diagram which contains a vertex sub-
diagram S will factor in the same fashion.

If S is an electron self-energy subdiagram, the
numerator does not factor since not all I, m<S,
are contracted. For the uncontracted JJ,, because
of the factorizations (2.14) and (2.16), we can write
symbolically

(Bulgy=ARDE",

where ¢” is a fictitious line for which we set
Din=py=p; after EG/S operations have been car-
ried out.

For notational convenience let us set T*=G/S
and denote as T the diagram G/S,i’ obtained from
T* by shrinking the line ¢’ to a point. All para-
metric functions for T are obtained from those for
T* by the replacement z2;;:~2;. The Feynman
diagram for 7* has one more propagator than T
so that

meS (3.21)

Nrx=Np+1, (8.22)

D. Subdiagram UV divergences

We have defined the subtraction integrand KgJg
by (2.19). We shall now examine how the integral
over KgJ; is to be interpreted in QED.

For definiteness let G be a vertex diagram con-
taining a vertex subdiagram S. Then the number
of (I; +m;) factors, i€S, is even (2ng). According
to (2.18) and (3.18) all dependence of the numerator
on the parameters z; of the subdiagram S is con-
tained in the factor F,,S[Ls] , and the subtraction
integral takes the form

(3.19)

(3.23)

r
fdzT*=fdszz,». s

and the numerator of T* contains an additional
factor ¢(P;:+m;.).

Let us first suppose that S is a second-order
electron self-energy diagram. Then the part of
the numerator referring to S may be written as

YHASPL 41y, =ASyRly, (B = DM ASH + 1)y,

:Fns -1[BSJ(E :il;’* - 1)+F"s -l[émSJ ’
(3.24)

where #/ is used symbolically; set#/ =1 after all
contractions over y*- - %, are performed.
F,_[Bs] and F,_,[6m ] are defined by (3.14) and
(3.12), with ng=1 in this case., Equation (3.24) is
just the leading UV singularity of the expansion

Dsi)=0mg+Bg(fy =m;)+°*
of the electron self-energy insertion S, where #/;

corresponds to [ 5:* in the parametric space.
Such a decomposition works for any ng giving

n d " - i
KSI‘5=[( @ ] i ZsBaLes (1ys i F, (Bl FITAIDI™ DI~ 1)+F, [0 ms]FThulle s rxs)

U™ s =1y *Y

The first term is obtained by noting that we can set
B+ -1)=(DI* DL ~1),  (3.26)

where the right-hand side corresponds to the nu-

merator factor p; % —m;? in the unparametrized

(3.25)

Feynman integral, which cancels one of the propa-
gators (p;%-m;?)7!, In parametric space the
same effect is achieved by the use of Nakanishi’s
identity (I.83)
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. [ 4z px * - dzp
i X (DI* . DTy e O =f T g=ivp(s)
UT* UT

3.27)
Applying this to the first term in (3.25) one finds
KT =B Th+6msThs . (3.28)

Thus our single subtraction term contains both
mass and wave-function renormalization terms.
This decomposition is valid for any QED diagram,
not just T'%. However, (3.27) must be generalized
if M; has parametric functions other than U and
V(p) in its definition (before IJ; operation is per-
formed). In such a case we must use (1.86):

. az xH x(2 ; )
0T DE oy [ e
Up*

_ [ %&r 9 T -iva(p)
S ] .

where H(z;) is any homogeneous function of z;,
JjET. As an example, the reader may prove (3.28)

(3.29)

KsMg = LsM/s if S is a vertex ,

K Mg =0msMg/s +1§‘SMG/S',-, if S is an electron self-energy diagram ,

KsMg=CsMgs,i»

where the self-energy subdiagram lies between
the lines ¢ and ¢’ of the reduced diagram G/S.

E. On-the-mass-shell renormalization

We shall first rephrase the usual Dyson definition

of the on-the-mass-shell renormalized amplitude’
as follows: Let M, be a Feynman amplitude in

CsM¢ = LsMgys if S is a vertex ,

CsMg =0mgMg/s + BsMgys,;» if S is an electron self-energy diagram ,

CsMg=CsMgys, it

The result of usual analysis of overlapping diver-
gences can be incorporated in (3.33) by imposing

the condition'*''s

(1-e;)e;e,=0, (3.35)

where j and k are overlapping vertex subdiagrams
of a self-energy part i. Because of (3.35) the op-
erators @g in (3.33) become effectively commuta-

for the Feynman integral (3.10) for aZ,/0p*,
where the parametric integral contains explicit
factors of A; and G. For this purpose it is useful
to note

0G/0z,=A,;2, 8A,/6z,=—A, By, /U, (3.30)

which follows from (I1.36) and (I.101). We shall not
dwell on such generalizations, however, since we
can just as well carry out the KgZ; operation be-
fore taking the 3/ p* derivative in (3.10) and in
that case there is no doubt that the rule (3.27)
applies.

If S is a photon self-energy diagram, by our rule
of imposing gauge invariance in the form (3.5), the
numerator already contains an explicit factor
-D; *D;. (i, i’ being photon lines, m;2=0) so that
we have

KTh=CsTh/s.iv . (3.31)

In summary, if S is a divergent subdiagram of
the diagram G, and M, is a Feynman amplitude
defined on G, then

(3.32)

if S is a photon self-energy diagram ,

QED. Then its finite renormalized part is given

formally by

Mg = H (1-es)M;,
Ses
where @5 is an operator describing the extraction
of renormalization constant associated with the
subdiagram S according to the following rules:

(3.33)

(3.34)

if S is a photon self-energy diagram .

r

tive, enabling us to define M, unambiguously.

Let us now examine the relation between the
renormalized amplitude MG and the K-finite A'M;.
For this purpose we note that

Kses=Kg , (3.36)

which follows from the definitions (3.32) and (3.34).
This may also be written as
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(1-es)=01-Ks)1-es). (3.37)
Substituting this in (3.33) we obtain
dg= ] Q-K9Q-es)M; . (3.38)

SEs

Now all operators in (3.38) can be freely commuted
since the contribution of overlapping subdiagrams
is excluded from the defining formula. We can
therefore rewrite (3.38) as

ig=IT a-x5) II (1= es)M; .

Si€s sjes

(3.39)
Comparing this with the definition of A’M; in
(2.25), we arrive at our main result

Me= ] 1 -a"e)amg,
S€§

(3.40)

where A’@g is an operator extracting the K-finite
part of the renormalization constants associated
with the subdiagram S.

The meaning of the operator A’@g may be seen
most clearly by working out some examples. Let
us start by considering the simple case where S
is the only UV-divergent vertex subdiagram of G.
Then we have

g =(1 - es)M, by (3.33)
S (1—Kg)(1 - @M, by (3.37)
=(1 =K Mg - (1 - K§)LsMy/sby (3.34)
=AMy — A'LgMes by (2.25)

=A'Mg - A'LsA'Mgs  (since Mg/s=0"Mgs)

=(1-4a'€5)a'M, (definition of A’eg) ,

(3.41)

in agreement with (3.40). Next consider the case
with two divergent vertex subdiagrams S and T
such that SO 7. In this case we find

Mg =(1-e5)1-e )M,
=(1-er)1-egMg
=A'Mg - A'LsA'Mg/s = A'LrA"Mgy/p

+AILTA'LS/TA'MG/S s (3.42)

following steps similar to those of (3.41). The
last term is nothing but the expanded form of

(1-a'eg)(1—A'ep)AM, , (3.43)

showing how the operators A’@g and A’@; work.

As is obvious from these examples, i can be
expressed uniquely as a sum of products of K-
renormalized quantities A’Mg, A’M¢/s, ..., which
are all UV-finite. This result therefore constitutes
another proof that the amplitude i/, renormalized
in the usual sense is in fact finite. To complete
the renormalization program of QED we must of

course carry out the remaining steps of absorbing
all divergent terms into a few multiplicative fac-
tors in the usual way.

IV. INFRARED SINGULARITIES

The integral (2.1) may also diverge if J; is not
sufficiently damped as 2; -«. The damping is
usually provided by the exponent ¢V(p) which grows
linearly with z;. However, V() may vanish in
some parts of parametric space. The most famil-
iar case for which this happens is the infrared
(IR) divergence of QED. This problem has been
analyzed in great detail so that there appears to
be hardly any room for another article.®!® Never-
theless we believe that our treatment of IR diver-
gences, which emphasizes the formal similarity
with that of UV divergences in the preceding sec-
tions, presents a fresh and interesting point of
view. Furthermore our method is readily ap-
plicable to numerical treatment of IR divergences.?

For a systematic analysis of IR singularity it is
more convenient to go back to the original para-
metric integral (I.5) defined over a compact do-
main

. n
Mg = (i?ls?) (-1)”fdzcé(1-zG)JG, (4.1a)
with
J _W=2r-1lF, (N=2n-2)IF |
G~ UZVJV-zn U V -2n-1
—2n-m=1)!
N-2n-m-1)IF, 4.1b)

+WW)

where we assume that UV divergences have al-
ready been taken care of by the K method, so that
no regularization is required. Unlike the formula
(2.1) where IR divergences are associated with
Z2;—~, IR divergences arise in (4.1) from the
V-0 singularities of the integrand J;, which can
be treated in analogy with the U~ 0 singularities
studied in Secs. IT and III. This is why we prefer
the representation (4.1) over (2.1).

We shall restrict ourselves to electron QED.
Our method applies to any IR divergence. For
simplicity, however, we shall develop it for a
class of Feynman diagrams with two electron legs
on the mass shell and ! (=0, 1, 2,...) photon legs
shown in Fig. 1. The string of electron lines con-
necting the two electron legs will be referred to
as the path P°=P¢(AB). The crosshatched area
represents the photon cloud which may contain
electron loops. To avoid unnecessary complication
we shall assume that all external photons are at-
tached to P°. (This restriction can be easily
lifted.) Then we may choose the fixed momenta
q; as
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FIG. 1. Feynman diagram G with two electron legs,
! photon legs, and a cloud of virtual photons and elec-
trons.

q;#0 for icP’ |

(4.2)
q; =0 otherwise,
and write V(p) in the form
V)= D, 2(-q; @D+ 2. 2, 4.3)
i € pe electron

loops

where we have set m,=1 and A =0. [The choice

(4.2) is arbitrary, but it is sort of natural since
IR divergences arise when virtual photons carry
no momentum. ]

A. Overall IR singularities

We shall first study the properties of V( p)when
all virtual photons are soft, i.e., when all external
momenta are routed through the path P®, For this
purpose it is instructive to recall the electric-
circuit analogy of z; and 4; (or @;): z; corre-
sponds to the resistance of the line ¢, and A;
=A;(AB) represents the fraction of the current
flowing through the line ¢ when it enters G at A
and leaves at B. Thus, in order that the currents
flow only through P°, we must “short out” the
path P° (i.e., set z;=0 on P°) while keeping the
resistances of other lines finite. This observation
leads us to the (tentative) definition of the overall
IR limit [ f(z;)]$, (where we shall drop the super-
script G whenever no ambiguity arises) of an arbi-
trary parametric function f(2;) as the leading term
in the 6 expansion, where

0(5), 6«1 forieP®
zi = (4'4)
o(1) for i¢P° .

If G has closed electron loops, we find | V(p)] r
=0(1) because of the second term in (4.3). Thus
the integral (4.1) is convergent (note also [U] r
=0(1)) and no overall IR divergence arises. From
now on we shall therefore consider only diagrams
with no electron loops. Then (4.3) reduces to the
simple form

Vip)= 20 2,(1-4, Q) . (4.5)
iepe

Since we now have [V(p)] g =0(6), the denominator
V(p) of the Feynman integral M, vanishes in the
limit (4.4). However, this does not lead to IR di-
vergence of M, immediately. To see this it is
sufficient to examine the F term of J;, which is
the most singular term in (4.1b). Noting that G
for Fig. 1 has n,=2rn+1 -1 electron lines on P°
and 7, =n photon lines (hence N=#n,+n,=3n+[-1)
and that U#0 in the limit (4.4), we obtain

dz penti-1 i
ez =0(Srerer ) =06 (.6)

This shows clearly that V(p) must vanish more
rapidly than 6 in order that M, develop an IR di-
vergence.

To explore the IR property of Feynman integrals
we must therefore study the structure of V(p)
more closely. It turns out that the short-circuit
behavior of the current @; mentioned above is
crucial for this consideration. In terms of the
scalar current A; we may express it as

1, ieP°AB),
[A{49] g = @.7)
0(®), i¢P°(AB).

In order to prove this explicitly let us recall the
formula (1.75):

1
AP = = Z MipUp, (4.8)
P(AB)
?
4‘B 6‘ 5 4 3 ZJ_ l A
T \-/, Vv T i

T
\ \ /
N /)(\/
- ()

~T
I\ .
l\ ;’,//
~
\////\\\)
8~ 9 b)
1
BK — 3} 2 %l A
A4
~ /8/ ()

FIG. 2. (a) A diagram G with no internal photon loops.
(b) The reduced diagram obtained by shrinking the elec-
tron path in G. (c) A path P® going through photon line 9.
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where the summation is over all possible paths
P=P(AB). For concreteness let us consider the
diagram in Fig. 2(a). Then, for Upe, obtained by
shrinking the electron path P® to a point [see Fig.
2(b)], one finds

[Upelig= Upe = I:I z; [=0(1)] .
photons

4.9)

Next consider the paths P which include one and
only one photon line #, such as P? in Fig. 2(c). We
find [Ups]ig =2,,522¢- In general we have

[Upi Jr =2¢ I;I z; [=00)],

photons

(4.10)

where 2{ is the sum of Feynman parameters of all
electron lines between the end points of the in-
ternal photon line ¢. All other paths contain two
or more photon lines and are at most of order 5%,

Qi=A{%% L A{P) (p + k) + AP (p'=p +k +k,)

and
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Thus

[U]m:[ Z UP]IR=Upe .

P(AB)

(4.11)

The formula (4.7) follows immediately from (4.11),
This result can be readily extended to the scalar
current A{°? | C and D being any vertices on P°:

1
[A{%P = [(7 Z niPUP:l
) IR

P(CD

1 i€P(CD)

’

0(6), i¢P°(CD). (4.12)

We are now ready to evaluate [V(p)]z. To avoid
unnecessary complication let us consider the case
(=2, where external photons of momenta %, and %,
are attached to the vertices C and D on the electron
path P°, Then we have

> ziqi0@l= D 2, [A{AOp2 L AP (p 1 k) + AP p]

ieP(AC)

b2 Z[AMA% (p 1 k) AP (b 1R 2+ APD (p 4 k) p']

i€P(CD)

* Bg SATOL D ALY B k) p! + AP
i€eP(DB)

Taking account of (4.12), we can write the IR limit of (4.14) as

2, A(40p2 Z 2, A(D) (p + k) P +

ieP(AC) i€ P(CD) i€P(DB)

which leads to

V)~ 2. z(1-AA9), D

i€P(AC) i€ P(CD)

Note that the first and third terms are of order 62
because of (4.12) and the mass-shell condition p2

(4.13)
(4.14)
2, A{PP)p 12 1 0(62) (4.15)
[1-APD (p R ]+ D, 2,(1-APP)10(6?) . (4.16)
i€P(DB)
0(6) if i€P§=P°(AC)+P°(DB),
z;={0(6%) if i€ P°(CD) or P¢/P? , (4.17)

=p’2=1. On the other hand, the second term is of
order 6 unless (p +k,)?=1, which is not the case
for general values of 2,. Obviously these features
of (4.16) can be readily generalized to arbitrary /.

As was noted already for (4.6), the integral will
not have an IR divergence unless V(p) vanishes
more rapidly than 6. Thus it would appear from
(4.16) that the integral cannot be IR-divergent for
1= 2. This is of course nonsense. The trouble is
with (4.4) which is too simple and does not take ad-
vantage of the fact that some terms of (4.16) are
already of order 6°. One way to solve this prob-
lem,'® which we adopt here, is to define the over-
all IR limit by a sharper condition

O(1) if igP°=P*(AB),

where C and D are external vertices nearest to
A and B, respectively. Obviously [ V(p)]g is now
of order 62,

We are now ready to examine how the integral
Mg behaves in the limit (4.17). Suppose first that
soft virtual photons are all attached to P{ and at
least one photon connects P°(AC) and P¢(DB).
Then we find

de 52n p2(i-1)
U—zf;W-—m=0('c~,—ztmTr =0(1) for I>1

(4.18a)
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(for nonexceptional external photon momenta),
which reveals the presence of IR divergence in
Mg. The leading term of this logarithmic singu-
larity is of the form (Im)*, where the value of a
depends on the details of the soft photon structure
of G. If some soft virtual photons are attached to
P¢(CD), on the other hand, the numerator will
acquire extra powers of 6 and the integral will be
IR -finite.

For /=0 we obtain

55%;_—2% =0(62) (4.18b)
instead of (4.18a). Thus the electron self-mass
Odmg is not overall IR-divergent. However, the
wave-function renormalization constant B; has

an overall IR divergence, as is required by the
Ward identity.

The requirement in (4.17) that z;, i©P°(CD),
tend to zero faster than other means that these
lines can be ignored insofar as the IR structure
of Mg is concerned. In other words, the IR diver-
gence is determined completely by the mass-shell
property of electron lines on P§. This is a gen-
eralization of the result found previously.®

Thus far we have considered only diagrams with
two electron legs. For diagrams with 4, 6, ...
electron legs some photons must be hard in gen-
eval so that they do not fit exactly in the overall
IR limit (4.17). However, by selecting a minimum
number of photons which are required to be hard
by kinematics and treating the remaining photons
as soft, we can repeat the above analysis without
trouble. Of course, it must be kept in mind that
for some exceptional momenta the integral Mg
may have IR singularities stronger than the gen-
eral logarithmic behavior.

Before discussing the subdiagram IR singular-
ities in the following subsection, we shall extend
the above results to generalized diagrams that
contain not only the electron-electron-photon ver-
tices of the standard QED but also generalized ver-
tices with any number of photon legs and any even
number of electron legs.

Let us first consider a diagram containing a
generalized vertex with 2% photon legs and no
electron leg (any of these photons may be external)
as shown in Fig. 3. Since ithasn,=2n+1-1
- 2(k-1) electrons and 7, =% +1 photons, we obtain

dz 0(6%*-V) for =0,
S (4.19)
UV

0(82(*-2)) for I>1,

Thus the integral appears to be IR-divergent for
k=1, I=20and k=2, [=1. Actually no IR diver-
gence occurs in these cases because of gauge in-

1terz) ...
SNl -

FIG. 3. A diagram with a generalized 2% -photon
vertex.

"/ZK

variance. (Strictly speaking, gauge invariance is
outside the scope of this section since it requires
consideration of numerators of the integral M.
However, we only need some of its consequences.)

In the case k£=1, which is obtained by shrinking
a photon self-energy insertion S to a point, we
may replace all photon lines with self-energy in-
sertions by the Kidllén-Lehmann spectral repre-
sentations for renormalized photon propagators.
This leads to parametric integrals with “massive”
internal photons. Diagrams with such massive
photons will have no overall IR divergence since
V(p) does not vanish in the limit (4.17).

To dispose the case =2, =1, which is ob-
tained by replacing a photon-photon scattering
subdiagram S by a four-photon vertex, let us re-
write the photon-photon scattering polarization
tensor in a manifestly UV-finite form!®

9
HKpOu(p11p2;p3)p)= —py

w HKpcu(plrpz,psub) )

(4.20)

which follows trivially from the gauge invariance
of I, py,. Ifp” is the momentum of an internal
photon Z, then (4.20) introduces an explicit D’ fac-
tor in the numerator of the integral M;. In the
limit (4.17) we have D}~ A; p”=0(6) since iZP?,

so that the k=2 divergence of (4.19) is suppressed
by an extra factor of 6 in the numerator, rendering
Mg finite in the overall IR limit (4.17).

Next consider a diagram containing a vertex with
two electron legs and m (=0, 1,2, ... ) photon legs
(see Fig. 4). It has n,=2n—-1+1~ (m - 1) electron
lines and #n, =7 photon lines. Thus in the limit
(4.17) we have

0(™) for =0,
d
ﬁ_ﬁ= O(d™1)for I= 1 vertex on P¢ |
O(d™) for I=1 vertex on P(CD) .
(4.21)

For m=> 2 the integral My is convergent. The case’
m =1 is an ordinary vertex already covered by
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FIG. 4. A diagram with a generalized vertex with two
electron and m photon lines.

(4.18). The case m =0 corresponds to mass count-
erterm insertion. Such a diagram can have worse
IR divergence than a diagram without an in-
sertion for /> 1, However, this can be reduced
to the case (4.18) by carrying out the mass re-
normalization of electron lines.

Other conceivable generalized vertices have
four or more electron legs. By the same kind of
argument as above it can be shown that no new
type of overall IR divergence arises in these
cases.

B. Subdiagram IR singularities

In order that V(p) behave as 6? it is not really
necessary that the external momenta p,p’ flow
exclusively through the electron path P°. What
is crucial is the existence of nonempty paths
P¢(AC) and P°(DB) such that

1 -A{49 = 0(5)
(4.22)
1-AP® =0(5) .

As was noted already the behavior of A¢? is ir-
relevant. This means in particular that parts of
p and p’ may be diverted to some photon lines.
Thus IR divergences may appear even if some
photons become hard insofar as other photons en-
able us to satisfy (4.22). When the photons ¢ be-
come hard, the corresponding z; tend to zero in
the IR limit and generate closed paths along which
all z; vanish. This means that U vanishes, too.
In fact this is what is needed to maintain the de-
gree of IR divergence in spite of the suppression
of IR singularities coming from the phase space.
In order to generalize the IR limit (4.17) to sub-
diagrams, it is therefore necessary to combine
(4.17) with the UV limit (2.3). Suppose we wish to
examine the IR singularity arising from the re-
duced diagram G/S where the subdiagram S con-
sists of a set of closed loops. Noting that V(p)
must be of order 6% for IR divergence to occur,
let us define the IR limit [ £(2;)]%/° of an arbitrary
parametric function f(2;) as the leading term in

the double expansion in 8, €, where

0(6) for i=P;

z; = (0(?) for i€P?/P;, , 1EG/S (4.23a)
0(1) for iZpP°®
z;=0(€), € =8 for €S, (4.23b)

P being the subset defined in (4.17).

In Sec. II B we have already seen that (4.23b)
leads to the separation of parametric functions
into functions defined on S alone and ones defined
on G/S alone. Then (4.23a) reduces the latter to
an overall IR limit on G/S.

et us consider a general subdiagram S of the
diagram G shown in Fig. 5. The path P°(CD) may
be empty, i.e., we allow a subdiagram S which
does not contain any electron line from P¢. (In
that case m is even by Furry’s theorem.) Photons
entering S can be either internal or external to the
diagram G as a whole. By P°/S we mean the re-
duced electron path obtained by shrinking P°(CD),
the part of P° contained in S, to a point. If there
are any massive particle lines other than those
of P°, we have to consider only the case where
they belong to S since V would be finite in the limit
(4.23) otherwise.

The IR limit of various parametric functions
now follows directly from the results of Sec. IIB.
First of all we have

[Ul%° = US[U])x [=0(es)] (4.24)
[Bij]?I{SZij[UG/S]XR [=0(e"s )], i,jeS. (4.25)
For other pairs of ¢ and j, [B;;]%* is of order €"S
and can be ignored compared with (4.25).

From (2.15) the scalar currents within G/S
satisfy

[Ai]IGR/s = [AiG/S]xR
=1 for i€ P°, i€G/S
=0(6) for i@’Pe, i€G/S . (4.26)

For A,, m&S, we can determine the IR limit by

FIG. 5. A diagram G with a general subdiagram S.
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first taking the UV limit of the defining formula

(4.8)
G/S
[A ]UV UU/'S Us P(;) nmPU UP .

Now, in taking the limit (4.23a), we note that
(US| x=Ug" and [US/S] ;g =0(6) if P#P°. Thus,

(4.27)

In terms of these results we can now evaluate
[V]m as follows:

[VJG/S{ Y 2u(l=gnQh)+ D,

i€ Peé(CD) lelecm)n
loops in §

=[ Z 2,(1-q,'Qn )+ E Zimin'*'l:

i€ Pé(CD) lele(:trpn
loops in §

Thus in the IR limit the function V separates into
the S and G/S parts of the same order

[ ]%S =Vs +[V;;/s]m (4.30)

Just as in Sec. III the separation of U and V into
the S and G/S pieces enables us to factor the
parametric integral over the IR limit integrand
into a product of S and G/S integrals. This factor-
ization is trivial in the Schwinger-Nambu repre-
sentation (2.1). In the compact domain representa-
tion (4.1) it is implemented by inserting the iden-

tity
ds dt
1=j—f—5<1_5§)5<1-59&> (4.31)
s t s t
and rescaling
Z2;~sz;, 1ES
(4.32)

z;~lz;, i=G/S

in the separated integral

f dz;6(1 —z;)

Us* [ Ugss i (Vs + [ Viys i)V 2"

The desired factorization is then achieved by the
Feynman formula

0(1 —s —#)s**dst'™dt _ T'(k) T'(l)
r(k”)f GATIBFT - AF B
(4.33)

The reduced diagram G/S is one of the diagrams
with generalized vertices discussed in Sec. IVA,
and determining whether the diagram G has a di-
vergence in the IR limit (4.23) reduces to deter-
mining all G/S that are overall IR-divergent.

Thus far we have concentrated on the no-con-
traction term in (4.1). In the overall IR limit this
is sufficient for determining the leading singularity

G/s

only paths containing P°/S will contribute to the
above summation in the IR limit, yielding

[A,]%5 =AS(CD)=A$ for m<S; C, D on P°

=0(b) for m&S; C, D not on P° .
(4.28)
G/s
Zimiz] +l: Z Zi(l-Qi'Q{)} .
IR icPe/s IR
Z z;(1-gq; 'Q.{G/S)] (4.29)
icpPe/s IR

of the integrand since each contraction diminishes
the power of V in the denominator. For the IR
limit (4.23), however, it is possible that the higher
contractions are as singular as the no-contraction
term since the decrease in the singularity due to
the vanishing of ¥ may be compensated by the in-
creased singularity coming from vanishing of U.
Each contraction introduces a factor B;;V/U.

From (4.25) we note that if m, n<S,

[ VIEE =062 ™) .

(B, V/ UGS = (4.34)
Thus internal contractions within S will produce
terms of the same order in the IR limit as the
noncontracted term. All other contractions intro-
duce factors of order 62 and do not contribute in
this limit. Again IR divergences occur only if
G/S has an overall IR divergence.

Let us summarize this section by giving a pre-
scription for locating all IR singularities of a dia-
gram G. Find all subdiagrams S, consisting of
several closed loops, of G such that the reduced
diagram G/S is free from any massive particle
lines not belonging to the electron path P°. Find
the degree of overall IR divergence of the reduced
diagram G/S in each case. Repeat this procedure
for the reduced diagram G/S successively. Finally
find the IR singularity of the diagram G itself.
This procedure will exhaust all IR singularities
associated with a QED diagram G.

V. SEPARATION OF IR DIVERGENCES

In Sec. IV we have derived rules for locating IR
singularities in the parametric space and deter-
mining whether they give rise to IR divergences.
For that purpose it was sufficient to consider
zeros of the denominator V(p). We have also
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seen that, in the IR-singular region, parametric
functions separate, suggesting the factorization of
the integrand. We shall now extend our considera-
tion to the whole integrand, determine the IR
limits of all terms, and show that such a factoriza-
tion indeed takes place. We shall then construct

an IR subtraction scheme analogous to the K meth-
od for UV divergence.

To avoid unnecessary complication let us con-
sider in this section only a vertex diagram G with
the external photon momentum g+#0. The electron
self-energy diagram can be treated as a special
case of vertex diagram with ¢=0. Some extension
of our method is necessary to deal with general
diagrams.

A. Overall IR limit

The numerator F, of the no-contraction term
consists of ¥y matrices from vertices and electron
propagator factors ¢;+1, where, according to
(1.77),

Qi =APV (b —39) +AYP (B +39)* , (5.1)

V being the position of the vertex y* to which the
external photon is attached. In the following we
shall drop the superscript (AB) whenever no am-
biguity arises, so that we denote 4; =A%® = V(p)
=V“B8 (p), etc. According to (4.12), in the overall
IR limit, we have

p-3q=p’ , IEPAY)
[Qilx=<p+3q=p" , i=P°(VB) (5.2)
L 0(0), otherwise

i.e., all external momenta flow through the elec-
tron path P°.

The general structure of the numerator F is of
the form

Fo=u(p")Fou(p’)
=~ )y B 1)y (B )y pu(p’)
(5.3)
where y%, yB, ... are contracted with vy, vg, ...

somewhere in the above product. To simplify (5.3)
we recall

@'+ 1)y gu(p)=2pu@’) . (5.4)
[In the following we shall not write the spinor fac-
tors @(p”), u(p’) explicitly. But it is to be under-
stood that all F, are evaluated sandwiched be-
tween spinors. ] By repeated applications of (5.4)

we can readily reduce the factors to the right (or
left) of ¥” in (5.3) to

sy <orIaI(2p ")“) .

Thus F, in (5.3) can be written, for p’?=p”2=1, as

[Folw=4"(0" 2"V '=fRy" (5.5)

(if G has no fermion loop), where m is the number
of photons crossing the external vertex V. In the
overall IR limit the numerator therefore reduces
to the bare vertex y”, and hence the magnetic con-
tribution is at most of order 6:

[Fg |mag. mom.]IR = 0(6) . (5.6)

Since vertex diagrams are superficially logarith-
mically IR-divergent, (5.6) will suppress the singu-
larity and make the contribution to the magnetic
moment overall IR-finite. Charge form factors

are of course overall IR-divergent. Let us define
the overall IR-divergent part of the vertex dia-
gram I'(?™ of (1.70) by

dz;o(1 —z;)

—a\"
F(nzzn)u= <T> (n=1D)ly” Uzy N-2n A

=gor’ . (5.7)

Note that % in (5.7) could be replaced by any
parametric function that has the same IR limit as
(5.5). For example, we could have defined I'{"?
using the entire F, for the numerator. Similarly
U and V could have been replaced by some other
functions, as long as they have the same IR limits
as Uand V.

B. Subdiagram IR limit

According to (4.26) and (4.28) we have

(p',  i€PUAV), iSG/S
»", {€P%(VB), ieG/S
11 - o(6), ZpPe, iEG/(;‘ .
) am, Prcpcri@n, ics
ASp”, P4(CD)CP®(VB), =0
kQ{S, if the vertex Vis in S, icS

where A7 =A$(CD). The definition of the paths is
clarified in Fig. 5.

The contribution of G/S lines to the numerator
F, will reduce to the numerical factor /5 while
the lines from S will retain the y -matrix structure.
Because of (4.34) all contractions will occur with-
in S, and the numerator factor arising from the
(noncontracted) G/S lines will be the same for all
F,. We therefore expect factorization of the type
F—~[F%/S] . F. Since there are only a few possible
subdiagrams S for our vertex diagram G, let us
establish it for each type of S separately.

(i) Electvon self-energy. With the help of (5.8)
we find

[Fojfx{s = IGI{SYUFO[GmsJ , (5.9)
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where /5 is a generalization of (5.5) to the elec-

tron self-mass insertion diagram G/S. Repeating
this for all F, we obtain

[FY 15 =F &5y Flom s ],

S =electron self-energy diagram. (5.10)

(ii) Intevnal vertex (excludes the vertex V). We
have

(P15 =f &5 FlLs]
(iii) External vertex (includes the vertex V), We

find
[ ]G/S fc/s[ ]

Similar results are obtained if G is an electron
self-energy diagram; G/S always gives a factor

/S Thus we have established the factorization
of parametric integrands in the IR limit.

(5.11)

(5.12)

C. Subtraction of IR singularities

The simplest way of constructing an integrand
less singular than J;; in the IR limit (4.23) would
be to replace it by Jg — [J5]%5. However, [U[/S
is too singular in the z; -0 limit, where ¢ is a
photon line in G/S. Thus such a subtraction would
introduce a spurious UV divergence. We shall
avoid this by defining the subtraction term using
the I;/s operation defined by*°

_£G/S:S 1
IG/SJG —fIR F U ZUG/SZ(VS+%/S)N-2" ’

(5.13)

where £ must be replaced by v’f$(S if G/S in-
cludes the external vertex V. By construction we
have (/5576 %5 =[G 155, so that (1 = Ig/5)J; is also
less singular in the IR limit (4.23) than J;. We
choose to make the replacements [Ugslir ~ Uy/s,
[Ve/slik = Vess in defining (5.13) so that our 7 op-
eration parallels the K operation. We could also
have replaced the numerator factorf‘;/S by any
functlonfc/s such that [fG/s],R—fG/s. (In the sub-
sequent article® we shall find such a redefinition
to be convenient.)

We are now ready to define the /- and K-finite
part of the Feynman amplitude M; by

AMg = ]S-I (1 ‘Ic/si)A'Mo ’ (5.14)
1

where A'M, is given by (2.25) and the product goes
over all electron self-energy and vertex subdia-
grams S;. Strictly speaking, (5.14) may still con-
tain logarithmic IR divergences since the super-
ficial IR divergence may be linear for the electron
self-energy subdiagram S. However, such prob-
lems do not arise in our particular application.?
We shall therefore not worry about this problem
any further.

In terms of (4.33) and (5.10)=(5.12) we find that
the subtraction terms factorize as

8ge/sv"0ms if S is an electron self-energy

diagram,
Ig/sTY = v Qs :
G/S™ G 8¢/sv Ls if S is an internal vertex,
&e/sTs if S is an external vertex,

(5.15)

where g; is defined by (5.7). Physically the decom-
position (5.15) means that an IR divergence occurs
whenever the diagram G separates into a cloud of
soft photons attached to the external electron lines
(reduced diagram G/S) and an “inner” diagram S
whose photons carry arbitrary momenta. gg/s may
be a complicated integral. However, in calculating
physical processes, these IR-divergent integrals
will cancel each other identically and need not be
evaluated explicitly.

Let us also note that, according to (5.15), only
those diagrams containing an external vertex sub-
diagram will give IR-divergent contributions to the
magnetic moment. All other magnetic moment
contributions defined by (5.14) will be IR-finite.
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APPENDIX: CALCULATION OF Il (p?)

We shall describe how (3.5) can be consistently
implemented in the parametrized Feynman inte-
grals. Note that for u#v,

0 0 [ ]
37 e =8 ag s 8 s s)e

+(@*,pY, ... terms) . (A1)

All external momentum p dependence of 1157 is
contained in F4” terms in the numerator and the
exponent V(p). One can symbolically write

08 (purgmivinys B v
Py Mg 9P 40P g
+(p%p8 terms), v#u
(A2)
with
o%FhY pv,oB
BDs Z A A F ) (A3)

t,J
electrons

where (A3) is obtained by noting that all » depen-
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dence of F,, is in the noncontracted factors ¢} +m;,
di=4A7. “”‘ is obtained from F*" by replacing
factors If; +m, and JJ; +m; by y* and y®. Then II;
is obtained by

. o "ordzg OFFMY iy
HG—Z‘:_‘( -)w—l} W ——3Pa3PB e )

a=uB=v, azB. (Ad)

The redefinition (3.5) has to be consistently in-
corporated in all diagrams with photon self-energy
subdiagram S. One way of doing this is by first
parametrizing the subintegral II§”, substituting
(3.5) and (A4), and then parametrizing the rest of
the integral. It is not obvious that this two-step
parametrization will lead to the same form of the
parametric integral as our usual overall paramet-
rization. However, following the arguments of
Sec. III of I, it is easy to show that

U= UsUgs(@50 =243 +Gs) (A5)

where S is inserted between the lines 7 and ¢’ and
Gs is given by

VS= Z Zle]z—Pist . (AS)
JES

Thus the two-step parametrization is in fact the
same as the overall parametrization. Making use
of (1.95) we can also rewrite AS AS appearing in
(A3) in terms of overall parametric functions,
noting that

AS=A,/A;,, mES. (AT)

Thus, if some diagram G contains a photon self-
energy insertion S, we obtain

n
Mo = 47(1—2) Ik RATSCE (a8)
with
F(Dk) E pu ’ (A9)

where E*” contains numerator factors from j&S,
and F,, is the numerator factor from the electron
lines in S. Then (3.5) is implemented by the re-
placement

(—Di .Dil)

F(D)~ ES(D) =

z aB
AmAn Fu v,mn

m,nes

electron

a=yu, B=v; a#B. (A10)
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